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RESUME ETENDU

Dans l'information classique, il y a de plusieurs années ou la distribution de clé
secrete pour deux parties lointaines était bien connue comme un défi difficile.
L'histoire pourrait commencer en 1948 lorsque Shannon introduit un concept
fondamental de la théorie de l'information classique: l'entropie H, ou également
nommé par « Entropie de Shannon ». L'entropie de Shannon de la variable aléatoire
X, classiquement notée H (X), est pour but de quantifier, en moyenne, la quantité
d'information qu'on gagne lorsqu’on apprend la valeur de X. En d'autres termes, H
(X) mesure l'incertitude de X avant que l'on apprend sa valeur. Avec la notion
d'entropie, Shannon a montré qu'il est possible de construire un canal virtuel sans
bruits et sans perte a partir d'un canal réel bruité et présenté des pertes. Ce résultat
est maintenant bien connu sous le nom « le théoréme de codage des canaux sans
bruit de Shannon ». Inspiré¢ de ce travail, en 1949, Shannon a continu¢ a mettre en
place un modele de communication sécurisé dans lequel le canal entre Alice et Bob
est sans bruit et sans perte. Cependant, Eve peut écouter le canal, c'est a dire que,
Eve peut recevoir des copies identiques de tous les messages recus par Bob. Grosso
modo, Alice chiffre le message en texte brut M a un mot de code C, elle envoie C
sur le canal. Tous les deux Bob et Eve recoivent C. Dans ce contexte, Shannon a
montré que M serait parfaitement en secret si l'information mutuelle de M et C,
notée I(M; C), est égal a zéro, en d’autres mots, le code C donne aucune
information sur la texte M. Un tel secret parfaite est appellé « sécurité de
l'information théorique » ou « sécurité inconditionnelle », par le fait qu'il ne dépend
pas de la puissance de calcul de I’ennemi. Shannon a montré que la sécurité
inconditionnelle de M peut étre obtenu en utilisant le schéma « masque jettable », a
condition que Alice et Bob ont été partagés une clé secrete K, qui a au moins la
méme longueur de M, en d'autres termes, H(K) > H(M). Malheureusement, une telle
condition est difficile a obtenir aupres des situations de communication réelle. Par
conséquent, la question d'intérét est de savoir comment les deux parties éloignées

peuvent faire s'ils ne partagent pas a priorité une clé secréte assez longue? Peuvent-
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ils, Alice et Bob, générer une clé plus longue a partir d’une clé secrete initiale plus

courte ?

Dans le modele de communication sécuris€¢ de Shannon, l'inégalit¢é H(K) > H(M)
s’agit d’une réponse négative a la question au-dessus, c'est a dire qu'il est
impossible de générer une cl¢ secrete plus longue a partir d’une clé secrete initiale
plus courte. Toutefois, on devrait noter que cette impossibilit¢ prend effet sous
I’hypothése de base de Shannon qui suppose que le canal est réduit a étre parfait
(sans bruit et sans perte) et I’ennemi peut obtenir exactement les choses que la
partie 1égitime Bob peut obtenir. Ainsi, on pense a modifier le modele de Shannon,
plus précisément, a une modification de I’hypotheése de Shannon. En effet, on essaie
de construire d'autres modéles qui sont plausibles et dans lesquels I'information
obtenu par I'espion est différent de celui obtenu par le destinataire 1égitime. Jusqu'a
présent, c¢’est connu qu’il y a au moins deux tels modé¢les: lI'un est d’utiliser
directement des canaux classiques bruités et l'autre d'exploiter les canaux

quantiques.

Cette these a pour but d’examiner la distribution de clé quantique, ou Quantum Key
Distribution (QKD) en termes d'anglais. C’est une technique qui promet un moyen
parfait de distribuer la clé secréte pour les deux personnes a courte distance.
Malheureusement, la QKD n'est pas disponible aux communications a grande
distance. Pour remédier ce probléme, les modeles de relais ont été¢ étudiés et

proposés. Ces modeles peuvent étre classifiés en deux catégories principales :

e Modeles de confiance : les noeuds intermédiaires ont été assumés d'étre
sécurisés. Cela rend un effet indésirable que la sécurité finale se baissera en

fonction du nombre des noeuds intermédiaires dans les cas réels.

e Modeles d'utiliser les paires d'EPR : ces modeles ne réduisent pas la sécurité
des schémas originaux de QKD. Cependant, c'est trés difficile & manipuler
les paires d'EPR pendant une longue durée qui est nécessaire pour effectuer

et terminer un protocole de distribution de la clé.
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Evidement, un modéle efficace a étendre la portée de QKD est toujours manqué.
Motivé par ce fait, cette thése a pour but de chercher et proposer les nouveaux
modeles de relais pour la distribution de clé quantique. Nous avons abordé le

probléme par deux approches : « classique » et « quantique ».

I. Approche « classique »

Nous avons étudié la distribution des clés extrémement secretes dans un réseau
quantique a grand échelle. Les liens sont inconditionnellement sécurisés grace a la
technologie QKD qui permet a détecter efficacement les attaques aux liens. Par
contre, les noeuds restent sujet des attaques et aucune architecture ne permet de les
protéger. Les attaques aux noeuds sont soit détectables, soit indétectables. Les
attaques détectables sont faciles a traiter. Lors qu'on a détecté une attaque parue a
un noeud, on peut simplement enlever ou mettre en garantaine ce noeud pour
maintenir les autres opérations du réseau. Les attaques indétectables sont tres
graves. Personne ne peut les détecter jusqu'au moment ou un dommage terrible était
paru. Les transmissions de clé quantique a longue distance présentent plus de
risques a cause des attaques indétectables. La vulnérabilité s'augmente en fonction
du nombre des noeuds intermédiaires. Il faut envisager les méthodes qui permettent
de traiter contre les attaques indétectables aux noeuds intermédiaires. Une méthode
remarquable est d'utiliser des algorithmes de routage stochastique qui obligeraient
lI'espion a réussir les attaques indétectables sur une proportion importante de la

totalité du réseau pour étre str de pouvoir intercepter I'échange de secrets.
Nous avons modélisé le probléme par le modéle suivant (voir Fig. 1):

e Un grand réseau a maille carrée dans lequel chaque noeud est connecté a ses
quatre voisins par la technologie QKD ;
e Chaque noeud est siir avec probabilité ps ou 0< ps<1. Autrement dit, chaque

noeud est espionné sans aucune trace avec probabilité p. =1 - p; ;
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e Alice et Bob ne connaissent pas les noeuds siirs et les nceuds espionnés. Ils
ne connaissent que ps et pe.

e Alice envoie a Bob N sous-clés K, K, .., Ky par N chemins différents mt;, m,,
.., Ty. La clé finale K est calculée par une opération XOR au niveau du bit

sur toutes les sou-clés K, K, .., Ky.

H b Attacked nodes
. - .___,__,___——-— {contirolled by Eve)

l-.\_\_\_\_‘_\_‘-
= Non-attacked nodes
_--""""r—

» a7
Alice .

]
"

] ]
. . 4-connected neighborhood

WEEE I .;/th

=
] i
H e S-connectad neighborhood

Fig. 1 — Two-dimensional lattice network

Dans le cadre proposé, les deux questions suivantes sont essentielles :
1. Quelle est la condition de ps telle que tous les nceuds siirs soient presque
certainement liés ?
2. Etant donné un algorithme de routage stochastique, et une ¢ arbitrairement
proche de 0, comment peut-on estimer la value N des chemins (ny, 7y, .., 7IN)

telle que la sécurité de la clé final K est égale a 1- ¢ ?

Pour répondre a la premicre question, notre approche est basée sur la « théorie de
percolation ». En effet, le cadre de la percolation 2-dimensionnel est semblable a
notre modele proposé¢ au-dessus. Le probleme de percolation peut étre enonce

comme la suivante. Etant donnée un graphe G = (V, E) ou V est I’ensemble des

(4]



sommets et E est ’ensemble des arétes. Tous les arréts sont ouverts. Chaque
sommet est soit ouvert ou soit fermé. On fournit de I’eau au centre du graphe G. Les
arréts et les sommets dans 1’état ouvert permettent a 1'eau de traverser et les faire
devenir mouillés. Sinon, ils ne permettent pas le passage de l'eau. Chaque sommet
est ouvert avec probabilité p,, ou 0 < p, < 1. On consideére la probabilité¢ de
percolation 0, qui est mesurée par la proportion de sommets mouillés sur les
sommets ourverts. Fig. 2 montre le comportement de 0(p,). La valeur p., également

nommeée la probabilité critique, est la valeur minimum de p, telle que 6(p,) > 0.

8(p,)

v

1
Fig. 2 — Probabilité de percolation 6(p,)

Nous avons trouvé que les deux probabilités p, (ouvert) et ps (siir) jouent un réle
équivalent dans les deux contextes. Si nous fixons ps = p, et supposons que le
sommet A envoie a le sommet B un ensemble infini des sous-clés K, K,, .., par une
infinité de chemins différents m;, m,, .., my, alors la sécurité de la clé finale K est
identique a la probabilité existant au moins un chemin sir entre A et B. D’autre
coté, une telle probabilité est équivalente a la probabilité que un sommet ouverte
appartient a la grappe géante des sommets ouverts du graphe. Nous avons pu retirer

deux caractéristiques importantes de la théorie de percolation :

1. O est une fonction non-décroissante et continue dans le droit de p. (voir Fig.
2).
2. Le nombre des grappes ouverts géantes est soit 0 ou soit 1 pour 6 = 0 ou 6>

0, respectivement.
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En basant sur les deux résultats importants au-dessus, nous avons trouvé une
méthode d'heuristique pour déterminer la condition sur ps telle qu'on soit stir qu'il
existe au moins un chemin non-espionné entre les nceuds siirs avec une probabilité &
arbitrairement proche de 1. Nous avons pu formuler mathématiquement la relation

entre o et p; comme la formule ci-apres :

(1—p8)*if 0.8 <p, < 0.9,
(1—p9*if 0.9 <p, < 1.

1-(1-py)* < 6S{
Pour valider notre formule trouvée, nous avons implémenté des simulations et fait

des statistiques.

Lorsque la condition sur p étant satisfaite, nous nous sommes intéressés aux
algorithmes de routage stochastique qui permettent de réaliser la distribution de clé
a un niveau de sécurité 1-¢ ou ¢ arbitrairement proche de 0. L'idée est simple. Si on
envoie un assez grand N des secrets par des chemins aléatoires, alors il y aurait un
secret qui échappe a l'espion avec probabilité¢ 1-. Les algorithmes que nous avons

étudiés sont :

e Un algorithme de routage d’ivrogne adaptatif, ou Adaptive Drunkard
Routing Algorithm (ADRA) en termes d’Anglais. Cet algorithme a pour but
d’examiner le phénomene « percolation » de notre carde de travail proposé.
La distribution de probabilité pour le nceud suivant est sans biais dans le
probleme de marche de l'ivrogne classique. Ici, nous avons propos€ un
algorithme de routage d’ivrogne, nommé ADRA, qui est biais¢. L'idée est de
donner une plus grande chance, mais toujours au hasard, pour le sommet qui
est plus proche du destinataire, afin d’augmenter la convergence de

I’algorithme.
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Un algorithme de routage stochastique avec longueur constante, ou
Constant-Length Stochastic Routing Algorithm (I-SRA) en termes
d’Anglais. Tout d’abord, nous devrions définir quelques nouvelles notions.
La longueur d'un chemin est le nombre de sommets appartenant a ce chemin-
la. Un sommet peut étre compté autant de fois que le chemin passe par ce
sommet. La distance entre deux sommets est la longueur du plus court
chemin entre ces sommets. Alors, 1’algorithme de routage |-SRA est un
algorithme stochastique qui prend un parametre d’entrée | et tente de

transmettre le message par un chemin aléatoire mais ayant la longueur I.

Un algorithme de routage stochastiques ave longueur paramétrée, ou
Parameterized-Length  Stochastic Routing Algorithm (k-SRA). Cet
algorithme prend un paramétre d'entrée k > 1, et essaie de transmettre le
message par un chemin de longueur | < k x d. Nous avons pu construire
’algorithme k-SRA en basant sur I’algorithme I-SRA. L’idéee est comme la
suivante. Lorsqu’un message a besoin d’étre envoyé, nous choisissons
aléatoirement une valeur | < k % d, puis nous utilisons 1’algorithme I-SRA
pour déterminer sur quel chemin ayant la longueur | le message va étre

transmis.

Nous avons considéré également deux stratégies d'attaque d’Eve:

Attaque dynamique : Eve re-sélectionne fréquement des nceuds attaqués en
essayant d’attraper quelques messages envoyes.
Attaque statique: Eve maintient son choix des nceuds attaqués jusqu'au

moment ou tous les N messages ont été envoyés.

Parce que I'ADRA algorithme est totalement basé sur la marche aléatoire, un tel

algorithme n’a pas pu donner des résultats mathématiques rigoureux. Son

rendement ne donne qu’une estimation statistique expérimentale. L'algorithme I-

SRA n'est pas une vraie solution de routage. Cet algorithme a pour but d’exécuter la

sous-tiche de l'algorithme k-SRA. L'algorithme k-SRA a pu présenter quelques
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bornes rigoureuses. Nous avons trouve la formule qui décrit la dépendance de N a €

et a I’algorithme de routage :

lge
N >———
T 1-l1gA

Ou A dépend de caractéristiques spécifiques de I’algorithme de routage.

Nous avons implémenté les simulations pour valider les conclusions et formules

obtenues.

Nous avons noté que pour l'algorithm ADRA, le calcul des probabilités pour
choisir le nceud suivant peuvent varier d'entrainer de nombreuses variantes.
Nous avons conduit les simulations dans un réseau quarré de taille 600 x
600, en faisant varier la probabilité sécurité ps, 0.93 < ps < 1, et la distance
entre Alice et Bob d(ag). Pour chaque ps, nous avons généré des attaques au
hasard d’Eve. Pour chaque distance dng), nous avons généré 400 paires
(Alice, Bob). Pour chaque paire, nous avons conduit 400 expériences. Dans
chacun, nous avons généré des chemins stochastiques d'Alice a Bob jusqu'a
trouver un chemin sir (c’est-a-dire un chemin sans Eve). Pour chaque
ensemble des 400 expériences nous avons ramass¢ le plus grand nombre des
messages qui ont eu besoin. Pour éviter d'envoyer un nombre infini de
messages, nous avons mis un effort maximal a 10* messages. Le résultat de
simulations donne a penser qu'il existe un seuil du nombre des messages
d'envoyer au-dessus duquel on peut étre presque certain qu'il existe au moins

un message échappé a Eve.

Pour I’algorithme k-SRA, les simulations ont ét€¢ mises en ceuvre également
dans un réseau quarré de taille 600 x 600. Nous avons performé 10°
expériences. Nous avons pu collecter et comparer les bornes inférieures,
valeurs réels sorties de simulations, et bornes supérieures pour le cas auquel

k=2,d=10 et p; = 0,93; 0,95; 0,97; 0,99. Nous avons noté que la borne
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inférieure est toujours possible si tous les N messages prennent un seule
chemin. La convergence de résultats expérimentaux aux bornes supérieures
est importante. Nous avons constaté que la secréte de la clé finale est une
fonction non décroissante. Comme le nombre de messages envoyés
s’augmente, la secréte converge vers sa borne supérieure. En outre, les deux

ont tendance a 1, lorsque N tente a I’infini.

En bref, 1'originalit¢ de notre modele "“classique" proposé est de faire émerger la
question sur les attaques indétectables aux noeuds intermédiaires diis d'une
transmission de clé¢ a long distance, et de proposer une solution correspondante.
Notre travail est interessant lorsququ'il ouvre une autre porte qui permet d'enquéter
les réseaux QKD en utilisant la théorie de la percolation et le routage stochastique.
La recherche sur le modele propos€ nous avons rendu cinq papiers présentés dans
les congrés internationaux avec comité de programme (voir Chapitre 1.3).
Cependant, beaucoup de travail reste a faire dans le fuure. Par exemple, nous
devons tenir compte de l'authentification de clé pour compléter notre systeme
d'échange des clés. La distribution d’attaque était uniforme dans notre présent
travail. Plus d’autres distributions de probabilité complexes semblent plus
intéressantes. Etudier d'autres topologies est aussi de 1’importance, les grilles
quarrés ne sont que la premiere ¢tape. Nous visons €galement a trouver des
formules plus rigoureuses et bien serrés. D'ailleurs, nous devrions améliorer notre
propositions de routage stochastique, par exemple, cacher les informations de
routage comme dans le routage en pelure d’oignon. Nous devrions attacher une
importance au débit et aux charges de calcul dans la pratique. Nous avons
¢galement l'intention de procéder a une estimation des colts a I'égard de la

technologie QKD aujourd'hui.
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Il. Approche « quantique »

1. Modéles QQTB et QQTR

Nous avons abordé le probléme par proposer une nouvelle définition du relais
quasi-confiant. Les relais quasi-confiant que nous nous sommes intéressés sont
définies comme la suivante t: (i) étre assez honnéte pour bien suivre un protocole de
communication multi-partie en temps fini, (i1) cependant, étant sous la surveillance
d’Eve. En basant sur une telle nouvelle définition, nous avons pu développer une
mod¢le simple de 3-parties appellé le pont quantique quasi-confiant, ou Quantum
quasi-Trusted Bridge (QQTB) en terme d’Anglais (voir Fig. 3). Dans ce mod¢le,
Alice et Bob sont pris hors de portée de la distribution de clés quantique (QKD).
Carol est un relais quasi-confiant qui peut partager des liens QKD avec tous les
deux Alice et Bob. Nous avons pu montrer que le protocole QQTB permet a Alice
et Bob, en collaboration avec Carol, de bien établir des clés secretes. L'originalité
du protocole QQTB est que nous n'avons pas besoin de paires de photons intriqués

invoquer.

Ensuite, nous avons ¢laboré le modéle QQTB au modele relais quantique quasi-
confiant, ou Quantum Quasi-Trusted Relais (QQTR) en termes d’Anglais (voir Fig.
4). Le modele QQTR est capable de distribuer des clés secrétes sur une distance
arbitrairement lointaine. Bien que le modele QQTB exige les sources de photons
intriqués, 1'originalité est que nous n'avons pas invoqué la technique d’entanglement
swapping.

En effet, I’idéee de fond de nos deux modéeles au-dessus est simple. Nous avons
remarqué que dans le modele de 3-parties comme le modele QQTB, si Alice et Bob
arrivent a donner la valeur C = A @ B (l'opération XOR) en gardant en secret les
deux valeurs A et B, alors Alice et Bob peuvent utiliser le schéma masque jetable
afin de protéger la transmission de la clé finale K. Nous avons cherché et arrivé a
réaliser notre remarque par proposer le circuit quantique CNOT-M comme étre

décrit dans Fig. 5. Les caractéristiques du circuit CNOT-M sont :
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1. Si |a) et |b) ont été préparés dans la base |X) = {|(Y), |i)}, alorscl=a®b
et C2 est aléatoire.
2. Si|a)et |b) ont été préparés dans la base |+) = {|0),|1)}, alors c2 =a ® b

et cl est aléatoire.

0010 = (282 1) = ()

Alice Carol Bob
A C=AxorB B
¢ L @

Fig. 3 — Mode¢le QQTB : la communication entre Alice, Carol et Bob :
Carol joue le role d'une personne intermédiaire quasi-confiant.

Alice Carol 1 Carol 2 Carol N Bob

Co C C, Cn Cn+1

@ @ @ @ o —-—-—---- @ @ @
Bell 1 Bell 2 Bell N+1

Fig. 4 — Modele QQTR: Bell 1, Bell 2, .., Bell N sont EPR sources; Carol 1,
Carol 2,.., Carol N jouent le role de Carol dans la modele QQTB.

M{|0), 11}

|a) @ cl

»—H—Q «
M{[0), |1)}

Fig. 5 — Le circuit CNOT-M se compose d’une porte C-NOT et deux
mesures en bases différentes. Les deux sorties garantissent soit C1=a xor b,

soit c2 = a xor b.

Le protocole du modele QQTB se compose de 4 étapes :
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Etape 1: Préparer, échanger, et mésurer des qubits.

Alice crée les 2n bits aléatoires ray, .., ra,, et choisit une chaine b, de 2n bits
aléatoires. Pour chaque bit ra;, Alice crée un état quantique correspondant
|ra,) = |ra;) dans la base [+) = {|0),]1)} si rangle bs[i] = 0, ou |ra,) =
|7@,) dans la base |X)= {|6), |i)} si buafi] = 1. Alice envoie
|ra,), |ra,),.., [ra,,) a Carol.

De méme, Bob crée les 2n bits aléatoires rby, .., rb,,, un chaine by de 2n bits
aléatoires. Bob génére et envoie |rb,), |D,), .., [rb,,) a Carol.

Carol regoit deux chaines de 2n qubits, I’'une d'Alice et I’autre de Bob, d’une
manicre synchrone. Cela veut dire que Carol regoit un par un tous les 2n
paires (|ra,), |rb,)). Pour recevoir une paire|ra,), |rb,), Carol se tourne au
hasard dans une de deux modes, soit Check-Mode (CM) ou soit Message-
Mode (MM).

0 Dans la mode CM, Carol mesures indépendamment |ra,), |rb,) dans
deux bases aléatoires |+) ou |X). Carol enregistre les deux bits
classique du résultat et conserve leurs bases correspondantes.

0 Dans la mode MM, Carol utilise le circuit CNOT-M (voir Fig. 5) pour
mesurer |ra,), |rb,). Elle enrigistre les deux valeurs de sortie.

Apres d’avoir recu tous les paires de qubits, les choix de CM et MM produit
grosso modo deux chaines : I'une indiquant les positions de Check-Mode CP
= ¢py, .., Cpn €t Pautre indiquant les positions de Message-Mode MP = mp;,

.., MPy.

Etape 2 : Détecter la présence d'Eve.

Pour le canal Alice-Carol: Alice et Carol communiquent leurs bases utilisées
dans les check-positions cpy, .., cp, et leurs valeurs correspondantes. Alice et
Bob écartent des positions ou leurs bases sont
différentes. IIs comparent les valeurs aux positions restantes. Si quelques-uns
des ces valeurs sont en désaccord, alors le canal devrait étre compromise.

Dans ce cas, Alice et Carol informent a Bob pour annuler la transaction.
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- Pour le canal Bob-Carol: Bob et Carol font comme Alice et Bob dans le

processus de vérification ci-dessus.

Etape 3 : Créer les masques jetables pour Alice, Carol et Bob.

- Alice et Bob annoncent leurs bases en message-positions mpy, .., mp,. Si
leurs bases sont différentes a la position mp;, alors qu'ils informent a Carol
d’écarter ce position.

- A chaque position restant, Carol jette la premiére sortie du circuit CNOT-M
si la base commune de Alice et Bob est |+). Sinon, Carol jette la deuxiéme
sortie.

- Les valeurs restant d'Alice, Carol et Bob se forment les trois masques A =
A, .., An; C=C, ., C; B =By, .., By a Alice, Carol et Bob,
respectivement. Ces masques tiennent la condition C; = A; @ B; pour i=1, ..,

\ n
moum = E

Etape 4 : Transmettre la clé secréte K.
- Carol annonce publiquement C =C;, .., Cy,,.
- Alice crée la clé secrete K. Elle envoie KOA®C = K@B a Bob.
- Bobregoit K®B, récupere K = K®@B®B.

Nous avons considé la sécurité de notre protocole. A I'étape 1, quand une paire
(|ra,), |rh,)) arrive de maniére synchrone a Carol, elle se tourne par hasard soit dans
le Check-Mode (CM) ou soit dans le Message-Mode (MM). Parce qu’Eve ne sait
pas le mode choisi par Carol, Eve ne peut pas traiter différemment les paires
(Ira,), |rh,)). Ainsi, le taux d'erreur dans le Check-Mode doit se comporter d’une
méme facon par rapport a cela dans le Message-Mode. En revanche, la procédure
de détection d’Eve dans les canaux (Alice, Carol) et (Carol, Bob) fonctionnent
exactement comme celle du protocole BB84. Par conséquence, la sécurit¢ du
protocole QQTB devrait étre exactement celle du protocole BB84. Cela implique

que le protocole QQTB est inconditionnellement siir.
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Le protocole QQTR se compose de 5 étapes:

Etape 1 : Prépare, échanger et mesurer des qubits.

Chaque B;, pour i = 1,.., N+1, prépare n états Bell (d+)®",

B, envoie la premic¢re moitié de chaque état Bell a Alice (la station
précédente), et la deuxiéme moitié a C, (la station suivante). B,,; envoie la
premere moiti¢é de chaque état Bell a C, (la station précédente), et la
deuxieme moiti¢ a Bob (la station suivante).

Chaque B;, pour i = 1,.., N+1, envoie la premieére moiti¢ de chaque état Bell a
Ci.i (a station précédente), et la deuxieme moitié¢ C; (la station suivante).
Alice (ou Cy) et Bob (ou C,), chacun regoit n qubits. Ils choisissent au
hasard et indépendamment des bases de measurement.

Chaque C;, pour i = 1,.., N, recoit 2n qubits vient de B; et B;;; de manicre
synchrone. Cela signifie qu'elle recoit n fois, et pour chaque fois qu'elle
recoit une paire de qubits: ’'un vient de B; et ’autre de B;.;. Elle la mesure en
utilisant le circuit CNOT-M (voir Fig. 5). Elle conserve les valeurs mesurées
et les bases correspondantes. En bref, C; fait exactement comme Carol dans

le Message-Mode du protocole QQTB.

Etape 2 : Tamiser.

Alice et Bob annoncent leurs bases.

Si leurs bases sont différentes a la position 1, Alice, Bob, Cy, .., C, rejettent
cette position.

Pour chaque position restante 1, Cy, .., C,, rejettent la premiere ou la deuxieme
sortie du circuit CNOT-M si la base commune de Alice et Bob est soit |+)
ou soit |X), respectivement.

Les valeurs restantes se forment N +2 chaines de 2m-bits a = ay, .., ayy, ¢(i) =
c(i)y, .., ¢c()ym, pouri=1, ., N, b =by, .., by, pour Alice, Cy, .., C,, et Bob,
respectivement. Ces N+2 chaines devraient tenir @}, c(i); = a; @ b;, pour

J=1,.., 2m ou m ~ n/4.
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Etape 3 : Détecter la présence d’Eve.

- Alice, Bob et Cy, .., C, se mettent en accord alératoirement m positions dans
2m positions totales pour vérifier la présence d'Eve. Cela forme les deux
chaines indiquant m-positions: 1’'une pour vérification CP = cp,, .., CP,, et
I’autre pour information MP = mpy, .., mpy,.

- Alice, Bob, C4, .., C, annoncent les valeurs aux positions de vérification CP:
a = Acpl, > cpms D = bept, o 5 bepms €(1) = C(D)eptseer €(1)epm, pouUr 1 = 1,.., N,
respectivement. Ils vérifient si @Y, c(i) j = a; @ b;, ou pas. Si certains des

résultats négatifs, ils abandonnent la transaction.

Etape 4 : Créer les masques jetables.
- Les valeurs aux m positions MP forment N+2 chaines de m-bits : PA = P4,
. PA L pei = PC(i)l, s Pc(i)m, pouri=1,.., N et pPE =P8, . P® . pour Alice,
Ci, .., Cp, et Bob, respectivement. Ces masques tiennent @Y, P¢® = pA @

P2,

Etape 5 : Transmettre la clé K.
- Chaque C;, pouri=1,.., N, annonce publiquement pcw,

- Alice crée la clé secréte K de m-bit. Elle envoie K @ P4 @Y, P¢® =
K®P3 a Bob.

- Bob recoit K@®PE, récupére K = K®PE@PE.

Nous avons pu montrer dans Section 10.4.3 que le protocole QQTR est correct et

¢galement inconditionellement sécurisé.

2. Modeles QUB et QUR

L’inconvénience de deux modeles QQTB et QQTR est d’obliger des intermédiaire
stations (Carol 1, .., Carol N) étre « quasi-confiant ». Nous avons pu évoluer ces

deux modeles aux nouveaux modéles, nommés le pont quantique méfigant ou
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Quantum Untrusted Bridge (QUB) en termes Anglais, et les relais quantiques

méfiants ou Quantum Untrusted Relay (QUR) en termes Anglais.

Ce que nous avons obtenu est :

l.

Si on n'utilise que la source de photons simples, alors le modele QUB peut
¢tendre jusqu'a deux fois la portée de la QKD.
Si on utilise la source des paires d'EPR, alors le modéle QUR peut relayer la

clé quantique a travers des distances arbitraires.

Le modele QUB est trés semblable au modéle QQTB (voir Fig. 3). Cependant, le

pont Carol peut étre controlé par Eve. Nous devons utiliser un autre protocole de

communication pour garantir la sécurité de la clé transmise. Le protocole QUB est

compose de 5 étapes :

Etape 1 : Préparer, échanger, et mesurer des qubits

Alice crée 2n bits ray, .., ray, aléatoirement et choisit une chaine ba de 2n bits
aléatoires. Pour chaque ra;, elle crée un état quantique correspondant
|7@,) = |ra;) dans la base {|0), |1)} si ba[i]=0, ou |7a,) = |rad,) dans la base
{|(T), |1)} si ba[i]=1. Ensuite, Alice envoie |ra,), |ra,), .., [ra,,) a Carol.

De méme, Bob crée 2n bits ray, .., by, aléatoirement, une chaine bg de 2n
bits aléatoires, une chaine des états quantiques |7D,),|rb,),.., [TDbyn)
Ensuite, Bob envoie |rb,), |rh,), .., [rb,,) a Carol.

Carol regoit {|r’c?l), |175L)} pour i=1,..,.2n, vient d'Alice et Bob. Pour chaque
paire {|r’dl), |1751)}, Carol utilise le circuit CNOT-M (voir Fig. 5) pour obtenir
deux bits classiques a la sortie. Notez que ces deux bits classiques ne
contiennent pas plus d'informations qu'un bit classique ra; XOR rb;.

Carol envoie a Alice et Bob tous les 2n paires de deux bits classiques

obtenus. Le role de Carol s'arréte ici.
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Etape 2 : Tamiser.

Alice et Bob communiquent leurs bases ba et bg. Si leurs bases sont
différentes a une position i, alors qu'ils abandonnent les données concernant
cette position.

A chaque position restant i, qu'ils rejettent un bit dans chaque paire recue de
Carol comme la suivante. Ils rejet soit le premier bit, soit le deuxieme bit si
leur base commune a la position i est soit |+) ou soit | X), respectivement.
Les bits restants forment les trois chaines de 2m bits a, b, c ou a = ay, .., am,
C=Cy .., Com, b = Dby, .., boy. Notons qu’Alice garde deux chaines a, € et Bob
garde deux chaines b, ¢ ou dans le cas idéal (appareils parfaits, canaux

parfaits, etc), ces trois chaines devraient tenir ¢; = @; XOR b; ou i=1, ..,2m et

n
m=-—.
2

Etape 3 : Détecter la présence d'Eve.

Alice et Bob choisissent par hasard m sur 2m positions afin de détecter la
présence d'Eve. Il s’agit de deux chaines de m-positions : la chaine de Check-
Position CP=cpy, .. ,Cpn et la chaine de Message-Position MP=mp;, .. ,mpy,.

Alice et Bob annoncent les valeurs ag;, Dy aux check-positions cpj, pour i=
1, .., m. IIs testent si Cepi = bepi XOR agpi. Si le nombre des résultats négatifs

est supérieur a un seuil pré-calculé alors ils interromprent la transaction.

Etape 4 : Créer des masques jetables pour Alice et Bob.

Les bits dans les m-positions de Message-Position forment trois chaines de m
bits A, B, et Cou A = A", .., A, =C"y, .., C',, B=B’, .., B'. Nous
notons que’Alice tient deux chaines A, C et Bob tient deux chaines B, C.
Dans le cas ou l'appareil quantique et les canaux sont parfaits, il devrait tenir
C’i =A";XORB’,pouri=1,.,m etm = g

Avec les trois chaines A’, B’ et C’, Alice et Bob effectuent les schémas
classiques de Correction d'Erreur et d'Amplification de Confidentialité pour

obtenir les trois nouveaux chaines plus courtes A, B et C qui tiennent
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toujours C = A XOR B mais Eve a une quantité¢ d'informations négligeable

sur A et B.

Etape 5 : Transmettre la clé K.
- Alice crée la clé secréte K qui a la méme longueur de A, B et C. Elle envoie
K XOR A XOR C = K XOR B a Bob.
- Bob recoit K XOR B, récupere K = K XOR B XOR B.

Nous avons justifié la sécurité du protocole QUR. Nous avons trouvé qu’a I'étape 3,
le taux d'erreur dans les positions Check-Position doit se comporter comme cela
dans les positions Message-Position. En effet, depuis Eve ne sait pas par avance le

choix des positions Check-Position et Message-Position qui étaient choisis au

hasard, elle ne peut pas traiter les paires circulantes {lfc?l), |7751)} différemment.

La preuve de sécurité du protocole QUR est tres similaire a celle du protocole BB84
qui est le premier protocole pour la distribution de clé quantique. Nous avons pu
montrer que toutes les attaques quantiques qui peuvent échapper a la détection sont

celles qui ne donnent aucune information a Eve.

Nous notons qu’apres 1'étape 2 (tamisage) a été¢ terminé, les paires restantes sont
toujours étre préparés dans la méme base, soit | + +) ou soit | XX). Considérons par
exemple une paire de deux états |xy). Dans le cas sans écoute d’Eve, Carol
s'applique la porte CNOT sur |xy) pour obtenir deux états ordonnés a la sortie
|c162)-

CNOT|xy) = |cy¢,), €Y

ou|x @ y)=|cy) ou |[x ®y) =|c,) dépend de |xy) sont été préparé dans | + +)

ou | XX}, respectivement.

Eve peut avoir un controle total sur le site Carol. Supposons qu’Eve a un ordinateur

quantique. Nous notons que toutes les transformations quantiques d'Eve, pas
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seulement sur les canaux mais aussi sur le site Carol, peuvent étre représentées par

l'opérateur unitaire U. Désignons par |E’) la sonde quantique d'Eve.

Alice et Bob utilisent la valeur x @ y qui est extraite de deux états quantiques
|c1c,) pour détacter 1’écoute d’Eve. La détection est décrite a I'étape 3 du protocole
QUB. Depuis Eve ne connait pas les bases de |xy), Eve ne sais pas si |[x @ y) =
|cy) ou |x @ y) = |c,). D’autre part, afin d'éviter la détection, Eve ne doit pas faire
changer la valeur x @ y. Par conséquent, Eve devrait ne pas toucher a la fois tous

les deux états ordonnés |c;c,), c'est a dire,

Ulxy)|E) = |c1¢2)|Eq). ()

Maintenant, nous considérons une autre paire de deux états |uv) qui n’est pas

orthogonal avec |xy). De méme, dans le cas sans écoute d’Eve, nous avons
CNOT |uv) = |c3c,). 3)

Dans le cas d'avoir la présence d'Eve, depuis Eve ne connait pas les bases de |xy),
Eve ne sais pas si [u @ v) = |c3) ou |[u @ v) = |c,), afin d'échapper a la détection,
Eve doit laisser les deux états de sortie |c5c,) intacte, c'est a dire,

UIuv)|E) = |c3¢4)|Ey). (4)
Depuis la porte CNOT est unitaire, a partir de (1) et (3), nous avons

(xyluv) = (c1c;lc5c4)- (5)

Depuis I’opérateur U est unitaire, a partir de (2) et (4), nous avons

(xyE|uwvE) = (xy|luvKE|E) =
(xyluv) = (c16:E1|c3¢,Ey) = (c1cz|c3c,ME | ER). (6)
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Appliquer (5) a (6), nous avons

(xyluv) = (xy|luv)XE |E).  (7)
Depuis |xy) et |uv) sont préparés dans les bases non-orthogonales | + +) et | XX),
donc (xy|uv) # 0. Ainsi, (E;|E,) = 1. D'autre part, |E;) et |E,) sont normalisées.
Alors, |E;) = |E,). Cela implique qu’Eve ne peut pas distinguer |xy) avec |uv) a
l'aide de sa sonde. En d'autres termes, si une écoute peut éviter la détection, alors

elle donne aucune information a Eve.

A coté des attaques quantiques, Eve peut ¢€galement appliquer des attques
classiques. La seule information qu'elle peut obtenir est la valeur classique X XOR y
révélée au site Carol. Toutefois, Eve ne peut tirer les deux pieces d'information X et
y a partir de x XOR y. La transmission de clé a I'é¢tape 5 est inconditionellement
garantie puisque nous utilisons le schéma incassable masque jetable, ou one-time
pad en termes Anglais. Alors, le protocole QUB est inconditionnellement siir

comme les protocoles QKD originaux.

Bien que le modéle QUB puisse étendre la portée de QKD, sa capacité n’est que
deux fois de la distance possible du modele QKD original. Nous avons pu arriver au
meilleur résultat. Le mode¢le des relais quantiques méfiants, ou Quantum Untrusted
Relais (QUR) est trés semblable au modele QQTR (voir Fig. 4). Cependant, les
relais Carol 1,.., Carol N peuvent étre controlés par Eve. Nous devons utiliser un
autre protocole de communication pour garantir la sécurité de la clé transmise. Pour
plus de commodité, nous utilisons également C, et Cy 4 pour désigner Alice et Bob,

respectivement. Le protocole QUR est composé de 5 étapes:

Etape 1 : Prépare, échanger et mesurer des qubits.
- Chaque Bj, pour i = 1,.., N+1, prépare n états Bell (d+)®",
- Chaque Bj, pour i = 1,.., N+1, envoie la premiére moitié de chaque état Bell
a Cj; (i.e. la station précédente), et la deuxieme moiti¢ a C; (i.e. la station

suivante).
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Alice (également connu comme Cg) et Bob (connu comme C,4;), chacun
regoit N qubits. Ils choisissent au hasard et indépendamment des bases de
measurement.

Chaque C;, pour i = 1,.., N, regoit 2n qubits vient de B; et Bj,; de maniére
synchrone. Cela veut dire qu'elle recoit n fois, et pour chaque fois qu'elle
re¢oit une paire de qubits: I’un vient de B; et I’autre de Bj.;. Elle les mesure
en utilisant le circuit CNOT-M (voir Fig. 5). Elle envoie les valeurs de sortie

et les bases correspondantes a Alice et Bob. Apres ca, le réle de C; s’arréte.

Etape 2 : Tamiser.

Alice et Bob annoncent leurs bases.

Si leurs bases sont différentes a la position i, Alice et Bob rejettent cette
position.

Pour chaque position restante 1, Alice et Bob rejettent soit la premicre ou soit
la deuxieéme sortie du circuit CNOT-M si la base commune de Alice et Bob
est soit |[+) ou soit |X), respectivement.

Les valeurs restantes se forment N +2 chaines de 2m-bits a = ay, .., am, C(i)
= c(i)y, .., C(i)om, pour i =1, .., N, b = by, .., bop. Alice garde N+1 chaines a,
c(i) pour pour i =1, .., N. Bob garde N+1 chaines a, c(i) pour pour i =1, ..,
N. Ces N+2 chaines devraient tenir @Y , c(i); = a; @ bj, pour j=1,.., 2m

oum ~ n/4.

Etape 3 : Détecter la présence d’Eve.

Alice et Bob se mettent en accord alératoirement m positions dans 2m
positions totales pour vérifier la présence d'Eve. Cela forme les deux chaines
indiquant m-positions: 1’une pour vérification CP = cpy, .., Cpy, et I’autre pour
information MP = mpy, .., mpy,.

Alice et Bob annoncent les valeurs aux positions de vérification CP: a = agpy,
o Agomy B = Depr, oy Bepmy €(i) = C(i)eprs-s C()epm, pour 1 = 1., N,
respectivement. Ils vérifient si @Y, c(i) j = a; @ bj, ou pas. Si certains des

résultats négatifs, ils abandonnent la transaction.
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Etape 4 : Créer les masques jetables.

- Les valeurs aux m positions MP forment N+2 chaines de m-bits : Q"= Q%,
Q% QC =0 Q0 pouri=1,.., NetQ®=Q", .., Q% ou Alice
garde N+1 chaines Q" Qc(i) et Bob garde N+1 chaines Q°, Qc(i). Nous avons
rémarqué que dans la cas idéal (appareils et canaux parfaits), ces N+2
chaines tiennent @Y, Q¢® = Q4 @ Q5.

- Alice et Bob calculent Q¢ @Y, Q¢® . Avec les trois chaines Q4, Q%, Q¢,
Alice et Bob performent les schémas classiques de Correction d’Erreur et
d’ Amplification de Confidentialité pour obtenir les trois nouveaux chaines
plus courtes P4, P5, P¢ qui tiennent toujours P¢ = P4 @ P? mais Eve a une

quantité d'informations négligeable sur P4, P5.

Etape 5 : Transmettre la clé K.
- Alice crée la clé secréte K qui a la méme longueur avec P4, PE,P¢. Elle
envoie K @ P¢ @ P4 = K®P®? a Bob.
- Bobrecoit K@®PE, récupére K = K®PE@®PSE.

Nous avons pu montrer dans Section 11.3.3 et 11.3.4 que le protocole QUR est

correct et également de garantir la sécurité inconditionelle sur la clé K.

3. Reésultats principaux

L'objet central de de cette these est de dépasser la limitation de la portée
d’application de la technique QKD. Nous avons attaqué le probléme par deux
approches directe et indirecte : d'une part, nous avons étudi¢ la possibilité de
construire un réseau QKD a grande échelle, et d'autre part, nous avons étudié de
nouvelles méthodes directement a relayer la clé QKD sans réduire la sécurité finale.

En effet, ¢tendre la portée de la technique QKD et construire le réseau QKD a
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grande échelle ont une corrélation étroite : si on peut résoudre ce premier alors on

peut I’utiliser pour résoudre ce dernier, et vice-versa.

Afin de construire le réseau QKD a grande échelle, nous avons proposé un modele
de réseau de dense qui permet a deux nceuds QKD a distance arbitraire de partager
les clés extrémement secretes. Nous avons montré que le réseau QKD propose est
capable de maintenir la sécurité¢ inconditionnelle sur clé la transmission de clé sous
la condition que chaque nceud du réseau doit se garantir un niveau de sécurité
calculable qui fait apparaitre la phénomeéne de percolation. Une fois que la
percolation de sécurité est possible, nous avons examiné des algorithmes de routage
stochastique et compte tenu des formules pour mesurer le nombre des sous-clés qui

doivent étre envoyés afin d'obtenir la clé finale secréte.

Afin d'élargir directement la portée de la technique QKD, nous avons proposé des
nouveaux modeles qui permettent de relayer les clés QKD sans réduire la sécurité
des systémes QKD originaux. Les modeles QQTB et QQTR nécessitent des noeuds
intermédiaires de suivre honnétement leur protocole de communication. Dans un tel
cas, méme si la méchante Eve espionne les nceuds intermédiaires, elle ne peut
obtenir aucune information sur la clé finale. Notre modeles QQTB et QQTR
introduisent des caractéristiques importantes et intéressantes par rapport a les
précédentes modeles de relais de QKD (voir notre discusion dans Sections 10.3.4,

10.4.3, et 10.5).

Les modeles QUB et QUR peuvent étre considérés comme deux versions
améliorées des modeles QQTB et QQTR. Dans ces modéles, Eve est autorisé¢ a
avoir un controle total sur les noeuds intermédiaires. Toutefois, si, dans le but de
voler I’information de la clé¢ finale, Eve n'a pas suivi le protocole de
communication, elle est détectée. Sinon, elle ne peut avoir aucune information sur la
clé finale. Une telle situation est totalement similaire a celle dans les protocoles

QKD originaux. Notre modeles QUB et QUR introduisent des caractéristiques
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importantes et intéressantes par rapport a la précédente QKD relayer les modeles

(voir notre discusion dans Section 11.4).

Notre recherche a été les premieres €tapes pour aller vers les nouvelles solutions
potentielles au probléme de la portée d’application de QKD. Par conséquent,

beaucoup de choses peuvent étre exploités dans 1'avenir.

Pour notre modele propose du réseau QKD a grande échelle, la topologie, a compter
des algorithmes de routage spéciaux , des différentes stratégies d'attaque, et les

scénarios d'application peuvent étre les nouveaux sujets d'é¢tude intéressant.

Pour nos modéles proposés de relayer des clés QKD, une estimation de
ressources nécessaires dans le cas pratique en comptant des dispositifs quantiques
imparfait est de d'intérét. Une étude comparative sur la performance des modeles
proposés avec celles de répéteur quantique standardis€é basé sur entanglement
swapping est aussi lun de nos objectifs. D'ailleurs, nous sommes également
s'intéresse a I'évolution de notre modéele QUB, c’est-a-dire d’une recherche sur une
gamme des nouvelles modeles de relais QKD qui ne nécessitent pas de sources des

photon d’intrication.

A présent, notre résultat de recherche nous avons rendu une série des articles et

communications internationaux (voir Section 1.3).

4. Plan de thése

Ce manuscrit est décomposé¢ de 12 chapitres, y compris d’un chapitre

d’introduction.

Chapitre 1 est une introduction courte qui présente la motivation et I’objectif de la

theése. Il donne une introduction concise mais utile pour des modéles classiques de
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chiffrement et les caractéristiques de la théorie quantique qui conduit a la possibilité

de distribution de clés au-dela des limites imposées par la théorie classique.

Chapitre 2 donne un bref apercu des concepts et outils de base dans la théorie
quantique de I’information. Les concepts essentielles, comme le qubit, les états
quantiques, comment peut-on mesurer les états quantiques, comment évoluent-ils
les états quantiques, comment peut-on calculer 1’entropie d’un état quantique
(I’entropie de Von Neumann), le modele de computation basé sur les portes

quantiques, etc., ont été exposées et détaillées.

Chapitre 3 introduit la distibution quantique de clé, Quantum Key Distribution ou
QKD en termes Anglais, qui est la plus mire application de la théorie de
I’information quantique dans le domaine de la cryptologie. QKD aborde le
probléme de la distribution de la clé secréte entre deux parties a distance. Ses
avantages et ses inconvénients par rapport a ceux de la contrepartie classique sont

étudiés.

Chapitre 4 donne un état de I’art des réseaux QKD. L'architecture, la topologie et

les protocoles qui rendent réseau des liens individuelles QKD sont étudiées.

Chapitre 5 discute les avantages et les inconvénients des réseaux QKD présents. Un
nouveau cadre qui peut rendre possible la construction d’un réseau QKD a grande
¢chelle est proposé. Chapitre 6 analyse la condition a laquelle les deux noeuds
¢loignés du réseau QKD a grande échelle peut établir des clés inconditionnellement
sir comme ceux de systtme QKD original. Une fois que la condition trouvée
détient, Chapitre 7 étudie des algorithmes de routage sécurisé qui devraient étre
appliquées dans le réseau QKD afin d'obtenir la sécurité inconditionnelle. Chapitre
8 discute sur les scénarios d’application en réel des résultats obtenus dans Chapitres

5,6et7.
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Chapitre 9 introduit les ¢éléments principaux et le principe de fonctionnement des
répéteurs quantiques ainsi que des relais quantiques actuelles. Chapitre 10 propose
deux nouveaux modéeles de relais quantique qui nécessitent des noeuds
intermédiaires étant quasi-confiance. Chapitre 11 évolue les deux modeles
proposée dans Chapitre 10 a deux autres modéle dans lesquels les intermédiaires
nceuds sont autorisés a €tre méfiants. Les modeles de relais proposés dans Chapitres
10 et 11 permettent d'étendre la portée de la technique QKD originale sans réduire

sa sécurité d'origine.

Enfin, Chapitre 12 conclut la thése par un résumé des résultats obtenus ainsi que des

suggestions pour l'exploration plus loin.
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ABSTRACT

Quantum Key Distribution (QKD) is an unconditionally secure key-agreement scheme
that promises worthwhile applications. One of the most critical drawbacks is the limitation
of QKD’s range. This Dissertation addresses two main topics: (1) how to build large-scale
QKD networks, (2) how to securely relay the QKD keys. These two topics have a tight
correlation: if one can solve the former then one can use its result to solve the latter, and
vice-versa.

Quantum Key Distribution (QKD) networks are of much interest due to their capacity of
providing extremely high security keys to network participants. Most QKD network studies
so far focus on trusted models where all the network nodes are assumed to be perfectly
secured. This restricts QKD networks to be small. In the first stage of our work, we
develop a novel model dedicated to large-scale QKD networks, some of whose nodes could
be secretly eavesdropped. We investigate the key transmission problem in the new model
by an approach based on percolation theory and stochastic routing. Analyses show that
under computable conditions, large-scale QKD networks could protect secret keys with an
extremely high probability. Simulations validate our results.

In our second stage, we investigate the quasi-trusted QKD relaying model. We propose
a new definition for quasi-trusted relays. Our quasi-trusted relays are defined as follows:
(i) being honest enough to correctly follow a given multi-party finite-time communication
protocol; (ii) however, being under the monitoring of eavesdroppers. Based on the new
definition, we first develop a simple 3-party quasi-trusted model called Quantum Quasi-
Trusted Bridge (QQTB) model. In this model, the origin Alice and the destination Bob are
assumed out of range of Quantum Key Distribution (QKD). Carol is a quasi-trusted relay
that can share QKD links with both Alice and Bob. We show that QQTB protocol allows
Alice and Bob, in cooperation with Carol, to securely establish secret keys. The originality
of QQTB protocol is that we do not need invoke entangled photon pairs. Then, we extend
QQTB model to Quantum Quasi-Trusted Relay (QQTR) model that is capable of securely



distributing secret keys over arbitrarily long distances. Although QQTB model requires
entangled photon sources, the originality is that we do not invoke entanglement swapping
as in the current standard quantum repeater model.

In the final stage, we propose two novel untrusted QKD relaying models: Quantum Un-
trusted Bridge (QUB) and Quantum Untrusted Relay (QUR). Both QUB and QUR models
provide unconditional security as the original QKD protocols. The QUB model works with
single-photon sources. This model is capable of extending the range of single-photon based
QKD schemes up to two times without invoking entangled photons. The QUR model works
with entangled-photon sources and is capable of extending QKD’s range up to an arbitrar-
ily long distance. The originality is that the QUR method is not based on entanglement
swapping as was the case of the current standard quantum repeater model. Indeed, our
new untrusted QKD relaying models are built based on a new approach compared to that
of the standard quantum repeater model: while the idea of the standard quantum repeater
model is creating entangled-state pairs over the entire length of key distribution, our idea
is to combine two facts: (1) enemies cannot gain information without disturbing unknown
quantum single-states, (2) enemies cannot infer two partial pieces of classical information
a and b from the global classical information ¢ = a XOR b.

vi
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Chapter 1

Introduction

1.1 Motivations and Objectives

In the classical information theory, communicating secret information between distant par-
ties was known as a hard challenge from many years ago. The history might begin in 1948
when Shannon [83] introduced one central fundamental concept of the classical information
theory: the entropy H, also well-known under the name “Shannon’s entropy”. Shannon’s
entropy of the random variable X, conventionally denoted by H(X), quantifies on average
how much information one gains when learning the value of X. Or in other words, H(X)
measures the uncertainty of X before one learns its value. With the concept of entropy,
Shannon showed that it is possible to build a virtual noiseless and lossless channel from a
realistic noisy and lossy one. This result is now well-known by the name Shannon’s noiseless
coding theorem. Inspired from this work, in 1949, Shannon continued to introduce a secure
communication model in which the channel between Alice and Bob is noiseless and lossless.
However, Eve can perfectly eavesdrop the channel, i.e. Eve can receive identical copies of all
the messages received by Bob [84]. Roughly speaking, Alice encodes the plain-text message
M into a codeword C, then sends C' onto the channel. Both Bob and Eve receive C. In
this context, Shannon showed that the secrecy of M is perfect if the mutual information
of M and C, conventionally denoted by I(M;C), is equal to 0, i.e. the codeword C gives
no information about the plain-text M. Such a perfect secrecy is now known as theoretic
information security, or so-called unconditional security, by the fact that it does not depend
on the computational power of the enemy Eve. Shannon showed that the unconditional se-
curity on M can be achieved by using unbreakable one-time pad scheme [97], provided that
Alice and Bob initially share the secret key K which has at least the same length of M, or
in other words H(K) > H(M). Unfortunately, this condition is hard for almost practical
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communication applications. Hence, the question of interest is how two distant parties can
do if they do not share previously the long enough key? Can Alice and Bob generate a

longer secret key from the initial shorter secret key?

In Shannon’s secure communication model [84], inequality H(K) > H(M) implies a
negative response to the above question, i.e. it is impossible to generate a longer secret
key from the initial shorter secret key. However, notice that this impossibility takes effect
under Shannon’s basic assumptions that suppose that the channel is reduced to be perfect
(noiseless and lossless) and the enemy Eve can get exactly any things got by the legitimate
party Bob. Thus, in order to make it possible of extending an initial short key, one thinks
of modifying Shannon’s model, or precisely, modifying Shannon’s assumptions. Indeed,
one tries to build other plausible models in which information got by the eavesdropper is
different from that got by the legitimate receiver. So far, one knows that there are at least
two such models: one based on using directly noisy classical channels and the other based

on exploiting quantum channels.

Let us take a glance at the secure communication model based on noisy channels. In
1975, A. D. Wyner introduced the wire-tap channel and showed that in his model it is
possible to communicate the key K in secrecy with respect to some conditions [97]. Wyner’s
wire tap channel was deeply studied afterward by Csiszar and Kérner [29], Maurer [69,70],
and Van Dijk [90]. Roughly speaking, the wire-tap channel model can be described as in
Fig. LIl The sender and receiver, conventionally called Alice and Bob, share the channel
C1. The eavesdropper Eve gets information transmitted by Alice through another channel
C2, also called the wire-tapper’s channel. Both channels C1 and C2 are discrete and
memoryless. Suppose that Alice wants to send to Bob the secret message k-bit M. She
encodes M into an n-bit codeword X, then transmits X. Due to the two different channels
C1 and C2 Bob and Eve receive n-bit strings Y and Z, respectively. Thus, the model can
be mathematically described as follows. The random variables X, Y, Z, that respectively
take values in the finite alphabets X', ), Z, are considered. The security of communication

between Alice and Bob is characterized by the conditional probability distribution Py 7 x.

Alice focus on the two following goals:

1. Security: Eve has no knowledge on M, or in other words, the mutual information
H(Z; M) =0.

2. Reliability: Bob can, with a negligible small error, retrieve M from Y, or in other

words, the mutual information H(Y; M) =~ 1.

The secrecy capacity C; of the wire-tap model is the biggest % with that the two above
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goals are still achieved. Intuitively, Cs depends on the properties of the channels C'1 and
C2.

In [97], Wyner showed that if C2 is a degraded version of C1, e.g. C2 is C1 concatenated
by another discrete and memoryless channel, then Cy > 0. In [29], Csiszdr and Korner
showed that if C'1 is less noisy than C2 then Cs; > 0. More precisely, for all distribution

PXYZ we have
C, > max(I(X;Y) — I(X; Z)) (1.1)

where X, Y, Z are random variables that form a Markov chain. Notice that since
X =Y — Z is a Markov chain, Py xy = Pzy and I(X; Z|Y) = 0.

Maurer [69,[70] considered a more general case of C'1 and C2, as described in Fig. [T],
and showed that even though C1 is noisier than C2 then Cj is still positive,

Cs >max{I(X;Y) - I(X;2),I(Y;X)-I(Y;2)}. (1.2)
C1
M Alice X Y Bob
c2
Z
Eve

Figure 1.1: The wire-tap channel.

The modern quantum physics recognizes the world in a different way compared with
the classical physics. The Heisenberg uncertainty principle states that the non-commuting
observables, for instance position and momentum, cannot both have precisely defined values.
This is the nature of a quantum physical system itself. Indeed, if two observables A and B
do not commute than performing a measurement of A will necessarily influence the outcome
of the measurement of B afterward. In others words, the act of acquiring information about
a physical system will inevitably disturb the current state of the system. There is no

counterpart of uncertainty principle in the classical physics.

Another distinguished property of quantum physics is the no-cloning theorem, stated by
Wootters, Zurek and Dieks in 1982 [96135]. The no-cloning theorem forbids to make perfect

copies of an unknown quantum state. Indeed, this theorem also concerns the trade-off
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between acquiring information and making disturbance in the quantum world. Assume that
we could make perfect copies of a quantum state, then we can measure an observable on the
copy in order to do not disturb the original state. This will violate the uncertainty principle.
Remind us that in the classical physics we can measure precisely all the observables that
together completely describe a physical system. As a result, in principle one can make

identical copies of the measured system.

In quantum physics, a system can be in a superposition of many different states at
the same time, and exhibits the interference effect of these states during the evolution
of the system. Besides, spatially separated quantum systems can be entangled, and the
local operations on a system can have non-local effects on other distant systems. In 1964,
J. Bell [4] showed that no physical theory of local hidden variables can ever reproduce all of
the predictions of quantum mechanics. This discovery is well-known under the name Bell’s
theorem. Bell’s theorem introduces two major importances: on one hand, it proves that
local hidden variables cannot remove the statistical nature of quantum mechanics; on the
other hand, it implies that if quantum mechanics is correct then the universe is not locally
deterministic. Bell’s theorem also implies that quantum information can be encoded in non-
local correlations of the spatially separated parts of a quantum system. Such information

has no counterpart in classical information and brings a new potential resource to exploit.

In recent years, Quantum Key Distribution (QKD) emerges and draws many attention of
cryptographic community by the fact that this technique, by exploiting special properties of
quantum mechanics, can provide unconditional security of the key distribution [8,B8/&8]. In
fact, QKD requires an initial short shared key to work. Hence, one can say that QKD allows
to create a longer key from a shorter key, but not generate the key. This is impossible in
classical mechanics, or in other words, QKD has no counterpart in the classical information
processing theory. However, QKD has some own limitations, most prominently throughput
and range [42,66]. This makes harder the build of large QKD-based networks that enable
a perfect distribution of secret key between network’s participants. Notice that extending
the range of QKD and building the large-scale QKD network have a tight correlation: the

solution for the former can be applied in the latter, and vice-versa.

Attracted by their potentials, our research focus on extending the QKD’s range and
building the large-scale QKD network. Our objectives consist of studying then proposing
new solutions for extending the QKD’s range and building the large-scale QKD network.
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1.2 Thesis Outline

This dissertation is organized into twelve chapters, including this introduction. The next
chapter briefly reviews some of key concepts and principles of quantum mechanics, their
advantages, drawbacks and prominent applications in the information processing theory.

Chapter 3 introduces QKD (QKD) that is the most matured application of quantum
information in the field of cryptology. QKD addresses the problem of distributing the
secret key between distant parties. Its advantages and drawbacks compared to those of the

classical counterpart are studied.

Chapter 4 reviews current QKD networks. The architecture, topology and protocols

that make networking from individual QKD links are investigated.

Chapter 5 discusses on the advantages and drawbacks of current QKD networks. A new
framework that can make it possible building the world-wide QKD network is proposed.
Chapter 6 investigates the condition on which two distant nodes of the world-wide QKD
network can establish unconditionally secure keys as those of the original QKD schemes.
Once the condition for unconditionally secure keys holds, chapter 7 proposes secure routing
algorithms that should be applied in the world-wide QKD network in order to get uncondi-
tional security on the key distribution. Chapter 8 discusses on the scenarios of application
for the results of Chapters 5, 6 and 7.

Chapter 9 introduces the main components and the operational principle of current
quantum repeaters as well as current quantum relays. Chapter 10 proposes a new scheme
of quantum relay that requires intermediate nodes being quasi-trusted. Chapter 11 evolves
the scheme proposed in Chapter 10 to another scheme in which the intermediate nodes
are allowed to be untrusted. Both relay schemes proposed in Chapters 10 and 11 allow to

extend the range of the original QKD schemes without reducing their original security.

Finally, Chapter 12 concludes the dissertation with a summary of results as well as

suggestions for the further exploration.
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Chapter 2

Quantum Information

2.1 Quantum state space, pure state and mixed state

2.1.1 Quantum state space: the Hilbert space

In quantum information, one usually uses the complex Hilbert space and Dirac’s bra-ket
notations to mathematically describe and work with quantum states. A Hilbert space H
is a complete vector space with an inner product. Dirac’s ket and bra notations are used
to denote a vector and its conjugate, for instant, the vector |¢) and its conjugate ($|. The

inner product (-|-) is a map taking ordered pairs of vectors over the complex numbers C,

¢l HxH = C.

The inner product has its own properties. For all ¥, ¢, ¢1,¢9 € H and a,b € C, this

satisfies:

1. Conjugate symmetry: (| ) = (¢| )", where the asterisk symbol denotes the conju-
gate transpose.

2. Positivity: (¢| ¢) > 0, the equality i.i.f |¢p) = 0.

3. Linearity: (| (a|¢1) +b|¢2)) = a (4] ¢1) +b (%] $2).

The completeness of the vector space H in the norm, ||¢|| = /(4| ¢), ensures that

all Cauchy sequences will converge to some vector within 7. This property is used to
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handle infinite-dimensional function spaces, for instant, Fourier analysis. However, it will

be enough to work on finite-dimensional inner product spaces in this dissertation.

An important concept for describing and understanding a composite quantum system
is the tensor product. In mathematics, this is a way of putting vector sub-spaces together
to form a larger vector space. In quantum mechanics, the tensor product is also used to
describe the structure of the multi-particle quantum system. Suppose V and W are m-
and n-dimensional Hilbert spaces of |1) and |¢), respectively. Then the tensor product
of 1) and |¢), denoted by |9) ® |¢) and often by |¢) |¢) or |[p¢) for abbreviation, is an
mn-dimensional Hilbert space V' ® W. Notice that if |¢) and |j) are orthonormal bases for
V and W then |¢) ® |$) is a basis for V@ W.

By definition the tensor product satisfies the following basic properties. For an arbitrary
scalar z and elements |19), |¢1), |¢2) of V and |@), |$1), |¢p2) of W,

L z(|¢) ®|9)) = (z[¢) @ |¢) = |[4) @ (2]4)).
2. (I1) + [42)) @ 18) = [¢1) ® |) + |1h2) @ |9) -
3. [4) ® (|61) +1¢2)) = [#) @ [¢1) + |9) ® |¢2) -

2.1.2 Qubit, pure and mixed states

The basic unit of classical information is the bit which is a binary system that can take
either value 0 or 1. In quantum information a quantum mechanical two-level system, such
as the two spin states of spin % atoms or the horizontal and vertical polarizations of a
single photon, is used to encode binary information. In reference to the classical bit, such a
system is considered as the quantum bit or qubit whose two bound state levels encode the
classical binary values 0 and 1. Mathematically, the qubit is represented by a vector in the
two-dimensional Hilbert vector space Hso. The state vector represents the full and complete
knowledge of the system’s state. Usually, one considers |0) and |1) as an orthonormal basis
of Ha. One of the surprising features is that the permitted pure states of a qubit |¢) can

be a superposition of the two basic states |0) and |1), i.e.

$) = @0 [0) + a1 [1), (2.1)

where ag, o1 are complex values, and |ag|? + |a1|? = 1. Thus, the set of all the pure

states will form the unit sphere of H,. Notice that the two vectors |$) and €'/ |¢) describe

0

the same physical state where €% is called phase factor. Once one measures |$) by projecting

10
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it onto the basis {|0),|1)}, the outcome will be |0) or |1) with probabilities |ag|* and | |?,

respectively.

A composite quantum system of n qubits spans the 2"-dimensional vector space Hon,
and can be considered as a superposition of 2" computational basis vectors. Since bit-strings
of length n can be interpreted by numbers from 0 to 2" — 1, we can denote an orthogonal

basis of Han by {|0),|1),..,|2" — 1)}. Thus, a pure n-qubit system can be represented by

on 1
) = a0l0) + . +am 1|2 = 1) = > i), (2.2)
i=0
where «; are complex values and 212;5 Ya;> = 1. Once one measures |¢) by projecting
it onto the basis {|0),|1),...,|2" — 1)}, the outcome will be one out of 2" basis states
|0),...,]|2" — 1) with probabilities \a0|2 ey |a2n_1\2, respectively.

While a pure state can be described by a single ket vector, the mixed state is not so.
A mixed quantum state is a statistical ensemble of pure states {py, |¢x)} where {pg} is the
probability distribution of {|#x)}, pr > 0, D", pr = 1. One describes a mixed state by its

associated density operator, or also called to density matrix, usually denoted by p.

The density operator, or density matrix is defined as

p=> prldr) (¢l (2.3)
!

where {px} is a probability distribution and each |¢x) is a pure state. Notice that a

pure state also can be described by its density matrix.

2.1.3 Measurement and Evolution

Quantum mechanics can be mathematically described by the Hilbert space H and its as-
sociated linear operators. If H is d-dimensional space then the space of linear operators,
or operators for short, acting on H is a d-dimensional complex vector L(#). The lin-
ear operator is a map taking vectors to vectors that preserves vector addition and scalar

multiplication. For instant, A : A |¢) — |A¢) is a linear operator, then:

A(a[go) +b[d1)) = a|Ago) +b|Ad1). (2-4)

The properties of the quantum system, e.g. position, angular momentum, energy, spin,

11
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etc.,that can be measured are called observables. As a quantum mechanical state is de-
scribed by a vector in a Hilbert space H observables are represented by self-adjoint opera-
tors acting on 7. Remind us first that the adjoint or Hermitian adjoint, At of the operator
A is a linear operator A' : H — # that satisfies

Vb, € 1 (AY] ) = (] Al). (2.5)

Thus, A is called a self-adjoint operator if A = At. A self-adjoint operator is also called
Hermitian operator. Notice that a dynamical variable such as position, momentum, is seen
as a corresponding physically meaningful observable, and represented by a Hermitian oper-
ator. But not every Hermitian represents for a physically meaningful observable. Indeed,
physically meaningful observables must satisfy transformation laws between observations
done by different observers in different frames of reference. Under a special relativity, e.g.
Galilean invariance, the mathematics of frames of reference is particularly simple, hence,

restricts considerably the set of physically meaningful observables.

Eigenstates and eigenvalues of a Hermitian operator A suggest possible numerical out-
comes of the measurement of the observable A. For example, suppose i) is an eigenstate

of A with the corresponding eigenvalue a;, then

Ali) = a; |i) . (2.6)

Eq. means that if a measurement of the observable A is made on the system of
interest being in the state |i) then the observed value must return the eigenvalue a;. This
is the simplest case of measurement in quantum mechanics. In general, the measurement
process affects the system state in a non-deterministic but statistically predictable way.
When one repeats the measurement of the same observable with the same state we will
often get different results. Indeed, after the measurement has been done the initial state
may be destroyed and replaced by a statistical ensemble. The measurement is an irreversible
operation. One can mathematically describe this fact as follows. Consider the observable
A,

A=) aP; (2.7)

where each a; is an eigenvalue and P; is the projection onto the space of eigenstates of A
with its corresponding eigenvalue a;. Notice that the eigenstates of A can form a complete
orthonormal basis in H. This implies that the sub-spaces V; corresponding the projectors

P; are orthogonal. The measurement of the observable A is equivalent to the measurement

12
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operator M

M=>"P (2.8)

where

P;P; = 4P;
Pl= P (2.9)
>ubPi=1
where 0 is the Kronecker delta and I is the identity operator.

Suppose that the system of interest is in an arbitrary state |¢o). Thus, the measurement

M will return the eigenvalue a; with probability

Pr(a;) = ||Pi |¢o)||* = (o] Pil¢o) (2.10)

If the obtained outcome is a; then the quantum state becomes

Pilgo)
V/ (0| Pi|do)

One can express the prediction of the measurement M in term of the mixed state as

(2.11)

follows. Denote by |¢1) the state just after the measurement has been done, hence

_ (a P; |¢o)
o _Z:P () (ol Pi|¢o) (212

where Pr(a;) is calculated by Eq.

Notice that if one applies one more time again the measurement M on the post-

Pil¢o) Pil¢o)
measurement state —21=2.— then one always gets the outcome g; and the state ——-12L—.
{(¢0|Ps|¢0) Y58 ’ v/ (b0l P;l¢o)
In other word,

MM |¢o) = M |¢o) - (2.13)

In fact, the measurement operator M in Eq. is known as a projective or orthogonal
measurement. The projective measurement is concerned primarily with many applications
of quantum information and quantum computation. The measurement of a qubit in the
computational basis {|0),|1)} is a special case of the projective measurement M = {Py, P }
where Py = |0) (0|, P; = |1) (1] and ap = 0, a1 = 1. For instance, let us try measure the
qubit |#) = @ |0) + aq |1). Thus, the probability of obtaining the measurement outcome

13



Chapter 2. Quantum Information

ag =0 is

Pr(ag) = Pr(0) = (¢| Pol¢) = |aol*. (2.14)

The state after measurement of the outcome 0 is

Pol¢) oo
lao| |l

10Y. (2.15)

Similarly, the probability of obtaining the outcome a1 = 1 is |ay \2 and the corresponding

state after measurement is @—h |1).

There is a more generalized measurement, called Positive Operator-Valued Measure, or
POVM for short. However, in this dissertation, it is enough to consider only the orthogonal
measurement. The readers interested in the POVM measurement is invited to refer to the
standard books of the field such as [76].

How does the state |¢) of a quantum mechanical system change with time? The response
can be mathematically described by using the time-evolution operator. Notice that when
observing the evolution of the quantum system it must assume that the system is closed.
This means that the system of interest needs to be non-relativistic and isolated. Under this
assumption the time-evolution operator describes an unitary transformation from the state
|o) at time ty to the state |¢1) at time 1

|$1) = Uldo) . (2.16)

Remind us that if the operator U is unitary then U'U = UU' = I. This implies that
its inverse equals its conjugate transpose, i.e. U~! = Ut. The unitary operator U preserves
the norm of vectors, in other words, maps a vector of norm 1 to a vector of norm 1. As an
unitary operator always has its inverse, it implies that any evolution operation of quantum
states is reversible. One can apply the operation U' to undo the effect of the operation U
on the state |¢),

U |¢1) = |go) or U'[Ug) = |¢). (2.17)

Notice that this is different compared to the measurement operation. The measurement

is non-reversible.

14



2.2. Entropy and Information

2.1.4 No-cloning theorem

The no-cloning theorem states that it is impossible to make perfect copies of an unknown
quantum state [96L35]. This property is distinguished compared with the classical informa-
tion processing. Remind us that the classical information is encoded by classical signals that
may be difficult to copy in practice but can be perfectly copied in principle. The no-cloning
theorem states one of the most interesting properties of quantum mechanics. It is exploited
as a new rich resource in the information processing theory. Indeed, one has successfully

applied the no-cloning theorem to build the inviolable communication channels [8,38§].

Let us show the essential reason that prevents us from making perfect copies of an
unknown state. As we have seen in the previous section, we only can measure or make it
evolving over time the quantum state. Since a measurement may destroy the initial state,
it cannot be the cloning operation. Assume that the time-evolution operator U can produce
the perfect copy of unknown states, thus, U'U = 1. We consider two unknown pure states
|¢) and |¢). We have

{ Ul#)[0) =1¢)|9) (2.18)
Ulp)[0) =) [4).

Taking the inner product from side to side of Eq. [ZI8] since U is unitary we have

(010) (¢l ) = (8l 9) (4| %) (2.19)

or:

(@lv) = ((dl9))*. (2.20)

Notice that Eq. holds i.i.f (¢|1) equals either 0 or 1. This implies that the cloning

operator U only works perfectly with orthogonal states such as {|0),|1)} or {%, %}

The non-orthogonal states, for instant {|0), |0)\72‘1> }, cannot be perfectly cloned by U.

2.2 Entropy and Information

2.2.1 Shannon entropy

Historically, the classical information theory was developed to study fundamental limits on

data compressions and communications. The classical information theory was based on the
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probability theory and statistics. In 1948, Shannon proposed using entropy to measure
the uncertainty of a random variable before this variable takes a real value. One can also
consider entropy as an implication of the average amount of information that one can gain
after the random variable reveals its real value. The entropy of a random variable is defined
in terms of its probability distribution. Let X be a discrete random variable taking a
finite number of possible values 1, .., £, with probabilities p1, .., p, respectively such that
Vi:p; >0and ) ;' p; = 1. The Shannon entropy of X, conventionally denoted by H(X),
is defined by

n
= —Zpi log, p;- (2.21)

In the special case where the random variable X takes binary values with probabilities

p and 1 — p, the entropy of X is measured by the binary entropy function Hy(p), i.e

H(X) = Ha(p) = —plogyp — (1 — p) logy(1 — p). (2.22)

The joint entropy of two independent discrete random variables A and B is defined by

H(X,Y)=->_ p(=,y)log,p(z,y). (2.23)
7y

The conditional entropy of X given Y is defined by

p(=,
H(X|Y) = Zp Zp z|y) log, p(zly) = Zp z,y) log, 1(7(3/:;/) (2-24)

The mutual information of two random variables X and Y quantifies the amount of

information that can be obtained from one of these variables by observing the other,

I(X;Y) =1(Y;X) Zp z,y) log, (()1’7()) (2.25)

From basic definitions we can obtain the following relations:

H(X|Y) = H(X,Y) — H(Y), (2.26)

I(X;Y) = I(Y;X) = H(X) — HX[Y), (2.27)
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I(X;Y) = I(Y;X) = HX) + H(Y) - HX,Y). (2.28)

2.2.2 Von Neumann entropy

The Shannon entropy measures the uncertainty associated to a probability distribution.
Notice that quantum state introduces a nature feature of probability, represented by its as-
sociated density matrix instead of the classical probability distribution. The Von Neumann

entropy is an extension of Shannon entropy that is dedicated to quantum mechanics.

Remind us that the trace of a linear operator A over the n-dimensional Hilbert space H

is defined as

|
—

tr(4) = S (i] Ai) (2.29)

i

I
o

where {7} is an orthonormal basis of H. Notice that ¢r(A) is independent to the choice
of the orthonormal basis over H. And if A is described by its representation matrix then

tr(A) is the sum of the elements on the main diagonal of A.

Consider a quantum state represented by its density operator p = >, pi|dr){(¢k|- As p
is a density operator, p has trace equal to one and p is a positive operator. This implies
that we can have the spectral decomposition p = ), A;|i)(i|, where |i) is an orthogonal

basis, \; are real, non-negative eigenvalues of p and ), A\; = 1.

The Von Neumann entropy of p is defined by
S(p) = —tr(plog, p) (2.30)

Remind us that the logarithm of a diagonal matrix is computed by replacing each
diagonal element by its logarithm. And if the representation matrix A is diagonalizable

then its logarithm can be computed by
logy A = V(log, A )V ! (2.31)
where

e A’ is the diagonal matrix whose diagonal elements are eigenvalues of A,
e V are eigenvectors of A, i.e. each column of V' is an eigenvector of A,

e V! is the inverse of V.
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Since we can re-write p = ) . A;|7)(i| where Ai, Ay, .. are eigenvalues and |i) is an or-

thonormal basis,

S(p) = =D (Nilogy Xy). (2.32)

2

Similar to Shannon entropies it is possible to define quantum joint, quantum conditional
entropies and quantum mutual information. The joint entropy of a composite system of
two components A and B is defined by

S(A, B) = —tr(p*? log, p*P) (2.33)

where p48 is the density matrix of the joint system AB.

The conditional entropy and the mutual information are defined in a biased way:

S(A|B) = S(A, B) — S(B), (2.34)

S(A;B) =S(B;A)=S(A)+ S(B) — S(A, B) (2.35)

= S(A) — S(A|B) = S(B) — S(B|A) '
Let us now consider a mixed quantum state p = ). p;p; where {p;} are density operators
and {p;} is a probability distribution of {p;}, respectively. The relation between the entropy
of the mixed state and those of elementary (mixed or pure) states and the probability

distribution {p;} is described by the following inequality

S(p) < ZPiS(Pi) + H({pi}) (2.36)

where the equality happens when {p;} are orthogonal.

Notice that some properties of Shannon entropies are not true for Von Neumann en-
tropies, as the Von Neumann entropy can be known as a generalization of the Shannon
entropy. For a more complete study about the properties of the Von Neumann entropy

readers are invited to refer to some standard books such as [(6].
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2.2. Entropy and Information

2.2.3 The Holevo bound

The quantum states are not only impossible to be cloned but also cannot to be perfectly
distinguished. The Holevo bound, denoted by ¥, gives an upper bound of the amount of

accessible information given a quantum state p,

x =5S(p) - ZpiS(Pi) (2.37)

where S(-) is the Von Neumann entropy and p = ), p;p;.

The Holevo bound can be applied directly for the problem sending information over
quantum channels. Suppose that Alice has a classical information source producing symbols
X = {0,...,n} with probabilities po,. .., pn, respectively. With each symbol X = 4, Alice
sends to Bob a quantum state px = p;. Bob receives and makes a measurement on p;
to get the value Y. Based on Y, Bob tries to guess the value X. In reference to the
classical information theory we can consider X and Y as two discrete random variables,
and the capacity of guessing successfully the value of X can be represented by the mutual
information I(X;Y) that holds

I(X;Y) <x (2.38)
I(X;Y) < 5(p) = 3 piS(p). (2.39)

From Inequalities and Z39 we have

I(X;Y) < S(p) - ZpiS(pi) < H(X) (2.40)

where the second equality happens i.i.f {p;} are orthogonal.
On the other hand, Bob can perfectly infer X from Y i.if I(X;Y) = H(X). Thus,

it is obvious that if {p;} are non-orthogonal then Bob cannot determine X with perfect

reliability based on his measurement value Y.
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Chapter 2. Quantum Information

2.3 Quantum gates and circuits

Currently, the standard quantum mechanical computation model is the quantum circuit
model where a sophisticated quantum computation is decomposed and described by a se-
quent chain of quantum elementary building blocks, or so-called quantum gates. Roughly

describing, a quantum computation consists of three main stages:

1. Preparing the quantum system in the initial state, normally, |0),

2. Evolving the initial system by letting it go through a quantum circuit that is a sequence

of quantum gates,

3. Measuring the final state of the evolved system.

If one ignores the preparing and measuring stages then a quantum computation is repre-
sented by its corresponding quantum circuit that consists of a sequence of elementary quan-
tum gates. Thus, what is this as the elementary quantum gates for quantum computation?
This is the simplest quantum gates that can together compose the universal computational
sets. It should first take a look on the single qubit gates due to their simplicity: they work

on the simplest quantum mechanical system, one single qubit.

A single qubit is represented by a unitary two-dimensional vector |¢) = a |0)+b|1) where
a,b are complex values that satisfy the norm of 1: |a|? + |b|*> = 1. Operations performed on
|¢) must preserve the unitary norm. Hence, they can be represented by the 2 x 2 unitary
matrices. Some of most important one-qubit gates are the Pauli gates. Fig. 21 shows Pauli
gates’ representative symbols conventionally used in the design of quantum circuit. The
effects of the Pauli gates on the qubit |¢)

oz |$) = 02(a|0) +b|1)) = a|1) +b]0),
oy |8) = 0y(a]0) + b|1)) = —ai |1) + bi |0) (2.41)
0.|¢) =0.(al0) +b|1)) =al0) —b|1).

The other common useful one-qubit gates are the Hadamard and «a-phase shift gates

(see Fig. Z2). The Hadamard gate transforms the input qubit |z), z € {0, 1}, to the output
qubit (—1)|z) + |1 —z). One can also describe the effect of the Hadamard gate on an
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Figure 2.1: Pauli gates and their transformation matrices.
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Figure 2.2: Hadamard and Phase gates.

arbitrary pure qubit |¢) = a |0) + b|1) as follows

a+b a—b
H =H(a|0)+b[]1)) = ——|0)+ —[1). 2.42
¢) = H(a|0) +b[1)) \/§|) 5 1D (2.42)
The a-phase shift gate S, is defined as a transformation |z) — €™ |z) where x € {0,1}.
If one applies S, on |¢) = a|0) + b|1) then

So |§) = Sa(al0) + b|1)) = a|0) + eb]|1). (2.43)

In [2], it is shown that all the one-qubit gates and the controlled-NOT gate make a
universal set for quantum computation. By definition, the controlled-NOT, or CNOT for
short, gate flips the second (target) qubit if the first (control) qubit is |1) and does nothing
if the control qubit is [0). More generally, one has the controlled-U gate that applies the
unitary operation U on the second (target) qubit if the first (control) qubit is |1) and does
nothing if the control qubit is |0). Fig. Z3shows the graphical representations of the CNOT

and controlled- U and their transformation matrices.
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Figure 2.3: Controlled-NOT and Controlled-U gates.
2.4 Some prominent applications

2.4.1 Quantum computation

Counsider a unitary transformation U which maps computational states to computational

states as follows

U i) = |z:) (2.44)

where {|i),4 € [0,2" — 1]} is a computational basis and z; € [0,2" — 1], z; = z; iff i = j.

A quantum computation is roughly described by three stages. In the first stage, one
prepares a system of n qubits in the initial state |¢g) = |i). In the second stage, one applies
U to |¢g). The initial state |¢g) will evolve to |¢1) = U i) = |=;),z; € [0,2" — 1]. In the
final stage, one measures |¢1) by projecting each of n qubits onto the basis {|0),|1)}. The
measurement outcome x; is the output of the computation. Hence, the final output is the

classical information.

However, the initial state [¢o) of the n-qubit system can be prepared in a superposition
of all the 2" basis states, e.g. |po) = —= 32

on =0
|¢po) that is represented by the unitary transformation U |¢¢) exhibits an interference effect

|i). In such a case, the time-evolution of
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of all the 2" basis states in the same time, i.e.

2" —1 n—1 2" —1

1) = U |¢ho) = \/2—n 2 |i)) ﬁ ; Uli) = ﬂ_n Z |z3) . (2.45)

Eq. shows that the evolution of the quantum mechanical system implies a potential
parallelism paradigm. This can bring a superior computational power compared to the
classical computation. However, if one measures the final state |¢1) of Eq. in the basis
{|7)},7 € [0,2™ — 1] then one gets only one out-of 2" values z;,i = 0,...,2" — 1 with equal
probabilities. In other words, one obtains different outputs while repeating the same compu-
tation process. This seems make no sense and gain nothing. Indeed, quantum computations
are probabilistic. Quantum algorithms naturally generate a probability distribution of the
possible outcomes. One needs appropriate quantum algorithms in order to gain quantum
parallelism in specific problems, for example, the balanced black-box problem [27,31], the
search problem [49], or the number-factoring problem [85,[87].

2.4.2 Quantum communication

The beautiful idea of building a secret key exchange channel based on the no-cloning the-
orem of quantum mechanics was proposed by C. Bennett and G. Brassard in 1984 [g].
Although such a secret key exchange channel, largely well-known by the name Quantum
Key Distribution, has some serious practical problems such as low transmission rate, lim-
ited range, etc., it presents a tremendous advantage since it guarantees the communicated
secrets by quantum laws. This is, at least in principle, impossible to achieve in the classical
information communication. We will see more about Quantum Key Distribution and its

limit over range in the next chapters.

Super-dense coding is another example that illustrates interesting features of quantum
information communication compared to ist classical counterpart. Suppose that Alice wants
to send some classical information to Bob by transmitting quantum states. Super-dense
coding allows Alice to send two classical bits by transmitting just only one qubit provided

that Alice and Bob previously share a quantum entangled state [14].

In the opposite direction, suppose Alice wants to send an unknown quantum state to
Bob by transmitting some classical information. Teleportation technique allows Alice to
send one unknown quantum state (one qubit) to Bob by transmitting two classical bits

provided that Alice and Bob previously share a quantum entangled state [9].
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Quantum Key Distribution

3.1 Key distribution problem

Unbreakable encryption scheme were invented by G. Vernam in 1917, now well-known under
the name “one-time pad” scheme. The principle is to combine the plain-text with a random
key or so-called a pad that is at least as long as the plain-text and just used once. Notice
that it is important that the key is never re-used in order to ensure unbreakability. This
is why it is called “one-time” pad. The one-time pad presents a serious drawback: two
communication parties, conventionally called Alice and Bob, must pre-possess a random
secret key as long as the message before actually communicating the message. Indeed,
the presence of the one-time pad scheme leads to a transformation from the problem of
secure communication to the problem of secure key distribution, or so-called of secret key

agreement.

Most applications transport secret keys over the Internet using Public Key Infrastruc-
ture (PKI), more precisely, based on the Diffie-Hellman key agreement. They rely on
assumptions about the limited computation power of eavesdroppers and the non-existence
of effective algorithms for certain mathematical “hard” problems. These assumptions are
critical, for instance, in 1994 Peter Shor [85,87] introduced an efficient quantum algorithm
for the factoring problem that is considered as a “hard” problem in the conventional cryp-
tography. Indeed, Public Key Infrastructure (PKI)-based key exchanges cannot provide

information theoretic security, or so-called unconditional security.

In recent years, QKD emerges and draws attention of cryptographic community by the
fact that this technique, by exploiting special properties of quantum mechanics, can provide

unconditional security of the key transmission [8,[3888]. However, it has its own drawbacks,
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most prominently throughput and range [42,h6]. The limitations of QKD makes it harder
the construction of large QKD-based networks that enable the perfect distribution of secret

key between network’s participants.

3.2 BB84 protocol

Quantum Key Distribution allows two endpoints to agree a shared key with total con-
fidentiality that can be afterward used for symmetric secret-key encryption algorithms.
S. Wiesner described the idea in the 70’s and officially published it in 1983 [G5]. Wiesner’s
idea has been fully developed and finalized by Brassard and Bennett in 1984, therefore, it
is well-known by the name the BB84 protocol [§].

BB84 Basics

The quantum law underlying QKD is Heisenberg principle of uncertainty: two non-
commuting observables of a quantum system cannot be both accurately measured. It en-
sures that it is impossible to clone a quantum system as stated the no-cloning theorem
[96,35]. Otherwise, it would be possible to measure one observable on the original and the

other observable on the clone.

The BB84 protocol is simple enough to be understood by a non-specialist of quantum
physics. The idea can be roughly described as follows. Photons can have a rectangular or
a diagonal polarization, two non-commutable observables. Rectangular polarization can be
horizontal denoted by “—” or vertical denoted by “1”. Diagonal polarization can be left
denoted by “N” or right denoted by “, . Given a photon, the physical device can observe
its polarization either rectangular or diagonal but not both. Moreover, if the physical device
tries to measure the diagonal polarization over a photon that is rectangular-polarized, then
a random outcome is made: either left or right with equals probabilities. And the measure-
ment action changes the polarization of the photon corresponding with the outcome of the
measurement. The situation is symmetric if the physical device measures the rectangular

polarization of a photon that is diagonally polarized.

Session keys are made of bits, {0,1}". One agrees that: a bit 0 can be encoded either
by a horizontal (“—”) or a left (“’\”) polarization of a photon and a bit 1 can be encoded
either by a vertical (“1”) or a right (“”) polarization of a photon. Such a polarized
photon is considered as a quantum bit or qubit. Transmitting a key becomes transmitting

a sequence of polarized photons.
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3.2. BB84 protocol

Idealized BB84 Key Exchange

Alice and Bob are connected by using two channels. The first one is a quantum channel,
typically an optical fiber. The second one is a classical channel, typically an Internet link,

a telephone line, etc.

1. First, Alice generates a random sequence of bits, called the raw key. Randomness
is crucial. For each bit, Alice randomly encodes it into a photon by using either
rectangular or diagonal bases. And then, she sends the sequence of encoded photons

to Bob over the quantum channel.

2. For each receiving photon, Bob randomly chooses either the rectangular or the diag-
onal bases to measure the polarization of the photon. Since Alice and Bob’s choices
of bases are random, the probability that they use the same basis on a given photon
is 50%. If they use the same basis on a given photon, then Bob gets the right bit as

Alice encoded. Otherwise, Bob gets a random bit.

3. Bob uses the classical channel to communicate to Alice which bases he used for the
measurements. Alice, also by using the classical channel, answers which bases are cor-
rect according to her encoding bases, i.e. on which photons they used the same bases.
They discard the photons on which their bases are different. This communication is

public.

4. Once they used the same bases, the bits encoded by Alice are identical to the bits
decoded by Bob. They get a shared sequence of bits, called a sifted key, that can be
used to build a session key. The length of the sifted key is about half the length of
the raw key.

Example. In table below, the rectangular and circular bases are denoted by & and ®.
The 1% line ARK contains Alice’s randomly chosen sequence of bits. The 2"¢ line ARB
contains the encoding bases randomly chosen by Alice for each bit and the 37¢ line AQB
contains the qubits, i.e. the polarized photons. The 4** line BRB contains Bob’s randomly
chosen measurement bases and the 5 line BQB contains the results of the measurements.
We have put a symbol “?” to mention that Bob’s measurement has a random result which

will be discarded anyway.

The last line BSK contains the bits for which Alice and Bob have chosen the same basis,
this is the sifted key which value is “00100100111” in our example.
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Eavesdroppers and Security

The eavesdropper, conventionally named Eve, has the access right to both channels. If
Eve accesses a photon, she has no way to know the basis used by Alice to encode the bit.
Thus, she has to guess a basis for measuring the photon. Then Eve resends the photon to
Bob. This is the intercept-resend strategy. If Eve chooses the same basis as that of Alice for
measurement, then Eve gets the right value and the photon’s polarization is not changed.
If Eve chooses the wrong basis then she destroys the initial polarization of the photon and
afterward even if Bob chooses the right basis, Bob gets an incorrect bit with probability
of 50%. On the average, Eve chooses the wrong bases for 50% of the cases. Thus, Eve’s
action introduces a supplementary error rate, about 25%. In such a case, Alice and Bob

can detect the intrusion and know that the sifted key cannot be trusted.

Another strategy of Eve is the man-in-the-middle attack. In this attack, Eve gets
control over the two channel and lets Alice thinks that she is communicating with Bob and
conversely. Eve plays the role of Bob with respect to (w.r.t.) Alice and plays the role of
Alice w.r.t. Bob. In such a case, one must rely on authentication algorithms stemmed from

classical cryptography or recent quantum authentication algorithms.

Many papers give a rather complete description of the non-impossible quantum attack
strategies, for instance, the beam splitting scheme, the entanglement scheme, the quantum
copying scheme, or the collective attacks, in various configurations and to various QKD
technologies, and why all of them cannot succeed. Formal proofs of security rely on protocols
such as the following BB84. They uses Shannon’s Information Theory and, most important,

the laws of Quantum Physics.

Practical BB84 Protocol

The idealized BB84 protocol described above did not take into account losses and noises

that are inevitable in any practical realizations. Hence, it will not work because Alice and
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Bob always detect additional disturbances due to noises and losses, and they must to discard

the transaction even if there are no eavesdropping actions.

On the other hand, single photon sources so far are not yet available in practice. Indeed,
one uses altered single-photon sources, for instance, attenuated laser pulses that follow a
Poissonian distribution in the number of photon, i.e. the probability of having n photon in a

[
n

signal is given by P, (n) = where y, chosen by the sender Alice, is the average number
of photons. For instance, if Alice chooses y = 0.1 then most of the pulses contain no photons,
some contain single photon and a fraction of order 0.005 signals contains several photons.
Notice that multi-photon signals can make it possible the photon-number-splitting (PNS)
attack. The PNS attack can be roughly described as follows. Eve measures the number
of photons on each signal sent by Alice. In principle, this measurement does not disturb
the signal polarization, in other words, does not add any more disturbances into the signal.
Thus, Eve can treat each signal differently according to its photon number. For vacuum
signals, Eve does nothing and re-sends them to Bob. For multi-photon signals, Eve extracts
one photon to keep it in her memory without disturbing other photons of the signal. Then,
Eve re-sends the extracted signal to Bob by a lossless quantum channel. Hence, the extracted
photon effectively pretends the loss on the original lossy quantum channel. The extraction
of Eve does not affect the polarization of the initial signal. Later in the QKD protocol Alice
announces the polarization basis of this signal. Knowing the polarization basis allows Eve
to measure correctly the extracted photon to obtain the encoded information without any
supplementary disturbances. For single-photon signals, since Eve uses a lossless quantum
channel to re-send signals to Bob, Eve may suppress a proportion of single photons to
pretend the effects of the original noisy and lossy channel. Obviously, limiting the presence of
multi-photon signals is crucial in order to ensure the security of practical QKD. However, in
practice multi-photon signals cannot be totally eliminated as well as the case of unavoidable
noises and losses in the quantum channel. Indeed, Eve can get a little information of the
raw key as well as Alice and Bob always can find some finite amount of disturbance in the
intrusion-check phase. Hence, in order to work in the practical realization, the idealized

BB84 protocol as described above needs to be added the following step.

1. Sifting. Alice sends a random string of bits, the raw key, as described above. Alice
and Bob must be synchronized to detect photons that Alice did not send but Bob
received and, conversely, photons that Alice sent but Bob did not receive. Then, they
discard the photons that are not used the same bases for encoding and decoding. The
result is the sifted key. The length of the sifted key is about a few percents of the
length of the raw key.
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2. Bit reconciliation. The sifted key is made of qubits on which Alice and Bob agree
because they have used the same encoding basis. However, some bits may differ
because the quantum apparatus is not reliable or because there has been a light
intrusion of Eve which will not been recognized as so. The error elimination algorithm
uses the public classical channel. Several algorithms have been proposed. For instance,
it has been proposed that Alice and Bob use the same random permutation of bits
to randomize the locations of errors. Then, the key is divided into small enough
equalized-size blocks such that each block is unlikely to contain more than one error.
Alice and Bob compare the parities of their respective blocks and discard blocks for
which parities differ. After reconciliation, the sifted key has been often shortened but

it is almost certainly shared between Alice and Bob.

3. Eavesdropper detection. At this step, Alice and Bob may detect Eve’s intrusion

because a significant intrusion must raise the usual error rate.

4. Privacy amplification. Eve may know some bits of the key from the previous steps.
Privacy amplification is a technique reducing Eve’s information. The cost is once
again shortening the key. Again, several algorithms are available. For instance, Alice
randomly chooses two bits and tells Bob the position of these bits. Alice and Bob
replaces the two bits by the result of their XOR. If Eve has only partial information
on these two bits, i.e. if she knows only one bit, then she has no information on the
XOR result. Therefore, Eve’s information becomes less than before. Alice and Bob

may repeat this step to reduce Eve’s knowledge down to a negligible amount.

5. Authentication. The two parties identify themselves. This may totally rely on classi-
cal algorithms such as Wegman-Carter’s authentication scheme [93]. This algorithm
assumes that a piece of information, an authentication key, is shared previously be-
tween Alice and Bob. Thus, Alice and Bob afterward can use an Universal Hash
Function to create/verify the message-dependent tag. In fact, Alice and Bob may
share a stack of authentication keys. This is subject to keys exhaustion by Denial of

Service (DoS) attack where the eavesdropper simulates a lot of connections.

Then Alice and Bob share a key with a very high probability and Eve’s information
about the key is as small as wished. There are a number of successful implementations
of the BB84 protocol in practice [BLI6,[7]. In [33], D. Gottesman et al. gave a security
proof that takes into account all the practical imperfections. They showed that for low
and intermediate losses one can ignore the effect of errors and the secret key rate R can be

expressed in terms of the proportion of the multi-photon signals in the source p,, and the
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rate of the received signals observed by receiver Bob p,:

R ~pr—pm (3.1)

Once a Poissonian photon number distribution with mean photon number g is used, one
has
Pm=1—(1+p)e " (3.2)

and
pr =1 — pne " (3-3)

where 7 is the photon transmissivity coefficient in a standard optical transmission.

Optimizing R over p one has fiopt ~ 7 and R ~ n2. On the other hand, due to the photon

detector imperfections, the effective distance of QKD is believed around 20 to 40 km.

3.3 Enhanced QKD schemes

The decoy state QKD [92[68, 98] is the first and simplest enhanced version of QKD.
The idea is to use additional decay states instead of decreasing the average photon number
p to defeat the photon-number-splitting (PNS) attack. As described above, in the PNS
attack, Eve can make photon-number depending actions on each signal. Remark that Eve
may suppress a proportion of single-photon signals to simulate the loss effect in the original
lossy quantum channel. Remark also that if Alice sends either of two types of quantum
states: signal states which have the average photon number pg, or decoy states which
have various mean photon numbers uq, yo,-.., then Eve has no idea where comes from
a given single-photon signal. Thus, the suppression of single-photon signals may lead to
an abnormal transmission rate of multi-photon signals of the higher value y; compared to
the lower value pj. By choosing appropriate values for i, p41,. .., one can detect the PNS
attack without decreasing dramatically the average photon number uy of the signal state
sources. Indeed, the decoy state QKD can improve the average photon number of signal
states up to pg ~ 1. Remind us that the original QKD without decoy states require p < 1
in order to reduce the number of multi-photon signals, or in other words, to deal with the
photon-number-splitting attack. [46] showed that improvements were roughly depicted as
Fig. Bl Indeed, the decoy state QKD allows a higher key transmission rate R = O(n),
compared to R = O(n?) of the non-decoy QKD schemes. The decoy states QKD also can

be implemented for longer effective distance.
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Figure 3.1: Distances and key rates in [46] using the results in [33] with and without decoy
states.

The QKD with strong reference pulses [74] is another approach that is based on
the strong phase-reference pulses idea. The idea is as follows. Besides a phase modulated
weak signal pulse Alice sends a strong unmodulated reference pulse to Bob. On one hand,
quantum information is encoded in the relative phase between the signal pulse and the strong
reference pulse. On the other hand, Bob monitors the intensity of the strong reference pulses
to detect Eve’s single-photon signal suppressions in the PNS attack. As a result, Alice can
send signal pulses of average photon number gy = O(1) and achieve the key transmission

rate R = O(n).
The third enhanced QKD version is the differential phase shift (DPS) QKD [55,

34,[79]. One encodes information into the relative phase between the consecutive pulses.
Obviously, the PNS attack on each pulse is useless since information is encoded by two
consecutive pulses. On the other hand, the PNS attack on two consecutive pulses will break
the phase coherence between adjacent pulses and must induce additional perturbances. At

present, a rigorous of the unconditional security of this approach is still missing.
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Figure 3.2: A single QKD Link
3.4 Current applications

A single QKD Link. The simpler network consists of a QKD link between two enclaves
that marries QKD with classical Internet security protocol IPSec (see Fig. B2). QKD is

used for key sharing between two enclave gateways.

The enclave, a Local Area Network (LAN), is assumed to be already secured. An IPSec
secured Internet link connects the two gateways. IPSec is a well-established Internet tech-
nology that allows traffic between two endpoints to be confidential provided the endpoints
share an encryption key. The two gateways ensure the routing of IP communication. The
only non-classical feature is that the keys necessary to IPSec are distributed using quantum
technology. The two QKD devices produce continuous streams of bits, which can be used

for regular key renewing.

A long QKD Link. Simple QKD links as above are limited to several tens of kilometers
length. In order to extend the length, one may use QKD data relay (see Fig. B3). One must
note that a QKD data relay is not a quantum repeater. A QKD data relay is a network
apparatus able to establish a single QKD link with the previous element of the chain and
another QKD link with the following element of the chain. It is a data relay with the

following characteristics:

e Relay k establishes an encrypted communication, a QKD link, with relay k-1.
e Relay k receives encrypted data from relay k-1.

e Data are decrypted and stored in the memory of relay k.
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Figure 3.3: A QKD link using relays

e Relay k establishes an encrypted communication, a QKD link, with relay k+1.

e Data in memory are encoded and sent to relay k+1.

We can see that QKD data relays present a serious weakness: data appear unencrypted
inside the relay memory. QKD data relays establish pair-wise secure communications using
QKD in order to securely transport a randomly generated encryption key, hop-by-hop from
one endpoint to the other as in figure below. The QKD relays network at the bottom of
the figure is used to exchange an encryption key that used to encrypt the communication

on the top Internet link.

Communication between QKD relays is done as the communication between LAN en-
claves of section above. The encryption key that is exchanged using the QKD Relays
Network appears unencrypted inside the relays. Thus, the relays must be seriously pro-
tected against eavesdropper. In Europe, due to the concentration of cities, such a scheme
could be used by many institutions. This may not be applicable to larger countries such as

USA, Canada or Russia where extended non-urban areas exist.
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From the point of view of security, QKD is a perfect tool to agree the session keys for
two users at short distances. However, a stand-alone QKD link is subject to damage for
some trivial reasons such as an accidental physical link failure or DoS attacks. Networking
individual QKD links brings more attractive features since it introduces more physical ways
between two end-users. For instance, QKD networks will allow us to think of improving the
general traffic or replacing failed links by the other ones to ensure the quality of service for
some specific end-to-end communications. In the conventional networks, networks devices
as hubs, routers, etc., plays an important role. One of essential tasks of these network
devices is to relay or repeat the signals that encode information. Notice that although
repeaters and relay schemes for QKD have been yet proposed and feasible in theory but
with today’s quantum technology one cannot implement them in practice. Without these

network devices, building the QKD network is a big challenge!

At present, the most practical solution to build the QKD network is networking the
QKD individual links. In principle, one can focus only on the security aspect and do not
take into consideration the cost aspect. Thus, this is acceptable if one assumes that all
the participant network sites are perfectly protected by human security means, e.g. the
military force. In such a case, one calls the trusted QKD network in which one can use long
QKD links as described in the previous chapter in order to convey secret keys between two
arbitrarily long sites. The perfect security of key transmission will be kept provided that
intermediate nodes are perfectly protected. Currently, there are two such QKD networks:
DARPA and SECOQC.
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Figure 4.1: The DARPA quantum network topology. Alex and Bob are entanglement based
nodes but not yet fully operational. A and B are two free-space nodes which have not yet
been named [&T].

4.1 DARPA quantum network

The DARPA quantum network is the first QKD network that became fully operational in
October 2003 in BBN’s laboratories, and in June 2004 was fielded through optical standard
telecommunication fiber underneath the streets of Cambridge, Massachusetts, to link three
sites: Harvard University, Boston University and BBN technology [40,4T]. In December
2004, the DARPA quantum network consists of six trusted QKD nodes. It is planned to
build up to ten trusted QKD nodes connected by non-stop, twenty four hours per day QKD
links, with a variety of QKD implementation technologies including phase-modulated laser
through fiber, entanglement through fiber and free-space QKD (see Fig. E.T)).

The DARPA quantum network network uses the photonic switch to route encoded pho-
tons of the BB84 protocol. No signal amplification is made by the photonic switch. Indeed,
such a photonic switch significantly reduce the geographic reach of QKD because it causes
additional losses and noises along the photonic path. Fortunately, since all the nodes are
trusted each node can play the role of QKD key relaying devices and make it possible to
obtain a longer reach of QKD. In principle, the trusted architecture allows any two DARPA
quantum network nodes establishing their shared secret keys without reducing the security
of original QKD schemes. However, such a key is not a real end-to-end secret since necessary

information needed to deduce the key is unavoidably appeared in all the relaying nodes’
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Figure 4.2: The architecture of the DARPA-QKD protocol software [A1].

memories. Only one of the relaying nodes is compromised, the key will be compromised.
One realizes that instead of exposing eavesdropping vulnerabilities on the entire length of
the key transmission path, the DARPA quantum network makes vulnerabilities gathered at
the relaying nodes. The security of key depends on the security of the relaying nodes along

the transmission path.

Implementing QKD’s protocols is an important part. Fig. illustrates the DARPA-
QKD software architecture in a high-level form. One can realize that the DARPA-QKD
software aims at implementing every main algorithms for QKD rather than trying to pick
the best ones. A simple configuration will be done afterward in order to indicate which

algorithms are taken for a given operation on a given specific QKD system.

Remind us that the Sifting step is for Alice and Bob to reconcile their raw secret bits.
Indeed, this step discards a proportion of the initial (raw) secret bit string to obtain the
sifted key. Discarded bits are the bits at the positions where Alice and Bob used different
bases, or there is no symbol clicked (photon detector does not fired), or there are multiple
symbols clicked, etc. The DARPA-QKD network offers two sifting algorithms: classical and
SARGO4 [K1]. In the classical sifting procedure,for each position Alice and Bob publicly
announce the basis choice and Eve is permitted to listen to and know it. In the SARG04
sifting procedure introduced by V. Scarani et al. in 2004 the basis choice is not revealed.

Instead, two possibilities are announced in which only one is compatible with the idealized
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detection event. The advantage of the SARGO04 sifting is reducing the knowledge of Eve

about the encoding bases.

The Error Detection and Correction step is for eliminating the bits damaged in
transmission, i.e. the flipped bits sent as 1 but received as 0 and vice-versa. Thus, one can
estimate an important quantity called Quantum Bit Error Rate (QBER). Notice that after
eliminating the damaged bits there is always some possibility that Alice and Bob do not
share an identical bit string but they believe that they do. In fact, the error detection and
correction process is only probabilistic unless all the bits are revealed. Besides, since this
process requires a classical communication between Alice and Bob, in principle, Eve can

get some more information about the sifted bits by eavesdropping.

The DARPA-QKD network offers two error detection and correction implementations:
BBN Cascade and BBN Niagara. BBN Cascade is a modified version of Brassard and
Salvail’s Cascade [20]. BBN Niagara [{7] is a novel type of Low-Density Parity Check
(LDPC) code designed for the use in QKD applications. It is a type of Forward Error
Correction codes that are mostly based on parity checks. BBN Niagara does not require

multiple protocol interactions between Alice and Bob as does BBN Cascade.

The Entropy Estimation step aims at estimating the amount of entropy in the sifted
and corrected bit string beyond what Eve may know. The DARPA-QKD network imple-
mented four different entropy estimation techniques that were introduced by Bennett et
al. [15], Slutsky et al. [89], Mayers et al. [75] and Shor-Preskill [41]. The choice of entropy
estimation function is important because the estimated entropy quantity will be given as
a key-control input parameter to the privacy amplification step. An incorrect entropy es-
timation may lead to an insufficient privacy amplification. As a result, the security of the

final secret bits may be compromised.

The Privacy Amplification step is for reducing Eve’s knowledge of the remaining
shared bits up to a given arbitrarily small amount. This step uses a classical algorithm
to shorten the remaining shared bit string across a shorter one. By that, Eve’s knowledge
can be reduced up to an arbitrarily small amount [I{}]. The DARPA-QKD network nodes

perform privacy amplification by using a linear hash function over the Galois Field GF[2"].

The Authentication step is for Alice and Bob to ensure that they communicate with
each other, not with Eve. The DARPA-QKD network uses the Wegman-Carter authen-
tication scheme [93]. This requires Alice and Bob sharing beforehand a small secret key
and afterward uses an Universal Hash Function to create/verify the message-dependent
tag. Indeed, the DARPA-QKD network currently employs the standardized authentication

mechanisms of the Internet security architecture (IPsec) and those provided by the Internet
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Figure 4.3: The topology of the SECOQC QKD’s network.

Exchange Key (IKE) protocol. These mechanisms allow messages to be authenticated by

public keys of the nodes or by pre-placed secret keys.

4.2 SECOQC quantum network

The SECOQC project is an European Union project that aims at the development of a
global network for SEcure COmmunication based on Quantum Cryptography. The project

was launched in 2004 and has obtained significant results [78].

In September 2008, the SECOQC QKD network had a successful demonstration in
Vienna. This was a QKD network of five Quantum BackBone (QBB) nodes with sept
Quantum BackBone (QBB) links (see Fig. A3)). At present, the average distance of QBB
link is around 25 km that is believed to be optimal with respect to the network building
overall cost. Particularly, the QBB link to St. Poelten city is of 85 km. Similar to the
DARPA quantum network, the SECOQC network was developed based on the “trusted
node” assumption. All the QBB nodes are assumed to be trusted by human means, e.g.
the military forces. QBB nodes are connected together by QBB links that consist of a bunch
of individual QKD links. QBB nodes can act as routers in the conventional communication
network, as well as be used as the QKD network access entry for end-users such as Alice
and Bob. End-users can also access to the SECOQC QKD network by a Quantum Access
Network (QAN) node that does not support routing functionality but is more specialized
to be an access point of many end-users. A new QAN node can be easily add into the
SECOQC QKD network by using a QAN link that might be featured differently compared
to a QBB link, e.g. a QAN connection can be a single QKD link. It is implicitly known
that the QAN link is of lower cost and weaker performance than those of the QBB link, but
this is not compelled [78]. One can realize that the SECOQC network architecture seems
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to be hierarchical. This differs from the flat architecture of the DAPRA QKD network.
In fact, although both are based on the crucial assumption of trusted nodes the SECOQC
network is distinguished from the DARPA network in the point of view of architecture,
management, strategy of generating, storing and using QKD keys. In other words, one can
say that the two current QKD networks are similar in the basic level (based on the same

crucial assumption), but they differ from each other in the engineering level.

Indeed, the SECOQC network introduces a new layer called “network of secrets”. This
layer is dedicated to the storing, forwarding and managing the secret key materials generated
by QKD devices. Referred to the OSI 7-layer model the network of secrets layer is under the
Network layer and from the Network layer all the upper layers (Transport, Session, etc.) are
considered as to be independent of the quantum key generation process. In other words, the
SECOQC network tries to make a view separately between the collection of QKD links and
the classical network design and management. As a result, in the SECOQC network one
can improve the global performance and reliability by exploiting path redundancy, designing
new special-purpose routing algorithms, applying traffic engineering, etc. The network of
secrets is based on the implementation of the backbone QKD network that consists of
QBB nodes and QBB links. The topology of the backbone QKD network is proposed to
be meshed that exhibits a high connectivity and redundancy. Such a meshed topology is
expected to make available of multiple disjoint paths between any two network nodes. This
property opens many possibilities to improve the global network performance. For instance,
one can think of improving security of the final session key by applying a XOR operation
over all the secret pieces send by a number of disjoint paths. The task of QBB links is to
grow as much key material as possible for the network of secrets, no matter which end-user

will request it afterwards.

Although allowing to include a variety of different QKD devices, the SECOQC net-
work defines a common protocol designed to access services provided by the devices: the
Quantum-Point-to-Point Protocol, or for shortness Q3P. This protocol serves as a point-to-
point protocol between a pair of QBB nodes which enables the QKD devices underneath
to carry out the classical tasks as key distillation, authentication, encryption for the upper
layers of the network. By using the Q3P protocol as an uniform manner to interconnect a
pair of QKD devices, one can now re-use traditional network protocols on the upper layers.
However, since TCP/IP protocols are not compatible with the specific requirements for
controlling QKD key traffic over network, one proposed new layered QKD network proto-
cols as described in Fig. B4l The QKD Routing Layer (QKD-RL) protocol addresses the
routing mechanism within the QBB nodes. This protocol follows the pattern of the Open
Shortest Path First (OSPF) protocol but includes essential modifications to support the

40



4.3. Satellite free-space based quantum network

QKD Application Layer
(QKDAL)

QKD Transport Layer
(QKDTL)

QKD Network Layer
(QKDNL)
QKD Link Layer (QKDLL)
(Q3Pin Secoqc)

Quantum Channel | Classical TCP/IP
Interface Socket

Quantum Channels
TCP/IP Channels

Figure 4.4: The layered protocol stack of the SECOQC QKD’s network.

specific requirements arising from the sensitivity of the key material circulation. The QKD
Transport Layer (QKD-TL) protocols adopts TCP /IP, however, introduces new approaches
to deal with a high network congestion based on current key material resources. This proto-
col allows end-users to exchange information across the network with perfect confidentiality

and authenticity based on a basic end-to-end pair [7§].

4.3 Satellite free-space based quantum network

A QKD system consists of one transmitter (e.g. photon source), one receiver (e.g. photon
detector) and one quantum channel. Fiber-based links is one of two solutions for quantum
channel. The another is free-space links. Most of researches so far use optical fibers to
guide the photons from Alice to Bob. Current fiber-based QKD systems are very advanced,
however, such systems still cannot work over distance more than 150 km [56] due to the
combination of fiber losses and detector noise. Besides, fiber-based links may not always be
available due to some other reasons. Hence, there are more and more attentions focusing

on free-space QKD links, where the photons are sent between remote telescopes.
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Transmitting photons by free-space links has some advantages compared to that of fiber-
based links. First of all, the atmosphere has a high transmission window at a wavelength
of around 800 nm, where photons can easily be detected using commercial, high-efficiency
photon detector. Furthermore, the atmosphere is weakly dispersive and essentially isotropic
at these wavelengths. As a result, it will not alter the polarization state of a photon. There
are some drawbacks of free-space links as well. In contrast to the signal transmitted in
a optical fiber (guiding medium) where the energy is protected and remains localized in
a small space, the energy transmitted via a free-space link spreads out, leading to higher
and varying transmission losses. The background light such as ambient daylight or even
moonlight at night can couple into the receiver, leading to dark-count errors. Besides,
it is clear that the performance of the free-space QKDsystem depends dramatically on

atmospheric conditions.

Photon sources and photon counters are the most important components of the QKD
system. Optical quantum cryptography is based on the use of single-photon Fock states.
Unfortunately, these states are difficult to realize experimentally. Nowadays, practical im-
plementations rely on faint laser pulses or entangled photon pairs, in which both the photon
and the photon-pair number distribution obey Poisson statistics. For large losses in the
quantum channel, even small fractions of these multi-photons can have important conse-
quences on the security of the key, leading to interest in “photon guns”. As for the photon
counter, in principle, this can be achieved using a variety of techniques, for instance, photon-
multipliers, avalanche photo-diodes, multi-channel plates, and super-conducting Josephson
junctions [45]. Today, the best choice of wavelength for free-space QKD systems is of 800
nm for which efficient avalanche photo-diodes (APD) counters are commercially available.
In addition, the receiver uses a combination of spectral filtering, spatial filtering and timing
discrimination using coincidence window of typically a few nanoseconds to decrease the
dark-count errors. Free-space transmission is restricted to line-of-sight links. Thus, the
beam-pointing is still difficult for moving targets. However, the theoretical estimation al-
lows us to think of free-space communications up to 1600 km, suitable for satellite-based

key exchange.

The very first demonstration of free-space QC system was a table-top experiment per-
formed at the IBM Thomas J.Watson Research Center in 1989 over a distance of 32 cm [T5].

After this, there are some others significant free-space experiments:

e 1998: Hughes et al., Los Alamos : ~1 km, night [22]

e 2000: Hughes et al., Los Alamos : 1.6 km, daylight [23]
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e 2001: Rarity et al., QinetiQ : 1.9 km, night [47]
e 2002: Hughes et al., Los Alamos : over 10 km [54]

e 2003: Kurtsiefer et al: 23.4 km, night [58]

The result achieved of Kurtsiefer’s QKD system is significant. Such a system using
slightly bigger telescopes, optimized filters and anti-reflection coasting, combined with so-
phisticated automatic pointing and tracking hardware, could be stable up to 34dB of loss,
the limitation of loss acceptable for the QKD system, and capable of maximum ranges
exceeding 1600km. On the other hand, while this may not seem like much, a free-space
QKD transmission between two ground-based locations 2km apart is equivalent to from a
ground-based location to an orbiting satellite at 300km altitude. Hence, one can think of
key transmissions between ground-based stations and low earth orbit satellites. Further-
more, one can also think of a satellite network that cover the whole wide world, in which
each satellite can act as a secure “relay” station. This implies a potential of the global

world-wide satellite-based QKD key distribution which is our ultimate goal.

4.4 Remarks

Both current QKD networks, the DARPA and SECOQC quantum networks, are based on
the common essential assumption: all the participant nodes are trusted. Such an assumption
is critical and seems not suitable to build a world-wide general-purpose QKD network.
Indeed, the DARPA and SECOQC networks are currently limited in a small size of some
nodes and capable of covering an area of several-tens of square kilometers. They are only
understood as the metropolitan area networks (MANs). It seems that one has to wait for
the new progress and new emergence in the development of QKD technologies in order to
build the bigger QKD networks. One can realize that the two current QKD networks are
only capable of approving the feasibility and of improving a little the performance of stand-
alone QKD links. The crucial constraint on the reach of the original QKD schemes has not
been yet broken out. The initial problem has not been yet thoroughly solved. Indeed, the

question is always open.

The satellite-based QKD network is interesting. Each satellite acts as a trusted QKD
relay. By its high altitude, such a relay is impossible to be eavesdropped and can cover a
larger area. Indeed, a global world-wide satellite network such as the Global Positioning
System (GPS) can consist of only 24 well-spaced satellites that orbit the Earth and make
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possible for people with ground receivers to pinpoint their geographic location. The loca-
tion accuracy of the GPS system is anywhere from 100 to 10 meters for most equipment.
Accuracy can be pinpointed to within one meter with special military-approved equipment.
Hence, the use of satellites to distribute photons seems a good choice for long-distance
quantum communication networks. However, the cost of satellite-based experiments is very

expensive. It needs to consider seriously before setting up such an experimental prototype.

In the next chapters, we will try to find new approaches that can help to build the bigger
quantum network that is not based on the advantage of satellites. We will develop the
solutions in two ways. The first one is to use additional engineering techniques to extend
the current QKD networks, the DARPA and SECOQC quantum networks, becoming a
world-wide quantum network. The second one is to seek for new relaying methods that can
act as the conventional network relay /repeater devices without reducing the unconditional

security of the original QKD schemes.
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Chapter 5

Modeling the World-Wide

Quantum Network

Chapter 5 begins for Part II of this Dissertation. As seen in the previous chapters, QKD
networks are of much interest due to their capacity of providing extremely high security
keys to network participants. However, two current QKD networks are based on trusted
model where all the network nodes are assumed to be perfectly secured. This restricts QKD
networks to be the small networks capable of several nodes. In this chapter, we propose a
novel model dedicated to large-scale QKD networks. We consider a new assumption that
is more suitable to large-scale QKD networks: nodes could be eavesdropped. Moreover,
the nodes under eavesdropping operations are unknown and unknowable to the others. In
the next chapters, Chapters 6 and 7, we will investigate the key transmission problem in
the proposed model by an approach based on percolation theory and stochastic routing.
Analysis shows that under computable conditions, large-scale QKD networks could protect
secret keys with an extremely high probability. Simulations validate our results. In the last
chapter of Part II, Chapter 8, we will provide a discussion about the application scenarios
of the proposed world-wide quantum network. The material of Part II of this Dissertation

primarily concerns with our publications [64}63]65].

5.1 Preliminary
The problem of transmitting a secret key from an origin to a destination over the network

was considered for a long time, but cannot be thoroughly solved. The current solution in

most of Internet applications is using Public Key Infrastructure (PKI). PKI relies on plau-
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sible but unproven assumptions about the computation power of eavesdroppers and the
non-existence of effective algorithms for some mathematical hard problems. As a result,
PKI cannot meet the highest security level, also called unconditional security. Quantum
Key Distribution (QKD) technology is a prominent alternative. It was proven that QKD
can provide unconditional security [71,66L25]. It is also successfully implemented in some
realistic applications [42,4T], ?.[79]. However, QKD only supports point-to-point connections
and intrinsically causes serious limits on throughput and range [A2.66]. A long-distance
QKD transmission must take an adequate number of intermediate nodes to relay the key.
In realistic scenarios, however, some intermediate nodes could be controlled by eavesdrop-
pers without the knowledge of the others. In consequence, the security of key will be
compromised. For the large-scale context, moreover, the vulnerability of relay-based trans-
missions is more sharpened. The open question is: how to build large-scale QKD networks

that are capable of enabling extremely high secret key for network participants?

In QKD networks, we can distinguish two types of links: the classical link and the QKD
link. A classical link is easy and simple to be implemented, capable of providing high-speed
but low-confidentiality communications. By contrast, a QKD link aims at the highest level
of security, also called unconditional security. This causes its undesirable limitations over
rate and range [42[56]. Conventionally, QKD networks are largely known as the special ones
to which the primary goal is unconditional security. Indeed, QKD networks rather sustain
QKD link’s restrictions in order to support the security goal. Hence, there is no need to
consider classical links in the design of the QKD network prototype. This implies that we
can consider only QKD links in our works of Part II. We will simply write links instead of
QKD links in Chapters 5, 6, 7 and 8.

Data can be perfectly secured on links connecting two adjacent nodes since the uncon-
ditional security of QKD was well proven [[[1LI66L25]. The risk of data disclosure is with the
case in which the origin (Alice) and the destination (Bob) are not connected by a direct
link. Data must be relayed through some intermediate nodes to arrive its destination. The
critical question is whether the intermediate nodes are vulnerable to the malicious person
(Eve)? The feasibly-implemented model of QKD networks so far is the trusted network
model. The two famous quantum networks, named SECOQC and DARPA, were planned
to follow such a model [40,411[78].There, all the network nodes are assumed to be perfectly
secured. This implies that we did not take into account the fact that Eve can ingeniously
eavesdrop a proportion of networks nodes without leaving any trace. In the large-scale
context, since the number of network participants is great such Eve’s attacks become more
realistic. Consequently, the security maybe compromised in practice. Our goal is to release

the “trusted” constraint, and solve the secret key transmission problem over untrusted
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network model.

Choosing an adequate topology is an important step in building a network. Restricted
by a modest length of link, QKD networks have not many choices of topology. It is believed
that a meshed topology would suit to QKD networks. Besides, the distributed architecture
is believed to be good to improve the security. In Part II of this Dissertation, we follow
such an idea of topology and architecture. However, we dedicate to design a global world-
wide quantum network that is distinguished from the existing works, e.g. the DARPA and
SECOQC networks. We will seek for conditions on that we can get unconditional security
for key transmissions, and also solve the routing problem of secret keys in such a network.
For simplicity, we focus on the 4-connected grid network. Fig. Bl roughly describes our
proposed QKD network. Nodes are represented by squares. Links have no representation
because they are perfectly secured and they have no effect on security analysis. Network

connectivity is characterized by connections from one node to four adjacent neighbors.

Keeping confidentiality and secrecy on transmissions is a part of network security. There
is a zero-sum game between two players: legitimate users and eavesdroppers. The former
wants to protect as much as possible their exchanged data while the latter wants to gain as
much as possible this data without revealing their presence. In QKD networks, we have not
to worry about links. Thanks to the advantage of QKD technology! However, nodes are still
vulnerable. Attacks are roughly divided into two categories: detectable or undetectable.
In principle, if we can detect an attack then we can find out effective solutions to fix it.
One of the simplest solutions is isolating contaminated components to keep the security
of the remain components. Undetectable attacks are very dangerous. We cannot detect
them until a terrible damage has been done. We must take into account such attacks in
large-scale QKD networks. We assume that each node sustains a probability p. with that
the node is eavesdropped without knowledge of legitimate users. Imagine that legitimate
users always try to detect attacks and unusual operations to repair them. This implies
that p. should be small unless eavesdropper resources are much more important than that
owned by legitimate users. For simplicity, we focus on the context in which the probability
Pe is the same for all the nodes. We will first investigate the decay of confidentiality caused
by relaying nodes with respect to a given p.. Then, we propose a solution that enhances
confidentiality. We also seek conditions and means to achieve the unconditional security in
QKD networks.
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Figure 5.1: Two dimensional lattice network.
5.2 Modeling the World-Wide Quantum Network Problem

Consider a 4-connected grid lattice network (see Fig. B.Il). The network is large so that we
can ignore its borders. Nodes are represented by squares. Each node is linked with its four
nearest neighbors. We do not make representation of links since they have no effect on our
security analysis. If we turn into the language of graph theory, then our network can be
described as follows. The network is the set of vertices V = Z2. Each vertex v = (v, v3)
is the representation of one node being at its corresponding coordinates. A vertex is called
as safe if there is no eavesdropping operation on it. Otherwise, it is called unsafe. By the
fact that vertices can be eavesdropped without leaving any trace, we assume that all the
vertices sustain a constant eavesdropping probability p. € [0,1]. As mentioned above, we
assume that all the vertices sustain the same eavesdropping probability p.. Denote by p;

the probability that a vertex is safe, ps = 1 — pe.

Alice and Bob are two legitimate users, represented by two corresponding vertices v4, vp.
Alice wants to convey a secret key K to Bob. The central object of study is the secrecy
probability > that K is not revealed to the eavesdropper Eve. If v4,vp are adjacent then
K is certainly safe, or ¥ = 1. Otherwise, K must pass over some intermediate vertices

V1,02, ..., (l > 1) whose task is to relay K. In this case, K is revealed unless all the [
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Figure 5.2: The secrecy probability ¥ is dramatically attenuated with respect to (w.r.t) the
number of relaying nodes .

vertices v1,v9,...,v; are not eavesdropped. We can measure Y. by the following formula:

¥ = Pr(key in secrecy)

= Pr(vi,ve,...,v are not eavesdropped)

l
= H Pr(v; is safe) (5.1)
i=1

=(1- pe)l

= (p5)l
If we focus on the probability of key disclosure:

3 = Pr(key disclosure) =1 — %

—1-(1-p,) (5.2)
=1- (ps)l
A sequence m = vy, v1,v9,...,v, v is known as a path from v, to vg. Two succes-
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sive vertices of the path are adjacent. We define the length of a path as the number of

intermediate vertices in this path. For instance, the length of 7 = v, v1,v9,...,v;,vp is [.

We call safe path the one that has no vertex being intercepted by Eve. Otherwise,
the path is called unsafe path. Fig. shows that the secrecy quantity ¥ of K is ex-
ponentially decreased with respect to (w.r.t) the length [. The advantage of QKD links
is vanished just by some relaying nodes. We are interested in a simple way that possibly
compensates the decay of 3. This is to send a number of sub-keys Ky, Ko,..., Ky by
different paths w1, m9,...,7n. The final key K is now computed by a bitwise XOR oper-
ation over K1, Ko,...,Ky. As such, K should be safe unless Eve intercepts all the paths
T, T, ..., TN- Assume that the graph presents somewhere safe paths from v 4 to vg. With
a more bigger N, we can hope that the final key K has a more chance to be safe. The

following questions are basic:

1. When all safe vertices are almost-certainly connected? In the mathematical expres-

sion, find the condition for ps such that for any A € [0, 1] we have:

Yoo = lim (B)>1-A

N—oo

2. Assume that Y, > 1— A. Given a pair of vertices v4,vpg, consider a finite number N
of paths 71, e, ..., mn from v4 to vp generated by a proposed routing algorithm. Let
A(N) be the secrecy probability of the final key if N sub-keys are sent by 71,72, ..., 7N.
Find Ny such that for any € > A, € € [0, 1], we have:

VN >Ny : A(N)>1—¢
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Chapter 6

Necessary Condition for

Unconditional Security

6.1 Percolation theory based approach

First, we talk about percolation theory [48/62I63[TI3]. This theory investigates the transition
phase from the non-existence to the existence of the giant wetted cluster when we supply
water at the center of a graph. The 2-dimensional site percolation model can be roughly
described as follows. Given the graph G with vertices set V and edges set E. Vertices
and edges are either open or closed. In the open status, they allow water to pass through
and water make them become wetted. Otherwise, they do not permit the passage of water.
Edges are open. Vertices are not similar. Each vertex is open only with open probability
Do € [0,1]. Let 6(p) be the percolation probability that measures the proportion of wetted
vertices to open vertices. It is believed that 6 has the form as roughly sketched in Fig. Gl

If G is infinite then @ implies the probability that exists an infinite wetted cluster. It

turns out that 8 follows Kolmogorov’s one-zero law,
1, ifp,>p
0(po) = LT (6-1)
0, ifp, < pc.

Where p, is called the critical probability that stands for the minimum value of p, that
holds 6(p,) > 0.

The framework of the 2-dimensional site percolation is very similar to that of our network

model. It is not difficult to realize that the open probability p, and the safe probability
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Po

Pc

Figure 6.1: The percolation probability 8(p,)-

ps play an equivalent role in two corresponding frameworks. If we always set ps = p,
and assume that Alice sends an infinite set of sub-keys Ki, Ko,... by an infinite set of
different paths 71,79, .... Then, the secrecy quantity X of the final key K is identical to the
probability that there exists a safe path between the origin v4 and the destination vp. This
probability is, however, equivalent to the probability # that almost open vertices belong to
the same infinite open cluster. We can use for ¥ two important properties that have been

proven in percolation [53]:

1. The percolation probability 8 is a non-decreasing and continuous function w.r.t p,,
except possibly at the threshold p., where it is at least non-decreasing and continuous
from the right (see Fig. B.TI).

2. The number of infinite open cluster kg is either 0 or 1, i.e.

1, if0>0
ko=14 6.2
0 { 0, if§=0. (6.2)

The fundamental goal of quantum networks is to achieve the most highest security.
Situations that lead to a small probability of having safe paths should be taken out of
interest. Our network problem can be realized as a variant of percolation theory that
presents its own challenges. Indeed, although of having the equivalence between Y, and
0, the intervals of interest over these functions are explicitly distinguished. The interest
interval over 6 is concerned with the transition point p, where 6 varies from 0 to the values
greater than 0. As for ¥, the interval of interest is close to 1. This formulates the first
basic question stated in the end of Chapter Bl Besides, we must deal with another challenge.

This is the routing problem that was stated as the second question at the end of Chapter
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Our network is large but not infinite. Let take a simple estimation about is possible
size. Earth’s surface is 510,065, 600 square kilometers. The optimal length of QKD links is
so far believed to be around of 40 kilometers [78].Thus, the network size is approximately
of 600 x 600. Consequently, the function ¥ (ps) cannot follow Kolmogorov’s one-zero law.
This implies that the critical probability p. of the 2-dimensional site percolation cannot be
the good response for the critical value of ps in our context. We must find the appropriate

critical value for p;.

6.2 Condition on the safety probability p;

We investigate the secrecy probability > when Alice sends to Bob an infinite number of
sub-keys K1, Ko, .., Ko by infinite corresponding paths 71, 7o, .., Too. This turns out the
problem of the connectivity of safe vertices on the graph. Indeed, two vertices v4 and
vp (two vertices represent for Alice and Bob) are considered as safely connected together
if there exists at least a safe path inside the infinite set of paths from v4 to vg. In the
percolation literature, Y (v4,vp) can be interpreted as the connectivity function 7(v4,vp).

If Alice is far enough from Bob then we can use the following approximation [48],

Yoo(v4,v8) = T(va4,vB) ~ 6. (6.3)

Unfortunately, the percolation theory did not give any estimate for 6 in the region where
0 is close to 1. In our context, we must study the interval of ps such that the safe connectivity
between two any Alice and Bob is almost certain. That is to say if given a non-negative
small value A, we must show the interval [p;c, pyc] such that Vps : pie < ps < pyc, we have
Yoo > 1 — A. Obviously, the upper critical bound p,. is 1. Seeking for the lower critical
bound py, is not easy. Our method is based on a heuristic and we use simulations to validate

the results.

As is well-known, the critical probability for the 2-dimensional lattice percolation is
about 0.6. From this value to 1, the percolation probability 8 is greater than zero and
increases continuously to 1. Let & be the probability that a given safe vertex is encircled
by unsafe vertices. The relation between 6 and ¢ holds: 8 = 1 — £, Therefore, from

Approximation we can easily derive the condition on ¢ w.r.t a given A as follows

E<1-VI—A. (6.4)
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Our task now is to investigate the behavior of £ in the region close to 0. From the
trivial case in which a given vertex is encircled by its four unsafe neighbor vertices, we have

immediately the lower bound of &,

£>(1 _ps)4- (6.5)

The equality holds if and only if p; = 1. The directly subsequent corollary is € = 0
in this case. Otherwise, even though ps is very close to 1, the probability ¢ always is a
non-negative value. If we set p, = 0.8, then by applying Ineq. we have ¢ > 1.6 x 1073,

We temporarily set p;. = 0.8 to continue an incremental study of £.

We first try to solve the problem of £ in the one-dimensional case. To distinguish ¢ in
the one-dimensional and two-dimensional cases, we denote by £() and by €3, respectively.

We can easily measure () for a given radius r (see Fig. B2,

¢ 1) = Pr(Both the left and right consist of unsafe vertices)

= (Pr(At least one unsafe vertex in the left)) X
(Pr(At least one unsafe vertex in the right))

= (1 — Pr(All vertices in the left are safe)) X (6.6)
(1 — Pr(All vertices in the right are safe))

= (1=pf) x (1 —pf)
= (1-pp)%

We now try to extend from ¢ to ¢®. In the two-dimensional lattice, assume that we
are focusing on a vertex O. Let R(r) be the set of vertices that have the distance r from O.

We are interested in unsafe circuits inside R(r). Denote by:

e G(r): the event that there is an unsafe circuit that encircles the considered vertex O
and do not exceed R(r) (see Fig. B2C).

e Grr(r): the event that is an unsafe vertex in both the left and the right of the vertex
O that do not exceed the length r (see Fig. E2AB).

e Gyp(r): the event that is an unsafe vertex in both the left and the right of the vertex
O that do not exceed the length r (see Fig. B2 B).
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Figure 6.2: Unsafe circuits in the one-dimensional and two-dimensional cases.

Obviously, if we have the event G(r) then we have two events G r(r) and Gyp(r), too.
Thus,

or

Applying Eq. to Ineq. B8, we have:
£(r) < (1-p)™ (6-9)

In the trivial case r = 1, the equality is always true. Otherwise, more r is bigger, more
Ineq. is looser. The reason is when r is bigger, besides of the condition on Grr and

Gyp hold, the event G needs more unsafe vertices to complete a circuit and to make itself
appeared.

Based on G(r) we define the event G(rl,r2) is a event that there is no unsafe circuit

inside the inferior R(r1) but there is an unsafe circuit inside the exterior R(r2). Let £(r1,72)
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be the probability that the event G(r1,72) appears. We have

§(r1,m2) = &(re) — &(r1) (6.10)

or:

£(r2) = &(r1,m2) +&(r1). (6.11)

Let 9 tend to infinity, we have

§ = &(o0) = £(r1) + &(r1, 00). (6.12)

Without loss of generality, we set 71 = r in Eq. The upper bound of ¢ could be
estimated by applying Ineq. to Eq. 6.12)

¢ =¢(00) < (1—ph)* +¢&(r, 00). (6.13)

Note that if a circuit belongs to the set G(r, 00) then its length must be equal or greater
than 2r. As such, the minimum degree of p, in the function £(r, 00) is 2r. This implies that
£(r,00) is in the order of p2", or £(r,00) = O(pg’) = O((l —ps)Q’"). In the other hand,
we consider the limit of the ratio between ¢ and the quantity (1 — ps)?" as r — oo. From
Ineq. BE8, we have

Y
i, (ﬁ) > fim (%) = oo (6.14)

This is to say & >> (1 — pg)?" ~ &(r,00), or & >> £(r,00) as 7 — oco. Fig. B3 roughly
shows the ratio between two quantities (1 — ps)* and (1 — ps)?" with some values of p; in
[0.8 : 1]. We realize that in order to get an enough great ratio about 10, we can choose
r1 = 8 for the interval ps € [0.8 : 0.9] and r9 = 6 for the interval ps € [0.9 : 1]. By these
choices of r, we ignore the quantity &(r,00) in the formula of the upper bound of £. We

derive from Ineq. to the following approximation:

1—p%)% if0.8< 0.9
SS{ ( ps) ) 1 _ps < (6.15)

(1-p5%% if0.9<p, <1
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Figure 6.3: The ratio between (1 — p,)* and (1 — p,)*"

6.3 Simulation results

We implemented simulations to examine our heuristic results. We investigated the two-
dimensional lattice 600 x 600 that suits to the “size” of the whole wide-world quantum
network. For each experiment, we generated randomly the untrusted network with a given
value of ps. Then, we used the spreading algorithm to find the greatest connected safe

cluster. We denote by:

e A: the set of all the safe vertices.
e Chax: the greatest connected safe cluster.

e &gt the probability that a safe vertex does not belong to the greatest cluster Cax-

We can calculate &;; for each experiment by the following formula:

L 1- ||CmaX||

=41 (6.16)

where:
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Ps i E(&si) ub

0.8 [ 1.6 x10 3 [214x103 [ 4.79x 10 !
0.83835x107%[1.03x10 3| 3.6 x10° !
0.86 | 3.84 x10~% [ 447 x 107% | 24x 107!
0.9 1x107% [1.12x107%] 4.82 x 1072
0.93 ] 24x107° | 2.7x107° | 1.55 x 1072
095625 x10%| 7x10% |4.92x103
0.97 | 8.1x10~7 1x10=% |7.78 x10~*

Table 6.1: The lower bound &y, the expected value of simulation E(;) and the upper
bound &,p.

e | A||: the cardinality of A, or the number of safe vertices belonging to A.

¢ ||Cmax||: the cardinality of Cpax, or the number of safe vertices belonging to Cmax-

Table B shows our

theoretic values and the simulation results. We realize that as ps increases the expected

We executed 10,000 experiments for each chosen value of p;.

value (or the mean) of & gets closer to its lower bound, and both tends to 0. We can
realize also that for p; € [0.8 : 0.9] the upper bound of ¢ is important in comparison with
the eavesdropping probability p. = 1 —p; at each vertex. In the other word, the probability
that the final key is eavesdropped in its transmission is greater than that of the final key
being eavesdropped at the transmitter. This is out of our interest. By contrast, in the
interval ps € [0.93 : 1] the upper probability of a vertex being encircled is approximate or
less than the probability of this vertex itself being unsafe. This seems more interesting.
Table also suggests that we can use a very quick estimation & ~ &, = (1 — p,)* in the
interval py € [0.93 : 1].

Note that for p; = 0.96, we have & ~ 2.56 x 1076, With our envisaged quantum network

that is in 600 x 600, the number of safe vertices that are encircled is about

Npounded ~ Niotal X ps X § ~ 0.88. (617)

The above calculation can be interpreted that the expected number of safe vertices that
are encircled by unsafe circuits is less than 1. Therefore, we can roughly derive another more
powerful statement about the safe connectivity in our network: in the interval ps € [0.96 : 1],

all the safe vertices are almost-certainty connected.
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Chapter 7

Security Routing Algorithms

7.1 Deterministic and stochastic routings

Routing algorithms can be classified into two main categories:

1. Deterministic routing algorithm (DRA): the path used to send a given message be-
tween one given pair of nodes is determined before the transmission and is usually

always the same.

2. Stochastic routing algorithm (SRA): the path used to send a given message is ran-
domly chosen among possible paths between one given pair of nodes. There is no
need to determine the path before the transmission. The path can be incrementally

determined at each relaying node.

Traditional routing algorithms, such as those used on the Internet, are mostly deter-
ministic. As they are tailored to be efficient, they are guessable. This is not good to our

model.

By contrast, stochastic routing algorithms seem better. The basic idea of stochastic
routings is sending randomly a packet to one of possible routes. This can be implemented
by a distributed way as follows. When the message holder forwards the message, it randomly
chooses one among its neighbors, not necessarily the most “efficient” one. This gives birth
to the new concept called next-hop probability distribution. Roughly speaking, the choice
of next-hop is random, but according to a given next-hop probability distribution. From
the end-to-end point of view, this results in the fact that each message will take a random

path to go from origin to destination.
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The main challenge in stochastic routing is how to determine the best next-hop prob-
abilities that could optimize the given specific goal. Previous works on stochastic routing
17, 61,08, [M9] focus on performance metrics (latency, throughput, acceptance rate, etc.)
which are not of major importance to QKD networks. As is well known, the most highest
priority of QKD networks is the security. In other words, we could temporarily ignore other
performance metrics to concentrate on the security goal. Besides, a special grid 4-connected
topology as proposed can be well matched with QKD networks, but also make the previous
optimization on stochastic routing became useless. We need to build our own appropriate

stochastic routing.

7.2 Some proposed routing algorithms

7.2.1 An adaptive drunkard’s routing algorithm

In the classic drunkard’s walk problem, the next-hop probability distribution is uniform.
This means there is no unbiased directions. Here, we propose an adaptive drunkard’s routing
algorithm, named ADRA, that is biased. The idea is to give the more chance for the vertex
that is more closer to the destination vertex. Assume that the vertex v4 wants to send
a message to the vertex vp. The algorithm can be informally described as follows. The
vertex v, computes the next-hop probability for each neighbor to forward the message.
These next-hop probabilities are determined with respect to the coordinates correlations
of neighbors and vp. To ensure that the message can finally reach vp, we give a higher
probability to the vertex that is closer to vg. Then the vertex v, randomly chooses one of
its neighbors to forward the message, but according to the probability distribution that has
been computed. As that, some vertices are more likely to be selected, but nothing is sure.
Anyone that subsequently receives the message would do the same thing and the chain of

communication would continue to reach to vg.

Candidate selection and probability assignment can vary. Here, we propose a simple

way:

e All the neighbors of the message holder (the current vertex) are selected to be candi-

dates.
e Assume that there are m candidates in the candidate list. Do:

1. Sort candidates in decreasing order of the distance to Bob. After sorted, let d;
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be the distance from the candidate 7 to Bob. We have:
Vi=1,...,m—1:d; >d;41

2. Compute w1, ..., Wny:

1, ifs=1
w; = Wi—1, ifs>1Ad; =d;_1
wi—1+ 1, ifi>1Ad; >d;_1

3. Compute the next-hop probabilities Pr(i):

W;

Pri) = s

7.2.2 A constant-length stochastic routing algorithm (1-SRA)

The length of a path is the number of the vertex belonging the path. A vertex may be

counted as many times as the path runs through the vertex.

The distance between two vertices is the length of the shortest path from the origin

vertex to the destination vertex.

Our constant-length stochastic routing algorithm, called I-SRA(1) or sometimes [-SRA
for short, is a stochastic routing algorithm that takes a value [ as input and tries to transmit

a message in a random path having the length [.

Obviously, if [ is less than the distance d between Alice and Bob then I-SRA(1) returns
no path. Also, note that in the 4-connected grid lattice the difference of the length and the

distance must be an event value.

We are interested in the cases [ > d and there are some different paths 7y, . .., my, that
hold l(z,) = ... = l(z,,) = l. Therefore, for each message [-SRA will choose randomly a
path m; among 71, ..., T, according to a probability distribution that holds two following

conditions:
1. Vi,1<i<m:

0 < Pr(I-SRA(1) takes m;) <1
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i”: Pr(l-SRA(]) takes m;) =1 (7.1)

It is clear that if m = 1, [-SRA(]) becomes a deterministic routing algorithm: the
unique path is always chosen. However, as for m > 2, the message will be transmitted by
an unpredictable path. It is different from the routing algorithm ADRA, we can compute

the probability that -SRA(1) chooses successfully a safe path to send one message.

In the two previous chapters, we are familiar with the notation ps; used to denote the
safe probability of a node in the network or a vertex in the graph. For convenience, from

here we also use p to denote the safe probability with the same meaning.

Theorem 7.1. The probability that I-SRA(I) chooses successfully a safe path to send one
message depends only on the safe probability p and the length I, not on the distance d between
Alice and Bob:

Pr(1,p,d,lI-SRA(1)) = p'. (7.2)

Proof.

I
M=

Pr (1,p,d,l-SRA(1))
1

<.
Il

(Pr (I-SRA(]) takes m;) x Pr(m; is safe))
(

I
M=

Pr (I-SRA(]) takes m;) X pl)
1

<.
Il

I
~/
M-

— =

Pr (I-SRA(]) takes ﬂ,)) x pt

1=

=p' (from Eq.[T).

7.2.3 A parameterized-length stochastic routing algorithm (k-SRA)

We propose another routing algorithm that takes the distance between the origin and the
destination as an input parameter. We call the algorithm k-SRA(k) or sometimes k-SRA
for short. This is built based on [-SRA. The idea is as follows. k-SRA (k) receives an input
value k£ > 2, and then considers only the paths with lengths less than or equal to k X d.

Note that the difference between the length and the distance cannot be an odd number.
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Therefore, the possible lengths are d, (d + 2),...,(d + 2 x LWJ) For each message,
k-SRA(k) chooses randomly a value [ among d, (d+2),...,(d+2 X [WJ) according to
the uniform distribution, i.e.

Vi,0<i1<wu:
1

Pr ((d+ 2 x 1) is taken for l) = Gl <d

where u = [WJ

Once [ was chosen, k-SRA uses [-SRA to send the message. This implies that the
message will take a random path that has the length [.

Theorem 7.2. The probability that k-SRA (k) chooses successfully a safe path to send one

message depends on the safe probability p, the input parameter k, and also the distance d
between Alice and Bob,

d _ n2x(u+1)
X = Pr(L,p, d, k-SRA(k)) = p(uj—(ll) Xp(l - pQ)). (7.3)

Proof.

A="Pr (1,p, d, k—SRA(k))

= Z (Pr (k-SRA (k) takes [) x Pr (I-SRA(l) takes a safe path))
l=d,...,d+2u

- (ﬁx(Pr(l,p,d,l—SRA(l))))

(Pr (1,p,d, l-SRA(l))))
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7.3 Proposed routing algorithms in different attack strate-

gies
We consider two attack strategies of Eve:

1. Dynamic attack: Frequently, Eve changes nodes being attacked. Roughly speaking,
to catch one message, Eve re-chooses the set of nodes being attacked.

2. Static attack: Once Eve has chosen some nodes to attack, she keeps these nodes in
eavesdropping for a long time. Roughly speaking, Eve keeps her choice of the nodes

being attacked until all N messages have been sent.

Note that we cannot formulate rigorous mathematical results for the algorithm ADRA.
We are only able to estimate the effect of this algorithm by statistics. This is a trivial but
essential method in the random walk literature. The algorithm [-SRA is not a real routing
solution. The goal of this algorithm is to execute the sub-task of the algorithm k-SRA. The

algorithm k-SRA presents some rigorous bounds.

Theorem 7.3. If Fve executes a dynamic attack, then the probability that there is at least
one safe path in N routings of k-SRA(k) depends on N, the safe probability p, the input
parameter k, and the distance d between Alice and Bob:

Pr(N,p,d,k-SRA(k)) =1 — (1 - \)V (7.4)

where A is evaluated by Eq. [7.3

Proof. 1t is a memoryless system. From Eq. [[3),

Pr(All the N trials are failed) = (1 — Pr(A trial is successful))N
=1 -\N.
Hence,

Pr(N,p,d, k-SRA(k)) = Pr(At least one of N trials is successful)
=1 — Pr(All the N trials are failed)
=1-(1-¥
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We have a lemma, derived directly from Theorem

Lemma 7.4. If Eve executes a dynamic attack, given € and k-SRA(k), then we have the
threshold Ny responding to the second basic question stated at the end of Chapter[d,

No = % (7.5)

where X is evaluated by Eq. [T-3

Theorem 7.5. If Eve executes a static attack, then the upper bound of the probability that
there is at least one safe path in N routings of k-SRA (k) depends on N, the safe probability
p, the input parameter k, and the distance d between Alice and Bob:

Pr(N,p,d, k-SRA(k)) <1— (1 -\~ (7.6)
where X is evaluated by Eq. [7-3 The equality is possible when N < 4.

Proof. We must take into account the path dependence of N paths taken by N messages
sent. The probability that k-SRA (k) takes an unsafe path for each trial is:

Pr(1,p,d,k-SRAK) = (Pr (k-SRA(K) takes [) x
d<i<kxd (7.7)

Pr (I-SRA(!) takes an unsafe path)) =1-2A

The probability of N messages being intercepted is:

Pr(N,p,d,k-SRAK) = > (Pr(k-SRA(k) takes (I,...,Ix)) X

d<l;<kxd
d<ly <kxd) (78)
Z (Pr(l-SRA takes my ... mn) X (Pr(m ... mx are failed)))))
l7r1:lla
l7rN.;lN
For a given path set (71,...,7mx), we can prove the following inequality:
N
Pr(my,...,my are failed) > [ ] Pr(m; is failed) (7.9)

i=1

Where the equality holds i.i.f q,...,7n are independent.
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We first prove with N = 2. Assume that 7, w9 have the length [y, respectively, and

have [ common nodes (0 <! < min(l1,l2)). We have:

Pr(my, o are failed) = p' x (1 —p"79) x (1 —p2=D) 4 (1 - p"
= (1 —p") x (1= pl)) 4 (pl b — pllitle)y

> (1 —p™)) x (1 = p"2)) = Pr(ny is failed) x Pr(m; is failed)

Ineq. [9 was proven with N = 2. We iterate this to obtain (J)) for VN. Note that
the equality holds iff m ... 7n are separated. In the square 4-connected lattice there are
maximum 4 separated paths between Alice and Bob. Thus, if N > 4, the equality for (Z9])

cannot appear. By applying ([C9) to (ZH]), we have:

N
Pr(N,p,d, k-SRA(K)) > > ((Hpr (k-SRA (k) takes li)) X
d<li<kxd i=1
d<ly<kxd)
N N
( Z (HPr(l-SRA takes m;)) X (HPr(m is failed))))
lny=bl, =1 i=1

bny =In

- ((ﬁPr(k-SRA(k) takes lz-))x

d<li<kxd i=1
d<ly <kxd)

( ﬁ ( 3" (Pr(--SRA takes ;) x Pr(m; is failed)))))
I

i=l =l
N In
= Z (HPr (k-SRA (k) takes ;) H Pr (I-SRA(l;) takes an unsafe path))
d<li<kxd i=1 L=l
d<In<kxd)

N
= Z ((H Pr (k-SRA (k) takes [;) x Pr (I-SRA(;) takes an unsafe path)))
d<li<kxd i=1
d<zN2k><d)

= (( Z Pr (k-SRA(k) takes [;) x Pr (I-SRA(l;) takes an unsafe path)))
i=1 N d<l;<kxd

&'12

(Pr (k-SRA (k) takes an unsafe path)) = (1 =) (from (7))
1

~.
Il
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Thus,

Pr(N,p,d,k-SRA(k)) = 1 — Pr(N,p,d, k-SRA(k)) <1 — (1 — NV

We have a lemma derived directly from Theorem

Lemma 7.6. If Fve executes a static attack, given € and k-SRA(k), we have the threshold

Ny responding to our initial question:

lg(c)
N > m (7.10)

Where X is evaluated by Eq. [7.3 And the equality is possible when N < 4.

7.4 Simulation results

We implemented simulations to focus on several goals: study the effect of the algorithm
ADRA and validate our results on the algorithm k-SRA. Simulations were done in the
lattice 600 x 600 that is the size of our envisaged quantum network.

ADRA'’s simulations. We ran simulations in varying the safety probability p; €
[0.93 : 1] and the distance dap between Alice and Bob [64.63]. For each p,, we generated
a network with randomly spread eave-droppers. For each distance dsp, we generated 400
(Alice, Bob) pairs. For each such pair, we ran 400 experiments. In each one we generated
stochastic routes from Alice to Bob until we find a safe one (i.e., a route with no Eve).
For each 400 experiments we gathered the largest number of messages that were needed.
Finally, we computed Ny(ps,dap) (abbreviated Np), the largest of these figures (i.e., the

maximum number of messages that each 400 x 400 experiment required).

The routing algorithm ADRA may not be able to find any safe path in a reasonable
amount of times, in particular when d4p is great. We set the maximum effort to 10,000
times: Alice sends at most 10,000 messages, if all are intercepted by Eve, then we declare
that the routing algorithm ADRA is not capable to find any safe path. Anyway, real world

constraints (time and money) are likely to require a much smaller threshold.

Worst case study reveals Ny,q.(ps, dap) (abbreviated N,q,) such that (at least for 1.6 x
103 trials):
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Ds
d | 099|098 | 097 | 0.96 | 0.95 | 0.94 | 0.93
1 8 12 12 22 14 12 14
2 44 105 | 122 68 82 425 | 106
3 87 51 273 99 122 | 233 | 439
4 95 171 | 160 | 408 | 244 | 1125 | 476
5 66 61 186 | 917 | 286 | 967 | 2149
6 34 397 | 356 | 377 | 644 | 583 | 921
7 43 194 | 155 | 395 | 625 | 420 | 2102
8 72 | 1645 | 224 | 414 | 936 | 773 | 1663
9 53 185 | 477 | 386 | 585 | 717 | 2794
10 | 149 | 169 | 340 | 1267 | 3731 | 1267 | 2854
20 | 127 | 338 | 829 | 9300 X X X
30 | 315 | 1987 | 2908 X X X X
40 | 386 | 4111 X X X X X
50 | 437 X X X X X X
60 | 656 X X X X X X
70 | 1911 X X X X X X
80 | 3117 X X X X X X
90 | 7039 X X X X X X
100 | 4117 X X X X X X
110 X X X X X X X

Table 7.1: Worst cases’s experiment results. Symbol x stands for more than 10,000.

L, if n > Npag
7:0<7<1, ifn< Ny

(w1, ey mp) :{

Table [Tl gives the worst cases. Fig. [l plots these results and reveals a chaotic
behavior. However, this suits with the classical drunkard’s walk chaos. Particularly, this
suggests the idea about the existence of a threshold of the number of sending messages from
that we can be almost certain that there exists at least one message not being intercepted
by Eve.

k-SRA’s simulations. If the algorithm ADRA and its simulations only support the
idea about the existence of a threshold of the number of messages needed, then k-SRA gives
more explicitly the bounds of this threshold with respect to a given coefficient security e.

We implemented simulations to validate our results.

Simulations were implemented in the lattice 600 x 600. We ran 10* experiments and

gathered the results. Table show lower bounds, simulation values, and upper bounds of
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Figure 7.1: The number of messages N in the worst cases for some varying values of p;.

the case of £k = 2 and d = 10 with p; = 0.93;0.95;0.97;0.99. Note that the lower bound
holds if N messages have taken the only one path. The convergence of the experimental
results to their upper bound is more significant. Figs. [[2 3 [C4] draw the upper
bounds and the experimental results for a visual comparative study. We realize that the
secrecy probability of the final key is a non-decreasing function. As the number of messages
being sent increases, this probability converges to its upper bound. Moreover, both tend to

one as N — oo.
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ps = 0.93 ps = 0.97
N | (%) | Xsi(%) | Aun(%) N | (%) | Xsi(%) | Aun(%)
1 34.71 42.54 34.71 1 63.66 69.99 63.66
10 34.71 80.57 98.59 10 63.66 93.84 98.59
100 34.71 95.36 100 100 63.66 98.94 100
1000 34.71 99.52 100 1000 63.66 99.94 100
10000 | 34.71 99.96 100 10000 | 63.66 100 100
ps = 0.95 Ps = 0.99
N | (%) | Xsi(%) | Aus(%) N | (%) | Xsi(%) | Aun(%)
1 47.04 54.31 47.04 1 86.05 88.75 86.05
10 47.04 87.96 98.59 10 86.05 98.40 100
100 47.04 97.59 100 100 86.05 99.81 100
1000 47.04 99.84 100 1000 86.05 99.99 100
10000 | 47.04 100 100 10000 | 86.05 100 100

Table 7.2: Lower bounds, experimental results and upper bounds of the key secrecy for
ps = 0.93;0.95;0.97;0.99. \; is the percentage in 10* experiments done.

2

10%

ps = 0.93
1 i =y
Theoretic Values ——
Simulation Values
0.8 - i
0.6 - i
A(N)
0.4% §
i
0.2 - i
O | | |
10° 10! 102 103
N (messages)

Figure 7.2: Theoretic upper bound and simulation result for p; = 0.93.
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ps = 0.95
1 5 = = £y
Theoretic Values ——
Simulation Values
0.8 |
0.6 - |
/
AN) T
04 |
0.2 F |
0 | | |
10° 10! 102 103 10*
N (messages)
Figure 7.3: Theoretic upper bound and simulation result for p; = 0.95.
ps = 0.97
Theoretic Values —5—
Simulation Values
0.8 |
/
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Figure 7.4: Theoretic upper bound and simulation result for p; = 0.97.
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ps = 0.99
1 & 23 £ A
Theoretic Values —3—
Simulation Values —&—
0.8 i
0.6 i
A(N)
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0 | | |
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Figure 7.5: Theoretic upper bound and simulation result for p; = 0.99.
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Chapter 8

Discussions

In the previous chapters of Part II of this Dissertation we have studied a partially com-
promised QKD network model that allows any pair of members to establish a common key
with almost certainty that the final key will not be disclosed. Our contributions are (i)
a model of partially compromised QKD networks, (ii) the use of percolation theory tech-
niques to find where almost-certainty can be achieved, (iii) stochastic routing proposals
capable of achieving a given high secrecy level. Indeed, we investigated the constraints of
quantum networks, particularly, ineluctable probability that some nodes are compromised.
We proposed a secure key exchange scheme that scales well with distance. It is based on
stochastic routing, and was analyzed using percolation-theory based methods. Not only did
it validated our solution, it also gave figures allowing to engineer various parameters given
others. For instance, given the probability that nodes are compromised and the distance
between source and destination, it gives the the number of pieces the message must be

broken into.

Our proposed framework opens a new door to study the large-scale QKD network. We
can think of many things to do in order to improve the performance of the proposed QKD
network. For instance, studying more general topologies is of primary importance: grids are
only the first stab. The node safety-probability might also varying between regions. Finding
formulas (explicit or implicit via equations) is also of interest, as they usually provide more
powerful results than simulations do. We can also work to improve our stochastic routing

proposal.

It is easy to realize that the key question of the proposed QKD network model is how
to force Eve’s attack probability of each node to be less than or equal to p.? If we can

measure the vulnerability index of each node in the network, then we can exclude the
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nodes of vulnerability greater than p. before applying the proposed QKD network model.
Unfortunately, measuring the vulnerability of a network node is still an open problem
so far. In our approach, we assume that for a QKD network of N nodes, Eve has a
maximum resource of eavesdropping n nodes, i.e. p. = & if Eve’s attack follows a uniform
distribution. Thus, beside of depending on each specific routing algorithm, the number of
pieces of secret that needs to be sent in order to create a secret shared key depends also on
the attack strategy of Eve as analyzed in Section However, if Eve knows the position
of her target on the network then she certainly does not want to follow the uniform attack
distribution. She will use her resource, capable of eavesdropping n nodes, to surround her
target. In such a case, even if Alice sends an infinite number of pieces of secret, the final
key is always compromised. Hence, in order to bring the proposedQKD network model
to practical applications, it is necessary to do further serious analysis, for instance, how
to make nodes being anonymous, i.e. the different political and economical role of each
nodes is transparent to Eve. In other words, studying application scenarios that suit to the

proposed QKD network in practice is important.
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Chapter 9

Teleportation, entanglement

purification and quantum repeater

9.1 Bell states

The originality of quantum entanglement was first observed by Einstein, Podolsky and
Rosen (EPR) in 1935 [37]. Their observation is now well-known under the name “EPR
paradox”. The paradox raises once two following criterias of “local realism” are applied to

quantum theory, more precisely to entanglement correlation:

1. Realism criteria: all real things exist regardless of whether or not we observe them.
In other words, all possible observables have their pre-existing values before the mea-

surements are made.

2. Locality criteria: the acts upon the distant objects cannot have direct influence on
the local one. In other words, an object only is influenced directly by its immediate

surroundings.

Einstein, Podolsky and Rosen tried to explain their paradox by invoking “hidden vari-
ables”. In 1964, however, J. S. Bell introduced an inequality, now well-known by the
name “Bell’s inequality”, that distinguishes entanglement correlations from hidden variable
systems. Bell’s inequality gives the upper bound of the correlation of the measurement
outcomes in any local hidden-variable system, and this bound is violated by the outcomes
of the measurements on entangled state pairs. Indeed, as it is well-known today, quan-
tum mechanics is not described by a realistic-local model, and thus the EPR-paradox is

resolved [4].
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The object observed in Bell’s experiment is a joint system maximally entangled quantum
state of two qubits. These qubits could be spatially separated, however, they always exhibit
perfect correlations. Assume that Alice and Bob share one of four Bell states |¥~) =
%ﬂ TalB) —| LaTs)). If Alice and Bob measure their qubits in any common basis,
then Alice will get a random logical outcome either 0 or 1 with equal probabilities but
the outcome of Bob is always anti-parallel with that of Alice (the same value). Thus, the
EPR state |¥7) = %(| 1t4dB) — | TadB)) introduces the non-locality property itself: the
quantum state of Bob, previously undefined, becomes completely specified by Alice’s local

measurement that is spatially separated with Bob.

The four Bell states form an orthogonal basis of the two-qubit joint quantum state,
also called the Bell basis. If we consider the logical values encoded in two different bases

+) = {|0),|1)} and |x) = {|0),|1)}, where |0) = % and |1) = %, then we can

re-write Bell states as follows

[2%) = 5(100) + 11)) = —=(]00) + [11))
-y =1 (100) — — L (101) + |10
o) = %5(|00> 11)) = Jf(ltj}) +10)) 9.1)
[e*) = 5 (101) +[10)) = I5(/00) — [11))
[@7) = Z(l01) - [10)) = —5(101) — [10))

From Eq. @1l we realize that two states |®*) and |¥~) give the same phenomenon domi-
nated on the measurement outcomes regardless of which basis, either {|0), [1)} or {|0), |1)},
was used: two outcomes will be parallel if the state is |®T) and anti-parallel if the state is
|U~). As for two states |®~) and |¥T), this is not so. For instance, once we measure the
state |®7), if we use the basis {|0),|1)} then we will get two outcomes parallel; otherwise,
we will get two outcomes anti-parallel. In other words, the two outcomes depends also on
which basis, {|0),|1)} or {‘(~)> ) ‘i)}, was used. Indeed, in quantum information applica-
tions such as quantum cryptography one does not use neither |®1) or [U'~) as the initial

states to avoid unnecessary complications raised from such a basis-dependence measurement
property.

Bell’s states, or so-called EPR pairs, are considered as a new fascinating non-classical
resource that promise many potential applications and need to be exploited. In 1991,
A. Ekert introduced the first entanglement-based QKD protocol [38] that is a variation of
the original single-photon based QKD protocol. Roughly describing, the idea is as follows.
Assume that Alice and Bob share many EPR pairs. In order to establish a secret key Alice
and Bob measure singlets by using their random bases, then they discard the measurement

outcomes of the EPR pairs whose singlets were not measured by the same basis. These
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measuring and discarding steps are very similar to those of the original QKD protocol.
Then, Alice and Bob check for the interception of Eve by testing Bell’s inequality for EPR
pairs: if EPR pairs maximally violate Bell’s inequality then they were not disturbed by
Eve. Other applications exploiting EPR pairs are in quantum computation [87,31,16] and

quantum error correction [86 26157 24] 0]

9.2 Teleportation of an unknown quantum state

Suppose that Alice wants to transmit to Bob an unknown qubit |¢) = «|0) + $|1) but does
not want to send the original qubit |¢$) itself. One can think of a classical solution as follows.
Alice measures her qubit |¢) to obtain information featuring |¢), then sends this information
to Bob. Bob receives the information featuring |#), then according to this information he
forges an exact copy of |¢) from another qubit in his possession. Unfortunately, such a
classical method does not work! The quantum mechanics forbids Alice to acquire the full
description of |¢) by measurements, unless Alice has an infinite numbers of copies of the
unknown state |#). It should insist here that the state |¢) is unknown to Alice because
if Alice knows beforehand to which orthonormal basis the state |¢) belongs then she can
make a measurement whose result will allow Bob to forge an exact copy of |¢) from another

qubit.

In 1993, Bennett et al. presented a non-classical solution, called quantum teleportation,
that requires the assistance of quantum entanglement [9]. Quantum teleportation strikingly
underlines one peculiar feature of the quantum world. It is one of the most fascinating
discoveries relied on EPR pairs. This is a process of transmission of an unknown quantum
state, |¢) = «|0) + B|1), from one system to another distant system via a previously shared
EPR pair and two classical bits transmitted by a classical channel. The destination system
becomes the new original as it carries all information the original did and the original
destroy all initial information it carried, as required by the quantum no-cloning theorem.
Assume that Alice and Bob share previously an EPR pair |®1) 45, where the subscripts

indicate the state’s owners, 4 for Alice and p for Bob. We have the global system

16)4® |3 ap = (al0)a + BI1)a) ® %(|0>A|O>B 1Al s)
= %(OAIOO)A ®|0)p +@|01)4 ® [1)5 + B]10)4 ® 0)5 + B[11)4 @ [1)B).

9.2)
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M
|z) Hadamard —@

T M
N /Ao 7

Figure 9.1: An implementation of the Bell measurement: a C-NOT gate followed by a
Hadamard rotation and two single qubit measurement.

From the definition of Bell’s states, |®) = M @) = 001D gy = w,

V2 2
|U—) = w, we can re-write the states {|00), |01) ,]10),|11)} as follows
o) = ntiey
11) — |o+)—[®~)
| VR 0.3
_ i) (9:3)
01) = ———,
10) =¥ e

Applying ([@3) into ([I2Z) we have

4@187)45 = 2= (=194+187)0) @ 1005 + (¥ + 1)) @ s
+ 04 = [0)0) @100 + (19704~ 197 9 1)5)
= 2 (187)4.® (al0)5 + B1)5) + 274 ® (al0)s — Sl1)) O

+[TT) 4@ (ef1)5 +Bl0)5) + [¥7)a ® (all) 5 — Bl0)5))

(12N a@1l¢)p + |27 )a @ 0:ld) 5+ |TT) 4 ® 0uld)p + V)4 ® 0:04]¢) )

l\Dl'—‘

where o, and o, are Pauli’s rotations.

Once Alice does a joint measurement on her two qubits in the Bell basis, she gets one
of four Bell states |®), |®7), |[TT) or [I~) with equal probabilities. A Bell measurement
can be realized by a controlled-NOT (CNOT) gate followed by a Hadamard rotation and

two single qubit measurements as described in Fig.

Eq. indicates that the Bell measurement on Alice’s side will make the qubit on Bob’s
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Figure 9.2: Entanglement Swapping: teleportation either of the state of particle 1 to particle
3 or of the state of particle 2 to particle 4.

side collapsed into one of four following states

|6) B if Alice got |®T)
o.|¢yp  if Alice got |®7)
ozl¢p)p  if Alice got |TT)
0,0z|¢)p  if Alice got [T 7).

(9.5)

Obviously, if Bob knows Alice’s measurement outcome than he can recover a|0) + 3|1)
by applying an appropriate inverse rotation on his qubit. Notice that four possible outcomes
of Alice can be indexed by two classical bits, and Alice can send these two classical bits
to Bob by using a classical channel (telephone, Internet, etc.). Notice also that o, o, are
]

Hermitian operators, thus, o, = O'L and o, = 0;.

In summary, quantum teleportation is a technique that allows Alice to send an unknown
qubit to Bob provided that they share beforehand a Bell state and Alice can send to Bob
two classical bits. The minimal resources required for quantum teleportation are one EPR
pair and two classical bits. This is rather mysterious because a qubit requires two real
numbers to be geometrically represented on the Bloch sphere, not two bits. Besides, even
though Alice and Bob know two result bits of measurement they still cannot learn anything

about the unknown state |¢).

9.3 Entanglement swapping

The most interesting case of quantum teleportation is when one tries to teleport an entangled

quantum state [99]. This process is called Entanglement Swapping. It is the essential
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ingredient in quantum repeaters [21]. We consider a system of two Bell’s states |®1)19|® )34
where the subscripts indicate the qubit numberings. Obviously, the qubits 1 and 4 have
not any correlation. However, if we perform a Bell measurement on the qubit 2 and the
qubit 3 then the qubit 1 and the qubit 4 become entangled. This is roughly described as in
Fig. We try to understand this fact by a mathematical manner. We can re-write the

global system as follows

1
‘¢+)12‘¢+)34 = §(|0000)1234 + |0011>1234 + ‘1100)1234 + |1111)1234

(9.6)
1
= §(|00>23|00>14 -+ |01>23|01>14 -+ |10)23|10>14 + |11>23|11>14.
By applying ([@3) on the qubits 2 and 3 in (@), we have
17[®1)93 + [P )o3 [T )3 4 [T )3
D)o@ T)gy = = ® [00)14 + ® [01) 14+
|@7)12|® 7 )34 2( 7 |00)14 7 |01)14
[T )o3 — [T )3 [®F )23 — [ )o3
® [10)14 + ® |11 (9.7)
7 110)14 7 | )14)

1 _ _ _
= -(|2T)23 @[T ) 14+ [T a3 @ [T ) 1s + [T )23 @ [T )14+ [B7 )23 ® [B7)14).
2

Eq. explicitly indicates that if the qubits 2 and 3 are jointly measured in the Bell
basis (i.e. projected into one of four Bell states) then the qubits 1 and 4 collapse to be an
entanglement. Two qubits 1 and 4 that previously have no correlation become an entangled
pair after the result of Bell measurement has already been registered. We can say that the
Bell measurement makes teleporting either the state of the qubit 1 to the qubit 3, or the
state of the qubit 2 to the qubit 4.

9.4 Entanglement purification

Entanglement purification is a process of distilling few near-perfect EPR pairs out of many
imperfect pairs. In other words, this is a process of producing higher-fidelity EPR pairs from
lower-fidelity EPR pairs. Fig. roughly describes the entanglement purification scheme
proposed by Bennett et al. in [T2,[13]. This scheme works on two Werner states [94] p;2 and

p34 where the subscripts indicate the particle (qubit) numberings. Assume that pi2 and p34
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Figure 9.3: The entanglement purification of Bennett et al. [T213] : two CNOT operations
are applied on the particles 1 and 3, and the particles 2 and 4, then, the particles 3 and 4
are measured. If the measurement result either 00 or 11 then the particles 1 and 2 are kept
and Fy > Fy. Otherwise, the particles 1 and 2 are discarded.

describe |®*) with fidelity Fy,

o2 = pst = Fo[87) (8] + (F20) (|87) (@ + [0) (@] + [ ) ]). (99

In the purification scheme of Bennett et al., one performs two CNOT operations on the
particles 1 and 3, and the particles 2 and 4, followed by measuring two particles 3 and 4.
If the measurement result shows that the particles 3 and 4 are on the same state (00 or
11) then the remaining pair, described by the state p!, is kept, otherwise it is discarded.
One can iterate this scheme for N time until the remaining pairs have the fidelity of Fy
significantly greater than F. However, it must take in attention that the entanglement
purification process works if and only if Fy > F,;, where Fp,;, is the minimal required

fidelity that depends on the protocol used and specific physical devices.

9.5 Quantum repeater

In practice, quantum communication is realized via noisy and lossy quantum channel where

noise and loss scale exponentially with the length of the channel. Indeed, in an optical
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fiber of length I, when transmitting a photon without absorption the number of trials
scales exponentially with [; even if a photon arrives the destination, the fidelity of the
transmitted state decreases exponentially with /. The most essential component of long-
distance QKD communication is the quantum repeater. Repeating an arbitrary quantum
signal while preserving its proper nature cannot be accomplished by re-applying classical
signal processing methods. This is a big challenge, however, this is feasible at least in
principle. In 1998, Briegel et al. introduced a scheme of quantum repeater that tolerates
the general error on the percent level with a polynomial overhead in time and a logarithmic
overhead in the number of particles that need to be locally controlled [21]. This method so
far is still considered as a standard scheme for quantum repeater and for arbitrarily long
QKD systems.

Briegel’s scheme is based on three main operations: entanglement swapping, entangle-
ment purification and storing qubits. The operational mechanism can be roughly described

as follows [36]:

1. Between two remote nodes Alice and Bob, one puts supplementary nodes as connection
points in order to divide the total length into a number of shorter segments such that

any two adjacent nodes can share together EPR pairs with an enough fidelity Fp.

2. One performs entanglement swapping, that consists of a Bell measurement and a clas-
sical transmission of two result bits, at each connection point to create new EPR pairs
shared between non-adjacent node pairs. Since quantum apparatus are imperfect, the
fidelity of new EPR pairs roughly decreases to Fjj < FO0.

3. Entanglement purification is an important step in quantum communication [12]13],
441[32]. This step allows to create EPR pairs with fidelity F; ~ Fj from a number of
EPR pairs with fidelity F}j < Fy.

4. One re-defines new connections points: between Alice, Bob and new connection points
now share EPR pairs with fidelity F; = Fj, but the distance between two adjacent

nodes has significantly been extended.

5. Return to Step 2 until there is no connection point between Alice and Bob and they
share EPR pairs with fidelity Fy =~ Fy_1 = ... = Fy. Once Alice and Bob share
EPR pairs with fidelity Fy = Fj, they can do a entanglement-based QKD protocol
to establish their secret key.

In the quick description of the EPR repeating process above, it seems no need to storing

quantum states. However, a quantum memory device is indispensable to storing quan-
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tum states because without it both the processes of entanglement swapping and quantum
purification cannot be accomplished. Indeed, the requirement for quantum memory in en-
tanglement swapping is due to the fact that Bell measurements in linear optics cannot be
achieved with arbitrarily high probability, in contrast, they can fail with large probability.
Also there is the problem of synchronization of the respective Bell pair halves arriving at
the immediate nodes, and the requirement that the total swapping probability does not fall
off exponentially with distance. Besides, in some protocols one can consider entanglement
swapping and quantum purification as sequential time-dependence processes, i.e. the current
step needs some outcomes of its previous step to run. For instance, in order to accomplish
an entanglement swapping operation, one needs to known two classical bits resulted from
the Bell measurement that indicates explicitly which Pauli’s rotation will be applied. The
time interval between the Bell measurement and Pauli’s rotation steps implies a classical
communication (of two classical bits) that can be important for the lifetime of quantum
states. As for a long quantum communication that consists of several shorter segments,
the accumulated latency due to such classical communications will lead to the requirement
of quantum memory devices to store quantum states during the period of gathering Bell
measurement’s results. This explains why quantum memory devices are one of three main
ingredients of Briegel’s quantum repeater scheme. Unfortunately, such quantum devices are
not available with the current technology. This is one of main reasons responding to the
unavailability of quantum repeater in practice so far, although the idea is very beautiful in

theory.

In the next chapters, we will introduce the new approaches to securely relay QKD keys.
We will start from a new point of view compared the standard quantum repeater based on
entanglement swapping, quantum purification and quantum memory. We will also present
some novel schemes that can extend the range of original QKD schemes without reducing

their original security.
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Chapter 10

Quantum Quasi-Trusted relaying

models

10.1 Introduction

The limited range of Quantum Key Distribution (QKD) link is one of the most headache-
questions to many researchers for a long time. The earliest QKD protocol [8] is the BB84
protocol that was proposed by Bennett and Brassard in 1984. Then, this protocol is proven
to be unconditionally secure [88]66]25,[71], and promises many worthful applications. Un-
fortunately, QKD owns undesirable restrictions over range and rate [42,56]. In order to
improve QKD’s range approaches can be roughly divided into two categories. The first one
focus on improvements over direct QKD links, for instance, perfecting quantum sources
and quantum detectors. The second one is to develop QKD relaying methods. This chapter
addresses the latter one. For simplicity, we focus on perfect quantum devices, free-error

quantum channels to focus on the “relaying” aspect.

Since the range of QKD is limited, QKD relaying methods are necessary. Those become
indispensable when one wants to build QKD networks as in recent years. All current QKD
relaying models introduce some undesirable features. The most practical QKD relaying
model is trusted model. It has been applied in two famous QKD networks, DARPA and
SECOCQ [E0LATL[78], The drawback is that all the relaying nodes must be perfectly secured.
Such an assumption is critical since passive attacks on intermediate nodes are difficult to
be detected by the origin and destination nodes. Few “trusted” intermediaries can lead to

terrible security holes in practice.

Theoretically, the most strong QKD relaying models so far are the ones that are based
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on Entanglement Swapping (ES) operation [21,36,67,28]. ES-based relaying models allow
to achieve an arbitrarily long distance QKD. The idea is roughly described as follows. One
can incrementally build a longer distance EPR pair from two shorter distance EPR pairs
by a number of complex quantum operations as entanglement purification, entanglement
swapping, etc. Thus, one can create shared EPR pairs for two target nodes (origin and des-
tination) regardless of their distance. After having shared EPR pairs, origin and destination
can do an entanglement-based BB84 protocol to establish the secret key. ES-based relaying
models are considered as untrusted model since they allow effectively detecting malicious
operations on intermediate nodes. Although ES-based relaying models introduce a beautiful
result in theory, unfortunately, the nowadays technologies is not ready to implement such

models in practice.

In fact, our work presented in Part II of this dissertation can be considered as based on
“quasi-trusted” idea. However, the quasi-trusted property has been characterized differently
and analyzed in a different context: each node was assumed to be trusted with a high
probability p ~ 1, and the main focus was the global security of a very large network. In this
chapter, we propose a new definition for quasi-trusted relays. Our quasi-trusted relays are
defined as follows: (i) being honest enough to correctly follow a given multi-party finite-time
communication protocol; (ii) however, being under the monitoring of eavesdroppers. From
the new definition, we first develop a simple 3-party quasi-trusted model called Quantum
Quasi-Trusted Bridge (QQTB) model. In this model, the origin Alice and the destination
Bob are assumed out of range of Quantum Key Distribution (QKD). Carol is a quasi-trusted
relay that can share QKD links with Alice and Bob. We show that QQTB protocol allows
Alice and Bob, in cooperation with Carol, to securely establish secret keys. The originality
of QQTB protocol is that we do not need invoke entangled photon pairs. Then, we extend
QQTB model to Quantum Quasi-Trusted Relay (QQTR) model that is capable of securely
distributing secret keys over arbitrarily long distances. Although QQTB model requires
entangled photon sources, the originality is that we do not invoke entanglement swapping
and entanglement purification as in [21136,67,28]. The content of this chapter concerns

primarily with out publications [60L6T,62].

10.2 Background

10.2.1 The controlled-NOT (C-NOT) gate

Our models need to use the quantum controlled-NOT (C-NOT) gate (see Fig. [[TLT]). Original
BB84 protocols do not need this gate. However, the C-NOT gate is one of the most popular
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Figure 10.1: The two-qubit controlled-NOT (C-NOT) gate, also called the XOR gate.

two-qubit quantum gates and advanced QKD protocols require this gate [82,43L[76]. We
consider the basis |[+) = {|0),|1)}. By definition, the C-NOT gate flips the second (target)
qubit if the first (control) qubit is |1) and does nothing if the control qubit is |0).

We also consider the basis |x) = {|0),|1)} where |0) = % and |1) = ‘0>\}2|1>. Note

that the two bases |+) and |x) are maximally conjugate.

Proposition 10.1. If two input qubits of the C-NOT gate are prepared in one common

basis, then:

1. If the common input basis is |+), then the XOR of two input qubits appears at the

second output.

2. If the common input basis is |x), the XOR of two input qubits appears at the first
output.

Proof. The two basis states of the basis |[+) are |0) and |1), corresponding to two logical

values 0 and 1, respectively. Similarly, the two basis states of the basis |x) are |0) = %
and |1) = %, corresponding to two logical values 0 and 1, respectively.

We have directly the statement of Proposition LTl from the definition of the C-NOT
gate (see Fig. [[0.T]).

We now observe the case in which two input qubits are prepared in basis |x),
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[0) +[1) |0) + 1)
V2 V2

= %(I0>(\0) +[1)) + [1)(1) +10)))
=10)10)

CNOT|0)|0) = CNOT

0) —[1)[0) +[1)
V2 V2

= %(|0>(\0) + 1)) = [1)([1) + [0)))
= |1)[0)

CNOT|1)|0) = CNOT

+[1)J0) — 1)
V2R

- %(|0)(\0) — 1)) + [1)(1) - 0)))
= [D)]1)
CNOT|)|1) = CNOT|O>

cnorfi)|iy = cnor?

— 1 [0) —[1)
V2. V2

= %(I())(\O) — 1) = [1)(|1) = [0)))
= |0)|1).

We realize that the C-NOT gate now changes the roles of two input qubits. If the second
qubit is |1) then it flips the first qubit. Otherwise, it does nothing. The XOR (in basis |x))
is at the first output, not as described in Fig. [Tl O

Proposition 10.2. If the two input qubits of the C-NOT gate are prepared in the two

different bases, one in |+) and other in |x), then

1. If the first and second qubits are prepared in |X) and |+), respectively, then the output

is an entanglement.

2. If the first and second qubits are prepared in |+) and | x), respectively, then the C-NOT

gate does not change the values but can change the global phase of input qubits.

Proof. If the first and second qubits are prepared in | X) and |+), respectively, then we have:
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enorfo) = oxor!® o) — 2oy + )
enorfplo) = oxor® =Bl = Z-(oyo) - )
enorio) = onor TR — 2oy + 1)10)
onorii) = onor 2 — - oy — 1))

Obviously, the output is an entanglement (Bell’s states).

If the first and second qubits are prepared in |+) and |X), respectively, then:

onoro 1 2oy + o) = 921
onorio) ™2 =2 (ojo) - oy =021
onory P — gy + oy = 2
enorpP By - oy = - 22

Obviously, the C-NOT gate does not change the values of input qubits. It changes only

the global phase if the first and second input qubits are |1) and |0>\;§|1>, respectively. O

10.2.2 A simple quantum circuit

@) L () M

1B) D (/) My
C-NOT

Figure 10.2: The CNOT-M circuit: the pair (|a), |b)), where & = {a,a} and b = {b, b}, goes
through a C-NOT gate before being measured independently in two bases {|0),|1)} and

{10), 1)}

We use the C-NOT gate to build the quantum circuit CNOT-M as described in Fig.
It has two inputs and two outputs. The two input qubits first go through a C-NOT gate,
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and then are measured independently in two different bases | x) and |+). The final outcome

is two classical bits. From Proposition [Tl we directly derive the following proposition.

Proposition 10.3. If two input qubits |a) and \13) are prepared in one common basis (|d?3) =
lab) or |@b)), then the CNOT-M circuit reveals no information other than the XOR a & b.

1. If |ab) = |ab) (in the common basis |+)) then the second output is (a ®b) and the first
output is either 0 or 1 with equal probabilities, where a = {0,1} and b= {0,1}.

2. If |ab) = |ab) (in the common basis |x)) then the first output is (a@b) and the second
output is either 0 or 1 with equal probabilities, where a = {0,1} and b = {0,1}.

10.2.3 Quantum Quasi-Trusted (QQT) Relays

Let us observe a three-party communication scenario as follows. The origin Alice wants to
establish a secret key with the destination Bob. They want to achieve the unconditional
security. However, the distance between them exceeds the limited range of QKD. Carol is
an intermediate node that can share QKD links with Alice and Bob. It seems reasonable
that Alice and Bob can choose a node Carol who is honest enough to correctly follow a
given three-party communication protocol. Vulnerability is Carol can be eavesdropped by

the malicious person Eve. In such a scenario, we call Carol a quasi-trusted relay.

Definition 10.4 (QQT relay). A Quantum Quasi-Trusted (QQT) relay is a person or
a station that can perform simple quantum operations as measurement, C-NOT, etc., and

holds the following conditions :

1. Finite-Time Trust: The relay is honest enough to correctly follow a given finite-time
communication protocol. After the given protocol has been finished, the relay can be

corrupted.

2. Under Eavesdropping: The relay can always be under the monitoring of eavesdroppers.

10.3 Quantum Quasi-Trusted Bridge (QQTB) model

10.3.1 Description

Definition 10.5 (QQTB model). The QQT-bridge (QQTB) model is a three-party com-

munication model in which the QQT relay Carol acts as a bridge that helps two long-distance
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nodes Alice and Bob to securely establish a shared key. Fig. I3 roughly describes the QQTB

model.

The QQTB model uses an implicit assumption that Eve cannot eavesdrop the origin
Alice and the destination Bob. Such an assumption is trivial since if Alice (or Bob) is
eavesdropped then there is no solution. Our definition of the QQTB model also implies
that Eve is allowed to perform classical and quantum attacks over channels Alice-Carol and
Carol-Bob, even over Carol’s site. At the first glance, we realize that the most dangerous
vulnerability is from Carol’s site. Indeed, although two channels Alice-Carol and Carol-Bob
are secured by QKD (see Fig. [L3), if information appears clearly at Carol’s site then Eve
can easily read it (see the Under-Eavesdropping condition of Definition [[{L7]).

KD link KD link
Alice ool Carol bl Bob

Figure 10.3: QKD bridge: Alice and Bob are out of the QKD range; they want to use Carol
as a bridge to communicate securely the session key.

The challenge is how we can design secure three-party communication protocols that
hold the conditions of the QQT relay (see Definition [[L4]). We develop a simple idea that
is based on the one-time pad unbreakable encryption scheme. The idea is described as
follows. We try to create the situation in which Alice, Carol and Bob own three pads
A, C, B, respectively. These pads hold C' = A @ B (a bit-wise XOR operation). Note that
Carol owns C and knows no more than C' = A @ B. When Alice wants to send to Bob a
secret key K, she sends K@ A to Carol. Carol receives K@ A, computes K AdC = KB,
and sends the result to Bob. Bob receives K @ B, computes K ® B® B to obtain K. In such
a situation, even though Carol owns C' = A & B, she cannot reveal K. Besides, the key K
is unconditionally secured over channel since we use the one-time pad scheme. Obviously,
Carol holds the Under Eavesdropping condition (see Definition [[4]). We try to use the

Finite-Time Trust condition of Carol to go to such a situation.

We will begin with a simple classical protocol that is insecure. Then we will turn into

the quantum world to see how quantum mechanics can help.

10.3.2 A Classical Quasi-Trusted Bridge (CQTB) protocol

The protocol consists of the following steps:

1. Alice securely send to Carol a random m-bit string A by a QKD link.
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2. Bob securely send to Carol a random m-bit string B by a QKD link.
3. Carol receives A and B, computes C = A @ B (XOR operation).

4. Carol deletes A and B in her memory device.

5. Transmitting the secret key:

e Alice randomly creates the m-bit key K, sends K @& A to Carol.

e Carol receives K @& A, compute K ® A ® C = K @ B, then sends the result to
Bob.

e Bob receives K & B, computes K & B @ B to obtain K.

What is insecure in this protocol? The step 4 seems helpful in face with the Finite-Time
Trust condition of the quasi-trusted bridge. After having terminated the protocol, even
though Carol is corrupted, the key K is not compromised. But this is not so! Nobody can be
sure that in one hand Carol still does correctly the protocol but in the other hand, she makes
copies of A and B, maybe only for her curiousness purpose. And then, after the protocol has
been completed, she could sell these copies to Eve. Consequently, the key K is compromised.
More seriously, the protocol cannot deal with the Under Eavesdropping condition of the
quasi-trusted bridge (see Definition [[(L4]). Indeed, if Eve could monitor Carol’s memory
device, then she can make herself copies of A and B. If A or B is compromised then the

key K is compromised.

10.3.3 The QQTB protocol

The Quantum Quasi-Trusted Bridge (QQTB) protocol consists of 4 steps.
Step 1: Preparing, exchanging, and measuring qubits.

1. Alice creates 2n random bits rai,..,7a9, and chooses a random 2n-bit string b4.

For each bit ra;, she creates a corresponding quantum state |ra;) = |ra;) (in basis
{]0Y,]1)}) if ba[i] = 0, or |Fa;) = |ra;) (in basis {|0),|1)}) if ba[i] = 1. Alice sends

|ray, ray, .., ras,) to Carol.

2. Similarly, Bob creates 2n random bits by, .., rbo,, a 2n-bit strings bg, then generates

and sends "I‘/b\l,;i)\g, ,ﬁ)g\n) to Carol.

3. Carol receives two 2n-qubit strings from Alice and Bob in a synchronous manner. It

means that she receives one by one all the 2n pairs (|7a;), |rb;)). To receive a pair
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(|7az), |1:I;1)), Carol randomly turns into either Check-Mode (CM) or Message-Mode

e In the CM, Carol measures independently |7a;) and @) in random bases |+) or

|x). She gathers two classical bits and keeps track of their corresponding bases.

e In the MM, Carol uses the CNOT-M circuit (see Fig. [LZ) to measure the pair
(|7az), |1:b\z>) She gathers both the output values.

After the receiving finished, CM’s and MM’s choices roughly result in two n-position
strings: the check-position string CP = cp1, .., cpn, and the message-position string

MP = mp1,..,mpy,.
Step 2: Checking for the presence of Eve.

1. For the channel between Alice and Carol: Alice and Carol communicate their bases
used in the check-positions C' P and the corresponding values. They discard positions
where their bases are different. They compare values at remaining positions. If some
of these values disagree, then the channel was compromised. In this case, they inform

Bob to abort the whole transaction.

2. For the channel between Bob and Carol: Bob and Carol do similarly as Alice and Bob

in the checking process above.
Step 3: Creating the pads for Alice, Carol and Bob.

1. Alice and Bob announce their bases in positions M P = mp1, .., mp,. If their bases

are different at mp;, then they inform Carol to discard this position together.

2. At each remaining position, Carol discards the first output (of the CNOT-M circuit) if

the common basis of Alice and Bob is |+). Otherwise, she discards the second output.

3. The remaining values of Alice, Carol and Bob result in three pads A = A4,.., A; C =
Ci,..,Cp; B = By, .., By, for Alice, Carol and Bob, respectively. These pads hold
C;=A;® B,;,i € [1,..,m],m ~ %

Step 4: Transmitting the key K.

1. Carol announces publicly C' = C4, .., C,.

2. Alice creates the random m-bit key K. She sends K § A® C = K & B to Bob.
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3. Bob receives K & B, computes K = K @ B ® B.

We show why our protocol is secure. At the step 1, when a pair (|7a;), |7fb\z)) syn-
chronously arrives to Carol, she randomly turns into either the Check-Mode (CM) or the
Message-Mode (MM). Since Eve does not know in advance the choices of Carol, she cannot
treat differently the pairs (|ra;), |7:i)\z)) Thus, the error-rate on the check bits must behave
like that on the message bits. In the other hand, the error-check procedures in the channels
(Alice, Carol) and (Carol, Bob) work exactly as that of the BB84 protocol. By that, QQTB
protocol’s security is exactly that of the BB84 protocol. This implies that the QQTB pro-
tocol is unconditionally secure. Readers interested in security proof of BB84 are invited to
read [T 88,66} 251 [71].

10.3.4 Discussion

Compared with the trusted model, the QQTB model seems stronger in realistic scenarios.
The trusted model implicitly requires nodes being secured in an infinite time. The QQTB
model only requires that the nodes are trusted in a finite time. Besides, if nodes in trusted
model are eavesdropped then the security is compromised. In contrast, the QQTB model
allows to defeat eavesdropping operations on intermediate nodes, provided that these nodes

correctly follow the protocol.

The QQTB model is weaker than entanglement-based relaying models since it can extend
up to two times the QKD range. Besides, entanglement-based relaying models are the
untrusted model while the QQTB model cannot be considered as untrusted one. Indeed,
since the bridge Carol participates in the check for the presence of Eve, she can cheat the
protocol. Such a situation can be considered as man-in-middle attack. Fortunately, we can

defeat such an attack by using the Wegman-Carter authentication [93].

Our QQTB protocol does not need entangled photon pairs. This helps to avoid difficul-
ties arising from the decoherence of entangled-photons in practice. However, our protocol
must deal with the synchronization problem that may be not simple in practice. Besides,
using a CNOT gate can also be considered as a practical disadvantage compared with the

original BB84 protocols.

10.4 Quantum Quasi-Trusted Relay (QQTR) model

In QQTB model, we implicitly address single-photon based models to avoid difficulties

arising from entangled photon pairs. The question is whether we can extend this model
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based only on single-photon up to arbitrarily long distances? We observe the scenario in
which there is Dave in the right of Bob. Bob plays the role of untrusted relay as Carol.
The goal now is that Alice can convey a secret to Dave, not to Bob. Assume that the
distances between Alice, Carol, Bob and Dave are the critical distance of single-photon
transmission on that arrival qubits are correctly detected. This means that Alice cannot
send directly single photons to Bob or Dave, and Dave cannot send directly single photons
to Carol or Alice. Thus, Alice and Dave cannot make together a quantum contact at one
sole intermediate location as in the QUB model. Besides, no classical contact can help
unless Alice and Dave pre-possess a secret key that has the length at least equal to that
of the transmitting secret [84]. As a result, we can conclude that the single-photon based
QUB model cannot extend more than two times of the limited single photon based QKD
range. This makes sense of the word “bridge” in the QQTB model: two bridges cannot be

built successively.

10.4.1 Description

The QQTR model is roughly described as Fig. LAl The QQTR model needs entangled-
photon sources. Between the origin Alice and the destination Bob we arrange N Carols
Ci,..,Cn and N + 1 Bells By, .., Byy1 (see Fig. LA). C4,..,Cn, Bi,.., Byy1 are quasi-
trusted nodes. This creates 2N 4+ 2 segments. The concrete value of N depends on the
distance between Alice and Bob. Without loss of generality, we assume that the lengths
of 2N segments are the same and the common length allows quantum devices working

correctly and effectively.

Carol 1 Carol 2 Carol N
Alice (CNOT-M circuit) (CNOT-M circuit)  (CNOT-M circuit) Bob
Cf/_\@ .S} P2\ O e é P 0
Bell 1 Bell 2 Bell N+1
(EPR source) (EPR source) (EPR source)

Figure 10.4: Bell 1,.., Bell N are EPR-pair sources. Carol 1, .., Carol N act similarly as
Carol in the QQTB protocol.

10.4.2 The QQTR protocol

For convenience, we also use Cyp and Cy41 to denote Alice and Bob, respectively. The

QQTR protocol consists of 5 steps:

Step 1: Preparing, exchanging, and measuring qubits.
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1. Each B;, i € [1, N + 1], prepares n Bell states (|®*))".

2. Each B;, i € [1,N + 1], sends the first half of each Bell state to C;_; (the previous
site), the second half to C; (the next site).

3. Alice (or Cpy) and Bob (or Cn41), each one receives n qubits. They randomly and

independently choose bases to measure their qubits.

4. Each C;,i € [1, N], receives 2n qubits from B; and B;y; in a synchronous manner.
This means that she receives n times, and for each time she receives a qubit pair:
one qubit from B; and another one from B;;i. She uses the CNOT-M circuit (see
Fig. [2) to measure each incoming qubit pair. She keeps the measured values and
the corresponding bases. Briefly, C; acts exactly as Carol in the Message-Mode of the
QQTB protocol.

Step 2: Sifting.

1. Alice and Bob announce their bases.

2. If the bases are different at the position 7, then Alice, Bob, C1,..,Cn discard this

position.

3. For each remaining position i, C1, .., Cy discard the first or the second output (of the
CNOT-M circuit) if the common basis of Alice and Bob is |+) or |x), respectively.

4. The remaining values result in N + 2 2m-bit strings a = ai,..,a9;,; c(i) =
c(i)1,--,¢(?)om,7 = 1..N; b = by, .., by, for Alice, Ci,..,Cn, and Bob, respectively.
These N + 2 strings hold @ ,c(i); = a; @ bj,j € [1,2m],2m ~ 2.

Step 3: Checking for the presence of Eve.

1. Alice, Bob, and C4,..,Cn randomly agree m out of 2m positions to check the
presence of Eve. This results in two m-position strings: the check-position string

CP = cp1,-., cpy, and the message-position string M P = mp1, .., mpPp,.

2. Alice, Bob, C1i,..,Cn announce values at check positions CP: a = acp;;--; Gepp;
b = bepry-os beprs (i) = c(@)epry -y €(8)eprst € [1,N], respectively. They check if
@filc(i)cpj = acp; D bep; or not. If some of negative checks, they abort the proto-

col.

Step 4: Creating the pads for Alice, C1, .., Cn, Bob.
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1. The values at m positions MP result in N + 2 m-bit pads: P4 = PIA, ,P;,‘zl,
pe@ = pf®_ pC® i ¢ [1,N]; and PB = PB,. PB for Alice, Cy,..,Cy, and
Bob, respectively. These pads hold @fiIPC(i) = P4 g PB.

Step 5: Transmitting the key K.

1. Each C;,i € [1, N] announces publicly P,

2. Alice creates the random m-bit key K, m ~ 7. She sends KopA @f\il PCl) = KgPB
to Bob.

3. Bob receives K @ P5, retrieves K = K ® P8 @ P5.

10.4.3 Correctness, security and discussion

Correctness. One could claim that is it true that @ ,c(i); = a; ®b;,j € [1,2m],2m ~ 2
in the step 2 (sifting)? We will observe the process that creates a common bit (at position
j) for Alice and Bob. The input are N 4+ 1 EPR pairs from N + 1 Bell’s sites. Besides, Alice
and Bob must measure the received qubits in one common basis. The Bell state at the site

Bell i (B;) can be represented as (up to %)

[@F ) pp® = Z [7,7) oy ey = Z| ) g ™ (10.1)

where Bz(l)(B@)) is the first (second) qubit of Bell 4; {|0), |1)} and {|0), |1)} denote the

2

bases |+) and |x), respectively. Note that (also up to %)
1

) = 3" (1™ ), [7) = 3 (~1)""|m) (10.2)

Initially, the global state is
[Wo) = @1H®T) Ly (10.3)

where ® denotes the tensor product.
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Using (1)) we can re-write (IL3)) in basis |+) as

[%o) = Z ® o \num)B(nB@) (10.4)
{n;}=0
or in basis |x) as
[To) = Z ® \nz,nz)B(nB@) (10.5)
{n;}=0

After distributing the qubits: BF) — Co(A), BZ@) — Cj, B(l)1 — C; (fori =1,..,N),
B](\?H — Cn41(B), we have

1,1

@)= D7 Inaa( @ Ini,mii) e ) Inv)s (10.6)
{ni}:0,

ny4+1=0

in basis |+) or

1,1
W)= 3" Da( @ s i) owee ) line) s (10.7)
{ni}:0,
nN+1:0

in basis | x).

After all the C; perform the CNOT on their qubit pairs, ([ILG) and ([L7) become

1,1

W)= ) [n)a® (®i]i1 [n4, i ®ni+1)0§1)cg2>) ® [nn+1)B
{ni}zo, i I
’IZN+1:OI (10-8)
= Y. e <®fi1 (=)™ mg, ni @ nz+1>c<1>c<2>) ® [nn+1)B

{ninN 41,m;}=0
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or
1,1
)= Y |maw® <®fi1 |n; ®ni+1,77z‘\4:1)cgl)cg2)) ® |ani1)B
{nl}zoﬂ ' '
ny+1=0
1
= Z In1)a ® (®fi1 (=1)" i iy © njya, mi—|—1>C.(1)C,(2)) ® |nNi1)B
1 7

{ni;nN41,mi+1}=0

(10.9)

In the case where both Alice and Bob measure their qubits in basis |+) while each C;
measures her qubits C’Z-(l) and Ci(2) in |x) and |+) respectively, Eq. ([TL8) collapses into (up
to a global phase factor)

P = \m)A(@fil |mi, i @ ni+1>c(1)0§2))|nN+1>B (10.10)

where n1, m;, n;, niy1 and ny 41 randomly take on either 0 or 1. Obviously, the outcome
2)
of C;™ yields

@iJL(ni Onit1) =M1 P2 @ne®..dny Dny Byt

=n1 DnnNt1

In the case where both Alice and Bob measure their qubits in basis |x) while each C;

always does as before, Eq. ([ILY) collapses into (up to a global phase factor)
Y1 = [n1)a ( ®iLy i + v, mz’+1)cg1)cg2>) N+ B (10.11)

where n1, m;, ni, N1 and ny 41 randomly take on either 0 or 1. Obviously, the outcome
of Ci(l) yields again @f\il(ni ®nit1) =n1 BNyl

Note that ni,ny+1,n; © ni41 are outcomes of Alice, Bob, and Carol Cj, respectively.

Thus, the equation stated at the end of Step 2 is proven.

Security. We distinguish possible attack types of Eve.

1. Type 1: Quantum attack on sites Bell 1,.., Bell N+1 (By, .., By+1)-

2. Type 2: Quantum attack on sites Carol 1, .., Carol N (Cy,..,Cy).

103



Chapter 10. Quantum Quasi-Trusted relaying models

3. Type 3: Quantum attack on channel. Eve could do quantum attacks on 2n + 2

segments between Alice and Bob.

4. Type 4: Classical attack, eavesdropping on sites C, .., Cn.

The attack Type 1 implies imperfect EPR sources: the qubit pairs could be entangled
with Eve’s probes. In [67], fortunately, Lo and Chau have proven that we can effectively
check perfect EPR sources by executing random-hashing verification schemes. As a result,
we could conclude that our QQTR. protocol is secure to this attack type.

Note that C4, .., Cy reveal no information than the XOR results. Indeed, their output
choices (the first or second one) depend on the random coincidence of the basis choices of
Alice and Bob. This implies that all the single states (qubits) in the channels (attack type
3) and the C1,..,Cn (attack type 2) are unknown to Eve. By the no-cloning theorem, Eve
will make additional disturbances if she tries to get information from these states [I1]. In
the step 3 of the QQTR protocol, we check the presence of Eve by evaluating disturbances
as in the BB84 protocol. Thus, we conclude that our QQTR protocol is secure to the attack
types 2 and 3.

Our protocol also is secure to the attack type 4 since the classical values a,b were not
revealed outside Alice and Bob’s sites. The knowledge on ¢(1), ..,¢(N) cannot derive with
certainty the values of a,b. Here, we can say that the principle of the QQTR protocol is
exactly that of the single-photon QQTB protocol. This is the spirit of our “quasi-trusted”

concept.

Discussion. Our QQTR protocol uses the C-NOT gate and EPR pairs. At the first
glance, one can say that it is the idea of quantum repeater based on entanglement swap-
ping and entanglement purification. But this is not so. In our protocol, EPR pairs are
collapsed into single photons immediately after having traversed a segment. At the end of
the phase exchanging qubits, Alice and Bob do not keep any EPR pair. Instead of using
quantum entanglement to conserve the coherence between qubits, we use the global classical

information (XOR value) from that one cannot derive exactly partial informations.

Theoretically, our QQTR model is weaker than entanglement-based relaying models.
These models allow to check the presence of Eve regardless of the security of intermediate
nodes. Our QQTR model requires the intermediate nodes (relays) to be trusted in a finite-
time in order to collaborate together to check the presence of Eve (at EPR sources, or
on the channels) and protect the partial secrets owned by Alice and Bob. If intermediate
nodes are corrupted and do not correctly follow our QQTR protocol then the security can

be corrupted. However, if all the intermediate nodes correctly follow the QQTR protocol
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then Alice and Bob obtain unconditionally secure keys.

We realize that in the QQTR protocol the number of secure bits m does not depend on
the number of segments 2N + 2: m ~ % where n is the number of EPR states transmitted
from each EPR source (see the step 5 of the QQTR protocol).

10.5 Conclusion

We proposed quasi-trusted QKD relaying models. The quasi-trusted property is character-
ized by: (i) being honest enough to correctly follow a given multi-party finite-time commu-
nication protocol; (ii) however, being under the monitoring of eavesdroppers. The heart of
our works is the CNOT-M circuit (see Fig. and Proposition in Section [[I:Z7).

We distinguished single-photon and entanglement based models. We showed that our
single-photon based model is only capable of extending up to two times the limited range
of the original QKD schemes. Our entanglement based model is capable of extending up
to an infinite length of QKD. Both models guarantee the perfect security of the final key
provided that intermediate nodes correctly follow the communication protocol. Our quasi-
trusted assumption seem quite reasonable in practice. Besides, the proposed models do not
need to store quantum states for a long time as required in the standard quantum repeater
model. Indeed, if the synchronization can be well done then the proposed models do not
need to use quantum memory devices. This can bring significant advantages in scenarios

where there is no quantum memory devices as today.
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Chapter 11

Quantum Untrusted relaying

models

11.1 Introduction

Let us re-call a simple QKD relaying problem. This is a three-party communication where
the origin, Alice, wants to share a secret key with the destination Bob. They want that
the key is unconditionally secure. However, the distance between them is out of range of
QKD which is the sole technique that allows them to obtain their goal so far. Carol is an
intermediate node that can share QKD links with Alice and Bob. However, Alice and Bob
do not want to trust Carol. They suppose that Carol is untrusted and the malicious Eve
can have full control over Carol. The question of interest is how Alice and Bob can still
gain the availability of Carol to establish their secret key without reducing the security of
the original QKD schemes?

The idea of our approach is simple. We remark that if Alice, Carol and Bob own
respectively three classical random pads A, C, B, where C = A® B (bit-wise XOR operation)
then the final key can go through Carol without reducing the confidentiality of key. Notice
that Carol owns C and knows no more other than C = A @ B. Indeed, when Alice wants
to send to Bob a secret key K, she sends K @ A to Carol. Carol receives K @& A, computes
KaAaC = K@ B, and sends the result to Bob. Bob receives K & B, computes K & B® B
to obtain K. Since Alice and Bob use the one-time pad unbreakable scheme [84], Carol will
be “blind” to the final key K even though she has C = A @ B.

If we can create the situation as described above then the three-party QKD relaying

problem will be solved. Let us try to do a quick analysis. Since Alice (respectively Bob)
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and Carol can share a QKD link, this implies that Alice (resp. Bob) can successfully send
to Carol unknown quantum states (unknown to Eve also to Carol) in order to implement a
QKD protocol. In such cases, instead of transmitting the classical information A (resp. B),
Alice (resp. Bob) sends to Carol an unknown quantum state |A) (resp. |B)) that encodes
A (resp. B). Now, if Alice (resp. Bob) agrees to perform a QKD protocol with Carol, then
Carol can get the classical information A (resp. B) from the unknown state |A) (resp. |B)).
Once Carol has both A and B, she can compute C = A&® B. This seems that we has created
the intended goal. But this is not so! Carol now has not only C where C = A @ B, but also
A and B. This does not satisfy Alice and Bob because they suppose that Eve can have full
control over Carol, hence, Eve can read A and B (as well as Carol) and consequently, the

final key K is compromised.

The essential point here is that the unknown quantum state |A) (resp. |B)) should NOT
be collapsed to reveal the classical information A (resp. B) in any case. However, Carol
must derive the classical value C, where C = A @ B, from two unknown states |[A) and
|B). Hence, the question of interest is whether it exists a manner that produces |C), where
C = A ® B, that is an unknown quantum state to Carol and of course unknown to Eve,
too? If Yes, then Alice and Bob afterward can cooperate to perform with Carol a QKD
protocol on the state |C) to distill C without revealing A (resp. B).

Since the quantum Controlled-NOT (CNOT) gate can produce a qubit |¢) = |a & b),
where |a) and |b) are two input qubits, we can immediately think of this gate. However,
producing |¢) = |a @ b) is only a particular case of using the CNOT gate. The XOR
operation is not true for two arbitrary input qubits. Besides, in the quantum world, since
all the unitary transformations are reversible, is it possible that the CNOT gate will reveal
some information about a (resp. b) once Carol has got ¢ = a ® b? We will show that we can
build secure QKD relaying models by using the CNOT gate in the next sections. Indeed, we
will re-use Propositions 0.1l .2 @3] stated in Section Note that using the CNOT

gate is only an implementation way of our approach.

11.2 Quantum Untrusted Bridge (QUB) Model

11.2.1 Model description

The QUB model is roughly described in Fig. [Tl There, “QKD link” implies the critical
range inside which transmitted photons do not vanish and can still be correctly detected.
As in the original QKD schemes, we must assume that there is an authenticated classical

channel between Alice and Bob to defeat “man-in-middle” attacks. Roughly speaking,
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the context of the QUB model is similar to that of the three-party QKD relaying problem
mentioned in the beginning of this paper. Our task is to design a three-party communication

protocol that allows Alice and Bob to achieve their goal.

QKD link QKD link
Alice Carol (Eve) Bob

Figure 11.1: Alice and Bob are out of the QKD range. They must securely transmit the
shared key through Eve. They must effectively detect and then discard the cases in which
Eve reads the transmitting key.

11.2.2 The QUB protocol

The protocol consists of 5 steps.

Step 1: Preparing, exchanging, and measuring qubits.

1. Alice creates 2n random bits rai,..,7a9, and chooses a random 2n-bit string b4.
For each bit ra;, she creates a corresponding quantum state |Fa;) = |ra;) (in basis
{]0Y,]1)}) if bali] = 0, or |Fa;) = |ra;) (in basis {|0),[1)}) if ba[i] = 1. Alice sends

|7ai,7az, .., 7as,) to Carol.

2. Similarly, Bob creates 2n random bits by, .., 7boy,, a 2n-bit strings bp, then generates

and sends |r/b\1,r/b\2, ,T/bg\n) to Carol.

3. Carol receives (|7@;), [rb;)),i € [1,2n] from Alice and Bob. For each pair (|7a;), |7b;)),
Carol uses the CNOT-M circuit (see Fig. [.Z) to get two classical output bits. Note
that these two classical bits contain no more information than a classical XOR bit ra;®
rb; (see Proposition [T and Proposition ML3]).

4. Carol sends to Alice and Bob 2n pairs of two classical output bits. The role of Carol

stops here.
Step 2: Sifting.

1. Alice and Bob communicate their bases b4 and bg. If their bases are different at

position ¢ then they discard this position.

2. At each remaining positions ¢, they discard one of two corresponding bits received from
Carol as follows. They discard the first value or the second value if their common

basis (at position %) is |+) or |x), respectively.
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3. Now, all the remaining values result in three 2m-bit EI strings a = aq,..,09,, ¢ =
Cl,--yCom, b = b1,.., b2y, where Alice keeps two string a,c and Bob keeps two strings
b, c. Note that in the ideal case (perfect apparatus, perfect channels, etc.) these three

2n

strings should hold ¢; = a; ® b; where ¢ € [1,2m] and 2m ~ =*.

Step 3: Checking for the presence of Eve.

1. Alice, Bob randomly agree m out of 2m positions to check the presence of Eve. This
results in two m-position strings: the check-position string CP = ¢p1, .., cpmy and the

message-position string M P = mp1, .., MPp,.

2. Alice, Bob announce their values ap,, bep, at the check-positions cp;. They check for
Cep; = Gep; @ bep;. If the number of negative checks is greater than a pre-calculated
threshold then they abort the transaction.

Step 4: Creating the pads for Alice, Bob.

1. The values in m message-positions result in three m-bit pads A7 = An, .., Aty,, C1 =
Ccn,..,Cly,, Bl = Bl,..,Bl,; where Alice holds two strings A/, C’ and Bob holds
two strings B/, Cr. Note that if the quantum apparatus and channels are ideal then

Cr,= A1, ® Bl,1 € [1,m],m ~ %

2. From the three strings A7,B7 and C’, Alice and Bob perform the classical schemes of
Error Correction and Privacy Amplification to obtain A, B and C' that hold C' = A®B

and Eve has a negligible quantity of information about A and B.
Step 5: Transmitting the key K.

1. Alice creates the random key K that has the same length of A, B and C. She sends
Ko AoeC =Ko B to Bob.

2. Bob receives K @ B, computes K & B ® B to obtain K.

11.2.3 Security

Notice that at Step 3, the error-rate in the check positions must behave like that in the

message positions. Indeed, since Eve does not know in advance the choices of check-positions

! Alice and Bob must discard one position if the number of remaining positions is odd.
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and message-positions that are randomly chosen, she cannot treat the pairs (|ra;),|rb;))
differently .

Our proof is inspired by the BB84 security proof of Bennett et al. presented in [I1].
We will prove that all the quantum attacks of Eve that can avoid detection are the ones
that give no information. We transform the QUB model to a two-party communication
model as follows. This is a communication between Boris and Anne. Boris plays the roles
of Alice and Bob. Anne plays the role of Carol. Boris and Anne perform Steps 1, 2 and 3
of the QUB protocol. Obviously, the eavesdropping detection of Boris is equivalent to that
of Alice and Bob in the QUB protocol.

After Step 2 (sifting) has been finished, Boris (Alice and Bob) and Anne (Carol) work
only on the qubit pairs (one qubit from Alice, another qubit from Bob) that have component
qubits prepared in a common basis. Such a pair is one of eight states |00), |01), |10), |11),
00, [01), [10), |11). Assume that |zy) is one of these pairs which is sent from Boris in
Step 1. Anne receives |zy), uses the quantum circuit (see Fig. [ILZ) to obtain two classical
values that contain no more than one classical bit @ y. When Anne sends both of these
values to Boris, this is equivalent to the case in which, although Anne does not know the
basis, she successfully prepares and sends the qubit |z @ y) to Boris. Boris receives |z @ y)
at the end of Step 1. He measures this qubit in the appropriate basis to get z @ y and uses
z @ vy to check the presence of Eve at Step 3.

Eve could have full control over Anne’s site. Assume that Eve also has a quantum
computer. We denote all Eve’s quantum transformations (not only on channels but also
on Anne’s site) by the unitary operator U. Denote by |E) the probing quantum state of
Eve. Assume that |uv) is another pair sent by Boris such that |zy) and |uv) are non-
orthogonal, e.g. |zy) = |00) and |uv) = [00). In order to avoid the detection of Boris, the
transformations U and the probe |E) must leave the returning states |z @ y) and |u @ v)

undisturbed. That means,

U(lzy)|E)) = |z @ y)|Er) and U (|juv)|E)) v |u @ v)|E)
where |E1), | E2) are two normalized quantum states of Eve. Since U is unitary, we have:

(z @ ylu®v) = (B1l{z @ ylu ©v)|Ez) = (z @ ylu ® v){E1|E2)

Since |zy) and |uv) are prepared in two non-orthogonal bases |[+) and |X), |z @ y) and
|u @ v) are non-orthogonal. That means (z @ y|lu @ v) # 0. Thus, (F1|E;) must be 1. On
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the other hand, |E1) and |E;) are normalized. Hence, |E;) = |E2). That means that Eve
cannot distinguish |zy) from |uv) by her probe. In other words, all the quantum attacks by
Eve that can avoid detection are the ones that give no information. This is what we have

to prove.

Besides quantum attacks, Eve could also attack classical information. However, the sole
information that she could get is the classical value @y revealed at Carol’s site. Fortunately,
Eve cannot derive the two pieces of information z and y from the global information = @ y.
The key transmission at Step 5 is unconditionally secured since we use the one-time pad
unbreakable scheme. Therefore, our protocol is as unconditionally secure as the original
QKD protocols.

11.3 Quantum Untrusted Relay (QUR) Model

11.3.1 Model description

The QUR model needs entangled-photon sources. Between the origin Alice and the desti-
nation Bob we arrange N Carols (C4,..,Cn) and N + 1 Bells (By, .., By+1) as described in
Fig. This creates 2N + 2 segments. The concrete value of N depends on the distance
between Alice and Bob. Without loss of generality, we assume that the lengths of 2NV seg-
ments are the same and the common length allows quantum devices to work correctly and

effectively.

Carols, C1, ..,Cy, have the same role as the untrusted bridge Carol in the QUB model.
This means that Eve could have full control of these sites. As in the original QKD schemes,
we must assume that there is an authenticated classical between Alice and Bob to defeat
“man-in-middle” attacks. As in the QUB model, the task is how to design a protocol that
allows, in the one hand, to effectively detect malicious operations over key transmissions
from Alice to Bob, and on the other hand, to keep in secret the proper partial values of
Alice and Bob. We will follow the idea of the QUB model: (i) using unknown quantum
states to protect information, (ii) the sole information that is revealed outside Alice and
Bob is the global information (XOR value) from which Eve cannot correctly deduce the

partial pieces of information.

11.3.2 The QUR protocol

For convenience, we also use Cy and C'n 41 to denote Alice and Bob, respectively. The QUR

protocol consists of 5 steps:
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Carol 1 Carol 2 Carol N
Alice (CNOT-M circuit) (CNOT-M circuit)  (CNOT-M circuit) Bob
Cf/_\@ .S} P2\ O e é P 0
Bell 1 Bell 2 Bell N+1
(EPR source) (EPR source) (EPR source)

Figure 11.2: Bell 1,.., Bell N are EPR-pair sources. Carol 1, .., Carol N act as Carol in the
QUB protocol.

Step 1: Preparing, exchanging, and measuring qubits.

1. Each B;, i € [1, N + 1], prepares n Bell states (|®*))".

2. Each B;, i € [1, N + 1], sends the first half of each Bell state to C;_; (the previous),
the second half to C; (the next).

3. Alice (or Cp) and Bob (or Cy41), each one receives n qubits. They randomly and
independently choose bases to measure their qubits.

4. Each Cj, i € [1, N], receives 2n qubits from B; and B;;1 in a synchronous manner.
That means that she receives n times, and for each time she leads the qubit from B;
and the qubit from B;y; to the first and second inputs of the CNOT-M circuit (see
Fig. M0.2). Then, she sends the pair of two classical output values to Alice and Bob.

5. The roles of By, .., By11,C1, ..,Cn stop here.
Step 2: Sifting.

1. Alice and Bob announce their bases.
2. If their bases are different at the position ¢ then Alice and Bob discard this position.

3. For each remaining position 7, Alice and Bob do on N pairs received from C1, .., Cy
as follows. For each of N pairs, they keep only either the first value or the second

value if their common basis is | x) or |+), respectively.

4. The values of the remaining positions result in N + 2 2m—bitH strings a = a1, .., Gom;
c(i) = c(i)1,..,¢(i)2m where i € [1,N]; b = by,..,ban. Alice holds N + 1 string
a,c(1),..,¢(N) and Bob holds N + 1 string b, ¢(1), ..,¢(N). These N + 2 strings should
hold &Y ,c(i); = a; ® b, j € [1,2m],2m ~ 2.

2 Alice and Bob must discard one position if the number of remaining positions is odd.

113



Chapter 11. Quantum Untrusted relaying models

Step 3: Checking for the presence of Eve.

1. Alice and Bob randomly agree m out of 2m positions to check the presence of Eve.
This results in two m-position strings: the check-position string CP = ¢py, .., cpy and

the message-position string M P = mp1, .., mpp,.

2. Alice and Bob announce values in check-position a = acp,, -, @ep,; 0 = bepys -3 bepyn s
c(i) = c(i)epys - (i)ep,, where i € [1,N]. They check for & c(i)ep; = acp; D bep;-
If the number of negative checks is greater than a pre-calculated threshold then they

abort the protocol.
Step 4: Creating the pads for Alice and Bob.

1. The values in m message-positions result in N + 2 m-bit pads Q4 = Qf,..,Qé;
QM = Qf(i), vy Q%(i) where i € [1,N]; and QF = QP, .., QB where Alice keeps N +1
pads Q4,Q¢MW ... QD) and Bob keeps N + 1 pads QB,Q¢W, .., Q¢W). Note that
if the quantum apparatus and channels are ideal then these pads hold @f\;lQC(i) =

Q@ QB.

2. Alice and Bob compute Q¢ = EBZI-\;IQC(i). From the 3 strings Q4, QF, Q¢, Alice and
Bob perform the classical schemes of Error Correction and Privacy Amplification to
obtain P4, PB and P¢ that hold P® = P4 @ PB and Eve has a negligible quantity

of information about P4 and P5.
Step 5: Transmitting the key K.

1. Alice creates the random key K that has the same length of P4, P® and PC. She
sends K @ P4 @ P¢ to Bob.

2. Bob receives K @ P4 @ PY, computes K @ P4 ® PP ¢ P¢ =K.

11.3.3 Correctness

One can claim that it is true that @) | c(i); = a; ® bj, 5 € [1,2m],2m ~ 2 at the end of
Step 2 (sifting). We will show that this statement is true.

We observe the process that creates a common bit (at position j) for Alice and Bob.
The input are N + 1 EPR pairs from N + 1 Bell’s sites. Besides, Alice and Bob must
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measure the received qubits in one common basis. The Bell state at the site Bell ¢ (B;) can

be represented as (up to %)

1

[27) g g = > in,n) BV = Z 172, 7) 1) 5 (11.1)
n=0

where Bfl)(BZ-(Q)) is the first (second) qubit of Bell 4, {|0), 1)} and {|0),|1)} denote the
bases |+) and |x), respectively. Note that (also up to \%2)

n) = Y (=1)""|n), = > (=1)""|m) (11.2)

Initially, the global state is
[Wo) = @ DTy p» (11.3)

where ® denotes the tensor product.

Using ([T we can re-write (ITT3) in basis |+) as

[To) = Z ®z 1 \”unz)B(nB(z) (11.4)
{n;}=0
or in basis |x) as
[Wo) = Z ® \nz,nz)Bu)B(z) (11.5)
{ni}=0

After distributing the qubits: B{") — Co(4), B — C;, BY, - C; (for i = 1,..,N),

B](\?ZLI — Cn41(B), we have
1,1
@)= D7 I O Insmis e ) Invi)s (11.6)
{ni}:0,
nN+1:0
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in basis |+) or

1,1

)= D [w)a( @ i min) oo ) inTi)e (11.7)
{ni}:0,
ny4+1=0

in basis |x).

After all the C; perform the CNOT on their qubit pairs, (ILH) and (IT7) become

1,1
)= ) Im)A(®f\L1 i, ni @ ni+1)cgl)cgz)) InN+1)B
{ni}ZO, % i
ny 41=0 (11.8)
1
= Z Ini)a ® (®i]i1 (=1)""|m;, n; ® nz’+1>C(1)C(2>) ® [nn+1)B

{nimN41,m;}=0

or
1,1
Wy = Y (@ n @ ne,min) g e ) N ) s
{n,—}:o, i i
ny4+1=0
1
= Z In1)a ® (®i]il (=)™ iy © miya, mi+1>c,(1)c,(2>> ® |nNt1)B
1 7

{ni;nN+1,mi41}=0

(11.9)

In case both of Alice and Bob measure their qubits in basis |+), while each C; measures
her qubits Ci(l) and Ci(2) in |x) and |+) respectively, Eq. ([I8)) collapses into (up to a
global phase factor)

P = \m)A(@ZNzl |mi, i @ ni+1)c(1)c_(2))|nN+1>B (11.10)

where n1, m;, ni, n;+1 and ny 41 randomly take on either 0 or 1. Obviously, the outcome

of Cz-@) yields EBi]il(ni ONit1) =1 ON2Pno®..ONN DNy Bnyt1 = N1 DNyl

In case both of Alice and Bob measure their qubits in basis |x), while each C; always
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does as before, Eq. (T collapses into (up to a global phase factor)
%1 = n1)a ( O, |ni + i1, mi+1)cg1)cg2>) lnnT1)B (11.11)

where n1, m;, ni, N1 and ny 41 randomly take on either 0 or 1. Obviously, the outcome

of C’i(l) yields again @fil(ni ®Nnit1) =n1 O NNy1-

Note that ni,ny+1,n; © n;11 are outcomes of Alice, Bob, and Carol Cj, respectively.

Thus, the equation stated at the end of Step 2 is true.

11.3.4 Security

We now prove that the QUR protocol is secure. We observe the process that creates a
common classical bit for Alice and Bob. The inputs of this process are: (i) N +1 EPR
pairs from By, .., By41, (ii) the measuring basis choices of Alice and Bob are coincident.
Assume that Eve takes full control over all the sites Cy,..,Cn, Bi,.., By+1. As in Ref. [67],

initially, we can describe the pure state prepared by Eve:
|u> = |i1’ i27 ST ZN-FI)‘])

where |ix) denotes the EPR pair of the By, |j) denotes an ancilla quantum state that is

used as the probe of Eve.

After all the measurements have been done at the end of the step 1, Alice owns the
classical a, Bob owns the classical b and C1, .., Cn produce N classical bits ¢y, .., cy, respec-
tively. These classical bits hold a ® b = @ff:lch = c¢. In the other word, Eve must present
the value ¢ = a @ b regardless of the common basis of Alice and Bob is |[+) or |x). Thus,

we have the following transformation

Ulu) = Uli1, g, - in+1)l5) = |a)alb)sla ® B)| B) (11.12)

where the subscripts 4 and p stand for the qubit owners Alice and Bob, respectively.

Eve owns the state |E) and must present to Alice and Bob the state |1@) regardless of

a(b) = a(b) or a(b). This implies that

Ulu) = Uliy, 42, ..,in+1)|7) = |a)a|b) Bla @ b)|E1) (11.13)
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and
Ulu) = Uli1, g, .., in+1)5) = |a) alb)Bla © b)| Ea) (11.14)

In order to avoid the detection, Eve must present to Alice and Bob the qubits |[a®b) and
|a @ b). From (TTI3) and (TII4), we have: (a@b|(b|(al|d@)|b)|a @ b) = (a|a@)(b|B)(a®b|a & b)
= (E1[(a ® b|(b|(al|a)|D)|a © b)| En) = (ala)(blb)(a @ bla & b)(E1| Ey).

Since (a|a)(b|b)(a & b|a/€\§/b) # 0, (E1|E2) must be one. In other words, the probe of
Eve gives no information unless Eve makes detectable disturbances. The QUR protocol is

capable of preventing quantum attacks like original QKD protocols.

From the point of view of classical attacks, the information that Eve can get is the
classical value a ®b. However, Eve cannot derive two partial secrets a and b from the global
information a @ b. The key transmission at the step 5 is unconditionally secure since we use
the one-time pad unbreakable scheme. Therefore, our protocol is unconditionally secure as

original QKD protocols.

11.4 Conclusion

We presented two novel untrusted models that relay QKD keys without reducing the se-
curity of the original QKD protocols. This can say that we improved the QKD relaying
models presented in Part II: we have successfully released the “quasi-trusted” constraint
on intermediate nodes. The core idea always is to combine two facts, (i) to reveal only the
global classical information (XOR value) at relaying nodes, (ii) to use unknown quantum
states to prevent classical secret information from malicious quantum transformations of
Eve.

In order to compare the performance of the proposed QKD relaying models with previous
models in the realistic condition (e.g. noisy chanmels, imperfect devices, etc.), we need
further studies and practical experimentations. In a glance, however, we could make some
following comments. We first talk about the QUB model. The originality of the QUB model
is the capacity of extending the QKD range up to two times without invoking entangled
photons. Although the entangled-state sources has a very important role in the quantum
communication, the non-local correlation of the entanglement state is very fragile, and hard
to be manipulated with today’s technology. The single-state based QKD relaying model can
avoid this complication, hence, it seems to very interesting to develop such relaying models.
Our proposed QUB is a first step in such a development, that has a significant meaning:

relaying QKD keys without entangled-state sources is feasible. There is no counterpart
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of our QUB model in the QKD literature.

Our QUR model allows the distribution of the secret key over long distances without in-
voking entanglement swapping. Although there are some common required special quantum
resources (precisely, entanglement sources and the CNOT gate), our QUR model and
the standard entanglement swapping (ES)-based quantum repeater model are
distinguished. First, they are different from the point of view of the core idea. Indeed,
while the idea of the standard ES-based model is creating entangled-state pairs over the

entire length of key distribution, our idea is simply to combine two well-known facts:

1. Enemies cannot gain information without disturbing unknown quantum single-states.
This is the idea of the original QKD schemes.

2. Enemies cannot infer two partial pieces of classical information ¢ and b from the
global classical information ¢ = a XOR b. This is the idea of the classical unbreakable

one-time pad scheme.

From the point of view of the implementation and performance, they are different, too.
Indeed,

1. Although, our CNOT-M circuit is also capable of distinguishing Bell’s states, i.e. mak-
ing a Bell measurement, our QUR model does not perform any entanglement swapping
(ES) operation. As is well-known, ES will not be accomplished until one applies an
appropriate Pauli rotation according to two result bits of the Bell measurement. Our

QUR does not use Pauli’s rotations.

2. Since the Pauli rotation is applied after receiving two classical bits of the Bell mea-
surement (that costs a classical transmission), the ES-based model requires to store
quantum states in a significant time. This is one of reasons to which the ES-based
model requires quantum memory devices. In the case of our QUR model, one only
needs to solve the problem of synchronization of two input quibts of the CNOT gate.

Such a synchronization can be done with the lack of quantum memory devices.

3. Instead of maintaining the fragile nonlocal quantum entanglement in the entire length
of key distribution, our QUR model uses classical parity to keep the correlation of a
qubit pair. Obviously, our QUR model has avoided a hard requirement of the standard

ES-based model since keeping classical information is trivial.

4. Our QUR protocol needs to use only one classical bit of the Bell measurement instead
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of two as is the case of the standard ES-based model. This implies an important

improvement of performance.

Our QUR introduces also some drawbacks compared to the standard ES-based model.
Indeed, since the standard ES-based model, after each ES operation, applies the entangle-
ment purification (EP) phase that can distill some higher-fidelity entangled ones from many
lower-fidelity entangled pairs, it can theoretically achieve an arbitrary long distance in the
practical noisy and lossy situations. As for our QUR model, this seems still difficult to
achieve an arbitrarily long distance due to noises, losses, imperfect device and the synchro-
nization problem at the CNOT gate. However, we can still hope that our QUR model will
help to obtain longer QKD reaches compared to the capacity of the original QKD schemes.
Besides, we can think also of applying quantum error correction schemes to improve the

QUR’s performance.
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Chapter 12

Conclusion

12.1 Summary of Results

The central object of study of this Dissertation is the limitation of QKD’s range. We
have attacked the problem from the indirect and direct approaches: on the one hand, we
have investigated the possibility of building the large-scale QKD network; and on the other
hand, we have directly studied new methods relaying the QKD keys without reducing the
unconditional security of the original QKD protocols. Indeed, extending the range of QKD
and building large-scale networks have a tight correlation: if one can solve the former then

one can use it to solve the latter, and vice-versa.

In order to build the large-scale QKD networks, we have proposed a dense QKD network
model that allows two arbitrary network’s nodes establishing shared extremely secret keys.
We have showed that the proposed QKD network is capable of keeping the unconditional
security over key transmission of the original QKD schemes provided that each network’s
node must guarantee itself a calculable security level that makes appear the “safety perco-
lation” phenomenon in which all the safe nodes are almost-certainly connected. Once the
“safety percolation” phenomenon appears, we have proposed stochastic routing algorithms
and given the formulas measuring the number of the sub-keys that need to be sent in order

to obtain the final secret key.

In order to directly extend the QKD range, we have proposed the new models that allow
relaying QKD keys without reducing the security of the original QKD schemes. The Quan-
tum Quasi-Trusted Bridge (QQTB) and Quantum Quasi-Trusted Relay (QQTR) models
require the intermediate nodes following honestly the key-relay protocol. In such a case,

even though the malicious Eve eavesdrops the intermediate nodes, she cannot get any in-
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formation about the final key. Our QQTB and QQTR models introduced some significant
and interesting features compared to the previous QKD relaying models (see our partial
discussions and conclusion in Sections L34 and [[3]).

Our Quantum Untrusted Bridge (QUB) and Quantum Untrusted Relay (QUR) models
can be considered as enhanced versions of the QQTB and QQTR models. In these models,
Eve is permitted to have full control over the intermediate nodes. However, if, in order
to steal information of the final key, Eve does not follow the key-relay protocol then she
is detected. Otherwise, she cannot have any information about the final key. Such a
situation is totally similar to that in the original QKD protocols. Our QUB and QUR
models introduced some significant and interesting features compared to the previous QKD

relaying models (see our partial conclusion in Section [[T.7).

12.2 Suggestions for Further Exploration

Our researches have been the first steps to go toward the new potential solutions for the

problem of QKD’s range. Hence, many things need to done in the future.

For our proposed QKD large-scale model, the topology, effective special-purposed rout-
ing algorithms, attack strategies of Eve and application scenarios can be the new interesting

subjects of study.

For our proposed QKD relaying models, an estimation of required resources in the
practical case of imperfect quantum devices is of interest. A comparative study about the
performance of the proposed models with that of the standard quantum repeaters based
on entanglement swapping is also one of our goals. Besides, we are also interested in the
evolution of our QUB model, i.e. searching for the new QKD relaying models that do not

require entanglement sources.
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