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RESUME

Motivée par des applications en géophysique et ingénierie sismique, cette thése cherche
a contribuer 2 I’étude de phénomenes de propagation d’ondes en milieux élastiques non
bornés. Nous développons des techniques mathématiques et numériques pour résoudre des
problemes de diffraction en régime harmonique, dans des domaines infinis extérieurs et
demi-infinis localement perturbés. En plus, nous introduisons une nouvelle condition aux
limites du type impédance en élasticité, laquelle généralise la condition de frontiére libre
utilisée d’habitude pour décrire la surface de la terre en problemes géophysiques. Les ondes
de surface qui apparaissent avec cette condition aux limites sont étudiées. Nous montrons
I’existence de 1’onde de Rayleigh et comment elle dépend de I'impédance. En plus, nous
prouvons qu’il apparait une onde de surface additionnelle dans un cas particuliére.

Pour traiter numériquement les domaines non bornés, nous considérons des approches
basées sur des conditions aux limites exactes et des méthodes d’équations intégrales de
fronti¢re. Les premiéres s’appliquent 4 des domaines extérieurs, pendant que les deuxiémes
s’emploient pour les deux types de domaine. Un accent particulier est mis sur les équations
intégrales et les méthodes d’éléments de frontiére pour résoudre des problémes de diffrac-
tion dans des demi-plans localement perturbés. Nous calculons de maniére efficace et
précise la fonction de Green d’un demi-plan élastique avec des conditions aux limites
d’impédance, a I’aide d’une méthode de calcul qui combine de fagon appropriée des tech-
niques analytiques et numériques. Nous proposons aussi une méthode d’équations intégrales
de frontiére basée sur la fonction de Green calculée. Finalement, les procédures numériques
sont validées en utilisant des probléemes benchmark appropriés.

Mots clés: Elasticité en régime harmonique, ondes élastiques, domaines non
bornés, conditions aux limites d’impédance, ondes de surface, diffrac-
tion €lastique, conditions aux limites exactes, équations intégrales de
frontiere, méthode d’éléments de frontiére, fonction de Green.
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ABSTRACT

Motivated by applications in geophysics and seismic engineering, this thesis seeks to
contribute to the study of wave propagation phenomena in unbounded elastic media. Math-
ematical and numerical techniques are developed to solve time-harmonic scattering prob-
lems in exterior infinite and locally perturbed semi-infinite domains. In addition, we intro-
duce a novel impedance boundary condition in elasticity, which generalizes the traction-
free boundary condition usually considered to describe the ground surface in geophysical
problems. The surface waves appearing with this boundary condition are investigated. We
show the existence of the Rayleigh wave and how it depends on impedance. Moreover, we
prove that an additional surface wave appears in a particular case.

To deal numerically with unbounded domains, we consider approaches based upon ex-
act boundary conditions and boundary integral equation methods. The former is applied
to exterior domains, while the latter is employed in both types of unbounded domains.
Special emphasis is placed on integral equations and boundary element methods to solve
scattering problems in locally perturbed half-planes. The Green’s function of the elastic
half-plane with impedance boundary conditions is computed in an effective and accurate
way, by employing a method of calculation that combines appropriately analytical and nu-
merical techniques. A boundary integral equation method based on the calculated Green’s
function is then proposed. Finally, the numerical procedures are validated by employing
appropriate benchmark problems.

Keywords: Time-harmonic elasticity, elastic waves, unbounded domains, impedance
boundary conditions, surface waves, elastic scattering, exact bound-
ary conditions, boundary integral equations, boundary element methods,
Green’s function.
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RESUMEN

Motivada por aplicaciones en geofisica e ingenieria sismica, esta tesis busca contribuir
al estudio de fenémenos de propagacién de ondas en medios elésticos no acotados. Se
desarrollan técnicas matemdticas y numéricas para resolver problemas de difraccion en
régimen arménico, en dominios infinitos exteriores y semi-infinitos localmente perturba-
dos. Ademas, se introduce una nueva condicién de borde de tipo impedancia, la cual gene-
raliza la condicidn de frontera libre normalmente considerada para describir la superficie de
la tierra en problemas geofisicos. Las ondas de superficie que aparecen con esta condicién
de borde son estudiadas. Se muestra la existencia de la onda de Rayleigh y cémo ésta de-
pende de la impedancia. Ademds, se prueba que aparece una onda de superficie adicional
en un caso particular.

Para tratar numéricamente los dominios no acotados, se consideran procedimientos
basados en condiciones de borde exactas y ecuaciones integrales de frontera. Los primeros
se aplican a dominios exteriores, mientras que los segundos se emplean para ambos tipos
de dominios. Se pone especial énfasis en ecuaciones integrales y métodos de elementos
de frontera para resolver problemas de difraccién en semiplanos localmente perturbados.
Se calcula de manera eficiente y precisa la funcién de Green de un semiplano elastico con
condiciones de borde de impedancia, utilizando un método que combina apropiadamente
técnicas analiticas y numéricas. Se propone también un método de ecuaciones integrales
basado en la funcién de Green calculada. Finalmente, los procedimientos numéricos son
validados usando problemas benchmark apropiados.

Palabras claves: Elasticidad en régimen arménico, ondas elasticas, dominios no aco-
tados, condiciones de borde de impedancia, ondas de superficie,
difraccién eldstica, condiciones de borde exactas, ecuaciones in-
tegrales de frontera, método de elementos de frontera, funcidn de
Green.
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I. INTRODUCTION

1.1 Motivation

This thesis deals with mathematical modeling and numerical simulation of linear wave
propagation phenomena in unbounded elastic media. Motivation for this study is provided
by a class of problems arising in geosciences and engineering, where for practical purposes,
the soil can be regarded as an ¢elastic continuum. We are mainly referring to propagation of
seismic waves, and the way they affect and are affected by natural and man-made structures.
Such events are treated as elastic scattering phenomena,

Several numerical studies on the seismic response of local geological and topograph-
ical irregularities, such as, for example, alluvial valleys, sedimentary basins and canyons,
have demonstrated that such natural structures are generally exposed to significant am-
plification of surface motion during earthquakes (cf., e.g., Sdnchez-Sesma & Luzdn 1995,
Reinoso, Wrobel & Power 1997, Zheng & Dravinski 2000), sometimes giving rise to lo-
cally generated surface or Rayleigh waves (cf. Savage 2004). Surface waves are usually
the most destructive type of seismic wave, because of their long duration and strong ampli-
tude at the ground surface.

In addition, elastic waves are important in induced seismicity, where the seismic events
are caused by human activity. A typical example of this arises in mining, where the min-
eral resources are extracted from the ground by excavating surface pits (open-pit mining) or
subterranean passages (underground mining). Most of such excavations are constructed by
rock blasting, that is, the controlled use of explosives to break up a rock formation. How-
ever, when an explosion occurs, a shock elastic wave is produced, inducing seismic activity
in the mine and the surrounding area (cf. Garcia-Huidobro 2009). This could eventually
cause serious damage to the mine infrastructure and equipment.

It is therefore of interest to develop adequate mathematical models and numerical
methods of simulation, capable of predicting the behavior of different structures, located
either on the ground surface or underground, when excited by seismic waves.

1.2 Overview

From the point of view of mathematical modeling, the problems to be studied herein
involve two kinds of domains. If the structure under consideration is located deeply under-
ground, the influence of the surface could be eventually neglected. The soil is then modeled
as an infinite elastic medium containing a bounded obstacle or inclusion. This type of ge-
ometry is called an exterior domain. On the contrary, if we are dealing with a structure that
lies near or at the ground surface, the effect of the surface must be taken into account. In
that case, the soil is modeled as a semi-infinite elastic medium with a free surface, and the
structure is regarded as a geometrical perturbation of finite size. We call this geometry a
locally perturbed half-space. In both cases, the domain is of infinite extent, so it cannot be



discretized and stored within a computer in a trivial manner. It is therefore necessary to
devise special numerical procedures, capable of dealing with such domains.

A possible idea to overcome this difficulty of unboundedness is to restrict the com-
putation to a finite domain by introducing artificial boundaries. The discretization is then
performed in this domain, and the problem can be solved by using finite difference methods
(FDM) or finite element methods (FEM). Nevertheless, adequate boundary conditions must
be prescribed on the artificial boundaries in order to be accurate. For this, the Dirichlet-to-
Neumann (DtN) map is often considered, which is a mathematical tool that provides exact
nonreflecting boundary conditions. This approach has been used in two-dimensional elas-
tostatics, both for exterior domains (cf. Han & Wu 1992), and for semi-infinite domains (cf.
Givoli & Vigdergauz 1993, Han, Bao & Wang 1997). The application to elastodynamics,
however, has been limited to exterior domains. Nonreflecting boundary conditions for two-
dimensional time-harmonic elastic waves have been introduced by Givoli & Keller (1990).
A further study of their mathematical properties has been provided by Harari & Shohet
(1998). The numerical implementation in FEM has been performed by Harari & Haham
(1998). In the three-dimensional case, nonreflecting boundary conditions have been given
by Grote & Keller (2000) and Gichter & Grote (2003), for transient and time-harmonic
elastic waves, respectively.

A less evident approach to deal with unbounded domains is the technique of boundary
integral equations, together with its discrete counterpart, the boundary element method
(BEM). The basic idea comes from potential theory (cf. Helms 1969), which basically
states that a harmonic function can be represented as a sum of certain boundary integrals.
This result can be further extended to vector functions satisfying the equations of linear
elasticity (cf. Kupradze 1965, Rizzo 1967). The main merit of this technique is to transform
a problem in a whole domain into one on its boundary, reducing the dimensionality by one.
Thus, a considerable amount of computer resources can be saved. Nevertheless, a major
drawback is the requirement of knowing a fundamental solution or Green’s function, that
is, the response of the systemn to a unit point source. Depending on the particular problem
under study, a fundamental solution could be far from easy to obtain.

Boundary integral equation methods that deal with exterior domains use Kelvin or
full-space fundamental solutions, which are known explicitly for isotropic media. Bonnet
(1995) provides Kelvin fundamental solutions for elastostatics and elastodynamics in two
and three dimensions. Integral equations are then stated on the boundary of the obstacle,
which can be easily discretized, since it is of finite extent. Some authors that have employed
this procedure to solve various elastodynamic problems are Shibahara & Taniguchi (1983),
Antes (1985), Rizzo, Shippy & Rezayat (1985), Martin (1990) and Tadeu, Kausel & Vrettos
(1996). In the case of non-isotropic media, special calculation methods need to be devised
in order to calculate the appropriate fundamental solutions (cf., e.g., Wang & Achenbach
1994, Liu & Lam 1996, Dravinski & Zheng 2000).

A locally perturbed half-space can be also treated by boundary integral equation meth-
ods based upon a Kelvin fundamental solution. However, one encounters the difficulty that



not only the boundary of the perturbation, but also the half-space free surface must be dis-
cretized. As the latter is of infinite extent, it is often approximated by a truncated surface,
which needs to be large enough in order to yield accurate solutions. This approach has been
adopted by Karabalis & Beskos (1986) and Niwa, Hirose & Kitahara (1986) for transient
scattering. More recently, Arias & Achenbach (2004) have used the far-field asymptotic
behavior of the Rayleigh waves to correct the error introduced by the truncation.

The problem of truncation can be avoided if instead of using a Kelvin solution, a half-
space fundamental solution is considered in the boundary integral approach. In that case,
only the boundary of the local perturbation requires discretization, since the half-space
fundamental solution contains the influence of the infinite free surface. Half-space fun-
damental sclutions for elastostatics can often be determined in explicit form. In the two-
dimensional case, the fundamental solution for an isotropic half-plane has been introduced
by Telles & Brebbia (1981) and improved by Huang & Yin (1987). The extension to an
orthotropic half-plane has been performed by Dumir & Mehta (1987). These works also
include BEM approaches based upon the respective fundamental solutions applied to solve
some classical problems in elastostatics. In the three-dimensional case, the fundamental
solution for an isotropic half-space has been provided by Okada (1992).

Nevertheless, half-space fundamental solution or Green'’s function for elastodynamics
rarely can be expressed in analytical form. The standard procedure to obtain a half-space
Green’s function consists in applying integral transforms (Fourier, Laplace, or others) in
time and space to the partial differential equations of motion fulfilled by the Green’s func-
tion. These equations are then solved analytically in the frequency-wavenumber domain,
and the Green’s function is expressed in terms of inverse integral transforms, which are not
simple to evaluate since the integrands are often singular. The effective and accurate eval-
uation of these infinite integrals has been the object of many studies, giving rise to several
methods for this purpose, either analytical, numerical, or a combination of both. In most
cases, these methods are very complex and only provide approximate solutions.

A pioneering work in the analysis of elastic wave propagation in semi-infinite domains
was done by Lamb (1904). He considered the surface displacement generated by periodic
and transient line sources situated at the free surface, using Fourier transforms in space and
time. Since his publication, the problem of determining the dynamic response of an elastic
half-space subjected to different force sources (not necessarily applied on the surface), ei-
ther transient or time-harmonic, is usually referred as the Lamb’s problem. The calculation
of a Green’s function can then be regarded as a particular case of the Lamb’s problem,
where the source corresponds to a unit point force.

The Lamb’s problem has been studied by so many authors that it is impossible to
give an exhaustive list. An important contribution was made by Johnson (1974), who ob-
tained the transient Green’s function of the isotropic elastic half-space. For this, he applied
Laplace transforms in space and time, and the inversion was performed by employing the
Cagniard-de Hoop method. In the two-dimensional case, a expression for the Green’s
function of the isotropic half-plane has been given by Buchen (1978), using a displacement
potential decomposition and the Pekeris-Cagniard-de Hoop method. The time-harmonic
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Green’s function of an orthotropic half-plane has been obtained by Rajapakse & Wang
(1990) by applying a Fourier transform in the horizontal space variable. A method to
evaluate the infinite integrals based on contour integration was proposed. More recently,
Chen & Dravinski (2007a,b) have treated the case of triclinic half-planes and half-spaces,
expressing the Green’s function as double Fourier integrals. The first integral was evaluated
by contour integration, while the second one was calculated by quadrature formulae.

Even though the half-space Green’s functions provided by different authors can be
evaluated numerically, they are not always well-suited for BEM applications, since a large
amount of successive evaluations at different points is required, so the method to eval-
uate the Green’s function needs to be fast and accurate. If this issue is resolved, BEM
approaches based upon half-space Green’s functions have proven to be far more efficient
than their counterparts using Kelvin fundamental solutions. For a detailed discussion about
this subject, see Pan, Rizzo & Martin (1998). Time-domain BEM approaches employing
half-space Green’s functions have been developed and applied by Triantafyllidis (1991)
and Richter & Schmid (1999), for the two and the three-dimensional case, respectively.

A third approach to treat unbounded domains is a hybrid technique that combines the
two methods mentioned above. Basically, a finite computational domain is defined by intro-
ducing an artificial boundary, and integral equations are stated on that boundary. Then, the
finite domain is discretized by FEM and its boundary is discretized by BEM. Such a method
is called a coupled FEM/BEM approach. Some authors that have applied this method to
problems of foundations and soil-structure interaction are, €.g., Karabalis & Beskos (1985),
Gaitanaros & Karabalis (1987), and Von Estorff & Kausel (1989).

1.3 Contributions

The main contribution of this thesis is a novel boundary condition in elastodynam-
ics, which is of the impedance-type and generalizes the usual one of free surface as-
sumed in most literature dealing with semi-infinite elastic media. Similar boundary con-
ditions have been previously studied in acoustics. The Helmholtz equation in a half-plane
with impedance boundary conditions has been investigated by Chandler-Wilde (1997) and
Durin, Muga & Nédélec (2005a, 2006). Extensions to the half-space have been carried
out by Duran, Muga & Nédélec (20055, 20094). Boundary integral equation methods for
locally perturbed half-planes have been established by Peplow & Chandler-Wilde (1999),
Chandler-Wilde & Peplow (2005) and Durén, Hein & Nédélec (2007), based upon half-
plane Green’s functions appropriately calculated. Moreover, the impedance boundary con-
dition to be considered herein has some similar features with certain transmission con-
ditions that describe an imperfect interface between two elastic solids, where slipping is
allowed to occur (cf. Martin 1992, Durdn & Nédélec 2000). In this thesis, we provide
some results on the existence of surface waves when this novel boundary condition holds
on the surface of the half-plane. Specifically, it is proven that the Rayleigh wave exists
for all impedance and there is a particular case where an additional surface wave appears,
completing that presented by Duridn, Godoy & Nédélec (2006, 2010).



Another contribution is the calculation of the half-plane Green’s function of time-
harmonic elastodynamics with impedance boundary conditions. The calculation is per-
formed by employing an effective and accurate method that appropriately combines an-
alytical and numerical techniques. An analogous method has been previously used by
Durén, Hein & Nédélec (2007) to calculate the half-plane Green’s function of acoustics
with impedance boundary conditions. Nevertheless, the extension to elastodynamics is not
immediate, due to the vector nature of the involved equations, besides the coexistence of
two types of volume elastic waves (longitudinal and transverse) and the appearance of sur-
face waves. Furthermore, a boundary integral equation approach based on this Green’s
function is implemented and successfully validated for suitable benchmark problems.

1.4 Outline

This thesis involves eight chapters and two appendices. Chapter I is an introductory
chapter that mentions some applied problems that motivate this study and gives an overview
of the most important mathematical and numerical approaches to treat unbounded media.
Chapter II presents the mathematical models to be considered throughout the thesis. These
are models of boundary-value problems governing elastic scattering phenomena in both
exterior domains and locally perturbed half-planes. Chapter III gives some methods based
upon infinite series to treat scattering in exterior domains. Boundary-value problems are
solved analytically for the exterior of a circle, and the DtN map is calculated explicitly,
allowing obtention of exact boundary conditions for elastic waves in two-dimensions. In
Chapter 1V, integral representation formulae and integral equations to solve the boundary-
value problems stated in Chapter II are developed. The discretization of these integral
equations by a BEM approach is detailed in Chapter V, including the obtention of the vari-
ational formulations and their approximation by a Galerkin scheme. The semi-analytical
computation of singular integrals involved in the BEM formulation is also presented. Chap-
ter VI describes the effective calculation of the half-plane Green’s function with impedance
boundary conditions. Roughiy speaking, a Fourier transform is applied in the horizontal
space variable, the problem is solved in the wavenumber domain, and the evaluation of
the inverse integral is performed by removing the singularities in the integrand. The nor-
mal derivative of the Green’s function is also calculated, since it is required for the BEM
formulation. In Chapter VII, the appearance of surface waves with impedance boundary
conditions is investigated, providing a theoretical basis and some numerical results. Chap-
ter VIII presents validation of the numerical procedures established above, including the
approaches based upon exact boundary conditions and FEM, and upon boundary integral
equations and BEM, both for exterior and semi-infinite domains. Adequate benchmark
problems are used in each case and numerical results are given. In Appendix A, an analysis
of elastic plane waves is performed, both for the full-plane and the half-plane. Appendix B
shows some properties of Bessel and Hankel functions to be used throughout the thesis.






II. MATHEMATICAL MODELING OF ELASTIC SCATTERING
PHENOMENA

2.1 Introduction

In this chapter, we present the mathematical models of elastic scattering phenomena,
in exterior domains and in locally perturbed half-planes. Most concepts introduced herein
can be found in general texts on elastic waves such as Achenbach (1973), Graff (1991) and
Harris (2001), or in books specialized on seismic waves such as AKi & Richards (2002),
Pujol (2003) and Chapman (2004). The propagation of elastic waves in an homogeneous
isotropic medium is first approached in the time-domain. Next, we suppose harmonic de-
pendence in time, leading to the elastic wave equation in the frequency domain, which is
assumed for the rest of this work. By using the well-known decomposition into longitu
dinal and transverse waves, we show that elastic waves in the full-plane can be studied by
means of two scalar potentials satisfying Helmholtz equations. This result will be useful
tool in subsequent applications. The mathematical models for time-harmonic scattering
phenomena are first presented for an exterior domain. We give the basic notion of scatter-
ing, that is, an incident field that encounters an obstacle, which generates a new field of
scattered waves. This field has to fulfill radiation conditions at infinity, in order to avoid
nonphysical solutions, and we write these conditions in two different forms. The boundary
conditions considered in the obstacle are of the Dirichlet and Neumann-type, and each as-
sociated boundary-value problem governing the scattering phenomenon is introduced. In
the case of a locally perturbed half-plane, we give the basic idea of scattering, where an
incident field is reflected by the infinite flat boundary and local perturbation generates the
scattered field. Impedance boundary conditions are introduced as a generalization of the
usual free boundary conditions considered in geophysical applications, where the elastic
half-plane represents the ground. An important related issue is the propagation of surface
waves. We exhibit the radiation conditions obtained recently by Duran, Muga & Nédélec
(2009b) for a half-plane with free boundary. The impedance boundary-value problem gov-
erning scattering in a locally perturbed half-plane is finally introduced.

2.2 The elastic wave equation

2.2.1 Time-dependent waves

Let us consider an elastic medium that fills the full-plane R2. An arbitrary position
in the plane is denoted by & = (x;,z3) and a given instant of time is denoted by ¢. Let
U = (Uy, Uz) be the field of displacements of each point, and let F' = (F}, Fy) be a source
term representing external volume forces that act on the medium. Both U and F are
vectorial fields depending on position and time. In a general context, the law of momentum
conservation, or Newton’s second law, can be mathematically expressed by means of the
equation:

p(x) Uz, t) = divE(x, t) + F(z, t), 2.1



where the scalar field p is the density of the medium, and ¥ denotes Cauchy’s stress tensor.
The divergence operator is applied to each row of the tensor. In elasticity theory, it is
assumed that the stress tensor is a function of the displacement field, that is,

>z, t) = S(U(a, t)). 22)

Such a dependence is called a constitutive law, which describes the elastic response of the
medium when subjected to forces. If large deformations are involved, the constitutive law
is often a non-linear relation. Nevertheless, deformations associated with propagation of
elastic waves are usually small, so it is reasonable to suppose a linear law. In addition, we
assume that the elastic medium is homogeneous, that is, physical properties are unchanged
at different positions. In particular the density g is constant. Moreover, the models of
scattering phenomena studied in this work do not consider volume forces, so we set F' = 0.
Taking into account these assumptions, (2.1) is restated as

pU(z,t) — divE(U(z,t)) = 0. (2.3)

Furthermore, the medium is assumed isotropic, that is, physical properties are the same in
all directions. Therefore, the elastic medium is linear, homogeneous and isotropic. Such a
medium is described by Hooke’s isotropic law:

S(U(z,t)) = AdivU(z,t) + p(VU (=, t) + VU(z,t)"), (2.4)

where A and . are the Lamé’s parameters, which are positive quantities. Replacing (2.4) in
(2.3), and rearranging, we obtain

pU(x,t) — p AU (z,t) — (A + p)VdivU (z,t) = 0, (2.5)
where A(-) stands for the Laplacian or Laplace operator. Combining with the relation
AU = VdivU - V*+div' U, (2.6)
we obtain that (2.5) can be alternatively written as
pU(x,t) — (A +2u)VdivU(z,t) + uVidiviU(z,t) = 0, (2.7)

where V() denotes the orthogonal gradient and div"(-} the orthogonal divergence. Both

equations (2.5) and (2.7) are alternative ways of expressing the time-dependent elastic wave
equation, which describes the propagation of waves through an homogeneous isotropic
elastic medium in the time-domain. Let us rewrite (2.7) as

Uz, t) — AV divU(z,t) + AV diviU(z,t) = 0, (2.8)

A+ 2
cL =1/ a2} CT=\/H, 2.9)
p p

and we decompose the field of displacements U as follows:

where

Uz, t) = UD(z,t) + UD(x, 1), (2.10)
where U™ and U'T) are two vectorial fields satisfying
div Uz, ) = 0, (2.11a)



divU D (z,t) = 0. (2.11b)

From the vectorial analysis, it is well-known that this kind of decomposition is possible
under reasonable hypothesis on U. Substituting (2.10) in (2.8), combining with (2.11), and
rearranging, we obtain that (2.8) holds if U and U™ satisfy the following equations:

U (x,t) - EvVdivU P (x,t) =0, (2.12a)
77 (2, ) + 2VidiviUD(z,t) = 0. (2.12b)
Using identity (2.6) and combining with (2.11), we reexpress (2.12a)-(2.12b) as follows:
TPz, 8) — AU (&, 8) = 0, (2.13a)
Tz, 8) ~ AUz, ¢) = 0. (2.13b)

Equations (2.13a) and (2.13b) correspond to classical vector wave equations, where the
respective velocities of propagation ¢;, and ¢ are given in (2.9) and satisfy ¢;, > ¢p.
This analysis yields the well-known fact that an elastic wave has two kind of components,
namely the compressional or longitudinal wave (L) and the shear or transverse wave (7).

2.2.2 Time-harmonic waves

Let us go back to the time-dependent elastic wave equation (2.3). When dealing with
wave phenomena, it is often reasonable to suppose that the dependence on time is of the
harmonic-type. We thus assume that the displacement field U has the form:

Uz, t) = Re{u(z) e '}, (2.14)

where © = (u;,us) only depends on position and w is the angular frequency or pulsation,
assumed to be given. Replacing (2.14) in (2.3) and rearranging terms yields

divo(u(x)) + pwiu(z) = 0, (2.15)

where the stress tensor o can be easily expressed in terms of w by substituting (2.14) in
(2.4). The following Hooke’s time-independent law is obtained:

o(u(z)) = Mdivu(z)] + p(Vu(z) + Vu(z)"). (2.16)
Replacing (2.16) in (2.15) gives
pAu(x) + (A + p)Vdivu(z) + puwlu(z) = 0, (2.17)
and combining with (2.6), we obtain that (2.17) can be rewritten as
(A + 2u)V div u(z) ~ pVidiviu(z) + pou(z) = 0. (2.18)

Equations (2.17) and (2.18) are two alternative ways of expressing the time-harmonic elas-
tic wave equation. This equation governs the propagation of elastic waves through an
homogeneous isotropic elastic medium in the frequency-domain. The assumption of time-
harmonic dependence on time is made from here on. Let us restate (2.18) as follows:

12 V div u(z) 12 Vidiviu(z) + u(z) = 0, (2.19)
) K2



where k;, and k7 are the wave numbers associated with the longitudinal and the transverse
wave, defined respectively as
') w
k= —, kr = —, (2.20)
Cr, Cr

[P P
— k = — .
kp=w o T w\/; (2.21)

In analogy with the time-dependent case, the displacement field u is decomposed as

or alternatively,

uw(z) = u'P(z) + o' (), (2.22)

with u(%) and w!?) satisfying
divtu'®(z) =0, (2.23a)
div e (a) = 0. (2.23b)

Hence, replacing (2.22) in (2.19) and combining with (2.6) and (2.23), we obtain that ull
and w(™ fulfill two vector Helmholtz equations:
LutB () + k2 uP(z) = 0, (2.24a)
AuD(x) + k2 uTHz) = 0. (2.24b)
These equations govern the dynamics of the longitudinal and the transverse wave in the

frequency-domain. Furthermore, the relations (2.23a) and (2.23b) give the existence of two
scalar potentials 1)) and (") such that ©'%) and u®’ can be expressed as

ux) = VoD (x), (2.25a)
uD(z) = VD (). (2.25b)

Substituting (2.25) in (2.24a) and (2.24b), we obtain that these two equations hold if (&
and {7 satisfy two scalar Helmholtz equations:

Ay () + k2 9P () = 0, (2.262)
AP TN (z) + k24D (x) = 0. (2.26b)
From the above analysis, it follows that it is possible to calculate a solution of the time-
harmonic elastic wave equation (2.19) (or (2.17) and (2.18)) if we know explicit expressions

for /&) and 4T, Substituting the two potentials in (2.25) and combining with (2.22) yields
an expression for the desired solution, given by

w(z) = V' () + Vi (z). (2.27)

REMARK IL.1. We have obtained that both the longitudinal and the transverse wave
can be described by scalar potentials. This result is only valid in R?. In three dimensions,
only the longitudinal wave can be represented by a scalar potential. On the contrary, a
vector potential is required for a complete representation of the transverse wave.

REMARK I1.2. It is natural to wonder if there may be other solutions to the time-
harmonic elastic wave equation (2.19) that are not of the form (2.27). The answer is no.
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It is possible to prove that, under reasonable hypothesis, the solution given in (2.27) is
complete, that is, any solution to (2.19) can be expressed in terms of potentials. The proof
of completeness can be found in Achenbach (1973).

2.3 Scattering phenomena in exterior domains

2.3.1 Basic principle

In the case where the homogeneous isotropic elastic medium fills the full-plane R2,
there exist fields of displacements satisfying the elastic wave equation that correspond to
plane waves, that is, waves whose phase is constant along straight lines, perpendicular to
the direction of propagation. Such waves usually have constant amplitude and they can
propagate unalterably through the infinite medium. Let us suppose now that a bounded
obstacle or inclusion is introduced somewhere in the medium, perturbing the full-plane
geometrically. The interior of the obstacle is denoted by 2™ and its boundary is denoted by
I", which is assumed to be sufficiently regular (at least of the Lipschitz-type). The exterior
domain is defined as 2% = R?\(it, Both domains Q" and Q°* are assumed to be open
sets. Fig. 2.1 presents a scheme of the obstacle and the exterior domain. The presence

Qexl:

FIGURE 2.1. Obstacle inside an infinite elastic medium.

of this obstacle obviously modifies the nature of the plane waves that propagate through
the non-perturbed full-plane. This phenomenon is modeled by separating the whole field
of displacements into an incident field, which is constituted by the plane waves that exist
in the absence of the obstacle, and a scattered field, that includes any new wave generated
due to the obstacle. The incident field is denoted by «™° and the scattered field is denoted
by u*?*, Fig. 2.2 shows schematically this physical phenomenon. The incident field thus
fulfills the elastic wave equation on the full-plane, which is written as

divo(u™(z)) + pw?u™{z) = 0 in R?, (2.28)

where the Cauchy’s stress tensor o is given in terms of the displacement in (2.16). The
incident field can be determined explicitly in terms of plane waves. The corresponding
analytical expressions are obtained in Appendix A.l. For the time being, we assume u!"°
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FIGURE 2.2. Incident field and scattered field from an obstacle.

to be given. The total field, denoted by u'®, is the sum of the other two fields, that is,

u'(x) = u(x) + u*(x). (2.29)
This field satisfies the elastic wave equation in the exterior domain, that is,
div o (u'(x)) + pwu'(z) = 0 in Q°*¢, (2.30)

Notice that as the incident field is given, the true unknown of our problem is u*®*.
2.3.2 Scattered field and radiation conditions at infinity

Henceforth, in order to simplify the notation, we denote the scattered field simply by u.
As the total field defined in (2.29) satisfies the elastic wave equation (2.30) in the exterior
domain, and the incident field satisfies the same equation (2.28) but in the full-plane, we
deduce from (2.29) that the scattered field also fulfills the elastic wave equation in the
exterior domain:
div o(u(z)) + pwu(z) = 0 in Q. (2.31)
This equation governs the dynamics of the scattered field, which is composed by waves
generated due to the interaction between the incident field and the obstacle. These waves
are outgoing, that is, they are moving away from the obstacle towards infinity, which char-
acterizes an outward energy flux. Nevertheless, the mathematical model may allow the
existence of incoming waves, that is, those that come from infinity towards the obstacle.
Such waves are not physically admissible, because they have infinite energy. Therefore, it
is necessary to eliminate them, and this is done by imposing adequate radiation conditions
at infinity. These conditions prescribe an asymptotic behavior to the scattered field, permit-
ting only outgoing waves, which are physically admissible since they have finite energy.
We present two alternative forms of expressing the outgoing radiation conditions at infin-
ity. Both forms consider terms evaluated at a circumference whose radius goes to infinity,
so we use standard polar coordinates (r,#), where r = |x|. The unit vectors associated
with r and ¢ are # = (cos 8, sin @) and @ = (—sin 8, cos §), respectively. The first form of
the radiation conditions can be found in Bonnet (1995) and Ammari (2008), and uses the



following explicit expressions for the fields ©() and u™) of the decomposition (2.22):
u(z) = — (kI — k2) ' (Lu(z) + kK2 u(z)), (2.32a)
uD () = (k3 — k2) " (Au(z) + kI u(x)). (2.32b)

It can be easily verified that (2.32a) and (2.32b) satisfy (2.22). On the other hand, applying
orthogonal divergence to (2.19), using vectorial calculus and rearranging, yields the identity

divt (Au(z) + k% u(x)) = 0, (2.33)
which proves that u(") defined in (2.32a) satisfies (2.23a). Analogously, applying diver-
gence to (2.19) and proceeding as above gives the relation

div (Au(z) + kf u(z)) = 0, (2.34)

which proves that u(T) given in (2.32b) satisfies (2.23b). From the previous analysis we
already know that the two fields satisfy the vector Helmholtz equations (2.24a) and (2.24b).
Therefore, we impose outgoing Sommerfeld radiation conditions (cf. Nédélec 2001, Lenoir
2005) to both fields:

|8, utP) (@) — ik D (z)| =
|0 uT) () — ikru™(x)| =

where 3, stands for the radial derivative. We thus say that u satisfies the radiation condi-
tions if it admits the decomposition (2.22), with u'") and wT) satisfying (2.23), (2.24) and
(2.35) (cf. Ammari 2008). The second form of the outgoing radiation conditions at infinity
is given by the following asymptotic relations (cf. Harris 2001):

|(J(U(w))'f' —ikp (A 4+ 2u) u(a:)) P | = O(r 1)
|(o(u(z)? — ikrpu(z) - 8| = O(r

It should be observed that this second form of radiation conditions at infinity involves
directly the field of displacements u and not its decomposition in terms of «(&) and (7.

asr — +00, (2.35)

as r — +00. (2.36)

2.3.3 Dirichlet and Neumann boundary-value problems

We now deduce the boundary-value problems that model the elastic scattering by an
obstacle. A well-posed model in an exterior domain includes the differential equation, the
boundary conditions and the outgoing radiation conditions at infinity. We use the second
form of the radiations conditions, since it has the advantage of being expressed in terms
of u directly. Two kinds of obstacles are considered, namely a rigid body and a cavity. In
the first case, as a rigid body cannot be deformed, the total field of displacements is null
in 2int, The situation is illustrated in Fig. 2.3. In particular, the total field vanishes on the
boundary, that is,

u*(x) =0 onT, (2.37)
and combining with (2.29) yields the next boundary condition for the scattered field:
u(x) = —u™(x) onT, (2.38)

which is a non-homogeneous Dirichlet boundary condition. Thus, putting (2.31), (2.38)
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Qexl’.

utot =)

FIGURE 2.3. Rigid body within an infinite elastic medium.

and (2.36) together, we obtain the boundary-value problem: Find u : Q** — C? such that
div o(u(z)) + pwu(z) =0 in Q% (2.39a)

u(z) = —u'"(z) onT, (2.39b)

(c(ul@))r — ik, (A + 2uyu(x)) - #| = O(1)
|(c(u(®))F — ikppu(x)) - 8| = O@F1)

In the case where the obstacle is an cavity, the displacement is not defined at ™. However,
it is possible to make appropriate assumptions on I'. As there is vacuum at the interior, the
points of the elastic solid that are just on the surface are not being forced. This fact can be
expressed by means of a traction-free boundary condition:

a(u(z)n =0 onT, (2.40)

asr — +o00. (2.39¢)

where n denotes the unit normal vector on I', which points towards the interior of the
obstacle (exterior to 2°*). The situation is shown in Fig. 2.4. Hence, combining (2.40)

Qext

a(u*in = Otn B

Kt l.*'f cavity f.':l

FIGURE 2.4. Cavity within an infinite elastic medium.

with (2.29) and using linearity of ¢ in u gives the following boundary condition for u:
olu(z))n = —a(u'™(z))n onT, (2.41)

which corresponds to a non-homogeneous Neumann boundary condition. Consequently,
putting (2.31), (2.41) and (2.36) together, we obtain the desired boundary-value problem:
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Find © : Q¢ — C? such that
divof{u(z)) + puw’u(z) =0 in Q¢ (2.42a)

o{u(z))n = ~c(u™(x))n onT, (2.42b)

[(o(u(®)? — ikp(A + 2u) () - 7| = O(r 1)
|(o(u(z))? —ikrpu(x)) - 0| = OF1)

Boundary-value problems (2.39) and (2.42) are mathematical models for the exterior elas-
tic elastic scattering by a rigid body and a cavity, respectively.

asr — +o0o0.  (2.42¢)

2.4 Scattering phenomena in locally perturbed half-planes

2.4.1 Basic principle

We study now the scattering of waves propagating in semi-infinite domains. Through-
out this section, we deal with the upper half-plane, denoted by R2 and defined as

R} = {(z1,22) €R? : x5 > 0}. (2.43)

The boundary of ®2 is simply denoted by {z2 = 0}. Let us assume that R? is filled
with an homogeneous isotropic elastic medium. As in the full-plane case, there are plane
waves propagating through Ri, but this time the phenomenon looks slightly different. The
same kind of plane waves of R? can propagate here, but only if they are coming from the
interior of the half-plane. In that case, when such waves encounter the infinite boundary,
they are reflected, generating new plane waves that go towards the interior of the half-
plane. Consequently, there are two fields, namely an incident field, denoted by %', and a
reflected field, denoted by w™'. The physical situation is illustrated in Fig. 2.5. Each one

2
\Sg‘\ R-i-
uinc i

FIGURE 2.5. Incident and reflected field in a non-perturbed half-plane.

of these fields satisfies the elastic wave equation in the half-plane, that is,
div o(u™(x)) + pwu™(z) = 0 inR?, (2.44a)
divo(u™(z)) + pwu™(z) = 0 in R?. (2.44b)

If the semi-infinite domain remains unchanged, both the incident and the reflected field
propagate indefinitely through it. The incident field '™ can be determined in an analogous
way to that of the full-plane. However, in order to calculate explicitly the reflected field
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u™!, boundary conditions on {zo = 0} are necessary, which are introduced in the next
subsection. The obtention of expressions for %™ and u™ as plane waves is presented
in Appendix A.2. In analogy with the case of an exterior domain, we introduce a local
perturbation situated on the flat boundary. The resulting perturbed half-plane is denoted by
(2¢**, and its boundary is denoted by I". Notice that I" is composed of two parts, namely
a perturbed part I}, (assumed sufficiently regular) and a flat part I',,, which extends to
infinity on both sides. The geometry of 2 is shown in Fig. 2.6. The perturbed part of
the boundary obviously modifies the field of displacements existing in the non-perturbed
half-plane. A scattered field arises, which is constituted by the new waves generated from

Qe

I
-"\-...-'p“-\

A
T /. I

FIGURE 2.6. Half-plane with a local perturbation on the boundary.

the perturbed part. We denote this field by u*®. Consequently, the total field %*** in Q=
corresponds to the sum of the incident, the reflected, and the scattered field, that is,

w'(x) = u(x) + u(x) + v (x), (2.45)
which fulfills the elastic wave equation in the perturbed half-plane:
div o(u't(z)) + pwu'(x) = 0 in Q. (2.46)

These three fields propagating through the perturbed half-plane are illustrated in Fig. 2.7.

\&’\\ /xx/

\F/\J
i

FIGURE 2.7. Incident, reflected and scattered field from a perturbation in a half-plane.

REMARK IL.3. In order to avoid future complications in establishing integral equa-
tions to solve scattering phenomena, we will only deal with perturbations of the flat bound-
ary that enter into the upper half-plane, as the one displayed in Figs.2.6 and 2.7. Pertur-
bations that cross the flat boundary towards the lower half-plane will be not permitted.
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REMARK I1.4. An embedded obstacle or inclusion, such as the rigid body or the cavity
previously considered, is also allowed as a local perturbation of the half-plane.

2.4.2 Impedance boundary conditions

One of the main differences of a semi-infinite domain with respect to an infinite exte-
rior domain is that the former is delimited by infinite boundaries, whereas the latter is not.
Consequently, the boundary conditions are a fundamental issue in the study of a scattering
phenomenon in a perturbed half-plane. As the motivation of the present work comes from
geosciences, the elastic half-plane is actually supposed to represent the ground. Therefore,
in order to introduce the boundary conditions, we assume for a moment our perturbed half-
plane to be located at the lower half of R?, as indicated in Fig. 2.8. The unit outward
normal and tangent vectors on I" are denoted by n and T, respectively. Next, we concen-

o . N R ﬁx%_ e

L
I-‘;\"/- 1/1)

t
o
FIGURE 2.8. Locally perturbed half-plane representing the ground.

trate our attention on the boundary conditions for the model, and specially on those that
will hold on I'.. In applications to geophysics, Dirichlet boundary conditions are not usu-
ally considered, since prescribing the displacements of the ground surface does not make
physical sense. Actually, most geophysical models consider a traction-free condition on
the ground surface, that is, the boundary is not being forced. This assumption corresponds
to homogeneous Neumann boundary conditions, that is, the total field satisfies

o(u(z))n =0 onT. (2.47)

In the present work, we consider special impedance boundary conditions that generalize
(2.47) and are of interest from a mathematical point of view. In a simplified geophysical
model of the ground, we can suppose that the normal stresses on the surface are equal to
the atmospheric pressure exerted by tiny particles of air. As in practice this pressure has no
significant influence on the elastic waves that occur in the ground, it can be neglected, so
we assume the normal stresses to vanish, that is,

cu(z)n-n=20 onl. (2.48)

In addition, we may suppose shear stresses to be zero, retrieving the usual traction-free
boundary condition (2.47). Instead of this, we make a more general assumption: The shear
stresses are assumed to be proportional to the tangential displacements as follows:

ou(x)h)n 7 =wZ(xz)u"(z) T onT, (2.49)
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where the function Z(-} is the surface impedance, which in general could have complex
values, but we only treat the case where Z is a real function of the form

Zo( ifx €T,
Z(z) o(@)  ifzel, (2.50)
Zy. ife € Poo;

where Z, : I;, — R is a bounded function and Z, € R is a given constant. From a physical
point of view, as (2.49) states a linear relation between stresses and displacements, Z can be
assimilated to a shear stiffness modulus. Notice that Z = 0 corresponds to the traction-free
case mentioned above. Both relations (2.48) and (2.49) can be written together by means
of the following single vector identity:

—o(u(x))n + wZ(z)u(z)T =0 onT, (2.51)

T

where u!°® = 4" . . Relation (2.51) expresses mathematically the impedance boundary

conditions to be considered throughout this work in any application to elastic half-planes,
either perturbed or not. In the non-perturbed case, we assume that there is no scattered
field, so the total field is the sum of the incident and the reflected field. In this case, the
surface impedance reduces to Z = Z,,. Furthermore, the normal and tangent unit vectors
are constants and given by n = —e; and T = &, respectively, and (2.51) is restated as

o(u"(z) + u' (@))e; + wZoo(u(z) +ui(x))e1 =0 on{z2=0}. (2.52)

2.4.3 Scattered field and radiation conditions in the free boundary case

As it was done in the case of an exterior domain, we denote the scattered field by u
instead of u*. We already know that both the incident and the reflected field satisfy the
elastic wave equation (2.44) in the non-perturbed half-plane, and the total field defined in
(2.45) satisfies the same equation (2.46) in the perturbed half-plane. Consequently, the
scattered field also fulfills the elastic wave equation in the perturbed half-plane:

div o(u(z)) + pwiu(z) =0 in Q2. (2.53)

On the other hand, there is an important phenomenon that arises in the case of an elastic
half-plane: The existence of surface waves, which behave oscillatorily along the infinite
flat surface and decay exponentially towards the half-plane interior. Such waves usually
appear as a part of the scattered field from the local perturbation, but they could also exist
in the non-perturbed half-plane (see Appendix B). In the case of a traction-free boundary,
it is well-known that there always exist a surface wave called the Rayleigh wave. The wave
number associated with this wave, denoted by kg, satisfies kr > kr > k.. The Rayleigh
wave has been widely studied due to its importance in practical applications (cf., e.g.,
Achenbach 1973, Graff 1991, Harris 2001). On the contrary, in the case of the impedance
boundary conditions introduced above, it is not known what the surface waves are like, and
this matter will be subsequently studied in Chapter VII. The existence of surface waves
makes it difficult to establish radiation conditions at infinity, because it is necessary to
ensure that both the volume and the surface waves are physically admissible, that is, they
correspond to outgoing waves. The radiation conditions for a non-perturbed half-plane
with traction-free boundary have been recently determined by Durén et al. (2009b). In that
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work, the effect of the surface wave is separated from that of the volume waves by dividing
the half-plane into two different regions. Given a parameter « such that 0 < o < 1,2, these
regions are defined as

R2(a+) = {(z1,22) € R : 33 > r°}, (2.54a)
R2 (a—) = {(z1,22) € R} : 3y < 77}, (2.54b)

and it is assumed that the volume waves occur mainly in the region R%(a+), while the
Rayleigh wave is almost completely contained within the region R3 («—). Therefore, radi-
ation conditions analogous to those for an exterior domain are imposed in R2 (a+}:

|{o(u(®))f — ik (A + 2u) u(z)) - 7| = O(r ")
I(J(“(m))f' — ikrpu(x)) - 0 | = O(r Y

and a new radiation condition is considered in R% (a—) in order to avoid incoming surface
waves:

in R: (a+), asr — 400, (2.55)

|o(u(z)P — iMu(z)| = o(r=1/%) in R2 (), asr — 400, (2.56)
where M is the following matrix:

(8ign z; k% —2K2 0
M =2ukpl +
o kﬁ—\/ka—ki\/kz—k%( 0 #
signz, kr  iVk% — k%
X .
ivk} — k3 —signz kg
The radiation conditions introduced by Durdn et al. (20095) (given in (2.55) and (2.56))
are valid for an elastic half-plane with free boundary. In the case of a half-plane with
impedance, the radiation conditions have not been obtained yet, and the main difficulty lies
in the lack of a mathematically precise description of the surface waves that appear in this
case. The determination of explicit forms to express the radiation conditions constitutes a
complex matter, and it is beyond the scope of the present work.

(2.57)

REMARK IL.5. Notice that as a first approach to the radiation conditions for the case
with impedance, one could think of considering the same division of R into the regions
R? (a+) and R% (a—). As the asymptotic behavior of the volume waves when x5 goes to
infinity is not dramatically influenced by the boundary conditions on {z, = 0}, it makes
sense to impose (2.55) in ]R?,_(a+). After that, it would be necessary to study mathemati
cally the surface waves appearing with impedance boundary conditions, in order to find an
adequate radiation condition to impose in R% (a—).

2.4.4 Impedance boundary-value problem

Next, we write the boundary-value problem that describes the scattering phenomenon
in a locally perturbed half-plane with impedance boundary conditions. The case of traction-
free boundary conditions is mentioned as a particular case. In order to determine precisely
the right-hand side of the impedance boundary conditions satisfied by the scattered field,
it is necessary to distinguish between the infinite flat part I',, and the finite perturbed part
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[,. In the first case, the impedance is constant and given by Z = Z.. Additionally, as
Lo C {z2 = 0}, it holds that n = —é,, 7 = é&; and the boundary conditions (2.51) for the
total field u*°* can be written as

a{u*(x))és + wZul (x)e; =0 on I (2.58)

Substituting (2.45) in (2.58) and combining with (2.52), we obtain that the scattered field
u satisfies homogeneous boundary conditions in the flat part of the boundary, that is

o{u(x))és + wZ u;(x)é; =0 on I,. (2.59)
In the perturbed part of the boundary, the impedance depends on the position and is given
by Z = Z,. Replacing (2.45) in (2.51) yields
—a(uw(x))n + wZ(x)u, ()T = o(u™(x) + uv(z))n
— wZ,(@)(W(2) + ' (@)T  onl,

that is, the scattered field u satisfies inhomogeneous impedance boundary conditions in the
perturbed part I,. Hence, putting (2.53), (2.59) and (2.60) together yields the impedance
boundary-value problem in the locally perturbed half-plane: Find u : Q% — C? such that

(2.60)

div o(u(z)) + pwu(z) =0 in Q2 (2.61a)
—o(u(@))n + wZ,(x)u.{(x)T = f(z) on [}, (2.61b)
o(u(x))es + wZoui(x)é; = 0 onl,, (2.61¢)

+ Outgoing radiation conditions asr = |&| — +o0, (2.614)

where the right-hand side of (2.61b) is given by
F(x) = o(u™(x) + v (x))n — wZ,(z) (W (z) + v (z))T, (2.62)

and as the radiation conditions are not known in this case, they have been expressed in
words. If Z = 0 in I', we obtain a Neumann boundary-value problem describing scatter-
ing in a locally perturbed half-plane with free boundary. Although the radiation conditions
mentioned above have been obtained for a non-perturbed half-plane, they can be incor-
porated into this problem, since the considered perturbation is local. We obtain the next
boundary-value problem in the perturbed half-plane: Find » : Q5 — C? such that

divo{u{z)) + pwu(z) =0 in Q¢ (2.63a)
—o{u(x))n = f(x) onT,, (2.63b)
og(u(x))és =0 on I, (2.63c)

|(o(u(x))? — ikp(A+ 2p) u(z)) - 7| = O(r )
|(o(w(z)) — ikrpu(x)) - 8| = O(r 1)
|o(u(@)? — iMu(z)| = o(r /%) asr — +oo,r* >z, (2.63e)
where the right-hand side of (2.63b) is obtained by setting Z,, = 0 in (2.62), that is,
Flx) = o(ui™(x) + v (x))n, (2.64)
and M is the matrix defined in (2.57).

asr — 400,r% < xg, (2.63d)
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III. METHODS INVOLVING INFINITE SERIES FOR EXTERIOR
SCATTERING

3.1 Introduction

This chapter introduces two methods for solving the exterior scattering problems men-
tioned in Section 2.3, where the incident field is assumed to consist of pure longitudi
nal or transverse plane waves. Both of these methods employ analytical techniques and
yield explicit expressions as infinite series. The first method is restricted to the particular
case where the obstacle is a circle. The respective Dirichlet and Neumann boundary-value
problems are analytically solved by separation of variables in polar coordinates, yielding
analytical formulae for the scattered field that involve infinite series. These solutions are
of practical interest, because they can be used as benchmarks to validate numerical so-
lutions. The second method is closely related to the first one and involves the so-called
Dirichlet-to-Neumann (or Steklov-Poincaré) map, which is a powerful tool to solve ex-
terior boundary-value problems where the bounded domain is arbitrarily shaped. A de-
tailed description of this technique applied to exterior acoustic scattering can be found in
Thlenburg (1998). The DtN map for two-dimensional time-harmonic elastic waves has been
obtained by Givoli & Keller (1990) and its mathematical properties have been further stud-
ied by Harari & Shohet (1998). A circular artificial boundary surrounding the obstacle is
introduced, and an auxiliary boundary-value problem is stated at the exterior of the circle,
which is analytically solved by proceeding as above. The DtN map is then defined as the
normal derivative of the solution of this problem on the circumference. We provide an
explicit formula for the DIN map in terms of an infinite series. This procedure naturally
leads to restate the scattering problem within the bounded domain that lies between the
circumference and the boundary of the obstacle. Exact nonreflecting boundary conditions
are then specified on the circumference in terms of the DtN map. The new boundary-value
problem is posed in variational form and approximated by a Galerkin-type method. The
emphasis is placed on the approximation of the term involving the DtN map.

3.2 Explicit solutions for the exterior of a circle

3.2.1 General solution to the elastic wave equation

We start by defining the mathematical domain to be considered throughout this section.
The obstacle is the ball B, of radius ¢ > 0 centered at the origin. The exterior domain
corresponds to the complement of the closed ball, defined as 2% := R?\ B,. The boundary
is the circumference of radius a, denoted by S, := 3B,. The domain is illustrated in Fig.
3.1. The polar coordinates appear as the natural way to describe this domain. It can be
defined as

Qe = {(rcosﬁ,rsint?) ra<r<4oo, 0<0< 21r}, 3.1
and we desire to compute a solution to the elastic wave equation in Q*, that is,
divo(u(r,0)) + pwiu(r,8) =0 (r,8) €]a, +oo[x[0, 27} (3.2)
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FIGURE 3.1. Circular obstacle in an infinite elastic medium.

The calculation is made wsing the decomposition (2.27) for the solution w:
u(r,8) = V'Y (r, 8) + Vi D(r, 8). (3.3)

From Section 2.2, we know that (&) and /(T satisfy (2.26a) and (2.26b), respectively. We
write these Helmholtz equations in a single way as follows:

AP (r, 8) + k2ypeX(r, 8) = 0, a=1L,T, (3.4)
and we look for solutions to (3.4) fulfilling the Sommerfeld radiation conditions at infinity:
|3r?,b(°‘)(r, ) — ik, p'® (7, 9)| = o(r'1/2) as 7 — +00. (3.5)

Let us expand the Laplacian in polar coordinates. The Helmholtz equation (3.4) becomes

a?w(a) 13¢(a) 1 821,0(0) 2 (@)
o PO+ 0+ e )+ 0) =0 G6)

To solve (3.6), we apply separation of variables on (® in the form

P (r,8) = n(r)x(6), (3.7)
where 1 and x are unknown functions to be determined later. Replacing (3.7) in (3.6) yields
1, 1
n"(r) x(6) + — ' () x(0) + 5 n(r) X"(6) + kan(r) x(6) = 0. (3.8)
and rearranging appropriately, we obtain the equation
277" (1) 7'(r) 2,2 x"(6)
T +r + kirt = —=——. (3.9
n(r) n(r) x(6)

As the left-hand side of (3.9) only depends on r and the right-hand side only depends on 6,
this equations holds on condition that both sides are equal to a constant. Let us denote this
constant by v. On one hand, we obtain from (3.9) that the pair (v, x) is a solution to the
spectral problem

x"(8) = vx(8), 0<60< 2w, (3.10)
which has a countable number of nonzero periodic solutions {(vp, X ) }nez, given by
v =12, xn(8) =™, (3.11)
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where the eigenfunctions ¥, are actually defined up to a multiplicative constant. Moreover,
the set {xn }nez is an orthogonal basis of L%(S,) that satisfies

(Xn:Xm)U,Sa —= 271-0‘ 6n.mz n) m e Z? (3‘]2)

where (-,-)o,s, stands for the inner product in L?(S,). Therefore, if v : S, — C is any
square integrable function, then it can be expressed as a Fourier series as follows:

Foo 27
inqS inf
V(8 % > / dg ™. (3.13)
=—00
On the other hand, we obtain from (3.9), (3.10) and (3.11) that 7 is a solution of the equation
r2a(r) + 7o (r) + (kar® —n®) ga(r) = 0. (3.14)

Performing the change of variable z = k,r and defining v,(z) = n,(r), we obtain the
following ordinary differential equation:

20(z) +zu(2) + (2 —nB)w(2) =0, neZ, (3.15)
which corresponds to the Bessel equation of order n. Its solution is written in terms of the
Hankel functions of order n (See Appendix B):

va(z) = AVHD(2) + AP HD (), (3.16)
where Ag) and A,(f) are generic coefficients. Hence, the solution to (3.14) is
(1) = AVHD (kor) + ADH® (k,7), neZ, (3.17)

and the general solution to (3.4) is expressed as a series of products of functions 7, (7 ) x, ()
over n € Z, that is,
e
P, 0) = > (AVHD (kar) + ADHP (kar))e™. (3.18)
n=—0x .

In addition, the Hankel functions fulfill the recurrence formulae (B.12) and the asymptotic
expansions (B.14). Using these relations, it is possible to prove that the next relations hold
for large enough r:

| S HO (kar) — ko B (kar) ‘ — O(r 3/, (3.192)

@ _ o112
|dr Mkar) — iko HO (kar \ ). (3.19b)

From (3.19a)-(3.19b), it follows that only the Hankel functions H,(f) satisfy the outgoing
radiation conditions at infinity (3.5). Consequently, functions HS? are eliminated from the
solution by setting A® = 0in (3.18) for all n € Z. We then write the scalar potentials
separately for« = L, T

Y (r, 6) Z A HD (kpr) e, (3.20a)

nN—=—0Q
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P (r, 8) Z B, H\V (kpr) e (3.20b)
n— —00
where coefficients A, and B, are general. The factor 1/27x is added in order to simplify
subsequent calculations. Computing VL) and V44(T) gives

vl (r, 6) Z Ay, (kLH“”(kLr)r+ HO (k) ) nf (3.212)
VT (r, 6) Z B, (‘"’ HO (k) # — bpHY (kpr) e) " (321b)
n——oo

Substitution of (3.21a) and (3.21b) in (3.3) yields a general expression for the solution of
(3.2) in polar coordinates:

w(r, 8) = u,(r, 0) 7 + ug(r, ) 6, (3.22)
where
=
“ g 2 (A ke, HO (kyr) + Bure H(l)(kTr)) (3.23a)
1 <3 .
uo(r, 0) = - Z (A M O (eypr) — BnkTH;U'(kTT))em". (3.23b)

Coefficients A,, and B,, can be obtained explicitly from particular boundary conditions
specified on S;,. In the subsequent subsections, we determine the scattered fields for Dirich-
let and Neumann boundary conditions, by solving analytically the corresponding boundary-
value problems.

3.2.2 Scattered field by a rigid circular body

Next, we determine the field scattered by the circle when it corresponds to a rigid body.
The Dirichlet boundary-value problem (2.39) is then reexpressed in polar coordinates: Find
u : & — C? such that

div o(u(r, 0) + pwu(r,8) = 0 in Q¢ (3.24a)

u(a,d) = —u'"(a,8) @€ [0,2n], (3.24b)

|(o(u(r,8)F — ikp(A+ 2p) u(r,0)) - #| = O(r ")
|(o(u(r,8)F — ikrpu(r,0)) - 8| = O(r~1)

The incident field u'™ is expressed by components in polar coordinates as

w"(r, 8) = u'™(r, ) # + wi'*(r, 0) , (3.25)

asr — +00. (3.24¢)

We assume that this field consists of either pure longitudinal or transverse plane waves, as
indicated in Fig. 3.2. The direction of propagation is defined by the angle o, measured
downwards with respect to the horizontal. A general incident field in terms of plane waves
can be obtained as a linear combination of these two elementary fields, which are denoted
by u™(X) and u"(™), respectively. Explicit expressions for a longitudinal and a transverse

24



elastic plane wave in cartesian coordinates are determined in Appendix A.1. These expres-
sions are given in (A.10a) and (A.10b), respectively, as functions of a. As we are using

) Qe
0
uinc(T)

FIGURE 3.2. Longitudinal and transverse incident waves with angle ayg.

polar coordinates, we attempt to express the incident fields %™™(*} and «'"(*} in terms of
their radial and angular components, that is,

u D (r 0) = (D (r 0) # + 4D (r, 6) 8, (3.26a)
w™D(r, 6) = u™M(r,0) # + uy(r,0) 8. (3.26b)

Performing a change of coordinates, we obtain that the components of ©**(*) are
u’irnc(L) (T‘, 9) cos (aﬂ + 9) eikLT‘ COS(OEO'FU), (3273)
uy“I(r,8) = — sin (g + §) elkeroosloo+), (3:276)

while the components of ©"(T) are

uinC(T) (7«’ 9) — sin (050 + 9) eikrrcos(ao+0)’ (3.28a)
u;“C(T) (r,0) = cos (a + 8) e'Frmooslootd) (3.28b)

To simplify the notation, we consider the general incident field ©™ given in (3.25), and
we go back to the distinction between longitudinal and transverse waves later. In order to
solve (3.24), the incident field is evaluated at r = a and its components are expanded as
Fourier series, as given in (3.13);

mc mc ,}  —ing ing 2
(a,0) = 5 n_g_oo / (a, @) d¢ ™, (3.29a)
+0o 2m
mc mc inqb inB. 3.2
(a,6) = n_§_ :L f do e (3.29b)




On the other hand, the components of the general solution to (3.24a) given in (3.23) are
evaluated at r = a, obtaining

=+ o0 .

1 |

wl(ad) = 3 (AnkLH,(f)’(kLa)+Bn%H,§1)(kTa))e‘”", (3.30a)
1 = in (1) (1) ¢ ing

AR = n—_ dily LUj — Dphpil, " LAT . .

to(a,0) = = n_zoo (A = H (kua) — BakrHYY (k a))e (3.30b)

Substituting (3.29) and (3.30) in (3.24b) and separating into radial and angular components
yields the following system of linear equations for A, and B,;:

ke HO (ko) A, + ?H}:)(km)Bﬂ as] (3.312)
%Hy)(ﬁ;m)An — ke HYY (kpa) By, = —I g, (3.31b)
where
2“ a a
Ly = f u"(a, p)e"?dé, (3.32a)
0
2 . .
Ino = f ug'(a, g)e "?dg. (3.32b)
0
By solving this system, we obtain the next expressions for the coefficients A4,, and B,,:
1 .
An= (krHY (kra) T,s + "B (kra) Lp), (3.33a)
1 i
B, =5 (%H}Ll)(kba) Iny — k HY (kza) In,g), (3.33b)
n
where )
n 14
60 = — HP (ki) H (kra) — kpkr B (kua) V' (kra). (3.34)
If u'"¢ = u!"*(L) we can reexpress integrals I, . and I, 4 by replacing (3.27) in (3.32):
2m
I, =/ cos (aq + p)eitkracostaote)-nd)qg (3.35a)
0
27
In,e — _f sin (Ofo + ¢)ei(k;_,acos(ao+¢)—n¢)d¢’ (3.35b)
0
Analogously, if u™ = u™(T), we reexpress I, . and I, g by replacing (3.28) in (3.32):
2r
I, = / sin (g + ¢)elkracosteotd)—nd) gy, (3.36a)
0
2m
Ing = f cos (0 + @)eltFreceslootd) ndlqg (3.36b)
0

Consequently, substituting A,, and B,, from (3.33) in the general solution ¢ given in (3.22)-
(3.23), we obtain the explicit solution to the Dirichlet boundary-value problem (3.24).

26



3.2.3 Scattered field by a circular cavity

We determine now the scattered field in the case where the circle is an empty cavity.
This problem has been previously treated by Perrey-Debain et al. (2003) for a transverse
incident wave. As the boundary of the obstacle corresponds to a circumference, it holds

that n = —7, and the Neumann boundary-value problem (2.42) is reexpressed in polar
coordinates as: Find u : 22 — C? such that

divo(u(r,9)) + pwu(r,8) = 0 in 5, (3.37a)

t(#) = —t"™(0)  6c0,2n], (3.37b)

|(J(u(r,0))i~ — ik (A + 2u) u(r, 9)) -f-| = o(r )
(o(u(r, N — ikrpu(r, 9)) .8 | o(r 1)

where ¢ and '™ are the surface traction vectors associated with the scattered and the
incident field on S,, respectively. These vectors are defined as

as ¥ — +00, (3.37¢)

t8) = —o(ula,))r, (3.38a)
t"¢(0) = —o(u'"(a, )7, (3.38b)
and they can be written by components in polar coordinates as
t(6) = t,.(9) 7 + t4(6) 8, (3.39a)
1"°(0) = t"(0) + 4+ tr°(0) 0. (3.39b)

Substituting (3.22) in (2.16) and combining with (3.38a), we obtain explicit formulae for
t,. and tg expressed in terms of u,., ug and their derivatives:

B ou, A Oug
tr(ﬁ) = —(/\ + 2,&)5(&, 9) - E (@(G, 9) + ’U,T-(G,, 6)), (340&)
7, Ou,
to(6) = —p ﬁ(a, 9) — %(a—%(a, 8) — uo(a, 9)). (3.400)

It should be observed that the formulae that express £ and ¢ in function of ui"®, u' and
their derivatives are completely analogous. If u'™ = 4"*(*), we obtain a surface traction

vector which we denote by ¢"“'2), Its components can be obtained by replacing (3.27) in
(3.40) for u = u'"clL):

6 (8) = —ikp (A + p + pcos2(ap + §)) vecosleoto), (341a)
t5°U(9) = ik sin 2(ap + §) eikrecosiootd), (3.41b)

In analogous way, if u'"® = 47} we obtain another surface traction vector, denoted by

T} whose components are obtained by replacing (3.28) in (3.40) for u = uinelT).
t;nc(T)(g) —ikT,u sin 2(0{0 + 9) eikTacos(ao+9)’ (342&)
t;nc(T)(g) e —ikT}L COS 2(&0 + 9) 6ikTﬂ 005(004‘9). (342[))

In what follows, we consider a generic surface traction vector £ as the one given in
(3.39b), and we make subsequently the distinction between longitudinal and transverse
waves. In order to solve (3.37), the components of ™ are expanded as the Fourier series
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given in (3.13):

: 1 = % - .
t;nc(g) % Z f t;nc(¢) e m¢d¢ emﬂ, (3.433)
+oo 27
mc Z: / tmc —mgbd¢ emﬂ (343b)
27r =

On the other hand, replacing u, and ug from (3.23) in (3.40) yields the next expressions
for ¢, and tg:

— I A

> (Ankd (HO" (bra) - Z-HD (kra)

— & (3.44a)

+ B, (kTH“)'(kTa)-1H“)(km))) no,

6) = —g;; (An'g (kL HE () = SHD (s0)

t(0) =

Alw

(3.44b)
— Bk (Hy)"(km) + %H,ﬂ”(kg«a)))ei"”.

Replacing (3.43) and (3.44) in (3.37b) and separating into radial and angular components,
we obtain a system of linear equations for A, and B,:

A
2 ( gy — M
K (HS" (k) S (k1)) An

, . (3.452)
n (1) _ 2 - _
+2 (kTHn (kra) — —H} (kTa))B,,, Trms
E(kbﬂg)f(k a) — —H“) (kra)) An
a (3.45b)
kT(H(l)"(k1 a) + H(l)(kTa))B —Jon,
where
1 27 i i
i f t(p) e "Pd g, (3.46a)
T 2u g
Jon = L e (@) e "t gp. (3.46b)
T 2u o
By solving this system, we obtain the coefficients A, and B,,:
I ]‘
A, = o (kT(H(U (kra) + 2H (kTa))Jr,n
" : (3.472)

in (1)/ _lom
- (kTHn (kra) — =H{ (kTa,))Jg,,,,),
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B, ~ ((kLH,(,l)’(kLa) - 1H,(,l)(fm)) Jom
e, a

) (3.47b)

- k2 (H,gl)"(kba) 5 H,gl)(kLa)) Jg,n) :

where
1

en = — k2K2 (H,(:)”(kba) = iH,(,l)(kLa)) (Hgl>”(kTa) + —H}f’(kq«a))

2 2 (3.48)

2
n 137 | — | —
+ E(kLH,E (kya) — —HS )(kLa)) (kTH,gU'(kTa) — ~H )(kTa)).

If une = el jtis possible to make these integrals explicit by replacing (3.41) in (3.46):

ik, [ .
Jrm = —17" (14 A/ + cos 2(ap + ¢)) eitkracos(aotd)ndlqq, (3.492)
0
. 2
Jon = ""71‘ sin 2o + ¢) eltkeacosleotd) nd)qq (3.49b)

0

Analogously, if u™ = w1, we reexpress explicitly I\’ and I3’ by replacing (3.42) in
(3.46):

3 2
Jrm = L R 2ag + @) eilbraceslcotd)-nd) gy (3.50a)
0
ikp [%" -
Jopm === / cos 2(ap + @) ellkrecostaotd) ndlqg (3.50b)
0

Therefore, substituting A,, and B,, from (3.47) in the general solution u given in (3.22)-
(3.23) yields an explicit solution to the Neumann boundary-value problem (3.37).

3.3 Dirichlet-to-Neumann (DtN) map for an exterior domain

3.3.1 Artificial boundary and definition of the DtN map

Next, we introduce the Dirichlet-to-Neumann (DtN) map as a mathematical tool that
yields exact nonreflecting boundary conditions for time-harmonic elastic waves, thus pro-
viding a numerical approach to solve scattering problems in exterior domains. Let us sup-
pose that we desire to find the scattered field from a bounded obstacle $2'** with arbitrary
shape. The corresponding exterior domain is defined as Q®* = ]R2\Qm. Moreover, we
denote by I' the boundary and by 7 the unit normal vector, as indicated in Fig. 3.3. The
boundary-value problem describing this phenomenon is written as: Find u : Q¢ — C?
such that

divo(u)(x) + pwu(z) =0 in 2°%¢, (3.51a)

o{u(x))n = f(x) onT, (3.51b)

|(a(u(a:))'i' Bhad + b u(:c)) ff‘ = 0™ as r — 400, (3.51c)
|(o(u(x))? — ikrpu(z)) - 8| = O(r!
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Qext

FIGURE 3.3. Arbitrarily shaped bounded obstacle in an infinite elastic medium.

where the right-hand side function f is related to the incident field, assumed to be given.
Notice that the Neumann boundary conditions have been specified on I" for the sake of
simplicity, but Dirichlet boundary conditions could have been considered as well. In order
to restrict the analysis to a finite domain, we introduce an artificial boundary that truncates
the unbounded exterior domain. This boundary corresponds to the circumference Sg of
radius R centered at the origin. The exterior domain §2°** is then divided into two sub-
domains, namely a bounded subdomain Q" = Bg\Q and an unbounded subdomain
Qe* = R2\Bp. The radius R has to be chosen sufficiently large, in such a way that
Qint  Bp, as indicated in Fig. 3.4. After that, we establish a bounded boundary-value

ext,
Qg

FIGURE 3.4. Infinite elastic domain truncated by a circumference of radius R.

problem: Find u : Qi8* — C2 such that

div o(u(x)) + powu(x) = 0 in Qo
o(u(@)n — £ (=) onT,
g(u(z))n = o(U(x))# on Sg,
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and an unbounded boundary-value problem: Find U : Q%% — C? such that
diva(U(r,8)) + puw*U(r,0) = 0 in Q53 (3.53a)
U(R,0) = u(R,0) 6 € [0, 2n], (3.53b)
|(o(U(r,8))7 — ik (A +2u)U(r,0)) - #| = O(r 1)
|(o(U(r,8))i — ikrpU(r,0)) - 8] = O( 1)

and the DtN map is defined as indicated next:
T, [H'2(SR))? — [H/*(SR)]’

u — T,u U(U)'f'|SR.

as r — +oo, (3.53¢c)

(3.54)

In the next subsection, we determine an explicit formula for this map.
3.3.2 Explicit expression as an infinite series

In order to explicitly determine 7, we solve (3.53) analytically. This is feasible,
because the domain is the exterior of a circle. The components of the solution to (3.53a) in
polar coordinates are computed as made in Section 3.2:

+oo

1 i .

Un(r,0) = 5~ > (kLH,gl)'(kLr)An+ ?Hy)(kﬂ) Bn)em", (3.552)
1 100 in )

Us(r,6) = 5 3 (? HO (kyr) A, kTH,gl-‘-'(kTr)Bn)f:m". (3.55b)

Evaluating this solution at r = R yields

+c0 d
U.(R,0) = % 3 (kLH,gl)’(kbR)An + % HO (ke R) Bn) einf (3.56a)
n=—00
+oo .
Us(R,0) = -21? Y (lig HO (kL R) A, — kTH,g”'(kTR)Bn) el (3.56b)

On the other hand, the components of the solution w to (3.52) are evaluated at r = R and
expanded as Fourier series, as given in (3.13):

+0o0 O
u,.(R,G):% > /0 u(R, ¢} e "dgp (3.57a)

n=~00

+co 2
ua(R,G):% 3 [D uo(R, §) e "bdg en? (3.57b)

n=—00
Therefore, replacing (3.56) and (3.57) in (3.53b) and separating into components, we ob-
tain a system of linear equations for A, and B,,:

. 27
R H (kL R) Aq + = HO (or R) By = / w(R, ) e~ dg, (3.58a)
0
: 2w
%H,g”(kLR)An — kpHV'(kpR)B, = / up(R, ¢) e ™ de. (3.58b)
0
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The solution is given by

1 . 2n )
A, = (kTH,';l)’(kTR) / u-(R, ¢)e ™dg

N (3.59a)
H(l)(k/rR)/ uG R d) —mgbdqs)
1 ri : 2 )

Bn _(5_ (%Hﬁl)(kLR) / ’LL,.-(R, gb) e—m¢d¢

’ " o (3.59b)
- kLH.,g])l(kLR) / ’U,o(R, ¢) e_ln¢d¢) .
0
where \

bn = ;2 Hy(ll)(kLR)HT(ll)(kTR) _ kLkTH,g_l)’(kLR)HS)’(kTR). (3.60)

Consequently, substitution of A, and B,, from (3.59) in (3.55) yields the solution of (3.53).
From the definition of the DtN map given in (3.54), it is immediate that its components in
polar coordinates are obtained from formulae analogous to (3.40):

ou, A r9Uy
i S
(Tuw),(60) = A+ 20) S H(R,6)+ R( o5 (B0 + Ur(R 0), (3.61a)
8U ou,
(Tu)(0) = n 2(R,0) + R( (R, 6) - Ug(R,B)). (3.61b)
Replacing (3.55) in (3.61), we have that the components of the DtN map are
_ b X 2 g0 A )
(Tou) 0) == > (kR {HO"(kR) — —H"(kLR) ) An
L .x( ( 2 ) (3.62a)
(kTH“)’(kpR)——H“)(kTR)) a) e
R R ’
400 .
© in : 1
(Tow),(0) = £ 37 (F (kB (ki R) - LHD (k1 B)) An
sy (3.62b)

— K (H{" (ke B) + SH (brR)) By )™,

and to make explicit the dependance of T, on u, we substitute A,, and B,, from (3.59):

(Twu)r(é’)——— Z f (g7 ur(R, @) + ¢lus(R, $))e ™ * Odgp,  (3.63a)
(T, Zj f 0 (R, @) — ®us(R, 8)e"0dg,  (3.63b)
where
- (1) 2 pr(1 AT I go
4 = krREY (brR)( KL HO" (kL B) — (2 — k] + 75 ) H (ki R)
(3.64a)

2
T
+ L HO (e Y HD (hr ),
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¢"? = inky (kT (Hy)”(kq-R) + %H,@(kTR))

: (3.64b)
— H (ko R) (b HYY (k. R) — EH,&”(JGLR))) ,
00 (1) 2 pr(l)w n’ k% (1)
¢ = b, RHOY (kL R) [ K2HD" (krR) - (R—?_ 7)Hn (krR)
i (3.64¢)
+ 1"%2 HO (k, R)HD (krR).

Expression (3.63) corresponds to an explicit formula for the DtN map, represented as an
infinite series of integral terms. Employing the DIN map, the boundary-value problem
(3.51) can be conveniently restated as: Find w : Q}'{‘” — C? such that

divo(u({z)) + pw’u(z) = 0 in Q¢ (3.65a)
a(u(z))n = f(x) onT, (3.65b)
o(u(z))n = T, u(x) on Sg. (3.65¢)

This is a Neumann boundary-value problem posed in a bounded domain, where the influ-
ence of the exterior is stored within the DIN map. Therefore, (3.65c) corresponds to an
exact nonreflecting boundary condition for elastic waves. From a mathematical point of
view, this is a non-local boundary condition of the Neumann-type, with the difficulty that
the right-hand side is not a known function but involves the solution .

3.3.3 Galerkin approximation of the DtN term

In order to obtain a Galerkin approximation of (3.65), we state the following variational
formulation: Find w € [H!(3")]? such that

[ ot co@n o[ uie)-vie)is

(3.66)
_ [ Tou(e) - v(=)ds(z)= fr F(@) v@)ds(x), Vo€ [H(QM)]2

Sk

The approximation of the two volume integrals and the right-hand side is standard. It can
be found, e.g., in Ciarlet (1978), Raviart & Thomas (1983), or Zienkiewicz (2000), in the
context of finite element methods. However, the approximation of the integral containing
the DtN map is not commonly found in books of this type, so we concentrate our attention
on this term. An expression in polar coordinates for the DtN map as (3.63), even though
it is right, is not very useful for practical purposes. If one desires to make numerical
calculations, an expression in cartesian coordinates is necessary, because it can be directly
implemented in a computational code. Thus, we make a conversion of coordinates in (3.63).
If the displacement u is expressed in cartesian coordinates as

u(x) = u(x) 8 + ug(x) é2, (3.67)
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then the polar components u,. and ug can be obtained from the cartesian coordinates «; and
19 by means of the relations

up(r, 0} = w1 (z1, 22) cos O + ug(zy, z2) sin b, (3.682)
ug(r,8) = —u1 (21, Z2) sin 0 + ua(z;, 22} cos . (3.68b)

Moreover, let us recall that the unit vectors # and @ are defined as
=cosfeé, +sinfé,  O=—sinfé, +cosheé,. (3.69)

Replacing (3.68) and (3.69) in (3.63) and expanding in an appropriate way, we obtain that
the DtN map can be written as follows:

+00

2m
Tu(6 Z Qn(6, d)u(R, ¢) e """ dg, (3.70)

where (,, is the matrix defined by

Qul6,0) = [c?sﬂ sinﬁ] [ q;:l; q,;;: ] { c?sqb sin ¢ ] ? 371)

siné  cosf qn  qn —sing cos¢

and the coefficients ¢”", ¢7¢, and ¢%¢ are given in (3.64). Consequently, the term appearing
in (3.66) and involving the DtN map corresponds to the following series of double integrals:

T, u(x) - v(x)ds(z) =
Sk (3.72)

£ Z / QnM Ju(R, ¢) - v(R,0) e ™D dp df.

Let us consider a Galerkin approximation of (3.66), for which we define a vector sub-
space V, € H{(Q2'} of finite dimension N, and an orthogonal basis of V},, denoted by
{;}},. The space [H'(Q25")]? is thus approximated by V2, whose basis is given by
{p;€1,p;és };-\_’_"]. Furthermore, in order to implement the DIN map, the series in (3.72) is
truncated at some sufficiently large positive number N, € N. The term of the DIN map has

an associated matrix which we call the matrix of transparency, defined by blocks as

T Tiz ]
= , 3.73
[ T T @73)
where
[Tkg] & = f gO,;ék 0 Tw(Pjée dS, k, ¢ 1, 2. (374)
Sk

Combining this expression with (3.72) yields

Ny 2r  p2m
1 A A —in{¢—
[Tie) s = 3 > ;. fo [ 0.0, 002w iR, 00 (R P40 dg . 375)
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Hence, replacing @, from (3.71) and expanding the matrix product gives the following
expressions for each block:

Ne
1
[Tu), =2 3 (@ hnkin— @ (findion — Jindion) + &0 Jindjn

) (3.76a)
ne= N;
N
[T, =L i i(q"f, s+ €2 Loy 0+ Fomdyin) — 67000 T ) (3.76b)
T et 673 i I
N
[Ty], =& Z L (g dinl, LDy o+ Jind; s ), (376
21 P 5n dn inij,—n qn(l,‘n,j,n-l_ in,n j,n ( C)
n=—N,;
N,
1
22]1‘? Z a( rrJthj, ng(-[i,n‘]j,—n_ in —n)+q90-[zn-[3 n) (376d)
where foreachi =1,...,Nyand n € Z, I; , and J; , are the following integrals:
27
L= f wi( R, 0) cos ™ a8, (3.77a)
0
2
Jin = / wi(R,0)sinf ™ da. (3.77b)
0
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IV. INTEGRAL REPRESENTATIONS AND INTEGRAL EQUA-
TIONS

4.1 Introduction

This chapter is concerned with the integral representation formulae and integral equa-
tions to solve the scattering problems introduced in Chapter II. The cases of an exterior
domain and a locally perturbed half-plane are separately considered. The integral repre-
sentations are developed for a transmission problem, which is defined in the entire domain
(that is, either the full-plane R? or the half-plane R? ), and jump conditions are specified
on the boundary that separates the unbounded part from the bounded part of the domain.
A detailed study of analogous representations for acoustic waves can be found in Nédélec
(2001) or Abboud & Terrasse (2006), where integral representation theorems are stated
for the solution of the Helmholtz equation at the exterior and the interior of a closed and
bounded surface in R®. An essential issue of the integral representations and equations is
the Green’s function. In the case of an exterior domain, we obtain the explicit expression of
the elastodynamic fundamental solution, and we prove that it satisfies the radiation condi-
tions introduced in Section 2.3. This fundamental solution provides directly the full-plane
Green’s function, which is exhaustively used while obtaining the integral representations.
In the case of a perturbed half-plane, we do not have the explicit form of the half-plane
Green’s function, but it is well-known that it can be expressed as the sum of the full-plane
Green’s function and an additional regular term. This fact, together with some suitable
assumptions, allows us to deduce the integral representations on the perturbed boundary,
and the additional term of the half-plane Green’s function is subsequently calculated in
Chapter VI. The integral equations for each scattering problem are developed by extending
appropriately the respective unbounded boundary-value problem to the bounded domain,
which leads to retrieve a transmission problem, where the integral representation formulae
are applicable. The boundary element method corresponds to the discrete version of the
integral equation method, and it is studied in the next chapter. Throughout this chapter, the
equations of elasticity are expressed in tensorial notation, rather than with vectors.

4.2 Exterior scattering

4.2.1 Fundamental solution and full-plane Green’s function
Let us write the time-harmonic elastic wave equation (2.15) in tensor notation:
7i5(%) + pwiu(m) = 0, (4.1)

where according to Einstein’s summation convention, an index appearing twice on one side
of the equation (as the case of 7 in (4.1)) is automatically summed over all of its possible
values. The Hooke’s law (2.16) is written in tensor notation as

O'ij(a:) = /\’U.'.e’e(éﬂ)&‘j + ,u(um(;c) + Uj’,;(m)). (42)
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Any boundary integral method to solve an exterior boundary-value problem requires the
knowledge of the fundamental solution associated with the underlying partial differential
operator. In general, a fundamental solution satisfies the partial differential equation in the
sense of distributions, with a Dirac’s delta distribution applied at the origin as the right-
hand side. In our case, as we are dealing with a vector partial differential equation, the
fundamental solution corresponds to a second-order tensor, which takes into account that
the Dirac’s delta distribution can be applied in the horizontal and the vertical sense. Further-
more, because of the radial symmetry, we assume that the fundamental solution depends
on x through » = |x|. Let us denote the fundamental solution by U, which satisfies

— (ZE,;(r) + pPUE(r)) = Budolr), (4.3)
where I is the third-order tensor defined as
TE(r) = AUS(r)bs; + u(UE;(r) + USi(r)), 4.4)

and &y denotes the Dirac’s delta distribution applied at the origin. The notation &;; stands
for the Kronecker’s delta. Substitution of (4.4) in (4.3) yields

— (uUE;(r) + (A + p)UES(r) + pw?UF(r)) = 8ixbo(r). (4.5)
To solve (4.5), we use Galerkin’s vectors in order to express the fundamental solution U.
A Galerkin’s vector is a general displacement potential commonly used in static elasticity
(cf. Brebbia & Dominguez 1989, Katsikadelis 2002). In our case, we adapt this technique
to time-harmonic elasticity. Moreover, we have two Galerkin’s vectors that constitute a

second-order tensor denoted by V. The expression for U in terms of V' is given by

ki _ Ltk AHpo ok i pwt i
US(r) =~ (Vi) = 5o Véelr) + 355, W0)) “.6)

Replacing (4.6} in (4.5) and expanding yields the equation
2 2 VAV
pw pw (pw)* .

—(Viﬁuee(f) 512 VEAr) + p Vie(r) + TN ) Vf(’")) dio(7),
which is a fourth-order partial differential equation in V. Notice that this equation can also
be expressed in terms of Laplacian and wave numbers k;, and k7 defined in (2.21):

—(L2VE(r) + kL AVE(r) + k3 AVE(r) + KLk ViE(r)) = udo(T),

or equivalently,

— (A + KR (A + kEYVE(r) = bubo(r), 4.7
and we look for a tensor V in the form of a scalar function v, that is,
VE(r) = v(r)di. (4.8)
Thus, replacing (4.8) in (4.7) gives
— (& + K (D + kL) u(r) = bo(r), (4.9)
and defining the scalar function w by
w(r) = (A + ki )v(r), (4.10)
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it is possible to restate (4.9) as

—(&+ k3 yw(r) = 8o(r).

Consequently, w corresponds to the outgoing fundamental solution of the two-dimensional
Helmholtz operator associated with the transverse wave number kr. This fundamental
solution is well-known. It can be found, e.g., in Bonnet (1995), Nédélec (2001), Lenoir
(2005) or Beer, Smith & Duenser (2008). The scalar function w is thus given by

w(r) = iH[(,”(kTr). 4.11)
Substituting (4.11) in (4.10), we obtain that v is a solution to an inhomogeneous Helmholtz
equation: '

(& + K )v(r) = 7HS (kr),

which can be rewritten as an ordinary differential equation in v by expanding the Laplacian
in the radial variable:

1d dv i 51
- dr (?" dr (T)) + ki v(r) = 7 Hy (krr). (4.12)
On the other hand, it should be observed that the order of application of the Helmholtz
operators in (4.9) was arbitrarily chosen, so it can be inverted. Hence, v also satisfies

(A + ki) (A + k:})v(r) = §p(r),

and proceeding analogously as before, we obtain that v is also a solution of the ordinary
differential equation

1d/ dv 2 l (1)
e (7 dr(T)) + kpu(r) = 4H0 (kpr). (4.13)

Hence, combining (4.12) and (4.13), it is possible to determine v without needing to solve
any differential equation. It is given by
i
)= s 3
)= g
Prior to using this explicit expression for v, we reexpress the fundamental solution U in
terms of v by replacing (4.8) in (4.6) and combining with (2.21):

UC) = 5 ((velr) + Ko() B — (1= BJoalr), 4.15)

where f = kp/kr. Substituting (4.14) in (4.15), expanding and combining with the re-
currence formulae (B.12a), (B.13a) and the identity r ;. = (8 — 7;7x)/r, we obtain the
following expression for the desired fundamental solution:

H (kepr) — H (k). (4.14)

Ubr) = g2 (Al + Blr)rirs), (4.16)
where A(-) and B(-} are the functions
1
A(r) = Hy (orr) = o (B (krr) = BHYY (), (4.17a)
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B(r) = H" (krr) + B2H (kpr) — 24(r). (4.17b)

Notice that U is a symmetric tensor in ¢ and k. Expression (4.16) coincides with the
two-dimensional time-harmonic elastodynamic fundamental solution for isotropic media
given in Manolis & Beskos (1988) and Bonnet (1995). In addition, the third-order tensor X
defined in (4.4) is regarded as part of the fundamental solution, since it plays an important
role in subsequent applications. Hence, we obtain it explicitly by substituting (4.16) and
(4.17) in (4.4). It is given by

£ () = (20( s + D) Burs + 6ar) + BByrs),  A18)
where C(), D() and E{-) are the functions
C(r) = ky(H" (krr) — B H (k1)) — ;B(r), (4.192)
D(r) = —kpH® (byr) + %B(r), (4.19b)
E(r) = —(1 =280k, HV (kyr) + %B(r). (4.19¢)

Due to the singular behavior of the Hankel functions at the origin, both tensors U and X
are singular as r ~ 0. Moreover, U satisfies the outgoing radiation conditions at infinity
defined in (2.36). To prove this result, we rewrite these conditions in tensor notation:

|(ZE.(r)7; — ik (A + 2)UE ()7 | = O 1)

y 00, 4,20
(55 (0, — b V) ()| = 06) as 1 — 400, (4.20)

where we have posed 7 = (7,7,) and 8 = (6, 92) Notice that # satisfies 7; = 7, and
6 can be defined by the orthogonality relation 7; g; = 0. Taking into account thls and
combining with (4.16) and (4.18), we obtain the relations

(S (r)f; — ko (A + 2p) UE(r)) 7 (2C +2D(r) + E(r) @21a)
—iB %k (A(r) + B(7))) 7
(B5 ()7 — ikru UE(r))6; = i( (r) — ikpA(r)) ;. (4.21b)

On the other hand, assuming r to be sufficiently large, we can use (B.14) to determine
asymptotic approximations for functions A(-), B(-), C(-), D(-) and E(-):

A(r) = (1 — i) (wkpr) Y2 4+ O(r=3/%), (4.22a)
B(r) = —(1 — i)(mker) "2 (T — B2 e*) + O(r 37, (4.22b)
C(r) = —(1 +1)(mker) 2 (kp &% — B3k, €%7) + O(r~3/%), (4.22¢)
D(r) = (1 +i) kgl *(ar)~12e*rm 4+ O(r%/2), (4.22d)
E(r) = (1 +i)(1 — 26%) k> (mr) "1 2e%em 4+ O(r %), (4.22¢)

and from these approximations, it is straightforward to obtain the asymptotic relations

2C(r) + 2D(r) + E(r) —if %k, (A(r) + B(r)) = O(r 1),
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D(r) — ikrA(r) = O(r 1),

which combined with (4.21) yield the desired result, since both vectors 7 and 6 have unit
length. Consequently, the fundamental solution defined in (4.16), (4.17), (4.18) and (4.19)
fulfills the outgoing radiation conditions at infinity (4.20). The full-plane Green’s function,
denoted by G, corresponds to a second-order tensor intimately related to the fundamental
solution. Given two vector variables & and ¥ in R?, G is defined as

Gi(z,y) = Uy — =I). (4.23)
It should be observed that the Green’s function has a singular behavior as y ~ .
4.2.2 Integral representation formulae

In order to deduce the integral representation formulae, we assume that the field of
displacements is a solution of a transmission problem in the full-plane R? stated next. Let
us consider a bounded domain Q™ with a regular boundary T'. As usual, the corresponding
exterior domain is defined as Q¢ = R2\Q". The unit normal vector 72 on T is oriented
from Q% to ™, as indicated in Fig. 4.1. The integral representations will then be de-

Qext

FIGURE 4.1. Exterior and interior domains in R? separated by a boundary T

fined on the boundary I'. The transmission problem corresponds to an extension of the
usual exterior boundary-value problem to the interior domain. This time, the elastic wave
equation holds in £2°** (J Q" and jump conditions for the solution, rather than boundary
conditions, are specified on I. Given the solution ¥ = (u;,us), we define the traction
vector £ = (t;, ;) in an analogous way to Section 3.2. In tensor notation, it is given by

t,(:c) = aij(a:)nj(a:), (424)

where the stress tensor o was defined in (4.2) and n = (n, n,) is the outward unit normal
vector. The exterior and interior traces of w and ¢ are defined as follows:

ug () = lim uy(£)| e t7 () = lim &;(&)| e x €T, (4.25a)
fr R T—
int . A& int . = ) .
ui (w) - :g':l_’n;:u‘i(m)lgint ti (:c) :%:LIEE ti(m) Qint T < F' (4 25b)
We then define the jumps of w and ¢ through I as
[wi)(z) = v (x) — ui™(z), [t:](x) = & (x) — t"(x), zel. (4.26)
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The transmission problem through I" is defined as: Find w : Q™' U Q" — C? such that

i) + puwlu(z) = 0 in Q¢ U QR (4.27a)
[ui](x) = pi(x) onT, (4.27b)
[t:i](=) = q:(x) onT, (4.27¢)

|(t:(@) = tkrp u(@))bi(x) | = O )
where p = (p1, p2} and ¢ = (q), ¢g2) are vector functions defined on I', assumed to be
known. Let us define two points in R?, namely a source point  and a receiver point . The

point 2 is fixed at some location in Q% U Qi™, while y corresponds to a variable point in
R?. Replacing (4.23) in (4.5), we obtain that the Green’s function G satisfies

— (uGE(,y) + (A + p)GE (=, y) + p®GE (=, y)) = Surda(y), (4.28)

where all the derivatives are taken with respect to the components of the receiver point y.
The notation d, stands for the Dirac’s delta distribution centered at . In addition, given
any open set with regular boundary and outward unit normal vector nn = (11, no}, we define
another second-order tensor depending on @« and y, denoted by H. We call this tensor the
Green’s function’s normal derivative, by analogy with acoustics. It is defined as

HE(z,y) = S5(ly — ))n;(y), (4.29)

ast = |z| = +o0,  (4.27d)

or alternatively

HE(z,y) = AGE y(z, y)ni(y) + n(GE (2, y) + G, (x, v))n;(y). (4.30)

where we have combined with (4.4) and (4.23) to obtain this last expression for /. In order
to deduce appropriately the integral representation formulae for u, we define the auxiliary
domain Qg as the open set Q' U " minus the ball B. of radius = > 0 centered at
x, and truncated at infinity by the ball By of radius R > 0 centered at the origin. The
boundaries of balls B, and Bp are denoted by S. and Sg, respectively. We assume the ball
B. to be entirely contained either in 2™ or 2°, for which it is necessary that ¢ is small
enough in such a way that B, N T = (. Moreover, R has to be sufficiently large so that
Qint U B, C Bg. The domain § R, is illustrated in Fig. 4.2. It is mathematically defined as

Qre = (U Q™) N Br)\B:,

and the idea behind it is to retrieve 22 U 2"t at the end when we make R — +oo and
£ — 0% in Qg.. Asx ¢ Qg,, the Green’s function G satisfies (4.28) with zero right-hand
side in this domain, that is

uGE (2, 9) + (A + )G (=, 9) + pw?Gi(x,y) =0 in Q..

Ji3

and multiplying by the solution of (4.27) evaluated at y and integrating in {25 yields

/Q (1G5, u) + (A + p)Gh (=, y) + pw*G (e, y))ui(y)dy = 0. (4.31)
R.=
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FIGURE 4.2. Truncated domain {2 ¢ for a source point not located at T,

Since the boundary T actually divides Qg . into what is inside 2™ and what is outside, we
define the domain QF% = Qp \Q™, in such a way that Qr . = QL UQ™. Identity (4.31)
is thus separated into two new identities:

/Q (I-"Gf,jj (x,y) +(A+ “)G;’;,ij (x,y) + pw2Gf(:I:, y))u,;(y)dy =0, (4.32a)

fg (uGis(@,y) + (A + p)Gry (@, y) + po’Gi(m, y))u(y)dy =0, (4.32b)

and we start by analyzing (4.32a). Integrating by parts twice the first two terms, combining
with (4.24) and (4.30), and regrouping terms, we obtain

4.33)
— [ (G )ul) - Hi p)u()dsw)
803,
and as u satisfies (4.27a), the left-hand side of (4.33) vanishes, giving
| (GH@ ) - Hr (@, vyu@)dsty) = o (@34
R,e

Let us suppose for a moment that B, C Q. as shown in Fig. 4.2. In such a case, we
have that the boundary of Q' can be decomposed as Q%" = Sgp U S. UT, which leads
to restating (4.34) as a sum of integrals on each boundary:

/S (GH(e, w)ti(y) ~ HE (@, 9)us(w)) ds(y)
- [3 (GH(&, 9)tuly) — HE (2, y)us(w)) ds(y) (4.35)

- f (GH(a, )™ (y) — HH(, w)u™(3))ds(y) = 0,
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where we have used (4.25) to reexpress the last integral. Identity (4.32b) is treated in
analogous way to (4.32a). As the boundary of Q'™ is given by 92" = I, we obtain

- [ (GH@ vt ) - By ) dsty) — 0. 36
r
Adding (4.36) with (4.35) and combining with (4.26), (4.27b) and (4.27¢) yields

]S (G, y)t(y) — HE (@, y)u(y)) ds(y)

+ f (G, y)ti(y) — HY (v, y)wi(y))ds(y) (4.37)

S
' /p (G, v)a:(y) — HE (m, y)pi(y))ds(y) = 0.

On the contrary, if we had supposed that B, C 2™, then the integral on .S. would have not
appeared in (4.35) but in (4.36), and the result of the sum of the two identities would be the
same. Consequently, formula (4.37) actually holds for any source point & € {1z .. Next,
we study the behavior of the first integral when R — +oc0. In this case, the outward unit
normal vector on Sp is n = 7. Let us express vectors « and ¢ on Sg in their radial and
angular components, that is,

wi(y) = ue(y)e(y) 7:(y) + ue(y)0e(y) 0:(y), (4.382)

ti(y) = to(y)ie(y) Fi(y) + te(y)0e(y) 0:(y). (4.38b)

Substituting (4.38) in the first integral of (4.37), adding and subtracting suitable terms,
and rearranging, we obtain that this integral can be decomposed as the sum of four new
integrals on Sg as follows:

]S (GH(, w)ti(y) — HE e, y)u(w)) ds(w)

i Gz, y)Pe(y) (t:(y) — k(A + 2p)u(y))7:(y)ds(y)

Gz, y)0u(y) (t:(y) — tkrpws(y)):(y)ds(y) (4.39)

Sr

- fs (HE (@, ) — ik (3 + 20) G (@, 1)) 7o) uel) o) ds(w)

_fs (HE(x, y) — ikrp G (e, ))0:(y)ue(y)0e(y)ds(y).

Next, we assume B — 400 and y € Sg. Each integral on the right-hand side of (4.39) is
estimated separately. Replacing (4.22a) and (4.22b) in (4.16) and making the approxima-
tion |y — x| = |y| = R, we obtain that
C
Gz, y)rely)| < —, GE(x, )6, — (4.40)
I e( M )l VR l )0y )| \/—

for some constant C' > 0. On the other hand, the radiation conditions (4.27d) for the
transmission problem ensures the existence of a positive constant, which we also call C,
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such that the following inequalities hold when R — +oc:

[(t(0) ~ oA+ 2s(w)) 7)) < 3, @412
A C
|(t:(w) — thrpw())0:(y)| < %. (4.41b)
From (4.41) and (4.40), we obtain directly the bounds

R : ) C

Gz, y)e(y) (t:i(y) — ike (A + 2u)ua(y))n(y)ds(y)‘ < i (4.42a)
Sp R

) . C

[ Gl it (o) - ikwui(y))ei(y)ds(y)’ <2 e

which proves that these two integrals go to zero when K tends to infinity. Similarly, replac-
ing (4.23) and (4.30) in the radiation conditions (4.20} for the fundamental solution, we
deduce the existence of a another positive constant C' such that the inequalities

c
‘(Hf (z,y) — k(A + 2M)Gf(w,y))ﬂ(y)| < 5 (4.43a)

; C
‘(Hf (z,y) - ikai-“(w,y))Gi(yﬂ <2 (4.43b)

are valid when R — +c0. In addition, we suppose that the solution of (4.27) decays as
R-Y2 at infinity, that is, there exists another constant C such that for R large enough it
holds that

: C
|ue(4)6e(y)| < —=- (4.44)

uelwr)fe(w)| < % v

From (4.43) and (4.44) it is not difficult to obtain the bounds

/S (Hf(z,y) — ke (A + 20)GE (2, 1)) Fi(W)ue(y)Fe(y)ds(y )} <

(4.45a)

QQJQ

fs R(Hf(:c, y) — ikrp Gf(w,y))éi(y)ue(y)ée(y)ds(y)‘ ST (44sh)

which implies that these two integrals vanish when R tends to infinity. Consequently,
substitution of (4.42a), (4.42b), (4.45a) and (4.45b) in (4.39) leads us to conclude that

[ (E @ vyuy) - G, () dstw)

Sr

lim

Sumi 0. (4.46)

Let us study now the second integral in (4.37) when £ — 07T, This integral is separated as

[ (G )uty) — 1@, vuw)dsw)
% (4.47)
[ GH e, y)t(y)ds(y / bz, y)u(y)ds(y).

Notice that the outward unit normal vector on 5. is n = —#, pointing towards . Moreover,
as y € S., we have that |y — x| = €. Let us estimate the first integral on the right-hand



side of (4.47). Replacing (4.16) in (4.23) gives the next expression for G:
1 NP
Giley) = 7 (Ale)u + B (), (4.48)

and supposing ¢ to be small enough, expressions (B.16) for the Hankel functions of order

0 and 1 can be used to approximate functions A(-) and B(-), leading to restate (4.48) as
1 " N
GHz,y) - ~ (14 8% Ine + co) b — (1 — BHF(y)Pr(y)) +o(e).  (4.49)
where ¢y € C is some known constant. Assuming ¢ to be sufficiently regular within the
ball B,, we use (4.49) to bound the first integral in (4.47) when £ — 0% as follows:

‘/ Gi(z,y)t:(y)ds(y)| < Celne sup [te(y)|, (4.50)
g,

yeB-.

for some constant C' > 0. This proves that this integral tends to zero when = — 0%, We
analyze now the second integral on the right-hand side of (4.47). Replacing (4.18) in (4.30),
we obtain an expression for H:

H¥(z,y) = —%(D(e)&-k + (2C(e) + D(e) + E(e))7:(y)fe(y)), 4.51)

and using (B.16) to approximate functions C(-), D(:) and E(-), we rewrite (4.51) as

1 . .
Hf(m,y) = %(ﬁgéik +2(1 — ﬁg)ri(y)fk(y)) + o(1), (4.52)
and if we combine with the tensor identity d;, = 7,7 + 9}9}, {4.52) can be restated as
1 . . . .
HE (@, y) = 5— (0 + (1= ) (7)) — 0:(w)0(¥)) + o(1). (4.53)

Integrating (4.53) in S, yields
" 142 . . . -
fS HE (2, y)ds(y) = b + [S ()= Bila) B ) dslr) + ofe),

2we

and using that 7, = ég cos@ and 7y = —91 = sin @, it can be easily verified that

[ Gy — whutw)dste) = o

£

for all £ = 0. Therefore, when € — 01 we have

lim | H¥x,y)ds(y) = 6. (4.54)

e—0t Se

Let us separate the second integral on the right-hand side of (4.47) as

/ 1@, y)u(v)ds(y) = [ @, y)ds(y)u()
Se S (4.55)
+ / Hr@,y)(w(y) - u(@)ds(y)
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The value of the first integral on the right-hand side of (4.55) when ¢ — 0% can be easily
determined from (4.54), while the second integral is bounded by

H¥z, y)(uily) — uz(:c))ds(y)‘ < sup |ux(y) — uk(m)l, (4.56)

Se yeB,

and assuming that u is regular enough within the ball B,, it is immediate that this last term
tends to zero when ¢ — 0%, Hence, replacing (4.54) in (4.55) and combining with (4.56)
yields

s [ B, y)us(y)ds(y) = (o). @57)
-0+ Jg.
Consequently, substituting (4.57) in (4.47) and using (4.50) gives
im [ (G )ly) - B pm@)ds) = —wl@). @59
e—=0% Jg,

Finally, taking the limits R — 4+oco and e — 07 in (4.37) and combining with (4.46) and
(4.58), we obtain the following integral representation formula for the solution u of (4.27):

/Gk z, y)q:(y)ds{y /Hk z,y)pi(y)ds(y) =€ QU™ (4.59)

In the case where the source point x is located on T, it is necessary to slightly modify the
above analysis. The domain 2 . is defined in an analogous way to the case & € Q' UQI™,
but this time the ball B, is partially contained in 2°** and in Q'™, as indicated in Fig. 4.3. Iis

FIGURE 4.3. Truncated domain £2g . for a source point located at I".

boundary is thus separated as S. = S**U S, where S = S.NQ™* and 5™ = S, NQ™.
We also define [. = I'\ B.. Identity (4.31) is obtained in the same way as above, but this
time we have that Q. = (234\B:) U (2"*\B;), so it is decomposed as

me\B (HGEj5(zy) + N+ 1)GE (2, y) + p? Gl (@, y))ui(y)dy = 0, (4.60a)

fﬂ. ", (UGt () + (A + )Gl (x,y) + pw’GE (=, y))uiy)dy = 0. (4.60b)
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These two identities are treated as above. Taking into account that the boundaries of the
corresponding subdomains are d(Q34\B:) = Sp U S UT. and 9(Q™\B.) = SI" UL,
respectively, it is possible to restate (4.60a) and (4.60b) as

ﬁ (Gf(m:y)ti(y) H:c(m,y)ug(y))ds(y)
fs (G¥(z, y)t:(y) — HE(, y)ui(y))ds(y) (4.61)

+ [ (CHe )t v) - Hi, v (m)ds(y) =0,
and

[ (vt - B puw)dsw)

(4.62)
/F (GH(, y)t(y) — HE(, y)u™ () ds(y) = 0.
Adding (4.61) and (4.62) gives the identity
[ (@@ - B vum)as
+ [ (G ) — B, 9)u(v)dsw)
il (4.63)

+ f (GHa, y)t(y) — HE (@, y)ui(y))ds(y)
Gint

+ [ (Gt va) - B unw)isty) =,

and the integral in Sg is analyzed exactly as before, obtaining that it vanishes when R tends
to infinity. On the contrary, the limit £ — 07 has to be taken more carefully. If we assume
that the regularity of I" at x is at least of the C'-type, then both boundaries S°* and S
approach half-circumferences when = — 0. Hence, proceeding as above we obtain

. 1 EX

lim (G¥(z, W)ti(y) — Hf (=, y)wi(y))ds(y) = 5 UK x), (4.64a)

E—'0+ ngt

Ly . (Gi(a, y)t(y) — Hi(z, y)ui(y))ds(y) = —5 ui*(@). (4.64b)
Moreover, the boundary T approaches I' when ¢ tends to zero. Therefore, taking the limits
R — +ooand € — 0% in (4.63) and combining with (4.64) yields the following integral
representation formula for the solution w of (4.27):

uPt(z) + ui

) [ Gt vaw)is) - [ Hieupuise) @ eT. @69

In the case where the regularity of " at & is less than C!, that is, & is an angular point, it
is possible to show by analogous techniques that left-hand side of (4.65) corresponds to a
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convex combination of u®** and u'™, where the coefficients depend on the corresponding
angle. For a more detailed explanation, see, e.g., Beer et al. (2008).

4.2.3 Integral equations for Dirichlet and Neumann exterior scattering

Next, we develop appropriate integral equations to solve the exterior scattering prob-
lems defined in Section 2.3. Prior to this, we define the boundary layer potentials associated
with time-harmonic elasticity. These potentials permit to reexpress the integral representa-
tion formulae of the previous subsection in a more compact way.

Definition IV.1. The integral expression defined by

(@)=t ( ] G (w2, 1) ai(y)ds(), (4.66)

is called single layer potential, whereas the tensor § is called single layer integral operator.
Similarly, the integral expression defined by

ug(x) = Dipi(= / HE(z, y)p:(y)ds(y), (4.67)

is called double layer potential, whereas the tensor D is called double layer integral op-
erator. Both layer potentials are defined for any x € R?. When restricted to ", the corre-
sponding integral operators are denoted by S and D, respectively, that is,

Skqi(x fG"“ (x,y)q:(y)ds(y) zel, (4.68a)
D¥p(x f Hf (z, y)p.(y)ds(y) xeTl. (4.68b)
REMARK IV.1. It holds that S and D are linear and continuous operators such that
S [H VD)) — [HYAHD)?, (4.692)
D: [HVYHD)? — [H*D))> (4.69b)

By using the boundary layer potentials, the integral representation formulae (4.59) and
(4.65) can be restated as

ug(x) = SFgi(x) — DFpi(x) x € QU Qi (4.70a)

ext( ) + umt( )
2

In order to obtain the desired integral equations, we resort to the integral representations
of the previous subsection, which were developed for expressing the solution to the trans-
mission problem (4.27). To use these representations, we need a field of displacements
satisfying the elastic wave equation in Q2°** U Q'", so what we do is to extend each exterior
boundary-value problem to the interior domain ™, which gives particular transmission
problems. There are many ways of doing this extension, leading to obtain different integral
equations in terms of only one unknown vector on I". We consider particular extensions
for each exterior boundary-value problem, which yield the integral equations to consider in
the Dirichlet and Neumann cases. Following the notation used before, p and g denote the

= Skgi(x) — DFpi(x) zecl. (4.70b)
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jumps of u and ¢ through I', respectively, which were defined in (4.26). Let us begin by
determining an integral equation for the Dirichlet boundary-value problem (2.39), which is
rewritten in tensor notation as follows: Find w = (uy, uy) : 2% — C? such that

i55(€) + pwtu(x) =0 in Q%% (4.71a)

u(x) = —u"(x) onT, 4.71b)

|(ti(z) — ikp (A + 2p)ui(@))Fi(x) | = O(r 1)
(t:x) — ikppu(e)}0,(x) | = O )

The solution u to (4.71) is extended to '™ by defining the following auxiliary problem:
Find u : Q™ — €2 such that

oi5(®) + putu{®) = 0 in Q" (4.72a)
ui(®) = —ul"(z) onT. (4.72b)

(]

as r — —+00. @.71c)

This is an interior Dirichlet boundary-value problem posed in 2", Let us determine the
jumps p and g for this particular case. As both problems (4.71) and (4.72) have prescribed
the same Dirichlet boundary conditions on I', we have that

pi(®) = u(z) — ui™(x) = —u"(x) + v (x) = 0 =l (4.73)

that is, the jump of u through I is null. On the contrary, the jump of t cannot be determined
a priori, so it remains as the unknown of our problem. Substitution of (4.73) in the integral
representation formula (4.70b) gives the next integral equation in q:

Sfgi(x) = —ui®(x) z €T, (4.74)

which is known as a single layer integral equation, since it involves only the single layer
potential. Replacing (4.68a), (4.74) can be reexpressed as

/F GH(, y)as(w)ds(y) = —u(@) =z el @75)

REMARK IV.2, The integral equation (4.75) has a unique solution on condition that
pw? is not an eigenvalue of the interior Dirichlet boundary-value problem

0i5,5(x) = vus(x) in Q" (4.762)
wi(z) =0 onT. {4.76b)

We thus assume that the frequency w is such that v = pw? is not an eigenvalue of (4.76).

Assuming that g has already been determined by solving either (4.74) or (4.75), the
solution « to (4.71) can be evaluated using the integral representation formula obtained by
replacing (4.73) in (4.70a), that is,

up(z) = SFqi(x) x € Q% 4.77)
or else,
up() = fG'f(:c, y¥)a(y)ds(y) x € Q= (4.78)
I
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Let us analyze now the Neumann boundary-value problem (2.42), which is rewritten in
tensor notation as follows: Find u : 2%* — C?2 such that

05 (2) + putu(z) =0 in Q°%, (4.79a)

ti{x) = —t"(x) onT, (4.79b)

| (ti() — ik (A + 2u)ui(@))7i(x) | = O(r?)

|(t:(2) = krpu(@))bi(e) | = O(")

This time, we extend (4.79) to '™ simply by zero, that is, we pose

as r — 400, (4.79¢)

ui(x) =0 in ",
Hence, the jump p for this case is given by
pi(z) = wi(x) zel, (4.80)

and as the solution u has not been obtained yet, p is the unknown of our problem. On the
contrary, the jump g can be determined using (4.79b):

gi{x) = ti(x) = —t"(x) zeTl, (4.81)

which is a known vector, since £ is given in terms of the incident field w'"°. Replacing
(4.81) in the integral representation formula (4.70b), combining with (4.80) and rearrang-
ing, we obtain the following integral equation in p:

1 .

5 PE(@) = —-Sktic(x) =z eT, (4.82)
which is known as a double layer integral equation, because it involves the double layer
potential. Substituting (4.68b) in (4.82), it can be reexpressed as

[ B @ wn@isw) + yne = - [ CHeyiwise)  eel. @)
r r

Dfp,-(m) -4

REMARK IV.3. The integral equation (4.83) has a unique solution on condition that
pw? is not an eigenvalue of the interior Neumann boundary-value problem

—0;55(x) = vy () in Q™ (4.84a)
Jij(m)nj(m) =) onl. (484b)

We thus assume that the frequency w is such that v = pw? is not an eigenvalue of (4.84).

Assuming that p has already been obtained by solving either (4.82) or (4.83), the so-
lution u to (4.79) can be evaluated using the integral representation formula obtained by
replacing (4.81) in (4.70a), that is,

ug(x) = —Dp;(x) — SFE"(x) x € Q% (4.85)

or else,

() = ] (@, )pily) - G, 9)i™(y)ds(y) @™ (436)
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4.3 Perturbed half-plane scattering

4.3.1 Generalities about the half-plane Green’s function

We study hereafter the integral representations and equations for scattering in a locally
perturbed half-plane. The idea of a fundamental solution is usually related to differential
operators acting in the full-plane (or the full-space in three dimensions), so we deal directly
with a Green’s function associated with the non-perturbed half-plane R%. We consider
again a source point & and a receiver point y, with both of them in R2. The mentioned
Green’s function, denoted by G, is a second-order tensor that satisfies the elastic wave
equation in ¢ within the half-plane, with a Dirac’s delta distribution centered at @ as the
right-hand side. We write this equation in tensor notation as

o (I-I'G;c,jj (x,y)+(A+ H)G?,ij (x,y) + szGf(m: 'y)) = 0ix0a(Y) in R?;.- (4.87)

Furthermore, G fulfills the impedance boundary conditions introduced in Section 2.4 on
the infinite flat boundary {y, = 0}, which can be expressed in tensor notation as

AGE (@, y)8i2+10(GEy (2, ¥)+G5 (2, 4)) +wZ Gl (2, y)d:1 =0 on {y; = 0}, (4.88)

where we recall that Z,, € R is the impedance of the infinite flat boundary. In addition, we
assume that G satisfies adequate radiation conditions at infinity. Unlike the case of the full-
plane, the half-plane Green’s function is not known in explicit form, even when Z., = 0.
Nevertheless, we can assume a priori that this Green’s function is decomposed as the sum
of the full-plane Green’s function (already determined in Section 4.2) and an additional
term associated with the infinite flat boundary, which is still unknown. An analogous fact
is established by Telles & Brebbia (1981) for the Green’s function of the elastostatic half
plane with traction-free surface. Therefore, GG is written in tensor notation as

Gz, y) = [GF)i(z, y) + [CP)f (=, y), (4.89)

where G denotes the full-plane Green’s function defined in (4.23) and G# is the additional
term, which is regular as y ~ x. An accurate and effective calculation of this half-plane
Green’s function is performed thoroughly in Chapter VI.

4.3.2 Integral representation formulae

Next, we obtain integral representation formulae for a transmission problem defined
in the half-plane with impedance boundary conditions. The procedure to deduce these
formulae has several characteristics in common with that of an exterior domain, so the
emphasis is placed on the main differences that arise in the deduction. One could suppose
that the lack of an explicit expression for the involved Green’s function appears to be a
problem in obtaining the desired representation formulae. However, we will see that the
hypothesis made in the previous subsection is sufficient for this purpose. Let us consider
a local perturbation of the flat boundary denoted by I;,, which is assumed to be contained
within the upper half-plane R2, as indicated in Fig. 4.4. This perturbation divides R?
into an unbounded exterior domain 25 and a bounded interior domain Qi}r“. The unit
normal vector on [}, is oriented from Q2 to Q™. The infinite flat boundary {y, = 0}
is then divided into an unbounded part I’,., which extends to infinity on both sides, and
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a bounded part I'"™, in such a way that 9Q%* = T, U T, and 9Q" = I'™ U T, (see Fig.
4.4). The integral representations will be defined on the perturbed boundary I,. Let us state
the transmission problem in R? . Given a vector of displacements w = (uy,u,) defined in
Qi’“ U Qi:‘t, the stress tensor ¢ is defined as in (4.2) and the traction vector t = {£;,¢s) ona
regular boundary with unit normal vector n = (nq,n3) is defined as in (4.24). We use the
same notation as before for the exterior and interior traces of w and ¢ on I, that is,

uP(z) = ieri Ui (Z) | gens t7(x) = }311’1:1” () s x el (4.902)
uitt(x) = Jim v5(&)| £t (z) = Lim £5(2)] e z €L, (4.90b)
and the jumps of u and ¢ through I, are defined as

() = i (@) —u™(@),  [tl(z)=t7"(=) - t"(@=), =l 49D

The transmission problem through T}, is defined as: Find u : Q% U Q'M* — C2 such that
035 (@®) + ptu(z) =0 in Q' U QY (4.92a)
[ui](x) = ps(x) on I, (4.92b)
[t:](2) = ¢i(x) on I, (4.92c)
oin(®) + wZsui ()61 =0 on {z = 0}, (4.92d)
+ Outgoing radiation conditions as r = |x| — +o0, (4.92e)

where p = (py, p2) and ¢ = (q1, g2) are known vector functions defined on I,. The Green’s
function’s normal derivative, denoted by H, is defined on a boundary with outward unit
normal vector n = {n;, ny) in an analogous way to (4.30), that is,

Hf(x,y) = AGEo(x, y)nily) + p(GEj(z, y) + G, y))n;(v), (4.93)

where this time, G' corresponds to the half-plane Green’s function with impedance bound-
ary conditions defined in the previous subsection. Replacing G from (4.89) in (4.93) yields
a decomposition of the Green’s function’s normal derivative H as a sum of two terms. This
decomposition is analogous to (4.89), and is given by

HE(z,y) = [H )}z, y) + [HE)i (=, y), (4.94)

where the tensor H” corresponds to the full-plane Green’s function’s normal derivative,
which was defined in (4.29) or (4.30). The tensor HZ denotes the normal derivative of G5,
and it is also regular as ¥y ~ @. On the other hand, recalling that the outward unit normal

gl
” ~.I;
//_/ T NP
R
| B2 Tint I

FIGURE 4.4. Exterior and interior domains in R? separated by a boundary T,
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vector on {y> = 0} is given by n; = —&;2, the impedance boundary condition (4.88) can
be restated in terms of H as

— H¥x,y) + wZ.G¥(z,y)0u =0 on {y = 0}. (4.95)

Assuming a source point z located in Q£ U QI*, we define an auxiliary domain, denoted
by Qg . +, which is analogous to the domain €2z . introduced in Section 4.2. It corresponds
to the open set 22 U Q'™ minus the ball B, of radius £ > 0 centered at 2, and truncated at
infinity by the upper half-ball By ; of radius R > 0 centered at the origin. A scheme of the
domain Qp . , is presented in Fig. 4.5. We pose S, = 8B, and Sg;+ = (0Bg+)\{y2 = 0}.

ext,
FR

FIGURE 4.5. Truncated domain Qg + for a source point not located at I,.

In addition, we define the truncated flat boundary as %" = {y € T, : vy < R}. The ball
B. is assumed to be entirely contained either in Q'f* or %, which implies that ¢ has to be
small enough, in such a way that S, does not intersect with I, Sg .. or ['%*. Moreover, R
has to be taken sufficiently large so that Bp_, contains Q' and B,. The domain Qg ;. can
be mathematically defined as

QR,E,+ = ((Q‘ft U QT) n BR,+) \E,

and we have that Qg . approaches 2* U '™ when the limits R — +00 and ¢ — 0% are
taken. As x ¢ Qp ., we deduce from (4.87) that

uGY (@, y) + (A + )G (e, y) + pw’GE(z, y) =0 inQp...  (4.96)

i

The domain Qg 4 is divided into Qg% , and I, where Qg | = Qg 4 \Q®. Multiply-
ing (4.96) by u; and integrating separately in Q‘}q"g +and Qi yields the identities

fgex (4GLii(@9) + (M + )G y5(x,y) + p Gl (z, ) uily)dy =0,  (4.97a)

e+
/Qim (#Gf,;,.j (,y)+ (A + H)Gf,,-j(a:, y) + p’Gi(x, y))ui(y)dy = 0, (4.97b)

which are treated as before, that is, they are integrated by parts twice and then expressed as
boundary integrals, using (4.92a) to eliminate the remaining volume integrals. Assuming
that B. C Qf% , asin Fig. 4.5, we have that 0Qg% | = I'$* U Sz U S U T, and
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AQint = [int | T,,. Therefore, (4.97a) becomes

(Gf(m: y)ti(y) - H,f(ﬂ:, y)ui(y))ds(y)

ext
I-|H

+ [ (Gt ) - B y)u)dst)
G

(4.98)
+ [ (GHe,w)u() - B, w)u(w)ds(w)
+ /F (GH(z, )& (y) — HE(z, y)ud™(y))ds(y) = 0,
while (4.97b) becomes
[ (Gt p)ut) - B, u(w) dstw)
A _ | (4.99)
- [ (Gt @) - Hie vt w)dste) =0
Adding these identities and combining with (4.91), (4.92b) and (4.92¢) gives
[ Gy - B vu)dsw
+ [ (EHo ) - B e v)u)dse)
R4 (4.100)

3 L (G¥(z, y)tily) — HE(z, y)us(y))ds(y)

+/1_: (Gf(m'.' y)(h(y) - H:c(m,y)p%(y))dg(y) = (],

If FE C Qijr‘t, we can resort to the same argument used in the case of an exterior domain
to conclude that identity (4.100) remains valid. Hence, this identity holds for any source
point © € g, ;. Let us study separately each boundary integral on the right-hand side
of (4.100). In the case of the first integral, as I'g* U I'™ C {y, = 0}, we can use the
impedance boundary conditions for Green’s function (4.88) and for the solution (4.92d) to
reexpress the term integrand. Recalling that t; = —o;2 on {y» = 0}, we obtain

Gi(x, y)ti(y) — Hf (2, Y)us(y) = wleo (Gf (2, y)ur (z) — G (2, ¥)ui(y))da. (4.101)

If © = 1, it is clear that the term between parenthesis in (4.101) is null. On the contrary, if
1 = 2, the Kronecker’s delta vanishes. Therefore, in any case it holds that

GH(z, y)t:(y) — HE(z,y)ui(y) =0 on {gn =0}, (4.102)
and we conclude that for any radius R,
f ; (GE(, y)t:i(y) — HH (2, y)ui(y))ds(y) = 0. (4.103)
F‘}ft'U int

In the case of the integral in Sg 4, since the radiation conditions (4.92¢) for a half-plane
with impedance boundary conditions are not known in explicit form, we make the necessary
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assumptions in such a way that the following limit holds:

/ (GE(z, y)ti(y) — HE(x, y)ui(y))ds(y) | = 0. (4.104)
Sg, s |

lim
R—s400

In order to analyze the integral in S., we use the decompositions (4.89) and (4.94) for G
and H, respectively. This integral is thus decomposed as

f (G, y)t:(w) — HE(@, y)us(y))ds(y)

€

= f (IGP)¥ (@, »)t:(y) — [H) (z, w)us(y)) ds(y) (4.105)

S
+ / ([GP)i (e, w)ti(y) — [HP)f (=, y)ui(y))ds(y)-
Se

As the tensors G¥ and H? are the full-plane Green’s function and its normal derivative,
respectively, we already know from Section 4.2 that

lim [S ([G"F(, y)tly) — [HT ) (2, y)uwi(y))ds(y) = —ux(=), (4.106)

e—{0F

and as both tensors G® and H? have no singular behavior as y ~ x, we have that

im | [ (G2 )t(w) - (H @, y)uw)ds(y) | = 0. (4.107)
£—> S
Therefore, making € — 0% in (4.105) and combining with (4. 106) and {(4.107) gives

tim [ (G )~ HE @ Yu@)ds) = —u(@), (4.108)

Finally, taking the limits B — 400 and & — 07 in (4.100), combining with (4.103), (4.104)
and (4.108), and rearranging, yields the desired integral representation formulae, given by

up(z) = | G¥z,v)a(y) /H" x, ¥)pi(y)ds(y) zc Q= UQT. (4.109)

“Tp
A special situation, which arises only in a half-plane, is when the source point is located
on the infinite flat surface. In this case, the integral representation formula is obtained in
almost the same way, except that the domain {2z .. is defined without an upper half-ball
of radius ¢ centered at @ instead of a whole ball. The same analysis as above gives rise to a
factor 1/2 on the left-hand side of (4.109), so the integral representation formula becomes

)= ] Gi(z, y)q:(y)ds(y) — / H* (@, y)p:i(y)ds(y) € {z2 = 0}. (4.110)
O Iy

If the source point & is placed just on the perturbed boundary L, it is necessary to adapt
the previous analysis to include this case. The domain §2z . ; is defined as above, with the
only difference that the ball B. has a part contained in 2% and another part contained in
Qint, as indicated in Fig. 4.6. Its boundary S is then divided into S&* = S. N Q* and
Sint = S, NQIM. We also define I, . = I\ B-. We develop an identity analogous to (4.100),
but this time it is necessary to consider that the domain £2g . ¢ is separated as Qg .

(gt \B.) U (Q*\B,). Proceeding as before, two identitics analogous to (4.97a) and
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ext y tnt. ext
> rn 5

FIGURE 4.6. Truncated domain 2 . for a source point located at I,

(4.97b) are obtained, but this time the corresponding volume integrals are in Q% \B.
and (PP\ B, respectively. By means of appropriate application of two integrations by parts,
these volume integrals are converted into boundary integrals, where the boundaries of the
involved domains are given by Q5 \B,) = I'5'USp US* UT,, and (QIM\B,) =
'™y S U I, .. The resulting identities are added, giving

fl‘extur‘int(G?(m’ y)ti(y) B H:“(w, y)uf(y))ds(y)
[ (Gt - B, vule)dsw)
| /S (Gé=, y)ti(y) — Hi (@ y)u(y))ds(y) @.111)

(G w)t(y) — HE (@, y)ui(y))ds(y)

+ f (G, y)aily) — HE (=, v)pi(y))ds(y) =

We already know that the first integral is null, whereas the second one tends to zero when
R — 400. Assuming that the curve I, has at least regularity of the C'-type at &, we
have that $** and Si™ approach half-circumferences, so proceeding as in the case where
x € (¢ U Q™ it is possible to prove the limits

lim | (Gl u)t(y) — Hi(@, y)u(y))dsty) = —5 wi (=), (4.1122)
Jim. SEW_(Gf(m,y)tz-(y) HE(x, y)uly))ds(y) —%u}?t(m)- (4.112b)

Consequently, taking the limits R — +oco and € — 07 in (4.111), combining with (4.112)
and using that T}, . approaches [}, as ¢ tends to zero, we obtain the following integral repre-
sentation formula for x in the perturbed boundary:

R L) _ [ Gha,y)atw)isty ] @, y)pi(y)ds(y) @ €T, @113)
Ip
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As in the case of an exterior domain, if £ corresponds to an angular point of [, then the
coefficients multiplying ©*** and »'™ at the left-hand side of (4.113) are different from 1/2.
These coefficients, whose sum has to be equal to 1, depend on the respective angle.

4.3.3 Integral equation for impedance half-plane scattering

Let us obtain now the integral equation that allows us to solve the impedance scattering
problem in the perturbed half-plane defined in Section 2.4. As in the case of an exterior
domain, we define the boundary layer potentials for the perturbed half-plane. This time,
they correspond to integrals on the perturbed part of the boundary.

Definition IV.2. The integral expression given by
u(e) = Sta@) = [ GHawaluds(y), @.114)
Ip

is called single layer potential, and the tensor S is called single layer integral operator.
Similarly, the integral expression given by

ug(x) = Dipy(z) = ! HE (2, y)pi(y)ds(y), (4.115)

is called double layer potential, and the tensor D is called double layer integral operator.
Both layer potentials are defined for any T € Ri. When restricted to 1, the resulting
integral operators are denoted by S and D, respectively, that is,

qu,;(m) = / Gf(m, y¥)a.(y)ds(y), x €T, (4.116a)
I

Dipi() = [ HEw, u)p)dsly), @ €T, (4.116b)
FP

The integral representation formulae (4.109) and (4.113) are then expressed in terms
of the boundary layer potentials as follows

ue(x) = Skqi(x) — Dipi(x) z € QUM (4.117a)
uf(z) + uit®
2

The integral equation is developed from the integral representation formula (4.113) (or

{(4.117b)), which expresses the exterior and interior traces of the solution to the transmis-

sion problem (4.92) in terms of boundary integrals on I},. In order to use this formula for

expressing the solution to the impedance boundary-value problem (2.61), it is necessary to

extend properly this problem to the interior domain. Problem (2.61) is written in tensor
notation as follows: Find u = (uq, u2) : Q¥ — R such that

(=) _ Skq(x) — DFpi(z) z €T, (4.117b)

0ij,5(x) + pwu(z) =0 in Q3 (4.118a)

—ti{x) + wiy(x)u{x)ri(x) = fi(x) on [, (4.118b)
Oi() + wZou(x}dy =0 on Ty, (4.118¢c)

+ Outgoing radiation conditions as r = |x| — +oo, (4.118d)
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where 7 = (7, 72) corresponds to the unit tangent vector defined on [}, and the scalar
u, denotes the tangent component of u on I, defined as u, = u;7;. The right-hand side
f = (f1, f2) of (4.118b) was defined in (2.62), and it can be written in tensor notation as

filx) = t8(x) + £ (x) — wZ,(x) (Wi (x) + ul*(z)) (), (4.119)

T T
where ul'® = ul"7; and ulef = u;ef’rj denote the tangent components on [}, of the incident
field w™® = (4", 4i°) and the reflected field w™f = (ul*", ui®l), respectively. The traction
vectors ¢ = (ti"°, irc) and £ = (#1°, #57) can be directly defined in terms of ©™™® and
u"", respectively, as follows:

% (x) = ugs(@)n(@) + p(ul (@) + uls(@))n;(z), (4.120a)
1l () = Ay (e)ng() + p(uls (@) + ui (x))n;(2). (4.120b)
Problem (4.118) is extended to the interior domain by zero, that is, we pose
u(x) =0 x € QM. (4.121)
The jump of u through T}, denoted by p is thus given by
pi(x) = wi(x) z e, (4.122)

which corresponds to the unknown of this problem. On the other hand, the jump of ¢
through I, denoted by g, is given by

g:i{z) = t;(x) x €T,
and combining with the impedance boundary condition (4.118b), it can be restated as
gi(x) = wZy(zx)u.(x)r(x) — fi{x) xz €L, (4.123)

Substituting (4.122) in the integral representation formula (4.117b) yields the identity
1
5 wk(T) = wSF(Zyu,;)(x) — DFpi(x) — SFfi(x) x €T, (4.124)
which actually corresponds to an integral equation in p. In fact, combining with (4.122)
and rearranging, we obtain that (4.124) can be reexpressed as
1

Dfpi(x) + Epk(m) — wSH(Z,p,mi) (=) = —SF fi(=) x €I, (4.125)
This kind of equation is called mixed potential integral equation, because it involves both
the single and the double layer potential. Notice that the single layer potential appears in a
non-standard form, because it is applied to the tangent part of the vector p multiplied by a
known scalar function Z,,. Replacing (4.116a) and (4.116b), we obtain that (4.125) can be
reexpressed in terms of boundary integrals as follows:

[ @ wn@is) + 3 pie)
& (4.126)
—w | Z(y)Gi(x, v)(y);(w)ps(y)ds(y) = Gz, y) fi(y)ds(y),

Ip Iy
where the tangent component p, was made explicit in order to better handle the integral
equation. Let us suppose that p has been already determined by solving either (4.125)
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or (4.126). Then, the solution u to the boundary-value problem (4.118) can be evaluated
using the integral representation formula (4.117a). Substituting (4.123) in (4.117a) and
combining with (4.122) gives

u(x) = —~Dipi(x) + wa(prTﬂ-)(a:) — SFfi(x) x € Qf, 4.127
or else,
u{x) = — / (Hf (2, y)p:(y) — wZp(y)GE(x, y)7(y)p-(y))ds(y)
" (4.128)
= | Gi(z,y)f:i(v)ds(y) = e Q"

If we desire to evaluate w on the infinite flat boundary {z; = 0}, we infer from (4.113) that
it is instead necessary to use the following formuia

ukéw) - / (HE (2, »)piy) — wZp(Y)GE(z, ¥)m:(y)p- (1)) ds(y)

= (4.129)
[F GHw,y) fy)ds(y) = € (a2 =0},




V. BOUNDARY ELEMENT METHODS (BEM) FOR SCATTERING
PROBLEMS

5.1 Introduction

This chapter is devoted to describing a procedure based upon boundary element meth-
ods to solve numerically the integral equations developed in Chapter IV, including the
equations that solve exterior scattering, introduced in Section 4.2, and the equation that
solves scattering in the locally perturbed half-plane, introduced in Section 4.3. We develop
adequate variational formulations for each one of these boundary integral equations. In all
cases, the numerical discretization is based on resorting to a particular Galerkin scheme
on the variational formulations. The boundary of the obstacle or local perturbation is ap-
proximated by a discrete curve consisting of rectilinear segments, and piecewise constant
functions on these segments are used to approximate the solution of each integral equation.
Such a numerical procedure corresponds to a particular case of the well-known bound-
ary element method (BEM), where Lagrange finite elements of the [Py-type are used on
the boundary. Some useful books on boundary element methods that include application
to static or dynamic elasticity are, e.g., Manolis & Beskos (1988), Bonnet (1995), Linkov
(2002), Steinbach (2007) and Beer et al. (2008). The numerical discretization of each in-
tegral equation gives rise to linear systems of equations, where the coefficients of the re-
spective matrices contain double integrals that represent elemental interactions between
each pair of segments. We carefully perform the boundary element calculations, that is, the
computation of these elemental integrals, which contain the Green’s function and its nor-
mal derivative. As both of these tensors have singularities, there are some cases where it is
not possible to calculate the integrals in a numerical way, so we use a semi-analytical inte-
gration method based upon the work by Bendali & Devys (1996). Otherwise, the integrals
are computed numerically by two-points quadrature formulae.

5.2 Dirichlet and Neumann exterior scattering

5.2.1 Variational formulations

In order to solve the integral equations obtained in Section 4.2, they are converted into
their variational or weak formulation. Basically, the integral equation is first multiplied by
a certain test function, and then it is integrated over the boundary under study. The test
functions are taken in the same function space as the solution of the equation. Let us begin
by the single layer integral equation (4.74) that solves the exterior scattering with Dirichlet
boundary conditions. If we consider the trace of u'™ on T to lie in [H'/2(T")]?, as the single
layer operator takes its values also in [H/2(T"))? (see (4.69a)), we have that (4.74) holds in
the same function space, that is,

Skg, = —uil® in [H'/2(T)]2. (5.1
As the domain of the single layer operator corresponds to [H~'/2(T')]? (see (4.69a)), we
infer that the solution ¢ = (g1, ¢2) of (5.1) has to be searched in this function space. The
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test functions of the variational formulation, denoted generically by ¢* = (¢¢, ¢3), are thus
taken in [H'/3(T")]%. Therefore, we apply on both sides of (5.1) a product of duality
(between H'/2(T") and H'/?(T")) by an arbitrary test function. The resulting variational
formulation is: Find ¢ = (g, ¢2) € [H~'*(T")]? such that

(g5, S*q) = — (gL, u™),  Vg'=(¢\,¢}) € [H VAD)2 (5.2)

This theoretical form of the variational formulation is not very useful in numerical appli-
cations, so what we do is to restate it in a more explicit and convenient way by formally
expressing the products of duality as integrals on I'. In addition, the single layer potential is
also written as an integral on I" using its definition given in (4.66). Hence, (5.2} is restated
as: Find ¢ = (q1, g2) € [HY/3(T)]? such that

\/[:fFGf(m:y)%(y)E]mdS(y)ds(m)

- f @) @ds@) Ve = (¢ ) € [HD

We now obtain the variational formulation of the double layer integral equation (4.82) that
solves the exterior scattering with Neumann boundary conditions. As both layer operators
take their values in [H'/?(T'}]%, it is straightforward to see that (5.4) holds in the same
function space, that is,

(5.3)

1 . .
Dip: + 5 px = —S{t in [H/2(T)]2. (5.4)

As the domain of the double layer operator is H 1/ 2(I‘) (see (4.69b)), then the solution
P = (p1,p2) of (5.4) has to be taken in [H'/?(T")]?, and so do the test functions, denoted
by p* = (p},ph). We thus apply on both sides of (5.4) a L?(T')-product by a test function,
leading to the next variational formulation: Find p = (p1,p2) € [HY*(T))? such that

1 .
(Dfps, pL)or + 5 (pr, ph)or = — (S, piYor, VD' = (pl,p) € [HY23(T)]. (5.5

Making explicit the L?(T")-products and using the definitions of the single and double layer
operators in terms of integrals on I, given respectively in (4.66) and (4.67), we obtain that
(5.5) can be reexpressed as follows: Find p = (p, p2) € [H'/?(T)]? such that

[ [ e vn@i@swise) + 5 [ mei@se)
rJr r

o (5.6)
- [ [t wi@aswase), Ve = 6 € AR

5.2.2 Numerical discretization

We now develop a numerical discretization for (5.3) and (5.6) by means of the bound-
ary element method (BEM). The boundary I is approximated by a discrete curve I'* (see
Fig. 5.1), composed by N, rectilinear segments T, (the boundary elements), sequentially
ordered in counterclockwise direction for m = 1,..., Nj. The segments T}, are such that
their lengths are less or equal than h > 0, that is, |T,;| < hforallm = 1,...,N;. In
addition, we suppose that all the endpoints of the segments are located on the non-discrete
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FIGURE 5.1. Discrete curve I'* approximating T".

boundary I'. The curve I'* is thus described as:

Fh — U T_m
We define the space V* of piecewise constant functions in I'* by
Vh {qh : Fh —C: Qh|Tm = qm, Ym = 1:---7Nh7 Vql:ﬁ" ':th = C}

This space has finite dimension N},. The canonical basis of V" is composed by the functions
Xm shown in Fig. 5.2 and defined form = 1,..., N as
1 ifx €T,
= 5.7

It is straightforward to verify that the functions {x,,} " , constitute an orthogonal set in
L3(T'*} such that

| T if m =n,

[ xo@hxnt@as@ = { 1 Em 2 68)

In virtue of the discretization, any function g, € V" can be expressed as a linear combina-
tion of the basis functions, that is

Np
(@) = ) ¢ xm() xeTh, (5.9)
m=1

Tml

FIGURE 5.2. Piecewise basis function )p,.
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where form = 1,..., Ni, ¢™ = gu|r,, € C. Let us discretize the variational formulation
given in (5.3), for which we approximate the associated function space [H'/2(T')]? by
[V#]2. Such an approximation is called conformal, since V* ¢ H~V%(I'). Notice that
the discrete space [V*]? has dimension 2/N,. The basis of this space is constructed from
the functions x,,, defined in (5.7). We denote the 2N, vector basis functions of [V"‘]2 by
Pt = (¢, ¢r,), where £ = 1,2andm = 1,..., N,. These functions are defined as

(@) = Srexm(z), mET™ (5.10)

We then seek a discrete solution of (5.3), namely g, = (ga1, gn2) in [V?)?, satisfying the
following discrete variational formulation: Find g, € [V*]? such that

\/I:h/I:th(way)qm(y)Mds(y)ds(m)

__ fl @) @@ Vah = (ahiaha) € [V

As the components of g,, are elements of V*, they are written in the form (5.9), that is,

(5.11)

Ny,
ans(¥) = ) 4" Xm(y) yer”, (5.12)
m=1

where the 2V}, complex coefficients {(¢7", q"‘{‘)}ﬁ" , are unknown. Moreover, we take the
test functions qfl in (5.11) as the vector basis functions 1pr defined in (5.10). Hence, sub-
stituting (5.10) and (5.12) in (5.11) and rearranging yields

Np
> [, [ 6t vhxnwixa@iswasta) ar
mel 70T (5.13)
== f ulenc(w)Xn($)d3(w) Vn = 1, ey ,Nh,

Ih

and using the definition (5.7) of functions Y, to reexpress the boundary integrals, we restate
(5.13)foreachn =1,..., Ny as

Ny
S [ [ clewswis@ar = [ w@ise). (5.14)
m=1 n m n
This constitutes a system of linear equations of size 2/Vy,, which we can write by blocks as
4 allal-[5]
= , (5.15)
[ St S3 qs b
where for k, i = 1, 2, the blocks Sf are matrices of size V,,, defined by components as
[SF] o = f / Gz, y)ds(y)ds(z), n,m=1,..., Ny, (5.16)
Tnd Tim
and q,, g, are unknown vectors, both of length /N, defined as
g =(a},...,a™), i=12 (5.17)
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The vectors b, b on the right-hand side, also of length N, correspond to the integrals

[6*], = — f u(x)ds(z), k=12 (5.18)

n

Hence, determining a solution to (5.11) is reduced to calculating the blocks and vectors de-
fined in (5.16) and (5.18), respectively, and then solving the system given in (5.15), which
yields the solution vector defined in (5.17). We now discretize the variational formulation
given in (5.6). For the sake of simplicity, the function space [H'/2(T'}}? is also approxi-
mated by [V*]2. However, this approximation is not conformal, since V* ¢ HV2(T'). We
already know that the basis of [V*]? is constituted by the vector functions %%, given in
(5.10). The discrete solution of (5.6), denoted by p,, = (pr1, Prz) in [V*]?, is searched as a
solution to the next discretized variational formulation: Find p, € [V"]? such that

/fﬂ’“ (@, y)pi(y) e @)ds(w)ds(z) + ] pu(@)pf()ds ()

(5.19)
= [ [ Gt ui i @iswisa), Vo = G pha) € VT
Expressing the components of the solution p,, in the form (5.9) yields
Nn
pri(y) = D 0 xm() y eI (5.20)
m=1

for unknown coefficients {{p*, p}*} ﬁ';l. On the other hand, we take the test functions pj,

in (5.19) as the vector basis functions 't‘bf, defined in (5.10). In addition, the components of
the vector " on I'* are also written in the form (5.9), giving

N,
t(y) = Y " xm() yeT™, (5.21)
m=1

where the complex coefficients {(#7*,#7")}2% | can be computed in an approximated way as

" |Twl Jr,

Therefore, replacing (5.10), (5.20) and (5.21) in (5.19) and rearranging gives

tin(z)ds(z). (5.22)

> fr \ fr Hi(@,y)xm(y)xn(2)ds(y)ds(@) p"
i % m; /rhxm(m)x"("")ds(‘”)p? (5.23)

Np,
=D frh fr th(m,y)xm(y)xn(m)ds(y)ds(m)t:"‘, Vn=1,...,Ny,
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and using (5.7) to reexpress the boundary integrals and combining with (5.8), it is possible
to restate (5.23) as

N,
1
S [ [ Hwwaswas@ s + 5T
n/Tm (5.24)

Np
=-> / Gix, y)ds(y)ds(z)t™  VYn=1,...,N,.
T Tm

This corresponds to a system of linear equations of size 2N, which we write by blocks as

Di+3Wr D, P v!
5.25
S e ) ][] o
where for k,4 = 1, 2, the blocks D¥ are matrices of size N, defined by components as
[Df],,. = / / H(z,y)ds(y)ds(zx), n,m=1,..., Ny, (5.26)
Tnd Tm
and Wy is the diagonal matrix defined as
Wr = diag (|T1], |73/, - - -, T, |)- (5.27)
The unknown vectors p,, P, both of length N}, are defined as
p; = (ol 0", i=12, (5.28)
and the right-hand side of the system corresponds to
V! st osi1(
— 5.29
[ v? ] [ St S5 lt ]’ e
where the blocks S¥ are given in (5.16) and the vectors t,, ¢, are defined as
ti=(th...t"), i=12 (5.30)

Therefore, the problem of solving (5.19) is reduced to calculating the matrices defined in
(5.26) and (5.27), the vectors defined in (5.29) and (5.30), and then solving the system
given in (5.25). This yields the solution vector defined in (5.28).

5.3 Impedance scattering in the perturbed half-plane

5.3.1 Variational formulation

We next determine the variational form of the integral equation obtained in Section
4.3, which allows its numerical resolution. This equation, given in (4.125), solves the
scattering in a perturbed half-plane with impedance boundary conditions. For the sake of
simplicity and by analogy with the case of Neumann boundary conditions, we assume that
this equation holds in [H'/2(T},)]?, that is,

1 . ,
Dfp2 + 5 PE— wa(prTTi) = .S',f“ft in [H]/2(Fp)_2. (5.31)

We thus seek the solution p = (p1, p2) to (5.31) in [HY/(L,)]%, and the test functions, de-
noted by p* = (p!,ph) are taken in the same function space. Applying on both sides of
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FIGURE 5.3. Discrete curve [ approximating T},

(5.31) a L*(T},)-product by a generic test function, we obtain the next variational formula-
tion: Find p = (p1, p2) € [HY?(I},)]? such that

1
k
(D'pi:pi)or } i(phpfc)()f‘
— w(SHZpprm), BkYop, = —(SEfipk)or, VP = (PLph) € [H'A(L)
In order to deal with a more convenient expression of this variational formulation, the
L*(T,)-products are made explicit and the single and double layer operators are written in

terms of integrals, according to their definitions given in (4.114) and (4.115), respectively.
The resulting variational formulation is: Find p = (p;, pa) € [H%(T},)}? such that

[ @ )@ +3 [ uapi(e)ds(a)

[

(5.32)

—w ] j (4)G* (@, 9)7(y)7, (y)p; (v)PE(@)ds(y)ds () (5.33)

/F / GH(x, y) fi)pe@)ds(w)ds(@) Vb = (o, pb) € [HV2(T,)2

5.3.2 Numerical discretization

Next, we study the numerical discretization of (5.33) by means of the boundary ele-
ment method. The procedure is almost analogous to that developed in Section 3.2. The
perturbed boundary I, is approximated by a discrete curve I"h (see Fig. 5.3), composed by
N, rectilinear segments denoted by {Tm m1, which are sequentlally ordered from right to
left form = 1,..., Ny,. Given h > 0, these segments satisfy |T,| < h, and their endpoints
are placed just on the non-discrete curve I,. Hence, the discrete curve 1’;" is described as

p-Um

m=0

The space V;* of piecewise constant functions in T'* is defined by

= {qh:P;ﬂ(C Cgul, = ¢, VYm=1,...,N,, ¥g',...,¢" € C}.
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The basis for this discrete space of dimension N, is the same as before, that is, it consists

of the functions J[Xm}ﬁ“‘_1 illustrated in Fig. 5.2 and defined form = 1,..., N, as
(1 ifzeT,,
Xon(®) { 0 ifzgT,. (5-34)
These functions are an orthogonal set in L?*(I*) such that
|1, ifm=mn
- n ?
[pten@ane ={ 51 (5.35)

Consequently, any function p;, € Vp”' is expressed as a linear combination of the basis

functions, that is,
Nh

=Y PMxm(®) z €l (5.36)

where for each m = 1,... N, p™ € C corresponds to the constant value taken by the
function pp, at the segment T,,. In order to discretize the variational formulation given
in (5.33), we consider a non-conformal approach, where the function space [H'/2(T})]?
is approximated by [V"‘]2 The basis of this space consists of the 2N}, vector functions
denoted by 9%, = (¢, 9%,) for£ = 1,2 and m = 1,... N;, which are defined in terms
of the functions xy, in analogous way as above, that is,

£ e(@) =0 xmlz), €T (5.37)

We thus seek an approximated solution of (5.33), denoted by p, = (pr1,Pn2) € [I/;"ZE.
This solution satisfies a discrete variational formulation obtained directly from (5.33) and
expressed as: Find p,, € [V}|? such that

J Ao s w)iste) + 5 [ pul@ s

r‘h

W fr . fl . Y)GE(z, y)7:(y)7;(y)pn; (¥)Phi (@)ds(y)ds() (5.38)

= /F ) /F th(m,y)fi(y)pzk(m)ds(y)ds(m) Wl = (b, plo) € (VA2

Since both components of the solution to (5.38) belong to the discrete space Vp"', they are
expressed in the form (5.36), that is,

h
pri(y) = Z P Xom (1) yely, (5.39)

where {(pT, pJ ) » | are unknown coefficients. Furthermore, the components of the func-
tion f = (f1, f2) evaluatcd on 1";' are also expressed in the form (5.36):

Ny,
fily) = D I xm(w) yely, (5.40)
m=1

68



where {(f7*, f7*)} N | are complex coefficients, approximately calculated as

1

= T Tmf;( z)ds(z). (5.41)

As done before, the test functions pf, in (5.38) are taken as the basis functions 'qbf1 defined
in (5.37). Therefore, replacing (5.39) and (5.40) in (5.38) gives

prh/;hHe(m Y) X (¥)xn (2)ds(y)ds(z) pI*

1
+ 5 /hxm(w)xn(m)ds(w)'ﬂ?
mZ_l ) (5.42)

wZ fF ) fr ZyW)Gi (@, Y)7 ()7 (¥)Xm (W)X ()5 (y)ds(@) p7"

Ny
2 Z ‘/l:h Fth(m,y)Xm(y)Xn(m)ds(y)ds(a:) VA Yn=1,...,Np,
1 v 1p

and using (5.34) to reexpress the boundary integrals and combining with the orthogonality
relation (5.35), we obtain that (5.42) is restated as

Ni .
> [ [ H@iswps@sr+ 5T
o f | %06t vnrns@swis@ (543

// Gz, y)ds(y)ds(x) fm Van=1,...,Ns.

Moreover, notice that the tangent vectors are constant on each segment. Hence, the tangent
vector associated with the segment T, is denoted by 7™ = (7, 7"). In addition, and
for the sake of simplicity, the impedance Z, is assumed to be piecewise constant. We thus
restate (5.43) as

Ny
1
. [ [ Hwydsw)s@er + 51Tl
‘I, J T, 2
Np,
wz Z"‘/ f Gi(x, y)ds(y)ds(x) 77" 1]"p}" (5.44)

—Z/ Ga, yds(u)ds(@) f* V=1, N
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where Z" € R corresponds to the value that Z, takes on the segment T,,,. Identity (5.44)
corresponds to a system of linear equations of size 2N, which is written by blocks as

D? + W,T, 52 Di+iWr+WzLS2 | | pp | [ 7]’ ‘

where for k,i = 1, 2, the matrices D¥ are defined by components as

(DY, = f HAx,y)ds(y)ds(z), mm=1... Ny  (546)
g s
and Wy and W correspond to the diagonal matrices
Wy = diag (|11, | T3l .. -, | Tw,]), Wz =diag (2}, 22,...,Z"). (5.47)
The terms 7, and 75 are also diagonal matrices, defined by
T, = diag (11,73, ..., T, ) 11,2, (5.48)
and the matrices S! and 52 are given in tensor notation by
Sk = T,5¥ kel 2 (5.49)
where for k,7 = 1, 2, the matrices S are defined by components as
[$F],.. = f G¥z,y)ds(y)ds(z), n,m=1,...,N,. (5.50)
TN
The unknown vectors p,, p, are defined as
p; = (pl,....pM"), T (5.51)
and the right-hand side of the system is
=[5 &]12]
= — . (5.52)
[ v’ St s3Il £

Therefore, the problem of determining a solution to (5.38) is reduced to that of computing
the matrices and vectors defined in (5.46), (5.47), (5.48), (5.49), (5.50) and (5.52), and then
solving the linear system given in (5.45), which yields the solution vector defined in (5.51).

5.4 Boundary element calculations

5.4.1 Geometry

The boundary element calculations build the matrices of the linear systems (5.15),
(5.25) and (5.45), which result from the discretization of different integral equations. We
concentrate our attention mainly on computing numerically the elements of the blocks de-
fined in (5.16), (5.26), (5.46) and (5.50). The main difficulty here lies in integrating the
singularities of the Green’s function and its normal derivative. On the other hand, the reg-
ular terms are numerically integrated by a quadrature formula. Therefore, the procedure
does not change substantially if instead of dealing with the full-plane Green’s function, we
consider the half-plane Green’s function, since the singular part remains invariant and only
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regular terms are added. Let us consider a discrete curve composed by N}, rectilinear seg-
ments, which corresponds to either the closed curve I'* illustrated in Fig. 5.1 or the open
curve l";' illustrated in Fig. 5.3, both oriented as indicated before, that is, in counterclock-
wise direction. We deal with the elemental interactions between two generic segments T;,
and T, for n,m = 1,..., N,. For the sake of simplicity, we make a change of nota-
tion, and these segments are denoted by K = T, and L = T,,. In addition, the following
notation is used from now on:

e hy denotes the length of segment K.

e hj denotes the length of segment L.

e 2P " denote the endpoints of segment K, agreeing with the curve orientation.
e yP, ¢y denote the endpoints of segment L, agreeing with the curve orientation.
e x denotes a variable point on segment K.

e y denotes a variable point on segment L.

Fig. 5.4 shows the geometrical location of both segments and the points defined above,
with respect to an origin O. Notice that the length of segments X and L can be obtained as

hg = |™ — =P, hy = y" — 97| (5.53)
The unit tangent vector of segment L, denoted by 7 = (7, 7o) is calculated as
Ly
=4 Y (5.54)
hi
and the unit normal vector on L, denoted by 12 = (11, ny), is obtained from 7 as follows:
(n1,m2) = (—72,71). (5.55)

Notice that the veciors 7 and 7t are such that 7 x 7 = &, X &1, as indicated in Fig. 5.5. For
the elemental interactions between a point & on K and another point ¥ on L, the following
notation is also used:

o 7 denotes the vector pointing from & towards ¥.
e 7 denotes the distance between x and v.

. _:.f_. i
Y.O

FIGURE 5.4. Geometry of segments K and L.
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C.

FIGURE 5.5. Geometry of segment L, unit tangent vector T and unit normal vector 7.

These values are given by
r=y -, (5.56)
r=|rl=|y— x| (5.57)
Furthermore, for the calculation of singular integrals, where the point z is regarded as a
parameter, the following notation is also used (see. Fig. 5.6):

e 7 ™ denote the vectors pointing from x towards the endpoints of segment L.
e 77 ™ denote the distances between & and the endpoints of segment L.

e 8, 8, denote the angles formed by the vectors r?, ™ and the horizontal axis.
¢ @, denotes the signed angle formed by the vectors r” and r™.

FIGURE 5.6. Geometry of segment L with & considered as a parameter.

The vectors P, r™ and distances 77, r™ can be obtained as
r? =y* —x, m=y" -, (5.58)
= |r’| = |y’ — x|, = r" = |y" — =, (5.59)
and the angles ¢, ¢, are defined as
6, = arctan (r§/r]}, —m < B, <, (5.60)
8, = arctan (3 /r7), - < O, <. (5.61)

On the other hand, the angle &, which lies between —m and 7, is considered positive if L
is counterclockwise oriented with respect to @, and negative if L is clockwise oriented with
respect to . In most of cases, #;, can be simply obtained as the difference between 6,, and
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8,. However, if the segment L crosses the left horizontal semiaxis, this difference will be
larger in absolute value than 7 and a correction term of 427 is necessary. Taking all this
into account, the exact definition of the signed angle 4 is

0, — 0+ 27 if 7/2<6,<m and —7 <8, < —7/2,
0, =4 Op—6,—2x if —m<6,<-—7/2and 7/2 <6, <m, (5.62)
b — 0y in any other case.

5.4.2 Boundary element integrals

The boundary element integrals are the basic integrals on segments K and L that are
needed in order to perform the boundary element calculations. These integrals are

ISk f ]Gf(:c,y)ds(y)ds(a:) 1<k,i<2, (3.63a)
KJL

Dk — / / H*(, y)ds(y)ds() 1<ki<2, (5.63b)
KJL

where the second-order tensors G and H are the full-plane (or half-plane) Green’s func-

tion and its normal derivative. Let us recall that both tensors have singularities at y = x.
When the segments K and L are far away from each other, these singularities are irrelevant
and the integrals (5.63a) and (5.63b) can be numerically approximated by quadrature for-
mulae. Nevertheless, when K and L are close together, and specially if they coincide, the
singularities of G and H play a central role and the integrals (5.63) cannot be computed
numerically. We use instead a semi-analytical integration method, which is based upon the
work done by Bendali & Devys (1996). The integrals (5.63) are decomposed as

ISf_/;{IGf(m)ds(a:), (5.64a)
ID* = /K IH¥(2)ds(x), . (5.64b)
where IG* and IH} correspond to the internal integrals in ¥, that is,
IG¥(x) = fL Gi(x,y)ds(y), (5.65a)
() - [ B y)ds(y). (5.65b)

This decomposition permits computing the integrals (5.63) in two steps. Firstly, we com-

pute the internal integrals (5.65) as functions of . To do so, the singular parts of the
Green’s function GG and its normal derivative H are isolated and integrated by analytical
techniques, whereas the remaining regular parts are integrated numerically. After that, the
resulting expressions are replaced in (5.64), and the external integrals are then computed
numerically by quadrature formulae.

5.4.3 Numerical integration of the non-singular integrals

The numerical integration of the non-singular integrals is performed by means of a
two-point Gauss quadrature formula (see, e.g., Abramowitz & Stegun 1970). For this, we
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define the next points on segments K and L:

=t P+t ", i =t P+ ty ™, (5.66a)
y' =y’ +ty" y: =ty +tay", (5.66b)
where . . X
1
th==(1——]|, to=={1+4 . 5.67
! 2( \/5) : 2( \/5) ©-on

Given two functions ¢(+) : K — Cand 9(:) : L — C, the formulae to approximate their
integrals on K and L are given respectively by

fK T %(tp(azl) + p(a?), (5.682)

[ #wastw) ~ @)+ vi?). (5.68b)

It is not difficult to extend the Gauss quadrature formula to a function of two variables
®(-,-) : K x L — C, using for this formulae (5.68a) and (5.68b). The new formula is
given by

/be‘l’(may)ds(y)ds(s)

_ hkhy

T4
The points where the non-singular integrals have to be evaluated in order to perform the
numerical integration are illustrated in Fig. 5.7.

(5.69)
(2(2',9") + 0@, 97 + 22" ) + 2(@,9?)).

FIGURE 5.7. Evaluation points for the numerical integration.

5.4.4 Analytical integration of the singular integrals

We now develop the integration of the singular part of integrals (5.65). This integration
is analytically performed in y for & constant, and as said above, the external integrals in
x can be subsequently calculated by employing the quadrature formula (5.68a). We begin
by calculating the singular part of (5.65a), which involves the Green’s function G. In order
to perform the integration, it is necessary to previously isolate the singularity of G. From
(4.16) and (4.23), we recall that the full-plane Green’s function is written in function of
r=|y— x| as

GHr) = (A + Blr)rr), (5.70)
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where the functions A(-) and B(-) were defined in (4.17). Using the expressions of Hankel
functions for small argument given in (B.16), it is possible to approximate these functions
for r small. We obtain that

i1+ 5%

- 1 2
Ay 1)
w T
that is, we have that A has a logarithmic singularity, while B is actually bounded near the

origin. We thus substitute (5.71) in (5.70), and the Green’s function is reexpressed in a
general way as

Inr, B(r) ~ — as 7 ~ 0, (5.71)

144

dmp
where the tensor G® contains only regular terms in 7. This tensor can be determined ex-
plicitly using expressions (B.16). If we are dealing with the half-plane Green’s function,
it is further necessary to add to (5.72) the regular tensor GZ that appears in (4.89). The
singular part of the integral (5.65a) then corresponds to

GF(r) In7 8y + [GFE(r), (5.72)

1 2
[IG5)¥(2) = ;ﬁ ] In7 ds(y)6ik, (5.73)

and we need to calculate only one singular integral, which is scalar and it is given by

= f Inrds(y). (5.74)
/7

The calculation of this integral is based on taking a scalar function w = w(r) that is
bounded near zero and is such that

Aw(r) = 1; (v (::( )) =nr, (5.75)
and we consider on the segment L the local basis constituted by the pair of mutually or-
thogonal unit vectors (7, 12} defined respectively in (5.54) and (5.55). In order to simplify
the analysis, we assume the origin to be placed at . As this is a fixed point, we do not lose
generality with this assumption. In that case, we have that » = y — x lieson L. Let us

allow 7 to come out of L, by expressing it in terms of two parameters s and ¢ as
r=7r"+s7+in (5.76)

If we set ¢ = 0 and we take 0 < s < hy, then (5.76) corresponds to a parametrization of
L. Replacing (5.75) in (5.74) and resorting to the fact that the Laplacian is invariant under
a change of orthonormal basis, we can write

Pw  Pw
IA(z) = /L (@ + 55 s )ds(y), (5.77)
and after further calculation,
Sw ow ?w

_vv _ " ulihag . 5.78
ey Os ls=hy 08 ls=0 i . Ot? ds(y) ( )

On the other hand, it can be obtained from (5.75) that

dwer 1 1
e = - =) r. Sh/

A dr r 2(ln'r’ 2) " (5.79)
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This relation permits us to easily compute the derivatives of w with respect to s and ¢:

1
‘?9—“:=vm-fr=;(1nr—2)r--r, (5.80a)
Jw 1 1
S =Vu-n= 2(1m~ 2)r-n, (5.80b)
and also the second derivative of w with respect to £, which is calculated from (5.80b):
w1 0 1 1y &
W=§T-n§]nr+2(lnr—Q)Str-n. (5.81)
From (5.76) we obtain
r-n=r"-n+t, (5.82)
which implies that
%r -n = 1. (5.83)
Furthermore, it holds that
%ln‘r =Vnr.-n= 7'7:211, (5.84)
and substituting (5.83) and (5.84) in (5.81) yields
Pw l/r-ny\2 1 1
- “(nr- —). 5.
ot? 2(r)+2(m 2 (5.89)

Thus, combining (5.78) with (5.80a) and (5.85) leads to the following relation for [A(x):

1 1 1
IA(x) —(ln'r”—-l-)r”-'r (ln*r”— )rp~1'
2 2 2 2
1 r-n 2d 1IA lh G2
e - ! i i
2/1,( ) dsw) + HIA@) = Jh,
and after rearranging terms and combining with (5.54) and (5.82), we obtain
IA(z) =7r" -7 Int” — P - 7 Inr? = hy, + IF(x), (5.87)
where » )
rP.n
IF(z) = fL ( - ) ds(y). (5.88)

Let us compute this integral. It should be observed that if & € L, then 7P is parallel to 7
and orthogonal to 12, and consequently, /F'(x) vanishes. Otherwise, we consider a different
parametrization of L, which uses an angular variable #. Setting ¢ to zero in (5.76) yields
the parametrization of L in function of s:

r(s) =r" 4 sT 0<s<hyp, (5.89)
and the angle formed by r(s) and the horizontal axis, denoted by 4, is defined by
P
tang = 272 (5.90)
™ + ST

from which it is possible to obtain s as a function of §

_ _rhcosf —risiné (5.91)

Tocosf — 1y siné’
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Then, replacing (5.91) in (5.89), using (5.55) and expanding yields the desired parametriza-
tion of L in terms of the angle &:

r(0) = - i) 8, <0<0,, (5.92)
70 n
where #(8) = (cos f,sin 8). The integral IF is calculated as a non-oriented line integral:
IF(z) = / " (’”’_‘”_)2|1-'(9) sign 07, 6, (5.93)
N O

where the sign of 8, has been added to the integral, in order to make it independent from
the orientation of L. Substituting (5.92) in (5.93) and expanding gives

bn
IF(x) = sign 8, f |r? - m|df = |rP - n||6.]. (5.94)
2]
Moreover, it is not difficult to show by geometrical arguments that the terms 77 - i and 6,
have always opposite signs. Therefore, it holds that

IF(x) = -r"-no,, (5.95)
and substituting (5.95) in (5.87), we obtain an exact expression for the integral JA(x):
IAlz)=7" 7Int" —rP -7 Inv? — hy — 77 - n by (5.96)
Finally, substitution of (5.96) in (5.73) yields the singular integral IG*:
1 2
[IG%)¥ () = — ;5 (r" -7 Inr® — 7P 7 Int? — hy — 77 - 16, ) . (5.97)

Let us compute now the singular part of (5.65b), which involves the Green’s function’s
normal derivative H. As done for the other integral, we start by isolating the singularity of
H. We obtain from (4.18) and (4.29) that H is written in function of r as

HF(r) = %((D(T)c%k + 2C(r)r 7 )7 ene + D(r)ring + E(r)rn;), (5.98)

where the functions C(-), D{-) and E(-) were defined in (4.19). In order to approximate
these functions for  small, we resort to expressions (B.16), obtaining that

2i(1 — J2 + 32 =32

1(—')—, D(r) ~ E, E(r) ~ —-%, asT ~0, (599
T T r

that is, these three functions behave as 1/r near the origin. Replacing (5.99) in (5.98), it is

possible to reexpress the Green’s function normal derivative in a general form as

Clr) ~

Hf(r) = 21 ((ﬁgéik +2(1 - ﬁz)r,,;r,k)r,eng | i?z(rmink - r,kn,;)) + :HR]f('r), (5.100)

wr
where the tensor H? is regular in 7, and it can be determined explicitly from expressions
(B.16). Analogously as before, if we are dealing with the half-plane, it is necessary to add
to (5.100) the regular tensor H” that appears in (4.94). The singular part of the integral
(5.65b) is thus given by

1 Tren ik — T LT
[IH]; () = _5[1, (85 +2(1 = B)rirp) ==+ 57 DT Yds(y), (5.101)
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and expressing the integrand directly in terms of matrices, (5.101) can be restated as
1 r-n T
s 2 . 2 t
[IH")(x) = S fL ((I—i— (1-p8 )1‘\/f('r)),r—2 + 3°Q 2 -)dsi\yj? (5.102)

where the matrices M (r) and @ are given by
2

M(r)—[r'l—r?? 2ram2 ] Q=[0 _1]. (5.103)

2rars  — (r,l ?",22) 1 0

Notice that M (r) is a symmetric matrix, whereas @} is a skew-symmetric matrix. This leads
to identify a symmetric part and a skew-symmefric part in the integrand of (5.102). In order
to integrate the symmetric part, we need to compute the following singular integrals:

IBo(x) = f L ds(y) (5.104a)
L

IB)(x) = f '"7:2" (r% — r%)ds(y), (5.104b)
L

IBy() = 2 f TT'_;"‘ r g ds(y). (5.104c)
L

The integral IB; can be straightforwardly obtained from the calculations already made.
We deduce from (5.82) that ¥ -n = 77 - n, soif & € L, then ¥ - n = 0 and IBy(x)
vanishes. Otherwise, we obtain from (5.88) and (5.104a) that

1
IBy(zx) = per IF(z), (5.105)
and combining with (5.93) gives
IBy(x) = —0,. (5.106)

On the other hand, the integrals IB; and IB, are calculated as non-oriented line integrals
using the parametrization r = r(#) given in (5.92). By definition, we have

On mp .
IB,(z) = / T (11(8)% — r2(6)?) | ()  sign 6, 6, (5.107a)
6 1T(0)]
671 rrp - T
IBs(x) = 2/ 5 T1(0)72(8) |7'(0)] sign 6, d6, (5.107b)
6, 1T(6)]
and replacing (5.92) gives
On
IB(x) = signy sign(r? - n)] cos 260 d8, (5.108a)
o
on
IBy(x) = sign 6y, sign(r? - n) f sin 26 d6. (5.108b)
O

It is worthwhile to recall that the signs of 8; and r? - n are opposite, so their product is
always equals to -1. Computing the integrals in (5.108), we obtain

IB(x) = —(sin 8, cos b, — sinf,cosb,), (5.109a)
IBy(z) = —(sin® 8, —sin®4,). (5.109b)
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Let us integrate now the skew-symmetric part, for which it is necessary to compute the
next singular integral

Cla) = / T ds(y). (5.110)
L
To do so, we resort to decomposition (5.76) and we use the relation
O r=Vinr-r="27, (5.111)
Os T
and IC(z) is simply calculated as
IC(z)= c% Inrds(y) = In(r") — In(r?), (5.112)
L
that is,
,r.'n,
IC(z) =In (Tp). (5.113)

Combining (5.102) with (5.104) and (5.110), we obtain that the components of [H S are
expressed in terms of the integrals 1By, IB), IB; and IC as

[1H®] () = —%(IBU(:I)) + (1 — 3)IBi(z)}, (5.114a)
[1H®)3(x) = 21,” (IBy(z) — B*IC(z)), (5.114b)
IH (@) = — o (1Ba() + FIC()), (5.1140)
IR () = — 5 (1Bo() — (1~ F)B (), (5.1140)
and substituting (5.106), (5.109a), (5.109b), and (5.113) in (5.114) gives
[IH?]}(z) = 2—1;(9,; + (1 - B*)(sinb, cosb, —sinb, cosﬂp)), (5.115a)
. 1 n
[IHE]y(@) = o ((1 = 6%)(sin? 6, — sin?6,) + % In (:—p)), (5.115b)
- 1 n
[IHS)2(z) = g(u — ?)(sin? 8, — sin?6,) — f2In (:p)) (5.115¢)
[H%](2) = %(95 — (1 - #*)(sin®, cos B, — sin b, cos 0,,)). (5.115d)

Hence, we have that (5.97) and (5.115) correspond to explicit expressions of the singular
integrals JG° and IHS, respectively. They only depend on © € K, the parameters of
segment L and physical constants, so they can be directly evaluated and used to compute
the external integrals in & by formula (5.68a).
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VL. NUMERICAL CALCULATION OF THE HALF-PLANE
GREEN’S FUNCTION

6.1 Introduction

This chapter is devoted to calculate thoroughly the half-plane Green’s function with
impedance boundary conditions previously introduced in Section 4.3. The calculations
performed herein are presented, in an abbreviated version, by Duridn, Godoy & Nédélec
(2006), and in a more detailed version, by Durdn, Godoy & Nédélec (2010). The calcu-
lation method resorted to is strongly based upon the works by Durdn, Muga & Nédélec
(2005a), Durdn, Muga & Nédélec (2006) and Duran, Hein & Nédélec (2007), where the
half-plane Green’s function of the Helmholtz’s equation with impedance boundary condi-
tions was theoretically determined and numerically calculated. A partial Fourier transform
in the horizontal sense is applied to the impedance boundary-value problem, and the spec-
tral Green’s function (that is, transferred to the Fourier domain) is expressed as a sum of two
terms, where the first one can be analytically inverted, yielding the full-plane Green’s func-
tion mentioned in Section 4.2, and the second term is inverted by an analytical/numerical
method. For this, it is separated as a sum of three parts, where two of them contain singu-
larities in the spectral variable (pseudo-poles and poles) and can be analytically inverted,
and the remaining term is regular, decreasing at infinity, and its inverse transform is nu-
merically approximated via a backward fast Fourier transform (IFFT) algorithm. The part
of the pseudo-poles is intimately related to the image of the source point, which lies in the
lower half-plane, whereas the part of the poles has special significance, since each pair of
real poles has associated the existence of a surface wave. We obtain the Rayleigh wave (or
secular) equation, which will be studied in the next chapter. The calculation of the Green’s
function’s normal derivative is also presented. In the case of the analytical terms, that is,
the full-plane term and the parts of the pseudo-poles and poles, the normal derivative is
calculated analytically, while the regular part’s normal derivative is calculated numerically
via IFFT. The derivatives of this part in the horizontal sense are computed in the Fourier
domain, whereas its vertical derivatives can be directly calculated in the space domain.

6.2 Spectral Green’s function

Let us consider a fixed source point z and a variable receiver point y, with 2, y € R2.
The half-plane Green’s function G is expressed through its column vectors, denoted by
g* = g*(z, y) for k = 1,2. We have already stated that this Green’s function has to satisfy
the elastic wave equation (4.87) and the impedance boundary conditions (4.88), which are
respectively expressed in vector notation as

divo(g®(z, y)) + po’g®(x,y) = —d=(y)&r  inR3, (6.1a)
—0(g"(z, ¥))&: + wZe gi (%, y)é1 = 0 on {2 = 0}, (6.1b)
+ Outgoing radiation conditions asT = |y| — +o0, (6.1¢c)
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where the divergence operator and all the derivatives involved in the stress tensor ¢ are
taken with respect to the components of y. Moreover, the radiation conditions are added
to this problem, and as done before, they are expressed in words. Therefore, in order to
determine the desired Green’s function, it is necessary to solve the problem (6.1). To do so,
we apply a partial Fourier transform in the horizontal variable y;, which is defined as

+00
G°(& ) = / g (y1,y0) e EB T dy, (6.22)
k L [T i€(y1 1)
g (y13y2) = 2_[ g (5? y2)€ yima dé} (62b)
T J—oo

where for the sake of simplicity, the dependence of g* on the source point & is not explicitly
written for the time being. Application of this Fourier transform on (6.1a) and (6.1b), both
for 7 = 1and j = 2, yields
&G : oG
Cn 2 (& y2) +18(Crz + Czl)a—w(& Y2)

—(€2C1 — pwD)G(E,y2) = —bua(y2) 1,

(6.3a)

oG .
022 ay2 (6, 0) 1 (15021 + UJZoofl) G(f, 0) = O, (63b)

which corresponds to a matrix ODE’s system for the Fourier transform of the Green’s
function, denoted by G and called the spectral Green’s function. The matrices Cj; are
defined by

Cyt = { ot S } , 1<y, (6:4)
Cag1l Caja
where the coefficients ¢, are given by
A4 24 ifi=j=k=l
A ifi =jand k =1 #1,
Cijkl = 1 ifi=kandj=1+#1, (6.5)
1 ifi=landj =k #1,
0 in any other case,

and I, = &,é7. Analogously as established in Section 4.3, we attempt to express G as a
sum of two terms:

é(‘g: yg) = @P(£7y2) + @8(61 y2): (66)

where G is a term associated with the full-plane and G2 is an additional term that takes
into account the infinite flat surface and the boundary condition specified. The latter is
simply called the boundary term. In order to calculate the solution to (6.3), we start by
solving the homogeneous equation of (6.3a) separately on regions {0 < y» < z,} and
{y2 > z3}. After that, suitable transmission conditions are imposed at y; = z3. Notice that
if the right-hand side of (6.3a) is zero, then the differential equation becomes the same for
both columns of @, so the homogeneous equation can be written in vector form as

Caa " (y2) +i€(Cr2 + Con) ' (2) — (£°Cia — p®I) 7(112) = 0, (6.7
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where the Fourier variable £ is assumed to be a parameter. Any solution to (6.7) can be
expressed as a linear combination of terms of the form

7(y2) = we 2, (6.8)
where { € C is a scalar and w € C? is a vector, which are unknowns and not depending
on . Substituting (6.8) in (6.7) and expanding, leads to the characteristic equation

A(¢,Q)w =0, (6.9)
where
A(£,¢) = £2C) — (6 (Cm + Crz) + (PCa2 — p®LL (6.10)

Therefore, the pairs (¢, w) in (6.8) are the non-trivial solutions of the characteristic equa-
tion (6.9). In particular, the scalars ¢ have to be such that A is singular, that is,

det A(§,¢) = 0. 6.11)
Replacing (6.10) in {6.11) and expanding, leads to a polynomial equation for ¢:
(€ + (&7 = kDI + (&8 — kp)) =0, (6.12)

where &, and k7 are the wave numbers defined in (2.21). This equation has four indepen-
dent solutions given by

G =iVETR, G =i/E— R, (6.13a)
(p =-iVE-K, ¢r = —i/E — ki, (6.13b)

Even though £ € R, the square roots are complex maps, so an exact meaning has to be
given to them. We pose

V& — ki = VE—kLVE+ kL, V& — k3 = € — krvE+ kr,

and we consider particular branches in the complex plane to define each root, as indicated
in Fig. 6.1. The exact definition is

yIm{¢}

o
=~
- — — — — — — -
ol
h.:

[
[
!
I
|
I
'y

~kry ~kr, S‘te?é}

v

FIGURE 6.1. Domain of complex maps ,/£2 — k% and ,/£2 — k2.
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£
VE -k = —ikaexp(/ g & du) a=L,T, (6.14)
o —

and then the square roots 1/£2 — k? and /€2 — k% have always non negative real part
for £ € R (see Durdn, Muga & Nédélec 2005a, 2006). The vectors w are computed by

substituting the respective values ¢ in (6.9). We obtain

i 2_,_k2

. —i€ . _[VE-E
— o= 6.15b
wi-| et wiz[ V] e

and the general solution of (6.7) can be expressed as a linear combination:
r(y) = af e IR w} + af e TR wh 4+ o e NV w, +ape TR wys,  (6.16)

for general complex coefficients o}, o, a7 and a. Moreover, 7 has to verify a boundary
condition at y» = 0, which can be easily obtained from (6.3b):

Ca 7' (0) + (i8Co + wZo 1) 7(0) = 0. (6.17)
Replacing 7 from (6.16) in (6.17) gives the identity
atvl + ofvf + ajv; +arvy =0, (6.18)
where the vectors v are obtained from the vectors w by means of the relation
= ((ECyp — €Cy + iwZ 1) w a=L,T. (6.19)
Substituting (6.13) and (6.15) in (6.19) yields
vf = [ £ (2pV/E — ki + 7o) ] , (6.20a)
ips(26% — k)
o e A ) ] (6.20b)
—1u(2§2 — 2) ’

[ (8~ B) +wle /TR ]
v = - ouf \/fQ—kQ (6.20c)

[ —ip(282 - k) +iwZeo /€2 — K
vy = _ 2t JE— 2 (6.20d)

As each column of G is expressed in the form (6.16), we use a concise notation to write it
directly. For this, we define the matrices

W, = [wilwf], W= |w;|wg], (6.21)
which fulfill the properties

wol=- detIW Wy, det W, = det W_. (6.22)
+
Additionally, we define the diagonal matrix
D(ys) = diag (eV¥ Ky eV ‘su'k%w), (6.23)
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which satisfies
D(yz) = diag (e 132, ¢~rvn), (6.24a)
D{—y,) = diag (e‘icf‘-""!, e‘iC%yz)‘ (6.24b)
The spectral Green’s function G is then expressed as

G(s,ya) W, D(y)Ay + W_D(~y3)A if 0<yy <9,
» Y W, D(y:)By + W_D(~y.)B if yo > o,

where A, A_, B, and B are unknown matrices depending on £ and x,. These matrices
are determined by imposing the radiation conditions when y, tends to infinity, the transmis-
sions conditions at y» = x» and the boundary condition at y, = 0 given by (6.18). Let us
begin by analyzing the case when y, — +oo. If |£| = ki, then \/£2 — k? is real, positive
and the functions eVé* %1% and ¢ V& *i¥2 gre exponentially increasing and decreasing
in yo, respectively. On the contrary, if [£| < ki, then /€2 — k7 is purely imaginary and
both the above exponential functions behave oscillatorily in 2. Indeed, it can be easily
verified that in accordance with our definition of complex square roots, the imaginary part
of \/&€2 — k% is negative. Consequently, ¢V £-kiv2 contains waves that travel in the —y,
sense, that is, incoming terms, whereas e” V £2-kL¥ contains waves that travel in the +y2
sense, that is, outgoing terms. The analysis for the functions /&2 — k2, eV €kt and

e VE ke g completely analogous. We want to eliminate any exponentially increasing
term in y3, because it has no physical meaning, and all the incoming terms, in order to fulfill
the radiation conditions at infinity. It is easy to observe that all these undesired behaviors
occur in the matrix D{ys) (see (6.23) and (6.25)), therefore, it is natural to set

B, =0, (6.26)

(6.25)

and then we only keep the terms that behave as desired, which are contained within the
matrix D{—ys). Let us study now the transmission conditions at yo = 5. We assume G to
be continuous at ¥y, = T, that is,

W_D(—x3)B_ = W D{z}A,. + W_D(—z)A_. (6.27)
However, G is not differentiable at this point, and its first derivative has a jump given by

oG 8G oG

—|{&,22) = lim —(&,92) — lim —(&, y2). 6.28

|5 (€20 = lim, 22— lim T (e ) (6.28)

Computing the derivatives from (6.25), replacing (6.21) and combining with (6.27) and
(2.21) yields

oG o 2w
[8_112] (§22) = = Gopwwr, O NWD(m2) Ay (6.29)
where
N = diag (VE* — kg, V€ —K7), (6.30)

and the second derivative of G in the sense of distributions corresponds to a Dirac mass
centered at zo and multiplied by the jump of the derivative of G at y» = x5. Substituting G
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from (6.25) in (6.3a) and combining with (6.22), (6.27) and (6.29) gives A :

A, = D(—za)W, N1 (6.31)

2pw
Notice that at the moment, we have the solution to (6.3a) (taking into account the right-
hand side). Finally, the boundary condition at o = 0 given by (6.18) is imposed to each
column of @, obtaining:
VLA, +V_A_ =0, (6.32)

where the matrices V. and V_ are defined from the vectors vp+, vy, vp+ and vp- as
follows:

Vi = [vpe|ore], Vo =[vp-|vr]. (6.33)
Then, replacing (6.31) in (6.32), we determine A_:
) o
A = 2p—wv W, D(—z)W, N1, (6.34)

and substituting (6.31) and (6.34) in (6.27) gives B_:
1
B. = —%—w(D(xQ)W — VW, D(—z)W, )N (6.35)

After that, replacing (6.26), (6.31), (6.34land (6.35) in (6.25), the terms of the sum in (6.6)
can be determined. The full-plane term G is given by

1
~ 5o W+ Dlyz — z9) W, N~ if 0 < y2 < 2o,
GP(s,y2) Av (6.36)
— W_D(zz —y2) W_N"' if y2 > xq,
2pw
and the boundary term GBis given by
= 1
GB(€, 1) = o D(~y)V_ WV, D(—z)W. N\ (6.37)

Replacing (6.21), (6.23) and (6.30) in (6.36) yields GP , which is a symmetric matrix whose
components are

Zp -
GL1(§,92) = 2pu?

1 (628—\/62__'k%|yz—$2| \ﬁ SN A
— V& —KLe VE M-l ) (6.38a)
NG

sign(yy — o) (e VE-kilya—z2| _ , \/ELIC%Iyz—w:zI)1 (6.38b)

& &2k lyz—axa
R

AP ig
G12(€, ) 20w

¢ 1 T 12 g
Gg?(&:yﬂ =— (\/62 . k%e V&2 =k lya—za| _

5r0? ) . (6.38¢)
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On the other hrind, substituting (6.21), (6.33), (6.23) and (6.30) in (6.37), we obtain the
components of GZ:

GE (&) = _2p1w2 (((252 k%)z F 462/ 2\ — k2

. 626—1152—ki(y2+m) 9
= Zooktr SE2 — K2 —— + { (267 — K}
+46/€2 — kI /€2 — ki — S Zo ki /€ — k%) (6.392)

x /€7 — kF e VE TR luten) _ g2 (262 — k) /€ — kF
X (e‘(\/éz-kiw\/f?-kf‘r’-mﬂ + e_(\/fz—k%yzﬂ/éz—kim)))

[((€ 1)’ 46 /&~ BB+ 22k O~ R ),

6182(6,92) = _Q;iﬂ (((252 s k%)z +4£2,/¢2 — k%\/gz iy
+ ‘ﬁzmk%\/gz B )eVERoma 4 (262 - i)’
AT R — B — 2 2ol /E— R )¢ VO reea)

(6.39b)
—a(2 - 1) (VO - B VE R (Ve )
4 (VP k%mﬂ/ez-kgm)))
/(28— 1) — 4 VE—RVE =B + 22k /T~ R ),
Bhem) = 5o (260~ ) + 42 VTRV =
+ EZwk%\/W)G—M(ywm) + (g - 1)’

- 4(26" - ) (g (VE Fmr /R

+VE-KE—H.e (\/@-k%w\/?—k%mz)))
/(8 -B) — 4 VE—RVE R+ LZakb /O~ B ),
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~ 1
Ghi(eom) = ooz (@6~ 1)+ 462 RLVE -
AN AW A G

+ (26 = 1) + 48 VO RLVE — H — 2 Zekb VBT )
T 6.39d)
2 m@2+mz) 9 > s 5 (
X . —462%(28° — k) /€2 — k2

y ( e—(\/ﬁz—kiyz+\/€2—k§~m) o~ (VE-Rnt /e ki.,x?)))
/{0 1) - st VE=RL T H 4 82, /T ),

The Green’s function G is then determined as the inverse Fourier transform of the spectral
Green’s function G, that is,

G(n:,y) = 5}

+m - . "
G(E, o) e 7200de, (6.40)

—o0

For this, we use the decomposition (6.6) of @ that is, the Green’s function is calculated as
6w =5 [ Elemen s o [TE e w64

where the components of the terms GF and GB are given in (6.38) and (6.39), respectively.
The integrals on the right-hand side of (6.41) are calculated separately in the next section.

6.3 Effective calculation of Green’s function

6.3.1 The full-plane term

Next, we compute the term GT of Green’s function, defined as the inverse Fourier
transform

GP(x,y) / GP(€,y2) €5 —)de. (6.42)

For this, we observe from (6.38) that it suffices to compute the inverse Fourier transforms
of the functions ¢, ¢ and ¢ defined by

526_\/ £2—k2 Jyz—z2|

$1(6,y2) = — (6.43a)
Bo(€, 12) = /€ — k2 e V& Kalme—zal (6.43b)
b3(E, y2) = i€ sign(ys — xp) e~ VE RE lvz—a2l (6.43¢)

where o = L, T. Their inverse Fourier transforms, denoted respectively by ¢y, ¢ and ¢3,
are computed by employing integral formulae (B.20) and recurrence formulae (B.12) for
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the Hankel functions, giving

ik2 /1 — )2
1(y1, %) = '—1; (—k HM (kar) — HO (kor) u), (6.44a)
al T
_ /T 1) (y2 — z2)*
a1, y2) = —on (H H ' (kor) — Hy ' (kor) =) (6.44b)
ik? —z —z
(Y1, e) = ——2 5 Hy (kar) (w1 135”2 2) (6.44c)

where as usual, r = |y — &|. Using formulae (6.44) with « substituted by L or T as
appropriate, we compute the inverse Fourier transforms of expressions (6.38), giving

i _ 2
Gr (e, y) = i (A(r) + B(r) %) (6.45a)
Gh(z,y) = G5\ (x,y) = i By W= ”’llgyz — ), (6.45b)
; a2
Ghiev) = o (A(r) + B (ﬂ_ﬁﬂ) (6.45¢)

where A(-) and B(-) are the functions defined in (4.17). As the derivatives of r are given

by the formula r, = (y; — z,)/r, the term G¥ given in (6.45) coincides with that defined,
e.g., in (5.70). Consequently, G is actually the full-plane Green’s function, which agrees
with that stated in Section 4.3, that is, the half-plane Green’s function we are currently
calculating is decomposed as indicated in (4.89). If we want to compute G for yo =
T4, a difficulty is encountered: The functions q’gl, c?)} and 53 are no longer exponentially
decreasing in £ and formulae (B.20) are not directly applicable. Hence, what we do in that
case is to perform the calculations assuming ys = x5+ ¢ for & small, and after that we make
¢ — 01in (6.45), which is actually equivalent to simply evaluating G* at y, = z».

6.3.2 Decomposition of the boundary term

We are now interested in calculating the term GZ of the Green’s function, defined as

the inverse Fourier transform
“+o00

CBa,y) = o [ CP(€, )@ ae. (6.46)
27 J oo

This term requires special attention, because G? has singularities (pseudo-poles and poles)
that make difficult the calculation of its inverse Fourier transform. For that reason, these
singularities are previously removed by subtracting certain suitable terms, whose inverse
transforms are analytically calculable. The advantage of this approach is that the remaining
term is regular and its inverse Fourier transform can be numerically approximated. This
procedure thus decomposes the term G® into a sum of three parts:

GB(€, 1) = GBPP(E, 1) + GBP(E, y2) + GO 8 (¢, ), (6.47)

where GB¢ is the regular part, GBP® js the part of the pseudo-poles and GBPol s the part
of the poles. Their inverse Fourier transforms are denoted by GBreg GB.psp gpd GEwol
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respectively. This yields a decomposition for the term G2 as a sum of three parts:

GB(x,y) = GEPP(x,y) + GBPNz, y) + GBr8(x, y), (6.48)
Each one of these parts are calculated separately, as described in the following subsections.
6.3.3 The part of the pseudo-poles

Singularities known as pseudo-poles (or half-order poles) are present in the diago-
nal components @ and 6’ , given respectively in (6.39a) and (6 39d), due to the fac-
tors 1/+/€2 — k3 and 1/ \/52 k2., respectively. Specifically, G11 has pseudo-poles at
£ = =4kj, whereas G22 has pseudo-poles at £ = *kr. This kind of singularity in the
spectral Green’s function is closely related to the image point of each € RZ, which is
defined as T = (z1, —z2) and lies in the lower half-plane. By analogy with the Helmholtz
equation (cf. Durdn et al. 2007), the pseudo-poles are removed from the boundary term by
adding the (spectral) full-plane Green’s function associated with the image point . Hence,
the term G2PP of the decomposition (6.47) corresponds to the symmetric matrix whose
components are given by

1 2=/ E2=k7 (y2te2)
CLiP™®(&,ve) = 2pw2(§e = _Lkz —V&?—k%e‘vgz"“%‘”””), (6.492)
G (€, 1) = 2 ( VIR e _ o~ VERlurtan), (6.49b)

526 V&2 -k {y2 ta2)
) . (6.49¢)

5 1 N E2— z
G22p p(g’ y2 (\/?—kz S 52 k2
- hp

Although the off-diagonal terms G and 6’231, given respectively in (6.39b) and (6.39b),
do not have pseudo-poles, the term GB PSP defined in (6.49b) is subiracted anyway, because
it allows to deal with simpler expressions. The term obtained after extracting the pseudo-

poles from the boundary term is called the pseudo-regular term, denoted by GBP and
defined as

GBor (g, y2) = GBE, 1) — GPP (&, a). (6.50)
Therefore, replacing (6.39) and (6.49) in (6.50), we obtain that GB#st can be expressed as

~ B, psr 1
G P (g: y2) == pwg lI}(giyZ)

6.51
(28~ B) — 48 V&~ B E — B+ 22k — R ), o
where ¥ corresponds to a regular matrix in §. Its components are
U11(6,30) = VET = R (2676 VE T — (282 — ) VO i) 652
X (25 e~ VEKim _ (262 )e = k%mz) '
Via(E, 1) = i€ (218 — KL /E7 — Rpe VI — (262 — k) VI HEm )
(6.52b)

x(2§2 mmz_(2£2 k2)e \/52_1:2_)
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a6 (01— T — 2 R V)
x (267 — k) VEHm  ggte V)

) — (6.52¢)
o i%ka%‘f\/W(e_(\/f —k2ya+4/€ "’T”)
6—(\/52—k%y2+\/52--k%z2))
Uan(E, yz) = /€% — k% ((Zf2 —_ k%)e_vfz‘kim 2‘523-\/62-’3%:#2)
x (262 ~ Kp)e VEHm _ g2 VEHn)
(6.52d)

+ %ka%(\/gil —kZ./€2 — k2 6—(\/52—k%‘y2+\/52—k%:c2)
~ &% -(\/fz-k%yw\/e?-kgmz))

These functions do not have any singularity. Moreover, it is straightforward to verify that
the components ¥,; and ¥,; are even functions in &, while the components W9, and ¥,
are odd functions in £. On the other hand, the inverse Fourier transform of the term GBpop
given in (6.49) is computed analogously to the full-plane term, giving the components

1 . 2
GHP*(z,y) = —ﬁ (A(F) + B(7) @"F—gml)) , (6.53a)
G (2, y) = G1™ (z,y) = —Zi; B(r) Wi m})(gyz ads )} (6.53b)
1 2
Go™(x,y) = —i (A(F) + B(F) @i;ﬂ) , (6.53¢)

where 7 denotes the distance between y and the image point T, that is,

T=1/(n—21)? + (12 + 72)% (6.54)

6.3.4 The part of the poles

The poles of the spectral Green’s function are extracted from the pseudo-regular term
GBPr which is given in (6.51) and it has no pseudo-poles. As the matrix function ¥ (&, y5)
is regular in &, all the poles come from the denominator in (6.51). These poles are located
at those values of & such that this denominator vanishes, that is, they are solutions of the
equation

(262 - 1) -4/ — B /@ — B + 22 M/ - KB =0. (655
This equation is known as the Rayleigh wave equation, or secular equation. The solutions
of this equation cannot, in general, be determined analytically, However, as the dependence
on £ is through £2, it is possible to establish a priori that they correspond to pairs symmet-
rically located with respect to the origin in the complex plane. Moreover, as we will see in
the next chapter, a pair of real solutions gives rise to a surface wave propagating through
the infinite flat surface. In other words, there is a correspondence between real poles of
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the spectral Green’s function and surface waves. In order to solve (6.55), it is necessary
to employ numerical procedures, and this matter is discussed in the next chapter. For the
time being, what we do is to take two solutions of (6.55), namely § = k and £E= k, with
iRe{fc} = 0, and we assume that GEZP has two simple poles at these locations. The poles
are extracted by subtracting a simple term from GB»=which behaves in the same way at
the neighborhood of each pole and is regular elsewhere. We are referring to the term GBpol
of the decomposition (6.47), which is written as

. 1 1 - 1 .
e =———| —C*(k ~C~(k 6.56
e =~ (O ) + O, 659
where C+(k, y2) and C~ (k, y) are the residue matrices associated with the poles at £ = k
and £ = —k, respectively. These matrices correspond to the limits
C*(k,ys) = —pw? lim (€ — k) GEP (¢, ), (6.57a)
£= vk
C(k,y2) = —pw? Um (€ + k) GBP (€, ). (6.57b)
e——k

Combining with (6.51) yields

i . (E—é)w(ﬁ,yg)
CT{k,y) = lim , (6.58a)
v = I o — k) — 4B R — R+ 22k /B i

. k
C (k1) = lim , (£ + k) WS, y) . (6.58b)
=k (262 — k) — 462/82 — kI /2 — kG + 2 Zok3 /€2 — ki
Because of the evenness or oddness of each component of W (s, y») (see (6.52)), it is direct
to verify that the following symmetries hold:

Chi(k, y2) = —Cpy(k, w2), Chk,y2) = Cialk,32),
Cg-l(’z:v y2) ot CZI(";:: y?): 02-5(]%1 y2) = _022(1%: y2)'

Hence, in order to simplify the notation, we put cie(fs:, y2) = C5 (fc, ya2), where 1 < ¢, £ < 2.
The matrices Ct(k, y2) and C~ (k, y2) are thus expressed as follows:

(6.59)

. [ ek, ye) calk,p0)
Colk,yp) = en(k, & : 6.602)
+( y2) | 621(k7 yZ) 022(’5:’9'2) (

021(12‘, yz) —022(’;513}2)

C—(]%,'yZ) — —cll(k? y2) 012("3,3}2) :l , (660'3)

where the coefficients c,;g(fc, y2) can be computed by employing L’Hopital’s rule, giving
\Ijif(];7 3’2)
2
£ e - B) — 4 VE =R E = R + 2 2ek /T - B |

The inverse Fourier transform of the term G5! given in (6.56) is analytically computed.
In order to determine the diagonal terms of G5, it is necessary to calculate the inverse

. (6.61)

Cif(ii‘;i y2) ==

e=k
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transform
1

F_ ()= — / - (L - A)eiﬂyl “de, (6.62)
2 Jowo \E—k £+ K

Let us assume that k is real. In that case, the computation of the integral in (6.62) must be
carefully done, because the functions 1/({ — k) and 1/(¢ + k) are not integrable in R, at
least in the classical sense. In order to overcome this difficulty, we resort to the limiting
absorption principle. First, the pole at £ = £ is regarded as the limit

k= lim &° = lim (k+ie), (6.63)

e—0+ e—0+

and the calculation is made assuming that the poles are placed at £ = +k=, where ¢ > 0
is fixed. This procedure takes out both poles from the real axis and the inverse Fourier
transform becomes correctly defined in the classical sense. Notice that the pole at § = k is
displaced towards the upper complex half-plane, whereas the pole at £ = —k is displaced
towards the lower complex half-plane. This particular choice of sign for the imaginary part
of each pole gives the solution having the right physical sense, that is, outgoing waves (for
a more detailed explanation, see Durdn et al. 2007). Once the inverse transform has been
computed, we take the limit £ — 07 in the obtained expression. Let us define the function
fe = f.(€) as the integrand of (6.62) with k replaced by k*, that is,

1 1 .
— i{y—x1)
= — — — Je s (6.64)
ro=(z-%)
This function has two complex simple poles at { = k and at &= —k*. The integral

in (6.62) is computed by application of Cauchy’s residues theorem. This calculation is
separately performed for the cases y3 — z; = 0 and y; — z; < 0, dealing with different
clockwise-oriented contours in the complex plane for each case. These contours are shown
in Fig. 6.2, where R > |k%| is a parameter destined to tend to infinity. When y; — z; = 0,
we integrate along the upper contour, which consists of two parts, namely the straight line
I} and the upper semicircle S}, (see Fig. 6.2 a)). Notice that only the pole at § k* lies

a) b}
tam{¢} $am{g} k(P
ST ) Re(€)
R
I;:E
> ? .

.Y I Re{¢}
—K! L J ]

FIGURE 6.2. Contours in the complex plane for casesa) 3 —z1 = 0,byy; — 21 < 0.



inside this contour, so it follows from the residues theorem that

f;(f)d{-i-f f-(€)dg = 2mi Res f.(€). (6.65)
i st gkt
As the contour is clockwise oriented, it is immediate that
lim (&) = /+m( ! = L ) eis(yl_ml)df (6.66)
eI s ) o \E—k° 4k . '
Moreover, it is not difficult to prove the estimation
2R|k| f” — Risin 8(y1—
de| < — 1 | g Reinflni—2iqg 6.67
k| <2 | 6.67)
and as y; — x; > 0, it follows from (6.67) that
Rl_lH_lQQ st f(&)de ‘ ={. {6.68)

On the other hand, the residue of f. associated with the pole at ¢ = ke is computed as

Res fe(¢€) = Jim (€ — k) £-(8), (6.69)
and combining with (6.64) gives
: €= kY Jetn-an) _ gibn-a1)
Res fo(€) = lim | 1 — — | eSW1TF = T TR, (6.70)
£=k-z E_,ks f + kE

Consequently, taking the limit R — +co in (6.65) and replacing (6.66), (6.68) and (6.70)
leads to the identity

R (R €t =age — o ek -=) (6.71)
o \E—kt  E+ks ’ '

which is valid when y; — z; > 0. When 4; — z; < 0, we integrate along the lower contour,
which consists of the straight line J, and the lower semicircle Sp; (see Fig. 6.2 b)). The
procedure is analogous to the previous case, but this time it is necessary to take into account
that this contour only encircles the pole at £ = —kt. We finally obtain the identity

+o0 1 1 . .
] ( — . ) gémi—=1)ge = oj e n1-21), (6.72)
o \E—k EHk

which is valid when 3, — z; < 0. In the general case, both identities (6.71) and (6.72) can
be expressed in a single form

T gewmge — ot n-ail (6.73)
o \E— ke Etke
Finally, taking the limit e — 07 in (6.73) and replacing in (6.62), we obtain
F_(y;) = ieklm=, (6.74)
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In order to determine the off-diagonal terms of GZP it is necessary to compute:
g ry p

Fi( )_i +°°(L+ ! )e‘f(y' Tikdg (6.75)
P e \e—k 4k ' '

The development for calculating this integral is completely analogous to that already done
for (6.62). The final result is

F.(y1) = isign (y1 — 1) =21, (6.76)

If & has a nonzero imaginary part, it is not necessary to add an imaginary part, and the
inverse Fourier transform of (6.56) can be computed directly by application of the Cauchy’s
residues theorem, leading to the same result in function of k. Then, substituting (6.74) and
(6.76) in (6.56) yields the components of GZ 120

1

G (e, y) = e cnr (k, o) €M1, (6.77a)
G, y) = _piﬁ 012('?“:3/2) sign (y; — 1) el <1k (6.77b)
GHP (x,y) = —ﬁ car(k, y2) sign (y, — 1) ekl =1l (6.77¢)
Gz (@, y) = —ﬁ caa(k, y2) e =11, (6.77d)

In order to make easier the subsequent numerical implementation of these expressions, we
write the coefficients ¢;; explicitly. Computing the derivative of the denominator in (6.51)
yields

d

d—g{ (26— )’ —4* VP RLVE = R+ 22k O~ ] } -
5{8(252 o RV NV (6.78)

_462(\/52_k%+\/fz_k%)+fzoo—“k% }
VE-R JE-R) Tk
and we define the quantities ]?:L and I%T as

Ep = \/k?— k2, kp = k2 — k2. (6.79)

Hence, Ehe expressions for the coefficients c;, are obtained by evaluating (6.52) and (6.78)
in & = k, combining with (6.79) and substituting in (6.61):

kg /b (zkze—hw — (2k? - k%)e—fcm)
8(2k2 — k2 — kpkr) — 4k2(kp/ky + br/kL) + 2 Zeok2/kr  (6.802)
x (2k2ehe — (2h2 - Kp)e Froz),

Cll(]::ay2) =



i(f;LkTe"icLyz (2];:2 - k;%)e ““Tyz)

cra(k, y2) = — — —————— -
D 8(2k2 — k3. — kikr) — 4B (ky/kr + kp/ko) + 9 Zok3/kr  (6.80b)
X (2!%26"'}"“2 = (2]?;2 — k})e ’}Tmz),
. i((2f<;2 — )eFuve — 2k fyetrn)
k) = ——— — S .
_—— 8(2k% — k3 — kpkr) — 4k (ky/kr + kr/k) + 2 Zookd [ kr
x ((2h - kp)e b= — afPehra)  (6.800)
B ifzook%‘kT (6-(Eny2+fcrwz) — e—(chyz"r'fCLIz))
8(2k2 — k2 — kpkr) — 4k (ky flor + or/ki) + 2 Z00k3 /R’
A bk (22— K2)ebien — 2ize bron
caa(k, ya) = ( )

 8(2k2 — k3 — kukr) — 4k (ku/kr + kr/kp) + 2 Zook? [y
x ((2k® — Kp)eRm — 2kPe brez)  (6.80d)
ﬁzook%/fg (]%L]%TB—(’}Ly2+ETm2) — k2 (kTy2+chm2))

8(2k? — k% — kpkr) — 4k2 (ki /kr + kr/kL) + % Zooki [y

6.3.5 The regular part

Once the terms corresponding to pseudo-poles and poles have been subtracted from
GB, the following term remains:

aB,reg (5: y2) = éB,psr(g’ y‘Z) - éB’DOI(éu y2): (68 ])

and the term we desire to calculate can be written as

1

The term GBre is regular, because all its singularities in £ have been removed. In ad-
dition, it decreases fast at infinity in £, since GBwPs s exponentially decreasing. The
inverse Fourier transform of GB°¢ is thus numerically approximated by the inverse dis-
crete Fourier transform (IDFT) and efficiently computed by an algorithm of inverse (or
backward) fast Fourier transform (IFFT). To do so, we deal with the centered variable
v = y, — z;. Both the spatial and spectral domains are discretized by considering N equis-
paced samples v, and &,,, where n,mn = 0,1,..., N — 1 and N corresponds to a power of
2 for the application of the IFFT, that is, N = 2™ for some M & N. The discretized spatial
and spectral domains are thus given respectively by

Uy = =™ + nAv, n=01,...,N—-1, (6.83a)
Em = —EM™F + mAE, m=0,1,...,N—1, (6.83b)

@B,reg(f, yz)eié(yl ﬂ’l)dg. (6.82)

=
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where ™ = () and £™** > 0 are the maximum values of |v| and |£|, respectively, whereas
Av and A£ are the steps of discretization in v and &, respectively. The following relations
link the parameters of this discretization:

NAvy = 29™*, (6.84a)
NAE = 26m (6.84b)
NAvy A€ = 2m, (6.84¢)
2y LM — N, (6.84d)

Therefore, given a function ¢{v) and its Fourier transform ®(£), their discrete approxima-
tions ¢, and &,, are defined as

'Umax Nl 2@
q>m_TZ¢ne N n=0,1,...,N -1, (6.852)
n=0
ggmax 0
bn= "5 > bne N, m=0,1,...,N—1. (6.85b)
me=()

This algorithm gives a numerical approximation of GZ" in a bounded region of R?,
which we write in general as

GBr8(z, y) = IFFT{GP"8(€, y2) Hun — 51). (R

6.4 Effective calculation of the Green’s function’s normal derivative

6.4.1 Definition and decomposition of the normal derivative

We now analyze the calculation of the normal derivative of the half-plane Green’s
function G determined in the previous section, which is denoted by H. A numerically
evaluable expression for this normal derivative is necessary, in order to be able to imple-
ment the boundary element method developed in Chapter V. The components of H can be
obtained from formula (4.30), which is given in tensor notation in terms of the derivatives
of G. Expanding this formula, we obtain that the components of H are

Hy(z,y) = ((A+zmaai (2, 9) + A%iyj(az,w)nl(y)

(6.87a)
3G11 6G12
(G + G e, ) |ty
oG oG
His(e, ) = i @ v) + 2,0 Ja(w)
vz o n 5 (6.87b)
11 12
+ (WG @+ (0 2% 2,0 )
oG oG
Hule,w) = (0 2052 w0 252w 0) ) muto)
1 2 (6.87¢)

G2 G
#u( G2+ 52 ) ),
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0Ga1 0G2
o ,9) + o @) ) m(y)

3G21 8G22
+ ()\ o (x,y) + (A +2u) Bve (w,y))nz(y),

where n; and n, are the components of the outward unit normal vector on the surface in
study. On the other hand, we infer from the previous subsection that H is decomposed as

H(z,y) = H  (z,y) + H®(z,y), (6.88)

Hyp(x,y) = M(
(6.87d)

where HF and H2 are the normal derivative of the full-plane term and the boundary term,
respectively. This decomposition was also deduced in Section 4.3, and it is given in tensor
notation in (4.94). In addition, the boundary term is decomposed as

HE(x,y) = HBPP(z,y) + HEP (z,y) + HE™E(x, y), (6.89)

where HEPsp, [B.pl and HBr€ denote the normal derivative of the part of the pseudo-
poles GBPP, the part of the poles GBP°! and the regular part GZ™€, respectively. It is
clear that all these terms are calculated from formulae (6.87), with G substituted by the
corresponding part of Green’s function. In what follows, we perform the calculations of
these normal derivatives.

6.4.2 The full-plane term and the part of the pseudo-poles

The normal derivative of the full-plane term was already calculated and is given, e.g.,
in (5.98). We write this normal derivative explicitly by components as

HE (2, y) = i{ (D(r) a0 W= $1)2) ((y‘ = ), 4 B o) nz)

+ (D(7) + B(r)) (m;—xl) - } o

Hiyz,y) = i{QC(’") o zligyz = ((yl ; = " M " (6.90b)
B e

e - o me) (s, e,
e

Hh@w - H{ (o0 + 202l (o), Lez o)) 6900

+ (D(r) + E(r)) () ’n2},

A

Let us calculate the normal derivative of the part of the pseudo-poles. As this part cor-
responds to minus the full-plane term, evaluated at the image point & defined above, this
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normal derivative can be easily determined from this fact and (6.90). Its components are

HEP (g, y) = —}L{(D( )+ 20 U= )((yl ;“”) ny + @m)

72

(6.91a)
+ (D(F) + E(?))(@”—;@nl},

HB PP () —i—{QC(F) (1 — 21)(y2 + 72) ((yl — 1) T (y2 ‘; 3) m)

4 7 T
+0(r) 822, 4 B (—y—)”} o
B ) = ;{20(?)(?;1— ;(924‘-’52)(@1;2:1)711—{—(yz—;xz)nz) 6510
+D()(y—l;i‘)nz+E(f)(y2—¥@”‘}’ |
H™(w,y) = i{(D( ) +20(7) B2 22) )((y‘_xl)m*@”?) 6.914)

+
+ (o) + ) LE .
Notice that although G¥ and GBP* are symmetric matrices, their normal derivatives H”
and H 5P are not.
6.4.3 The part of the poles and the regular part

Let us compute the derivatives of part of the poles G#P°! given in (6.77). The deriva-
tives with respect to g, in the sense of distributions are

6GB,pO| 1 R . ic
o (x,y) = W kcii(k, yo) sign (1 — z1) ¥ il (6.92a)
8(;“1%!)Ol 1 ) I ifc|y1 -z :
8y1 (CE, y) = p_w§ 612(k7 y2)(ke - 216:61 (yl)): (692b)
8GB,})0I 1 R . mi '
2 (x,y) = — on(k, yo) (ke ¥ | — 2i6,, (1)), (6.92¢)
on pw
aGB,poI 1 . R . —
6;21 (z,y) = e fecya (k, y2) sign (yy — 21 ) e =11 (6.92d)
while the derivatives with respect to ¥ are
oG Er! i Oy, k|1 —
bl § S = ik 1kly1—x1 6.93
Bus (z,y) o T (k,y)e : (6.93a)
OG5> i Oc Bl
By DY) = 50 B, 2k, y2) sign (y1 — 1) =, (6.93b)
B,pol . "
T (0,9) =~z g (bw)sien (n —z) @7 (6930
2
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Bpol . R R
6?9 (@,y) = —— @(k,yz)e““'y‘-“', (6.93d)
9:

pw® Oys
where the derivatives of the coefficients ¢;, are given by

Bery /e (2R2hpekiv — (282 — k) ore~hrrn)

By " T 8@ B k) — 4k o+ Frfk) + 22l Ry (694)

Bera 5 i (2 — K)eboms — (282 — g)eree)

Ey;(k’ ) _8(2};2 — kK~ kLkT) - 4’“2(‘%15/’;7“ + fﬂT/fﬁL) + %2 k2 /]?;T (6.94b)
< (tom - )

on () - o - k)ete)

By P T §(2k — K — hydor) — 4R (ke [y + kr /L) + 2 Zook
X ((2!@2 — k¥)e kroz _ 2!%%'””) (6.94c¢)
ionok%iﬂT (E;Le_(kL?}2+kTm2) — }%Te—(k'ryz+fw.,$2))
8(2k2 — k2. — kpky) — ak2(ky /by + kr/kL) + 2 ZookE/ky’
kulk ((21%2 — k2Ykpe R — 21%21%Te—km)
8(2k? — k& — kpkr) — 482 (ko /kr + kr/kL) + 220k} [k
x ((2k? = kp)e bz — 2f2e*r=r) - (6.94d)

+

cn
ya

(’%? y2) ==

“ Zookthr /K ((1?:2 — k3 )e(huvathraz) _ i?;ge'(kTy2+’}LI2))
8(2k2 — k2 — kpkr) — ak2(kp /by + kr/ky) + %Zook%/fé'p'

Therefore, replacing (6.92) and (6.93) in (6.87), with G substituted by G®*°!, and assum-
ing for a moment that 4, # z,, we obtain that the components of H P! are

o 1 , ~ o .
H™ (z,y) —2{((A+2u)kcu(k,y2) IS (E, yz)) sign (y1 — z1)m
pw Oys

a0 ) (6.95a)

-|-,u,(kc12(k yg) ay (k, yz)) }elkyl :ml,

B pol 1 i 7 6611
Hyy (w,’y)=m pl kera(k, yo) — 8y ——(k,y2) In

2 (6.95b)

7, .
+ (Meeua(hy ) = i3+ 20 G2 yz)) R
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3622

. 1

e, ) =~ { (0 + 2wkl a) ~ 052G

? a v (6.95¢)
5 c .
+ ﬂ(k 2k, y) — 1 21 (k: yz)) sign (y1 — $1)n2} gkt =1
B,pol 1 3621 .

HypP(x,y) = P le pl kcaa(k, yo) — la—(k y2) } sign (y1 — z1)m

g v (6.95d)

+ (Akcm(@,m) i\ + 2 }‘9*"22(k yg)) }e“'wl =],

In the case where y; = z;, we will see that Dirac’s delta distributions in (6.92b) and
(6.92¢) are actually canceled by other terms coming from the derivatives of the regular part
G828 50 they do not need to be taken into account. In order to compute the derivatives of
GP8 it is necessary to deal with the corresponding spectral part GB€ defined in (6.81),
since G”'2 is not known in explicit form. Using properties of the Fourier transform, the
derivatives of B8 with respect to ; can be computed as follows:

aGB reg 1 +oo. - ) _
F BV =5 f EGPE(E, yo)e SN, (6.96)
—o0
while the derivatives with respect to y, are computed directly inside the integral sign:
aGB,reg 1 +oo BGB reg
= ievi—=1)ge. 6.97
@) =g [ (e me (697)

We thus define the spectral term HB*€ in an analogous way as (6.87) but in the Fourier
domain, that is,
~ B reg

- o
At (6m) = (104 206860 + 2755 (€, 0) Jma)
(6.98a)

Breg
+u(aG (&) +iEG™ (E,y:z))m(yL

aGB ,Teg

HF(¢,p) = ( By (3 yz)+1§GB'eg(§,yz))n1(y)

o (6.98b)

(1)\§GB TE(E, ) + (A4 2p) (& yz))”Z(y),

~B,reg

AErs (e ) = (100 + 206856 1) + 222 (6 ) ) (w)

. (6.98¢c)
8G21,reg ~B,reg
+ Juw( 3y2 (&1 2) + 1§G (£=y2)) n?(y)a

(aGB Jeg

At (e, e) = n( 526 ) +6OEE ) (o)

(6.98d)

5 BGBreg
+ (DeBem) + 0+ 202526 1) Jmatw)
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In order to evaluate H Bireg the term GBres is decomposed as in (6.81), and their derivatives
with respect to y- are computed using the same decomposition, that is,

aéB,reg BGB psr aaB,pol
& & (€, w), 6.99

where the terms GBPs and GBP°! are given in (6.51) and (6.56), respectively. The deriva-
tives of G5 are calculated as

BGBpsr 1 8
ay2 (61’92) =

"o By Y2 (6.100)

/(28 - B — 4 VE-RVE B+ 22 /P ),
where the derivatives of the components of the regular tensor ¥, given in (6.52), are
S ew) =~ B (22— e VT
€2 k%)me—\/fz"_'k%w) (6.101a)
x (2e%e VEHm — (2¢? K)e Ve,
P16 ) = —ie I (26 — ) VE
— (2% - k%)e‘\/éz_k%w) (6.101b)
x (262 VP Hon — (267 — ke VEH),
S e.n) = 6V =R (262 - K)oV
—2(€% — k2 )e \/52_—@.1;2)
x ( (267 — K)oV Hie 2% VE ) (6.1010)
12 Zook /T (B R e (Vv hez)
VE ke (\/mwmm)),
S ) =~V B (2 - i) V- R e VI
~26*/E7 = Fo Ve )
x (267 — Kp)e V& H= - 2g VEH) (6.101d)

22 kTR (62 - K3 (VI VT )
= Eze—(\/az k%-yz-l-\/EQ—k"ng)).
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The derivatives of GBP! are given by

aG B! 1 1 _8C*. 1 9C- )
— (&) = —— : k, k , 6.102
6w = (e G+ 2 G, 610
where the derivatives of the residue matrices in (6.60) are
[ dcyy L. 7,
() S22 (k)
c‘EJC_ 8y2 8?)"2
£ —(ky) = | o e , (6.103a)
v2 l(k:y‘Z) ﬁ(kayQ)
L Oy Oya
[ Ocn g deig ¢
——=—(k, 1) — (K y2)
8C b =| 2 Ouz , (6.103b)
Oya dey (k % —@(fg )
L Gy Y Oy

and the derivatives Jc;o/0y- are given in (6.94). On the other hand let us consider the
derivatives with respect to i, of the off-diagonal terms @’ﬁ’pc’l and G2 2:7°!, which are com-
puted in the Fourier domain by multiplying by i£. From (6.56) and (6.58), these derivatives
are given by

€GP, 1) = —ic“'egfjgyz) ( : f PR f k) SRt

where 1 < 4 # £ < 2. In virtue of the decomposition (6.81), these terms appear in all the
components of H %7€, given in (6.98). By expanding appropriately, (6.104) can be restated
as

icie(k, v2) k k
€GB (¢, g — — el (2+ S ) 6.105
and the derivative of G*° with respect to y; is thus computed as
B,pol ; 5 3 :
3G P (il? y) — _ICie(k:?h) f+ 2 k k lf('yl ml)df (6.106)
3y1 ’ 2mpw? J E—k &£+k

Using properties of the Fourier transform for distributions, (6.106) is rewritten as

B,pol
9Gy, . ]ng(k yg){26 ()

ayl ( ) )_ pw
+i e (ih_ k A)eié(yn Il)d&}.
M) \E—k £+k

The Dirac’s delta distribution at the right-hand side of (6.107) cancels those appearing in
(6.92b) and (6.92c). In virtue of this fact, (6.104) is restated as

ike;e(k 1
BB €, ) _1kc,;(£;ya) (5 i - k) (6.108)

and this term is implemented as a part of HBree in (6.98). Finally, the regular part HZ"€ is
calculated numerically by employing the IFFT algorithm described in the previous section.

(6.107)
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This yields an approximation that we write as

H?"%(@,y) ~ IFFT{H?"%(€,30) } (11 — 1). (L)
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VII. ANALYSIS OF THE SURFACE WAVES APPEARING WITH
IMPEDANCE BOUNDARY CONDITIONS

7.1 Introduction

This chapter is concerned with the study of the surface waves that arise in the half-plane
with impedance boundary conditions. The Rayleigh wave equation (6.55), determined in
the previous chapter as the equation that gives the poles of the spectral Green’s function, is
deduced by a different and simpler approach consisting in an analysis of surface waves in
the non-perturbed half-plane R? . In order to simplify the subsequent analysis, this equation
is expressed in terms of the slownesses s; = ki /w and s = ky /w, instead of k;, and kr.
The Rayleigh wave is first studied in the case of a traction-free surface, where the Rayleigh
wave equation is standard. Two accurate explicit formulae for the Rayleigh slowness sp,
provided by Malischewsky (2000) and Vinh & Ogden (2004), are exhibited. In the general
case of impedance boundary conditions, it is demonstrated that for all real impedance 2
there is one and only one real solution to the Rayleigh wave equation in the range s > sp.
This solution corresponds to the Rayleigh slowness sg, which is an increasing function of
the impedance. On the other hand, it is proven that if the impedance takes a certain value,
then there is an additional real solution to the Rayleigh wave equation, located within the
range s;, < s < sp. This solution corresponds to the slowness of an additional surface wave
that appears in this particular case, whose expression is given explicitly. In addition, we
prove that when the special value of the impedance mentioned above is slightly perturbed,
then the additional solution becomes complex, with a strictly positive imaginary part, and
thus there is no longer an additional surface wave. Finally, the Rayleigh wave equation
is numerically solved by the iterative Newton-Raphson method, yielding the Rayleigh and
the additional solutions as functions of the impedance. Three rocks of different type are
considered as examples of elastic materials. The numerical results obtained are presented,
in order to illustrate what is stated theoretically.

7.2 Deduction of the Rayleigh wave equation

Let us consider the half-plane R? with impedance boundary conditions. We desire to
find the surface waves as particular solutions to the elastic wave equation with the charac
teristics of a surface wave, that is, with oscillatory behavior along the infinite flat surface
and exponentially decaying amplitude towards the interior of the half-plane. Such solutions
have a different nature from the volume waves determined in Appendix A.2. The procedure
to determine the surface waves is mainly based upon Achenbach (1973) and Harris (2001),
where the usual case of traction-free surface is considered. The desired solution, denoted
by u®"" # 0, satisfies the homogeneous system.

div o (v (z)) + pw’u™ () = 0 inR?, (7.1a)
o(u™ (x))eér + wZoui" (z)é; =0 on {zy = 0}. (7.1b)
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The solution to (7.1a) is determined by the method exhibited in Section 2.2, that is, we
seek 45" of the form

w(z) = Vgt (@) + V9D (), (712)
where the scalar potentials 1){*) and 47 satisfy
AP () + k(@) = 0, (7.32)
AT () + k24T x) = 0. (7.3b)
We write %(*) and 1/(T" as
PN x) = AlD)gikm gLz PO (x) = AT ks g=hrrez (7.4)

where A AT) are arbitrary amplitudes, & € R is an unknown wave number associated
with the desired surface wave, and the quantities -y, yr have to be chosen in such a way
that both Helmholtz equations (7.3) hold. Replacing (7.4) in (7.3), we obtain that & is
related with +;, and ;- by means of

ke = /K2 — K2, a=1L,T, (7.5)

where the square roots are defined as the complex maps introduced in Section 6.2. The
displacement field u5"" is obtained by substitution of (7.4) in (7.2), and is given by

w2, 15) = AL — i) + yp) e e Fremz 4 AT (ype + ieg)eF e FTR2. (7.6)
Replacing (7.6) in (7.1b) and expanding, we obtain that «** fulfills the impedance bound-
ary conditions if both amplitudes satisfy the homogeneous system of linear equations

1(2ukvL — wZeo) —pk(1492) + wZoyr ABT To an
—,u,k(l +92) 2ipkyr AD | 7o )
Therefore, in order to obtain the nontrivial solutions of (7.7), the determinant of the matrix
is set to zero, giving the identity

ph((1+93)° - 4vr) + wZearr(1=13) = 0. (1.8)
Substituting -y, yr from (7.5) and rearranging, we obtain the equation
(2k% — k2)? — 4> /K7 = KZ/RE — B3 + 2 Zook /K2 — K. = 0, (7.9)

which coincides with the Rayleigh wave equation determined in Section 6.3. This equation
can be also expressed in terms of the slowness s = k/w (reciprocal of velocity) as

(2s% — 3%)2 —45%\/s? — 57/5% = 57 + £ Zoo8h/ 8% — 85 = 0, (7.10)
where s;, = kp/w and st = kr/w are the slownesses of the longitudinal and transverse
waves, respectively. These quantities can be expressed in a more explicit way as

[ p P
= v= L = 7.11

The advantage of expressing the Rayleigh wave equation in the form (7.10) is that it does
not depend on w. Given any solution to (7.10), the associated solution to (7.9) is simply
obtained by multiplying it by w, so it suffices to deal with (7.10). In what follows, we study,
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from an analytical and numerical point of view, the nature of the solutions of (7.10), which
also yield the poles of the spectral Green’s function determined in Section 6.2.

7.3 The Rayleigh wave

7.3.1 Case of traction-free boundary conditions

The Rayleigh wave equation for the traction-free case is obtained by setting Z, = 0in
(7.10). This equation is classic, and can be found, e.g., in Achenbach (1973), Graff (1991),
or Harris (2001). It is given by

(232—5%)2—452\/32 2\/82—ST— (7.12)
In this case, it is well-known that there appears a surface wave globally known as the
Rayleigh wave. Its slowness, denoted by sg, corresponds to a real solution of (7.12) that
satisfies sp > sp. A proof of existence and uniqueness of this solution is provided by
Nkemzi (1997), together with a formula for the Rayleigh slowness derived using Cauchy
integrals. Nevertheless, the most widely used approach to determine sp consists in trans-
forming (7.12) into a cubic equation in s®. The Rayleigh slowness is then expressed em-
ploying Cardan’s formulae for the roots of the cubic equation. However, it is not clear
a priori which of these roots gives sg, especially when all of them are real. Hence, it is
necessary to perform a careful analysis of the roots, in order to correctly determine sz. An
explicit formula for sg, introduced by Malischewsky (2000), is given by

h %S%"( — Y/R(B?) + 17 — 455% + dY/d(h(F?) — (17 — 45;32))) AT

where
h{B8%) = 3+/33 — 18642 + 3214 — 19246, d = sign(—p3? +1/6) (7.14)
Another explicit formula, provided more recently by Vinh & Ogden (2004), is given by

s = T ﬁ2)(2— B2+ VR+VD+VER- x/_) (7.15)

where
R =2(27 — 908% + 995" — 32%) /27, (7.16a)
D = 4(1 - £%)*(11 — 626 + 1078* — 644°) /27. (7.16b)

7.3.2 Case of impedance boundary conditions

Let us consider now the case of an arbitrary surface impedance Z,, © R. We start
by establishing the existence and uniqueness of the Rayleigh slowness by means of the
following proposition.

PROPOSITION VIL.1. For each impedance Z,, € R, the Rayleigh equation (7.10) has
one and only one real solution within the range s > st. This solution is called the Rayleigh
slowness.
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PROOEF. Using the fact that (7.10) is linear in the impedance, we can easily work out

its value in terms of s, obtaining a function Z,, = Z(s), defined as
2 - —4 2 2 g2 2 2
Zoo(s) = _%( s sT) s%4/s? — 514/ ST 317
ST s2 — 52

As s > sp > s, both square roots are real, and thus this function takes real values. In
what follows, we aim to demonstrate that Z, : (s, +00) — R is actually a bijection. We
begin by proving that it is onto R. It is clear that Z, is continuous at any s > sp and

lim Zy(s) = —oo. (7.18)

5—8T
On the other hand, using Taylor approximations it is straightforward to obtain asymptotic
expressions for the square roots as s — +o0:

2

52 a5 — oo a=L,T, (7.19)
2s
which is employed to approximate Z,(s) for large values of s:
Zoo(s) = 2u(1 — §%)s, (7.20)
and then,
llm Zso(8) = +00. (7.21)

Consequently, as Z, is a continuous functlon in (s, +oo) that satisfies (7.18) and (7.21),
we deduce that it is onto R. Let us prove now that Z, is injective. For this, we study the
sign of its derivative, which can be expressed as

_ N S 0 S—
7 (s) = s {(25 s2)" — 452\ /s — 53/5? — 5%

sh/ 82 — 5% 52 — s%.

+8( (m ‘/7)“/82_3“/52_3 (zs_ST))}

(7.22)

Vst =t /s?—si

Using the standard inequality a/b + b/a > 2, valid for any pair of real numbers a and b, it
is immediate that

(7.23)

which replaced in (7.22) leads to determine a lower bound for Z/_:

2
7 (5)> us { (28% — s2)" — ds?y/s% — s24/s? — sk

— 2 7 _ o2 2 _ g2
s/ 8% — 54 I

(7.24)
+ 8(\/32 — 5382 — st — (s° — 33«)) }
Expanding and regrouping terms, it is possible to restate (7.24) as

,us(tl(s — 2% )/s? — sk (/82 — 8% — /s —ST)—E—ST)'

)3/2

Zl(s) > (7.25)

st (s? — s
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In addition, as s;, < s, it holds that

/82— 55 — /st —s% >0, (7.26)
and substituting this in (7.25) yields
Z!l (s} >0, (7.27)

which implies that Z_, is strictly increasing and thus it is an injective function. We conclude
that Z, : (s7,+00) — R is a bijective function, and so is its inverse. Therefore, each
impedance Z,, € R has associated one and only one real number in the range s > sp
that is solution to (7.10). This solution corresponds to the Rayleigh slowness, denoted by
Sp = SR(Zoo)- O

REMARK VIIL 1. Notice that proposition VII.1 includes the particular case Z., = 0.
We have thus provided a proof of existence and uniqueness of the Rayleigh wave in the
well-known case of a traction-free surface.

REMARK VI1.2. From the proof of proposition VII. 1, we infer that the Rayleigh slow-
ness sg is a strictly increasing function of the impedance Z ., such that it approaches st as
Zoo — —00 (¢f. (7.18)) and it increases linearly as Z, — +o0o (¢f. (1.20)}. In particular,
the larger the impedance, the slower the Rayleigh wave propagates along the surface.

Unfortunately, in the general case there is no explicit formula for sy in terms of the
other involved variables. Nevertheless, it is quite easy to compute sz numerically by em-
ploying an iterative root-finding algorithm such as the Newton-Raphson method. Indeed,
the above analysis provides some basic ideas about where sp has to be searched, which
can be used to select a suitable starting point for the iterations. Hence, the convergence of
the method should be achieved within a reasonable number of iterations, with more than
acceptable accuracy.

7.4 Additional surface wave appearing in a particular case

We are now interested in studying possible surface waves that could appear within the
range s;, < s < s7. In the general case Z,, € R, it is not a simple matter to determine
analytically from the Rayleigh equation (7.10) whether such surface waves exist or not, ow-
ing to difficulties inherent to the equation. Therefore, what we do is to solve numerically
(7.10) within this range using the iterative method mentioned above, and the obtained re-
sults, presented in the next section, will give an answer to this problem. Nevertheless, there
is a particular value of the impedance for which a solution to (7.10) can be analytically
determined. This fact is established in the next proposition.

PROPOSITION VIL2. If the impedance takes the value Zo, = Z% = 2u+\/s%/2 — i,
then the Rayleigh equation (7.10) has one real solution in the range s;, < s < sy. This
solution is given by s = s* = s7/V/2.
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PROOF. Let us assume that s;, < s < sp. In that case, according to the definition of
the complex square roots, we have that

/82 — sh = —iy/s% — &%, (7.28)
and replacing this in (7.10) yields
(s 232)2 i(«flsg\/s? — 5% — ﬁ.s%Zw) 52— 52 = 0. (7.29)

This is a complex identity such that the first term on its left-hand side is real, while the
second term is purely imaginary. Applying real part to (7.29) gives the equation

(s —25%)" =0, (7.30)

which is easily solved, yielding the desired slowness:
* s

s=g" = : (7.31)
V2
Substituting this value in (7.29) and rearranging gives the equation
3 2
St St o 1 )
—( 2 — 8] = =2y | =0, 7.32

which holds if and only if

2
A, . 2,u\/% — 82, (1.33)

that is, this is the only value of Z_, for which the slowness s* given in (7.31) is a solution
to (7.29) and vice versa. In addition, we have from (7.11) that

St o _ pA

5 SL —_———

2 2u{ X + 2u)
This relation implies that the impedance value given in (7.33) is real and positive. Finally,
we conclude from (7.11) and (7.34) that s satisfies s; < s* < sp. o

> 0. (7.34)

REMARK VIL3. Proposition VIL2 establishes that there is a certain value of the
impedance for which an additional surface wave appears. This surface wave is faster
than the transverse wave and slower than the longitudinal wave.

An explicit expression for the field of displacements produced by this additional sur-
face wave can be determined by substituting (7.31) and (7.33) in (7.6) and combining with
(7.7). This expression corresponds, up to a multiplicative constant, to

- wZE
W (2, 15) = (pweéy + IkZ5Ley)eF T e A2, (7.35)

where £* is the associated wave number, defined as £* = ws*, or equivalently

ke
k* wi—, (7.36)

V2
As s = s* is a real solution of (7.10) that only exists when Z = Z7_, a natural question
that arises is how this solution is affected if the value of Z3_ is slightly perturbed. A precise

answer to this question is provided in the next proposition.
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PROPOSITION VIL.3. Let us assume a perturbed value of the impedance
Zoo = Z5(1 +¢), (7.37)
where £ is a real parameter satisfying |e| << 1. Then the Rayleigh equation (7.10) has a
complex solution s satisfying s;, < Re{s} < sp. This solution can be approximated as
s=s"(1+ae+ (b+ic)e?) + o(e?), (7.38)

where a, b and ¢ are real numbers, with ¢ > 0.

PROOF. In order to simplify the analysis, we deal with s instead of s. Given the
parameter £, we desire to determine (approximately) another parameter = 1(¢) € C such
that the solution s to (7.10) can be written as

§2 =51+ 7). (7.39)

Notice that if £ = 0, then Z, = ZZ and consequently s = s*. We thus infer that n must
satisfy n(0) = 0. Replacing (7.37) and (7.39) in (7.10), approximating the square roots
by employing second-order Taylor polynomials in n (around % = 0), and combining with
(7.31) and (7.33), we obtain that n satisfies the guadratic equation:
1 1 1
(1—§q+1q2—15+2i\/§)n2—(2+q—|—5)n+26=0, (7.40)

where g = 1/(1 — 2/3%). The quadratic equation (7.40) has two solutions, but only one of
them vanishes when € = 0. We thus choose this solution, which is given by

n(e) = 2HaT e ((2+q)2 — 2(2 — 3¢ + ¢ +8i\/§)6+352)1/2.
2—g+31¢*—Je+4i /g

As we want to study the behavior of # for small ¢, we approximate (7.41) by a second-order

Taylor expansion, obtaining

(7.41)

2 (4 -q)g-8i/q ,

£) = E— £2 + o(e®). 7.42
M) = 5 a gy ) (142
Hence, replacing in (7.39), we obtain an approximate expression for the solution s:
2 (4—q)g —8iy/g )\
~s|1+ — . 7.43
SRS ( 51 5 2+ P £ (7.43)

and employing another second-order Taylor expansion to approximate the square root, we
finally obtain

1 2+5¢—¢* + 81,/ , 5
s=s"1+ €+ g® | + oe”). 7.44
( 244¢ 2(2+q)® ) Lol
This expression coincides with (7.38), with
1 —q° 4
05 ) =2+5q a 3 C:——\/a3- (745)
2+4¢ 2(2+¢q)® (2+9)

It is clear that a, b and ¢ are real numbers and ¢ > 0, which concludes the proof. (I
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REMARK VILA. In virtue of proposition VIL.3, if the impedance is perturbed around
Lo = 2, then the solution s s* becomes a complex number with strictly positive
imaginary part. Therefore, substituting Z7 and s* by their perturbed values in (7.35), we
obtain that this expression is no longer a physical solution of the boundary-value problem
(7.1), since it is exponentially increasing as x, — —oo.

7.5 Numerical results

In this section, the Rayleigh slowness and the additional solution to (7.10) are nu-
merically computed for different values of the surface impedance Z... We consider three
examples of elastic material, namely diabase (volcanic rock), limestone (sedimentary rock)
and gneiss (metamorphic rock). A detailed description of these rocks and their character-
istics can be found in Stacey & Page (1986). Table 7.1 shows their approximate physical
and elastic properties, namely the density p, the Young’s modulus E and the Poisson’s ratio
v. The Lamé’s constants A and i can be obtained in terms of £ and v through the usual

Material | p [Kg/m®] | E [GPa] | v

Diabase 2700 90 0.20
Limestone 2400 70 0.30
Ghneiss 2800 60 0.24

TABLE 7.1. Density, Young’s modulus and Poisson’s ratio of the materials considered.

formulae
vk E

A= AT na—2) b= o0 )
The numerical values of the Lamé’s constants of each material, computed by means of these
formulae, are shown in Table 7.2, whereas the values of the longitudinal and the transverse
slownesses obtained from (7.11) are shown in Table 7.3. On the other hand, we take an
impedance Z,, varying from a minimum value Z™" = —20 [MPas/m] to a maximum
value Z7** = 20 [MPa s/m|. The Rayleigh slowness is calculated by solving iteratively

(7.46)

Material | A [GPa] | u [GPa]
Diabase 25.000 | 37.500
Limestone | 40.385 | 26.923
Gneiss 22.333 | 24.194

TABLE 7.2. Lamé’s constants of the materials considered.

the Rayleigh eguation (7.10), using for this the Newton-Raphson algorithm with a starting
point for the iterations located at the region s > s, as mentioned in Section 7.3. The results
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Material | sz, x10~%[s/m] [ s7 x107%[s/m]
Diabase 1.6432 2.6833
Limestone 1.5959 2.9857
Gneiss 1.9898 3.4020

TABLE 7.3. Longitudinal and transverse slownesses of the materials considered.

are presented in Fig, 7.1, where we confirm what was stated by proposition VII.1: The
Rayleigh slowness sp is an increasing function of the impedance Z.., which approaches
asymptotically s as Z,, decreases to —oo and tends to a straight line as Z., increases
to +o0. The additional solution to 7.1 is also computed by means of the Newton-Raphson
algorithm, but this time the starting point is located within the region s;, < s < s7. We have
found that this solution does not exist for all values of Z,. In particular, it is not present

x10™
Diabase.
— — = Limestone
gL Gneiss
6 -

Slowness [s/m]
o

E
T

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Impedance [MPa s/m] % 107

FIGURE 7.1. Rayleigh slownesses in function of the impedance.

for Z., negative, so the results are presented only for Z,, > 0. Figs. 7.2 and 7.3 show the
real and the imaginary part of the additional solution in function of the impedance. Fig. 7.3
puts in evidence, for each elastic material considered, the existence of a particular value
of Z.. such that the imaginary part of the solution vanishes. This is the value Z., = Z}_
established by proposition VIIL.2, for which the additional solution becomes real and is
given by the slowness s = s*. In addition, Fig. 7.3 confirms that if we perturb Z, around
Z% , then a strictly positive imaginary part appears in the additional solution, as stated by
proposition VIL.3. The numerical values of the constants Z and s* associated with each
material are shown in Table 7.4.
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FIGURE 7.2. Real part of the additional slownesses in function of the impedance.

Material | Z*, [MPa s/fm] | s* x10~"[s/m]
Diabase 7.1151 1.8974
Limestone 7.4421 2.1112
Gneiss 6.5410 2.4055

TABLE 7.4. Impedance Z%, and slowness s* of the materials considered.

REMARK VIL5. It should be noticed from proposition VI1.3 and Fig. 7.3 that there is
an important range of values of Z. for which the imaginary part of the additional solution
is close to zero, especially when Z, is near Z7,. Consequently, if the impedance lies in
this range, then the spectral Green’s function obtained in Section 6.2 has a pair of poles
located close to the real axis. When calculating its inverse Fourier transform by the method
detailed in Section 6.3, it is natural to wonder whether such poles must be extracted or
not. It can be argued that, strictly speaking, these poles are complex, so they generate no
real singularities in the variable s and it should be possible to compute the IFFT directly,
that is, without extracting them. Nevertheless, such an approach would yield inaccurate
results, since the proximity of these poles to the real axis produces abrupt variations in the
spectral Green's function that should be taken into account in computing its inverse Fourier

transform. Therefore, for the sake of accuracy, these quasi-real poles need to be extracted
in many cases.
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VIII. VALIDATION OF THE NUMERICAL PROCEDURES FOR
ELASTIC WAVES IN UNBOUNDED MEDIA

8.1 Introduction

In this chapter we validate the numerical procedures developed throughout this work
to solve elastodynamic problems in unbounded media. In the case of exterior domains,
we present some results of scattering by a circular obstacle, obtained by evaluation of the
analytical solutions calculated in Section 3.2. Horizontal incident waves are assumed, ei-
ther longitudinal or transverse, and results for a rigid body and a cavity are included. The
two procedures proposed to solve numerically this problem, based respectively upon DtN
map/finite element methods (cf. Section 3.3) and boundary element methods (cf. Section
5.2) are simultaneously validated. For this, the problem of scattering by a circle is solved by
using both procedures, considering for this different sizes of discretization, The solutions
obtained are then compared with the analytical solution, which is employed as a bench
mark problem. The relative errors obtained are presented in log-log graphs and tables. In
the case of locally perturbed half-planes, we present numerical results of the half-plane
Green’s function, calculated by the method developed in Chapter VI. Each one of the four
components is evaluated in a rectangle and depicted graphically. The boundary element
methods for locally perturbed half-planes, developed in Section 5.3 are also validated. This
time, the lack of an analytical solution forces one to devise another type of benchmark prob-
lem. For this, a particular boundary-value problem is stated on the half-plane perturbed by
an embedded obstacle. The solution to this problem is the Green’s function with source
point fixed within the obstacle. This boundary-value problem is solved numerically by
BEM and the solution obtained is compared with the Green’s function. The comparison is
performed on the boundary, for different sizes of discretization, and the relative errors ob-
tained are shown in log-log graphs and tables. Finally, some numerical results of scattering
in the locally perturbed half-plane are presented. The perturbation assumed corresponds to
a half-circle with its center lying just on the flat surface.

8.2 Methods for exterior domains

8.2.1 Results of exterior scattering by a circle

Next, we consider a circular obstacle of radius @ = 100 [m] embedded in an infinite
elastic media. This obstacle could correspond to either a rigid body or a cavity. The elastic
parameters of limestone, given in Tables 7.1 and 7.2, are assumed. We only deal with
horizental incident waves, either purely longitudinal or purely transverse. Two angular
frequencies are assumed, namely w; = 27 x 16 [Rad/s] and wy = 27 = 32 [Rad/s]. The
total field (incident + scattered) determined analytically in Section 3.2 is evaluated in a
square domain of side 600 [m] with the circle placed at its center. For this, the expressions
given as series in polar coordinates are truncated at N, = 30 and converted into cartesian
coordinates. The results of horizontal and vertical displacements are presented separately.
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The case of a rigid circular body is depicted in Figs. 8.1 and 8.2, for a longitudinal incident
wave and w, wa, respectively, and in Figs. 8.3 and 8.4 for a transverse incident wave and
wy, way, respectively. Similarly, the case of a circular cavity is depicted in Figs. 8.5 and
8.6, for a longitudinal incident wave and w;, ws, respectively, and in Figs. 8.7 and 8.8 fora
transverse incident wave and w;, wa, respectively.

distance [m]
[=]
distance [m)

; . L... WL 3 =
I-'&D 200 100 0 100 200 300 I'\J‘hw 200 100 0 100 200 300
distancs {mj distance |m]|

FIGURE 8.1. Total field for a rigid body, a longitudinal incident wave and w = w.
a) Horizontal displacement. b) Vertical displacement.

8.2.2 Validation of the DtN map and the boundary element methods

In order to validate the DtN map calculated in Section 3.3, we implement finite element
methods based upon the variational formulation given in (3.66). In addition, we implement
the boundary element methods developed in Section 5.2, also in order to validate them. For
this, a circle of radius a = 100 [m] (a rigid body or a cavity) and the elastic parameters of
limestone are again assumed. We consider an external circle of radius R = 300 [m], which
is used as the artificial boundary where the exact boundary conditions obtained in terms of
the DtN map are imposed. The infinite series in expressions (3.75) and (3.76) are truncated
at N, = 30. Horizontal incident waves (longitudinal or transverse) with angular frequency
w; = 27 x 16 [Rad/s] are assumed. The annular region lying between both circles is
discretized by using triangular meshes of different sizes. Their parameters are given in
Table 8.1, namely the mesh size h, the number of triangles, the number of nodes, and
the number of segments lying on the inner circle. We then state finite elements of the P1-
type on these meshes. The restriction of each mesh to the obstacle corresponds to a discrete
curve constituted by rectilinear segments, which are employed as boundary elements. Once
the integral equation has been solved numerically, the solution is evaluated at the entire
mesh by means of corresponding integral representation formula. The benchmark problem
is none other than the analytical solution for the exterior of the circle evaluated at the nodes
of each mesh. In this way, both numerical solutions can be directly compared with the
analytical one. The relative errors in L2-norm are computed numerically in each mesh and
then plotted as log-log graphs. The errors of the numerical solutions for a rigid body are
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FIGURE 8.2. Total field for a rigid body, a longitudinal incident wave and w = w».
a) Horizontal displacement. b) Vertical displacement.
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FIGURE 8.3. Total field for a rigid body, a transverse incident wave and w = wy.
a) Horizontal displacement. b) Vertical displacement.
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FIGURE 8.4. Total field for a rigid body, a transverse incident wave and w = wa.
a} Horizontal displacement. b) Vertical displacement.
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FIGURE 8.5. Total field for a cavity, a longitudinal incident wave and w = w;.
a) Horizontal displacement. b) Vertical displacement.
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FIGURE 8.6. Total field for a cavity, a longitudinal incident wave and w = ws.
a) Horizontal displacement. b) Vertical displacement.
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FIGURE 8.7. Total field for a cavity, a transverse incident wave and w = w.
a) Horizontal displacement. b) Vertical displacement.
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FIGURE 8.8. Total field for a cavity, a transverse incident wave and w = ws.
a) Horizontal displacement. b) Vertical displacement.

Number of | Number of | Number of
Mesh h triangles nodes segments
1 14.0000 4526 2355 48
2 | 12.7533 5224 2712 52
3 11.6176 6276 3248 56
4 | 10.5830 7558 3899 60
5 9.6406 9356 4810 68
6 8.7821 11160 5724 72
7 8.0000 13400 6858 80

TABLE 8.1. Parameters of the triangular meshes considered.

shown in Figs. 8.9 and 8.10, for a longitudinal incident wave (case 1) and a transverse
incident wave (case 2). Likewise, the errors of the numerical solutions for a cavity are
shown in Figs. 8.11 and 8.12, for a longitudinal incident wave (case 3) and a transverse
incident wave (case 4). From these figures, we observe that the relative error decreases
if the mesh size is reduced, as should be expected. Moreover, the relation between the
logarithm of the error and the logarithm of the mesh size is approximately linear. On the
other hand, the relative errors obtained with the DtN/finite elements approach are larger
than those obtained with boundary element methods. Therefore, the latter appears to be
more accurate than the former, when both approaches are implemented in the same mesh.
The numerical values of the percentage relative errors are presented in Table 8.2 for the
DtN/finite element approach and in Table 8.3 for boundary element methods. Cases 1, 2, 3
and 4 are included.
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FIGURE 8.9. Relative error for a rigid body and a longitudinal incident wave.
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FIGURE 8.11. Relative error for a cavity and a longitudinal incident wave.
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FIGURE 8.12. Relative error for a cavity and a transverse incident wave.
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% Rel. error | % Rel. error | % Rel. error | % Rel. error

Mesh Case 1 Case 2 Case 3 Case 4
1 2.0273 2.5683 2.0090 8.0921

2 1.5305 1.8491 1.5895 6.5951

3 1.3455 1.5732 1.4256 5.8696

| 4 1.0447 1.2796 1.1217 4.7538
5 0.8574 1.0436 0.9195 3.9843
.6 0.7440 0.8897 0.7993 3.4853
| 7 0.6159 0.7538 0.6501 2.9104

TABLE 8.2. Percentage relative errors for the DtN/FEM approach.

% Rel. error

% Rel. error | % Rel. error % Rel. error
Mesh Case 1 Case 2 Case 3 Case 4
1 0.5837 0.5626 0.8690 3.3023
2 0.5398 0.5399 0.6430 2.8970
3 0.5025 0.5208 0.5610 2.5763
4 0.4716 0.4961 0.5121 2.3574
5 0.4246 0.4621 0.4024 1.9530
6 0.4031 0.4444 0.4013 1.7956
7 0.3708 0.4123 0.4483 1.5576

TABLE 8.3. Percentage relative errors for the BEM approach.
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8.3 Methods for locally perturbed half-planes

8.3.1 Results of the half-plane Green’s function

Next, we present some numerical results of the half-plane Green’s function calculated
by the procedure described in Chapter VI. We consider an elastic half-plane with the con-
stants of limestone, a source point placed at & = (z1,z2) = (0,50 [m]} and the angular
frequencies w; = 27 x 16 [Rad/s] and we = 27 x 32 [Rad/s]. Two values of impedance are
considered, namely Z.. = 0 (traction-free surface) and Z, = Z7, . The numerical value of
the latter is given in Table 7.4. The computation of the IFFT is performed by employing
N = 2" samples distributed uniformly between —2 x 10? (m] and 2 x 10* [m]. The Green’s
function is evaluated at receiver points y = (y;, y2) such that —400 [m] < y; < 400 [m]
and 0 < yo < 400 [m)]. The results for Z,, = 0 are depicted in Figs. 8.13 (real part) and
8.14 (imaginary part) for w = w), and in Figs 8.15 (real part) and 8.16 (imaginary part)
for w = ws. In this case, only the Rayleigh pole is extracted from the spectral Green’s
function. Likewise, the results for Z,, = Z are depicted in Figs. 8.17 (real part) and
8.18 (imaginary part) for w = wy, and Figs. 8.19 (real part) and 8.20 (imaginary part) for
w = wq. Both the Rayleigh and the additional pole are extracted in this case.
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12

a)
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400
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0

400 200 1] 200 400
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distance [m] distance fm|

FIGURE 8.13. Real part of the half-plane Green’s function for Z., = 0 and
w = wi. a) Gl(z,y). b) Gi(x,y). ¢) Gz, y). d) G3{z, y).

8.3.2 Validation of boundary element methods

We now validate the boundary element methods to solve time-harmonic elastodynam-
ics problems in a locally perturbed half-plane. As in this case there is no analytical solution,
an alternative benchmark problem needs to be used in order to perform the validation. For
this, let us consider a perturbation of the half-plane consisting in an embedded obstacle. As
was done in Chapter IV, we denote by 2§ the perturbed half-plane, by Qirt the interior of
the obstacle and by T}, the boundary of the obstacle. In addition, let b be any point within
the obstacle. We then establish the following boundary-value problem in this perturbed
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FIGURE 8.14. Imaginary part of the haif-plane Green’s function for Z,, = 0 and
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FIGURE 8.15. Real part of the half-plane Green’s function for Z, = 0 and
w = wa. 3) Gl(z, 7). b) Gi(x, ). ¢) G3(z,y). d) Gi(z, ).
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FIGURE 8.16. Imaginary part of the half-plane Green’s function for Z, = 0 and
w = ws. a) G1(z,y). b) Gi(z, y). ¢) G3 (=, ). d) Gi(z,y).
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FIGURE 8.17. Real part of the half-plane Green’s function for Z,, = Z3, and
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FIGURE 8.18. Imaginary part of the half-plane Green’s function for Z,, = Z7,
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FIGURE 8.19. Real part of the half-plane Green’s function for Z, = Z}, and
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FIGURE 8.20. Imaginary part of the half-plane Green’s function for Z, = Z7,
and w = we. a) G}(z, ¥). b) Gi(z, ¥). ¢) G}z, y). d) G}(x. y).

half-plane: Find u = (u;,ug) : Q% — C? such that

0ij.i(x) + pwu(x) =0 in O, (8.1a)
—oy(@)n; + wZp(x)uy(@)TyT = fF() onT,, (8.1b)
O'.ig(ilf) +wa’U;1($)6z1 =0 on Foo: (8]0)

+ Qutgoing radiation conditions asr = || — +oo, (8.1d)

where for each k = 1,2, the function f* = (f1, f») is defined as
fH(z) = —HEF(b, @) + wZ,(x)GH (b, x)7;7, (8.2)

and G¥ and H¥ denote the half-plane Green’s function and its normal derivative, written in
tensor notation. It is easy to see that the solution to (8.1) is given by

w(z) = GE(b, ), x € QO (8.3)

As b ¢ Q, this function is well defined for all x € Q$* and satisfies the elastic wave
equation with zero right-hand side (8.1a). In addition, the impedance boundary condition
on the obstacle (8.1b) is automatically satisfied by the appropriate choice of the right-hand
side (8.2). Furthermore, the impedance boundary condition on the infinite flat surface
(8.1¢) and the radiation conditions at infinity (8.1d) hold since the half-plane Green’s func-
tion fulfills both properties. On the other hand, the boundary-value problem (8.1) can be
numerically solved by boundary element methods on I},. The boundary integral equation
for this problem is given in (4.126), and its solution corresponds to the displacement of the
boundary I, which can be compared with the theoretical solution (8.3). This procedure
of validation is implemented numerically, for which we consider a circular obstacle with
a radius of 50 [m] and a center located at 100 [m] from the flat surface. The point b is
placed exactly at the center of the circle. The parameters of limestone are assumed and the
angular frequency is fixed at w; = 27 x 16 [Rad/s]. The circumference is then partitioned
into segments of equal length, which are used as boundary elements for the numerical so-
lution of (8.1). In addition, the half-plane Green’s function is calculated at the middie
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point of these segments, in order to evaluate the theoretical solution (8.3) at the circum-
ference. In this way, it is possible to compare both solutions of (8.1). Different numbers
of segments are considered, giving rise to partitions of variable size. Table 8.4 presents
the parameters of these partitions, namely the segment size h and the number of segments.

[ Number of
Partition h segments
] 15.6434 20
2 12.0537 26
3 9.2268 34
4 7.1339 44
5 5.4139 58
6 4.1325 76
7 3.1411 100

TABLE 8.4. Parameters of the partitions considered.

The values of impedance assumed on the circle and the flat surface are Z,, = Z, = 0 and
Zy = Zy = Z}, and the parameters for implementing the IFFT are the same as above.
The variables measured on the circle are the norms of the displacement vectors produced by
horizontal and vertical application of the Dirac’s delta distribution at b. This is equivalent
to consider £ = 1 and k& = 2 in (8.2), respectively. The relative errors in L2-norm between
the theoretical and the numerical solution are computed in each partition and then plotted
as log-log graphs. Figs. 8.21 and 8.22 show the numerical values of the percentage relative
errors for the cases Z, = 0 and Z,, = Z7_, respectively. From these graphs we observe

logarithm of the relative errar

1 1.2 14 16 18 2 22 24 26 2.8
logarithm of the segment size

FIGURE 8.21. Relative errors for Z.. = 0.
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logarithm of the relative error

1 1.2 14 16 1.8 2 2.2 24 26 28
logarithm of the segment size

FIGURE 8.22. Relative error for Z, = Z7,.

that the relative error decreases as the segment size is reduced. The numerical values of
these errors are presented in Table 8.5.

% Rel. Error | % Rel. Error | % Rel. Error | % Rel. Error
Partition | Z,, =0 Zeo =1 Zoo =2% | Zoo =2},
k=1 k=2 k=1 k=2
1 1.9671 2.6450 2.5570 3.0675
2 1.5405 1.8259 1.9153 2.3570
3 1.1799 1.3963 1.5356 1.8446
4 0.8903 0.9726 1.0843 1.3383
5 0.6933 0.8597 0.8200 1.0918
6 0.5330 0.6679 0.8739 1.0627
7 0.4055 0.6588 0.7133 1.0535

TABLE 8.5. Percentage relative errors for the BEM approach.

8.3.3 Numerical results of scattering by a half-circle

In what follows, we consider a half-plane perturbed by a half-circle of radius 100 [m]
placed on its surface. The scattered field by this semi-circle is calculated numerically by
BEM, assuming again the constants of limestone. Incident waves with an angle of 60° are
considered, either purely longitudinal or purely transverse, with angular frequencies w; =
27 x 16 [Rad/s] and wq = 27 x 32 [Rad/s]. The parameters associated with the computation
of the IFFT are the same as before. The values of impedance considered are Z, = 0 and
Zoo = Z'.. The real part of the total field (incident+reflected+scattered) is evaluated in a
rectangle of width 800 [m] and height 400 [m], with the center of the half-circle located
at 200 [m] from the left side. We separate into horizontal and vertical displacements. The
results for the case Z., = 0 are depicted in Figs. 8.23 and 8.24, for a longitudinal incident
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wave and w;, wo, respectively, and in Figs. 8.25 and 8.26 for a transverse incident wave
and wq, we, respectively. Likewise, the results for the case Z., = Z7_ are depicted in Figs.
8.27 and 8.28, for a longitudinal incident wave and w,, wo, respectively, and in Figs. 8.29
and 8.30 for a transverse incident wave and w,, ws, respectively.

FIGURE 8.23. Total field for Z., = 0, a longitudinal incident wave and w = w.
a) Horizontal displacement. b} Vertical displacement.

FIGURE 8.24. Total field for Z,, = 0, a longitudinal incident wave and w = wa.
a) Horizontal displacement. b) Vertical displacement.
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FIGURE 8.25. Total field for Z.., = 0, a transverse incident wave and w = w.
a) Horizontal displacement. b} Vertical displacement.

FIGURE 8.26. Total field for Z,. = 0, a transverse incident wave and w = wa.
a) Horizontal displacement. b) Vertical displacement.
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FIGURE 8.27. Total field for Z., = Z_, alongitudinal incident wave and vt = w.
a) Horizontal displacement. b) Vertical displacement.

a)

FIGURE 8.28. Total field for Z.. = Z7_, alongitudinal incident wave and w = wo.
a) Horizontal displacement. b) Vertical displacement.
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FIGURE 8.29. Total field for Zo = Z?,, a transverse incident wave and w = w.
a) Horizontal displacement. b) Vertical displacement.

FIGURE 8.30. Total field for Z,, = Z7,, a transverse incident wave and w = wo.
a) Horizontal displacement. b} Vertical displacement.
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A. PLANE WAVES

A.l1 Plane waves in the full-plane
In this appendix we obtain explicit expressions in terms of plane waves for an incident
field u'™ satisfying the elastic wave equation in the full-plane:
divo(u™(x)) + pw’u(z) = 0 in B2, (A1)

The solutions to (A.1) are determined by using the procedure introduced in Section 2.2.
We seek 1" of the form

u"(x) = VP () + V¢! (), (A.2)

with potentials 1(“} and 1'?? satisfying
Ai,b(L)(a:) + k2 w(L)(m) =0, (A.3a)
AT eE) + k2D (x) = 0. (A.3b)

The direction of propagation of the plane waves is defined by the angle oy, measured down-
wards with respect to the horizontal. The standard plane wave solutions to the Helmholtz
equations (A.3a) and (A.3b) propagating in this direction are

P () = alDekiPo®, (A.4a)
YD () = o Deibrioe, (A.4b)

where o'}, a(T) are generic multiplicative constants and p, is a unit vector in the direction
of propagation of the wave, given by

P = cos o €; — sin g €4. (A.5)
Computing the gradient of (%) and the orthogonal gradient of /(7) yields
VipBD(x) = ia Dy, p, elfrbo®, (A.6a)
Vi D (z) = iaDky pyerio®, (A.6b)
where 15[{ is a unit vector orthogonal to Py, given by
'f)d = sin oy €1 + oS oy . (A7)
Substitution of (A.6a) and (A.6b) in (A.2) yields the next expression for %"
u(z) = AL pyeikito= ADpLeikrine, (A.8)

where A and AT are arbitrary amplitudes that absorb any other multiplicative constants.
We have expressed the incident field ©™ as a sum of two terms. The first one defines a
longitudinal plane wave, where the polarization vector (the one that multiplies the expo-
nential function) is parallel to the direction of propagation of the wave. The second term
defines a transverse plane wave, where the polarization vector is perpendicular to the direc-
tion of propagation of the wave. It should be observed that as the amplitudes are arbitrary,
it is possible to obtain pure longitudinal or transverse waves by setting AT and A'Y) to
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zero, respectively. We actually consider the elementary cases (A(Y), AT)) = (1,0) and
(A AT = (0, 1). The incident fields associated with these cases, denoted respectively
by ©"(2) and u(X)| are given by.

et (m) f)oeikl.?o‘m, (A.9a)
uinc(T)(m) = z‘joéeik’ri’o‘w_ (Agb)

In addition, it is possible to express these fields in a more explicit way by replacing (A.3)
and (A.7) in (A.9a):

w3 75) = (cos ag & — sin ay &y )elfLicos@oTi—sineorz) (A.10a)

w2y, 25) = (sinap &1 + cos ag &g )eFr{cos a0 ~sinaon), (A.10b)

A.2 Plane waves in the half-plane

In this appendix we deal with the non-perturbed half-plane R% with impedance bound-
ary conditions (cf. Section 2.4). Let us suppose that an incident field 4™ encounters the
infinite flat boundary {xs = 0}. For the sake of simplicity, we assume this field to consist
of pure longitudinal or transverse plane waves. The analytical expressions for these two
cases are given in (A.9a) (or (A.10a)) and in (A.9b) (or (A.10b)), respectively. Notice that
the angle of incidence o must be strictly positive, in order to have an incident field that
comes from the interior of R2. Our aim is to determine an explicit expression for the re
flected field w*®'. For this, we mainly follow Harris (2001), where the case of a half-plane
with traction-free boundary conditions is treated. The reflected field satisfies the elastic
wave equation in ]Ri and consists in general of a longitudinal and a transverse wave. In ad-
dition, the sum w™ + ' fulfills the impedance boundary conditions (2.52) on {z5 = 0}.
Consequently, u™ is a solution of the system:

div o (u™(2)) + puwu™ () = 0 in R%, (A.11a)
o(u™(x))és + wZu (x)é; = f(z) on {zy = 0}. (A.11b)
where the right-hand side of (A.11b) is given by
f(z) = —o(u™(x))és — wZul(x)e;. (A.12)
We first assume a longitudinal incident field, that is,
u"(x) = P, P (A.13)
where the vector P, is given in terms of «yg in (A.5). The reflected field u"™ is given by
u™ () = R w8 (g) + BT w (), (A.14)
where B2, R'T) are reflection coefficients. The reflected longitudinal wave w2 is writ-
ten as
uell) = p ghetre, (A.15)
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where P, is a unit vector defining the direction of propagation, given in function of the
angle of reflection «; by

P, = cosqg €; + sinay €s. (A.16)
The reflected transverse wave u"*(?’ is expressed as

w ) (z) = py eFrbre, (A.1T)
where p, and P, are mutually orthogonal unit vectors defining the directions of propa-
gation and polarization, respectively. These vectors are given in function of the angle of
reflection «, by

Py = COS 2 €1 + Sin g €3, (A.18)

Dy = —sinag &) + cos as €. (A.19)

Both angles of reflection «; and «, are measured upwards with respect to the horizontal.
Replacing (A.15) and (A.17) gives an explicit expression for the reflected field:

w(z) = RWp, efkrPr® . RIIpL pikrere, (A.20)

where the reflection coefficients R and R'") are still unknown. It is straightforward
to verify that u™' defined in (A.20) satisfies the elastic wave equation (A.11a). On the
other hand, substituting (A.13) and (A.20) in (A.11b) and combining with (A.12) yields
the relation

a, R cikreosarar g p(T) gikrcosazm _ p oikr cosaozy (A.21)
where

= (ikppsin 20y + wZy cosay) &) + ik (A + 2usin®oy) &y, (A.22a)
az = (ikrp cos 20 — wZy sin ag) €y + ikrpesin 20, o, (A.22b)
b = (ikypusin 20 — wZe cos o) &) — ikp (A + 2usin’ap) &s. (A.22¢)

Relation (A.21) holds for all z; € R only if the angles cvg, a7 and « satisfy
g = vy, (A.23a)
ky cosap = kp cos o, (A.23b)

These two identities are known as phase-matching conditions. They allow us to deter-
mine exactly the angles of reflection @; and « in function of the angle of incidence op.
Assuming that these conditions hold, (A.21) is simply expressed as

aRY + a,R™ = b, (A.24)

and this relation corresponds to a 2 x 2 system of linear equations for R'*) and R("?. The
coefficients of the respective matrix can be straightforwardly obtained by replacing (A.22a),
(A.22b) and (A.22¢) in (A.24). By rearranging appropriately the equations, using standard
trigonometric identities and combining with (A.23), this linear system can be restated as
follows:

(Bsin 20 — Y Ze, cos ag) RW
+{cos 2ay + 17 Zq sin ag)R(T) = (sin 2aq + 1724 cos O, (A.25)
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cos 2 R — Bsin 20, R = — cos 20, (A.26)
where

k
=1 o (A27)
T

1
VPR
Solving (A.2) and combining with (A.23b) yields the next expressions for R(*) and R(T):
O_(ap) + 172 sin ag

R\E) = A.28a
O, () — 1720 sinay’ ( )
23 sin 2a cos 20
R = , A.28b
O, (ag) — i7Zsosin oy ( )
where
O+ () = B*sin 2ap sin 2ary 4+ cos? 2as. (A.29)

Notice that the dependence of this function on & is not made explicit, because g is given
in function of g in (A.23b). In the case of a traction-free boundary, the reflection coeffi-
cients are (cf. Harris 2001):

RO = _O(_QO) RT) _ 2/3 sin 2ayg cos 2¢g (A.30)
O, (o)’ O, (ao)
Let us assume now a transverse incident field, that is,
u™(z) = pyetrPoT, (A.31)
The reflected field is
uw(x) = RWp, kb 4 RDpy eibrba) (A.32)

where this time the reflection coefficients are different. Proceeding analogously as above,
we obtain the phase-matching conditions

kr cosap = ki, cosan, (A.33a)
g = g, (A.33b)
and the following expressions for the coefficients R and R("):
in 4o
R — _____ Psindao , A34a
O, (ap) — i7Zs sin g ( )
RO _ ©_(ap) — 1720 Sinayg (A.34b)
O, (ap) — 7 Zposin oy’
where
O4(wg) = 3% sin 2 sin 20 £ cos® 2aq. (A.35)
In the traction-free case, the reflection coefficients are (cf. Harris 2001):
in 4oy O _ (o)
R - _Psinda RO = 2-\%0), (A36)
O (a0) ©.+(c0)

The reflected field is thus obtained by replacing in (A.17) the reflection coefficients R(")
and RT), given either in (A.28) or (A.34).
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B. PROPERTIES OF BESSEL AND HANKEL FUNCTIONS

In this appendix, we introduce the Bessel and Hankel function as solutions of the
Bessel equation. Some useful properties of these functions are mentioned, which have
been obtained from Bell (1968) and Abramowitz & Stegun (1970). In the following, z € C
denotes a complex variable, v € C a complex index, and n € N a nonnegative integer. The
Bessel equation for a function v corresponds to the ordinary differential equation

2 d*v

dz2

Two linearly independent solutions of this equation are the Bessel functions of the first kind
J, and of the second kind Y,, the latter also known as Neumann or Weber function. The
Hankel functions of the first kind H" and of the second kind H are also independent
solutions of the Bessel equation, and they are obtained from J, and Y, through the relations

(z) + zj—:(z) + (2% — ¥)u(z) = 0. (B.1)

HWM(z2) = J,(2) +iY.(2), (B.2a)
HP(2) = J,(2) = iY,(2). (B.2b)
The Bessel function J,, admits the power series expansion
+oc
(_ 1)m z Im4v
Az) = = ) B.
J(2) ﬂ;jﬂm!l“(r,f-i-m+1)(2) (B.3)

where I' is the Gamma function, given by

D(z) = / ™ ptetat (B.4)
Some interesting properties of [' are 0
(1) =1, (B.5a)
I(z+1) =zI(2), (B.5b)
T(2)[(1 — z) = Si;:rz, (z ¢ 7), (B.5¢)
[(2)[(—z2) = -zsi’;ﬁz, (z ¢ ), (B.5d)
I‘(z)F(z + é) = 91-% /7 T(22). (B.5e)

When the argument is integer, some additional properties of I' (actually deductible from
(B.5)) are

I'(n+1)=nl (B.6a)
1 2n)!
F(n + 5) - % (B.6b)
1y (—L)ral2ny/r
l"(— n+ 5)= @n)! . (B.6¢)
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The Bessel function Y, is defined from J, as
Ju(z)cosvm — J ,(2)

Y.(z) = Z B.7
Jv - v
Ya(z) = lim 2R svm = L2 g . (B.b)
v Sm T
For a positive integer order n, the Bessel function J,, has thus the power series expansion
+oo
(_]_)‘m Z\ 2min
h) = S Uz B3
n(2) mz_%m! (n+m)I\2 (B.8)

while the Bessel function Y;, admits the following explicit expression:

wsi(er e T

]_ +oo Imtn 1
() 2 (et )
T e m' {m —I— n)! — n+£
where v = denotes the Euler-Mascherom s constant, given by
=1
4= lim ( =—In m) = 0.57721566. .. (B.10)
m=——+00 ¢
In the case of a negative integer ordcr, the Bessel functions satisfy
J_o(2) = (=1)"Ju(2), (B.11a)
Y .(2) = (-1)"Y,(2). (B.11b)

Let ¢ denote J, Y, HM, H® or any linear combination of these functions where the
coefficients do not depend on z or v. Then the following recurrence relations hold

Gor1(2) + Ci(z) = 271/ G.(2), (B.12a)
Ca(z) = Gz} = —2C(2)- (B.12b)
Another pair of valid recurrence relations (actually deductible from (B.12)) is
C(2) = Z6l2) = Guna(2), (B.13a)
G(2) = Gu-1(2) — g(,,(z). (B.13b)

The asymptotic expressions for the Bessel and Hankel functions, when v is fixed and
z — 4o, are

_ 2 _ T —3/2
J(2) = - cos (z (2v + 1)4) +O0(z%), |argz|<m, (B.14a)
J(z) = 2 — sin (z —(2v+1)- ) +0(z %%, |argz|<mw (B.14b)
Tz 4 ’
H,Sl)(Z) — 22 i{z—(20+1)7) + O( —3/2) (B]4C)
T
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HO(2) = 4] 2 e ie-@riDD) 4 o(;-302), (B.14d)
wZ

On the contrary, when v is fixed and z — 0, then the Bessel and Hankel functions behave
like

1 Z\¥
J(2) ~ PR (2) , R e N (B.15a)
Yo(z) ~ —iHM (2) ~ iHP(2) ~ % In z. (B.15b)
Y, (2) ~ —iHY (2) ~ iHP(2) ~ @ (%) . HRe{v} >0. (B.15c¢)

In the case of the Hankel functions of the first kind of order 0 and 1, the following explicit
expressions hold (cf. Bonnet 1995):
+00

(1) 21 z\2n
HV(2)=1+= ('y+ln ) 2 ,?=0 aﬂ(z)(é) , (B.16a)
W,y 2 izg 1
H)z) = -= +;(/y = +InZ ) PR n§“0;a z)( ) : (B.16b)
where
[, 2 2 Sa1\] (-1
0 § :
a,n(z) 4_1|:1+ (’y+ln§— - E)] (n+1)'2, (B17d)
. - 1 2 ntl ( )n+1
“”(Z)_Z[l ('Hln""“ze 2n+2)](n+1)(n+2) (B.17b)

In addition, we exhibit some integral formulae obtained from Bateman (1954). For this, we
define the modified Bessel function K, as

K, (z) = gi"“H,S“(iz), (B.18)
which is a solution of the modified Bessel equation
o, d? dv
dZ( )+Zd—( z) — (22 +v¥u(2) = 0. (B.19)

The mentioned integral formulae are

+00 o—by/E2+a?

\/52_‘_72 cos (c€)d¢ = Koy (a\/ b+ cz), (B.20a)
0 a
b /2102 ab ,
| SWEFE cos (c£)dE = ﬁfﬂ(a\/bz—i—c?), (B.20b)
e (e =~ Ky (o T P B.20c)
fo JEre = g eV +2), (520
2
f e tVEI P gin (cf)dé = %KﬂWbM&). (B.20d)
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