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�You are never given a wish without also being
given the power to make it come true.

You may have to work for it, however.�

-Richard Bach
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Abstract

From the advent of human civilization on our planet to modern urbanization, road
networks have not only provided a means for transportation of logistics but have
also helped us to cross cultural boundaries. The properties of road networks vary
considerably from one geographical environment to another. The networks pertaining
in a satellite image can therefore be used to classify and retrieve such environments.
In this work, we have de�ned several such environments, and classi�ed them using
geometrical and topological features computed from the road networks occurring in
them. Due to certain limitations of these extraction methods there was a relative
failure of network extraction in some urban regions containing narrow and dense road
structures. This loss of information was circumvented by segmenting the urban regions
and computing a second set of geometrical and topological features from them.

The small images forming our database were extracted from images acquired from
the SPOT5 satellite with 5m resolution (each image of size 512x512 pixels). The
set of geometrical and topological features computed from the road networks and
urban regions are used to classify the pre-de�ned geographical classes. In order to
avoid the burden of feature dimensionality and reduce the classi�cation performance,
feature selection was performed using Fisher Linear Discriminant (FLD) analysis and
an one-vs-rest linear Support Vector Machine (SVM) classi�cation was performed on
the selected feature set. The impact of spatial resolution and size of images on the
feature set have been explored in this work. We took a closer look at the e�ect of
spatial resolution and size of images on the discriminative power of the feature set
to classify the images belonging to the pre-de�ned geographical classes. Tests were
performed with feature selection by FLD and one-vs-rest linear SVM classi�cation on
a database with images of 10m resolution. Another test was performed with feature
selection by FLD and one-vs-rest linear SVM classi�cation on a database with 5m
resolution images each of size 256x256 pixels.

With the above mentioned approaches, we developed a novel method to classify
large satellite images with patches of images each of size 512x512 extracted from them
acquired by SPOT5 satellite of 5m resolution. There has been a large amount of
work dedicated to the classi�cation of large satellite images at pixel level rather than
considering image patches of di�erent sizes. Classi�cation of image patches of di�erent
sizes from a large satellite image is a novel idea in the sense that the patches considered
contain signi�cant coverage of a particular type of geographical environment.

Road networks and urban region features were computed from these image patches
extracted from the large image. A one-vs-rest Gaussian kernel SVM classi�cation
method was used to classify this large image. The classi�cation labels the image
patches with the one having the maximum geographical coverage of the area associ-
ated in the large image. The large image was mapped into a "region matrix", where
each element of the matrix corresponds to a geographical class. In certain cases, this
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produces anomalies, as a single patch may contain two or more di�erent geographical
coverages. In order to have an estimate of these partial coverages, the output of the
SVM was mapped into probabilities. These probability measures were then studied to
have a closer look at the classi�cation accuracies. The results con�rm that our method
is able to classify a large image into various geographical classes with a mean error of
less than 10%.

Keywords : Satellite images, road networks, urban regions, classi�cation, index-
ing
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Résumé

Introduction

Au cours des dernières décennies, la croissance de larges bases de données d'images,
en conjonction avec les progrès des techniques d'acquisition, a attiré des chercheurs
de domaines variés pour travailler sur les systèmes d'extraction d'information à partir
d'images. Ces images, en provenance de sources diverses, doivent être systématique-
ment analysées pour mettre en avant des informations importantes, souvent négligées
par la perception humaine. L'avancée technologique des capteurs d'imagerie satellitaire
et les nouveaux systèmes de stockage ont rendu les images trop grandes et complexes.
L'annotation manuelle, pour la description complète d'images d'une telle complexité,
n'est pas envisageable en pratique. L'indexation et la recherche dans les bases de don-
nées de télédetection reposent sur l'extraction préalable d'informations pertinentes à
l'objet d'intérêt [Dasc 05]. L'indexation d'images satellitaires [Mait 07] dépend du
choix des caractéristiques extraites qui elles-mêmes dépendent du type et de la réso-
lution des capteurs. Par exemple, les descripteurs SIFT sont largement utilisés dans
le domaine multimédia [Lowe 04]. Les indices complexes, comme l'indice de végéta-
tion (Vegetation index, NDVI), l'indice de brillance (Brightness index, BI) ou l'indice
urbain (Urban index, ISU) sont utilisés pour les images multi-spectrales ou hyper-
spectrales. Les caractéristiques de texture sont connues pour être très discriminatives
pour les images panchromatiques moyenne résolution [Schr 98]. Les caractéristiques
structurelles décrivant des objets d'origine humaine dans les images de haute résolu-
tion sont e�caces pour décrire le contenu des images [Bhat 07]. Le réseau routier
contenu dans une image en est un exemple. Les propriétés des réseaux routiers varient
considérablement d'un environnement géographique à un autre. Les caractéristiques
structurelles extraites peuvent donc être utilisées pour classi�er de tels environnements
[Bhat 07]. A�n de calculer les caractéristiques structurelles du réseau routier, on doit
d'abord extraire le réseau et le convertir dans une représentation appropriée. Cette
représentation doit être absolument indépendante de la méthode d'extraction. Les
méthodes d'extraction de routes sont en général dépendantes de la résolution, et un
algorithme précis et générique est très di�cile à mettre en place. Les méthodes util-
isées dans notre étude sont robustes pour de nombreuses caractéristiques de routes,
mais échouent souvent face aux réseaux �ns et complexes quasiment cachés dans les
petites zones urbaines. Les di�cultés d'extraction du réseau entraînent une mauvaise
�abilité des caractéristiques associées et donc une mauvaise classi�cation des images
contenant de telles zones. A�n d'obtenir des informations pertinentes sur de telles
régions, une segmentation de ces régions est nécessaire. De nouvelles caractéristiques
structurelles, calculées sur ces régions urbaines segmentées, ont été combinées avec les
caractéristiques déjà disponibles sur le réseau routier. Cette combinaison a amené une
amélioration de la classi�cation des environnement géographiques.

Dans les images, les pixels fournissent l'information de plus bas niveau. Les valeurs
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des pixels sont les mesures des capteurs satellites, correspondant à une région de la
surface terrestre. L'information pixellique est à un niveau bien plus bas que la séman-
tique de l'objet ou la région d'intérêt. La classi�cation d'images à partir des valeurs des
pixels est di�cile et coûteuse et n'est donc pas une stratégie e�cace. Nous présentons
une nouvelle méthodologie de classi�cation d'images satellitaires à partir de patches
extraits. L'originalité de la méthode réside dans le fait que les patches considérés sont
signi�cativement représentatifs d'une certaine classe géographique. La classi�cation
est réalisée par une approche de type �un contre tous� à l'aide d'une machine à vecteurs
supports probabiliste à noyaux Gaussiens. Dans ce travail, nous dé�nissons 7 classes: 2
classes urbaines (ville Américaine �Urban USA� et ville Européenne �Urban Europe�);
3 classes rurales (villages �Villages�, montagnes �Mountains� et champs �Fields�); une
classe pour les aéroports �Airports�; une classe commune �Common�, qui peut être
considérée comme une classe de rejet indiquant par exemple les images maritimes.

Attributs structurels

Dans cette section, nous présentons quatre méthodes d'extraction de réseaux routiers,
dont deux sont utilisées dans cette étude. Nous proposons une méthode pour représen-
ter les réseaux extraits sous forme de graphes. Une méthode morphologique est pro-
posée pour segmenter les zones urbaines. En�n, nous décrivons les caractéristiques
structurelles du réseau routier et des régions urbaines qui seront utilisées pour la clas-
si�cation et l'indexation des images satellitaires.

Extraction du réseau routier et des régions urbaines

A�n de calculer les caractéristiques structurelles du réseau routier, nous devons d'abord
extraire le réseau de l'image, et le convertir en une représentation appropriée. Cette
représentation doit être indépendante du type de sortie de l'algorithme d'extraction,
puisque nous ne voulons pas nous restreindre à une méthode unique. Dans les études
préliminaires rapportées dans [Bhat 06], nous nous intéressons à deux méthodes
d'extractions [Roch 03, Laco 05]. La méthode de [Roch 03] est basée sur des con-
tours actifs d'ordre supérieur (Higher-Order Active Contours, HOACs) qui sont une
généralisation des contours actifs classiques. La méthode de [Laco 05] modélise le
réseau routier comme un processus objet, où les objets interagissant sont des seg-
ments linéiques. La sortie de l'algorithme est un ensemble de segments de droites de
longueurs, orientations et positions variées. Cette sortie est transformée, via une di-
latation, vers une représentation similaire à celle de [Roch 03], c'est-à-dire une image
binaire. Malgré de bons résultats, ces méthodes n'ont pas été utilisées dans cette étude
car elles ne sont pas adaptées aux grandes bases de données images. Une intervention
manuelle est nécessaire pour régler les paramètres en fonction de la complexité de
chaque image.
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Dans cette étude, nous considérons les méthodes de [Fisc 81, Deso 00]. Ces méth-
odes sont plus aisées d'utilisation et furent facilement adaptées aux bases de données
images. Les paramétres furent �xés avec succès suivant la résolution des images con-
sidérées. La sortie de la méthode décrite dans [Fisc 81] est une image binaire, qui,
après une transformée en distance, peut être fournie directement comme entrée pour
notre méthode. La Figure 1(b) donne des exemples de réseaux extraits. La sortie de
la méthode de [Deso 00] est une liste de segments. A�n d'obtenir une entrée appro-
priée pour notre méthode, nous convertissons cette liste en une image binaire, puis
traitons cette image pour obtenir des segments simplement connectés. La Figure 1(d)
donne des exemples de réseaux extraits par cette méthode. En�n, nous calculons une
transformée en distance, utilisée comme entrée de notre méthode.

(a) Image originelle c©CNES (b) Résultats de l'extraction

(c) Image originelle c©CNES (d) Résultats de l'extraction

Figure 1: Résultats d'extraction obtenus avec les 2 méthodes considérées. L'exemple
(b) est obtenu avec la méthode de [Fisc 81] et l'exemple (d) avec la méthode de
[Deso 00]

Pour les deux méthodes, la fonction de distance obtenue est transformée en un
graphe du réseau routier, pour le calcul des caractéristiques. Le graphe lui-même
donne la topologie du réseau tandis que la géométrie est encodée via des attributs sur
les noeuds et les arcs. Le graphe est produit par le calcul des points de choc de la fonc-
tion de distance, suivant la méthode de [Dimi 00, Sidd 02], étendue avec l'algorithme
de recherche en profondeur (depth-�rst search, DFS [Corm 01]) pour gérer les com-
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posantes connexes. La méthode extrait les points de choc grâce au caractère limitant
du �ux sortant moyen de la fonction de distance, lorsque les régions contenant les
points de choc rétrécissent vers zéro. Un seuillage approprié de ce �ux donne une ap-
proximation de la localisation des points de choc. Le graphe est construit en prenant les
points triples (exceptionellement, de plus haut degré) et les points terminaux comme
noeuds. Ces points correspondent aux jonctions et terminaisons de routes. Les autres
points forment les arcs, correspondant aux segments de routes. La Figure 2 donne un
exemple de cette représentation. Le réseau routier de la Figure 2(b) est d'abord extrait
de l'image de la Figure 2(a). Les méthodes citées précédemment sont alors utilisées
pour générer les points de choc (Figure 2(c)), convertis en graphe (Figure 2(d)). Les
noeuds et arcs sont renseignés avec des informations géométriques calculées à partir
des points de choc. Les caractéristiques structurelles sont alors calculées grâce à ce
graphe et ses attributs.

(a) Image originelle c©CNES (b) Réseau routier extrait

(c) Points de choc du réseau routier (d) Représentation sous forme de graphe

Figure 2: Exemple de représentation sous forme de graphe.

Les méthodes utilisées dans notre étude sont robustes pour de nombreuses carac-
téristiques de routes, mais échouent souvent face aux réseaux �ns et complexes quasi-
ment cachés dans les petites zones urbaines. Les di�cultés d'extraction du réseau
entraînent une mauvaise �abilité des caractéristiques associées et donc une mauvaise
classi�cation des images contenant de telles zones. A�n d'obtenir des informations
pertinentes sur de telles régions, une segmentation de ces régions est nécessaire.
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L'hétérogéinité et la complexité géométrique des structures urbaines dans les im-
ages basse résolution (2 ou 5m) entrainent des e�ets de texture pour les objets de
quelques pixels de large. Dans notre étude, nous utilisons le travail de [Roux 92]
développé pour les régions ubraines dans les images SPOT. Dans les images SPOT,
les zones urbaines apparaissent fortement texturées et l'extraction de ces régions est
essentiellement un problème de di�érenciation de textures. La méthode utilisée ici est
inspirée des travaux de [Sere 89] et [Khat 89]. L'idée principale est d'extraire les
zones de fortes densités de pics brillants et sombres. Les techniques utilisées sont des
opérations d'ouvertures et fermetures morphologiques. Les régions urbaines compactes
segmentées sont illustrées par la Figure 3(b) et la Figure 3(d).

(a) Image originelle c©CNES (b) Région segmentée

(c) Image originelle c©CNES (d) Région segmentée

Figure 3: Images contenant des petites zones urbaines, et leurs segmentations.

Caractéristiques des réseaux routiers

Nous étudierons dans cette section 16 caractéristiques résumées dans le tableau 1 (Les
caractéristiques utilisées lors de la classi�cation sont notées en gras). Ces caractéris-
tiques peuvent être séparées en six groupes : six mesures de densité, quatre de cour-
bures, deux d'homogénéité, une de longueur, deux de distributions et une d'entropie.
Nous allons maintenant dé�nir les caractéristiques des réseaux routiers.
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Soient v un sommet et e une arête. Soit le la longueur du segment de route
correspondant à e, et soit de la longueur de e, qui est la distance euclidienne entre
deux sommets. Soit mv =

∑
e:v∈e 1 le nombre d'arêtes connectés à un sommet. Alors

NJ =
∑

v:mv>2 1 est le nombre total de jonctions de sommets et EJ =
∑

mv>2mv est
le nombre de jonctions d'arêtes. Soit Ω l'aire de l'image en pixels. Nous dé�nissons
la densité de jonction de sommets par ÑJ = Ω−1NJ et la densité de jonction d'arêtes
par ẼJ = Ω−1EJ . Ceux-ci forment une mesure utile pour séparer les zones urbaines
des zones rurales : les zones urbaines ont vraisemblablement des valeurs ÑJ et ẼJ

plus élevées que les zones rurales. De la même manière, nous dé�nissons la longueur
du réseau par L =

∑
e le et la densité de longueur par L̃ = Ω−1

∑
e le. Encore une

fois, nous estimons que la valeur L̃ est plus élevée dans les zones urbaines. Notons
qu'il peut arriver que la valeur L̃ soit élevée et que ÑJ possède une faible valeur, ceci
si les jonctions sont complexes and les segments de route sont "space-�lling". Nous
calculons également l'aire du réseau ΩL comme le nombre de pixels correspondant
au réseau à partir des images binaires extraites and nous dé�nissons la densité d'aire
telle que Ã = Ω−1ΩL. Comme nous pouvons le constater sur la Figure 2, beaucoup
de points de jonction sont regroupés dans une petite aire du réseau. A�n d'obtenir
un caractéristique locale de la densité de jonction, nous dé�nissons une mesure de
densité de jonction dans une région circulaire telle que Ñr,j = Ω−1

j,r

∑
v∈Ωj,r:mv>2 1. Ceci

correspond à la densité de jonction des points appartenant à une région circulaire de
rayon r centrée sur un point de jonction j. Nous calculons alors la moyenne et la
variance de ces densités de jonction sur tous les points de jonction, moyenne(Ñr,j)
et var(Ñr,j). Une valeur élevée de la var(Ñr,j) signi�e que les jonctions de route ont
une structure étendue. Les structures de réseaux ruraux correspondent à une telle
caractéristique. Une valeur faible indique que les points de jonction sont proches les
uns de autres, ce qui est une mesure proéminente des structures de réseaux urbains.
La moyenne(Ñr,j) est également utilisée comme une mesure de densité.

Soient pe = le/de et ke = l−1
e

∫
e
ds|ke(s)|, c'est à dire, la valeur absolue de la

courbure par unité de longueur du segment de route correspondant à e. Bien qu'il
semble naturel de caractériser le réseau en utilisant la moyenne des valeurs par arêtes
de ces quantités, il s'est révélé en pratique que les variances de ces quantités sont tout
aussi utiles. Nous dé�nissons ainsi le ratio de la variance des longueurs et le ratio de la
moyenne des longueurs comme la variance et la moyenne de pe sur les arêtes, var(p) et
moyenne(p), et la valeur moyenne de la variance de courbure et la valeur moyenne de
la moyenne de courbure comme la variance et la moyenne de ke sur les arêtes, var(k)
et moyenne(k). Notons qu'il est possible d'avoir une valeur pe élevée pour une arête
et en même temps une valeur ke faible si le segment de route est composé de longs
segments droits, et vice-versa, si une route 'serpente' rapidement autour de la ligne
droite liant les deux sommets dans l'arête. Nous nous attendons à obtenir des valeurs
fortes pour une de ces deux quantités dans le cas des zones rurales, alors que les zones
urbaines auront probablement de faible valeurs, bien que ceci soit moins évident que
dans les cas des mesures de densité.

Pour la mesure d'homogénéité de réseau, nous divisons chaque image en quatre



15

quadrants, étiquetés a. L'indice a indique les quantités évaluées pour le quadrant a
plutôt que l'image entière. Soit MJ,a =

∑
v∈a:mv>2mv le nombre d'arêtes émanant des

jonctions dans le quadrant a. C'est très proche du double du nombre d'arêtes dans
a, mais il est préférable de nous restreindre aux jonctions pour éviter les fausses ter-
minaisons aux frontières de l'image. Soit M̃J,a = Ω−1

a MJ,a la densité d'une telle arête
dans le quadrant a. Nous dé�nissons alors le réseau d'inhomogénéité comme la vari-
ance de M̃J,a sur les quadrants, var(M̃J). Nous incluons également la caractéristique
moyenne(M̃J).

Dans le but de distinguer les deux classes urbaines (Etats-Unis et Europe), l'entropie
de l'histogramme des angles des jonctions, Hβ, ou βj est le vecteur des angles entre
les segments des routes au jonction j, est une bonne mesure. D'après les caractéris-
tiques physiques des structures de réseaux routiers, les routes aux Etats-Unis tendent
à être parallèles et à se croiser orthogonalement formants des jonctions en T ou des
croisements de routes, alors que les routes européennes serpentent et se croisent entre
elles dans les environs. Ainsi il semble naturel que Hβ ≤ 2 bits soient nécessaires pour
encoder l'information des segments de routes aux jonctions pour les réseaux routiers
aux Etats-Unis, alors que dans le cas de l'Europe, Hβ ≥ 2 bits sont nécessaires. La
même mesure peut également être utilisée pour distinguer les montagnes des champs,
lorsque la densité des caractéristiques distingue les réseaux ruraux des réseaux urbains.

Une mesure de distribution des arêtes à un sommet nous informe de la manière
dont les arêtes à un sommet sont distribuées dans le réseau. Soit ED,i la propor-
tion des points de jonction avec i arêtes. Nous employons comme caractéristiques
moyenne(ED,i) et var(ED,i). La variance de la distribution d'arêtes est plus faible
dans le cas des réseaux urbains aux Etats-Unis par rapport à ceux existant en Europe.

Caractéristiques des régions urbaines

Nous nous focalisons sur les quatre dernières caractéristiques du tableau 2 (Les carac-
téristiques utilisées lors de la classi�cation sont notées en gras). Ces caractéristiques
nous permettent de distinguer les classes rurales (villages et champs) des classes ur-
baines (Europe), qui autrement ne seraient pas bien classi�és par manque d'information
du réseau extrait dans les petites régions urbaines denses des images, ce qui est visi-
ble dans les Figures 3(a) et 3(c). Soient Ω l'aire de l'image et ΩR l'aire des régions
extraites, soient LΨ la longueur du réseau dans Ψ = Ω− ΩR et ΓR le périmètre de la
région extraite. Nous dé�nissons deux descripteurs, R̃A = Ω−1ΩR, la densité de région
extraite et CfA = Ω−1

R Γ2
R, le facteur de compacité de la région extraite. Ces deux

caractéristiques nous aident à distinguer les classes de villages des autres classes: par
exemple, R̃A ' 1 pour les classes urbaines et R̃A ' 0 pour les classes de montagnes et
de champs.

La caractéristique R̃ν , le nombre de régions urbaine dans une image est utilisée
pour distinguer les classes urbaines, villages, champs et montagnes. Une classe urbaine
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Notation Description
m Nombre d'arêtes dans le graphe
n Nombre de sommets dans le graphe
Ω Aire de l'image
ΩL Aire du réseau
a Label du quadrant
le Longueur d'un segment de route correspondant à l'arête e
mv Nombre d'arêtes à un sommet

∑
e:v∈e 1

NJ Nombre de jonctions de sommets
∑

v:mv>2 1

ÑJ Densité de jonction Ω−1NJ

L Longueur du réseau ∑
e le

L̃ Densité de longueur Ω−1
∑

e le
Ã Densité d'aire du réseau Ω−1ΩL

de Distance euclidienne entre les sommets dans une arête
pe Ratio des longueurs le/de

var(p) Ratio de la variance des longueurs m−1
∑

e p
2
e−(m−1

∑
e pe)

2

moyenne(p) Ratio de la moyenne des longueurs m−1
∑

e pe

ke Valeur moyenne de courbure l−1
e

∫
e
ds |ke(s)|

var(k) Valeur moyenne de la variance de courbure m−1
∑

e k
2
e −

(m−1
∑

e ke)
2

moyenne(k) Valeur moyenne de la moyenne de courbure m−1
∑

e ke

ED,i Nombre de jonctions avec mv = i
var(ED,i) Variance de la distribution d'arêtes (1/max(mv))

∑
iE

2
D,i−

((1/max(mv))
∑

iED,i)
2

moyenne(ED,i) Moyenne de la distribution d'arêtes (1/max(mv))
∑

iED,i

EJ Nombre de jonctions d'arêtes
∑

mv>2mv

MJ,a Nombre de jonctions d'arêtes par quadrant
∑

v∈a:mv>2mv

ẼJ Densité des arêtes de jonction Ω−1EJ

M̃J,a Densité des arêtes de jonction par quadrant Ω−1
a MJ,a

var(M̃J) Variance de la densité des arêtes de jonction
(1/4)

∑
a M̃

2
J,a − ((1/4)

∑
a M̃J,a)

2

moyenne(M̃J) Moyenne de la densité des arêtes de jonction
(1/4)

∑
a M̃J,a

Ωr Aire d'une région circulaire de r
Ñr,j Densité de jonction dans une région circulaire Ω−1

j,r

∑
v∈Ωj,r:mv>2 1

var(Ñr,j) Variance des densités de jonction sur toutes les régions
circulaires (1/NJ)

∑
j Ñ

2
r,j − ((1/NJ)

∑
j Ñr,j)

2

moyenne(Ñr,j) Moyenne des densités de jonction sur toutes les régions
circulaires (1/NJ)

∑
j Ñr,j

βj Vecteur d'angles entre les segments à la jonction j
Hβ Entropie de l'histogramme des angles de segments de

route avec une taille de pas de discrétisation 30◦

Table 1: Une sommaire des caractéristiques calculées dans les réseaux routiers.
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complète aura R̃ν = 1, alors qu'un village aura R̃ν > 1 et les champs et montagnes
auront R̃ν = 0. Une autre caractéristique, ∆Ω, l'inverse de la densité de longueur,
est également calculée pour séparer la classe village des classes urbaines, montagnes
et champs. La longueur totale du réseau dansΨ = Ω − ΩR est dénoté par LΨ. Pour
les classes urbaines complètes (Etats-Unis et Europe), LΨ = 0 et pour les classes
montagnes et champs Ψ = Ω. Donc pour les classes montagnes et champs, l'inverse
fractionnaire de la densité de longueur, ∆Ω = 0 alors que pour les classes urbaines
complètes, ∆Ω = ∞, et pour les classes villages 0 < ∆Ω < ∞. Ces caractéristiques
de région urbaine viennent compléter les caractéristiques calculées à partir du graphe
de représentation du réseau routier, comme décrit dans la section précédente, dans le
but d'améliorer la classi�cation des environnements géographiques qui, autrement, ne
seraient pas bien classi�és à cause du manque d'information dans les petites régions
urbaines denses.

Notation Description
Ω Aire de l'image
ΩR Aire des régions extraites
LΨ Longueur du réseau dans Ψ = Ω− ΩR

ΓR Périmètre des régions extraites
R̃A Densité d'aire d'une région Ω−1ΩR

CfA Facteur d'agglomération d'une région Ω−1
R Γ2

R

R̃ν Etiquette d'une région #R

∆Ω Inverse fractionnaire de la densité de longueur ΩR

LΨ

Table 2: Sommaire des caractéristiques calculées pour les régions urbaines.

Classi�cation

Les 32 primitives (16 primitives pour chacunne des deux méthodes d'extraction du
réseaux routiers) décrites auparavant ont été calculées à partir d'une base de 497 images
SPOT5, à une résolution de 5 mètres. A�n d'obtenir la vérité terrain, ces images ont
été classi�ées manuellement suivant 7 classes, représentant di�érents types de zones
urbaines et rurales. La classi�cation automatique a été réalisée avec cinq boucles de
validation croisée sur les données, dont 80% sont utilisées pour l'apprentissage et les
20% restant pour les tests. Après avoir sélectionné les primitives via une analyse par
FLD (Fisher Linear Discriminant) [Duda 00], la classi�cation est e�ectuée par SVM
à noyau linéaire sur l'ensemble des primitives sélectionnées. Le tableau 3 présente les
résultats de cette classi�cation. La classi�cation SVM à noyau linéaire sur l'espace
à 30 dimensions des primitives sélectionnées par FLD donne une erreur moyenne de
24.5% avec un écart type de 2.92%.

Comme nous pouvons clairement le constater grâce à la matrice de confusion du
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Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.55 0.09 0.22 0.05 0.13 0.00 0.00
Mountains 0.10 0.81 0.00 0.00 0.05 0.00 0.02
Fields 0.19 0.05 0.64 0.05 0.18 0.00 0.00
USA 0.06 0.00 0.04 0.82 0.05 0.00 0.02
Europe 0.09 0.05 0.11 0.07 0.60 0.03 0.05
Airports 0.00 0.00 0.00 0.01 0.00 0.97 0.00
Common 0.00 0.00 0.00 0.00 0.00 0.00 0.91

Table 3: Matrice de confusion de la classi�cation SVM à noyau linéaire de 497 images
avec 7 classes, 30 primitives parmi 32 étant sélectionnées par FLD.

tableau 3, la classe "Villages" est confondue avec la classe "Fields", et il y a également
une légère confusion entre les classes urbaines "USA" et "Europe". Ces confusions ap-
paraissent, comme nous l'avons évoqué précédemment, en raison de l'échec des méth-
odes d'extraction de réseaux routiers dans la détection des routes �nes et densément
structurées présentes dans certaines images. Le tableau 4 montre les résultats de la
classi�cation des mêmes images avec 20 primitives sélectionnées parmi 36 (32 primi-
tives de réseaux routiers combinées avec 4 primitives calculées sur les régions urbaines
segmentées). Il y a une nette amélioration de la matrice de confusion, notamment
entre les classes Villages et Fields qui sont moins confondues qu'auparavant. L'erreur
de classi�cation SVM à noyau linéaire est très fortement réduite, passant de 24.5%
avec les seules primitives de réseaux routiers à 12.9% avec les primitives combinées,
l'écart-type étant de 3.29%. Ceci est dû au fait que l'information sur les zones ur-
baines (perdue avec les primitives de réseaux) est bien modélisée par les primitives
structurelles calculées sur ces zones.

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.83 0.00 0.15 0.00 0.05 0.02 0.03
Mountains 0.04 0.83 0.01 0.00 0.00 0.00 0.00
Fields 0.04 0.08 0.82 0.01 0.00 0.00 0.01
USA 0.01 0.00 0.00 0.92 0.12 0.02 0.01
Europe 0.08 0.04 0.02 0.07 0.84 0.02 0.02
Airports 0.00 0.05 0.00 0.00 0.00 0.96 0.00
Common 0.00 0.00 0.00 0.00 0.00 0.00 0.93

Table 4: Matrice de confusion de la classi�cation SVM à noyau linéaire de 497 images
avec 7 classes, 20 primitives parmi 36 étant sélectionnées par FLD.
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Dépendance des primitives élémentaires en fonction de
la résolution et de la taille des images

Depuis l'avènement des capteurs modernes, l'acquisition des images satellitaires en ter-
mes de résolution et de taille est devenu un challenge pour l'extraction de l'information
et l'interprétation des images à haute résolution. Les satellites à haute résolution tels
que Quickbird2 et Ikonos avec une résolution panchromatique sub-métrique, ou les
futurs satellites Pléiades avec une résolution spatiale proche du mètre, fournissent les
informations adéquates sur les attributs des structures au sol des régions urbaines. A�n
d'extraire ces informations sur une base d'images multi-résolution, une seule méthode
ne sera pas su�sante pour cette tâche.

Plusieurs études ont été menées pour évaluer la résolution optimale pour la classi-
�cation d'images satellitaires. Certains objets sont mieux classés avec une résolution
plus �ne, alors que d'autres nécessitent une résolution plus grossière. En particulier,
une étude [Marc 94] explique les e�ets de la résolution sur la classi�cation. Des
travaux ont également porté sur la classi�cation multi-résolution. Des primitives cal-
culées à di�érentes résolutions spatiales ont été utilisées pour améliorer la classi�cation
de la couverture/utilisation des terres [Chen 02]. Dans notre approche, la méthode
d'extraction des réseaux est optimisée pour une résolution à 5m, et va par conséquent
extraire des structures redondantes dans la même scéne à une résolution de 1m, et ne
pas en extraire su�samment dans la même scéne à 10m de résolution. Les paramètres
d'extraction sont en e�et �xés pour une certaine résolution, et ne peuvent être dy-
namiquement adaptés pour des résolutions variables.

In�uence de la résolution et de la taille des images sur l'extraction
de réseaux routiers et de régions urbaines

Dans toutes nos expérimentations, nous avons utilisé une base d'images SPOT5 fournie
par le CNES à une résolution de 5m. La classi�cation d'images aux di�érentes réso-
lutions mentionnées n'est pas l'objet de cette étude, et de plus, le nombre d'images
dont nous disposons pour ces résolutions n'est pas su�sant pour obtenir une base
acceptable pour réaliser une classi�cation. A�n de comprendre le rôle de la résolu-
tion et de la taille sur les primitives lors de la classi�cation d'images appartenant aux
classes mentionnées précédemment, nous construisons deux bases de données à partir
des images SPOT5 dont nous disposons.

Les deux nouvelles bases sont obtenues à partir de 512x512 pixels à 5m de resolu-
tion. Les images sont sous-échantillonnées à une résolution de 10m pour la première
base, et les images sont découpées en 4 sous-images de 256x256 pixels pour la sec-
onde. Cette dernière base est donc quatre fois plus grande que l'originale, chacune des
sous-images étant ré-attribuée manuellement aux classes dé�nies pour la classi�cation.
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Classi�cation

Les primitives du graphe représentant le réseau routier et la zone urbaine sont calculées
en suivant la méthode détaillée aux précédemment. Deux tests sont réalisés sur les
bases respectives de 497 images SPOT5 256x256 pixels à 10m de résolution, et de 1988
images SPOT5 256x256 pixels à 5m de résolution. La classi�cation automatique est
réalisée avec cinq boucles de validation croisées sur les données, dont 80% sont utilisées
pour l'apprentissage et les 20% restant pour les tests.

Les résultats de la classi�cation SVM à noyau linéaire, utilisant une approche un
contre tous, des 1988 images à 5m sur 7 classes, avec 22 primitives sélectionnées parmi
36 par FLD, sont donnés dans le tableau 5. L'erreur moyenne de classi�cation est de
17.4% avec un écart-type de 2.19%. Les résultats de la classi�cation SVM à noyau
linéaire des 497 images à 10m sur 7 classes, avec 22 primitives sélectionnées parmi 36
par FLD, sont donnés dans le tableau 6. L'erreur moyenne de classi�cation est de
25.4% avec un écart-type de 2.02%. Le tableau 8 résume les résultats de classi�cation
pour les 3 bases d'images.

Comme nous pouvions nous y attendre, les performances varient fortement avec
le changement de taille et de résolution des images. Les quelques anomalies visibles
dans le tableau 5 peuvent être expliquées ainsi : d'une part, le fait d'avoir diminué
la taille des images de 512x512 à 256x256 pixels limite l'information extraite sur les
réseaux routiers et les primitives associées sont donc moins discriminantes pour les
classes Villages, Mountains, Fields, USA et Europe. D'autre part, la classe Airports
est beaucoup mieux attribuée en raison des pistes d'envol qui sont plus facilement
détectées que dans les images 512x512 pixels, où d'autres structures sont détectées
dans leur voisinage et limite le pouvoir discriminant des primitives extraites.

Quelques anomalies sont également constatées lors de la classi�cation d'images
à 10m. Les pertes de performance globales constatées sont dues à l'extraction des
primitives. En e�et, la méthode d'extraction de réseaux [Deso 00] ne parvient pas
à fournir su�samment d'information �able sur la structure du réseau routier à cette
résolution. De même, la méthode d'extraction de zones urbaine de [Roux 92] peut
faillir à cette résolution. Seule la classe Common (contenant des images de mer) voit
son taux d'erreur diminuer. Ceci résulte du fait qu'à cette résolution, les structures
linéaires formées par les vagues ne sont plus extraites avec la méthode de [Deso 00],
ce qui n'était pas le cas avec les images à 5m.

Indexation de grandes images SPOT5

Une image est indexée par un ensemble de mots-clés représentant son contenu. Ces
mots-clés sont dépendants des scénarios d'application et leur nombre est en général
limité. La classi�cation est souvent utilisée comme une étape de pré-traitement pour
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Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.66 0.06 0.19 0.02 0.15 0.00 0.00
Mountains 0.02 0.82 0.02 0.00 0.00 0.00 0.01
Fields 0.02 0.05 0.74 0.00 0.00 0.00 0.00
USA 0.17 0.00 0.00 0.79 0.13 0.00 0.00
Europe 0.12 0.06 0.04 0.19 0.71 0.00 0.00
Airports 0.02 0.00 0.00 0.00 0.00 1.00 0.00
Common 0.00 0.00 0.00 0.00 0.00 0.00 0.99

Table 5: Matrice de confusion de la classi�cation SVM à noyau linéaire de 1988 images
de taille 256x256 pixels avec 7 classes, 22 primitives parmi 36 étant sélectionnées par
FLD.

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.53 0.12 0.32 0.03 0.03 0.01 0.00
Mountains 0.08 0.65 0.03 0.02 0.01 0.04 0.00
Fields 0.19 0.08 0.59 0.00 0.00 0.00 0.00
USA 0.16 0.00 0.02 0.82 0.16 0.03 0.00
Europe 0.03 0.10 0.03 0.14 0.79 0.01 0.00
Airports 0.01 0.05 0.02 0.00 0.00 0.90 0.00
Common 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 6: Matrice de confusion de la classi�cation SVM à noyau linéaire de 497 images
de résolution 10m avec 7 classes, 22 primitives parmi 36 étant sélectionnées par FLD.

497/5m/512x512 1988/5m/256x256 497/10m/256x256
Villages 0.83 0.66 0.53
Mountains 0.83 0.82 0.65
Fields 0.82 0.74 0.59
USA 0.92 0.79 0.82
Europe 0.84 0.71 0.79
Airports 0.95 1.00 0.90
Common 0.93 0.99 1.00

Table 7: Tableau de comparaison des classes correctement identi�ées.
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Figure 4: Taux d'erreur de classi�cation en fonction du nombre de primitives.

Database and Reso-
lution

Feature Dimen-
sion

Selection Classi�cation Error (%)

497/5m 36,7 classes Fisher LD, 20 Linear SVM, 12.9±3.29

1988/5m 36,7 classes Fisher LD, 22 Linear SVM, 17.4±2.19

497/10m 36,7 classes Fisher LD, 22 Linear SVM, 25.4±2.02

Table 8: Performance de classi�cation des di�érentes bases.
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l'indexation. Indexer soigneusement une base d'images aide à récupérer e�cacement
le contenu de l'image. Le schéma de notre méthode d'indexation comporte les trois
étapes suivantes :

Etape 1 : la base de données

La base de données images peut être vue comme deux ensembles disjoints : l'un
contenant les images ou les images segmentées, et l'autre, les primitives extraites des
images. Soient SI , l'ensemble d'images, et SF , l'ensemble des primitives; un pointeur
est utilisé entre SI et SF pour adresser une image aux primitives qui lui sont associées.
Les images utilisées appartiennent à une grande archive de 497 images, chacune de
taille 512x512 pixels et catégorisée en 7 classes. Les informations extraites de ces
images, en termes de caractéristiques structurales, sont conservées dans un �chier de
données. Le processus o�-line de création de ce �chier de données est e�ectué une
seule fois, et en cas de nouvelle entrée, les informations extraites de la nouvelle image
sont ajoutées dans le �chier de données existant. L'adresse de la nouvelle entrée est
convenablement a�ectée au pointeur. Ceci sera utilisé plus tard comme ensemble
d'�apprentissage� pour la tâche de classi�cation.

Etape 2: le �chier de primitives

Etant donnée une image de grande taille, le processus o�-line pour l'utilisateur est
le suivant : l'image de taille 5120x5120 pixels est automatiquement découpée en
morceaux de taille 512x512 pixels, ceci sans recouvrement. Pendant ce processus, un
pointeur d'association est extrait des petites images, dé�nissant leur position spatiale
dans la grande image. L'extraction du réseau routier, sa représentation par graphes
et les méthodes de segmentation de zones urbaines sont appliquées parallèlement sur
l'ensemble des sous-images (100 images). Les caractéristiques structurales issues de
la représentation par graphes et des zones urbaines sont stockées dans un �chier. Les
images sont étiquettées a priori de manière aléatoire, les classes allant de 1 à 7. Ceci
sera utilisé plus tard comme ensemble de �tests� pour la tâche de classi�cation.

Etape 3: la classi�cation

Dans plusieurs travaux de classi�cation d'images satellitaires, les informations a priori
sur la con�guration des étiquettes des classes sont disponibles et il est essentiel et cru-
cial de combiner ces informations dans le processus de classi�cation pour obtenir une
réponse �able. La méthode SVM classique ne fournit aucune estimation de la con�ance
de classi�cation et par conséquent, ne nous permet pas de comprendre les informations
a priori. La méthode SVM probabiliste nous fournit une solution consistant à constru-
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ire un classi�cateur pour produire une probabilité a posteriori P (class = c|input) nous
permettant de prendre une décision quantitative à propos de la classi�cation [Plat 99].
Dans ce travail, nous utilisons un classi�cateur SVM à noyau Gaussien avec σ = 10 et
une approche un contre tous. Le choix du noyau Gaussien σ, qui contrôle la largeur
du noyau, est di�cile à estimer dans des situations pratiques. Dans cette étude, nous
avons considéré la valeur du noyau, σ, qui minimisait l'erreur d'apprentissage.

Les résultats obtenus en sortie du SVM probabiliste peuvent être interprétés de
la manière suivante : la sortie du classi�cateur doit être une probabilité a posteriori
calibrée. L'apprentissage SVM est d'abord e�ectué, puis les paramètres A et B d'une
fonction sigmoide (voir Equation 1) sont estimés à partir de l'ensemble d'apprentissage
(fi, yi) pour transformer la sortie du SVM en probabilités. L'étiquette prédite d'une
image est celle qui a la plus grande probabilité. La sortie de la classi�cation est
représentée par une matrice (�Matrice de régions�), dans laquelle chaque élément cor-
respond à une classe d'images. La grande image SPOT5 de Los angeles, à 5m de
résolution Figure 5(a) est bien classi�ée, le pourcentage de bonne classi�cation étant
d'environs 85%.

P (y = c|f) =
1

1 + exp(Af +B)
(1)

La sortie du SVM probabiliste dans la matrice de régions, Figure 5(b) montre
que certaines zones sont classi�ées comme des zones urbaines européennes. Ceci peut
s'expliquer par le fait que soit les probabilités de classi�cation sont faibles, soit les
probabilités des régions voisines sont comparables. L'autre explication réside dans le
fait que les structures du réseau dans ces zones sont similaires à celles qu'on trouve
dans plusieurs régions urbaines d'Europe. La validation des régions classi�ées avec les
vérités de terrain de la Figure 5(d) est représentée par l'image de la Figure 5(c).

Conclusion

La classi�cation de grandes images satellitaires en découpant l'image en morceaux est
une nouvelle idée dans le sens où les morceaux d'image considérés contiennent une
couverture signi�cative d'un type particulier d'environnement géographique. Le SVM
probabiliste nous fournit une analyse quantitative de la classi�cation. Cette méthode
apporte une base pour des analyses plus complexes d'images satellitaires de grande
taille. L'e�et de recouvrement des morceaux d'images dans la classi�cation n'est pas
mentionné. Ceci pourrait être une étude intéressante dans la mesure où elle peut aider
à mieux classi�er les images. De plus, les morceaux d'images de tailles di�érentes
peuvent aussi être utilisés pour améliorer les performances de la classi�cation. Notre
méthode d'indexation avec les perspectives mentionnées ci-dessus peut être adaptée à
des systèmes actuels et futurs de fouille d'information dans les images pour les archives
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(a) (b)

(c) (d)

Figure 5: Classi�cation d'une grande image de Los Angeles:(a) Image originale de
Los Angeles c©CNES; (b) Résultats de classi�cation pour Los Angeles; (c) Résultats
de classi�cation superposés à l'image originale de Los Angeles; (d) Vérité de terrain
avec Google maps c©2007 Google-Imagery c©2007 NASA, TerraMetrics, Map data
c©NAVTEQTM , LeadDog Consulting
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d'Observation de la Terre.
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Chapter 1

Introduction

The recent advances in large data storage and new satellite technology acquiring high
volumes of images have enabled the creation of large image archives. In order to deal
with these high volumes of data, it is necessary to develop appropriate information
systems to e�ciently manage these collections. Image indexing and retrieval from these
large image databases is one of the most important services that need to be supported
by such systems. In remote sensing and astronomy, large amounts of image data are
received daily by ground stations for processing, analyzing and archiving. The need of
processing, analyzing and archiving of images has been identi�ed in applications such
as cartography and meteorology for instance. Users from various domains require
information or services that are precise, low cost and timely and where the forms and
formats of the data are compatible with user's need. Earth Observation (EO) archiving
centres generally o�er data, images and other low level products. User's needs are
partially satis�ed by a number of, usually small, companies applying time consuming
processing techniques which are mostly manual. The end products rely largely on the
knowledge of certain experts to extract information from these data or images. The
manual processes will be even more di�cult with the greater sophistication of user's
needs, requiring, for example, the fusion of multi-sensors or EO and non-EO data, and
the exponential increase in the volume and the complexity of data archives due to the
rapid increase in number of sensors, kinds of sensed data, sensor resolution, number
of spectral bands, number of data formats and type and size of data archives.

Today's Synthetic Aperture Radar (SAR) and optical sensors generate 10 to 100
gigabytes of data per day, so that in a multi-sensor spacecraft scenario the volume of
data to be archived annually reaches 10 terabytes. The Shuttle Radar Topography
Mission (SRTM) provides about 18 terabytes of SAR data in just 11 days and ESA's
Envisat spacecraft collects about 80 terabytes of multi-sensor data per year. After 30
years of remote sensing, there are large volumes of valuable information for a single
site on the Earth that have not been fully exploited because of the lack of automated
tools. New technologies are required for the automatic extraction and classi�cation
of information from such EO data which could otherwise remain hidden forever or be
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detected only by chance.

(a) QuickBird2, 61cm c©DigitalGlobe (b) IKONOS, 1m c©Space Imaging

(c) Simulated from Aerial
images, 0.5m c©CNES (d) Simulated from Aerial

images, 10m c©CNES

Figure 1.1: Images from di�erent satellites with di�erent resolutions.

In recent years, the capability to store large volumes of data has outperformed
the capability to extract meaningful information from it. Remote sensing data access
systems, particularly for images, allow queries by geographical location, time of ac-
quisition or type of sensors. This information is often less relevant than the actual
content of the scene, i.e. structures, objects or scattering properties of the sensors.
Many applications of remote sensing require the knowledge of complicated spatial and
structural information and the abstract relationships between objects within the im-
age. This information is usually hidden in the image structure and must be mined
to retrieve meaningful spectral information and higher level abstraction of objects in
the image, such as cities, roads, rivers and forests, etc. Knowledge driven information
mining from large EO archives needs the utilization of a family of methods for knowl-
edge discovery, learning and information extraction from large volumes of data. This
mining of information is performed with the identi�cation of a speci�c feature and
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certain applications in mind or it is performed to extract a key feature without any
speci�c application requirement at the time of extraction. Companies and research
institutes around the world are devoting large e�orts to the design and production of
Content Based Image Retrieval (CBIR) systems for EO archives. Several attempts
have been made to have a CBIR approach to EO archives, but di�culties have been
encountered in applications, as the basic concept of CBIR tools apply for searching the
archives by global image similarity by scrutinizing the entire image archive to detect
new features. This approach is cumbersome and time expensive for large volumes of
images.

1.1 Image content retrieval and mining overview

CBIR technology has been used in several applications, for example �ngerprint identi�-
cation, biodiversity information systems, digital libraries, medicine, historical research,
etc. The creation of CBIR systems involves research on databases and image process-
ing, storage handling problems and user friendly interfaces. In these systems, image
processing algorithms are used to extract features that represent the image properties
such as color, texture and shape. The CBIR approach retrieves images similar to
one chosen by the user (query-by-example) based on a similarity metric. Images are
particularly complex to manage besides the volume they occupy: retrieval of images
from databases is a context-dependent task. The �rst step towards retrieval requires
a translation of high-level user perception into low-level image features. Moreover,
image indexing is not just a string processing method: images or objects in images are
represented as points in a high-dimensional space.

CBIR systems work have two main functionalities: data insertion and query pro-
cessing. The data insertion system is responsible for extracting features from the
images and storing them in a feature database. The query processing module is orga-
nized with an interface that allows the user to specify a query image and visualize the
retrieved similar images. The query processing module extracts feature vectors from
the query image and applies a metric (such as the L2 or the L1 norm) to evaluate
the similarity between the query and the database images. The database images are
ranked in decreasing order of similarity to the query image and the most similar images
are shown in the output interface.

A CBIR system requires the construction of an image descriptor, which is char-
acterized by the extraction algorithm to code the image features in a vector and a
similarity measure to compare two images. A feature vector ~vI of an image I is de-
�ned as a point in Rn. An example of possible feature vectors are the color histogram,
the set of Fourier coe�cients, geometrical patterns of shapes of objects, texture fea-
tures, etc. An image content descriptor DI is de�ned by a tuple (ξDI

, δDI
); where ξDI

is a function which maps an image I into its feature vector ~vI and δDI
is a similarity

function that computes the distance between the features from two images.
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Several CBIR systems have been proposed in the recent past, some of which have
become commercial products, while many others were proposed as research prototypes
developed at universities and research laboratories. To name a few of the existing
CBIR systems: QBIC (Query by Image Content), developed by IBM; Photobook,
developed at the Massachusetts Institute of Technology (MIT); Chabot; Netra; and
VisualSEEK. These systems retrieve image content based on color, shape, texture and
the spatial location of segmented regions of the image. A few other systems, e.g. the
PicHunter system, are based on a Bayesian framework that models user's needs during
information query, while the Blobworld system is a region-based image retrieval system
in which the pixels are clustered according to their color and texture properties. In this
work, we will describe in detail the IKONA CBIR system developed at the IMEDIA
research group at INRIA Rocquencourt, France.

An Image Information Mining (IIM) paradigm is dependent on the ability to eval-
uate retrieval systems and image understanding functions and methods. In order to
evaluate such a system one should look at the technicalities of the system as well
as user related concepts. These two approaches can be described as `objective' and
`subjective' concepts respectively. The main problem arising in CBIR performance
evaluation is the lack of a common image database and the validation of the retrieval
process. In the literature, a considerable amount of work can be found on approaches
based on query by image example. These approaches mainly validate system perfor-
mance based on precision-recall graphs. On the other hand, in a knowledge driven
image information mining system, the evaluation principle is divided into two main
categories. The �rst one can be seen as objective and the process involves the techni-
calities of information content extraction, information quality and the complexity of
the system. The second category is subjective and is based on the concept of relevance
feedback and user satisfaction in the retrieval operation.

The growing complexity of image information content has made CBIR a weaker
system for image retrieval. The CBIR system hardly allows for any adaptivity to
user's needs as they are highly computer-centered approaches. A man-machine inter-
action system is the new state-of-the-art in image information mining systems. The
next generation man-machine architecture of information mining systems is based on a
stochastic link between the user de�ned semantic image content and the unsupervised
content index. This stochastic link allows the users to query the image archive for
relevant images and the system in turns returns a probabilistic classi�cation of the
entire image archive. The �eld of information mining opens a brand new perspective
of information extraction from large volumes of heterogeneous data and the correla-
tion of these data with various application scenarios. The Knowledge-Driven Image
Information Mining (KIM) project is a next-generation architecture for man-machine
interaction via the internet that adaptively incorporates application speci�c interests.
The information representation of such a system is based on image feature extraction
using a library of algorithms. These features are then clustered in an unsupervised
manner followed by data reduction and supervised learning of users' semantics.
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1.2 Which information ?

The rapid advances in image acquisition methods and the storage technology have led
to the growth of large image databases. The image information content is implicitly
embedded in the image and is usually hard to detect. These images, if analyzed would
reveal useful knowledge to human users. The extraction of this implicit knowledge from
the images has given rise to the �eld of image information mining. Image information
mining systems are more than that of data mining systems in the image domain. A
collaborative approach with an overall expertise in the �elds of computer vision, image
processing, image retrieval, data mining, machine learning, database, and arti�cial
intelligence is required for mining information from images.

Indexing and retrieval from remote sensing image databases relies on the extraction
of appropriate information from the data about the entity of interest (e.g. land cover
type) and on the robustness of this extraction to nuisance variables. Other entities in
an image may be strongly correlated with the entity of interest and their properties
can therefore be used to characterize this entity. The road network contained in an
image is one example. The properties of road networks vary considerably from one
geographical environment to another, and they can therefore be used to classify and
retrieve such environments. In order to compute geometrical and topological features
of the road network, we �rst need to extract the road network from the image, and
then convert the output to an appropriate representation. This representation must be
independent of any extraction methods. Features computed from the representation
of the road network can then be used to classify the geographical environments.

The road extraction methods are in general resolution dependent. An extraction
method used speci�cally for metre resolution images will extract many `road-like' lin-
ear structures which in turn will provide us with redundant features for the proper
classi�cation of the geographical environment. The same logic holds otherwise, when
an extraction method is meant for sub-metre resolution images. Figure 1.1 shows
some examples of satellite and aerial images of di�erent resolutions. An optimal road
network extraction algorithm that accurately delineates road structures for practical
use is very hard to design. The real world scenario is too complex to handle and many
sophisticated algorithms for extracting pertinent road structure information rely on
the speci�city of the applications. In almost all cases, the road extraction algorithms
are tuned to consider only a limited set of characteristics, and the algorithms fail to
identify new characteristics when encountered in an application domain.

The methods used in our study are robust and can accurately extract the road
networks in a SPOT5, 5m resolution image but they often failed to extract the narrow
and �nely structured road networks which are almost hidden in small dense urban
areas. The lack of structural information available from these images containing such
areas hinders the classi�cation performance. In order to obtain useful structural in-
formation from these parts of the images and improve the classi�cation, a new set of



46 1. Introduction

features based on the segmented urban areas was introduced. These features were then
combined with the existing road network features. Further study examined the classi-
�cation performance with the structural features from the road networks augmented
with the new urban regions structural features.

The question that still remains to be answered is this: what is the optimal size
and resolution of an image in order to obtain the �best" classi�cation of geographical
regions on the Earth's surface ? The performance analysis of classi�cation with features
extracted from images of a certain size and resolution is an important issue concerning
image database indexing. A study concerning this has been reported in this thesis.

1.3 The methodology

Satellite image classi�cation has been a major research �eld for many years with its
varied applications in the �elds of Geography, Geology, Archaeology, Environmental
sciences and for Military purposes. Many di�erent techniques have been proposed, in-
cluding stochastic methods, genetic algorithms, fuzzy theory and neural networks. The
satellite classi�cation works reported in the last twenty years have shown a signi�cant
increase in classi�cation accuracy with the di�erent approaches and new technology
of image acquisition. There has been a large amount of work dedicated to the classi-
�cation of large satellite images at pixel level rather than considering image patches
of di�erent sizes. Classi�cation of image patches of di�erent sizes from a large satel-
lite image is a novel idea in the sense that the patches considered contain signi�cant
coverage of a particular type of geographical environment.

A large satellite image of size 5120x5120 pixels is cut into 100 non-overlapping
image patches each of size 512x512. The road networks and the urban areas are
extracted from these smaller images. Geometrical and topological features are then
computed from the road network representation and the segmented urban areas. These
images along with the features are then tested against the existing image database to
classify each image belonging to a certain pre-de�ned geographical class. Probability
measures are associated with the labelled classes to quantitatively infer about the
con�dence of classi�cation. Few image patches are studied in details to analyze the
classi�cation results with ground truths from Google maps. The schematic diagram
of the indexing processes is shown in Figure 1.2.

1.4 Organization of the thesis

In Chapter 2 we provide an overview of image information mining systems in general.
We study in detail a CBIR system and a Knowledge Discovery and Data Mining (KDD)
system. We then talk about shape and texture as image content used in the scope of
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Figure 1.2: The schematic diagram of the large image indexing process.

this work. In order to convert features into classes, we review classi�cation tools in
general and Support Vector Machines (SVM) in particular.

In Chapter 3, we introduce the road network extraction methods used on SPOT5,
5m resolution images. A database of 497 images is created with seven geographical
classes with each image of size 512x512 pixels. The output of the extraction is con-
verted into a suitable representation. Geometrical and topological features are com-
puted from the representation. These features are then used to classify the images with
linear SVM method. Feature subset selection is done with Fisher Linear Discriminant
analysis to reduce the redundancy of some features and hence lower the classi�cation
error.

Due to certain limitations of the road network extraction methods, small regions
with dense road structures are not appropriately extracted. In order to circumvent
this problem and to correctly classify these images, Chapter 4 introduces a region
extraction method. The geometrical and topological features computed from these
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regions are then augmented with the road network features to better classify the geo-
graphical environments. Linear SVM and feature subset selection with Fisher Linear
Discriminant analysis is done to further reduce the classi�cation error.

Chapter 5 shows the resolution and size dependency of images on the extraction
outputs and hence the classi�cation performance. A resolution and size dependency
test on classi�cation is done on two image databases and the results are compared
with the previous classi�cation results.

In Chapter 6 we show the indexing results on large satellite images of size
5120x5120 pixels with image patches of size 512x512 pixels each extracted from it.
Here we use probabilistic SVM in order to have an estimate of the classi�cation results.
The probabilities are then studied in details to have a closer look at the classi�cation
accuracies.

In Chapter 7 we conclude by giving some perspectives for our state-of-the-art
implementation in future image information mining systems for EO archives.
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Chapter 2

Image Information Mining Systems

The rapid advances in image acquisition methods and storage technology have led
to the growth of large image databases. The image information content is implicitly
embedded in the image and is usually hard to detect. These images, if analyzed will
reveal useful knowledge to human users. The extraction of this implicit knowledge from
the images has given rise to the �eld of image information mining. Image information
mining systems are more than data mining systems in the image domain; they require
an interdisciplinary approach with collaborative expertise in the �elds of computer
vision, image processing, image retrieval, data mining, machine learning, database
management, and arti�cial intelligence.

2.1 Systems

There is an explosion in the amount of data being produced by various means, and
mining from this data can uncover important information useful for researchers across
the world. Data mining [Fayy 96, Rao 02, Datc 03, Dasc 05] has made great strides
in the past years in terms of the technologies and methodologies being developed
and researched. The work in the �eld of data mining includes methods for analyzing
complex forms of data, as well as speci�c techniques and methods. The categories
of data mining include hypertext mining, multimedia, spatial, and time series data
mining. In this work we are concerned with spatial data mining in terms of the implicit
information and the spatial relationships of patterns observed in satellite images. The
topological information contained in spatial and geographic databases di�erentiate
them from other databases. The extraction of spatial relationships and patterns which
are not explicitly stored in the spatial database is the basic concept behind spatial data
mining [Este 95, Hans 00, Chaw 00].

Image mining denotes the union of data mining and image processing in order to
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help in the understanding of information in the image domain. Image mining di�ers
from low-level computer vision and image processing in the sense that image mining
focuses on the extraction of patterns from large collections of images whereas computer
vision and image processing techniques are used in the understanding and extraction
of patterns from a single image. There seems to be some commonalities between image
mining and content-based image retrieval as both deal with large image collections,
but image mining goes far beyond the problem of retrieving relevant images. A good
image mining system is one which can provide users' with e�ective access into the
image database and also generate knowledge about the patterns hidden in the images.
Several image mining systems have been developed for various applications ranging
from art image databases [BAL] to remote sensing image databases [ESA]. In this
chapter we will consider two such systems as motivation for our work which can be
incorporated in these systems for various application scenarios.

2.2 The IKONA system

The IMEDIA research group at INRIA Rocquencourt [INRI] has developed a content-
based indexing technique and interactive retrieval methods for browsing large multi-
media databases by content. In order to design an e�ective image retrieval system,
the database is divided into two categories. The �rst category is concerned with spe-
ci�c databases with known ground truth. During the process of indexing the user will
consider these ground truths in order to tune the models or the parameters which in
turn maximize the system e�ciency. The group has developed speci�c signatures for
face recognition and �ngerprint identi�cation. The second category is concerned with
databases containing heterogeneous images without any ground truth. In this context,
generic image features are computed which describe a general visual appearance such
as color and texture [Bouj 01, Goue 01].

The IKONA system architecture is based on a client-server architecture where
the server is written in C++ and includes image feature extraction algorithms, user
interaction (retrieval with visual similarity, relevance feedback mode, partial query
mode, points of interest mode, etc...) and a network module for communication with
the client. The client needs to be portable and is written in Java. It runs on machines
with the Java Runtime Environment (JRE). The user is presented with a Graphical
User Interface (GUI), the query mode is set for the server and the relevant images are
displayed as the search results. The system is �exible in the sense that functionalities
can be easily added without disturbing the overall architecture. In order to deal
with generic databases, IKONA includes a relevance feedback technique which allows
the user to re�ne their query by specifying a set of relevant and non-relevant images.
IKONA has a Relevance Feedback (RF) mode [Fere 05b, Fere 05a] for category search
in image databases which assists the user in rapidly �nding images in a large database.
The IKONA system also has a region based query mode, in which the user can select a
part of the image and the system will search images or part of images that are visually
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similar to the selected part [Fauq 02, Fauq 04, Fere 04]. In this case the query is
focussed and the system response is enhanced with regard to the user's objective since
background image properties are not considered. Several segmentation methods and
point of interest methods have been developed to achieve partial queries. The generic
image database with query image selection and query results is shown in Figure 2.1.

Figure 2.1: Generic image database. Left: Selection of a query image(the red border
indicates the selected image). Right: Query results for the selected image. Courtesy
(http://www-rocq.inria.fr/imedia/)

The research interests of the IMEDIA team also include the combination of text and
image features for indexing and retrieval. The image database is partially annotated
with keywords and the IKONA system in turn can use these keywords for very fast
retrieval. Research is being carried out on keyword propagation, semantic concept
search and hybrid text-image retrieval mode. In the category of speci�c databases,
IKONA also deals with databases containing faces in a complex background. Face
detection is performed using a hierarchical algorithm based on coarse-to-�ne support
vector classi�ers and the system assigns for each face a set of indexes with Dynamic
Space Wrapping (DSW) [Sahb 02a, Sahb 02b]. The face image database with query
image selection and query results is shown in Figure 2.2.

2.3 The KIM system

Information mining, knowledge discovery and data management are changing the
paradigm of user/data interaction by providing simpler and wider access to Earth
Observation (EO) data archives. The Knowledge-Driven Image Information Mining
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Figure 2.2: Speci�c Image database. Left: Selecting a query image with relevance
feedback mechanism in IKONA. Right: Query results for the selected image. Courtesy
(http://www-rocq.inria.fr/imedia/)

(KIM) project is the next-generation architecture for man-machine interaction via
the internet and for adaptively incorporating application-speci�c interests [Datc 99,
Datc 02]. The exponentially growing volumes of EO data archives needs to be fully ex-
ploited and the role of human-centered computing will play a major role in the design
of EO data exploitation. The KIM system addresses these scenarios and is a solution
that satis�es the requirements of the end users, for example, the scienti�c community,
civil protection agencies and educational institutions.

The evaluation principles of the KIM system are divided into two categories: ob-
jective and subjective. The objective part involves the technicalities of the system to
extract information content and information quality [Datc 98, Schr 98]. The subjec-
tive part includes relevance feedback, user satisfaction and semantic confusions. The
KIM system is based on a hierarchical Bayesian representation of image content. The
information representation on hierarchical levels of di�erent semantic abstraction is
based on a 5-level Bayesian learning model shown in Figure 2.3. The �rst level deals
with the extraction of primitive features from the data D with various stochastic sig-
nal models M . The parametric data model p(D|θ,M) assigns the probability of the
data D for a certain value of the parameter vector θ and a certain data model M .
The information is extracted by maximum a-posteriori (MAP) estimation of θ. The
Bayesian concept is used to select the most evident model describing the data. This
approach introduces the next level of features called metafeatures. With the existing
features from the two levels a set of signal classes wi are derived describing the clusters
of points in the θ space of di�erent models M . The classes wi are obtained by un-
supervised clustering of the entire set of data points using a k-means algorithm with
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prede�ned number of classes depending on the size of the image archive. At the last
level, the users' interests Lν , i.e., the semantic interpretation of the image content, are
linked to the signal classes wi by probability p(wi|Lν). The screen shots of random
image selection, Figure 2.4, the KIM system working interface, Figure 2.5, and the
search applet, Figure 2.6 and Figure 2.7 are shown accordingly.

Figure 2.3: The hierarchical image content description. Courtesy KIM project
[Datc 99]

The KIM system is based on a server-client architecture. The system is designed to
operate over the internet. The User Management Interface (UMI) provides the facility
to register new users and login existing users to access KIM services. The Interface
Learning (IL) module is a Java applet. This applet is used to de�ne or re�ne a label.
Users can perform search with a pre-de�ned label or can set some parameters in the
image database. The search results are presented as HTML pages.

Among others, the framework proposed by [Durb 04] is based on content and
semantic based information retrieval from remote sensing image archives. A method for
knowledge discovery and data mining based on hierarchical segmentation is proposed
in [Tilt 00].

2.4 Image representation and similarity

There are various levels of image representation. Image data structures can be repre-
sented as matrices, chains, graphs, relational databases, complex hierarchical methods,
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Figure 2.4: Image selection. Courtesy (ESA, DLR, ETH Zurich and ACS) : Courtesy
http://kes.esrin.esa.int/kes/

etc. The most naive way of image representation is by matrix. Elements of the ma-
trix are numbers de�ning the pixel intensities or their associations. Chain codes are
used to describe properties of objects present in the image [Free 61, Kane 85]. The
chain code is a symbolic representation which represents the neighborhood association
of primitive objects in the image. This representation is best suited for extracting
local information of an object. In the case of global information retrieval, this method
poses certain problems. Topological data structures are used to represent elements of
an image and their relations. Simple graphs or adjacency graphs are widely used in
computer vision to represent images. Another very commonly used representational
schemes in computer vision are the hierarchical data structures [Niem 80, Peur 01].
The two typical common structures used are the pyramids and quadtrees.

A general methodology for designing a system for image indexing and retrieval
has not yet been developed. Particular application domains demand the appropriate
techniques of image analysis, image content description, storage and retrieval of im-
age content. Image descriptors are usually de�ned in terms of properties of objects
or regions and the relationships among such objects and regions contained in the im-
age. Image descriptors can be represented by relational structures such as graphs.
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Figure 2.5: Results of query from the image. Courtesy (ESA, DLR, ETH Zurich and
ACS) : Courtesy http://kes.esrin.esa.int/kes/

In general the descriptors that are used are derived from the raw image data and
can be geometric, statistical, or textural. These kinds of descriptors are generally
termed low-level descriptors. High-level descriptors �nd the correspondence between
these low-level descriptors of a speci�c image and a representation of the image, e.g.,
a graph structure, to understand and interpret the image content. The characteristics
of both low/high level descriptors is highly dependent on the segmentation of mean-
ingful objects from images. Prior to storage, the derived image descriptors need to be
appropriately represented. The particular choice of a representation can reduce the
burden of storage and data processing. Representation of image semantic or structural
content is of particular importance in image indexing and retrieval and depends on the
speci�c application scenario. Graph based representation is one of the representation
structures used in this work. Graphs are data structures with a great deal of expres-
sive power which are widely used in the �elds of pattern recognition and computer
vision. The graph provides a simple and compact way to represent the spatial and
structural content of the image. Image representation by strings can also be found in
the literature [Euri 93]. The string representation is used in applications where im-
ages contain mutually disjoint objects and have rather simple shapes. A better form
of the string representation for representing images consisting of complex and overlap-
ping objects is reported in [Euri 93]. Fractal codes are also used as a representation
method [Krup 95]: they are used to represent arbitrary shapes. Fractal codes are
particularly popular in the geographic community, as natural structures are irregular



56 2. Image Information Mining Systems

Figure 2.6: Interactive learning. Courtesy (ESA, DLR, ETH Zurich and ACS) : Cour-
tesy http://kes.esrin.esa.int/kes/

and complex.

Prior to the representation of an image, the image must be segmented into regions
or objects of interest. The segmentation of regions or objects or both is a complex
task and varies according to application scenarios. Although accurate and robust seg-
mentation techniques can be found in the literature, the accuracy of the segmentation
method can be relaxed in case of image content indexing as opposed to the case of
image understanding or information mining.

However, image representation must be unique and should be tolerant to small
variations in the object properties. Apart from the uniqueness criterion, a representa-
tion must also be complete, i.e., a representation must include all the disjoint objects
or regions in the image considered.

In the literature, image data is often considered as a part of multimedia document.
A multimedia document [Jain 98, Doer 98, ODoc 91] is a structured collection of im-
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Figure 2.7: Metadata based search applet. Courtesy (ESA, DLR, ETH Zurich and
ACS) : Courtesy http://kes.esrin.esa.int/kes/

age, sound, text or other data. In this work, we will only consider image data as an
entity of the database. An image indexing and retrieval system also contains an image
similarity measure for the performance of retrievals. Similarity criteria used in a con-
tent based search engine can be either global or local. The similarity measure can also
be characterized as a distance measure, metric or non-metric, of the content of the two
images in some representational forms. The notion of the distance measure varies with
the representation schemes of the image content. In the case of a graph representation,
a distance between the contents of two images can be de�ned as the minimum cost of
transforming one graph into another. Other similarity metrics used in content based
image retrieval are the L1 or the L2 norm [Agga 01]. A number of recent approaches
in computer vision compare images using measures that are non-metric, [Howa 05] in
that they do not obey the triangle inequality. The triangle inequality is rather di�-
cult to implement in complex matching algorithms. The use of non-metric measures
is also motivated by studies in psychology which show that human judgement of simi-
larity is non-metric in nature. Work has also been done on normalization methods for
feature sets for similarity measures, because the most popular measures like the L2

norm are highly susceptible to features with long ranges than those with small ranges.
Probabilistic methods for image retrieval have also been widely studied. Probabilistic
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(a) Image with road networks c©CNES (b) The extracted road networks

(c) Shock locus of road network (d) Graph representation

Figure 2.8: An example of road network extraction and graph representation
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measures such as the Mahalanobis distance and Bhattacharyya distance are used for
image retrieval [Rahm 05]. Likelihood-based similarity measures [Akso 00, Akso 01]
are also used for image retrieval. The measure used likelihood ratios that were derived
from a Bayesian classi�er that measured the relevancy of a query image and a database
image.

2.5 Image content

Image content is dependent on human perception. A huge amount of information in
terms of color, texture and shape is hidden in images. A meaningful way to extract
this information in order to better understand an image is a challenging task in the
�eld of pattern recognition and computer vision. In the scope of this work, we will
only focus on the shape and the texture properties of an image.

2.5.1 Shape content of an image

The objective of content-based image query is to e�ciently �nd and retrieve images
from the database that satisfy the criteria of similarity to the user's query image. A
query image may in general specify objects or parts of objects and the retrieval must
�nd images which contains similar objects or a query image may specify structural or
semantic content of an image. The problem of image retrieval by content is well know
in the literature of computer vision research and a large number of such techniques exist
in the literature of object recognition and classi�cation [Duda 00, Scha 92, Bish 95].
Generally there are two types of shape descriptors; contour based and region based
shape descriptors. These two kinds of descriptors can still be sub-divided into global
and structural descriptors. In the case of contour-based types, structural descriptors
consists of chain codes, polygons and splines, and global descriptors include Fourier
and wavelet descriptors and scale space. In the case of region based descriptors, global
features include area, Euler number and moments, and structural features include
the medial axis and convex hull. Many previous works have used chain codes for
shape descriptors, but chain codes are not invariant to shape size and orientation.
Fourier descriptors and moment invariants have also been used successfully for shape
representation. Fourier descriptors use the Fourier transformed boundary as the shape
feature [Pers 77, Chel 84]. Work has also been done on modi�ed Fourier descriptors
which are robust to noise and invariant to geometric transformation [Rui 96]. Moment
invariants are used as shape features, [Hu 62] de�ning seven such moments using
region-based moments which are invariant to transformation.

Some more recent work using the �nite element method (FEM) [Pent 96], the
turning function [Arki 91], and wavelets [Chua 96] have also been used in shape rep-
resentation. The PhotoBook system, a set of application tools for image browsing and
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retrieval uses FEM as the main framework for image representation and similarity. In
the FEM method, the connectivity of each point on an object with other points is de-
�ned by a sti�ness matrix and the eigenvectors of this matrix de�nes the feature space.
The method is also used for matching objects. Similarity is computed based on the
eigenvalues of this sti�ness matrix. A turning function based method has also been
developed for comparing both convex and concave shapes. The work of [Chua 96]
uses a wavelet transform to describe object shapes. This is a stable representation and
accommodates multiresolution and spatial localization properties. There are many
review papers in shape representation [Li 95, Meht 97]. The article [Meht 97] on
shape representation compares contour-based representations, region-based represen-
tations and combined representations. In [Li 95], it is shown that there is a simple
linear relationship between the geometric moments method (region-based) and Fourier
descriptors (contour-based). Mathematical morphology has also been widely used in
shape representation. The work of [Pita 91] uses mathematical morphology in com-
bination with simple object structures perceivable by people. A comparison study of
two morphological shape representations is reported in [Rein 94].

The work of [Dese 98] introduces a new concept called "Veinerization" for de-
scribing shapes with skeletons. The work reported in [Dimi 00, Sidd 02] consider the
computation of the subpixel skeleton of an object which preserves its topology. In our
work we use this technique to represent road networks extracted from a satellite image
as a skeletal graph shown in Figure 2.8. The graph is computed from the divergence
of the gradient function along with a thinning process.

2.5.2 Texture content of an image

Texture is an implicit property of all surfaces, natural or man-made. For instance,
clouds have a di�erent textural property to roads. Texture also provides us with the
structural arrangement of objects and their relationships with the surroundings. A
vast amount of research has been done in this �eld over the past few decades. The
co-occurrence matrix representation of texture [Hara 73] three decades ago opened
a new direction in the �eld of pattern recognition. This approach considers texture
as grey level spatial dependency. The matrix is constructed by taking the distance
between image pixels. Various statistics are then computed from this matrix in order
to represent texture properties. Some of these statistics lack the essence of human
visual perception of texture. Motivated by this fact a new texture representation was
developed by [Tamu 78]. These features are closer to human perception of texture.

Wavelets were introduced by many researchers [Kund 92, Lain 93, Chan 93, Smit 94]
for texture representation. Later, wavelet were used in combination with Kohonen
maps [Gros 94] and the co-occurrence matrix [Thya 94] to perform texture analysis.
Other kinds of texture representation were compared with the co-occurrence matrix
representation, including Markov Random Field representations [Cros 83], fractal
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based representations [Pent 84] and multichannel �ltering representations [Bovi 90].

An evaluation can be found in [Ma 95], where texture analysis with various wavelet
transforms was performed. The evaluation study showed that the Gabor wavelet
transform was one of the best texture representations among others.

The IBM's CBIR system, QBIC [Equi 94] and the University of California at
Irvine's Database Research Group project MARS [Orte 97] use the Tamura texture
features for image content representation and retrieval.

In satellite images, urban areas are strongly textured [Desc 93, Lore 00] and the
problem of extraction of these regions is essentially a problem of di�erentiation of
textures. In our study, we use the work of [Roux 92] developed for the extraction of
urban regions, using the morphology operations of opening and closing. This di�erence
gives prominence to textured regions such as urban areas in a satellite image.

2.6 Image classi�cation

Classi�cation is the most challenging task in the �eld of computer vision due to its ap-
plication speci�c de�nition. In remote sensing, broadly speaking, image classi�cation
is a means to convert a �nite set of features computed from the image into a �nite set
of classes that represent the surface types seen in the imagery. The classi�cation task
can be divided into two sets: supervised or unsupervised classi�cation.

In supervised classi�cation, the classes are de�ned a priori. The features from the
image are computed and a classi�cation model is chosen. This model is chosen accord-
ing to the application type and the data set. In the case of supervised classi�cation,
the most common models are the Parallelepiped, Maximum Likelihood [Math 04] and
Support Vector Machine (SVM) [Vapn 97]. The output of the classi�cation can be
further processed according to application needs. In unsupervised classi�cation, there
are no a priori class labels, the classi�cation clusters data based on statistics only.
The commonly used models for unsupervised classi�cation are k-means [Kanu 00]
and kernel k-means [Dhil 04]. In almost all cases of unsupervised classi�cation, the
output requires a great deal of post-processing in order to obtain meaningful results.

Classi�cation of images has been a broadly studied research area for years. The
semantic organization of an image database becomes meaningful with an appropriate
classi�cation mechanism. Many classi�cation methods have been studied and suc-
cessfully implemented within the premises of pattern recognition and content based
image retrieval (e.g., k-nearest neighbor, Bayesian nets, maximum likelihood analysis,
neural networks, support vector machines, linear discriminant analysis, etc.). Previ-
ous work in the �eld of image classi�cation includes [Yu 95], using Hidden Markov
Model (HMM) to classify scenes in natural images. The work of [Hara 73] uses tex-
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ture features based on gray-level spatial dependences to classify aerial, panchromatic
and mutlispectral images. A supervised classi�cation model based on a variational
approach was proposed by [Sams 01]. Neural networks to classify radar images is
reported in [Hara 94]. Support vector machine classi�cation work is reported in
[Chap 99b, Vapn 97, Merc 03] and many others. In this work we will use the feature
selection and SVM classi�cation work reported in [Camp 05], with features computed
from representations as described in Chapter 3 and Chapter 4.

2.6.1 Classi�cation tools

Support Vector Machines (SVM) have been widely used in pattern recognition, and
with its growing success, researchers from di�erent �elds are using it to analyze the data
at their disposal. A special interest of SVM is in the �eld of CBIR [Chap 99a, Chen 01,
Chan 03]. The goal of SVM classi�cation is to �nd the best hyperplane separating the
relevant and irrelevant data which maximizes the margin between the classes. In its
simplest case, it assumes the relevant and irrelevant vectors to be linearly separable.
In a real world scenario, data are almost always non linearly separable. To deal with
such problems, kernel methods have been introduced to deal with the non-linearity of
the data space. Kernel functions are used to map the data into a higher-dimensional
space, where they can be separated by a hyperplane. It also incorporates a tolerance
to noisy data by introducing a bound. The optimization problem can be expressed as
follows:

β = argmax
α

N∑
i=1

αi − 1

2

N∑
i,j=1

αiαjyiyjxi · xj (2.1)

N∑
i=1

αiyi = 0 (2.2)

∀i ∈ [1, N ] 0 ≤ αi ≤ C (2.3)

The training data is labeled as {xi, yi}, i = 1, ..., N, yi ∈ {−1, 1}, xi ∈ Rd.
Suppose that we have some hyperplane which separates the positive from the negative
examples. The points x which lies on the hyperplane satisfy w · x + b = 0, where
w is the normal to the hyperplane, |b|/||w|| is the perpendicular distance from the
hyperplane to the origin, and ||w|| is the Euclidean norm of w. αi are the positive
Lagrange multipliers and the constant C is used to reduce the e�ect of outliers on
classi�cation.

In case of non separable data, we map the data x into some in�nite dimensional
Euclidean space H using a mapping Φ:
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Φ : Rd 7→ H (2.4)

Then the training algorithm depends on the data through dot products in H, i.e.,
on the function of the form Φ(xi) · Φ(xj). Now if there is a �kernel function" K such
that K(xi,xj) = Φ(xi) ·Φ(xj). We then use this function K in the training algorithm
without without explicitly knowing the function Φ. Some common kernel functions
are:

Homogeneous polynomial kernel: K(x,x′) = (x · x′)d
Radial basis function: K(x,x′) = exp(−γ ‖ x− x′ ‖2) for γ > 0

Radial Gaussian Basis function: K(x,x′) = exp(−‖x−x′‖2
2σ2 )

(2.5)

The optimal value β, which measures the distance of a vector x and the separating
hyperplane is used to compute the relevance of x as:

f(x) =
N∑

i=1

βiyiK(xi,x
′) + b (2.6)

The separating hyperplane f(x) is computed with the value of b from the Karush-
Kuhn-Tucker (KKT) conditions [Camp 00].

The output of an SVM does not provide any estimation of the classi�cation con-
�dence and thus does not allow us to include any a priori information. Probabilistic
SVM provides us with a way to construct a classi�er producing a posterior proba-
bility P (class = c|input), which allows us to take a quantitative decision about the
classi�cation. In this work we use the method reported in [Plat 99], which uses a
two parameter sigmoid function as a post-processing agent. The SVM along with the
sigmoid function performs better than the standard SVM with kernels.

P (y = c|f) =
1

1 + exp(Af +B)
(2.7)

The parameters A and B are computed by maximum likelihood estimation from
the training data set (fi, yi).
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2.7 Discussion

The growth of large image databases during the last few decades with the advancement
in image acquisition technologies has attracted many researchers from di�erent �elds
to work in the domain of image information mining systems. These images coming
from various sources must be systematically analyzed to render important information
which are often less relevant to human perception. A vast literature can be found in the
�elds of CBIR and KDD. The two systems which are at our disposal have motivated
us to work in the �eld of indexing and retrieval of satellite images from large image
repositories. In the future our work can be integrated with these two systems to
provide some additional features along with the existing ones.

This chapter particularly looks at two di�erent systems, one being a CBIR system
and the other a KDD system. A brief literature overview on image content reveals
that shape and texture have been widely used to capture information from satellite
images. Classi�cation with shape or texture features extracted from the image helps us
to understand the spatial structure of the Earth's surface. The subsequent Chapters
will systematically analyze and use such features to characterize some geographical
environments as observed in mid-resolution satellite images.
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Chapter 3

Road Network Structural Information

Indexing and retrieval from remote sensing image databases relies on the extraction
of appropriate information from the data about the entity of interest (e.g. land cover
type) and on the robustness of this extraction to nuisance variables. Other entities in
an image may be strongly correlated with the entity of interest and their properties can
therefore be used to characterize this entity. The road network contained in an image is
one example. The properties of road networks vary considerably from one geographical
environment to another, and they can therefore be used to classify and retrieve such
environments. In our work, we de�ne several such environments, and classify them
with the aid of geometrical and topological features computed from the road networks
occurring in them. In order to compute geometrical and topological features of the
road network, we �rst need to extract the road network from the image, and then
convert the output to an appropriate representation. This representation must be
independent of any extraction method. Features computed from the representation
of the road network are then used to classify the geographical environments. Fisher
Linear Discriminant (FLD) analysis is used to select the best feature subset and a
linear kernel support vector machine (SVM) classi�cation is performed on the feature
set arising from a diverse image database.

3.1 Introduction

The retrieval of images from large remote sensing image databases relies on the abil-
ity to extract appropriate information from the data, and on the robustness of this
extraction [Dasc 05]. Most queries do not concern, for example, imaging modality,
but rather information that is invariant to imaging modality, for instance the land
cover type of a region. Illumination is another example of such a nuisance parame-
ter. Despite all the work that has been done on classifying geographical environments
using, for example, the texture properties of images of those environments, image-
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based query characterizations are still far from invariant to changes in such nuisance
parameters, and they thus fail to be robust when dealing with a large variety of im-
ages acquired under di�erent conditions. Query characterizations based on semantic
entities detected in the scene, however, are invariant to such nuisance parameters,
and thus inferences based on such entities can be used to retrieve images in a robust
way. Road networks extracted from an image provide one example: their topological
and geometrical properties vary considerably from one geographical environment to
another. For example, road networks arising from urban USA will be structurally
di�erent from that of urban Europe; similarly road network structures in �elds will
be di�erent from those of mountains. A set of geometrical and topological features
computed from an extracted road network can therefore in principle be used to char-
acterize images or parts of images as belonging to di�erent geographical environments.
This di�ers from much previous work, for example [Wils 97, Luo 01], in that the aim
is not to identify the same network in di�erent images, or in a map and an image,
and produce a detailed correspondence, but rather to use more general road network
properties to characterize other properties of an image, in this case, its geographical
environment.

A preliminary study described in [Bhat 06] looked at the classi�cation of a small
image database into two classes `Urban' and `Rural', shown in Figure 3.2(a) with im-
age examples shown in Figure 3.3. A small set of topological and geometrical road
network features were computed for this study. An unsupervised kernel k-means clus-
tering was performed to validate the feature set coming from the images of the two
classes. The study indicated that the idea had potential, and so a further study went
on to examine the classi�cation of a much larger database with seven classes: `Ur-
ban USA', `Urban Europe', `Mountains', `Villages', `Fields', `Airports', and `Common'
(sea, cloud, desert, snow, etc.) shown in Figure 3.2(b) with image examples shown
in Figure 3.4. A larger set of road network features were computed for this study.
In order to compute these features, we �rst need to separate out the road networks
occurring in the image. In this study we considered two network extraction methods
[Roch 03, Laco 05]. The method of [Roch 03] is based on Higher-Order Active Con-
tours (HOACs). Higher-order active contours are a generalization of standard active
contours that use long-range interactions between contour points to include non-trivial
prior information about region shape. The method of [Stoi 00, Laco 05] models the
line network as an object process, where the objects are interacting line segments. The
results obtained from these methods are robust but are not optimal for large image
databases as they require manual expertise to set the parameters in the algorithms.

In subsequent studies, we considered the two network extraction methods reported
in [Fisc 81, Deso 00]. These methods were rather easier to handle and could easily
be adapted to large image database. The method of [Fisc 81] extract roads and lin-
ear structures in aerial images using information from multiple image operators. The
output of the method is a binary image, which after a distance function computation
can serve directly as an input to our method. The method of [Deso 00] detect geo-
metric structures in an image without any a priori information. The method focus on
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extracting aligned structures in images. The output of the method is a list of multiply
aligned segments. In order to have a suitable input for our method, we convert the
output of this method into a binary image, and use some image processing techniques
[Serr 82] to obtain single connected segments.

We then compute a distance function. The distance function resulting from these
methods is converted to a graph representation of the road network for feature com-
putation purposes. The conversion is performed by computing the shock locus of
the distance function using the method of [Dimi 00, Sidd 02], extended to deal with
multiple, multiply-connected components with the depth-�rst search (DFS) algorithm
[Corm 01]. The method identi�es the shock points by �nding out the limiting behavior
of the average outward �ux of the distance function as the region enclosing the shock
point shrinks to zero. A suitable thresholding on this �ux yields an approximation to
the shock locus. The graph is constructed by taking triple (or, exceptionally, higher
degree) points and end points as vertices, corresponding to junctions and terminals,
while the edges are composed of all other points, and correspond to road segments
between junctions and terminals.

Figure 3.1: Synthetic images and their corresponding graph representation

The shock locus constitutes a graph, where the vertices and the edges contain cer-
tain geometrical and toplogical information. Some examples of graph representations
of synthetic images are shown in Figure 3.1. In our study, we represent the road
network extracted from an image as a graph. The graph itself captures the network
topology, while the network geometry is encoded by decorating vertices and edges with
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geometrical informations.

Geometrical and topological features were computed from the graph representation
of the road network. In order to reduce the dimensionality of the feature space, a suit-
able feature selection scheme was used, which, in combination with SVM linear kernel
classi�cation [Camp 05] on the set of features from road networks, gave promising
results for the classi�cation of the di�erent geographical environments contained in a
diverse image database.

(a) 52 Images database structure (b) 497 Images database structure

Figure 3.2: Images categorized into di�erent classes.

This chapter will address the preliminary study with a small image database of two
classes. The promising results of the unsupervised classi�cation with few geometrical
and topological features motivated us to consider a larger image database for further
study with a more re�ned set of classes.

(a) Urban (a) Rural

Figure 3.3: An example of an urban and a rural class c©CNES.
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In Section 3.2, we present a small literature survey of linear structures and road
network extraction methods and describe the four network extraction methods con-
sidered in our work. Two methods were used in the preliminary study, and two were
used in the follow-up studies. We also describe the road network representation into
which we convert the outputs of these methods before computing the features. In
Section 3.3, we describe the road network features that were used in the preliminary
study and later we go on to show the scatter plots of selected pairs of the features. In
Section 3.3.1 we evaluate these features with selection and clustering methods. In Sec-
tion 3.4, we describe the expanded set of road network features introduced to classify
the larger database into a more re�ned set of classes. In Section 3.4.2, we describe the
results of a number of classi�cation experiments using feature selection and the SVM
linear classi�er that was used to perform classi�cation. In Section 3.5, we discuss.

3.2 Network extraction and representation

In order to compute geometrical and topological features of the road network, we
�rst need to extract the road network from the image, and then convert the output
to an appropriate representation. This representation should be independent of the
output of the extraction algorithm, since we do not want to be committed to any
single such method. A vast literature is available on the extraction of linear structures
in general and road networks in particular for various applications. Mathematical
models with variational calculus, di�erential geometry, fuzzy theory, neural networks,
stochastic geometry, morphology and probability theory have been used to formulate
the road network extraction algorithms. Research in the �eld of linear structures or
road segment extraction can be traced back more than twenty years or so, with the
work of [Cann 86] and the method developed by [Marr 80]. These methods are used
to �lter out low frequency information in the image while preserving the high frequency
information which corresponds to road networks. Other methods which were developed
rely on image texture, shapes and geometry, local intensity and changes of patterns.
Road information extraction from optical and Synthetic Aperture Radar (SAR) images
has been a important research �eld. In this section we cite a few references from the
vast list. There are some methods particularly developed for the extraction of road
networks from aerial images [Neva 80, Groc 82, Lipa 88, McKe 88, Maye 98], satellite
images [Bajc 76, Dest 86, Paru 91, Wang 92, Chau 96, Dial 01, Roch 03, Laco 05]
and Synthetic Aperture Radar (SAR) images [Tupi 98, Jeon 00, Chen 06]. There has
also been quite a lot of work in the �eld of road network extraction from satellite
images with varying resolution [Baum 96, Baum 97]. Some of the more complicated
algorithms takes into account the combination of various properties of the image under
consideration. A very recent work on automatic road extraction from high resolution
satellite images is reported in [Chri 07].

A very classical approach in the context of contour based methods is that of
[Neva 80]. The work of [Wang 92] introduced a method called Gradient Direction
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(a) USA (b) Europe

(c) Mountains (d) Villages

(e) Fields (e) Airports

(e) Common (sea)

Figure 3.4: An example of 2 urban, 3 rural, airport and common (sea) classes c©CNES.



3.2. Network extraction and representation 71

Pro�le Analysis (GDPA) to represent contours. The novel work of [Roch 03] is based
on Higher Order Active Contours (HOACs), which are a generalization of standard
active contours. The work of [McKe 88] uses road texture and road edge properties in-
dependently to track roads in aerial images. There has also been quite a lot of work on
road extraction with dynamic programming: a review is given in [Grue 95]. The work
of [Fisc 81, Merl 96] and [Gema 96] also used the dynamic programming approach
to delineate curves in noisy images. Statistical models to extract road structures also
became very popular with the work of [Coop 79] using Markov processes. Further
development in this �eld came with the work of [Barz 96]. Recent work in this �eld
includes the study of [Yuil 00] with improvement of [Barz 96] method. The work of
[Laco 05] models line network as an object process.

In the preliminary studies reported in [Bhat 06] we considered two network extrac-
tion methods [Roch 03, Laco 05]. The method of [Roch 03] is based on Higher-Order
Active Contours (HOACs). HOACs are a generalization of standard active contours
that use long-range interactions between contour points to include non-trivial prior
information about region shape, in this case the region should be network-like, that is
composed of arms with roughly parallel sides meeting at junctions. The output of this
method is a distance function de�ning the region corresponding to the road network.
Figure 3.5(b) shows an example of the extracted network. The method of [Laco 05]
models the line network as an object process, where the objects are interacting line
segments. The output is a set of line segments of varying lengths, orientations, and
positions. Figure 3.5(d) and (f) shows examples of the extracted network. This output
is converted to the output of [Roch 03] by performing a dilation and then a distance
function computation on the resulting binary image. As can be seen in the �gures,
the methods produces good extraction results, but inspite of this, these methods were
not used in the subsequent studies due to the fact that they are not optimal for use
with large image databases: manual expertise is needed to set the parameters in the
algorithms according to image complexities.

In subsequent studies, we considered the two network extraction methods reported
in [Fisc 81, Deso 00]. These methods are rather easier to handle and are well adapted
to large image databases. The parameters, once set in the algorithms, work well with
images of a certain resolution. The method of [Fisc 81] is a line detector which is
based on the homogeneity of the road and the contrast with the neighbourhood. The
output of the method is a binary image, which after a distance function computation
can serve directly as an input to our method. Figure 3.6 shows examples of the
extracted network. The method of [Deso 00] is based on a contrario method for the
detection of alignments in images. The output of the method is a list of multiply
aligned segments. In order to have a suitable input for our method, we convert the
output of this method into a binary image, and use morphological closing to obtain
single connected segments. Figure 3.7 shows examples of the extracted network. We
then compute a distance function which acts as an input to our method.

We use the algorithm of [Dimi 00, Sidd 02] to compute a subpixel skeleton from
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(a) Original image c©IGN (b) Extracted network

(c) Original image c©CNES (d) Extracted network

(e) Original image c©CNES (f) Extracted network

Figure 3.5: Examples from the two extraction methods: (b) method of [Roch 03]; (d)
and (f) method of [Laco 05].
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Original image c©CNES Extracted network

Original image c©CNES Extracted network.

Original image c©CNES Extracted network.

Figure 3.6: Extraction results with the method of [Fisc 81].
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Original image c©CNES Extracted network

Original image c©CNES Extracted network.

Original image c©CNES Extracted network.

Figure 3.7: Extraction results with the method of [Deso 00].
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the distance function de�ning the road network region. This algorithm is used because
it accurately preserves the region topology. The original version of the algorithm in
[Dimi 00, Sidd 02] does not consider multiply connected components. We extend it to
deal with multiple, multiply-connected components using a depth-�rst search (DFS)
algorithm [Corm 01]. The main idea of the algorithm is to distinguish the skeletal
points of an object from the non-skeletal ones. The approach is to consider the limiting
behavior of the average outward �ux of the gradient of the distance function, ∇D,
as the region enclosing the skeleton shrinks to zero. The measure of the average
outward �ux of the gradient of the distance function is a hyperbolic partial di�erential
equation. A hyperbolic system can be considered to be a conservation law. In the
case of hyperbolic systems, there is a notion of weak solution. For instance, a smooth
initial curve may develop singularities or shocks as it progresses. These are exactly
the points where classical derivatives do not exist.

Considering the limiting values of the outward �ux and the average outward �ux
of the vector �eld ∇D through a convex curve bounding a region Ω reveals the prop-
erty, that whereas the limiting value of the outward �ux is zero for both skeletal and
non-skeletal points, the average outward �ux has di�erent limiting behaviors at the
skeletal points than at the non-skeletal ones. The method identi�es the shock points
by �nding the limiting behavior of the average outward �ux of the distance function
as the region enclosing the shock point shrinks to zero. A suitable thresholding on this
�ux yields an approximation to the shock locus. The graph is constructed by taking
triple (or, exceptionally, higher degree) points and end points as vertices, correspond-
ing to junctions and terminals, while the edges are composed of all other points, and
correspond to road segments between junctions and terminals. Figure 3.8(A) shows a
shock locus and Figure 3.8(B) shows an Euclidean graph with each edges, e and vertex
v containing information: v = {position, terminal or junction point, number of edges
at junctions, etc.} and e = {length of original road segment, average curvature of road
segment, etc.}

Figure 3.8: Graph representation

Figure 3.9 shows an example of the graph representation of a road network. The
road network Figure 3.9(b) is �rst extracted from the input image Figure 3.9(a). The
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methods cited above are then used to generate the shock locus Figure 3.9(c), which is
then converted to an Euclidean graph representation Figure 3.9(d). The vertices and
edges are decorated with geometrical quantities computed from the shock locus. The
features are then computed from the Euclidean graph and its decorations. The features
computed from the graph representation are described in section 3.3 and section 3.4.1.

(a) Original image c©CNES (b) Extracted road network

(c) Shock locus of road network (d) Graph representation

Figure 3.9: An example of the graph representation.

3.3 Preliminary study

The preliminary study uses a database of 52 images, and attempts to classify them into
two classes, `Urban' and `Rural', using �ve topological and geometrical road network
features. These features, along with the de�nitions and notations used for quantities
involved in their de�nition, are described in Table 3.1 (the features are marked in bold).
They fall into three groups: two measures of `density', two measures of `curviness',
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and one measure of `homogeneity'. Let v be a vertex, and e be an edge. Let le be the
length of the road segment corresponding to e, and let de be the length of e, that is
the Euclidean distance between its two vertices. Let mv =

∑
e : v∈e 1 be the number of

edges at a vertex. Then NJ =
∑

v : mv>2 1 is the number of junction vertices. Let Ω be
the area of the image in pixels. We de�ne the `junction density' to be ÑJ = Ω−1NJ .
This is intuitively a useful measure to separate urban and rural areas: we expect urban
areas to have a higher value of ÑJ than rural areas. Similarly, we de�ne the `length
density' to be L̃ = Ω−1

∑
e le. Again, we expect urban areas to have a higher value of

L̃ than rural areas. Note than one can have a high value of L̃ and a low value of ÑJ

if junctions are complex and the road segments are `space-�lling'.

Let pe = le/de, and k̄e = l−1
e

∫
e
ds|ke(s)|, i.e., the absolute curvature per unit length

of the road segment corresponding to e. Although it may seem natural to characterize
the network using the average values per edge of these quantities, in practice we have
found that more useful features are obtained by using their variances. We thus de�ne
the `ratio of lengths variance' to be the variance of pe over edges, var(p), and the
`variance of average curvature' to be the variance of k̄e over edges, var(k). Note that
it is quite possible to have a large value of pe for an edge while having a small value
of k̄e if the road segment is composed of long straight segments, and vice-versa, if the
road `wiggles' rapidly around the straight line joining the two vertices in the edge.
We expect rural areas to have high values of one of these two quantities, while urban
areas will probably have low values, although this is less obvious than for the density
measures.

To measure network homogeneity, we divide each image into four quadrants, la-
belled a. Subscript a indicates quantities evaluated for quadrant a rather than the
whole image. Let MJ,a =

∑
v∈a : mv>2mv be the number of edges emanating from

junctions in quadrant a. This is very nearly twice the number of edges in a, but it is
convenient to restrict ourselves to junctions to avoid spurious termini at the bound-
ary of the image. Let M̃J,a = Ω−1

a MJ,a be the density of such edges in quadrant a.
Then we de�ne the `network inhomogeneity' to be the variance of M̃J,a over quadrants,
var(M̃J).

In the experiments reported in the next section, all the images have the same reso-
lution. However, more generally we need to consider the scaling of the above quantities
with image resolution. We assume that changing the resolution of the image does not
change the extracted road network. This can happen, for example, if the network
extracted from a lower resolution image lacks certain roads contained in the network
extracted from a higher resolution image because they are less than one pixel wide.
This e�ectively limits the range of the resolutions that we can consider simultane-
ously. Having assumed this, invariance to image resolution is easily accomplished by
converting quantities in pixel units to physical units using the image resolution.

Figure 3.10 shows scatter plots of selected pairs of the features described above as
computed from a database of 52 SPOT5, 5m resolution images of size 512x512 pixels
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with 26 images of each class, representing various types of urban and rural landscapes.
The plots show, from left to right, top to bottom: ÑJ versus var(k); L̃ versus var(k);
ÑJ versus var(p); L̃ versus ÑJ ; var(p) versus var(k); var(M̃J) versus L̃. Blue circles
correspond to images of urban areas, red stars from images of rural areas.

As can be seen from the plots, the junction densities, ÑJ , for urban areas are for
the most part higher and more varied than those for rural areas, where the values are
small. The network length density, L̃, behaves similarly. The behavior of the average
curvature variance, var(k), is perhaps less expected. Urban areas show generally
higher values of this feature, and there is also a wide spread of values, while rural
areas demonstrate, with a few exceptions, very little curvature variance. The ratio
of lengths variance, var(p) is also interesting. Both classes cluster around low values,
again with a few exceptions in the case of rural areas. The average curvature variance
varies widely w.r.t ratio of length variance for urban areas, whereas the ratio of length
variance varies widely w.r.t average curvature variance for rural areas. The network
inhomogeneity var(M̃J) for rural areas is low and does not vary with the network
length density, whereas for urban areas the network inhomogeneity is low but varies
widely with the network length density. Perhaps the most intriguing plot is length
density against junction density, in which both rural and urban data points follow a
well de�ned curve, well approximated by L̃ = 1.4Ñ

1/2
J . Naively, if there is on average

one junction for every a2 pixels, the junctions will be separated by a distance O(a).
If each junction has r edges, there will be on average r/2 segments of length O(a)

for every a2 pixels, and thus L̃ ' (r/2)Ñ
1/2
J . For a square lattice L̃ = 2Ñ

1/2
J , so

that in some sense road networks are `less connected' than a square lattice. However,
this analysis e�ectively assumes a uniform distribution of junctions and no symmetry-
breaking `clustering' e�ects due to dependencies between di�erent junction positions.
In general, there seems to be no reason a priori why even the exponent 1/2 should
be consistent across images and classes, let alone the pre-factor, but this is true for
images of a certain resolution even for a well-detected network. It remains to be seen
whether this relation is preserved in a larger data set. Finally, and most importantly,
note that the points from the two classes are quite well separated in many of the plots,
making it reasonable to use these features for classi�cation.

3.3.1 Feature selection and clustering

As a �rst step towards classi�cation, the features are selected from the scatter plot
analysis of pairs of features. The scatter plot results indicate that the selected features
represent suitable choices for classi�cation based on road network properties. Apart
from the features mentioned in Table 3.1, we introduce 6 other features: the network
length, L, average curvature mean, mean(k), network area density, Ã, ratio of length
mean, mean(p), density of junction edges, ẼJ and mean of density of junction edges,
mean(M̃J). A detailed description and analysis of these features are reported in Sec-
tion 3.4.1. These 6 features along with the 5 features de�ned in Table 3.1 are then
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Figure 3.10: Scatter plots of selected pairs of features from manually extracted net-
works. Red stars correspond to rural areas, blue circles to urban areas. From left to
right, top to bottom: ÑJ versus var(k); L̃ versus var(k); ÑJ versus var(p); L̃ versus
ÑJ ; var(p) versus var(k); var(M̃J) versus L̃.
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Notation Description
m Number of edges in graph
Ω Area of image
a Quadrant label
le Length of road segment corresponding to edge e
mv Number of edges at a vertex

∑
e : v∈e 1

NJ Number of junction vertices
∑

v : mv>2 1

ÑJ Junction density Ω−1NJ

L̃ Length density Ω−1
∑

e le
de Euclidean distance between vertices in an edge
pe Ratio of lengths le/de

var(p) Ratio of lengths variance m−1
∑

e p
2
e − (m−1

∑
e pe)

2

k̄e Average curvature l−1
e

∫
e
ds|ke(s)|

var(k) Average curvature variance m−1
∑

e k̄e
2 − (m−1

∑
e k̄e)

2

MJ,a Number of junction edges per quadrant
∑

v∈a : mv>2mv

M̃J,a Density of junction edges per quadrant Ω−1
a MJ,a

var(M̃J) Variance of density of junction edges (1/4)
∑

a M̃
2
J,a −

((1/4)
∑

a M̃J,a)
2

Table 3.1: Summary of features computed from road networks

used for classi�cation.

Apart from selecting features from the scatter plot, we move on to select features
in a more robust way. Fisher discriminant analysis and the RelieF feature selection
[Kira 92] algorithm were used to select the most pertinent features and a kNN classi-
�cation scheme was used on these features for classi�cation. A d-dimensional feature
vector was selected for which the classi�cation error is minimum. We then move on
to classify images from the two classes with the selected d-dimensional feature vector
using the kernel k-means algorithm since the feature data are not linearly separable.
We use a Gaussian kernel,

ψ(X1, X2) = e−
‖X1−X2‖2

2σ2 (3.1)

where X1 and X2 are two feature vectors. The clustering result, displayed in Table 3.2,
shows that the two classes can be well partitioned using the 5 features (Table 3.5)
selected from the scatter plots. 19 and 25 images from `rural' and `urban' classes
respectively were correctly classi�ed, while 1 and 7 images from `urban' and `rural'
classes respectively were incorrectly classi�ed. Table 3.3, shows the class partition
using 6 features selected (Table 3.6) by FLD analysis. 21 and 25 images from `rural'
and `urban' classes respectively were correctly classi�ed, while 1 and 5 images from
`urban' and `rural' classes respectively were incorrectly classi�ed. Table 3.4, shows
the class partition using 5 features (Table 3.7) selected by the RelieF algorithm. 22
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and 25 images from `rural' and `urban' classes respectively were correctly classi�ed,
while 1 and 4 images from `urban' and `rural' classes respectively were incorrectly
classi�ed. The feature selection with di�erent methods in Table 3.5, Table 3.6 and
Table 3.7 shows that, the features like, the network length densities, L̃ and average
curvature variance, var(k) have the most discriminative capacity to classify the two
classes followed by features like, the variance of density of junction edges, var(M̃J),
the network length, L and the network area density, Ã.

Urban Rural
Class 1 1 19
Class 2 25 7

Table 3.2: Kernel k-means (σ = 0.5) clustering result with 5 features selected from
the scatter plot analysis of pairs of feature vectors.

Urban Rural
Class 1 1 21
Class 2 25 5

Table 3.3: Kernel k-means clustering (σ = 0.5) result with 6 out of 11 features selected
by FLD analysis. A kNN classi�cation gives 7.45% classi�cation error.

Urban Rural
Class 1 1 22
Class 2 25 4

Table 3.4: Kernel k-means clustering (σ = 0.5) result with 5 out of 11 features selected
by the RelieF algorithm. A kNN classi�cation gives 5.69% classi�cation error.

3.4 Larger image database with re�ned classes and
features

Motivated by the results obtained in the preliminary study on a small database, we
move beyond this simple example and construct a larger image database with a more
re�ned set of classes. The new database has 497 SPOT5, 5m resolution images of
size 512x512 pixels. Some examples are shown in Figure 3.4. The aim is to classify
them into 7 classes: three urban classes, `Urban USA', `Urban Europe' and `Airports'
and four rural classes, `Mountains', `Villages', `Fields' and a `Common' class (more
appropriately could be identi�ed as a rejection class with images consisting of sea,
clouds, snow, desert, etc.).
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Notation Description
ÑJ Junction density: Ω−1NJ

L̃ Length density: Ω−1
∑

e le
var(p) Ratio of lengths variance: m−1

∑
e p

2
e − (m−1

∑
e pe)

2

var(k) Average curvature variance: m−1
∑

e k̄e
2 − (m−1

∑
e k̄e)

2

var(M̃J) Variance of density of junction edges: (1/4)
∑

a M̃
2
J,a −

((1/4)
∑

a M̃J,a)
2

Table 3.5: The 5 features selected from the scatter plot analysis of pairs of features.

Notation Description
L Network length

∑
e le

L̃ Length density: Ω−1
∑

e le
Ã Network area density: Ω−1ΩL

var(k) Average curvature variance: m−1
∑

e k̄e
2 − (m−1

∑
e k̄e)

2

mean(k) Average curvature mean: m−1
∑

e k̄e

ẼJ Density of junction edges: Ω−1EJ

Table 3.6: The 6 out of 11 features selected by FLD analysis.

Notation Description
L Network length

∑
e le

L̃ Length density: Ω−1
∑

e le
Ã Network area density: Ω−1ΩL

var(k) Average curvature variance: m−1
∑

e k̄e
2 − (m−1

∑
e k̄e)

2

var(M̃J) Variance of density of junction edges: (1/4)
∑

a M̃
2
J,a −

((1/4)
∑

a M̃J,a)
2

Table 3.7: The 5 out of 11 features selected by the RelieF algorithm.
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To help in the more complex classi�cation problem, and also to provide input for
the feature selection procedure to be used later, we de�ne some extra road network
extraction features, described in Table 3.8. The addition of these extra features brings
the total number of road network features to 16. These features can be categorized
into six groups: six measures of `density', four measures of `curviness', two measures of
`homogeneity', one measure of `length', two measures of `distribution' and one measure
of `entropy'. We will de�ne the new features in the following section. The total set of
16 features are summarized in 6 groups as shown in Table 3.9.

3.4.1 New features from the graph

In this section we will describe the new features which will be used in the following
section for the classi�cation of the new database. Let mv =

∑
e:v∈e 1 be the number

of edges at a vertex. Then EJ =
∑

mv>2mv is the number of junction edges. Let Ω
be the area of the image in pixels. Similarly to the de�nition of `junction density',
we de�ne the `density of junction edges' as ẼJ = Ω−1EJ . This is intuitively a useful
measure to separate urban and rural areas: we expect urban areas to have a higher
value of ẼJ than rural areas.

The network area density, Ã, is computed from the binary image as the number of
pixels corresponding to the road network from the extracted binary image divided by
the image area, Ω. This measure is useful in classi�cation as its value is high for urban
networks as compared to rural networks. The network length, L, is computed from
the graph as the total length of road segments,

∑
e le. This feature, like the network

area density feature, is useful in characterizing urban and rural network structure.

As can be seen in Figure 3.9(d), many junction points may be clustered around
a small area in the network. To obtain a local characterization of the junction
density, we de�ne a measure called `junction density in a circular region', Ñr,j =
Ω−1

j,r

∑
v∈Ωj,r:mv>2 1. This is the density of junction points falling in a circular region

of radius r centered at junction point j. We then compute the mean and the variance
of these junction densities over all junction points, mean(Ñr,j) and var(Ñr,j). Rural
network structures will show a low var(Ñr,j), indicating a very sparse network. A high
var(Ñr,j), indicates a range of densities in the same image. The mean(Ñr,j) is also
used as a measure of sparsity of network structures.

In order to distinguish between the two urban classes (USA and Europe), the
entropy of the histogram of angles at junctions, Hβ, where βj is the vector of angles
between road segments at junction j, is a good measure. As is evident from the
physical characteristics of these road network structures, roads in the USA tend to be
parallel and cross each other orthogonally forming T-junctions or crossroads, whereas
European roads have broader angle distribution at junctions. Thus it seems natural
that Hβ ≤ 2 bits are necessary to encode information about road segments at junctions
for road networks in the USA, whereas for road networks in Europe, Hβ ≥ 2 bits are
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Notation Description
L Network length ∑

e le
Ã Network area density Ω−1ΩL

mean(p) Ratio of lengths mean m−1
∑

e pe

mean(k) Average curvature mean m−1
∑

e k̄e

ED,i Number of junctions with mv = i
var(ED,i) Variance of edge distribution (1/max(mv))

∑
iE

2
D,i −

((1/max(mv))
∑

iED,i)
2

mean(ED,i) Mean of edge distribution (1/max(mv))
∑

iED,i

EJ Number of junction edges
∑

mv>2mv

MJ,a Number of junction edges per quadrant
∑

v∈a:mv>2mv

ẼJ Density of junction edges Ω−1EJ

mean(M̃J) Mean of density of junction edges (1/4)
∑

a M̃J,a

Ωr Area of a circular region of r
Ñr,j Junction density in a circular region Ω−1

j,r

∑
v∈Ωj,r:mv>2 1

var(Ñr,j) Variance of the junction densities over all circular
region (1/NJ)

∑
j Ñ

2
r,j − ((1/NJ)

∑
j Ñr,j)

2

mean(Ñr,j) Mean of the junction densities over all circular region
(1/NJ)

∑
j Ñr,j

βj Vector of angles between segments at junction j
Hβ Entropy of histogram of road segment angles with

bin size 30◦

Table 3.8: Summary of some more road network features
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necessary. The same measure can also be used to distinguish between Mountains and
Fields, while the `density' features distinguish rural networks from urban networks.

A `distribution' measure of edges at a vertex provides us with information as to
how the edges at a vertex are distributed in the network. Let ED,i be the proportion
of junction points with i edges at them. We use mean(ED,i) and var(ED,i) as features.
The variance of the edge distribution is lower in the case of networks in urban areas
as opposed to rural, and it is lower also in the case of urban networks in the USA as
opposed to in Europe.

Feature groups Features
6 Density mea-
sures

Length, Junction, Area, Junction in circular region (mean,
variance), Junction edges

4 Curviness mea-
sures

Ration of lengths (mean, variance), Average curvature
(mean, variance)

2 Homogeneity
measures

Density of edges in quadrants (mean, variance)

1 Length mea-
sure

Network length

2 Distribution
measures

Edges at vertex (mean, variance)

1 Entropy mea-
sures

Histogram of angles at junctions

Table 3.9: Summarization of the feature groups.

3.4.2 Classi�cation

As before we need to consider the scaling of the above quantities with image resolution.
A detailed view of the resolution dependency of the extraction methods and the feature
set will be discussed in Chapter 5. For the moment we assume that the feature set is
invariant to image resolution.

The features described in the above sections were computed for a database of 497
SPOT5, 5m resolution images. To provide ground truth, these images were manually
classi�ed into the seven classes described above representing various kinds of urban and
rural environments. Machine classi�cation was done with a �ve-fold cross validation
on the data set, with 80% of data for training and the remaining 20% for testing in
each fold. First we show the results in Table 3.10 of the one-vs-rest SVM linear kernel
classi�cation of 497 images into 7 classes, using 15 features selected by FLD [Duda 00]
from 16 features with the extraction method of [Deso 00] with mean error of 30.2%
and a standard deviation of 3.0%. In this result we see that the Villages, Fields and
Europe Urban classes are highly confused with each other. Then we show the results
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in Table 3.11 on the same set of images using 13 features selected by FLD from 16
features with the extraction method of [Fisc 81] with mean error of 39.2% with a
standard deviation of 1.81%. In this result we see that the apart from Villages, Fields,
Europe Urban and USA Urban classes being highly confused with each other, the
Mountains class is also confused with Fields, Europe Urban and USA Urban classes.
The classi�cation error dependency on features from the two extraction methods is
shown in Figure 3.11.

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.154 0.090 0.351 0.097 0.198 0.000 0.000
Mountains 0.073 0.812 0.007 0.000 0.000 0.000 0.000
Fields 0.093 0.053 0.488 0.077 0.205 0.000 0.000
USA 0.133 0.012 0.014 0.720 0.087 0.000 0.000
Europe 0.547 0.033 0.140 0.097 0.510 0.014 0.000
Airports 0.000 0.000 0.000 0.009 0.000 0.986 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 3.10: Confusion matrix of an SVM linear kernel classi�cation of 497 images with
7 classes with 15 out of 16 features from the graph representation of the road networks
extracted with the method of [Deso 00].

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.483 0.015 0.146 0.091 0.186 0.000 0.000
Mountains 0.084 0.354 0.153 0.109 0.129 0.000 0.023
Fields 0.282 0.268 0.470 0.122 0.187 0.017 0.000
USA 0.009 0.132 0.098 0.556 0.067 0.000 0.022
Europe 0.142 0.231 0.133 0.113 0.431 0.000 0.000
Airports 0.000 0.000 0.000 0.009 0.000 0.983 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 0.955

Table 3.11: Confusion matrix of an SVM linear kernel classi�cation of 497 images with
7 classes with 13 out of 16 features from the graph representation of the road networks
extracted with the method of [Fisc 81].

Finally we show the results of the one-vs-rest SVM linear kernel classi�cation of 497
images into 7 classes, using 32 features, in Table 3.12 (16 features each from the graph
for 2 network extraction methods). There is a mean error of 24.7% with standard
deviation of 2.93%.

With such a large number of features, and with some similarity between di�erent
features, it seems likely that there is some redundancy in the feature space. This
redundancy can be reduced by feature selection. In the �nal classi�cation experiment,
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Figure 3.11: Classi�cation error vs number of features from the two extraction methods
of [Deso 00] and [Fisc 81].

we performed feature selection using a FLD analysis, followed by an SVM linear kernel
classi�cation on the selected feature set. The result of the classi�cation is shown in
Table 3.13. The SVM linear kernel classi�cation on the 30-dimensional feature space
selected by the FLD shows a mean error of 24.5% with a standard deviation of 2.92%.
The classi�cation error dependency on features is shown in Figure 3.12. An overall
classi�cation performance summary is depicted in Table 3.14, where classi�cation error
in % is given as �mean ± standard deviation� error. Not much of an improvement
can be seen in the confusion matrix except for the USA urban and Europe urban
classes. The selection of features does not decrease the classi�cation error as there is
no redundancy in the feature set. In an ideal case the Common class (images of sea
body) should show a 100% classi�cation as the images in this class contain no structural
information. The ambiguity of other classes being confused with this class (shown in
Figure 3.4) is due to the fact that at 5m resolution, SPOT5 images shows contours of
waves in seas. The network extraction methods thus extract these wave contours as
linear structures. The classi�cation results in Chapter 5 clarify this anomaly.

As can be clearly seen in the confusion matrix, the Villages class is confused with
the Fields class and also there is a slight confusion between the Fields and Urban
Europe classes. These confusions arise because the road extraction methods fail to
detect the �ne and densely structured roads present in some regions. The loss of
information from these regions reduces the discriminative power of the features and
hence results in poor classi�cation. In the next chapter we will discuss a method to
circumvent this problem and will show another set of classi�cation results.
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Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.544 0.100 0.187 0.047 0.142 0.000 0.000
Mountains 0.056 0.803 0.000 0.021 0.053 0.000 0.020
Fields 0.242 0.050 0.668 0.025 0.150 0.000 0.000
USA 0.061 0.000 0.026 0.801 0.076 0.000 0.019
Europe 0.085 0.047 0.119 0.092 0.579 0.032 0.053
Airports 0.012 0.000 0.000 0.014 0.000 0.968 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 0.908

Table 3.12: Confusion matrix of an SVM linear kernel classi�cation of 497 images with
7 classes with 32 features from the graph.

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.553 0.097 0.215 0.047 0.128 0.000 0.000
Mountains 0.101 0.808 0.000 0.000 0.047 0.000 0.019
Fields 0.189 0.047 0.635 0.047 0.175 0.000 0.000
USA 0.059 0.000 0.038 0.819 0.047 0.000 0.019
Europe 0.097 0.047 0.113 0.072 0.603 0.032 0.052
Airports 0.000 0.000 0.000 0.014 0.000 0.968 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 0.909

Table 3.13: Confusion matrix of an SVM linear kernel classi�cation of 497 images with
7 classes with 30 out of 32 features selected by FLD.

Feature Dimension Selection Classi�cation Error (%)

16 (Desolneux), 7 classes Fisher LD, 15 Linear SVM, 30.2±3.0

16 (Fischler), 7 classes Fisher LD, 13 Linear SVM, 39.2±1.81

32, 7 classes No selection Linear SVM, 24.7±2.93

32, 7 classes Fisher LD, 30 Linear SVM, 24.5±2.92

Table 3.14: Classi�cation performance.
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Figure 3.12: Classi�cation error vs number of features combined from the two extrac-
tion methods of [Deso 00] and [Fisc 81].

3.5 Discussion

The properties of road networks vary considerably from one geographical environment
to another, and they can therefore be used to classify and retrieve di�erent geographical
environments. We have de�ned several such environments, and classi�ed them with the
aid of geometrical and topological features computed from the road networks occurring
in them. In order to compute these features, we have used a graph representation of the
road networks. This representation is robust and captures well the network topology.

The classi�cation results reported in this chapter indicate that geometrical and
topological features computed from road networks can serve as robust characteriza-
tions of a number of geographical environments found in remote sensing images. The
road network extraction methods often failed to extract the �nely structured road
networks in small urban areas, with the consequence that the features computed from
road networks poorly classify images containing such areas. In order to circumvent
the loss of information from these areas a method must be adopted to incorporate
the properties of these areas in our study. The next Chapter outlines a method to
characterize geometrical and topological features of urban regions.

A comparison study of the features from the graph representation of the network
extracted by di�erent methods particularly designed for mid-resolution satellite images
could be interesting. These methods can then be tested and e�ciently adapted to deal
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with large satellite image databases, where time of execution is an important factor.
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Chapter 4

Region Structural Information

The road extraction methods are in general resolution dependent. A road extraction
method originally developed for metre resolution images will extract many 'road-like'
linear structures in a sub-metre resolution image. These structures in turn will provide
us with redundant information for the proper classi�cation of geographical environ-
ments. An optimal road network extraction algorithm that accurately delineates road
structures for all practical purposes is very hard to achieve. The real world scenario
is too complex to handle and many sophisticated algorithms for the extraction of
pertinent road structure information rely on the speci�city of the applications. In
many application scenarios, road extraction algorithms can be tuned to consider only
a limited set of characteristics, and the algorithms fail to identify new characteris-
tics whenever encountered in an application domain. There has been a great deal of
study of the extraction of structures of urban regions from high resolution images.
New sensor technology has provided us with high resolution images of the Earth's
surface which in turn has induced many researchers to work in the �eld of road and
man-made structure extraction from high-resolution satellite and Synthetic Aperture
Radar (SAR) data. The methods used in our study are robust to many such road
characteristics but often fail to extract the narrow and �nely structured road net-
works which are almost hidden in small urban areas. An example of this is shown in
Figure 4.1.

This failure of the extraction methods and hence the features computed from road
networks results in a poor classi�cation of images containing such areas. In order to
obtain some meaningful information from these regions, we need to segment such areas
occurring in the images. Geometrical information can be extracted from these parts
of the images to improve the classi�cation of the geographical environments. A new
set of features were thus computed on segmented urban areas. This set of features was
then combined with the existing road network features. To validate the feature set,
Fisher Linear Discriminant (FLD) analysis was used to select the best features from
the combined set and linear kernel support vector machine (SVM) classi�cations were
performed on the feature set arising from a diverse image database.
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Original Image c©CNES Extracted network
Figure 4.1: An example of network extraction failure in a small urban region.

4.1 Urban region structures

Recent advances in sensor technology has provided us with images of sub-metre res-
olution where man-made objects such as roads are clearly visible, and as such could
be detected reliably with numerous methods available in the literature. The study
presented here uses metre resolution (5m) images, where the road networks in a dense
urban structure are latent and hence remain undetected. This limitation of the road
network extraction methods used in our study prevents us from extracting the poten-
tial information in these urban regions.

Studies of urban region structures have been carried out by researchers from di�er-
ent domains for the past few decades. These studies involve urban settlement manage-
ment, disaster management and the detection of changes in land cover and land use.
The main problem arising in these studies is the proper de�nition of urban areas. The
de�nition varies from country to country. Urban areas are in general de�ned by their
boundaries and population density. Satellite images are used to de�ne urban areas in
a consistent way.

There is a vast literature on the extraction of urban regions from images coming
from di�erent sources, for example Landsat TM images, Multispectral SPOT images
and Polarimetric Synthetic Aperture Radar. Urban region classi�cation work can be
dated back to the study of texture for classifying regions by [Wesz 76] and the region
extraction methods on aerial images introduced by [Naga 79]. Since then, people
have used di�erent mathematical models to extract urban regions from images. In
general, texture analysis is used to characterize urban morphology with the spatial
distribution of ground spectral and radiometric variations. The most common texture
analysis methods use �xed size windows to compute the textural properties within
this window and then move the window over the entire image. These methods are
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Figure 4.2: Examples of small urban regions c©CNES.
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strongly dependent on the choice of the window size and shape. Figure 4.3 shows an
example of the window size dependency factor. The work of [Lore 99] uses texture
with probabilistic and fuzzy classi�cation to detect urban region in satellite images.
The work of [Rell 02] also uses classical texture analysis to characterize urban areas.
Texture analysis with Gaussian Markov models in order to extract urban areas from
SPOT and ERS images is reported in [Vive 03]. Another texture-based method to
analyze urban structures in satellite and SAR images can be found in [Dell 03]. A
study on urban area analysis with a combination of di�erent operators is reported in
[Bess 96]. A method is proposed in [Yang 06] to extract urban regions from SAR
images with Gaussian Markov Random Field (GMRF) models.

Geographers often describe an urban spatial structure with mathematical models
taken from fractal theory. Mathematically, a fractal is the limit set of a repeatedly
replicating geometrical object. Natural objects have complex shapes and hence clas-
sical geometry often fails to correctly describe their forms. Geographers often use
fractals to measure the urban morphology [Tann 05].

Wavelet transforms have been used in the context of urban region extraction from
panchromatic, multispectral and SAR images. The works of [Garz 02, Yu 99] uses
wavelet transforms to detect and extract urban environments from images. Grey scale
mathematical morphology formulated by [Serr 82] and [Math 75] has also been widely
used to characterize and extract the topological aspects of urban areas in images.
The work of [Merg 85] uses mathematical morphology to analyze structural forms in
satellite images. [Maup 97] uses mathematical morphology in combination with fuzzy
logic to capture the spatial changes in urban settlements. The method presented a
new approach to spatial change detection. Watershed segmentation was introduced
in image analysis by [Buec 79], and was later used for �nding the structures in an
image, based on the detection of edges. A watershed segmentation is the thinning of a
gradient image, resulting in the formation of regions and region contours. The standard
watershed method applied to images causes over-segmentation. This is mainly due to
the presence of the textural content in the image caused by varying object size and
also due to the sensor resolution.

The work by [Welc 82] highlights the dependence on spatial resolution of the
characterization of urban areas. Compact urban morphology and narrow and dense
road network patterns will require higher spatial resolution to explore the necessary
information, as these are less prominent in lower resolution images. This fact will be
addressed in Chapter 5, where we will show the resolution dependence of the features
used for classifying several geographical environments.
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Figure 4.3: Image texture analysis with window size variation.
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4.2 Segmentation of urban regions

The heterogeneity and the geometrical complexity of urban structures in low radio-
metric and metre resolution (2m or 5m) images show textural e�ects for objects with a
width of a few pixels. Texture information has been widely used and is a very popular
method to infer useful information about an urban area. The texture statistics devel-
oped by [Hara 73] has been widely used for image classi�cation. According to Haralick,
texture is 'the spatial distribution of tonal variation'. Studies by [Gong 92] showed
the usefulness of textural statistics for distinguishing between land cover classes. The
work of [Zhan 03] evaluates the performance of di�erent texture features and their
combination for mapping urban structures using SPOT images. Work has been done
on the extraction of urban regions from SPOT5 images using texture analysis with
probabilistic approaches [Desc 93]. In this work, the urban area extraction process is
divided into two steps. The �rst step consist of extracting some discriminant texture
parameters from the image with a 2D Markov Random Field (MRF) model. The
original image is divided into simple parameter images. In the second step, the pa-
rameter images are clustered and false alarms are removed to obtain the segmented
urban areas. Figure 4.4 shows an example from this method.

A work very close to our method using mathematical morphology has been reported
in [Pesa 01], where urban region detection is based on the residual of the grey value
function and a composition of morphological opening and closing transforms using the
geodesic metric.

Figure 4.4: Example of urban area extraction using the probabilistic method of
[Desc 93] c©CNES/ENST.

In our study we use the work of [Roux 92], developed to extract urban regions
from SPOT images. In SPOT images, urban zones appear to be strongly textured and
the problem of extraction of the regions is essentially a problem of di�erentiation of
textures. The method used here is inspired by the work of [Sere 89] and [Khat 89].
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The principle idea is to extract the zone of high density of light and dark peaks. The
techniques used are the mathematical morphology operations of opening and closing.

(a) Closing (b) Opening

Figure 4.5: Examples of opening and closing operators.

A di�erence is computed between morphologically closed (Figure 4.5(a)) and opened
images (Figure 4.5(b)). This di�erence gives prominence to textured regions, like ur-
ban areas. An example of an opening and a closing pro�le is shown in Figure 4.6. The
di�erence image is then reduced to a lower resolution with pixel intensity averaged over
a window of 4x4 pixels. Then an alternated sequential �lter aggregates neighboring
components and eliminates small isolated components. We compute four geometrical
features from these regions as shown in Table 4.1.

4.2.1 Features from the urban regions

We focus on the last four features in Table 4.1. These features enable us to distinguish
between rural classes (Villages and Fields) and the urban Europe class, which other-
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Figure 4.6: Examples of opening and closing operators c©CNES/ENST.

Notation Description
Ω Area of image
ΩR Area of extracted regions
LΨ Network length in Ψ = Ω− ΩR

ΓR Perimeter of extracted regions
R̃A Region area density Ω−1ΩR

CfA Region compactness factor Ω−1
R Γ2

R

R̃ν Region labels #R

∆Ω Inverse fractional length density ΩR

LΨ

Table 4.1: Summary of features computed for urban areas.
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(a) Original image c©CNES (b) Segmented region

(c) Original image c©CNES (d) Segmented region

Figure 4.7: Images containing small urban areas and their segmentations.
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wise were misclassi�ed due to the lack of extracted network information from the small
compact urban regions in the images, shown in Figure 4.7(a) and Figure 4.7(c). Let Ω
and ΩR be the area of the image and the area of the extracted regions respectively and
LΨ and ΓR be the network length in Ψ = Ω− ΩR and the perimeter of the extracted
regions respectively. We de�ne two descriptors, R̃A = Ω−1ΩR, the extracted region
density and CfA = Ω−1

R Γ2
R, the extracted region compactness factor. These two fea-

tures help us to distinguish the Villages class from the rest of the classes: for example,
R̃A ' 1 for Urban classes and R̃A ' 0 for Mountains and Fields classes. The feature
R̃ν , the number of urban regions in an image is used to distinguish between complete
Urban, Villages, Fields and Mountains. A complete Urban (USA and Europe) will
have R̃ν = 1, whereas, a Villages will have R̃ν > 1 and Fields and Mountains will have
R̃ν = 0. Another feature ∆Ω, the inverse fractional length density, is also computed to
separate the Village class from Urban and Mountains and Fields. The total network
length in Ψ = Ω − ΩR is denoted by LΨ. For complete Urban classes (USA and Eu-
rope), LΨ = 0 and for Mountains and Field classes Ψ = Ω. Hence for Mountains and
Fields classes, the inverse fractional length density, ∆Ω = 0, while for complete Urban
classes, ∆Ω = ∞, and for the Village class 0 < ∆Ω < ∞. We augment these urban
region features with the features computed from the graph representation of the road
network as described in Chapter 3 to improve the classi�cation of the geographical
environments which otherwise were misclassi�ed due to the loss of information from
small dense urban regions.

4.2.2 Classi�cation

All the images in our database have the same resolution. The features described in
the above sections were computed for a database of 497 SPOT5, 5m resolution images.
Machine classi�cation was done with a �ve-fold cross validation on the data set, with
80% of data for training and the remaining 20% for testing in each fold. The features
computed from the urban areas were augmented with the features computed from the
road networks, as described in Chapter 3. In this study, 36 features (16 features each
from the graph for 2 network extraction methods and 4 features from the urban region)
are used for the classi�cation of the same 7 classes mentioned in Chapter 3.

The results of the one-vs-rest SVM linear kernel classi�cation of 497 images into 7
classes, using 36 features, is shown in Table 4.2. As can be seen, the mean classi�cation
error is drastically reduced from 24.7%, with only road network features to 16.5%,
with the combined feature set. This is due to the fact that the of information from the
urban areas is well captured with the geometrical and topological features described
in Section 4.2.1.

With such a large number of features, and with some similarity between di�erent
features, it seems likely that there is some redundancy in the feature space. This re-
dundancy can be reduced by feature selection. In the next classi�cation experiment,
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we performed feature selection using a FLD analysis, followed by SVM linear kernel
classi�cation on the selected feature set. Figure 4.8 shows the number of features se-
lected from each feature group. The results of the classi�cation are shown in Table 4.3.
The SVM linear kernel classi�cation on the 20-dimensional feature space selected by
the FLD shows a mean error of 12.9% with a standard deviation of 3.29%. The depen-
dence of classi�cation error on the number of features is shown in Figure 4.9. Overall
classi�cation results with all features and selection is shown in Table 4.4.

Figure 4.8: Feature selected from the feature group.

As can be clearly seen in Table 4.3, there is an improvement in the confusion
matrix. The Villages class is less confused with the Fields and the Europe class than
before. The new features augmented with the road network features provide good
discriminative power to classify images which otherwise were misclassi�ed.

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.677 0.022 0.119 0.015 0.051 0.015 0.044
Mountains 0.038 0.888 0.034 0.012 0.022 0.000 0.000
Fields 0.145 0.022 0.817 0.000 0.000 0.000 0.015
USA 0.032 0.000 0.000 0.902 0.193 0.000 0.010
Europe 0.085 0.067 0.029 0.054 0.734 0.030 0.029
Airports 0.022 0.000 0.000 0.015 0.000 0.953 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 0.902

Table 4.2: Confusion matrix of a SVM linear kernel classi�cation on 497 images with
7 classes with 36 features.
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Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.832 0.000 0.148 0.000 0.049 0.017 0.033
Mountains 0.038 0.832 0.008 0.000 0.000 0.000 0.000
Fields 0.038 0.077 0.823 0.013 0.000 0.000 0.010
USA 0.010 0.000 0.000 0.920 0.116 0.016 0.010
Europe 0.083 0.041 0.021 0.067 0.835 0.015 0.020
Airports 0.000 0.049 0.000 0.000 0.000 0.951 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 0.928

Table 4.3: Confusion matrix of a SVM linear kernel classi�cation on 497 images with
7 classes with 20 out of 36 features selected by FLD.
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Figure 4.9: Classi�cation error vs number of features

Feature Dimension Selection Classi�cation Error (%)

36, 7 classes No selection Linear SVM, 16.5±2.64

36, 7 classes Fisher LD, 20 Linear SVM, 12.9±3.29

Table 4.4: Classi�cation performance.
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4.2.3 2-Level classi�cation

In order to have a better understanding of the classes, we divided our class representa-
tion into a 2-level hierarchical model as shown in Figure 4.10. The 1-level consists of
three classes: �Urban", �Semi-Urban, and �Non-Urban". Classi�cation with the same
set of features was done on the 1-level. Depending upon this classi�cation, we wanted
to move to the 2-level for a �ner classi�cation. The results of the 1-level classi�cation
are shown in Table 4.5.

Figure 4.10: 2-level hierarchical model

Class
1

Class
2

Class
3

Semi-urban 0.879 0.063 0.049
Non-urban 0.069 0.913 0.000
Urban 0.051 0.024 0.951

Table 4.5: Confusion matrix of an SVM linear kernel classi�cation on 497 images with
3 classes with 22 out of 36 features selected by FLD.

As can be seen from the confusion matrix, the �Semi-urban" and �Non-urban"
classes are classi�ed with 87.9% and 91.3% respectively with 22 features selected with
FLD, Figure 4.11. With this classi�cation rate it is rather di�cult to move on to
the next level, as the error will grow multiplicatively in the subsequent process. This
hinders us from proceeding any further with the 2-level classi�cation. We therefore
restrict ourselves to a 1-level classi�cation with 7 classes.

4.2.4 Classi�cation and retrieval with relevance feedback

Relevance feedback is used in the retrieval process by a user annotating images as
relevant or irrelevant based on his/her judgement. This process can be seen as the
training stage of a supervised classi�cation. In many cases the importance of an image
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Figure 4.11: Classi�cation error vs number of features

for the interest of a user is not taken into consideration, hence a�ecting the retrieval
process. Several methods have been proposed to indicate the importance of an image
in the RF protocol. A important drawback of most RF systems is the loss of memory
of the annotated examples at the end of a search session. This is costly in terms of
time when dealing with a large database. Many di�erent methods have been adopted
to create RF systems with memory.

In this work, we will test our features with the existing system of [Cost 06], which
uses an SVM classi�cation process to compute the separating surface between the
relevant and irrelevant examples. In practice, a number of RF steps are required to
attain a good level of retrieval. This number is signi�cantly reduced by adding a
memory which takes into account the results of past queries. Table 4.6 shows the
results with 8 RF steps without memory and 1 RF step with memory. As can be seen,
the results are comparable, with a slight change in the case with memory. This can
be explained by the fact that the SV set chosen during classi�cation is not perfect.

Feature set Classi�cation method RF steps Memory Retrieval (%)
36 features/7 classes SVM 8 No 93.1
36 features/7 classes SVM 1 Yes 92.3

Table 4.6: Classi�cation with relevance feedback and memory.

SVM has already been proved to be an e�cient classi�cation tool in CBIR systems,
but this is not enough, the features must also have good discriminative power for
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e�cient classi�cation. This test establishes the fact that the feature set used in this
study has good discriminative power to classify di�erent geographical environments
with only few RF steps.

4.3 Discussion

The road extraction methods used in our study are robust, but they often fail to ex-
tract the narrow and �nely structured road networks which are almost hidden in small
urban areas. This failure of the extraction methods and hence the features computed
from road networks results in poor classi�cation of images containing such areas. In
order to obtain some meaningful information from these regions, we need to segment
such areas when they occur in images. Urban structures in low radiometric and metre
resolution images show textural e�ects for objects size of few pixels. Morphological
methods used to extract urban regions and the features computed on them provide
useful information for characterizing geographical environments. The urban region
statistics augmented with the road network statistics provide a meaningful classi�-
cation. A retrieval test using the feature set con�rms its discriminative power for
classifying di�erent geographical environments. Based on this, more statistics could
be computed from the shape analysis of urban areas, e.g., moments, Fourier analysis of
the urban contours, etc. to incorporate more information in the classi�cation process.
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Chapter 5

Dependence of primitive features on
image resolution and size

The classi�cation studies reported in Chapter 3 show some confusion between classes
with the primitive features extracted from the graph representation of road networks.
These confusions arise because the road extraction methods fail to detect the �ne and
densely structured roads present in some regions. The loss of information from these
regions reduces the discriminative power of the features and hence results in poor
classi�cation. In the subsequent chapter, these regions were detected in the images. A
new set of geometrical and topological features were then computed from these areas.
A new classi�cation test was done with the road network features augmented with the
new features computed from these areas with the same set of classes. The result shows
improvement in distinguishing the classes.

So far, we have not explored the impact of the spatial resolution and size of images
on the feature set. The question which still remains to be answered is, what is the
optimal resolution and size of an image for the classi�cation of geographical regions
on the Earth's surface? In this Chapter, we take a closer look at the e�ect of the
spatial resolution and size of images on the discriminative power of the feature set.
We perform a one-vs-rest linear SVM classi�cation on two image databases with the
same set of features used in Chapter 3 and Chapter 4.

5.1 Introduction

With the advent of modern sensor technology, the increase in the resolution and size
of the images acquired from satellites has exposed a major challenge in information
extraction and understanding. High resolution satellites, namely QuickBird2 with sub-
metre panchromatic images and the future Pleiades and Ikonos with a spatial resolution
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of 1m provide us with images that contain adequate information on the attributes of
the ground structure of an urban area. In order to extract this information from a
range of multiresolution images, however one single method will not su�ce.

Several studies have been done to assess the optimal spatial resolution for classi�ca-
tion. Some objects are better classi�ed at �ner resolution while others require coarser
resolutions. A study reported in [Marc 94] explains the e�ect of resolution on classi�-
cation. Work has also been done on multiresolution classi�cation. Features computed
at di�erent spatial resolutions are integrated to improve land use/cover classi�cation
[Chen 02].

In our work, the network extraction method suitably tuned for a 5m resolution
image will extract redundant structures in an image of the same ground area with
1m resolution, whereas it will extract insu�cient structures in an image with 10m
resolution. The extraction parameters are �xed for a certain resolution and cannot be
dynamically adapted for varying resolutions.

Image size also plays an important role in classi�cation. For instance, a small image
(e.g., 64x64 pixels) will be devoid of the completeness of a road network structure (e.g.,
highways and national routes) whereas a large image (e.g., 1024x1024) may contain
road networks from a region containing urban structures, mountains and �elds. In
these two cases it is always di�cult to assign a speci�c class to an image. The power of
the feature set to classify geographical environments is also dependent on an 'optimal'
image size.

In this chapter, we will study the e�ect of the size and the resolution of images on
the features extracted by a single method, originally developed for a spatial resolution
of 5m, SPOT5 images. The studies reported in Chapter 3 and Chapter 4 use a database
of these images of size 512x512 pixels.

5.2 Road network and urban region extraction for
di�erent resolutions

In this section we show the network extracted from the complete urban structure
of Toulouse, France c©CNES, with the method of [Deso 00] at di�erent resolutions.
Figure 5.1 shows the extraction results. The method extracts almost all linear struc-
tures (e.g., Building edges) from a 1m resolution image, while at the other extreme,
it merely detects any linear structure from an 8m resolution image. The images with
resolutions 3.175m, 4m and 5m show an optimal number of correctly extracted road
network segments. The urban area extraction method [Roux 92] discussed in the
previous chapter also extracts redundant areas in the 1m and 2m resolution images as
the morphological operations fail to discriminate the texture information of the 'true'
urban areas from the surroundings. Figure 5.2 shows the urban area extraction results.
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A good extraction of urban regions can be seen in the images with 3.175m, 4m and
5m resolutions.

In our previous studies we have particularly used a database of SPOT5 images
with 5m resolution provided by CNES. The classi�cation of images with all the men-
tioned resolutions is out of scope of this work. The number of images at our disposal
with all the mentioned resolutions is not adequate to form an acceptable database for
classi�cation. In order to have a glimpse at the size and resolution dependence of the
features for classi�cation of images belonging to the classes mentioned in Chapter 3,
we construct two databases.

One database corresponds to the same set of images studied in Chapter 3, but with
images downsampled to 10m resolution. The other database is constructed from the
original database studied in Chapter 3, by cutting each image of size 512x512 pixels
into four equal parts, each of size 256x256 pixels. This database is now four times
larger than the original database. The images were then rearranged according to the
pre-de�ned classes for further study.
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(a) Original image, 1m c©CNES (b) Extracted network

(c) Original image, 2m c©CNES (d) Extracted network
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(e) Original image, 3.175 c©CNES (f) Extracted network

(g) Original image, 4m c©CNES (h) Extracted network

(i) Original image, 5m c©CNES (j) Extracted network

(k) Original image, 8m c©CNES (l) Extracted network

Figure 5.1: Images and network extracted from them at di�erent resolutions. The
method of [Deso 00] was used as an extraction method.
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(a) Original image, 1m c©CNES (b) Extracted region

(c) Original image, 2m c©CNES (d) Extracted region
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(e) Original image, 3.175 c©CNES (f) Extracted region

(g) Original image, 4m c©CNES (h) Extracted region

(i) Original image, 5m c©CNES (j) Extracted region

(k) Original image, 8m c©CNES (l) Extracted region

Figure 5.2: Images containing small urban areas and their segmentations at di�erent
resolutions. The method of [Roux 92] was used for the segmentation.



114 5. Dependence of primitive features on image resolution and size

5.3 Classi�cation

The features from the graph representation of the network and the urban area were
computed as mentioned in Chapter 3 and Chapter 4. Three tests were done on
databases as follows:

• 497 SPOT5 images of 5m resolution with each image of size 512x512 pixels.

• 497 SPOT5 images of 10m resolution with each image of size 256x256 pixels.
This image database were constructed by downsampling the images from the
above mentioned images.

• 1988 SPOT5 images of 5m resolution with each image of size 256x256 pixels.
This image database were constructed by relabelling the 4 images obtained by
cutting each image of size 512x512 pixels.

Machine classi�cation was done with a �ve-fold cross validation on the data set,
with 80% of data for training and the remaining 20% for testing in each fold.

The results of one-vs-rest linear SVM classi�cation of 497/5m images into 7 classes
with 20 features selected from 36 features by FLD is shown in Table 5.1. The mean
classi�cation error is 12.9% with a standard deviation of 3.29%.

The results of one-vs-rest linear SVM classi�cation of 1988/5m images into 7 classes
with 22 features selected from 36 features by FLD is shown in Table 5.2. The mean
classi�cation error is 17.4% with a standard deviation of 2.19%. Figure 5.3 shows the
number of features selected from each feature group.

The results of one-vs-rest linear SVM classi�cation of 497/10m images into 7 classes
with 22 features selected from 36 features by FLD is shown in Table 5.3. The mean
classi�cation error is 25.4% with a standard deviation of 2.02%. Figure 5.4 shows the
number of features selected from each feature group.

Figure 5.5 and Table 5.5 show an overall classi�cation result with all the features
and the selected set of features respectively.

As expected, the classi�cations varies dramatically with changes in image size and
resolution. The few anomalies that can be seen in Table 5.2 could be explained as
follows: changing the image size from 512x512 pixels to 256x256 pixels, causes a poorer
classi�cation of Villages, Mountains, Fields, USA and Europe than in Table 5.1, as too
little information is available from the road network features to discriminate the classes.
On the other hand, the Airports class is well classi�ed because a small area captures
the airport runways better than in the images with 512x512 pixels, where non-runway
areas from the surroundings lower the discriminative capacity of the features.
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Figure 5.3: Feature selected from the feature group. Left: Feature selected from 36
features from 497 images with 5m resolution. Right: Feature selected from 36 features
from 1988 images with 5m resolution.

Figure 5.4: Feature selected from the feature group. Left: Feature selected from 36
features from 497 images with 5m resolution. Right: Feature selected from 36 features
from 497 images with 10m resolution.
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A few anomalies can also be seen in the classi�cation of images with 10m resolution.
The poorer classi�cation results in Table 5.3 compared to Table 5.1 could be explained
as follows: the network extraction methods fail to provide reliable information from
the road network structures at this resolution with the method of [Deso 00] used in
Chapter 3. The urban extraction method of [Roux 92] possibly fails to extract any
urban area at this resolution. All the classes show poorer classi�cation except for the
Common (sea) class. This could be explained by the fact that, at this resolution,
the linear structures of waves in the sea could not be extracted with the method of
[Deso 00], as opposed to images with 5m resolution.

The overall classi�cation performance results are shown in Table 5.5. As can be
seen, the mean classi�cation error is doubled for images of 10m resolution compared
to images of 5m resolution. This fact cannot be generalized to all resolutions. The
number of images at our disposal with di�erent resolutions is not enough to form
databases for a comparative analysis.

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.832 0.000 0.148 0.000 0.049 0.017 0.033
Mountains 0.038 0.832 0.008 0.000 0.000 0.000 0.000
Fields 0.038 0.077 0.823 0.013 0.000 0.000 0.010
USA 0.010 0.000 0.000 0.920 0.116 0.016 0.010
Europe 0.083 0.041 0.021 0.067 0.835 0.015 0.020
Airports 0.000 0.049 0.000 0.000 0.000 0.951 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 0.928

Table 5.1: Confusion matrix of a SVM linear kernel classi�cation on 497 images with 7
classes with 20 out of 36 features selected by FLD. The original database, with images
of resolution 5m.

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.658 0.059 0.195 0.019 0.153 0.000 0.000
Mountains 0.018 0.823 0.020 0.002 0.000 0.000 0.009
Fields 0.019 0.053 0.740 0.000 0.004 0.000 0.000
USA 0.167 0.000 0.002 0.793 0.129 0.000 0.000
Europe 0.116 0.060 0.043 0.185 0.714 0.000 0.000
Airports 0.021 0.004 0.000 0.000 0.000 1.000 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 0.991

Table 5.2: Confusion matrix of a SVM linear kernel classi�cation on 1988 images with
7 classes with 22 out of 36 features selected by FLD. The database of 1988 images of
size 256x256 pixels.
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Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.530 0.117 0.320 0.026 0.031 0.014 0.000
Mountains 0.082 0.649 0.032 0.019 0.014 0.040 0.000
Fields 0.187 0.081 0.585 0.000 0.000 0.000 0.000
USA 0.155 0.000 0.015 0.820 0.163 0.029 0.000
Europe 0.033 0.101 0.029 0.136 0.792 0.014 0.000
Airports 0.012 0.051 0.017 0.000 0.000 0.902 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 5.3: Confusion matrix of a SVM linear kernel classi�cation on 497 images with
7 classes with 22 out of 36 features selected by FLD. The images were downsampled
to 10m resolution.

497/5m/512x512 1988/5m/256x256 497/10m/256x256
Villages 0.832 0.658 0.530
Mountains 0.832 0.823 0.649
Fields 0.823 0.740 0.585
USA 0.920 0.793 0.820
Europe 0.835 0.714 0.792
Airports 0.951 1.000 0.902
Common 0.928 0.991 1.000

Table 5.4: An overall comparison table of "good" classi�ed classes.

Database/Resolution Feature Dimension Selection Classi�cation Error (%)

497/5m 36,7 classes Fisher LD, 20 Linear SVM, 12.9±3.29

1988/5m 36,7 classes Fisher LD, 22 Linear SVM, 17.4±2.19

497/10m 36,7 classes Fisher LD, 22 Linear SVM, 25.4±2.02

Table 5.5: Classi�cation performance.
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Figure 5.5: Classi�cation errors vs number of features

5.4 Discussion

In this study we have shown the dependence on image size and resolution of the feature
set computed from a single extraction method developed for a particular resolution.
Features computed from a lower resolution show a greater amount of confusion between
classes. This confusion is also visible with images of smaller sizes. However, a few
anomalies can be explained on the basis of the road network and urban area extraction
methods. Based on this study, more detailed analysis could be done on image databases
of di�erent resolutions. The search for an optimal resolution for the categorization of
man-made structures on the Earth's surface could not be performed based on this
study as the number images at our disposal with di�erent resolutions is not enough to
form databases for a comparative analysis. The image size factor, which is also crucial
for delineating class boundaries, remains to be solved. This study provides a base for
answering such queries in the future.
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Chapter 6

Indexing of large satellite images

Satellite image classi�cation has been a major research �eld for many years with its var-
ied applications in the �elds of geography, geology, archaeology, environmental sciences
and for military purposes. Many di�erent techniques have been proposed, including
texture analysis, stochastic methods, genetic algorithms, fuzzy theory and neural net-
works. Work on satellite image classi�cation as reported in the last twenty years has
shown a signi�cant increase in classi�cation accuracy due to new approaches and new
image acquisition technology. There has been a large amount of work dedicated to
the classi�cation of large satellite images at pixel level rather than by considering im-
age patches of di�erent sizes. Classi�cation of image patches of di�erent sizes from a
large satellite image is a novel idea in the sense that the patches considered contain
signi�cant coverage of a particular type of geographical environment. In this Chapter,
we will show how to classify large satellite images with geometrical and topological
features computed on small image patches extracted from it.

A one-vs-rest Gaussian kernel SVM classi�cation method is used to classify the
large image shown in Figure 6.2. The classi�cation labels the image patches with the
label having the maximum geographical coverage of the associated area in the large
image. The large image will be mapped into a "region matrix", where each element
of the matrix corresponds to a geographical class. In certain cases, this provides
some anomalies, as a single patch may contain two or more di�erent geographical
environments. In order to have an estimate of these partial coverages, the output of
the SVM is mapped into probabilities. These probability measures are then studied
to have a closer look at the classi�cation accuracies.
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6.1 Introduction

Technologically advanced satellite sensors and new storage systems have made image
data vast and complex. Complete manual annotation of a complex image is not feasi-
ble. In images, pixels provide the most basic level of information. Pixel values are the
measurements by the satellite sensor of a region on the Earth's surface. The informa-
tion from these pixels is at a level far below the semantic meaning of the desired object
or region. The classi�cation of images based on the pixel values is thus tedious and
expensive. Although the inter-class boundaries in an image are at the pixel level, the
classi�cation of images at the pixel level is not an e�cient browsing strategy. Class
anomalies can also be found in classi�cation using pixel values. Image processing and
computer vision techniques are used to convert the pixel values to a meaningful repre-
sentation corresponding to human perception of the entity. This high-level information
can then used for image indexing and retrieval.

Satellite images are geographical data and each pixel of the image corresponds to
some region on the Earth's surface. The classi�cation of large satellite images with
patches of small images segmented from it is a better and a computationally less
expensive method than the classical pixel-by-pixel approach. Moreover, classi�cation
of patches of images instead of pixels helps us to incorporate more freedom in complex
querying. The reason is that the image patches from a large satellite image contain
signi�cant coverage of a particular type of environment, such as urban regions or
mountains.

In the �rst part of this chapter we perform a hard classi�cation, where each image
patch is given a single label. In the subsequent part, we map the output of this
classi�cation into probabilities. The probability measures help us to understand better
the geographical content of the large image.

The large image I is divided into equal sized non-overlapping images pi, i = 1...N ,
e.g., for a large image of size 5120x5120 pixels/5m resolution with each image patch
of size 512x512 pixels/5m resolution, we have N = 100 image patches. For each
patch pi we compute the features from the graph representation of the extracted road
network and the urban regions in it. The segmentation of the image patches pi from
the large image I along with the extraction and computation of the road network and
urban region features are done o�-line. The features are kept in a �le with each image
randomly labelled from 1 to 7 classes. This �le is then used as a "testing" set for the
classi�cation of each image patch.

The large image is indexed as a "Region matrix", where each element of the ma-
trix corresponds to a class label. The one-vs-rest Gaussian SVM classi�er gives us an
overall error of 7%. The misclassi�cation of certain image patches is due to the feature
properties pertaining to it. For example, an image patch from the large satellite image
of Copenhagen is classi�ed as an USA urban area. This is due to the fact that the
road network structures in this image patch are similar to those found in most Amer-
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ican urban regions. The modern urban structures ("grid") of many European cities
are similar to conventional American urban structures. In other cases of misclassi�ca-
tion, the image patches failed to �nd similar image patterns in the "training" dataset.
Anomalies can also be seen in some image patches consisting of two or more geograph-
ical environments. Our hard classi�cation method labels the image patch with the
label having the maximum geographical coverage. This does not provide any measure
of con�dence of the labelling process. No measurement is inferred about the 'distance'
to the labelled class or the proximity of any other class. In order to circumvent these
drawbacks and allow us to take a de�nitive decision on the classi�cation results, we
map the output of the SVM into probabilities [Plat 99]. These probabilities provide
us with the classi�cation con�dence of the labelled class and the proximity of any other
classes.

6.2 Indexing

An image is indexed by a set of descriptors representing the content of the image. These
descriptors, often termed indices, are usually limited in number and are dependent on
application scenarios. Classi�cation is often used as a pre-processing step for indexing.
A careful indexing of an image database assists e�cient retrieval of image content. The
work�ow of our indexing method is divided into three steps as follows:

6.2.1 Step 1: The database

The image database can be viewed as two sets disjointly partitioned to contain images
or segmented images in one set and features extracted from images in another set. We
will indicate the image set as SI , and the feature set as SF . A pointer is used between
SI and SF to attach an image to its associated feature set. The information extracted
in terms of geometrical and topological features from the large image archive of 497
images, each of size 512x512 pixels, categorized into 7 classes are kept in a data �le.
The o�-line process of data �le creation is done only once, and in the case of a new
entry, the information extracted from this image is added to the existing data �le. The
pointer is appropriately assigned the address of this new entry. This will be used as
the "training" set later in the classi�cation task.

6.2.2 Step 2: The feature �le

The o�-line process for the user given a large image is as follows: the large image of
size 5120x5120 pixels is automatically divided into non-overlapping image patches, (see
Figure 6.2) each of size 512x512 pixels. During this process a pointer is associated with
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each image patch, de�ning its spatial position in the large image. The road network
extraction, its graph representation and the urban area segmentation methods are
applied in parallel on the image set (100 images). The geometrical and topological
features from the graph representation and the urban areas are stored in a �le. The
images are a priori randomly labelled with classes from 1 to 7. This will later be used
as a "testing" set against the above de�ned "training" set in the classi�cation task.

6.2.3 Step 3: The classi�cation

The on-line classi�cation process is done with a one-vs-rest Gaussian SVM classi�er
with σ = 10. The best choice of the Gaussian kernel variance σ2, which controls the
width of the kernel, is hard to assess in practical situations. In this study we used the
value of σ that gave us the least training error. A result is shown in Table 6.1 of the
one-vs-rest Gaussian SVM classi�cation of 497 images into 7 classes, using 20 features
selected by FLD from the set of 36 features (see Figure 6.1). The mean classi�cation
error is 10.5% with a standard deviation of 2.5%.

Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Villages 0.867 0.013 0.121 0.000 0.022 0.000 0.000
Mountains 0.014 0.831 0.008 0.000 0.014 0.000 0.000
Fields 0.022 0.065 0.863 0.000 0.014 0.000 0.000
USA 0.009 0.000 0.000 0.933 0.114 0.000 0.011
Europe 0.087 0.047 0.008 0.067 0.835 0.014 0.000
Airports 0.000 0.043 0.000 0.000 0.000 0.986 0.000
Common 0.000 0.000 0.000 0.000 0.000 0.000 0.989

Table 6.1: Confusion matrix of an Gaussian SVM classi�cation of 497 images with 7
classes with 20 out of 36 features selected by FLD. The original database, with images
of resolution 5m.

The output of the classi�cation is represented as a matrix ("Region Matrix"), where
each element of the matrix corresponds to an image class. The classi�ed images were
compared with the ground truth image. The errors in the classi�cation are shown in
Figure 6.3, where the circles mark the misclassi�ed images.

In much satellite image classi�cation work, prior information about the class label
con�guration is available, and it is essential to include this information in the clas-
si�cation process to obtain a reliable answer. Standard SVM does not provide any
estimation of the classi�cation con�dence and thus does not allow us to include prior
information. Probabilistic SVM provides us with a way to construct a classi�er that
produces a posterior probability P (class = c|input) which allows us to take a quan-
titative decision about the classi�cation. The probabilistic SVM has the additional
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Figure 6.1: Classi�cation error vs number of features.

advantage of being less dependent on the choice of the parameters.

The results of the probabilistic SVM output can be interpreted as follows: The clas-
si�er output should be a calibrated posterior probability. First the SVM is trained and
then the parameters A and B of a sigmoid function (see Equation 6.1) are estimated
from the training set (fi, yi) to map the output of the SVM into probabilities. The
predicted label of an image is the one with the largest probability value. Figure 6.4
shows the results of an probabilistic SVM classi�cation. In certain cases, there could
be an ambiguity in the assignment of the class label, e.g., an image with probability
98% of being USA can be ambiguous, if the same image is classi�ed with probability
88% to be Villages. In such cases it is di�cult to assign a class to an image. A detailed
analysis of four regions with classi�cation probabilities is reported in subsection 6.2.4.

P (y = c|f) =
1

1 + exp(Af +B)
(6.1)

In order to avoid such uncertainties and correctly assign a label to an image, we
consider neighborhood properties. For the above mentioned case, where the classi�ca-
tion probabilities are comparable, we look at its 8-neighbors. We choose the label to
assign to an image to be the one which appears most frequently amongst the neigh-
bors. With the example shown in Figure 6.5, we can modify some of the misclassi�ed
labels from Figure 6.4, where the images were classi�ed as USA urban due to the
road network structures, to Figure 6.7 with the algorithm shown in Figure 6.6. The
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changed labels are marked by circles. As can be clearly seen, there are a few more
ambiguous labels which can be post-processed by the algorithm. Coastal regions are
mostly misclassi�ed due to the fact that the waves are extracted as linear structures
thereby confusing them with road structure. These regions are then labelled as Fields
or Mountains according to the structures extracted. The region matrix superimposed
on the original image shown in Figure 6.8 provides us with a visual inspection of the
overall classi�cation results.

The method of changing the labels according to neighborhood properties is not
implemented for all the other cases studied in this chapter.
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Figure 6.2: Image patches of size 512x512 pixels from a large SPOT5 image of Copen-
hagen with 5m resolution of size 5120x5120 pixels c©CNES.



126 6. Indexing of large satellite images

Figure 6.3: Classi�cation of image patches of size 512x512 pixels from a large image of
Copenhagen of size 5120x5120 pixels c©CNES. Each colored pixel of the 10x10 matrix
corresponds to a class to which an image patch of size 512x512 belongs. SVM with
Gaussian kernel of σ = 10.
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Figure 6.4: Classi�cation of image patches of size 512x512 pixels from a large image of
Copenhagen of size 5120x5120 pixels c©CNES. Each colored pixel of the 10x10 matrix
corresponds to a class to which an image patch of size 512x512 belongs. A probabilistic
SVM with Gaussian kernel of σ = 10. The values show the probabilities of each image
patches belonging to a class.
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(a) Case 1 (b) Case 2

Figure 6.5: Examples of ambiguous cases in classi�cations.

Input: The probability vector [p] of an image
Output: The changed label of the image
pl = max(pi), i = 1...7 ;
L0 = Label(pl) ;
foreach i do

zi = max(pi)− pi;
if zi ≤ 0.5 then

Li = Label(pi);
NL0 = Count 8-neighbors(L0);
NLi = Count 8-neighbors(Li);
if NL0 ≥ NLi then

Put L0;
else

L0 = Li;
end

end
end

Figure 6.6: The algorithm for changing the labels.
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Figure 6.7: Classi�cation modi�ed using neighborhood properties. Top: The modi�ed
labels, Bottom: The probabilistic SVM classi�cation.
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Figure 6.8: Classi�cation results superimposed on the original image of Copenhagen.
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Figure 6.9: Ground truth with Google maps c©2007 Google-Imagery c©2007 Terra-
Metrics, Map data c©2007 Tele Atlas.
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As can be seen in Figure 6.8, 80% of the regions are well classi�ed, with a few
regions having ambiguous label and a few regions misclassi�ed due to insu�cient or
wrong information collected from the extracted networks. A detailed study of the four
regions marked in Figure 6.8 is given in subsection 6.2.4.

6.2.4 Detailed analysis of 4 regions

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.126
Mountains 0.000
Fields 0.000
USA 0.000
Europe 0.726 Europe
Airports 0.009
Common (Sea) 0.003

Figure 6.10: Probabilistic classi�cation output with labels.

This is the region of Hornbaek, around 50km north of Copenhagen, Figure 6.9. This
is a coastal town with geographic coordinates 55◦5'N, 12◦27'E. The road structures
pertaining in this region are well extracted and the features from them classify it
correctly to be a Europe urban region.

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.000
Mountains 0.338 Mountains
Fields 0.000
USA 0.000
Europe 0.000
Airports 0.013
Common (Sea) 0.026

Figure 6.11: Probabilistic classi�cation output with labels.

This is the strait of water that separates Denmark from Sweden, and that connects
the North Sea with the Baltic Sea, Figure 6.9. This is a ferry route from Helsingor
in Denmark to Helsingborg in Sweden. The constant movement of ferries in this
region forms linear streaks on the water surface, which are extracted by the methods.
Features from them then create confusion with road network structures. The region
is hence classi�ed as Mountains with a probability of 34%.
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Image Classes P (c|input) Estimated
Class/Classes

Villages 0.976 Villages
Mountains 0.000
Fields 0.004
USA 0.000
Europe 0.022
Airports 0.001
Common (Sea) 0.002

Figure 6.12: Probabilistic classi�cation output with labels.

This is the small town of Espergaerde, located in the north of Copenhagen with
geographic coordinates 56◦0'N, 12◦34'E, Figure 6.9. The urban region and the roads
are well extracted to classify it as a Villages class.

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.001
Mountains 0.007
Fields 0.387 Fields
USA 0.000
Europe 0.066
Airports 0.007
Common (Sea) 0.005

Figure 6.13: Probabilistic classi�cation output with labels.

This region lies in the south of the Esrum See, Figure 6.9. This is an agricultural
region with large stretches of �elds. The straight and curved road structures from
the �elds are well extracted and the features computed from them classify this area
correctly as Fields class.
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6.3 Indexing results on large satellite images

In this section we present some more examples of indexing of large satellite images.
The "Region Matrix" shows the con�dence of the classi�cation performance. The
quantitative measures of these classi�cations with probabilities are then analyzed to
infer the certainty of the class labels. The region matrix is then superimposed on the
original image to give a visual indication of the overall indexing result. The indexing
scheme is shown in Figure 6.14. Detailed analysis of some speci�c regions is performed
using ground truth from satellite images together with maps available from Google
maps.

Figure 6.14: The experimental structure.
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6.3.1 Barcelona

The region matrix in Figure 6.16 shows the classi�cation probabilities of an area located
in the north of Barcelona. As can be seen in the original image in Figure 6.15, a large
part of it is a mountainous region, which is correctly labeled in the region matrix. The
south-eastern portion of the image consists of big and small urban structures which are
correctly classi�ed as Europe urban and Villages classes. Two areas, shown with red
labels, corresponding to a Common class are misclassi�ed due to a network extraction
failure in these regions.

Figure 6.15: Original image of Barcelona c©CNES.
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Figure 6.16: Classi�cation results for Barcelona.
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Figure 6.17: Classi�cation results superimposed on the original image of Barcelona.
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Figure 6.18: Ground truth with Google maps c©2007 Google-Imagery c©2007 Terra-
Metrics, Map data c©2007 Tele Atlas.
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It can be seen in the matrix that a few regions are labelled as USA urban. A closer
look at the matrix reveals that either the classi�cation probabilities of these regions
are low or they are comparable to other neighboring classes. The superimposed image
shown in Figure 6.17 gives us an overall qualitative measure of the classi�cation. A
detailed analysis of the two regions marked in Figure 6.17, with ground truth from
Figure 6.18, is reported in subsection 6.3.2.

6.3.2 Detailed analysis of 2 regions

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.000
Mountains 0.196 Mountains
Fields 0.099
USA 0.000
Europe 0.049
Airports 0.002
Common (Sea) 0.003

Figure 6.19: Probabilistic classi�cation output with labels.

This region lies close to a small urban area la Barata, north of the city of Barcelona,
Figure 6.18. This is a mountaneous region covered with dense forest. The curved
and winding road network structure provides a good discriminative property for the
classi�cation of this region. The region is correctly classi�ed as Mountains class as
shown in the superimposed image, Figure 6.17.

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.000
Mountains 0.000
Fields 0.009
USA 0.0.00
Europe 0.817 Europe
Airports 0.000
Common (Sea) 0.001

Figure 6.20: Probabilistic classi�cation output with labels.

This is the industrial town of Tarrasa which lies to the north of the city of Barcelona,
Figure 6.18. Its geographic coordinates are 41◦34'N, 2◦00'E. The features from the road
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network structures in this region correctly classify it as Europe urban class, as shown
in Figure 6.17.
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6.3.3 Los Angeles

The original image of a part of Los Angeles city in Figure 6.21 shows an urban cover-
age on the western, central and south-eastern regions. The north-eastern and south-
western regions are mountainous, and are correctly labelled as Mountains class.

Figure 6.21: Original image of Los Angeles c©CNES.

The region matrix in Figure 6.22 shows that certain areas are classi�ed as Europe
urban. This can be explained from the fact that either the classi�cation probabilities
are low or they are comparable with the neighboring classes. The other reason for
this is that the network structures in these areas is similar to the one found in many
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Figure 6.22: Classi�cation results for Los Angeles.
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Figure 6.23: Classi�cation results superimposed on the original image of Los Angeles.
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Figure 6.24: Ground truth with Google maps c©2007 Google-Imagery c©2007 NASA,
TerraMetrics, Map data c©NAVTEQTM , LeadDog Consulting.
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European urban structures. The superimposed image in Figure 6.23 validates the
classi�ed regions. A detailed analysis of the two regions marked in Figure 6.23, with
ground truth from Figure 6.24, is reported in subsection 6.3.4.

6.3.4 Detailed analysis of 2 regions

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.000
Mountains 0.961 Mountains
Fields 0.018
USA 0.000
Europe 0.059
Airports 0.002
Common (Sea) 0.005

Figure 6.25: Probabilistic classi�cation output with labels.

This region lies to the south of the two small urban areas of Sunland and Tujunga,
Figure 6.24. This is a hilly region covered with green patches of grassland. There is a
big highway across this region. There are many winding narrow roads in the hills. The
features from these road network structures correctly label this region as Mountains
class, as shown in the superposed image, Figure 6.23.

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.000
Mountains 0.000
Fields 0.000
USA 0.944 USA
Europe 0.003
Airports 0.003
Common (Sea) 0.007

Figure 6.26: Probabilistic classi�cation output with labels.

This is the central part of the city of Los Angeles, Figure 6.24. This is the largest
city in the state of California. The dense grid-like medium and broad road structures
found in this region can be used to identify the geographical location of such urban
settlements in satellite images. The features extracted from the road structures per-
taining in this region are used to correctly classify this region as a USA urban region.
Figure 6.23 validates the classi�cation results.
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6.3.5 Madrid

The original image corresponds to a area located in the north of the city of Madrid.
Figure 6.27 shows a large coverage of highlands with some big and small scattered
urban areas. As can be seen in the region matrix in Figure 6.28, the central and the
north-eastern parts are highland areas with some Villages and Fields structures in
between. The eastern part is covered with small urban regions which are correctly
labelled as Villages.

Figure 6.27: Original image of Madrid c©CNES.

The probabilities in the matrix show that the classi�cation con�dence in the marked
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Figure 6.28: Classi�cation results for Madrid.
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Figure 6.29: Classi�cation results superimposed on the original image of Madrid.
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Figure 6.30: Ground truth with Google maps c©2007 Google-Imagery c©2007 Terra-
Metrics, Map data c©2007 Tele Atlas.
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areas is high, i.e. there is a near-certainty in the class labelling. A European urban
area marked in the region matrix has classi�cation probability comparable to that of
Mountains. A closer look at the neighbors of this region and the network structure per-
taining to it a�rm that this region is misclassi�ed as a Europe urban region. A closer
analysis with Google maps in Figure 6.30 of the two regions marked in Figure 6.29 is
reported in subsection 6.3.6.

6.3.6 Detailed analysis of 2 regions

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.003
Mountains 0.085
Fields 0.331 Fields
USA 0.000
Europe 0.139
Airports 0.008
Common (Sea) 0.002

Figure 6.31: Probabilistic classi�cation output with labels.

This region lies to the north of the small urban settlement of San Pedro, Figure 6.30.
This is an agricultural region with a large stretch of �elds. The curved road structures
are well extracted from the image and the features from them classify it correctly as
Fields class.

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.987 Villages
Mountains 0.000
Fields 0.003
USA 0.000
Europe 0.756
Airports 0.001
Common (Sea) 0.002

Figure 6.32: Probabilistic classi�cation output with labels.

This is the small village of Colmenar Viejo, located to the north of Madrid with
geographic coordinates of 40◦39'N, 3◦46'E, Figure 6.30. The road networks and the
urban region features correctly classify it as Villages class. As can be seen in the
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classi�cation probabilities, the road features and the size of the urban structures also
classify this region to be Europe urban with a probability of 76%.
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6.3.7 Paris

The image in Figure 6.33 shows a part of a suburb of Paris with a major coverage of
Fields areas. The south-eastern portion of the image is covered with big and small
urban areas. The white regions are clouds which cover certain portions of the urban
regions. The region matrix in Figure 6.34 depicts the good classi�cation of the Fields
class which comprises of around 70% of the image.

Figure 6.33: Original image of Paris c©CNES.

Some small urban areas are misclassi�ed as Mountains due to poor extraction of
the road network and urban regions pertaining to that image patch. The extraction
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Figure 6.34: Classi�cation results for Paris.
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Figure 6.35: Classi�cation results superimposed on the original image of Paris.
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Figure 6.36: Ground truth with Google maps c©2007 Google-Imagery c©2007 Terra-
Metrics, Map data c©2007 Tele Atlas.
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of networks from certain urban regions is hindered by cloud coverage over that area,
resulting in poor classi�cation. A detailed analysis with Google maps in Figure 6.36
of the two regions marked in Figure 6.35 is reported in subsection 6.3.8.

6.3.8 Detailed analysis of 2 regions

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.006
Mountains 0.000
Fields 0.615 Fields
USA 0.000
Europe 0.201
Airports 0.004
Common (Sea) 0.001

Figure 6.37: Probabilistic classi�cation output with labels.

This area lies in the north-west of the region of Cergy as can be seen in Figure 6.36.
This is an agricultural region with large �elds. The road network structures from these
�eld areas are well extracted, and the features from them correctly classify it as Fields
class.

Image Classes P (c|input) Estimated
Class/Classes

Villages 0.057
Mountains 0.000
Fields 0.988 Fields
USA 0.000
Europe 0.000
Airports 0.002
Common (Sea) 0.002

Figure 6.38: Probabilistic classi�cation output with labels.

This is the region of Pontoise, a commune of the Val-d'Oise located in the north-
western suburbs of Paris. Its geographic coordinates are 49◦3'N, 2◦6'E. The road
network structures are not well extracted from the image and hence the features from
them hinders correct classi�cation of this area. A good extraction of the road network
would have classi�ed this area as Europe urban, but instead it is classi�ed as Fields.
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6.4 Discussion

Classi�cation of large satellite images with patches of images extracted from them is
a novel idea in the sense that the patches considered contain signi�cant coverage of
a particular type of geographical environment. Probabilistic SVM provides us with a
quantitative analysis of the classi�cation. The results show that the method is able
to classify a large image into various geographical classes with a mean error less than
10%. The few classi�cation errors that can be seen in the results can be recti�ed using
the neighborhood information from the misclassi�ed image. This method provides a
basis for more complex analysis of large satellite images. There are some issues which
have not been tackled in this work. The e�ect of overlapping patches on classi�cation
is not reported. This may be an interesting study, as it can help to better classify the
images. Moreover, image patches of di�erent sizes can also be used to improve the
classi�cation performance.

The detailed analysis of the regions marked in the superposed images con�rms
the classi�cation results with ground truth from Google maps. A closer look at the
urban structures and the road networks pertaining to these regions also con�rm our
classi�cation results.

Further post processing of the region matrix with Stochastic models, e.g., Markov
Random Fields (MRF), can also be used to regularize the region matrix for a �ner
classi�cation.
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Chapter 7

Conclusion

The growth of large image databases during the last few decades with the advancement
in image acquisition technologies has attracted researchers from di�erent �elds to
work in the domain of image information mining systems. The images coming from
various sources must be systematically analyzed to render important information. A
vast literature can be found in the �eld of CBIR and KDD. A brief overview of the
literature on image content reveals that shape and texture have been widely used
to capture information from satellite images. Classi�cations with shape or texture
features extracted from the image helps us to understand the spatial structure of the
Earth's surface. The two retrieval systems which were at our disposal have motivated
us to work in the �eld of indexing and retrieval of satellite images from large images
repositories. In the future, our work can be integrated with these two systems to
render some additional features along with the existing ones.

Indexing and retrieval of images from remote sensing data archives relies on the
extraction of appropriate information. The road networks contained in an image repre-
sent one type of information. The properties of road networks vary considerably from
one geographical environment to another, and they can therefore be used to classify
and retrieve di�erent geographical environments. In our work, we have de�ned several
such environments, and classi�ed them with the aid of geometrical and topological fea-
tures computed from the road networks occurring in them. In order to compute these
features, we have used a graph representation of the road networks. This representa-
tion is robust and captures the network topology. There are certain limitations of the
road network extraction methods. The road network extraction methods often fail to
extract the �nely structured road networks in small urban areas, with the consequence
that the features computed from road networks poorly classify images containing such
areas. In order to circumvent the loss of information from these areas, a method is
adopted to incorporate the properties of these areas in our study. In SPOT images, the
urban zones appear to be strongly textured and the problem of extracting the regions
is essentially a problem of di�erentiating textures. The urban regions are segmented
from the image and a new set of geometrical and topological features are computed
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from these regions. These new features augmented with the road network features
better classi�ed the geographical environments.

A detailed study showed the dependence on image size and resolution of the features
set. Features computed from a lower resolution show a greater amount of confusion
between classes. This confusion is also visible with images of smaller sizes. However,
a few anomalies can be explained on the basis of the road network and urban area
extraction methods. Based on this study, more detailed analysis could be done on
image databases of di�erent resolutions. The optimal resolution for the categorization
of man-made structures on the Earth's surface could be determined based on this
study. The image size factor, which is also crucial for delineating class boundaries,
remains to be solved. The study reported in this work provides a foundation for
answering several such queries in the future.

Classi�cation of large satellite images with patches of images extracted from them
is a novel idea in the sense that the patches considered contain signi�cant coverage of a
particular type of geographical environment. The probabilistic SVM provides us with
a quantitative analysis of the classi�cation. The results con�rm that the method is
able to classify a large image into various geographical classes with a mean error of less
than 10%. The few misclassi�cations that can be seen in the results can be recti�ed
using neighborhood information from the classi�ed image. The method provides the
basis for a more complex analysis of large satellite images. There are some issues which
have not been tackled in this work. The e�ect of overlapping patches on classi�cation
is not reported. This may be an interesting study, as it can help to better classify the
images. Moreover, image patches of di�erent sizes can also be used to improve the
classi�cation performance.

The detailed analysis of selected regions con�rms the classi�cation results using
ground truth from Google maps. A closer look at the urban structures and the road
networks pertaining to these regions con�rm our classi�cation results. Further post-
processing of the region matrix with stochastic models, e.g., Markov Random Fields
(MRF), can also be used to regularize the region matrix for a �ner classi�cation.

Future studies can use operators to detect not only man-made structures like roads
and urban areas, but natural entities like rivers, forests, etc. The work of [Papa 98]
could also be used to detect and reconstruct buildings from aerial imagery of di�er-
ent resolutions for the analysis of urban and suburban areas. In this work, we have
restricted ourselves to a single resolution, but our methodology can be adapted to
consider images of other resolutions from QuickBird or future Pleiade satellites. At a
higher resolution, it may be possible to extract di�erent structures such as buildings,
gardens, cross-roads, etc. This in turn will allow us to incorporate more classes and
appropriately classify any geographical environment. At an image resolution of 1m,
we may imagine to have sub-classes of an existing class, for e.g., classes such as ur-
ban Europe and urban USA can be divided into downtown, residential and industrial
classes.



7. Conclusion 161

At a lower resolution, there will be a profusion of features and the interaction
between these features will be complex to handle. A method should be adapted to
deal with such cases. In order to have a better understanding of images we should be
able to incorporate texture features in our existing system. The results of this work,
together with the above mentioned perspectives, can be adapted for use with existing
and future image information mining systems for EO archives.
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JOURNALS

Computing Statistics from Man-Made Structures on the Earth's Surface
for Indexing Satellite Images, A. Bhattacharya and M. Roux and H. Maitre and
I. Jermyn and X. Descombes and J. Zerubia. International Journal of Simulation
Modelling, Special issue on CompIMAGE - Computational Modelling of Objects Rep-
resented in Images: Fundamentals, Methods and Applications, Vol. 6, No. 2, pp.
73-83, 2007.

CONFERENCES

Indexing of Mid-Resolution Satellite Images with Structural Attributes, A.
Bhattacharya and M. Roux and H. Maitre and I. Jermyn and X. Descombes and J.
Zerubia. Submitted to XXI ISPRS Congress, 2008, Beijing, China

Indexing Satellite Images with Features Computed from Man-Made Struc-
tures on the Earth's Surface, A. Bhattacharya and M. Roux and H. Maitre and I.
Jermyn and X. Descombes and J. Zerubia. In Proc. Fifth International Workshop on
Content-Based Multimedia Indexing (CBMI 2007), Bordeaux, France. pp: 244-250

Computing Statistics from a Graph Representation of Road Networks in
Satellite Images for Indexing and Retrieval, A. Bhattacharya and I. H. Jermyn
and X. Descombes and J. Zerubia. In Proc. CompIMAGE - Computational Modelling
of Objects Represented in Images: Fundamentals, Methods and Applications, Coimbra,
Portugal, October 2006. pp: 97-100

Shape Moments for Region-Based Active Contours, P. Horvath and A. Bhat-
tacharya and I. H. Jermyn and J. Zerubia and Z. Kato. In Proc. Hungarian-Austrian
Conference on Image Processing and Pattern Recognition, Szeged, Hungary, May 2005.
pp: 187-194
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Extraction of Structural Primitive Features from Satellite Images for In-
dexation and Retrieval, A. Bhattacharya and M. Roux and H. Maitre and I. Jermyn
and X. Descombes and J. Zerubia. Poster at the 1st Symposium of the CNES/DL-
R/ENST Competence Centre on Information Extraction and Image Understanding for
Earth Observation, Paris, France.

INVITED TALKS/SUMMER SCHOOL

Computing Statistics from Man-Made Structures on the Earth's Surface
for Indexing Satellite Images, At the 7th CNES/DLR Workshop on Information
Extraction and Scene Understanding for Meter Resolution Images, DLR, Oberpfa�en-
hofen, Germany.

Features from Graph Representation of Road Networks in Satellite Im-
ages for Indexation, Cross-Seminar ARIANA/MAESTRO research groups, INRIA,
Sophia Antipolis, France.

Features from Graph Representation of Road Networks in Satellite Images
for Indexation, At IMEDIA research group, INRIA Rocquencourt, France.

Graph Representation of Road Networks in Satellite Images for Indexation,
At Ècole Supèrieure des Communications de Tunis (Sup'Com), Tunisia, under Action
Concertée Incitative Massées de Donnes (ACI) QuerySat Project.

Participant at the 3rd British Computer Society Summer School on Pattern
Recognition, Portland Square, Plymouth, UK, July, 2005.
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