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Abstract

Abstract In this thesis, we study the problem of static and dynamic multiview

reconstruction and texturing, particularly focusing on real applications. First, we

propose three reconstruction methods sharing the objective of estimating a repre-

sentation of a static/dynamic scene from a set of multiple images/videos. Then, we

consider the problem of multi-view texturing, focusing on the visual correctness of

the rendering. The contributions of this thesis are as follows,

• A shape from silhouette approach is proposed producing a compact and high-

quality 4D representation of the visual hull, o�ering easy and extensive control

over the size and quality of the output mesh as well as over its associated

reprejection error.

• A dynamic multi-view reconstruction method is proposed computing a 4D

representation of a dynamic scene, based on a global optimization of a true

spatio-temporal energy, taking visibility into account.

• A photo-consistent surface reconstruction method is proposed incorporating

the input images for better accuracy and robustness.

• A multi-view texturing method is proposed computing a visually correct tex-

turing of an imprecise mesh.

Résumé Dans cette thèse, nous étudions les problèmes de reconstruction sta-

tique et dynamique à partir de vues multiples et texturation, en s'appuyant sur

des applications réelles et pratiques. Nous proposons trois méthodes de reconstruc-

tion destinées à l'estimation d'une représentation d'une scène statique/dynamique

à partir d'un ensemble d'images/vidéos. Nous considérons ensuite le problème de

texturation multi-vues en se concentrant sur la qualité visuelle de rendu.

Keywords Multi-view reconstruction, dynamic reconstruction, stereovision, sur-

face reconstruction, point cloud, Delaunay triangulation, Voronoi diagram, medial

axis transform, cell complex, minimum s-t cut, simulated annealing, visibility, thin-

plate spline, texturing
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Notations

Ed Euclidean space of dimension d

Rd real space of dimension d

conv() convex hull

c(p, q) capacity of an edge connecting p and q in a graph

d dimension of the space

d(X,Y ) Euclidean distance between X and Y

d(X,Ω) Euclidean distance between X and Ω (a subset of Rd)

dpow(Σ1,Σ2) power distance between spheres Σ1 and Σ2

dprob(X,Y ) probabilistic distance between X and Y

i index variable
~l labeling vector

k index variable

n number of objects, cardinality of a set of objects

p, q nodes of a graph, probability

r radius of a sphere or a ball

s state

t time

v scaling factor, node

(x1, x2, · · · , xd) real coordinates of a point in Rd

B set of balls

C complex, cut, set of cells

D(M) Delaunay polytope, dual to V(M)

Del(M) Delaunay complex ofM
Del|Ω(M) Delaunay triangulation ofM restricted to Ω

E set of edges in a graph

G graph

H set of hyperplanes

I set of images

M set of points

P polytope, paraboloid, set of probabilities

Pow(S) power diagram of a set S
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S surface, curve, subset of nodes of a graph containing

the source, set of spheres

T subset of nodes of a graph containing the sink

V set of nodes in a graph

Vor(M) Voronoi diagram of a setM
B ball

B(C, r) ball of center C and radius r

C cell, center of a sphere or a ball

E energy

F facet

H hyperplane

H̃ half-space

I image

M vertex, point, vector

O() asymptotic upper bound

P,Q vertex, point, vector

R constant

T temperature

U vertex, point, vector

V visual hull

V (M) Voronoi cell of a point M

X,Y vertex, point, vector

φ() signed distance function in R2

γ photo-consistency measure

ρ probability density function

Φ() signed distance function in R3 and R4

Π() camera projection

Θ() asymptotic equivalent

Σ sphere

Σ(C, r) sphere of center C and radius r

Ω silhouette, subset of Rd



Introduction

Reconstructing models of a scene or an object from multiple images, taken from

di�erent viewpoints, has long been of interest in the area of computer vision. More

recently, the automatic spatio-temporal modelization of a dynamic scene is becom-

ing increasingly popular. A large number of applications require good estimation of

shape and/or motion. In medicine, the shape and the motion of organs and tissues

are modeled to study anatomical structures, diagnose disease, plan treatment or

guide and monitor surgery. In sport science, the body parts of athlets are tracked to

improve their performance. In game and movie industry, human performance is cap-

tured and mapped on photo-realistic reconstructed models of virtual actors. Today's

increasingly demanding applications for these problems present several challenges

for computer vision techniques.

Controlled Quality and Precision

Despite highly improving rate of the capabilities of digital electronic devices, more

applications require accesible control over the quality and the precision of the repre-

sentation, aiming generally to handle computational complexity as a function of the

available resources. Generally speaking, two major directions have been followed:

The �rst has been focused on the precision and/or quality of the reconstruction,

while the second has given up the accuracy focusing on real-time processing. Very

few works provide a complete control over the quality and the accuracy in a way to

give the ability of tuning the performence and the precision.

Compactness

Increasingly growing resolution of aquisition devices yields massive digitized scene

representations. On the other hand, more and more applications require e�cient

ways of stocking and transfering data, particularily because of the growing speed

of virtual/online environments. Yet, not many approaches have been proposed con-

sidering compactness as a crutial objective, most algorithms produce large meshes

which should be compressed or simpli�ed in a post-processing step.
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Coherent Representation

A frame-by-frame reconstruction of a dynamic scene does not exploit temporal co-

herency, leaving discontinuities and visual artifacts. Most applications, however,

demand compact and realistic representations. Such results are only attainable

when the spatial reconstruction is guided by temporal cues, exploiting the sequence

in a global manner.

Robustness

No real scanning devise provides exact data. This is particularily a challenging prob-

lem for the surface reconstruction and multiview reconstruction algorithms based

on point clouds extracted from image datasets, featuring higher levels of noise and

higher proportions of outliers than those of active scanning devices. Unfortunatily,

this discards most, if not all, standard surface reconstruction algorithms, and an

important part of multiview reconstruction methods. In practice, a reconstruction

approach cannot be employed in real applications unless it robustly handles uncer-

tainty.

Visual Correctness

Some applications desire visually correct rendering of a scene, despite the noticable

imprecision of the representation (e.g. entertainment industry). Generally as a last

stage of the pipeline, no farther correction of the mesh is possible (e.g. the origin

of error is unknown, mesh is a visual hull). Most proposed approaches, however, do

not consider the visual correctness an important factor, very few works have been

done in this direction.

Contributions of this thesis

In this thesis, we study the problem of static and dynamic multiview reconstruction,

followed by a texturing step, generally employed in most applications to obtain a

complete realistic computer representation of the scene. We are particularly focusing

on the aforementioned motivations, specially important for real applications. We

propose four novel approaches,

• The shape from silhouette approach presented in Chapter 3 produces a com-

pact and high-quality 4D representation of the visual hull, o�ering easy and

extensive control over the size and quality of the output mesh as well as over

its associated reprojection error.
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• The dynamic Multi-view reconstruction method presented in Chapter 4 com-

putes a 4D representation of a dynamic scene, based on a global optimization

of a true spatio-temporal energy, taking visibility into account.

• The photo-consistent surface reconstruction method presented in Chapter 5

incorporates the input images for better accuracy and robustness.

• The multi-view texturing method presented in Chapter 6 computes a visually

correct texturing of an imprecise mesh.

The �rst part of this thesis consists in our contributions for the problem of static

and dynamic multi-view reconstruction. We consider all over this thesis that im-

ages/videos are captures from calibrated multi-view cameras de�ned by projections

Πi : R3 → R2 from world reference frame to the image planes. In the dynamic case,

we also suppose that the cameras are �xed and the projections are not modi�ed

through time. Two situations have been distinguished according to the nature of

input images:

1. the input is a set of silhouettes (Chapter 3)

2. the input is a set of color images (Chapters 4 and 5)

In chapter 5 we suppose that the point clouds have already been extracted from

images by triangulation. However, we are still in a multi-view framework and we

propose a photo-consistent surface reconstruction algorithm.

In the second part of this thesis, we study the problem of multi-view texturing,

often considered as the last stage of the pipeline. Our objective is to compute a

visually correct rendering: we propose an additional step to make sure that images

correspond to each other according to the mesh.

The remainder of this thesis is organized as follows.

Chapter 1

In this chapter we review the problem of shape from silhouette and the problem of

dynamic multi-view reconstruction. We survey the most related existing techniques

to our work, and describe the di�erent directions followed in this domain.

Chapter 2

In this chapter we give some background on the basic computational geometry

concepts needed in this thesis: Convex hulls, Polytopes, Simplices, and Complexes

2.1, Voronoi Diagram 2.2, and Delaunay triangulation 2.3.
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Chapter 3

In this chapter we present a novel method for computing a four-dimensional rep-

resentation of the spatio-temporal visual hull of a dynamic scene. We give some

background on the concept of Restricted Delaunay triangulation 3.2, we describe

our method for static and dynamic visual hull reconstruction 3.3, and we report

on some numerical experiments which demonstrate the e�ectiveness and �exibil-

ity of our approach for generating compact, high-quality, time-coherent visual hull

representation from real silhouette image data.

Chapter 4

In this chapter we present a novel method for computing a globally optimal spatio-

temporal representation of a dynamic scene from videos. We give some background

on the energy minimization via graph cuts 4.2, we describe our method for multi-

view reconstruction from videos adapted to dynamic cluttered scenes 4.3, and we

report some numerical experiments which demonstrate the potential of our approach

to reconstruct real dynamic scene under uncontrolled imaging conditions 4.4.

Chapter 5

In this chapter we present a novel method for the problem of surface reconstruction

robust to noise and outliers. We give some background on the concept of Power

Diagram, Regular triangulation, medial axis transform, poles and polar balls, and

the optimization method of simulated annealing 5.2, we describe our method incor-

porating the photometric cues with the surface reconstruction process for a better

accuracy and robustness 5.3, and we report numerical experiments which compare

it favorably with the state of the art in terms of accuracy and robustness 5.4.

Chapter 6

In this chapter we present a novel method for texturing of imprecise mesh. We give

some background on the algorithm thin-plate splines 6.2.4, we describe our method

for visually correct texturing based on the deformation of input images 6.2, and we

report on some numerical experiments validating our method on simulated and real

imprecise meshes 6.3.
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Chapter 1

Introduction

Abstract

In this introductive chapter, two problems have been reviewed: The problem of

shape from silhouettes, and the problem of dynamic multiview reconstruction. In the

�rst part, mainly related to Chapter 3, the problem of shape from silhouette is studied

in both static and dynamic cases, surveying the existing techniques which aim to ap-

proximate the shape of a scene, or a spatio-temporal shape of a dynamic scene from

only silhouette cue. Despite the approximative nature of these representations, the

shape from silhouette methods are quite popular in computer vision and graphics due

to their computational e�ciency and straightforward implementation. In the second

part, mainly related to Chapter 4, the problem of dynamic multiview reconstruc-

tion has been reviewed in a more general case, surveying the methods which employ

photometric and (possibly) silhouette information to reconstruct a spatio-temporal

approximation of the scene.
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1.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 35
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Figure 1.1: Silhouettes of an object with respect to four viewpoints. Silhouettes are

shown as binary images.

1.1 Shape from Silhouette

The problem of estimating the shape of an object or a scene from multiple views

has received a considerable interest in computer vision. Shape from silhouette is one

popular class of methods to solve this problem in an approximate but e�cient and

robust manner. Most of these techniques consist in computing the visual hull, which

is the maximal volume consistent with a given set of silhouettes. One noticeable

exception is the recent work of Franco et al. [Franco et al., 2006] which constructs

smooth silhouette-consistent shapes strictly included in the visual hull.

Shape from silhouette approaches are quite popular in computer vision and

graphics due to their computational e�ciency and straightforward implementa-

tion, especially compared to the photometric reconstruction methods such as stereo.

These methods are widely used in modeling and localization applications such as

human modeling, interactive virtual environments, virtualized reality, and motion

tracking.

The �rst known shape-from-silhouette approach was presented by [Baumgart,

1974]. The concept of visual hull was then introduced by Laurentini [Laurentini,

1994], and it has been extensively studied since then. A formal de�nition of the

visual hull of a scene relative to a set of viewpoints is given as follows.

1.1.1 De�nition

De�nition 1. A silhouette is the 2D projection of a 3D object or a 3D scene to the

image plane. A silhouette image is a binary image indicating at each image point if

the back-projected ray of that point intersects or not the object.
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Figure 1.2: A viewing cone. The in�nite cone starts from the viewpoint and passes

through the contour of the silhouette.

Figure 1.1 shows an example of silhouettes of a 3D object with respect to four

viewpoints. A point P of the image plane is inside the silhouette if the ray starting

at the viewpoint and passing through P intersects the object. In this example sil-

houettes are shown as binary images where black foreground and white background

represent pixels inside and outside the silhouette respectively.

Several reasons give an important role to the silhouette in computer vision. The

silhouette of an object is an e�ective cue to understand its shape [Aloimonos, 1988].

It is widely used in the problems of 3D modeling, object identi�cation [Besl and Jain,

1985, Chien and Aggarwal, 1989, Wang et al., 1984], multi-object localization and

motion capture. Silhouettes can be e�ciently computed by thresholding algorithms.

De�nition 2. A viewing cone is the back projection of the silhouette to space. It is

the maximal region of space consistent to it.

As seen in �gure 1.2 the in�nite cone of a silhouette is a generalized cone that

originates from the viewpoint and passes through the silhouette's contour on the

image plane. Any point of space in the obtained region can possibly belong to the

object. The visual hull of a collection of silhouettes is then de�ned as the intersection

of their cones. We note that the visual hull of an object is generally de�ned as the

maximal volume consistent with the silhouettes on all possible views. However, as in

practice only a �nite number of views are provided, the visual hull is usually refered

to the region obtained by their intersection. Please refer to [Koenderink, 1984] for

some relationships between the occluding contour and the surface of a shape. A

formal de�nition of the visual hull follows,

De�nition 3. Let I = {I1, · · · , In} be the set of input images, and let Πi : R3 → R2

denote the camera projections from the world reference frame to the image planes.
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Figure 1.3: Two objects which have the same silhouettes.

In addition, Ωi ⊂ R2 are the silhouettes of the object in the di�erent images. The

visual hull V is then de�ned by:

V =
{
P ∈ R3 | ∀i ∈ {1, . . . , n}, Πi(P ) ∈ Ωi

}
. (1.1)

Figure 1.4 shows the visual hull of the object with respect to the four silhou-

ettes. The visual hull approximates the shape of the object capturing all geometric

information given by its silhouettes. The approximation depends on the complexity

of the shape, as well as the number of views, their positions and their orientations.

The object is guaranteed to lie in its visual hull. However, the visual hull does

not uniquely determine its shape. An in�nite set of shapes would give the same

silhouettes, for example in the case of concavities in the object. Figure 1.3 shows

an example of two objects which have the same visual hull. Please refer to [Boyer

and Franco, 2003] for formal and detailed de�nitions of contours, viewing cones and

visual hulls.

1.1.2 State of the art

Visual hull algorithms fall into three main categories: volume-based approaches,

surface-based approaches, and image-based approaches.

1.1.2.1 Volume-based methods

Volume-based methods use a subdivision of space into elementary regions, typically

voxels. The voxel is the quantum unit of volume representing a value on a grid in

three-dimensional space. This is analogous to the two-dimensional pixel. In most

volume-based methods voxels are labeled by numerical values representing di�erent

aspects of the scene. An early approach which used this representation was [Martin

and Aggarwal, 1983]. In their work parallelepipedic cells aligned with the coordinate

axis are used as the volume elements.
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Figure 1.4: The visual hull of the object in �gure 1.1 with respect to four silhouettes

(Visual hull computed by the method of [Franco and Boyer, 2003]).

Voxel occupancy is the simplest volume-based approach to this problem. In voxel

occupancy each voxel is labeled as �lled or empty, representing the scene as the set

of �lled voxels. Many approaches are based on this representation. The classical

shape-from-silhouette algorithm which uses this representation is called silhouette

intersection. In this method the cone of each silhouette is computed as the set of all

voxels which may be occupied. The 3D shape is then computed as the intersection

of the cones giving the collection of all voxels consistent with the silhouettes. A

classic algorithm known as voxel carving computes this intersection by projecting

each voxel to all viewpoints and discarding all voxels which fall outside any of

the silhouettes. Several methods have been proposed to compute and represent

e�ciently the shape. In [Potmesil, 1987, Szeliski, 1993] the octree representation (a

tree of recursively subdivided cubes) is considered handling arbitrary viewspoints.

It is important to note that silhouettes are considered as hard constraints (i.e.

the projections of voxels must lie into the silhouettes). In practice this is not a good

assumption since small errors in the silhouettes can have dramatic e�ect on the

result (i.e. a pixel error makes a hole in the object). In this case, the voxel carving

approach yields very noisy reconstructions by making hard decisions which cannot

be recovered, and by discarding the spatial coherence between voxels. Unfortunately

silhouette extraction is generally a di�cult task to achieve in presence of real world

perturbations. This is why silhouette error robustness has become an important

issue in the problem of shape-from-silhouette.

Several works have been done to overcome this problem. In most of them the

simultaneous information from all images are integrated to make more relevant de-

cisions. In [Snow et al., 2000] a generalization of silhouette intersection is proposed.

In their method a binary labeling of the voxels is computed by �nding the global



24 Chapter 1. Introduction

minimum of an energy dealing with a data term and a smoothness term. Silhou-

ettes' hard constraint are replaced with a soft constraint: First, silhouettes are not

computed exclusively. This avoids an important source of error coming from the

silhouette computation. Second, a global spatial smoothness is incorporated. The

data ambiguity is resolved taking advantage of the value consistency on neighboring

voxels. The global minimum of their energy is then computed using graph cuts.

In a more recent work [Franco and Boyer, 2005] a probabilistic representation

of the problem is proposed. Unlike the binary formulation of voxel occupancy the

scene is represented by a grid of voxel occupancy probabilities. Similarly to the

previous method they compute silhouette fusion in space in order to integrate the

contribution of all images. This is done by considering each pixel of input images as a

statistical occupancy sensor. The result of their method is then a global probability

inferred using all the pixel observations in each voxel. This encodes naturally the

shape information.

Graphics hardwares are also used in volume-base methods to compute e�ciently

the shape approximation. In [Lok, 2001] projected textures are used to decide if

a volume sample lies within the visual hull. Using framebu�er their method is

implemented on graphics hardware making the real-time reconstruction possible.

An application of their method is in the immersive virtual environments (IVE).

Volume-based methods su�er generally from quantization and aliasing artefacts,

as well as from a high memory cost. Moreover, additional morphological process-

ings are usually needed in order to make correct result [Serra, 1983]. When a �nal

mesh representation is required, these methods must be complemented with an iso-

contour extraction algorithm, such as the marching cubes algorithm, introduced by

Lorensen and Cline [Lorensen and Cline, 1987]. Unfortunately, this technique pro-

duces unnecessarily large meshes (at least one triangle per boundary voxel) of very

low quality (lots of skinny triangles). Frequently, the resulting meshes have to be

regularized, optimized and decimated in order to obtain suitable representations in

terms of compactness and quality, while simultaneously controlling the approxima-

tion accuracy and preserving some topological properties, such as the absence of

self-intersections, which turns out to be a di�cult task.

1.1.2.2 Surface-based methods

Surface-based methods consist in directly building a mesh representation of the

visual hull by computing the intersection of viewing cone surfaces associated with

the silhouettes. In an early approach [Baumgart, 1975] polyhedral surfaces were

used to represent the shape approximation. Several works have been done since

then dealing with surface information [Koenderink, 1984, Cipolla and Blake, 1992,
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Boyer et al., 1995, Sullivan and Ponce, 1998].

In [Matusik et al., 2001] a polyhedral representation of the visual hull is com-

puted. In their method all silhouette cones are intersected to make a set of polygons

that de�nes the surface of the visual hull. 3D intersections are reduced to simpler

intersections in 2D thanks to the fact that silhouette cones have constant scaled

cross-section. The intersection of a face of a cone with another cone is computed by

projecting the face on the image plane of the other cone, computing its 2D inter-

section with the silhouette, and back-projecting the result on the plane of the face.

Edge-Bin data structures (described in [Matusik et al., 2000]) are used to accelerate

the intersection process. Their method computes the visual hull quickly and can be

used in real-time applications.

In [Lazebnik et al., 2001] the visual hull is computed as a generalized poly-

hedron where faces, edges and vertices are formed by the intersections of the sil-

houette cones. In their algorithm these features are correctly connected to form a

precise topological and geometric mesh. Their algorithm uses two-dimensional com-

putations and works with weakly calibrated cameras taking advantage of epipolar

geometry.

In [Boyer and Franco, 2003] a hybrid approach is proposed which takes advantage

of surface-based representation to overcome the precision limits of the volume-based

approach. In their method the regular voxel grid of the volume-based methods is

replaced by an irregular space discretization where vertices lie on the surface of the

visual hull. A Delaunay triangulation is computed on the sample points making a

collection of tetrahedral cells. Delaunay cells are then carved according silhouette

information to approximate the visual hull. The proposed hybrid approach remains

e�cient and robust taking advantage of the volumetric representation while giving

precise results with lower time and space complexities.

In a following work [Franco and Boyer, 2003] the method of [Boyer and Franco,

2003] is modi�ed to compute e�eciently an exact polyhedral visual hull associated

to polygonal image contours. In their work the Delaunay computation step used in

[Boyer and Franco, 2003] is replaced by an algorithm that recovers mesh connectivity.

This yields to a polyhedron that projects correctly on the silhouettes. Their method

is low in time complexity and suitable for real-time applications.

An advantage of surface-based approach compared to the volume-based approach

is the eventual precision of the visual hull computation. However, it is generally

admitted that surface-base algorithms su�er from numerical instability in the case

of noisy or mutually inconsistent silhouette data. Moreover, the output mesh has

a very low quality, and typically develops degeneracies when the number of input

views increases. More generally, in these approaches, there is no easy way to control
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the size or the quality of the output mesh, because it is related in a very complex

way to the chosen polygonization of image contours.

1.1.2.3 Image-based methods

For sake of completeness, let us also mention the image-based approach of Matusik

et al. [Matusik et al., 2000] that generates on-the-�y a view-dependent visual hull

representation for the purpose of rendering. Contrarily to the volume-based and

surface-based methods, they do not reconstruct a geometric or volumetric represen-

tation. Depending on the rendering viewpoint, the visual hull is computed in the

image space of the reference images.

The advantage of this approach is that sampling is done only on the pixels of the

desired image. The exact image-based representation is rendered on a given view by

computing the intersections of the discrete viewing rays with the visual hull. These

intersections can be computed e�ciently on the 2D image planes taking advantage

of the epipolar geometry. The proposed approach has low complexity in time and

is shown to be suitable for real-time applications.

Figure 1.5: The visual hull of the object in �gure 1.1 with respect to four silhouettes

(Visual hull computed by the method of [Franco and Boyer, 2003]). One of the

silhouettes is partially occluded.

1.1.2.4 Occluded silhouettes

Most background extraction methods fail to extract correctly the silhouette in pres-

ence of occlusions. Using these incomplete silhouettes the visual hull methods pro-

duce incomplete shape which do not contain the actual object. Figure 1.5 shows

the case where one of the silhouettes is occluded. In order to avoid this situation,
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partially occluded images are usually discarded even if they contain useful shape

information in the non-occluded parts.

In a recent work [Guan et al., 2006] an extended visual hull method is proposed

to deal with partial occlusions. In order to make a complete visual hull, they propose

to compute extended silhouettes which are guaranteed to contain the real silhouettes

of the object. This is done using extracted silhouettes and binary occlusion masks

which identify occluded pixels. These masks are extracted by an algorithm based on

a novel concept of e�ective boundary using spatiotemporal information. The visual

hull obtained by their algorithm is guaranteed to contain the real shape.

1.1.2.5 Dynamic shape-from-silhouette

While many authors have focused on computing the visual hull in the case of static

images, leading to several established techniques mentioned above, very little work

has dealt with the case of dynamic scenes captured by multiple video sequences, from

an actual spatio-temporal perspective, i.e. by going beyond independent frame-by-

frame computations.

The most notable related work is that of Cheung et al. [Cheung et al., 2005a]

on computing visual hull across time. However, their purpose is not to reconstruct

a dynamic scene. Their goal is to virtually increase the number of input silhouettes

by registering many views of a rigidly-moving object in a common reference frame,

in order to approximate the shape of the object more accurately. The virtual views

are computed by estimating the motion of the object between successive frames.

Unfortunately, the motion cannot be uniquely determined from only the silhouette

information. In order to resolve the alignment ambiguity, they propose to combine

color information with silhouette cue to extract a point cloud on the surface for

each frame. The motion can then be computed by aligning the point sets. See also

[Vijayakumar et al., 1996] for an early work in this direction.

More related to the dynamic reconstruction is the extension of [Cheung et al.,

2005a] to articulated motion [Cheung et al., 2005b]. Under the articulated assump-

tion, their approach exploits temporal coherence to improve shape reconstruction

while estimating the skeleton of the moving object. However, their approach is ex-

perimentally validated in the case of a single joint only. Hence it is not relevant to

the case of complex human motion or non-rigid scenes.

In a recent work [Vlasic et al., 2008] more complex human motion is handled

using silhouette geometric information. In their method visual hull is used to capture

the motion of a human performer in order to make a detailed mesh animation.

First, the skeletal pose is tracked, then an articulated template is deformed to

�t the recovered pose at each frame. The obtained meshes are therefore in full
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correspondence and have correct topology. This is particularly suitable for the mesh

editing processes such as texturing. However, their method is limited to articulated

objects and produces incorrect geometry in presence of silhouette errors.

More works have been done in the domain of dynamic reconstruction. However,

most of them are based on the photometric information and do not reconstruct the

visual hull approximation. Hence, they do not belong to the shape-from-silhouette

category and are described in a separated section 1.2.

1.2 Dynamic Multi-view reconstruction

Spatio-temporal modeling of a dynamic scene is a challenging problem which has

recieved a great attention in computer vision. In recent years, several methods for

automatic generation of complete models from multiple videos have been proposed.

In particular, the most recent ones have proven e�ective for full-body marker-less

motion capture of non-rigid scenes. However, many approaches make assumptions

on the shape, among which the rigidity or piecewise-rigidity of the scene. In the

following, di�erent varieties of the problem is discussed. Existing approaches are

reviewed describing di�erent directions made to deal with dynamic scenes.

1.2.1 State of the art

Dynamic multi-view reconstruction is generally de�ned as the problem of comput-

ing a spatio-temporal model of a dynamic scene from multiple synchronized videos

captured from di�erent view-points. Speci�c scenarios can although be considered

making a large variety of situations depending on the a priori knowledge of the

scene and the motion. One important example is the case of rigid objects [Ullman,

1979, Waxman and Duncan, 1986, Young and Chellappa, 1990, Zhang and Faugeras,

1992, Costeira and Kanade, 1998] where the structure and the motion can even be

computed only from a single video sequence. This is due to the fact that the projec-

tion of a moving rigid object on a camera has a highly constrained two-dimensional

motion. As an example, motion capture methods based on kinematic skeleton rely

on piecewise rigid motion. These methods, however are not of interest here, since

generally they do not recover spatio-temporal details, and fail to track non-rigid

motions. Please refer to [Moeslund and Granum, 2001] for a survey on this domain.

The dynamic reconstruction is of great interest in a large number of applications

such as object recognition, medecine, kinesiology and cinema. Speci�c applications,

such as cardiac motion, can make parametric models to constraint the shape and

the motion. Nevertheless, most recent works are focused on the general motion of

a complex scene dealing with important challenges such as topology changes or self
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occlusions.

A challenging task in the problem of dynamic reconstruction is the matching

problem of same physical points in the spatio-temporal framework. Particularly, a

large number of tasks and applications, such as compression or spatio-temporal post-

processing, require dynamic models with constant spatial connectivity over time, re-

lying directly on the problem of correspondence �nding. Unfortunately, this is a very

di�cult task since a three-dimensional patch has generally very di�erent shapes and

colors when seen from di�erent views or through time. This requires image similar-

ity measures capable of �nding correspondences in arbitrary situations. To simplify

the matching process, however most approaches make restricting assumptions on

the appearance of the surface patches. A popular example is the assumption that

the corresponding pixels have the same color in all views and in all time instants.

This is clearly not valid in the case of non Lambertian surfaces. Moreover, temporal

correspondences cannot be found correctly under this assumption unless the images

are taken under controlled environments such as constantly illuminated scenes.

Depending on the application, more robust matching criterions have been also

considered. Some important examples are the normalized cross correlation [Faugeras

and Keriven, 1999, Goldlücke and Magnor, 2004, Esteban and Schmitt, 2004], ra-

diance tensor [Jin et al., 2005] or statistical measures such as the correlation ratio

[Roche et al., 1998] and mutual information [Viola et al., 1995].

1.2.1.1 Scene Flow Estimation

First family of approaches relies on the estimation of scene �ow, the three-

dimensional motion �eld of a dynamic scene introduced in [Vedula et al., 1999].

This is analogous to the two-dimensional optical �ow, de�ned as the motion �eld

of points on an image, naturally related to it by camera projection: the projection

of the scene �ow on a camera results the optical �ow of the two-dimensional pro-

jection of the dynamic scene. Indeed, this is not invertible, clearly the projected

two-dimensional motion information encoded in optical �ow does not give enough

information about the three-dimensional motion of a scene, more knowledge about

the structure of the scene and the rates of change of depth maps are required to

compute the scene �ow from optical �ow of a single camera [Vedula et al., 1999].

De�nition 4. The optical �ow is the two-dimensional motion �eld of points on an

image. Let ~Ui(t) : R+ → R2 be the temporal trajectory of a moving point on plane,

its optical �ow is dUi
dt . Similarily, the scene �ow is the three-dimensional motion

�eld of points in space. Let ~Xi(t) : R+ → R3 be the temporal trajectory of a moving

point in space, its scene �ow is dXi
dt .
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Suppose that Ui(t) is the projection of the three-dimensional point Xi(t) on

the image plane of a camera. Their trajectories are then related by the camera

projection Π : R3 → R2 from the world reference frame to the image plane:

Ui = Π(Xi)

dUi

dt
=
∂Π

∂X

dXi

dt
(1.2)

The scene �ow and the optical �ow are therefore related by the 2× 3 Jacobian

matrix ∂Π
∂X which can be derived by di�erentiating the camera projection symbol-

ically. Unfortunately, this equation provides only two constraints and can not be

used to �nd the three unknowns of the inverse estimation problem of scene �ow from

optical �ow. However, as proposed in [Vedula et al., 1999], multiple optical �ows

captured by multiple cameras yield to the following over-constrained system which

can be solved by a singular value decomposition of the Jacobian matrix. This yields

to the least square minimization of the error obtained by reprojecting the scene �ow

on each optical �ow: 
∂Π1
∂X
...

∂Πn
∂X

 dX

dt
=


∂U1
∂t
...

∂Un
∂t

 (1.3)

A limitation of this method is the reliance to the accuracy of optical �ow esti-

mation, as it is computed separately. In a more recent work [Vedula et al., 2005],

this result is used in a pipeline over two earlier works [Vedula et al., 1999, 2002]

about scene �ow estimation and image interpolation. In their work an image-based

approach is proposed to model dynamic events and render novel virtual views of the

scene. The 4D spatio-temporal model of their approach allows to interpolate the

scene from arbitrary viewpoint at any time. Their pipeline consists in two steps:

First, the shape and the scene �ow is computed using photometric information

making a 4D model of the scene and the motion. Then a spatio-temporal view in-

terpolation algorithm is used to generate novel image from arbitrary spatio-temporal

viewpoint.

The shape of the scene at each time instant is �rst estimated individually in a

volumetric framework as a 3D voxel model by the voxel coloring algorithm [Seitz

and Dyer, 1997]. The scene �ow is then estimated using multiple optical �ows from

multiple cameras as described above. In the second step, a new image is rendered

from arbitrary viewpoint by using the motion to '�ow' the nearest computed shape

to an arbitrary time instant, �tting a smooth surface to the obtained voxel model,

and �nally ray-casting across space and time to generate the image.
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Knowledge of the scene �ow is very useful in a large number of applications

such as motion analysis, motion capture, object recognition and computer anima-

tion. Particularly, the velocity distribution can be used as a prediction mechanism

to compute the spatio-temporal structure more e�ciently and more robustly. Such

model can then be used to interpolate novel views across time and space. Many

other works have been done to estimate the scene �ow, in some of which struc-

ture and motion are computed simultaneously exploiting the relationship between

structure and motion constraints, this is called motion stereo. In [Zhang and Kamb-

hamettu, 2000] the shape and motion estimation are integrated. An a�ne motion

model is �tted to an image grid with a global smoothness constraint on the whole

image. Their method, however does not handle correctly the occluded parts and

the motion/depth boundaries. This limitation is corrected in an improved version

[Zhang and Kambhamettu, 2001] which handles discontinuities and occlusion.

In the volume-based approach of [Vedula et al., 2000] the shape and the scene

�ow of a non-rigid scene are recovered simultaneously by carving the 6D space

of all possible shapes and �ows. The shape computation is integrated with the

motion estimation using images of two time instants. The advantage of this approach

compared to the static shape estimation methods is that the additional information

provided by the motion data is integrated in order to recover more robustly the

shape and the motion.

The 6D space is formed by hexels, points representing the beginning and ending

position of a �xed point on the surface of a moving object in two time instants.

A 2D manifold in this space represents a spatio-temporal scene. In order to �nd

this surface, two assumptions are made. First, a point on the scene keeps the same

color through time. Second, the motion is bounded between frames. The shape and

the motion are computed by carving hexels which do not lie on the spatio-temporal

manifold. Their experimental results show that this method improves the shape

by integrating the motion, however, it does not guarantee the smoothness of the

computed scene �ow as it is estimated individually for each voxel. A disadvantage

of their method is its computational complexity and memory demands due to the

6D-hexel grid, making it not applicable to high resolutions.

Re�ectance, as well as shape and motion of a non-rigid scene is recovered in

[Carceroni and Kutulakos, 2002]. They overcome the Lambertian re�ectance con-

straint of previous approaches by assuming a Phong model, handling shadows and

specular highlights. In another surface-based approach [Neumann and Aloimonos,

2002] both motion and structure �elds of a dynamic scene are computed using sil-

houette and photometric information. The advantage of their approach compared

to the volume-based approach of [Vedula et al., 2000] is that a multi-resolution
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subdivision framework is used, locally adapting the surface representation to the

complexity of shape and motion in order to obtain high resolution result. Please

refer to [Zorin et al., 1997] for a description on the multiresolution representation of

meshes used in their work. However, unlike the work of [Zorin et al., 1997] where the

user manipulates di�erent levels of resolution, they propose to change the shape and

motion by optimizing a multi-view spatio-temporal stereo criterion. Their approach

consists in two steps: First an approximative initial estimate of the shape and mo-

tion is computed. Then the shape and motion are re�ned through a multi-resolution

spatio-temporal stereo.

More recently, [Pons et al., 2007] proposed a variational method to estimate

the shape and the scene �ow by maximizing a similarity measure, with respect to

shape and motion, between input images and predicted images. A predicted image

is the appearance of the surface seen from another camera, or estimated in another

time instant using the actual surface, scene �ow, and camera parameters. It can

be computed by back-projecting an image on the surface and reprojecting it on

another camera, which removes simultaneously the projective distortion making the

similarity computation much simpler, or by warping an image using the scene �ow.

Unlike previous approaches, which compute a matching score on each surface

point and integrate it on the surface, they propose to compute the global similar-

ity measure between these images. Consequently, this measure, which is a function

that maps two images to a scalar score, can be chosen independently of the approach

according to the speci�c applications, scene properties or imaging conditions. The

shape and the scene �ow are then computed by minimizing an energy dealing with

the similarity term and a regularization term using a gradient descent. This can

be implemented easily and e�ciently thanks to their matching technique. Their

method avoids explicit computation of optical �ow, however the shape and mo-

tion are still computed sequentially, not taking advantage of the spatio-temporal

consistency constraints.

1.2.1.2 Surface tracking / Shape Matching

The scene �ow encodes naturally the spatial correspondences between frames. How-

ever, due to the �nite di�erence approximations of derivatives, it is usually limited

to small displacements between successive frames, high spatio-temporal density is

required to estimate correctly the motion �eld. This is unfortunately not ful�lled in

most of real applications.

Another family of approaches estimate the large and fast motions by �nding

spatio-temporal correspondences, among which some recent ones estimate also dense

motion �elds by interpolating sparse 3D correspondences. Unfortunately, despite
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their high accuracy and their popularity in game and movie industry, marker-based

motion capture systems [Menache, 1999, Park and Hodgins, 2006] require very re-

strictive capturing condition, making then expensive and less practical. This is why

researchers are recently more interested in automatic marker-less motion capture

techniques. Unlike scene �ow estimation, most of these approaches use photometric

or/and geometric features to sparsely match the shape at di�erent time instants,

i.e. two polyhedral meshes. A dense correspondence �eld can then be estimated

between surfaces using interpolation algorithms.

Doing a complete review of this area is out of the scope of this thesis. We

limite ourselves to some of the methods that allow to obtain dense coherence spatio-

temporal models from real multi-view video sequences, particularly taking advantage

of photometric cues to handle real-world situations robustly. A large number of al-

gorithms have been proposed to solve the 3D correspondence problem geometrically

and mathematically. Please refer to [Rusinkiewicz et al., 2005, Gal and Cohen-Or,

2006, Huber and Hebert, 2003, Zhang and Hebert, 1999, Anguelov et al., 2004, Häh-

nel et al., 2003, Alliez et al., 2007, Bronstein et al., 2007, Hormann et al., 2007] for

more information on this area.

[Matsuyama et al., 2004] propose to use photometric and silhouette information

to compute shape and motion simultaneously. In their method a surface mesh is

deformed under photo-consistency, silhouette and motion �ow constraints. Compu-

tationally heavy minimization is however required to �nd dense matches. In [Starck

and Hilton, 2005] spherical parameterization is proposed to estimate dense corre-

spondences guaranteeing a continuous bijective mapping between surfaces. Being

in a spherical framework, their method is limited to 3D surfaces with genus zero

topology and may fail in extreme poses.

More recently, [Ahmed et al., 2008] proposed a method to infer dense 3D cor-

respondences from sparce optical feature-based matches between unrelated adja-

cent shape-from-silhouette volumes reconstructed for each frame individually. First,

SIFT descriptors [Lowe, 1999] are used to �nd initial coarse correspondences between

available reconstructed surfaces, then a scalar monotonic function is associated to

each feature making the dense matching possible by comparing the function values

on two surfaces. The �nal estimated correspondences are then used to align a mesh

with constant connectivity through all frames. Taking advantage of optical features

to �nd initial sparse correspondences, their algorithm has lower computational cost

compared to previous methods, handles arbitrary surfaces, however unlike [Starck

and Hilton, 2005] it does not guarantee the one-to-one mapping between surfaces.

In an earlier work [Ahmed et al., 2005] they proposed to deform a template human

body model by minimizing the reprojection error on silhouettes. This is however
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based on pose parameters and can not be applied to general shape and motion.

Some methods propose to evolve a surface under photometric constraints. In

[Goldlücke and Magnor, 2004] four-dimensional level-set is employed to evolve a 3D

isosurface in space-time. Their method, however has high computational complexity

and memory requirement and does not provide 3D correspondences. Silhouettes are

also used as constraints for surface deformation. [Starck and Hilton, 2007] combines

silhouettes with stereo cues to capture the motion of a surface. More recently,

in [de Aguiar et al., 2008] surface- and volume-based deformations are used in a

multi-resolution manner to reconstruct the detailed motion and spatio-temporally

coherent geometry of performing actor. The scene is represented by a surface mesh

and a Delaunay-based tetrahedral mesh, computed initially from a detailed full-

body laser scan of the subject registered to the pose at the �rst frame. Their

method consists in two steps. SIFT descriptors, used to �nd sparse correspondences

between consecutive frames, and silhouette information are employed giving a low-

detailed global pose estimate in each frame. A volumetric deformation technique

based on linear Laplacian deformation is considered increasing the robustness of

pose recovery. The surface mesh is then deformed to the estimated global poses,

and re�ned by a multi-view stereo method capturing small-scale surface details. The

applied multi-resolution technique makes the method robust to big displacements,

capturing in the same time small details. However, a part of high-frequency details

is not actually estimated by deformations, but copied from the initial laser-scan

geometry. Unfortunately, such precise model is not available in general situations.

While applicable to complex shapes and motions, their method does not handle

topology changes, and is sensible to the silhouette errors. Deforming laser-scanned

models was also employed in their two earlier works [de Aguiar et al., 2007a,b],

however because of their �ow-based or �ow- and feature-based strategy, they were

not capable of handling complex motion and shape.

[Varanasi et al., 2008] propose to use both geometric and photometric cues to �nd

sparse, but robust set of matches between successive meshes, estimated initially for

each frame by a 3D reconstruction method. SURF [Bay et al., 2006], and normalized

geodesic integral [Hilaga et al., 2001] are used as photometric and geometric features

respectively. In order to �nd dense displacement �elds, the computed matches are

then propagated over all vertices by Laplacian di�usion [Sorkine, 2005], allowing

the evolution of the initial mesh between two frames. The resulting mesh is then

morphed to the mesh at the second frame guaranteeing the correctness, and its

exact overlap with the observation. This is done by the surface evolution approach

of [Zaharescu et al., 2007]. Comparing to previous approaches, their method �nds

sparse matches between large displacements robustly, using both geometric and
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photometric features, and handles topological changes and self-intersections through

the morphing step. In another recent approach [Furukawa and Ponce, 2008] propose

to solve the 3D tracking problem by applying local rigid motion for each vertex and

global non-rigid motion on the whole surface of a polyhedral mesh to capture fast

and complex motions.

1.3 Discussion and Conclusion

In this chapter, the problems of shape from silhouette and dynamic multiview re-

construction have been reviewed. The most related existing techniques to our work

are surveyed, reviewing the di�erent directions followed in the domain. The next

chapters describe our novel methods to the problem of multiview reconstruction.

• In Chapter 2, we review some geometric concepts used in our work.

• In Chapter 3, we propose a method to compute a compact and temporally

coherent four-dimensional spatio-temporal visual hull of a non-rigid dynamic

scene.

• In Chapter 4, we propose a globally optimal multi-view reconstruction method

from dynamic cluttered scenes.

• In Chapter 5, we propose a photo-consistent surface reconstruction method

based on the geometric concept of medial axis transform.





Chapter 2

Background

In this chapter, some background on the basic computational geometry concepts

needed in this thesis is given. More speci�c concepts will be described in each chap-

ter seperatly. Most of the de�nitions are taken from [Boissonnat and Yvinec, 1998,

Boissonnat and Oudot, 2005]. Please refer to [Boissonnat and Yvinec, 1998, de Berg

et al., 1997] for more complete description on this domain.
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Figure 2.1: Convex hull of a set of points.

2.1 Convex hulls, Polytops, Simplices, and Complexes

LetM = {M1, . . . ,Mn} be a set of points in Rd. The convex hull ofM, conv(M),

is the smallest convex set containing M. This is a polytope, the convex hull of a

�nite set of points (cf. Figure 2.1 for a two-dimensional example). A plane H is a

supporting plane of a polytope P if it intersects P and if P lies completely in one

of the two closed half-spaces bounded by H. Faces of P are its intersections with

its supporting planes.

In the sequel, we call k-simplex the convex hull of k + 1 a�nely independent

points. For example, a 0-simplex is a point, a 1-simplex is a line segment, a 2-

simplex is a triangle and a 3-simplex is a tetrahedron. In this work, we also consider

4-simplices: they are known as pentachorons or pentatopes. Any simplex de�ned by

a subset of vertices of another simplex is a face of it.

A simplicial complex C is a �nite set of simplices satisfying the following condi-

tions:

1. any face of a simplex in C is also a simplex in C

2. two simplices in C either do not intersect, or their intersection is a simplex of

smaller dimension which is their common face of maximal dimension.

The faces of a simplicial complex are its constituting simplices. In dimension

d, the faces of dimension 0, 1, d − 1, and d are respectively called the vertices,

edges, facets, and cells of the complex. A k-complex is a complex whose maximal

dimension of its simplices is exactly k.

A cell complex is de�ned as a complex whose faces are (possibly unbounded)

polytopes. Similar properties should be satis�ed:

1. any face of a polytope of C is also a polytope in C
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Figure 2.2: The Voronoi polytope and the projected faces on the plane.

2. two polytopes in C either do not intersect, or their intersection is a polytope

of smaller dimension which is their common face of maximal dimension.

Two faces of a complex are incident if one contains the other and their dimensions

di�er by one. Two vertices (cells) of a complex are adjacent if they share a common

incident edge (facet respectively). According to these relations between faces of a

complex, two following graphs are de�ned:

• The incident graph of a complex stores a node for each face of the complex

and an arc for each pair of incident faces.

• The adjacency graph of a complex stores a node for each cell of the complex

and an edge for each pair of adjacent cells.

Two complexes C and C∗ are called dual to each other, if there is a bijection

between the faces of C and those of C∗ which reverses inclusion relationships. A

well-known example of such complexes are described in the following sections.

2.2 Voronoi Diagram

Voronoi diagrams are versatile structures which encode proximity relationships be-

tween objects. They are particularly relevant to perform nearest neighbor search

and motion planning (e.g. in robotics), and to model growth processes (e.g. crystal

growth in materials science).
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LetM = {M1, . . . ,Mn} be set of points in Rd. The Voronoi region, or Voronoi

cell, denoted by V (pi), associated to a point pi is the region of space that is closer

from pi than from all other points in E:

V (Mi) = {X ∈ Rd : ∀j, ‖X −Mi‖ ≤ ‖X −Mj‖} . (2.1)

V (Mi) is the intersection of n− 1 half-spaces bounded by the bisector planes of

segments [MiMj ], j 6= i. V (Mi) is therefore a convex polytope, possibly unbounded.

The Voronoi diagram ofM, denoted by Vor(M), is the partition of space induced

by the Voronoi cells V (Mi).

See Figure 2.3(a) for a two-dimensional example of a Voronoi diagram. In two

dimensions, the edges shared by two Voronoi cells are called Voronoi edges and

the points shared by three Voronoi cells are called Voronoi vertices. Similarly, in

three dimensions, we term Voronoi facets, edges and vertices the geometric objects

shared by one, two and three Voronoi cells, respectively. The Voronoi diagram is the

collection of all these k-dimensional objects, with 0 ≤ k ≤ d, which we call Voronoi

objects. In particular, note that Voronoi cells V (Mi) correspond to d-dimensional

Voronoi objects. The Voronoi diagram is a cell complex whose domain is Rd.

Let P be the paraboloid in Rd+1 de�ned by the equation

xd+1 =
d∑

i=1

x2
i (2.2)

where (x1, x2, · · · , xd+1) are the real coordinates of a point in Rd+1. We call

the Voronoi polytope as the intersection of n half-spaces in Rd+1, lying above n

hyperplanes tangent to P at the vertical projections of points of M onto P (cf.

�gure 2.2). It can be shown that the Voronoi diagram of M can be computed by

projecting the faces of the Voronoi polytope onto Rd. The problem of computing the

Voronoi diagram can therefore be reduces to the problem of hyper-space intersection.

The following corollary1 is a result of this theorem. We refer the reader to [Bois-

sonnat and Yvinec, 1998] for the proof and a complete description on the problem

of half-space intersection.

Corollary. The complexity (namely, the number of faces) of the Voronoi dia-

grams of n points in Ed is Θ
(
nd

d
2e
)
. We may compute such a diagram in time

O
(
nlogn+ nd

d
2e
)
, which is optimal in the worst case.

1[Boissonnat and Yvinec, 1998]
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(a) (b)

Figure 2.3: (a) Voronoi diagram of a set of points in the plane. (b) Its dual Delaunay

triangulation.

2.3 Delaunay Triangulation

Delaunay complexes are a classical tool in the �eld of mesh generation and mesh

processing due to its optimality properties.

Let M = {M1, . . . ,Mn} be a set of points in Rd. Let P be the paraboloid

in Rd+1 de�ned by the equation 2.2, and D(M) the convex hull of the vertical

projection ofM on P and a point O′ on the positive xd+1 axis large enough so that

the facial structure of the convex hull is stable when O′ vanishes to in�nity. The

Delaunay complex of M, denoted by Del(M), is obtained by projecting the faces

of the lower envelope of D(M) on Rd. This is dual to the Voronoi diagram: there

is a bijection, reversing inclusion relationship, between the k-faces of the Voronoi

diagram and the (d − k)-faces of the Delaunay complex. When points of E are in

L2-general position2, Del(M)) is a simplicial complex, which is called the Delaunay

triangulation.

The fundamental property of the Delaunay triangulation is called the empty

circle (resp. empty sphere in 3D, resp. empty hypersphere in higher dimensions)

property: in 2D (resp. in 3D, resp. in 4D), a triangle (resp. tetrahedron, resp.

pentatope) belongs to the Delaunay triangulation if and only if its circumcircle

(resp. circumsphere, resp. circumscribed hypersphere) does not contain any other

points ofM in its interior. The following theorem3 holds for Delaunay complexes:

Theorem. Let M be a set of n points M1, · · · ,Mn in Ed. Any d-face in the De-

launay complex can be circumscribed by a sphere that passes through all its vertices,

and whose interior contains no point inM.

2When no sphere can contain d+ 2 sites on its boundary.
3[Boissonnat and Yvinec, 1998]
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The computation of the Delaunay complex in Rd can be reduced to the com-

putation of the convex hull in Rd+1. The following corollary4 is a result of this

theorem. Please refer to [Boissonnat and Yvinec, 1998] for a complete description

on the computation of the convex hull.

Corollary. The Delaunay complex of n points in Ed can be computed in time

O
(
nlogn+ nd

d
2e
)
, and this is optimal in the worst case.

Moreover, as was recently proven in [Attali et al., 2003], the complexity in 3D

drops to O(n log n) when the points are distributed on a smooth surface.

4[Boissonnat and Yvinec, 1998]



Chapter 3

Shape from silhouette

Abstract

In this chapter, we propose a novel method for computing a four-dimensional

(4D) representation of the spatio-temporal visual hull of a dynamic scene, based on

an extension of a recent provably correct Delaunay meshing algorithm. By consid-

ering time as an additional dimension, our approach exploits seamlessly the time

coherence between di�erent frames to produce a compact and high-quality 4D mesh

representation of the visual hull. The 3D visual hull at a given time instant is easily

obtained by intersecting this 4D mesh with a temporal plane, thus enabling inter-

polation of objects' shape between consecutive frames. In addition, our approach

o�ers easy and extensive control over the size and quality of the output mesh as well

as over its associated reprojection error. Our numerical experiments demonstrate

the e�ectiveness and �exibility of our approach for generating compact, high-quality,

time-coherent visual hull representations from real silhouette image data.
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3.1 Introduction

In this chapter, we propose a novel method to compute a four-dimensional (4D) rep-

resentation of the spatio-temporal visual hull of a non-rigid dynamic scene. Please

refer to 1.1 for an introduction on the problem of shape-from-silhouette and the

state of the art in that domain.

Our work builds on a recent provably correct Delaunay-based algorithm for mesh-

ing surfaces, from Boissonnat and Oudot [Boissonnat and Oudot, 2005, 2006]. This

algorithm is proven to terminate and to construct good-quality meshes, while of-

fering bounds on the approximation accuracy of the original boundary and on the

size of the output mesh. The re�nement process is controlled by highly customiz-

able quality criteria on triangular facets. A notable feature of this method is that

the surface needs only to be known through an oracle that, given a line segment,

detects whether the segment intersects the surface and, in the a�rmative, returns

an intersection point. This makes the algorithm useful in a wide variety of contexts

and for a large class of surfaces.

The �rst contribution of our work is to revisit the problem of computing the

static visual hull by using the above meshing algorithm. To do so, we have designed

a surface oracle and a re�nement criterion adapted to multi-view geometry. The

resulting algorithm both relates to volume-based (c.f. 1.1.2.1) and surface-based

(c.f. 1.1.2.2) approaches.

• Similarly to the volume-based approach, our method builds a decomposition

of space, namely the Delaunay triangulation of a set of points sampled from

the surface of visual hull. Yet, it is an adaptive unstructured tetrahedral

decomposition, in contrast with the usual voxel or octree decomposition, thus

eliminating quantization artefacts.

• Similarly to the surface-based approach, our method directly outputs a surface

mesh representation, in our case a high-quality watertight triangular mesh.

Yet, it is a discrete approximation of the visual hull, under a controlled repro-

jection error, in contrast with an exact polyhedral intersection, thus avoiding

numerical instability and degeneracies in the case of noisy or mutually incon-

sistent silhouette data.

Moreover, compared to existing static visual hull techniques, our approach has

the advantage of o�ering easy and extensive control over the size and quality of the

output mesh as well as over its associated reprojection error.

The second and main contribution of our work is a method to compute a four-

dimensional representation of the spatio-temporal visual hull of a non-rigid dy-
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namic scene, based on an extension of the meshing algorithm of Boissonnat and

Oudot [Boissonnat and Oudot, 2005, 2006] to the four-dimensional space. By con-

sidering time as an additional dimension, our approach exploits seamlessly the time

coherence between di�erent frames to produce a compact and high-quality four-

dimensional mesh representation of the visual hull. The three-dimensional visual

hull at a given time instant is easily obtained by intersecting this spatio-temporal

mesh with a temporal plane.

Compared to independent frame-by-frame computations, our method has several

signi�cant advantages. First, it exploits time redundancy to limit the size of the out-

put representation. For example, parts of the scene that are immobile or have a uni-

form motion can be approximated by a piecewise-linear four-dimensional mesh with

few elements elongated in the time direction. We will show in the following that this

idea is related to non-uniform meshing depending on the spatio-temporal curvature.

In contrast, in the same con�guration, a frame-by-frame approach would repeat

three-dimensional elements at each frame. Second, our method yields a temporally

continuous representation, which is de�ned at any time, thus enabling interpolation

of objects' shape between consecutive frames. This also makes a spatio-temporal

smoothing of visual hull possible, in order to recover from occasional outliers in

silhouette data. Third, a byproduct of the two �rst advantages is the reduction of

�icking artefacts in synthesized views, as consecutive three-dimensional slices have

a similar geometry and connectivity by construction.

A third contribution of our work is to demonstrate the feasibility of four-

dimensional hypersurface representations in computer vision. It is likely to inspire

progress in other applications, such as spatio-temporal multi-view stereovision or

segmentation of 3D+time MRI sequences of the heart in medical imaging. In that

sense, the work of Goldlücke and Magnor [Goldlücke and Magnor, 2004] on spatio-

temporal multi-view stereovision is related to ours. These authors take advantage

of the fact that the level set method [Osher and Sethian, 1988] easily extends to any

number of dimensions. However, their method comes at a very high computation

and memory cost, typically requiring several hours if not a day of computation on a

cluster to process a few seconds of video. In contrast, despite the fact that our pro-

totype implementation could be heavily optimized, our algorithm builds a compact

four-dimensional mesh representation of a few minutes of video in a much shorter

computation time on a recent workstation.

The remainder of this chapter is organized as follows. Section 3.2 gives some

background on the basic computational geometry concepts needed in our approach.

Our novel methods for static and dynamic visual hull reconstruction are described

in Section 3.3. In Section 3.4, we report on some numerical experiments which
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demonstrate the e�ectiveness and �exibility of our approach for generating compact,

high-quality, time-coherent visual hull representations from real silhouette image

data.

3.2 Background

Please refer to chapter 2 for a description on the two geometric concepts needed in

our work: The Voronoi diagram, and the Delaunay triangulation of a set of points.

Here we describe the concept of Restricted Delaunay triangulation, which we will

use in the three- and four-dimensional spaces to approximate the surface of static

and dynamic visual hull.

3.2.1 Restricted Delaunay triangulation

Each k-simplex in the Delaunay triangulation is dual to a (d−k)-dimensional Voronoi

object. In 3D, the dual of a Delaunay cell (a tetrahedron) is the Voronoi vertex which

coincides with the circumcenter of the tetrahedron, the dual of a Delaunay facet (a

triangle) is a Voronoi edge, the dual of a Delaunay edge is a Voronoi facet, and the

dual of a Delaunay vertex Mi is the Voronoi cell V (Mi).

Let M = {M1, . . . ,Mn} be a set of points in Rd. Given a subset Ω ∈ Rd,

typically a manifold of dimension k ≤ d, we call the Delaunay triangulation of M
restricted to Ω, and we note Del|Ω(M) the subcomplex of Del(M) composed of the

Delaunay simplices whose dual Voronoi objects intersect Ω. For example, in 2D, as

illustrated in Figure 3.1(b), the Delaunay triangulation of a set of points restricted

to a curve S is composed of the Delaunay edges whose dual Voronoi edges intersect

S. Similarly, as shown in Figure 3.1(d), the Delaunay triangulation of a set of points

restricted to a region Ω is composed of the Delaunay triangles whose circumcenters

are contained in Ω. Please see �gure 2.3 for the Voronoi diagram and the Delaunay

triangulation of the sampled points. The attentive reader may have noticed that in

both cases the restricted Delaunay triangulation of a set of points sampled on an

object forms a good approximation of the object.

Actually, this is a general property of the restricted Delaunay triangulation. It

can be shown that, under some assumptions, and especially if M is a �su�ciently

dense� sample of Ω, (please refer to [Amenta and Bern, 1999] for formal de�nition),

Del|Ω(M) is a good approximation of Ω, both in a topological and in a geometric

sense: as regards topology, Del|Ω(M) is homeomorphic to Ω; as regards geometry,

the Hausdor� distance between Del|Ω(M) and Ω can be made arbitrarily small;

normals and curvatures of Ω can be consistently approximated from Del|Ω(M).

Based on these approximation properties, a family of provably correct algorithms
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Figure 3.1: (a) Voronoi diagram (green) and Delaunay triangulation (black) of a

sampled point set restricted to a two-dimensional curve (blue). (b) The Delaunay tri-

angulation (black) of the sampled set restricted to the curve approximates the shape

of the curve. Only the segments of the Delaunay triangulation whose dual (blue)

intersect the curve have been remained in the restricted Delaunay triangulation.

(c) Delaunay triangulation (black) of a point set sampled from a two-dimensional

curve. Duals of the Delaunay triangles which intersect the blue region are shown

by crosses. (d) The Delaunay triangulation of the sampled set restricted to the

region approximates the shape of the region. Only the triangles of the Delaunay

triangulation whose dual (crosses) intersect the region have been remained in the

restricted Delaunay triangulation.
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for mesh generation and mesh reconstruction from point clouds have been designed

in the last decade. We refer the reader to [Boissonnat and Oudot, 2005] and refer-

ences therein for more details.

3.3 Methods

In this section, we �rst present our novel method for computing the static visual

hull, based on the incremental 3D meshing algorithm of Boissonnat and Oudot

[Boissonnat and Oudot, 2005, 2006]. Then, we describe in detail the extension of

this method to the computation a 4D representation of the spatio-temporal visual

hull of a non-rigid dynamic scene.

3.3.1 Static Visual Hull Computation

Let I = {I1, · · · , In} be the set of input images, and let Πi : R3 → R2 denote the

camera projections from the world reference frame to the image planes. In addition,

Ωi ⊂ R2 are the silhouettes of the object in the di�erent images. The visual hull V

is then de�ned by:

V =
{
X ∈ R3 | ∀i ∈ {1, . . . , n}, Πi(X) ∈ Ωi

}
. (3.1)

Let us consider a setM of points lying on the boundary of the visual hull ∂V .

Our approach consists in approximating the visual hull by the Delaunay triangu-

lation of M restricted to V , i.e. in computing the union of tetrahedra of Del(M)

whose circumcenters are contained in the visual hull. The output triangular mesh

is then obtained by considering the boundary facets of this set of tetrahedra. Inter-

estingly, this directly enforces watertight surface meshes free of self-intersections.

As mentioned above, it can be proven that this mesh forms a good approximation

of the visual hull as soon as M is a �su�ciently dense� sample of ∂V . With this

procedure in hand, our visual hull algorithm reduces to generating a point sampleM
which ful�lls the above sampling condition as well as some additional user-de�ned

quality and error criteria on boundary facets.

Our algorithm for generatingM closely parallels the surface meshing algorithm

of Boissonnat and Oudot [Boissonnat and Oudot, 2005, 2006]. The algorithm starts

with a small initial point sample M0 of ∂V (di�erent strategies to generate the

latter are detailed in [Boissonnat and Oudot, 2005, 2006]) and, at each iteration,

it inserts a new point of ∂V into M and updates Del|V (M) (please note that all

components of the surface must be initially sampled). Each point inserted intoM
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is the intersection between ∂V and the dual of a boundary facet (that is to say, a

ray or a segment of the Voronoi diagram of M). Note that such an intersection

always exists, by construction. In case there are several intersections, any of them

can be chosen, without compromising the good continuation of the algorithm. The

algorithm stops when there are no bad boundary facets left.

The initial computation of Del|V (M) and its subsequent updates are fairly sim-

ple: it su�ces to project the circumcenters of Delaunay tetrahedra in all images and

to check whether all the projections lie inside the silhouettes. This check is only

performed for tetrahedra that have been modi�ed by the previous point insertion.

Similarly, intersections of a segment or a ray with the boundary of the visual hull are

computed to the desired accuracy using a dichotomic search along their projection

in the di�erent input images.

Under these considerations, the overview of our algorithm is given below:

while there is a bad boundary facet do

let F be the worst boundary facet

let M be an intersection between ∂V and

the dual of F

insert M inM
update Del|V (M)

Figure 3.2 shows a two-dimensional example of the algorithm described above.

3.2(a) shows a two-dimensional curve, initially sampled by three points. The voronoi

diagram and the Delaunay triangulation of the points restricted to the curve are

computed and shown on the �gure. The intersection between the dual of the worst

boundary facet (which is a segment or a ray) and the curve is shown by a circle.

This point is inserted to the current set of samples, and the Delaunay triangulation

restricted to the curve is updated in each step of the algorithm. 3.2(j) shows the

restricted Delaunay triangulation after eight steps. This approximates, as expected,

the two-dimensional sampled curve.

In the above algorithm, the determination of �good� and �bad� boundary facets

is devoted to some user-de�ned criteria, for example a combination of thresholds

on the following elementary quality measures: aspect ratio (minimum angle), size,

curvature, edge length, etc. But the most relevant quality criterion in our case is

undoubtedly the reprojection error, that is to say the discrepancy between the input

silhouettes and the silhouettes of the computed mesh.



50 Chapter 3. Shape from silhouette

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.2: A two-dimensional example of our algorithm. A two-dimensional curve,

initially sampled by three points, the voronoi diagram, and the Delaunay triangula-

tion of the points restricted to the curve. The intersection between the dual of the

worst boundary facet (a segment in 2D) and the curve is shown by a circle. This

is inserted to the samples, and the restricted Delaunay triangulation is updated in

each step of the algorithm. (j) The approximated curve after eight steps.
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To this end, we use the signed distance functions φi : R2 → R associated to the

input silhouettes Ωi. In other words, for a point P in image Ii, we set:

{
φi(P ) = −d(P, ∂Ωi) if P ∈ Ωi

φi(P ) = +d(P, ∂Ωi) if P /∈ Ωi

, (3.2)

with d(P, ∂Ωi) the distance from the point P ∈ Ii to the boundary of the sil-

houette Ωi. Let us note Φ : R3 → R the maximum of the reprojected distance

functions,

Φ(X) = max
i

φi ◦Πi(X). (3.3)

An alternate de�nition of the visual hull can be written in terms of the Φ func-

tion:

V =
{
X ∈ R3 | Φ(X) ≤ 0

}
. (3.4)

Interestingly, the maximum reprojection error of a boundary facet with respect

to input silhouettes can also be measured with Φ:

error(F ) = max
X∈F

|Φ(X)| . (3.5)

In practice, this error measure is computed by sampling triangular facets and

collecting the maximum value of the di�erent φi at reprojected locations.

During the progress of the algorithm, boundary facets whose error measure ex-

ceeds a user-de�ned threshold (typically one pixel) are further re�ned. As a result,

when the algorithm terminates, the whole output mesh ful�lls the desired bound on

reprojection error.

3.3.2 Spatio-Temporal Visual Hull Computation

Given multiple video sequences of a moving object and its silhouettes extracted in all

images, we could run the above algorithm (or any other static visual hull algorithm)

independently in each time frame, and obtain a sequence of three-dimensional vi-

sual hull meshes. As discussed previously, this frame-by-frame approach has some
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signi�cant de�ciencies, because it does not exploit temporal coherence. Here, we

propose to construct a �global� spatio-temporal mesh of the sequence, consistent

with all input silhouettes.

The main idea of our algorithm is to regard time as a fourth dimension, and to

treat it similarly to the three spatial dimensions. At �rst sight, this is questionable

since space is not homogeneous to time regarding physical units. We obtain physical

homogeneity of our four-dimensional space by considering a scaling factor v between

space and time dimensions. This scaling factor is homogeneous to a speed, and can

be interpreted as a reference displacement per time unit, beyond which objects'

temporal behavior is not regarded as a continuous motion. So there is no di�culty

to tune this parameter for human motion.

We now extend all the de�nitions of Section 3.3.1 to the dynamic case.

Let Iti , i ∈ {1, . . . , n}, t ∈ [0, T ] denote the input video sequences, and Ωt
i ⊂ R2

the corresponding silhouettes. The scene being captured by �x cameras, the camera

projections Πi : R3 → R2 are constant through time. The spatio-temporal visual

hull V is then de�ned by:

V =
{

(X, vt) ∈ R3 × [0, vT ] | ∀i, Πi(X) ∈ Ωt
i

}
. (3.6)

There is an important remark we can make here. Actually Iti and Ωt
i are only

known at discrete time instants k∆t, the video frame rate being 1/∆t. A similar

remark holds for image locations, but it is likely to be of less practical importance

given the increasing resolution of standard consumer video cameras.

Our method for computing an approximating 4D mesh of the spatio-temporal

visual hull is a careful extension of the static case. We incrementally build a �good�

4D point sampleM of the boundary of the spatio-temporal visual hull ∂V and we

maintain the Delaunay triangulation ofM restricted to V , in other words the union

of the pentatopes of Del(M) whose circumcenters lie inside V . It su�ces to project

the circumcenters of lastly modi�ed pentatopes in the di�erent cameras, and to

check whether the projections belong to the silhouettes.

As the fourth coordinate of these intersections is unlikely to correspond to an

available time frame, an interpolation of silhouettes between consecutive frames is

required. To this end, we use a linear interpolation of the signed distance functions

φk∆t
i , which is an established technique in shape statistics [Leventon et al., 2000,

Rousson and Paragios, 2002]. As in the static case, we use the signed distance

functions φk∆t
i : R2 → R associated to the input silhouettes Ωk∆t

i of the frame

number k, at the time instant k∆t. In other words, for a point P in image Ii, at
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frame k, we set:

{
φk∆t
i (P ) = −d(P, ∂Ωk∆t

i ) if P ∈ Ωk∆t
i

φk∆t
i (P ) = +d(P, ∂Ωk∆t

i ) if P /∈ Ωk∆t
i

, (3.7)

with d(P, ∂Ωk∆t
i ) the distance from the point P ∈ Ik∆t

i to the boundary of the

silhouette Ωk∆t
i . The interpolated distance function φ̃i : R2× [0, T ]→ R is therefore

obtained by:

φ̃i(P, t) = φk∆t
i (P ) +

(
t

∆t
− k
)(

φ
(k+1)∆t
i (P )− φk∆t

i (P )
)

(3.8)

with k =
⌊

t
∆t

⌋
.

Similarly to the static case, we de�ne also the maximum of the reprojected

functions Φ̃ : R3 × [0, T ]→ R as,

Φ̃(X, t) = max
i

φ̃i (Πi(X), t) , (3.9)

and the reprojection error of a boundary facet (which is a tetrahedra in 4D) with

respect to input silhouettes is measures with Φ̃:

error(F ) = max
X∈F

|Φ̃(X)| . (3.10)

The output 4D mesh is then obtained by considering the facets of Del|V (M).

The exact nature of these �facets� deserves clari�cation: they are tetrahedra with

4D coordinates, so they are indeed simplicial pieces of a hypersurface in R4.

As in the static visual hull algorithm, the construction of M consists in itera-

tively adding an intersection point between the spatio-temporal visual hull surface

∂V and the 4D segment/ray dual to the worst boundary tetrahedron of the restricted

Delaunay triangulation. In practice, this is computed to the desired accuracy by a

dichotomic search along with the aforementioned time interpolation of silhouettes.

Again, the re�nement process is controlled by a threshold on the reprojection error

of boundary facets. This can be done by sampling these tetrahedra and collecting

the maximum value of Φ̃ on the facet. The algorithm terminates as soon as the ob-

tained 4D mesh ful�lls the desired reprojection error with respect to all silhouettes

of the sequence.
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At this point, there are several important remarks to be made. First, the atten-

tive reader may have noticed that the vertices of the 4D output mesh generally do

not lie in the input temporal planes t = k∆t. Second, the space and time density of

these spatio-temporal vertices is fully adaptive. Typically, it will be coarse in parts

of the visual hull of low curvature and/or of uniform motion. The underlying idea is

that regions of ∂V of low spatio-temporal curvature can be well approximated with

few boundary facets. This is controlled by the quality criterion, allowing to keep

the total size of the 4D representation of the scene, and hence the computational

and memory cost, sustainable.

Figure 3.3 shows a three-dimensional (2D+time) synthetic example of our spatio-

temporal algorithm illustrating the adaptive reconstruction described above. In the

case of two-dimensional visual hull, the spatio-temporal representation is a 3D mesh

regarding time as the third dimension. In this example, the 2D object is a rectangle

which moves vertically in sinusoidal motion, making a 3D sinusoidal object. As seen

in the �gure, vertices are denser in peaks and valleys of the sinusoid as the temporal

curvature is higher in these regions.

Our third remark is intended to overcome doubts about the relevance of interpo-

lating silhouettes between consecutive time frames. These doubts are grounded in

the case of a very low frame rate relatively to scene motion. This said, our approach

is intended for highest possible frame rates: indeed, our method has the remarkable

property that the increase in the number of input frames does not a�ect either the

computational expense or the size of the output. Actually, only complexity of scene

geometry and motion matters.

The output 4D mesh cannot be used directly for rendering. Fortunately, the 3D

visual hull at a given time instant is easily obtained by intersecting this 4D mesh

with a temporal plane. This task can be performed very e�ciently, even in real-

time on GPUs (Graphics Processor Units), since it reduces to a marching tetrahedra

algorithm [Gueziec and Hummel, 1995] on the tetrahedra of the 4D mesh, with

the temporal coordinate of vertices used as the scalar �eld for isocontouring. It

produces one triangle or one quad per boundary tetrahedron intersected by the

selected temporal plane. Note that the produced 3D vertices do not coincide with

vertices of the 4D mesh, they are linear interpolations of the latter. Also, their

position and connectivity vary continuously with time.
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Figure 3.3: A three-dimensional synthetic example of our spatio-temporal algorithm

illustrating the adaptive sampling strategy. In the case of two-dimensional visual

hull, the spatio-temporal representation is a 3D mesh regarding time as the third

dimension. In this example, a rectangle is moving vertically in sinusoidal motion,

making a 3D sinusoidal object. As seen in the �gure, vertices are denser in peaks

and valleys of the sinusoid as the temporal curvature in higher in these regions.
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3.3.3 Implementation Aspects

We have implemented our approach using CGAL (Computational Geometry Algo-

rithms Library, homepage: www.cgal.org) [Boissonnat et al., 2000b]. CGAL de�nes

all the needed geometric primitives and provides an excellent algorithm to com-

pute the Delaunay triangulation in 3D: it is robust to degenerate con�gurations and

�oating-point error, thanks to the use of exact geometric predicates, while being

able to process millions of points per minute on a standard workstation.

CGAL also provides a generic unoptimized Delaunay triangulation algorithm

which works in any number of dimensions. We have used this code to implement

our spatio-temporal visual hull method. When used in 3D, this generic code runs 20

to 30 times slower than CGAL's dedicated 3D Delaunay code. Consequently, a two

orders of magnitude reduction in computation time can be expected in the future,

after developing an optimized four-dimensional Delaunay code.

As for the signed distance functions of input silhouettes, we compute them e�-

ciently using fast marching [Sethian, 1996].

3.4 Experimental Results

We have tested our algorithms on some real datasets, publicly available at https:

//charibdis.inrialpes.fr/.

3.4.1 Static 3D Visual Hull Reconstruction

Our �rst experiment focuses on static visual hull reconstruction. We have used

the �rst frame of the �Dance� sequence recorded by eight cameras with resolution

780x582 pixels. In order to illustrate the e�ectiveness and �exibility of our ap-

proach, we compare it to two popular methods, a surface-based approach by Franco

and Boyer based on exact polyhedral intersection [Franco and Boyer, 2003], and a

volume-based approach followed by a marching cubes algorithm. To provide a fair

comparison between the three methods, we adapted the resolution of the 3D image

used for the volume-based approach and the re�nement criteria of our method (the

maximum reprojection error was chosen to be maxX∈F |Φ(X)| ≤ 0.98) so that all

three meshes would have approximately the same number of vertices. The quan-

titative results (number of vertices, number of faces, and computation time) are

gathered in Table 5.1. Figure 3.5 shows some steps of our reconstruction algorithm,

and �gure 3.4 displays the reconstructed visual hulls.

In order to show the quality of the output surface meshes, we computed their

angle distribution. Figure 3.4 shows the three histograms. Contrarily to our method,

https://charibdis.inrialpes.fr/
https://charibdis.inrialpes.fr/
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Figure 3.5: Some steps of the reconstruction algorithm for the �Dancer� sequence.

Experiment # points # triangles Time (in sec.)

[Franco and Boyer, 2003] 2400 4790 0.14

Marching cubes 2400 4840 0.04

Our method 2400 4770 2.0

Table 3.1: Parameters and quantitative results of our di�erent numerical experi-

ments.

which produces well-shaped triangles only, other methods yield meshes with lots of

skinny triangles.

3.4.2 Spatio-Temporal Visual Hull Computation

In a second experiment, we tested our spatio-temporal visual hull algorithm on a real

human motion dataset. We have chosen the �Nicolas2� sequence from the INRIA

Xmas Motion Acquisition Sequences (IXMAS) dataset. The sequence contains 1084

frames recorded by 5 standard Firewire cameras with resolution 390x291 pixels. We

use the silhouette data included in the dataset, which is signi�cantly corrupted by

noise and errors, in order to test the robustness of our approach.

Figure 3.6 displays a comparison between our method and the method of Franco

and Boyer [Franco and Boyer, 2003], applied independently in each frame. We
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Experiment # points # points per frame Time

(mean) (minutes)

[Franco and Boyer, 2003] 769356 709 3

Our method 848376 4540 (apparent) 209

Table 3.2: Parameters and quantitative results of our temporal visual hull experi-

ment.

compared the three-dimensional meshes output by their method for some frames of

the sequence with the corresponding three-dimensional slices of our four-dimensional

spatio-temporal visual hull mesh. To provide a fair comparison, we adapted the

spatio-temporal scaling factor v0 and the re�nement criteria of our method (the

maximum reprojection error was chosen to be maxX∈F |Φ(X)| ≤ 1.00 with a scaling

factor v = 0.72 (space unit/s)) so that the two methods would construct the whole

sequence with approximately the same number of vertices (the number of vertices

of our four-dimensional mesh is compared to the total number of vertices of the

three-dimensional meshes for the di�erent frames). Table 3.2 shows the quantitative

results of the experimented methods.

It appears that, despite an equivalent number of vertices in the output represen-

tation, our method yields a better sampled visual hull. This is due to the fact that

it generates a much higher number of �apparent vertices� in the three-dimensional

time slices than the actual number of four-dimensional vertices. This perfectly il-

lustrates the capability of our approach to take advantage of temporal coherence in

order to generate a more compact spatio-temporal representation.

Finally, let us mention that, by computing a four-dimensional representation of

the dynamic scene, our method naturally handles topology changes of the visual

hull along time, as visible in Figure 3.6 c).

3.5 Discussion and Conclusion

We have proposed a method to compute the spatio-temporal visual hull of a non-

rigid dynamic scene, based on four-dimensional Delaunay meshing. Our method

outputs a compact and temporally coherent four-dimensional mesh representation

of the whole scene. Three-dimensional slices of this mesh can easily be computed

for rendering and for interpolating shape between consecutive time frames.

We have validated our approach on real video sequences of human motion. Our

results compare favorably with state of the art methods in terms of compactness and

quality of the mesh representation. Our work demonstrates the feasibility of four-

dimensional hypersurface representations in computer vision. To that extent, we
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believe that it can inspire progress in other spatio-temporal problems, such as multi-

view stereovision of dynamic scenes, or segmentation of 3D+time MRI sequences of

the heart in medical imaging.

A signi�cant drawback of our method is that it is not adapted to the online pro-

cessing of video sequences. The �rst reason is its high computational expense. This

said, in the future, we expect a two orders of magnitude reduction in computation

time thanks to an optimized four-dimensional Delaunay code, thus making interac-

tive processing possible. The second reason is that the very principle of our approach

is to treat the video sequence as a whole, thus making o�ine processing mandatory.

Obviously, this approach is not sustainable when the length of the video sequence

increases. To overcome this limitation, we consider taking inspiration in the work

of Isenburg et al. on streaming computation of Delaunay triangulations [Isenburg

et al., 2006]. The principle of such an approach would be to restrict computations to

a short sliding time window, in order to produce streaming four-dimensional mesh

output from streaming video input.
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3.6 Publication

This work has been published in ICCV conferance [Aganj et al., 2007],

• E. Aganj, J.-P. Pons, F. Ségonne and R. Keriven. Spatio-temporal shape from

silhouette using four-dimensional Delaunay meshing. In IEEE International

Conference on Computer Vision, Rio de Janeiro, Brazil, Oct 2007.



Chapter 4

Dynamic Multi-view Stereo

Abstract

In this chapter, we propose a method for multi-view reconstruction from videos

adapted to dynamic cluttered scenes under uncontrolled imaging conditions. Taking

visibility into account and being based on a global optimization of a true spatio-

temporal energy, it o�ers several desirable properties: no need for silhouettes, ro-

bustness to noise, independent from any initialization, no heuristic force, reduced

�ickering results, etc. Results on real-world data proves the potential of what is, to

our knowledge, the only globally optimal spatio-temporal multi-view reconstruction

method.
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4.1 Introduction

In recent years, several methods for automatic generation of complete spatio-

temporal models of dynamic scenes from multiple videos have been proposed (cf.

Chapter 1). Many of these techniques rely on the visual hull concept [Lauren-

tini, 1994], among which [Aganj et al., 2007, Ahmed et al., 2008, Vlasic et al.,

2008]. Computationally e�cient, they su�er from several limitations: they provide

an approximate reconstruction; this one has to be a closed surface; and, above all,

silhouettes have to be segmented in the videos, practically limiting the method to

controlled condition capture with a known background. This latest limitation may

be lifted when prior knowledge about the geometry is available: free-form deforma-

tion of a template body model [Ahmed et al., 2005, Theobalt et al., 2007, Vlasic

et al., 2008], Laplacian deformation of a laser scan of the initial pose [de Aguiar

et al., 2008, 2007a], etc. Yet, these methods are unable to recover genuine geomet-

ric details such as facial expressions and clothing folds and wrinkles. An exception

might be the method proposed by Furukawa et al. [Furukawa and Ponce, 2008].

Yielding visually impressive results, this method does not rely on global optimiza-

tion and handles the occlusion problem via heuristics. Please refer to 1.2 for an

introduction on the problem of dynamic reconstruction and the state of the art in

the domaine of spatio-temporal reconstruction of non-rigid scenes.

In this chapter, we propose a method for multi-view reconstruction from videos

adapted to dynamic cluttered scenes under uncontrolled imaging conditions. Taking

visibility into account and being based on a global optimization of a true spatio-

temporal energy, it o�ers several desirable properties.

Starting from work by Labatut et al. [Labatut et al., 2007], our method might

be seen as its spatio-temporal extension. It is based on modeling an evolving three-

dimensional surface as a four-dimensional surface [Aganj et al., 2007, Cheung et al.,

2004, Goldlücke and Magnor, 2004]. More precisely, we �rst generate a quasi-dense

3D point cloud of the scene at each time step and merge the result into a 4D point

cloud. This process is conducted in a lenient manner, thus possibly retaining many

false matches. Then, we build an adaptive decomposition of the 3D+time space

by computing the 4D Delaunay triangulation of this cloud. Finally, we label the

Delaunay pentatopes as empty or occupied thus generating a 4D surface. Graph-cut

based, this assignment is globally optimal and compatible with the visibility in input

images. Optionally but not necessarily, the 3D surfaces corresponding to each time

step might be obtained considering 3D slices.
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4.1.1 Contributions

Our method has several signi�cant advantages. First, it is not based on visual hulls:

• The videos do not have to be taken under controlled conditions. The back-

ground might be cluttered.

• It can handle closed as well as open scenes. For example, it can simultaneously

recover the walls and (potentially moving!) furnitures of an indoor scene and

a complete reconstruction of subjects seen from all sides in the input images.

Second, it is based on a global optimum:

• It is robust and does not depend on some initialization.

• It exploits visibility information to guide the position of the surface. As a

result, it avoids the minimum cut solution from being an empty surface. Hence

it exonerates from the usual techniques proposed so far to solve this problem

(ballooning term, silhouette information, photo-�ux, etc.). Moreover, this

visibility information is not enforced as a hard constraint but integrated in

the very optimization framework, hence yielding robustness to outliers.

Finally, and mainly, compared to the independent frame-by-frame computations of

[Labatut et al., 2007], it pro�ts from the 4D representation:

• Regularization is handled both in space and time, yielding more robustness to

noise both in geometry and in visibility reasoning.

• Points extracted at one given time step transfer information to the surrounding

time steps. As a result, more details are obtained at each time step.

• Flicking artifacts in synthesized views are reduced, as consecutive 3D slices

have similar geometry and connectivity by construction.

• The temporally continuous representation, which is de�ned at any time, op-

tionally enables interpolation of objects' shape between consecutive frames.

The output of our method might be use for di�erent purposes: as a 4D compact

representation; as a list of consecutive 3D meshes; as an initialization for variational

spatio-temporal stereovision methods [Goldlücke and Magnor, 2004].

The remainder of this chapter is organized as follows. Section 2 gives some

background on the di�erent techniques needed in our approach. In Section 3, we

describe in detail the di�erent steps of our algorithm. Section 4 discusses numeri-

cal experiments that demonstrate the potential of our approach for reconstructing

cluttered scenes from real-world data.
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Figure 4.1: A s-t-cut in a graph.

4.2 Background

In this section, we give some background on the minimum s-t-cut problem. We will

use this method to obtain the globally optimum spatio-temporal representation of a

dynamic scene. Please refer to chapter 2 for a description on the geometric concepts

used in our method.

4.2.1 Energy minimization via graph cuts

Let G =< V, E > a directed graph with nodes V and edges E . There are also two

terminal vertices in G: the source s and the sink t. We assign to each edge connecting

p and q a capacity (weight) c(p, q).

A cut of G is a partition of V into two disjoint sets S and T . It is called an

s-t-cut C = (S, T ) when s ∈ S and t ∈ T . Figure 4.1 shows an example of a s-t-cut

in a graph. A cut-set of C is the set of edges which go from the source's side to the

sink's side, the capacity of C is de�ned as the sum of the capacity of all the edges

in its cut-set:

c(S, T ) =
∑

(p,q)∈E,p∈S,q∈T

cpq (4.1)

Finding the s-t-cut in a graph which has the smallest capacity is of great inter-

est in many domaines. Indeed, by considering the capacity of a cut as an energy

function, the minimum cut computation can be regarded as a binary minimization

problem. This is particularly interesting when the energy function is composed of
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data terms and regularization terms. The �rst ones represented by the edges be-

tween the terminals and the nodes, and the second ones represented by the rest of

the edges, not incident to terminals.

It has been shown that this problem is equivalent to the problem of �nding the

maximum �ow from s to t (which is intuitively to �nd the maximum amount of water

which can come from the source to the sink, passing through directed edges, not

exceeding the capacity of each edge) [Ford and Fulkerson, 1962]: The maximum �ow

is equal to the minimum s-t-cut. Polynomial-time methods have been proposed to

�nd the globally optimum solution, please refer to [Paragios et al., 2005, Kolmogorov

and Zabih, 2004] for an introduction on the graph cuts algorithm and a description

on the class of energy functions globally minimizable vie graph cuts.

A large variety of computer vision problems can be formulated in terms of energy

minimization. Particularly, many of them reduce to the minimum s-t-cut problem

[Greig et al.]. In most of these problems, the image or the 3D space are represented

by regular grides. However, more recent works propose to employ the graph cuts

algorithm on complexes, globally minimizing energy functions on surfaces de�ned by

the partitions [Kirsanov and Gortler, 2004]. Considering the partitions of a graph as

labels on cells of a complex, an oriented surface is identi�ed via a labeling vector: a

facet belongs to the surface if it is between an interior and an exterior cell, naturally

oriented according to the labels of its incident cells. Our approach is based on a

similar subdivision, employed in a four-dimensional space. Details of our method

are described in the next section.

4.3 Method

Our spatio-temporal reconstruction algorithm consists in four steps:

1. A quasi-dense 3D point cloud is generated for each frame, each point memo-

rizing the two or more images from which it has been triangulated. An spatio-

temporal 4D point cloud is obtained by adding time as the fourth dimension

to all the 3D points;

2. The four-dimensional Delaunay triangulation of the point cloud is computed;

3. The Delaunay pentatopes (4-simplices in R4) are labeled inside or outside the

spatio-temporal surface minimizing some energy, an oriented surface is then

extracted as the set of 4D tetrahedra between inside and outside pentatopes;

4. The 3D surface at a given time is obtained by intersecting this 4D hyper-

surface with a temporal plane.
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Figure 4.2: A match for an interest point P should lie in a band around the image

of the optical ray of P on the other camera.

These steps are described in detail in the rest of this section.

4.3.1 4D point cloud generation, 4D Delaunay triangulation

Given multiple video sequences of a dynamic scene, we �rst make a dense 3D point

cloud for each time instant. Let Itk, k ∈ {1, · · · , n}, t ∈ [0, T ] denote the input

video sequence: Itk is the image captured by camera k at time t. For each image we

extract interest points P t
k,i of several types (in practice Harris points and DOGs).

For each time instant t, we take all pairs of images (Itk, I
t
k′) and we triangulate the

best possible matches (P t
k,i, P

t
k′,j) between their two sets of interest points verifying

the epipolar constraint: P t
k′,j should lie in a band around the projection of the 3D

line passing through the center of camera i and the point P t
k,i on image plane of

camera i (Figure 4.2), the width of this band depends on the errors in the point

extraction and the calibration processes. We denote Xt
kk′,ij the 3D point obtained

by triangulation of points P t
k,i and P

t
k′,j .

To �nd the best match for P t
k,i, the part of image Itk′ inside a window around

the candidate match P t
k′,j is reprojected on camera k via a plane passing through

Xt
kk′,ij normal to the optical ray of P t

k,i. The matching score is estimated by the

normal cross correlation (NCC) between the projected window and corresponding

neighborhood of P t
k,i. The match is accepted only if their NCC is higher than

a threshold, a parameter of the matching process. Finally, in order to take into

account all possible points in other images which could match with the reference
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Figure 4.3: The three-dimensional point cloud extracted from 14 images. A large

number of outliers appear in the point cloud.

point, we merge the 3D points whose distance is less than a given threshold. Each

obtained 3D point is associated to possibly more than two views.

Now we construct a �global� spatio-temporal point cloud by regarding time as

a fourth dimension. Similarly to the spatio-temporal 4D space described in chapter

3, we consider a scaling factor v, homogeneous to a speed, between space and time

dimensions in order to obtain an physically homogeneous 4D space. The global

point cloud is then obtained by taking a 4D point (Xt
i , vt) ∈ R4 for each point Xt

i

generated from the input images in time t. At the end, we compute the 4D Delaunay

triangulation of the spatio-temporal cloud storing in each vertex the list of the views

and keypoints from which it has been generated.

4.3.2 4D hyper-surface extraction

In this step we compute a four-dimensional representation of the dynamic scene

by extracting a 4D simplicial surface from the Delaunay triangulation computed

before. To this end, we label Delaunay pentatopes as inside or outside. The set of

facets between di�erently labeled cells makes a hypersurface, naturally oriented in

the four-dimensional space. Actually, a facet of this hypersurface is a tetrahedron

oriented from its inside neighbor to the outside one. We note that the normal to

a tetrahedron (3-simplex) in R4 is a four-dimensional vector whose projection on a

temporal plane, in our case, gives the spatial normal to the surface.

Let M = {M1, · · · ,Mn} be the set of n spatio-temporal points in R4 gener-

ated by the method described in section 4.3.1. We denote by Del(M) the four-

dimensional Delaunay complex of M. Del(M) is the set of all pentatopes, tetra-

hedra, triangles, segments, and points present in the Delaunay complex. In order
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to handle interior scenes, we also add a �ctitious in�nite vertex, with no signi�cant

coordinates, to the Delaunay complex. In�nite pentatopes, tetrahedra, triangles,

and segments incident to this vertex and the convex hull of the points should con-

sequently be added to Del(M).

We denote by C = {C1, · · · , Cm} ⊂ Del(M) the set of m cells of Del(M). We

de�ne ~l = {l1, · · · , lm} ∈ {I,O}m a labeling vector which describes the state of

Delaunay cells. A cell is labeled I if it is at the interior, or O if it is at the exterior

of the spatio-temporal surface of the scene. The later, which we denote by S, is
therefore inversely extracted, given a labeling vector ~l, as the union of all tetrahedra

incident to two di�erently labeled cells :

S(M,~l) =

F ∈ Del(M)

∣∣∣∣∣∣∣
F is a facet of Del(M)

∃Ci, Cj ∈ C(M) such that

{
Ci ∩ Cj = F

li = I and lj = O


(4.2)

Note that the facet F is oriented from the half-space containing the inner cell

Ci to the half-space containing the outer cell Cj . The simplicial hypersurface S is

then de�ned as the union of all facets in S,

S =
⋃
F∈S

F (4.3)

Our goal is to �nd the optimal labeling whose associated hypersurface gives the

best representation of the dynamic scene. Actually, a small part of these Delaunay

cells can already be labeled according to the observation only. A good example is

the case of in�nite cells: These cells should be labeled as outside when the scene is

at exterior, or inside when it is at interior. Figure 4.4 shows the two situations by

a two-dimensional example. In left, in�nite cells are labeled as outside, the triangle

in center in labeled as inside, the surface is therefore oriented to the exterior. In

contrast, the in�nite cells at righ are labeled as inside, and the triangle at center is

labeled as outside. The scene is therefore at interior of the surface, and the faces

are oriented to the interior.

Generally, however, such hard constraints are rarely known, the labeling vector

should therefore be computed from photometric cues. In the following, we describe

how we compute the optimal labeling by minimizing an energy dealing with visibility

and spatio-temporal smoothness.

First, we de�ne a neighborhood graph G :=< V, E > between all Delaunay cells

Ci ∈ C(M). The latters, which are nodes of the graph, are linked by an edge only if
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Figure 4.4: A two-dimensional example of the in�nite cells. Left: an exterior scene.

The in�nite cells are labeled as outside. The surface is oriented to the exterior.

Right: An interior scene. The in�nite cells are labeled as inside. The surface is

oriented to the interior.

they share two or three dimensional faces in the Delaunay triangulation, this choice

will be discused later. Additionally, all nodes are connected to the sink and to the

source:

G := < V, E >
V := {v1, · · · , vm} ∪ {s, t}
E := {(s, v1), · · · , (s, vm), (t, v1), · · · , (t, vm)}∪

{(vi, vj) |Ci ∩ Cj is a (2 or 3)-simplex}

(4.4)

Figure 4.5 shows a three-dimensional example1 of the neighborhood graph con-

structed from a complex containing four tetrahedra pqrv, stuv, pruv, and rsuv.

In 3D, only the nodes whose corresponding cells share a one-dimensional, or a two-

dimensional face are connected. In this example, the two nodes which correspond to

the tetrahedra pqrv and stuv are not linked in the graph (�gure 4.5 right) since they

share only a vertex in the triangulation. As described above, all nodes of the graph

1For illustration, the example is given in 3D. Indeed, the same 4D arguments can be made in

3D with small modi�cations.
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p

q

r
s

t

u

v

pqrv

rsuv pruv

stuv
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t

Figure 4.5: A three-dimensional example of the neighborhood graph(right) con-

structed from a triangulation(left). In 3D, only the vertices whose corresponding

cell share a two-dimensional, or three-dimensional face are connected. pqrv and

stuv are not connected, since they share only a point. All vertices are connected to

the sourse and the sink.

are also connected to the source and to the sink, here noted by s and t respectively.

Second, according to the energy to be minimized, input images and visibility cue

are employed to assign appropriate weights on the edges of the constructed graph G.
A globally optimal label assignment is then e�ciently found by applying the graph

cuts optimization method on G.
In the sequel, we note S the surface to be reconstructed, which is, as discussed

above, a union of four-dimensional tetrahedra. To satisfy both spatial and tempo-

ral constraints, we minimize an energy composed of two terms, one dealing with

visibility, and the other dealing with spatio-temporal smoothness,

E(S) = Evisibility(S) + Esmoothness(S) (4.5)

The role of Evisibility is to penalize the existence of facets which make inconsistent

occlusions according to the observation. The idea is that a point can not be an inlier

if it is not visible in the camera from which it has been generated. In the rest of

this section, we give the exact de�nition of the energy terms and we describe how

they can be implemented in the graph cuts framework.
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4.3.2.1 Visibility term

The visibility term that we propose for a spatio-temporal scene is a careful extension

of the static case proposed in [Labatut et al., 2007]. The idea of their work is that

if a point belongs to the �nal surface then it should be visible in the views from

which it has been triangulated. This yields to the penalization of all the facets

intersecting the ray between the point and the cameras from which it has been

generated. Additionally, as the point is sampled from the surface, the tetrahedra

behind the point should be labeled as inside, encouraging the surface to pass from

the point.

In the dynamic case the same argument holds. A point which belongs to the

�nal hypersurface should be visible in all its generating views. Consequently, all 4D

pentatope which intersect a 4D ray emanating from the point to the camera center

of one of its generating views should be labeled as outside, and the pentatope behind

the point should be labeled as inside. We remark that the spatio-temporal center

of a camera at a given frame is its 3D center positioned in the temporal plane of

that frame. Similarly to the static case, in order to make an energy which can be

minimized via graph cuts, we write the visibility term as the number of intersections

of a ray, between a point and one of its generating cameras, with the hypersurface,

taking into account its correct orientation.

At this point, there are several important remarks to be made. First, the spatial

visibility is de�ned in the 3D space. The visibility of a point at a given frame is

therefore de�ned only in the temporal plane corresponding to that frame. Hence,

the rays between the point and its generating views lie completely in the temporal

plane which passes through that point.

Second, a 4D facet of the Delaunay triangulation (a 4D tetrahedra) passes gener-

ally through several consecutive frames (consider the case where an extracted point

cloud is less dense in some parts of it compared to its two neighboring frames. The

Delaunay cells would connect its neighbors.). As a consequence, each intersection

of a ray with a facet is considered as a penalizing �vote� for the facet. The �nal vote

is then computed as the sum of all votes coming from di�erent frames intersecting

the facet. This is an important property since it makes a global visibility vote on

every facet taking into account the temporal coherence.

Third, contrarily to the static case presented in [Labatut et al., 2007] where an

edge is added to the graph between two Delaunay cells (tetrahedra in 3D) only if

they share a facet (triangle in 3D: we remind that in dimension d the simplices

of dimension d and d − 1 are called cells and facets respectively), in the dynamic

case, in addition to the cells sharing facets, we add an edge between every two cells

(pentatopes in 4D) whose intersection is a 2D face (triangle in 4D).
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Figure 4.6: The tetrahedra acde and bcdf have a one-dimensional intersection (the

segment cd), but they should be connected in the graph (refer to text for details).

Figure 4.6 shows an example of this situation. For simplicity reasons we consider

a lower dimensional scene: points are on 2D planes, time is the third dimension and

the spatio-temporal object is extracted from the 3D Delaunay triangulation of the

point cloud. Points a and b are on frame 1, and points c,d,e and f are on frame 2.

Point o is the center of a camera from which f has been generated. The tetrahedra

acde and bcdf have a one-dimensional intersection (the segment cd), but they should

be connected in the graph since the ray fo intersects cd and therefore a penalization

term should be added between them. It is important to note that despite the 3D

intersection of the ray with the face acd, no penalization term should be added

between the tetrahedra abcd and bcdf . That is because abcd does not appear in the

static representation of the scene on frame 2.

The intersections of the ray with the triangulation can be computed in 4D han-

dling carefully the situation discussed above. However, as a ray always lies com-

pletely in a temporal plane, we propose to �nd these intersections more easily by

intersecting the 3D ray with the 3D intersection of the triangulation with the tem-

poral plane, which is computed once for each frame. Obviously only the pentatopes

which make a three-dimensional temporal intersection should appear in the tempo-

ral slice. In this case, a 3D facet intersected by a ray will correspond to an edge of

the graph, and the unnecessary intersections discussed in the example above will be

omitted by de�nition.

We should remark that the 3D intersection of a 4D Delaunay triangulation with

a plane contains generally cells with more than four vertices. Figure 4.7 shows the

3D object and a ray intersecting the cells. The nodes p0, p1, q1, p2 and q2 shown in
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Figure 4.7: Top: A 3D slice of the 4D triangulation. A ray emanating from a vertex

to a camera center intersects 3D cells. Bottom: The corresponding visibility-related

energy term that penalizes the number of intersections with the ray and the edge

weights of the crossed pentatope in the graph.

Figure 4.7(bottom) are the nodes of the graph which correspond to the pentatopes

whose temporal intersections make the cells p0, p1, q1, p2 and q2 shown in Figure

4.7(top) respectively. Di�erent visibility terms are added. The cell containing the

camera should be labeled as outside: a term λ∞ is added to the edge from source

to p0. A 3D facet crossed by the ray from inside to outside should be penalized: a

term λout is added to the edge from p1 to q1. The cell behind the origin of the ray

should be labeled as inside: a term λin is added to the edge from q2 to the sink.

The positive weights λin, λout and λ∞ take into account the con�dence in the

reconstructed vertex. By summing up these visibility terms over all the frames, we

make a complex distribution of �vote� for each pentatope taking into account the

time coherence.

4.3.2.2 Spatio-temporal smoothness

In order to take into account both spatial smoothness and temporal continuity, we

propose to minimize the area of the 4D hypersurface in R4. This yields to the sum

of volumes over all the 4D tetrahedra between inside and outside pentatopes,

Esmoothness(S) = A(S) =

∫
S

dS =
∑
F∈S

A(F ) (4.6)

where S is the 4D hypersurface to be reconstructed (equations 4.3 and 4.2), F
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is a 4D tetrahedra, and A(F ) is the volume of the tetrahedra F in R4. Minimizing

this term encourages smoothness in time and in space. As in the static case, this

is trivially minimized in the graph cuts framework: for each pair of pentatopes

(sharing a tetrahedra F ) represented by nodes p and q in the graph, a term A(F )

is added the edge p→ q and to its opposite edge q → p.

4.3.3 3D surface extraction

In order to extract a 3D mesh from the 4D output of our method, we intersect it

with a temporal plane at a given time instant. This step is similar to the last step

of our spatio-temporal shape-from-silhouette algorithm described in Chapter 3. As

also mentioned before, this task can be performed e�ciently on GPUs (Graphics

Processor Units), since it reduces to a marching tetrahedra algorithm [Gueziec and

Hummel, 1995] on the tetrahedra of the 4D mesh, with the temporal coordinate of

vertices used as the scalar �eld for isocontouring. It produces one triangle or one

quad per boundary tetrahedron intersected by the selected temporal plane.

Figure 4.8: Some images of the �Trousers� dataset.

4.4 Experimental results

We have implemented our method using CGAL (Computational Geometry Algo-

rithms Library, homepage: www.cgal.org) [Boissonnat et al., 2000b]. CGAL de�nes

most data structure and algorithms needed in our method. For the computation of

4D Delaunay triangulation we have used the Quickhull algorithm library (QHull)

[Barber et al., 1996] (homepage: www.qhull.org).

In our �rst experiment, we have tested our method on the �rst 60 frames of

the �Trousers� sequence which is courtesy of R. White, K. Crane and D.A. Forsyth

[White et al., 2007]. The sequence is acquired by 8 cameras at a 640 × 480 resolu-
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Figure 4.9: A comparison between our method and the method of [Labatut et al.,

2007] applied independently in each frame. Top: 3D meshes obtained by the method

of [Labatut et al., 2007]. Bottom: corresponding 3D slices of the 4D representation

obtained by our method.
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Figure 4.10: The �rst three consecutive frames of the Trousers dataset reconstructed

by (Top): the method of [Labatut et al., 2007] (Bottom): our method. The frame-

by-frame reconstruction of the method [Labatut et al., 2007] makes no temporal

continuity. In contrast, our method reconstructs correctly the trouser, avoids �icking

artifacts and provides a much more continuous motion.
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tion. Figure 6.3 shows some images of this dataset. Regarding to an approximate

size of the object we have chosen a spatio-temporal scaling factor v = 30 (space

unit/frame). Figure 4.9 shows a comparison between our method and the method

of [Labatut et al., 2007] applied independently in each frame. We have compared the

three-dimensional meshes output by their method for some frames of the sequence

with the corresponding three-dimensional slices of our spatio-temporal scene. A

total number of 793769 points have been generated for the initial point cloud. To

provide a fair comparison, we have used the same point clouds in both methods.

We observe that the method of [Labatut et al., 2007] fails to separate correctly

the two trouser legs when there is not enough distance between them. In addition,

as shown in �gure 4.10, their frame-by-frame reconstruction makes no temporal

continuity. In contrast, relying on a global optimization, our method reconstructs

correctly the trouser, avoids �icking artifacts and provides a much more continuous

motion. This perfectly illustrates the capability of our approach to take advantage

of temporal coherence in order to obtain more detailed and more continuous result.

The computational times of our method and the method of [Labatut et al., 2007]

for this experiment are 210 and 112 minutes respectively on a standard workstation.

However, the most expensive part of our method is the computation of the four-

dimensional Delaunay triangulation. Fortunately, this can be strongly reduced using

an optimized four-dimensional Delaunay code.

In a second experiment, we have tested our method on the �rst 40 frames of

the �Dancer� dataset which was made available to us by the 4Dviews company

(http://4dviews.com). It is acquired by 14 calibrated and synchronized video cam-

eras. Figure 4.11(top) shows some images of this dataset. The result shows that

despite the lowly textured parts of the images, our method makes a correct four-

dimensional representation of the dancer. Figure 4.11(bottom) shows some three-

dimensional slices extracted from the spatio-temporal object.

Finally, we should remark that in order to have better visualization and to make

better comparisons we have smoothed the results of our experiments. However, the

output of our method might be used as a four-dimensional compact representation,

as a list of consecutive three-dimensional meshes or as an initialization for variational

spatio-temporal stereovision methods.

4.5 Discussion and Conclusion

We have presented a new method for multi-view reconstruction from videos adapted

to dynamic cluttered scenes under uncontrolled imaging conditions. The main idea

of our method is to regard time as the fourth dimension, and to extract a hyper-
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Figure 4.11: Top: Some images of the �Dancer� dataset. Bottom: Some 3D slices ex-

tracted from the 4D representation of the �Danser� dataset, obtained by our method.

Please note that we do not use the silhouettes or any initialization.
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surface from the four-dimensional Delaunay triangulation of the input points as

the spatio-temporal representation of the scene. This is done by labeling Delaunay

pentatopes as empty or occupied. A globally optimal assignment is e�ciently found

using graph cuts. We have validated our method on real video sequences. Our

results prove the potential of what is, to our knowledge, the only globally optimal

spatio-temporal multiview reconstruction method.

4.6 Publication

This work has been published in ACCV conferance [Aganj et al., 2009c],

• E. Aganj, J.-P. Pons and R. Keriven. Globally optimal spatio-temporal re-

construction from cluttered videos. In Asian Conference on Computer Vision,

2009.





Chapter 5

Photo-consistent Surface

Reconstruction from Noisy Point

Clouds

Abstract

Existing algorithms for surface reconstruction from point sets are defeated by

moderate amounts of noise and outliers, which makes them unapplicable to point

clouds originating from multi-view image data. In this chapter, we present a novel

method which incorporates the input images in the surface reconstruction process for

a better accuracy and robustness. Our approach is based on the medial axis transform

of the scene, which our algorithm estimates through a global photo-consistency op-

timization by simulated annealing. A faithful polyhedral representation of the scene

is then obtained by inversion of the medial axis transform. Our work is formulized

for the static reconstruction, yet it can be straightforwardly extended to the dynamic

case as will be described.
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5.1 Introduction

The problem of approximating a surface from a set of sample points has received a

considerable interest in computational geometry, and more generally in mesh pro-

cessing and in computer graphics. This problem, which is referred to as surface

reconstruction, arises in many applications of science and engineering. Many ap-

proaches have been proposed [Amenta and Bern, 1999, Amenta et al., 2001, Bois-

sonnat and Cazals, 2000], among which some o�er theoretical guarantees on the

output geometry and topology when the input sampling is su�ciently dense. Of

particular interest in this work is the Power Crust algorithm [Amenta et al., 2001],

which builds a discrete approximation of the medial axis transform, then recovers a

polyhedral surface as its inverse.

However, all the aforementioned algorithms assume that the sample is free of

noise and outliers. This is an important restriction, since no real scanning device

provides exact data. To handle this problem, some recent algorithms have been

developed. In [Dey and Goswami, 2006] theoretical guarantees have been provided

by considering a noise model in which both the sampling density and the noise

level depend on the local level of surface detail. A limitation of their algorithm

is that it does not handle arbitrarily over-sampled datasets. This limitation has

been overcome in a recent paper [Mederos et al., 2005]. This work augments the

Power Crust algorithm [Amenta et al., 2001] with a greedy �ltering process which

discards parts of the medial axis transform originating from noise. However, the

noise assumptions used in these two recent works do not hold in practice: the

density and the noise level of samples produced by real scanning devices do not

depend on the local feature size of the surface.

In this work, we tackle the special case of point clouds extracted from calibrated

multi-view image datasets. These point clouds typically feature higher levels of

noise and higher proportions of outliers than those of active scanning devices. This

discards most, if not all, standard surface reconstruction algorithms. Our work con-

tinues along the line of [Mederos et al., 2005, Amenta et al., 2001]: it replaces the

greedy estimation of the medial axis transform with a global photo-consistency op-

timization by simulated annealing, thus yielding improved accuracy and robustness.

The remainder of this chapter is organized as follows. Section 5.2 presents some

useful computational geometry concepts. Our method is described in Section 5.3

and is experimentally validated in Section 5.4.
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5.2 Background

In this section, we give some background on the geometric concepts needed in our

algorithm. Please refer to chapter 2 for a description on the Voronoi diagram (2.2)

and the Delaunay triangulation (2.3). We also describe the optimization method of

simulated annealing, which we employ to obtain a globally optimal representation

of the scene.

5.2.1 Power Diagram and Regular Triangulation

5.2.1.1 Power Diagram

We denote by Σ(C, r) a sphere of radius r centered at C in Rd. The power distance

between two hyperspheres Σ1(C1, r1) and Σ2(C2, r2) is de�ned by

d2
pow (Σ1,Σ2) = d2(C1, C2)− r2

1 − r2
2 . (5.1)

Using this distance, we can generalize the Voronoi diagram of a set of points to

a set of spheres S = {Σ1, . . . ,Σn}: the power cell of a sphere Σi is the region of

space where a non-weighted point X is closer from Σi, in term of power distance,

than from all other spheres in S.

P (Σi) = {X ∈ Rd : ∀j, dpow(X,Σi) ≤ dpow(X,Σj)} . (5.2)

It can be easily shown that the bisector, in term of power distance, of two

spheres is a hyperplane perpendicular to the line passing through their centers.

This conicides with the bisector of theirs centers, if they have equal radiuses. The

intersection of the half-spaces bounded by the bisector hyperplanes between Σi and

all Σj for i 6= j, which contain the points of space with smaller power distance to

Σi than to Σj , is a convex polyhedron, if not empty.

The di�erent power cells of S induce the power diagram, noted Pow(S), the cell

complex containing power regions and their faces. Note that similarly to the Voronoi

cells, power cells may be unbounded. The power diagram of a set of spheres coincides

with the Voronoi diagram of their centers, if they have equal radiuses. Figure 5.1

(a) shows a two-dimensional example of the power diagram of �ve circles.

5.2.1.2 Regular Triangulation

By taking the geometric dual of the power diagram, we obtain the weighted Delau-

nay triangulation of spheres, a regular triangulation. There is an edge between the

centers of two spheres in the regular triangulation if and only if their associating

cells in the power diagram have a non-empty intersection. As in the case of points,
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(a) (b)

Figure 5.1: A two-dimensional example of the power diagram (a) and the regular

triangulation (b) of �ve circles.

we obtain a triangulation of centers of the spheres in S, a partition of their convex

hull into simplices of dimension d. Similarly to the power diagram, the regular tri-

angulation of a set of spheres which have equal radiuses coincides with the Delaunay

triangulation of their centers. Figure 5.1(b) shows a two-dimensional example of the

regular triangulation of �ve circles.

Two spheres are orthogonal if their weighted distance is zero. In Rd, d+1 spheres

have a unique common orthogonal sphere, called power sphere. It can be easily

veri�ed that this sphere coincides with the circumsphere of their centers if they are

all zero weighted points. The empty sphere property of the Delaunay triangulation

extends to the case of power distance. A triangulation of a set of spheres is a regular

triangulation if the power sphere of all simplices are regular, which is to say their

weighted distances to all of the spheres is non-negative.

A sphere can intersect or not its associating power cell. It can also have no

power region in the diagram, in which case no cell is associated to it. A sphere with

no associated cell does not appear in the regular triangulation.

5.2.2 Medial axis transform

Since its introduction by Blum [Blum, 1967], the medial axis (and the skeleton, a

closely related mathematical notion), has become a standard tool in shape analysis,

recognition and classi�cation. Formal de�nitions vary from author to author. Please

refer to a recent review [Attali et al., 2009] for a thorough mathematical presentation.
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(c) (d)

Figure 5.2: (a) A two-dimensional curve in plane, its medial axis, and a maximal

circle centered in a point of the medial axis. (b) The Voronoi diagram of a set of

points in the plane. (c) The inner and outer polar balls. (d) The power diagram of

the inner and outer polar balls (see text).

Here, we de�ne the medial axis of a closed bounded surface S as the closure

of the set of points with at least two closest points on S. The inner medial axis

(resp. the outer medial axis) is the subset of the medial axis inside (resp. outside)

S. Figure 5.2(a) shows a two-dimensional example of the medial axis of a curve in

the plane.

If we weight each point X of the medial axis with the radius r(X) of the maximal

sphere centered at X whose interior does not intersect S, i.e. the distance from X

to its closest points on S, we obtain the medial axis transform of the shape. This

transformation is reversible, meaning that S can unambiguously be reconstructed

from its medial axis transform.

5.2.3 Poles and polar balls

We now consider the transposition of the above continuous notions to the dis-

crete case. Of particular interest in surface reconstruction is the result by Amenta
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and Bern [Amenta and Bern, 1999] that, given a su�ciently dense sample M =

{M1, . . . ,Mn} ∈ R3 of a surface S, the medial axis of S is approximated by a subset

of the Voronoi diagram ofM.

Following [Amenta and Bern, 1999], we call poles the vertices of the Voronoi

diagram that approximate the medial axis. A pole is called an inner pole or an

outer pole depending on whether it lies inside or outside S. We call polar ball a

maximal ball centered at a pole whose interior does not intersect M. In other

words, the radius of a polar ball is the distance from the pole to its closest points

in M. Figure 5.2(c) shows the set of inner and outer polar balls of the Voronoi

diagram 5.2(b).

The set of all inner and outer polar balls is the discrete counterpart of the medial

axis transform. Similarly to the medial axis transform, the set of polar balls can

be inverted: the Power Crust algorithm [Amenta et al., 2001] builds a polyhedral

surface that approximates the input point setM, by computing the power diagram

of the set of polar balls.

Consider the polar balls of a point sample M of a surface S. The power crust

is the boundary between the power cells of inner polar balls and the power cells of

outer polar balls. It is a polyhedral surface which approximates the surface under

some sampling assumptions [Amenta et al., 2001].

5.2.4 Simulated annealing

Simulated annealing (SA) is a probabilistic algorithm invented �rst by N. Metropo-

lis [Metropolis et al., 1953] for solving combinatorial optimization problems. The

concept of this algorithm comes from the annealing in metallurgy where a metal is

heated and slowly cooled, aiming to obtain perfect crystallizations. Similarly, the

simulated annealing algorithm consists in making random variations on an existing

state in a search space, retaining the transformed state if it is better than the orig-

inal state, and sometimes accepting worse variations with a probability, which is

referred as a temperature, that decreases during the process. This technique avoids

local minima by randomly jumping to states of higher energy.

The simulated annealing is usually employed in discrete optimization problems,

searching for a good approximation of the global minimum of a function. Indeed,

it can be shown that the probability of reaching the global optimum approaches

1 [Granville et al., 1994]. The algorithm starts with an initial state s0, and an

initial temperature T0 which will decrease during the process. In each iteration, a

neighbor state sn is randomly chosen, and the change in energy δE is computed. If

δE is negative, the system moves to the new state sn. Otherwise, it decides with a

probability, a function of δE and T which is usually the Boltzmann factor e−
δE
T , if
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it should still go to the new state. This process is repeated, while the temperature

is decremented, until a su�ciently good energy or a su�ciently low temperature is

obtained, or a de�ned number of iterations has passes.

5.3 Approach

We now focus on the problem of surface reconstruction: S is unknown. M may

not ful�ll the aforementioned sampling assumptions, and is corrupted by a certain

amount of noise and outliers. The previous notions are then faced to signi�cant

di�culties: (i) the classi�cation of poles as inner or outer is no more straightforward,

(ii) due to noise and outliers, some poles may not approximate the medial axis.

In the original Power Crust algorithm [Amenta et al., 2001], poles are labeled

as inner or outer by a greedy propagation process driven by a priority queue. Un-

fortunately, this greedy approach has been shown to fail with a moderate amount

of noise and outliers in [Kolluri et al., 2004].

In our work we propose to replace the greedy estimation of the medial axis

transform with a global photo-consistency optimization by simulated annealing. A

faithful polyhedral representation of the scene is then obtained by inversion of the

medial axis transform.

5.3.1 Formulation

Given a sample set M = {M1, . . . ,Mn} ∈ R3, we denote by B = {B1, · · · , Bm}
the set of m polar balls of the corresponding Voronoi diagram. We de�ne ~l =

{l1, · · · , lm} ∈ {−1, 0,+1}m a labeling vector describing the state of the poles: a

pole is labeled −1 if it is at the interior, or +1 if it is at the exterior of the surface.

A pole labeled 0 is considered as noise and will be discarded in the estimation of

the medial axis transform.

We denote by SB(~l) the inversion of the medial axis transform estimated by the

set of labeled polar balls (B,~l). This is a polyhedral surface obtained by the power

crust of the poles in B labeled inside (−1) or outside (+1) as described before.

In order to estimate correctly the medial axis transform we wish to minimize an

energy functional dealing with photo-consistency on the surface of power crust,

E(SB(~l)) =
∑

F∈SB(~l)

γ(F ) (5.3)

where F is a face of the polyhedral surface SB(~l). This measures how well the

given surface matches the di�erent input images in which it is seen. It is de�ned as

the sum over the whole surface of some photo-consistency measure γ, which is in
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practice computed by the normalized cross-correlation of images reprojected on each

other via the surface. A face of S is oriented, since it is the Voronoi face between

an outer and an inner pole. Hence, the photo-consistency of each face is computed

only in the views which make small angle with the normal to the face. The optimal

surface is obtained by

Sopt = SB

(
arg min

~l

E(SB(~l))

)
(5.4)

In the next section we describe why the simulated annealing can be used e�-

ciently for the optimization process. We give then the detailed algorithm to �nd the

opimal surface.

5.3.2 Energy Variation

As the simulated annealing algorithm searches the optimum by making small mod-

i�cations on the state of the system in an iterative manner, it is important to show

that the modi�cations of the energy function can be computed e�ciently in each it-

eration. To this end, we consider the variation of energy with respect to its variables:

the poles.

The energy function 5.3 is the sum of photo-consistency/smoothness terms over

Voronoi faces of the power diagram which are between outer and inner poles. The

energy term of each face can be computed independently of the others. Hence, to

compute the variation of the energy function, we should consider the modi�cation

of the faces when poles modi�ed.

When ~l is modi�ed:

• some faces are removed (Fr), added (Fa), or partially modi�ed (Fm)

• some faces are not modi�ed

As the energy is integrated over all faces of the surface, its variation can be

computed by

∆E = E(Fa)− E(Fr) + ∆E(Fm)

|∆E| = |Fr ∪ Fa ∪ Fm|
(5.5)

where |∆E| is the number of terms to be computed. Modifying (inserting, re-

moving or relabeling) a polar ball Bi in the power diagram a�ects only Voronoi faces

with at least one common vertex with the corresponding cell of Bi. This consists of

all faces of the cell of Bi, and a subset of faces of it's neighbor cells. Hence, |∆E| is
limited by the number of neighbor faces of Bi. The energy variation can be therefore

computed e�ciently by considering only the faces mentioned above.
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5.3.3 Algorithm

In order to minimize 5.3, we use the simulated annealing optimization algorithm

[Metropolis et al., 1953]. The algorithm starts with an initial labeling vector ~l0.

A global variable T is taken as the temperature of the optimization process, it is

initialized to T0. At each iteration, it takes a random pole Bi in B. Then, it changes
its label li to a random new state and computes the energy variation δE. If δE

is negative, it accepts the new labeling and goes to next iteration. Otherwise, it

decides with a probability given by a function Pr(δE, T ) if the new state should be

accepted. In case it should not, it returns to the old con�guration. The temperature

T decreases during the process by a function which depends on the number of

passed iterations. The algorithm stops when the energy is su�ciently low, or when

a prede�ned time limit is over. The algorithm returns SB(~l) as the �nal surface.

The overview of our algorithm is given below:

~l⇐ ~l0

T ⇐ T0

while E > Emin or time > timemax do

Bi ⇐ RandomPolea(B)
~lold ⇐ ~l

li ⇐ RandomStateb()

δE ⇐ E(~l)− E(~lold)

if δE > 0 then

if Pr(δE, T ) <randomc() then
~l⇐ ~lold

T ⇐ decrease(T )

aThe call RandomPole(B) returns randomly chosen pole among the

poles of B.
bThe call RandomState() returns a random state: (−1, 0,+1).
cThen call random() returns a random value in the range [0, 1].

5.4 Experimental Results

We have tested our method on a real dataset publicly available at http://cvlab.

epfl.ch/~strecha/multiview/. All implementations have been done using CGAL

library (http://www.cgal.org/)[Boissonnat et al., 2000a].

We have compared our method with a recent multi-view reconstruction method

[Labatut et al., 2007] robust to outliers. Our experiment uses the eight views Herz-

http://cvlab.epfl.ch/~strecha/multiview/
http://cvlab.epfl.ch/~strecha/multiview/
http://www.cgal.org/
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Jesu-P8 dataset from [Strecha et al., 2008]. Some images of this dataset are shown

in Figure 5.5(c). 6950 points are generated by matching image keypoints. In order

to reduce the computation time of our method we have initialized it with a labeling

vector obtained by [Labatut et al., 2007] and we have reduced the optimization

space to the set of polar balls with radius smaller than the characteristic noise

level of the dataset. The optimization process terminated after 40 minutes on a

standard workstation. Figure 5.3 shows the evolution of the energy function during

the simulated annealing process.

Two other methods have also been tested as sanity checks: the reconstruction

algorithm [Mederos et al., 2005] and the Laplacian smoothing algorithm which have

been both initialized by the result of [Labatut et al., 2007]. We have compared the

cumulative error distribution of the four meshes with respect to the mesh obtained

by the LIDAR technique provided by [Strecha et al., 2008]. Table 5.1 shows the

error distribution of the results provided by an automatic multi-view evaluation

program [Strecha et al., 2008]. For each method four cumulative error distributions

have been computed. Column n represents the percentage of image pixels with an

error less than nσ, where σ is the characteristic noise of LIDAR. More accurate

results yield to higher scores in the table. Figure 5.4 shows the meshes obtained

by four experimented methods. Our result compares favorably with the three other

methods in terms of accuracy and robustness.

In a second experiment we have initialized a variational multi-view stereovision

method [Pons et al., 2007] with our mesh and with the output of [Labatut et al.,

2007]. Figures 5.5(a) and 5.5(b) show the results obtained by the two initializations.

The results show that [Pons et al., 2007] provides more accurate and less noisy

surface when it is initialized by our method.

Experiment 1 3 5 7

[Labatut et al., 2007] 2.37 10.81 16.80 20.89

Laplacian Smooth 2.21 10.18 15.80 20.14

[Mederos et al., 2005] 2.38 10.84 16.87 20.98

Our method 3.60 15.10 21.79 25.72

Table 5.1: Quantitative results of our di�erent numerical experiments. Column n

represents the percentage of image pixels with an error less than nσ. More accurate

result yields to a higher score in the table.
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Figure 5.3: The evolution of the energy function during the simulated annealing

process.

5.5 Discussion and Conclusion

We have proposed a photo-consistent surface reconstruction method from noisy point

clouds based on the estimation of the medial axis transform. Our work replaces the

greedy algorithms of [Mederos et al., 2005, Amenta et al., 2001] with a global photo-

consistency optimization by simulated annealing. We have validated our method on

real datasets. Our results compare favorably with state of the art methods in terms

of accuracy and robustness to noise. A drawback of our method is its computational

complexity due to the optimization process. We hope that by modifying the form

of the energy function we will be able to use more practical optimization algorithms

such as graph-cuts.
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(a) (b)

(c) (d)

Figure 5.4: Di�erent meshes obtained by: a) The multi-view reconstruction method

[Labatut et al., 2007] b) The reconstruction algorithm [Mederos et al., 2005] c)

Laplacian Smooth d) our method.
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Figure 5.5: Mesh obtained by the method of [Pons et al., 2007] initialized by the

output of: a) our method b) The multi-view reconstruction method [Labatut et al.,

2007]. c) Some images of the Herz-Jesu-P8 dataset. We have used only a partial

cut of the original images.
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5.6 Future Works

5.6.1 Dynamic Photo-consistent Surface Reconstruction from

Spatio-temporal Noisy Point Clouds

Following our works on the problem of dynamic reconstruction presented in chapters

3 and 4, we can extend the proposed photo-consistent surface reconstruction method

to non-rigid dynamic scenes. In that case, a sequence of point clouds, typically

featuring high level of noise and high proportions of outliers, are extracted from

multiple video sequence providing a four-dimensional spatio-temporal cloud in R4.

The 4D space is indeed obtained by regarding time as the fourth dimension, and

considering a scaling factor v, homogeneous to a speed, between space and time in

order to keep physical homogeneity. The problem can be simply extended to 4D,

considering the same de�nitions of medial axis transform, poles and power crust.

Let M = {M1, . . . ,Mn} ∈ R4 be the set of n four-dimensional sampled

points on all time instants, and B = {B1, · · · , Bm} the set of m polar balls of

their corresponding 4D Voronoi diagram. Similarly to the static case, we de�ne
~l = {l1, · · · , lm} ∈ {−1, 0,+1}m a labeling vector describing the state of the poles:

a pole is labeled −1 if it is at the interior, or +1 if it is at the exterior of the spatio-

temporal hypersurface. A pole labeled 0 is considered as noise and will be discarded

in the estimation of the medial axis transform. SB(~l), the inversion of the medial

axis transform is a polyhedral hypersurface in R4, constructed by the faces of the

4D power diagram of B which lie between inner and outer poles according to ~l. In

order to estimate the best hypersurface representing the dynamic scene, we integrate

photo-consistency/smoothness measure over all faces of S. The photo-consistency

measure, however, should be computed in each frame and summed over all the se-

quence since it is only available in discrete time instants. The global spatio-temporal

energy follows,

E(SB(~l)) =
∑

F̄∈SB(~l)

area(F̄ ) +
∑

(F∈(SB(~l)∩H),H)

γ(F ) (5.6)

where H is a temporal plane, F̄ is a 4D facet of the hypersurface S in R4, and

F is a 3D facet of the surface (SB(~l) ∩H).

Minimizing the �rst term, which is the area of the 4D hypersurface S, encourages
the spatio-temporal smoothness of the hypersurface. The second term measures how

well the three-dimensional slices of the hypersurface S match the di�erent input

images at their corresponding frame.

Similarly to the static case, the optimal hypersurface is computed by minimizing

E. Given a time instant t, the �nal 3D mesh can then be extracted from S by
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intersecting this hypersurface with a temporal plane at t.

The feasibility of the optimization remains however questionable. The major

di�erence between the static and dynamic energies is the computation of the 3D

slices of S in the latter. This can be computationally very expensive when repeated

at each step of an iterative optimization algorithm such as simulated annealing.

Fortunately, this is not a problem here, since according to the reasoning of the

section 5.3.2, which holds in any dimension, only a few pentatopes (4-simplices in

R4) should be intersected by temporal planes when the state of a pole is modi�ed.

As described before, this is limited by the number of neighbor cells of the pole. The

simulated annealing can therefore be used here. In the future, we plan to apply our

method to multi-view dynamic datasets, through an optimized implementation of

our algorithm in R4.
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5.6.2 Surface Reconstruction from Noisy Point Clouds using

Power Distance

Another way to represent noisy data is by assigning spatial probability density

functions on input points. Probabilistic concept of distance can then be naturally

derived, yielding interesting theoretical and experimental results on the problem

of surface reconstruction. In this section, we propose a novel concept of closeness

and we show how it can be plugged in reconstruction methods in order to correctly

reconstruct the surface even in presence of uncertainty. Our two-dimensional ex-

periments show the ability of our approach to handle noisy dataset. In the future,

we plan to employ this method on real 3D point clouds obtained by laser scan or

multiview triangulation.

5.6.2.1 Probabilistic Concept of Closeness

Voronoi diagram of noisy point sets have been introduced in [Aurenhammer et al.,

1991], generalizing the de�nition of the Voronoi diagram to the situation when the

position of each point is uncertain and it is described by some density function in

space. LetM = {M1, . . . ,Mn} ∈ Rd be a set of n points, each of them distributed

by a probability density function ρi. Two cases are distinguished according to the

probabilistic concept of closeness:

1. Point X ∈ Rd is closer to Mi than to Mj if the probability of Mi being closer

to X is bigger than the probability of Mj being closer to it.

dprob(X,Mi) < dprob(X,Mj)

⇔∫
Rd
ρj(~x)

∫
B(X,d(X,~x))

ρi(~y)dvydvx >
∫
Rd
ρi(~x)

∫
B(X,d(X,~x))

ρj(~y)dvydvx

(5.7)

where B(C, r) is the ball centered at C with radius r. Using this concept of

closeness, X belongs to the Voronoi cell of Mi if the probability of Mi being

closest to it is maximal.

2. Point X ∈ Rd is closer to Mi than to Mj if the expected distance of Mi to X

is smaller than the expected distance of Mj to it.

dprob(X,Mi) < dprob(X,Mj)

⇔∫
Rd
d(X,~x)ρi(~x)dvx <

∫
Rd
d(X,~x)ρj(~x)dvx

(5.8)
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Using this concept of closeness, X belongs to the Voronoi cell of Mi if the

expected distance of Mi from the point X is minimal.

These two probabilistic distances lead to two di�erent types of Voronoi diagram,

each of them constructible in O(n log n) for points with uniform probability density

in a circle [Aurenhammer et al., 1991]. Unfortunately, these diagrams are not easily

computed, the results are very complicated to be used in real applications. However,

as also mentioned in [Aurenhammer et al., 1991], a slightly di�erent concept of

expected-closeness yields to a known distance widely studied and employed: the

power distance (cf. 5.2.1.1). In this section, we formulate the concept of noise and

outlier by use of the power distance of weighted points, we propose then to employ

this distance in surface reconstruction algorithms in order to handle correctly the

incertainty in input points.

Uncertainty of a Point Let M be a point in Rd represented by its probability

distribution funcion ρ. For simpli�cation, suppose that the expected position of M

is at origin. Consider the expected squared distance of a point X ∈ Rd to M ,

〈
d2(X,M)

〉
=

〈
( ~X − ~M)2

〉
= ~X. ~X +

〈
~M. ~M

〉
− 2 ~X ·

〈
~M
〉

= X2 +
〈
M2
〉 (5.9)

Interestingly, this coincides with the squared power distance of the unweighted

point X to the weighted point M̂ centered at the expected position of M with the

power −
〈
M2
〉
.

In practice, two kinds of uncertainty appear:

• spatial uncertainty

• inlier/outlier uncertainty

The �rst type is usually modeled by a Gaussian probability distribution centered

at the point. The expected squared distance of X to M is therefore,

〈
d2( ~X, ~M)

〉
= X2 + σ2

where σ2 is the variance of the Gaussian which corresponds to the probability

distribution of M . This is the squared power distance of X and the weighted point

M̂ = (M,−σ2).

The second type of uncertainty on a pointM is modeled by the probability pin of

M being inlier. Unfortunately, this is not a density function and cannot be employed
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in equation 5.9 directly. However, we propose to interpret an outlier as an in�nit

point: M is located at origin with probability pin, or at in�nity with probability

1 − pin. In practice, however, a relatively big constant R shall be used for in�nity.

The squared expected distance of M to origin is therefore

〈
M2
〉

= pin.0 + (1− pin)R2 = (1− pin)R2 (5.10)

The squared expected distance ofX toM is therefore the squared power distance

of X and the weighted point M̂ = (M,−(1− pin)R2). Combining the two types of

uncertainty, for a point M with spatial uncertainty σ and inlier probability pin, we

obtain

〈
M2
〉

= pinσ
2 + (1− pin)R2 (5.11)

The expected squared distance of X with M is therefore

〈
d2(X,M)

〉
= dpow(X, M̂) (5.12)

where

M̂ = (M,−(pinσ
2 + (1− pin)R2)). (5.13)

Finally, we suggest that the aforementioned probabilistic distance can be plugged

in Delaunay based reconstruction methods, replacing the Delaunay triangulation

by a regular triangulation of input points weighted according to their noise level.

Indeed, a consequence of the distance 5.12 is that a point can disappear from the

regular triangulation if it is not precise enough respecting its neighborhood. In other

words, the result depends on the local variation of the noise and not on its value 1.

Experimental Results We have tested our method on the power crust recon-

struction algorithm [Amenta et al., 2001] in R2. To this end, we have replaced the

�rst Delaunay triangulation computed in the power crust algorithm by a regular

triangulation of noisy input points weighted by the equation 5.13. For our exper-

iment, we have added noise to a set of 685 points initially distributed on a curve.

200 outliers, with inlier probability in the range of [0, 0.6] have also been added to

the point set. Noise variance of each point has been approximated by a function

of point density at its position. Figure 5.6 shows a comparison between the results

1Imagine the case where all points have the same incertaitly. The regular triangulation will

coincide with the Delaunay triangulation, and all points will appear in the result whatever their

noise level. This is intuitively correct since all noisy points have the same level of information and

should appear in the result, unless there are some more precise points to be preferred to them.
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of the original algorithm (a) and the power crust on the weighted points (b). The

results show that despite the spatial uncertainty of the points and the presence of

outliers, the power crust approximates correctly the curve when initial points are

replaced by weighted points computed by our method. In the future, we plan to

test this method on real 3D datasets.
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(a)

(b)

Figure 5.6: (a) The power crust of a set of 685 noisy points sampled from a curve,

and 200 points uniformly distributed on the plane (outliers). (b) The power crust

of the same set of points using our proposed distance.
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5.6.3 The Part-time Post O�ce Problem

The concept of closeness proposed in 5.6.2 does not fully describe the probabilistic

distance of noisy points. Particularly, regarding an outlier as an in�nite point is

questionable. In this section, we de�ne a more realistic concept of closeness, yielding

to a complex Voronoi diagram. In the future, we plan to study more of its properties,

and we wish to �nd an algorithm to compute it e�ciently.

5.6.3.1 Probabilistic Voronoi diagram

Let M = {M1, . . . ,Mn} be a set of n points in Rd, and P = {p1, . . . , pn} their

respective presence probability: Mi is present in space (inlier) with probability pi,

or absent (outlier) with probability 1 − pi. We de�ne the Voronoi cell of point Mi

the set of all points in space whose probability to be closer to Mi than to other

points is maximal:

V (Mi) =
{
X ∈ Rd : ∀j,Pr (∀k, d(X,Mi) ≤ d(X,Mk)) ≥ Pr (∀k, d(X,Mj) ≤ d(X,Mk))

}
(5.14)

Let X be a point in Rd. For X to be closer to Mi than to other points of M,

two conditions should be satis�ed:

1. Mi should be present

2. all pointsMk, for which X is closer toMk than toMi, should be absent. These

points lie in the interior of the sphere centered at X passing through Mi

The �rst condition is satis�ed with probability pi. The second condition is

satis�ed with probability:

∏
Mk∈B(X,d(X,Mi))

(1− pk)

where B(C, r) is the ball centered at C with radius r. As a result, X belongs to

the Voronoi cell of Mi i�

∀j, pi
∏

Mk∈B(X,d(X,Mi))

(1− pk) > pj
∏

Mk∈B(X,d(X,Mj))

(1− pk) (5.15)

The probabilistic distance of a point X to Mi can therefore be de�ned by:

dprob(X,Mi) = −pi
∏

Mk∈B(X,d(X,Mi))

(1− pk) (5.16)
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Note that the probabilistic distance between X and Mi depends also on the

probability and the position of the other points Mk. Now we prove that a cell of

Voronoi diagram constructed by this distance, is a cell complex, which is a subset of

the arrangement of the pairwise bisector hyperplanes of all points. The arrangement

of a set of hyperplanes H is de�ned as follows,

De�nition. Let H be a set of n hyperplanes in Rd. H induces a decomposition

of space into a collection of bounded or unbounded polytopes with pairwise disjoint

interiors. These polytopes and their faces form a cell complex which is called the

arrangement of H.

Theorem 5.6.1. Let M = {M1, . . . ,Mn} be a set of n points in Rd, and P =

{p1, . . . , pn} their respective presence probability. Let F a face of the arrangement

of the pairwise bisector hyperplanes of M. Then F is a subset of a probabilistic

Voronoi face ofM: ∃Mi : F ⊂ V (Mi)

Proof. LetMi ∈M, andX1 andX2 two points in F . We prove that dprob(X1,Mi) =

dprob(X2,Mi).

Let Mj another point in M. F is the intersection of a �nite number of half-

spaces bounded by bisectors of the the points in M. Consider the half-space H̃

bounded by the bisector ofMi andMj containing F . We have X1 ∈ H̃ and X2 ∈ H̃
since they belong both to F . This implies that

Mj ∈ B(X1, d(X1,Mi))⇔Mj ∈ B(X2, d(X2,Mi))

So

dprob(X1,Mi) = −pi
∏

Mj∈B(X1,d(X1,Mi))

(1− pj)

= −pi
∏

Mj∈B(X2,d(X2,Mi))

(1− pj) = dprob(X2,Mi)

All points in F belong therefore to the same Voronoi cell.

The complexity of the probabilistic Voronoi diagram of a set of points is at most

the complexity of the arrangement of the pairwise bisectors of the points. This is

given by the following theorem.

Theorem 5.6.2. Let M = {M1, . . . ,Mn} be a set of n points in Rd, and P =

{p1, . . . , pn} their respective presence probability. The complexity (namely, the num-

ber of faces) of the probabilistic Voronoi diagram of M with respect to the distance

de�ned by 5.16 is O
(
nd+2

)
.
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Proof. n points make O(n2) bisectors. The result follows as a consequence of theo-

rem 5.6.1, since the total number of faces in a simple arrangement of n hyperplanes

is O(nd).

Example Figure 5.7 shows an example of the probabilistic Voronoi diagram of

10 points in plan. Points are shown by circles with radius proportional to their

existance probability, and the Voronoi cell of each point is colored by the color of

the point. Note that Voronoi cells are not necessarily convex, and the points do not

necessarily belong to their corresponding cells.

5.7 Publication

This work (apart from section 5.6 which is in progress) has been published in ICIP

conferance [Aganj et al., 2009a],

• E. Aganj, R. Keriven and J.-P. Pons. Photo-consistent surface reconstruction

from noisy point clouds. In IEEE International Conference on Image Process-

ing, 2009.
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Figure 5.7: The probabilistic Voronoi diagram of 10 points in plan. Points are shown

by circles with radius proportional to their existence probability. The Voronoi cell

of each point is colored by the color of the point. Note that Voronoi cells are not

necessarily convex, and the points do not necessarily belong to their corresponding

cells.
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Chapter 6

Multiview Texturing

Abstract

Reprojection of texture issued from cameras on a mesh estimated from multi-view

reconstruction is often the last stage of the pipeline, used for rendering, visualization,

or simulation of new views. Errors or imprecisions in the recovered 3D geometry are

particularly noticeable at this stage. Nevertheless, it is sometimes desirable to get a

visually correct rendering in spite of the inaccuracy in the mesh, when correction of

this mesh is not an option, for example if the origin of error in the stereo pipeline

is unknown, or if the mesh is a visual hull. We propose to apply slight deformations

to the data images to �t at best the �xed mesh. This is done by intersecting rays

issued from corresponding interest points in di�erent views, projecting the resulting

3D points on the mesh and reprojecting these points on the images. This provides

a displacement vector at matched interest points in the images, from which an ap-

proximating full distortion vector �eld can be estimated by thin-plate splines. Using

the distorted images as input in texturing algorithms can result in noticeably better

rendering, as demonstrated here in several experiments.
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6.1 Introduction

Recovering 3D geometry from multi-view images or videos is the focus of the stereo

research community in computer vision, robotics, and photogrammetry [Atkinson,

2001]. Usage dictates the requirements and priorities about accuracy of the esti-

mated depth information: from rough precision for obstacle avoidance in robot nav-

igation to highly precise and controlled measurements in telemetry and surveying.

Despite years of research and development of computing capacities, and whereas the

mathematical foundations are well understood [Faugeras and Luong, 2001, Hartley

and Zisserman, 2003, Ma et al., 2004], the required precision is not always practically

reachable, which may be due to faulty calibration (uncorrected geometric distortion,

imprecise focal position), approximations (interpolation of disparity in non-textured

regions), or plain errors of algorithms in presence of unexpected conditions (specular

surfaces, transparency, etc). Also several stereo pipelines include a step of global,

non-convex energy minimization, as for example [Keriven and Faugeras, 1998, Pons

et al., 2007, Vu et al., 2009]. As they typically involve a gradient descent scheme,

they are susceptible of stopping at a local minimum and have no way of recovering

a better 3D geometry. Other methods involve a careful succession of heuristics to

re�ne a visual hull obtained from silhouettes, as for example [Furukawa and Ponce,

2007a]. The base hypotheses of such heuristics may also be somewhat in default.

In other cases, the visual hull is used directly for e�ciency reasons. Whereas the

resulting information may be unusable for precise scienti�c measures, it may still

be useful and su�cient in motion capture for example. In that case, the rendering

should mask as best as possible the incorrect geometry.

While algorithms exist that select the image to use as texture on each part of

the mesh to minimize illumination change artifacts, they assume that the images

are compatible with the mesh. In our case, that assumption does not stand and we

must do correct rendering in spite of these inconsistencies. As the mesh is already

the result of an optimization, it cannot be re�ned. The only possibility is to modify

the images themselves. This is the approach of Eisemann et al. in [Eisemann et al.,

2008]. The authors warp the input images by aligning reprojected images through

optical �ow estimation, for which they use a near-real-time GPU implementation.

By contrast, we propose to use feature points as tie points for the registration of

images, and to warp the images following a thin-plate spline approximation of the

displacement �eld. Computational cost is normally low, as correspondence of tie

points is often already computed and used earlier in the stereo pipeline to estimate

epipolar geometry.

Recent work of Tzur and Tal [Tzur and Tal, 2009] is an interesting approach to
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the problem. The model is assumed to �t imperfectly with the image, and given a

set of projected vertices, a local projection matrix is estimated. The �nal warp is

a weighted average of these local maps. Notice however that the method requires

manual input of some projected vertices of mesh in the image. An interactive

software specialized to plant modeling is also described in [Quan et al., 2009].

The rest of this chapter is organized as follows. Section 2 describes the details

of our algorithm and the required mathematical foundation. Section 3 shows exper-

imental results of this method on diverse data. Finally we draw some conclusions

in Section 4.

6.2 Morphing images to adapt to the mesh

6.2.1 Overview of the algorithm

Instead of correcting the mesh to �t the input images, which we assume we cannot

do as the mesh is already obtained as some optimum, we correct the input images

to �t the output mesh. We suppose that the camera positions, orientations and

internal parameters, so as the mesh, are all correct, and we look for deformations in

each input image to �t them. This is done in 4 steps:

1. Find matching points in di�erent views.

2. Project on the mesh the obtained 3D points and reproject them onto the views.

3. Approximate the resulting sampled vector �eld in each image and deform them

accordingly.

4. Use a multi-view texturing algorithm for rendering.

Notice that the match points detection is often already done as a �rst step in the

stereo pipeline for calibration, therefore this entails no additional computation. Next

sections give details on these di�erent steps.

6.2.2 Interest point matching

Detection of points that have a non-ambiguous local neighborhood has seen remark-

able progress in the last few years. They are some kind of generalized extrema or

corners. Most of these encode their neighborhood with a similarity invariant signa-

ture, although a�ne invariance can be partly accommodated. Most popular of those

are SIFT [Lowe, 2004], which correspond to local extrema in the Gaussian pyramid,

or generalized corners, and MSER [Matas et al., 2002], which are centroids of con-

trasted upper or lower level sets of the image radiometry. Any type of feature points



6.2. Morphing images to adapt to the mesh 115

can be used to match between di�erent views [Mikolajczyk et al., 2005]. We use

SIFT points in our experiments, although MSER would also �t.

As noticed above, the interest points are already computed for calibration of

the stereo system, and provide 3D point clouds for the initial mesh. However the

mesh is often subsequently modi�ed by some smoothing procedure, and then the

3D points are not anymore on the mesh. The next step measures this di�erence to

adapt the images.

6.2.3 Reprojection of 3D points through the mesh

Reprojection is illustrated in Fig. 6.1. Intersecting rays passing through matching

feature points via the respective focal points yields the 3D point position. Ideally,

these rays would intersect in 3D, but because of imprecise calibration or imprecise

detection they may not1. The least squares error solution is the 3D point that

minimizes the sum of square distances to the rays and can be computed by a closed

formula. Such a point is expected to be on the mesh, but because of the imprecision

of the mesh, it may reside nearby. A natural adjustment is to project the 3D point

M on the mesh, yielding a point M̃ . We can then assume that M̃ is the real 3D

position and that the images are faulty. We reproject M̃ on the images where it has

been observed, yielding corrected positions of the feature points.

Let M = {M1, . . . ,Mn} be the set of n 3D points triangulated from at least

two feature points. Let Ci be the set of views from which the point Mi has been

generated. The deformation vectors of image j are computed as

Vj =
{(

Πj(Mi),Πj(M̃i)
)
|Mi ∈M, j ∈ Ci

}
(6.1)

where Πj is the camera projection of the view number j, and M̃i is the projection

of Mi on the 3D surface. To ignore outliers, we simply reject the 3D points that

are too far from the mesh. Otherwise, a single large mishap can distort the applied

warping and ruin the correction e�ect.

6.2.4 Dense deformation

Previous step indicates the desired position of matched feature points so that they

correspond to 3D points on the mesh. However we need a dense deformation of each

image to accommodate these displacements. In other words, in each image we are

looking for an interpolation or approximation of a vector �eld irregularly sampled.

A standard technique for that is using thin-plate splines [Bookstein, 1989, Wahba,

1Bundle adjustment would try to enforce these intersections as best as possible.
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Figure 6.1: Projection of 3D points through the mesh. Corresponding feature points

P1 and P2 allow to recover a 3D point M . This point is projected on the mesh M̃ ,

which would be observed at P ′1 and P ′2.
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Original image Deformation vectors

Figure 6.2: An image deformed by the thin-plate spline with di�erent values of λ.

The deformation becomes nearly an a�ne transformation for big λ.
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1990]. Given the n feature points Pi and their reprojected positions P ′i through the

mesh, thin-plate splines minimize the energy:

E(f) =
∑
i

‖P ′i − f(Pi)‖2 + λ

∫ (
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dx dy (6.2)

with a 2-variable function f of the form

f(z) = Az +
∑
i

Φ(‖z − Pi‖)wi , (6.3)

with A a plane a�ne transform, Φ a kernel function, usually Φ(r) = r2 log r,

and wi a list of 2-vectors representing the non-a�ne part of the transform. The

parameter λ controls the rigidity of the deformation: when λ→∞ the deformation

becomes an a�ne transformation.

De�ning K as the n × n symmetric matrix with entries Kij = Φ(‖Pi − Pj‖),
P as the 3× n matrix whose column j is composed of homogeneous coordinates of

Pj , P (:, j) = (xj , yj , 1)T , and P ′ the 2 × n matrix whose column j is composed of

Cartesian coordinates of P ′j , we minimize:

E(A,W ) = ‖P ′ −AP −WK‖2 + λ trace(WKW T ) ,

with A the 2× 3 a�ne transform matrix and W the 2× n concatenation of the wj

written in columns. The involved norm is the Frobenius norm

‖X‖2 = trace(XTX) =
∑
i,j

X2
ij

that is the sum of square coe�cients of X, associated to the scalar product

< X,Y >= trace(XTY ).

Equating to 0 the gradients of E (relative to this scalar product), with respect

to A and W , yields:

(P ′ −AP −WK)P T = 0 (6.4)

(P ′ −AP −WK)K + λWK = 0 (6.5)

Using the QR decomposition of P T = Q1R (see [Golub and Van Loan, 1996]), let

Q2 be any n× (n− 3) matrix such that
(
Q1 Q2

)
is orthogonal. Right-multiplying

(6.5) by K−1Q2, we get

P ′Q2 −WKQ2 + λWQ2 = 0 ,
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so that

WQ2 = P ′Q2(QT
2 KQ2 − λI)−1

and since WQ1 = 0, obtained by substituting −λW to the left factor of (6.4),

W
(
Q1 Q2

)
=
(

0 P ′Q2(QT
2 KQ2 − λI)−1

)
,

which, right-multiplied by
(
Q1 Q2

)T
, yields:

W = P ′Q2(QT
2 KQ2 − λI)−1QT

2 .

Finally, right-multiplying (6.5) by K−1Q1 gives

P ′Q1 −ART −WKQ1 = 0 ,

whence the solution for A:

A = (P ′ −WK)Q1R
−T .

Figure 6.2 shows an image deformed by the thin-plate spline with di�erent values

of λ. The deformation becomes nearly an a�ne transformation for big λ.

In our experiments, we used an open-source C++ implementation of thin-plate

spline, available at http://elonen.iki.fi/code/tpsdemo/.

6.2.5 Texture mapping

Mapping textures from several views on the mesh can be achieved by several meth-

ods. Projecting all images on the mesh and doing some weighted averaging, as for

example in [Bernardini et al., 2001], leaves some artifacts, such as ghosting. Other

methods extract an atlas of the mesh, where each region of the mesh gets its texture

from one unique view. The challenge is then to reduce seams visibility. The atlas

can be computed by formulating the problem as a Markov Random Field energy

minimization [Lempistky and Ivanov, 2007] and then masking the contrast changes

between the view by multiband blending at the seams, generalizing work of Burt

and Adelson [Burt and Adelson, 1983]. This is the strategy presented in [Allène

et al., 2008], which we use in our experiments.

6.3 Experiments

We �rst demonstrate the proposed algorithm using simulated wrong 3D geometry.

The image data are courtesy of R. White et al., who used them in [White et al.,

2007]. The 3D geometry was estimated by Furukawa and Ponce [Furukawa and
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Ponce, 2007b]. To this 3D model, we apply arti�cially a translation in space before

texturing by the algorithm of [Allène et al., 2008]. For each point on the mesh,

the texture comes from one single view (the most frontal one), so that errors can

only be seen at transitions from one view to another. Still the bene�ts of our mesh

reprojection algorithm are visible in Fig. 6.3. The warping e�ect is most visible in

the sides of the image.

In the next experiment, we use image data courtesy of J. Starck2. The 3D

geometry was estimated by visual hull from silhouettes (using an implementation

of the algorithm of Franco and Boyer [Franco and Boyer, 2003]) and re�ned using

Poisson surface reconstruction [Kazhdan et al., 2006]. Texturing is done with the

algorithm of [Allène et al., 2008] slightly modi�ed to enhance errors: instead of

selecting one pixel value, issued from the �best� view, to any point on the mesh,

the average of the two best views is used. Only the 3 front views were used in the

texturing process. This produces blur at misregistered points, otherwise the errors

can only be observed at transitions between di�erent cameras in the atlas, which is

still noticeable but less striking. Notice that the original images produce artifacts

on the arms and on the dancer's left hand, while the dress exhibits some wrong

texture. Most of these problems are �xed by the warping, except on some part of

the left arm.

6.4 Conclusion

When the multi-view reconstruction pipeline yields an imprecise mesh, we have

shown how the input images themselves can be modi�ed to mask the imprecisions

in the rendering. Mapping these images as texture on the mesh limits the visible

artifacts. Reversing the problem by changing the input (the images) to match the

erroneous output (the mesh) does not allow better measurements, but if only a visu-

ally pleasing rendering is su�cient, as for example in motion capture for computer

generated imagery, this technique provides a simple solution. The algorithm was

demonstrated on simulated and real imprecise meshes. Extension of this work to

dynamic multi-view stereo (3D+time) using similar algorithms will be investigated.

6.4.1 Future work

Our method can be adapted to spatio-temporal texturing of dynamic scene, employ-

ing the extension of thin-plate spline deformation to 3D. Indeed, a frame-by-frame

texturing of an imprecise dynamic model by the proposed static method does not

2http://personal.ee.surrey.ac.uk/Personal/J.Starck/
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exploit temporal coherence, leaving still virtual artifacts such as temporal discon-

tinuity of texture. Following our works on the problem of dynamic reconstruction

presented in chapters 3 and 4, our method is applicable in the 3D image space ob-

tained by regarding time as the third dimension, and considering a scaling factor v,

homogeneous to a speed, between space and time to keep physical homogeneity.

By adding time to the image space, we consider each input video, captured from

a viewpoint, as a 3D image whose values are known at discrete time instants. The 3D

feature points are naturally constructed by adding time as the third dimension, and

the 3D point clouds are computed, as in the static case, by triangulation. The rest of

our method is simply extended to 3D: The deformation sample vectors are obtained

by projecting the triangulated points on the surface, and then reprojecting them

on the images. The deformation vector �elds are computed by the 3D thin-plate

spline algorithm, using the sampled vectors. The 2D images are then obtained by

employing these deformations on the 3D input images, interpolating values linearly

between neighbor images. This is formulated as follows.

LetMk =
{
Mk

1 , · · · ,Mk
nk

}
be the set of nk points triangulated from the feature

points at frame k. Let Ck
i be the set of views from which the point Mk

i has been

generated. The deformation vectors of image j are computed as

Vkj =
{(

Πj(M
k
i ),Πj(M̃

k
i )
) ∣∣∣Mk

i ∈Mk, j ∈ Ck
i , 0 < k ≤ K

}
(6.6)

whereK is the number of frames, Πj is the camera projection of the view number

j, and M̃k
i is the projection of Mk

i on the 3D surface. All Vkj can then be used to

estimate a 3D deformation vector �eld for the viewpoint j. In the future, we plan

to implement and employ this method on real dynamic datasets to demonstrate its

advantages compared to frame-by-frame texturing.

6.5 Publication

This work has been published in ACCV conferance [Aganj et al., 2009b],

• E. Aganj, P. Monasse and R. Keriven. Multi-View Texturing of Imprecise

Mesh. In Asian Conference on Computer Vision, 2009.
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Figure 6.3: Texturing on simulated imprecise mesh ([Furukawa and Ponce, 2007b]

plus erroneous deformation). Top: Warping of image to adapt to the mesh. Top left:

one original image with displacement vector of key points superimposed. Top right:

the warped image using thin-plate spline approximation of this sampled vector �eld.

Bottom: Multi-view texturing on imprecise mesh using [Allène et al., 2008]. Bottom

left: texturing with original images. Bottom right: texturing with warped images.
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Figure 6.4: Texturing on real imprecise mesh (visual hull from [Franco and Boyer,

2003]). Top: Warping of image to adapt to the mesh. Top left: one original image

with displacement vector of key points superimposed. Top right: the warped image

using thin-plate spline approximation of this sampled vector �eld. Bottom: Multi-

view texturing on imprecise mesh using [Allène et al., 2008]. Bottom left: texturing

with original images. Bottom right: texturing with warped images.





Conclusion

In this thesis, we have considered the problem of multi-view reconstruction, focusing

on applicability and �exibility of approaches. In the �rst part, we have proposed

three reconstruction methods sharing the objective of estimating a representation

of a static/dynamic scene from a set of multiple images/videos.

• Our �rst contribution is a method to reconstruct a four-dimensional repre-

sentation of the spatio-temporal visual hull of a non-rigid scene, outputting a

compact and high-quality surface mesh representation of the visual hull, and

o�ering easy and extensive control over the size and quality of the mesh as

well as over its associated reprojection error. We have shown that our method

has several signi�cant advantages compared to independent frame-by-frame

computation of visual hull. It yields a compact representation by exploiting

time redundancy, and it o�ers the possibility of interpolating the shape be-

tween consecutive frames thanks to the temporally continuous representation

constructed in the four-dimensional space.

• Our second contribution is a multi-view reconstruction method computing a

globally optimal spatio-temporal representation of a non-rigid dynamic scene

under uncontrolled imaging conditions: it is robust to noise, it does not require

any initialization, it does not require silhouettes, it handles closed as well as

open scenes with cluttered backgrounds, it exploits visibility information to

guide the position of the surface, and it computes a compact, and temporally

continuous four-dimensional representation, o�ering several advantages men-

tioned above compared to independent frame-by-frame reconstruction of the

scene.

Both of aforementioned methods reconstruct a four-dimensional surface as a

set of tetrahedral facets extracted from the Delaunay triangulation of a 4D point

cloud, exploiting consequently the temporal coherence by constructing a compact,

temporally continuous and global representation of the dynamic scene, and handling

naturally topology changes thanks to the four-dimensional framework. Finally, we

believe that the four-dimensional hypersurface representation employed in these
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approaches is likely to inspire progress in other applications, such as segmentation

of spatio-temporal MRI sequences of the heart in medical imaging.

• Our third contribution is a photo-consistent surface reconstruction algorithm

based on the medial axis transform of the scene, incorporating input images

in the reconstruction process for a better accuracy and robustness. In this

work, we consider the special case of point clouds extracted from calibrated

multi-view image datasets, typically featuring high levels of noise and high

proportions of outliers. Our method is based on the estimation of the me-

dial axis transform with a global photo-consistency optimization by simulated

annealing.

Despite our static formulation of the problem, we have shown that it can be easily

extended to a four-dimensional space, e�ciently reconstructing a spatio-temporal

surface from a set of noisy point clouds extraceted from a dynamic non-rigid scene.

Please refer to section 5.6.1 for more details. In the second part of this thesis, we have

considered the problem of multi-view texturing, focusing on the visual correctness

of the rendering, in spite of high level of inaccuracy in the mesh.

• Our fourth contribution is a method to compute a visually correct texturing of

an imprecise mesh. To this end, we have proposed to slightly deform the data

images to �t at best the �xed mesh. We employ then the distorted images as

input in texturing algorithms to obtain better rendering.

We have also shown that this method can be extended to the case of dynamic

scenes, going beyond independent frame-by-frame texturing of meshes (cf. section

6.4.1). In future, we plan to implement and employ this method on real dynamic

datasets to demonstrate its advantages compared to frame-by-frame texturing.

All through this thesis, we have validated our methods by several numerical

experiments, all of them implemented in C++, and most of them using the com-

putational geometry algorithms library CGAL [Boissonnat et al., 2000b]. CGAL

de�nes all the geometric primitives needed in this thesis and provides excellent al-

gorithms to compute the Delaunay and regular triangulations. Please note that,

our numerical results presented in chapter 3 are generated by a generic unoptimized

Delaunay triangulation algorithm which works in any number of dimensions (cf.

section 3.3.3). In the future, we plan to use a recently proposed new implementa-

tion of the incremental algorithm for constructing Delaunay triangulations in any

dimension [Boissonnat et al., 2009] to reduce the computational time of our method.

Finally, please note that, at the end of each chapter we have presented and

discussed our di�erent future challenges, particularly in sections 5.6.2 and 5.6.3
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where two works in progress concerning novel concepts of probabilistic distance

have been proposed yielding di�erent methods to reconstruct a surface from noisy

point clouds. In future, we plan to validate these methods by employing them on

real 3D datasets.
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