
HAL Id: pastel-00523007
https://pastel.hal.science/pastel-00523007

Submitted on 4 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementational aspects of code-based cryptography
Bhaskar Biswas

To cite this version:
Bhaskar Biswas. Implementational aspects of code-based cryptography. Cryptography and Security
[cs.CR]. Ecole Polytechnique X, 2010. English. �NNT : �. �pastel-00523007�

https://pastel.hal.science/pastel-00523007
https://hal.archives-ouvertes.fr

PhD Thesis

Presented at

L'ÉCOLE POLYTECHNIQUE

To obtain the title

DOCTEUR EN SCIENCES

Subject Information theory

Defense 01 October, 2010 by

Bhaskar Biswas

Implementational aspects of code-based

cryptography

Jury

Reporters

Philippe Gaborit Université de Limoges, XLIM-DMI, France
Grigory Kabatiansky Russian Academy of Sciences, Moscow, Russia

PhD supervisors

Nicolas Sendrier INRIA Paris-Rocquencourt, équipe-projet SECRET, France
Luc Bouganim INRIA Paris-Rocquencourt, équipe-projet SMIS, France

Examiners

Pierre Loidreau DGA et Université de Rennes 1, France
Daniel Augot École Polytechnique et INRIA, France

2

List of Figures

1.1 Pseudo code for the Berlekamp trace algorithm 20

2.1 Encryption cost vs binary work factor for di�erent extension degrees 41
2.2 Decryption cost vs binary work factor for di�erent extension degrees 42

3.1 BTZdmax vs. BTA; m = 11; K(+) = 1; K(×) = m; with time-memory
tradeo� . 54

3.2 BTZdmax vs. BTA; m = 11; K(+) = 1; K(×) = m; with time-memory
tradeo� . 55

3.3 BTZdmax vs. Chien; m = 11; K(+) = 1; K(×) = m; with time-memory
tradeo� . 55

3

4 LIST OF FIGURES

Acknowledgement

I am indebted to many people for the result that I am �nishing my PhD thesis.
I would like to thank Prof. Ayanendranath Basu and Prof. Bimal Roy for introducing

me to the cryptographic research. As for in�uence, my profound gratitude goes towards
Nicolas Sendrier for being my supervisor during my PhD at Inria Paris-Rocquencourt. He
helped with topics, been there whenever needed, encouraged me to extend my research
interests, enriched my philosophical views towards life itself, which for me is very valuable.
My PhD co-adviser of thesis Luc Bouganim, thank you for being patient. It was in him, I
saw the hatred for mediocrity. It is an honour to know both my advisers let alone getting
the opportunity to work with them.

A special thanks goes to all the people in our project �SECRET�, I always felt home.
It is a privilege to know them.

My friends at INRIA; Andre, Daria, Iskender, Roger, Vincent, Yasser and lately Sumanta,
Suchana di and her delicious food and Sunandan - thank you for your support.

I must not forget to mention Christelle. She is the spirit of the project, the best
secretary, and a very good friend of mine. Thank you.

A special thank for Mr. Satya Lokam, under whose guidance I spend three wonderful
months at Microsoft Research, India. I shall always remember his continuous e�ort to
achieve perfection and not be satis�ed otherwise.

There are many people who visited or worked in our project �SECRET� and who
contributed by discussion. I will mention them in alphabetic order and I hope that I do
not forget anyone. I'm grateful to all of them.

Mamdouh Abbara, Nicolas Anciaux, Daniel Augot, Raghav Bhaskar, Céline Blondeau,
Christina Boura, Anne Canteaut, Christophe Chabot, Pascale Charpin, Mathieu Cluzeau,
Maxime Côte, Frédéric Didier, Cédric Faure, Matthieu Finiasz, Fabien Galand, Benoit
Gérard, Christelle Guiziou, Stéphane Jacob, Deepak Kumar Dalai, Yann Laigle-Chapuy,
Cédric Lauradoux, St�phne Manuel, Françoise Levy-dit-Vehel, Ayoub Otmani, Raphael
Overbeck, Maria Naya Plasencia, Philippe Pucheral, Ludovic Perret, Andrea Roeck, Sush-
mita Ruj, Sumanta Sarkar, Christophe Salpawyck, Jean-Pierre Tillich, Marion Videau, and
Alexander Zeh.

The reporters and juries of my thesis, Grigory Kabatiansky, Philippe Gaborit, Pierre
Loidreu and Daniel Augot - my gratitude for your feed-back.

Once again I want to thank all the people who helped and supported me during my
PhD. It is due to them that I can say now: let's move on!

i

Contents

Acknowledgement i

Introduction v

I Background 1

1 Background 3
1.1 Finite �elds . 3

1.1.1 Extension �elds . 4
1.1.2 Polynomials . 5
1.1.3 Vector spaces . 6
1.1.4 Finite �eld representations . 6
1.1.5 Matrices . 8
1.1.6 Algorithmic constructions . 10

1.2 Error correcting codes . 12
1.2.1 Linear codes . 12
1.2.2 Decoding of linear codes . 13
1.2.3 Decoding of Goppa code . 14
1.2.4 Binary Goppa codes . 15
1.2.5 Root �nding of error locator polynomial 18
1.2.6 Algorithmic constructions . 19

II The Hybrid McEliece Encryption Scheme(HyMES) 23

2 Implementation of Hybrid McEliece Encryption Scheme (HyMES) 25
2.1 Original McEliece crypto-system . 25

2.1.1 System description . 26
2.1.2 Security . 27
2.1.3 Strengths and Drawbacks . 27
2.1.4 Niederreiter cryptosystem . 28

2.2 Aim for implementation and system description 28

iii

2.2.1 The Hybrid McEliece Scheme . 29
2.2.2 Security analysis of the changes made 30

2.3 Implementation of HyMES . 36
2.3.1 Library functions . 36
2.3.2 Key generation . 38
2.3.3 Encryption . 39
2.3.4 Decryption . 39

2.4 Simulation results . 40
2.4.1 Comparison with other systems . 43

III E�cient root �nding of polynomials over �nite �elds 45

3 E�cient root �nding of polynomials over �nite �elds 47
3.1 E�cient Polynomial Root Finding Problem 48
3.2 Background . 48
3.3 Why root �nding is important? . 48
3.4 Our Proposal . 50

3.4.1 Speed up McEliece Decryption . 50
3.4.2 Implementation Tweaks . 50
3.4.3 How do we Compute Theoretical Complexity? 51

3.5 Simulation Results . 53

References 61

iv

Introduction

We start with a brief introduction of Public Key Cryptography (PKC). We then move
to PKCs based on error correcting codes, emphasizing on the McEliece cryptosystem.
We introduce an improved version of McEliece scheme, which we call Hybrid McEliece
Encryption Scheme(HyMES), in which we aim to reduce the key size (by using the generator
matrix in systematic form) and increase the information rate (by embedding information in
the error pattern). We overview one of the key questions addressed for HyMES realization
namely, root �nding problem over �nite �elds and introduce our approach to obtain a faster
method to solve the problem. Finally we summarize with the results of this thesis.

Public Key Cryptography

As the world increasingly turns to electronic business, electronic credentials that prove
identity are becoming a critical necessity. Much like a passport proves identity in the
o�ine world, public key cryptosystems deliver a way to prove identity in the online world.
They ensure that people are who they say they are and also prove that documents haven't
been tampered with, which is critical when conducting online transactions, such as placing
orders or transferring money.

In conventional cryptography, encryption and decryption are symmetric operations.
Anyone who has access to the key could both encrypt and decrypt. Such cryptosystems that
use a single key for both encryption and decryption are called symmetric cryptosystems.
While these type of systems are and remain widely useful in practice, some applications, as
the ones stated above cannot be satisfactorily addressed with symmetric key cryptography.

The concept of "asymmetric cryptography" was �rst developed in 1976 by Di�e and
Hellman [20], to solve the problem of exchanging a key over a network. Since everyone
connected to the network has the receiver's public key, anyone can send him/her a message
by encrypting it with that public key. Only the receiver can read the message by decrypting
it with his/her private key. In this way, there is no need to exchange a sensitive or secret
key, reducing the risk of exposing the message.

A public key encryption scheme consists of three components,

1. A Key generation function. Generates a random pair of keys (Kpublic, Kprivate), called
the public key and the private key.

v

2. An encryption function. The encryption function E(Kpublic,m), takes the plain text
message m and the public key to compute the corresponding cipher text message c,
i.e.

E(Kpublic,m)→ c.

3. A decryption function. The decryption function D(Kprivate, c), takes the private key
and the cipher text c and regenerate the corresponding plain text message m, i.e.

D(Kprivate, c) = D(Kprivate, E(Kpublic,m))→ m.

Given a public key Kpublic , a cipher text c, and a description of the system, it should
be computationally infeasible to compute the whole message m or a big part of it.

Code Based Cryptography

Since 1970's, there are only a handful of supposedly secure public key crypto-systems.
Some well known systems proposed are (not exhaustive),
RSA [47] - based on the di�culty of factoring large integers.
Merkle-Hellman Knapsack [41] - based on the di�culty of the subset sum problem (N-P
complete problem).
ElGamal citeELG85 - based on the di�culty of the discrete logarithmic problem for �nite
�elds.
Chor- Rivest [18] - Also a knapsack type problem.
Elliptic curve [32] - basically modi�cation of other systems with increased e�ciency. This
type of El Gamal works with smaller keys.
McEliece [40] - based on the algebraic coding theory, on the problem of decoding linear
code.

The code based systems play a distinct role in public key cryptosystems. It has a �rm,
well developed mathematical back ground. The systems supposed to resist the threat, that
will be posed by quantum computers[53]. While this threat remains a theoretical one for
the time being, it is unlikely that this will remain the case inde�nitely.

Evolution of Code Based Cryptography

The idea of code based cryptosystems is almost as old as public key cryptography itself;
the �rst such system was proposed by Robert J. McEliece in 1978 [40]. During the thirty
years that has elapsed since, it's security as an one way trapdoor encryption scheme has
never been seriously threatened (though the original parameters proposed by McEliece,
have been shown to be too small [15]).

Most of the previous works have been devoted to cryptanalysis and to semantic security
but fewer attempts have been made to examine implementation issues. Implementing a

vi

(public key) cryptosystem is a trade-o� between security and e�ciency i.e. the larger pa-
rameters give us more security but make the system slower. For that reason, cryptanalysis
and implementation have to be considered in unison.

There has been many attempts to modify McEliece construction. Niederreiter proposed
a variant in 1986 [43]. Sidelnikov proposed [54], Janwa and Moreno suggested another
variant [30].

The attacks against McEliece system are mainly decoding attacks. Adams and Meijer
[1], Lee and Brickel [33], Leon [34], Stern [56], Canteaut and Chabaud [14] addressed this
problem.

The structural analysis includes Sidelnikov and Shestakov's polynomial time attack
against the proposal of Niederreiter's Reed-Solomon variant [55], Nicolas Sendrier's attack
against concatenated code [48] and Loidreau and Sendrier's attack against weak keys [38].

Though the public key size is rather large, the McEliece encryption scheme possesses
some strong features. It has a good security reduction and low complexity algorithms for
encryption and decryption. As a consequence, it is conceivable, compared with number-
theory based cryptosystems, to gain an order of magnitude in performance.

Results Presented in this Thesis

After we recall the theoretical background and establish the notions and notations at the
beginning of the thesis we shall pursue each of implementation aspects of McEliece system,
in particular, how to �nd roots of polynomials over �nite �elds e�ciently in details.

Let us give a brief overview of each topic presented in this thesis.

Implementation of HyMES

In Chapter 2, we present the implementation details of Hybrid McEliece Encryption Scheme
(HyMES), a improved version of the original McEliece scheme developed with Nicolas
Sendrier1.

We present a modi�ed version of the original scheme (which we call hybrid). It has
two modi�cations, the �rst increases the information rate by putting some data in the
error pattern. The second reduces the public key size by making use of a generator matrix
in systematic form. We will show that the same security reduction as for the original
system holds. We then describe the key generation, the encryption and the decryption
algorithms and their implementation. Finally we will give some computation time for
various parameters, compare them with the best known attacks, and discuss the best
trade-o�s.

The idea of McEliece scheme is to hide the structure of the code by means of a trans-
formation of the generator matrix. The transformed generator matrix becomes the public
key and the trapdoor information is the structure of the Goppa code together with the

1freely available at http://www-roc.inria.fr/secret/CBCrypto/index.php?pg=hymes

vii

transformation parameters. The security relies on the fact that the decoding problem for
general linear code is NP-complete.

While the RSA public-key cryptosystem has become most widely used, McEliece crypto-
system has not been quite as successful. Partly because of the large public key, which
impose less problem with the advance in hardware today. Our aim has been to implement a
fairly fast and concise software implementation that may be used as a reference benchmark.

We present the algorithmic details of our implementation as well. That is to specify
the algorithms we use and the way we use them.

Root Finding of Polynomials

Root �nding of polynomials over �nite �elds is a classical algebraic algorithmic problem. It
is considered as one of the most time-consuming subprocess of the decoding process of Reed-
Solomon, BCH and Goppa codes. There are some well known approaches for �nding roots
of the so-called error locator polynomial. The most widely known root �nding algorithm is
Chien search method [17], which is an evaluation of the polynomial at all elements of the
�eld, so it has very high time complexity for large �elds and polynomials of high degree.
Berlekamp Trace Algorithm (BTA) [6] is another well known method. It is a recursive
method based on the trace function properties.

McEliece decryption process employs an algebraic decoding algorithm which is often
broken up in three parts. Namely, syndrome computation, �nding the solution of the key
equation and the root �nding of error-locator polynomial. We noticed that, this last step
consumes around three fourth of the total decryption time.

We present a hybrid method involving BTA and a method proposed by Zinoviev [60].
Zinoviev proposed direct root �nding procedures for polynomials with degree at most 10.
Our idea is to compute directly the roots with Zinoviev procedures up to some degree and
to use recursively BTA for greater degrees. Moreover, we improve Zinoviev procedures
for polynomials of degree 2 and 3 with time-memory trade-o�s. We analyze both the
theoretical complexities and the experimental complexities of our proposal. For typical
parameters, we obtain a theoretical gain of 93% against Chien method and 46% against
BTA. Experimental results con�rm theory up to degree 4 at least. For instance with
m = 11, t = 32 and dmax = 4, our method takes 60% of total decryption time with respect
to 72% for BTA and 87% for Chien.

viii

Part I

Background

1

Chapter 1

Background

We shall try to encompass the theoretical background in this chapter. We start with
de�ning �nite �elds, we move to extension of �nite �elds, the di�erent representations of
them and we describe the algorithmic choices we made for implementation. We brie�y visit
error correcting codes, their decoding methods and speci�cally see some details regarding
binary Goppa codes, which are of our main interest. We mention some classical algorithms
used in the context.

1.1 Finite �elds

We are going to con�ne ourselves to the �elds of characteristic 2 as it is of primary interest
for us. A �eld with �nite number of elements is called a �nite �eld.

De�nition 1.1 (Field) A �eld (F,+, ·) is a set of elements F associated with two binary
operations �+� and �·�, such that the following axioms are satis�ed for all a, b, c ∈ F.

1. Closure under + and ·
For all a, b ∈ F, both a+ b and a · b are in F.

2. Associativity of the operations �+� and � ·�
For all a, b, c ∈ F, the following equalities hold: a+ (b+ c) = (a+ b) + c and
a · (b · c) = (a · b) · c.

3. Commutativity of both the operations
For all a, b ∈ F, the following equalities hold: a+ b = b+ a and a · b = b · a.

4. Identity elements
There exists an element of F, called the additive identity element (associated with
the operation �+�) and denoted by 0, such that for all a ∈ F, a + 0 = a. Likewise,
there is an element, called the multiplicative identity element (for � ·�) and denoted by
1, such that for all a ∈ F, a · 1 = a. Note the additive identity and the multiplicative
identity are required to be distinct.

3

5. Inverse elements
For every a ∈ F, there exists an element −a ∈ F, such that a + (−a) = 0 (additive
inverse). Similarly, for any a ∈ F other than 0, there exists an element a−1 ∈ F ,
such that a · a−1 = 1. (The elements a+ (−b) and a · b−1 are also denoted a− b and
a/b, respectively.) In other words, subtraction and division operations exist.

6. Distributivity of � ·� over �+� For all a, b, c ∈ F, the following equality holds:
a · (b+ c) = (a · b) + (a · c).

or simplicity we shall write ab instead of a · b for �eld multiplication for the rest of the
document.

De�nition 1.2 (Prime �elds) For every prime p, the set {0, 1, · · · , p− 1} forms a �eld
(denoted by Fp) under mod p addition and multiplication.

De�nition 1.3 (Order of a �nite �eld) The order of a �nite �eld is the number of
elements in the �eld.

De�nition 1.4 (Sub�eld) If a subset S of the elements of a �eld F satis�es the �eld
axioms with the same operations of F, then S is called a sub�eld of F.

Proper sub�eld is a sub�eld which is strictly smaller than the �eld in which it is con-
tained.

1.1.1 Extension �elds

The extensive applicability of extension �elds leads us to detail it's characteristics.

De�nition 1.5 (Extension �eld) Let Fq be a �eld. A subset of Fq that is a �eld by itself
is called a sub�eld and Fq is called the extension �eld.

Note that for �nite �elds containing no proper sub-�eld are prime �elds.

De�nition 1.6 (Characteristic of a �eld) The characteristic of a �eld F is the least
positive integer m such that,

∑m
1 1 = 0, where 1 ∈ F is the multiplicative identity of the

�eld. If no such m exists, the characteristic is 0.

If the characteristic p of a �eld is non-zero, then p is a prime number.
The simplest example of a �nite �eld is the F2 �eld, the operations in this �eld are

addition and multiplication modulo 2.

Theorem 1.7 If F is a �nite �eld of cardinality q ≥ 2, then

• q = pm, where p is prime and m is an integer.

• F is unique up to isomorphism.

Theorem 1.8 The multiplicative group of Fq, noted as F∗
q is cyclic and generators of this

group are called primitive elements.

De�nition 1.9 (Trace) For α ∈ Fpm, the trace TrFpm/Fp(α) of α over Fp is de�ned by
TrFpm/Fp(α) = α+ αp + · · ·+ αpm−1

4

1.1.2 Polynomials

Let R be an arbitrary ring. The expression,

f(x) =
n∑

i=0

aix
i = a0 + a1x+ . . .+ anx

n

where n ≥ 0, the coe�cients ai ∈ R and x is indeterminate over R is called a polynomial
over R. When n 6= 0, n is called the degree of the polynomial.

All polynomials over a ring forms a ring among themselves with the associated opera-
tions.

Addition can be de�ned on the elements of Fp[x], where f(x) = Σn
i=0aix

i and g(x) =
Σn

i=0bix
i and deg(f) denotes highest degree of the polynomial as,

f(x) + g(x) = Σ
max(deg(f),deg(g))
i=0 (ai + bi)x

i

It is important to emphasize that, since ai and bi are both elements of Fp, their addition
is performed mod P . Multiplication in the �eld is de�ned in a similar way, for any integer
k,

f(x)g(x) = Σ
deg(f)+deg(g)
k=0 (Σi+j=kfigi)x

k mod P

De�nition 1.10 (Polynomial ring) The ring formed by the polynomials over R with the
associated operations (namely, addition and multiplication), is called the polynomial ring
over R and denoted by R[x].

It can be easily seen that,

1. R[x] is commutative i� R is commutative.

2. R[x] is a ring with identity i� R has an identity.

3. R[x] is an integral domain i� R is an integral domain.

This in fact one condition short for R[x] (existence of multiplicative inverse) of being a
�eld by itself. This in fact brings in the notion of irreducible polynomial in the �eld.

De�nition 1.11 (Irreducible polynomial) A polynomial P is said to be irreducible
over a �eld Fp (or irreducible in Fp[x]), if P has positive degree and cannot be represented
as the product of two non-constant polynomials from Fp[x].

Theorem 1.12 For P ∈ Fp[x], the residue class ring Fp[x]/P is a �eld i� P is irreducible
over Fp.

De�nition 1.13 (Polynomial over an extension �eld) A polynomial, whose coe�-
cients are elements of Fpm, is said to be a polynomial over Fpm.

5

1.1.3 Vector spaces

De�nition 1.14 (Vector space) Let V be a set of elements (n-tuple of elements of F)
called vectors and let F be a �eld of elements called scalars. An addition operation �+� is
de�ned between vectors and a scalar multiplication operation �·� is de�ned such that for a
scalar a ∈ F and a vector v ∈ V , a · v ∈ V . Then V is a vector space over F if �+� and
�·� satis�es the following,

1. V forms a commutative group under �+�.

2. The operations �+� and �·� distribute, i.e. for a, b ∈ F and u, v ∈ V , (a + b) · v =
a · v + b · v and a · (u+ v) = a · u+ a · v.

3. The operation �·� is associative, i.e. for a, b ∈ F and v ∈ V , (a · b) · v = a · (b · v).

F is called the scalar �eld of the vector space V .

The vector c1x1 + c2x2 + . . . + cmxm with arbitrary scalar coe�cients c1, c2, . . . , cm is
called a linear combination of the vectors x1, x2, . . . , xm .

A set of vectors x1, x2, . . . , xm, is said to be linearly dependent if at least one of the
vectors in the set can be expressed as a linear combination of one or more of the other
vectors in the set. Otherwise the set is called linearly independent.

Consider a matrix formed from m n-length vectors with each vector corresponding to a
row in the matrix. If the rank of the matrix is m the set of vectors is linearly independent.
If the rank is less than m the set of vectors is linearly dependent. If the rank r is less
than m then there are exactly r vectors in the set which are linearly independent and the
remaining vectors can be expressed as a linear combination of these r independent vectors.
Thus linear dependence or independence of a set of vectors is determined from the rank of
a matrix formed from them.

A basis of a vector space is any set of linearly independent vectors that spans the
space. Each vector of the space is then a unique linear combination of the vectors of this
basis.

The dimension of a vector space is the number of elements of a basis.
Note that the extension �eld Fqm is in an m-dimensional vector over Fq.

1.1.4 Finite �eld representations

The representation of the �eld elements determines the behavior of the �nite �eld arith-
metic. The most common representations are [28],

• the powers representation: Let α be a primitive element of Fpm . In the powers
representation, the set of elements of the �eld can then be represented as,

{0, 1, α, α2, · · · , αpm−2}

6

• normal basis: For the �eld Fpm , where p is the characteristic of the �eld, ∃β such
that, the m elements

{β, βp, βp2 , · · · , βpm−1}

are linearly independent and hence form a basis. Such a basis is called normal.

The �rst normal basis multiplication algorithm was reported by Massey and Omura[44]
and its �rst implementation was reported by Wang et al.[59].

• standard basis: The standard basis is a natural representation of �nite �eld ele-
ments as polynomials over a ground �eld, which is also known as polynomial basis.
It is de�ned as follows,

Let α ∈ Fpm be the root of an irreducible polynomial of degree m over Fp. The
standard or polynomial basis of Fpm is then

{1, α, · · · , αm−1}

Thus, in this representation each element of Fpm is expressed as a polynomial

c0 + c1α+ c2α
2 + · · ·+ cm−1α

m−1

over Fpm .

Because of its simplicity, the standard basis representation has been widely used.

• dual basis: The dual basis is not a concrete basis like the polynomial basis or the
normal basis; it rather provides a way of using a second basis for computations.
Using a dual basis can provide a way to easily communicate between devices that
use di�erent bases, rather than having to explicitly convert between bases using
the change of bases formulas. The original dual basis representation for �nite �eld
multiplication is due to Berlekamp[10].

Let α0, α1, · · · , αm−1 be a basis and h be a linear function h : Fpm 7→ Fp, i.e.∀a, b ∈
Fpm and c ∈ Fp, h(a+b) = h(a)+h(b) and h(ca) = c·h(a). The dual basis of the basis
α0, α1, · · · , αm−1 with respect to h is β0, β1, · · · , βm−1, such that for 0 ≤ i, j ≤ m−1,
h(αiβj) = 1 if i = j, 0 otherwise. Usually h is the trace function.

As an example of a �nite �eld extension, consider the �eld F8. We can use three
alternate and equivalent representations to represent each element in the �eld.

Let α be root of the primitive polynomial x3 + x + 1 ∈ F2[x]. So we can represent F8

as,
F8
∼= F2[x]/(x

3 + x+ 1)

as the ring of all polynomials over F2 modulo the third-degree irreducible polynomial
x3 + x + 1. Then the elements of F8 are 0 = 0, α0 = 1, α1 = α, α2 = α2, α3 = α + 1, α4 =
α2 + α, α5 = α2 + α+ 1, α6 = α2 + 1.

7

• In the powers representation all non-zero elements in F8 may be represented as powers
of a primitive �eld element α (see details in [36]), then each non-zero element is of
the form αn for n = 0, 1, · · · , 6.

• In the polynomial representation each element in the �eld F8 = F23 is represented as
polynomials with degree less than 3 whose coe�cients belong to F2. The polynomials
are de�ned according to the irreducible polynomial that generates the �eld.

• In the m-tuple representation each element in the �eld F8 = F23 can be represented
as an 3-dimensional binary vector, i.e., a binary 3-tuple. Each vector is determined
by the coe�cients of the respective polynomial representation.

We can take advantage of the powers representation in a mathematical framework while
the m-tuple representation is convenient to deal with digital hardware.

Among the above mentioned, two types of representations have been of fundamental
interest. The powers (or, logarithmic as it is sometimes called) representation and the ba-
sis expansion representation. The logarithmic representation yields simple multiplication,
division, exponentiation and inversion operations. By contrast, the addition is much more
complicated and elements to be added are usually converted to a basis expansion repre-
sentation and the sum is reconverted to a logarithmic representation. The basis expansion
representation is based on an expansion of elements of the extension �eld with respect to
a �eld basis. In this representation, addition is easily implemented but all of multiplica-
tion, division, exponentiation, inversion are more complicated than with the logarithmic
representation. Fortunately, they can be performed without converting the elements into
a logarithmic representation (even though it is sometimes done when the �eld extension is
not too large), and this is why the basis expansion representation is more widely used in
practice.

1.1.5 Matrices

The problem of solving a system of linear equations leads to the concept of matrix; more-
over, any linear transformation of a vector space is completely determined by a matrix.
General vector spaces do not possess a multiplication operation. A vector space equipped
with an additional bilinear operator de�ning the multiplication of two vectors is called an
algebra over a �eld.

A �eld F2m can be seen as a vector space over F2 and multiplication by an element is
a linear transformation on that space. We get a matrix representation by choosing a basis
and expressing the linear transformation in terms of the transformation of coe�cients.

For a given companion matrix A (ref. [27] second edition, page - 307), of the irreducible
polynomial f(x), we have f(A) = 0. The matrix A generates the cyclic group < A > of
order m− 1, which is isomorphic to F∗

2m , and the ring of matrices

F2[A] = {0, I, A, · · · , Am−2}

8

is isomorphic to the �eld F2m (I being the identity matrix).
For our implementation we needed the generator matrix of HyMES in row echelon form.

We shall need to de�ne the matrix-vector multiplication as well. Let α ∈ F2m be a �eld
element, we will consider,

• a binary vector representation of α, which is de�ned by the correspondence, α ⇔
α0, α1, · · · , αm−1, where αi ∈ {0, 1}.

• a polynomial representation, being isomorphic to the set of polynomials modulo
p(x) in the ring F2[x] and where α is represented as an (m − 1)-degree polynomial,
α = f(x) = Σm−1

i=0 αix
i.

• a matrix representation,

A · g(x) =


g(x)
xg(x) mod f(x)
...

...
xm−1g(x) mod f(x)


The binary matrix A is non-singular, and its �rst row provides only the binary vector
representation of α.

Algorithm 1 Gaussian elimination
Require: Regular matrix A ∈ {0, 1}m×m.
for each row i = 1 to m do
for j = i to m do
if A[i, j] is maximum and i 6= j then
X-OR ith and jth rows into ith row.
set row_�nd_�ag

end if
end for
if row_�nd_�ag is not set then
FAIL

else
for columns i 6= j do
Fill with 0

end for
end if

end for
return The matrix in RREF form.

9

1.1.6 Algorithmic constructions

With the theoretical background let us see the algorithms that are involved for both theory
and practice. Here we brie�y discuss the problems, given a prime p and an integer m, how
do we actually perform the arithmetical operations of Fpm . Given a polynomial f(x) of
degree m with coe�cients in Fpm , we wish to �nd a root α ∈ Fpm with f(x) = 0, if
such a root does exist. This is the root-�nding problem. Finally, given a polynomial
f(x) ∈ Fpm [x], we want to �nd the factorization f = f1 × f2 × · · · × fk into its irreducible
factors fi(x) ∈ Fpm . This is the factorization problem. We are primarily concerned with
the binary �eld, thus hence forth we shall consider the constructions dedicated to them.

Addition and subtraction of two elements in F2m are de�ned as polynomial addition
and subtraction on F2, respectively. Thus, both addition and subtraction are executed
by exclusive-OR operation for every coe�cient. Multiplication in F2m is de�ned as a
polynomial multiplication modulo g(x). The multiplicative inverse f−1(x) of f(x) ∈ F2m

is de�ned as the element that satis�es f(x) · f−1(x) = 1, where �·� denotes multiplication
in F2m .

Euclid's algorithm for polynomial calculates the Greatest Common Divisor (gcd) poly-
nomial of two polynomials. The algorithm can be extended for calculating the two poly-
nomials g(x) and h(x), that satisfy

GCD(a(x), b(x)) = g(x) · a(x) + h(x) · b(x) = d(x)

Here we give an overview of these algorithms.

Euclidean algorithm

Let f(x), g(x) ∈ F[x] be nonzero polynomials. We can use the division algorithm to write

f(x) = q(x)g(x) + r(x)

with deg(r(x)) ≤ deg(g(x)) or r(x) = 0.

• If r(x) = 0, then g(x) is a divisor of f(x), and so gcd(f(x), g(x)) = cg(x), for some
c ∈ F.

• If r(x) 6= 0, then it is easy to check that gcd(f(x), g(x)) = gcd(g(x), r(x)).

This step reduces the degrees of the polynomials involved, and so repeating the procedure
leads to the greatest common divisor of the two polynomials in a �nite number of steps.
The Euclidean algorithm for polynomials is similar to the Euclidean algorithm for �nding
the greatest common divisor of nonzero integers. The polynomials a(x) and b(x) for which

gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x)

can be replaced by integers.

10

Algorithm 2 Extended Euclidean algorithm
Require: Nonzero binary polynomials a and b; deg(a) denotes the leading degree of the
polynomial a.

Ensure: deg(a) ≤ deg(b).
u← a, v ← b.
g1 ← 1, g2 ← 0, h1 ← 0, h2 ← 1.
while u 6= 0 do
j ← deg(u)− deg(v).
if (j < 0) then
u← v
g1 ← g2
h1 ← h2

j ← −j
end if
u← u+ zjv
g1 ← g1 + zjg2
h1 ← h1 + zjh2

end while
d← v, g ← g2, h← h2

return (d, g, h) such that d = gcd(a, b) and binary polynomials g, h satisfying (ag+bh =
d)

Zech's logarithm

Zech's logarithms are used with �nite �elds to reduce a high-degree polynomial that is not
in the �eld to an element in the �eld (thus having a lower degree). Unlike the traditional
logarithm, the Zech's logarithm of a polynomial provides an equivalence, though it does
not alter the value.

For any root α of f(x) ∈ Fq, the product of αa and αb is αaαb = α(a+b) mod (q−1).
However, addition of �eld elements is not so easy when elements are given as power of a
generator. Conversely, whereas addition is easy when elements are represented as poly-
nomials, multiplication is not. For small �elds, to facilitate addition of �eld elements
represented as powers of a generator, we set up a table called a Zech's log table [7]. For
each integer i, 0 ≤ i ≤ q − 2, we determine and tabulate the integer j = Z(i) such that
1 + αi = αZ(i) . Then

αa + αb = αa(1 + αb−a mod (q−1)) = αa+Z(b−a)

and Z(b− a) can be obtained from the table.

11

1.2 Error correcting codes

The subject of Error Correcting Codes (ECC), describe methods to transfer data over a
(likely) noisy communication channel. The message consists of k bits: m1, m2, . . ., mk. We
discuss binary block codes, where the �block� term denotes �xed message size, here k bits.
An encoder converts the message into a codeword. The codeword is transmitted over noisy
communication channel that may introduce errors into the codeword. The decoder attempts
to convert the transmitted codeword back into the original message. Each encoder/decoder
scheme can handle a set of prede�ned error conditions. Some schemes only detect errors
and some correct within certain limitations as well.

A systematic Error Correcting Code (ECC) can be considered as a way to add some
redundant data to the message on the sender side. If the number of errors is within the
capability of the code being used, the receiver can use this redundant information to recover
the original message. Since the receiver does not have to ask the sender for retransmission
of the data, it is also called forward error correction.

De�nition 1.15 (Block codes) A block code of size M over an alphabet with q symbols
is a set of M , q-ary sequences of length n called codewords. If q = 2, the symbols are bits
and the code is called binary.

Hamming distance
The Hamming distance d(u, v) between two words u and v, of the same length, is equal to
the number of symbol places in which the words di�er from one another. If u and v are
of �nite length n then their Hamming distance is �nite. Given a code X, the minimum
distance d(X) of the code is the minimum Hamming distance between its codewords. It is
also known as simply the distance of the code. A code X can correct t errors if and only
if d(X) ≥ 2t+ 1.

1.2.1 Linear codes

De�nition 1.16 (Linear codes) A linear (n, k) code is a k dimensional linear subspace
of Fn

q . That is, a linear code is a nonempty set of n tuples over Fq (codewords) such that
the sum of two codewords is a codeword, and the product of any codeword by a �eld element
is a codeword. Any set of basis vectors for the subspace can be used as rows to form a k×n
matrix G, called the generator matrix of the code. Any codeword is a linear combination
of the rows of G.

De�nition 1.17 (Generator matrix) If f1, f2, ..., fk is a basis for a (n, k) code C, where
f1 = (f11, f12, ..., f1n),
f2 = (f21, f22, ..., f2n),
...
fk = (fk1, fk2, ..., fkn),
then the matrix

12

F =


f1
f2
...
fk


=

 f11 f12 · · · f1n
f21 f22 · · · f2n
fk1 fk2 · · · fkn


is called a generator matrix for C.

A code is often represented by describing a generator matrix. To compute a generator
matrix of a given code C of length n, �rst determine a basis for the code as a vector space
over Fq, then put these basis vectors into a k × n matrix, where k = dimFq(C).

De�nition 1.18 (Dual code) For a code C ⊆ Fn
q the set C⊥ = {x ∈ Fn

q : Σn
i=1xici =

0;∀ci ∈ C is called dual code (of C).

Parity check matrix
A parity check matrix H of a linear block code C is a generator matrix of the dual code.
As such, a codeword c is in C if and only if the matrix-vector product HcT = 0.

De�nition 1.19 (Syndrome) Given the received vector y and a parity check matrix H,
the syndrome of y is S = HyT .

Observe that,
S = HyT = H(c+ e)T = HcT +HeT = HeT

i.e., the syndrome depends only on the error pattern e and not the transmitted codeword
c.

1.2.2 Decoding of linear codes

De�nition 1.20 (List decoding) An algorithm which, for a given code C and a received
vector y outputs the list L(y|C, T) of all code vectors at distance T apart

L(y|C, T) = {c ∈ C : d(y, c) ≤ T

is called a list decoding algorithm with decoding radius T .

For a code C with code distance d, a list decoding with decoding radius T = bd−1
2
c is

called bounded distance decoding. Note that in this case list L(y|C, T) is either empty or
consist of a single code vector.

De�nition 1.21 (MLD) An algorithm which, for a given code C and a received vector y
outputs the nearest code vector to y is called Maximum Likelihood Decoding (MLD).

13

Hard problems

PKE schemes rely on hard problems. In case of McEliece system there are two hard
problems that we de�ne below (we restrict ourselves to Goppa codes)[16, 51, 8].

We will denote by Hn,t , with n = 2m , the set of all parity check matrices of Goppa
codes of support F2m and of generator polynomial of degree t. For all integers r = tm, a
matrix/syndrome pair (H, s) of parameter (r, n) is constituted by an r × n binary matrix
H and a word s of F2r . We will denote Wn,t the set of words of F2m of weight t.

De�nition 1.22 (Bounded decoding problem) A bounded decoder is a probabilistic
Turing machine which takes as input a matrix/syndrome pair and outputs a string if 0 and
1. For any positive integers t,m, n = 2m and r = tm,
Input : a matrix/syndrome pair; (H, s).
Output : a word e ∈ Wn,t such that, HeT = s.

The probability that any algorithm (bounded decoder) has solving the above problem is
negligible as this problem was proved to be NP-complete.

De�nition 1.23 (Code Distinguishing Problem) Let n and k be two integers such
that n ≥ k and H a parity check matrix. A code distinguisher is a probabilistic Turing
machine taking as input a binary matrix and whose output is 0 or 1.
Input : a binary matrix H.
Output : 1 if H ∈ Hn,t i.e. Goppa code parity-check matrix and 0 otherwise.

1.2.3 Decoding of Goppa code

The usefulness of an error-correcting code would be greatly diminished if the decoding
procedure was very time consuming. While the concept of decoding, i.e., �nding the
nearest codeword to the received vector, is simple enough, the algorithms for decoding can
vary widely in terms of time and memory requirements. Usually, the best (i.e., fastest)
decoding algorithms are those designed for speci�c types of codes. We shall examine some
algorithms which deal with the general class of linear codes and so, will not necessarily be
the best for any particular code in this class.

The decoding conventions are as follows, maximum likelihood decoding, minimum dis-
tance decoding and syndrome decoding. We shall concentrate on syndrome decoding.

Let C be a code (not necessarily linear) over a �eld F. Assume that m ∈ C is transmit-
ted and that r = m+ e is received. If C = {m1,m2, . . . ,mM} is a code with M codewords,
the set E of possible error patterns is E = r −m1, r −m2, ..., r −mM = r −m : v ∈ C =
r −C. Given the received vector r, there is a one-to-one correspondence between the pos-
sible error patterns and the codewords. To decode, we must examine the coset r + C to
�nd the appropriate error pattern (for example, the error pattern of least Hamming weight
in the coset). Let C be a linear [n, k] code over a �nite �eld F of size q. Every coset of C
has |C| = qk elements, and these cosets form a disjoint cover of Fn , thus an [n, k] linear
code has qn−k cosets in Fn.

14

Recall the de�nition of syndrome 1.19. Here we brie�y mention the steps involved in
Syndrome decoding method.

1. If the generator matrix takes the form G = [Ik|R], work out the parity check matrix
H = [RT |In−k].

2. Enumerate the cosets of C in F and chose coset leaders σi for i = 1, . . . , 2n−k

3. Compute the syndromes s(σ) for each coset leader and construct the syndrome lookup
table.

4. Compute the syndrome s(r) and from the table determine which σi satis�es s(r) =
s(σi).

5. Decode the message as the �rst k bits of y + σi.

1.2.4 Binary Goppa codes

Let m be a positive integer, and let n and t be two positive integers such that n ≤ 2m and
t < n/m. A binary Goppa code Γ(L, g) is de�ned by an ordered subset L = (α1, . . . , αn) of
F2m of cardinality n, called support, and an irreducible1 monic polynomial g(z) of degree t
in F2m [z], called generator. It consists of all words a = (a1, . . . , an) ∈ Fn

2 such that

Ra(z)
∆
=

n∑
j=1

aj
z − αj

mod g(z) = 0. (1.1)

This code is linear, has dimension2 k ≥ n− tm and minimum distance 2t+ 1 at least. We
denote Gm,n,t the set of all binary Goppa codes with a support of cardinality n in F2m and
an irreducible generator of degree t over F2m .
Decoding of binary Goppa codes:
Here we give an outline which we shall see in Chapter 2, in implementation and algorithm
oriented details. We use Patterson algorithm for decoding.

Since the received word y = x+ e = e mod g(z), the syndrome of a received word, with
reference to equation 1.1 can be written as,

s(z) = Σn
j=1

y

z − αj

mod g(z) = Σn
j=1

e

z − αj

mod g(z) (1.2)

To recover the error positions we have to solve the key equation σ(z) · s(z) = e(z), where
σ(z) is the error locator polynomial and e(z) is the error polynomial.

Note that it can be shown that e(z) = σ(z)′ is the formal derivative of the error-locator
polynomial and by splitting σ(z) into even and odd polynomial parts σ(z) = u(z)2+z ·v(z)2

1square-free without roots in L in the most general de�nition
2for parameters suitable with the McEliece system, the equality always holds

15

, we �nally determine the following equation which needs to be solved to determine error
positions:

s(z)(u(z)2 + z · v(z)2) = b(z)2 mod g(z) (1.3)

To solve equation 1.3 for a given codeword, we �rst compute an inverse polynomial Ti(z) =
s(z)−1 mod g(z). It follows that (T (z) + z)v(z)2 = u(z)2 mod g(z). Then, for all 1 ≤ i ≤
t− 1, the polynomial Ti(z) ∈ F2m [z] of degree at most t− 1 such that

Ti(z)
2 = zi mod g(z), we also denote Ti(z) =

√
zi mod g(z)

We have z2
mt

= z mod g(z), thus we can obtain T1(z) = z2
mt−1

mod g(z) by squaring
polynomials modulo g(z). For odd values, we have T2i(z) = zi and for even values T2i+1 =
ziT1(z) mod g(z).

Algorithm 3 Decoding of binary Goppa code
Require: Received vector y, the Goppa code Γ(L, g).
Compute syndrome s(z) for the word y.
Compute T (z) = s(z)−1 mod g(z)
Compute S(z) =

√
T (z) + z

Compute u(z) and v(z) with Fill with u(z) = v(z)S(z) mod g(z)
Compute the locator polynomial σ(z) = u(z)2 + zv(z)2

Find the roots of σ(z)
return The error positions.

Di�erent key equations

Usually the key equation is the equation connecting the syndrome and the locator polyno-
mial.

Let, b = (b1, b2, . . . , bn) be the received vector. L = (α1, α2, . . . , αn) be the support.
g(x) ∈ F2m [z] be the degree t generator. We have b = a+ e, a being a code word and e an
error of weight t.

R(z)σ(z) = σ′(z) mod g(z). (1.4)

If the key equation is of the form 1.4, we have the degrees as,
polynomial degree of the polynomial
R(z) t− 1
σ(z) t
σ′(z) t− 1
We solve the equation with Patterson algorithm 1.2.6.

When,

R(z) =
n∑

i=1

bi
z − αi

mod g(z) =
n∑

i=1

ei
z − αi

mod g(z)

16

and

σ(z) =
n∏

i=1

(z − αi)
ei

and degree of σ(z) = t.

R(z)σ(z) = σ′(z) mod g2(z) (1.5)

If the key equation is of the form 1.5, we have the degrees as,
polynomial degree of the polynomial
R(z) 2t− 1
σ(z) t
σ′(z) t− 1
We solve the equation with Euclidean algorithm 1.1.6. Note that, we can solve this equation
as g(z) is square free.

Let, H be a parity check matrix de�ned for Goppa code as,

H =


1 1 . . . 1
α1 α2 . . . αn
...

...
...

...
α2t−1
1 α2t−1

2 . . . α2t−1
n




1
g(α1)2

. . .

.

. . . 1
g(αn)2


We have the syndrome S(x) of the form,

S(x) =
2t−1∑
i=0

Six
i

where Si = ei
∑n

j=1

αi
j

g(αj)2
= bi

∑n
j=1

αi
j

g(αj)2
. Thus we get, σ(x) =

∏n
j=1(1 − xαj)

ej . The
evaluator polynomial

w(x) =
n∑

j=1

ej
g(αj)2

σ(x)

1− xαj

and 1
1−xαj

=
∑

`≥0(xαj)
`, Thus,

w(x) = σ(x)
∑
i=1

ej
g(αj)2

∑
`≥0

(xαj)
` (1.6)

= σ(x)
∑
`≥0

(
n∑

j=1

eiα
`
j

g(αj)2
)x` (1.7)

= σ(x)
∑
`≥0

S`x
` (1.8)

= σ(x)S(x) mod x2t (1.9)

17

Hence we get the third equation,

S(x)σ(x) = w(x) mod x2t (1.10)

If the key equation is of the form 1.10, we have the degrees as,
polynomial degree of the polynomial
S(x) 2t− 1
σ(x) t
w(x) t− 1
We solve the equation with Berlekemp-Massey and Euclidean algorithm 1.1.6.

1.2.5 Root �nding of error locator polynomial

As mentioned, the most time consuming part of decoding of binary Goppa codes is the root
�nding of error locator polynomial. That was the initial motivation for us to investigate
the possible ways to make the part faster. As for many equivalent classes of codes the
problem is the same.

Several approaches toward root �nding in characteristic 2 are possible, their e�ciency
depends on the size of the parameters m and t.

• Chien search (described later 1.2.6) computes roots by evaluating artfully the polyno-
mial in all points of L. This method is recommended for hardware implementations
and coding theory applications in which m is small.

• BTA is a recursive algorithm using trace function properties. It is a faster method
for secure parameters for McEliece-type cryptosystems.

• Equal-degree factorization is an algorithm of Cantor and Zassenhaus [58, Chapter
14]. Its scope is more general but under some adaptations, it enables to �nd roots
of polynomials in characteristic 2 (this speci�c case is treated in Exercise 14.16 in
[58]). Then it has similarities with BTA (use of trace function, computations of gcds
and a recursive structure) but seems slightly more expensive. Its time complexity is
O((m+ log t) t2 log t) operations in F2m .

• Zinoviev procedures are dedicated to root �nding for polynomials of degree less than
10. For m ≥ 11, they are (theoretically at least) more e�cient than Chien search.

De�nition 1.24 An a�ne polynomial has the form:

A(z) = L(z) + c

where L is a linearized polynomial over Fqm and c ∈ Fqm.

De�nition 1.25 A linearized polynomial over Fqm is a polynomial of the form:

L(z) =
n∑

i=0

li · zq
i

.

with li ∈ Fqm and ln = 1.

18

In our case, q = 2. The Trace polynomial is an example of linearized polynomial.

Finding Roots of an A�ne Polynomial

Let us have an a�ne polynomial A(z) = L(z) + c =
∑m−1

i=0 li · z2
i
+ c.

Consider (α1, · · · , αm) is a F2-basis of F2m , (li)1≤i≤m, c and x are elements of F2m . Guess
x = (x1, · · · , xm) is a root of A. Finding zeroes of an a�ne polynomial is equivalent to
solving a linear system. Indeed, we have:

A(x) = 0 ⇔ L(x) = c

⇔
m∑
i=1

xi · L(αi) =
m∑
i=1

ci · αi (using linearity of L)

⇔
m∑
i=1

m∑
j=1

xi li,j · αi =
m∑
i=1

ci · αi (linear system in xi).

We use the following notation,

• σe is the error locator polynomial of the error word e.

• dmax is the maximum degree up to which we use Zinoviev procedures.

• DZin is the set of degrees for which we apply Zinoviev procedures.

• (β1, · · · , βm)=(α, α2, · · · , αm) is a �xed polynomial basis of F2m over F2 where α is a
primitive element of F2m .

1.2.6 Algorithmic constructions

Berlekamp trace algorithm :
Berlekamp trace algorithm was originally published in [5]. This algorithm is very e�cient
for �nite �elds with small characteristic. The trace function Tr(·) of F2m over F2 is de�ned
by

Tr(z) = z + z2 + z2
2

+ ...+ z2
m−1

it maps the �eld F2m onto it's ground �eld F2. A key property of the trace function is
that if (β1, ..., βm) is any basis of F2m over F2, then every element α ∈ F2m is uniquely
represented by the binary m-tuple

(Tr(β1 · α), ..., T r(βm · α)) .

The basic idea of the Berlekamp trace algorithm is that any f(z) ∈ F2m [z], with f(z) |
z2

m − z, splits into two polynomials

g(z) = gcd(f(z), T r(β · z)) and h(z) = gcd(f(z), 1 + Tr(β · z)).

19

BTA(σ, i)
if deg(σ) ≤ 1 then

return rootof(σ)
σ0 ← gcd(σ(z), T r(βi · z))
σ1 ← gcd(σ(z), 1 + Tr(βi · z))
return BTA(σ0, i+ 1), BTA(σ1, i+ 1)

Berlekamp_trace_algorithm(σ)
return BTA(σ, 1)

Figure 1.1: Pseudo code for the Berlekamp trace algorithm

The above property of the trace ensures that if β iterates through the basis (β1, ..., βm),
we can separate all the roots of f(z) (see Figure 1.1).
Patterson algorithm :
The Patterson algorithm [45] solves the Goppa code key equation: given R(z) and g(z) in
F2m [z], with g(z) of degree t respectively, �nd σ(z) of degree t such that

R(z)σ(z) =
d

dz
σ(z) mod g(z)

We write σ(z) = σ0(z)
2 + zσ1(z)

2. Since
d

dz
σ(z) = σ1(z)

2, we have

(1 + zR(z))σ1(z)
2 = R(z)σ0(z)

2 mod g(z).

Because g(z) is irreducible, R(z) can be inverted modulo g(z). We put h(z) = z +
R(z)−1 mod g(z) and we have

h(z)σ1(z)
2 = σo(z)

2 mod g(z).

The mapping f(z) 7→ f(z)2 mod g(z) is bijective and linear over Ftm
2 , there is a unique

polynomial S(z) such that S(z)2 = h(z) mod g(z). We have

S(z)σ1(z) = σ0(z) mod g(z).

The polynomial σ0(z), σ1(z) are the unique solution of the equation
S(z)σ1(z) = σ0(z) mod g(z)
deg σ0 ≤ t/2
deg σ1 ≤ (t− 1)/2

(1.11)

The three steps of the algorithm are the following

1. Compute h(z) = z +R(z)−1 mod g(z) using the extended Euclidian algorithm.

2. Compute S(z) =
√
h(z) mod g(z)

20

If s(z) such that s(z)2 = z mod g(z) has been precomputed and h(z) = h0 + h1z +
. . . + ht−1z

t−1, we have

S(z) =

(t−1)/2∑
i=0

h2m−1

2i zi +

t/2−1∑
i=0

h2m−1

2i+1 z
is(z)

3. Compute (σ0(z), σ1(z)) as in (1.11) using the extended Euclidian algorithm.

The polynomial σ(z) = σ0(z)
2 + zσ1(z)

2 is returned.
Zinoviev Procedures (1996):
Zinoviev methods [60] �nd the monic a�ne multiple of smallest degree of any polynomial
f of degree d ≤ 10 over F2m . At step i ≥ 0, we compute a multiple of f of degree 2dlog2 de+i

and we try to decimate the non-linear terms by solving a homogeneous system of linear
equations. If the system has no solution, we go up step i + 1. Besides, an algorithm
proposed by Berlekamp, Rumsey and Solomon in [9] ensures to �nd an a�ne multiple of
degree 2d−1 and thus guarantee Zinoviev methods terminate, in the worst case, at step
d − 1 − dlog2 de. After that, �nding roots of an a�ne polynomial is easier than in the
general case (see Appendix 1.2.5). For this, we only have to solve a linear system of order
m over F2. Then, we have to determine the roots of f , among the roots of the a�ne
polynomial we have found. We just evaluate f in those points to do so.

Consider q is a prime power andm is a positive integer. Let us give the useful de�nitions:
Chien Procedure (1964)
Chien search is a recursive algorithm. It is a clever exhaustive search. Let f(x) = a0 + a1 ·
x + · · · + at · xt be a polynomial over F2m and let α be a generator of the multiplicative
group F∗

2m .

f(αi) = a0 + a1 · αi + · · ·+ at · (αi)
t

f(αi+1) = a0 + a1 · αi+1 + · · ·+ at · (αi+1)
t

= a0 + a1 · αi · α+ · · ·+ at · (αi)
t · αt

Set ai,j = aj(α
i)
j. It is easy to obtain f(αi+1) from f(αi) since we have that ai+1,j =

ai,j · αj. Moreover, if
∑t

j=0 ai,j = 0, then αi is a root of f .

21

Algorithm 4 simpli�ed BTZ without precomputation - BTZ(f, d, i)
First call: f ← σe; d← dmax ∈ {2, . . . , 10}; i← 1.
if degree(f) ≤ d then
return ZINOVIEV(f, d);

else
g ← gcd(f,Tr(βi · z));
h← f/g;
return BTZ(g, d, i+ 1) ∪ BTZ(h, d, i+ 1);

end if

Algorithm 5 BTZ with precomputation - BTZ(f,D, i)

First call: f ← σe; D ← DZin ⊂ {2, . . . , 10}; i← 1.
{precomputation phase}
for 1 ≤ i ≤ m do
Ti ← Tr(βi · z)) mod f ;

end for
i← 1;
{computation phase}
if degree(f) ∈ D then
return ZINOVIEV(f, d);

else
T ← Ti mod f ;
g ← gcd(f, T);
h← f/g;
i← i+ 1;
return BTZ(g, d, T) ∪ BTZ(h, d, T);

end if

22

Part II

The Hybrid McEliece Encryption
Scheme(HyMES)

23

Chapter 2

Implementation of Hybrid McEliece
Encryption Scheme (HyMES)

In this chapter we describe the theory and implementation of HyMES, proposed by Nicolas
Sendrier and myself. The system is functional and the full source code can be found at
www.http://www-roc.inria.fr/secret/CBCrypto/index.php?pg=hymes, the system is
licenced with LGPL.

To follow the logical development we shall start with a brief description of original
McEliece crypto-system and then we shall advance to the theory and implementation
aspects of HyMES.

2.1 Original McEliece crypto-system

Introduced by Robert J. McEliece in 1978 [40], the scheme is supposedly the fastest among
public key crypto-systems and is still considered secure with reasonable cryptographic
parameters. While the hovering existence of quantum computers pose threat to RSA-
like schemes, McEliece system is believed to be immune. The system has good security
reduction, is e�cient but large public key size. There are several attempts made to reduce
the key size to a reasonable standard, following P. Gaborit's paper in 2005 [24, 4, 42].
There is a recent attack proposed by Faugere et al. [21]. The idea behind this scheme is to
�rst select a particular code for which an e�cient decoding algorithm is known, and then
to disguise the code as a general linear code. Since the problem of decoding an arbitrary
linear code is NP-hard, a description of the original code can serve as the private key, while
a description of the transformed code serves as the public key.

The McEliece scheme originally designed with classical binary Goppa codes has resisted
cryptanalysis to date, though the original parameters are proved to be weak [11]. It is also
notable as being the one of the �rst public-key encryption schemes to use randomization
in the encryption process.

For each irreducible polynomial g(x) over F2m of degree t, there exists a binary irre-
ducible Goppa code of length n = 2m and dimension k ≥ n − mt, capable of correcting

25

any pattern of ≤ t errors. As it is a linear code, it can be described by its k× n generator
matrix G. With the aid of a regular k × k scrambler matrix S and an n× n permutation
matrix P , a new generator matrix Ĝ is constructed that hides the structure of G.

Ĝ = S ·G · P

The public key consists of Ĝ and the matrices S and P together with g(x) form the
secret key. The new matrix Ĝ looks like a generator matrix of an arbitrary linear code,
which is assumed to be di�cult to decode if the trapdoor information (i.e. the structure
of the Goppa code) is unknown. The encryption operation consists of multiplication of the
k-bit message vector x by Ĝ and the modulo 2 addition of an error vector e with Hamming
weight t.

c = x · Ĝ⊕ e

The �rst step of the decryption is the computation of c·P−1. Subsequently the decoding
scheme makes it possible to recover x ·S from c ·P−1 = (x ·S ·G)⊕ (e ·P−1). The message
x is �nally constructed by a multiplication with S−1. Bellow we give formal description of
the system.

2.1.1 System description

As for any public key encryption schemes, McEliece scheme also can be described in three
successive stages, Key-generation, Encryption and Decryption.

Key-generation

The objective of this stage is to generate the set of keys that will be used for encryption
and decryption, the public-key and the private-key respectively.

1. Users select a binary (n, k)-binary Goppa code Γ capable of correcting t errors. This
code possesses an e�cient decoding algorithm.

2. Alice generates a k × n generator matrix G for the code Γ.

3. Select a random k × k binary non-singular matrix S.

4. Select a random n× n permutation matrix P .

5. Compute the k × n matrix Ĝ = S ·G · P .

6. Alice's public key is (Ĝ, t); her private key is (S,G, P).

26

Encryption

Suppose Bob wishes to send a message x to Alice whose public key is (Ĝ, t):

1. Encode the message as a binary string of length k.

2. Compute the vector c′ = xĜ.

3. Generate a random n-bit vector e containing at most t ones.

4. Compute the ciphertext as c = c′ + e.

Decryption

1. Compute the inverse of P, P−1.

2. Compute ĉ = cP−1.

3. Use the decoding algorithm for the code C to decode ĉ to x̂.

4. Compute x = x̂S−1.

2.1.2 Security

As we stated earlier, the McEliece cryptosystem is considered to be fairly secure. For
reasonable parameters the system resisted cryptanalysis to date. The two main types of
attack approaches are noted bellow.

The �rst type of attacks, known as structural attacks or key attacks try to reconstruct
a decoder for the code generated by the public-key Ĝ by studying its structure. From the
very construction of the system, the code generated by the public key Ĝ is equivalent to
Γ. The best known attacks consist in enumerating the codes in the family to �nd a code
which is equivalent to Γ [49, 37, 38, 23].

The second type of attacks aim to decode the intercepted cipher text related to the
public code generated by the public-key, known as decoding attacks or message attacks.
Since Γ is equivalent to the code generated by the matrix Ĝ, both codes have the same
error-correcting capability. The cost of the attack depends on the parameters of the code,
its length, its dimension and its error-correcting capability. It implies that the parameters
of the system have to be chosen carefully. These attacks have been thoroughly studied in
[33, 14, 11].

2.1.3 Strengths and Drawbacks

McEliece is strong against cryptanalysis. Attempts have been made to cryptanalyze
McEliece, but none have been really successful. This public-key cipher runs much faster
than any algorithm relying on number theory.

27

The size of the public key (Ĝ) is quite large. Using the Goppa code with parameters
suggested by McEliece (m = 10, t = 50), the public key would consist of 219 bits. The
encrypted message is much longer than the plain text message.

Please note the above mentioned two drawbacks are addressed primarily during the
course of this thesis.

2.1.4 Niederreiter cryptosystem

A dual variant of the McEliece scheme was proposed a few years later by Harald Niederreiter
[43].

This is a knapsack-type cryptosystem which employs a t error correcting (n, k) linear
code C over Fq. Let H be an (n−k)×n parity check matrix of C, M any (n−k)× (n−k)
non-singular matrix, and P any n × n permutation matrix, all over Fq. The system is
described as bellow.

• Private Key: H, M , and P .

• Public Key: H ′ = MHP and t.

• Messages: n dimensional vectors y over Fq with weight t.

• Encryption: z = yH ′T ; z, the ciphertext of dimension n− k.

• Decryption: Since z = y(MHP)T , z(MT)−1 = (yP T)HT . Use a fast decoding algo-
rithm for C to �nd yP T and thus y.

2.2 Aim for implementation and system description

Though considered fast and secure, the McEliece encryption scheme has received little
interest in practice. Mainly due to the large public key size, the scheme's practical usability
was in question and has never been thoroughly studied. Until recently, the existence of
quantum computers imminent in the future, RSA-like schemes are no more the primary
choice. People are searching for secure alternative PKCs for practical applications. The
Ecrypt network of excellence project eBATS http://www.ecrypt.eu.org/ebats/, tried
to benchmark many di�erent crypto-systems. We submitted the McEliece PKC in the said
endeavor for benchmarking. While doing so, many theoretical issues came up. We tried
to gain in key size and execution time. We reduced the key size by using the generator
matrix in systematic form and increased the transmission rate by encoding information in
the error. We prove that under semantically secure conversion the scheme still preserve
security of the original system. We came up with a few tweaks in algorithmic constructions
as well. Our primary intention being to able to design a research tool which can serve as
the basic standard for practical McEliece like schemes.

28

2.2.1 The Hybrid McEliece Scheme

As we already stated this is a scheme with two main modi�cations. Let us describe the
system and then we shall see how the changes from the original contribute towards our
goals of addressing main two drawbacks of the original system.

Recall that for each irreducible polynomial g(x) over F2m of degree t, there exists a
binary irreducible Goppa code Γ(L, g) of length n = 2m and dimension k ≥ n − mt,
capable of correcting any pattern of ≤ t errors. We chose the subset L = {α1, · · · , αn}
such that g(αi) 6= 0; ∀αi ∈ L and call it support. We construct a generator matrix G for
the code Γ(L, g) and bring it to reduced row echelon form G = (Id | R), Id being the
identity matrix. Depending upon the hard problem, indistinguishability of Goppa codes,
we will prove that upon publishing R as the public key we still will keep the security of
original scheme. The code de�nition Γ(L, g) (see �1.2.4) and thus the decoder associated
with it serves as the private key. The encryption operation consists of multiplication of
the k-bit message vector x by R, concatenating the message with the resultant vector and
the modulo 2 addition of an error vector e.

c = x ‖ x ·R⊕ e

As we use message bits to be encoded as error, this e has a special form (it is of prede�ned
exact weight), which we obtain through constant weight encoding (see at the end of this
section). Again we will prove under semantically secure conversion we do not lose security
for this change.

The �rst step of the decryption is the inverse operation of the constant weight encoding
and subsequently the decoding scheme ΨL,g for Γ(L, g) makes it possible to recover x.
Bellow we give formal description of the system.

Let ϕ : {0, 1}` → Wn,t be an injective mapping where Wn,t denotes the set of words
of length n and Hamming weight t. Both ϕ and ϕ−1 should be easy to compute and the
integer ` should be close to log2

(
n
t

)
. As the original scheme, we use Goppa codes for

HyMES.
Let two m and t be two integers. Let n = 2m and k = n− tm.

Key-generation

1. Sender select a binary (n, k)-binary Goppa code Γ(L, g) capable of correcting t errors
with an e�cient decoding algorithm.

2. Sender generates a k × (n − k) binary matrix R, such that (Id | R) is a generator
matrix of Γ(L, g)

3. Sender's public key is R; her private key is the pair (L, g) and thus the decoder.

Encryption

When a sender sends a message x to a reciever whose public key is R, he,

29

1. Encodes the message as a binary string of length k.

2. Encodes error of length ` into word of length n and weight t using the mapping ϕ.

3. Computes the vector xR.

4. Compute the ciphertext as y = (x ‖ xR) + ϕ(e).

{0, 1}k × {0, 1}` → {0, 1}n
(x, e) 7→ (x ‖ xR)⊕ ϕ(e)

Decryption

1. Use the decoding algorithm ΨL,g for the code Γ(L, g) to decode y to retrieve e =
ΨL,g(y) and y − e = x ‖ ∗. Where ∗ denotes the remaining part of the message.

{0, 1}n → {0, 1}k × {0, 1}`
y 7→ (x, ϕ−1(ϕ(e)))

2.2.2 Security analysis of the changes made

Let us emphasize on the main two di�erences compared with the original system:

• We use the error to encode information bits.

• We use a public key in row echelon form.

Those changes will improve the credentiality of the system by addressing two main draw-
backs (public key size and information rate) of the original McEliece scheme. Here we
prove these changes have no impact on the security of the system.

Cryptographic security

The �rst reductional proof of security for the McEliece encryption scheme was given by
Kobara and Imai in [31]. In the same paper, several semantically secure conversions,
generic and ad-hoc, are proposed. The purpose of those conversion is to transform a One
Way Encryption (OWE) scheme, the weakest notion of security, into a scheme resistant to
adaptative chosen ciphertext attack (IND-CCA2), the strongest notion of security (in the
random oracle model).

In this section, we prove that under two algorithmic assumptions (the hardness of
decoding and the pseudo-randomness of Goppa codes), the hybrid version of McEliece
encryption scheme is one way.

30

One way encryption schemes

We consider a public key encryption scheme where the public key is chosen uniformly in
the space K. Let P and C denote respectively the plaintext and ciphertext spaces. We
consider the sample space Ω = P × K equipped with the uniform distribution PΩ. An
adversary A for this encryption scheme is a mapping C × K → P . It is successful for
(x,K) ∈ Ω if A(EK(x), K) = x, where EK(x) denotes the encryption of x with the public
key K. The success probability of A for this cryptosystem is equal to

PΩ(A(EK(x), K) = x).

De�nition 2.1 (OWE) A public key encryption scheme is a OneWay Encryption scheme
if the probability of success of any of its adversary running in polynomial time is negligible.

In practice, one needs more than just an OWE scheme. For instance, McEliece encryption
scheme, though it is OWE, is vulnerable to many attacks [12, 15, 26, 57]. On the other
hand, if we admit the existence of perfect hash functions, there are generic conversions
(see for instance [3, 46]) which, starting from an OWE scheme, provide a scheme resistant
against adaptative chosen ciphertext attack.

Those generic conversions as well as other speci�c ones exist for the original McEliece
encryption scheme (see [31]).

Security assumptions

Let m and t be two positive integers, let n = 2m and k = 2m − tm. We denote {0, 1}k×n

the set of binary k×n matrices and by Gm,t the subset consisting of all generator matrices
of a binary irreducible t-error correcting Goppa code of length n and support F2m (up to a
permutation). Finally, recall that Wn,t denotes the binary words of weight t and length n.

De�nition 2.2 Let m and t be two positive integers, let n = 2m and k = 2m − tm. Let
PΩ0 be the uniform distribution over the sample space

Ω0 = {0, 1}k ×Wn,t × {0, 1}k×n

• An adversary is a procedure A : {0, 1}n × {0, 1}k×n → Wn,t. We denote |A| its
maximal running time.

• The success probability of an adversary A is de�ned as

Succ(A) = PΩ0 (A(xG+ e,G) = e) .

• The success probability over Ω′ ⊂ Ω0 of an adversary A is de�ned as

Succ(A | Ω′) = PΩ0 (A(xG+ e,G) = e | (x, e,G) ∈ Ω′) .

• We call (T, ε)-adversary over Ω′ an adversary A such that |A| ≤ T and Succ(A |
Ω′) ≥ ε.

31

• A distinguisher D is a mapping {0, 1}k×n → {true, false}. We denote |D| its maximal
running time.

• The advantage of a distinguisher D for S ⊂ {0, 1}k×n is de�ned as

Adv(D,S) = |PΩ0(D(G) | G ∈ S)− PΩ0(D(G))| .

• We call (T, ε)-distinguisher over S a distinguisher D such that |D| ≤ T and Adv(D,S) ≥
ε.

The �rst assumption states the di�culty of decoding in the average case in a linear
code whose parameters are those of a binary Goppa codes.

Assumption 1 For all (T, ε)-adversary over Ω0, the ratio T/ε is not upper bounded by a
polymonial in n.

The worst-case is known to be di�cult (the associated decision problem is NP-complete)
in the general case [8] (Syndrome Decoding) and in the bounded case [22] (Goppa Param-
eterized Bounded Decoding). The status of the average case is unknown, but it is believed
to be di�cult [2].

The second assumption states that there exists no e�cient distinguisher for Goppa
codes. In other words, the generator matrix of a Goppa code looks random.

Assumption 2 For all (T, ε)-distinguisher over Gm,t, the ratio T/ε is not upper bounded
by a polymonial in n.

There is no formal result to assess this assumption. However, there is no known invariant
for linear code, computable in polynomial time, which behave di�erently for random codes
and for binary Goppa codes.

The hybrid McEliece encryption scheme is one way

We use the notations and de�nitions of the previous section. The public key is a binary
k × (n − k) matrix R. We consider a public injective mapping ϕ : {0, 1}` → Wn,t. The
hybrid McEliece encryption is de�ned as

{0, 1}k × {0, 1}` −→ {0, 1}n
(x, e) 7−→ (x ‖ xR) + ϕ(e)

Theorem 2.3 Under Assumption 1 and Assumption 2, the hybrid McEliece system is a
OWE scheme.

Before proving the theorem, we will prove some intermediate results in the form of
three lemmas. We will use the following notations:

• Sk×n the binary systematic k × n matrices (i.e. of the form (Id | R)),

32

• G′
m,t = Gm,t ∩ Sk×n the systematic generator matrices of Goppa codes,

• E = Im(ϕ) ⊂ Wn,t the image of {0, 1}` by ϕ. In practice E can be any subset of Wn,t.

• We consider the three following decreasing subsets of Ω0 = {0, 1}k×Wn,t×{0, 1}k×n

Ω1 = {0, 1}k × E × {0, 1}k×n = {(x, e,G) ∈ Ω0 | e ∈ E}
Ω2 = {0, 1}k × E ×Gm,t = {(x, e,G) ∈ Ω1 | G ∈ Gm,t}
Ω3 = {0, 1}k × E ×G′

m,t = {(x, e,G) ∈ Ω2 | G ∈ Sk×n}

The success probability of an adversary A for the hybrid McEliece scheme is equal to

Succ(A | Ω3) = PΩ0

(
A(xG+ e,G) = e | G ∈ G′

m,t, e ∈ Im(ϕ)
)
.

Lemma 2.4 Any (T, ε)-adversary over Ω1 is a
(
T, ε|E|/

(
n
t

))
-adversary over Ω0.

Proof.
(of Lemma 2.4) Let A denote the (T, ε)-adversary over Ω1 of the statement. By de�nition,
it is such that

Succ(A | e ∈ E) = Succ(A | Ω1) ≥ ε.

We have

Succ(A) = PΩ0(A(xG+ e,G) = e) ≥ PΩ0(A(xG+ e,G) = e, e ∈ E)
≥ PΩ0(A(xG+ e,G) = e | e ∈ E)PΩ0(e ∈ E)

≥ Succ(A | e ∈ E)PΩ0(e ∈ E) ≥ ε
|E|(
n
t

)
which proves the lemma. �

Lemma 2.5 If there exists a (T, ε)-adversary over Ω2 then

• either there exists (T, ε/2)-adversary A over Ω1,

• or there exists (T +O(n2), ε/2)-distinguisher for Gm,t.

Proof.
(of Lemma 2.5) Let A denote the (T, ε)-adversary over Ω2 of the statement. We consider
the distinguisher D de�ned for all G ∈ {0, 1}k×n by D(G) = (A(xG + e,G) = e) where
(x, e) is randomly and uniformly chosen in {0, 1}k × E . We have{

PΩ0 (D(G)) = Succ(A | e ∈ E)
PΩ0 (D(G) | Ω2) = Succ(A | e ∈ E , G ∈ Gm,t)

We have the advantage of the distinguisher as,

Adv(D,Gm,t) =| PΩ0(D(G))− PΩ0(D(G)) | Ω2 |

33

From which we easily derive

Succ(A | Ω2) ≤ Succ(A | Ω1) + Adv(D,Gm,t). (2.1)

To run D, one has to compute the ciphertext xG + e which has a cost upper bounded by
O(n2) and to make one call to A. So we have |D| ≤ T + O(n2). By de�nition of A, we
have Succ(A | Ω2) ≥ ε. Thus at least one of the two right-hand side terms of the inequality
(2.1) is greater than ε/2. This implies that either A veri�es

Succ(A | Ω1) ≥
ε

2
or D veri�es

Adv(D,Gm,t) ≥
ε

2
,

which proves the lemma. �
Lemma 2.6 If there exists a (T, ε)-adversary over Ω3 then

• either there exists (T +O(n3), λε/2)-adversary over Ω2,

• or there a exists (O(n3), λ/2)-distinguisher for Gm,t,

where λ ≥ 0.288 is the probability for a binary k × k matrix to be non-singular.

Proof.
(of Lemma 2.6) We denote Syst(G) a procedure which returns on any input G = (U | V) ∈
{0, 1}k×n such that U is non-singular the matrix (Id | U−1V) ∈ Sk×n. On other inputs,
Syst() leave G unchanged.

Let A denote the (T, ε)-adversary over Ω3 of the statement.
We de�ne the adversary A′ as A′(y,G) = A(y, Syst(G)). We de�ne the distinguisher D

which returns true on input G if and only if Syst(G) ∈ Sk×n. The running time of Syst()
is upper bounded by O(n3), thus |A′| ≤ T +O(n3) and |D| = O(n3).

IfA′ succeeds with (x, e,G) ∈ Ω2 and Syst(G) ∈ Sk×n, thenA succeeds with (x′, e, Syst(G)) ∈
Ω3 for some x′. We have

Succ(A′ | Ω2, Syst(G) ∈ Sk×n) ≥ Succ(A | Ω3) ≥ ε

and (note that the events �e ∈ E� and �Syst(G) ∈ G′
m,t� are independent)

Succ(A | Ω3) ≤ Succ(A′ | Ω2, Syst(G) ∈ Sk×n)

≤ Succ(A′ | e ∈ E , Syst(G) ∈ G′
m,t)

≤
PΩ0(A′(xG+ e,G) = e, e ∈ E , Syst(G) ∈ G′

m,t)

PΩ0(e ∈ E , Syst(G) ∈ G′
m,t)

≤ PΩ0(A′(xG+ e,G) = e, e ∈ E , G ∈ Gm,t)

PΩ0(e ∈ E)PΩ0(Syst(G) ∈ G′
m,t)

≤ Succ(A′ | e ∈ E , G ∈ Gm,t)
PΩ0(G ∈ Gm,t)

PΩ0(Syst(G) ∈ G′
m,t)

≤ Succ(A′ | Ω2)

PΩ0(Syst(G) ∈ Sk×n | G ∈ Gm,t)
.

34

We consider now the distinguisher D. By de�nition, we have

PΩ0(Syst(G) ∈ Sk×n | G ∈ Gm,t) ≥ PΩ0(Syst(G) ∈ Sk×n)− Adv(D,Gm,t).

We also have λ = PΩ0(Syst(G) ∈ Sk×n) the proportion of non-singular binary k × k
matrices. Putting everything together, we get

ε ≤ Succ(A | Ω3) ≤
Succ(A′ | Ω2)

λ− Adv(D,Gm,t)

and

Succ(A′ | Ω2) ≥ λε− εAdv(D,Gm,t).

We easily conclude that, if D has an advantage smaller than λ/2 for Gm,t then A′ has a
success probability over Ω2 greater than λε/2. �

Constant weight encoding

For producing the injective mapping ϕ : {0, 1}` → Wn,t we need for the hybrid scheme
is not an easy task. Existing solutions [19, 50, 52] are all based on a (source) encoder
Wn,t → {0, 1}∗ whose decoder is used for processing binary data. Unfortunately they all
have either a high computation cost, or a variable length encoder.

Here, we use another encoder which uses a new recursive dichotomic model for the
constant weight words. Let x = (xL ‖ xR) ∈ Wn,t, with n = 2m, where xL and xR have
length n/2 = 2m−1 and i = wH(x

L), we de�ne

Fm,t(x) =

{
nil if i ∈ {0, 2m}
i, Fm−1,i(x

L), Fm−1,t−i(x
R) else

where a,nil = nil, a = a. Any element of Wn,t is uniquely transformed into a �nite
sequence of integers. If x ∈ Wn,t is chosen randomly and uniformly then the distribution
of the head element i of Fm,t(x) is

Prob(i) =

(
n/2
i

)(
n/2
t−i

)(
n
t

) , i ∈ {0, 1, 2, . . . , t}.

The sequences of integers produced by Fm,t can be modeled by a stochastic process with
the above probabilities. We use an adaptative arithmetic source encoder to encode them.
This allows us to produce a nearly optimal encoder from which we build a fast and e�cient
mapping ϕ : {0, 1}` → Wn,t. For values of (m, t) of practical cryptographic interest we
always have ` ≥ blog2

(
n
t

)
c − 1.

35

2.3 Implementation of HyMES

The full project, wrote in C language, which is freely available at our website, 1 under
LGPL, can broadly be categorized into four set of functions, Library functions, Key gen-
eration functions, Encryption functions and Decryption functions. Let us start describing
each in detail.

2.3.1 Library functions

We needed to de�ne Galois �eld and functions to operate on the �eld elements, the poly-
nomial representation of the extension �eld and matrix functions.

Galois �eld

Recall the de�nition of �eld (see �1.1), here as we are interested in binary �eld i.e. a �eld
with characteristic 2. The usual XOR operation serve the purpose of addition. However
for the extension �eld F2m , we needed the operations de�ned. The addition is still simple
XOR and we de�ne the multiplication with the help of logarithmic and exponential tables.

Let x = αi , x ∈ F2n , then i is the discrete logarithm of x, with respect to α. Once
the construction of the �eld is determined, the primitive element α is �xed. Then, an
exponentiation function expf can be de�ned to represent elements with the power value.
For example, x = αi is represented as,

x = exp(i); x 6= 0

Let y be another element in F2n , y = αj . Then the multiplication mul(x, y) of x and y
can be represented as,

mul(x, y) = αiαj = αi+j

From the property of primitive element, α2m−1 = 1. Hence, we have

mul(x, y) = α(i+j) mod (2m−1)

where, mod means modular operation. With the de�nition of the exponentiation and the
discrete logarithm functions, we can derive the multiplication function as,

mul(x, y) = exp(log(x) + log(y)) mod (2m − 1)

The pre-computation approach is to compute all possible values of the exp and log functions
based on the primitive element and store them in a table. The exponentiation and discrete
logarithm operations are just table look-ups thereafter. The size of the table equals to
2n − 1, which is also the number of non-zero elements in the �eld. For example, F(256)
has table size of 255.

1http://www-roc.inria.fr/secret/CBCrypto/index.php?pg=hymes

36

We represents the �eld elements by integers. Let x ∈ [0, 2m[is an integer and γ ∈ F2m

is the corresponding �eld element. Thus, for a primitive α, we have,

x = Σm−1
i=0 xi2

i ↔ γ = Σm−1
i=0 xiα

i

where xi ∈ F2 and i is integer.
Let us denote γ = [[x]] as the notation for a �eld element γ represented by an integer

x in machine. The basic arithmetic operations are thus de�ned as bellow,
Let, for integers x, y and z the corresponding �eld elements are [[x]], [[y]] and [[z]] and xi

denoted the ith bit position of integer x.
Addition - [[x]] + [[y]] = [[z]] is the X-OR operation on 2 integers x and y and the
result is stored in z. Multiplication - Similarly, for [[x]][[y]] = [[z]], we look-up the
corresponding entries in the log table, add them (X-OR) taking modulo (2n− 1) and look-
up the corresponding value in the exp table.

Polynomial functions

The polynomial representation of �elds (see �1.1.2)should allow the arithmetic operations
over the extension �eld with ease. We take the coe�cients as �eld elements and de�ne
multiplication, addition, gcd functions. This polynomial representation helps us mainly
for �nding gcd and root �nding of error locator polynomial. For gcd we use Extended
Euclidean algorithm (see algorithm 2) and root �nding is detailed in part III.

Addition is �eld addition described above performed for each coe�cient. Similar for
multiplication. Quotient and remainder are found applying �eld arithmetic modulo irre-
ducible polynomial.

Let g be irreducible polynomial of degree t. The more dedicated functions are,
square - is implemented with all the computed values z2i mod g(z)∀i ≤ deg(g) for a
polynomial z. We adjust the coe�cients.

Algorithm 6 Squaring a polynomial
Require: A polynomial z, irreducible polynomial g.
for i = 0 to t/2− 1 do
compute square[i] = z2i

end for
for i = t/2 to t− 1 do
compute square[i] = z2 · square[i− 1] mod g

end for
adjust coe�cients for all the terms.
return square, the array containing all the square values.

square root - Finding square root is due to the equation

z2
mt−1

=
√
z mod g(z)

37

Here we pre-compute all values zi/2 mod g(z)∀ odd i ≤ deg(g).
irreducibility testing - is de�ned by the property, there exists no i < t such that
g(z)|z2mi − z, or z2

mi
mod g(z) 6= z. g(z)|z2mi − z ⇔ g(z) has a factor of degree i with

coe�cients in F2m .
We solve z2

mi
mod g(z)∀i ≤ t/2. If we �nd no result of the above equation equal to z

then g(z) is irreducible.

Matrix functions

The matrix structure is de�ned as a continuous array with maximum column number to
mark the beginning of the next row. We use a compact representation that actually maps
binary positions of a matrix by bit positions. This feature enables e�cient row operations.
We have functions to do Gaussian elimination (see algorithm 1), matrix - matrix and
matrix - vector multiplications.

2.3.2 Key generation

Recall the description of Goppa code in �1.2.4. Let Γ(L, g) ∈ Gm,n,t. We have L =
(α1, . . . , αn) with all the αj distinct in F2m and g(z) ∈ F2m [z] monic irreducible of degree
t. Let H(0) be a matrix of size t× n in F2m whose entry in row i, 0 ≤ i < t and column j,
1 ≤ j ≤ n, is H(0)

i,j = αi
j/g(αj).

Let (β1, . . . , βm) denote a basis of F2m over F2. Any γ ∈ F2m can be uniquely written as
γ = b1(γ)β1 + . . . + bm(γ)βm with b`(γ) ∈ F2 for ` = 1, . . . ,m. The tm× n binary matrix
H of general term

Him+`,j = b`(H
(0)
i,j), 0 ≤ i < t, 1 ≤ ` ≤ m, 1 ≤ j ≤ n

is a parity check matrix of binary Goppa codeΓ(L, g). We apply a Gaussian elimination
(algorithm 1) on H to obtain a systematic form HS = (R | I). If the last tm columns
of H are singular, we permute columns and change L in such a way that HS is a parity
check matrix of Γ(L, g). A generator matrix of Γ(L, g) is then given by the matrix (I | RT)
(where I is the identity matrix and RT the transpose of R). The public key will be the
k × tm matrix RT (where k = n− tm).

A t-error correcting binary Goppa code of length n over F2m is de�ned by

• a support L = (α1, . . . , αn) with all the αj in F2m

• a generator g(z) ∈ F2m [z] monic irreducible of degree t.

It has dimension k ≥ n− tm (equality holds with an overwhelming probability for the all
parameters considered here). We denote r = n− k = tm the co-dimension.

We generate L containing all the �eld elements randomly. We generate monic irre-
ducible polynomial g(z) of degree t by randomly picking g(z) and checking it's irreducibility
(see 2.3.1).

For a given code Γ(L, g) the public key is generated as follows

38

• For all 0 ≤ i < t, all 1 ≤ j ≤ n and all 1 ≤ ` ≤ m compute

Him+`,j = b`

(
αi
j

g(αj)

)
(2.2)

where b`(γ) ∈ F2 is the `-th coordinate of γ ∈ F2m in some basis of F2m over F2.

• compute a systematic form HS = (RT | Ir) of the r × n matrix H. If the last r
columns of H are singular, we permute columns and change L in such a way that
HS has the prescribed form and is a parity check matrix of Γ(L, g). Ir is the r × r
identity matrix, R is a k × r binary matrix and RT its transpose.

• publish R as the public key (G = (Ik | R) is a generator matrix of Γ(L, g)).

Ra(z) the rational function of the code Γ(L, g), can also be de�ned in H (see [39],
Chapter 12, page 339).

We apply Gaussian elimination 1 to the matrix 2.2 and we post the redundancy part
R as public key.

2.3.3 Encryption

Let fK() be a stream cipher parameterized by a key K. For any binary string x, we denote
fK(x) its encryption. We assume it has the same length as x and that fK(fK(x)) = x.
Please refer �2.1.1 to compare the original McEliece encryption process with ours.

Let Wn,t denote the set of binary words of length n and Hamming weight t. Let
x ∈ {0, 1}k be the cleartext

• We pick message of length k + ` and split it into two parts x→ xk + x`.

• we convert the x` into the error e at random inWn,t. We use constant weight encoding
(see �2.2.2) for producing the error vector.

• compute x′ = fe(xk), the stream cipher acts as the randomizer.

• compute y′ = (x′ | x′RT), we concatenate x′ with the matrix-vector product of x′

and RT , the transpose of the generator matrix in reduced row echelon form.

• the ciphertext is y = y′ + e

Vector matrix multiplication (binary), error generation.

2.3.4 Decryption

The decryption uses Patterson algorithm 1.2.6. The main part of the decryption process
is the decoding of binary Goppa codes (see �1.2.4).

As we described the three steps of decoding are syndrome computation, solving the key
equation and �nding the roots of the error-locator polynomial (see decoding algorithm 3).

39

To compute the syndrome we precompute for all αj, 1 ≤ j ≤ n

fαj
(z) =

1

z − αj

mod g(z)

as this set is not very big for cryptographic parameters, this helps us to speed up the
process considerably.

Let the received vector y = (y1, y2, · · · , yn).
Then we compute the syndrome as,

Re(z) =
n∑

j=1

yj
z − αj

mod g(z) =
n∑

j=1

yjfαj
(z)

To solve the key equation 1.4 we pre compute all the square root values for i =
0, 1, . . . , t− 1,

Ti(z) =
√
zi mod g(z)

We use the methods described in �2.3.1 to compute the square roots.
let h(z) = h0 + h1z + . . . + ht−1z

t−1, we solve,

S(z) =
√
h(z) mod g(z) =

t−1∑
i=0

h2m−1

i Ti(z)

where h(z) is computed with Euclidean algorithm 1.1.6 as

h(z) = z +
1

Re(z)
mod g(z)

We solve the equation
u(z) = v(z)S(z) mod g(z)

to �nd to �nd u(z) and v(z) of degree at most t/2 and (t− 1)/2 respectively.
We can now �nd the locator polynomial as,

σ(z) = u(z)2 + zv(z)2

The �nal step of decoding i.e. �nding roots of the error locator polynomial, thus �nding
the error vector e, is detailed in the next chapter (see �3).

We retrieve the plain text xk as, y′ = y + e = (x′ | x′RT) with x′ of length k, and
compute the cleartext xk = fe(x

′) and x` = φ−1(e). Finally we get x = xk + x`.

2.4 Simulation results

We implemented the hybrid version of McEliece encryption scheme in C programming
language. In Figures 2.1 and 2.2 we plot the running time per plaintext byte versus the
logarithm in base 2 of the work factor of the best known attack [14].

40

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300

E
nc

ry
pt

io
n

co
st

 (
cp

u-
cy

cl
es

 p
er

 b
yt

e)

Binary work factor (power of 2)

extension degree m = 11
extension degree m = 12
extension degree m = 13

Figure 2.1: Encryption cost vs binary work factor for di�erent extension degrees

41

 0

 1000

 2000

 3000

 4000

 5000

 6000

 50 100 150 200 250 300

D
ec

ry
pt

io
n

co
st

 (
cp

u-
cy

cl
es

 p
er

 b
yt

e)

Binary work factor (power of 2)

extension degree m = 11
extension degree m = 12
extension degree m = 13
extension degree m = 14
extension degree m = 15

Figure 2.2: Decryption cost vs binary work factor for di�erent extension degrees

42

Various values of t were tried for an extension degree 11 ≤ m ≤ 15. As expected, for a
�xed m, the performance gets better for smaller values of t. However, for a �xed security
level, the best performance is not obtained for the smallest block size (i.e. extension degree).
On the contrary the system works better for higher extension degrees. However, form ≥ 13
encryption speed for �xed security becomes steady. See Figure 2.1 and Figure 2.2.

cycles/byte
(m, t) encrypt decrypt key size security
(10, 50) 243 7938 32 kB 60
(11, 32) 178 1848 73 kB 88
(11, 40) 223 2577 86 kB 96
(12, 21) 126 573 118 kB 88
(12, 41) 164 1412 212 kB 130
(13, 18) 119 312 227 kB 93
(13, 29) 149 535 360 kB 129
(14, 15) 132 229 415 kB 91
(15, 13) 132 186 775 kB 90
(16, 12) 132 166 1532 kB 91

Table 2.1: McEliece: selected parameters at a glance
cycles/byte

encrypt decrypt
RSA 1024 (1) 800 23100
RSA 2048 (1) 834 55922
NTRU (2) 4753 8445

(1) RSA encryption (with malleability defense) using OpenSSL.
(2) ntru-enc 1 ees787ep1 NTRU encryption with N = 787 and q = 587. Software

written by Mark Etzel (NTRU Cryptosystem).

Table 2.2: Performance of some other public key systems (EBATS source)

2.4.1 Comparison with other systems

Our simulations were performed on a machine featuring an Intel Core 2 processor with
dual core. It ran on a 32 bits operating system and a single core. The C program was
compiled with icc Intel compiler with the options -g -static -O -ipo -xP. Timings are
given in Table 2.1. Compared with the state of the art implementation of other public key
encryption schemes (see Table 2.2), McEliece encryption gains an order of magnitude for
both encryption and decryption.

The source used for Table 2.2 is an EBATS preliminary report2 of March 2007.

2http://www.ecrypt.eu.org/ebats/D.VAM.9-1.1.pdf

43

44

Part III

E�cient root �nding of polynomials
over �nite �elds

45

Chapter 3

E�cient root �nding of polynomials
over �nite �elds

Root �nding of polynomials over �nite �elds is a classical algebraic algorithmic problem.
It is considered as one of the most time-consuming sub-process of the decoding process
of Reed-Solomon, BCH and Goppa codes. There are some well known approaches for
�nding roots of the so-called error-locator polynomial. The most widely known root �nding
algorithm is Chien search method [17], which is a simple substitution of all elements of the
�eld into the polynomial, so it has very high time complexity for the case of large �elds and
polynomials of high degree. Berlekamp Trace Algorithm (BTA) [6] is another well known
method. It is a recursive method based on the trace function properties.

McEliece cryptosystem is considered as one of the fastest public key schemes and is
still esteemed secure for reasonable parameters. The classical [40] (described in �2.1) and
hybrid [13] McEliece schemes use binary Goppa codes [25]. The decryption process employs
an algebraic decoding algorithm which is often broken up in three parts namely: syndrome
computation, �nding the solution of the key equation, and the root �nding of the error
locator polynomial. This last step takes theoretically three fourth of the total decryption
time.

In this chapter, we present a hybrid method involving BTA and a method proposed
by Zinoviev [60]. Zinoviev proposed direct root �nding procedures for polynomials with
degree at most 10. Our idea is to compute directly the roots with Zinoviev procedures
up to some degree and to use BTA for greater degrees. Moreover, we improve Zinoviev
procedures for polynomials of degree 2 and 3 with time-memory tradeo�s. We analyze
both the theoretical complexities and the experimental complexities of our proposal. We
obtain a theoretical gain of 93% over Chien method and 46% over BTA. Experimental
results con�rm theory up to degree 4 at least. For instance with m = 11, t = 32 and
dmax = 4, our method takes 60% of the total decryption time with respect to 72% for BTA
and 87% for Chien.

47

3.1 E�cient Polynomial Root Finding Problem

Let m > 0 be the extension degree of the two-element �eld F2. We consider a univariate
monic polynomial f , of degree t > 0, in the polynomial ring F2m [x]. Without loss of
generality, we assume that f has no multiple root and that f factorizes into linear factors
over the binary �eld F2m (e.g. see [36]). We are looking for an e�cient way, in terms of
time-complexity, to �nd all zeroes of f .

3.2 Background

For the description of binary Goppa codes see �1.2.4

Algebraic decoding algorithm

Let e, y, z be n-length binary vectors. We have to �nd z the sent codeword knowing
y = z + e where y is the received word and e the error word.

Algebraic decoding is carried out in three steps :

1. Syndrome computation

Ry(z) = Re(z) =
n∑

i=1

ei
z − αi

over F2m [z]/(g(z))

2. Solving the key equation to obtain the error locator polynomial σe (with the Berlekamp-
Massey algorithm or the Extended Euclidean algorithm).

Re(x).σe(x) = σ′
e(x) over F2m [x]/g(x)

Notation: σ′
e denotes the formal derivative of σe.

3. Error locator polynomial root �nding

σe(z) :=
n∏

i=1

(z − αi)
ei ; ei 6= 0⇔ σ(αi) = 0

3.3 Why root �nding is important?

Let F2m be the extension �eld of degree m of the two-element �eld F2. We consider a
univariate monic polynomial f , of degree t > 0, in the polynomial ring F2m [z]. Without
loss of generality, we assume that f has no multiple root and that f factorizes into linear
factors over the binary �eld F2m (e.g. see [35]). Our goal is to �nd an e�cient way, in
terms of time and space complexity, to �nd all the zeroes of f .

48

We are speci�cally interested in the said problem in the McEliece context.

The e�ciency of the root �nding algorithms is a problem that we study in code-based
cryptography. McEliece-type cryptosystems are often based on binary Goppa codes (pre-
sented in Appendix 1.2.4). Their decryption algorithm employs an algebraic decoding
process to recover the original message from the cyphertext. The most time-consuming
stage, in the implementation of algebraic decoding of binary Goppa codes, with practical
parameters, is the root �nding of the error locating polynomial. This polynomial ful�lls
the above mentioned properties.

In this article, we consider an n-lenght binary Goppa code that corrects up to t errors
(the algorithm used is given in Appendix 1.2.4). Let us recall, in practice, parameters are
chosen such that: n = 2m and mt ≤ n.

Decryption Complexity

Theoretical Complexity = number of arithmetic operations in F2m required to decrypt in
the worst case.

• Syndrome computation O(nt)

• Key equation solving O(t2)

• Error locator polynomial root �nding
• BTA O(mt2)
• Chien search O(nt)

Experimental Complexity = average running time for the decryption.

We give below the percentage of the total time spent in each stage of the decryption
algorithm.

• Syndrome computation 11.3%

• Key equation solving 12.0%

• Error locator polynomial root �nding
• BTA 72.1%
• Chien search 85.6% 1

• Other tasks 4.6%

1The percentages given are associated with BTA, if we take Chien search, the numbers for syndrome
computation and key equation solving should vary accordingly.

49

Asymptotically, syndrome computation is the leading cost. For recommended param-
eters (i.e. m = 11, t = 32), the most time-consuming step in the decryption (decoding)
consists in �nding roots of σe. Di�erences that can appear between theoretical and exper-
imental complexities would be due to several reasons:

• tweaks of implementation (quality of implementation, used processors and compilers);

• cost of conditional tests and memory accesses (that are neglected in our theoretical
study but that can be noteworthy in practice);

• not so good approximations (e.g. we approximate the cost of an inversion of a binary
matrix of order m to m2 �eld operations, we thus overlook a small multiplicative
constant);

• weighting2 of arithmetic operations in the �eld.

3.4 Our Proposal

3.4.1 Speed up McEliece Decryption

The drawback of BTA is the large number of recursive calls when the system parameters
grow. We reduce it by mixing BTA and Zinoviev procedures that are ad-hoc methods
for �nding roots of polynomials of degree ≤ 10. This is a classical technique employed
to decrease the number of recursive levels, e.g. the well-known Quicksort algorithm is
optimized with analagous methods. We call this process BTZ (Berlekamp Trace - Zinoviev)
in the scope of this document. BTZ depends on a parameter dmax that is the maximum
degree up to which we use Zinoviev methods.

3.4.2 Implementation Tweaks

In our implementation, we use a polynomial basis to represent the �eld elements. We
implemented Zinoviev procedures with time-memory tradeo�s for polynomials of degree 2
and 3, that enable to perform better than with the original procedures. We explain these
new methods and give their complexities in the following.

Time-Memory Tradeo� for Degree 2.

We want to solve the equation: z2 + az + b = 0 for a, b ∈ F2m . If the solutions exist, we
denote them z1 and z2. First, we make a change of variable. We set z = ax. We obtain
the equation x2 + x+ b/a2 = 0. It costs one division and one squaring in F2m .

2In our study, we distinguish two cases: in the �rst one, addition and multiplication both cost one
operation in F2m , we denote it K(+) = K(×) = 1 where K is the cost function of an arithmetic operation,
in the second one, K(+) = 1 and K(×) = m.

50

Let i be an element of F2m and fi be the mapping:

fi : F2m → F2m

x 7→ x2 + x+ i

The equation fi(x) = 0 has two solutions in F2m if and only if Tr(i) = 0 (a proof is
given in [9]), else this equation has no solution in F2m .

Let T be a table containing elements of F2m .
In other words, T [i] contains one of the two elements of the kernel of fi, if i is in the

image of x 7→ x2 + x. Note that j + 1 is the second element of this kernel.
Now, we read from the table, the element T [b/a2]. We invert the change of variable by

computing: z1 = ab. Then, we compute the second solution: z2 = ab + a. This process
costs one multiplication and one addition in F2m . Thus, we have solved our problem within
four operations in F2m with a memory of 2m �eld elements. It is useful for small m.

Time-Memory Tradeo� for Degree 3.

In this case, the equation to solve is: z3 + az2 + bz + c = 0 where a, b, c ∈ F2m . We obtain
an a�ne multiple of degree 4 by multiplying the polynomial by z+a. It costs two multipli-
cations, one squaring and two additions in F2m . The substitution z =

√
(a2 + b)x (m− 1

repeated squarings3) and a normalization (two divisions) enable to obtain an equation of
the form: x4+x2+dx = e, with d, e ∈ F2m . Let us denote f the mapping x 7→ x4+x2+dx.
By construction a is a root of f(x) = e, we want to �nd the other three. The mapping f
has a kernel of dimension two (except if d = 0, in this case, the dimension is one). We have
only to store two elements which form a basis of the kernel of x 7→ x4 + x2 + dx in a table
for all d ∈ F2m . This requires a storage memory of 2× 2m �eld elements. Notice, this step
does not depend on the coe�cient e. Let us call the lookup table T and the two elements
stored in the table for a given d: λ1 and λ2. Then, we have T [d] = (λ1, λ2). As f is linear,
the three other roots of f are: a+ λ1, a+ λ2 and a+ λ1 + λ2. We obtain them with three
additions. Lastly, we invert the substitution (three multiplications) and thus the problem
is solved. Here, we used the fact that we know that a is a root of f to �nd the other ones.
We cannot use anymore this extra information for polynomials of degree 4 onwards.

3.4.3 How do we Compute Theoretical Complexity?

We will not give here the complexity recurrence formula, that we use to compute the
number of operations required to process BTZ for the sake of clarity. Instead, we prefer to
explain how we obtain it.

3Let us mention that one addition and one multiplication with a constant, are enough using the method
proposed in [29]. We do not take it into account in Table 3.1.

51

Addition Mult. Division Squaring Matrix Inv. Total Cost
Z2 precomput. m2 m2 0 m(m− 1) 1 4m2 −m
Z2 w/o tradeo� m 1 1 1 0 m+ 3
Z2 w/ tradeo� 1 1 1 1 0 4
Z3 w/o tradeo� 2(m+ 1) 3m 0 m 1 m2 + 6m+ 2
Z3 w/ tradeo� 5 5 2 m 0 m+ 12

Z4 2m+ 9 3(m+ 1) 8 m 1 m2 + 6m+ 20
Z5 4m+ 101 7m+ 104 1 0 1 m2 + 11m+ 206

Table 3.1: Number of operations over F2m in Zinoviev procedures

About BTA.

The polynomials with which we deal in BTA are monic, without multiple root and can be
factorized into linear factors over F2m . These polynomials form a set P . Such polynomials
of degree d are entirely determined by their d roots. Hence, there are

(
2m

d

)
such polynomials.

Moreover, we know that for all β ∈ B, a F2-basis of F2m , half of the elements of F2m

have Tr(β · z) = 0 and that for the other half, Tr(β · z) = 1.

For each step of Algorithm ?? (see Appendix ??), we compute the gcd of a polynomial
with Tr(β · z). The polynomial that we obtain contains the roots, such that Tr(β · z) = 0.
We then make a Euclidean division that gives us another polynomial of degree d− i, which
contains the roots, such that Tr(β · z) = 1.

About Zinoviev Procedures.

In Table 3.1, we assume that all the arithmetic operations on the �eld have unitary cost
and that one binary matrix inversion of order m costs m2 additions in F2m . Let Zd denote
the Zinoviev procedure for degree d where d varies from 2 to 5. For d = 2 and d = 3, we
consider two possibilities: with or without the time-memory tradeo�. When we use the
tradeo�, the space complexity is exponential in m, that is, it is in the order of the size of
the �eld i.e. 2m, up to a multiplicative constant factor. For greater degrees (6 ≤ d ≤ 10),
the time complexity is O(m2+dm+d2d). It is exponential in d since in the worst case, the
a�ne multiple has degree equal to 2d−1. Therefore, in the last step of Zinoviev procedures,
we would have to evaluate the polynomial in 2d−1 points for �nding its roots. This is a
reason for which we do not use Zinoviev methods for higher degrees than 10. One observes,
in Table 3.1, that the most expensive part of the Zinoviev procedures is the binary matrix
inversion which enables to �nd the roots of the a�ne polynomial (see Section 1.2.6 for
more details).

52

3.5 Simulation Results

In Table 3.2, we provide experimental data for �nding the roots of a polynomial of degree
t = 32 over F2m = F2048. BTZd means that we use BTZ with dmax = d, for all suitable d.

n = 2048, t = 32, m = 11 Chien BTA BTZ2 BTZ3 BTZ4

CPU cycles root �nding 3200 1300 900 800 800
per byte for decrypting 3700 1800 1400 1300 1300
percentage 4 syndrome computation 5 10 13 14 14

of time solving key equation 7 14 18 19 19
spent for root �nding 87 72 65 61 60

Table 3.2: Experimental data for �nding the roots of a polynomial of degree t = 32 over
F2m = F2048.

In Table 3.3, we present the theoretical number of �eld operations for correcting t = 32
errors of a n = 2048-length word over F211 using BTZ with dmax = 5 and time-memory
tradeo� (see Section 3.4.2). For information, BTZ without the tradeo� gives very close
theoretical results.

Let us depict the gain of BTZ over BTA and Chien procedure in terms of percentage of
number of operations according to the parameter dmax and the polynomial degree t. The
results (given in Figure 3.2 and Figure 3.3) take into account the time-memory tradeo� for
degree 2 and 3. For the sake of readibility and relevance in cryptographic applications, we
restrict to the case m = 11, K(×) = m, t ≤ 100 and dmax ≤ 6. Additionally, we present
similar results for greater degrees in Appendix 3.5. Nevertheless, we have also computed
these results for m = 8, 11, 12, 13, 14, 15, 16, 20, 30, 40, K(×) = 1, t ≤ 300, dmax ≤ 10 and
for both with and without the tradeo�. These data give the information that the higher is
t, the higher is the optimal dmax. One can deduce from the two following graphs that for
m = 11 and t = 32, the recommended theoretical value for dmax is 5. Indeed, we have a
substantial gain of 46% over BTA and 93% over Chien method for this value of dmax.

BTZdmax vs. BTA for m = 11, 30 ≤ t ≤ 300

4Remaining percentages correspond to other minor tasks.

n = 2048, t = 32, m = 11 Chien BTA BTZ2 BTZ3 BTZ4 BTZ5 BTZ6

K(+) = K(×) = 1 129k 16k 13k 11k 10k 10k 10k
K(+) = 1, K(×) = m 764k 91k 65k 54k 50k 47k 48k

Table 3.3: Theoretical number of �eld operations for correcting t = 32 errors of a n = 2048-
length word over F211 using BTZ with dmax = 5 and time-memory tradeo�.

53

 15

 20

 25

 30

 35

 40

 45

 50

 50 100 150 200 250 300

ga
in

 o
f B

TZ
_d

_m
ax

 a
ga

in
st

 B
TA

 (%
)

polynomial degree t

d_max=5 d_max=6 d_max=7 d_max=8 d_max=9

Figure 3.1: BTZdmax vs. BTA; m = 11; K(+) = 1; K(×) = m; with time-memory tradeo�

54

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 20 30 40 50 60 70 80 90 100

ga
in

of
BT

Z_
d_

ma
x a

ga
ins

t B
TA

 (%
)

polynomial degree t

d_max=2 d_max=3 d_max=4 d_max=5 d_max=6

Figure 3.2: BTZdmax vs. BTA; m = 11; K(+) = 1; K(×) = m; with time-memory tradeo�

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

ga
in

of
BT

Z_
d_

ma
x a

ga
ins

t C
hie

n m
eth

od
 (%

)

polynomial degree t

d_max=2 d_max=3 d_max=4 d_max=5 d_max=6

Figure 3.3: BTZdmax vs. Chien; m = 11; K(+) = 1; K(×) = m; with time-memory
tradeo�

55

56

Bibliography

[1] C. Adams and H. Meijer. Security-related comments regarding McEliece's public-
key cryptosystem. In C. Pomerance, editor, Advances in Cryptology - CRYPTO'87,
number 293 in LNCS, pages 224�228. Springer-Verlag, 1987.

[2] A. Barg. Complexity issues in coding theory. In V. S. Pless and W. C. Hu�man, edi-
tors, Handbook of Coding theory, volume I, chapter 7, pages 649�754. North-Holland,
1998.

[3] M. Bellare and P. Rogaway. Optimal asymetric encryption. In A. De Santis, editor,
EUROCRYPT'94, number 950 in LNCS, pages 92�111. Springer-Verlag, 1995.

[4] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani. Reduc-
ing key length of the mceliece cryptosystem. pages 77�97, 2009.

[5] E. R. Berlekamp. Factoring polynomials over large �nite �elds. Mathematics of Com-
putation, 24(111):713�715, 1970.

[6] E. R. Berlekamp. Factoring polynomials over large �nite �elds. In SYMSAC '71:
Proceedings of the second ACM symposium on Symbolic and algebraic manipulation,
page 223, New York, USA, 1971. ACM.

[7] E. R. Berlekamp. Algebraic Coding Theory. Aegen Park Press, 1984.

[8] E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the inherent intractability
of certain coding problems. IEEE Transactions on Information Theory, 24(3), May
1978.

[9] E. R. Berlekamp, H. Rumsey, and G. Solomon. On the solution of algebraic equations
over �nite �elds. volume 10, pages 553�564, June 1967.

[10] Elwyn R. Berlekamp. Bit-serial reed - solomon encoders. IEEE Transactions on
Information Theory, 28(6):869�874, 1982.

[11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the
mceliece cryptosystem. pages 31�46, 2008.

57

[12] T. Berson. Failure of the McEliece public-key cryptosystem under message-resend and
related-message attack. In B. Kalisky, editor, CRYPTO'97, number 1294 in LNCS,
pages 213�220. Springer-Verlag, 1997.

[13] Bhaskar Biswas and Nicolas Sendrier. McEliece cryptosystem implementation: Theory
and Practice. In PQCrypto, pages 47�62, 2008.

[14] A. Canteaut and F. Chabaud. A new algorithm for �nding minimum-weight words in a
linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes
of length 511. IEEE Transactions on Information Theory, 44(1):367�378, January
1998.

[15] A. Canteaut and N. Sendrier. Cryptanalysis of the original McEliece cryptosystem.
In Advances in Cryptology - ASIACRYPT'98, number 1514 in LNCS, pages 187�199.
Springer-Verlag, 1998.

[16] Pierre-Louis Cayrel, Philippe Gaborit, David Galindo, and Marc Girault. Improved
identity-based identi�cation using correcting codes. CoRR, abs/0903.0069, 2009.

[17] R. T. Chien. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.
volume 10, pages 357�363, 1964.

[18] Benny Chor and Ronald L. Rivest. A knapsack-type public key cryptosystem based on
arithmetic in �nite �elds. IEEE Transactions on Information Theory, 34(5):901�909,
1988.

[19] T. Cover. Enumerative source encoding. IEEE Transactions on Information Theory,
19(1):73�77, January 1973.

[20] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644�654, November 1976.

[21] Jean-Charles FaugÃ�re, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Al-
gebraic cryptanalysis of mceliece variants with compact keys. 2010.

[22] Matthieu Finiasz. Nouvelles constructions utilisant des codes correcteurs d'erreurs
en cryptographie Ã clef publique. Th`ese de doctorat, École Polytechnique, October
2004.

[23] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based
cryptosystems. 5912:88�105, 2009.

[24] Philippe Gaborit. Shorter keys for code based cryptography. International Workshop
on Coding and Cryptography - WCC, Bergen, Norway, 2005.

[25] V.D. Goppa. A new class of linear error-correcting codes. In Probl. Inform. Transm.,
volume 6, pages 207�212, 1970.

58

[26] C. Hall, I. Goldberg, and B. Schneier. Reaction attacks against several public-key
cryptosystems. In Proc. of ICICS'99, number 1726 in LNCS, pages 2�12. Springer-
Verlag, 1999.

[27] I. Herstein. Topics in Algebra. John Wiley, New York, 1975.

[28] I. S. Hsu, T. K. Truong, L. J. Deutsch, and I. S. Reed. A comparison of vlsi architecture
of �nite �eld multipliers using dual, normal, or standard bases. IEEE Trans. Comput.,
37(6):735�739, 1988.

[29] K. Huber. Note on decoding binary Goppa codes. Electronics Letters, 32(2):102�103,
August 2002.

[30] H. Janwa and O. Moreno. McEliece public key cryptosystems using algebraic-
geometric codes. Design, Codes and Cryptography, 8:293�307, 1996.

[31] K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosystems -
Conversions for McEliece PKC-. In K. Kim, editor, PKC'2001, number 1992 in LNCS,
pages 19�35. Springer-Verlag, 2001.

[32] N. Koblitz. Elliptic curve cryptosystems. Mathematic of Computation, 48(177):203�
209, 1987.

[33] P. J. Lee and E. F. Brickell. An observation on the security of McEliece's public-key
cryptosystem. In C. G. Günther, editor, Advances in Cryptology - EUROCRYPT'88,
number 330 in LNCS, pages 275�280. Springer-Verlag, 1988.

[34] J. S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354�1359,
September 1988.

[35] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1983.

[36] Rudolf Lidl and Harald Niederreiter. Finite Fields (Encyclopedia of Mathematics and
its Applications). Cambridge University Press, October 1996.

[37] P. Loidreau and N. Sendrier. Some weak keys in McEliece public-key cryptosystem.
In IEEE Conference, ISIT'98, Cambridge, MA, USA, August 1998.

[38] P. Loidreau and N. Sendrier. Weak keys in McEliece public-key cryptosystem. IEEE
Transactions on Information Theory, 47(3):1207�1212, April 2001.

[39] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1977.

[40] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pages 114�116,
January 1978.

59

[41] Ralph C. Merkle, Student Member, Ieee, Martin E. Hellman, and Senior Member.
Hiding information and signatures in trapdoor knapsacks. IEEE Transactions On
Information Theory, 24:525�530, 1978.

[42] Rafael Misoczki and Paulo S. L. M. Barreto. Compact mceliece keys from goppa
codes. pages 376�392, 2009.

[43] H. Niederreiter. Knapsack-type crytosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157�166, 1986.

[44] City CA) Omura, Jimmy K. (Culver and CH) Massey, James L. (Zurich. Computa-
tional method and apparatus for �nite �eld arithmetic. (4587627), May 1986.

[45] N. J. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions on
Information Theory, 21(2):203�207, March 1975.

[46] D. Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In H. Imai
and Y. Zheng, editors, PKC 2000, number 1751 in LNCS, pages 129�146. Springer-
Verlag, 2000.

[47] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120�126, February
1978.

[48] N. Sendrier. On the structure of a randomly permuted concatenated code. In
P. Charpin, editor, Livre des résumé � EUROCODE 94, pages 169�173, Abbaye de la
Bussière sur Ouche, France, October 1994. INRIA.

[49] N. Sendrier. Finding the permutation between equivalent codes: the support splitting
algorithm. IEEE Transactions on Information Theory, 46(4):1193�1203, July 2000.

[50] N. Sendrier. Cryptosystèmes à clé publique basés sur les codes correcteurs d'erreurs.
Mémoire d'habilitation à diriger des recherches, Université Paris 6, March 2002.

[51] N. Sendrier. On the security of the McEliece public-key cryptosystem. In M. Blaum,
P.G. Farrell, and H. van Tilborg, editors, Information, Coding and Mathematics, pages
141�163. Kluwer, 2002. Proceedings of Workshop honoring Prof. Bob McEliece on his
60th birthday.

[52] N. Sendrier. Encoding information into constant weight words. In IEEE Conference,
ISIT'2005, Adelaide, Australia, September 2005.

[53] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26(5):1484�1509, 1997.

[54] V. M. Sidel'nikov. A public-key cryptosystem based on Reed-Muller codes. Discrete
Mathematics and Applications, 4(3):191�207, 1994.

60

[55] V. M. Sidel'nikov and S. O. Shestakov. On cryptosystem based on generalized Reed-
Solomon codes. Discrete mathematics (in russian), 4(3):57�63, 1992.

[56] J. Stern. A method for �nding codewords of small weight. In G. Cohen and J. Wolf-
mann, editors, Coding theory and applications, number 388 in LNCS, pages 106�113.
Springer-Verlag, 1989.

[57] H.M. Sun. Further cryptanalysis of the McEliece public-key cryptosystem. IEEE
Trans. on communication letters, 4(1):18�19, January 2000.

[58] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge Univ. Press,
2003.

[59] Charles C. Wang, T. K. Truong, Howard M. Shao, Leslie J. Deutsch, Jim K. Omura,
and Irving S. Reed. Vlsi architectures for computing multiplications and inverses in
gf(2m). IEEE Trans. Comput., 34(8):709�717, 1985.

[60] V.A. Zinoviev. On the solution of equations of degree ≤ 10 over �nite �elds GF(2q).
1996.

61

