
Implementational aspects of code-based

cryptography

Ph.D. Defence of
Bhaskar Biswas

Supervised by
Nicolas Sendrier and Luc Bouganim

INRIA-Rocquencourt and École Polytechnique, France

École Polytechnique, France

October 1, 2010

Introduction

Cryptology

My research domain is cryptology.

Cryptology (κρνπτ óσ (adj. secret); λoγια (n. sayings or body of

knowledge)): is the science of making communication incomprehen-

sible to every one but those who have a right to access it. It has two

wings,

→ Cryptography: concerns with the system design.

→ Cryptanalysis: concerns with system analysis (breaking?).

Two types of systems,

• Symmetric key; same key is used for encryption and decryption.

• Asymmetric key; different keys for encryption and decryption.

1

Asymmetric systems

The concept of public key (asymmetric) cryptography came to exis-

tence to address the following two difficult problems associated with

the secret key (symmetric) cryptosystems.

• Key distribution and

• Non-repudiation.

To address both problems, Diffie and Hellman achieved one of the

greatest breakthrough in cryptography in 1976.The proposed scheme

used a pair of different keys in contrast to one shared key and it was

based on mathematical functions instead of substitution and permu-

tation. The use of two keys has profound consequences in facilitating

key distribution and providing digital signature.

2

Public Key Encryption schemes

All the systems have three distinct steps.

1. Key generation, generates a set of public and private keys.

2. Encryption, encryption of the plain text with the help of

public key.

3. Decryption, decryption of the ciphertext with the help of

private key, which is hard to deduce from the public key.

The security of these systems depend upon some underlying hard

problem.

3

Short history : (my) view

Almost solely used public key encryption scheme is RSA, it is based

on the problem of factorization.

Next possible alternative is Elliptic curve systems, because of the

better performance for high security levels.

Alternative systems are always of interest. They are attracting more

attention as quantum alternatives.

Thus, subjects like lattice based crypto, code based crypto and mul-

tivariate crypto are getting more interest.

My research area is code based cryptography.

4

McEliece encryption scheme

An asymmetric key system, proposed by Robert McEliece in 1978.

Based on the well known and well studied problem of “hardness of

decoding a general linear code”.

Private key is the description of t-error-correcting code with efficient

decoding algorithm (binary Goppa code).

Public key is the disguised form of the code selected, as a general

linear code (pseudo-randomness of Goppa code).

5

McEliece encryption scheme cont...

N One of the fastest public key system (160 Mbits/s).

N Secure; resisted cryptanalysis till date.

N Remain secure; will resist the threat posed by

quantum computers.

N Good scalability; security grows exponentially if we raise

parameters.

H Rather large key size (100 KB; 88 bit security).

H Lesser information rate.

H Rarely used in practice, implementation has not been studied

before with full state of the art.

6

Overview of McEliece scheme

Let F be a family of binary t-error-correcting (n, k) codes. We describe

McEliece cryptosystem as,

• public key: a k × n binary generator matrix G of a code ∈ F.

• secret key: a decoder for the said code.

• encryption: x 7→ xG+ e where, hamming weight of e is wH(e) ≤ t.

• decryption: Essentially the decoding process.

It was introduced by R. McEliece in 1978 with irreducible binary Goppa

codes.

7

Brief time line

• Proposed in 1978 by Robert J. McEliece.

• Niederreiter proposed a variant! Knapsack type. 1986.

• Attacks:

Decoding attacks Lee and Brickell - ’88.

(Information set Leon - ’88.

decoding) J. van Tilburg - ’88.

J. Stern - ’89.

A. Canteaut and F. Chabaud - ’95.

Structural attacks Support splitting algorithm

(Goppa codes) P. Loidreau and N. Sendrier - ’01.

• D. Bernstein, T. Lange and C. Peters - Successful attack, ’08.

• N. Courtois, M. Finiasz and N. Sendrier - Signature Scheme, ’01.

8

Niederreiter cryptosystem

Proposed by Harald Niederreiter in 1986 a variant of McEliece scheme.

Uses parity check matrix instead of generator matrix.

Embeds information in the error pattern.

The security reduction is identical as the McEliece scheme.

Theoretically it is the dual system of McEliece.

9

Our objectives

To study the scope of McEliece system in real life; its practicality,

efficiency and security aspects.

• Full state of the art implementation of McEliece public key

cryptosystem.

• Reference platform.

• Algorithmic improvement.

• Optimized implementation.

10

The Hybrid McEliece Encryption
Scheme (HyMES)

Our proposal

1. Generator matrix in row echelon form, reduces key size.

2. Encode information in the error, increases the information rate.

In spite of the changes we preserve security.

We improve,

• Key size.

• Encryption speed.

• Information rate.

As we mix the ideas of McEliece and Niederreiter schemes, we call

our system Hybrid.

11

HyMES Description

We define an injective mapping ϕ : {0,1}` → Wn,t, a set of n length
words weight t. Both ϕ and ϕ−1 should be easy to compute.

• Key generation:

– We construct the necessary tools to design and operate on GF

along with polynomial representation.

– generate a support L = (α1, . . . , αn) of n distinct elements
of F2m,

– generate a monic irreducible generator polynomial g(z) ∈ F2m[z]
of degree t.

– The secret key is the pair (L, g) (i.e. the Goppa code Γ(L, g)
and its decoder)

– The public key is a binary k×(n−k) matrix R where G = (Id | R)
is a generator matrix of Γ(L, g) in row echelon form.

12

Description cont...

• Encryption: the plaintext is in {0,1}k × {0,1}` and the ciphertext

in {0,1}n

{0,1}k × {0,1}` −→ {0,1}n

(x, x′) 7−→ (x, xR) + ϕ(x′)

• Decryption: the ciphertext has the form y = xG+e, with e = ϕ(x′)
of Hamming weight ≤ t. Applying the decoder of Γ(L, g) on y will

provide x and x′ = ϕ−1(e).

Remark : We try to chose `, as close as log
(
n
t

)
for better information

rate and security.

13

Security

• One Way Encryption(OWE) scheme: A public key encryption

scheme is a One Way Encryption scheme if the probability of

success of any of its adversary running in polynomial time is neg-

ligible.

In practice, one needs more than just an OWE scheme.

• McE, though it is OWE, is vulnerable to many attacks.

• Given perfect hash functions exists, there are generic conversions

which, starting from an OWE scheme, provide a scheme resistant

against adaptative chosen ciphertext attack.

We can prove, given the two following assumptions, the hybrid McEliece

encryption scheme is OWE.

14

Security assumptions

• Hardness of decoding in the average case: The success probability

Pr (A(xG+ e,G) = (x, e))

of any adversary A running in polynomial time is negligible.

• Pseudo-randomness of binary Goppa Codes: there exists no effi-

cient distinguisher for Goppa codes. In other words, the generator

matrix of a Goppa code looks random.

Theorem 1 Under the two assumptions stated above, the Hybrid

McEliece Encryption Scheme is secure.

15

Bird’s eye view comparison

• Parameters: m, t, n ≤ 2m, Wn,t set of n length words of weight t.

• Secret key: The pair (L, g).

– generator: g(z) ∈ F2m[z], monic irreducible of degree t.

– support: L a sequence of n distinct elements in F2m[z].

– code: Γ(L, g), t error correcting Goppa code.

– decoder: Ψ : {0,1}n → Γ(L, g), a decoding procedure for Γ.

• Public key:
A random generator matrix A systematic generator matrix

G of Γ(L, g). G = (Id|R) of Γ(L, g).

16

Cont...

• Encryption:
{0,1}k −→ {0,1}n {0,1}k × {0,1}` −→ {0,1}n

x 7−→ xG+ e (x, x′) 7−→ (x, xR) + ϕ(x′)
Where e is random error of length n and weight t.

• Decryption:
{0,1}n −→ {0,1}k {0,1}n × {0,1}` −→ {0,1}n

y 7−→ Ψ(y)G∗ {0,1}n × {0,1}` 7−→ (x, x′)

Where GG∗ = Id is the x is the first k bits of Ψ(y)

identity matrix. and x′ = ϕ−1(y −Ψ(y)).

17

Implementation

Running time overview

Key generation is one time process, it is fast enough.

Encryption is very fast.

For decryption, which is the bottleneck of the scheme, there are 3

steps and their time consumption are,

• Syndrome computation O(nt); 11.3%.

• Key equation solving O(t2); 12.0%.

• Error locator polynomial root finding

• BTA O(mt2); 72.1%

(• Chien search O(nt); 85.6%)

• Other tasks 4.6%

18

Binary Goppa Code

Let m > 0, n ≤ 2m and a = (a1, ..., an) ∈ Fn2.

The n-length binary Goppa code Γ(L, g) is defined by:

• Support L = (α1, ..., αn) n-tuple of distinct elements of F2m;

• Goppa polynomial g(z) ∈ F2m[z], square-free, monic of degree
t > 0 with no root in L.

Γ(L, g) is a subfield subcode over F2 of a particular Goppa code over
the binary field F2m.
We have a ∈ Γ(L, g) if and only if:

Ra(z) :=
n∑

i=1

ai
z − αi

= 0 over F2m[z]/(g(z)).

19

Decode Binary Goppa Codes

Let e, x, y be n-length binary vectors. We have to find x, the sent
codeword knowing y = x + e where y is the received word and e the
error word. We can correct up to t errors.

Algebraic decoding is carried out in three steps:

1. Syndrome computation

Ry(z) = Re(z) =
n∑

i=1

ei
z − αi

over F2m[z]/(g(z)).

2. Solving the Key Equation to obtain the error locator polynomial

Re(z) · σe(z) = σ′e(z) over F2m[z]/(g(z)).

3. Error Locator Polynomial Root Finding

σe(z) :=
n∏

i=1

(z − αi)
ei; σe(αi) = 0⇔ ei 6= 0.

20

Step 2 : Patterson algorithm

The Patterson algorithm solves the Goppa code key equation: given

R(z) and g(z) in F2m[z], with g(z) of degree t respectively, find σ(z)

of degree t such that

R(z)σ(z) =
d

dz
σ(z)mod g(z)

We write σ(z) = σ0(z)
2 + zσ1(z)

2. Since
d

dz
σ(z) = σ1(z)

2, we have

(1 + zR(z))σ1(z)
2 = R(z)σ0(z)

2mod g(z).

Because g(z) is irreducible, R(z) can be inverted modulo g(z). We

put h(z) = z +R(z)−1mod g(z) and we have

h(z)σ1(z)
2 = σo(z)

2mod g(z).

21

Patterson algorithm cont...

The mapping f(z) 7→ f(z)2mod g(z) is bijective and linear over Ftm
2 ,

there is a unique polynomial S(z) such that S(z)2 = h(z)mod g(z).

We have

S(z)σ1(z) = σ0(z)mod g(z).

The polynomial σ0(z), σ1(z) are the unique solution of the equation
S(z)σ1(z) = σ0(z)mod g(z)

degσ0 ≤ t/2

degσ1 ≤ (t− 1)/2

(1)

22

Patterson algorithm cont...

The three steps of the algorithm are the following

1. Compute h(z) = z+R(z)−1mod g(z) using the extended Euclidian

algorithm.

2. Compute S(z) =
√
h(z)mod g(z)

If s(z) such that s(z)2 = zmod g(z) has been precomputed and

h(z) = h0 + h1z + . . . + ht−1zt−1, we have

S(z) =
(t−1)/2∑

i=0

h2
m−1

2i zi +
t/2−1∑
i=0

h2
m−1

2i+1z
is(z)

3. Compute (σ0(z), σ1(z)) using the extended Euclidian algorithm.

The polynomial σ(z) = σ0(z)
2 + zσ1(z)

2 is returned.

23

Step 3 : Find the roots efficiently

Several approaches are possible, their efficiency depends on the size

of the parameters m and t.

• Chien search computes roots by evaluating artfully the polynomial

in all points of L. This method is recommended for hardware

implementations and coding theory applications in which m is

small.

• BTA is a recursive algorithm using trace function properties. It

is a faster method for secure parameters in McEliece-type

cryptosystems.

24

Berlekamp Trace Algorithm (BTA)

Trace function Tr(·) : F2m → F2

Tr(z) := z + z2 + z2
2
+ . . .+ z2

m−1
.

The function Tr(·) is F2-linear and onto.

We know that:

∀i ∈ F2 , Tr(z)− i =
∏

γ s.t.Tr(γ)=i

(z − γ).

Moreover, we have: z2
m − z = Tr(z) · (Tr(z)− 1).

25

Berlekamp Trace Algorithm (BTA) cont...

Let B = (β1, . . . , βm) a basis of F2m over F2.
BTA splits any f ∈ F2m[z] s.t. f(z)|(z2m− z) into factors of degree 1,

by computing iteratively on β ∈ B and recursively on f :

g(z) := gcd(f(z),Tr(β · z)) and h(z) :=
f(z)

g(z)
.

Theorem 2 (Berlekamp) Berlekamp Trace Algorithm always success-

fully returns the linear factors of any polynomial.

26

Reduce time complexity

Though efficient, BTA has a large number of recursive calls when the

system parameters grow.

We reduce it by mixing BTA and Zinoviev’s algorithms, ad-hoc meth-

ods for finding roots of polynomials of degree ≤ 10 over F2m.
We call this process BTZ in the following.

BTZ depends on a parameter dmax which is the maximum degree up

to which we use Zinoviev’s methods.

V.A. Zinoviev, On the solution of equations of degree ≤ 10 over finite fields
GF(2m), Research Report INRIA n◦ 2829, 1996

27

Pseudocode of a simplified version of BTZ

Algorithm 1 - BTZ(f, d, i)
First call: f ← σe; d← dmax ∈ {2, . . . ,10}; i← 1.

if degree(f) ≤ d then

return ZINOV IEV (f, d);

else

g ← gcd(f,Tr(βi · z));
h← f/g;

return BTZ(g, d, i+1) ∪BTZ(h, d, i+1);

end if

28

Zinoviev’s algorithms

Zinoviev’s methods find an affine multiple of any polynomial of deg
≤ 10 over F2m. The methods differ according to this degree.
Affine Polynomial

A(z) = L(z) + c where L is a linearized polynomial, c ∈ F2m.

Linearized Polynomial

L(z) =
n∑

i=0

li · z2
i

with li ∈ F2m and ln = 1.

After that, finding roots of affine polynomial is easier than in the
general case.

29

Get an affine multiple of a polynomial of degree 2 or 3

Let us have an equation: z2 + αz + β = 0, α, β ∈ F2m.
Notice z2+αz is already a linearized polynomial. Nothing to do here.

Now consider the equation: z3 + az2 + bz + c = 0, a, b, c ∈ F2m
We have to decimate the non-linear terms.

For this, we add one particular root by multiplying the left side by

(z + a).

We obtain z4 + dz2 + ez + f = 0 with d = a2 + b, e = ab+ c, f = ac.

Got what we wanted, an affine multiple of a polynomial of degree 3.

30

Results we obtained

We specify a recurrence complexity formula for BTZ.

We then use dynamic programming to estimate its theoretical com-

plexity in the worst case.

We thus determine the best dmax to use to have the optimal efficiency

on the following range of parameters:

m = 8,11,12,13,14,15,16,20,30,40 ; t = 10..300 ; dmax = 2..10.

Let K be the cost function of any operation over F2m.
We take K(+) = 1 ; K(×) = 1 or K(×) = m.

31

Comparison of BTA and BTZ with Chien

32

Experimental results

We provide experimental data for finding the roots of a polynomial

of degree t = 32 over F2m = F2048. BTZd means that we use BTZ

with dmax = d, for all suitable d.

n = 2048, t = 32, m = 11 Chien BTA BTZ2 BTZ3 BTZ4

CPU cycles root finding 3200 1300 900 800 800

per byte for decrypting 3700 1800 1400 1300 1300

percentage syn. computation 5 10 13 14 14

of time solve key equation 7 14 18 19 19

spent for root finding 87 72 65 61 60

33

HyMES simulation results

cycles/byte
(m, t) encrypt decrypt key size security

(10,50) 243 7938 32 kB 60
(11,32) 178 1848 73 kB 88
(12,21) 126 573 118 kB 88
(13,29) 149 535 360 kB 129
(14,15) 132 229 415 kB 91
(15,13) 132 186 775 kB 90
(16,12) 132 166 1532 kB 91

HyMES: selected parameters at a glance (Pentium Core 2)

cycles/byte
encrypt decrypt

RSA 1024 (1) 800 23100
RSA 2048 (1) 834 55922
NTRU (2) 4753 8445

(1) RSA encryption (with malleability defense) using OpenSSL.

(2) ntru-enc 1 ees787ep1 NTRU encryption with N = 787 and

q = 587. Software written by Mark Etzel (NTRU Cryptosystem).

34

Decryption results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 50 100 150 200 250 300

D
ec

ry
pt

io
n

co
st

 (
cp

u-
cy

cl
es

 p
er

 b
yt

e)

Binary work factor (power of 2)

extension degree m = 11
extension degree m = 12
extension degree m = 13
extension degree m = 14
extension degree m = 15

35

Encryption results

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300

E
nc

ry
pt

io
n

co
st

 (
cp

u-
cy

cl
es

 p
er

 b
yt

e)

Binary work factor (power of 2)

extension degree m = 11
extension degree m = 12
extension degree m = 13

36

Conclusion

Summary

• We made 2 major changes to the original system.

• The security is preserved.

• We implemented the Hybrid system.

• The system is faster than other number theory based PKE’s.

• We have made algorithmic improvement to root finding of poly-

nomials and thus to decode faster.

• The full project is freely available at

http://www-roc.inria.fr/secret/CBCrypto/index.php?pg=hymes.

• Goppa code distinguisher ?

(Faugère, Otmani, Perret and Tillich)

37

