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leur irremplaçable et permanent soutien.

Résumé étendu

Cette thèse introduit un cadre de travail théorique pour
raisonner à partir de bases de connaissances proposi-
tionnelles probabilistes éventuellement inconsistantes.
Par raisonner, il faut comprendre non seulement inférer
(c’est-à-dire déduire) des informations à partir d’une
base de connaissances donnée, mais aussi mesurer la
qualité de cette base. Inférer et mesurer sont deux ac-
tivités s’inscrivant dans un processus de décision global,
comme présenté dans l’exemple suivant.

Supposons que Tom arrête sa voiture à une intersec-
tion pour décider s’il va tourner à Droite ou à Gauche.
Ignorant la bonne direction à suivre, il demande con-
seil à ses amies: Sophia lui réponds qu’elle penche pour
aller à Droite, tandis que Mia lui assure que la bonne di-
rection est Gauche. Tom aurait peut-être ainsi tourné à
Gauche s’il ne savait pas que Mia est une farceuse, con-
trairement à Sophia qui fait souvent preuve de sagesse;
mais Tom est bien conscient de la fiabilité de ses amies.
La connaissance de Tom est alors la suivante:

Source Fiabilité Proposition Probabilité

Sophia 90% (sage) Droite [60%:100%]
Mia 20% (farceuse) Gauche 100%

Formellement, soit v la variable propositionnelle sig-
nifiant que “Droite est la bonne direction”; la valeur de
cette variable est soit vrai, soit faux. Je note ω(v) la
probabilité que v vaille vrai, et ω(¬v) la probabilité que
v vaille faux. Le mot probabilité fait ici référence à une
fonction ω satisfaisant les deux axiomes de Kolmogorov:
(P1) si |= θ alors ω(θ) = 1;
(P2) si |= ¬(θ ∧ φ) alors ω(θ ∨ φ) = ω(θ) + ω(φ),

où θ et φ sont des phrases d’un langage proposi-
tionnel, comme Θ ::= (Θ ∧ Θ) | (Θ ∨ Θ) | (¬Θ) | v
par exemple, et où |= θ représente une tautolo-
gie. Tom reçoit ainsi de Sophia l’information

KSophia
def
= {“60% ≤ ω(v) ≤ 100%”}, et de Mia

l’information KMia
def
= {“ω(¬v) = 100%”}. La con-

naissance de Tom est donc la fusion de ces deux
informations pondérées par leur niveau confiance

respectif: KTom
def
= K90%

Sophia ⋒ K20%
Mia . Supposons1 que

1Tom adhère ici à la seconde maxime de R. Descartes [8]:
“lorsqu’il n’est pas en notre pouvoir de discerner les plus
vraies opinions, nous devons suivre les plus probables, et en-

v
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Tom tourne à Droite ssi ω(v) ≥ 50% et tourne à
Gauche ssi ω(v) < 50%. Je présente maintenant les
principales questions abordées dans ma thèse:

1. Quelle direction Tom devrait-il prendre, c’est-à-
dire, quelle unique valeur de ω(v) peut-il inférer
à partir de sa connaissance KTom?

Réponse: Tom discrédite Mia car il pense qu’elle
est bien moins fiable que Sophia. Tom devrait donc
tourner à Droite car la probabilité que Droite soit
la bonne direction est supérieure à 50%, comme
indiquée par le processus d’inférence IEME défini au
chapitre 4: ω(v) = (IEME(KTom))(v) ≈ 60%. Ce
processus d’inférence élit la distribution de proba-
bilité qui représente au mieux le monde réel d’après
une connaissance donnée (ex: KTom) et un en-
semble de principes. Ces principes sont une ten-
tative de définition du sens commun sous-jacent
au raisonnement paraconsistant; un exemple de
principe est que “la valeur de ω(v) ne devrait
pas dépendre de la musique que Tom écoute”, car
écouter de la musique ne fournit aucune informa-
tion concernant la bonne direction à prendre.

2. À quel point Tom est-il confiant que tourner à
Droite soit la bonne décision?

Réponse: La confiance qu’a Tom en la décision de
tourner à Droite est µconf(KTom,Droite) ≈ 16%.
La raison est que chaque distribution de proba-
bilité ω est vue comme un argument soutenant soit
la décision de prendre à Droite (si ω(v) ≥ 50%) soit
la décision de prendre à Gauche (si ω(v) < 50%)
avec une force dépendante de KTom; je calcule que
la distribution de probabilité soutenant au plus la
décision de prendre à Droite (Gauche) a une force
d’environ 87% (71%), d’où je conclue que la con-
fiance de Tom en la décision de tourner à Droite
est d’environ 16% = 87% − 71%, et de tourner à
Gauche est d’environ −16% = 71% − 87%. Ainsi,
Tom devrait plutôt tourner à Droite qu’à Gauche,
mais comme sa confiance n’est que de 16%, il de-
vrait retarder sa prise de décision de tourner afin
d’obtenir d’avantage d’informations sur la direc-
tion à prendre.

3. À quel point ce que dit Sophia est incohérent par
rapport à ce que dit Mia, c’est-à-dire à quelle dis-
tance sont-elles d’atteindre un consensus sur la
valeur de ω(v)?

Réponse: L’incohérence (en tant que gap) en-
tre les dires de Sophia “60% ≤ ω(v)” et ceux
de Mia “ω(v) = 0%” est µicoh

G (KSophia,KMia) =
60% − 0% = 60%. Si Mia était moins certaine

tre plusieurs opinions également reçues, [nous devons suivre] les
plus modérées.”

qu’il faille tourner à Gauche, “ω(v) ∈ [0%:40%]”
par exemple, alors l’incohérence aurait été moin-
dre, 60% − 40% = 20% par exemple, et si Sophia
avait été encore moins certaine qu’il faille tourner
à Droite, “ω(v) ∈ [30%:100%]” par exemple, alors
l’incohérence aurait été minimale, c’est-à-dire égale
à 0%, car [0%:40%] intersecte [30%:100%] ce qui
signifie qu’un consensus est atteint.

4. À quel point la connaissance de Tom est-elle in-
consistante, et qui de Mia ou Sophia en est le plus
coupable?

Réponse: Puisque Tom fait bien plus confiance
à Sophia qu’à Mia, sa connaissance est faible-
ment inconsistante, c’est-à-dire µicst(KTom) ≈
13%, et cette inconsistance est principalement im-
putable à Mia: sa part de responsabilité est de
µculp
KTom

(KMia) ≈ 13% alors que celle de Sophia est

de µculp
KTom

(KSophia) ≈ 0%.

5. Qui de Mia ou Sophia procure à Tom l’information
la plus précise?

Réponse: Mia fournit à Tom une valeur précise,
“ω(v) = 0%”, alors que Sophia lui fournit
seulement un intervalle de valeurs, “ω(v) ∈
[60%:100%]”. La mesure de précision de
l’information procurée par Mia est alors plus élevée
que celle de l’information procurée par Sophia:
µpre(KMia) > µpre(KSophia).

Le chapitre 2 décrit une nouvelle représentation de la
connaissance appelée candidacy fonction permettant de
relâcher les contraintes exprimées sur les distributions
de probabilité; une notion de fiabilité y est introduite.
Le chapitre 3 approfondit les précédentes questions 2
à 5, puis le chapitre 4 traite la question 1. Le chapitre 5
propose une potentielle application à la théorie du vote.

General notations

Let R be the set of real numbers. Let N be the set
of natural numbers, 0 included. Let {0, 1, 2} be a set
(or a multiset if explicitly stated). Let [0, 1, 2] be a
list, or a horizontal vector. Let [0; 1; 2] be a vertical
vector. Let [A,B] and [A;B] respectively be the hor-
izontal and vertical concatenation of A and B, where
A and B are matrices, vectors, or scalars with coher-
ent dimensions. Let [0:1] and ]0:1[ respectively be a
closed and open interval of real numbers. Let

∏
v and∑

v respectively be
∏|v|
i=1 vi and

∑|v|
i=1 vi, where vi is

the ith element of a vector v having |v| elements. Let

L2(x, y)
def
=
√∑|x|

i=1(xi − yj)2 be the Euclidean distance
between two points x and y. Let ln and exp be respec-
tively the logarithm and the exponential to the natural
base.
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Chapter 1

Introduction

Reasoning is nothing but reckoning

Thomas Hobbes, in [15, chapter V]

Humans commonly reason from uncertain even in-
consistent knowledge. Common sense underlying para-
consistent reasoning should thus exist; its axiomatisa-
tion is then prospected.

This thesis introduces a theoretical framework to rea-
son from inconsistent probabilistic propositional knowl-
edge bases; by reasoning, we1 mean inferring (ie deduc-
ing) information from a given (possibly inconsistent)
uncertain knowledge base, where uncertainty is identi-
fied2 with imprecise probability over propositional sen-
tences. By reasoning, we also mean appraising knowl-
edge, like quantifying the inconsistency of a knowledge
base, or measuring the dissimilarity (ie the distance)
between two knowledge bases, even when such bases
are inconsistent.

Introductory example

Suppose Tom stops his car at an intersection to decide
if he will turn Left or Right. Unaware of the correct
direction, Tom asks his friends: Sophia leans towards
turning Right, while Mia claims certainty in Left. Tom
would thus turn Left if he ignored Sophia’s wisdom
and Mia’s inveterate jokiness, but he is conscious of his
friends’ reliability. Tom’s knowledge is then depicted
as follows:

Source Reliability Proposition Probability

Sophia 90% (sage) turn Right [60%:100%]
Mia 20% (joker) turn Left 100%

More formally, let v be the propositional variable that
means “Right is the correct direction”, of which the
value is either true or false. We denote by ω(v) the

1In this thesis, pronoun we indifferently refers to, sometimes
the author with a thought to his surrounding helpful people,
sometimes to both the reader and the author.

2The reader interested in the justification for identifying un-
certainty with probability is invited to read [33, chapter 2]

probability that v is true, and by ω(¬v) the probabil-
ity that v is false. Hence, 0% ≤ ω(v) = 1 − ω(¬v) ≤
100%. Sophia provides Tom with the knowledge base

KSophia
def
= {“60% ≤ ω(v) ≤ 100%”}. Mia provides

Tom with the knowledge base KMia
def
= {“ω(¬v) =

100%”}, which means that v is false in the real world.
Tom’s knowledge is thus represented as the mergence of
Sophia’s and Mia’s knowledge bases, weighted by relia-

bilities: KTom
def
= K90%

Sophia ⋒K
20%
Mia . Suppose

3 Tom turns
Right iff ω(v) ≥ 50%, and turns Left iff ω(v) < 50%.
The main questions addressed in this thesis are:

1. Which direction Tom should take, ie which unique
value of ω(v) can be inferred from knowledge base
KTom?

Answer: Tom almost disbelieves Mia because she
is much less reliable than Sophia. Tom should thus
turn Right; the probability that Right is the cor-
rect direction is greater than 50%, as indicated
by our inference process IEME defined in chapter 4:
ω(v) = (IEME(KTom))(v) ≈ 60%.

2. How confident is Tom in turning Right?

Answer: Tom’s confidence in turning Right is
µconf(KTom,Right) ≈ 16%. The reason is that
each probability distribution ω is seen as an argu-
ment for supporting either Right (if ω(v) ≥ 50%)
or Left (if ω(v) < 50%) with a strength depending
on KTom; we compute that the probability distri-
bution most supporting Right (Left) has strength
about 87% (71%), whence Tom’s confidence in
turning Right is about 16% = 87% − 71%, and in
turning Left is about −16% = 71% − 87%. Thus,
Tom should rather turn Right than Left, but since
his confidence is only 16%, he should also consider
postponing his decision in turning Right to acquire
more knowledge about the correct direction.

3Tom adheres to R. Descartes’s second maxim: “when it is
not in our power to determine what is true, we ought to act
according to what is most probable; and even though we do not
remark a greater probability in one opinion than in another, we
ought notwithstanding to choose one or the other” [8].

1
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2 CHAPTER 1. INTRODUCTION

3. How incoherent is Sophia’s statement with respect
to Mia’s statement, ie how far are they from reach-
ing a consensus about the value of ω(v)?

Answer: The incoherence (as the gap) between
Sophia’s statement “60% ≤ ω(v)” and Mia’s state-
ment “ω(v) = 0%” is µicoh

G (KSophia,KMia) = 60%−
0% = 60%. If Mia was less certain about turn-
ing Left, eg “ω(v) ∈ [0%:40%]”, then the incoher-
ence would have been lower, eg 60%−40% = 20%,
and if Sophia was even less certain about turn-
ing Right, eg “ω(v) ∈ [30%:100%]”, then the in-
coherence would have been minimal, ie 0%, since
[0%:40%] overlaps [30%:100%].

4. How inconsistent is Tom’s knowledge, and who
of his friends is the most culpable for making his
knowledge inconsistent?

Answer: Since Tom almost disbelieves Mia but
strongly trusts Sophia, his knowledge is slightly
inconsistent, ie µicst(KTom) ≈ 13%, and he al-
most entirely imputes the inconsistency of his
knowledge to Mia: µculp

KTom
(KMia) ≈ 13% whereas

µculp
KTom

(KSophia) ≈ 0%.

5. Is Mia’s statement more precise than Sophia’s one?

Answer: Yes, because Mia provides Tom with
a precise probability measure of v, ie “ω(v) =
0%”, whereas Sophia only provides an interval, ie
“ω(v) ∈ [60%:100%]”. The precision measure of
the knowledge provided by Mia is thus higher than
that of Sophia: µpre(KMia) > µpre(KSophia).

Question 1 is answered in chapter 4 by applying to
KTom a commonsensical inference process, ie by deduc-
ing from KTom the value of ω(v) while adhering to some
principles intended to define common sense. Such a
principle could be “the value of ω(v) should not depend
on whether Tom is listening music”, because listening
music is irrelevant to determine the correct direction.

Related work

Paraconsistent reasoning not only tolerates inconsis-
tency, but also considers it as informative. Therefore,
when reasoning from a possibly inconsistent knowledge
base, every knowledge item deserves consideration. In
this thesis, we do not restore4 consistency: we rather
live with inconsistency.

For example, if we follow a paraconsistent logic, we
should infer from the propositional knowledge base

kb
def
= {¬v1, v1, v1, v2} that the value of the proposi-

tional variable v2 is true (and we should not infer ¬v2);
4In §2.3.5 page 11, we define the consistent version of an

inconsistent knowledge base

we may furthermore infer ¬v1 since ¬v1 ∈ kb, but
in which case, we should also infer v1 since v1 ∈ kb:
this small explosion, ie inferring a fact and its contrary,
is not desirable. In this thesis, we consider a knowl-
edge base as a multiset. We thus infer v1 rather than
¬v1 because v1 appears twice in kb, where ¬v1 appears
only once. Each knowledge item is considered as a vote
(here, there are two votes for v1 and one vote for ¬v1).
We may also infer from kb a third value for v1, which
could mean both true and false, or could mean un-
known value; such a logic with several values is called
a many-valued logic.

In this thesis, the many-valued logic we employ is
the probabilistic logic. This logic gives to each propo-
sitional sentence, eg ¬v1, a probability value in [0:1],
where 0 means false and 1 means true. There exist
several probabilistic techniques to reason from kb. For
example, [39] provides an entailment relation η⊲ς that
considers as consequence of a propositional knowledge
base (where the subjective probability of each item is
known to be greater than η) any propositional sentence
having, by applying the probabilistic logic, a proba-
bility greater than ς. In this thesis, we instead fo-
cus on inferring one probability distribution best sat-
isfying a (possibly inconsistent) probabilistic proposi-

tional knowledge base, like K
def
= {ω(¬v1) ≥ η, ω(v1) ≥

η, ω(v1) ≥ η, ω(v2) ≥ η} with η > 1
2
; in chapter 4, we

extend to inconsistent knowledge bases the inference
process axiomatised by J.B. Paris and A. Vencovská
in [38]. Our knowledge bases, defined in chapter 2,
are multisets of algebraic constraints over a probabil-
ity distribution. Such a knowledge base is inconsistent
iff no probability distribution satisfies the multiset of
constraints. Inconsistency might thus be conceived as
another notion of uncertainty beyonds the uncertainty
represented by probability (see [4, chapter 3] for a rich
survey about uncertainty representations, and [31, 43]
for an introduction then a survey about upper and lower
previsions). In order to elect the probability distribu-
tions that best satisfy an inconsistent knowledge base,
we blur its constraints. For example, the blur version
of the constraint “ω(v1) ≥ 1” means that ω(v1) should
be near 1, but may equal 0.92, or might equal 0.74. We
propose in §2.3.5 a principled blur function that blurs
every constraints in a knowledge base; such a blur func-
tion resembles a membership function from the stand-
point of fuzzy set theory.

This thesis also addresses a problem originating from
voting theory, which belongs to the field of social choice
theory. We show that paraconsistent probabilistic rea-
soning is the solution for reaching a consensus among
conflicting agents’ opinions about a distribution (of a
financial investment, see section 2.1, or of a limited re-
source, see §5.1.2).
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Chapter 2

A new knowledge representation to resolve

inconsistency

Essentially, all models are wrong,
but some are useful.

George E. P. Box, 1987

According to George E. P. Box, the models of knowl-
edge discussed in this chapter are all wrong. The first
section will hopefully convince the reader that proba-
bilistic models are useful, as they capture problems of
consensus decision making, which originate from vot-
ing theory. A convinced reader may then appreciate,
in the second section, a general probabilistic knowledge
representation: candidacy functions. As complex num-
bers were a new representation of numbers to deal with
square roots of negative numbers, candidacy functions
are a new representation of knowledge to deal with para-
consistent reasoning. Finally, the last section suggests
a stream of assumptions and principles to construct the
candidacy function corresponding to a given knowledge
base; analogously, we construct the complex number
corresponding to a given real number.

2.1 Motivation: how to reach a rational

consensus in financial investments?

Voting theory is a theory of electing a societal pref-
erence from individual preferences. In the follow-
ing motivating example, which is excerpted from§ 5.1.2 on page 42, we aim to reduce voting theory to
paraconsistent probabilistic reasoning.

A society composed of I ∈ N individuals has to in-
vest 1 dollar in J ∈ N companies { α1, α2, . . . , αJ }. An
investment distribution ω is a function that maps each
company to the amount of money invested in this com-
pany by the society; furthermore, an investment distri-
bution satisfies these two assumptions: (A1) the soci-
ety invests 1 dollar in J companies, ie $1 =

∑J

j=1 ω(αj),
and (A2) the society does not borrow money from these
companies, ie ∀j ∈ { 1, 2, . . . , J } , ω(αj) ≥ $0.

Each individual i independently expresses a multiset

Ki of wishes for the investment distribution ω. For
example, i may wish to invest twice more in company
α1 than in company α2, ie ω(α1) = 2 ∗ω(α2), and may
wish that the total amount invested in α1 and α2 be
within 0.2 and 0.3 dollar, ie $0.2 ≤ ω(α1) + ω(α2) ≤
$0.3. Besides, each individual i is given a reliability
level σi ∈ ]0:1[, which tends towards 1 as the society
deems i more reliable.

Thus, the society seeks a voting system I yielding
the investment distribution ω̂ that best conciliates the
wishes Ki of each individual i, according to their re-
liability level σi and some common sense; formally,

ω̂
def
= I(∪Ii=1K

σi
i ), where I must satisfy several prin-

ciples intended to define common sense. By interpret-
ing assumptions (A1) and (A2) as Kolmogorov’s axioms
for probability, investment distributions can be identi-
fied with probability distributions. We therefore take
the probabilistic standpoint to define I as an inference
process, of which a definition will be given in chapter 4;
this motivates us to study paraconsistent probabilistic
reasoning.

2.2 Two knowledge representations to

juggle inconsistent and imprecise

probabilities

In this section, we define several probabilistic languages
allowing us to express constraints on a probability dis-
tribution on sentences of a propositional language. We
then define a knowledge base as a multiset of such con-
straints; a knowledge base is consistent iff the multiset
is satisfiable. After, we show that conditional probabil-
ities are expressible in K

L, which is the set of knowl-
edge bases containing only linear constraints. Finally,
we introduce candidacy functions: the probability dis-
tributions maximising a candidacy function are nom-
inated to be the best candidates for representing the
real world. Candidacy functions are a general proba-
bilistic knowledge representation; we therefore explain

3
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4 CHAPTER 2. A NEW KNOWLEDGE REPRESENTATION TO RESOLVE INCONSISTENCY

in section 2.3 the construction of the candidacy function
corresponding to a given knowledge base.

2.2.1 Probability distribution ω ∈ Ω under-

lain by a propositional language Θ

Let Θ be a propositional language generated by Θ ::=
(Θ ∧ Θ) | (Θ ∨ Θ) | (¬Θ) | vars , where vars is a fi-
nite set of propositional variables being either true or
false, and where logical connectives ∧, ∨, and ¬ have
their respective classical semantics1 and, or, and not.
In the sequel, we suppose Θ fixed and propositions in
Θ, unless otherwise stated. Propositions are usually
denoted by θ, φ, or ψ. We denote a tautology θ by

|= θ. Furthermore, let αΘ
def
= { αj | j = 1, 2, . . . , J } be

the set of minterms2 of Θ, where J
def
= 2|vars| with |vars |

being the number of propositional variables. Also, let

αθ
def
= { αj | |= (¬αj ∨ θ) } be the minterms of a propo-

sition θ. Finally, each proposition θ is supposed to be in
the canonical disjunctive normal form, ie θ =

∨
α∈αθ

α.

Definition 1. Kolmogorov’s axioms for probability are:
(P1) if |= θ then ω(θ) = 1;
(P2) if |= ¬(θ ∧ φ) then ω(θ ∨ φ) = ω(θ) + ω(φ),

where ω is a function from Θ to [0:1], θ, φ ∈ Θ.

Definition 2. A probability distribution ω is a function
that satisfies Kolmogorov’s axioms for probability. We
denote by Ω the set of probability distributions.

Notice that the minterms of Θ are mutually exclusive,
ie |= ¬(αi ∧ αj) for any two distinct minterms αi and
αj . Since θ is a disjunction of minterms, ω(θ) equals
ω(
∨
α∈αθ

α) by definition, and equals
∑
α∈αθ

ω(α) by
axiom (P2). Thus, a probability distribution ω can
be seen as a function from αΘ to [0:1], hence as a
point [ω(α1);ω(α2); . . . ;ω(αJ)] in a Euclidean space of
dimension J such that its jth coordinate ωj ∈ [0:1]
equals ω(αj). Furthermore, [33, pages 13–15] shows
that a point ω ∈ R

J in a Euclidean space of dimen-
sion J denotes a probability distribution iff ω ≥ ~0 and3

1 =
∑J
j=1 ωj . Thus, writing Ω ⊂ R

J makes sense.

1Classical semantics

θ φ θ ∧ φ θ ∨ φ ¬θ

false false false false true
false true false true true
true false false true false
true true true true false

2A minterm is a sentence of a propositional language. A
minterm has the form

∧
v∈vars ±v, where vars is the set of

propositional variables and where ±v means either ¬v or v. A
minterm is an atom in J.B. Paris’s terminology (see [33]).

3Remember the assumption (A1) 1 =
∑J

j=1 ω(αj), and (A2)

∀j ∈ { 1, 2, . . . , J } , ω(αj) ≥ 0 in the motivating example about
voting theory at section 2.1 on the previous page.

2.2.2 The probable worlds: the models ΩK

of a probabilistic knowledge base K ∈
K

In this thesis, we identify knowledge with a possibly un-
satisfiable multiset of constraints on a probability dis-
tribution ω.

Definition 3 (Constraint). A constraint c is an in-
equality of the following general form: “b ≥ f(ω)”,
where b ∈ R, f : D 7→ R is a function such that
Ω ⊆ D ⊆ R

J , and ∃x, x′ ∈ D, f(x) > b ≥ f(x′).

Definition 4 (Knowledge base). A knowledge base K
is a finite multiset of constraints. We denote by K the
set of knowledge bases.

If f is a linear function, ie if a constraint c has the
form “b ≥ [a1, a2, . . . , aJ ] ∗ ω”, where aj are real num-

bers such that 1 =
√∑J

j=1 aj
2, then c is said to be

a linear constraint. If f is a polynomial, ie if c has

the form “b ≥ ∑I∈N

i=1 ai ∗
∏J
j=1 ω

dij
j ”, where ai and dij

are real numbers, then c is said to be a polynomial con-
straint. LetKP ⊂ K be the set of polynomial knowledge
bases, which are multisets of polynomial constraints,
and let KL ⊂ K

P be the set of linear knowledge bases,
which are multisets of linear constraints. Also, let
K

= ⊂ K
L be the set of linear knowledge bases contain-

ing only equality constraints, which are pairs of lin-
ear constraints of the form { b ≥ f(ω),−b ≥ −f(ω) },
or equivalently b = f(ω).

Let Solc be the set of solutions of a constraint c;
notice that ∅ 6= Sol c ⊂ D since ∃x, x′ ∈ D, f(x) > b ≥
f(x′) (see Def. 3). Let SolK

def
=
⋂
c∈K Sol c be the set of

solutions of a knowledge base K. Let Ωc
def
= Ω∩Sol c be

the set of probability distributions satisfying c.

In addition, we denote by K
∗ the set of knowledge

bases such that, for each of their constraints c, Sol c is a
union of pairwise-disjoint convex sets {S1, S2, . . . , Sm},
and the probability distributions have a common near-
est set Si, ie ∃i,∀j ∈ {1, 2, . . . ,m},∀ω ∈ Ω, G(ω,Si) <
G(ω, Sj), where we denote by G(ω,S) the smallest Eu-
clidean distance between a point ω and any point in
a set S. Notice that K

L ⊂ K
∗ since Sol c, which is a

halfspace, is convex for any linear constraint c.

Definition 5 (Models of K). A model of a knowledge
base K is a probability distribution satisfying all the

constraints in K. We denote by ΩK
def
= Ω ∩ SolK the

set of models of K.

Definition 6 (Consistency). A knowledge base K is
consistent iff ΩK 6= ∅, ie, iff there exists a probability
distribution satisfying all the constraints in K; other-
wise, K is said to be inconsistent.
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2.2 TWO KNOWLEDGE REPRESENTATIONS TO JUGGLE INCONSISTENT AND IMPRECISE PROBABILITIES5

Definition 7. A maximal consistent subset Q of a
knowledge base K is a consistent subset of K such that
no constraint c ∈ K\Q can be added to Q without yield-
ing Q∪{c} inconsistent. The set of maximal consistent
subsets of K is defined as follows:

MCSK
def
=

{
Q

∣∣∣∣
∀c ∈ K \Q,ΩQ∪{c} = ∅
and ΩQ 6= ∅ and Q ⊆ K

}

Definition 8. A kernel Q of a consistent knowledge
base K is a smallest subset of K such that ΩQ = ΩK 6=
∅ and Q does not contain tautologies, ie ∀c ∈ Q,Ωc ⊂
Ω. We denote by ♥K the set of kernels of K.

2.2.3 Expressiveness of K: conditional

probability and stochastic indepen-

dence

In this thesis, we focus on linear knowledge bases K
L.

Our motivation is that a knowledge base K ∈ K
L is

simply a matrix inequality B ≥ A ∗ ω, where ω ∈ R
J ,

where B and A are defined as follows, with I ∈ N being
the number of constraints of K:

B
def
=




b1
b2
...
bI


 A

def
=




a1,1 a1,2 . . . a1,J
a2,1 a2,2 . . . a2,J
...

...
. . .

...
aI,1 aI,2 . . . aI,J




Despite their simplicity, linear knowledge bases gen-
eralise widely used bases such as sets of propositions or
sets of conditional probabilities.

Conditional probability: expressible in K
L

We now show that inequalities with conditional proba-

bilities are expressible in K
L. Let ω(ψ | φ) def

= ω(ψ∧φ)
ω(φ)

denote the probability of ψ ∈ Θ being true assuming
φ ∈ Θ is true, where ω is a probability distribution on
Θ. Let a, b, d ∈ R, and suppose ω(φ) > 0. We thus

have d ≥∑m∈N

k=1 ak ∗ω(ψk | φ) iff d ≥∑m

k=1 ak ∗
ω(ψ∧φ)
ω(φ)

iff d ∗ ω(φ) ≥∑m

k=1 ak ∗ ω(ψk ∧ φ) iff 0 ≥ −d ∗ ω(φ) +∑m

k=1 ak ∗ ω(ψk ∧ φ) iff 0 ≥ ∑m+1
k=1 ak ∗ ω(θk), where

am+1 ∗ ω(θm+1)
def
= −d ∗ ω(φ). Notice that this last

inequality is a linear combination of marginal probabil-
ities expressible in b′ ≥ ∑n∈N

i=1 a
′
i ∗ ω(θi). We showed

in §2.2.1 that ω(θ) =
∑
α∈αθ

ω(α) for any proposition

θ ∈ Θ. Hence, b′ ≥ ∑n

i=1 a
′
i ∗ ω(θi) iff b′ ≥ ∑n

i=1 a
′
i ∗∑

α∈αθi
ω(α) iff b′ ≥ ∑J

j=1 a
′′
j ∗ ω(αj) after expand-

ing and collecting probabilities over the minterms. Fi-
nally, in order to ease some forthcoming computations,

the coefficients are normalised: b
def
= b′

norm
, aj

def
=

a′′j
norm

,

norm
def
=
√∑J

j=1 a
′′
j
2. Hence, any linear combination of

probabilities can be rewritten in this normalised form
b ≥∑J

j=1 aj ∗ ω(αj), which is a linear constraint.

Stochastic independence: expressible in K
P

As explained in [33, chapter 9], stochastic indepen-
dence is not expressible in K

L. For example, the fol-
lowing polynomial constraint is not linear: ω(θ ∧ φ) =
ω(θ)∗ω(φ), where θ, φ ∈ Θ and ω ∈ Ω. Stochastic inde-
pendence can nevertheless be expressed in polynomial
knowledge bases KP . The issue we must face when rea-
soning with such bases is the apparent impossibility to
define a commonsensical inference process returning a
unique probability distribution, as required by unique-
ness (see principle PI

α); for example, how could we infer
a unique probability of rain if we only know that such
a probability equals either 0.4 or 0.6 (this is a poly-
nomial knowledge base)? Notice that [38] provides a
principled inference process for consistent polynomial
knowledge bases which suffers from this issue. In §2.2.2,
we attempted to define K

∗ as the set of knowledge
bases on which applying a commonsensical inference
process always returns a unique probability distribu-
tion. Thus, K∗ not only contains the linear knowledge
bases, but also bases made of polynomial constraints
like 0.2 ≤ x ∗ y, where x, y ∈ R

J : the reason is that
all the probability distributions are nearer to the same

parabolic set, namely {[x; y] ∈ R
+J×R

+J | 0.2 ≤ x∗y},
which is a convex set.

2.2.4 The most probable worlds: the best

candidates Ω̂C of a candidacy function

C ∈ C

Knowledge is intended to represent the real world. As
George E. P. Box wrote, all models are wrong, but some
are useful, where we now interpret useful models as good
candidates for representing the real world. Among all
the probability distributions, those in ΩK are useful,
wrt a knowledge base K. But when K is inconsistent,
ΩK is empty; does it mean that no probability distri-
bution is useful? Probably not. In section 2.3, we thus
propose to convert K into a candidacy function CK ,
which gives to each probability distribution ω a degree
in [0:1] of candidacy for representing the real world wrt
K; in other words, CK(ω) returns 1 iff ω satisfies K,
otherwise it returns the degree to which ω satisfies K.

Definition 9. A candidacy function C is a function
from Ω to [0:1] such that C(ω) > 0 means ω is a can-
didate for representing the real world.

Definition 10 (Best candidates wrt C). The non-
empty set of probability distributions that are the best
candidates (or the nominees) for representing the real
world, wrt a candidacy function C, is defined as follows:

Ω̂C
def
= argmax

ω∈Ω
C(ω)
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2.3 From knowledge bases to candidacy

functions: a bridge to paraconsis-

tency

In the previous section, we defined a knowledge base in
K as a multiset of constraints because it is natural to
express knowledge in terms of constraints. In order to
benefit from both the convenience of K and the expres-
siveness of candidacy functions C, we propose several
principles to construct the candidacy function corre-
sponding to a given knowledge base. Stating these prin-
ciples requires some notations and assumptions. We
thus study an operator enriching the propositional lan-
guage underlying a knowledge base. We then propose
a definition for the intended meaning conveyed by a
knowledge base. A natural definition of equivalence
between knowledge bases follows. After explaining the
merging of knowledge bases and candidacy functions,
we define in §2.3.5 a function that blurs any knowl-
edge base K ∈ K to return its corresponding candi-
dacy function CK . Such a blur satisfies principles like
language invariance (see PC

9 ), which states, roughly,
that knowledge written in a certain language should
not change when this language becomes more expres-
sive. We furthermore define another equivalence rela-
tion between knowledge base that extends the relation
used by J.B. Paris in [33, pages 89–91] to inconsistent
knowledge bases.

Notations

We consider a probability distribution ω : Θ 7→ [0:1]
underlain by a propositional language Θ having n vari-
ables to be a point p in a Euclidean space R

2n , where
each axes of R2n is uniquely labelled with one minterm
of Θ. A point p in a such labelled space is thus said to
be underlain by language Θ.

Let Θ(⋄) return the underlying propositional lan-
guage of ⋄, where ⋄ can be a knowledge base K, a point
p ∈ R

2n , a set of points k ⊂ R
2n , a constraint c, the

set of probability distributions Ω, a probability distri-
bution ω, or a candidacy function C; if ⋄ is a language,
then Θ(⋄) returns ⋄.

Let vars(⋄) return the finite set of propositional vari-
ables of Θ(⋄).

We define the gap between two sets of points k1 and

k2 as G(k1, k2) def
= inf { L2(x, y) | x ∈ k1, y ∈ k2 }, ie the

Euclidean distance between the two nearest points in k1

and k2; we furthermore denote by G(x, k) def
= G({x}, k)

the gap between a point x and a set of points k, and

by G(x, y) def
= G({x}, {y}) the gap between two points x

and y, which is also the distance L2(x, y).

2.3.1 Extending the set of propositional

variables with the language enrich-

ment operator ⋄ ⊕ v

We now define a polymorphic operator ⋄ ⊕ v (read it
as “⋄ enriched with v”) that adds a new propositional
variable v in the underlying propositional language of
an object ⋄ having n variables, where object ⋄ can be:� a propositional language Θ, defined as a set of

minterms αΘ:

αΘ⊕v
def
= { α ∧ ¬v, α ∧ v | α ∈ αΘ }

A propositional language Θ enriched with a new
variable v, denoted by Θ ⊕ v, is strictly more ex-
pressive than Θ: any sentence in Θ is expressible
in Θ⊕ v because each sentence can be written as a
disjunction of minterms, and each minterms α of Θ
can be expressed as a conjunction of two minterms
of Θ⊕ v, ie α = (α ∧ v) ∨ (α ∧ ¬v).� a linear constraint c of the form “b ≥ A∗x”, where
x ∈ R

2n and x′ ∈ R
2n+1

(notice that since c is
normalised, the norm of vector A is 1, hence the
norm of vector [A,A] is

√
2):

c⊕ v
def
= “

b√
2
≥ [A,A]√

2
∗ x′”

For example, the enrichment with v2 of the linear
constraint “20% ≥ ω(v1)” underlain by a proposi-
tional language with one variable v1 is performed
as follows:

“0.2 ≥ [0, 1] ∗ x”⊕ v2 = “
0.2√
2
≥ [0, 1, 0, 1]√

2
∗ x′”

where ω : Θ 7→ [0:1] and ω : Θ⊕ v2 7→ [0:1] are two
probability distributions, vars(Θ) = {v1}, and

x
def
=

[
ω(¬v1)
ω(v1)

]
and x′ def

=




ω′(¬v1 ∧ ¬v2)
ω′(v1 ∧ ¬v2)
ω′(¬v1 ∧ v2)
ω′(v1 ∧ v2)


� a knowledge base K:

K ⊕ v
def
= { c⊕ v | c ∈ K }

For example, the enrichment with v2 of the lin-
ear knowledge base containing the two constraints
“20% ≥ ω(v1)” and “40% ≥ ω(¬v1)” and under-
lain by a propositional language with one variable
v1 is performed as follows (where x and x′ are de-
fined as above):

“

[
0.2
0.4

]
≥
[
0, 1
1, 0

]
∗x”⊕v2 = “

[
0.2
0.4

]

√
2

≥

[
0, 1, 0, 1
1, 0, 1, 0

]

√
2

∗x′”
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2.3 FROM KNOWLEDGE BASES TO CANDIDACY FUNCTIONS: A BRIDGE TO PARACONSISTENCY 7� a point p ∈ R
2n , defined as an intersection of 2n

hyperplanes expressed as a linear knowledge base
K such that SolK = {p}. Informally, K is simply
the set of constraints “p = x” where x ∈ R

2n . For-
mally, let A be the identity matrix of dimension

2n, and let B
def
= p be the coordinates of p. Enrich-

ing a point p is thus enriching the knowledge base

K
def
= “[B;−B] ≥ [A;−A] ∗ x”:

p⊕ v
def
= SolK⊕v

For example, figure 2.1 illustrates that the enrich-
ment of a point x ∈ R

2n (the yellow dot) with a
new variable v yields an infinite set of points x⊕ v
(the yellow box).� a set of points k ⊂ R

2n :

k⊕ v
def
=
⋃

p∈k

p⊕ v� a (non-linear) constraint c, which is identified with
its set of solutions (notice that the following defi-
nition is implicit, and so is the definition of K ⊕ v
when K is not a linear knowledge base):

Solc⊕v
def
=

⋃

p∈Solc

p⊕ v� the set of probability distributions Ω, which is seen
as the linear knowledge base constraining the prob-
ability value of each minterm to sum up to 1 while
being positive real number. Let x′ be a point in

R
2n+1

, One
def
= [1, 1, . . . , 1] be the one-row matrix

made of 2n+1 ones, and A be set to the identity
matrix of dimension 2n+1. The enrichment of the
set of probability distributions Ω is thus performed
as follows:

Ω⊕ v
def
= Sol

“

[
[1;−1]√
2n+1

;[0;0;...;0]

]
≥
[
[One;−One]√

2n+1
;−A

]
∗x′”� a probability distribution ω, where pω is the point

corresponding to ω, which is thus seen as an inter-
section of hyperplanes:

ω ⊕ v
def
= (pω ⊕ v) ∩ (Ω⊕ v)

and such that, for each probability distribution
ω′ ∈ ω ⊕ v, Θ(ω′) = Θ(ω) ⊕ v, and for each j ∈
{1, 2, . . . , 2n}, if ωj = ω(αj) then ω

′
j

def
= ω′(αj∧¬v)

and ω′
j+2n

def
= ω′(αj ∧ v). Thus, ωj = ω′

j + ω′
j+2n ;� a candidacy function C:

∀ω ∈ Ω,∀ω′ ∈ ω ⊕ v, (C ⊕ v)(ω′)
def
= C(ω)

R
2n

R
2n+1

k k⊕ v

x

x⊕
vx′

y

y ⊕
v

y′

z

z ⊕
v
z′

G(
x
,y
)

G(
x
,z
)

G(
x
⊕
v
,y

⊕
v
)

G(x′, y ⊕ v)

G(y′, x⊕ v)

G(z′, x⊕ v)

Figure 2.1: The gaps between two points, eg G(x, y),
and between a point and a set, eg G(x, k), are invari-
ant by language enrichment, up to a factor of

√
2 (see

propositions 2 and 3).

Finally, we recursively define the addition of a set of
variables vars to an object ⋄ as follows:

⋄ ⊕ vars
def
=





(⋄ ⊕ v)⊕ (vars \ {v}) if v /∈ Θ(⋄),
⋄ ⊕ (vars \ {v}) if v ∈ Θ(⋄),
⋄ if vars = ∅.

Proposition 1. A probability distribution in Ω⊕ v in-
duces a unique probability distribution in Ω.

Proof. ω′ ∈ Ω ⊕ v induces a probability distribu-
tion in Ω iff, firstly, for each minterm α of Θ(Ω),
0 ≤ ω′(α), which is true since ω′ : Θ(Ω ⊕ v) 7→
[0:1] and α ∈ Ω ⊕ v, and secondly, the probabilities
given by ω′ to the minterms of Θ(Ω) sum up to 1, ie∑
α∈αΘ(Ω)

ω′(α) =
∑
α∈αΘ(Ω)

ω′(α ∧ v) + ω′(α ∧ ¬v) =
∑
α′∈αΘ(Ω⊕v)

ω′(α′) = 1, which is true by marginal-

isation, ie ∀α ∈ αΘ(Ω), ω
′(α) = ω′(α ∧ (v ∨ ¬v)) =

ω′(α ∧ v ∨ α ∧ ¬v) = ω′(α ∧ v) + ω′(α ∧ ¬v).

Proposition 2. The gap G between two points x and y
is proportional to the gap between any point x′ ∈ x⊕ v
and the set of points y ⊕ v:

G(x, y) =
√
2 ∗ G(x′, y ⊕ v)

Proof. Let x, y, s, t ∈ R
J be any four points. Let x′ def

=

[x
2
+s; x

2
−s] and y′ def

= [ y
2
+ t; y

2
− t]. Notice that x′ and

y′ are any two points in x ⊕ v and y ⊕ v, respectively,
since x′ ∈ x ⊕ v iff xj = x′

j + x′
j+J and y′ ∈ y ⊕ v

iff yj = y′j + y′j+J , for any j ∈ {1, 2, . . . , J}. Notice

also that G(x′, y′)2 =
∑J
j=1 |(

xj
2

+ sj) − (
yj
2

+ tj)|2 +

|(xj
2

− sj) − (
yj
2

− tj)|2 =
∑J

j=1 |
xj−yj

2
+ (sj − tj)|2 +

|xj−yj
2

−(sj−tj)|2 =
∑J
j=1 2∗(

xj−yj
2

)2+2∗(sj−tj)2 =
1
2
∗∑J

j=1(xj−yj)2+2∗∑J

j=1(sj−tj)2 = 1
2
∗G(x, y)2+2∗

Paraconsistent probabilistic reasoning – Lionel Daniel
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G(s, t)2. Thus, for two given points x and y, G(s, t) =
0 iff G(x′, y′) is minimal, ie ∀a′ ∈ x ⊕ v,∀b′ ∈ y ⊕
v,G(x′, y′) ≤ G(a′, b′). Furthermore, for a given point
x′, G(x′, y ⊕ v) = G(x′, y′) = 1√

2
∗ G(x, y), where y′ is

such that G(x′, y′) is minimal, ie ∀b′ ∈ y⊕v,G(x′, y′) ≤
G(x′, z′). Therefore,

√
2 ∗ G(x′, y ⊕ v) = G(x, y).

Proposition 3. The gap G between a point x and a set
of points k is proportional to the gap between any point
x′ ∈ x⊕ v and the set k⊕ v:

G(x, k) =
√
2 ∗ G(x′, k ⊕ v) =

√
2 ∗ G(x⊕ v, k⊕ v)

Proof. Let y ∈ k be a point such that G(x, y) = G(x, k),
ie ∀z ∈ k,G(x, y) ≤ G(x, z). According to Prop. 2,
∀x′ ∈ x ⊕ v,G(x, y) =

√
2 ∗ G(x′, y ⊕ v) hence we have

∀z ∈ k,∀x′, x′′ ∈ x⊕v,G(x′, y⊕v) ≤ G(x′′, z⊕v). Notice
that the gap between a point x′′ and a set of points z⊕v
is lower than the gap between x′′ and a point z′ in z⊕v,
ie ∀z′ ∈ z ⊕ v,G(x′′, z ⊕ v) ≤ G(x′′, z′). We therefore
obtain ∀z ∈ k,∀z′ ∈ z ⊕ v,∀x′, x′′ ∈ x ⊕ v,G(x′, y ⊕
v) ≤ G(x′′, z′). By definition of k ⊕ v, it follows that
∀z′ ∈ k⊕ v,∀x′, x′′ ∈ x⊕ v,G(x′, y⊕ v) ≤ G(x′′, z′). We
then deduce ∀x′ ∈ x ⊕ v,G(x′, y ⊕ v) = G(x′, k ⊕ v) =
G(x⊕ v, k⊕ v) and conclude that ∀x′ ∈ x⊕ v,G(x, k) =
G(x, y) =

√
2 ∗ G(x′, y ⊕ v) =

√
2 ∗ G(x′, k ⊕ v) =

√
2 ∗

G(x⊕ v, k⊕ v).

2.3.2 Assumptions about the knowledge

content KK to decipher a knowledge

base K

A knowledge base, written in a certain language like
K
L, is a vehicle for knowledge rather than the knowl-

edge itself; what we call knowledge content is the in-
tended meaning conveyed by a knowledge base, ie its
very essence, freed from any syntactic or linguistic con-
sideration. We furthermore distinguish two levels of
knowledge content: the internal level, at which knowl-
edge management occurs (eg: knowledge merging), and
the external level, at which the inferences (hence the
decisions) are performed (see chapter 4 about inference
processes). The internal (external) level is related to
the notion of credal (pignistic) level introduced in [41,§3.2]. We now propose different assumptions about the
knowledge content KK of a knowledge base K. The
next five assumptions focus on the internal level, while
the additional assumption stated in § 2.3.6 on page 15

focuses on the external level. Let K∅
def
= {Ω}.

Each element k of multiset KK is called a knowledge
item; the sources of knowledge providing these items
are supposed to be mutually independent. Each as-
sumption defines what K is a description of.

① KK
def
= ΩK . This assumption is made by J.B. Paris

in his book (see [33, pages 89–91]) when he employs
the Hausdorff distance (see Def 23 on page 19) be-
tween ΩK1 and ΩK2 as the distance between knowl-
edge contents, where K1 and K2 are consistent
knowledge bases. However, this assumption is un-
defined for inconsistent knowledge bases since the
Hausdorff distance from or to an empty set is unde-
fined. Therefore, assumption ① is not acceptable.

② KK
def
= { ΩQ | Q ∈ MCSK }. This assumption is

not only equivalent to ① when K is consistent be-
cause MCSK = {K}, but also defined when K is
inconsistent because ΩQ 6= ∅. Notice that ② iden-
tifies contradictions, eg “−1 ≥ ω(α1)”, with tau-
tologies, eg “1 ≥ ω(α1)”, because tautologies ap-
pear in every Q ∈ MCSK without impacting ΩQ,
while contradictions never appear in Q ∈ MCSK
hence never impact ΩQ. More generally, accept-
ing ② is ignoring all the constraints in K that do
not belong to a kernel (see Def. 8 on page 5) of a
maximal consistent subset, ie the knowledge of K
is the same as that of

⋃
Q∈MCSK

⋃
P∈♥Q P .

③ KK
def
= { Ωc | c ∈ K }. To accept this assumption is

to consider as equivalent all the contradictions (if c
is a contradiction, then Ωc = ∅ by definition), and
is to consider as equivalent all the tautologies (if c
is a tautology, then Ωc = Ω by definition). Also, a
knowledge base K is identified here with a set of
constraints on a probability distribution, whereas
in assumptions ① or ②, K is rather considered as
a whole.

④ KK
def
= { Solc | c ∈ K }. Accepting ④ is deeming

KK to be the extensional multiset of an intensional
multiset K (each constraint c in K is here the in-
tensional version of an extensional set Solc). Under

assumption ④, we denote by kc
def
= Sol c the knowl-

edge item corresponding to a constraint c. If c is
a linear constraint, then kc is a halfspace of R

J ,
where J is the number of minterms of the underly-
ing propositional language of c. Notice that a solu-
tion x ∈ Solc of a constraint c may not be a prob-
ability distribution, ie x may be in R

J \ Ω. Then,
accepting assumption ④ is considering a knowledge
base as a multiset of constraints on a point in R

J

rather than on a probability distribution in Ω, like
in assumption ③. Thus, ④ is more paraconsistent
than ③ because ④ deals with constraints that are
inconsistent with the axioms for probabilities.

⑤ KK
def
= { Sol c | c ∈ K and Ω 6⊆ Solc }. Accepting ⑤

is assuming ④ while deeming tautologies void of
knowledge content.

Paraconsistent probabilistic reasoning – Lionel Daniel
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In order to deal with paraconsistent probabilistic rea-
soning, we require KK to be defined when K is inconsis-
tent (not like ①), and to distinguish not only between
contradictions and tautologies (not like ②), but also
between two contradictions (not like ③). Moreover, we
consider a tautology as redundant with the axioms for
probability, hence being void of knowledge content (not
like ④): in this thesis, we thus accept ⑤ as a definition
for the internal level of knowledge content (assump-
tion ⑥ on page 15 will be accepted as a definition for
the external level). We furthermore adhere to the fol-
lowing principle, which is named as Watts assumption
in [33, pages 67 and 134].

PC
1 Watts assumption. Under assumption ⑤, The

knowledge content KK of a knowledge base K is
essentially all the relevant knowledge that we have.

2.3.3 Comparing knowledge at credal level:

the internal equivalence
i

≡

Definition 11 (Internal equivalence). Two knowledge
bases K1 and K2 are internally equivalent iff they have
the same knowledge content wrt assumption ⑤.

K1
i≡ K2

def
=





(
K⑤
K1

= K⑤
K2

)
if Θ(K1) = Θ(K2),

true if ∃v,K1 = K2 ⊕ v,

false otherwise.

Two candidacy functions C1 and C2 are internally
equivalent iff they return the same value for each prob-
ability distribution.

C1
i≡ C2

def
=






(C1 = C2) if Θ(C1) = Θ(C2),

true if ∃v, C1 = C2 ⊕ v,

false otherwise.

We denote by ∅K any tautological knowledge
base in {K ∈ K | ΩK = Ω }. We furthermore de-
note by 1C any tautological candidacy function in
{ C ∈ C | ∀ω ∈ Ω, C(ω) = 1 }. Notice that the two sets

are the equivalent classes of tautologies wrt
i≡.

2.3.4 Merging knowledge from indepen-

dent sources: the merging operator ⋒

In order to lighten the notation, we assume knowledge
bases and candidacy functions to be underlain by the
same propositional language. A merging operator ⋒

is a binary operator that should satisfies the following
principles.

PC
2 Closure. Merging two knowledge bases, or two can-

didacy functions, should yield a knowledge base, or
a candidacy function, respectively:

K1 ⋒K2 ∈ K C1 ⋒ C2 ∈ C

PC
3 Associativity & symmetry. A merging operator

should be indifferent to the order in which knowl-
edge bases, or candidacy functions, are merged:

(K1 ⋒K2) ⋒K3 = K1 ⋒ (K2 ⋒K3)
(C1 ⋒ C2) ⋒ C3 = C1 ⋒ (C2 ⋒ C3)

K1 ⋒K2 = K2 ⋒K1

C1 ⋒ C2 = C2 ⋒ C1

PC
4 Identity element. A merging operator should be

indifferent to tautological knowledge bases, or tau-
tological candidacy functions, because they are re-
dundant with the axioms for probability:

K ⋒ ∅K = K C ⋒ 1C = C

Dependent versus independent sources. Sup-
pose one person provides us with a knowledge base
K1 contradicting a knowledge base K2 that we ob-
tained from a second person; our knowledge is thus
K1 ⋒ K2. Further suppose that a third person pro-
vides us with K2; has our knowledge changed? For-
mally, does K1 ⋒K2 differ from K1 ⋒K2 ⋒K2? If yes,
then we are considering people as independent sources
of knowledge; in this thesis, we assume each knowl-
edge item to be independent on the others. Otherwise,
K1⋒K2 = K1⋒K2⋒K2 means we are considering people
as dependent sources, which happens if we know that
the second and the third person have acquired K2 by
watching the same television program, for example. In
such case, we may consider these two people as one sin-
gle source of knowledge; K2 should thus equal K2⋒K2,
which means that ⋒ should be idempotent. Since in
this thesis we assume the sources of knowledge to be
independent, idempotence is undesirable.

PC
5 Non-idempotence. The more numerous the inde-

pendent sources supporting a probability distribu-
tion ω are, the higher the candidacy level of ω
should be for representing the real world. Such
a statement implies the rejection of idempotence,
where K 6= ∅K and C 6= 1C:

K ⋒K 6= K C ⋒ C 6= C

Definition 12 (Merging operator). The merging op-
erators for knowledge bases ⋒ : K × K 7→ K and for
candidacy functions ⋒ : C× C 7→ C are respectively de-
fined as follows, where ∪ is the union of two multisets
K1,K2 ∈ K, and ∗ is the pointwise product of two real
functions C1, C2 ∈ C:

K1 ⋒K2
def
= K1 ∪K2 C1 ⋒ C2

def
= C1 ∗ C2

Proposition 4. ⋒ is non-idempotent (see PC
5 ). 〈K,⋒〉

and 〈C,⋒〉 are commutative monoids, ie semigroups
with identity (see PC

2 , P
C
3 , and PC

4 ).
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Proof. Firstly, the defined merging operators are non-
idempotent: K ⋒K 6= K because K is a multiset, and
C ⋒ C 6= C because ∀x ∈ ]0:1[, x ∗ x 6= x. Secondly,
〈K,⋒〉 and 〈C,⋒〉 are commutative monoids: K and
C are closed under mergence because the union ∪ of
two multisets is a multiset and the product ∗ of two
functions is a function, ⋒ is associative and symmetric
because ∪ and ∗ are thus, and ∅K and 1C are identity
elements because the empty multiset ∅ and 1 ∈ R re-
spectively serve as identity element for ∪ and ∗.

Thus, we merge dependent candidacy functions by
using the only idempotent t-norm4 called minimum t-

norm (see [21, page 103]), ie (C1 ⋒idempotent C2)(ω)
def
=

min(C1(ω), C2(ω)), whereas we merge independent can-
didacy functions by using algebraic product t-norm, ie

(C1 ⋒product C2)(ω)
def
= C1(ω) ∗ C2(ω), for any proba-

bility distribution ω. We could define a continuum of
merging operators ⋒

λ where λ runs through [0:1] such
that ⋒

0 = ⋒idempotent and ⋒
1 = ⋒product; for example,

⋒
λ may be based on the Dubois-Prade t-norm (see [22,

page 74]), ie (C1 ⋒
λ
DB C2)(ω)

def
= C1(ω)∗C2(ω)

max(C1(ω),C2(ω),λ)
, or

may be based on the Frank t-norm (see [21, page 108]).
As a perspective, we should further study t-norms in
order to characterise the merging operator for inde-
pendent candidacy functions, and to characterise the
continuum between dependence and independence of
sources of knowledge.

Notice that a candidacy function 0C returning 0 for
any probability distribution is an absorbing element for
the monoid 〈C,⋒〉 because ∀C ∈ C, 0C ⋒C = 0C. Merg-
ing such an absorbing candidacy function with another
one is nominating all the probability distributions to
be the best candidates, ie Ω = Ω̂C⋒0C . A paraconsis-
tent probabilistic logic should avoid this effect, which is
similar to the explosion in classical logic, ie “anything
follows from a contradiction”. We shall thus establish a
principle (see PC

7 ) to eschew such absorbing candidacy
functions.

2.3.5 The paraconsistent representation of

a knowledge base K: the candidacy

function CK

We now propose several principles for a blur function
B : K 7→ C, which returns the unique candidacy func-
tion CK intended to represent the knowledge content

KK of a given knowledge base K: CK
def
= B(K). We

also denote by Ck the candidacy function representing
a given knowledge item k ∈ KK .

4A triangular norm, t-norm for short, is a function T :
[0:1] × [0:1] 7→ [0:1] satisfying four axioms: commutativity
T (x, y) = T (y, x), associativity T (x, T (y, z)) = T (T (x, y), z),
monotonicity T (x, y) ≤ T (x, z) whenever y ≤ z, and boundary

condition T (x, 1) = 1.

PC
6 Homomorphism. Merging the candidacy functions

representing two knowledge bases should yield the
candidacy function representing the mergence of
the two knowledge bases. Furthermore, the can-
didacy function corresponding to a tautological
knowledge base is tautological. Formally, B : K 7→
C is a homomorphism between monoids 〈K,⋒〉 and
〈C,⋒〉:

CK1 ⋒ CK2 = CK1⋒K2 and C∅K
i≡ 1C

PC
7 Proximity. From two probability distributions
ω1, ω2 ∈ Ω, the best candidate, wrt a given knowl-
edge item k ∈ KK , is the one nearer to k, wrt the
gap G between a point and a set of points5:

if G(ω1, k) < G(ω2, k) then Ck(ω1) > Ck(ω2) > 0

PC
8 Unanimity. The models of a knowledge base K

are the sole probability distributions to be unani-
mously designated (by the knowledge items in KK)
as candidates for representing the real world, ie
ω ∈ ΩK iff CK(ω) = 1. Thus, if K is inconsis-
tent, no probability distribution ω is unanimously
designated as candidate, ie CK(ω) < 1:

ΩK = { ω ∈ Ω | CK(ω) = 1 }
We furthermore extend this requirement to each
knowledge item k ∈ KK :

Ω ∩ k = { ω ∈ Ω | Ck(ω) = 1 }

PC
9 Language invariance. The candidacy function rep-

resenting a knowledge base K should be invariant
by additions of new variables in the underlying
propositional language of K:

CK
i≡ CK⊕v

We furthermore extend this requirement to each
knowledge item k ∈ KK :

Ck

i≡ Ck⊕v
5We recall that the gap between two points ω1 and ω2 in a

Euclidean space is defined as the Euclidean distance L2(ω1, ω2).
In case ω1 and ω2 represent probability distributions, ie when
they are positive vectors such that their elements sum up to
1, J. Lawry suggests to use an information-based distance such
as the Kullback-Leibler divergence (or relative entropy) instead
of L2(ω1, ω2); this means that, under assumption ⑤, each con-
straint c in a knowledge base K ∈ K must satisfy Solc ∩ Ω 6= ∅,
ie we would not be able to deal with probabilistic contradic-
tions like “ω(θ) ≥ 101%”, where θ is a proposition. We would
thus obtain a weaker paraconsistent knowledge representation.
An information-based gap between a probability distribution
ω : Θ 7→ [0:1] and a knowledge item k, which must contain
at least one probability distribution, may be defined as follows:

GKL(ω, k)
def
= min

ω′∈Ω∩k

∑

α∈αΘ

ω(α) ∗ ln

(
ω(α)

ω′(α)

)
, if Ω ∩ k 6= ∅
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These principles guide us towards the definition of B.
Firstly, homomorphism suggests that CK

def
= B(K)

def
=

⋒k∈KKCk under assumptions ④ or ⑤. Secondly, prox-

imity indicates that Ck(ω)
def
= gk(n, G(ω, k)) for any

probability distribution ω underlain by a propositional

language with n
def
= |vars(ω)| variables, where gk :

N × R
+ 7→ ]0:1] is strictly decreasing and continuous

wrt its second argument. Suppose that gk is indepen-
dent on k: we denote this common function by g ;
we drop this hypothesis in §2.3.5 when we introduce
the reliability level of a knowledge item. By requir-
ing g to be strictly positive, proximity prevents B from
yielding a (partially) absorbing candidacy function, ie a
candidacy function returning 0 for all (or some) prob-
ability distributions. Thirdly, unanimity states that

Ck(ω) = 1 iff ω ∈ k iff G(ω, k) = 0, hence g(n, 0)
def
= 1.

Fourthly, language invariance states that Ck

i≡ Ck⊕v,
which means Ck ⊕ v = Ck⊕v, hence requires g to satisfy
∀ω′ ∈ ω ⊕ v, g(n,G(ω, k)) = g(n+ 1, G(ω′, k ⊕ v)). Be-
cause we assume ⑤, and since proposition 3 states that
∀ω′ ∈ ω ⊕ v,G(ω, k) =

√
2 ∗ G(ω′, k ⊕ v), we define g as

g(n,G(ω, k)) def
= h(

√
2n ∗ G(ω, k)), where h : R+ 7→ ]0:1]

is strictly decreasing and continuous, and such that

h(0)
def
= 1, which ensures the continuity of g(n, x) when

x = 0. Finally, we constrain the possible definitions for
h by stating a principle concerning linear knowledge
bases.

PC
10 Convexity. The set of best candidates wrt the can-

didacy function representing a linear knowledge
base K should be convex:

∀λ ∈ [0:1], ∀ω1, ω2 ∈ Ω̂CK , (1− λ)ω1 + λω2 ∈ Ω̂CK

We see the following two motivations for requiring Ω̂CK

to be convex when K ∈ K
L.� Restoration of consistency. The first motivation

is that we may want to convert any inconsistent
linear knowledge base K1 into a consistent knowl-
edge base K2 such that ΩK2 = Ω̂CK1

. In which

case, KL is closed by the conversion operation iff
K2 is a linear knowledge base iff Ω̂CK1

is a convex
polyhedron (notice that assuming ④ or ⑤ causes
the manifold Ω̂CK1

to have flat faces).� Entropy-based inference. The second motivation
appears when we adhere to the principles stated in
chapter 4, where an inference process called IEME

is defined as the arguments of the maximisation
of a strictly concave function E over Ω̂CK . One
of these principles, namely PI

α, requires an infer-
ence process to return a unique probability dis-
tribution: principle PI

α is thus satisfied by IEME

if Ω̂CK is convex. For example, applying IEME to

0

1
3

[0; 1][0.2; 0.8] [0.6; 0.4] [1; 0]

C
a
n
d
id
a
c
y
d
e
g
re
e

Proba. distribution

[x; 1−x]def=ω∈Ω

Ch1K (ω)
Ch2K (ω)
Ch3K (ω)
Ch4K (ω)
Ch5K (ω)

Figure 2.2: Five candidacy functions ChiK correspond-
ing to the inconsistent knowledge base K made of
the following two linear constraints: “x ≤ 0.2” and

“0.6 ≥ x”, where αΘ(K)
def
= {v,¬v} and x

def
= ω(v).

Although the underlying function hi of each C
hi
K satis-

fies all the principles stated before convexity (see PC
10

and Fig. 2.3), only Ch1K , Ch2K , and Ch5K are unimodal.
This unimodality comes from the log-concavity of hi,
which implies the convexity of Ω̂

C
hi
K

(see Prop 5). Func-

tions ChiK are such that h1(x)
def
= sin(π

2
e−x), h2(x)

def
=

h0.5
HG(x), which is the half-Gaussian cumulative dis-

tribution function (see Def. 16 on page 14), h3(x)
def
=

sin( π
2(1+x2)

), h4(x)
def
= 1−

√
x

1+
√
x
, and h5(x)

def
= h0.5

exp(x),

which is the exponential blur (see Def. 15 on page 14).
For graphical reasons, functions ChiK are plotted with
this knowledge base: {“x ≤ 2”, “6 ≥ x”}.

the linear knowledge base K described in Fig 2.2
would return one probability distribution (namely
[0.4; 0.6] for Ch1K or Ch2K , and [0.5; 0.5] for Ch5K ),
but two distinct probability distributions for Ch3K
and Ch4K . The reason is that only Ch1K , Ch2K , and
Ch5K are based on log-concave function, which im-
plies their unimodality. We recall that a func-
tion h is log-concave on a domain D iff ∀x, y ∈
D, h(λx + (1 − λ)y) ≥ h(x)λ ∗ h(y)1−λ, where λ
runs through [0:1].

Proposition 5. Principle PC
10 is satisfied iff h is log-

concave, ie Ω̂CK is convex iff h is log-concave, for any
linear knowledge base K.

Proof. Before proving that Ω̂CK is convex iff CK is
log-concave, we prove that CK is log-concave iff h is
log-concave. A constant function, a multiplication of
two log-concave functions, and the cumulative distri-
bution function of a Gaussian density function are log-
concave (see [6, section 3.5] and [2]). Since K is linear,
each knowledge item k in KK is a halfspace. Function
G(ω, k) is thus convex when ω varies and k is set. Hence,
h(
√
2n ∗ G(ω, k)) is log-concave iff h is log-concave and

decreasing. By defining Ck accordingly to principles

stated in §2.3.5, Ck(ω)
def
= h(

√
2n∗G(ω, k)) is log-concave
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iff h is log-concave. Since CK
def
= ⋒k∈KKCk =

∏
k∈KK

Ck,
the candidacy function CK corresponding to a linear
knowledge base K is log-concave iff h is log-concave.

We now prove that Ω̂CK is convex iff CK is log-
concave. Let λ run through [0:1]. Let x and y be
two probability distributions belonging to Ω̂CK , and

let z
def
= λx + (1 − λ)y be a probability distribution.

Thus, Ω̂CK is convex iff z ∈ Ω̂CK iff CK(z) = CK(x)
iff CK(z) ≤ CK(x) and CK(z) ≥ CK(x). We have
CK(z) ≤ CK(x) since x maximises CK by defini-
tion. Also, notice that CK(x) = CK(y) since both x
and y maximises CK by definition; hence CK(x) =
CK(x)λ ∗ CK(y)1−λ. Therefore, CK(z) ≥ CK(x) iff
CK(λx+ (1− λ)y) ≥ CK(x)λ ∗CK(y)1−λ by definition
of z, iff CK is log-concave.

Definition 13 (Log-concave blur). The candidacy
function CK corresponding to a knowledge base K is
defined as follows:

CK
def
= B(K)

def
= CKK

CK

def
= ⋒k∈KCk Ck(ω)

def
= h(

√
2n ∗ G(ω, k))

where h : R+ 7→ ]0:1] is a strictly decreasing, positive,

and continuous log-concave function such that h(0)
def
=

1.

Proposition 6. The log-concave blur satisfies princi-
ples PC

6 to PC
10.

Proof. See the previous discussion in §2.3.5 where we
constructively defined the log-concave blur in order to
satisfy principles PC

6 to PC
10.

On considering reliability levels

All the results of this thesis hold if h is log-concave (eg,

see h(x)
def
= sin(π

2
ex) in Fig. 2.3). Suppose each knowl-

edge item k ∈ KK of a knowledge base K is given a
reliability level σk ∈ [0:1], which tends towards 1 as k

deems reliable; { σk | k ∈ KK } may represent the relia-
bility of sensory data K, or the credence given to an
agent’s knowledge base K. Let Kσ be the knowledge
base K such that ∀k ∈ KK , σ = σk; we denote its corre-
sponding candidacy function by both CKσ and CσK .

Definition 14 (Blur wrt reliability levels). This defi-
nition extends Def. 13 by considering reliability levels.
The candidacy function Cσk corresponding to a knowl-
edge item k ∈ K with reliability level σ is defined as
follows (where hσ : R+ 7→ ]0:1] is a strictly decreasing,

positive, and continuous log-concave function such that

hσ(0)
def
= 1):

Cσk (ω)
def
=





hσ(
√
2n ∗ G(ω, k)) if σ ∈ ]0:1[,

1 if σ = 1 and G(ω, k) = 0,

0 if σ = 1 and G(ω, k) > 0,

1 if σ = 0.

The candidacy function CσK corresponding to a knowl-
edge base K with reliability level σ ∈ [0:1] is defined as
follows:

CσK
def
= CσKK

CσK
def
= ⋒k∈KC

σ
k

We defined Cσk as 0 when σ = 1 in order to allow
the specification of hard constraints in knowledge bases.
For example, if the knowledge item k{c} corresponding
to a linear constraint c is considered as reliable, then
C1

kc
(ω) equals 1 iff ω satisfies c, 0 otherwise. C1

kc
is then

a step function: in Fig. 2.3, hσexp tends towards a step
function when the reliability level σ tends towards 1.
Thus, except for defining consistent hard constraints,
the reasonable values for σ are [0:1[.

In order to complete Def. 14, we shall suggest two def-
initions for hσ: the exponential blur (see Def. 15) and
the half-Gaussian blur (Def. 16). Before, we state a
principle concerning flat knowledge contents, ie knowl-
edge contents of which all the knowledge items are
equally reliable. We then construct a blur function (see
Def. 15) satisfying it, but behaving in an extreme man-
ner: if an item of knowledge k1 contradicts another one
k2, and if k1 is strictly more reliable that k2, then the
candidacy function C{k1,k2} is maximal for a probabil-
ity distribution satisfying k1 (hence not satisfying k2).
We then propose a more conciliatory blur function (see
Def. 16 on page 14): in which case, C{k1,k2} is maxi-
mal for a probability distribution satisfying neither k1
nor k2, but being nearer to satisfy k1 than to satisfy k2.
However, this more conciliatory blur function fails to
satisfy the following principle.

PC
11 Reliability invariance. The set of best candidates

Ω̂CKσ should be σ-invariant, if the common reli-
ability level σ of all the knowledge items of KK
varies in ]0:1[.

Ω̂CKσ1
= Ω̂CKσ2

, for all σ1, σ2 ∈ ]0:1[

Adhering to reliability invariance constrains the pos-
sible definitions of hσ as follows. Let σ, σ1, σ2 ∈ ]0:1[
be three reliability levels, and let a1, a2 ∈ ]0:+∞[ re-
spectively represent a non-normalised version of σ1 and
σ2. Let hσ : R+ 7→ [0:1] be a strictly decreasing and
smooth function; hence hσ is invertible. Let inv(f) be
the inverse function of an invertible function f . We de-
note by Ch

σ

K the candidacy function of K when K is
blurred with hσ.
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Proposition 7. Principle PC
11 holds if

(hσ1 ◦ inv(hσ2)) (x) = xa

where a is a constant, which only depends on the given
reliability levels σ1 and σ2.

Proof. PC
11 is satisfied iff

Ω̂
Chσ1

K
= Ω̂

Chσ2
K

iff
argmax

ω∈Ω
Ch

σ1

K (ω) = argmax
ω∈Ω

Ch
σ2

K (ω)

if
Ch

σ1

K = f ◦ Chσ2

K

where f : [0:1] 7→ R is a strictly increasing function, iff

∏

k∈KK

Ch
σ1

k (ω) = f(
∏

k∈KK

Ch
σ2

k (ω))

for each probability function ω ∈ Ω, iff

∏

k∈KK

hσ1(
√
2n ∗ G(ω, k)) = f(

∏

k∈KK

hσ2(
√
2n ∗ G(ω, k)))

iff ∏

k∈KK

g(zk) = f(
∏

k∈KK

zk) (2.1)

where zk
def
= hσ2(

√
2n ∗ G(ω, k)) is in [0:1], and g

def
=

hσ1 ◦ inv(hσ2); hence, g : [0:1] 7→ [0:1] is a strictly
increasing function such that g ◦hσ2 = hσ1 . In case KK
contains one knowledge item k, (2.1) requires f and g
to satisfy g(zk) = f(zk), or equivalently if x ∈ [0:1]

f(x) = g(x) (2.2)

In case KK contains two knowledge items k1 and k2,
(2.1) together with (2.2) requires f (hence g) to satisfy

the following equality, where x
def
= zk1 and y

def
= zk2 are

in [0:1].
f(x) ∗ f(y) = f(x ∗ y) (2.3)

Suppose that f has a derivative denoted by f ′ and de-
fined on [0:1]. By differentiating both sides of equal-
ity (2.3) wrt x then y, we obtain that f must satisfy

{
f ′(x) ∗ f(y) = f ′(x ∗ y) ∗ y
f(x) ∗ f ′(y) = f ′(x ∗ y) ∗ x

By multiplying the first line by x and the second line
by y, we have

x ∗ f
′(x)

f(x)
= y ∗ f

′(y)

f(y)
(2.4)

if ∀x ∈ [0:1], f(x) 6= 0. Since equality (2.4) must hold

for all x, y ∈ [0:1], a
def
= x ∗ f ′(x)

f(x)
is a constant real

number. After integrating both sides of a
x
= f ′(x)

f(x)
wrt

x with x 6= 0, we obtain a ∗ ln(x) + λ1 = ln(f(x)) + λ2,
where λ1 and λ2 are two constant real numbers. Hence,
f must satisfy f(x) = exp(a ∗ ln(x) + λ1 − λ2), which

is equivalent to f(x) = b ∗ xa with b
def
= exp(λ1 − λ2).

Furthermore, equality (2.3) requires bxa ∗bya = b(xy)a,
which implies b = 1. Therefore, f must satisfy

f(x) = xa

which implies, by definition of g and (2.2), that hσ1 and
hσ2 must satisfy

(hσ1 ◦ inv(hσ2)) (x) = xa (2.5)

We can rewrite equation (2.5) as exp(a(σ1)∗ ln(x)
a(σ2)

)
def
=

xa = (hσ1 ◦ inv(hσ2)) (x) where a = a(σ1)
a(σ2)

is the ratio

of a(σ1) to a(σ1), and where a : ]0:1[ 7→ ]−∞:0[ is a
decreasing bijection that scales a given reliability level.
Notice that the inverse function of exp(d ∗ x) is ln(x)

d
,

where d ∈ R \ {0}. We thus suggest to define hσ as
exp(a(σ)) ∗ x), where a(σ) could be defined as σ

σ−1
or

ln(1− σ) for examples. To constrain the possible defi-
nitions for a(σ), we adhere to the following principle.

PC
12 Reliability reinforcement. Increasing the redun-

dancy reinforces the reliability. More specifi-
cally, merging several candidacy functions of the
same knowledge content yields one candidacy func-
tion corresponding to that knowledge content with
higher reliability. Formally, it must exist a strictly
increasing and symmetric aggregation function F :
]0:1[m 7→ ]0:1[ such that the following equality
holds:

⋒
m∈N

i=1 C
σi
K

= C
F (σ1,σ2,...,σm)
K

Proposition 8. If hσ(x) is defined as exp(a(σ) ∗ x),
then principle PC

12 implies

a(F (σ1, σ2, . . . , σm)) =
m∑

i=1

a(σi)

where F : ]0:1[m 7→ ]0:1[ and a : ]0:1[ 7→ ]−∞:0[ re-
spectively aggregate and scale a set of reliability levels
σi.

Proof. Principle PC
12 states that ⋒

m
i=1C

σi
K

=

C
F (σ1,σ2,...,σm)
K

, which is equivalent to∏m

i=1

∏
k∈K

Cσi
k
(ω) =

∏
k∈K

C
F (σ1,σ2,...,σm)
k

(ω)
for any probability distribution ω ∈ Ω, and to∏

k∈K

∏m
i=1 h

σi(xk) =
∏

k∈K
hF (σ1,σ2,...,σm)(xk) for

any xk

def
=

√
2n ∗ G(ω, k) in ]0: + ∞[, which im-

plies
∏m

i=1 h
σi(x) = hF (σ1,σ2,...,σm)(x) for any x in

]0: + ∞[. Suppose hσ(x) defined as exp(a(σ) ∗ x).
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Principle PC
12 thus implies

∏m

i=1 exp(a(σi) ∗
x) = exp(a(F (σ1, σ2, . . . , σm)) ∗ x), hence
exp(x ∗ ∑m

i=1 a(σi)) = exp(x ∗ a(F (σ1, σ2, . . . , σm))),
from where we conclude that

∑m
i=1 a(σi) =

a(F (σ1, σ2, . . . , σm)).

After having assumed hσ(x) defined as exp(a(σ)∗x),
we now suggest to define a(σ) as ln(1−σ); we thus sug-
gest to define hσ as exp(ln(1− σ) ∗ x), or equivalently,
as (1 − σ)x. With such a definition for hσ, the func-
tion that aggregates reliability levels in principle PC

12

equals F (σ1, σ2, . . . , σm) = 1− exp(
∑m

i=1 ln(1− σi)) =
1 −∏m

i=1 1 − σi. Thus, the candidacy function corre-
sponding to a knowledge content K reliable up to a non-
normalised level m ∗ ln(1− σ) is equal to the mergence
of m candidacy function of K reliable up to ln(1 − σ);
roughly, the non-normalised reliability level ofm knowl-
edge sources that are reliable up to ln(1 − σ) equals
m ∗ ln(1− σ).

Definition 15 (Exponential blur). This definition
completes Def. 14.

hσexp(x)
def
= (1− σ)x

Proposition 9. The exponential blur satisfies princi-
ples PC

6 to PC
12

Proof. Since exp is a log-concave function, the
exponential blur is a log-concave blur, which
satisfies principles PC

6 to PC
10 by Prop. 6.

Furthermore, principle PC
11 is satisfied if

(hσ1 ◦ inv(hσ2)) (x) = xa (see Prop. 7), which holds

when hσ1(x)
def
= exp(a(σ1) ∗ x) and inv(hσ2)(x) = ln(x)

a(σ2)

and a = a(σ1)
a(σ2)

. Besides, principle PC
12 is satis-

fied since ⋒
m
i=1C

σi
K

equals
∏m
i=1

∏
k∈K

hσi(xk) where

xk

def
=

√
2n ∗ G(ω, k), equals

∏xk
k∈K

(∏m
i=1(1− σi)

)xk
equals

∏
k∈K

(1 − F (σ1, σ2, . . . , σm))xk equals
∏

k∈K
C
F (σ1,σ2,...,σm)
k

equals C
F (σ1,σ2,...,σm)
K

.

Throughout this thesis, we employ the exponential
blur. Due to the reliability invariance (also called σ-
invariance) of the best candidates, we simply denote
by CK the candidacy function CσK corresponding to a
knowledge base K reliable up to a level σ ∈ ]0:1[.

On assuming h is half-Gaussian

Definition 16 (Half-Gaussian blur). This definition
completes Def. 14. We here suppose that a reliability
level σ ∈ ]0:1[ can be encoded as the standard devia-
tion −4 ln(σk) of a half-Gaussian cumulative distribu-
tion function hσHG defined as

hσHG(x)
def
= 1 + erf

( −x
−4 ln(σk) ∗

√
2

)

0

1

0 x ∈ R
+ 4

sin(π
2
e−x)

h0.8
HG(x)

sin( π
2(1+x2)

)

1−
√
x

1+
√
x

h0
HG(x)
h0.8
exp(x)

Figure 2.3: Potential definitions for h (the first two

are log-concave contrary to the next two). h
σk∈]0:1]
HG is

the half-Gaussian cumulative distribution function with
−4 ln(σk) as standard deviation. If x

def
=

√
2 ∗ G(ω, k)

is the gap between a probability distribution ω and a
knowledge item k, then these functions are intended to
return the candidacy degree of ω to represent the real
world, wrt k and a reliability level σk.

where the error function is defined as

erf(x)
def
=

2√
π

∫ x

0

e−t
2

dt

Graphs of function h
σk
HG are drawn in Fig. 2.3 for sev-

eral values of reliability level σk, ie for several values of
standard deviation −4 ln(σk). Notice that a knowledge
item k being unreliable, ie having a reliability level σk

equal to 0, is considered as void of knowledge content,
because h0

HG = 1 hence Ck is a tautological candidacy
function 1C. If k is reliable, ie σk = 1, then Ck could
be an absorbing candidacy function 0C, which violates
proximity (see PC

7 ).
We now sketch a tentative argument for defining hHG

as a half-Gaussian cumulative distribution. Let c be a
linear constraint of the form “b ≥ [a1, a2, . . . , aJ ] ∗ x”
where x runs through R

J . Let us consider c as a random

polynomial inequality Pc
def
= “b+ǫb ≥ ([a1, a2, . . . , aJ ]+

ǫA) ∗ x”, where ǫb is a real random variable (with ex-
pected value 0) having probability density functions

PDFb, and where ǫA
def
= [ǫa1 , ǫa2 , . . . , ǫaJ ] is a vector

of real random variables (with expected value 0) hav-
ing probability density functions PDFaj . Thus, Pc(x)
is intended to return the probability that x satisfies c,
wrt PDFb and PDFaj . Before defining Ckc(x) accord-
ing to Pc(x), we now explain why only ǫb should be
considered as random contrarily to ǫaj , which should
be set to 0.

PC
13 Characterisation. A candidacy function Ckc should

characterise its corresponding linear constraint c,
which is identified with the solutions Solc of c.

Sol c = kc =
{
x ∈ R

J
∣∣∣ Ckc(x) = 1

}
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Such a principle is a strengthened version of PC
8 and

assumes ⑤. Under assumption ⑤, for each constraint
c in a knowledge base K, KK contains a knowledge
item kc that is the non-empty set of points Solc ⊂ R

J

satisfying c. Since c is a linear constraint, Sol c char-
acterises c, hence kc characterises c. PC

13 means that
x ∈ Sol c iff Ckc(x) = 1, ie point x satisfies linear con-
straint c iff Pc(x) = 1. It therefore states that x ∈ Sol c
should satisfy “b+ǫb ≥ ([a1, a2, . . . , aJ ]+ǫA)∗x”. How-
ever, if ǫA 6= ~0 or if ǫb < 0, then there exists x ∈ Sol c
that does not satisfy the latter inequality. Roughly, the
hyperplane separating Sol c from R \ Solc can be ran-
domly translated in one direction (ie ǫb is a random
variable with a half distribution) but not tilted (ie ǫaj
must be set to 0). If we further require PDFb to have
a Gaussian-like shape, then PDFb must be the half-
Gaussian probability density function. Thus, the (lan-
guage invariant) probability that x ∈ R

J satisfies c is
given by hσHG(

√
2n ∗G(ω,Sol c)), wrt standard deviation

−4 ln(σk). Criticisms against the previous argumenta-
tion (for assuming h is half-Gaussian) may be raised.
For example, assuming PDFb to have a Gaussian-like
shape might be irrelevant since the random value of ǫb
might not range over the whole set R; rather, the ran-
dom value x of ǫb might range over a subset S ⊂ R

such that the hyperplane separating Sol c from R \ Sol c
is randomly translated by x ∈ S and intersects the set
of probability distributions Ω.

2.3.6 Comparing knowledge at pignistic

level: the external equivalence
e

≡

CK being defined, we are now ready to propose a
new assumption about the knowledge content of a
knowledge base K; other assumptions are stated in§ 2.3.2 on page 8. The following assumption is intended
to define the external level of knowledge content.

⑥ KK
def
= {Ω̂CK }. To accept this assumption, which

extends ① to inconsistent knowledge bases, is to
consider the set of best candidates for representing
the real world as the only relevant knowledge.

Definition 17 (External equivalence). Two knowledge
bases K1 and K2 are externally equivalent iff they have
the same knowledge content wrt assumption ⑥.

K1
e≡ K2

def
=





(
K⑥
K1

= K⑥
K2

)
if Θ(K1) = Θ(K2),

true if ∃v,K1 = K2 ⊕ v,

false otherwise.

Two candidacy functions C1 and C2 are externally

equivalent iff they have the same best candidates.

C1
e≡ C2

def
=





(
Ω̂C1 = Ω̂C2

)
if Θ(C1) = Θ(C2),

true if ∃v, C1 = C2 ⊕ v,

false otherwise.

Remark that two knowledge bases K1 and K2 are
externally equivalent iff their corresponding candidacy

functions are externally equivalent, ie K1
e≡ K2 iff

CK1

e≡ CK2 .

2.4 Conclusions and perspectives

In this chapter, we extend several notions defined in
[33, 38] in order to deal with inconsistent knowledge
bases. According to definitions 3 and 4, our knowledge
bases are multisets (instead of sets) of inequalities (in-
stead of equalities) having a general form (instead of
a linear form or a polynomial form, although results
in [38] seem not limited to polynomial equalities). We
then introduce our new probabilistic knowledge repre-
sentation as a function returning for each probability
distribution its candidacy degree for representing the
real world. However, knowledge is more naturally ex-
pressible through a knowledge base than through a can-
didacy function. In section 2.3, we thus exhibit the
construction of the candidacy function CK correspond-
ing to a given knowledge base K; if we dare draw an
analogy with fuzzy set theory, we would say that the
knowledge base is to the crisp set what the candidacy
function is to the fuzzy set.

Candidacy functions are fundamental objects for
paraconsistent probabilistic reasoning: inconsistency
does not exist, though the candidacy function 0C con-
stantly equal to zero might express that There is no real
world6. We eschew such absorbing candidacy functions
by requiring the construction of CK to follow several
principles. The three key principles are proximity, lan-
guage invariance, and reliability invariance. Proxim-
ity (see PC

7 ) states that a probability distribution close
to satisfy a knowledge base should be close to repre-
senting the real world; by adhering to this principle,
we avoid CK being absorbing, even partially absorb-
ing (see §2.3.5). Language invariance (see PC

9 ) requires
a candidacy function to be invariant by language en-
richment: roughly, this means that when a new word
appears in a language, then the knowledge previously
expressed in terms of this language remains unchanged.

60C resembles a contradiction: if 0C means that There is no

real world, then no probability distribution should be nominated
for representing the real world. However, the best candidates
are all the probability distributions: Ω = Ω̂0C

(this resembles
explosion in classical logic). Hence, an inference process based

on Ω̂C interprets 0C as a tautology.
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Reliability invariance (see PC
11) ensures that the nom-

ination of the best candidates is independent on the
global reliability level σ ∈ ]0:1[ given to a knowledge
base K, ie, if each knowledge item of KK are reliable to
the same level σ, then the best candidates Ω̂Cσ

K
are in-

variant when only σ varies in ]0:1[; we thus denote CσK
by CK . In the motivating example about voting theory
(see section 2.1), such reliability levels may capture the
society’s confidence in its individuals, who have to elect
an investment distribution; in which case, the reliabil-
ity levels could depend on the individuals’ investment
skills. If the society refuses the use of reliability levels
to elect the investment distribution, it thus suffices to
set all these levels to a common value in ]0:1[.

In this chapter, we show that the candidacy function
CK corresponding to a knowledge base K can be con-
struct while satisfying all our principles (see Prop. 9).
However, further investigations into the set of principles
are needed to characterise the construction of CK .
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Chapter 3

Four measures to appraise knowledge

You can’t control what you can’t measure.

Tom DeMarco, in [7, page 6]

Having defined our general probabilistic knowledge
representation, ie the candidacy functions C (see
Def. 9 on page 5), we now desire to exploit its expres-
siveness in order to draw paraconsistent inferences (see
chapter 4). But before, in the light of Tom DeMarco’s
statement, this chapter introduces several measures en-
abling us to discuss about candidacy functions. These
principled measures quantify important notions such as
the dissimilarity, the inconsistency, the incoherence, the
surprise, the precision, and the confidence.

3.1 Common definitions

The reader may skip this section, which presents three
entailment relations used to express several principles,
then introduces a geometric notion employed in the def-
initions of the culpability measure (see Def. 28) and the
precision measure (see §3.5.3).
3.1.1 From tautological deductions to the

explosion: a continuum of entailment

relations |=

In this section, we define two entailment relations be-
tween a knowledge content K and a knowledge item k,
and an entailment relation between two candidacy func-
tions C1 and C2. Informally, K |= k means K entails (or
implies) k, or k is a consequence of (or deducible from)
K. We suppose Θ(K) = Θ(k) = Θ(C1) = Θ(C2). There
is a continuum (and a complete partial ordering) of en-
tailments for a given knowledge content: the strongest
(or more precautionary) is K |=s k iff k ⊇ Ω (ie, K en-
tails only tautologies), and the weakest is K |=w k iff
k ⊇ ∅ (ie, K entails every knowledge items: the ex-
plosion). We now suggest several entailment relations
weaker than |=s but stronger than |=w.

Definition 18 (Inevitable consequences). A knowledge
item k is an inevitable consequence of a knowledge con-
tent K, denoted by K |=ic k, iff k contains not only the
best candidates of CK, but also all the points belonging to
the knowledge items of K: K |=ic k iff k ⊇ Ω̂CK

∪⋃
t∈K

t.

Definition 19 (Free formulae). A knowledge item k is
a free formula of K, denoted by K |=ff k, iff k contains
not only the probability distributions belonging to every
maximal consistent subset of K, but also the best candi-
dates of CK: K |=ff k iff k ⊇ Ω̂CK

∪⋃Q∈MCSK

⋂
t∈Q t.

The set { k ∈ K | K |=ff k } resembles the free formu-
lae defined the literature, which are the propositions
belonging to all the maximal consistent subsets of a
set of propositions (see [18, page 2] for a definition in
terms of minimal inconsistent subsets). The free formu-
lae are not culpable for making the knowledge content
inconsistent. Furthermore, we denote by k1 |= k2 the
entailment of a knowledge item k2 by the knowledge
content {k1}: k1 |= k2 iff {k1} |=ic k2 iff {k1} |=ff k2 iff
k2 ⊇ Ω̂Ck1

∪ k1.

Definition 20. A candidacy function C1 entails an-
other one C2, denoted by C1 |= C2, iff ∀ω̂ ∈
Ω̂C1 , C2(ω̂) = 1 and ∀ω ∈ Ω, C1(ω) ≤ C2(ω).

Thus, (C1 |= C2 and C2 |= C1) iff (C1 = C2 and
∃ω̂ ∈ Ω, C1(ω̂) = 1). Also, if C1 |= C2 then C1 ⋒

C2 |= C2 and C1
e≡ C1 ⋒ C2 and ∃C3 ∈ C, C1 = C2 ⋒

C3. Besides, if K |=ic k then K |=ff k and CK |= Ck (if
the blur function used to obtain CK is the same as the
one used to obtain Ck). When we write an expression
containing an entailment relation which is independent
on the choice between |=ic and |=ff , we then simply
denote this relation by |=.

3.1.2 A geometrical property for the best

candidates: the solo-dimensionality

of a manifold

In the section 3.5, a precision measure “counts” the
best candidates of a given candidacy function. The set

17
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of such best candidates forms a manifold in a Euclidean
space of which we compute the Lebesgue measure.

Intuitively, a manifold M is solo-dimensional iff its
Lebesgue measure takes into account each point of
M (ie each best candidates). For example, a convex
manifold is solo-dimensional. However, if a manifold
M ⊂ R

3 is the disjoint union of a cylinder with a square,
then the Lebesgue measure in dimension 3 of the square
is null. Therefore, the Lebesgue measure of M , which
is the Lebesgue measure of the cylinder, does not take
into account the points of the square. Thus, M is said
to be not solo-dimensional.

Definition 21 (Solo-dimensional manifold). A mani-
fold M ⊂ R

d in a Euclidean space of dimension d ∈ N

is solo-dimensional iff M is Lebesgue measurable and,
for each ball B centred on any point of M with any
strictly positive radius, the Lebesgue measure of M ∩B
in dimension d is strictly positive; d is thus the “sole”
dimension of M .

3.2 Dissimilarity measure µdis: a metric

on candidacy functions C

Essentially similar problems should have essentially
similar solutions. This unifying principle1, called the
Symmetry principle in [34], motivates us to formalise
the notion of similarity. In this section, we thus define
two measures that quantify the dissimilarity between
two candidacy functions. These principled measures
will serve as metrics for defining two notions of conver-
gences underlying continuity principles for the forth-
coming measures and inferences processes.

3.2.1 Introduction

A real-life multisensor system continuously updates a
knowledge base with possibly contradictory and uncer-
tain information. We can improve either the fault tol-
erance or the sensor coverage of such a system by re-
configuring its sensors in order to either increase or de-
crease the sensor redundancy. The more redundant two
sensor groups are, the less dissimilar their information
is, where their information is represented as candidacy
functions.

Our problem is thus to measure how dissimilar two
candidacy functions are. In this section, we define two
principled dissimilarity measures founded upon two dif-
ferent assumptions about knowledge contents. The first
one, the internal dissimilarity measure, considers that
merging a candidacy function with separately two can-
didacy functions decreases their dissimilarity measures;

1The commonsensical principles for inference processes (see
chapter 4) are presented in [34] as special cases of the Symmetry

principle.

metaphorically, pouring colour paint into two paint-
pots makes the paint in these pots look less dissimilar.
However, this behaviour might be undesirable: if a mes-
sage is hidden using steganography into an image that
looks similar to the original image, then knowing the
stegokey makes these two images look more dissimilar.
Therefore, we define the external dissimilarity measure,
which generalises the Hausdorff metric used in [33] to
compare consistent linear knowledge bases.

Before defining these two dissimilarity measures, we
present seven principles to be satisfied by such mea-
sures.

3.2.2 Principles

In this section, we state several principles to be satis-
fied by a dissimilarity measure µdis(C1, C2) returning a
real number when applied to two candidacy functions
C1, C2 ∈ C. By satisfying these principles, µdis non-
trivially (principle Pdis

vi ) measures the distance (princi-
ples Pdis

ii , Pdis
iv , and Pdis

iii ) between two candidacy func-
tions.

Pdis
i Language invariance. A dissimilarity measure is

invariant by language enrichment.

µdis(C1, C2) = µdis(C1 ⊕ v, C2 ⊕ v)

Pdis
ii Separation. Two candidacy functions are not dis-

similar iff they are equivalent, wrt a certain equiv-

alence relation (see
i≡ at Def. 11 on page 9 and

e≡
at Def. 17 on page 15).

µdis(C1, C2) = 0 iff C1 ≡ C2

Pdis
iii Triangle inequality. If knowledge C is very similar

to C1 and C2, then knowledge C1 should not be
too dissimilar from C2.

µdis(C1, C) + µdis(C,C2) ≥ µdis(C1, C2)

Pdis
iv Symmetry. A dissimilarity measure is commuta-

tive.
µdis(C1, C2) = µdis(C2, C1)

Pdis
v Paint-pot. Two candidacy functions are less dis-

similar after being separately merged with two
equivalent candidacy functions. Metaphorically,
pouring colour paint into two paint-pots makes the
paint in these pots look less dissimilar. Notice that
paint-pot, which is a kind of translational symme-
try, implies symmetry by taking C = C′ = 1C then
swapping C1 and C2.

if C ≡ C′

then µdis(C1, C2) ≥ µdis(C2 ⋒ C,C1 ⋒ C
′)
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Pdis
vi Continuum. There always exists a candidacy func-

tion C less dissimilar than another one C1, wrt a
given candidacy function C2. This principle avoids
trivial dissimilarity measure that constantly re-
turns the same value for any two non-equivalent
candidacy functions, wrt a certain equivalence re-

lation (see
i≡ or

e≡).

if C1 6≡ C2 then ∃C,C1 6≡ C 6≡ C2

and µdis(C,C2) < µdis(C1, C2)

Pdis
vii Consequence invariance. The dissimilarity mea-

sure between C1 and C2 equals the one between
C2 and the mergence of C1 with one of its conse-
quences C.

if C1 |= C then µdis(C1, C2) = µdis(C1 ⋒ C,C2)

3.2.3 Internal dissimilarity measure µdis
L∞ :

the uniform norm of two candidacy

functions

The internal dissimilarity measure µdis
L∞ is founded

upon the uniform norm L∞ of two candidacy functions:

L∞(C1, C2)
def
= max

ω∈Ω
|C1(ω)−C2(ω)|, if Θ(C1) = Θ(C2)

We qualify µdis
L∞ as internal because it separates candi-

dacy functions wrt the internal equivalence (see Pdis
ii ).

Definition 22 (Internal dissimilarity measure).

µdis
L∞(C1, C2)

def
= L∞(C1, C2)

Proposition 10. µdis
L∞ satisfies principles Pdis

i , Pdis
ii

wrt
i≡, Pdis

iii , P
dis
iv , Pdis

v wrt
i≡, and Pdis

vi , but not P
dis
vii .

Proof. Pdis
i Language invariance. µdis

L∞(C1 ⊕ v, C2 ⊕
v) = L∞(C1 ⊕ v, C2 ⊕ v) = maxω′∈Ω⊕v |(C1 ⊕ v)(ω′)−
(C2 ⊕ v)(ω′)|. By definition of ⋄ ⊕ v (see §2.3.1), ∀ω ∈
Ω,∀ω′ ∈ ω⊕ v, (C ⊕ v)(ω′)

def
= C(ω). Hence, µdis

L∞(C1 ⊕
v, C2 ⊕ v) = maxω∈Ω |C1(ω)− C2(ω)| = µdis

L∞(C1, C2).

Pdis
ii Separation. µdis

L∞(C1, C2) = 0 iff ∀ω ∈ Ω, C1(ω) −
C2(ω) = 0 iff C1 = C2, which is equivalent to C1

i≡ C2

in case Θ(C1) = Θ(C2).

Pdis
iii Triangle inequality. Since L∞ is a metric, µdis

L∞
also satisfies Pdis

iii .

Pdis
iv , Pdis

v Symmetry, Paint-pot. Since L∞ is symmet-
ric, µdis is symmetric. Also, µdis(C1, C2) ≥ µdis(C2 ⋒

C,C1 ⋒ C′) iff L∞(C1, C2) ≥ L∞(C2 ⋒ C,C1 ⋒ C′) iff
L∞(C1, C2) ≥ maxω∈Ω |C2(ω)∗C(ω)−C1(ω)∗C′(ω)| by
definition of ⋒ and by replacing C′ by C since C ≡ C′,

iff L∞(C1, C2) ≥ maxω∈Ω |C2(ω)−C1(ω)| ∗ C(ω) since
C(ω) ≥ 0. Furthermore, for any probability distribu-
tion ω ∈ Ω, we have |C2(ω)−C1(ω)| ≥ |C2(ω)−C1(ω)|∗
C(ω) since 1 ≥ C(ω) ≥ 0. Let ω be a probability dis-
tribution maximising |C2(ω) − C1(ω)| ∗ C(ω). Thus,
L∞(C1, C2) ≥ |C2(ω) − C1(ω)| ≥ |C2(ω) − C1(ω)| ∗
C(ω) = L∞(C2 ⋒C,C1 ⋒ C

′).

Pdis
vi Continuum. We construct C as the pointwise con-

vex combination of C1 with C2, where λ ∈ ]0:1[:

C(ω)
def
= λC1(ω) + (1− λ)C2(ω)

Pdis
vii Consequence invariance. The following counter-

example shows that µdis
L∞ does not satisfy this princi-

ple. Let C1 = C2 and C1 |= C such that there exists
a probability distribution ω /∈ Ω̂C1 where C(ω) < 1.
Thus, (C1 ⋒ C)(ω) = C1(ω) ∗ C(ω) < C1(ω). There-
fore, µdis

L∞(C1, C2) = 0 < C1(ω) − C1(ω) ∗ C(ω) =
µdis
L∞(C1 ⋒C,C2).

Notice that the following dissimilarity measure satis-
fies neither language invariance nor separation:

µdis∫ (C1, C2)
def
=

∫
Ω
|C1(ω)− C2(ω)|dω∫

Ω
1dω

3.2.4 External dissimilarity measure µdis
H :

the Hausdorff distance of the best

candidates

The external dissimilarity measure µdis
H is a metric on

the candidacy functions having equal underlying lan-
guage. It is founded upon the Hausdorff distance H.

Definition 23. The Hausdorff distance H of two non-
empty compact (bounded and closed) sets X and Y of
points2 in a Euclidean space is defined as follows:

H(X,Y )
def
= inf

{
δ

∣∣∣∣ and
∀x ∈ X,∃y ∈ Y, δ ≥ L2(x, y)
∀y ∈ Y,∃x ∈ X, δ ≥ L2(x, y)

}

We qualify the following dissimilarity measure µdis
H as

external because it separates candidacy functions wrt
the external equivalence (see Pdis

ii ).

Definition 24 (External dissimilarity measure).

µdis
H (C1, C2)

def
= H(Ω̂C1 , Ω̂C2)

Proposition 11. µdis
L∞ satisfies principles Pdis

ii wrt
e≡,

Pdis
iii , P

dis
iv , Pdis

vi , and Pdis
vii , but neither Pdis

i , nor Pdis
v .

2After considering footnote 5 on page 10, we could replace
L2 by GKL in Def. 23 when X and Y are sets of probability
distributions.
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Proof. Pdis
i Language invariance. The following

counter-example shows that µdis
H does not satisfy this

principle. Let C1 and C2 be two candidacy functions
underlain by a language with one propositional variable

v. Let ω1
def
= [0; 1] and ω2

def
= [1; 0] be two probabil-

ity distributions such that ω1(v) = 0 and ω2(v) = 1.
Suppose that C1(ω1) = 1 and Ω̂C1 = {ω1}, and that

C2(ω2) = 1 and Ω̂C2 = {ω2}. Let C′
1

def
= C1 ⊕ v′ and

C′
2

def
= C2 ⊕ v′, where v′ 6= v. In figure 3.1 on page 31,

ω1 ⊕ v′ and ω2 ⊕ v′ are graphically represented by the
two colour-filled rectangles with a = 0 and a = 1. Thus,
µdis
H (C1, C2) = H({ω1}, {ω2}) = L2(ω1, ω2) =

√
2

whereas µdis
H (C′

1, C
′
2) = H({ω′

1}, {ω′
2}) = L2(ω

′
1, ω

′
2) =√

3
2
, where ω′

1 ∈ ω1 ⊕ v′ and ω′
2 ∈ ω2 ⊕ v′ such

that L2(ω
′
1, ω

′
2) = H(ω1 ⊕ v′, ω2 ⊕ v′). For exam-

ple, take ω′
1

def
= [0; 0; 0; 0] and ω′

2
def
= [ 1

2
; 1
2
; 0; 0]. In

figure 3.1 on page 31, ω′
1 and ω′

2 respectively corre-
spond to the points 1

2
∗ H ∗ ω′

1 = [ 1
2
; 1
2
; 1
2
; 1
2
] and

1
2
∗H ∗ ω′

2 = [0;− 1
2
; 0; 1

2
], where H is a Hadamard ma-

trix. Thus µdis
H (C1, C2) 6= µdis

H (C′
1, C

′
2) in this counter-

example.

Pdis
ii Separation. µdis

L∞(C1, C2) = 0 iff Ω̂C1 = Ω̂C2 iff

C1
e≡ C2 in case Θ(C1) = Θ(C2).

Pdis
iii Triangle inequality. Since H is a metric on Ω, µdis

L∞
satisfies Pdis

iii .

Pdis
iv Symmetry. µdis

H is symmetric since H is symmetric.

Pdis
v Paint-pot. The following counter-example shows

that µdis
H does not satisfy this principle. Let Θ be

a language with two propositional variables. Let
α1, α2, α3, α4 ∈ αΘ be the four minterms of Θ. Let
ǫ ∈ ]0:1[. Let a, b, c, and d be four linear constraints

underlain by Θ and defined as follows: a
def
= “1 ≥

1
1−ǫ ∗ ω(α1) + ∗ω(α2)”, b

def
= “1− ǫ ≥ (1− ǫ) ∗ ω(α1)−

ω(α2)”, c
def
= “0 ≥ ω(α3)”, and d

def
= “1 ≤ ω(α1) +

ω(α2)”. We denote by C{a,c} the candidacy function
corresponding to the knowledge base {a, c}. Thus,
H(C{a,c}, C{b,c}) = ǫ whereas H(C{b,c,d}, C{a,c,d}) =√
2. Therefore, µdis

H (C{a,c}, C{b,c}) = ǫ <
√
2 =

µdis(C{b,c} ⋒ C{d}, C{a,c} ⋒ C{d}).

Pdis
vi Continuum. Notice that C1 6≡ C2 iff ∃δ ∈ R, 0 <

δ < µdis(C1, C2). It suffices to construct C such that
0 < H(Ω̂C , Ω̂C2) ≤ δ. We thus propose to construct

C
def
= (C2 \ Bωδ ) ∪ ωδ such that C is a copy of C2,

from which we remove a ball Bωδ of probability distri-
butions centred in ω ∈ C2 with a radius of δ, then to
which we add a probability distribution ωδ such that
L2(ω,ωδ) = δ. Instead of adding ωδ to (C2 \ Bωδ ), we

could have added the probability distributions belong-

ing to the frontier3 F of Bωδ : C def
= (C2 \ Bωδ ) ∪ F(Bωδ ).

Pdis
vii Consequence invariance. By definition of C1 |= C,

∀ω̂ ∈ Ω̂C1 , C(ω̂) = 1, hence ∀ω̂ ∈ Ω̂C1 , C1(ω̂) = C1(ω̂) ∗
C(ω̂) = (C1 ⋒ C)(ω̂) then Ω̂C1 = Ω̂C1⋒C . Therefore,
µdis
H (C1, C2) = µdis

H (C1 ⋒ C,C2)

Furthermore, µdis
H is σ-invariant, ie µdis

H (CKσ
1
, CKσ

2
)

equals µdis
H (C

Kσ′
1
, C

Kσ′
2
) for any two reliability levels σ

and σ′ in ]0:1[; th reason is that the best candidates are
σ-invariant (see Prop. 9 on page 14).

On considering candidacy degrees We also pro-
pose an intermediate metric µdis

H̄ between µdis
L∞ and

µdis
H , ie µdis

H̄ is such that µdis
L∞(C1, C2) = 0 implies

µdis
H̄ (C1, C2) = 0 implies µdis

H (C1, C2) = 0:

µdis
H̄ (C1, C2)

def
= H̄(C1, C2)

where

H̄(C1, C2)
def
= H




{
[ω̂;C1(ω̂)]

∣∣∣ ω̂ ∈ Ω̂C1

}
,

{
[ω̂;C2(ω̂)]

∣∣∣ ω̂ ∈ Ω̂C2

}




µdis
H̄ satisfies the same principles as µdis

H (wrt a
stronger equivalence relation), but takes into account
the candidacy degree of the best candidates, which is
not σ-invariant, hence µdis

H̄ is not σ-invariant. When the

best candidates Ω̂C1 and Ω̂C2 have the same candidacy
degree, then µdis

H̄ (C1, C2) equals µ
dis
H (C1, C2).

3.2.5 Notions of convergence for a sequence

of knowledge

Each previously defined dissimilarity measure, which is
a metric, induces a notion of convergence of a sequence
of candidacy functions. Such a notion of convergence is
necessary to establish the concept of continuity for the
forthcoming tools performing on C, ie the next mea-
sures and inference processes.

Definition 25. A sequence of candidacy functions
S : N 7→ D, where D ⊆ C, converges to a candi-
dacy function C ∈ D wrt a metric µdis on D, noted
limi→∞ µdis(S(i), C) = 0, iff ∀ε ∈ R

+,∃Nε ∈ N,∀i ≥
Nε, µ

dis(S(i), C) < ε.

Notice that if S converges to C wrt µdis
H̄ , then S con-

verges to C wrt µdis
H . Moreover, notice that the follow-

ing proposition shows that Ω̂C may change discontinu-
ously wrt H when C changes continuously wrt µdis

L∞ .

3 The frontier F(S), or boundary, of a set S ⊆ D is a subset
of D containing every frontier point of S. A frontier point s of
S is such that any open set containing s intersects both S and
its complement D \ S.

Paraconsistent probabilistic reasoning – Lionel Daniel



3.3 INCONSISTENCY MEASURE µicst: TO SPOT THE DEFECTS IN A KNOWLEDGE CONTENT 21

Proposition 12. A sequence of candidacy functions S
does not necessary converge to C ∈ C wrt µdis

H when S
converges to C wrt µdis

L∞ .

Proof. Suppose that a propositional language with
two variables underlies the following three (non-

normalised) linear constraints: c1
def
= “ω(α1) ≤ 0.1”,

cǫ2
def
= “0.2 ≤ ω(α1) − ǫ ∗ ω(α2)”, where ǫ ∈ R,

and c3
def
= “ω(α3) ≤ 0”. Thus, Ω̂C{c1,c0

2
,c3}

equals
{ [

0.1+0.2
2

; y; 0; 1−
(
0.1+0.2

2
+ y
)] ∣∣ y ∈ [0:1− 0.1+0.2

2
]
}

whereas limǫ→0,ǫ>0 Ω̂C{c1,cǫ
2
,c3} equals

{[
0.1+0.2

2
; 0; 0; 1− 0.1+0.2

2

]}
. Therefore, if

S(i)
def
= C{c1,c1/i2 ,c3}

and C
def
= C{c1,c02,c3},

then limi→∞ µdis
L∞(S(i), C) = 0 whereas

limi→∞ µdis
H (S(i), C) =

√
1.7, which is

L2(
[
0.1+0.2

2
; 0; 0; 1− 0.1+0.2

2

]
,
[
0.1+0.2

2
; 1− 0.1+0.2

2
; 0; 0

]
).

3.2.6 Conclusions

Our main contribution is twofold: firstly, we estab-
lish seven principles to be satisfied by a dissimilarity
measure when applied to candidacy functions. Sec-
ondly, we define two principled dissimilarity measures
founded upon two distinct notions of equivalence be-
tween knowledge contents (see Def. 11 and Def. 17).
To our knowledge, no measure for inconsistent linear
knowledge bases, hence for C, exists in the literature.

Proofs of propositions 10 and 11 not only show that
our measures are metrics for C (principles Pdis

ii , Pdis
iv ,

and Pdis
iii ), but also that our internal measure can be

utilised to compare candidacy functions about different
topics, since it satisfies language invariance (see princi-
ple Pdis

i ).
In future research, our dissimilarity measure should

be compared to the ones defined for fuzzy sets (see [11]),
and those for propositional knowledge bases (ie knowl-
edge bases involving only categorical probabilities),
which are a special case of our knowledge bases. This
may conduce to a coherence measure (see [12], although
proposition 8 page 232 states the opposite of paint-pot).

3.3 Inconsistency measure µicst: to spot

the defects in a knowledge content

Inconsistencies may arise when a knowledge base is a
collection of items coming from different sources. In
this section, we propose both an inconsistency measure
that quantifies the global inconsistency of the knowl-
edge base, and a culpability measure that evaluates the
blame on each item for making the whole knowledge
base inconsistent.

3.3.1 Introduction

A real-life multisensor system continuously updates a
knowledge base with possibly contradictory and uncer-
tain information. We can improve such a system by re-
configuring its sensors in order to minimise the amount
of inconsistency brought by each sensor or sensor group.
Our problem is thus to measure how inconsistent the
knowledge content of a knowledge base is.

In this section, we define an inconsistency measure
together with its culpability measure, which evaluates
the responsibility of each knowledge item for making
the whole knowledge inconsistent. Our measures satisfy
principles ensuring not only their robustness against
knowledge fluctuations (see principle Picst

d ), but also
their tolerance to the enrichment of their knowledge
domain with new topics, which happens when new sen-
sors are dynamically plugged into the system (see prin-
ciple Picst

a ).

Recently, several inconsistency measures appeared in
the literature (see [18] for set of propositions, and [42]
who extends it to conditional probabilities). However,
to our knowledge, none of them are defined for the
whole set of linear knowledge bases K

L. Thus, our
principled measures seem to be the first to quantify
the inconsistency of knowledge bases in K ⊃ K

L.

The remainder of this section starts by a presenta-
tion of several principles to be satisfied by an incon-
sistency measure. Then, we propose an inconsistency
measure, together with its culpability measure, that
satisfies these principles.

3.3.2 Principles

In this section, we state several principles to be satis-
fied by an inconsistency measure µicst returning a pos-
itive real number when applied to a knowledge con-
tent. We then defined µicst over the knowledge con-
tent of a knowledge base in K instead of C because
the notion of (in)consistency is meaningless for candi-

dacy functions. Let ΩK

def
= Ω ∩ ⋂

k∈C
k be the proba-

bility functions belonging to every knowledge item of
K. Hence, ΩKK = ΩK under assumption ⑤ or ⑥. A
knowledge content K is thus said to be consistent iff
ΩK 6= ∅, otherwise K is said to be inconsistent. Be-
ing principled, µicst non-trivially (principle Picst

f ) sepa-
rates (principles Picst

b ) between consistent or inconsis-
tent knowledge contents (hence knowledge bases).

While µicst(K) is the inconsistency measure of a
knowledge content K, µculp

K
(k) is the culpability measure

of a knowledge item k belonging to K: this last measure
quantifies the degree to which k can be held responsible
for making K inconsistent. Notice that the concept of
inconsistency is dual to the holistic conception of co-
herence (see [5, page 81]), which measures the degree
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to which the knowledge items of K fit together when
K is consistent. Also, these concepts share desiderata,
like consequence invariance (see principle Picst

h and [9,
page 418]).

Picst
a Language invariance. An inconsistency measure is

invariant by language enrichment.

µicst(K) = µicst(K⊕ v)

Picst
b Separation (extends consistency of [18, Def. 8]). A

knowledge content K is consistent iff its inconsis-
tency measure is null.

ΩK 6= ∅ iff µicst(K) = 0

Picst
c Equivalence. Equivalent knowledge contents have

equal inconsistency measure, wrt a certain equiv-

alence relation (see
i≡ at Def. 11 on page 9 and

e≡
at Def. 17 on page 15).

if CK1 ≡ CK2 then µicst(K1) = µicst(K2)

Picst
d Continuity. When a knowledge content changes

continuously, so its inconsistency measure
does, wrt a certain notion of convergence (see
Def. 25 on page 20). This principle ensures a
certain robustness for µicst in the face of minor
fluctuations in the knowledge content.

if limi→∞ µdis(CKi , CK) = 0
then limi→∞ µicst(Ki) = µicst(K)

Picst
e Monotonicity (extends monotonicity of [18,

Def. 8]). Merging two knowledge contents increases
the degree of inconsistency. We recall that a knowl-
edge content is a multiset.

µicst(K1) ≤ µicst(K1 ∪ K2)

Picst
f Strict monotonicity. The inconsistency measure of

K1 is strictly lower than that of its mergence with
an inconsistent knowledge content K2.

if 0 < µicst(K2) then µ
icst(K1) < µicst(K1 ∪ K2)

Picst
g Minimality (extends minimality of [18, Def. 12]).

A consequence k of a knowledge content K does not
bring any contradiction to K.

if K |= k then µculp
K

(k) = 0

Picst
h Consequence invariance (adapts free formula in-

dependence of [18, Def. 8]). Merging a knowledge
content with its consequences leaves invariant the
inconsistency measure.

if K |= k then µicst(K) = µicst(K ∪ {k})

Picst
i Dominance (extends dominance of [18, Def. 8]).

Stronger knowledge items potentially bring more
contradictions, where a knowledge item k1 is said
stronger than k2 iff k1 entails k2.

if k1 |= k2 then µicst(K ∪ {k1}) ≥ µicst(K ∪ {k2})

Picst
j Equitable distribution (extends distribution of [18,

Def. 12]). An inconsistency measure of a knowl-
edge content K only depends on the culpabil-
ity measures of each of its m ∈ N knowledge
items, without preference for some of them. Thus,
the inconsistency measure is equitably distributed
among the culpability measures. Let f : R+m 7→
R

+ be a symmetric function for all its arguments
that aggregates the culpability measure of each
merged knowledge item. Notice that the symmetry
of f formalises the equity of the distribution.

µicst(K) = f(µculp
K

(k1), . . . , µ
culp
K

(km))

Notice that [17, Def. 8] and [18, Def. 8 and Def. 12]
also defines other properties, like decomposability and
MinInc. Thus, further investigations on inconsistency
measures should consider these properties.

3.3.3 Inconsistency measure µicst: the can-

didacy degree of the best candidates

In this section, we define our inconsistency measure
µicst(K) as the amount of contradictions inside a knowl-
edge content K. The associated culpability measure
µculp
K

(k) quantifies the amount of contradictions brought
to a knowledge content K by one of its knowledge items
k. After, we demonstrate that our measure is princi-
pled.

Definition 26 (Inconsistency measure).

µicst(K)
def
= 1−max

ω∈Ω
CK(ω)

Notice that µicst(K) equals 1 − µdis
L∞(CK, 0C), which

is the complementary distance between CK and the ab-
sorbing candidacy function 0C, where 0C is seen as ab-
solutely inconsistent. Thus, µicst(K) measures how far
K is to be consistent.

We also want to define a measure µculp
K

(k) that eval-
uates the culpability of each knowledge item k for mak-
ing K inconsistent. According to equitable distribution
(see principle Picst

j ), the inconsistency measure of K

should only depend on the culpability measures of each
knowledge item k ∈ K; we will thus define the culpa-
bility measure such that µicst(K) is distributed among
each µculp

K
(k). Furthermore, for any best candidate

ω̂ of CK such that CK(ω̂) ∈ ]0:1], we have CK(ω̂) =∏
k∈K

Ck(ω̂), hence ln(CK(ω̂)) = ln(
∏

k∈K
Ck(ω̂)), hence

1 =
∑

k∈K

ln(Ck(ω̂))
ln(CK(ω̂))

.
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Definition 27 (Culpability distribution). The cul-
pability distribution κK(ω̂) of a knowledge content K

among its m ∈ N knowledge items {k1, k2, . . . , km} wrt a
given best candidate ω̂ of CK is defined as the following
vector:

κK(ω̂)
def
=
[
κ

k1
K
(ω̂);κk2

K
(ω̂); . . . ;κkm

K
(ω̂)
]

where κ
k

K : Ω 7→ [0:1] is the normalised culpability of k
in making K inconsistent wrt a given best candidate ω̂:

κ
k

K(ω̂)
def
=





ln(Ck(ω̂))
ln(CK(ω̂))

if 0 < µicst(K) < 1,
1
|K| if µicst(K) = 0,

0 if µicst(K) = 1 and Ck(ω̂) 6= 0,
1

|{ k∈K | Ck(ω̂)=0 }| if Ck(ω̂) = 0.

Remark that Def. 27 simply states that the knowl-
edge items of K are equally culpable in making K in-
consistent in case K is consistent, ie µicst(K) = 0. In
case µicst(K) = 1, ie when CK is absorbing, then the
culpability of making K inconsistent is only distributed
among the knowledge items { k ∈ K | Ck(ω̂) = 0 } that
make CK absorbing; the other knowledge items, which
are such that Ck(ω̂) > 0, are considered non-culpable,

ie κ
k

K(ω̂) = limCK(ω̂)→0
ln(Ck(ω̂))
ln(CK(ω̂))

= 0.

Remark also that κK(ω̂) might be considered as a
probability distribution since it is a positive vector of
which its elements sum up to one: ∀k ∈ K,κk

K(ω̂) ≥ 0
and 1 =

∑
k∈K

κ
k

K(ω̂). The least biased probabil-
ity distributions are known to maximise the entropy
E(~x) when adhering to several commonsensical prin-
ciples defined in [38] and restated in chapter 4. We
may thus defined the least biased culpability distribu-
tions as {κK(ω̂) | ω̂ ∈ argmaxω̂∈Ω̂C

K

E(κK(ω̂))}, where
E(κK(ω̂)) is the entropy of a culpability distribution
κK(ω̂).

Definition 28 (Culpability measure). Let Ω̃K be the

set of best candidates of CK such that {κK(ω̃) | ω̃ ∈ Ω̃K}
are the least biased culpability distributions:

Ω̃K

def
= arg max

ω̂∈Ω̂C
K

E(κK(ω̂)) E(~x)
def
= −

|~x|∑

j=1

~xj ∗ ln(~xj)

Suppose that Ω̃K can be partitioned as {Ω̃0, Ω̃1, . . . , Ω̃p}
with p ∈ N minimal, where Ω̃0 is a (possibly empty) fi-

nite set of points, and for each part Ω̃i≥1, Ω̃i is a solo-
dimensional manifold (see Def. 21 on page 18), and Ck

is Lebesgue integrable on Ω̃i, and ∀ω ∈ Ω̃i, Ck(ω) > 0.
Then, we define the culpability measure of a knowledge
item k in a knowledge content K as the following con-
tinuous geometric mean:

µculp
K

(k)
def
= 1− |Ω̃0|+p

√√√√√




∏

ω̃∈Ω̃0

Ck(ω̃)



 ∗
(

p∏

i=1

ϑ(Ω̃i, k)

)

where ϑ(Ω̃i, k)
def
= exp

( ∫
Ω̃i

ln(Ck(ω̃))dω̃∫
Ω̃i

1dω̃

)
.

Remember that µculp
K

is not defined when Ω̃K cannot
be partitioned into solo-dimensional manifolds. Also,
we should further study the dependence of the culpa-
bility measure on the chosen partition for Ω̃CK

. How-
ever, if K is a linear knowledge base and if the blur
function is hHG (see Def. 16), we then conjecture that

∀ω̃1, ω̃2 ∈ Ω̃KK∀k ∈ KK , Ck(ω̃1) = Ck(ω̃2). Therefore, if
this conjecture holds, then µculp

KK
(k) = 1−Ck(ω̃), where

ω̃ ∈ Ω̃K.
Notice that assuming ⑥, which states that KK

def
=

{Ω̂CK }, is ignoring the candidacy degree of the best
candidates, ie is ignoring the inconsistency measure.
Thus, employing µicst while assuming ⑥ seems to us
somewhat irrational. Therefore, ≡ and µdis in princi-

ples Picst
c and Picst

d should not be instantiated by
e≡ and

µdis
H , hence should be instantiated by

i≡ and µdis
L∞ (or

even by µdis
H̄ ); µicst is thus an internal measure rather

than an external one.

Proposition 13. µicst satisfies principles Picst
a

to Picst
j , unless

e≡ instantiates ≡ in Picst
c and µdis

H in-
stantiates µdis in Picst

d ; in which case, µicst satisfies all
the principles beside Picst

c and Picst
d .

Proof. Picst
a Language invariance. Since the

blur function is language invariant (see princi-

ple PC
9 on page 10), ie CK

i≡ CK⊕v, we have
maxω∈ΩCK(ω) = maxω′∈Ω⊕v CK(ω

′), hence
µicst(K) = µicst(K⊕ v).

Picst
b Separation. Since the blur function satisfies una-

nimity (see principle PC
8 on page 10), ie ∀k ∈ KK ,Ω ∩

k = { ω ∈ Ω | Ck(ω) = 1 }, we have Ω ∩ ⋂
k∈KK

k =
{ ω ∈ Ω | ⋒k∈KCk(ω) = 1 } = { ω ∈ Ω | CK(ω) = 1 }.
Thus, { ω ∈ Ω | CK(ω) = 1 } 6= ∅ iff maxω∈ΩCK(ω) = 1
iff µicst(KK) = 0.

Picst
c Equivalence. If CK1

i≡ CK2 , then CK1 = CK2 ,
hence maxω∈Ω CK1(ω) equals maxω∈ΩCK2(ω); this is

not necessary the case when CK1

e≡ CK2 , ie Ω̂CK1
=

Ω̂CK2
. Hence, µicst satisfies equivalence wrt

i≡, but

not wrt
e≡. Notice that µicst(K1) = µicst(K2) if

µdis
H̄ (CK1 , CK2) = 0.

Picst
d Continuity. We have limi→∞ µicst(Ki) =

µicst(K) iff limi→∞ maxω∈ΩCKi(ω) = maxω∈ΩCK(ω) if
limi→∞ µdis

L∞(CKi , CK) = 0 or limi→∞ µdis
H̄ (CKi , CK) =

0, but not necessary if limi→∞ µdis
H (CKi , CK) = 0.

Picst
e Monotonicity. Let ω̂ be a best candidate of

CK1 . Let ω ∈ Ω be a probability distribution. Thus,
CK1(ω̂) ≥ CK1(ω). Since 1 ≥ CK2(ω), we have
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CK1(ω̂) ≥ CK1(ω) ∗ CK2(ω) = (CK1 ⋒ CK2)(ω) =
(CK1∪K2)(ω). Let ω̂12 be a best candidate of CK1∪K2 .
Thus, µicst(K1) = 1 − CK1(ω̂) ≤ 1 − CK1∪K2(ω̂12) =
µicst(K1 ∪ K2).

Picst
f Strict monotonicity. Let ω̂ be a best candidate of

CK1 . Let ω ∈ Ω be a probability distribution. Thus,
CK1(ω̂) ≥ CK1(ω). if 0 < µicst(K2) then 1 > CK2(ω),
and we have CK1(ω̂) > CK1(ω)∗CK2(ω) = (CK1∪K2)(ω).
Hence µicst(K1) < µicst(K1 ∪ K2).

Picst
g Minimality. By definition of K |= k, we have

k ⊇ Ω̂CK
. Let ω̂ be a best candidate of CK; hence

ω̂ ∈ k. Since the blur function satisfies unanimity (see
principle PC

8 on page 10), we have Ck(ω̂) = 1. Hence,
µculp
K

(k) = 1− Ck(ω̂) = 0.

Picst
h Consequence invariance. By definition of K |= k,

we have k ⊇ Ω̂CK
. Let ω̂1 be a best candidate of CK;

hence ω̂1 ∈ k. Let ω̂2 be a best candidate of CK∪{k}.
By unanimity (see principle PC

8 ), we have Ck(ω̂1) = 1.
Hence, CK(ω̂2) ≤ CK(ω̂1) ∗ 1 = CK(ω̂1) ∗ Ck(ω̂1) =
CK∪{k}(ω̂1) ≤ CK∪{k}(ω̂2) = CK(ω̂2) ∗ Ck(ω̂2). There-
fore, CK(ω̂2) ≤ CK(ω̂2) ∗ Ck(ω̂2) then Ck(ω̂2) = 1.
Finally, we deduce from CK(ω̂1) = CK∪{k}(ω̂2) that
µicst(K) = µicst(K ∪ {k}).

Picst
i Dominance. Let ω ∈ Ω be a probability distribu-

tion. Firstly, suppose that ω is in k1 (hence in k2); thus,
Ck1(ω) = 1 = Ck1(ω) by unanimity (see principle PC

8 ).
Secondly, suppose that ω /∈ k1 and ω ∈ k2; thus,
Ck1(ω) < 1 = Ck2(ω) by PC

8 . Thirdly, suppose that
ω /∈ k1 and ω /∈ k2; thus, Ck1(ω) < 1 and Ck2(ω) < 1
by PC

8 , and by proximity (see principlePC
7 on page 10),

k1 |= k2 implies k2 ⊇ k1 hence ω is nearer to k2 than to
k1: Ck1(ω) ≤ Ck2(ω) < 1. Thus, for any probability
distribution ω ∈ Ω, we have Ck1(ω) ≤ Ck2(ω). Hence,
CK∪{k1} = CK ∗ C{k1} ≤ CK ∗ C{k2} = CK∪{k2}. There-
fore, µicst(K ∪ {k1}) ≥ µicst(K ∪ {k2}).

Picst
j Equitable distribution. Suppose that µculp

K
(k) is

defined for every knowledge item k of K (see Def. 28).

Let f(~x)
def
= 1−∏(~1−~x), where we denote by ~x the vec-

tor of culpability measures of the knowledge items of K.
Let ω̃ ∈ Ω̃CK

. Thus,
∏
(~1− ~x) equals

∏
k∈K

1− µculp
K

(k)

equals |Ω̃0|+p

√∏
ω̃∈Ω̃0

∏
k∈K

Ck(ω̃) ∗
∏p
i=1

∏
k∈K

ϑ(Ω̃i, k)

where
∏

k∈K
ϑ(Ω̃i, k) = exp

( ∫
Ω̃i

ln(
∏

k∈K
Ck(ω̃))dω̃∫

Ω̃i
1dω̃

)
.

Since CK(ω̃) =
∏

k∈K
Ck(ω̃) is constant,

∏
k∈K

ϑ(Ω̃i, k) = exp

( ∫
Ω̃i

ln(CK(ω̃))dω̃
∫
Ω̃i

1dω̃

)
=

exp

(
ln(CK(ω̃)) ∗

∫
Ω̃i

1dω̃
∫
Ω̃i

1dω̃

)
= CK(ω̃), and

∏
(~1 − ~x)

equals |Ω̃0|+p

√∏
ω̃∈Ω̃0

CK(ω̃) ∗
∏p

i=1 CK(ω̃), which

equals CK(ω̃). Since ω̃ is a best candidate of CK, we
conclude that f(~x) = 1−CK(ω̃) = µicst(K).

Shapley Inconsistency Value

Besides, another culpability measure could be the Shap-
ley Inconsistency Value, SIV for short, which appears
in [18, Def. 9] for set of propositions. Let I be an in-
consistency measure for knowledge contents, like µicst.
Thus the SIV-based culpability measure of a knowledge
item k belonging to a knowledge content K is defined as
follows (where ⊆ operates on multisets):

µSIV
I,K (k)

def
=
∑

C⊆K

(|C|−1)!(|K|−|C|)!
|K|! (I(C)− I(C \ {k}))

Moreover, an SIV-based culpability measure induces
the following SIV-based inconsistency measure (see [18,
Def. 10]):

µSIV
I (K)

def
= max

k∈K

µSIV
I,K (k)

Further studies might define I(K) as the number of min-
imal inconsistent subsets of K, like in [18, Def. 11]:

IMI(K)
def
= |{ C ⊆ K | ΩC = ∅ and ∀B ⊂ C,ΩB 6= ∅ }|

While µSIV
IMI

satisfies significant principles like language

invariance, it is not continuous, wrt neither µdis
L∞ , µdis

H ,
nor µdis

H̄ .

Towards a Σ-culpability measure

Our inconsistency measure (see Def. 26) together with
its culpability measure (see Def. 28) does not satisfy dis-
tribution property proposed in [18, Def. 12]. This prop-
erty expresses that the culpability measures of the items
of a knowledge content K should sum up to the inconsis-
tency measure of K. By comparing this property with
equitable distribution (see principle Picst

j ), we remark
that the former is an instance of the latter: distribution
property forces the symmetric function f in Picst

j to

be f(~x)
def
=
∑
~x. The following inconsistency measure

together with its Σ-culpability measure satisfies distri-

bution property: µΣicst(K)
def
= − ln(1 − µicst(K)) and

µΣculp
K

(k)
def
= − ln(1− µculp

K
(k)). Notice that µΣicst satis-

fies principles Picst
a to Picst

j since − ln(1−x) is not only
continuously and strictly increasing when x ∈ [0:1], but
also equal to 0 when x = 0.

3.3.4 Conclusions

Our main contribution is twofold: firstly, we establish
several principles to be satisfied by an inconsistency
measure when applied to a knowledge content. Sec-
ondly, we define an inconsistency measure, together
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with its culpability measure, that satisfies these prin-
ciples. To our knowledge, neither principles nor incon-
sistency measures for knowledge bases in K exist in the
literature.

Proposition 13 not only shows that our inconsis-
tency measure is robust against slight fluctuations in
the knowledge base, since it satisfies continuity (see
principle Picst

d ), but also that our inconsistency mea-
sure can be utilised to compare knowledge bases about
different topics, since it satisfies language invariance
(see principle Picst

a ).
In future research, our inconsistency measure should

be compared to the one defined in [18] for propositional
knowledge bases, which are a special case of KL, and
especially to the one defined in [42] for conditional prob-
abilistic knowledge bases, which is again a subset of K.

3.4 Incoherence measure µicoh: to quan-

tify the consensus gap

An incoherence measure computes how far two candi-
dacy functions C1 and C2 are from reaching a consen-
sus, where these candidacy functions are underlain by
a common propositional language.

3.4.1 Principles

Picoh
I Language invariance. An incoherence measure is

invariant by language enrichment.

µicoh(C1, C2) = µicoh(C1 ⊕ v, C2 ⊕ v)

Picoh
II Separation. Candidacy functions are not incoher-

ent iff they nominate at least one same candidate.

µicoh(C1, C2) = 0 iff Ω̂C1 ∩ Ω̂C2 6= ∅

Picoh
III Equivalence. Equivalent pairs of candidacy func-

tions have equal incoherence measure.

if C1 ≡ C3 and C2 ≡ C4

then µicoh(C1, C2) = µicoh(C3, C4)

Picoh
IV Continuity. When two candidacy functions

change continuously, so their incoherence measure
does, wrt a certain notion of convergence (see
Def. 25 on page 20). This principle (together with
symmetry, see Picoh

V ) ensures a certain robustness
for µicoh in the face of minor fluctuations.

if limi→∞ µdis(Ci, C) = 0 and X ∈ C

then limi→∞ µicoh(Ci, X) = µicoh(C,X)

Picoh
V Symmetry. An incoherence measure is commuta-

tive.
µicoh(C1, C2) = µicoh(C2, C1)

Picoh
VI Consequence invariance. The incoherence measure

between C1 and C2 equals the one between C2 and
the mergence of C1 with one of its consequences
C.

if C1 |= C then µicoh(C1, C2) = µicoh(C1 ⋒ C,C2)

3.4.2 Vertical incoherence measure µicoh
V :

potential versus real consistency de-

grees

Definition 29 (Vertical incoherence measure). The
vertical incoherence measure of two candidacy func-
tions C1 and C2 is the difference between the potential
maximal “consistency degree”, ie C1(ω̂1) ∗ C2(ω̂2), and
the real “consistency degree”, ie (C1 ⋒ C2)(ω̂12), where

ω̂1

def∈ Ω̂C1 , ω̂2

def∈ Ω̂C2 , and ω̂12

def∈ Ω̂C1⋒C2 :

µicoh
V (C1, C2)

def
= C1(ω̂1) ∗ C2(ω̂2)− (C1 ⋒ C2)(ω̂12)

Proposition 14. µicoh
V satisfies principles Picoh

I , Picoh
II ,

Picoh
III wrt

i≡ but not wrt
e≡, Picoh

V , but not Picoh
IV ; µicoh

V

satisfies nevertheless a weaker form of continuity.

Proof. Picoh
I Language invariance. From the definition

of ⊕, we have ∀ω̂ ∈ Ω̂C ,∀ω̂′ ∈ ω̂ ⊕ v, C(ω̂) = (C ⊕
v)(ω̂′). Let ω′

1 ∈ ω1 ⊕ v, ω′
2 ∈ ω2 ⊕ v, and ω′

12 ∈
ω12 ⊕ v. Therefore, µicoh

V (C1, C2) = C1(ω̂1) ∗ C2(ω̂2) −
(C1 ⋒ C2)(ω̂12) = (C1 ⊕ v)(ω̂′

1) ∗ (C2 ⊕ v)(ω̂′
2) − (C1 ⊕

v ⋒ C2 ⊕ v)(ω̂′
12) = µicoh

V (C1 ⊕ v, C2 ⊕ v).

Picoh
II Separation. µicoh

V (C1, C2) = 0 iff C1(ω̂1) ∗
C2(ω̂2) = (C1⋒C2)(ω̂12) iff C1(ω̂1)∗C2(ω̂2) = C1(ω̂12)∗
C2(ω̂12) iff C1(ω̂1) = C1(ω̂12) and C2(ω̂2) = C2(ω̂12)
because C1 is maximal for ω̂1, and C2 is maximal for
ω̂2. Therefore, µicoh

V (C1, C2) = 0 iff ω̂12 ∈ Ω̂C1 ∩ Ω̂C2

iff Ω̂C1⋒C2 ⊆ Ω̂C1 ∩ Ω̂C2 . Notice furthermore that
Ω̂C1 ∩ Ω̂C2 ⊆ Ω̂C1⋒C2 always holds because ω̂ ∈
Ω̂C1 ∩ Ω̂C2 , ∀ω ∈ Ω, (C1 ⋒ C2)(ω) = C1(ω) ∗ C2(ω) ≤
C1(ω̂) ∗ C2(ω̂) = (C1 ⋒ C2)(ω̂). We thus conclude
that Ω̂C1 ∩ Ω̂C2 6= ∅ iff Ω̂C1 ∩ Ω̂C2 = Ω̂C1⋒C2 iff
µicoh
V (C1, C2) = 0.

Picoh
III Equivalence. In case Θ(C1) = Θ(C2) = Θ(C3) =

Θ(C4), (C1
i≡ C3 and C2

i≡ C4) iff (C1 = C3 and
C2 = C4). Therefore, µicoh

V (C1, C2) = µicoh
V (C3, C4).

The following counter-example shows that µicoh
V does

not satisfy Picoh
III wrt

e≡. Recall that (C1
e≡ C3 and

C2
e≡ C4) iff (Ω̂C1 = Ω̂C3 and Ω̂C2 = Ω̂C4). Suppose

that C1 = C3, Ω̂C2 = Ω̂C4 , Ω̂C1 ∩ Ω̂C2 = ∅, ∀ω̂ ∈
Ω̂C4 , C2(ω̂) = C4(ω̂), ∀ω /∈ Ω̂C4 , C2(ω) = C4(ω)

2
> 0

where Ω \ Ω̂C2 6= ∅, and Ω̂C3⋒C4 ∩
(
Ω̂C3 ∪ Ω̂C4

)
. We

thus have C1(ω̂1) ∗ C2(ω̂2) = C3(ω̂3) ∗ C4(ω̂4), and
(C1 ⋒ C2)(ω̂12) = (C3 ⋒ C2)(ω̂34), where ω̂i ∈ Ω̂Ci and
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ω̂ij ∈ Ω̂Ci⋒Cj . However, (C3 ⋒ C2)(ω̂34) = C3(ω̂34) ∗
C2(ω̂34) = C3(ω̂34)∗ C4(ω̂34)

2
= (C3⋒C4)(ω̂34)

2
. Therefore,

µicoh
V (C1, C2) = C1(ω̂1) ∗ C2(ω̂2) − (C1 ⋒ C2)(ω̂12) =

C3(ω̂3)∗C4(ω̂4)− (C3⋒C4)(ω̂34)
2

> µicoh
V (C3, C4) whereas

(C1
e≡ C3 and C2

e≡ C4).

Picoh
IV Continuity. We now show that µicoh

V satis-
fies a weaker form of continuity, but not Picoh

IV . Let
ω̂i ∈ Ω̂Ci , ω̂C ∈ Ω̂C , ω̂X ∈ Ω̂X , ω̂iX ∈ Ω̂Ci⋒X , and
ω̂CX ∈ Ω̂C⋒X be five best candidates. Thus we have
limi→∞ µicoh

V (Ci, X) = µicoh
V (C,X) iff limi→∞Ci(ω̂i) ∗

X(ω̂X) − (Ci ⋒ X)(ω̂iX) = C(ω̂C) ∗ X(ω̂X) − (C ⋒

X)(ω̂CX), if not only limi→∞ µdis
L∞(Ci, C) = 0 but

also both limi→∞ µdis
H (Ci, C) = 0 and limi→∞ µdis

H (Ci⋒
X,C ⋒X) = 0. Remark that the proof of Prop. 12 ex-
hibit a counter-example where limi→∞ µdis

L∞(Ci, C) = 0
does not imply limi→∞ µdis

H (Ci, C) = 0.

Picoh
V Symmetry. Let ω̂i ∈ Ω̂Ci and ω̂ij ∈ Ω̂Ci⋒Cj ,

where i ∈ {1, 2}. Thus, from the commutativity
of ∗ and ⋒, it follows that Ω̂C2⋒C1 = Ω̂C1⋒C2 and
µicoh
V (C1, C2) = C1(ω̂1) ∗ C2(ω̂2) − (C1 ⋒ C2)(ω̂12) =
C2(ω̂2) ∗ C1(ω̂1)− (C2 ⋒ C1)(ω̂21) = µicoh

V (C2, C1).

3.4.3 Gap-based incoherence measure µicoh
G :

the gap between the best candidates

Definition 30. A gap-based incoherence measure com-
putes the gap between the best candidates of two candi-
dacy functions C1 and C2:

µicoh
G (C1, C2)

def
=

√
2n ∗ G(Ω̂C1 , Ω̂C2)

Proposition 15. µicoh
G satisfies principles Picoh

II , Picoh
III

wrt
e≡ but not wrt

i≡, Picoh
IV wrt µdis

H (or µdis
H̄ ) but not

wrt µdis
L∞ , Picoh

V , and Picoh
VI .

Proof. Picoh
II Separation. µicoh

V (C1, C2) = 0 iff
G(Ω̂C1 , Ω̂C2) = 0 iff Ω̂C1 ∩ Ω̂C2 6= ∅.

Picoh
III Equivalence. Since

i≡ implies
e≡, it suffice to

prove that µicoh
G satisfies Picoh

III wrt
e≡. If (C1

e≡ C3 and

C2
e≡ C4) when a common underlying language is as-

sumed, then (Ω̂C1 = Ω̂C3 and Ω̂C2 = Ω̂C4). Therefore,
G(Ω̂C1 , Ω̂C2) = G(Ω̂C3 , Ω̂C4), as required.

Picoh
IV Continuity. µicoh

G is continuous wrt µdis
H if

limi→∞ H(Ω̂Ci , Ω̂C) = 0 iff limi→∞ µdis
H (Ci, C) = 0.

However, µicoh
G is not continuous wrt µdis

L∞ for the
same reason as limi→∞ µdis

L∞(Ci, C) = 0 does not im-
ply limi→∞ µdis

H (Ci, C) = 0 (see Prop. 12).

Picoh
V Symmetry. Since ⋒ and G are symmetric, µicoh

G is
symmetric.

Picoh
VI Consequence invariance. If C1 |= C then

∀ω̂ ∈ Ω̂C1 , C(ω̂) = 1, hence Ω̂C1⋒C = Ω̂C1 There-
fore, µicoh

G (C1, C2) =
√
2n ∗ G(Ω̂C1 , Ω̂C2) =

√
2n ∗

G(Ω̂C1⋒C , Ω̂C2) = µicoh
G (C1 ⋒ C,C2).

We furthermore stress that µicoh
G is σ-invariant, since

Prop. 9 on page 14 states that the best candidates are
σ-invariant. Besides, we conjecture that µicoh

G satisfies
language invariance (see principle Picoh

I ).

On measuring the surprise If we deem the sur-
prise to be the incoherence between what common sense
would dictate us to believe wrt our beforehand knowl-
edge Cprior, and what someone tells us now Cnow, then
we might define our first surprise measure as follows:

µsurp
1 (Cnow, Cprior)

def
= µicoh(Cnow, CI(Cprior))

where I is a commonsensical inference process (see
chapter 4) returning the set of elected probability dis-
tributions for representing the real world; this set is
interpreted as a knowledge item k, and µsurp

1 is the in-
coherence between Cnow and Ck. Differently, and if
we suppose that I to be an inference process return-
ing a unique probability distribution, we then might
define our surprise measure as the Kullback–Leibler di-

vergence (or relative entropy) from {ωprior} def
= I(Cprior)

to {ωnow} def
= I(Cnow):

µsurp
KL (Cnow, Cprior)

def
=
∑

α∈αΘ

ωnow(α) ∗ ln
(
ωnow(α)

ωprior(α)

)

µsurp
KL is related to the formal Bayesian theory of surprise

appearing in [19].

On considering candidacy degrees We also pro-
pose an incoherence measure µicoh

Ḡ which is similar to

µicoh
G but takes into account the candidacy degree of the

best candidates. Thus, it satisfies a stronger version of
separation (see principle Picoh

II ): “candidacy functions
are not incoherent iff they nominate at least one same
candidate with the same candidacy degree”.

µicoh
Ḡ (C1, C2)

def
=

√
2n ∗ G





{
[ω̂;C1(ω̂)]

∣∣∣ ω̂ ∈ Ω̂C1

}
,

{
[ω̂;C2(ω̂)]

∣∣∣ ω̂ ∈ Ω̂C2

}





3.5 Precision measure µpre

Our precision measure counts the number of best can-
didates Ω̂C for representing the real world, wrt a can-
didacy function C. These best candidates are graphi-
cally represented by manifolds of different dimensions
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in a Euclidean space. From the hypervolumes of these
heterogeneous manifolds, our measure computes a real
number representing the precision of C. Thus, µpre(C)
quantifies the range of choice4 an inference process (see
chapter 4) have for electing one probability distribution
from the best candidates: the more numerous the best
candidates, the less precise the candidacy function.

3.5.1 Introduction

In a multisensor context, it may be useful to rank each
sensor (or sensor group) from the most precise to the
least in order to reconfigure the latter. This rank is de-
fined by a precision measure that orders the knowledge
(represented as candidacy functions) provided by the
sensors. Again, to our knowledge, no precision mea-
sure exists for linear knowledge bases. We thus strive
to exhibit the first principled precision measure for C.

Introductory example Suppose we temporarily

note C[a:b] def
= C{“b≥ω(v)”;“−a≥−ω(v)”} the candidacy

function corresponding to the following knowledge:
“the probability of v, ie getting a tail after tossing
a coin, is between a and b”. If we have no infor-
mation about this coin, then our initial knowledge is
empty, ie C[0%:100%] is tautological. If someone tells
us that this coin is perfectly designed such that the
probability of getting a tail after tossing the coin is ex-
actly 50%, then our updated knowledge is C[50%:50%].
We claim that C[0%:100%] is strictly less precise than
C[50%:50%] , ie C[0%:100%] ≺pre C[50%:50%] where ≺pre

is the strict order relation induced by a precision or-
dering �pre. We shall also attempt at defining a pre-
cision measure µpre : C 7→ R such that C1 �pre C2

iff µpre(C1) ≤ µpre(C2). We furthermore claim that
C[0%:100%] ≺pre C[80%:90%] ≺pre C[0%:50%].

The intuition behind �pre (hence µpre) is that the
smaller [a:b], the more precise C[a:b]. Word smaller
refers to a notion of cardinality of the best candidates
of C[a:b], which is roughly b − a here (in fact, we shall
show in the proof of Prop. 20 that Ω̂C[a:b] does not nec-

essary contain as many best candidates as Ω̂C[a−δ:b−δ] ,
where 0 < δ ≤ a ≤ b). We could define C1 �pre C2

as Cardinality(Ω̂C1) ≤ Cardinality(Ω̂C2) if the set of
best candidates would be finite (like Ω̂C[50%:50%]), but

it can be infinite (like Ω̂C[80%:90%] ). We shall there-
fore introduce a function V that returns the volume
occupied by the best candidates in a Euclidean space:
thus, C1 �pre C2 iff V(Ω̂C1 ) ≤V V(Ω̂C2). A similar

4Notice our definition for a precision measure is not the quan-
tification of the difficulty (instead of the range of choice) for an
inference process to elect one probability distribution from the
best candidates. For example, if we consider inference process
IE
ME, then it is easier to select one probability distribution from

a convex set of best candidates than from the best candidates
of a symmetric multimodal candidacy function centred in Ω.

idea of concentration of possibilities appears in [10] as
the peakedness of probability distributions; in this the-
sis, we attempt to measure the peakedness of candidacy
functions at the external level of knowledge content (see§ 2.3.6 on page 15). Besides, remark that C[a:b] is as
informative as C[50%:50%] according to the well known
entropy information measure, for any a and b such that
0% ≤ a ≤ 50% ≤ b ≤ 100%. This entropy-based infor-
mation measure is used in [23] to quantify the “infor-
mation” of one probability distribution representative
of a set of propositional sentences.

In the reminder of this section, we establish several
principles for precision measures. We then intuitively
and naively define our first precision measure, which
satisfies most of the principles, yet not the language
invariance (see principle P

preci
A ) stating that a mea-

sure should not change when the knowledge domain is
dynamically enriched with new topics (ie new proposi-
tional variables); this occurs when a new kind of sensor
is plugged into the multisensor system. Thus, this prin-
ciple must be satisfied in such a system. After investi-
gating the reason for our first measure to not being lan-
guage invariant, we define a second precision measure
holding this property, yet releasing other principles.

3.5.2 Principles

In this section, we state several principles to be satisfied
by a precision measure µpre returning a positive real
number when applied to a candidacy function. Most
of these principles extend those listed in [3, page 224]
that relates the works of Lozinskii [28], Konieczny [24],
and Knight [23] about information measures for sets of
propositional sentences.

P
preci
A Language invariance. A precision measure is in-

variant by language enrichment. This principle ex-
tends property 10 of [3, page 224].

µpre(C) = µpre(C ⊕ v)

P
preci
B Lower bound. A candidacy function C nominates

each probability distribution to be a best candidate
iff C is not precise. This principle extends prop-
erties 1 and 8 of [3, page 225], which state that
tautologies (eg 1C) and contradictions (eg 0C) have
null information value.

Ω̂C = Ω iff µpre(C) = 0

P
preci
C Singleton bound. The most precise candidacy func-

tions underlain by a propositional language Θ, de-
noted by M(Θ), nominate a unique best candidate
ω̂ such that ω̂(α) = 1, where α is a minterm of Θ.
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This principle extends property 6 of [3, page 225].

M(Θ)
def
=




 C ∈ C

∣∣∣∣∣∣

Θ(C) = Θ and

Ω̂C = {ω̂} and
∃α ∈ αΘ, ω̂(α) = 1






if C1 /∈ M(Θ) and C2 ∈ M(Θ) and Θ(C1) = Θ(C2)
then µpre(C1) < µpre(C2)

P
preci
D Language bound. The most precise candidacy func-

tions underlain by a given propositional language
Θ are less precise than the most precise candidacy
functions underlain by Θ⊕v, which is more expres-
sive than Θ. This principle extends property 9′

of [3, page 226]:

if C1 ∈ M(Θ) and C2 ∈ M(Θ⊕ v)
then µpre(C1) < µpre(C2)

P
preci
E Bounds. A precision measure is bounded by con-

stants 0 and f(Θ(C)), where f is a strictly in-
creasing function over propositional languages, ie
Θ1 ⊂ Θ2 iff f(Θ1) < f(Θ2). The lower bound
0 means that a candidacy function is not precise
(see P

preci
B ). The upper bound f(Θ(C)) means

that the more expressive the language is, the more
precise the candidacy function can be (see P

preci
D ).

This principle extends property 7 of [3, page 225].

0 ≤ µpre(C) ≤ f(Θ(C))

P
preci
F Strict monotonicity. If the best candidates of a

candidacy function C1 form a strict superset of the
best candidates of a candidacy function C2, then
C1 is strictly less precise than C2. This principle
generalises the following property, which extends
property 4 of [3, page 224]: if a knowledge item
k is not a consequence, wrt |=ff , of a knowledge
content K such that Ω ∩ k ∩⋂

t∈K
t 6= ∅, then CK is

less precise than CK∪{k}.

if Ω̂C1 ⊃ Ω̂C2 then µpre(C1) < µpre(C2)

P
preci
G Equivalence. Equivalent candidacy functions are

equally precise. This principle extends properties 3
and 9 of [3, page 225].

if C1 ≡ C2 then µpre(C1) = µpre(C2)

P
preci
H Continuity. When a candidacy function changes

continuously, so its precision measure does. This
principle ensures a certain robustness against slight
fluctuations in the candidacy function. However,
we do not require µpre of satisfying this principle
if µpre is only used for ranking purpose.

if limi→+∞ µdis(Ci, C) = 0
then limi→+∞ µpre(Ci) = µpre(C)

Negation of a candidacy function Since we do not
define the concept of negation for a candidacy function,
we do not generalise property 2 and 5 of [3, page 224],
which states that the introduction of a contradiction
decreases the amount of information. Property 5 is for-
malised as follows: a consistent set ∆ of propositional
sentences is more informative than its mergence with
¬θ if ∆ entails θ, ie if the minterms of ∧φ∈∆ are also
minterms of θ: α∧φ∈∆φ ⊆ αθ. We agree with prop-
erty 5 in terms of sets of propositional sentences. How-
ever, in terms of knowledge bases, the mergence of the

constraint c
def
= “0 ≥ ω(α1)” with the knowledge base

K
def
= {“ω(α1) ≥ ǫ”} is more precise than K if ǫ > 0

tends towards 0 (which means that K tends to be tau-
tological henceK tends to be void of information), even
though K is consistent and K ∪ {c} is inconsistent.

3.5.3 Complete precision measure µ
pre
ր : the

number of best candidates

In this section, we only consider candidacy functions
of which their set of best candidates can be parti-
tioned as {Ω̂0, Ω̂1, . . . , Ω̂P } with P ∈ N, where Ω̂0 is
a (possibly empty) finite set of points, and where each
part Ω̂p≥1 is a closed solo-dimensional manifold (see

Def. 21 on page 18). We denote by C

∫
⊂ C the set of

such candidacy functions. For example, if K is a linear
knowledge base, then Ω̂CK is a closed convex set, hence

CK ∈ C

∫
.

Volume of the best candidates V(Ω̂C)
An i-hypervolume is the Lebesgue measure of a mani-
fold in a Euclidean space of dimension i. An i-manifold
is a manifold of dimension i, ie with a non-null i-
hypervolume. A 0-manifold is a finite set of points
and its 0-hypervolume is the cardinality of this finite
set. Let N : R

+ 7→ [0:1] be a strictly increasing bi-
jection, which will serve as normalising function; we

arbitrarily choose N (x)
def
= x

1+x
. Let C ∈ C

∫
be a

candidacy function underlain a propositional language
with n variables. Let {Ω̂0, Ω̂1, . . . , Ω̂P } be the partition
for Ω̂C . We now define V(Ω̂C) as the vector ~v ∈ R

2n+1

such that ~v0
def
= N (|Ω̂0|) and its ith element ~vi is the

Lebesgue measure in dimension i of Ω̂C , denoted by∫
i

Ω̂C
: ~vi

def
= N (

∑P
p=1

∫
i

Ω̂p
1dω̂). Furthermore, ~vi

def
= 0 for

i ≥ 2n + 1.
For example, if a set of best candidates Ω̂C ⊂

R
2n , with n = 2, is made of three isolated prob-

ability distributions and one tetrahedron having a
3-hypervolume equal to 0.2, then V(Ω̂C) returns
[N (3);N (0);N (0);N (0.2);N (0)], which we simply de-
note by N [3; 0; 0; 0.2; 0]. If K is a linear knowledge
base, then Ω̂CK is a convex polytope of which the vol-
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ume V(Ω̂CK ) is a vector full of zeros except for its ith

element that is the i-hypervolume of the polytope. An
algorithm finding the exact hypervolume of a polytope
is given in [32].

Proposition 16. If Ω is underlain by a propositional
language with n variables, then its 2n-hypervolume is√

2n

(2n−1)!
.

Proof. Let C be a candidacy function underlain by a

propositional language with n variables and J
def
= 2n

minterms. Let VJ be the J-hypervolume of the poly-
tope defined by the vertices [~0, IJ ], where each column
is a vertex, ~0 is the origin, and IJ is the identity matrix

J × J . Formally, VJ is inductively defined by V1
def
= 1

and VJ
def
=
∫ 1

0
VJ−1 ∗ xJ−1dx = VJ−1 ∗

∫ 1

0
xJ−1dx =

VJ−1 ∗
(

1J

J
− 0J

J

)
= VJ−1 ∗ 1

J
= 1

J!
. Let SJ be the

hypervolume of Ω, which is the polytope defined by
the vertices represented by IJ , where each column de-
notes a vertex. Thus, SJ is a hypervolume in dimen-
sion J − 1, which corresponds to the hypervolume of a
main diagonal of the unit hypercube of the Euclidean
space of dimension J . Let hJ be the altitude from
the diagonal IJ to the origin ~0. Let ~x be the foot of
the altitude. Since point ~x belongs to the diagonal
IJ , we have 1 =

∑J

j=1 ~xj . By symmetry, each ele-

ment ~xj has the same value, hence 1 =
∑J
j=1 ~xj im-

plies that 1 = J ∗ ~xj , then 1
J

= ~xj . The length of

hJ is the distance between ~x and ~0: hJ = ‖~x − ~0‖ =√∑J
j=1 ~ω

2
j =

√∑J
j=1

1
J2 =

√
J ∗ 1

J2 = 1√
J
. Since we

have VJ =
∫ hJ
0

SJ∗
(
x
hJ

)J−1

dx = SJ

h
J−1
J

∗
∫ hJ
0

xJ−1dx =

SJ

h
J−1
J

∗
(
hJJ
J

− 0J

J

)
= SJ

h
J−1
J

∗ h
J
J
J

= SJ ∗ hJJ , we also have

SJ = VJ ∗ J
hJ

. Therefore, SJ = 1
J!

∗ J
1√
J

=
√
J

(J−1)!
.

Precision ordering relation �pre

The precision ordering relation �pre ranks two candi-
dacy functions in C

∫
as follows.

Definition 31. C1 is strictly less precise than C2, de-

noted by C1 ≺pre C2, iff ~v
def
= V(Ω̂C1⊕vars(C2)) is greater

than ~w
def
= V(Ω̂C2⊕vars(C1)) wrt the following lexico-

graphic order: ∃i ∈ N,∀j > i, (~vj = ~wj) and (~vi < ~wi).
C1 is (equally or) less precise than C2, denoted by
C1 �pre C2, iff ~v = ~w or C1 ≺pre C2.

Remark that this order expresses that an i-
hypervolume is lower than a j-hypervolume if i < j,
ie, any finite set of points fits into any curve, any curve
of finite length fits into any 2D-surface, and any 2D-
surface of finite area fits into any 3D-volume.

Proposition 17. Pε(~v) < Pε(~w) iff ~v is strictly greater
than ~w wrt the lexicographic order (∃i ∈ N,∀j >
i, (~vj = ~wj) and (~vi < ~wi)), where ~v, ~w ∈ R

J+1, J ∈
N, and ε ∈ R

+ such that the smallest distinguish-
able difference between two j-hypervolumes |~vj − ~wj | is
greater that ε > 0 for all j ∈ {1, 2, . . . , J+1}, and where
Pε(~v) is defined as follows:

Pε(~v) def
=

|~v|∑

j=0

~vj ∗
(
2

ε
+ 2

)j

Proof. In order to define our precision measure from
a volume, ie a real number from a vector, we define
an injective function Pε : R2n+1 7→ R that preserves
the total order: ~v ≤V ~w iff Pε(~v) ≤ Pε(~w), where ~v
and ~w are two volumes. We recall that a volume is a
vector, ~v say, in ]−1:1]2

n × ]0:1], and that ~vj
def
= 0 for

j > 2n + 1. A univariate polynomial P~v : R 7→ R is

defined by P~v(x)
def
=
∑+∞
j=0 ~vj ∗ xj , where ~v is the vector

of its coefficients. We know that, for any two volumes ~v
and ~w, ∃x̂ ∈ R

+,∀x > x̂ > 1,
(
~v <V ~w

)
⇐⇒ P~v(x) <

P~w(x). Such an x̂ depends on the kth element of any
vectors ~v and ~w, where k is such that ∀j > k,~vj = ~wj
and ~vk < ~wk. Thus, such an x̂ satisfies

P~v(x̂) < P~w(x̂) (3.1)

iff 0 < P~w(x̂) − P~v(x̂) iff 0 <
∑+∞
j=0 ~wj ∗ x̂j −∑+∞

j=0 ~vj ∗ x̂j iff 0 <
∑+∞
j=0(~wj − ~vj) ∗ x̂j iff

0 <
(∑+∞

j=k+1(~wj − ~vj) ∗ x̂j
)

+
(
(~wk − ~vk) ∗ x̂k

)
+

(∑k−1
j=0 (~wj − ~vj) ∗ x̂j

)
iff

0 < (~wk − ~vk) ∗ x̂k +
k−1∑

j=0

(~wj − ~vj) ∗ x̂j (3.2)

Since ~wj , ~vj ∈ [−1:1], we have ~wj − ~vj ∈ [−2:2]. The
worst case for inequality (3.2) to be satisfied by x̂ is

reached when ~wj − ~vj = −2. Let ǫ
def
= ~wk − ~vk ∈ R

+.
Thus, x̂ satisfies inequality (3.2) if 0 < ǫ∗x̂k+∑k−1

j=0 −2∗
x̂j iff 0 < ǫ ∗ x̂k − 2 ∗ x̂k−x̂0

x̂−1
iff x̂k−1

x̂−1
< ǫ

2
∗ x̂k iff x̂k −

1 < ǫ
2
∗ x̂k ∗ (x̂ − 1) iff 1 − x̂−k < ǫ

2
∗ 1 ∗ (x̂ − 1) iff

x̂−k > 1 + ǫ
2
∗ (1− x̂) iff

x̂−k +
ǫ

2
∗ x̂ > 1 +

ǫ

2
(3.3)

According to inequality (3.3), if x̂−k > 1+ ǫ
2
or ǫ

2
∗ x̂ >

1 + ǫ
2
, then x̂ satisfies inequality (3.1). Since condition

ǫ
2
∗ x̂ > 1+ ǫ

2
does not explicitly depend on k, we choose

to make x̂ satisfy it. Thus, x̂ satisfies inequality (3.1)
if ǫ

2
∗ x̂ > 1 + ǫ

2
iff x̂ > (1 + ǫ

2
) ∗ 2

ǫ
iff x̂ > 2

ǫ
+ 1, and

finally, if x̂ > 2
~wk−~vk + 1. Let ε > 0 be the smallest

distinguishable difference between the j-hypervolumes
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of two manifolds of dimension j, ie, for any two volumes
~v and ~w, ∀j ∈ N, ε ≤ |~wj − ~vj |. Therefore, for k as
previously defined, ε is always smaller than ~wk − ~vk.

Hence, if x̂
def
= 2

ε
+ 2, then x̂ > 2

ε
+ 1 and ~v <V ~w ⇐⇒

P~v(x̂) < P~w(x̂). We thus conclude that all univariate

polynomials are totally ordered at x̂
def
= 2

ε
+ 2.

Complete precision measure µpre
ր

Definition 32. (Complete precision measure) The
complete precision measure of a candidacy function
C ∈ C

∫
is founded upon the volume of its best can-

didates, where ε > 0 is the smallest distinguishable dif-
ference between two j-hypervolumes.

µpre
ր (C)

def
= Pε(V(Ω))− Pε(V(Ω̂C))

Proposition 18. C1 �pre C2 iff µpre
ր (C1) ≤ µpre

ր (C2),
when Θ(C1) = Θ(C2) and ε > 0 is the smallest distin-
guishable difference between two j-hypervolumes.

Proof. This proposition follows from Prop. 17.

Proposition 19. If we only consider candidacy func-
tions in C

∫
and a tolerance ε > 0 representing

the smallest distinguishable difference between two j-
hypervolumes, then µpre

ր satisfies principles P
preci
B ,

P
preci
D , P

preci
E , P

preci
F , and P

preci
G . However, µpre

ր does

not satisfy principles P
preci
A , Ppreci

C , and P
preci
H .

Proof. P
preci
A Language invariance. The counter-

example in Prop. 20 shows that µpre
ր does not satisfy

principle P
preci
A .

P
preci
B Lower bound. Ω̂C = Ω iff Pε(V(Ω̂C )) = Pε(V(Ω))

iff 0 = Pε(V(Ω̂C))−Pε(V(Ω)) = µpre
ր .

P
preci
C Singleton bound. The following counter-example

shows that µpre
ր does not satisfy principle P

preci
C . Let

C1 be a candidacy function such that its single best
candidates ω̂1 is such that ∀α ∈ αΘ(C1), ω̂1(α) 6= 1;

hence, C1 /∈ M(Θ). Let C2 ∈ M(Θ) and {ω̂2} def
= Ω̂C2 .

Thus, V(Ω̂C1) = V({ω̂1}) = N [1; 0; . . . ; 0] = V({ω̂2}) =
V(Ω̂C2 ). Therefore, µpre

ր (C1) = µpre
ր (C2). Besides, it

seems that µpre
v (C)

def
= Pε(V(Ω ⊕ v)) − Pε(V(Ω̂C⊕v))

would satisfy P
preci
C if v /∈ vars(C).

P
preci
D Language bound. Let Θ be a language not con-

taining a propositional variable v. Let C1 ∈ M(Θ) and

{ω̂1} def
= Ω̂C1 . Let C2 ∈ M(Θ ⊕ v) and {ω̂2} def

= Ω̂C2 .
Thus, Pε(V(Ω̂C1)) = Pε(N [0, . . . , 0, 1]) = Pε(V(Ω̂C2)),
and Pε(V(Ω)) < Pε(V(Ω ⊕ v)) since the dimension
of Ω ⊕ v is twice greater than the dimension of Ω.
Therefore, Pε(V(Ω)) < Pε(V(Ω ⊕ v)) iff Pε(V(Ω)) −

Pε(V(Ω̂C1)) < Pε(V(Ω⊕v))−Pε(V(Ω̂C2)) iff µ
pre
ր (C1) <

µpre
ր (C2).

P
preci
E Bounds. For any C ∈ C

∫
, and any probabil-

ity distribution ω, V(Ω) ≥ V(Ω̂C) ≥ V({ω}), hence
0 ≤ µpre

ր (C) ≤ Pε(V(Ω)) − Pε(V({ω})). Therefore,

0 ≤ µpre
ր (C) < f(Θ(C)) where f(Θ)

def
= Pε(V(Ω)).

P
preci
F Strict monotonicity. For any C ∈ C

∫
, Ω̂C is solo-

dimensional, hence is a closed set. Thus, Ω̂C1 ⊃ Ω̂C2 iff
V(Ω̂C1) > V(Ω̂C2) because Ω̂C1 contains more isolated
singleton than Ω̂C2 or there exists a Lebesgue mea-
surable difference in some dimension(s) between Ω̂C1

and Ω̂C2 . Therefore, Pε(V(Ω̂C1)) > Pε(V(Ω̂C2)) and
µpre
ր (C1) < µpre

ր (C2).

P
preci
G Equivalence. Equivalent candidacy functions

(underlain by a same language) have equal best can-

didates (wrt
i≡ and

e≡). Hence, the respective volumes
of these sets of best candidates are indistinguishable.
Therefore, equivalent candidacy functions are consid-
ered equally precise by µpre

ր .

P
preci
H Continuity The following counter-example shows

that µpre
ր does not satisfy principle P

preci
H . Let C ∈ C

∫

be such that Ω̂C is a square. Let Ci ∈ C

∫
be a

sequence of candidacy functions such that Ω̂Ci are
cubes where an edge of the cube continuously de-
creases until obtaining the square Ω̂C . Thus, we have
limi→+∞ µdis(C,Ci) = 0. Let both the length of the
edges of the cube and the square equal to 0.1, and let η
be the length of the decreasing edge of the cube. Thus,
V(Ω̂Ci) = N [0; 0; 0; η ∗ 0.1 ∗ 0.1; . . . ; 0] and V(Ω̂C ) =
N [0; 0; 0.1 ∗ 0.1; 0; . . . ; 0]. Let x̂ ∈ R

+ be a strictly pos-
itive real number, namely 2

ε
+ 2 (see Prop. 17). Thus,

limi→+∞ Pε(V(ΩCi)) = limη→0 N (η ∗0.1∗0.1)∗ x̂3 = 0,
which differs from Pε(V(ΩC)) = N (0.1∗0.1)∗x̂2. Hence
limi→+∞ µpre

ր (Ci) 6= µpre
ր (C).

Proposition 20. µpre
ր is not language invariant

(see P
preci
A ).

Proof. The following counter-example shows that µpre
ր

does not satisfy principle Ppreci
A . Let K

def
= { ω(v) = a },

with a ∈ [0:1], be a linear knowledge base under-
lain by a language with one propositional variable v.
Thus, each probability distribution in Ω is a point sat-

isfying

{
~0 ≤ [ω(v);ω(¬v)] ≤ ~1
ω(v) + ω(¬v) = 1

}
. We now show that

µpre
ր (CK) 6= µpre

ր (CK ⊕ v′). Let ω′ ∈ Ω⊕ v′ where v′ is

another propositional variable. Let x′ def
= ω′(¬v ∧ ¬v′),
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y′
def
= ω′(¬v ∧ v′), z′ def

= ω′(v ∧¬v′), and t′ def
= ω′(v ∧ v′);

notice that ω(v) = x′ + y′. Thus, K′ def
= K ⊕ v′ =

{ x′ + y′ = a } and each probability distribution in Ω⊕
v′ is a point satisfying

{
~0 ≤ [x′; y′; z′; t′] ≤ ~1
x′ + y′ + z′ + t′ = 1

}
. No-

tice that K and K′ are consistent knowledge bases.
In order to compare µpre

ր (CK) and µpre
ր (CK′), we need

to compute the volume of the models of K and K′.
The models of K′ are the probability distribution sat-

isfying





x′ + y′ = a
~0 ≤ [x′; y′; z′; t′]
z′ + t′ = 1− a



. Notice that ΩK′ forms

the simplex of which we want to compute the vol-

ume. Let H
def
=




1 −1 −1 1
−1 −1 1 1
−1 1 −1 1
1 1 1 1


 be a Hadamard

matrix. Let [x; y; z; t]
def
= 1

2
∗ (H ∗ [x′; y′; z′; t′]) be an

orthonormal transformation, which does not change
the volume of ΩK′ . We thus express this simplex as



−y + t = a
~0 ≤ [x′; y′; z′; t′]
y + t = 1− a



. We set y

def
= 1

2
− a and t

def
=

1
2

since (−y + t) + (y + t) = (1 − a) + a. Then,

we rewrite this simplex as follows:
{
~0 ≤ [x′; y′; z′; t′]

}

and we replace the variables by the transformed

ones in order to obtain






0 ≤ 1
2
∗ (+x− y − z + t)

0 ≤ 1
2
∗ (−x− y + z + t)

0 ≤ 1
2
∗ (−x+ y − z + t)

0 ≤ 1
2
∗ (+x+ y + z + t)





.

After, we replace y and t by their definition

and we have





0 ≤ +x− ( 1
2
− a)− z + 1

2

0 ≤ −x− ( 1
2
− a) + z + 1

2

0 ≤ −x+ ( 1
2
− a)− z + 1

2

0 ≤ +x+ ( 1
2
− a) + z + 1

2




. Af-

ter having isolated variable z, we finally we
rewrite the simplex formed by ΩK′ as follows:{

x− a ≤ z ≤ x+ a
−x+ (a− 1) ≤ z ≤ −x− (a− 1)

}
. This sim-

plex is a rectangle (see the five colour-filled rectangles
on Fig. 3.1, for a = 0, 1

4
, 2
4
, 3
4
, 1) defined by the points

p1
def
= [ 1

2
; 1
2
− a; 1

2
− a; 1

2
], p2

def
= [− 1

2
+ a; 1

2
− a;− 1

2
; 1
2
],

p3
def
= [− 1

2
; 1
2
−a;− 1

2
+a; 1

2
], and p4

def
= [ 1

2
−a; 1

2
−a; 1

2
+

a; 1
2
], where p1 is the intersection of z = x − a with

z = −x − (a − 1), p2 is the intersection of z = x − a
with z = −x+(a−1), p3 is the intersection of z = x+a
with z = −x + (a − 1), and p4 is the intersection of
z = x + a with z = −x − (a − 1). This rectangle
can be a line when a = 0 or a = 1. In order to eas-
ily work on probability distributions denoted by this
rectangle, we change again the coordinate system such
that p2 becomes the new origin, and such that vec-

tors
−−−→p2p1

||−−−→p2p1|| = [
√

2
2
; 0;

√
2

2
; 0] and

−−−→p2p3
||−−−→p2p3|| = [

√
2

−2
; 0;

√
2

2
; 0]

x y = 1
2
− a

z

p1
p2
p3
p4

− 1
2

0

1
2 − 1

2
− 1

4
0

1
4

1
2

− 1
2

0

1
2

Figure 3.1: Set of probability distributions over a
propositional language with two variables. All proba-
bility distributions within a same colour-filled rectangle
denote the same probability distribution over a propo-
sitional language with one variable.

becomes the unit vectors for the new axes xr and zr,

respectively. Let R
def
=




√
2

2
0

√
2

2
0

0 1 0 0√
2

−2
0

√
2

2
0

0 0 0 1


 be a rota-

tion matrix corresponding to a rotation by π
4

around

axes y and t. Let [x′′; y′′; z′′; t′′]
def
= R ∗ ([x; y; z; t]− p2)

be an orthonormal transformation (ie, a translation by
−p2 followed by rotation R), which does not change

the volume of ΩK′ . Let p′′
def
= [x′′; 0; z′′; 0] be a point

in the rectangle, ie x′′ ∈ [0; p′′1 .x] and z′′ ∈ [0; p′′3 .z],

where p′′3 .z
def
=

√
2 ∗ a and p′′1 .x

def
=

√
2 ∗ (1 − a). Let

p
def
= (R−1 ∗ p′′) + p2 and p′

def
= (H∗p)

2
; notice that p′

denotes a probability distribution in the original Eu-
clidean space Ω. The volume of ΩK′ is the surface of a
rectangle

√
2 ∗ (1− a)×

√
2 ∗ a if 0 < a < 1, otherwise,

this volume is the length of a segment line, namely
√
2.

The volume of Ω ⊕ v′ is
∫ 1

0
2a(1− a)da = 1

3
, as stated

by the formula of proposition 16 for n = 2 proposi-

tional variables:
√

2n

(2n−1)!
. The volume of the simplex

of Ω is
√

21

(21−1)!
=

√
2. Thus, when a = 0, we obtain

V(Ω̂CK ) = V(ΩK) = N [1; 0; 0], V(Ω̂CK′ ) = V(ΩK′ ) =

N [0;
√
2; 0; 0; 0] V(Ω) = N [0;

√
2; 0], and V(Ω ⊕ v′) =

N [0; 0; 0; 1
3
; 0]. Let ε = N ( 1

3
) be the smallest dis-

tinguishable difference between the involved hypervol-
umes; thus,

(
2
ε
+ 2
)
= 9. Therefore, Pε(V(Ω̂CK )) =

N (1) ∗ 90 = 1, Pε(V(Ω̂CK′ )) = N (
√
2) ∗ 91 ≈ 5.272,
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a

f
(a
)

L

E1

E2

0 1
2

1
0

0.7

Figure 3.2: Curve L is the Lebesgue measure of the
hypervolume of a colour-filled rectangle in Fig 3.1; thus,

f(a)
def
= 2∗a∗(1−a). Curves E1 and E2 are the entropy

functions for probability distributions over a language
with respectively 1 and 2 propositional variables; thus

f(a)
def
= E1([a; 1− a]) for E1 and f(a)

def
= 2 ∗a ∗ (1− a) ∗

(E1([a; 1− a]) + 1
2
) for E2.

Pε(V(Ω)) = N (
√
2) ∗ 91 ≈ 5.272, and Pε(V(Ω⊕ v′)) =

N ( 1
3
)∗93 = 182.25. We thus conclude that µpre

ր (CK) ≈
5.272 − 1 differs from µpre

ր (CK′) ≈ 182.25 − 5.272.

Concluding remarks and perspectives

In this paragraph, we sketch an explanation for the fail-
ure of our precision measure to satisfy language invari-
ance (see principle P

preci
A ).

Let Ka
1

def
= { ω(v1) = a } be knowledge base under-

lain by a propositional language Ω1 with one variable

v1. Let Ka
n

def
= Ka

n−1 ⊕ vn, with n ∈ N ≥ 2, be
a knowledge base equivalent to Ka

1 but underlain by

Ωn
def
= Ωn−1⊕vn. In the proof of Prop. 20, where Ka

1 is
denoted by K and Ka

2 is denoted by K′, we ascertain
that one probability distribution in Ω1, [a; 1 − a] say,
corresponds to a set of probability distributions in Ω2,
ΩKa

2
say, which corresponds to a colour-filled rectangle

in Fig. 3.1. Furthermore, the probability distributions
in ΩKa

2
correspond to a larger set of probability distri-

butions ΩKa
3
, of which its probability distributions cor-

respond to an even larger set ΩKa
4
, etc. By equivalence

(see principle P
preci
G ), every knowledge base Ka

n should
have the same precision measure, namely µpre

ր (Ka
1 ),

which only depends on a. The main idea behind our
complete precision measure is to count the models of
Ka
n. However, from Def 32, we remark that our pre-

cision measure applied to Ka
1 computes the volume of

ΩKa
1
, whereas it should count all the probability dis-

tributions contained in
⋃+∞
n=1 ΩKa

n
. The hypervolumes

of ΩKa
1

are computed via the Lebesgue measure that
counts indifferently all the probability distributions in

ΩKa
1
. But we know that the probability distributions

near [ 1
2
; 1
2
] correspond to more probability distributions

than those near [0; 1] or [1; 0]; curve L illustrates this
fact in Fig. 3.2. Therefore, we could redefine our hyper-
volume computation so that it counts the probability
distributions in ΩKa

1
while weighting them via a func-

tion f1, which counts the probability distributions in
ΩKa

2
weighted by a function f2, which counts the prob-

ability distributions in ΩKa
3
weighted by a function f3,

etc. If such functions fn exist, then they should satisfy
the following property:

∀ωn ∈ ΩKa
n
, fn(ωn) =

∫

ΩKa
n+1

fn+1(ωn+1)dωn+1

where ωn denotes a probability distribution over a
propositional language with n variables. Hence, f1 and
f2 should satisfy

f1([a; (1− a)]) =

∫

ΩKa
2

f2(ω)dω (3.4)

The hypervolume computation explained at sec-
tion 3.5.3 defines f1 and f2 as being constant 1, which
means that all the probability distributions get the
same weight. If we look at the proof of Prop. 20, where
ΩKa

1
is { [a; 1− a] }, where ΩKa

2
denotes a colour-filled

rectangle, and where p′
def
= [− z′′+a√

2
; z

′′
√

2
;−x′′+1−a√

2
; x

′′
√

2
],

then we remark that f1([a; (1 − a)]) = 1, whereas we

have
∫ √

2∗a
0

(∫√
2∗(1−a)

0
f2 (p

′) dx′′
)
dz′′ = 2∗a∗ (1−a),

since f2 = 1. Thus, equation (3.4) is not satisfied; this
partly explain why our measure fails to satisfy princi-
ple P

preci
A .

Let E1([a; 1 − a])
def
= −(1 − a) ∗ ln(1 − a) − a ∗ ln(a)

and E2([x
′; y′; z′; t′])

def
= −x′ ∗ ln(x′) − y′ ∗ ln(y′) − z′ ∗

ln(z′) − t′ ∗ ln(t′) be the entropy functions for proba-
bility distributions over a language with respectively 1
and 2 propositional variables. By examining Fig. 3.2,
we see that curve L has the same shape as curve E1,
namely they are both strictly concave and reach their
maximum at [ 1

2
; 1
2
]. Moreover, the entropy functions

are known to quantify the information on what they
are applied to. Thus, we might hope that defining f1
by E1 and f2 by E2 leads to the satisfaction of equa-
tion (3.4). Unfortunately, E1([a; 1 − a]) differs from∫ p′′3 .z
0

(∫ p′′1 .x
0

E2(p
′)dx′′

)
dz′′, as shown by the follow-

ing equation:
∫

ΩKa
2

E2(ω)dω = 2 ∗ a ∗ (1− a) ∗
(
E1([a; 1− a]) +

1

2

)

(3.5)
In equation (3.5), we not only recognise the hypervol-
ume of a colour-filled rectangle, ie 2 ∗ a ∗ (1 − a), but
also the formula that we looked for, ie E1([a; 1 − a]);
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we are currently investigating an explanation for such
a result that may guide us towards the definitions of fn
satisfying equation (3.4).

Maximum entropy as precision measure Fi-
nally, we conclude by exemplifying why the maxi-
mum entropy of probability distributions in Ω̂C , ie

max
(
E(ω)

∣∣∣ ω ∈ Ω̂C
)
, does not quantify the precision

of a candidacy function C. We restate the example
given in §3.5.1. Let v be a propositional variable mean-
ing that we get a tail after tossing a coin. If we have no
information about this coin, then our initial candidacy
function, denoted by C{ω(v)∈[0:1]}, is empty (or is a tau-
tology). If someone tells us that this coin is perfectly
designed such that the probability to get a tail after
tossing the coin is exactly 1

2
, then we update our can-

didacy function and we note it C{ω(v)= 1
2
}. Thus, as re-

quired by strict monotonicity (see principle P
preci
F ), we

expect from a precision measure µpre to express that
C{ω(v)∈[0:1]} is less precise than C{ω(v)= 1

2
}. However,

the maximum entropy expresses that the two candi-
dacy functions do not contain any information, hence
are equally imprecise: max(E(ω) | ω ∈ Ω̂C{ω(v)∈[0:1]} ) =

E([ 1
2
; 1
2
]) = max(E(ω) | ω ∈ Ω̂C{ω(v)= 1

2
}
).

3.5.4 Language invariant precision measure

µ
pre
⊖ : the shadow lengths of the best

candidates

Proposition 1 on page 7 states that a probability distri-
bution ω′ in Ω⊕ v is a unique probability distribution
ω in Ω. We then define the language impoverishment
operator for a probability distribution ω′ ∈ Ω ⊕ v as

ω′ ⊖ v
def
= ω, where ∀α ∈ αΘ(Ω), ω(α) = ω′(α), and

for a set of probability distributions W ′ ⊆ Ω ⊕ v as

W ′ ⊖ v
def
= { ω′ ⊖ v | ω′ ∈ W ′ }. Finally, we recursively

define the subtraction of a set of variables vars from an
object ⋄ as follows:

⋄ ⊖ vars
def
=






⋄ if vars = ∅ or vars ⊃ vars(⋄),
⋄ ⊖ (vars \ {v}) else if v /∈ Θ(⋄),
(⋄ ⊖ v)⊖ (vars \ {v}) else if v ∈ Θ(⋄).

Notice that (⋄⊕v)⊖v = ⋄ holds, whereas (⋄⊖v)⊕v = ⋄
does not necessary hold.

An interesting property to design a language in-
variant precision measure (see P

preci
A ) is that the 1-

hypervolume, ie the length, of ΩK⊖(vars(C)\v) equals√
2 when v does not appear in the constraints of K. We

thus base our second precision measure µpre
⊖ (C) upon

the sum of the Lebesgue measures in dimension 1, ie
the lengths, of Ω̂C ⊖ (vars(C) \ v) for each variable

v ∈ vars(C); Ω̂C ⊖ (vars(C) \ v) is the set of best can-
didates projected on the segment line [0:

√
2] represent-

ing the set of probability distributions underlain by one
propositional variable v. By deeming a projected can-
didate to be the shadow of that candidate, we deem∫
Ω̂C⊖(vars(C)\v) 1dx to be the shadow length, wrt v, of

the best candidates of C.

Definition 33. The language invariant precision mea-
sure of a candidacy function C ∈ C is founded upon the
shadow lengths of its best candidates.

µpre
⊖ (C)

def
=

√
2∗|vars(C)|−

∑

v∈vars(C)

∫

Ω̂C⊖(vars(C)\v)
1dx

On measuring the confidence Our first measure
µpre
ր , which satisfies strict monotonicity, is able to re-

flect smaller variations of the precision of a candi-
dacy function than µpre

⊖ , which satisfies only a non-
strict monotonicity. Nevertheless, when µpre

⊖ gives
the same precision measure to two candidacy func-
tions C1, C2 ∈ C, we might still rank them as fol-
lows: C1 is almost less precise than C2 iff µpre

⊖ (C1) =

µpre
⊖ (C2) and µ

conf(C1) < µconf(C2), where µ
conf(C)

def
=

supω∈Ω C(ω)−infω∈Ω C(ω) is the confidence measure of
a candidacy function C. Roughly, a confidence measure
quantifies a the flatness of a candidacy function. Notice
that µconf is language invariant because it is “vertical”
(see Fig. 3.3 on page 35).

In addition, notice that making a decision is an-
swering a Yes/No question. Let W ⊆ Ω be the set
of probability distributions where Yes should be an-
swered to a given question, and let Ω \W be the prob-
ability distributions where No should be answered. A
decision is then identified with W . A (language in-
variant) measure of the confidence in a decision W
wrt a knowledge C ∈ C is thus defined as follows:

µconf(C,W )
def
= supω∈W C(ω)− supω∈Ω\W C(ω), where

supω∈∅C(ω)
def
= 0; roughly, supω∈W C(ω) is the best

support for Yes, and supω∈Ω\W C(ω) is the best sup-
port for No, because each probability function ω is seen
as an argument of strength C(ω) that supports either
Yes if ω ∈W , or No if ω /∈ W . This measure is strictly
positive if the answer should be Yes, strictly negative
if the answer should be No, and neutral otherwise (for
other notions of decision quality, see [14, 46]). If the
best candidates of a candidacy function C are all in
W , then the more peaked the candidacy function, the
higher is the confidence measure. When the confidence
measure is neutral, or when its absolute value is lower
than a given threshold, it would be reasonable to post-
pone the decision until enough information is gathered;
this idea appears in [13] for deciding under ignorance.
In case postponing is impossible, adhering to common-
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sensical principles like those stated in chapter 4 may
guide us towards the best decision to make.

Concluding remarks In a multisensor system, if
new sensors can be added to the system, they may
bring new kinds of data, ie constraints involving new
variables. Hence, the underlying language of the can-
didacy function may grow. Thus, this second preci-
sion measure satisfying language invariance is more
convenient than our first measure µpre

ր . Furthermore,
µpre
⊖ is defined on C whereas µpre

ր is only defined on

C

∫
⊂ C. Besides, our first precision measure, which sat-

isfies strict monotonicity, is able to reflect smaller vari-
ations of a candidacy function than our second measure
satisfying only a non-strict monotonicity. Nevertheless,
a language invariant confidence measure is defined to
rank two candidacy functions C1, C2 ∈ C having the
same precision measure wrt µpre

⊖ : C1 is said to be al-
most less precise than C2 iff µpre

⊖ (C1) = µpre
⊖ (C2) and

µconf(C1) < µconf(C2).

3.5.5 Conclusions

Our main contribution is twofold: firstly, we establish
eight principles to be satisfied by a precision measure
when applied to a candidacy function. Secondly, we de-
fine two principled precision measures. They quantify
the range of choice an inference process (see chapter 4)
have for electing one probability distribution from the
best candidates. To our knowledge, precision measure
for probabilistic knowledge does not exist in the litera-
ture.

Our two precision measures count the best candidates
of a given candidacy function (eg, number of probability
distributions satisfying a consistent knowledge base);
the less there exist such probability distributions, the
more the candidacy function is precise. However, our
counting function (see V(Ω̂C) in §3.5.3) suffers from two
problems.

The first problem is intrinsic to probability distri-
butions (see proposition 1). Probability distributions
contain different quantity of information (as shown in
Fig. 3.1). Briefly, an infinite set of probability distribu-
tions is hidden behind each probability distribution ω,
and the cardinality of this hidden set gives the quantity
of information of ω. Hence, in this section, we strive to
compute this recursively defined cardinality of infinite
set (see concluding remarks at §3.5.3). This first prob-
lem hinders our first measure to satisfy language in-
variance (see principle P

preci
A ). However, we managed

to make our second measure satisfy this principle by
projecting all the probability distributions onto several
1-dimensional spaces (one for each underlying proposi-
tional variable). This projection over-approximates the

cardinality of the set constraining our second measure
to satisfy only a weaker form of strict monotonicity (see
principle P

preci
F ). Thus, our second precision measure

is less “complete” than our first one.

The second problem is intrinsic to Lebesgue measure.
A set of probability distributions over a propositional
language with n variables can be represented by man-
ifolds in a 2n-dimensional Euclidean space. Thus, we
use Lebesgue measure to compute the hypervolume of
this set. However, these manifolds (points, segment
lines, 2D-surfaces,. . . , 2n-manifolds) may have different
dimensions, so their respective hypervolume (cardinal-
ity, metre, square metre, . . . , metre2

n

). We provide
a method (see Prop. 17) to merge all these heteroge-
neous Lebesgue measures into one real number. This
real number is intended to represent the quantity of best
candidates, which is taken as the precision of a given
candidacy. However, this merging suffers from discon-
tinuity, eg, when the geometrical representation of a
set of best candidates goes continuously from a cube
to a square, our precision measures decrease continu-
ously until the set representation becomes the square;
then our precision measure do a jump discontinuity.
This second problem hinders our two measures to sat-
isfy continuity (see principle P

preci
H ). Nevertheless, this

is not problematic when we only need to order the can-
didacy functions by precision.

We demonstrate that our precision measures satisfy
different subsets of principles. These subsets guide us
towards the precision measure that best fits our specifi-
cations. For example, in our application (see section 5.1
in chapter 5), new sensors may be added to the mul-
tisensor system. Thus, these sensors may bring new
kinds of data, ie, new variables may be inserted into the
underlying propositional language. Therefore, we need
a precision measure satisfying language invariance (see
principle P

preci
A )

Several aspects of the relation between sets of proba-
bility distributions of different dimensions (ie, the rela-
tion between Ω and Ω⊕ vars) remain obscure, yet this
study gives grounds to discussions and provides clues
(like equation (3.5)) for future investigations.

3.6 Conclusions and perspectives

In this chapter, we show how convenient (see Fig. 3.3)
the candidacy functions are for formalising in a single
probabilistic framework several notions like dissimilar-
ity, surprise, inconsistency, incoherence, confidence, or
precision.

The principles and measures introduced in this chap-
ter are indubitably preliminary to further research.
Thus, the next step is to collect from the literature then
unify such different notions and associated desiderata,
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Figure 3.3: Measures for paraconsistent probabilistic reasoning, where vars(Ω) = {v}, x = ω(v), a
def
= “−0.1 ≥

−x”, b def
= “0.3 ≥ x”, c

def
= “−0.9 ≥ −x”, and d def

= “0.7 ≥ x” are four constraints, which compose three knowledge

bases K1
def
= {a, b}, K2

def
= {c, d}, and K1 ⋒ K2 = {a, b, c, d}. The candidacy function of each knowledge base

is founded upon the exponential blur (see Fig. 3.3(a) and Def. 15 on page 14) or upon the half-Gaussian blur
(see Fig. 3.3(b) and Def. 16 on page 14). The reliability level corresponding to constraints b, c, and d is 0.95
on Fig. 3.3(a) and is 0.9 on Fig. 3.3(b), whereas that of a is 1; hence, C{a}, CK1 , and CK1⋒K2 are partially
absorbing: ∀x ∈ [0:0.1], C{a}([x; 1 − x]) = 0. Thus, wrt CK1 , the non-candidate probability distributions are
{[x; 1 − x] | x ∈ [0:0.1]}, the best candidates (which are also the models of K1 since K1 is consistent) are
Ω̂CK1

= {[x; 1−x] | x ∈ [0.1:0.3]} = ΩK1 , and the candidates (which may become best candidates, like ω̂12, after
merging K1 with another base) are {[x; 1− x] | x ∈ [0.1:1]}. We denote by ω̂1 any best candidates of CK1 , by ω̂2

a best candidate of CK2 such that E(ω̂2) ≥ E(ω̂),∀ω̂ ∈ Ω̂CK2
, and by ω̂12 a best candidate of CK1⋒K2 such that

E(ω̂12) ≥ E(ω̂),∀ω̂ ∈ Ω̂CK1⋒K2
, where E is the entropy of a distribution.
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then to compare them; the final step being the char-
acterisation of these notions by a small set of intuitive
principles.
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Chapter 4

Inference processes to elect the least-biased

most-probable worlds

Ne rien trouver ridicule est
le signe de l’intelligence complète.

Valéry Larbaud, in [25]

Chapter 2 introduces a knowledge representation
called candidacy functions. A candidacy function C to-
tally orders the set of probability distributions Ω such
that the best probability distributions Ω̂C are those
that best represent the real world. However, Ω̂C may
not be a singleton, which happens when C is tautolog-
ical.

In chapter 4, we thus theoretically address the prob-
lem of electing a unique probability distribution that
best represents the real world, wrt a certain knowl-
edge. A solution to such a problem is called an infer-
ence process1. After adapting several principles (stated
in [33,38]) to candidacy functions, we present in §4.2.1
an inference process IEME that returns the best can-
didates having the maximal entropy, wrt a candidacy
function.

4.1 Principles

In this section, we state several principles to be satis-
fied by an inference process I electing a non-empty set
of probability distributions when applied to a candi-
dacy function C ∈ C. The ideas underlying these prin-
ciples proceed from [33, chapter 7], which deals with
consistent knowledge bases. Since we desire an infer-
ence process to elect a unique probability distribution,
we suppose that I satisfies uniqueness (see PI

α) when
applied to a candidacy function corresponding to a lin-
ear knowledge base (like in principles PI

ϑ and PI
ι ).

Notice that these principles abstractly employ Ω̂C :
its definition (see Def. 10) does not matter as long as
the set of best candidates Ω̂CK coincides with the set

1We interpret Valéry Larbaud’s statement Never pouring
ridicule is a sign of complete intelligence as A completely in-
telligent inference process considers all the knowledge items

as useful, even those that are contradicting.

of models ΩK when K is a consistent knowledge base;
this is required by unanimity (see principle PC

8 ).

PI
α Uniqueness. An inference process should determin-

istically elect a unique probability distribution.

∀ω1, ω2 ∈ I(C), ω1 = ω2

PI
β Irrelevant information (extends [33, page 87]). En-

tirely irrelevant information should be ignored by
an inference process. Let C1, C2 ∈ C be two candi-
dacy functions such that vars(C1) ∩ vars(C2) = ∅.

I(C1) = I(C1 ⋒ C2)⊖ vars(C2)

If uniqueness is satisfied, then irrelevant informa-
tion can be defined without the language impov-
erishment operator ⊖ (see § 3.5.4 on page 33) as
follows. Let θ1 ∈ Θ(C1) be a propositional sen-
tence. Since C2 is entirely irrelevant to C1 and θ1,
I should satisfy (I(C1))(θ1) = (I(C1 ⋒ C2))(θ1).

PI
γ Equivalence (extends [33, page 82]). Equal infor-

mation should be inferred from equivalent can-
didacy functions, wrt a certain equivalence re-

lation (see
i≡ at Def. 11 on page 9 and

e≡ at
Def. 17 on page 15).

if C1 ≡ C2 then I(C1) = I(C2)

PI
δ Renaming (extends [33, page 95]). An inference

process should be insensitive to a renaming of
the propositional variables, hence of the minterms.
Let π be a bijection over the minterms αΘ(C),
where C ∈ C. If ω is a probability distribu-

tion, then (π(ω))(α)
def
= ω(π(α)). Also, if W is

a set of probability distributions, then π(W )
def
=

{ π(ω) | ω ∈ W }. Finally, if C a candidacy func-

tion, then ∀ω ∈ Ω, (π(C))(ω)
def
= C(π(ω)).

I(π(C)) = π(I(C))

37
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PI
ε Obstinacy (extends [33, page 90]). Additional sup-

port for what is already known should be ignored
by an inference process.

if I(C1)∩ Ω̂C2 6= ∅ then I(C1)∩ Ω̂C2 = I(C1⋒C2)

PI
ζ Continuity (extends [33, page 89]). Microscopic

changes in the knowledge should not cause macro-
scopic changes in the inferred information. This
principle ensures a certain robustness in face of
minor fluctuations in the candidacy function. For-
mally, when a candidacy function changes contin-
uously, so the inferred information does.

if limi→∞ µdis(Ci, C) = 0
then limi→∞ H(I(Ci), I(C)) = 0

PI
η Open-mindedness (extends [33, page 95]). An

inference process should give the benefit of the
doubt; this principle is a kind of precautionary
principle. Formally, if some best candidates for
representing the real world, wrt C ∈ C, consider
θ ∈ Θ(C) as probable, then the elected probability
distribution should not consider θ as improbable.

if ∃ω̂ ∈ Ω̂C , ω̂(θ) > 0 and Ω̂C is convex
then ∀ω̂ ∈ I(C), ω̂(θ) > 0

If Ω̂C is not convex, it is questionable to require
this property. For example, suppose a knowledge
base K being such that ΩK = {ω̂1, ω̂2} where

ω̂1
def
= [0; 0.2; 0.4; 0.4], ω̂2

def
= [0.2; 0; 0.4; 0.4], and

Θ(K) has two propositional variables. We would
expect from an inference process I to elect ω̂1 or
ω̂2; by doing so, I would not be open-minded be-
cause if I elects ω̂1, which considers α1 as improb-
able, then I should have elected ω̂2 instead of ω̂1

since ω̂2(α1) > 0, but if I elects ω̂2, which consid-
ers α2 as improbable, then I should have elected
ω̂1 instead of ω̂2 since ω̂1(α2) > 0.

PI
ϑ Independence (due to [33, page 101]). The ab-

sence of any information linking two events should
be identified with the conditional independence;
justifications for this principle are given in [37].
Let K be a knowledge base such that vars(K) =
{v1, v2, v3}. Let v1, v2, and v3 be three proposi-
tional variables such that {v1, v2, v3} = vars(K),
where K is the following (non-normalised) knowl-
edge base:

K
def
=






ω(v1) = a
ω(v2 | v1) = b
ω(v3 | v1) = c




 with a, b ∈ [0:1]

Independence states that v2 and v3 should be
treated as conditionally independent given v1:

(I(CK))(v2 ∧ v3 | v1) = b ∗ c

PI
ι Relativisation (due to [33, page 100]). The proba-

bilities an inference process would give if an event
ϕ occurred should only depend on the knowledge
conditioned by the occurrence of event ϕ. Let
K, K1, and K2 be three knowledge bases de-
fined in a non-normalised form as follows, where
aij , bi, a

′
ij , b

′
i, c ∈ R, k, k′, li, l

′
i ∈ N, θ, θi, θ

′
i, ϕ ∈ Θ:

K
def
= { “c = ω(ϕ)” } with 0 < c < 1

K1
def
=

{
“bi =

li∑

j=1

aij ∗ ω(θi | ϕ)”
∣∣∣∣∣ i = 1, . . . , k

}

K2
def
=



 “b′i =

l′i∑

j=1

a′ij ∗ ω(θ′i | ¬ϕ)”

∣∣∣∣∣∣
i = 1, . . . , k′





Notice that K1 expresses knowledge relative to the
occurrence of ϕ, whereas K2 expresses knowledge
relative to the non-occurrence of ϕ. Then, rela-
tivisation states that the probability of θ given ϕ
should only depend on K ⋒K1, when K ⋒K1 ⋒K2

is consistent:

if ΩK⋒K1⋒K2 6= ∅
then (I(CK⋒K1 ))(θ | ϕ) = (I(CK⋒K1⋒K2))(θ | ϕ)

PI
κ Best candidates. An inference process should elect

best candidates only.

I(C) ⊆ Ω̂C

4.2 Entropy-based inference processes

IE

An entropy-based inference process elects probability
distributions with high entropy in order to minimise
the risk of being surprised, ie the risk of having elected
distributions that poorly represent the real world.

4.2.1 Paraconsistent Maximum Entropy

inference process IE
ME

Let K ∈ K be a consistent knowledge base. The Maxi-
mum Entropy inference process ME returns the models
of K that has a maximal entropy:

E(ω)
def
= −

J∑

j=1

ωj ∗ ln(ωj) ME(K)
def
= arg max

ω∈ΩK

E(ω)

The demonstration of the following characterisation
theorem appears in [36], and its generalisation to con-
sistent polynomial knowledge bases appears in [38, the-
orem 18].
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Theorem 1 (See [33, theorem 7.9]). When dealing with
a consistent knowledge base K ∈ K

=, ME is the unique
inference process satisfying the principles of irrelevant
information, equivalence, renaming, obstinacy, inde-
pendence, continuity, open-mindedness, and relativi-
sation.

Definition 34. The Paraconsistent Maximum Entropy
inference process IEME elects the probability distributions
having the maximum entropy from the best candidates
for representing the real world, wrt C:

IEME(C)
def
= arg max

ω̂∈Ω̂C

E(ω̂)

Proposition 21. IEME satisfies principles PI
β , P

I
γ , P

I
δ ,

PI
ε , P

I
ζ wrt µdis

H or µdis
H̄ , PI

η , P
I
ϑ, P

I
ι , and PI

κ. If Ω̂C
is convex, then IEME satisfies also PI

α.

Proof. By unanimity (see principle PC
8 ), Ω̂CK = ΩK

when K ∈ K is a consistent knowledge base. There-
fore, IEME generalises ME, which has been proved to
satisfy PI

β to PI
ι .

PI
α Uniqueness. If Ω̂C is convex, then maximising the

strictly concave function E over Ω̂C returns a unique
argument.

PI
β Irrelevant information. In the sequel of this proof,

which follows the one in [38, page 18], superscript num-
bers are used for naming instead of exponentiation, ex-
cept for powers of 2. Let C1 and C2 be two candi-
dacy functions underlain by disjoint propositional lan-
guages, ie vars(C1) ∩ vars(C2) = ∅. Let α1

i and α2
j

be the respective minterms of Θ(C1) and Θ(C2), with

i = 1, . . . , I and j = 1, . . . , J , where I
def
= 2m and

J
def
= 2n, and where n and m are the number of vari-

ables of Θ(C1) and Θ(C2). Let C
def
= C1

⋒ C2. Let
ω1 ∈ Ω(C1), ω2 ∈ Ω(C2), and ω ∈ Ω(C). We define six
probability distributions as follows:

τ 1
def∈ IEME(C

1) ν1(α1
i )

def
= ν(α1

i )

τ 2
def∈ IEME(C

2) ν2(α2
j )

def
= ν(α2

j )

τ (α1
i ∧ α2

j )
def
= τ 1(α1

i ) ∗ τ 2(α2
j ) ν

def∈ IEME(C)

Let ⋄ be either τ or ν, but not mix of τ and ν. Let

⋄1i def
= ⋄1(α1

i ), ⋄2j def
= ⋄2(α2

j ), and ⋄ij def
= ⋄(α1

i ∧ α2
j ).

• Firstly, we show several direct consequences of these
definitions.

1 =
∑I

i=1 τ
1
i =

∑J

j=1 τ
2
j =

∑I,J

i,j=1 νij since τ 1, τ 2, and

ν are probability distributions over Θ(C1), Θ(C2), and
Θ(C1

⋒ C2).

τ is a probability distribution over Θ(C) since τ 1i ∗
τ 2j ∈ [0:1] and

∑I,J

i,j=1 τ (α
1
i ∧ α2

j) =
∑I,J

i,j=1 τ
1
i ∗ τ 2j =

∑I
i=1

(
τ 1i ∗∑J

j=1 τ
2
j

)
=
∑I
i=1 τ

1
i ∗ 1 = 1.

τ characterises the probability distributions τ 1 and
τ 2 over respectively Θ(C1) and Θ(C2) since τ (α1

i ) =
τ (α1

i ∧ (α2
1 ∨ · · · ∨α2

J )) =
∑J
j=1 τ (α

1
i ∧α2

j ) =
∑J
j=1 τ

1
i ∗

τ 2j = τ 1i ∗∑J

j=1 τ
2
j = τ 1i , and similarly for τ 2.

ν1 and ν2 are two probability distributions over re-
spectively Θ(C1) and Θ(C2) since ν1i = ν(α1

i ) ∈ [0:1]
and

∑I

i=1 ν(α
1
i ) =

∑I

i=1 ν(α
1
i ∧ (α2

1 ∨ · · · ∨ α2
J )) =∑I,J

i,j=1 ν(α
1
i ∧ α2

j ) = 1, and similarly for ν2.

• Secondly, we prove that ν1 ∈ Ω̂C1 .

ν ∈ Ω̂C iff C(ω) ≤ C(ν) iff (C1
⋒ C2)(ω) ≤ (C1

⋒

C2)(ν) iff (C1 ⊕ vars(C2))(ω) ∗ (C2 ⊕ vars(C1))(ω) ≤
(C1 ⊕ vars(C2))(ν) ∗ (C2 ⊕ vars(C1))(ν) iff C1(ω1) ∗
C2(ω2) ≤ C1(ν1)∗C2(ν2) iff C1(τ 1)∗C2(τ 2) ≤ C1(ν1)∗
C2(ν2). Since τ 1 ∈ Ω̂C1 , τ 2 ∈ Ω̂C2 , we have C1(τ 1) ∗
C2(τ 2) = C1(ν1) ∗ C2(ν2). Suppose C1(ν1) < C1(τ 1);
then we obtain this contradiction: C1(ν1) ∗ C2(τ 2) <
C1(τ 1) ∗ C2(τ 2) = C1(ν1) ∗ C2(ν2) ≤ C1(ν1) ∗ C2(τ 2).
Therefore, we have C1(ν1) ≥ C1(τ 1), hence ν1 ∈ Ω̂C1 .

• Thirdly, we prove that τ ∈ Ω̂C .

Remember that τ characterises τ 1 and τ 2, hence τ ∈
τ 1 ⊕ vars(C2) ∩ τ 2 ⊕ vars(C1). Since τ 1 ∈ Ω̂C1 and
τ 2 ∈ Ω̂C2 , we have C1(ω1) ≤ C1(τ 1) and C2(ω2) ≤
C2(τ 2). Thus, by definition of ⊕, (C1⊕vars(C2))(ω) ≤
(C1 ⊕ vars(C2))(τ ) and (C2 ⊕ vars(C1))(ω) ≤ (C2 ⊕
vars(C1))(τ ). By multiplying these two inequalities,
and by applying the definition of ⋒, we obtain C(ω) ≤
C(τ ), hence τ ∈ Ω̂C .

• Fourthly, recall that E(τ 1) = E(ν1) and E(τ ) =
E(ν), according to [38, theorem 6].

• Finally, we show that IEME(C
1) = IEME(C

1
⋒ C2) ⊖

vars(C2).

We have ν1 ∈ IEME(C
1) since ν1 ∈ Ω̂C1 and

E(τ 1) = E(ν1). Hence, ∀τ ∈ IEME(C
1
⋒ C2),∃τ 1 ∈

IEME(C
1),∀α1 ∈ αΘ(C1), ν

1(α1) = ν(α1). Besides, we

have τ ∈ IEME(C) since τ ∈ Ω̂C and E(τ ) = E(ν).
Hence ∀ν1 ∈ IEME(C

1),∃ν ∈ IEME(C
1
⋒ C2),∀α1 ∈

αΘ(C1), ν
1(α1) = ν(α1). Therefore, IEME(C

1) =

IEME(C
1
⋒C2)⊖ vars(C2).

PI
γ Equivalence. If C1

i≡ C2 then C1
e≡ C2 then Ω̂C1 =

Ω̂C2 hence IEME(C1) = IEME(C2).

PI
δ Renaming. Since Ω̂π(C) = argmaxω∈Ω π(C)(ω) =

argmaxω∈Ω C(π(ω)) = argmaxω∈π(Ω) C(ω) =

π(argmaxω∈ΩC(ω)) = π(Ω̂C), we have IEME(π(C)) =
argmaxω̂∈Ω̂π(C)

E(ω̂) = argmaxω̂∈π(Ω̂C )E(ω̂) =

π
(
argmaxω̂∈Ω̂C

E(ω̂)
)
= π(IEME(C)).

PI
ε Obstinacy. Let τ

def∈ IEME(C1) ∩ Ω̂C2 . Thus,
Ω̂C1 ∩ Ω̂C2 contains at least τ . Let ω ∈ Ω. Thus,
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C1(τ ) ≥ C1(ω) and C2(τ ) ≥ C2(ω), hence C1(τ ) ∗
C2(τ ) ≥ C1(ω) ∗C2(ω) iff (C1 ⋒C2)(τ ) ≥ (C1 ⋒C2)(ω)

iff τ ∈ Ω̂C1⋒C2 . Let η
def∈ IEME(C1 ⋒ C2). Since

τ, η ∈ Ω̂C1⋒C2 , we have (C1 ⋒ C2)(τ ) = (C1 ⋒ C2)(η),
then C1(τ ) ∗ C2(τ ) = C1(η) ∗ C2(η). Suppose η /∈
Ω̂C1 ; thus, C1(τ ) > C1(η) since τ ∈ Ω̂C1 . There-
fore, we should have C2(η) > C2(τ ) in order to satisfy
C1(τ ) ∗C2(τ ) = C1(η) ∗C2(η). However, we know that
C2(τ ) ≥ C2(η) since τ ∈ Ω̂C2 . Therefore, our assump-
tion is wrong because we obtain the following contra-
diction: C2(η) > C2(τ ) ≥ C2(η). Hence, η ∈ Ω̂C1 .
Similarly, we can show that η ∈ Ω̂C2 .

Since E(τ ) is maximal for Ω̂C1 and η ∈ Ω̂C1 , E(τ ) ≥
E(η). Since E(η) is maximal for Ω̂C1⋒C2 and τ ∈
Ω̂C1⋒C2 , E(η) ≥ E(τ ). Therefore, E(τ ) = E(η).

Since τ ∈ Ω̂C1⋒C2 , E(τ ) is maximal for Ω̂C1⋒C2 , hence
τ ∈ IEME(C1 ⋒C2). Since η ∈ Ω̂C1 , E(η) is maximal for
Ω̂C1 , hence η ∈ IEME(C1).

We thus conclude that ∀τ ∈ IEME(C1) ∩ Ω̂C2 , τ ∈
IEME(C1 ⋒ C2) and that ∀η ∈ IEME(C1 ⋒ C2), η ∈
IEME(C1) ∩ Ω̂C2 , as required to conclude IEME(C1) ∩
Ω̂C2 = IEME(C1 ⋒ C2).

PI
ζ Continuity. If limi→∞ µdis

H̄ (Ci, C) = 0,

then limi→∞ µdis
H (Ci, C) = 0, and then

limi→∞ H(Ω̂Ci , Ω̂C) = 0. By the continuity of E
on Ω, we conclude limi→∞ H(IEME(Ci), IEME(C)) = 0.

PI
η Open-mindedness. Since Ω̂C is supposed to be con-

vex, the proof given in [33, page 95] holds for IEME.

PI
ϑ, P

I
ι Independence, Relativisation. Since the knowl-

edge bases involved in these principles are linear and
consistent, IEME coincides with ME, which satisfies these
principles.

PI
κ Best candidates. This principle is satisfied since

IEME returns the argument of a maximisation over Ω̂C .

We furthermore stress that IEME is σ-invariant, since
Prop. 9 on page 14 states that the best candidates are
σ-invariant.

Notice that E could be substituted by another “elect-
ing” function fn : Ω 7→ R, where |vars(Ω)| = n, which
elects some probability distributions among the best
candidates of a candidacy function. This would yield
to another kind of inference process that would in-
herit from the good properties of electing best candi-
dates. For example, such an inference process would be
continuous wrt µdis

H or µdis
H̄ if fn was continuous, and

it would satisfy irrelevant information if fn satisfied
fI(τ

1) = fI(ν
1) and fI∗J (τ ) = fI∗J (ν) (see the proof

of the satisfaction of principle PI
β in Prop. 21).

Another consequence of founding an inference pro-
cess upon the best candidates is that a probability dis-
tribution ω considered as a non-candidate wrt an ab-
sorbing candidacy function 0C (ie ∀ω, 0C(ω) = 0) can
nevertheless be drafted as candidate then be elected.
For example, let ω be the probability distribution hav-

ing the maximum entropy, namely ω
def
= [ 1

2n
; . . . ; 1

2n
]

where n is the number of propositional variables un-
derlying 0C; thus ω is drafted by Ω̂0C then elected by
IEME(0C).

4.2.2 Internal entropy-based inference pro-

cess IE
i

Definition 35. The internal entropy-based inference
process IEi elects the probability distributions with a
high entropy while being (nearly) a best candidate for
representing the real world, wrt C:

IEi (C)
def
= argmax

ω∈Ω
E(ω) ∗ C(ω)

IEi satisfies equivalence wrt
i≡. It is continuous wrt

µdis
L∞ if C is continuous and unimodal (which is the case

for any candidacy function CK corresponding to a linear
knowledge base K having reliability degree σ ∈ ]0:1[).
Therefore, IEi tends to coincide with ME when K is
consistent and tends to be reliable, ie σ → 1, but IEi
does not satisfy best candidates. Besides, IEi is rather
“internal”, whereas IEME is rather “external” since IEME

satisfies equivalence wrt
e≡ and continuity wrt µdis

H .

4.3 Conclusions and perspectives

The question we address in this chapter is which prob-
ability distributions best correspond to the real world,
according to a given (possibly inconsistent) knowledge
base (seen as a candidacy function) and some common
sense? After having extended already discussed prin-
ciples in [33, 37, 38], we define a new inference process:
the Paraconsistent Maximum Entropy inference process
IEME (see Def. 34). To our knowledge, IEME is the first to
both tolerate inconsistencies and always coincide with
the Maximum Entropy inference process ME when ap-
plied to a consistent knowledge base. Besides, [1, 35]
extended ME to unary predicate languages (see [40] for
further details). A perspective is thus to extend IEME

from propositional probabilistic logic to purely unary
predicate probabilistic logic.
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Chapter 5

Potential applications: persuade the indecisive,

reconcile the schizophrenic

In this chapter, we present several potential applica-
tions of our measures and inference process. The first
section is about autonomy and robustness in decision
making for spacecraft. We notably show that consensus
decision making might be tractable. In the second sec-
tion, we consider the merging of knowledge bases in a
multiagent context, where each agent shares its knowl-
edge with others, and takes different attitudes towards
the other agents’ knowledge; this attitude ranges from
scepticism to credulity.

5.1 Autonomous and robust decision

making aboard spacecrafts

Future space science missions will involve unmanned
spacecrafts performing in hazardous environment at far
distance from Earth. We therefore theoretically address
the problem of making autonomous and robust deci-
sions wrt inconsistent and uncertain information. To
achieve such decisions, we suggest to equip a spacecraft
with paraconsistent probabilistic reasoning, intended to
define common sense. We also suggest to program the
spacecraft behaviours in a synchronous language, which
is utilised to develop, verify, and certify safety-critical
embedded systems. By injecting some common sense
into decision systems, we hope to make them more
trustworthy.

5.1.1 Behaviour-based programming

The success of future space missions will rely on the
spacecraft aptitude for making reliable decisions. In
this section, we thus propose a methodology for on-
board decision making, focused on spacecraft auton-
omy. This theoretical methodology is twofold. On
earth, space engineers specify the deterministic space-
craft behaviours. Aboard, these uploaded behaviours
conduct activities according to sensory data and some
common sense. We depict this methodology in Fig. 5.1.

Figure 5.1: Methodology for robust decision making.

After sketching the spacecraft behaviours program-
ming performed by engineers on Earth, we introduce
the spacecraft decision process that manages these be-
haviours aboard. We use K

∗ as a knowledge represen-
tation formalising the sensory data. We then provide
an example of consensus decision making: this problem
can only be solved by a paraconsistent probabilistic in-
ference process, like IEME. Finally, we argue for using
principled measures and inference process to design au-
tonomous and robust decision making systems.

Spacecraft behaviours design

Firstly, on earth, space engineers specify the determin-
istic spacecraft behaviours. Behaviours represent tasks
to realise wrt the current situation. In the following ex-
ample, behaviour b3 executes subbehaviours b1 and b2
conditionally to c1, which depends on the probability
that event e1 occurs in the current situation:
e1: “camera-1 detects life on Mars”
b1: “inform ground centre about the probability of e1”
b2: “focus camera-2 on camera-1’s target”
c1: “probability of e1 is higher than 80%”
b3: “if (c1) then (suspend low priority behaviours and

41
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1
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3
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Figure 5.2: SCADE Suite screenshot showing the de-
sign, the verification, and the compilation of a be-
haviour.

execute simultaneously b1 and b2; when b1 and b2
terminate, resume low priority behaviours)”

Notice that behaviour b3 is deterministic iff c1 is either
true or false, ie iff the probability of e1 is computable
and is a unique value (see principle PI

α).

A behaviour, together with its set of safety proper-
ties, is written in a synchronous programming language.
Such “languages have been designed to allow the un-
ambiguous description of reactive, embedded real-time
systems. The common foundation for these languages
is the synchrony hypothesis, which considers compu-
tations to not take any time. This abstraction al-
lows to separate the concerns functionality and real-
time characteristics, and thus facilitates the design of
complex embedded systems”1. In this methodology, we
propose to use SCADE Suite2, which is an Integrated
Development Environment to design, verify, then gen-
erate certified3 code. It provides graphical and tex-
tual formal languages, both with data-flow and control-
flow synchronous programming styles. These languages
comprise instructions to modularly parallelise, sequen-
tialise, suspend, resume, and abort behaviours. The
SCADE Suite screenshot in Fig. 5.2 shows 1) the list of
nodes, where a node represents a behaviour or a prop-
erty, 2) a behaviour, written in both data-flow (yellow
blocks) and control-flow (blue and pink blocks), 3) a
property that a behaviour should satisfy, 4) the model
checking of the property, 5) the result of the verifica-

1This description is excerpted from the SYNCHRON’2009
workshop website: http://www.dagstuhl.de/09481

2SCADE Suite is a trademark of Esterel Technologies SA.
All rights reserved. See http://www.esterel-technologies.com/

3Code generation qualifiable for DO-178B up to Level A, cer-
tifiable for IEC 61508 certified at SIL 3 and EN 50128 certified
at SIL 3/4.

tion, and 6) the behaviour compilation. The forbidden
sign at the bottom left corner indicates that the be-
haviour does not satisfy the property. In which case, a
scenario leading to the violation of the property is gen-
erated, helping thus engineers to debug the behaviour.
Finally, the behaviour is uploaded aboard the space-
craft into a repository called B.

Behaviours driven by common sense

Once onboard, behaviours B determine the spacecraft
decisions, wrt the current situation depicted by sen-
sors. Because of the hazardous spacecraft environment,
sensory data are tainted with uncertainty; eg, the pro-
cessing of the camera-1 images could lead to uncer-
tain events, eg “probability of e1 is lower than 30%”;
such events may be imprecise due to missing or par-
tial sensory data resulting from sensor failure or power
loss. Uncertain events are stored into a knowledge base
K ∈ K

∗, which tends to be inconsistent due to the
multisensor context. Thus, the spacecraft must act wrt
an imprecise, possibly inconsistent, probabilistic knowl-
edge base. In chapter 4, we propose a process, called
IEME, that infers from K one precise4 (hence probabilis-
tically consistent) world model ω̂. In addition to IEME,
we define in chapter 3 several principled measures µ for
knowledge bases. These measures enable engineers to
specify behaviours such as “if (µpre(Kcamera-1) ≤ 20%)
then (execute b2)”, which commands to the camera-2 to
focus on camera-1’s target when camera-1 provides the
spacecraft with too imprecise data. Thus, the space-
craft actions are computed by evaluating behaviours B

wrt ω̂
def
= IEME(CK) and the measures: B(ω̂, µ). The

key for making autonomous and robust decision resides
in the common sense underlying IEME and µ.

5.1.2 A treatment for a schizophrenic rover

Voting theory is a theory of electing a societal prefer-
ence from individual preferences. In the following ex-
ample, a rover will have to achieve a consensus about
resource allocation from the possibly conflicting prefer-
ences of its embedded agents; whence we qualify this
rover as schizophrenic, ie having multiple personalities.

Suppose a rover is scouting a surface for soil sam-
pling. This rover embeds several scientific agents,
ie computer programs, that together decide on the
amount of each soils to carry back to the main station
where further analysis will be performed. During its
journey, the rover stows the soils in a storage box hav-
ing sliding walls (see Fig. 5.3): this allows to adjust the

4Throughout section 5.1, we suppose satisfied uniqueness

(see principle P
I
α), ie we suppose the knowledge bases are such

that applying an inference process like IE
ME on them elects a

single probability distribution: K ∈ K
∗ can thus be any linear

knowledge base.
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1

ω(α1)
ω(α2)

ω(α3)
ω(α4)

K1
K2 K3

ω(α1)≥2ω(α2)

Figure 5.3: A schizophrenic rover and its storage box
with sliding walls; the capacity of each compartment is
adjusted to the amount of carried soils.

capacity of each compartment to the amount of a col-
lected soil. The agents have different interests, eg, one
agent focuses on organic chemistry, whereas another
agent focuses on rare soils. Due to the finite capacity
of the storage box, these interests may be conflicting,
eg, the latter agent may want to carry back a maximum
amount of a rare soil, even if this soil is much less in-
spiring from the organic standpoint than an abundant
soil. Notwithstanding the possibly conflicting agents’
interests, the rover must achieve a consensus about the
capacity of each compartment of the storage box; we
formally state this problem as follows.

A rover embedding I ∈ N agents stows soil sam-
ples in J ∈ N compartments { α1, α2, . . . , αJ } of a
box with sliding walls. A space distribution ω is a
function that maps each compartment to its capac-
ity and satisfies these two assumptions: (A1) the box
volume is 1 cubic decimetre, ie 1 =

∑J

j=1 ω(αj), and
(A2) each compartment capacity is positive, ie ∀j ∈
{ 1, 2, . . . , J } , ω(αj) ≥ 0.

Each agent i independently expresses a set Ki ∈ K
∗

of wishes for the space distribution ω. For example, i
may wish to allocate at least twice more space to soil α1

than to soil α2, ie ω(α1) ≥ 2∗ω(α2), and may wish that
the total amount allocated to α1 and α2 be within 0.2
and 0.3 cubic decimetre, ie 0.2 ≤ ω(α1) + ω(α2) ≤ 0.3.
Besides, the rover affixes to each agent i a reliability
level σi ∈ ]0:1[, which tends towards 1 as the rover
deems i more reliable; eg, i will be labelled as reliable
if, in case the rover had fulfilled i’s wishes without con-
sidering other agents’ wishes, its wishes would have en-
abled a high science return.

Thus, the rover must implement a voting system
I yielding the space distribution ω̂ that best con-

ciliates the wishes Ki of each agent i, according to
their reliability σi and some common sense; formally,

ω̂
def
= I(∪Ii=1K

σi
i ), where I must satisfy several princi-

ples intended to define common sense. By interpreting
assumptions (A1) and (A2) as Kolmogorov’s axioms
for probability, space distributions can be identified
with probability distributions (see Def. 2 on page 4).
We therefore take the probabilistic standpoint to de-
fine I as a principled inference process, like IEME (see
Def. 34 on page 39).

5.1.3 Significance of the principles for mak-

ing autonomous decisions

IEME satisfies principles PI
α to PI

ι ensuring:� autonomy, ie decisions are taken without recourse
to humans: uniqueness (see PI

α) ensures that an
evaluation of a condition in a behaviour (see condi-
tion c1 in the example at § 5.1.1 on page 41) always
returns either true or false;� determinism, ie decisions are explainable: deter-
minism (seePI

α) ensures that IEME does not use any
random function, hence the evaluation of the con-
ditions in the behaviours are deterministic, there-
fore, the whole behaviour is deterministic;� robustness, ie decisions are robust against slight
fluctuations of sensory data: continuity (see PI

ζ )

ensures the continuity of IEME, although a value of
a condition in a behaviour can wobble. If this effect
is undesirable, an engineer could design more so-
phisticated behaviours which compute spacecraft
actions by applying some continuous functions to
IEME(CK) (so that the spacecraft actions continu-
ously depend on the sensory data), but in which
case, the model checker may not be able to for-
mally verify the behaviour;� fairness, ie IEME equally trusts, or fairly conciliates,
each uncertain event inK: this property is ensured
by the knowledge formalisation, because K is a
multiset, and by proximity (see PC

7 ), which avoids
knowledge items to be ignored, even when they are
inconsistent or incoherent;� backwards compatibility, ie the spacecraft deci-
sions are not influenced by the addition of new
sensors if these sensors provide data on new topics
(hence a decision taken before the spacecraft up-
grade is still valid): this is ensured by irrelevant
information (see PI

β).� semantic analysis, ie decisions depend on the
meaning of K, not on the syntax: the knowledge
normalisation and the other principles are intended
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to make an inference process syntax invariant (eg,
see PI

γ and PI
δ ).

In addition to IEME, we propose in chapter 3 several
principled measures for K. These measures allow engi-
neers to define behaviours that establish strategies for:� mission planning, by measuring the incoherence

between the current situation and the mission tar-
get, both described in terms of knowledge bases. A
behaviour could be “if the mission target is too in-
coherent from the current situation depicted by the
sensors, then the spacecraft should select a more
achievable target”.� tackling unexpected events, ie the known un-
knowns, by measuring the dissimilarity between
the current situation and an expected one, both
described in terms of knowledge bases;� self-healing, by measuring the culpability of each
sensor for making K inconsistent: spacecraft may
decide to check then repair such a sensor.� sensors recalibration, by measuring the redundancy
of sensory data. For example, an exploring space-
craft may decide to widen its sensor coverage by de-
creasing the overlap of each sensor coverage, ie by
increasing the dissimilarity between sensory data.
However, when the spacecraft detects an interest-
ing event, it may decide to focus its sensors on this
event by increasing the overlap of each sensor cov-
erage.� postponing a decision until enough information is
gathered, by measuring the confidence in such a
decision wrt the sensory data.

5.1.4 Computational complexities

In the sequel, we denote by m the number of inequal-
ities in a knowledge base K ∈ K, and by n the num-
ber of propositional variables. The space complexity
of our knowledge representation is exponential wrt n.
Besides, the time complexity of our inference process
IEME depends on the space complexity. Thus, in or-
der to make IEME tractable, we are investigating tech-
niques that exponentially reduce the space complexity,
like those in [20,44].

Space and time complexities The naive space
complexity of our knowledge representation is O(m ∗
2n). The following partitioning technique exponen-
tially reduces this complexity. A knowledge base can
be partitioned into p subbases of inequalities such that
each subbase does not share any propositional variable

with the other subbases. Notice that the knowledge
in a partition is irrelevant to the knowledge in another
partition. This partitioning technique is legitimate for
any inference process satisfying irrelevant information
like IEME (see principle PI

β on page 37). Hence, the
space complexity of the partitioned knowledge is only∑p
i=1 O(mi ∗ 2ni), with n =

∑p
i=1 ni and i = 1, . . . , p

wheremi and ni are respectively the number of inequal-
ities and propositional variables of the ith partition.
Due to the partitioning, IEME applied to a knowledge
base computes p ∗ 2 optimisations over 2ni variables
within [0:1] instead of two optimisations over 2n vari-
ables. If p is large then 2ni ≪ 2n, and

∑p
i=1 O(mi∗2ni )

might become a tractable space complexity.
The time complexity of IEME(CK) relies on the time

complexity for maximising p times the function E over
Ω̂CKi

, which is a maximisation of CKi over 2
ni variables

with i = 1, . . . , p, where Ki is a partition of K. We
know that CKi is not only continuous and log-concave
but also non-smooth (see the non-smoothness of Ch2K
in Fig. 2.2). Thus, the time complexity of Ω̂CKi

is
the same as maximising a concave non-smooth function
over the convex set [0:1]2

ni
constrained by the linear

equality 1 =
∑2ni

j=1 ωj (see [45]).

Bounding and approximating techniques In ad-
dition, there exist techniques to smooth out a log-
concave function (see [27]) enabling us to not only use
faster optimisation algorithms (see [26]), but to also
compute a hat function (see [16]) that allows arbitrar-
ily precise approximation of Ω̂CKi

. Furthermore, an
easier-to-compute entropy function is proposed in [29],
which accelerates each function evaluation during the
optimisation process.

Tractable consensus decision making In §5.1.2,
we propose to use IEME for computing a consensus
among the agents about the capacity of the J com-
partments, where J ∈ N must be a power of two5. In
which situation, the space complexity of a knowledge
base K ∈ K containing m agents’ wishes is O(m ∗ J).
Furthermore, if J = 21 and K ∈ K

= then we conjecture
that IEME(CK) simply selects the median space distri-
bution that is the nearest to [ 1

2
; 1
2
]; the time complexity

would then be O(m ∗ ln(m)). Thus, IEME(CK) may be
tractable.

5.1.5 Conclusions

Paraconsistent probabilistic reasoning is the solution to
a certain kind of consensus decision making (see §5.1.2),

5If there is only J′ < J = 2n compartments, then
it suffices to merge the agents’ wishes K with the follow-
ing knowledge base, of which the reliability level σ equals 1:{
ω(αj) = 0

∣∣ j ∈ N, J′ < j ≤ J
}
.
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and is a theoretical solution to autonomous and ro-
bust decision making (see §5.1.1). The significance of
the principles for measures and inference processes (see
chapters 3 and 4) is exhibited in §5.1.3. We stress the
importance of uniqueness, continuity, and irrelevant in-
formation to make autonomous and robust decisions.
Furthermore, the satisfaction of the latter principle is
necessary to exponentially reduce the computational
complexities of our knowledge representations, hence
of our measures and inference processes (see §5.1.4).

Tractable approximations of our knowledge represen-
tations, our measures, and our inference processes are
needed to make viable our methodology for onboard de-
cision making. Nevertheless, the problem of consensus
decision making may be tractable due to the quadratic
space complexity of the knowledge representation.

5.2 A continuum of mergences

Consider a multiagent context, where each agent owns
one knowledge base and has access to other agents’
knowledge bases. When reasoning, each agent may
adopt different strategies to merge all these bases; eg, a
sceptical agent may trust more its own knowledge than
others’ knowledge.

Suppose each agent trusts each agent’s knowledge to
a certain degree; these degrees of trust are represented
by a trust matrix σ of dimension n× n where n ∈ N is
the number of agents. Element σij ∈ ]0:1[ denotes the
trust of agent i in the knowledge Kj ∈ K of agent j;
agent i is sceptical of j if σij tends to 0, credulous if σij
tends to 1. Notice that Kj may be inconsistent hence
cannot be fully trustworthy (σij 6= 0). Also, we want
the agents to be aware of the whole available knowledge
without ignoring some agents’ knowledge (σij 6= 1). For

a given agent i, let Ci
def
= ⋒

n
j=1C

σij
Kj

be the mergence of

all the agents’ knowledge from the viewpoint of i (this
is our continuum of mergences). Agent i can then take
decisions wrt IEME(Ci).
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Chapter 6

Conclusion

La théorie des probabilités n’est, au fond,
que le bon sens réduit au calcul.

Pierre-Simon Laplace, in [30, page 275]

Inconsistency is essentially a form of uncertainty,
which should not hinder us from reasoning. In this
thesis, we thus define the paraconsistent probabilistic
reasoning as a set of theoretical tools (measures and in-
ference processes satisfying commonsensical principles)
designed to tolerate inconsistency while performing on a
probabilistic knowledge representation. Our main con-
tributions are summarised as follows.

Chapter 2. Knowledge representations. We
introduce a new knowledge representation, named
candidacy functions, which resolves the concept of
(in)consistency present in probabilistic propositional
knowledge bases.

Following the approach in J.B. Paris’s book [33], we
define a knowledge base as a set of constraints on a
probability distribution (see §2.2.2), where such a dis-
tribution returns the probability that a proposition is
true. Knowledge bases generalise sets of propositions
and conditional probabilistic knowledge bases. Besides,
we define a candidacy function (see §2.2.4) as return-
ing the degree to which each probability distribution is
candidate for representing the real world. The prob-
ability distributions maximising a candidacy function
are called the best candidates. We then establish prin-
ciples (see §2.3.5) guiding us towards the construction
of a candidacy function from a knowledge base. Such a
candidacy function expresses the degree to which each
probability distribution satisfies all the constraints of a
knowledge base, even when this knowledge base is in-
consistent. Moreover, reliability levels can be given to
the constraints.

Having bridged knowledge bases and candidacy func-
tions, we design the following tools only for candidacy
functions.

Chapter 3. Measures We propose several new
principled formalisations of the following four notions.

Section 3.2. Dissimilarity measure. We endow the set
of candidacy functions C with two principled metrics:
the internal dissimilarity measure, denoted by µdis

L∞ and
defined as the uniform norm of two candidacy functions,
and the external one, denoted by µdis

H and defined as the
Hausdorff distance between the respective best candi-
dates of two candidacy functions. Our metrics extends
those discussed in [33, page 89–91]. Each metric in-
duces a notion of convergence in C, hence a notion of
continuity for the tools performing on C.

Section 3.3. Inconsistency measure. The reliability of a
source of information might be partially determined by
how far its information is to be consistent: this distance
is given by our inconsistency measure µicst. We further-
more quantify the culpability of each item of informa-
tion in making the whole inconsistent. µicst satisfies
several principles extending those stated by A. Hunter
and S. Konieczny in [18] for sets of propositions.

Section 3.4. Incoherence measure. The reliability of
a source of information might be partially determined
by how non-consensual its information and our before-
hand knowledge are. We formalise this quantity by two
different incoherence measures, one rather internal, de-
noted by µicoh

V , and one external, denoted by µicoh
G and

defined as the gap between the respective best candi-
dates of two candidacy functions. We also propose a
tentative definition of the surprise as the incoherence
between a new information and our beforehand knowl-
edge.

Section 3.5. Precision measure. The more numerous
the best candidates, the less precise the candidacy func-
tion. We show that a naive formalisation of the previ-
ous statement, ie a precision measure defined as a kind
of volume of the best candidates, leads to two issues:
one intrinsic to Lebesgue measure (the Lebesgue mea-
sure does not count frontier points), and one intrinsic
to probabilities (different probability distributions may
have different volumes). We exhibit a workaround for
the latter issue, and we consider the first issue as in-
significant when only ordering candidacy functions by

47
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precision. We also extend the principles collected by
A. Hunter and S. Konieczny in [3, page 222–224]. Be-
sides, we suggest a definition for the confidence one
may have in making a particular decision wrt a given
knowledge.

Chapter 4. Inference processes. An inference
process elects the probability distributions that best
represent the real world, wrt a candidacy function.
J.B. Paris and A. Vencovská stated in [34, 36] several
principles characterising one inference process operat-
ing on knowledge bases. We extend to candidacy func-
tions these principles and the inference process, which
elects the best candidates having the maximum entropy.

Chapter 5. Potential applications. We show that
paraconsistent probabilistic reasoning is the only solu-
tion to a problem from voting theory, where a group
of agents has to consensually elect a (probability) dis-
tribution (see §5.1.2). Notably, this solution may be
tractable due to the quadratic space complexity of
the knowledge representation. However, paraconsistent
probabilistic reasoning is intractable when applied to
scenarios recognition (see §5.1.1): approximate infer-
ence processes are still needed.
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maximum entropy inference process. Interna-
tional Journal of Approximate Reasoning, 17:17–
103, 1997.

[38] J.B. Paris and A. Vencovská. Common sense
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Index

Symbols
∅K (tautological knowledge base), 9
0C (absorbing candidacy function), 10
1C (tautological candidacy function), 9
{0, 1, 2} (set, or multiset), vi
[0, 1, 2] (list, or horizontal vector), vi
[0; 1; 2] (vertical vector), vi
[A,B] (horizontal concatenation), vi
[A;B] (vertical concatenation), vi
[0:1] (real interval), vi
E (entropy), 38
G(k1, k2) (gap between two sets of points), 6
GKL(ω, k) (information-based gap), 10
H (Hausdorff distance), 19
IEi (internal entropy-based inference process), 40
ME (MaxEnt inference process), 38
IEME (paraconsistent MaxEnt inference process), 39
Kσ (knowledge base reliable up to a level σ), 12
L∞ (uniform norm), 19
L2 (Euclidean distance), vi
M (most precise candidacy functions), 27
N (natural numbers, 0 included), vi
N (volume normaliser), 28∏
v (scalar product of all the elements of v), vi

Pε (polynomial ordering), 29
R (real numbers), vi∑
v (scalar sum of all the elements of v), vi

V (volume), 28
♥K (kernels of a consistent knowledge base), 5
MCSK (maximal consistent subsets of K), 5
Ω (probability distributions), 4
ΩK (models of knowledge base K), 4
Ω̂C (best candidates of C), 5
C (candidacy functions), 5
C

∫
(candidacy functions of which the set of best

candidates is partitionable in a finite set
of solo-dimensional manifolds), 28

K (knowledge bases), 4
K

∗ (knowledge bases that make PI
α satisfied), 4

K
= (linear knowledge bases made of equalities), 4

K
L (linear knowledge bases), 4

K
P (polynomial knowledge bases), 4

SolK (solutions of multiset of constraints K), 4
Solc (solutions of constraint c), 4

Θ (propositional language), 4
αΘ (minterms of Θ), 4
αθ (minterms of proposition θ), 4
C1 |= C2 (entailment for candidacy functions), 17
K |=ff k (entailment wrt free formulae), 17
K |=ic k (entailment wrt inevitable consequences), 17
|= θ (tautological proposition), 4
µconf (confidence measure), 33
µculp (culpability measure), 23
µdis
H (external dissimilarity measure), 19
µdis
H̄ (strong external dissimilarity measure), 20
µdis
L∞ (internal dissimilarity measure), 19
µicoh
G (gap-based incoherence measure), 26
µicoh
Ḡ (strong gap-based incoherence measure), 26

µicoh
V (vertical incoherence measure), 25
µicst (inconsistency measure), 22
µpre
ր (complete precision measure), 30
µpre
⊖ (language invariant precision measure), 33

µSIV
I (Shapley Inconsistency Value), 24
µsurp (surprise measure), 26
µsurp
KL (surprise measure), 26

κK(ω̂) (culpability distribution of K wrt ω̂), 23
σ (reliability level), 12
vars(⋄) (propositional variables of ⋄), 6
⋄ ⊕ v (language enrichment operator), 6
⋄ ⊖ v (language impoverishment operator), 33

C
candidacy function, 5

absorbing, 10, 11, 14
most precise, 27
tautological, 9

consistency, 4
convergence, 20
culpability distribution, 23

E
entropy, 38
equivalence

external, 15
internal, 9

explosion, 10

F
frontier, 20
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G
gap

Euclidean distance-based, 6
information-based, 10

H
Hausdorff distance, 19

I
inference process

internal entropy-based, 40
maximum entropy, 38
paraconsistent maximum entropy, 39

K
kernel, 5
knowledge base

linear, 4, 5
polynomial, 4
tautological, 9

knowledge content, 8
external level, 8, 15
internal level, 8

Kolmogorov’s axioms, 4

L
language

probabilistic, 4
linear, 5

propositional, 4
log-concavity, 11

M
measure

confidence, 33
culpability, 23
dissimilarity, 19, 20
incoherence, 25, 26
inconsistency, 22
precision, 30, 33
Shapley Inconsistency Value, 24
surprise, 26

minterm, 4

N
norm

Euclidean distance, vi
uniform, 19

P
principle

associativity, 9
best candidates, 38
bounds, 28
characterisation, 14

closure, 9
consequence invariance, 19, 22, 25
continuity, 22, 25, 28, 38
continuum, 19
convexity, 11
dominance, 22
equitable distribution, 22
equivalence, 22, 25, 28, 37
homomorphism, 10
identity element, 9
independence, 38
irrelevant information, 37
language bound, 28
language invariance, 11, 18, 22, 25, 27, 37
lower bound, 27
minimality, 22
monotonicity, 22
non-idempotence, 9
obstinacy, 38
open-mindedness, 38
paint-pot, 18
proximity, 10
relativisation, 38
reliability invariance, 12
reliability reinforcement, 13
renaming, 37
separation, 18, 22, 25
singleton bound, 27
strict monotonicity, 22, 28
symmetry, 9, 18, 25
triangle inequality, 18
unanimity, 10
uniqueness, 37
Watts assumption, 9

probability
conditional, 5
distribution, 4

R
reliability level σ, 3, 11, 12, 14

S
solo-dimentionality, 17
stochastic independence, 5

T
triangular norm (t-norm), 10

V
volume, 28
voting theory, 3
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Définition d’une logique probabiliste tolérante à l’inconsistance
– appliquée à la reconnaissance de scénarios & à la théorie du vote –

Résumé : Les humains raisonnent souvent en présence d’informations contradictoires. Dans cette
thèse, j’ébauche une axiomatisation du sens commun sous-jacent à ce raisonnement dit paracon-
sistant. L’implémentation de cette axiomatisation dans les ordinateurs autonomes sera essentielle si
nous envisageons de leur déléguer des décisions critiques ; il faudra également vérifier formellement
que leurs réactions soient sans risque en toute situation, même incertaine.

Une situation incertaine est ici modélisée par une base de connaissances probabilistes éven-
tuellement inconsistante ; c’est un multi-ensemble de contraintes éventuellement insatisfiable sur une
distribution de probabilité de phrases d’un langage propositionnel, où un niveau de confiance peut être
attribué à chaque contrainte. Le principal problème abordé est l’inférence de la distribution de probabi-
lité qui représente au mieux le monde réel, d’après une base de connaissances donnée. Les réactions
de l’ordinateur, préalablement programmées puis vérifiées, seront déterminées par cette distribution,
modèle probabiliste du monde réel.

J.B. Paris et al ont énoncé un ensemble de sept principes, dit de sens commun, qui caractérise
l’inférence dans les bases de connaissances probabilistes consistantes. Poursuivant leurs travaux de
définition du sens commun, je suggère l’adhésion à de nouveaux principes régissant le raisonnement
dans les bases inconsistantes.

Ainsi, je définis les premiers outils théoriques fondés sur des principes pour raisonner de manière
probabiliste en tolérant l’inconsistance. Cet ensemble d’outils comprend non seulement des mesures
de dissimilarité, d’inconsistance, d’incohérence et de précision, mais aussi un processus d’inférence
coïncidant avec celui de J.B. Paris dans le cas consistant. Ce processus d’inférence résout un pro-
blème de la théorie du vote, c’est-à-dire l’obtention d’un consensus parmi des opinions contradictoires
à propos d’une distribution de probabilité telle que la répartition d’un investissement financier.

Finalement, l’inconsistance n’est qu’une forme d’incertitude qui ne doit pas entraver notre raison-
nement, ni celui des ordinateurs : peut-être qu’une plus grande confiance leur sera accordée s’ils
fondent leurs décisions sur notre sens commun.
Mots clés : logique, probabilité, inconsistance, base de connaissances, raisonnement, mesure

Paraconsistent probabilistic reasoning
– applied to scenario recognition & voting theory –

Abstract: If we envisage delegating critical decisions to an autonomous computer, we should not
only endow it with common sense, but also formally verify that such a machine is programmed to
safely react in every situation, notably when the situation is depicted with uncertainty.

In this thesis, I deem an uncertain situation to be a possibly inconsistent probabilistic propositional
knowledge base, which is a possibly unsatisfiable multiset of constraints on a probability distribution
over a propositional language, where each constraint can be given a reliability level. The main prob-
lem is to infer one probabilistic distribution that best represents the real world, with respect to a given
knowledge base. The reactions of the computer, previously programmed then verified, will be deter-
mined by that distribution, which is the probabilistic model of the real world.

J.B. Paris et al stated a set of seven commonsensical principles that characterises the inference
from consistent knowledge bases. Following their approach, I suggest adhering to further principles
intended to define common sense when reasoning from an inconsistent knowledge base.

My contribution is thus the first principled framework of paraconsistent probabilistic reasoning that
comprises not only an inference process, which coincides with J.B. Paris’s one when dealing with con-
sistent knowledge bases, but also several measures of dissimilarity, inconsistency, incoherence, and
precision. Besides, I show that such an inference process is a solution to a problem originating from
voting theory, namely reaching a consensus among conflicting opinions about a probability distribution;
such a distribution can also represent a distribution of a financial investment.

To conclude, this study enhances our understanding of common sense when dealing with incon-
sistencies; injecting common sense into decision systems should make them more trustworthy.
Keywords: logic, probability, inconsistency tolerance, knowledge base, reasonning, measure


