
HAL Id: pastel-00539555
https://pastel.hal.science/pastel-00539555

Submitted on 24 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Multi-Technology Multi-objective
Comparative Analysis of Families of MPSOC

Zhoukun Wang

To cite this version:
Zhoukun Wang. Design and Multi-Technology Multi-objective Comparative Analysis of Families of
MPSOC. Sciences de l’information et de la communication. Institut National Polytechnique de Greno-
ble - INPG, 2009. Français. �NNT : �. �pastel-00539555�

https://pastel.hal.science/pastel-00539555
https://hal.archives-ouvertes.fr

INSTITUT POLYTECHNIQUE DE GRENOBLE

 N° attribué par la bibliothèque
 |__|__|__|__|__|__|__|__|__|__|

T H E S E

pour obtenir le grade de

DOCTEUR DE L’Institut polytechnique de Grenoble

Spécialité : « Micro et Nano-Electronique »

préparée au laboratoire _GIPSA-lab et ENSTA ParisTech UEI-lab

dans le cadre de l’Ecole Doctorale « Electronique, Electrotechnique, Automatique & Traitement du Signal »

présentée et soutenue publiquement

par

_____________Zhoukun WANG____________

le ____12.Novembre.2009 __

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de
Multiprocesseurs sur Puce

DIRECTEUR DE THESE : Dominique HOUZET
CO-DIRECTEUR DE THESE : Omar HAMMAMI

JURY

M. Kees GOOSSENS , Rapporteur
M. Lionel TORRES , Rapporteur
M. Dominique HOUZET , Directeur de thèse
M. Omar HAMMAMI , Co-Directeur de thèse
M. Marcello COPPOLA , Examinateur
M. Ian O’CONNOR , Examinateur

Acknowledgement

1

Acknowledgement

Je tiens d’abord à exprimer ma profonde reconnaissance à mon co-directeur de thèse, le
Professeur Omar Hammami, professeur de l’ENSTA ParisTech, pour toute la confiance
qu’il m’a témoignée et toute sa disponibilité à diriger cette thèse. Je le remercie
également pour les longues discussions techniques, pour les précieux conseils qu’il m’a
donnés, et pour tout ce qu’il m’a appris pendant cette thèse et lors de la rédaction de ce
manuscrit. Je le remercie enfin de m’avoir permis d’intégrer son équipe.

Je remercie vivement mon directeur de thèse, le Professeur Dominique Houzet,
professeur de l’INPG, pour tous ses conseils et discussions techniques.

Je remercie Monsieur Kees Goossens, professeur de the Delft University of Technology,
et Monsieur Lionel Torres, professeur de l’Université Monpellier II, qui ont accepté
d’être les rapporteurs de ma thèse de doctorat.

Je remercie Monsieur Ian O’connor, professeur à l’école centrale de Lyon, et Monsieur
Marcello Coppola, qui ont bien voulu en être les examinateurs.

Je remercie, bien évidement, Xinyu LI, Guangye Tian, Mazen Khaddour, Muhammad
Imran Taj et tous mes amis, collègues et doctorants de l’ENSTA.

Enfin, et surtout, je remercie ma famille pour son soutien, sa compréhension et ses
encouragement. Je présente ici mes reconnaissances à ma chère épouse Jiangdong!
Celle qui me comprend et me soutient dans les moments les plus difficiles, surtout
pendant les derniers mois de la rédaction de ce manuscrit.

2

Résumé

3

Résumé

Les systèmes multiprocesseurs sur puce (MPSoC) ont fortement émergé

durant la dernière décennie en matière de communication, multimédia, réseaux et

d'autres domaines embarqués. Le MPSOC est devenu un nouveau paradigme à haute

performance pour la conception d'applications embarquées. Cette thèse aborde la

conception et l'implémentation physique d'un réseau sur puce (NoC) sur

multiprocesseur System on Chip. Nous avons étudié plusieurs aspects de la conception à

des stades différents: la synthèse de haut niveau, la conception architecturale, la mise en

œuvre sur FPGA, ASIC et l'évaluation de mise en œuvre physique. Nous avons analysé

et présenté les impacts de ces aspects sur la performance finale des MPSOC, la

consommation de puissance et le coût en surface.

Nous avons implémenté une famille de MPSoC par prototypage sur FPGA. Un

exemple de 16 processeurs (PE) basé sur un système embarqué à base de NoC sera

introduit. Trois NoC fournissent des fonctionnalités différentes pour les 16 tuiles PE. Le

Data-NOC relie les tuiles PE et les mémoires DDR2 avec une grande bande passante ;

le Synchronisation -NOC offre deux modes de synchronisation pour les tuiles de PE.

Les utilisateurs peuvent vérifier et configurer les adresses des blocks IP connecté au

Data-NOC grâce à notre Service-NOC. Nous avons également montré l'utilisation de

notre système de suivi des performances pour le déboguage et le réglage du logiciel

embarqué. Avec les FIFO bi-synchrone, notre architecture GALS résout avec succès le

problème de distribution du signal d’horloge et permet que chaque domaine d'horloge

Résumé

4

puisse fonctionner à sa fréquence propre. D'autre part nous avons mis en œuvre avec

succès les algorithmes AES et TDES de chiffrement sur cette plate-forme et les résultats

montrent une accélération linéaire en temps de calcul.

La partie réseau de notre architecture a été mis en œuvre sur la technologie

ASIC et a été explorée avec des contraintes temporelles différentes et des bibliothèques

de différentes catégories de technologies 65nm et 45nm de STMicroelectronics. Les

résultats expérimentaux sur ASIC et FPGA sont comparés, et nous avons discuté

l'impact du changement de technologie sur la programmation parallèle.

Une accélération matérielle de systèmes embarqués à base de synthèse de haut

niveau basée sur le langage C a été proposée pour s'attaquer à l'augmentation du temps

de conception et à la pression du marché ainsi qu’à la complexité croissante des

systèmes sur puce (SoC). Dues à la sélection des outils et à différents jeux d’options de

synthèse et de placement/routage, de nombreuses solutions de bas niveau en termes de

superficie et de fréquence peuvent être produites et doivent être prises en compte au

plus haut niveau d'abstraction. Nous effectuons ici une évaluation quantitative des

coûts/performances de la synthèse de haut niveau basée sur le C d’accélérateurs matériel

de co-traitement. Plusieurs résultats expérimentaux sont présentés pour montrer l'impact

de divers outils de synthèse (SystemC Agility, Handel-C, ImpulseC) et l'impact des

sélections d'options dans le cadre du contexte général des SOC.

Mots clés: Network-on-Chip, système multiprocesseurs sur puce, synthèse de haut

niveau, FPGA, ASIC

Titre français : Conception et Analyse Comparative Multi-objectif Multi-Technologies

de Famille de Multiprocesseurs sur Puce

Abstract

5

Abstract

Multiprocessor System on Chip (MPSOC) has strongly emerged in the past

decade in communication, multimedia, networking and other embedded domains.

MPSOC became a new paradigm of high performance embedded application design.

This thesis addresses the design and the physical implementation of a Network on

Chip (NoC) based Multiprocessor System on Chip. We studied several aspects at

different design stages: high level synthesis, architecture design, FPGA

implementation, application evaluation and ASIC physical implementation. We try to

analysis and find the impacts of these aspects for the MPSOC’s final performance,

power consumption and area cost.

We implemented a family of MPSoC on FPGA prototyping. An example of

16 processors based on NoC embedded system will be introduced. Three NoCs

provide different functionalities for sixteen PE tiles. The cascading Data-NoC

connects PE Tiles and DDR2 memories with a high bandwidth; synchronization-NoC

offers two synchronization modes for PE tiles. And users can check and configure IPs

of Data-NoC through our service NoC. We also demonstrated the use of our

performance monitoring system for software debugging and tuning. With the

bi-synchronous FIFO method, our GALS architecture successfully solves the long

clock signal distribution problem and allows that each clock domain can run at its

own clock frequency. On the other hand we successfully implemented AES and

TDES block cipher cryptographic algorithms on this platform and results show linear

speedup in computation time.

The network part of our architecture has been implemented on ASIC

technology and has been explored with different timing constraints and different

library categories of STmicroelectronics’ 65nm/45nm technologies. The experimental

Abstract

6

results of ASIC and FPGA are compared, and we conducted the discuss of technology

change impact on parallel programming.

C-based hardware-accelerated embedded system has been proposed to tackle

the increasing time-to-market pressure and the growing complexity of system on chip

(SoC). Due to tools selection and different set of synthesis, place and route options,

numerous low level solutions in term of area and frequency can be produced and must

be considered in high abstraction level. we conduct a quantitative area-performance

evaluation of C-based high level synthesis of hardware-accelerator co-processing.

Several experimental results are presented to show the impact of various C-based

synthesis tools (SystemC Agility, Handel-C, ImpulseC) and the impact of option

selections in the context of complete SOC environment.

Key words: Network-on-Chip, multiprocessor system on chip, high level synthesis,

FPGA, ASIC

English Title: Design and Multi-Technology Multi-objective Comparative Analysis

of Families of MPSOC

Table of Contents

7

Table of Contents

Version française .. 18

Chapter 1 Introduction .. 36

1.1 Select MPSoC as the direction of thesis ... 36

1.2 Identify the MPSOC design and implementation issues 39

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip . 41

2.1 Introduction .. 41

2.2 Academic and Commercial MPSoC ... 41

2.3 Academic and Commercial NOCs ... 45

2.3.1 SPIN. .. 45
2.3.2 ÆTHEREAL .. 46
2.3.3 Nostrum .. 49
2.3.4 MANGO ... 51

2.4 Case study: Arteris Technology ... 52

2.5 Conclusion .. 54

Chapter 3 MPSOC Design and Implementation ... 56

3.1 Introduction of MPSOC and NoC Design .. 56

3.2 MP3NOC: A Family of Architectures .. 57

3.2.1 Generic Architecture .. 57
3.2.2 Architecture overview .. 59
3.2.3 Processing Element TILE ... 60
3.2.4 Network on Chip .. 63

3.2.4.1 OCP Network Interface Unit: .. 65
3.2.4.2 Switch: ... 66
3.2.4.3 DATA NOC ... 67

Table of Contents

8

3.2.4.4 Synchronization NOC .. 68
3.2.4.5 Service NOC .. 71

3.3 Bi-Synchronous FIFO in GALS architecture ... 72

3.4 Performance Monitoring .. 74

3.4.1 Performance Monitoring system evaluation ... 76

3.5 Implementation ... 81

3.6 Conclusion .. 84

Chapter 4 MPSoC Performance Evaluation .. 85

4.1 Using encryption as evaluation application .. 85

4.2 The algorithm ... 86

4.2.1 The AES (Advanced Encryption Standard).. 87

4.3 Operation Mode .. 89

4.3.1 TDES Parallelization .. 91
4.3.2 Data parallelization approach ... 91

4.3.2.1 Design Description ... 91
4.3.2.2 Timing and memory access schemes 94

4.3.3 Pipelined approach ... 95
4.3.3.1 Design description .. 95
4.3.3.2 Timing and memory access scheme 97

4.4 Results and Discussion ... 97

4.5 Conclusion .. 105

Chapter 5 MPSOC ASIC Design .. 106

5.1 MPSoC ASIC Design Introduction .. 106

5.2 standard cell ASIC design .. 107

5.3 ASIC 65nm and 45nm Semiconductor ... 108

5.4 ASIC Design Flow ... 109

5.5 MPSoC implementation case study .. 110

5.5.1 ASIC implementation of OCN ... 111

Table of Contents

9

5.5.2 Backend design flow of our OCN ASIC implementation 112

5.6 switch ASIC synthesis results vs placement and route results 119

5.7 Design Space Exploration .. 123

5.7.1 ASIC Power vs Clock Frequency ... 123
5.7.2 ASIC Area vs Clock Frequency ... 126
5.7.3 FPGA-ASIC exploration .. 128

5.8 NoC and switch opportunities with technologies change: impact on parallel

software programming portability .. 130

5.9 Conclusion .. 131

Chapter 6 Potential use of High level synthesis in MPSoC platform 133

6.1 Design Productivity and High Level synthesis... 133

6.2 Embedded Processor Coprocessing Support .. 135

6.2.1 C-Based Synthesis and Hardware Accelerator Design Workflow 137

6.3 State of the art of c-based synthesis.. 139

6.4 SoC methodology of C-based synthesis ... 140

6.4.1 C-Language Fundamentals ... 140
6.4.2 HLS Approaches and Tools .. 141

6.5 Exploration of C-based synthesis of coprocessor design 145

6.5.1 Designs examples ... 146
6.5.2 Target Platform ... 149

6.5.2.1 Target technology .. 149
6.5.2.2 Tools and Options Combinations ... 151

6.6 Results of synthesis and place & route. .. 151

6.6.1 Area results ... 153
6.6.2 Variability of results with compilation options 154

6.7 Discussion ... 159

6.8 Design Space Exploration Coprocessors in MPSOC 161

6.9 Conclusion .. 163

Table of Contents

10

Chapter 7 Conclusion .. 165

REFERENCES ... 170

PUBLICATIONS ... 180

Table of Figure

11

Table of Figure

Figure 1 Product Technology Trends (2008 ITRS) ... 36
Figure 2 number of processing engines Trends (2008 ITRS) 38
Figure 3 ARM 11 MPcore ... 42
Figure 4 Texas Instruments TMS320VC5441 ... 43
Figure 5 QorIQ™ P4080.. 44
Figure 6 Toshiba Venezia Architecture ... 44
Figure 7 SPIN network topology ... 45
Figure 8 SPIN32 test chip layout ... 46
Figure 9 ÆTHEREAL contention-free routing. source[12] 47
Figure 10 Implementation of GS-BE ÆTHEREAL source [13] 48
Figure 11 Nostrum looping containers .. 50
Figure 12 Nostrum bandwidth granularity ... 50
Figure 13 MANGO router ... 51
Figure 14 the NoC design flow by Arteris ... 52
Figure 15 example of Danube IPs .. 53
Figure 16 NoCcompiler GUI ... 54
Figure 17 generic multiprocessor architecture block diagram 57
Figure 18 possible design space explorations .. 58
Figure 19 platform based MPSOC design Methodology ... 58
Figure 20 multiprocessor block diagram with N=16 Processors and M=4 DDR2
Banks with 3 NOCs (Data, Synchronization, service) ... 59
Figure 21 Block diagram of MicroBlaze processor ... 60
Figure 22 Block diagram of MB PE Tile ... 61
Figure 23 Block diagram of PowerPC processor ... 62
Figure 24 Block diagram of PPC PE Tile .. 62
Figure 25 A typical NTTP Request Packet .. 64
Figure 26. An example of Data OCP master NIU ... 65
Figure 27. Block diagram of Arteris switch ... 67
Figure 28. Block diagram of Data NoC ... 68
Figure 29. Illustration of Locked synchronization ... 69
Figure 30. Block diagram of Synchronization NoC .. 70
Figure 31. Block diagram of Service NoC ... 71
Figure 32. Block diagram of OCP adapter ... 72
Figure 33 Illustration of clock domain ... 74
Figure 34. diagram of statistic collector .. 75
Figure 35. illustration of performance monitoring system, ... 76
Figure 36 Matrix per bank data distribution scheme ... 77
Figure 37 Line interleaved data distribution scheme ... 78
Figure 38 Latencies of three data access scheme. .. 80

Table of Figure

12

Figure 39 comparison of the execution cycles for three data access scheme. 81
Figure 40 Block diagram of Alpha-Data FPGA platform card ADPe-XRC-4 81
Figure 41 the percentage for FPGA Slices utilization ... 82
Figure 42 the Area percentage of Data-NOC .. 83
Figure 43 Floor planing and placed FPGA of platform ... 84
Figure 44: Feistel function F (SBoxes) .. 86
Figure 45 TDES encryption and Decryption schemes (Feistel Network) 87
Figure 46: AES general flow ... 88
Figure 47 ECB operation mode for the TDES block cipher .. 89
Figure 48:ECB operation mode ... 90
Figure 49: CBC operation mode for the TDES block cipher 90
Figure 50: CBC operation mode .. 91
Figure 51: external memory segments repartition between PEs (segment number n is
dedicated to PE number n) ... 92
Figure 52: CBC mode mapping into the 16 Processing Elements platform 93
Figure 53: Timing and memory conflict in Data parallel method 94
Figure 54: Pipeline Like method tasks repartition and memory sharing 96
Figure 55: timing and synchronization between PE0 and PE1 97
Figure 56: the number of cycles vs. the number of processors for AES 99
Figure 57: the throughput at 100MHz vs. the number of processors for the AES
algorithm with barrel shifters ... 100
Figure 58: the number of cycles vs. the number of processors for TDES 101
Figure 59: the throughput at 100MHz vs. the number of processors with barrel shifters
for the TDES algorithm ... 102
Figure 60: Average cycles/block in function of number of encrypted blocks 104
Figure 61 MPSoC FPGA emulation to ASIC implementation migration 109
Figure 62 MPSoC implementation case study ... 111
Figure 63 OCN case for ASIC implementation ... 112
Figure 64 backend design flow for our NoC ASIC implementation 113
Figure 65 floorplaning of NoC .. 115
Figure 66 placement of NoC .. 115
Figure 67 clock tree of NoC ... 116
Figure 68 power and GND routing .. 117
Figure 69 routed network ... 117
Figure 70 timing analysis ... 118
Figure 71 switch block diagram ... 119
Figure 72 The synthesized switch in Synopys Design Compiler 120
Figure 73 Switch place and routing ... 121
Figure 74 Switch AREA results: synthesis vs P&R .. 121
Figure 75 Switch Total Dynamic Power result: synthesis vs P&R 122
Figure 76 Switch Leakage Power result: synthesis vs P&R 122
Figure 77 ASIC Dynamic power exploration .. 124
Figure 78 ASIC static power exploration .. 125
Figure 79 ASIC static power exploration: 65 nm vs 45 nm 125

Table of Figure

13

Figure 80 ASIC Dynamic power exploration: 65 nm vs 45 nm 126
Figure 81 ASIC Area exploration .. 126
Figure 82 ASIC Area exploration: 65 nm vs 45 nm .. 127
Figure 83 area, power consumption and min period comparison 128
Figure 84 ASIC-FPGA Area exploration .. 129
Figure 85 ASIC-FPGA Frequency exploration ... 130
Figure 86 Design productivity challenges ... 133
Figure 87 Flexible MPSOC platform with HLS Generated Coprocessors 135
Figure 88 DSE coproc vs PE in MPSOC platform .. 135
Figure 89 DSE PE vs NOCs in MPSOC platform ... 136
Figure 90 DSE PE vs Implementation in MPSOC platform 136
Figure 91 Block Diagram of Accelerator Connection Forms 137
Figure 92 C-based HW Accelerated System Design Workflow 138
Figure 93 the C and ImpulseC codes for a 3*3 mean filter 147
Figure 94 2D recursive octree grid traversal principle. ... 148
Figure 95 Virtex-4 Slice structure .. 150
Figure 96 Virtex-4 Slice L Structure ... 150
Figure 97 Timing results for throughput, latency and clock period 152
Figure 98 Area results for logic elements .. 153
Figure 99 Number of LUT BRAM for storage elements ... 154
Figure 100 Number of flip flop for storage elements. ... 154
Figure 101 Sequential Mean Filter with ImpulseC- XST VHDL Synthesis tool
variation (a) period (b) slices ... 156
Figure 102 Pipeline Mean Filter with ImpulseC - XST VHDL Synthesis tool variation
(a) period (b) slices .. 156
Figure 103 Sequential Mean Filter with Agility - XST VHDL Synthesis tool variation
(a) period (b) slices .. 156
Figure 104 Pipeline Mean Filter with Agility - XST VHDL Synthesis tool variation (a)
period (b) slices .. 157
Figure 105 Pipeline Median Filter with Agility - XST VHDL timing variation with
and without placement constraints ... 157
Figure 106 Sequential Mean Filter- Place and Route variations from best (left) to
worst (right) ... 157
Figure 107 Pipeline Mean Filter -Place and Route variation from best (left) to
worst (right) ... 158
Figure 108 pipeline FFT - Place and Route variations from best(left) to worst (right)
 .. 158
Figure 109 Pipeline Median Filter -Place and Route variations from best (left) to
worst (right) ... 158
Figure 110: 5 Stage pipeline TDES ... 162
Figure 111: TDES HLS co-processor connected to MPSOC based platform 163

Table of Figure

14

List of Table

15

List of Table

TABLE 1 industrial MPSoC Implementation .. 42
TABLE 2 NTTP signals in physical layer ... 64
TABLE 3 the signals for our Data OCP configuration .. 65
TABLE 4 OCP master command MCmd .. 68
TABLE 5 OCP Slave response SResp ... 68
TABLE 6 signals for Bi-synchronous FIFO .. 73
TABLE 7 performance monitoring results Solution1 : matrix par bank 78
TABLE 8 performance monitoring results Solution2 : Line interleaved 79
TABLE 9 performance monitoring results Solution3 : Line interleaved with shift
access ... 79
TABLE 10 FPGA resource utilization ... 82
TABLE 11 data-NOC resource utilization .. 83
TABLE 12 basic functions of TDES profiling on one processor 95
TABLE 13 tasks executed on Processing Elements in cycles without synchronization
overhead ... 96
TABLE 14 AES executed cycles to encrypt 16784 blocks on PEs without barrel
shifters .. 98
TABLE 15 AES executed cycles to encrypt 16784 blocks on PEs with barrel shifters
 .. 98
TABLE 16 TDES executed cycles to encrypt 16784 blocks on PEs without barrel
shifters .. 98
TABLE 17 TDES executed cycles to encrypt 16784 blocks on PEs with barrel shifters
 .. 99
TABLE 18 TDES executed cycles to encrypt 16784 blocks on PEs with barrel shifters
 .. 100
TABLE 19 TDES executed cycles to encrypt 16784 blocks on PEs with barrel shifters
 .. 101
TABLE 20 in of overall and average number of cycles in function of number of
treated blocks ... 103
TABLE 21 average speedup of the TDES ... 103
TABLE 22 average throughput at 100 MHz clock .. 103
TABLE 23 EDA tools for physical design .. 110
TABLE 24 synthesis results for different timing constraints 120
TABLE 25 P&R results for different timing constraints ... 121
TABLE 26 Approaches used for C-based hardware description languages 142
TABLE 27 Case study selected C-based environments .. 142
TABLE 28 Core Case studies .. 149
TABLE 29: HLS based TDES IP vs optimized IPs ... 162

List of Table

16

17

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

18

Version française

Conception et Analyse Comparative Multi-objectif

Multi-Technologies de Famille de Multiprocesseurs sur Puce

Gordon E. Moore affirme que le nombre de transistors sur une puce double environ

tous les deux ans, maintenant communément appelée loi de Moore. La dimension de

l'élément de transistor devrait continuer à diminuer. Une réduction de 70% en

dimensions linéaires des transistors en passant à un nouveau procédé de fabrication (par

exemple de 65 nm à 45 nm) permet un facteur 2 d’augmentation de la densité de puces.

Comme le montre la figure 1, l’International Technology Roadmap for

Semiconductors (ITRS) de 2008 prévoit que des puces à plusieurs milliards de

transistors apparaîtront en production d'ici la fin de cette décennie.

Figure 1 : évolution des technologies (2008 ITRS)

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

19

Actuellement les technologies submicronique (DSM) sont le procédé utilisé dans la

plupart des VLSI et ULSI. La taille de gravure peut augmenter la dimension effective

des ASIC, et introduire de nouvelles applications, mais aussi aggraver les problèmes

actuels de conception VLSI / ULSI, et d'ailleurs en introduire de nouveaux. Récemment,

l’équipe de recherche Intel Tera-Scale Computing a mentionné dans un livre blanc que

«les questions d'énergie thermique, telles que la dissipation de la chaleur provenant des

transistors de plus en plus denses, ont commencé à limiter la vitesse à laquelle la

fréquence du processeur peut également être augmenté. Bien que les hausses de

fréquence ont été un aliment de base de conception pour les 20 dernières années, les 20

prochaines années, il faudra une nouvelle approche. Fondamentalement, l'industrie a

besoin de développer l'amélioration des micro-architectures à un rythme plus rapide et

en coordination avec chaque nouveau processus de fabrication de silicone, de 45 nm à

32 nm et au-delà ».

La performance est toujours l'une des caractéristiques les plus importantes pour la

mesure de la conception VLSI. Nous ne pouvons plus simplement augmenter la

fréquence d'horloge à la même vitesse que nous avons fait dans le passé afin

d'augmenter les performances. L’énergie et les exigences thermiques commencent à

surpasser les avantages que les fréquences d'horloge plus rapides offrent. Toutefois, en

raison de la trajectoire de la loi de Moore qui se poursuivra dans la prochaine décennie,

nous prévoyons de continuer à doubler les transistors tous les 18-24 mois pour les

années à venir. L’exécution parallèle dans des conceptions multi-coeurs nous permettra

ensuite de tirer parti de ces densités de transistors accrues pour fournir des performances

accrues.

Les système multiprocesseur sur puce (MPSoC) ont fortement émergé durant la

dernière décennie en matière de communication, multimédia, réseaux et d'autres

domaines embarqués. Le MPSOC est devenu un nouveau paradigme de haute

performance pour la conception d'applications embarquées.

Un MPSOC est une agrégation d'un système sur puce et d’un multiprocesseurs

traditionnel. Mais nous ne pouvons pas appliquer directement le modèle scientifique de

super-calculateur pour les systèmes sur puce. Ce n'est pas tout simplement des

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

20

processeurs multiples et sous-systèmes de matériels périphériques réduits à une seule

puce de silicium. Les MPSOCs ont été conçus pour satisfaire les exigences des

applications embarquées.

Les trois plus importantes caractéristiques communes de ces applications

embarquées sont la haute performance, le temps réel et la faible puissance.

Les performances plus élevées sont toujours demandées par les consommateurs, et

cela encourage la recherche et le développement de plates-formes à haute performance,

pouvant satisfaire les nouvelles exigences et les nouvelles normes. Des performances

supérieures impliquent des moyens et des algorithmes de plus en plus complexes qui ne

peuvent être réalisés par du matériel simple ou des SoC monoprocesseur. Les MPSOCs

ont été conçus à cet effet.

L’nformatique temps réel est bien plus qu'un simple moyen de calcul de haute

performance. Dans le calcul interactif traditionnel, nous nous soucions de la vitesse,

mais pas des délais. La plupart des systèmes embarqués se soucient des performances

moyennse, mais aussi que les tâches soient accomplies dans un délai donné. Les

architectures MPSoC doivent être prévisibles. Les applications qui peuvent fonctionner

avec des performances prévisibles forment l'architecture MPSoC.

La consommation électrique est une autre contrainte importante pour la conception

de MPSoC. Ces contraintes sont beaucoup plus strictes dans les systèmes MPSoC que

pour les supercalculateurs traditionnels ou les systèmes informatiques de bureau.

Réduire la consommation électrique peut prolonger la vie de la batterie d’un MPSoC, et

l'énergie limitée fournie par la batterie nécessite une réduction de la consommation

d'énergie des MPSoC des que possible lors de la conception. Même pour les MPSOC

sans batterie, la faible puissance est également requise du fait de la chaleur des puces et

pour des raisons de coût.

Les contraintes de puissance et d'énergie des MPSoC doivent être prises en compte

à chaque niveau d'abstraction.

Dans les dernières années, beaucoup de papiers ont été publiés sur les MPSoC.

Beaucoup de ces recherches se soucient de la simulation, et s'arrêtent à la simulation de

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

21

haut niveau d'abstraction. À un haut niveau d'abstraction, la simulation peut rapidement

réaliser et vérifier la fonctionnalité du système et de l’algorithme. Lors de la simulation

au niveau transfert de registres on peut vérifier la correction du code RTL et évaluer la

performance du système avec au niveau cycles. La simulation peut également aider le

partitionnement logiciel / matériel. Pourquoi dans cette thèse nous nous soucions de

prototypage et d'émulation réelle et non seulement de simulation ?

L’émulation avec prototypage et la réalisation effective peuvent fournir des

mesures de performances réelles. Les performances d’un système peuvent être mesurées

en fournissant le nombre de cycles, mais la simulation ne peut pas fournir les mesures

avec le timing précis. La fréquence définie dans la simulation n’a pas de sens, nous ne

pouvons pas obtenir la fréquence maximale du système par la simulation. Un MPSoC

est un système temps-réel de haute performance. L'émulation et la mise en œuvre sont

nécessaires pour mesurer la période minimale d'horloge avec prototypage réel.

L'émulation par prototypage et la réalisation effective peuvent mesurer la surface

d'utilisation de silicium. Les résultats de mise en œuvre peuvent nous donner ment

l'utilisation de cellules pour les cibles ASIC, et le pourcentage d'utilisation des FPGA.

D'autres questions importantes peuvent être atteintes avec la mise en œuvre, telles que

des contraintes de nombres de broches, le floorplaning, la consommation d'énergie.

Conception et Implémentation de MPSOC

Avec l'avènement des nouvelles technologies de conception de circuits intégrés, le

MPSoC est apparu comme une solution prometteuse à la complexité grandissante et la

fonctionnalité croissante des systèmes embarqués sur puce. Le grand nombre de

processeurs et modules requièrent une dorsale de communication qui assure la

flexibilité, l'évolutivité et la qualité de service (QoS) garantie. Les moyens classiques de

l'interconnexion, tels que les bus et les crossbars, ne peuvent satisfaire à ces exigences

en raison des contraintes de surface, de temps et de consommation d’énergie. On-Chip

Network (OCN), ou réseau sur puce (NOC), a été proposé comme une approche

systématique pour traiter le défi de la conception centrée sur la communication.

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

22

Contrairement aux méthodes traditionnelles de raccordement, la structure modulaire de

l'architecture multiprocesseur à base de NoC rend hautement évolutive et améliore la

fiabilité et la fréquence de fonctionnement des modules sur puce. En outre, l'approche

NoC offre des possibilités incomparables pour mettre en œuvre de manière Globalement

Asynchrone, Localement Synchrone (GALS) la conception, qui font de la distribution

d'horloge et du temps-réel des problèmes plus gérable. Pour réduire la pression du

temps de mise sur le marché et face à la complexité croissante des systèmes sur puce, la

nécessité de prototypage rapide est en pleine croissance. Prenant avantage de la

technologie submicronique profonde, les FPGA modernes offrent un prototypage rapide

et à faible coût avec des moyens logiques de grandes et hautes performances.

Nous décrivons ici notre système multiprocesseur comprenant des tuiles de seize

processeurs, une mémoire partagée synchronisée et quatre banques de mémoire DDR2.

Toutes ces tuiles de processeurs sont reliées à des esclaves DDR2 grâce au Data-NOC et

sont synchronisés à l'aide du Synchronisation-NoC. Un réseau de service est également

intégré dans le système pour fournir des fonctionnalités comme la gestion d'erreur,

vérifier l'état des blocs IP et les services de reconfiguration à l'exécution. Les NoC sont

implémentés en utilisant la bibliothèque Arteris Danube, qui est basée sur le routage et

la commutation par paquets wormhole. L’observabilité au moment de l'exécution est

une nécessité pour le déboguage et le contrôle de systèmes embarqués, ce qui remet en

cause la conception de SoC basée sur les NoC. La surveillance des performances à

l’exécution mise en œuvre dans notre système fournit des informations de

comportement du NoC, comme le débit, la latence, et un soutient au déboguage et

réglage des applications et logiciels. Le MPSoC est une conception GALS réalisée avec

l'aide de FIFO bi-synchrones. L'adaptateur NoC contenant une paire de FIFO

bi-synchrone a été inséré entre le processeur et le NoC, pour lutter contre le problème de

communication entre deux domaines d'horloge différents (domaine d'horloge du

processeur et le domained’ horloge du NoC).

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

23

Figure 2 plate-forme Alpha-Data FPGA ADPe-XRC-4

Le système multiprocesseur est mis en œuvre sur plate-forme Alpha-Data à base de

carte FPGA ADPE-XRC-4. Comme le montre la figure 2, l'ADPE-XRC-4 est une

performance reconfigurable à base de carte PCI Express sur la base des FPGA Xilinx

Virtex-4 FX140. Le FPGA est connecté à quatre banques de mémoire DDR2, tandis que

chaque banque DDR2 256Mbytes se compose de deux MT47H64M16 de Micron. Le

MPSoC est synthétisé, mis en oeuvre par les outils Xilinx: EDK 9.2 et ISE 9.2, et les

résultats d'utilisation des ressources des FPGA sont présentés au tableau 1. Le système

multiprocesseurs utilise environ 90% des tranches de FPGA et 65% de blocs de RAM.

Chaque MicroBlaze prend 3 blocs DSP48, tandis que 15 processeurs MicroBlaze

utilisent 45 blocs DSP48. Les Digital Clock Managers (DCM) sont distribués au sein du

FPGA pour générer des fréquences d'horloge différentes pour les différents domaines

d'horloge. 16 tuiles PE, le Data-NoC, le Synchronisation-NoC et les DDR2 sont séparés

dans 19 domaines d'horloge et nécessitent en tout 19 DCMS. En ce qui concerne

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

24

l'utilisation des tranches de FPGA (slices), la figure 3 donne le pourcentage d'utilisation

de tranches. 16 tuiles PE prennent environ une moitié des tranches au total. Le

Data-NOC et le Synchronisation-NoC occupent environ 29,5% et 9,5% respectivement.

Environ 8% des tranches sont utilisées pour les contrôleurs DDR2.

Nombre de DCM_ADVs 19 parmi 20 95%

Nombre de DSP48s 45 parmi 192 23%

Nombre de RAMB16s 357 parmi 552 65%

Nombre de Slices 57344 parmi 63168 90%

Nombre de PPC405s 1 parmi 2 50%

TABLE 1 resources FPGA

Figure 3 pourcentage d’utilisation de tranches

 Nombre Surface (slices) Pourcentage

Master NIUs 16 3504 16%

Slave NIUs 4 1740 8%

Statistic collectors 5 9976 45%

Switches 16 6896 31%

TABLE 2 resources du data-NOC

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

25

Figure 4 the pourcentage de surface du Data-NOC

Figure 5 Floorplaning at placement FPGA de la platforme

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

26

Nous présentons ici une mise en œuvre d'un FPGA NoC-multiprocesseur de

système embarqué. Trois NoC fournissent des fonctionnalités différentes pour les tuiles

de seize PE. Le Data-NOC relie les Tuiles PE et les mémoires DDR2 avec une bande

passante élevée, le synchronisation-NOC offre deux modes de synchronisation pour les

tuiles de PE.

Evaluation à base d’application de cryptographie

La sécurité des données joue un rôle important dans la conception des systèmes

embarqués aujourd'hui, et de nombreuses applications intégrées s'appuient fortement sur

le mécanisme de sécurité. Les deux algorithmes de chiffrement couramment utilisés

sont: AES (Advanced Encryption Standard) et le TDES (Triple Data Encryption

Standard) qui ont été choisis comme application pour évaluer notre plate-forme

multiprocesseurs.

Une mise en oeuvre commune qui favorise les performances de ces algorithmes se

base sur les LUT où un ou plusieurs des opérations de l'algorithme sont pré-calculées

pour toutes les entrées possibles et stockées dans des tables (LUT). Nous utilisons cette

solution dans notre document car elle est simple à mettre en oeuvre, rapide et elle

s'intègre dans notre architecture (le domaine est déjà fixé par le choix des éléments de

traitement).

Le TDES est construit de manière à ce que le cryptage et le chiffrement utilisent la

même fonction, mais avec un ordre inverse dans les tours de clés, ce qui conduit à un

faible encombrement. L'AES, par contre se base sur un cryptage et décryptage avec des

fonctions différentes ce qui signifie que l'AES a un encombrement plus grand en termes

de code, où 2 fonctions doivent être mises en œuvre au lieu d'une pour le chiffrement /

déchiffrement, et en termes de taille des tables de choix car nous avons besoin de tables

différentes pour ces deux opérations, mais l'AES est plus rapide en temps d'exécution et

fournit une meilleure sécurité.

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

27

Nous avons exploré deux implémentations du TDES sur notre MPSoC à 16

processeurs en utilisant deux méthodes: la première est la division des données entre les

processeurs et la seconde est en divisant l'exécution du TDES. Notre architecture mets

en oeuvre des éléments de traitement connectés via deux NoC.

Les résultats montrent de meilleures performances pour le parallélisme de données,

favorisé par l'architecture, ce résultat peut être inversé dans une architecture pipeline.

MPSoC ASIC Design

Les Multiprocessor Systems-on-Chip (MPSoCs) sont devenus la norme pour les

systèmes intégrés. Les modes traditionnels d'interconnexion, tels que les bus et les

crossbars, ne peuvent pas satisfaire aux exigences MPSOC de performance, de taille

ainsi que d'évolutivité, et de fiabilité. Les On-Chip Network (OCN) ou réseau sur puce

(NOC), ont été proposés comme une approche systématique pour traiter le défi de la

conception centrée sur la communication. La structure modulaire de l'architecture

multiprocesseur NoC rend hautement évolutive et améliore la fiabilité et la fréquence de

fonctionnement des modules sur puce. Bien que ces avantages clés des NoC ont été

largement discutées, l'application pratique des NoC dans les technologies

submicroniques profondes (65 nm et au-dessous) est encore un défi ouvert.

Des recherches récentes ont porté sur les méthodes de synthèse efficaces de NoC et

des comparaisons avec des systèmes sur puce à base de bus, ainsi que la conception de

chaînes d’outils et d’architectures à base de NoC pour applications spécifiques pour des

modes de communication connus. Nous bâtissons sur ces travaux antérieurs pour

résoudre le problème de conception de topologie de NoC, prenant en compte l’impact

des outils au niveau des technologies 65 nm et 45 nm. Par rapport aux travaux

précédents, ici on ajoute plusieurs études et expérimentations sur des questions comme

l'impact du changement de technologie sur les performances entre 65 nm à 45 nm ainsi

que la migration du FPGA à l'ASIC. Nous utilisons ici un flot de conception complet et

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

28

intégré, avec des chaînes d'outils standard industriel pour réaliser des implémentations

physiques exactes des NoC.

Nous avons des résultats d'expérience d'exploration totalement opérationnelles sur

différentes configurations de NoC sur des technologies submicroniques avec FPGA et

ASIC 65-nm/45-nm.

FPGA-ASIC exploration

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NoC configurations

A
SI

C
 m

in
 p

er
io

d(
ns

)

0,0

5,0

10,0

15,0

20,0

25,0

FP
G

A
 m

in
 p

er
io

d(
ns

)

45nm_LS 65nm_LVT 65nm_HVT

FPGA_Virtex4 FPGA_Virtex5

Figure 6 ASIC-FPGA exploration en surface

Nous avons effectué de nombreuses explorations pour différentes configurations de

notre NoC. Nous avons considéré les 4 algorithmes d'arbitrage (au hasard, LRU, FIFO,

Round-Robin) et différents mécanismes de mémorisation (pipeline) à l'entrée et la sortie

des switchs. Nous avons sélectionné 20 configurations représentatives. L'impact de la

migration d'une technologie à une autre est présenté sur les Figure 6 et Figure 7 pour la

surface et la fréquence respectivement. Nous comparons ici trois technologies ASIC et

deux familles de FPGA. Le principal résultat de ces deux figures est que les courbes ont

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

29

la même forme pour les superficies et les fréquences. Quand nous considérons une

migration, le contexte de la technologie cible permet différents compromis

architecturaux et donc des configurations de conception différentes. Ainsi, la nouvelle

configuration sélectionnée pour répondre au mieux au contexte de la technologie cible

peut être prototypée ou émulée sur le FPGA avec une grande confiance que la surface

relative et les performances peuvent être extrapolées à partir des résultats présentés ici.

La principale conclusion est que l'exploration peut être réalisée sur FPGA avec une

grande confiance avant la mise sur ASIC. C'est la même chose pour une migration à

partir de 65-nm vers 45 nm!

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x1
03

NoC configurations

A
SI

C
 A

re
a(

um
2)

0

5

10

15

20

25

30

35

40

x1
03

FP
G

A
 A

re
a(

sl
ic

es
)

45nm_LS 65nm_LVT 65nm_HVT

FPGA_Virtex4 FPGA_Virtex5

Figure 7 ASIC-FPGA exploration en frequence

Synthèse HLS à base de C

Les systèmes embarqués sont de plus en plus complexes à concevoir, valider et

mettre en œuvre. Le système de composition de processeurs embarqués et

d’accélérateurs matériels conduit à l'HW / SW co-méthodologis de conception. La

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

30

coopération traditionnelle des méthodologies de conception exige que le matériel et le

logiciel soient spécifiés et conçus de manière indépendante. La validation de matériel et

de logiciel sont ainsi fait séparément, sans validation des interfaces. Le partitionnement

est donc décidé à l'avance et des modifications de la partition peut nécessiter un vaste

remaniement ailleurs dans le système. Cette décision est respectée autant que possible.

Elle peut conduire à des sous-optimaux et les techniques de partitionnement s'appuient

souvent sur l'expérience du concepteur. Ce manque d'une représentation unifiée du

matériel et du logiciel peut conduire à des difficultés dans la vérification de tout le

système, et donc à des incompatibilités entre les matériels / logiciels frontière. Utiliser

un langage unique pour les deux simplifie la tâche de migration et assure une

vérification de l'ensemble du système. L’utilité d'un langage unifié de conception, en

plus de la synthèse, sont la validation et l'exploration de l'algorithme (y compris un

cloisonnement efficace). C langage est beaucoup plus contraignant pour ces tâches, et

un en particulier SystemC est désormais largement utilisé pour la conception au niveau

système, comme le sont de nombreuses variantes ad-hoc. C permet la synthèse rapide et

les techniques d'émulation rapide du matériel et des logiciels utilisés pour l'exploration

de l'architecture. La synthèse issue de ces méthodologies de conception HW / SW a

pour objectif de réduire le défi de la productivité de conception. Toutefois, bien que

relever le niveau d'abstraction de la conception de systèmes va contribuer à réduire la

complexité de conception fiable et prévisible, la mise en œuvre sur silicium reste

obligatoire. La question est donc sur l'impact de la synthèse C dans un cadre de

modélisation de systèmes embarqués.

Nous évaluons, à travers une étude de cas, la performance et l'efficacité de

plusieurs langages de description de haut niveau (SystemC, Handel-C) à base de FPGA

pour les systèmes embarqués.

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

31

Conclusion

Dû à des applications embarquées de plus en plus complexes, la conception et la

mise en œuvre des MPSOC (Multi-Processor System on Chip) sont l'objet de

nombreuses recherches académiques et industrielles. Les principaux axes de recherche

comprennent les flots de conception MPSOC, l'architecture MPSOC, la modélisation de

MPSOC, les techniques d'évaluation de performances et d'implémentation de MPSOC.

Il reste que malgré de nombreuses recherches, il existe très peu d'implémentations

existantes. En outre, la plupart des implémentations existantes offrent en général très

peu de processeurs. Intuitivement, il semble évident que les problèmes et solutions dans

les petites MPSOC seront différents des MPSOC de plus grande taille. Il existe donc un

besoin pour concevoir et construire des plates-formes MPSOC avec un nombre

important de processeurs en tant qu’outil expérimental pour l’évaluation des flots de

conception actuels de MPSOC. L'objectif principal de cette thèse est cette mise en

œuvre afin de mieux extraire les propriétés physiques de la conception qui pourraient

être utilisés dans la conception au niveau supérieur et en même temps fournir une

précieuse plateforme expérimentale. En effet, avec l'avènement de la modélisation de

haut niveau d'abstraction et des techniques de conception telles que SystemC TLM il

semble qu'il y ait un besoin d'enrichir la précision de ces modèles avec implémentation

physique. D'ailleurs, le suivi précis du trafic des applications complexes de

communication est nécessaire pour comprendre comment régler les futures applications

parallèles.

Nous avons abordé plusieurs questions dans cette thèse:

1. La synthèse de haut niveau et l'utilisation potentielle pour la conception de MPSOC,

2. La mise en œuvre sur FPGA de MPSOC homogène et hétérogène à base de mémoire

partagée,

3. Le matériel de surveillance de NoC.

En ce qui concerne la synthèse de haut niveau, des accélérateurs ou des

co-processeurs basés sur de la synthèse C ont été proposés pour le prototypage rapide

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

32

d’applications. Nous avons mené une étude de cas sur l'évaluation de la synthèse de

haut niveau basée sur le C. L'objectif était d'évaluer le potentiel d'utilisation plus élevé

avec contraintes de surface et avec partitionnement multi-objectifs et comment les

décisions au niveau système pouvaient être touchées. En effet, bien que la complexité

croissante des systèmes pousse pour la modélisation de haut niveau d’abstraction, il est

toujours impératif de prendre en compte des informations de mise en œuvre précises

pour améliorer les performances. Cela remet en question la capacité des outils de

synthèse C pour relever ce défi. Des études de cas montrent des variations significatives

entre les résultats des différents outils de synthèse de haut niveau et en particulier avec

exploration des options de synthèse physique, ce qui questionne l'utilisation du C pour

la modélisation et la conception multi-objectifs de systèmes. Une approche de

conception de systèmes multi-objectifs dans un environnement avec compromis de

coût/performance devrait être fondée sur des données aussi précises que possible, sans

quoi des décisions de conception inappropriées pourrait être faites. Nous soutenons que

les questions d'implémentation (surface, fréquence, et floorplan) pour les systèmes

complexes à grande échelle devraient être prises en compte lors de la modélisation de

haut niveau basée sur le C puisque actuellement les outils ne garantissent pas que les

propriétés de la sémantique de la concurrence de haut niveau sont préservées. En effet,

la concurrence extraite à un haut niveau est perdues partiellement dans les

transformations de code et de représentation ainsi qu’avec les contraintes de ressources.

Cette conclusion affecte l'utilisation potentielle de la synthèse de haut niveau pour la

conception de MPSOC avec contrainte de surface. Toutefois, pour la conception de

coprocesseur dans les MPSOC, la conception HLS est appropriée. Nous devons nous

concentrer sur les plateformes basées MPSOC et les problèmes de conception tels que la

personnalisation peut être atteinte avec une synthèse de haut niveau de coprocesseur,

tout en gardant la structure principale du MPSOC.

Nous avons implémenté une famille de MPSOC à base de NoC avec un plus ou

moins grand nombre de processeurs (2 - 24 PE), homogènes et hétérogènes (Microblaze,

PPC) sur un seul FPGA. Trois NoC offrent des fonctionnalités différentes pour 16 tuiles

PE sur une puce unique et il est possible d’augmenter le nombre de processeurs en

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

33

réduisant le nombre de NoC pour conserver la même surface. De toute évidence, avec

des contraintes de ressources en surface, il existe un compromis entre une architecture

avec moins de processeurs, mais avec un support de communication et de contrôle des

performances fort et une architecture avec 50% de processeurs en plus et moins de

support de communication. Cette thèse de doctorat a clairement affirmé l'impact du

placement/routage de NoC sur la conception MPSOC. Le Data-NOC relie les tuiles de

PE et les mémoires DDR2 avec une bande passante élevée, le Synchronisation-NOC

offre deux modes de synchronisation pour les tuiles de PE. Les utilisateurs peuvent

vérifier et configurer les adresses des blocks d’IP connectés au Data-NOC grâce à notre

Service-NOC. Nous avons également montré l'utilisation de notre système de suivi des

performances pour le déboguage et le réglage le logiciel embarqué. Le Virtex4 FX140

FPGA Xilinx a été sélectionné pour fournir d’importantes ressources logiques avec mise

en œuvre rapide et de test simple. L’environnement de conception FPGA peut offrir un

grand nombre d'IP pour réduire les efforts de conception et diminuer la pression du

temps d'accès au marché. Par exemple, dans notre système un certain nombre d'IP

peuvent être issus de la bibliothèque EDK Xilinx, tels que les processeurs MicroBlaze,

LMB, FSL, Bram.

Aucun « benchmark » de MPSOC n’existait au moment de cette thèse. Ce n'est que

récemment que EEMBC multi-core v.1.0 a été disponible pour notre laboratoire. Nous

avons donc mené des études d'évaluation des performances avec notre propre

application. Pour évaluer notre MPSoC nous avons mis en œuvre sur notre plateforme

avec succès les blocs AES et TDES de chiffrement avec des algorithmes de

cryptographie en utilisant deux méthodes. La première consiste à diviser les données

entre les processeurs et la seconde se fait en divisant l'exécution de la TDES. Notre

architecture met en oeuvre des éléments de traitement connectés via deux NoC. Une

telle architecture est essentiellement adaptée aux accès lourds à la mémoire et permet

une évolutivité de la construction du système. Les résultats montrent de meilleures

performances pour les applications avec données parallèles, favorisées par l'architecture.

Ce résultat peut être inversé dans une architecture pipeline. Une autre conclusion

montre que les applications avec données parallèles peuvent être appliquées à un plus

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

34

grand nombre de processeurs, avec des modes de fonctionnement différents, y compris

CBC, parce qu'il a un temps de calcul dominant sur le temps d’accès à la mémoire

permettant une accélération linéaire, très efficace. On peut prévoir ainsi que la

segmentation physique de la mémoire en banques permet de pousser cette

parallélisation et d'atteindre même un nombre plus élevé de processeurs, bien que cela

induise une plus grande complexité pour la connexion entre les processeurs. D'autre part

nos résultats montrent que notre architecture ne favorise pas la mise en œuvre pipeline

en raison de l'absence de lien direct entre les processeur ce qui impacte grandement les

performances en raison de la nécessité d'un accès synchronisé à la mémoire pour

échanger des données. Nous notons également que réduire le niveau de granularité peut

améliorer les performances. Le passage d'une conception de FPGA vers ASIC soulève

la question des gains et des avantages qui peuvent être réalisés tant au niveau

architectural, mais aussi bien au niveau de la programmation parallèle. Le NoC de nos

MPSoC a été mis en œuvre sur la technologie ASIC et a été exploré avec des

contraintes temporelles différentes et une bibliothèque de différentes catégories de

technologies 65nm/45nm de STMicroelectronics. Les résultats expérimentaux sur ASIC

et FPGA sont comparés et nos résultats montrent bien que l'on peut naturellement

s'attendre à un gain d'espace alors que la fréquence de travail n'est pas aussi

sensiblement augmenté. Ceci suggère que l'amélioration des performances ne peut être

atteinte par la seule technologie et de l'avantage en surface doit être exploité en

sélectionnant les composants de réseau sur puce avec des fonctionnalités plus

agressives.

Cette thèse est une étape préliminaire dans le sens de flots précis de conception

physique de MPSoC à la fois vers les technologies FPGA et ASIC. D'autres recherches

sont nécessaires en ce qui concerne le DFM, la traduction automatique de FPGA vers

ASIC avec des contraintes sensibles au layout, couplée à une exploration de l'espace de

conception. Les plates-formes conçues lors de cette thèse vont contribuer à mieux

comprendre les techniques de programmation parallèle à travers la surveillance de NoC

précis et temps-réel et avec l'appui matériel de NoC multiples. L'analyse comparative

des méthodologies pour MPSoC devrait devenir un sujet de recherche majeur car un flot

Conception et Analyse Comparative Multi-objectif Multi-Technologies de Famille de Multiprocesseurs sur Puce

35

complet de « Design Space Exploration » peut bénéficier à partir du monitoring de NoC

jusqu’à la programmation parallèle de haut niveau et la parallélisation automatique.

Chapter 1 Introduction

36

Chapter 1 Introduction

1.1 Select MPSoC as the direction of thesis

Gordon E. Moore states that the number of transistors on a chip doubles about

every two years, now popularly known as Moore's Law. Transistor feature size is

expected to continue to shrink. A reduction of 70% in linear dimensions of transistors

by moving to a new fabrication process (for example from 65 nm to 45 nm) allows a

2-fold increase in the chip density.

As shown in Figure 1 the 2008 International Technology Roadmap for

Semiconductors (ITRS) [1] projects that multi-billion transistor chips will come to

production by the end of this decade.

Figure 1 Product Technology Trends (2008 ITRS)

Chapter 1 Introduction

37

Currently deep submicron (DSM) technologies is proceed in most VLSI and

ULSI. Feature sizes can reduce the dimension of actual ASIC application, and

introduce new applications, but will also aggravate current problems in VLSI/ULSI

design, and moreover, introduce several new ones. Recently the Intel Tera-Scale

Computing research team in a white paper has mentioned that “power thermal issues,

such as dissipating heat from increasingly densely packed transistors, have begun to

limit the rate at which processor frequency can also be increased. Although frequency

increases have been a design staple for the last 20 years, the next 20 years will require

a new approach. Basically, industry needs to develop improved micro-architectures at

a faster rate and in coordination with each new silicon manufacturing process, from

45 nm, to 32 nm, and beyond.

Performance is always one of most important characteristics for the measurement

of VLSI design. We can no longer simply increase the clock frequency at the same

rate as we have in the past in order to increase performance. Power and thermal

requirements are beginning to outstrip the benefits that faster clock frequencies offer.

However, because the trajectory of Moore’s law will continue well into the next

decade, we expect to continue doubling transistors every 18-24 months for the next

several years. Parallel execution in Multi core designs will then allow us to take

advantage of these greater transistor densities to provide greater performance.

Multiprocessor system on chip (MPSOC) have strongly emerged in the past

decade in communication, multimedia, networking and other embedded domains.

MPSOC became a new paradigm of high performance embedded application design.

As shown in the Figure 2, more and more processing engines are integrated in system

on chip, In the future hundreds even thousands processing elements could be used for

high performance required system.

Chapter 1 Introduction

38

Figure 2 number of processing engines Trends (2008 ITRS)

MPSOC is an aggregation of System on chip and traditional multiprocessors. But

we can’t directly apply the scientific super computer model to SoCs. It is not simply

multiple processors and other hardware peripheral subsystem shrunk to a single

silicon chip. MPSOCs have been designed to satisfy the requirements of embedded

applications.

Three most important common characteristics of these embedded applications are

high performance, real-time and low power.

Higher performances are always required by consumers, and it encourages the

research and development of high-performance platforms .that can satisfy new

requirements and new standard. Higher performance means more computations and

more complex algorithms that can not be realized by simple hardware or single

processor SoCs. MPSOCs have been designed at this background.

Real time computing is much more than simple high performance computing. In

traditional interactive computing, we care about speed but not about deadlines. Most

embedded systems care not just about average performance but also that tasks are

done by a given deadline. So MPSoC architectures have to be predictable enough,

applications can run with predictable performance form the MPSoC architecture.

Chapter 1 Introduction

39

Power consumption is another important constraint for MPSoC design. Power

constraints are much stricter in MPSoC than in traditional supercomputer system or

desktop computer system. Lower power consumption can extend the life of the battery

for battery operated MPSoC, and limit of energy provided by battery require MPSoC

design reducing energy use as possible. In non-battery operated devices, low power is

also required for chip heat and cost reasons. MPSoC’s Power and energy constraints

must be tacked at every level of abstraction.

1.2 Identify the MPSOC design and implementation issues

In the past several years, lots of paper have been published for MPSoC, many of

these researches just care about the simulation, and stopped at the simulation of high

level of abstraction. At high level of abstraction simulation can quickly realize and

verify the functionality of system and algorithm. At register transfer level simulation

can verify the correction of RTL code and evaluate the performance of system with

the execution cycles. Simulation can also help partitioning of software/ hardware.

Why in this thesis we care about actual prototyping emulation and implementation not

just simulation.

Actual prototyping emulation and implementation can provide real performance

measures. With simulation performance of system can be measured by providing the

numbers of cycles, but simulation cannot provide the measurement with the timing.

Even we can set frequencies of system and calculate the timing. The frequency set in

simulation have no means, we cannot get the maximum frequency of system by

simulation. MPSoC is high-performance real time system, emulation and

implementation are necessary to measure minimum period of clocks at actual

prototyping.

Actual prototyping emulation and implementation can measure area use and

consumption. Implementation results can clearly tell us the cell utilization for ASIC

application, and the percentage of FPGA utilization. Other important issues can be

reached with implementation, such as pin numbers constraints, floorplaning, power

consumption.

Chapter 1 Introduction

40

In this thesis, we focus on

 Implementation MPSOC on actual prototypes, not just simulation to clearly

identify MPSOC design and implementation issues.

 Execute Multi-application on actual platform to evaluate performance of

MPSOC and data parallelization

 The impact of technology scaling on NOC and MPSOC performances from

65-nm to 45-nm as well as migration from FPGA to ASIC.

 Evaluate High level synthesis and the potential use for MPSOC platform

based design

The rest of thesis are organized as follow the chapter 2 will introduce the states of

the art of multiprocessor system on chip and network on chip. The chapter 3 presents

our proposed MPSOC architecture and FPGA implementation. The chapter 4

introduce the performance evaluation of the FPGA implemented MPSOC. The

primarily ASIC evaluation of MPSOC on 65nm and 45nm technologies will be shown

in the chapter 5. The potential use of High level synthesis on MPSoC platform can be

found in the chapter 6. The chapter 7 is the conclusion. And finally, at the end of the

manuscript, the publications relating to this PhD thesis are listed.

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

41

Chapter 2 State of the Art of Multiprocessor system

on chip and Network on Chip

2.1 Introduction

As the development of deep submicron technology, a single integrated circuit can

contain 2 Billion transistors. Multiprocessor Systems on Chips (MPSoC) are the latest

incarnation of very large scale integration (VLSI) technology. An MPSoC is

integrated circuit that implements most or all of the functions of a complete electronic

system and that uses multiple programmable processors as system components.

Nowadays Multiprocessor System on Chips are widely studied in academies and are

entering commercial and consumer markets.

2.2 Academic and Commercial MPSoC

Multiprocessors System on Chips are strongly emerging and several products or

ongoing R&D projects are tackling the issues related to multiprocessors [22]-[32].

TABLE 1 provides a few examples of commercial multicore implementations.

They can be globally divided in 2 categories: (1) general purpose (2) application

specific. In the first category we can place the ARM ARM11MPcore [23], the MIPS

MIPS32 1004 Core [24] and the Renesas/Hitachi SH-X3 [25]. In the second category

we can place Texas Instruments TMS320C6474/TMS320VC5441 DSP [28]-[29],

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

42

Freescale QorIQ P4080 [30] and the Toshiba Venezia multicore [31]. Other worth

noting are Ambric [26], MAPS-TCT [32] and [22].

MPSOC Part Com PE nbr

ARM ARM11 Shared Bus 4
Texas
Instruments

TMS320C6474 Switch Central
Resource

3

Texas
Instruments

TMS320VC5441 Shared Bus/HPI 4

Freescale QorIQ™ P4080 Corenet
Coherency fabric

8

MIPS 1004K™ Core Coherence
Manager

4

Toshiba Venezia EX Bus 8

TABLE 1 industrial MPSoC Implementation

The ARM11 MPcore [23] showed in the Figure 3 is a classical shared memory 4

processors based multiprocessor based on a shared bus architecture with a snoopy

cache coherency protocol (MESI).

Figure 3 ARM 11 MPcore

The MIPS32 1004 [24] is a 1 to 4 multi-threaded "base" cores (up to 8 hardware

threads) with Coherence Management (CM) unit - the system "glue" for managing

coherent operation between cores and I/O, I/O Coherence Unit (IOCU) - hardware

block for offloading I/O coherence from software implementation on CPUs. Several

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

43

multicore architectures are proposed by Texas Instruments [27]. The Texas

Instruments TMS320C6474 [28] is a 3 DSP based multicore architecture with switch

central resource (SRC) as the interconnection between the 3 DSP and the memories.

The 6474 device contains 2 switch fabrics through which masters and slaves

communicate: (1) data switch (2) configuration switch. The data switch fabric is a

high-throughput intreconnect mainly used to move data across the system and connects

masters to slaves via 128-bits data buses (SCR B) and 64-bit data buses (SCR A). The

configuration switch is used to access peripheral registers. The Texas Instruments

TMS320VC5441 [29] is a 4 core multicore with shared bus between 2 cores and HPI

for external accesses.

Figure 4 Texas Instruments TMS320VC5441

The Freescale QorIQ™ P4080 [30] is an 8 core multicore architecture with a

Corenet coherency fabric. Each core is a high-performance Power Architecture

e500mc cores, each with a 32-KByte Instruction and Data L1 Cache and a private

128-KByte L2 Cache. The CoreNet fabric is Freescale’s next generation front-side

interconnect standard for multicore products. CoreNet is presented as a highly

concurrent fully cache coherent multi-ported fabric. CoreNet’s point-to-point

connectivity with flexible protocol architecture allows for pipelined interconnection

between CPUs, platform caches, memory controllers. No details are available.

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

44

Figure 5 QorIQ™ P4080

Finally Toshiba proposes the Venezia architecture [31]. Our work differs from all

the previously described work by a larger number of processors of smaller size

emphasizing the choice of coarse grain concurrency over fine grain concurrency

exploited by more sophisticated processors (VLIW e.g. MEP). It remains that we are

working on architectural support for fine grained parallelism [33] through SIMD

coprocessing.

Figure 6 Toshiba Venezia Architecture

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

45

2.3 Academic and Commercial NOCs

In this section, we briefly introduce a handful of specific NoC examples, which

are studied and published in recent years. This is by no means a complete compilation

of existing NoCs, we just address a representative set: SPIN, ÆTHEREAL,

NOSTRUM, and MANGO.

the range of the analysis is limited to the describing the design choices of actual

implementations and the accompanying work by the research groups behind them.

there are many more, rather the purpose of this section is to address a representative

set: In Moraes et al. [79], a list in tabular form is provided which effectively

characterizes many of the NoCs not covered in the following.

2.3.1 SPIN.

Figure 7 SPIN network topology

The SPIN network (Scalable Programmable Integrated Network) is one of the

first published and realized NoC[9] [10]. It is developed by the University Pierre and

Marie Curie. It implements a fat-tree topology with two one-way 32-bit datapaths at

the link layer, shown in Figure 7. The fat tree is the most cost-efficient topology for

VLSI realizations claimed in Leiserson and fat tree provides a simple and effective

routing scheme. In SPIN, The routers are packet-based with a flit size of 36 bits.

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

46

Wormhole routing is used without limit of packet size. There are three types of flits:

first, data and last flit. The first flit contains the address and packet tagging

information, while the last flit contains the payload checksum. Adaptive routing

algorithm and out-of-order delivery can be used to maximize the network bandwidth.

Otherwise, deterministic and in-order delivery is used to avoid the reordering buffers

on the output ports. In comparison with tree topology, fat tree duplicate the root of

tree to have a large bisection bandwidth, but higher area cost. For larger number of

nodes, the fat tree is more efficient in area cost but more difficult in physical layout in

comparison with mesh or tori.

Figure 8 SPIN32 test chip layout

A 32-port SPIN network was implemented with CMOS ST-Microelectronics 0.13

μm technology [10] Each SPIN router has an area of 0.24 mm2 while the total area

of 32-port NoC was 4.6 mm2 (0.144 mm2 per port), for an accumulated bandwidth of

about 100 Gbits/s. Figure 8 shows the test chip of SPIN which contains traffic

generators and analyzers to compute the 32-port SPIN NoC performance.

2.3.2 ÆTHEREAL

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

47

The ÆTHEREAL NoC is developed by Philips offering both Guaranteed Service

and Best Effort Traffic [11][12] In the ÆTHEREAL the guaranteed services pervade

as a requirement for hardware design and also as a foundation for software

programming. The router uses a contention-free routing to send independent traffic on

the same physical links. Therefore, a time-division multiplexing (TDM) is used to

eliminate entirely the contention by scheduling the time and location of all packets

globally. Flits wait in the network interfaces until they can be routed while avoiding

the contention on the link. Thus propagation speed of individual flits through the NoC

is fixed and known in advance. Every TDM slot table has S time slots (rows), and N

output ports (columns). There is a logical notion of synchronicity, since all routers in

the network are assumed to be in the same fixed-duration slot. Figure 9 illustrates the

operation of contention-free routing in ÆTHEREAL. Packet A and B are routed

without contention between router R1 and R2 because they use different timing slots.

In the same way, packets A and C do not have contention in between routers R2 and

R3. The reconfiguration of these tables are carried out by special packets sent over the

BE network.

Figure 9 ÆTHEREAL contention-free routing. source[12]

ÆTHEREAL NoC has two visions: distributed vision and centralized vision. On

the distributed vision, special BE packets are sent to the router to request the

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

48

allocation of a GS traffic. The router decides if the GS packet can be routed or not. On

the centralized vision, the slot tables are located on the Network Interface and no

longer on the router. Moreover, a centralized slot allocator decide which GS packets

can be served by sending Best Effort packets to the Network Interfaces in order to

configure the timing slots.

Figure 10 Implementation of GS-BE ÆTHEREAL source [13]

Figure 10 shows the implementation of GS-BE ÆTHEREAL distributed and

centralized programming router architecture [12]. A 6-port ÆTHEREAL NoC

implementation is detailed on CMOS 130nm technology. A distributed and a

centralized programming architecture are described on the paper. Both of them are

designed as a hard macro with dedicated hardware FIFOs for the BE and GS queues.

Moreover, a dedicated hardware slot table is used on the distributed programming

architecture for the congestion-free routing algorithm. These dedicated hardware

devices are designed to minimize the router area. The hardware dedicated FIFOs and

slot table are depicted on the squares. Moreover, the distributed programming router

architecture contains the Reconfiguration unit (on its left side). It is used to

dynamically allocate and dislocate the GS traffic. The distributed architecture takes

0.24 mm2 at 500MHz, while the centralized architecture takes 0.13 mm2 at 500MHz.

Because there is neither slot table nor reconfiguration unit in the centralized vision,

the area of the centralized architecture is smaller than the distributed version.

Due to the same sense of time in all of routers, all the routers have to be fully

synchronized. The design of fully synchronous network is not a scalable solution.

Thus a waterfall clock distribution and a synchronous Latency Insensitive Design

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

49

(SLID) are proposed. The buffers of BE and GS are independents and different timing

slots are distributed for different GS traffics. So contentions are eliminated and the

throughput is guaranteed. But sometime even there are no other packets in the

network, the packets have to wait for their timing slots in the network interface. The

average latency for packets is relatively high.

2.3.3 Nostrum

Nostrum is an NoC developed by the LECS (Laboratory of Electronics and

Computer Science) at the Royal Institute of Technology in Sweden [17].

The Nostrum NoC architecture follows a regular mesh topology containing

switches and network interfaces. Two traffic classes are available, Best Effort (BE)

and Guaranteed Bandwidth (GB). In the BE implementation, the packet transmission

is handled by datagrams. The switching decisions are made locally in the switches on

a dynamic/non-deterministic manner by means of the deflection routing algorithm. Its

benefits are robustness against network link congestion and link failure. However, the

BE packets may arrive in another order that they were sent; thus, the NI handles the

ordering of packets and de-segmentation of messages. The BE packet size is one flit.

The defection routing algorithm guarantees that no packet is stalled in the router,

thus no intermediate buffer is required in the network. All packets in the switch are

forwarded to an output port; even it is not the requested one. This phenomena requires

that the entire network is synchronized (all switches have the same clock frequency

and switch at the same clock cycle). The GB traffic is handled using containers

[Millbe04]. A container is a network packet that follows a predefined looping path as

shown in Figure 11. They can transport the information of GB traffic; but if they do

not transport any information, they continue to follow the predefined looping path.

Thus, they contain an empty flag to identify if they transport or not data.

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

50

Figure 11 Nostrum looping containers

Figure 11 illustrates an example of a lopping container when a GB source transfers

packets to its GB destination. When the empty container arrives to the switch 1 (the

GB source), the GB source load the container with the GB traffic and sent it to the

east switch (blue line). The container and its load is routed though the network

following its predefined looping path. When it reaches the GB destination, the

container is unloaded and it is sent back (red line) empty, possibly, with some new

information loaded.

Figure 12 Nostrum bandwidth granularity

When looping containers are temporally multiplexed, the network is able to sent

different GB traffics over the same link. Figure 12 shows an example of bandwidth

sharing between two independent GB traffics. The containers are launched on the

start-up phase of the network when no BE packets are allowed to enter the network.

The higher the bandwidth required, the higher the launched containers over the same

loop.

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

51

2.3.4 MANGO
The MANGO (Message-passing Asynchronous Network-on-chip providing

Guaranteed services over OCP interfaces) architecture, developed at the Technical

University of Denmark, is an asynchronous NoC, targeted for coarse-grained

GALS-type SoC [15]. MANGO provides connection-less Best Effort (BE) routing as

well as connection-oriented Guaranteed Services (GS) . Guaranteed services

connections are established by allocating a sequence of Virtual Channels (VCs)

through the network. The routers implement VCs as separate physical buffers. A

scheduling scheme called ALG (Asynchronous Latency Guarantees), schedules access

to the links, allowing latency guarantees to be made.

The router consists of two separate routers: the BE router and the GS router.

Figure 13 MANGO router

The BE router implements a source routing scheme. The three MSBs of the

packet header indicate one of five output ports. After passing the router, the header is

rotated three bits, positioning the header bits for the next hop. With a flit size of 33

bits (of which one is the end-of-packet bit) it is thus possible to make only 10 routing

hops.

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

52

While the routers themselves are implemented using area efficient bundled-data

circuits, the links implement delay-insensitive dual-rail data encoding. This makes

global timing robust, because no timing assumptions are necessary between routers.

However pipelining is necessary in order to keep performance.

2.4 Case study: Arteris Technology

Arteris Company was founded in Paris in 2003 and company focuses their

attention on the next-generation of challenges associated with System-on-Chip (SoC)

design: on-chip communications, or Network-on-Chip (NoC) [71] [73]. In modern

on-chip-system arena, network on chip has been proven to be an effective

communication backbone of managing multilevel communication in distributed

system. In 2005 Arteris introduced the first commercial implementation of a

Network-on-Chip (NoC), delivered in the form of Intellectual Property. Arteris NoC

Solution consists of the Danube Intellectual Property Library and a set of EDA tools

for configuring and implementing the networking IP cores as synthesizable RTL.

Arteris proposes the NoC configuration and design flow as show in the Figure 14.

Figure 14 the NoC design flow by Arteris

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

53

The Danube Intellectual Property Library contains a suite of configurable

building blocks managing all on-chip communications between IP cores in SoC

designs. The Packet Transport Units (PTU) from the Arteris Danube library. Can

build the packet transport portion of the NoC, which is comprised of a request

network and a response network. Each network is sized according to the traffic load

expected on request and response paths. At the boundary of network the Network

Interface IPs are offered, the third part protocol includes OCP, AXI, AHB or other

proprietary interfaces.

Figure 15 example of Danube IPs

Containing transaction level systemC models of Danube IPs, the architecture tool

NoCexplorer can be used to analyze complex traffics of system on chip and evaluate

the impact of alternative NoC topologies on overall system performance. NoCexplorer

can also generate transaction systemC model of NoC which can be integrated in the

complete system in other ESL tools. The NoC systemC model can be simulated with

different IP block types such as processors, DSPs, HW accelerators, I/O peripherals,

memories, and so on.

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

54

In the NoCcompiler environment, selected Arteris NoC IP library units are

configured and connected to match the topology obtained in the initial exploration

step, in accordance with the specifications of the IP cores connected to the NoC. NoC

design views, such as cycle-accurate SystemC models and synthesizable RTL, are

then generated for simulation FPGA prototyping, or integration within the SoC using

standard design flows.

Figure 16 NoCcompiler GUI

2.5 Conclusion

In this chapter, we have presented recent academic and commercial MPSoCs for

embedded system. ARM 11 MPcore, MIPS32 1004 Core and the Renesas/Hitachi

SH-X3 have been implemented for general purpose. The Texas Instruments

TMS320C6474/TMS320VC5441 DSP, Freescale QorIQ P4080 and the Toshiba

Venezia multicore have been presented as application specific MPSoC. All these

Chapter 2 State of the Art of Multiprocessor system on chip and Network on Chip

55

implementation that we listed are designed specifically for embedded applications,

that is also our discuss target, embedded MPSoC. These MPSoC use a fine gain

concurrency exploited by more sophisticated processors (VLIW e.g. MEP). The

largest number of processor is eight. In the following chapter our MPSoC augmented

the number of processors and used smaller size of processor emphasising the choice

of coarse grain concurrency.

In the second part of this chapter, a set of representative Network on chip SPIN,

ÆTHEREAL, NOSTRUM, and MANGO have been introduced. We limited ourselves

in this review of state of the art to the NoCs with physical implementation. An

example of an industrial case of NoC IP library, Arteris Danube IP library and the

environment NoCcompiler were presented. The NoC of our MPSoC are based on this

library. The detail of our MPSoC and NoC will be introduced in Chapter4.

Chapter 3 MPSOC Design and Implementation

56

Chapter 3 MPSOC Design and Implementation

3.1 Introduction of MPSOC and NoC Design

With the advent of new technologies in IC design, the MPSoC has emerged as a

promising solution for the growing complexity and increasing functionality of the

embedded System on Chip. The large number of processors and modules require a

communication backbone which provides flexibility, scalability and quality of service (QoS)

guarantee. The conventional ways of interconnecting, such as buses and crossbars, cannot

satisfy these requirements due to timing, power and area limits. On-Chip Network (OCN),

or Network on Chip (NoC), has been proposed as a systematic approach to deal with the

communication-centric design challenge. In contrast to traditional connecting ways,

modular structure of NoC makes multiprocessor architecture highly scalable and improves

reliability and operation frequency of on chip modules. Furthermore the NoC approach

offers matchless opportunities for implementing Globally Asynchronous, Locally

synchronous (GALS) design, which make clock distribution and timing closure problems

more manageable. To reduce the pressure of time-to-market and tackle the increasing

complexity of SoC, the need of fast prototyping and testing is growing. Taking advantage

of deep submicron technology, modern FPGAs provide a fast and low-cost prototyping

with large logic resources and high performance.

In this chapter, we describe our multiprocessor system comprising of sixteen processor

tiles, one synchronized shared memory and four DDR2 memory banks. All these processor

Chapter 3 MPSOC Design and Implementation

57

tiles are connected to DDR2 slaves through a high throughput Data-NoC and are

synchronized using a synchronization NoC. A service network is also integrated in the

system to provide functionalities like error management, IP status check and

reconfiguration services at run time. The NoCs are implemented using Arteris Danube

library, which is based upon wormhole routing and packet switching. The run-time

observability is a necessity for embedded systems’ debugging and monitoring, which

challenges the NoC-based SoC design. The run-time performance monitoring implemented

in our system provides NoC behavior information, like throughput, latency, to support the

application debugging and software tuning. The whole MPSoC is a GALS design realized

with the help of bi-synchronization method. The OCP adapter containing one pair of

bi-synchronous FIFOs has been inserted between processor and NoC, to tackle the

communication issue between two different clock domains (processor clock domain and

NoC clock domain).

3.2 MP3NOC: A Family of Architectures

3.2.1 Generic Architecture

PE
(1)

Network connecting
performance monitoring

HLS
HW

accelerator
(a)

PE
(2)

HLS
HW

accelerator
(b)

PE
(n)

HLS
HW

accelerator
(c)

Mem controllor (1) Mem controllor (2) Mem controllor (m)

...........

NI NI NI

NI NI NI

off-chip
Mem

off-chip
Mem

off-chip
Mem

...........

Figure 17 generic multiprocessor architecture block diagram

The block diagram of the generic multiprocessor architecture is shown in Figure 17.

N processors are connected to m banks of memories by network connection. In these N

processors, some processors can be connected to High level synthesized hardware

accelerator to increase the performance of MPSOC. Our proposed MPSOC embedded

Chapter 3 MPSOC Design and Implementation

58

system design is a MPSOC platform based design. Design is based on intensive IP design

and reuse. From the application which will be implemented and the MPSOC platform,

several designs space explorations can be explored, and to find the most suitable

architecture. The Figure 18 shows some possible design space explorations

Figure 18 possible design space explorations

Figure 19 platform based MPSOC design Methodology

The Figure 19 shows the platform based MPSOC design methodology. The application

on C firstly is implemented on the MPSOC platform without accelerators. Then we

evaluate the performance of this MPSOC, if the performance can satisfy the requirement,

Chapter 3 MPSOC Design and Implementation

59

the application is successfully implemented on the MPSOC, if not, from the C code of

application, the HW accelerator (or coprocessor) can be quickly generated and integrated

on the platform. Then we can do some DSE and get the new MPSOC with HLS HW

accelerators, In this chapter, we will introduce the MPSOC platform and FPGA

implementation, the High level synthesized HW accelerator generation will be presented in

chapter 6.

3.2.2 Architecture overview

Figure 20 multiprocessor block diagram with N=16 Processors and M=4 DDR2 Banks with 3

NOCs (Data, Synchronization, service)

The multiprocessor system integrates sixteen Processing Elements (PE) Tiles

including fifteen MicroBlaze based MB-PE Tiles and one PowerPC based PPC-PE Tile.

Each tile is a powerful computing system that can independently run its own program code

and its own operating system. PE Tiles are connected to Data-NoC and

Synchronization-NoC through OCP data adapters and OCP synchronization adapter.

The OCP adapter can convert processor’s FIFO interface into OCP interface and

separate PE clock domain from NoC clock domains. One 64KBytes shared on-chip

memory is attached to the synchronization NoC, which establishes a synchronization media

for the PE tiles. Data NoC is connected to four DDR2 controllers, which in turn connect to

Chapter 3 MPSOC Design and Implementation

60

the respective off-chip 256MBytes DDR2 memory banks. Service NoC is integrated in the

Data NoC to provide error management, IP status check, reconfiguration services at run

time. The performance monitoring probes are attached on all Data NoC inputs and outputs

to observe NoC behaviors. Recorded events and results are then fed back to the PPC-PE tile.

PPC-PE tile is also connected to a PCI express interface for the off-chip communication

purpose.

3.2.3 Processing Element TILE
To increase the compatibility and to facilitate the reuse of the architecture, the OCP-IP

standard is used for the connection of PE Tiles and NoCs. Benefiting from the OCP

standard, any PE tile with OCP-IP interface can be connected to our system. In our system

we have integrated two types of PE tiles: The Xilinx processing soft-core MicroBlaze

V7.00 based MB-PE Tile and the IBM processing hard-core PowerPC-405 based PPC-PE

Tile. Both processing cores are provided by our FPGA design environment: the Xilinx

Embedded Development Kit (EDK).

Figure 21 Block diagram of MicroBlaze processor

Chapter 3 MPSOC Design and Implementation

61

Figure 22 Block diagram of MB PE Tile

MicroBlazeTM v7.00 soft core processor is a 32bit Reduced Instruction Set Computer

(RISC) optimized for implementation in Xilinx® Field Programmable Gate Array (FPGA).

MicroBlaze processor is implemented with Harvard memory architecture, and it is highly

configurable. As shown in Figure 21, a set of parameters and execution units can be

configured at design time to fit design requirement, such as number of pipeline stages,

cache size, selectable Barrel Shifter (BS), Floating Point Unit (FPU), Hardware Divider

(HWD), Hardware Multiplier (HWM) and Memory Management Unit (MMU). The

performance and the maximum execution frequency vary depending on processor

configuration. For its communication purposes, MicroBlaze v7.00 offers a Processor Local

Bus (PLB) bus interface and up to 16 Fast Simplex Links (FSL) interfaces which is a point

to point FIFO-based communication channel. In our implementation, MicroBlaze

processors are used as simple vision, which contain 5stage pipeline, 32bit integer HWM

and enable additional Machine Status Register Instructions, pattern comparator. The

MB-PE Tile, shown in Figure 22, contains MicroBlaze, Instruction side Local Memory Bus

(ILMB), Data side Local Memory Bus (DLMB), ILMB BRAM interface controller, DLMB

BRAM interface controller and BRAM based 32KByte local on-chip memory. Local

memory connects processor through LMB interface controller and LMB memory bus. The

FSL interfaces of MicroBlaze are directly connected to OCP Synchronization Adapter and

OCP Data Adapter. Processors feed the OCP adapter with data and commands through the

Chapter 3 MPSOC Design and Implementation

62

FSL channel. Then the OCP adapter converts these data and commands to OCP compatible

signals, which are then consumed by the DATA-NOC and synchronization-NOC. The OCP

adapter also can separate PE clock domain from NoC clock domains, benefiting from the

bisynchronous FIFOs contained in OCP adapter.

Figure 23 Block diagram of PowerPC processor

Figure 24 Block diagram of PPC PE Tile

PPC-PE Tile is based on PowerPC 405 processor. As shown in Figure 23 it is a

hardcore implemented 32-bit RISC general processor and can run up to 450MHz execution

frequency. It contains a 5-stage pipeline, a virtual-memory-management unit, separate

instruction cache and data cache units as well as three programmable timers. In our PPC PE

Chapter 3 MPSOC Design and Implementation

63

tile, shown as Figure 24, the PowerPC accesses its 32KByte local instruction memory

through Instruction side On-Chip Memory Bus (IOCM) and accesses his 32KByte local

data memory through Data side On-Chip Memory Bus (DOCM). The processor joins the

FCB-to-FSL Bridge via Fabric Co-processor Bus (FCB). We used four of 32 FSL

interfaces provided by FCB-to-FSL Bridge. The OCP synchronous adapter, OCP data

adapter and OCP service adapter connected to synchronization NOC, DATA-NOC and

service NOC respectively. The PowerPC processor can also receive the performance

monitoring information from the Performance Monitoring (PM) through PM receive

interface.

The 16 different tiles can run at largely different clock frequencies. Firstly

implementation in hard core or soft core can cause very different frequencies. Furthermore

MB-PE tiles with different MicroBlaze configurations can run at different frequencies. The

bi-synchronous FIFO pair contained in the OCP adapter makes it feasible to realize the

communication between two independent clock domains. The more details and the issue of

frequency will be discussed in section IV.

3.2.4 Network on Chip
Our on-chip network connection system is developed with the Packet Transport Units

(PTU) from the Arteris Danube library. These PTUs build the packet transport portion of

the NOC, which is comprised of a request network and a response network. All the PTUs

adopt NoC Transaction and Transport Protocol (NTTP) which is a three-layered approach

comprising transaction, transport and physical layers.

The transaction layer is compatible with bus-based transaction protocol implemented

in Network interface Units (NIUs). NIU translates third-party protocols to NTTP at the

boundary of NoC. We used OCP-to-NTTP NIUs to convert OCP protocol to NTTP

protocol.

Chapter 3 MPSOC Design and Implementation

64

Figure 25 A typical NTTP Request Packet

In the transport layer, NTTP uses the packet-based wormhole scheduling technique.

As shown in Figure 25, the packets are comprised of three different cells: a header cell, an

optional necker cell and possibly one or more data cells. The header and necker cells

contain information relative to routing, payload size, packet type, and the packet target

address. The necker cell provides detailed addressing information of the target. The necker

cell is not needed in response packet.

NTTP Function
Vld Data validation
RxRdy Flow control
Head Head indication
Tail Last cell indication
Data Data word
TailOfs Packet tail offset
Press Link pressure

TABLE 2 NTTP signals in physical layer

Packets are split into cells in the transport layer, and then cells are delivered as words

in the physical layer. Table 1 shows the NTTP signals using in physical layer. The size and

width of link can be defined by the designer according to application case. Within a single

clock cycle, the physical layer may carry words comprising of a fraction of a cell, a single

cell, or multiple cells. There are five possible link-widths: quarter, half, single, double, and

quad.

Chapter 3 MPSOC Design and Implementation

65

3.2.4.1 OCP Network Interface Unit:

Figure 26. An example of Data OCP master NIU

Function

MCmd master Transfer command basic

MAddr master Transfer address basic

MBurstLen master Burst length burst

MData master Write data basic

MDataValid master Write data valid basic

MDataLast master Last write data in burst burst

MRespAcc master accepts response basic

MFlag master flag for pressure level press

SCmdAcc Slave accepts transfer basic

SDataAcc Slave accepts write data basic

SResp slave Transfer response basic

SData slave Read data basic

SRespLast slave Last response in burst burst

TABLE 3 the signals for our Data OCP configuration

OCP NIUs interface seamlessly with the Arteris NTTP protocol and provide

compatibility with existing protocol OCP 2.2. OCP comprehensively defines an efficient,

bus-independent, configurable and highly scalable interface for on-chip subsystem

communications and enables IP core creation to be independent of system architecture and

application domain. An example of OCP master NIU (OCP-to-NTTP) is shown in Figure 26,

it can connect OCP initiator to NTTP interface. OCP master NIU translates OCP requests

to NTTP packets and sends them to switch from NTTP TX interface; simultaneously it

Chapter 3 MPSOC Design and Implementation

66

receives NTTP packets from NTTP RX and translates to OCP response. OCP slave NIU

(NTTP-to-OCP) permits the communication between OCP target and NTTP switching

connection system. As described in OCP-IP standard, designers can define different OCP

configurations for their IPs. Arteris’ OCP NIUs can be configured differently for own

utilization at design time and help the NTTP NoC easily communicate with OCP initiators

and targets containing different OCP configurations. In our system the OCP configurations

in Data-NoC and in synchronization-NoC are different. In Data-NoC the OCP basic signals,

burst extensions signals and “MFlag” signal are used, as shown in Table2. The data width

of MData and SDatae are 64bits. In synchronization NoC, we just use the basic signals and

select 32bits for data width. Burst mode is not supported in Synchronization NoC. Two

synchronization modes, locked synchronization and lazy synchronization, are realized

thanks to the OCP NIU and the Exclusive Access Manager. The OCP initiator can

optionally associate a pressure level to requests in order to indicate service priorities at

arbitration points. The pressure-level is passed to the NoC via the “MFlag” input signal,

and applies to the “Pressure” field in the packet header cell, as well as the “press” signals in

the physical link layer. For address decoding, a Translation Table is integrated in the

OCP-to-NTTP unit. This Translation Table receives OCP addresses and split them into two

parts. The first part represents the slave address in HTTP header cell. The second is slave

offset in NTTP necker cells.

3.2.4.2 Switch:

The Arteris Danube IP switch is the basic element in the connection system. As shown

in Figure 27, switch includes several principal elements such as input controller, route table,

crossbar, arbiter, output controller. The full crossbar can transfer up to one data word per

port and per cycle. The switch also support lock operation and pressure for enhanced

arbitration decision making.

Chapter 3 MPSOC Design and Implementation

67

Figure 27. Block diagram of Arteris switch

Four parameters can be customized for specific application requirements.

(1) The ports attributes: up to 16 input ports and output ports of switch can be set.

(2)Arbitration mode: LRU, Round-Robin, Random, FIFO or software programmable.

(3)Route table: it selects the output port that a given packet must take. Types of route

table are generic, constant, decode, slice, cluster etc.

(4) Pipelining strategy: several pipeline stages can be added such as input-pipe,

output-fwd-pipe, output-bwd-pipe, crossbar-pipe, arbitration-pipe.

3.2.4.3 DATA NOC

As shown in Figure 28, the Data NoC is a cascading multistage interconnection

network (MIN), which contains 8 switches for request data routing as well as 8 switches for

response. Sixteen OCP-to-NTTP NIUs and four NTTP-to-OCP NIUs are integrated at the

boundary of Data NoC. The OCP-to-NTTP NIU converts the OCP master interface to

NTTP interface and connects PE tiles to the first stage switches. We place four Master

NIUs as a group connected to one switch of the first stage, while the first stage are

comprised of four 4IN*4OUT switches for 16 PE tiles. Each switch in first stage distributes

four output ports, which are respectively connected to the switches in second stage. The

second stage contains four 4IN*1OUT switches. Each output port of switches in second

stage is connected to a NTTP-to-OCP NIU, which in turn connects to DDR2 memory

controller. Each DDR2 memory controller is attached in 256Mbyte off-chip DDR2 memory.

The response part of DATA NOC is a mirror of request part. Through the Data-NOC,

sixteen PE tiles connected to OCP Master interfaces can access any DDR2 salve memory.

Chapter 3 MPSOC Design and Implementation

68

Between each NIU and switch connecting point, a performance monitoring probe is placed

to measure the behaviors of Data NoC. The detail of performance monitoring system will

be discussed in 3.4 Performance Monitoring

Figure 28. Block diagram of Data NoC

3.2.4.4 Synchronization NOC

MCmd[2 :0] Description
IDLE Idle
WR write
RD Read
RDEX Read exclusive
WRNP Write Non post
RDL Read Linked
WRC Write Conditional
BCST Broadcast

TABLE 4 OCP master command MCmd

SResp[1:0] Description
NULL No response
DVA Data valid / accept
FAIL Write conditional fail
ERR System error

TABLE 5 OCP Slave response SResp

Chapter 3 MPSOC Design and Implementation

69

TABLE 4 and TABLE 5 list the Master commands and Slave responses specified in

OCP protocol. From these commands and responses OCP protocol can support two

synchronization modes among OCP masters. The first one is Locked synchronization,

which is an atomic set of transfers. OCP initiator use the ReadExcusive(ReadEX) command

and Write or WriteNonpost command to perform a read-modify-write atomic transaction.

In our system the NTTP protocol translates such accesses by inserting control packets,

Lock and Unlock, on the request flow. As shown in Figure 29, the NIU sends a Lock request

packet when it receives the ReadEX command. The Lock request locks the whole path to

the NTTP slave. Then a LOAD request packet read the data of NTTP slave. OCP master

modifies the data and sends to salve by Write or WritrNonPost command. When the NIU

receives the Write command, it write the data to required NTTP salve by a STORE request

packet then release the NoC by Unlock request packet. The other competing OCP masters

can’t access the locked location, until the Unlock packet is sent. Such a mechanism is

efficient for handling exclusive accesses to a shared resource, but can result in a significant

performance loss when used extensively.

Figure 29. Illustration of Locked synchronization

For allowing other instructions to be executed between the ReadEX and write

commands and breaking the atomicity of the exclusive read/write pair, the Lazy

synchronization is implemented in our system. This mechanism requires new read and

write semantics, commonly known as Load-Linked and Store-Conditional (LL/SC)

semantics. LL/SC access must be monitored by access monitor logic, that can be located

either in the NoC, or in the memory controller. The ReadLinked command sets a

Chapter 3 MPSOC Design and Implementation

70

reservation tag in the monitor logic, with a particular address. The WriteConditional

command is locally transformed into a memory write access only if the reservation tag is

still set when the command is received. As the tagged address is not locked, the tag can be

reset by competing traffic directed to the same location from other Master between

ReadLinked and WriteConditional.

Figure 30. Block diagram of Synchronization NoC

Due to absence of monitor logic in RAM controller, an Exclusive Access Manager

from Arteris Danube library is integrated in front of the NI of RAM, as shown in Figure 30.

The NTTP protocol controls the lazy synchronization by “exclusive” information bits,

which can be found in the information field of the header cell. When the OCP Master-NIU

receives ReadLinked command, the “exclusive” bits are encoded in request packets. Next

these bits are registered in the Exclusive Access Manager and are updated during transport.

When the WriteConditional is received, the Exclusive Access Manager inserts the

“exclusive” bits in the response packets for reporting to the initiator. The initiator receives a

“Fail” response, that means the other initiators have modified the monitored target.

Otherwise it means the monitored target is not modified and WriteConditional is successful.

The “Fail” response is different with “Error” response. The “Error” response effectively

signals a system interconnect error or a target error.

Chapter 3 MPSOC Design and Implementation

71

3.2.4.5 Service NOC

Figure 31. Block diagram of Service NoC

The Service NoC is integrated in the Data NoC to provide reconfiguration services and

to report the status of IPs at run time. In the PTUs such as switch and performance monitor,

a set of registers can be accessed by the host interface, which is connected to service

network. PE tiles can change the values of registers to control the behaviors of PTUs. As

shown in Figure 31, the service network includes a main ring and a secondary ring. The

main ring comprises a NTTP-to-Host component, a Node and five performance monitors.

The NTTP-to-Host translates NTTP data to service host data, which include four signals:

clock, Vld, Data, Rdy. Vld indicates valid data; Data carries host packet information; Rdy

indicates the receiver is ready to receive data. The Node connects a secondary ring to main

ring. The Node component reads and writes data from main ring to its secondary ring only

when the data’s addresses match one of the base-address; otherwise the data packets

continue circulate on the main ring. In our design the switch secondary ring comprises nine

switches host slaves. Through this Switch service ring we can check the statuses of

switches, configure the route table for each input port of switch and set the arbitration

“enable” bit for each output port of switch. The five host interfaces of performance

monitors are connected to the main ring. Programmer can control the behavior of

performance monitor by updating the registers such as basic status check, monitoring type

select, monitoring time select, counter operation select etc.

Chapter 3 MPSOC Design and Implementation

72

3.3 Bi-Synchronous FIFO in GALS architecture

The Globally Asynchronous, Locally Synchronous (GALS) approach has been

proposed to solve the timing closure problem in deep sub-micron processes by partitioning

the SoC into isolated synchronous subsystems that hold own independent frequency. To

improve the performance and reduce the power consumption of system, the GALS

approach is adopted by using Bi-Synchronization method in our design.

Figure 32. Block diagram of OCP adapter

To tackle the communication issue between two different clock domains and two

different protocols, the OCP adapter (as shown in Figure 32) has been designed, which

contains one pair of bi-synchronous FIFOs and OCP adapter kernel. The OCP adapter

kernel convents FIFO interface to OCP interface. We have three types of OCP Adapter:

OCP Data Adapter, OCP synchronization Adapter and OCP service adapter. PE Tiles are

connected to Data NoC by OCP Data Adapters, which interface OCP basic signals and

OCP burst extension. OCP synchronization Adapter does not support burst mode but it can

convert ReadLinked and WriteConditional commands for lazy synchronization. OCP

service Adapter is the simplest vision, it supports neither burst mode nor lazy

synchronization. All of three types of OCP adapter contain a pair of bi-synchronous FIFOs,

Chapter 3 MPSOC Design and Implementation

73

which make PE tiles and NOCs as isolated synchronous islands with independent clock

frequencies. Bi-synchronization FIFO is used in Bi-Synchronous communication method to

interface two synchronous systems with independent clock frequencies. The signals of

Bi-Synchronous FIFO are listed in Table 4. Bi-Synchronous FIFO has two directions

interface: sender interface (M_) and receiver interface (S_). Each interface has its own

clock signal; M_Clk for the sender and S_Clk for the receiver. PE Tile clock domain can

communicate with NoC clock domain via a pair of Bi-synchronous FIFO contained in OCP

Adapter.

Name Description
M_Clk This port provides the input clock to the master interface
M_Data The data input to the master interface
M_Control Single bit control signal that is propagated along with the data at every clock edge.
M_Write Input signal that controls the write enable signal of the master interface of the FIFO
M_Full Output signal on the master interface of the FIFO indicating that the FIFO is full.
S_Clk This port provides the input clock to the slave interface
S_Data The data output bus onto the slave interface
S_Control Single bit control that is propagated along with the data at every clock edge
S_Read Input signal on the slave interface that controls the read acknowledge signal of the FIFO.
S_Exists Output signal on the slave interface indicating that FIFO contains valid data.

TABLE 6 signals for Bi-synchronous FIFO

As mentioned in the part of Processing Element Tile, PPC PE tile and MB PE tiles

have different maximum execution frequencies because of different implementation modes:

hard-core and soft-core. The maximum execution frequencies of MB PE tiles also largely

vary due to different configurations of MicroBlaze. Regarding the NoCs and PE Tiles,

different functionalities and performance needs lead different frequencies requirements.

The entire system is partitioned into different clock domains depending on the performance

requirements and the maximum execution frequencies. In our design, Bi-synchronous

FIFO points separate the PE tile clock domains and NoC clock domains as illustrated in

Figure 33. Each PE tile can be considered as an isolated frequency island. PPC PE tile

containing Hardcore PowerPC405 runs at frequency 300MHz. The Maximum frequencies

of MB PE tiles containing soft-cores MicroBlaze vary from 70 MHz to 130MHz depending

on the configuration of MicroBlaze and performance requirements. In the NoC side, two

Chapter 3 MPSOC Design and Implementation

74

NoCs, Data-NOC and synchronization-NOC have different maximum execution

frequencies due to different pipeline strategy, arbitration settings and configuration of input,

output numbers. Data-NOC run at 200 MHz, synchronization NoC run at 250 MHz.

Figure 33 Illustration of clock domain

3.4 Performance Monitoring

Run-time observability is an obligatory condition in embedded system debugging and

monitoring. Observability of NoC based SoC is more difficult, the application debugging is

impossible without the information of NoC behaviors such as throughput, latency etc. A

scalable, reconfigurable, non-intrusive NoC performance monitoring service has been

added in our MPSoC. This performance monitoring system can offer run time observability

of NoC behavior and export results as frames to a processing target helping application

software tuning.

Chapter 3 MPSOC Design and Implementation

75

Figure 34. diagram of statistic collector

The basic component in the performance monitoring system is statistic collector from

Arteris Danube library, as shown in Figure 34. Statistic collector is based on hardware

probes, which can be attached on any NTTP request link or response link in the NoC, or the

probes can be directly attached on OCP links. The monitoring probes capture the

information passing from the link and detect the monitored events without introducing any

flow control in the system. Each statistic collector can provide up to 8 probe input channels,

one dump frame output and service host interface. The internal configuration registers

control the monitoring behaviors and can be predefined at design time or be modified and

control at run time.

Chapter 3 MPSOC Design and Implementation

76

p

means probe point; SC means statistic collector

Figure 35. illustration of performance monitoring system,

As shown in Figure 35, all input and output ports of Data NoC are monitored. Twenty

performance monitoring probes are placed at all connection points between NIUs and

switches. Each statistic collector provides 4 probes to detect 4 pairs of NTTP request and

response links. Four statistic collectors detect and record the 16 connections of PE tiles and

one statistic collector for the 4 connections of DDR2 memories. The dump output ports of

statistic collector are connected to the PM switch. Statistic Collectors can automatically

send the monitoring results to switch when the configured collect time arrive, or

programmer can manual set the “send register” to do that. The PM switch exports all the

data to PPC PE tile through a NTTP-to-OCP NIU. Using service NoC programmer can

change the configuration registers of statistic collector at run time. At the event detector

stage, we can configure the detecting event type, such as packets, latency, wait cycle,

payload, and idle cycle. The event MUXes select which the input port is monitored by

corresponding filter. The filtering stage provides additional selection capabilities by mask

and match registers. We can also select the counting mode and the form of output frame.

3.4.1 Performance Monitoring system evaluation
To evaluate the performance monitoring system in our MPSoC platform, we select

matrix multiplication as our parallel application, which is widely used in science

Chapter 3 MPSOC Design and Implementation

77

computation. Due to its large dimensional data array, it is extremely demanding in

computation power and meanwhile it is potential to achieve its best performance in a

parallel architecture.

We give a brief description of the algorithm utilized for the matrix multiplication.

Suppose that A is an M*K matrix, B is a K*N matrix, and the result C is an M*N matrix. In

the phase of task dispatch, A is partitioned into p tasks, each task contains M/p lines of

matrix A, where p indicates the number of PE Tiles. After this partitioning is done, each PE

tile works with the task from A corresponding to its tile number and the entire B. So at each

iteration, it reads in the one block of A, which is then multiplied with all the blocks of B,

resulting in a M/P * N partial result matrix. The partial result is first stored in the local

memory of PE tile and is stored in the corresponding memory location (according to the

row number, the column is complete) before the start of the following iteration.

According to the parallel algorithm described above, which demands a great amount of

memory access for loading original matrix blocks and storing partial results, a successful

implementation depends largely on memory access scheme. In regarding the NoC

architecture, a memory bank can be accessed by one PE tile at a time. If the memory bank

is occupied by one PE Tile, the other PE Tile can read or write this memory bank until the

path to access this memory bank is free.

Figure 36 Matrix per bank data distribution scheme

Chapter 3 MPSOC Design and Implementation

78

Figure 37 Line interleaved data distribution scheme

Solution1 packets laten
MB PE0 149760 73,5
MB PE1 149760 73,5
MB PE2 149760 73,6
MB PE3 149760 79,2
MB PE4 149760 79,2
MB PE5 149760 79,2
MB PE6 149760 79,1
MB PE7 149760 80,2
MB PE8 149760 78,0
MB PE9 149760 78,0

MB PE10 149760 77,8
MB PE11 149760 77,9
MB PE12 149760 77,9
MB PE13 149760 77,9
MB PE14 149760 77,8

Bank1 0
Bank2 28739 10,2
Bank3 213693 118,
Bank4 12661 4,88

TABLE 7 performance monitoring results Solution1 : matrix par bank

Solution2 packets latency

MB PE0 149760 32,11

MB PE1 149760 32,12

MB PE2 149760 31,66

MB PE3 149760 33,41

MB PE4 149760 33,44

MB PE5 149760 33,55

MB PE6 149760 33,29

MB PE7 149760 33,38

MB PE8 149760 30,90

MB PE9 149760 31,07

Chapter 3 MPSOC Design and Implementation

79

MB PE10 149760 31,10

MB PE11 149760 31,36

MB PE12 149760 30,93

MB PE13 149760 31,29

MB PE14 149760 31,37

Bank1 266352 26,13

Bank2 271283 25,65

Bank3 268965 25,68

Bank4 277764 25,48

TABLE 8 performance monitoring results Solution2 : Line interleaved

Solution3 packets latency

MB PE0 149760 20,16

MB PE1 149760 20,28

MB PE2 149760 20,31

MB PE3 149760 20,36

MB PE4 149760 20,37

MB PE5 149760 20,28

MB PE6 149760 20,24

MB PE7 149760 20,36

MB PE8 149760 18,29

MB PE9 149760 18,13

MB PE10 149760 18,09

MB PE11 149760 18,21

MB PE12 149760 18,29

MB PE13 149760 18,13

MB PE14 149760 18,18

Bank1 257682 19,38

Bank2 271508 18,76

Bank3 266720 18,97

Bank4 271517 18,91

TABLE 9 performance monitoring results Solution3 : Line interleaved with shift access

Firstly we naturally store each matrix in a separate memory bank. As shown in Figure

36, Matrix A is stored in Bank1; Matrix B is in Bank2 and Bank3 for Matrix C. We

executed the application and used performance monitoring to record the number of packets

and the average latency for each monitoring probe. PPC PE Tile report the results to

programmer through PCIe interface. As shown in TABLE 7, the latency of bank3 and the

number of packets are exceptional high, which means Bank 3 is highly charged by

conflicted traffic. This also shows an unbalanced traffic distribution for the four memory

banks. To equilibrate the data distribution we changed the scheme shown in Figure 37. PE

Chapter 3 MPSOC Design and Implementation

80

Tiles read the matrix B with an order access. PE tiles firstly read the first column of matrix

B which is stored in Bank0, and then read the second column in Bank1. The monitoring

results are shown in TABLE 8. We can see that the latencies are smaller than the first

memory scheme. Then for the second memory distribution scheme, we used another data

access strategy: shift access. we shift their data access order for first loading of Matrix B:

PE Tile 1,5,9,13 read the first column in Bank0, PE Tile 2,6,10,14 read the second column

in Bank1, PE Tile 3,7,11,15 read the third column in Bank2, PE Tile 4,8,12,16 read the

fourth column in Bank3. Our performance monitoring system record the number of packets

and latency of all monitoring points and the results are shown in TABLE 9. The latency of

the third data distribution scheme is much smaller than the other schemes. Figure 39 shows

the comparison of execution cycles for three schemes. We can clearly see the number of

execution cycles is significantly reduced.

0

20

40

60

80

100

120

M
B

P
E
0

M
B

P
E
1

M
B

P
E
2

M
B

P
E
3

M
B

P
E
4

M
B

P
E
5

M
B

P
E
6

M
B

P
E
7

M
B

P
E
8

M
B

P
E
9

M
B

P
E
1
0

M
B

P
E
1
1

M
B

P
E
1
2

M
B

P
E
1
3

M
B

P
E
1
4

B
a
n
k
1

B
a
n
k
2

B
a
n
k
3

B
a
n
k
4

l
a
t
e
n
c
y

(
c
y
c
l
e
s
)

0

5

10

15

20

25

30

35

40

45

50

M
B

P
E
0

M
B

P
E
1

M
B

P
E
2

M
B

P
E
3

M
B

P
E
4

M
B

P
E
5

M
B

P
E
6

M
B

P
E
7

M
B

P
E
8

M
B

P
E
9

M
B

P
E
1
0

M
B

P
E
1
1

M
B

P
E
1
2

M
B

P
E
1
3

M
B

P
E
1
4

B
a
n
k
1

B
a
n
k
2

B
a
n
k
3

B
a
n
k
4

l
a
t
e
n
c
y

(
c
y
c
l
e
s
)

Solution1 Solution2

0

5

10

15

20

25

30

35

40

45

50

M
B

P
E
0

M
B

P
E
1

M
B

P
E
2

M
B

P
E
3

M
B

P
E
4

M
B

P
E
5

M
B

P
E
6

M
B

P
E
7

M
B

P
E
8

M
B

P
E
9

M
B

P
E
1
0

M
B

P
E
1
1

M
B

P
E
1
2

M
B

P
E
1
3

M
B

P
E
1
4

B
a
n
k
1

B
a
n
k
2

B
a
n
k
3

B
a
n
k
4

l
a
t
e
n
c
y

(
c
y
c
l
e
s
)

0

20

40

60

80

100

120

M
B

P
E
0

M
B

P
E
1

M
B

P
E
2

M
B

P
E
3

M
B

P
E
4

M
B

P
E
5

M
B

P
E
6

M
B

P
E
7

M
B

P
E
8

M
B

P
E
9

M
B

P
E
1
0

M
B

P
E
1
1

M
B

P
E
1
2

M
B

P
E
1
3

M
B

P
E
1
4

B
a
n
k
1

B
a
n
k
2

B
a
n
k
3

B
a
n
k
4

l
a
t
e
n
c
y
(
c
y
c
l
e
s
)

Solution3 comparison of three solutions

Figure 38 Latencies of three data access scheme.

Chapter 3 MPSOC Design and Implementation

81

30,1

22,1

17,2

0

5

10

15

20

25

30

35

solution1 solution2 solution3

e
x
e
c
u
t
i
o
n

c
y
c
l
e
s
(
m
i
l
l
i
o
n
s
)

Figure 39 comparison of the execution cycles for three data access scheme.

3.5 Implementation

Figure 40 Block diagram of Alpha-Data FPGA platform card ADPe-XRC-4

The whole multiprocessor system is implemented on Alpha-Data FPGA platform card

ADPe-XRC-4. As shown in Figure 40, the ADPe-XRC-4 is a high performance

reconfigurable PCI Express card based on the Xilinx FPGA Virtex-4 FX140. The FPGA is

Chapter 3 MPSOC Design and Implementation

82

connected to four banks of DDR2 memory, while each 256MBytes DDR2 bank is

comprised of two Micron MT47H64M16. The MPSoC is synthesized, placed and routed by

Xilinx tools: EDK 9.2 and ISE 9.2, and the results of FPGA resource utilization are shown

in TABLE 10. The multiprocessor system used about 90% slices of FPGA and 65% Blocked

RAM. Each MicroBlaze takes 3 DSP48 blocks, while 15 MicroBlaze processors use 45

DSP48 blocks. Digital Clock Managers (DCM) are dispersively distributed in FPGA to

generate different clock frequencies for different clock domains. 16 PE tiles, Data NoC,

Synchronization NoC and DDR2 are separated as 19 clock domains and need totally 19

DCMs. Regarding the slices utilization, Figure 41illustrates the percentage of slice

utilization. 16 PE tiles take about a half of total Slices. Data-NoC and synchronization NoC

occupy about 29.5% and 9.5% respectively. About 8% of slices are used for DDR2

controllers.

Number Of DCM_ADVs 19 out of 20 95%

Number of DSP48s 45 out of 192 23%

Number of RAMB16s 357 out of 552 65%

Number of Slices 57344 out of 63168 90%

Number of PPC405s 1 out of 2 50%

TABLE 10 FPGA resource utilization

Figure 41 the percentage for FPGA Slices utilization

Chapter 3 MPSOC Design and Implementation

83

 Number Area (slices) Percentage

Master NIUs 16 3504 16%

Slave NIUs 4 1740 8%

Statistic collectors 5 9976 45%

Switches 16 6896 31%

TABLE 11 data-NOC resource utilization

Figure 42 the Area percentage of Data-NOC

Chapter 3 MPSOC Design and Implementation

84

Figure 43 Floor planing and placed FPGA of platform

3.6 Conclusion

In this chapter we presented an FPGA implementation of a NoC-based multiprocessor

embedded system. Three NoCs provide different functionalities for sixteen PE tiles. The

cascading Data-NoC connects PE Tiles and DDR2 memories with a high bandwidth;

synchronization-NoC offers two synchronization modes for PE tiles. And users can check

and configure IPs of Data-NoC through our service NoC. We also demonstrated the use of

our performance monitoring system for software debugging and tuning. With the

bi-synchronous FIFO method, our GALS architecture successfully solves the long clock

signal distribution problem and allows that each clock domain can run at its own clock

frequency. Xilinx Virtex4 FX140 FPGA was selected to provide large logic resources with

quick implementation and testing. FPGA design environment can offer large number of IP

to reduce design efforts and decrease the pressure of time-to-market. For example, in our

system a number of IP can be found from the Xilinx EDK library, such as MicroBlaze

processor, LMB, FSL, BRAM. As future work, we will increase the number of tiles and all

the system will be implemented in ASIC. Benefiting our OCP interface we can change the

type of processor without difficulty.

Chapter 4 MPSoC Performance Evaluation

85

Chapter 4 MPSoC Performance Evaluation

4.1 Using encryption as evaluation application

Data security plays a important role in the design of embedded system today,

many embedded application rely heavily on security mechanism. Two commonly

used cryptographic algorithms: the AES (Advanced Encryption Standard) [84] and

the TDES (Triple Data Encryption Standard)[83] have been chosen as our application

to evaluate our multiprocessor platform.

A common implementation that favors performance of these algorithms is LUT

(LookUp Tables) where one or more of the operations in the algorithm are

pre-calculated for all possible inputs and stored in tables. We use this implementation

in our paper because it is simple to implement, fast and it fits into our architecture

(area is already fixed by the choice of processing elements).

The TDES is built in a way that encryption and encryption uses the same function

but with inverse order in rounds keys which leads to small footprint. The AES on the

other hand have an Encrypt and Decrypt functions that uses different forward and

inverse operations which means that the AES have a bigger footprint in terms of code,

where 2 functions must be implemented instead of one for encryption/decryption, and

in terms of the size of lookup tables as we need different tables for these two

operations, however the AES is faster in execution and provides a much better

security.

Chapter 4 MPSoC Performance Evaluation

86

4.2 The algorithm

The TDES is a symmetric block cipher that has a block size of 64 bit and can

accept a several key size (112, 168 bits) which are eventually extended into a 168 bit

size key, the algorithm is achieved by pipelining three DES algorithms while

providing 3 different 56 bits keys (also called key bundle) one key per DES stage.

The DES was introduced by IBM in early 70’s then was adopted by the US

government as encryption standard for official use, it is a block cipher with 64bit

block size and 54 bit key.

Figure 44: Feistel function F (SBoxes)

The TDES starts by dividing the data block into two 32bits blocks which are

passed into a Forward Permutation (FP) then criss-crossed in what is known as Feistel

scheme (or Feistel Network) while being passed into a cipher Feistel function F, as

illustrated in Figure 45, this operation is repeated for 48 rounds followed by one IP

(Inverse Permutation). The F function expands the 32 bit half block input into 48 bits

that is mixed with a round key that is 48 bit wide, the result is divided into 8 blocks 6

bits each which in turn are passed into 8 S-Box (Substitution Box) that returns only 4

bits each making an output of 32 bits. round keys are calculated for each round by a

expanding the 56 bit key through a specific key scheduling process, then dividing the

result into 48 bit keys. Figure 44 shows the Feistel F function.

Chapter 4 MPSoC Performance Evaluation

87

Figure 45 TDES encryption and Decryption schemes (Feistel Network)

4.2.1 The AES (Advanced Encryption Standard)
The AES is the successor of DES and was adopted also by US government for

official use as a successor of the aging DES after a contest designate at determining

best all around algorithm. The wining algorithm called Rijndael was slightly

modified and adopted, a full description of the AES can be found in [84].

The AES algorithms is a block cipher algorithm that takes 128 bit sized block

with a key of 128, 192 or 256 bit length, the algorithm executes from 10 to 13

identical rounds plus one final different round, the number of rounds is determined by

the key length, a key expansion (also known as key scheduling) is executed prior to

encryption or decryption, key expansion for encryption is different from key

expansion for Decryption) increasing the footprint of implementation also. Both

encryption and decryption in the AES implementation were arranged in an identical

Chapter 4 MPSoC Performance Evaluation

88

manner and requires the same amount of operations. Figure 46 shows general

operations flow of the AES.

Figure 46: AES general flow

The 128bit data block is represented in a 4x4 matrix with 8bit width for each cell,

this matrix is called the State variable. Operations are carried out on State. First there

are 13 identical rounds (in our case with 256 bit key) then a final round. Each round

consists of

• SubByte: each byte in the matrix is substituted with another byte defined by a
multiplicative in G(28) field to assure non linearity.

• ShiftRow: a cyclic shift of the rows of the matrix is executed ith row shifted I
times starting with no shift at row 0.

• MixColumn: the four elements of each column of the matrix are multiplied in
G(28).by the polynomial 3x3 + x2 + x + 2. Modulo x4 + 1.

• AddRoundKey: finally mixing the matrix with the round key generated earlier
in the corresponding KeySetup function.

128 bits data block (4x4bytes)

SubByte

ShiftRow

MixColumn

AddRoundKeyRound key

SubByte

ShiftRow

AddRoundKey

128 bits encrypted block

10-13 rounds

Round key

Chapter 4 MPSoC Performance Evaluation

89

The last round contains all steps except for the column mixing. Both Byte

substitution and column mixing are operations over G(28) field and they are usually

implemented in lookup tables consisting of 4 arrays each is of 256 word with 32bit

word width totaling 4096 bytes needed storage another 4096 bytes are needed for

the decryption containing the inverse operation in the G(28) field. Other operations

are basically simple operations like shifts on indexes

4.3 Operation Mode

Block cipher algorithms have different operation modes; the simplest is called

ECB (Electronic Code Book) in this mode the block cipher is used directly as

illustrated in Figure 47.

Figure 47 ECB operation mode for the TDES block cipher

The problem in ECB mode is when using it to encrypt identical data blocks with

the same key the encrypted outputs will also be identical which means that if we

encrypt an image the outlines of that image will be visible when visualizing the

encrypted output this effect is illustrated in Figure 48

Chapter 4 MPSoC Performance Evaluation

90

Figure 48:ECB operation mode

A solution to such a problem is achieved by chaining blocks by mixing the

encrypted output with the next block in the message. The CBC (Cipher Block

Chaining) is a strait forward chaining where the first block is mixed with an Initial

Victor IV then the output of this block is mixed with the next block to be cipher and

so on as illustrated by Figure 49 whereas Figure 50 shows the visualization of the

encrypted image.

Figure 49: CBC operation mode for the TDES block cipher

There are other modes of chaining that are introduced for different considerations

that can be presented, from implementation point of view, by the CBC like CFB

(Cipher FeedBack).and OFB (Output FeedBack).

Chapter 4 MPSoC Performance Evaluation

91

Figure 50: CBC operation mode

4.3.1 TDES Parallelization
We base our work on the C implementation from NIST, the sequential TDES

encryption C code consists from a Forward Permutation (FP), a 48 calls to an F macro

that executes both F boxes and the Feistel network, and finally there is an Inverse

Permutation (IP), the C Code is a LUT (Look Up Table) based implementation with

combined SPBox tables meaning all arithmetic operations are pre-calculated and

stored in tables.

4.3.2 Data parallelization approach

4.3.2.1 Design Description

In this method, data are divided between the 16 processing elements. Two

implementations were realized both in CBC mode (illustrated in Figure 50) and in

ECB mode as well.

External DDR memory is physically segmented into 4 banks, further more and

for both implementations memory is divided into 16 equal segments 4 segments in

each banks, 1 segment per processor. The repartition of memory between processors

is arranged to avoid collision at processors side switches as illustrated in Figure 49 to

allow the simultaneous use of all 4 switches channels.

Chapter 4 MPSoC Performance Evaluation

92

Figure 51: external memory segments repartition between PEs (segment number n is
dedicated to PE number n)

For the CBC mode, parallelization is based on splitting the CBC chain into N

chain with N the number of involved processors, each chain starts with a different IV

(Initial Vector).

Initial Vectors are generated according to recommendations using a counter that

is encrypted with the same key as a random IV generator as illustrated in Figure 51.

One processing element (PE0), is programmed to be a master, it has the task of

preparing data and key and storing them in the external DDR memory, encryption,

managing PEs synchronization and measuring performance. PE0 divide and copy data

into PEs memory segments in an even sizes (as possible), calculates round keys then

stores these data, keys and data size into corresponding segments, after that PE0 gives

a start signal to the other 15 processing elements signaling valid data availability, after

that all 16 processors starts encrypting/decrypting that data in its own memory

segment, upon finish each PE signals job finished to PE0 by writing a flag to the

synchronization memory.

Chapter 4 MPSoC Performance Evaluation

93

The master PE0 first receives the key via the PCIe then applies key scheduling

and stores rounds keys in known location in memory, then it reads data and stores it in

equal shares in the 16 memory segments and stores data size in

Figure 52: CBC mode mapping into the 16 Processing Elements platform

known location also, once this preparation phase ends, master processor starts a

timer then gives launch signal to other processors via the synchronization memory

which is being monitored by slave processors for start signal. After the launch signal

is given each processor reads rounds keys and data size then starts encrypting (or

decrypting) data located in its corresponding segment, the ciphered text is overwritten

Chapter 4 MPSoC Performance Evaluation

94

on clear text. Once all data are processed each processor writes a flag in the

synchronization memory to signal that it has finished job, while master PE0 waits,

after it finished its job, until all processors have finished then captures timer time in

number of clock cycles.

4.3.2.2 Timing and memory access schemes

In this layout data memory access conflict can occurs at the Go signal given by

PE0 where all processors starts by reading first block in there segments, processors

using the same data bank will have an access conflict one time, this will be

transformed into order memory request arrival next time because all processors

executed a task of equal time T0 that is considerably longer than memory access time

as illustrated in Figure 53.

Figure 53: Timing and memory conflict in Data parallel method

This means that memory bandwidth will cause a slow down when the following

inequity is true

N x Tm>T0

Where

N is the number of Processors per memory bank

Tm is the memory access time needed to read on data block

Chapter 4 MPSoC Performance Evaluation

95

T0 is the time needed to encrypt one block

This illustrates the interest of memory segmentation.(more banks mean smaller

N).

4.3.3 Pipelined approach

4.3.3.1 Design description

In this method the algorithm execution is divided between the 16 processing

elements. However and because of the architecture with no possibility for direct

connection between processors, a connection is carried out via the DDR memory

while the synchronization memory is used to assure data validity.

To assure balance in computation loads between processors we measured the

number of cycles necessary to execute each one of the basic functional entities (FP,F

and IP) on one processor, the profiling results are illustrated in table 1, based on these

numbers, a repartition of tasks between processors, a most balanced distribution at

this level of granularity, is adopted. This distribution is illustrated in Figure 52. We can

see that there is a bottle neck at processors PE1 and PE2 with maximum computation

time, for overall time we must add data memory access time and synchronization

memory access time, TABLE 12 shows the task overall number of cycles without

synchronization mechanism, this will allow the measurement of average delay

introduced by this mechanism.

Function Cycles

FP (Forward Permutation) 220

F(Feistel function and Network 168

IP(Inverse Permutation) 196

TABLE 12 basic functions of TDES profiling on one processor

The synchronization is achieved using one common location between each two

adjacent processors, this location is set by the processor i to signal the presence of

valid data and clear by the i+1 processor to signal that the data has been read and

common data location between the two processors can be used again to write data for

Chapter 4 MPSoC Performance Evaluation

96

the next block. This means that the i-th processor have to check this flag to make sure

not to overwrite data that is not read.

Figure 54: Pipeline Like method tasks repartition and memory sharing

From TABLE 13 and we can see that the bottle neck is at PE1 and PE2, a

maximum average of number of cycles per block is governed by this bottle neck that

will set the pace for all other processors.

Task Cycles (approximate)

FP + 2F 680

4F 800

3F 630

2F + IP 660

TABLE 13 tasks executed on Processing Elements in cycles without synchronization
overhead

Chapter 4 MPSoC Performance Evaluation

97

4.3.3.2 Timing and memory access scheme

In this pipeline like approach tasks executed by different processors are not equal

and memory access is considerably more important than the data parallel method

where intermediate results are stored in memory as well causing considerable loss in

performance for each PE memory access takes between 14-17%, data memory access

however is regulated by synchronization mechanism, this mechanism is optimized to

minimize traffic in the synchronization NoC in order to minimize synchronization

overhead, this is carried out by introducing a carefully calculated delay to lineup

different processes in PEs as illustrated in Figure 55, these delays are experimentally

tuned for minimum overhead so we can get on average one read and one write on the

synchronization memory per block.

Figure 55: timing and synchronization between PE0 and PE1

No data memory conflict exists because shared memory is repartitioned in the 4

memory banks, this allows along with the shifted access caused by the

synchronization to keep the data memory access without conflict.

4.4 Results and Discussion

We passed the same data size for both algorithms, this meant the blocks number

passed to the TDES were the double of the blocks passed to AES because of the block

size of each algorithms, the overall number of cycles taken to achieve the calculation

of all data, as well as other resulting figures are illustrated, also we tested the speedup

varying the number of processors.

Chapter 4 MPSoC Performance Evaluation

98

We tested both algorithms with and without barrel shift in the processor element,

obtained the results for the AES for single and 16 processors are presented in TABLE

14
AES (block size 128 bits)

 Test Mode
overall number
of Cycles

number of
encrypted blocks

throughput at 100MHz
(Kbytes/sec) Speedup cycles/block

single
Processor 107 418 660 16 784 244,1 - 6 400
16 processors 6 721 423 16 784 3 901,7 15,98 400

TABLE 14 AES executed cycles to encrypt 16784 blocks on PEs without barrel shifters

The results for the single and 16 processors provided with barrel shift are

provided in TABLE 15
AES (block size 128 bits) with barrel shift

Test Mode
overall number
of Cycles

number of
encrypted blocks

throughput at 100MHz
(Kbytes/sec) Speedup cycles/block

single
Processor 67 028 740 16 784 391,3 - 3 994
16 processors 4 194 311 16 784 6 252,5 15,98 250

TABLE 15 AES executed cycles to encrypt 16784 blocks on PEs with barrel shifters

Results for TDES algorithm single and 16 processor are presented in TABLE 16

TDES (block size 64 bits)

Test Mode
overall number
of Cycles

number of encrypted
blocks

throughput at 100MHz
(Kbytes/sec) Speedup cycles/block

single
Processor 424 111 884 33 568 61,8 - 12 634
16 processors 26 531 072 33 568 988,5 15,98 790

TABLE 16 TDES executed cycles to encrypt 16784 blocks on PEs without barrel shifters

While in TABLE 17 the results for TDES algorithm for single and 16 processor

with barrel shift
TDES (block size 64 bits) with barrel shift

Test Mode
overall number
of Cycles

number of
encrypted blocks

throughput at 100MHz
(Kbytes/sec) Speedup cycles/block

single
Processor 277 854 154 33 568 94,4 ‐ 8 277

16 processors 17 381 660 33 568 1 508,8 15,98 518

Chapter 4 MPSoC Performance Evaluation

99

TABLE 17 TDES executed cycles to encrypt 16784 blocks on PEs with barrel shifters

We note that the use of barrel shift has improved performance by 38% in the case

of AES and by 35% in the case of Triple DES.

The achieved speedup is linear which reflects the independence of executed

blocks and the minimum communications between processor in this method

(synchronization is required only at start and end).

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ill

io
ns

numbre of processors

cy
cl

es

Figure 56: the number of cycles vs. the number of processors for AES

Figure 56 shows the overall number of cycles to encrypt 16784 blocks in the AES

algorithms using different number of processors.

The detailed results along with the speedup and throughput at 100 MHz for

different number of processors with barrel shifters are shown in TABLE 18
Number of

processors Cycles

throughput at

100MHz (Kbytes/s) Speedup

1 67,028,740 391 1.00

2 33,501,403 783 2.00

3 22,364,912 1,173 3.00

4 16,772,947 1,564 4.00

5 13,419,492 1,954 5.00

6 11,185,268 2,345 5.99

7 9,586,196 2,736 6.99

8 8,387,108 3,127 7.99

9 7,455,626 3,518 8.99

Chapter 4 MPSoC Performance Evaluation

100

10 6,712,291 3,907 9.99

11 6,100,736 4,299 10.99

12 5,593,368 4,689 11.99

13 5,161,574 5,081 12.99

14 4,793,823 5,471 13.98

15 4,474,090 5,862 14.98

16 4,194,418 6,253 15.98

TABLE 18 TDES executed cycles to encrypt 16784 blocks on PEs with barrel shifters

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of processors

Th
ro

ug
hp

ut
(M

B
yt

es
/S

)

Figure 57: the throughput at 100MHz vs. the number of processors for the AES algorithm
with barrel shifters

The speedup in function of number of processors is illustrated in Figure 57

expressed by the throughput of the system

The same outlook is correct for the TDES algorithm with synchronization at the

beginning and at the end of the process and no communication during it

Chapter 4 MPSoC Performance Evaluation

101

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of processors

C
yc

le
s(

m
ill

io
ns

)

Figure 58: the number of cycles vs. the number of processors for TDES

The Figure 58 shows the total number of cycles to encrypt 16784 blocks in the

TDES algorithms for different numbers of used processors with barrel shifters.

TABLE 19 shows detailed results for TDES encryption total number of cycles,

throughput and speedup for different number of processor with barrel shifters

Number of

processors Cycles

throughput

(Kbytes/s) Speedup

1 277,854,154 391 1.00

2 140,979,916 783 2.00

3 94,182,002 1,173 3.00

4 69,522,290 1,564 4.00

5 55,621,353 1,954 5.00

6 46,351,593 2,345 5.99

7 39,732,401 2,736 6.99

8 34,761,884 3,127 7.99

9 30,901,447 3,518 8.99

10 27,811,587 3,907 9.99

11 25,284,793 4,299 10.99

12 23,180,586 4,689 11.99

13 21,391,118 5,081 12.99

14 19,866,930 5,471 13.98

15 18,541,469 5,862 14.98

16 17,381,660 6,253 15.98

TABLE 19 TDES executed cycles to encrypt 16784 blocks on PEs with barrel shifters

Chapter 4 MPSoC Performance Evaluation

102

While Figure 59 shows throughput at 100 MHz of the TDES for different number

of processors with barrel shifters.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of processors

Th
ro

ug
hp

ut
(M

by
te

s/S
)

Figure 59: the throughput at 100MHz vs. the number of processors with barrel shifters for the
TDES algorithm

Results shows that for the data parallel mode a ECB mode is 1.3% faster than the

CBC mode and they show similar characteristics. TABLE 20 shows the convergence

of the number of cycles on average to encrypt or decrypt one block, the average

number decreases as the overall number of treated blocks.

Number of pipelined Data Parallel
Blocks total cycles cycles/block total cycles cycles/block

1 13,891 13,891 8,487 8,487
2 14,530 7,265 8,611 4,306
3 15,361 5,120 8,598 2,866
4 16,461 4,115 8,669 2,167
5 17,319 3,464 8,688 1,738
6 18,288 3,048 8,917 1,486
7 18,927 2,704 8,967 1,281
8 20,032 2,504 9,011 1,126
9 20,952 2,328 9,048 1,005
20 30,526 1,526 18,311 916
100 98,944 989 58,402 584

1,000 869,078 869 522,633 523
10,000 8,573,123 857 5,177,715 518

Chapter 4 MPSoC Performance Evaluation

103

33,568 28,740,720 856 17,381,660 518

TABLE 20 in of overall and average number of cycles in function of number of treated blocks

The pipelined method converges to an average of 856 while the data parallel

converges towards 518 showing better performance by 40%. The pipelined method

shows an average overhead of 56 cycles for synchronization (average 856 – 800 for

bottleneck stage) this is equivalent of one read and one write average time for

synchronization memory.

The speedup achieved on average is shown in TABLE 21 while TABLE 22 shows

average throughput at 100 MHz clock.

 Pipelined Data Parallel
speedup 9.67 15.98

TABLE 21 average speedup of the TDES

 Pipelined Data Parallel
Kbytes/s 913 1508

TABLE 22 average throughput at 100 MHz clock

The speedup depends on the number of treated blocks, Figure 60 shows average

cycles per block reflecting the speedup and achievable throughput for small number

of encrypted blocks

Chapter 4 MPSoC Performance Evaluation

104

Figure 60: Average cycles/block in function of number of encrypted blocks

In this paper we explored two implementations of the TDES on a 16 processors

MPSoC using two methods; the first is by dividing data between processors and the

second is by dividing the execution of the TDES, the architecture was implemented

on Virtex4 based board. Our implemented architecture connected processing elements

via two NoCs, such architecture basically suites heavy memory access and allow

scalability in the system construction.

Results shows better performance for data parallel method favored by the

architecture, this result can be reversed in a pipelined architecture. Another conclusion

shows that data parallel method can be applied with a greater number of processors,

with different operation modes including CBC, because it has a dominating

computation time than memory access time allowing a very effective linear speedup,

we can predict as well that physically segmenting memory into banks helps pushing

this parallelization to attain even a higher figure in processers number although

adding more complexity to the connection between processors.

Chapter 4 MPSoC Performance Evaluation

105

On the other hand our results shows that our architecture does not favor pipelined

implementation because of lack of direct link between processor which heavily

impacting performance because of the need to a synchronized memory access to

exchange data. We note also that going to finer level of granularity may enhance

performance.

4.5 Conclusion

we explored two implementations of the TDES on our 16 processors MPSoC

using two methods; the first is by dividing data between processors and the second is

by dividing the execution of the TDES. Our implemented architecture connected

processing elements via two NoCs, such architecture basically suites heavy memory

access and allow scalability in the system construction.

Results shows better performance for data parallel method favored by the

architecture, this result can be reversed in a pipelined architecture. Another conclusion

shows that data parallel method can be applied with a greater number of processors,

with different operation modes including CBC, because it has a dominating

computation time than memory access time allowing a very effective linear speedup,

we can predict as well that physically segmenting memory into banks helps pushing

this parallelization to attain even a higher figure in processors number although

adding more complexity to the connection between processors.

On the other hand our results shows that our architecture does not favor pipelined

implementation because of lack of direct link between processor which heavily

impacting performance because of the need to a synchronized memory access to

exchange data. We note also that going to finer level of granularity may enhance

performance.

Chapter 5 MPSOC ASIC Design

106

Chapter 5 MPSOC ASIC Design

5.1 MPSoC ASIC Design Introduction

Multiprocessor Systems-on-Chip (MPSoCs) have become the standard for

implementing embedded systems [104]-[107]. The conventional interconnecting

modes, such as buses and crossbars, cannot satisfy MPSOC’s requirements of

performance, area as well as scalability, reliability. On-Chip Network (OCN) or

Network on Chip (NoC), has been proposed as a systematic approach to deal with the

communication-centric design challenge [98][99]. Modular structure of NoC makes

multiprocessor architecture highly scalable and improves reliability and operation

frequency of on chip modules. Although these key advantages of NoCs have been

widely discussed [98][99], the practical implementation of NoCs in very deep

submicron technology (65 nm and below) is still an open challenge [114]..

Recent research has focused on efficient synthesis methods for NoC-based

interconnects and comparisons with bus-based SoCs as well as design of

application-specific NoC architectures and tool chains for known communication

patterns . We build on previous work to address the problem of NoC topology design,

accounting for technology and back-end tooling effects at the 65-nm and 45-nm nodes.

Compared to the previous work, here we add several more studies and experiments on

issues such as the impact of technology scaling on performances from 65-nm to

Chapter 5 MPSOC ASIC Design

107

45-nm as well as migration from FPGA to ASIC. We use here a complete design flow

integrated with standard industrial tool chains to perform accurate physical

implementations of the NoCs.

We present experiment results of exploration on different NoC configurations and

different submicron technologies with fully working FPGA and 65-nm/45-nm ASIC

NoC designs.

5.2 standard cell ASIC design

Due to the growing complexity and increasing functionality of the embedded

System on Chip, today’s on chip system comprise of billions of gates. Standard cell

based methodology makes it possible for designers to scale ASICs from

comparatively simple single function ICs to complex multi-million or multi-billion

gate system on chip. A standard cell library is a set of boolean logic functional blocks

(e.g., AND, OR, XOR, XNOR, inverters) or storage functional blocks (flipflop or

latch). Standard cell methodology is a method of ASIC design using standard cells

developed previously by ASIC manufacturer. A standard cell has two parts of

description: boolean logic function called logical view and physical layout view. The

cell’s function behavior in form of a truth table and the cell’s electrical characteristics,

such as propagation delay, capacitance, could be represented in different EDA tools.

In modern ASIC design, the standard cell library contains the same logic function

with different physical layout implementations in term of area, speed and power

consumption. Different layout implementation could be used depending on the

requirements of system, designers can find a implementation tradeoffs for their

applications. In the STmicroelectronics standard cell library, the 65nm_HVT (High

Threshold Voltage), 65nm_SVT (Standard Threshold Voltage) and 65nm_LVT (Low

Threshold Voltage) represent different layout implementations for 65 nm technology,

while the 45nm_LS (LowPower StandCell) and 45nm_HD (High Density).are two

physical implementation in 45 nm technology.

Chapter 5 MPSOC ASIC Design

108

5.3 ASIC 65nm and 45nm Semiconductor

An important design dependency is the specific technology library used. A single

‘‘technology library’’ no longer exists for standard cell design, especially at the

65-nm and 45-nm nodes. In fact, manufacturing technologies are spreading across a

variety of libraries optimized for specific uses, such as low power or high

performance, with several intermediate levels featuring, for example, different

threshold voltage values. If very low-power libraries are selected by the designer, the

size and speed of the buffers interleaved along wires become dramatically inferior,

resulting in much tighter constraints on operation frequency or length. What we

experienced with the 45-nm node is that timing performances are almost the same as

65-nm node, with less area and power!

We have used for our ASIC experiments, the three 65-nm libraries and two

45-nm libraries from STMicroelectronics, that is the 65nm_HVT (for High Threshold

Voltage), the 65nm_SVT (for Standard Threshold Voltage), the 65nm_LVT (for Low

Threshold Voltage), the 45nm_LS (for LowPower StandCell) and the 45nm_HD (for

High Density). Here are their main characteristics:

CMOS 65nm (CMOS065-SOI) from STMicroelectronics

• Gate length : 65nm drawn poly length

• Dual or triple Vt MOS transistors

• Dual or triple gate oxide

• Dedicated process flavors for high performance or low power

• Dual-damascene copper for interconnect.

• Low-k (k = 2.9) dielectric.

• 6 or 7 metal layers dor interconnect.

• 0.20um metallization pitch.

• Analog / RF capabilities.

• Various power supplies supported : 2.5V, 1.8V, 1.2V, 1V

• Triple standard cell libraries (more than 800kgates/mm2).

Chapter 5 MPSOC ASIC Design

109

• Embedded memory (Single port RAM / ROM / Double Port RAM

CMOS 45nm (CMOS045) from STMicroelectronics

• Gate length : 45nm drawn poly length

• Dual or triple Vt MOS transistors

• Dual or triple gate oxide

• Dedicated process flavors for high performance or low power

• Dual-damascene copper for interconnect.

• 7 metal layers for interconnect.

• 0.14um metallization pitch.

• Various power supplies supported : 1.8V, 1.1V, 0.9V

• Triple standard cell libraries (more than 1.6 Mgates/mm2).

• Embedded memory (Single port RAM / ROM / Double Port RAM

• Embedded memory (Single port RAM / ROM / Double Port RAM

5.4 ASIC Design Flow

Figure 61 MPSoC FPGA emulation to ASIC implementation migration

Chapter 5 MPSOC ASIC Design

110

The flow used and presented in Figure 61comprises several seamlessly integrated

tools, which span core interconnection to physical layout. Scripts automate the

front-end NoC design process. Next, the scripts automate the architecture generation

phase, leveraging the library of NoC components and generating the RTL code for the

desired topology. Finally, several industrial tools handle the back-end processes, logic

synthesis, and physical design.

EDA Tools

Synopys Design Compiler

Cadence SOCencounter

Xilinx ISE/EDK

TABLE 23 EDA tools for physical design

5.5 MPSoC implementation case study

The block diagram of the overall multiprocessor architecture used in our

experiments is illustrated in Figure 62. The multiprocessor system comprises 16

Processing Elements (PE), including 15 MicroBlaze based MB-PE and 1 PowerPC

based PPC-PE. Each PE is a powerful computing system that can independently run

its own program code and operating system. High throughputs Data-NoC connects 16

PEs to four DDR2 controllers which in turn connect to the respective off-chip

256MBytes DDR2 memory. One shared on-chip memory is attached to the

synchronization NoC, which establishes a synchronization media for the PEs. Service

network is also integrated in the system to provide functionalities like error

management, IP status check, reconfiguration services and performance monitoring at

run time.

Chapter 5 MPSOC ASIC Design

111

Figure 62 MPSoC implementation case study

This MPSoC have been implemented on FPGA and been introduced in Chapter 4.

The floorplanning and placed FPGA is shown in Figure 43. In this chapter we will

introduce the ASIC implementation of OCN of this MPSoC architecture.

5.5.1 ASIC implementation of OCN
 Our OCN is comprised of a request portion and a response portion, and the

request and response transactions are exchanged between Master NI and Slave NI.

The OCN protocol, NTTP, is a three-layered approach comprising transaction,

transport and physical layers. NTTP uses the packet-based wormhole scheduling

technique.

As shown in Figure 63, the OCN is a cascading multistage interconnection

network (MIN), which contains 8 switches for request as well as 8 switches for

response. 16 OCP-to-NTTP NIs and 4 NTTP-to-OCP NIs are integrated at the

boundary of OCN. four Master NIUs are placed as a group connected to one switch of

the first stage, while the first stage are comprised of four 4IN*4OUT switches for 16

Chapter 5 MPSOC ASIC Design

112

Master NIUs. Each switch in first stage distributes four output ports, which are

respectively connected to the switches in second stage. The second stage contains four

4IN*1OUT switches. Each output port of switches in second stage is connected to a

Slave NIU, which in turn connects to DDR2 memory controller

Figure 63 OCN case for ASIC implementation

5.5.2 Backend design flow of our OCN ASIC implementation
The front-end design and back-end design are two important and indispensable

steps of ASIC design.

Chapter 5 MPSOC ASIC Design

113

Figure 64 backend design flow for our NoC ASIC implementation

Using the technology library's cell logical view, on the front-end the Logic

Synthesis tool performs the process of mathematically transforming the ASIC's

register-transfer level (RTL) description into a technology-dependent gate level netlist.

Chapter 5 MPSOC ASIC Design

114

In our case, the Synopsys’ Design Compiler reads the RTL code of design, the timing

constraints and using the cell library, synthesizes the code to structural level; thereby

producing a mapped gate level netlist. The netlist is the standard cell representation of

the ASIC design, at the logical view level. It consists of instances of the standard-cell

library gates, and port-connectivity between gates. Proper synthesis techniques ensure

mathematical equivalency between the synthesized netlist and original RTL

description.

The synthesized gate-level netlist and the timing constraints are the input files for

the back-end. The steps of back-end are listed as follows:

Design Import: It is the first step for back-end. It load the gate-level netlist and the

timing constraints file (sdc) for import. It is used to setup the environment with the

correct technology libraries, and to configure the EDA tool with the necessary

information (buffers/inverters to be used, cells to be do not used, …)

Floorplanning: On this step, the geometric definition of the circuit (width/height)

must be done. It is used to define the limitations of to place the input/output/power

pins of the circuit, to define the power and grand lines and stripes of the circuit, to

define the location and orientation of the hard macros. And for the complex circuit,

the blocking regions of some modules or all modules can be defined.

Chapter 5 MPSOC ASIC Design

115

Figure 65 floorplaning of NoC

Placement: On this step, the tool places all the unplaced cells of the circuit and tries

to optimize the placement for the timing constraints while respecting a targeted

maximum density. The target density limits the placement density to avoid the wiring

congestion of the circuit. Moreover, the tool tries to respect the regions defined on the

floorplanning. Hence, all the cells of a module defined with a region are tried to be

placed inside its region.

Figure 66 placement of NoC

Chapter 5 MPSOC ASIC Design

116

Scan Reorder: The scan chains are reordered to simplify the wiring length and so

reduce the wiring congestion.

Trial Route: The circuit is routed with a simplified router to perform a first

approximation of the routing complexity.

Optimization: The circuit is optimized on setup/hold time. Therefore, some cells are

moved, others are resized, and long wires are buffered.

Clock Tree Synthesis: The clock signal distribution network (clock tree) is

synthesized using a configuration script that defines the maximum insertion delay, the

maximum skew, and other configuration parameters.

Figure 67 clock tree of NoC

Route: The circuit is routed respecting the DRC rules and minimizing the signal

integrity issues.

Chapter 5 MPSOC ASIC Design

117

Figure 68 power and GND routing

Figure 69 routed network

Extract RC: The resistance and capacitance of the circuit are extracted.

Chapter 5 MPSOC ASIC Design

118

Timing Analysis: The timing analysis is analyzed using the RC extracted data and the

timing constraints. The analysis can be performed for the setup or hold time.

Figure 70 timing analysis

Save GDSII, Netlist, SDF: The output files are generated. The GDSII is the layout

database for the mask generation. The gate-level netlist of the implemented circuit

after Back-End optimization is saved. The SDF file is the timing data used for back

annotation simulations.

The clock tree is the clock distribution network for a synchronous domain. In a

SoC, thousands of synchronous flip-flops are clocked by the same clock signal. Hence,

the clock signal has to be distributed and balanced to guarantee a maximum tolerable

skew between any pair of flip-flops. The clock tree network is a collection of clock

buffers and inverters interconnected in a tree manner. Moreover, all the elements on

the clock tree network have to be properly balanced in terms of fan-in 32 and fan-out

to respect the same rising and falling time. The input clock signal arrives to the root of

the clock tree while the flip-flops are connected on the leaves. The clock tree network

can be characterized in terms of insertion delay, maximum skew, and power

Chapter 5 MPSOC ASIC Design

119

consumption. The insertion delay is the time it takes an event to propagate from the

root to the leaves of the clock tree. It depends principally on the number of

intermediate buffers/inverters between the root and the leaves and the area covered by

the tree. The maximum skew is the maximum difference on time between any pairs of

leaves of the clock tree. The lower the skew, the higher complexity of the clock tree

and the higher the power consumed. Mesochronous clock tree distributions are well

suited for low power consumption and low area. On the other hand, a fully

synchronous clock tree networks can consume from 15% to over 45% of the total

system power.

5.6 switch ASIC synthesis results vs placement and route

results

Figure 71 switch block diagram

The first case is a 5-input 3-output switch from Arteris’ Danube library. As

shown in Figure 71, switch includes several principal elements: input controller, route

table, input pipe, input shifter, crossbar, arbiter and output controller. The full

crossbar can transfer up to one data word per port and per cycle. The switch also

support lock operation and pressure for enhanced arbitration decision making.

Chapter 5 MPSOC ASIC Design

120

This 5IN 3OUT switch is synthesized in Synopys Design Compiler with the

90nm and 65nm technology of STmicronelectronics. The synthesized switch is

illustrated in Synopys Design Compiler, as shown in Figure 72.

Figure 72 The synthesized switch in Synopys Design Compiler

As shown in Figure 64; in the backend design flow, there are two inputs, RTL

design resource and timing constraints. In our implementation, we use the same

switch HDL code and set different timing constraints. The different synthesis results

of different timing constraints are shown in TABLE 24

90nm LVT library
Voltage and temperature condition: 0.9v 110c

Timing
constraint
(ns)

Area(nm2) Total
Dynamic
Power(mW)

Cell
Leakage
Power(uW)

3 25414.927734 6.1259 831.8013
2.5 26569.119141 7.9341 836.9886
2.25 27748.597656 8.3321 852.2310

TABLE 24 synthesis results for different timing constraints

From this table we can see, when timing constraints is more strict, the switch will

take more area and use more power, both in dynamic power and leakage power. With

the different timing constraints, the same switch RTL was synthesized as different

netlists. The different netlists were implemented with cadence SOCencounter, the

placed and routed switch is shown in Figure 73. the place and routing results of three

netlist from different timing constraints are shown in TABLE 25.

Chapter 5 MPSOC ASIC Design

121

Figure 73 Switch place and routing

Timing
constraint
(ns)

Area(nm2) Total-Power
(Watts)

Leakage-Power
(Watts)

3 27524.5152 7.289523
e-03

0.8928891e-03

2.5 28074.5112 9.282897
e-03

0.8995627e-03

2.25 30002.7660 9.848557 0.9295627e-03

TABLE 25 P&R results for different timing constraints

23000

24000

25000

26000

27000

28000

29000

30000

31000

3ns 2.5ns 2.25ns

synthesis
P&R

Figure 74 Switch AREA results: synthesis vs P&R

Chapter 5 MPSOC ASIC Design

122

0

2

4

6

8

10

12

3ns 2.5ns 2.25ns

synthesis
P&R

Figure 75 Switch Total Dynamic Power result: synthesis vs P&R

7.80E-04

8.00E-04

8.20E-04

8.40E-04

8.60E-04

8.80E-04

9.00E-04

9.20E-04

9.40E-04

3ns 2.5ns 2.25ns

synthesis
P&R

Figure 76 Switch Leakage Power result: synthesis vs P&R

From the three figures, we can see after placement and routing the results of area,

dynamic power, leakage power are different from the results of synthesis. But the

relationship for three different timing constraints is not change. As shown in Figure 74,

Figure 75 and Figure 76, the results of synthesis and results of placement & routing

show the same fact: when timing constraints is more strict, the switch will take more

area and use more power, both in dynamic power and leakage power.

Chapter 5 MPSOC ASIC Design

123

5.7 Design Space Exploration

In this design space exploration, we explored the technology: two technology,

65nm and 45nm. The libraries are also explored, the three 65-nm libraries and two

45-nm libraries from STMicroelectronics, that is the 65nm_HVT (for High Threshold

Voltage), the 65nm_SVT (for Standard Threshold Voltage), the 65nm_LVT (for Low

Threshold Voltage), the 45nm_LS (for LowPower StandCell) and the 45nm_HD (for

High Density). the supply voltage and temperature of library is one input of our

exploration.

The different experiments presented here are with physical synthesis and without

place & route. But our place & route experiments showed that physical synthesis

estimations were accurate for our design thus not mandatory for our explorations.

5.7.1 ASIC Power vs Clock Frequency

The first exploration presented Figure 78 and Figure 77 concerns the static and

dynamic power for different supply voltages for the 65nm HVT node and according to

the timing constraint provided, from 4 ns to 1.4 ns clock period. For one timing

constraint, if the results showed that the slack is positive, that means actual timing

constraint can not be arrived, the points in the timing constraint is not appeared.

Chapter 5 MPSOC ASIC Design

124

Figure 77 ASIC Dynamic power exploration

From the Figure 78, we can see when supply voltage is 1.0V, the minimum clock

period is 2.4ns. the minimum clock period is 2.1ns for 1.1V supply. 1.6ns for 1.2V

supply and 1.5ns for 1.3V supply. When supply voltage is higher, design can run at a

higher frequency. But at the same time design will consume more dynamic power,

from 1.1V to 1.3V, design increased 86% dynamic power and reduced 41% execution

time.

0

0,5

1

1,5

2

2,5

3

4,
0

3,
9

3,
8

3,
7

3,
6

3,
5

3,
4

3,
3

3,
2

3,
1

3,
0

2,
9

2,
8

2,
7

2,
6

2,
5

2,
4

2,
3

2,
2

2,
1

2,
0

1,
9

1,
8

1,
7

1,
6

1,
5

1,
4

timing constraints(ns)

st
at

ic
 p

ow
er

(u
w

)

65nm_HVT_1,0V 65nm_HVT_1,1V

65nm_HVT_1,2V 65nm_HVT_1,3V

Chapter 5 MPSOC ASIC Design

125

Figure 78 ASIC static power exploration

An important variability is obtained from 1.5 to 3 times for both static and

dynamic power, and with a dynamic power much more important than the static

power. Also the dynamic power is not a linear function of the timing performances.

The second exploration presented in Figure 79 and Figure 80 concerns the static

and dynamic power comparison between 65-nm and 45-nm nodes according to the

timing constraint provided, from 4 ns to 1.3 ns clock period.

0

10

20

30

40

50

60

70

80

4
3,

9
3,

8
3,

7
3,

6
3,

5
3,

4
3,

3
3,

2
3,

1 3
2,

9
2,

8
2,

7
2,

6
2,

5
2,

4
2,

3
2,

2
2,

1 2
1,

9
1,

8
1,

7
1,

6
1,

5
1,

4
1,

3
timing constraints(ns)

st
at

ic
 p

ow
er

(u
m

)

65nm_HVT 65nm_SVT 65nm_LVT

45nm_LS 45nm_HD

Figure 79 ASIC static power exploration: 65 nm vs 45 nm

Leakage power is often mentioned as a major problem in deep-submicron design.

Our experiences with a 45-nm NoC switch implementations tend to contradict this

assumption, as Figure 79 and Figure 80 shows. What we can see is that static power for

the 45-nm is not very much higher than for the 65-nm, and the dynamic power for the

45-nm is still much more important than the static power.

Chapter 5 MPSOC ASIC Design

126

0

10

20

30

40

50

60

70

4
3,

9
3,

8
3,

7
3,

6
3,

5
3,

4
3,

3
3,

2
3,

1 3
2,

9
2,

8
2,

7
2,

6
2,

5
2,

4
2,

3
2,

2
2,

1 2
1,

9
1,

8
1,

7
1,

6
1,

5
1,

4
1,

3
1,

2

timing constraints(ns)

dy
na

m
ic

 p
ow

er
(m

w
)

65nm_HVT
65nm_SVT
65nm_LVT
45nm_LS
45nm_HD

Figure 80 ASIC Dynamic power exploration: 65 nm vs 45 nm

5.7.2 ASIC Area vs Clock Frequency

The third exploration presented in Figure 81 concerns the area evolution for

different supply voltages for the 65nm HVT node and according to the timing

constraint provided, from 4 ns to 1.5 ns clock period.

0,15

0,16

0,17

0,18

4
3,

9
3,

8
3,

7
3,

6
3,

5
3,

4
3,

3
3,

2
3,

1 3
2,

9
2,

8
2,

7
2,

6
2,

5
2,

4
2,

3
2,

2
2,

1 2
1,

9
1,

8
1,

7
1,

6
1,

5
1,

4

timing constraints(ns)

A
re

a(
m

m
2)

65nm_HVT_1,0V 65nm_HVT_1,1V

65nm_HVT_1,2V 65nm_HVT_1,3V

Figure 81 ASIC Area exploration

Chapter 5 MPSOC ASIC Design

127

Here the area growing impact is not important (less than 13%) compared to the

timing performance gain!

The foorth exploration presented in Figure 82 concerns the area comparison

between 65-nm and 45-nm nodes according to the timing constraint provided, from 4

ns to 1.5 ns clock period.

We obtain here almost a 2 factor between the two nodes.

0,05

0,07

0,09

0,11

0,13

0,15

0,17

0,19

0,21

4
3,

9
3,

8
3,

7
3,

6
3,

5
3,

4
3,

3
3,

2
3,

1 3
2,

9
2,

8
2,

7
2,

6
2,

5
2,

4
2,

3
2,

2
2,

1 2
1,

9
1,

8
1,

7
1,

6
1,

5
1,

4
1,

3
1,

2
timing constraints(ns)

A
re

a(
m

m
2)

65nm_HVT 65nm_SVT 65nm_LVT

45nm_LS 45nm_HD

Figure 82 ASIC Area exploration: 65 nm vs 45 nm

Chapter 5 MPSOC ASIC Design

128

Figure 83 area, power consumption and min period comparison

The Figure 83 shows a 3D image comparing with area, power consumption and

minimum period for three libraries: 65nm-LVT, 45nm-LS, 65nm-HVT. From the

figure, we can clearly see with 45nm-LS, design takes about 50% AREA comparing

with the two 65nm libraries. 65-LVT can achieve the minimum clock period, but the

level of power consumption is large higher than the other two. The 65-HVT consumes

less power and can run at the same level of frequency with 45nm-LS, but at the same

axe of min period, the 65nm-HVT must take about 3 times of area.

5.7.3 FPGA-ASIC exploration

Chapter 5 MPSOC ASIC Design

129

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NoC configurations

A
SI

C
 m

in
 p

er
io

d(
ns

)

0,0

5,0

10,0

15,0

20,0

25,0

FP
G

A
 m

in
 p

er
io

d(
ns

)

45nm_LS 65nm_LVT 65nm_HVT

FPGA_Virtex4 FPGA_Virtex5

Figure 84 ASIC-FPGA Area exploration

We have conducted several explorations for different configurations of our NoC.

We have considered 4 arbitration algorithms (Random, LRU, FIFO, Round-Robin)

and different buffer (pipeline) mechanisms at the input and output of the switchs. We

have selected 20 representative configurations. The impact of migrating from one

technology to another is presented in Figure 84 and Figure 85 for area and frequency

respectively. We compare here three ASIC technologies and two FPGA families. The

main result from those two figures is that the curves have the same shape for both area

and frequencies. When we consider a migration, the context of the target technology

allows different architectural compromises and thus design configurations. So the new

configuration selected to best fit the target technology context can be prototyped or

emulated on the initial FPGA with a high confidence as the relative area/performances

can be extrapolated from the results presented here. The main conclusion is that

exploration can be conducted on FPGA with a high confidence before ASIC

implementation. This is the same for a migration from 65-nm node to 45-nm node!

Chapter 5 MPSOC ASIC Design

130

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x1
03

NoC configurations

A
SI

C
 A

re
a(

um
2)

0

5

10

15

20

25

30

35

40

x1
03

FP
G

A
 A

re
a(

sl
ic

es
)

45nm_LS 65nm_LVT 65nm_HVT

FPGA_Virtex4 FPGA_Virtex5

Figure 85 ASIC-FPGA Frequency exploration

5.8 NoC and switch opportunities with technologies change:

impact on parallel software programming portability

Moving a design from FPGA to ASIC questions the gains and benefits which can

be achieved both at an architectural level but also at the parallel programming level.

Our results show although we can naturally expect an area gain the working frequency

is not as significantly augmented. This suggests that performance improvement can

not be achieved by technology alone and area advantage should be exploited by

selecting network on chip components with more aggressive features. For example

switch architecture and performance are modified through the use of different

arbitration policies as well as the use of pipelining. The area performance tradeoff

being more area beneficial, improvements should be extracted from these features. A

Chapter 5 MPSOC ASIC Design

131

carefully tuned parallel application is the result of a good computation

-communication balance. This communication performance comes from minimizing

network on chip bottlenecks and packets conflicts with the most appropriate switch

architecture under area constraints. Relaxing area constraints by moving from FPGA

to 65nm or from 65nm to 45nm suggests to reconsider the network on chip

architectural choices and in particular switch features. Porting a carefully tuned

parallel application on a specific network on chip technology while changing both

technology and network on chip components features obviously affects

communication patterns and therefore performance. This paper advocates that a single

design environment is needed which includes both parallel programming environment

and FPGA/ASIC design with performance feedback to parallel programming. Also

parallel programming for high performances embedded System on Chip needs tunable

parallel code and libraries in order to explore different architecture configurations to

obtain a fully optimized compromise at system level.

5.9 Conclusion

Multiprocessor on chip with network on chip are strongly emerging as prime

candidates for complex embedded applications. Several commercial products are

available for various application domains from wireless to consumer electronics. The

end product in these cost sensitive markets are implemented using ASIC technologies.

In a general ESL design methodology and for significant size designs the use of

prototyping through FPGA is necessary for intensive validation and test as well as

careful design space exploration. Moving a design from FPGA to ASIC questions the

gains and benefits which can be achieved both at an architectural level but as well at

the parallel programming. In this chapter we analyzed the migration of an

implemented, validated and tested single FPGA chip multiprocessor with network on

chip towards 65nm and 45nm ASIC technologies. Our results show although we can

naturally expect an area gain the working frequency is not as significantly augmented.

Chapter 5 MPSOC ASIC Design

132

This suggests that performance improvement can not be achieved by technology alone

and area advantage should be exploited by selecting network on chip components

with more aggressive features.

Chapter 6 Potential use of High level synthesis

133

Chapter 6 Potential use of High level synthesis in

MPSoC platform

6.1 Design Productivity and High Level synthesis

Embedded systems are increasingly complex to design, validate and implement

[1]. System composition of embedded processors and hardware accelerators lead to

the HW/SW co-design methodologies.

Figure 86 Design productivity challenges

Traditional co-design methodologies require that hardware and software are

specified and designed independently. Hardware and software validations are thus

done separately without interface validations. The partitioning is therefore decided in

Chapter 6 Potential use of High level synthesis

134

advance and as changes to the partition can necessitate extensive redesign elsewhere

in the system, this decision is adhered as much as possible. It can lead to sub-optimal

designs as partitioning techniques often rely on the designer’s experience. This lack of

an unified hardware-software representation can lead to difficulties in verification of

the entire system, and hence to incompatibilities across the hardware/software

boundary. Using a single language for both simplifies the migration task and ensures

an entire system verification. Important uses of a unified design language in addition

to synthesis are validation and algorithm exploration (including an efficient

partitioning). C-like languages are much more compelling for these tasks, and one in

particular SystemC[42] is now widely used for system level design[43][44][45], as are

many ad-hoc variants. Rapid C synthesis allows also fast emulation techniques of

hardware and software used for architecture exploration. C-based synthesis

fundamentals emerged from these HW/SW co-design methodologies with the

objective of reducing the design productivity challenge [1]. However, although

raising the system design level of abstraction contribute to reduce the design

complexity reliable and predictable silicon implementation remains mandatory which

support high level design handoff. The question is then on the impact of C-based

behavioural synthesis on C-based specification and modelling framework for

embedded systems.

We evaluate through a case study the performance and efficiency of several

high-level description languages (SystemC, Handel-C) for FPGA-based embedded

systems. The rest of the chapter is organized as follows: the 6.3 presents the related

work while the 6.4 review main issues regarding C-based synthesis System design

methodology. Design case studies along with performance evaluation studies and

results are fully described in 6.5 and 6.6. At the end of Chapter, 6.8 presents the

conclusions.

Chapter 6 Potential use of High level synthesis

135

6.2 Embedded Processor Coprocessing Support

MB PE
(1)

NOC

HLS
core

MB PE
(2)

HLS
core

MB PE
(n)

HLS
core

memory controllor memory controllor memory controllor

...........

HLS
core

...........
memorymemory memory

HLS
core

Figure 87 Flexible MPSOC platform with HLS Generated Coprocessors

As shown in Figure 87, the HLS core work as coprocessor in the multiprocessor

system on chip platform based architecture.

Figure 88 DSE coproc vs PE in MPSOC platform

The Figure 88 shows the possible design space exploration: changing the number

of co-processors and the granularity of PE can obtain different performance, area and

power consumption of system.

Chapter 6 Potential use of High level synthesis

136

Figure 89 DSE PE vs NOCs in MPSOC platform

The Figure 89 shows the possible design space exploration: changing the number

of on chip network and the granularity of PE can obtain different performance, area

and power consumption of system.

Figure 90 DSE PE vs Implementation in MPSOC platform

The Figure 90 shows the possible design space exploration: changing the

frequencies of on chip modules and the granularity of PE can obtain different

performance, area and power consumption of system.

Chapter 6 Potential use of High level synthesis

137

Designing coprocessors without taking into account the implementation

environment constraints ignore the mutual effects of design. We consider the

coprocessing model where coprocessors are connected to a main embedded processor

through bisynchronous FIFOs. A typical example is given in the Figure 87 where a

Xilinx embedded processor Microblaze is connected to N coprocessors through

bisynchronous FIFO: FSL (Fast Simplex Link).

The coprocessing design may be addressed from various aspects such as the

concurrency model or the processor-coprocessors interface. However in an

environment where those issues are fixed remain the specifications of the various

clocks of the system and their mutual relationships. In Figure 91 the Microblaze is

connected to clock clk1 while every other component has its own clock. Clock to

clock variations affect the performance of the system and coprocessors clocks are the

result of C-based synthesis.

Figure 91 Block Diagram of Accelerator Connection Forms

6.2.1 C-Based Synthesis and Hardware Accelerator Design
Workflow

Chapter 6 Potential use of High level synthesis

138

Figure 92 C-based HW Accelerated System Design Workflow

We propose a C-based HW accelerator design flow which evaluates C-based

synthesized coprocessor in the final environment in order to take into account

multiple clock effects. Feedback of low level implementation effects in this workflow

is necessary to send to higher level. SW/HW partitioning should be repartitioned

following the performance, area and power analysis in implementation level. Each

HW/SW partition solution should be explored with different synthesis, placement and

routing options, at the end of workflow, a system area, performance and power Pareto

curve is provided. Designer can select the suitable system implementation solution

from this Pareto line depending the application budgets and constraints. In this flow

the quality impact of C-based synthesis tool is essential. Various C-based hardware

description languages have been proposed over the past decade. Familiarity, using the

same language in both SW and HW, possible full system verification, all these

advantages of C-to-hardware method make more and more engineer adopt this new

methodology for HW accelerated embedded system Design. But some C language

characteristics which are different from traditional HDLs, are yet to be mastered

when synthesizing hardware from C. Underlying concurrency model, data types,

timing specification, memory and communication patterns, hints and constraints, all

Chapter 6 Potential use of High level synthesis

139

characteristics must be considered when designing C-based system. We selected

Three C-based synthesis tools , presented in TABLE 27

6.3 State of the art of c-based synthesis

Intensive research has been conducted on C-based behavioral synthesis. With the

evolution of system level design languages, the interest in efficient hardware synthesis

based on behavioral description of a hardware module has also been visible. For a

system designer, the behavioral synthesis is very attractive for hardware modeling as

it leads to significant productivity improvements. Important work has been done in

academia on behavioral synthesis with C/SystemC [47]-[55]. For example, [47] have

presented a synthesis environment and the corresponding synthesis methodology. It is

based on traditional compiler generation techniques, which incorporate SystemC,

VHDL and Verilog to transform existing algorithmic software models into hardware

system implementations. In [53] authors address the problem of deriving exact Finite

State Machines (FSMs) from SystemC descriptions which is the first part of

behavioral synthesis methodologies. In an effort to extend synthesis to object oriented

constructs of C++ language, [51] presents an approach to object-oriented hardware

design and synthesis based on SystemC. Behavior synthesis problem is

multi-objective in nature where synthesis tools allow the hardware designers to

customize the behavioral synthesis process through various options which constitute a

huge design space. In this situation, solution exists of a set of optimized results

represented in the form of Pareto curves and Pareto surfaces. In [55], a methodology

that allows the designers to generate and analyze the best synthesis results based on

area, performance and power consumption estimation through an automatic

exploration of synthesis results is presented. ROCCC [56] and Spark [52] are

C-to-VHDL high-level synthesis academic frameworks.

Some tools for behavioral SystemC/C synthesis are available in the market.

Synopsys SystemC compiler [57] was perhaps the first commercial effort to

synthesize behavioral code written in ESL languages. Celoxica’s Agility [58] and

Chapter 6 Potential use of High level synthesis

140

Forte Design can synthesize a SystemC behavioral description of hardware modules.

They also give the area estimation requirements for various ASIC and FPGA-based

architectures. Orinoco Dale [60], ImpulseC [61] and CatapultC [63] estimate the

area and the energy for a C description of an application.

C-based behavioral synthesis can be used at system level design in order to guide

system partitioning. [44] presents a framework for the generation of embedded

hardware/software from SystemC. In [45] area and energy are estimated for various

IP components in the system before actually modeling the system in TLM. The area

and energy estimation information is fed into the TLM model of the system where we

partition the system by automatically exploring the system design space based on the

given information. This design flow uses the TLM modeling for system design space

exploration. It includes area and energy estimation information during the partitioning

process. This work represents a good layout foundation for addressing the impact of

implementation on embedded systems. To the best of our knowledge our study is

the first attempt to the contribution of benchmarking these tools for performance

comparison purposes and to analyze the interaction with place and route tools options.

6.4 SoC methodology of C-based synthesis

6.4.1 C-Language Fundamentals
Some C-language characteristics are troubling when synthesizing hardware from

C. Edwards listed in [46] the key challenges of a successful hardware specification

language: concurrency model, types, timing specification, memory and

communication patterns, hints and constraints. The C-language has no support for

parallelism. Either the synthesis tool is responsible for finding it or the designer must

modify the algorithm by inserting explicit parallelism. C-hardware language designers

adopted different parallelism strategies. Communication patterns depend on the

parallel programming model provided by the C-hardware languages. These

communication patterns do not exist in C-language. The C-language is also mute on

the subject of time. It guarantees causality among most sequences of statements but

Chapter 6 Potential use of High level synthesis

141

says nothing about the amount of time it takes to execute each. It is essential to find

reasonable techniques for specifying hardware needs and mechanisms for specifying

and achieving timing constraints. Data types are another major difference between

hardware and software languages. The most fundamental type in hardware is a single

bit travelling through a memory-less wire. Variable width integer are natural in

hardware yet C does not support variable width. C's memory model is a large

undifferentiated array of bytes, yet many small varied memories are most effective in

hardware. All these characteristics must be considered when designing C-like

hardware languages. All characteristics related to the considered tools are analyzed in

the rest of the paper.

6.4.2 HLS Approaches and Tools
Various C-based hardware description languages have been proposed over the past

decade. These tools use different approaches for timing, parallelism, data types and

communication modeling. These approaches can be either automatic or manual.

Concurrency model: Coarse grain and fine grain parallelism are available for

most of the approaches. The communication between tasks is the coarse grain

parallelism. The fine grain parallelism is the operator parallelism and pipeline. This

parallelism is either explicit or implicit. Constructs dedicated to the parallelism are

added to the C-language for the explicit parallelism programming. Additional

constructs are not required for the implicit parallelism. The level of parallelism can be

handled with constraints and compile options.

Types: All approaches ensure hardware bit-true data type manipulation and

declaration with additional data types. The size of the data can be precisely controlled

for each operating stage.

Timing specification. All approaches take the latency and the throughput into

account. The approaches are either explicit or implicit. Each clock cycle is precisely

described for the explicit approach. The timing constraint only concerns the clock

period. Tools with an implicit timing approach generate the scheduling and the

parallelism of operators to meet the latency and the throughput timing constraints.

Chapter 6 Potential use of High level synthesis

142

Memory: internal memories are either RAM or registers. They can be either

implicitly selected or explicitly specified.

Communication patterns: predefined communication and memory protocols are

used for the implicit approach. For the explicit approach the protocols are described in

details in the code with dedicated instructions.

The chosen approach can lead to substantial code modifications.

Each tool use specific approaches for concurrency model, types, timing

specification, memory and communication pattern. several tools cannot be studied in

this paper but they can be classified in the following table (TABLE 26).

Features Approaches Language Tools
Concurrency model Implicit C Spark, Impulse CoDeveloper™, CatapultC,

Explicit HandelC, SystemC DK Design Suite, Forte Cynthesizer, Agility

Types Explicit All languages All tools

Timing specification Implicit C Spark, Impulse CoDeveloper™, CapatultC,
Explicit HandelC, SystemC DK Design Suite, Forte Cynthesizer, Agility

Memory Implicit C Impulse CoDeveloper™
Explicit HandelC, C DK Design Suite

Communication patterns Implicit C Spark
Explicit HandelC DK Design Suite, Impulse CoDeveloper™,

Agility

TABLE 26 Approaches used for C-based hardware description languages

Several tools can be evaluated with the presented approaches. Three selected

tools given in TABLE 27 are selected on the basis of our own design experience and

the used approaches. It is indeed of importance that a significant amount of design

experience is needed in order to compare the design approaches. with the design. Each

tool has different approaches for concurrency, data types, timing specifications,

memory and communication.

Tool Language Company
Impulse CoDeveloper™ Impulse C™ Impulse Accelerated Technologies

DK suite Handel-C Celoxica

Agility SystemC Compiler SystemC Celoxica

TABLE 27 Case study selected C-based environments

Chapter 6 Potential use of High level synthesis

143

Impulse C:

Impulse CoDeveloper™ is an ANSI C synthesizer [61] based on the Impulse

C™ language with function libraries supporting embedded processors and abstract

software/hardware communication methods including streams, signals and shared

memories. This allows software programmers to make use of available hardware

resources for coprocessing without writing low-level hardware descriptions. Software

programmers can create a complete embedded system that takes advantage of the

high-level features provided by an operating system while allowing the C

programming of custom hardware accelerators. The ImpulseC tools automate the

creation of required hardware-to-software interfaces, using available on-chip bus

interconnects.

• Concurrency model: the main concurrency feature is pipelining. As

pipelining is only available in inner loops, loop unrolling becomes the solution to

obtain large pipelines. The parallelism is automatically extracted. Explicit

multi-process is also possible to manually describe the parallelism.

• Types: ANSI C types operators are available like int and float as well as

hardware types like int2, int4, int8. The float to fixed point translation is also

available.

• Timing specification: the only way to control the pipeline timings is through

a constraint on the size of each stage of the pipeline. The number of stages of the

pipeline and thus the throughput/latency are tightly controled.

• Memory: all arrays are stored either in RAM or in a set of registers according

to a compilation option.

• Communication patterns: streams (FIFO) with different formats are

available as well as signals and shared memories interface.

DK Design Suite tool:

DK Design Suite is a complete Electronic System Level (ESL) environment

supporting the Handel-C language [62]. It provides the user with a complete flow:

Chapter 6 Potential use of High level synthesis

144

from specification to implementation such as architecture-optimized EDIF Netlist for

FPGA’s RTL Verilog or VHDL used for alternative synthesis flows and other

hardware targets including ASIC designs.

Celoxica’s Handel-C is a language for digital logic design that has many

similarities to ANSI-C. Handel-C is a variant that extends the language with

constructs for parallel statements and OCCAM –like rendez-vous communication.

Handel-C language and the IDE tool introduced by Celoxica, provides both

simulation and synthesis capabilities.

• Concurrency model: the application is written with sequential programs in

Handel-C. Programs written in Handel-C are implicitly sequential: writing one

command after another indicates that those instructions should be executed in that

exact order. Parallel constructs are possible with the par keyword to gain

maximum benefit in performance from the target hardware .

• Types: this language adopts the manual customisation of numerous

representations. Handel-C types are not limited to specific widths. Any defined

Handel-C variable can be specified with the minimum width required to minimise

hardware usage.

• Timing specification: DK Design Suite includes a cycle accurate multithread

symbolic debugger. Handel-C timing model is uniquely simple: any assignments

or delay takes one clock cycle.

• Memory: each data storage is explicitly specified in a RAM or a set of

registers by the programmer.

• Communication patterns: any external specification with any type of

communication protocol can be described. Handel-C allows you to target

components such as memory, ports, buses and wires.

Agility Compiler:

The Agility compiler from Celoxica is described below [58]. The Agility

Compiler provides a behavioral design and synthesis for SystemC. It is a single

Chapter 6 Potential use of High level synthesis

145

solution for FPGA design and ASIC/SoC prototyping. Early SystemC models can be

quickly realized in working silicon yielding accurate design metrics and RTL for

Physical design.

• Concurrency model: Explicit multi-process is possible to manually manage

parallelism. Each stage of the pipeline can be manually described with the use of

wait() instructions in a RTL-like style.

• Types: ANSI C types and operators such as int and char can be used .Agility

Compiler also accepts hardware types such as sc_uint<8>, sc_int<20> and fixed

point sc_fix<>.

• Timing specification: the systemC timing model is uniquely simple: all

assignments between two wait() take one clock cycle. This modelling style is

similar to the VHDL “wait until rising_edge(clk)” style.

• Memory: SystemC provides supports for interfacing to on-chip RAMs and

ROMs using dedicated array keywords. If not used, arrays are stored in a set of

registers.

• Communication patterns : any external specification with any type of

communication protocol can be described.

6.5 Exploration of C-based synthesis of coprocessor design

In order to evaluate the synthesis efficiency of the previously described tools the

use of commonly accepted benchmarks for C-based synthesis would have been useful.

However, so far no benchmarks have been released from the OSCI Synthesis Working

Group which defined the synthesizable subset of SystemC nor by any other body.

Therefore we decided to compose our own case studies which are basic and simple

functions to ensure reproducibility.

Chapter 6 Potential use of High level synthesis

146

6.5.1 Designs examples
Evaluation consists in studying the efficiency of the synthesis from C-based

hardware descriptions. Common benchmarks are used for the evaluation of the

previously described tools.

Our own case studies consists in a set of short and simple functions to allow

reproducibility. The selected cases are two 3x3 image filters [64] , the FFT and an

octree traversal algorithm (Ray Casting in Projective Geometry RCPG) [65].

A1. Linear Filter

A linear filter and a non linear filter are chosen. The two filtering benchmarks are

based on a 3*3 window core processing. The linear filter is the mean filter . The mean

filter is the simplest type of low-pass filter. The Mean or Average filter is used to

soften an image by averaging surrounding pixel values in a 3x3 window. This filter is

often used to smooth images prior to processing. It can be used to reduce pixel flicker

due to overhead fluorescent lights.

A2. Median Filter

The second filter is the median filter based on the bubble sort of the 3*3

neighboring pixels . The median filter is a non-linear digital filter which is able to

preserve sharp signal changes and is very effective in removing impulse noise. This

filter is widely used in digital signal and image/video processing applications. For the

median filter, pixels are first sorted based on intensity. The center pixel would be the

middle value of the sorted list of pixels. We present an example of ImpulseC code for

the mean filter in Figure 93.

Chapter 6 Potential use of High level synthesis

147

void FIL_MEAN(unsigned char image[][n], unsigned

char vimage[][vn])

 { short x,y;

 unsigned int sum;

 for (x=1; x<vn-1; x++)

 for (y=1; y<vn-1; y++)

 {

 sum = vimage[x][y];

 sum += vimage[x-1][y];

 sum += vimage[x+1][y];

 sum += vimage[x-1][y-1];

 sum += vimage[x][y-1];

 sum += vimage[x+1][y-1];

 sum += vimage[x-1][y+1];

 sum += vimage[x][y+1];

 sum += vimage[x+1][y+1];

 image[x-1][y-1] = sum/9;

 }

(a) original C code

while (co_stream_read(r0,&p0,sizeof(int32)) == co_err_none) {
#pragma CO PIPELINE

#pragma CO set stageDelay 32

#pragma CO nonrecursive image0

#pragma CO nonrecursive image1

#pragma CO nonrecursive image2

co_stream_read(r1,&p1,sizeof(int32));

co_stream_read(r2,&p2,sizeof(int32));

for(k=2;k<6;k++) {

#pragma CO UNROLL

image0[k]=p0 & 255; p0=p0>>8; image1[k]=p1 & 255; p1=p1>>8;

image2[k]=p2 & 255;

p2=p2>>8; }

res=0;

for(k=1;k<5;k++) {

#pragma CO UNROLL

res=((image0[k-1]+image0[k]+image0[k+1]+image1[k-1]+image1[k]+image1[k

+1]+

image2[k-1]+image2[k]+image2[k+1])>>3)+(res<<8);

}

for(k=0;k<2;k++) {

#pragma CO UNROLL

temp=image0[k+4];

image0[k]=temp;

temp=image1[k+4];

image1[k]=temp;

temp=image2[k+4];

image2[k]=temp; }

co_stream_write(output_stream,&res,sizeof(int32));

(b) Impulse C code

Figure 93 the C and ImpulseC codes for a 3*3 mean filter

The filters are implemented by sliding a window of odd size (a 3*3 window) over

an N*M image. At each window position the sampled values are sorted and the

resulting value of the sample replaces the sample in the center of the window. Three

32-bit streaming inputs provide four pixels for each line for each clock cycle. The size

of the internal storage is 6 * 3 pixels. Three internal storage solutions are implemented

and evaluated. The first one is a sequential one with RAM as internal storage. The

Chapter 6 Potential use of High level synthesis

148

second one is a parallel/pipeline solution with RAM as internal storage. Three

separate RAMs are used to allow parallelism between the three inputs. The third

solution is a parallel/pipeline solution that use registers as internal storage. Figure 94-

Structure of external signals for both filters. Three streaming inputs are used to

provide 4 pixels. Each input corresponds to one line of the image.

A3. FFT

The third benchmark is the radix-4 FFT on 256 complex values (16-bit).

A4. Ray Casting in Projective Geometry (RCPG)

Figure 94 2D recursive octree grid traversal principle.

The Ray Casting in Projective Geometry (RCPG) is an iterative octree traversal

algorithm (Figure 94). In a regular grid, from a current cell crossed by the ray, the next

cell is defined by a minimization of a cost function which is iteratively updated. At

each step, the ray is propagated in 3D along the directions x, y and z. The direction

depends on the face where the ray and the current cell intersect (Figure 94). The

parameters of the intersection between the ray and each face are progressively stored

and updated. The data structure is an octree structure: a cell can contain a data pointer

to a higher resolution grid. Thus at each cell, the algorithm continues to the next one

or descents in the sub-grid. When it reaches a sub-grid border it mounts to the upper

level of the grid.

For this design case, the sequential and pipeline algorithms are described.

Chapter 6 Potential use of High level synthesis

149

The chosen cases are described in the TABLE 28.

TABLE 28 Core Case studies

6.5.2 Target Platform

The previously described case studies are intended to be synthesized, placed and

routed on a target technology in order to evaluate how the selected C-based design

environment outputs as inputs to a same synthesis, place and route tool will be

processed. The metrics to be considered will be performance and area.

6.5.2.1 Target technology

We selected the FPGA Xilinx Virtex-4 technology [75] as the target technology

in this case study. The main reason for the choice of an FPGA technology was to

allow a quick implementation and verification of all the IPs through actual execution

on chip. The Virtex-4 technology based on a 90nm Copper CMOS process has a fixed

number of hardcores resources such as DSP, embedded RAM and fixed

interconnections. The Xilinx Virtex-4 can be described as a matrix of CLB each of

them being composed of several slices (Figure 95). The Xilinx Virtex-4 proposes

memory-oriented slices SLICEM and logic-oriented slices SLICEL (Figure 96). Also

the embedded memory BRAM is a dual port 18kb memory array. Hard cores in the

FX family includes embedded processors – IBM PowerPC – and 18x18 two’s

complement signed multipliers (DSP blocs).

Benchmark Description No IP
Linear digital filter (mean) pipeline using registers IP1

pipeline using memory IP2
sequential IP3

Non linear digital filter (median) pipeline using registers IP4
pipeline using memory IP5
sequential IP6

FFT sequential IP7
pipeline IP8

RCPG sequential IP9
pipeline IP10

Chapter 6 Potential use of High level synthesis

150

Source: Xilinx Virtex-4 User GuideUG070 (v2.3.)

Figure 95 Virtex-4 Slice structure

Source: Xilinx Virtex-4 User GuideUG070 (v2.3.)

Figure 96 Virtex-4 Slice L Structure

The FPGA structure represents an additional challenge for C and SystemC based

synthesis tools due to the higher granularity and heterogeneity of FPGA compared to

ASIC. The variety of FPGA resources makes the resource selection more difficult for

the compiler tools to synthesize high-level C constructs. Several similar resources can

Chapter 6 Potential use of High level synthesis

151

be good candidates for one C-construct. The compiler tool has to select the most

appropriate resource among all these candidate resources.

6.5.2.2 Tools and Options Combinations

Physical synthesis have been conducted using Xilinx tools ISE XST[77]. An

automatic exploration of physical synthesis (synthesis, place and route) options

spanning a wide range from area oriented towards speed oriented with optimization

effort, density factor varied at the different steps was conducted with actual execution

of the IPs on an FPGA board. This physical level design space exploration comes as a

complement to high level optimization techniques used by C-based synthesis such as

for example speculative execution (pipeline). The mutual effects - potentially

inhibitory - of C-based synthesis followed by a VHDL physical synthesis are

unspecified in any of the tool documentations. Different combinations of synthesis

and place/route options on the different cases are explored in order to evaluate the

possible interactions. The options used for VHDL synthesis and place and route are

the global optimization options for area and speed with the level of optimization:

1. XST VHDL synthesis option: -opt_mode Speed or Area

2. mapping option: -cm balanced or speed or area

3. place and route option: -ol std or med or high or -ol high -xe n

4. This results in 24 combinations of synthesis, place and route options for each

IP.

6.6 Results of synthesis and place & route.

Timing results are presented in Figure 97. The timing results are obtained for each IP

with the use of the previously presented tools. The timing metrics are the clock

frequency, the latency and the number of cycle per result.

Chapter 6 Potential use of High level synthesis

152

(a)

 (b)

Timing results

0
5

10
15
20
25
30
35
40
45

IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP9 IP10

Clock period

ns

ImpulseC
HandelC
Agility

(c)

Figure 97 Timing results for throughput, latency and clock period

The variability of results between the tools comes from different reasons. Firstly,

the RAM implementation is a direct implementation with no multiplexing of

resources. The three RAM of the filters are accessed with one access per clock cycle.

It results in a limitation of the pipeline rate of twelve cycles per data produced.

Secondly the analysis of the results can be divided in two points. The first point

concerns the different approaches the used tools. For SystemC and Handel-C tools

pipeline needs to be explicitly described. The C-code is functional with no specific

programming with the ImpulseC tool. The number of stages of the pipeline is not

precisely controlled with ImpulseC but indirectly through timing constraints. The

Chapter 6 Potential use of High level synthesis

153

automatic exploration of different options and constraints is the only solution to

obtain the best compromise between the different constraints as the impact of the

throughput/latency of the pipeline on the area/frequency is not straightforward. The

difference of throughput between a pure sequential solution and a fully pipeline

solution can be more than two orders of magnitude. This is the main source of

performance/area trade off at this level. This difference is increased with the

implementation variability.

6.6.1 Area results
The area results have been obtained through VHDL generation of the various case

studies followed by synthesis and place and route using Xilinx XST tool. They are

presented in Figure 98. Our area metrics contain various resources present in the

Xilinx Virtex-4 that is slices, Flip-Flop, Look-Up-Table, RAM. The synthesis and

place and route options used are here the default options.

Area results

0

2000

4000

6000

8000

IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP9 IP10

Nb_LUT

ImpulseC
HandelC
Agility

Area Results

0
1000
2000
3000
4000
5000
6000

IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP9 IP10

Nb_slices

ImpulseC
HandelC
Agility

Figure 98 Area results for logic elements

Chapter 6 Potential use of High level synthesis

154

IP1 IP2 IP3 IP4 IP5 IP6

0
25
50
75

100
125
150
175
200
225

Area results

ImpulseC
HandelC
Agility

Nb_LUT_RAM

Figure 99 Number of LUT BRAM for storage elements

Area results

1

10

100

1000

10000

IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP9 IP10

Nb FF

ImpulseC

HandelC

Agility

Figure 100 Number of flip flop for storage elements.

The Figure 99 shows the number of LUT BRAM for storage elements, the number

is zero for IP 7 to IP 10. the results of number of Flip Flop synthesized of storage

element is shown in Figure 100.

A first observation is that behavioral C-Based approach with ImpulseC produces

not always but often more logic and storage elements and a higher clock period than

the other approaches. On the other side, ImpulseC brings the advantage of abstraction

and genericity. This difference is not critical as throughput and latencies are similar.

6.6.2 Variability of results with compilation options
The results presented Figure 101 to Figure 105 show a variability of timing and

area results according to the options used for synthesis and place and route. This

variability depends on the front-end tool used (Agility, DKDesign, ImpulseC

Codevelopper). The results presented in Figure 98 to Figure 100 should be revisited for

each option. These important clock period variations up to 150% are obtained with a

Chapter 6 Potential use of High level synthesis

155

variation of area cost between 100 and 200 slices, that is 10 to 20% of area variation.

The impact of tool options has a significant impact on timings compared to the impact

on the size. Another major observation is the variability of results between options.

This variability can be more significant than the variability between front-end tools.

For instance the clock period variation is about 10 ns for the pipeline example (Figure

102 and Figure 104). Thus ImpulseC gives better results with one option, for example

option 11 but not with another option. Agility gives better results with option 1 (Figure

102). In fact the best trade-off is found by a careful analyze of the area/timing results.

The area and timing results are not always linked as we can see with the

configurations 19 and 11 in Figure 101. for both configurations the clock period is

small but the configuration 11 provides a higher area result compared to the

configuration 19. These variations also exist with placement constraints. The timing

results can be either better or even worst when constraining area placement. Figure 105

compares the 24 configurations exploration with (left) and without (right) placement

constraints. The improvement here is at most 0.15 ns on the clock period which is not

significant. Results were even worst for the FFT. Thus a manual floorplanning

becomes really difficult for heterogeneous hardware architectures such as FPGA. It

should be reminded that obviously synthesis and place and route can incur large

variations if no constraints are imposed and if large chips are selected. With large

chips the design can be spread without constraints conducting to higher delays. In our

case first the synthesize and place and route stages are done without constraints. Then

a constrained Place and Route is used for the other configurations tested. The results

are better with constraints.

Chapter 6 Potential use of High level synthesis

156

(a) (b)

Figure 101 Sequential Mean Filter with ImpulseC- XST VHDL Synthesis tool variation (a)
period (b) slices

(a)
(b)

Figure 102 Pipeline Mean Filter with ImpulseC - XST VHDL Synthesis tool variation (a)
period (b) slices

period(ns)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

period(ns)

(a)

slices

414

416

418

420

422

424

426

428

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

slices

(b)

Figure 103 Sequential Mean Filter with Agility - XST VHDL Synthesis tool variation (a)
period (b) slices

sl i ces

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23

sl i ces

per i od(ns)

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23

per i od(ns)

sl i ces

826

827

828

829

830

831

832

833

1 3 5 7 9 11 13 15 17 19 21 23

sl i ces

per i od(ns)

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23

per i od(ns)

Chapter 6 Potential use of High level synthesis

157

period(ns)

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

period(ns)

(a)

slices

560

580

600

620

640

660

680

700

720

740

760

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

slices

(b)

Figure 104 Pipeline Mean Filter with Agility - XST VHDL Synthesis tool variation (a) period
(b) slices

(a) (b)

Figure 105 Pipeline Median Filter with Agility - XST VHDL timing variation with and
without placement constraints

The last point concerns the impact on place and route described on several

examples in Figure 106 to Figure 109 from best to worst. Best solutions are less

spreaded and thus have reduced delays and higher operating frequencies.

Figure 106 Sequential Mean Filter- Place and Route variations from best (left) to worst
(right)

period(ns)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

period(ns)

period(ns)

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

period(ns)

Chapter 6 Potential use of High level synthesis

158

Figure 107 Pipeline Mean Filter -Place and Route variation from best (left) to worst
(right)

Figure 108 pipeline FFT - Place and Route variations from best(left) to worst (right)

Figure 109 Pipeline Median Filter -Place and Route variations from best (left) to worst (right)

The variations in terms of area and resources are obvious from the above figures.

This points out that C-based synthesis may generate very different implementations

resulting from C-based high level modeling and the strong impact of back end tools. It

should be noted that with heterogeneous devices such as Virtex-4 where hard cores

are embedded the place and route tools may decide to implement a function in the

vicinity of such embedded cores even if no interaction exists. This can be easily

Chapter 6 Potential use of High level synthesis

159

observed in Figure 107 and Figure 108(right part). This affects the quality of the

implementation as the logic is spread out on the circuit. This clearly shows that there

is a missing link between the system modeling level and the physical implementation.

A feedback is necessary to help joint optimization.

6.7 Discussion

The C-to-hardware compilers considered here take two approaches to

concurrency. The first approach chosen by Handel-C and Agility Compiler adds

parallel constructs to the language. It forces the programmer to expose most

concurrency that is not a difficult task in major cases. Handel-C provides specific

constructs that dispatch collections of instructions in parallel. These additional

statement constructs can be used by any programmer. The compilers considered here

use a variety of techniques for inserting clock cycle boundaries. Handel-C and Agility

use fixed implicit rules for inserting clocks and are very simple. Assignments and

delay statements each takes one cycle in HandelC and instructions between two wait()

statements take one cycle in Agility SystemC. All the instructions inserted in a par

statement are executed in one clock cycle in HandelC. For all the implemented filters,

adding manually parallelism is an easy task that can be achieved by any programmer.

On the other hand, pipeline extraction can become a tricky task as algorithm must be

written in that way. An example was the FFT algorithm implementation: adding

pipeline from a sequential code can take a long time and changes are important to

make. It is even more difficult to express pipeline with HandleC than SystemC as

dependencies between instructions imposes the use of different cycles. The precise

control of logic/operators per clock cycle is difficult with HandelC: Either all the

instructions in one stage are independent and the pipeline clock can be of one clock

cycle per result or reuse is possible that makes the number of clocks per result

Chapter 6 Potential use of High level synthesis

160

proportional to the reuse rate. Another solution is to use a higher frequency and divide

the processing in elementary cycles (one per code line). SystemC Agility Compiler

representation becomes therefore almost an RTL level representation allowing

optimization at the clock cycle level.

The second approach lets the compiler identifies parallelism helped with pragmas

in the source code. ImpulseC compiler allows automatic pipelining through pragmas

but only for inner loops. Loop unrolling is used to obtain full pipelining. Precise

control of the number of stages is difficult with such pragmas. These simple rules can

make it difficult to achieve a particular timing constraint. It is difficult to predict in

advance when a second input data can be inserted, that is the throughput. Several

synthesis cycles must be operated to converge to the best solution. The tool helps this

exploration by automating the use of VHDL synthesis tool in the loop. Pipeline

exploration is conducted automatically with VHDL synthesis on different solutions

providing a frequency graph function of the latency/rate of the pipeline. This helps to

obtain the higher rate/latency pipeline but with no considerations of the area. It is thus

difficult to make a compromise between timing and area constraints.

The IP interfaces provided by ImpulseC are FIFO or memory which is better

adapted to stream processing. In fact, it is difficult to design specific protocols at RTL

level. Also considering local memory storage, RAM/register inference selection is

only obtained through a compilation option of ImpulseC, that is for all the design and

not separately for each array, which is really limiting as registers are a limited

resource in FPGA. The two other tools provide pragmas to define precisely which

way to store arrays of data, with registers or RAM.

According to the data types, C-based Design tools considered several approaches.

The first approach neither modify nor augment C’s types but allow the compiler to

adjust the width of the integer types outside the language. The second approach is to

add hardware types to the C-language. Handel-C and ImpulseC compilers chose the

data customization. The programmer cannot cast a variable or expression to a type

with a different width, that makes the code more difficult to write. For the filter

implementation, arrays are of several sizes and the indexes’ size are different. The

Chapter 6 Potential use of High level synthesis

161

programmer must often use the concatenation operator to zero pad or sign extend a

variable to a given width that make the programming time longer.

Most of the HandelC debugging time was spent in adjusting the size of data and

manually programming the pipeline optimization. The programmers must carefully

analyze the code to specify all the widths and it can quickly be tiresome. A parser for

automatic adjusting of the size of any used variable according to the type of the

operators used can be considered.

One main argument to chose an approach to use is the level of description needed

at the interface level of the design. If FIFO or memory-like protocols are sufficient,

behavioral C-based HLS is now a mature solution with equivalent performances and

area results than a more precise almost RTL level C-based solution like Agility

Compiler or HandelC. Futhermore, behavioral C-based HLS provides abstraction

and genericity of the pipeline allowing easy retargeting of hardware in different

timing/area constraints without redesigning. This criteria is fundamental in streaming

applications where throughput is the key performance parameter.

6.8 Design Space Exploration Coprocessors in MPSOC

Data parallelism with coprocessor is another method to realize TDES application

parallelization onto multiprocessor. Coprocessor is used to execute complex math

operation, which can greatly improve system performance. In our case, each

MicroBlaze processor of the 16-PE multiprocessor has a coprocessor to do the whole

TDES functions; the MicroBlaze processor is only in charge of communication: they

get the original data from the source, send them to coprocessor, wait until coprocessor

sends back the results and finally send the results back the destination.

We use ImpulseC tools to generate our TDES coprocessor directly from our C

code to VHDL source, which greatly improves our design productivity. TDES

Coprocessors generation using ImpulseC. The TDES coprocessor is designed for the

Xilinx MicroBlaze processor using an FSL interface. The Triple DES IP was

synthesized for a Virtex-4 platform by Xilinx ISE. The 5-stage pipeline

implementation uses 2877 slices and 12 RAM blocks with a maximum frequency of

Chapter 6 Potential use of High level synthesis

162

169.75 MHz. The occupation for the same IP using LUTs instead of RAM blocks is

4183 slices. The maximum frequency for this version is 162.20 MHz. Instances of

the IP were successfully implemented on an Alpha Data XRC-4 platform (Virtex-4

FX-140) using 12 MicroBlaze processors within a Network-on-Chip.

The chosen architecture for our Triple-DES hardware accelerator is the following

5-stage pipeline:

Figure 110: 5 Stage pipeline TDES

This IP was synthesized for a Xilinx Virtex-4 LX-200 FPGA. RAM blocks can

be saved by using LUTs, if necessary. The chart below gives us an idea of the surface

and performance of our IP. Xilinx’s implementation uses a fully pipelined architecture,

which allows a very high throughput. But it is impossible to reach such a throughput

on a NoC. Helion’s architecture uses a simple loop, which saves a lot of slices. Our IP

was generated by ImpulseC whereas Helion’s one was coded directly in

VHDL/Verilog. This is the main reason why our IP is not as efficient.

 Helicon Xilinx HLS (RAM) HLS (LUT)

Slices 467 16181 2877 4183

Max frequency (MHz) 196 207 170 162

Throughput at 100 MHz 255.6 Mbps 6.43 Gbps 305 Mbps 305 Mbps

TABLE 29: HLS based TDES IP vs optimized IPs

Chapter 6 Potential use of High level synthesis

163

NOC

MB PE

TDES
HLS

co-proc

MB PE

TDES
HLS

co-proc

MB PE

TDES
HLS

co-proc

MB PE

TDES
HLS

co-proc

MB PE

TDES
HLS

co-proc

MB PE

TDES
HLS

co-proc

MB PE

TDES
HLS

co-proc

MB PE

TDES
HLS

co-proc

switch
4in4out

switch
4in4out

switch
2in 1out

switch
2in 1out

switch
2in 1out

switch
2in 1out

NI

DDR2

NI

DDR2

NI

DDR2

NI

DDR2

NI NI NI NI NI NI NI NI

Figure 111: TDES HLS co-processor connected to MPSOC based platform

6.9 Conclusion

We have conducted a case study on the evaluation of C-based high level synthesis

systems. The objective was to assess a potential higher use of these in area

constrained high level system multi-objective partitioning and how system decisions

could be impacted. Indeed, although growing system complexity calls for high level

abstract modeling it is still mandatory to take into account precise implementation

feedback to improve performances. This puts into question the capacity of C-based

tools to meet this challenge. Evidences on case studies of significant result variations

among the high level synthesis tools and their emphasis through physical synthesis

options exploration challenge the use of C-based multi-objective modeling

methodologies for system design. In a multi-objective approach area-performance

system design tradeoffs should be based on as accurate as possible data otherwise

inappropriate design decisions could be made. We argue that implementation issues

Chapter 6 Potential use of High level synthesis

164

(area, frequency, floorplan) for large scale complex systems should be taken into

account when using C-based high level modeling since currently the tools do not

guarantee that high level concurrency semantics properties are preserved. Indeed,

extracted concurrency at high level is challenged through code and representation

transformation as well as resources constraints.

Solution to this come through an integrated flow with concurrency properties

propagated as constraints as well as concurrency feedback to the highest level.

Chapter 7 Conclusion

165

Chapter 7 Conclusion

Due to increasingly complex embedded applications, Multi Processor System on

Chip design and implementation is the focus of considerable academic and industrial

research. Main research directions include MPSOC design flows, MPSOC

architecture, MPSOC modelling/performance evaluation techniques and

implementation. It remains that despite considerable research there are very few

existing implementations. In addition, most of existing implementations present in

general a few processors. Intuitively, it seems obvious that issues and solutions in

small size MPSOC will be different from larger size MPSOC. Therefore there is a

need to design and build MPSOC platforms with a significant number of processors

as experimental tool to feedback the current MPSOC design flows. The main focus of

this thesis is on implementation in order to better extract physical level design

properties which could be used in higher level design while at the same time provides

valuable experimental platforms. Indeed, with the advent of high level abstraction

modelling and design techniques such as SystemC TLM it appears that there is need

to enrich the accuracy of these models with physical implementation. Besides,

complex applications communication traffic accurate monitoring is needed to

understand how to tune future parallel applications.

We addressed several issues in this thesis:

1. High level synthesis flow and the potential use for MPSOC design,

2. FPGA implementation of shared memory homogeneous and heterogeneous

MPSOC,

Chapter 7 Conclusion

166

3. NOC hardware monitoring,

With regard to high-level synthesis, C-based hardware-accelerator or

co-processor have been proposed for the architecture based rapid application to

implementation solution. We have conducted a case study on the evaluation of

C-based high level synthesis. The objective was to assess a potential higher use of

these in area constrained high level system multi-objective partitioning and how

system decisions could be impacted. Indeed, although growing system complexity

calls for high level abstract modeling it is still mandatory to take into account precise

implementation feedback to improve performances. This puts into question the

capacity of C-based tools to meet this challenge. Evidences on case studies of

significant result variations among the high level synthesis tools and their emphasis

through physical synthesis options exploration challenge the use of C-based

multi-objective modeling methodologies for system design. In a multi-objective

approach area-performance system design tradeoffs should be based on as accurate as

possible data otherwise inappropriate design decisions could be made. We argue that

implementation issues (area, frequency, floorplan) for large scale complex systems

should be taken into account when using C-based high level modeling since currently

the tools do not guarantee that high level concurrency semantics properties are

preserved. Indeed, extracted concurrency at high level is challenged through code and

representation transformation as well as resources constraints. This conclusion affects

the potential use of high level synthesis for area constrained MPSOC. However; for

the design of coprocessor within MPSOC HLS is appropriate. We need to focus on

MPSOC platform based design issues such that customization can be achieved with

high level synthesized coprocessor while keeping the main MPSOC structure.

We implemented a family of NoC based MPSOC with varying number of

processor (2- 24 PE), homogeneous and heterogeneous (Microblaze PPc) on single

FPGA chip. Three NoCs, provide different functionalities for 16 PE tiles while on

single chip increasing the number of processors reduce the number of NOC to one.

Clearly, with area resource constraints a tradeoff exists between an architecture with

Chapter 7 Conclusion

167

fewer processors but with strong communication support and performance monitoring

and an architecture with 50% more processors and less communication support This

Phd thesis have clearly asserted place and route based the impact of NOC layout on

MPSOC design. The cascading Data-NoC connects PE Tiles and DDR2 memories

with a high bandwidth; synchronization-NoC offers two synchronization modes for

PE tiles. And users can check and configure IPs of Data-NoC through our service

NoC. We also demonstrated the use of our performance monitoring system for

software debugging and tuning. With the bi-synchronous FIFO method, our GALS

architecture successfully solves the long clock signal distribution problem and allows

that each clock domain can run at its own clock frequency. Xilinx Virtex4 FX140

FPGA was selected to provide large logic resources with quick implementation and

testing. FPGA design environment can offer large number of IP to reduce design

efforts and decrease the pressure of time-to-market. For example, in our system a

number of IP can be found from the Xilinx EDK library, such as MicroBlaze

processor, LMB, FSL, BRAM.

No MPSOC benchmarks existed at the time of this Phd. It is only recently that

EEMBC multi-core v.1.0 were available to our laboratory therefore we have

conducted performance evaluation studies on our own application. For evaluating our

MPSoC we successfully implemented AES and TDES block cipher cryptographic

algorithms on our platform using two methods. the first is by dividing data between

processors and the second is by dividing the execution of the TDES. Our implemented

architecture connected processing elements via two NoCs, such architecture basically

suites heavy memory access and allow scalability in the system construction. Results

shows better performance for data parallel method favored by the architecture, this

result can be reversed in a pipelined architecture. Another conclusion shows that data

parallel method can be applied with a greater number of processors, with different

operation modes including CBC, because it has a dominating computation time than

memory access time allowing a very effective linear speedup, we can predict as well

that physically segmenting memory into banks helps pushing this parallelization to

attain even a higher figure in processors number although adding more complexity to

Chapter 7 Conclusion

168

the connection between processors. On the other hand our results shows that our

architecture does not favor pipelined implementation because of lack of direct link

between processor which heavily impacting performance because of the need to a

synchronized memory access to exchange data. We note also that going to finer level

of granularity may enhance performance. Moving a design from FPGA to ASIC

questions the gains and benefits which can be achieved both at an architectural level

but as well at the parallel programming. The Network on Chip of our MPSoC has

been implemented on ASIC technology. and has been explored with different timing

constraints and different library categories of STmicroelectronics’ 65nm/45nm

technologies. The experimental results of ASIC and FPGA are compared, and our

results show although we can naturally expect an area gain the working frequency is

not as significantly augmented. This suggests that performance improvement can not

be achieved by technology alone and area advantage should be exploited by selecting

network on chip components with more aggressive features.

This thesis is a preliminary step in the direction of accurate physical aware

MPSoC design flows on both FPGA and ASIC technology. Further research is needed

with regards to DFM, automatic translation from FPGA to ASIC with layout sensitive

constraints, coupled design space exploration. Platforms as designed in this Phd will

contribute to better parallel programming techniques through accurate and real time

NoC monitoring and with the hardware support of multiple NOCs, benchmarking

methodologies for MPSoC should become a major research topic as a full Design

Space Exploration flow can benefit from down the NOC monitoring to high level

parallel programming and automatic parallelization. It is clear that the trend to

manycore implementations are emerging [118] and there is a need to address large

scale platform. The laboratory have contributed in this area through large scale

multi-FPGA emulation. Besides, physical constraints of single chip (MPSOC) have

triggered a new research direction in 3D ICs [119-121] and new activity have started

in this regard in the laboratory. Finally, it appears necessary for large scale

multiprocessor manycore to consider the potential of photonics NOC [122-123]. The

Chapter 7 Conclusion

169

use of photonics NOC at least between cluster of MPSOC as described in this phd

thesis seems reachable and very promising.

References

170

REFERENCES

[1] ITRS http://www.itrs.net

[2] A.A. Jerraya and Wayne Wolf , “Multiprocessor Systems-on-Chip”, Morgan
Kaufman Pub, 2004

[3] Benini, L. ; De Micheli, G., “Networks on Chips: Technology and Tools”,
Morgan Kaufmann, 2006

[4] Wolf, W.; Jerraya, A.A.; Martin, G.; “Multiprocessor System-on-Chip
(MPSoC) Technology, ” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on Volume 27, Issue 10, Oct. 2008,
Page(s):1701 - 1713

[5] Atienza, D.; Angiolini, F.; Murali, S.; Pullini, A.; Benini, L.; De Micheli, G,
Network-on-Chip design and synthesis outlook, Integration, the VLSI
Journal, Volume 41, Issue 3, May 2008, Pages 340-359

[6] Ogras, U.Y.; Marcillescu, R.; Hyung Gyu Lee; Choudhary, P.; Marculescu,
D.; Kaufman, M.; Nelson, P.; “Challenges and Promising Results in NoC
Prototyping Using FPGAs” IEEE Micro journal, pp. 86-95, September 2007

[7] C. Bartels, J. Huisken, K. Goossens, P. Groeneveld, and J.
Meerbergen,“Comparison of An Athereal Network on Chip and A
Traditional Interconnect for A Multi-Processor DVB-T System on Chip,”in
Proc. IFIP Int'l Conference on Very Large Scale Integration (VLSI-SoC),
October 2006

[8] Pullini, A.; Angiolini, F.; Murali, S.; Atienza, D.; De Micheli, G.; Benini,
L.;” Bringing NoCs to 65 nm” Micro, IEEE; Volume 27, Issue
5, Sept.-Oct. 2007 Page(s):75 – 85

[9] P. Guerrier and A. Greiner, “A generic architecture for on-chip
packet-switched interconnections,” Proc. Design Automation and Test in
Europe (DATE’00), pp. 250-256, Mars 2000

References

171

[10] Andriahantenaina and A. Greiner “Micro-network for SoC: Implementation
of a 32-port SPIN network,” Design Automation and Test in Europe (DATE
2003) pp. 1128-1129, March 2003.

[11] K. Goossens, J. van Meerbergen, A. Peeters and P. Wielage “Networks on
Silicon: Combining Best-Effort and Guaranteed Services,” Design
Automation and Test in Europe (DATE’02), 2002.

[12] K. Goossens, J. Dielissen, and A. Radulescu “The AEthereal network on chip:
Concepts, architectures, and implementations,” IEEE Design and Test
ofComputers, Vol 22, pp. 414-421, Sept-Oct 2005.

[13] K. Goossens, J. Dielissen, O. P. Gangwal, S. Gonzalez Pestana, A. Radulescu,
and E. Rijpkema “A Design Flow for Application-Specific Networks on Chip
with Guaranteed Performance to Accelerate SOC Design and Verification,”
Proc. Of Design, Automation and Test Conference in Europe (DATE05),
March 2005.

[14] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P.
Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N.
Borkar, "An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS," in
IEEE International Solid-State Circuits Conference San Francisco, CA, USA:
Digest of Technical Papers, 2007, pp. 5-7.

[15] T. Bjerregaard and J. Sparso, "A Router Architecture for
Connection-Oriented Service Guarantees in the MANGO Clockless
Network-on-Chip," in Proceedings of the conference on Design, Automation
and Test in Europe - Volume 2: IEEE Computer Society, 2005.

[16] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "QNoC: QoS architecture
and design process for network on chip," J. Syst. Archit., vol. 50, pp.
105-128, 2004.

[17] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, "Guaranteed Bandwidth
Using Looped Containers in Temporally Disjoint Networks within the
Nostrum Network on Chip," in Proceedings of the conference on Design,
automation and test in Europe - Volume 2: IEEE Computer Society, 2004.

[18] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. Albenes
Zeferino, "SPIN: A Scalable, Packet Switched, On-Chip Micro-Network," in
Proceedings of the conference on Design, Automation and Test in Europe:
Designers' Forum - Volume 2: IEEE Computer Society, 2003.

[19] T. Bjerregaard and S. Mahadevan, "A survey of research and practices of
Network-onchip," ACM Comput. Surv., vol. 38, p. 1, 2006.

[20] Senouci, B.; Kouadri M, A.M.; Rousseau, F.; Petrot, F. “Multi-CPU/FPGA
Platform Based Heterogeneous Multiprocessor Prototyping: New Challenges
for Embedded Software Designers” 19th IEEE/IFIP, pp. 41–47, June 2008

References

172

[21] Wentzlaff, D.; Griffin, P.; Hoffmann, H.; Liewei Bao; Edwards, B.; Ramey,
C.; Mattina, M.; Chyi-Chang Miao; Brown, J.F.; Agarwal, A.; “On-Chip
Interconnection Architecture of the Tile Processor” IEEE Micro journal, pp.
15-31, September 2007

[22] Ito, M.; Hattori, T.; Yoshida, Y.; Hayase, K.; Hayashi, T.; Nishii, O.; Yasu,
Y.; Hasegawa, A.; Takada, M.; Mizuno, H.; Uchiyama, K.; Odaka, T.;
Shirako, J.; Mase, M.; Kimura, K.; Kasahara, H.;, An 8640 MIPS SoC with
Independent Power-Off Control of 8 CPUs and 8 RAMs by An Automatic
Parallelizing Compiler Solid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. IEEE International 3-7 Feb. 2008 Page(s):90 –
598

[23] ARM 11 MPCore
http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html

[24] MIPS32® 1004K™ Core
http://www.mips.com/products/processors/32-64-bit-cores/mips32-1004k/

[25] S.Shibahara, M.Takada, T.Kamei, K. Hayase, Y.Yoshida, O. Nishii, T.
Hattori, SH-X3: SuperH Multi-Core for Embedded Systems, Hot Chips 19th,
Aug. 19-21 2007, Stanford, USA.

[26] M.Butts, A.M.Jones, TeraOPS Hardware & Software: A New
Massively-Parallel, MIMD Computing Fabric IC, Hot Chips 18th, Aug.
20-22 2006, Stanford, USA. http://www.ambric.com

[27] Texas Instruments Multicore Fact Sheet SC-07175

[28] Texas Instruments TMS320C6474 Multicore DSP SPRS552 – Oct. 2008

[29] Texas Instruments TMS320VC5441 Fixed-Point DSP data manual
SPRS122F – Oct. 2008

[30] QorIQ™ P4080 Communications Processor
http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=0162468rH
3bTdG25E4

[31] T.Miyamori, Venezia: a Scalable Multicore Subsystem for Multimedia
Applications, 8th International Forum on Application-Specific
Multi-Processor SoC 23 - 27 June 2008, Aachen, Germany
http://www.mpsoc-forum.org/ also “A Power Performance Scalable 8 cores
Media Processor for Mobile Multimedia Applications”, IEEE Journal of
Solid State Circuits, Vol.44, No.11, Nov. 2009.

[32] T.Isshiki, MAPS-TCT: MPSoC Application Parallelization and Architecture
Exploration Framework, 8th International Forum on Application-Specific
Multi-Processor SoC 23 - 27 June 2008, Aachen, Germany
http://www.mpsoc-forum.org/

References

173

[33] S.Kumar and al., Architectural Support for Fine-Grained Parallelism on
Multi-core Architectures, Vol. 11 Issue 3 (August 2007) Tera-scale
Computing , Intel technology Journal.

[34] Mouhoub, R.B.; Hammami, O.; “NoC Monitoring Hardware Support for Fast
NoC Design Space Exploration and Potential NoC Partial Dynamic
Reconfiguration” IES’06, pp. 1–10, Oct 2006

[35] Krstic, M.; Grass, E.; Gurkaynak, F.K.; Vivet, P.; “Globally Asynchronous,
Locally Synchronous Circuits: Overview and Outlook” IEEE Design and
Test of Computers, pp. 430-441 September 2007

[36] Trong-Yen Lee; Yang-Hsin Fan; Yu-Min Cheng; Chia-Chun Tsai;
Rong-Shue Hsiao “Enhancement of Hardware-Software Partition for
Embedded Multiprocessor FPGA Systems”, IIHMSP 2007, pp. 19-22, Nov
2007

[37] Hoskote, Y.; Vangal, S.; Singh, A.; Borkar, N.; Borkar, S.; “A 5-GHz Mesh
Interconnect for a Teraflops Processor”, IEEE Micro journal, pp. 51-61,
September 2007

[38] Lukovic,S; Fiorin,L, “An Automated Design Flow for NoC-based MPSoCs
on FPGA” 19th IEEE/IFIP, pp. 58-64, June 2008

[39] Trong-Yen Lee; Yang-Hsin Fan; Yu-Min Cheng; Chia-Chun Tsai;
Rong-Shue Hsiao; “Hardware-oriented Partition for Embedded
Multiprocessor FPGA Systems”, 2th ICICIC, pp. 65-65 September 2007

[40] J.Goodacre and A.N.Sloss, “Parallelism and the ARM instruction set
architecture”, Computer, vol.38, no.7, pp.42-52, Jul.2005

[41] Intel. www.intel.com/Xeon/

[42] IEEE 1666 Standard SystemC Language Reference Manual
www.systemc.org

[43] C.Haubelt, J.Falk, J.Keinert, T.Schlichter, M.Streubühr, A.Deyhle, A.Hadert,
and J.Teich,”A SystemC-Based Design Methodology for Digital Signal
Processing Systems”, EURASIP Journal on Embedded Systems, Volume
2007 (2007), Article ID 47580, 22 pages

[44] S. Ouadjaout, D. Houzet “Generation of Embedded Hardware/Software from
SystemC”, EURASIP Journal on Embedded Systems, Volume 2006 Article
ID 18526, 11 pages, 2006.

[45] M. O.Cheema, L. Lacassagne, and O. Hammami, “System-Platforms-Based
SystemC TLM Design of Image Processing Chains for Embedded
Applications”, EURASIP Journal on Embedded Systems, Volume 2007
Article ID 71043, 14 pages, 2007

References

174

[46] S. Edwards “The Challenges of Synthesizing Hardware from C-Like
language” IEEE Design and Test, Vol. 23, No.5, pp. 375-386,
Sept.-Oct.2006.

[47] D. Galloway “The transmogrifier C hardware description language and
compiler for FPGAs”. Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines FCCM, pp 136-144, Napa California, April
1995.

[48] K., Wakabayashi “C-based synthesis experiences with a behavior synthesizer,
Cyber”, Design, Automation and Test in Europe Conference and Exhibition
1999. Proceedings, 9-12 March 1999 Page(s):390 – 393

[49] D.C Ku, G.De Micheli, ”Hardware C: a language for hardware design”.
Technical report CSTL-TR 90-419, Computer System Lab, Stanford
University, v2.0, August 2000.

[50] T. Kambe, A. Yamada, K.Nishida, K. Okada, M. Ohnishi, A. Kay, P. Boca,
V. Zammit, T. Nomura “A C-based synthesis system, Bach and its
application”. Proceedings of the Asia South Pacific Design Automation
Conference, pp151-155, Yokohama, Japan, 2001

[51] E.Grimpe ,F.Oppenheimer ,"Extending the SystemC synthesis subset by
object-oriented features", Proceedings of ISSS+CODES 2003, Page25-30,
2003

[52] S. Gupta, N.D. Dutt, R.K. Gupta, A. Nicolau “SPARK : A High-Level
Synthesis Framework For Applying Parallelizing Compiler Transformations”.
International Conference on VLSI Design, January 2003.

[53] V, Singh Saun; Preeti Ranjan Panda, "Extracting exact finite state machines
from behavioral SystemC descriptions", Proceedings of International
Conference on VLSI Design, Page 280-285, 2005

[54] Patel, H.D, Shukla, S.K., Bergamaschi, R.A., Heterogeneous Behavioral
Hierarchy Extensions for SystemC, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on Volume 26, Issue 4, April
2007 Page(s):765 – 780

[55] S Chtourou, O Hammami, “SystemC Space Exploration of Behavioral
Synthesis Options on Area, Performance and Power consumption”, IEEE
International Conference on Microelectronics (ICM Islamabad) 2005.

[56] ROCCC http://www.cs.ucr.edu/~roccc/

[57] Synopsys. Behavioral Compiler User Guide Version 1999.10, 1999

[58] Agility : http://www.celoxica.com/products/agility/default.asp

[59] Forte Design www.forteds.com

[60] Orinoco Dale http://www.chipvision.com/company/index.php

[61] ImpulseC Inc “Co-developper’s user guide” www.impulseC.com, 2007

References

175

[62] Handel-C http://www.celoxica.com/

[63] CatapultC : www.mentor.com

[64] R. C. Gonzalez, R.E.Woods, “Digital Image Processing “, 3rd Ed.,Prentice
Hall, Aug. 2007

[65] J. Revelles, C. Urena, M. Lastra “An efficient parametric algorithm for octree
traversal”. ICCGV’2000, Czech Republic, Feb. 2000.

[66] AMD http://developer.amd.com/ZONES/BARCELONA/Pages/default.aspx

[67] NoC Solution 1.12, NoC Compiler user’s guide, o918v7, April 2008

[68] Klimm, A.; Braun, L.; Becker, J.; “An adaptive and scalable multiprocessor
system For Xilinx FPGAs using minimal sized processor cores” IPDPS2008,
April 2008

[69] Joven, J.; Font-Bach, O.; Castells-Rufas, D.; Martinez, R.; Teres, L.;
Carrabina, J.; “xENoC - An eXperimental Network-On-Chip Environment
for Parallel Distributed Computing on NoC-based MPSoC Architectures”
PDP 2008, pp. 141-148 march 2008

[70] OCP-IP OCP-IPOpenCoreProtocolSpecification2.2.pdf, www.ocpip.org,
2008

[71] Arteris S.A http://www.arteris.com/

[72] NoC Solution 1.12, NoC NTTP technical reference, o3446v8, April 2008

[73] Arteris Danube 1.12, Packet Transport Units technical reference, o4277v11,
April 2008

[74] Alpha-data ADPe-XRC-4 FPGA card
http://www.alpha-data.com/adpe-xrc-4.html

[75] Xilinx Virtex-4 www.xilinx.com

[76] Xilinx EDK 9.2 www.xilinx.com

[77] Xilinx ISE 9.2 www.xilinx.com

[78] Kumar, R.; Tullsen, D.M.; Jouppi, N.P.; Ranganathan, P.;, Heterogeneous
chip multiprocessors, Computer Volume 38, Issue 11, Nov. 2005
Page(s):32 – 38

[79] Moraes, F.; Calazans, N.; Mello, A.; Moller, L.; Ost, L.HERMES: an
infrastructure for low area overhead packet-switching networks on chip,
Integration, the VLSI Journal, Volume 38, Issue 1, October 2004, Pages
69-93

[80] Raymond R. Hoare, Zhu Ding, Shenchih Tung, Rami Melhem, Alex K.
Jones , A framework for the design, synthesis and cycle-accurate simulation
of multiprocessor networks, Journal of Parallel and Distributed
Computing, Volume 65, Issue 10, October 2005, Pages 1237-1252

References

176

[81] Matteo Monchiero, Gianluca Palermo, Cristina Silvano, Oreste Villa,
Exploration of distributed shared memory architectures for NoC-based
multiprocessors, Journal of Systems Architecture, Volume 53, Issue
10, October 2007, Pages 719-732

[82] Joan Daemen and Vincent Rijmen, "The Design of Rijndael: AES - The
Advanced Encryption Standard." Springer-Verlag, 2002

[83] FIPS 46-3: The official document describing the DES standard

[84] FIPS 197: The official document describing the AES standard
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[85] Patrick Crowley “The future in your pocket” March 2008 SIGCOMM
Computer Communication Review , Volume 38 Issue 2 ACM

[86] Rizk, M.R.M.; Morsy, M “Optimized Area and Optimized Speed Hardware
Implementations of AES on FPGA” International Design and Test Workshop,
2007 2nd 16-18 Dec. 2007 Page(s):207 – 217

[87] Yao Yue, Chuang Lin, Zhangxi Tan “NPCryptBench: a cryptographic
benchmark suite for network processors” March 2006 MEDEA '05:
Proceedings of the 2005 workshop on MEmory performance: DEaling with
Applications , systems and architecture

[88] Divya Arora, Anand Raghunathan, Srivaths Ravi, Murugan Sankaradass,
Niraj K. Jha, Srimat T. Chakradhar “Software architecture exploration for
high-performance security processing on a multiprocessor mobile SoC” July
2006 DAC '06: Proceedings of the 43rd annual conference on Design
automation ACM.

[89] Jung-Ho Lee, Sung-Rok Yoon, Kwang-Eui Pyun, Sin-Chong Park “A
multi-processor NoC platform applied on the 802.11i TKIP cryptosystem”
January 2008 ASP-DAC '08: Proceedings of the 2008 conference on Asia
and South Pacific design automation IEEE Computer Society Press.

[90] A.A. Jerraya and Wayne Wolf , “Multiprocessor Systems-on-Chip”, Morgan
Kaufman Pub, 2004

[91] Klimm, A.; Braun, L.; Becker, J.; “An adaptive and scalable multiprocessor
system For Xilinx FPGAs using minimal sized processor cores” IPDPS2008,
April 2008

[92] “Recommendation for Block Cipher Modes of Operation-Methods and
Techniques”, NIST Special Publication 800-38A 2001 Edition

[93] Hutton, M.; Yuan, R.; Schleicher, J.; Baeckler, G.; Cheung, S.; Kar Keng
Chua; Hee Kong Phoon;, A Methodology for FPGA to Structured-ASIC
Synthesis and Verification, Design, Automation and Test in Europe, 2006.
DATE '06. Proceedings Volume 2, 6-10 March 2006 Page(s):1 – 6.

References

177

[94] Bautista, T.; Nunez, A.;, Quantitative study of the impact of design and
synthesis options on processor core performance , Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on , Volume: 9 Issue: 3 ,
June 2001 Page(s): 461 -473

[95] Tobias Bjerregaard, Shankar Mahadevan , A survey of research and practices
of Network-on-chip, Computing Surveys (CSUR) , Volume 38 Issue 1

[96] Benini, L. ; De Micheli, G., “Networks on Chips: Technology and Tools”,
Morgan Kaufmann, 2006.

[97] David. J. Frank, Ruchir Puri, Dorel Toma , Design and CAD challenges in
45nm CMOS and beyond, Proceedings of the 2006 IEEE/ACM international
conference on Computer-aided design, November 2006.

[98] J. W. McPherson, Reliability challenges for 45nm and beyond, Proceedings
of the 43rd annual conference on Design automation, July 2006.

[99] Andrew B. Kahng, Design challenges at 65nm and beyond, Proceedings of
the conference on Design, automation and test in Europe, April 2007.

[100] Jamil Kawa, Charles Chiang, DFM issues for 65nm and beyond, Proceedings
of the 17th ACM Great Lakes symposium on VLSI, March 2007.

[101] Jinwen Xi, Peixin Zhong , A Transaction-Level NoC Simulation Platform
with Architecture-Level Dynamic and Leakage Energy Models, Proceedings
of the 16th ACM Great Lakes symposium on VLSI, April 2006.

[102] Love Singhal, Sejong Oh, Eli Bozorgzadeh , Yield maximization for
system-level task assignment and configuration selection of configurable
multiprocessors, Proceedings of the 6th IEEE/ACM/IFIP international
conference on Hardware/Software codesign and system synthesis, October
2008.

[103] Matt Nowak, Jose Corleto, Christopher Chun, Riko Radojcic , Holistic
pathfinding: virtual wireless chip design for advanced technology and design
exploration Proceedings of the 45th annual conference on Design automation,
June 2008.

[104] James Balfour, William J. Dally , Design tradeoffs for tiled CMP on-chip
networks, Proceedings of the 20th annual international conference on
Supercomputing, June 2006.

[105] Timothy G. Mattson, Rob Van der Wijngaart, Michael Frumkin ,
Programming the Intel 80-core network-on-a-chip terascale processor,
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
November 2008.

[106] Jacob Leverich Hideho Arakida Alex Solomatnikov Amin Firoozshahian
Mark Horowitz Christos Kozyrakis, Comparative evaluation of memory
models for chip multiprocessors, Transactions on Architecture and Code
Optimization (TACO) , Volume 5 Issue 3 , November 2008

References

178

[107] Henry Wong, Pangaea: a tightly-coupled IA32 heterogeneous chip
multiprocessor, Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, October 2008.

[108] Christof Pitter, Time-predictable memory arbitration for a Java
chip-multiprocessor, Proceedings of the 6th international workshop on Java
technologies for real-time and embedded systems, September 2008.

[109] CMP http://cmp.imag.fr/

[110] Hee Kong Phoon; Yap, M.; Chuan Khye Chai; A Highly Compatible
Architecture Design for Optimum FPGA to Structured-ASIC Migration,
Semiconductor Electronics, 2006. ICSE '06. IEEE International Conference
on Oct. 29 2006-Dec. 1 2006 Page(s):506 – 510

[111] Pistorius, J.; Hutton, M.; Schleicher, J.; Iotov, M.; Julias, E.; Tharmalingam,
K.; Equivalence Verification of FPGA and Structured ASIC Implementations,
Field Programmable Logic and Applications, 2007. FPL 2007. International
Conference on 27-29 Aug. 2007 Page(s):423 – 428

[112] Compton, K.; Hauck, S.; Automatic Design of Area-Efficient Configurable
ASIC Cores, Computers, IEEE Transactions on Volume 56, Issue 5, May
2007 Page(s):662 – 672.

[113] Kuon, I.; Rose, J.;, Measuring the Gap Between FPGAs and ASICs,
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on Volume 26, Issue 2, Feb. 2007 Page(s):203 – 215.

[114] Pullini, A.; Angiolini, F.; Murali, S.; Atienza, D.; De Micheli, G.; Benini, L.;
Bringing NoCs to 65 nm Micro, IEEE, Volume 27, Issue 5, Sept.-Oct. 2007
Page(s):75 – 85

[115] R. Ben Mouhoub and O. Hammami, “MOCDEX: Multiprocessor on Chip
Multiobjective Design Space Exploration with Direct Execution,” EURASIP
Journal on Embedded Systems, vol. 2006, Article ID 54074, 14 pages, 2006.

[116] A.Hanson, K.Goossens,M.Bekooij and J.Huisken,”CoMPSoC: A template for
composable and predictable multi-processor system on chips”, ACM
Transactions on Design Automation of Electronic Systems (TODAES)
Volume 14 , Issue 1, Jan. 2009.

[117] E.S.Chung and al, ProtoFlex: Towards Scalable, Full-System Multiprocessor
Simulations Using FPGAs, ACM Transactions on Reconfigurable
Technology and Systems (TRETS),Volume 2 , Issue 2 (June 2009).

[118] D.N. Truong and al.,” A 167-Processor Computational Platform in 65 nm
CMOS”, IEEE Journal of Solid State Circuits, pp.1130 – 1144, Vol.44, No.4,
April 2009.

[119] P.Emma and E.Kursun, “Opportunities and Challenges for 3D Systems and
Their Design”, IEEE Design & Test of Computers, pp.6-14,
September/October 2009.

References

179

[120] H.Sun and al.,”3D DRAM Design and Application to 3D Multicore Systems”,
IEEE Design & Test of Computers, pp.36-46, September/October 2009.

[120] Pavlidis, V.F.; Friedman, E.G.; “3-D Topologies for Networks-on-Chip”,
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Vol.
15, Issue 10, Oct. 2007 Page(s):1081 – 1090.

[121] Feero, B.S.; Pande, P.P.; “Networks-on-Chip in a Three-Dimensional
Environment: A Performance Evaluation”, Computers, IEEE Transactions on
Volume 58, Issue 1, Jan. 2009 Page(s):32 – 45.

[122] C.Batten and al.,”Building Many-core Processor-To-DRAM Networks with
Monolithic CMOS Silicon Photonics”, IEEE Micro, pp.8-21, July-Aug.
2009.

[123] M.Petracca and al.,”Photonic NOCs: System Level Design Space
Exploration”, IEEE Micro, pp.74-84, July-Aug. 2009.

Publication

180

PUBLICATIONS
Journal papers

1. O.Hammami, Z.Wang, V.Fresse and D.Houzet, “A Case Study: Quantitative
Evaluation of C-based High Level Synthesis Systems”, EURASIP Journal on
Embedded Systems, 2008.

2. Z. Wang, O.Hammami, “A NoC based heterogeneous Multiprocessor System on
Chip Implementation” submitted Elsevier Microelectronics Journal

3. Z.Wang, O.Hammami and D.Houzet, “Architecture and Parallel Programming
Implications of Migrating Single FPGA Chip Multiprocessor with Network on
Chip to 65nm and 45nm ASIC” submitted Elsevier Microelectronics Journal

4. I.Taj, Z.Wang, O.Hammami, M.Akil and K.Huggins, "Performance Evaluation and
Enhancement Mechanisms for Image Processing Algorithms on 16 PE NOC Based
Multi-core Embedded Platform" submitted to Journal of Real-Time Image
Processing

Conferences papers

5. Hammami, Z.Wang, V. Fresse and D. Houzet “A Quantitative Evaluation of
C-Based Synthesis on Heterogeneous Embedded Systems Design”,
published in IEEE ISCAS 2008, Seattle, USA.

6. Z. Wang, O. Hammami, “C-Based Hardware-Accelerator Coprocessing for
SOC An Quantitative Area-Performance Evaluation”, IEEE ICECS 2008,
Malta.

7. Z. Wang, O. Hammami, “A Twenty-four Processors System on Chip FPGA
Design with On-Chip Network Connection”, IP SOC 2008, France.

8. Z. Wang, O. Hammami, “External DDR2-Constrained NOC-Based
24-Processors MPSOC Design and Implementation on Single FPGA”, IEEE
International Design and Test Workshop 2008, Tunisia.

9. M.KHaddour, Z.Wang and O.Hammami "Cryptography on Multiprocessor
Platform (The Case of AES)" , Sixth IEEE International Multi-Conference
on Systems, Signals and Devices SSD09

10. M.KHaddour, Z.Wang and O.Hammami "Implementing Block Cipher on
Multiprocessor Platform”, International Conference on Multimedia
Computing and Systems ICMCS 09

11. M.KHaddour, Z.Wang and O.Hammami “Performance Evaluation and
Analysis of Parallel Software Implementations of TDES on a16-PE
Embedded Multiprocessor Platform”, IFIP network and service security
conference, Paris 2009.

181

182

183

Thèse préparée dans Laboratoire Electronique et Informatique d’ENSTA

