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Résumé

Les composants monocristallins fonctionnant à des températures élevées sont soumis
à des conditions de chargement thermo-mécanique sévères. La géométrie et le
comportement de ces composants sont très complexes. Un défi majeur est de
développer des modèles mathématiques afin de prévoir l’initiation et la propagation de
fissures en présence de contraintes importantes et de forts gradients de température.
Dans ce cas, le comportement élastoviscoplastique fortement anisotrope du matériau
étudié (superalliage à base Ni) doit être pris en compte. Le modèle correspondant
doit être en mesure de rendre compte de la croissance anisotrope des fissures et de
leur bifurcation dans des champs de contrainte complexes. De plus, le modèle doit
être capable de prédire non seulement le taux de croissance des fissures mais aussi les
chemins de fissuration.

La mécanique de l’endommagement anisotrope est un cadre théorique bien adapté
au développement de modèles de croissance de fissures dans les monocristaux. Au
cours d’études précédentes, une loi de comportement couplant plasticité cristalline et
endommagement cyclique a été développée, démontrant l’intérêt de cette approche,
mais aussi ses limites, notamment du fait de la dépendance au maillage des résultats.
Le développement récent de modèles non-locaux dans le cadre de la mécanique des
milieux continus pourrait ainsi aider à surmonter ces difficultés. Une grande base
expérimentale existe concernant l’initiation et la propagation de fissures dans les
superalliages monocristallins à base de nickel.

Les simulations thermomécaniques par éléments finis des aubes de turbine fournissent
des informations détaillées sur la distribution des contraintes et des déformations
plastiques, en particulier près de singularités géométriques comme les trous et les
fentes de refroidissement. Tout d’abord, sur la base de la théorie de la plasticité
cristalline qui établit un lien solide entre les contraintes et les déformations plastiques,
un modèle découplé en mécanique de l’endommagement basé sur l’historique des
calculs par éléments finis sera présenté. Ensuite, un modèle d’endommagement
incrémental basé sur les milieux généralisés sera proposé et enfin, les prédictions du
modèle pour l’initiation et la croissance de micro-fissures en résolvant le problème de
dépendance au maillage seront discutés.

Mots clés: Plasticité cristalline, Méchanique de l’endommagement, Rupture ductile,
Localisation, La propagation de fissure, Régularisation, Milieux continus d’ordre
supérieur, Théorie micromorphique



Abstract

Single crystal components operating at elevated temperatures are subjected to
severe thermomechanical loading conditions. The geometry and behaviour of these
components are now very complex. A major issue is to develop models to predict crack
initiation and crack growth in the presence of strong stress and temperature gradients.
The strongly anisotropic elastoviscoplastic behaviour of the material which is a single
crystal nickel base superalloy, must be taken into account. The corresponding model
should be able to account for anisotropic crack growth and crack bifurcation in
complex stress fields. Moreoever the model must be capable of predicting not only
the crack growth rate but also the non-straight crack paths.

Anisotropic damage mechanics is a well-suited theoretical framework for the
development of crack growth models in single crystals.A model coupling crystal
plasticity and cyclic damage has been developed in a previous project, that shows
the interest of the approach, but also its current limits, in particular the strong
mesh dependence of the results. Recent development of nonlocal models within
the framework of the mechanics of generalized continua could help overcoming these
difficulties. A large experimental basis exists concerning initiation and crack growth
in single crystal nickel base superalloys.

Finite element simulations of the thermomechanics of turbine blades provide detailed
information about stress and plastic strain distribution, in particular near geometrical
singularities like cooling holes and slits. First of all, on the basis of crystal plasticity
theory which provides a solid link between stress and plastic strains, an uncoupled
damage mechanics model based on the history of FE calculations will be presented.
Afterwards, an incremental damage model based on generalized continua will be
proposed and model predictions for the initiation and growth of microcracks by solving
the mesh dependency, will be discussed.

Keywords: Crystal Plasticity, Damage mechanics, Ductile fracture, Localization,
Crack growth, Regularization, Higher order continua, Micromorphic theory
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Introduction

Contents
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I.2 PREMECCY Project . . . . . . . . . . . . . . . . . . . . . . 4

I.3 Scope and outline . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.1 Background

Due to its remarkable material properties, superalloys have been used in many
advanced engineering applications, especially in integrated circuits, high-tech wires,
blades of gas turbines in jet engines, space vehicles and nuclear reactors. The
term ’superalloys’ stands for a group of complex alloys which are high temperature
resistant materials capable of retaining very high strength at elevated temperatures.
Historically, superalloys originate from the research conducted on steels at the time of
First World War (Durand-Charre, 1997). During this period researchers in France and
USA studied the first samples of Fe-based alloys for land-base gas turbine engines and
jet engines. In 1940s especially during the Second World War, superalloys became the
optimal materials for the severe thermomechanical conditions in the hot sections of gas
turbine engines. In the following decades, application area of superalloys extensively
broadened and significant improvements in the thermomechanical properties have
been achieved, bringing a diverse population of superalloys. Today, depending on
their base material, superalloys can be basically considered in three categories; nickel
based, nickel-iron based and cobalt based superalloys (Donachie, 1984) which are
produced as polycrystalline, directionally solidified and single crystal (Fig. I.1) or
by powder metallurgy. Depending on the optimization of microstructural properties,
each processing technique addresses to a specific application having unique advantages
and drawbacks.
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(a) Polycrystal (b) Directionally
Solidified

(c) Single Crystal

Figure I.1 : Superalloy turbine blades with different microstructures (Bhadeshia,
2003).

Having superior heat and corrosion resistance compared to nickel-iron and cobalt
based superalloys, nickel based superalloys exhibit higher strength at elevated
temperatures. Therefore, in the modern application of superalloys, nickel-based
superalloys became the primary material used in high temperature applications
(Smith, 1981; Brooks, 1984). For instance, in gas turbine engines, higher turbine inlet
temperature results in higher thermodynamic efficiency; therefore, a great demand
for materials resistant to creep, thermomechanical fatigue and high temperature
corrosion arises. Due to the grain boundary initiated cracking mechanism that
becomes significant a polycrystalline structure is not very favourable for that kind
of application. Although, directionally solidified structure provides admissible creep
strength and axial thermal fatigue, they suffer from grain boundaries parallel to the
primary loading direction resulting in poor performance in transversal strength and
ductility. However, the absence of grain boundaries in single crystal nickel based
superalloys provides considerable alloying and heat treatment flexibility, improving
the strength, corrosion and oxidation resistance (Kear and Piearcey, 1967; Swanson
et al., 1986). Consequently, single crystals manifest themselves as the most suitable
materials for the turbine blades in jet engines and gas turbines.

Figure I.4 presents a schematic layout of a generic gas turbine engine and how
the air flows through the structure. First, the air is drawn into the inlet with a fan.
A compressor made up of fans with many blades and attached to a shaft raises the
pressure of the air and introduces it to the combustion chambers. The compressed
air is then sprayed with fuel and an electric spark ignites the mixture. The burned
gas expands and blasts through the nozzle passing over the turbine blades which are
connected to the central shaft by the turbine discs. The hot mixture rotates the blades
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Figure I.2 : Schematic of a gas turbine engine (Aviation, 2004)

and the rotation is transferred to the compressor blades at the front which boosts the
engine thrust. The color in the layout represents the increase of the temperature
as blue stands for cold sections while red represents the hot sections. As it is clear
from the figure, turbine blades are operating under very high temperature and stress
levels as they are subjected to high gravitational forces and vibrations, while the
temperature may increase up to 1100 oC.

Figure I.3 : M88 Snecma jet engine (left), compressor, combustion chamber and
Snecma turbine (right).

Operation principle of gas turbine engines depends on Newton’s third law of
physics. After the ignition, the blasted gas exerts equal force to all directions and as
the gas sprayed out from the rear, it generates a force in the direction opposite to
their motion providing the forward thrust. Therefore, engine performance is directly
related to the operating temperatures, since the higher the inlet temperature, the
higher the velocity of the gas and so the thrust. For this reason, research in this field
focuses on the extension of the high temperature capabilities of the materials used
in the turbine section in order to improve the efficiency and overall performance. In
the last 30 years, the advances in temperature and stress capability of the turbine
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blades result from the development of the first-generation single crystal nickel-based
superalloys. Having similar mechanical properties, these first-generation alloys are
PWA1480, Rene N4, SRR 99, RR 2000, AF 56, AM1, AM3, CMSX-2, CMSX-3 and
CMSX-6 (Harris et al., 1993).

Together with the experience from the turbine blade industry, the intensive
research conducted on the first-generation single crystal nickel based superalloys,
resulted in development of second and third generation alloys with improved
thermomechanical properties. Among these new generation alloys, CMSX-4
offers considerable improvement in creep-fatigue resistance and exhibits significant
performance in retaining its strength at very high temperatures. This is primarily
due to the presence of rhenium which enhances the creep-fatigue properties (Leverant
and Kear, 1970). It is also a commercially available alloy which makes it one of the key
materials for the turbine blade industry. In that sense, including 9 major European
gas turbine manufacturers 6th frame European project called PREMECCY has also
picked CMSX-4 as a key material in order to develop new prediction methods for
use in design process. Next section is dedicated to the presentations of PREMECCY
project and its impact on the overall work.

Figure I.4 : Siemens turbine rotor (left), turbine blade (middle), temperature
gradients on a turbine blade (right).

I.2 PREMECCY Project

6th frame European project called PREMECCY (Predictive Methods for the
Combined Cycle Fatigue in Gas Turbine) with the contract number AST5-CT-2006-
030889 aims at identifying the field of rotor blade Combined Cycled Fatigue (CCF)
as an area where there are shortcomings in the existing industry standard design and
prediction tools and thus where significant benefits can be achieved (PREMECCY,
2006). The primary goal of the project is to enhance current design capability,
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resulting in reduced development cost and time, improved component efficiency and
improved component reliability. To achieve that PREMECCY brings together a
number of leading European gas turbine manufacturers and academic institutions
(See table I.1). The programme has a total budget of 6.7 million Euro with an EC
funding contribution of 3.7 million Euro.

Modern gas turbine blades are designed to resist, rather than eliminate, the
stresses generated in a resonant condition during service life. The key part of the
overall design process is to satisfy an adequate High Cycle Fatigue (HCF) strength of
a rotor blade. However, HCF is not the only damage mechanism which determines the
remaining life and rotor integrity, other mechanism such as Low Cycle Fatigue (LCF)
and Creep are inevitable in the gas turbine environment. Superimposed with the HCF,
these mechanisms have considerable influence on the lifetime. Therefore, a proper
superposition of all damage mechanisms, generally termed as CCF, is necessary to
understand and develop methods to predict lifetime and HCF integrity of components
operating under the gas turbine environment.

In order to address the stated research objectives the PREMECCY project will
carry out the following key tasks:

1. Design advanced test specimens, geometrically representative of rotor blade
critical features.

2. Define and execute a matrix of traditional testing to fully characterise the
materials in question.

3. Modify existing test rigs to allow CCF testing of advanced specimens at
mechanically and environmentally representative conditions.

4. Define and execute a matrix of advanced specimen testing to explore the effect
of a range of CCF mechanisms on life.

5. Develop new and enhanced CCF prediction methods and tools founded on
existing deformation modelling techniques and using the characterisation and
advanced test data generated within the test matrices.

This thesis accepts the final task of the project as a major objective which
is to develop an advanced methodology in order to estimate the lifetime of the
complex single crystal components of the turbine blades under CCF by assessing the
advanced experimental data generated within the project. In that sense, PREMECCY
programme is dedicated to share the outcomes of the state of the art academic
approaches with the industrial partners which will yield a reduction in engine
development costs and an increase in component reliability and efficiency. By doing
so, Europe will remain competitive in the market and improve its advantage in the
high value-added areas of knowledge and design capability.
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Participant name Short name Country

Rolls-Royce plc (Coordinator) RR UK

Rolls-Royce Deutschland Ltd & Co KG RRD Germany

Industria de Turbo Propulsores, S.A. ITP Spain

Turbomeca TM France

Snecma SN France

Avio S.p.A. AVIO Italy

MTU Aero Engines GmbH MTU Germany

Siemens Industrial Turbines SIE-UK UK

Volvo Aero Corporation VAC Sweden

INASMET INASMET Spain

Technische Universitaet Dresden TUD Germany

Association pour la Recherche et le Dévelopement
des Méthodes et Processus Industriels ARMINES France

CENTRALE RECHERCHE S.A. CRSA France

Institute of Physics of Materials Czech
Academy of Sciences of the Czech Republic IPM Republic

Politecnico di Milano PoliMi Italy

Table I.1 : Partners of PREMECCY project and consortium

I.3 Scope and outline

The main objective of thesis is to develop consistent methodologies in order to predict
crack initiation and crack growth in single crystals in the presence of strong stress
and temperature gradients. In connection with the PREMECCY project, life-time
prediction of the single crystal components of the turbine blades is a major task.
In that context, damage mechanics is a well-suited theoretical framework for the
development of crack initiation and growth models in single crystals. On the basis of
crystal plasticity theory, finite element simulations of the thermomechanics of turbine
blades provide detailed information about stress and plastic strain distribution, in
particular near geometrical singularities like cooling holes and slits. An uncoupled
damage mechanics model based on the history of FE calculations may provide
numerically fast and robust methods to estimate life-time. Therefore, exploration
of such approaches would be one of the key issues.

An anisotropic damage model coupling crystal plasticity and cyclic damage has
been developed in a previous project, that shows the interest of the approach, but
also its current limits, in particular the strong mesh dependence of the results. Recent
development of nonlocal models within the framework of the mechanics of generalized
continua could help overcoming these difficulties. A large experimental basis exists
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concerning initiation and crack growth in single crystal nickel base superalloys. The
main motivation of introducing such a model would be to account for anisotropic
crack growth and crack bifurcation in complex stress fields. Application to fatigue
and to deal with the crack closure concepts are crucial in prediction of crack growth
and therefore accepted as a primary requirement. Due to the complex numerical
aspects, a deeper insight to the implementation procedure must be provided in order
to achieve reasonable computation times which is one of the most important goals of
this work.

Chapter 2 introduces the single crystal nickel based superalloys. Microstructural
properties are given and main deformation mechanisms are pointed out. This Chapter
also intends to focus on discussing the fatigue behaviour of the single crystals.

Chapter 3 provides the constitutive modeling history of single crystals and
theromechanical representation of elastoviscoplastic single crystals is given and
parameter identification procedure is explained.

Chapter 4 aims at presenting a life-time assessment model for single crystals
developed by ONERA. Thermomechanical formulation is provided and creep-fatigue
cumulation concepts are studied. After discussing parameter identification process,
predicted Goodman diagrams are demonstrated and discussed in detail. Finally, life-
time is predicted for notched specimens and notch effects are pointed out.

Chapter 5 provides the development of a continuum damage mechanics based
coupled crack initiation and propagation model. Mesh dependency problem
is addressed and regularization techniques based on higher-order continua are
studied. Microdamage continuum is selected as the most promising approach
and further scrutinized. Crack closure effects are srudied and several solutions
to the certain problems are given. Afterwards, numerical concepts and finite
element implementation procedure are explained in detail. Providing the parameter
identification process, the model is validated and calibrated for PWA1483 single
crystal. A detailed discussion is provided at the end of the Chapter.

Chapter 6, finally gives a brief summary of conclusion and discusses future
directions.



Résumé

Le chapitre II est consacré à la description des superalliages monocristallins à base
nickel. Leurs propriétés microstructurales y sont présentées ainsi que leurs principaux
mécanismes de déformation. Ce chapitre consiste en l’analyse du comportement en
fatigue des monocristaux en considérants les aspects d’orientation, de température,
de vitesse de déformation et environnementaux, ainsi qu’en l’étude de l’initiation et
la propagation de fissures de fatigue.
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II.1 Microstructure

In contrast to its complex composition, nickel based superalloys (NBS) are
microstructurally simple compared to other alloys used in turbine industry such
as titanium alloys. The general microstructure of NBS consists of two phases. A
face-centered-cubic (fcc) nickel based matrix called γ-phase (with {111}<110> slip
systems) and γ′ precipitates which is coherent with the solid solution matrix (See
figure II.1). For both phases, having a predominante composition of Ni provides the
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basis for improved mechanical properties at elevated temperatures, due to the high
melting point of Ni.

(a) CMSX-4 (b) SRR99

(c) SC16

Figure II.1 : Microstructures of the superalloys. TEM images are obtained from
super lattice reflections. The bright γ′-phase is surrounded by dark matrix, γ.

The solid-solution-strengthened γ-phase possesses good inherent ductility and is
amenable to alloying without phase instability (Decker and Sims, 1972). Therefore,
the γ-phase usually contains solid solution additions of elements like Al, Nb, Ti, Cr,
Co, Fe, Re and W which make up approximately 30 to 40 % of the alloy by weight.
The main purpose of these alloying additions is to provide solid solution strengthening
by lowering the stacking fault energy of the γ-phase which makes cross slip in the
matrix more difficult (King, 1987). In addition to strengthening effect, some alloying
elements have more specific functions. For instance, Al, Cr and Co provide increased
oxidation/hot corrosion resistance (Erickson, 1993). For further details see table II.1.

Similar to other alloy systems, NBS gain their major properties from conjoining of
γ′ precipitates Ni3(Al, Ti) within the matrix. This phase is an ordered intermetallic
with fcc (L12) structure having Al and Ti atoms at the corner positions and Ni
atoms at the face centers. γ′-phase basically acts as an impenetrable obstacle for the
dislocation motion occuring between the phases that confines the plastic deformation
to the γ channels. Thus, γ′-phase is the principle strengthening phase in NBS. The
volume fraction of the γ′-phase is the key feature in optimizing the properties of
the superalloy. The early NBS were designed to contain less than 25 % volume
of γ′ precipitates. However, vacuum induction refining and single crystal casting
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Alloy Ni Cr Co Mo W Al Ti Ta Re Nb V Hf Ru

First gen.

PWA 1480 62.5 10 5 – 4 5 1.5 12 – – – – –
René N4 62.6 9 8 2 6 3.7 4.2 4 – 0.5 – – –
CMSX-2 66.6 8 4.6 0.6 7.9 5.6 0.9 5.8 – – – – –
SRR 99 66.5 8.5 5 - 9.5 5.5 2.2 2.8 – – – – –
AM1 60.6 8.0 6.0 2.0 6.0 5.2 1.2 9.0 – – – – –

Second gen.

PWA 1484 59.4 5 10 2 6 5.6 – 9 3 – – – –
René N5 61.8 7 8 2 5 6.2 – 7 3 – – 0.2 –
CMSX-4 61.8 6.5 9 0.6 6 5.6 1 6.5 3 – – 0.1 –
CMSX-6 70.4 10 5 3 – 4.8 4.7 2 – – – 0.1 –

Third gen.

CMSX-10 69.6 2 3 0.4 5 5.7 0.2 8 6 0.1 – 0.03 –
René N6 57.4 4.2 12.5 1.4 6 5.75 – 7.2 5.4 – – 0.15 –
TMS-75 59.9 3 12 2 6 6 – 6 5 – – 0.1 –

Fourth gen.

TMS-138 66.9 3 6 3 6 6 – 6 5 – – 0.1 2

Fifth gen.

TMS-169 59.2 4.6 6.1 2.4 5 5.6 – 5.6 6.4 – – 0.1 5

Table II.1 : Composition of single crystal nickel based superalloys for different
generations (Durand-Charre, 1997). Note that for 4th and 5th generation alloys
addition of Mo increases the lattice misfit and Ru is used for microstructure
stabilization (Zhou et al., 2004)

Effects Alloying elements

Solid solution strengthening Co, Cr, Mo, W, Ta, Re
Formation of γ′ (N i3 Al, N i3 T i) Al, Ti
Raises solvus temperature of γ′ Co
Oxidation resistance Al, Cr
Sulfidation resistance Cr, Co
Retards γ′ rafting Re
Formation of topologically closed packed Co, Mo, W, Re, Cr

Table II.2 : Role of alloying elements in superalloys (Durand-Charre, 1997; Donachie
and Donachie, 2002)
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have given the opportunity to increase the volume fraction up to 70-80 %. Due
to the absence of grain boundaries, single crytals generally do not contain grain
boundary strengthening elements, like MC type carbides and there is no specific zone
for the localized attack of oxidation and hot corrosion; therefore, the balancing of
the alloying elements can be achieved in favor of increasing the volume fraction of
γ′-phase which significantly improves the creep strength (Duhl, 1989). The maximum
creep strength is usually reached between 70 and 80 % while a further increase
leads to a significant drop in strength (Durand-Charre, 1997). For instance, the
second generation single crystal CMSX-4 has about 68 vol.% γ′ with a wide range
of heat treatment window (Erickson, 1993). For an extensive review on the physical
metallurgy and strengthening mechanisms of NBS, see (Decker, 1979).

The lattice parameters of γ and γ′ phases are generally comparable but not
identical which causes a lattice misfit defined as:

δ =
2(aγ′ − aγ)
(aγ′ + aγ)

(II.1)

where aγ′ and aγ are the lattice parameters of γ′ and γ phases respectively. The
misfit is strongly effected by the alloying elements and its sign and magnitude strongly
influence the γ′ precipitate morphology. Depending on the composition of the alloy,
heat treatment and temperature, lattice misfit could be positive, negative or zero
(Nathal et al., 1985; Bruno et al., 2003). Hence, the lattice misfit is a direct indication
of γ-γ′ phase equilibrium. In most commercial NBS, the lattice misfit is approximately
-0.2 to -0.3 % at high temperatures (Pollock et al., 2002). When lattice mismatch
is low, γ′ precipitates become spherical and when the lattice misfit is increasingly
negative (< - 0.5%) they become cuboidal and eventually form flat plates known as
”Rafting“ phenomenon (Tien and Copley, 1971; Sims et al., 1987) (See Figure II.2 and
II.3).

II.2 Heat Treatment

The typical Heat treatment of NBS consists of homogenization, solution heat
treatments and aging process. Figure II.4 shows the Al-Ni phase diagram of NBS
which will be referred during the consideration of heat treatment stages. For further
detail on alloy specific heat treatment, see (Brooks, 1984; Chandler, 1996; Davis,
2001).

The solution stage of the heat treatment aims at obtaining a microstructure of
pure solid solution γ with an fcc structure shown in Figure II.5(a). The process takes
for about 2-6 hours and it is performed at a temperature below the incipient melt
point of the alloy. The γ′ solvus separates the γ and γ + γ′ regions in the phase
diagram (see Figure II.4). This process is generally followed by a rapid cooling stage
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(a) Negative misfit (b) Near zero misfit

(c) Positive misfit

Figure II.2 : TEM images of precipitate morphology of Ni-AL-Mo ternary alloy
with a negative, near-zero and positive lattice misfits (Fährmann et al., 1995)

Figure II.3 : Microstructural evolution of rafted CMSX-4 (Henderson et al., 1998)

(air, water or oil depending on the alloy) in order to prevent coarsening of the γ′

precipitates. Upon cooling from the temperature of the solution Ni3(Al,Ti) will be
precipitated out below the γ′ solvus whose crystal structure is demonstrated in Figure
II.5(b).

The aging occurs at a temperature below the solvus temperature, allowing
homogeneous nucleation, growth and coarsening of γ′ precipitates. The temperature
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Figure II.4 : The Ni-Al binary phase diagram (Massalski, 1990)

(a) γ (b) γ′

Figure II.5 : FCC structures of γ and γ′ phases.

effects the size distribution of the precipitates, while the time of the process strongly
influence the magnitude of the precipitate size. Therefore, the temperature and
the duration of the aging treatment are the selected parameters to optimize the
morphology, alignment and the size distribution of the γ′ precipitates. The aging
process is also followed by an air or furnace cooling stage. Slow cooling rates are
preferred to obtain a clean matrix, where as forced-air quenched cooling introduces a
number of secondary γ′ precipitates in the matrix channel (Kakehi, 2000). See Table
II.2 for various phases present in single crystal NBS.
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Phase Crystal structure Formula Effects

γ′ Face centered Ni3(Al,Ti) Principal strengthening phase, volume
cubic fraction could be as high as 70 %

ν Hexagonal Ni3Ti Causes some amount of hardening
closed packed

γ′′ Body centered Ni3Nb Principal hardening phase in certain
tetragonal alloys, careful precipitation is

needed to avoid formation of γ phase
δ Orthorhombic Ni3Nb detrimental to properties when

present in large amount
ν2 Rhombohedral Co2W6 TCP phase, detrimental to

mechanical properties

Table II.3 : Role of alloying elements in superalloys (Durand-Charre, 1997; Donachie
and Donachie, 2002)

Note that in the present work the detailed microstructure will not be taken into
account for the sake of efficiency. Multiscale approaches of Nickel based superalloys
have been undertaken in (Tinga, 2009).

II.3 Deformation Mechanisms

Slip, twinning and diffusion assisted plastic deformation are the three main
mechanisms responsible for the inelastic deformation in metals. For the temperatures
less than half of the materials absolute melting temperature, the deformation in
crystalline metals primarily occurs through the propagation of dislocations. For higher
temperatures, diffusion-controlled dislocation climbs become more important.

II.3.1 Plastic Slip of Single Crystals

During the glide of dislocations, one block of crystal slips along another block of
crystal such that the crystal remains a crystal. Therefore, there are some preferred
directions and glide planes in order to preserve the fcc structure of the crystal. The
dislocation motions generally follow the shortest possible atomic distances so that
the material stores minimum energy while deforming. This principle implies that the
plastic slip occurs along a plane of high atomic density in closely packed directions
called “slip planes” (Jaoul, 1965). A schematic description of slip planes with highest
atomic density for different atomic structures is given in Figure II.6.

Under continuous shear, dislocations could continuously move along the slip planes
that the lattice on one side of the slip plane is displaced relative to the one on the other
side of the slip plane. Eventually, one block of crystal structure slides over the other by
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Figure II.6 : Packing density Dp in closest packed planes in the cubic lattices

dislocation propagation which results in a slip line that can be observed experimentally
on polished surfaces of NBS single crystals (Hanriot et al., 1991; Stouffer and Dame,
1996). Figure II.7 illustrates a schematic of an edge dislocation and its propagation
within the crystal lattice creating a slip line on the surface at the end. Figure II.8
shows the experimental observation of the slip lines on a polished surface of a single
crystal under cyclic loading.

Figure II.7 : Schematic illustrating (a) the existence and (b) propagation of an edge
dislocation within a crystal lattice subjected to shear stress (c) schematic showing
slip line or step on material due to continued dislocation propagation (Stouffer and
Dame, 1996)

Recalling the fcc structure of the NBS, the planes with the highest atomic density
are the 4 octahedral planes shown as {111} in the notation of Miller indices. Every
plane has 3 possible slip directions resulting in 12 deformation mechanisms as it is
shown in Figure II.9. Octahedral systems are generally the only active deformation
systems for low temperatures, however in a high temperature environment zig-zag
cross slip mechanism that causes macroscopic cube slip has been described (Bettge
and Osterle, 1999). Therefore, in addition to 4 octahedral planes, 3 cubic planes each
having 2 slip direction gives 18 mechanisms to be considered in total.
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Figure II.8 : Slip lanes generated at the surface of a single crystal NBS component
under fatigue (Hanriot et al., 1991)

(a) γ (b) γ′

Figure II.9 : (a) 12 octahedral (b) 6 cubic slip systems in a fcc crystal.

As it is previously demonstrated, the <110> directions are the closest packed
directions with a Burgers vector of a

2 <110> connecting one corner atom to the
neighbouring central atom. Focusing more on the {111} planes, slip mechanism on the
bases of Burgers vectors is explained in Figure II.10. The Burgers vector b1=a

2 [101̄]
defining the slip direction on the octahedral plane is shown to be regenerated through
the vectors b2 and b3. As it is presented in the figure, the formation of two step
process, b2 and b3 is energetically more favorable than the slip of b1 which dissociates
the dislocation of b1 into the following reaction (Honeycombe, 1984; Dieter, 1986).

b1 → b2 + b3

a

2
[101̄]→ a

6
[21̄1̄] +

a

6
[112̄]
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As the slip b1 is replaced by a two step process, a stacking fault is generated in
the stacking of the atoms and the dislocations produced from this dissociation are
not perfect and do not produce complete lattice translations (See Figure II.11(a)).
Furthermore, referring to the previous sections presenting the microstructure of NBS,
it is worth to mention that the stacking fault energy is not same for all FCC
metals/alloys and it has a direct influence on the deformation behaviour.

Figure II.10 : Slip mechanism in a closed packed (111) plane of an FCC lattice

(a) Stacking fault (b) Schmid curve

Figure II.11 : (a) Screw dislocation dissociating in an fcc crystal. Partial dislocations
are produced by the dissociation of a perfect dislocation (Asaro, 1983), (b) comparison
of theoretical curve and the experimental data of the yield stress in tension of
magnesium crystals as a function of orientation (Honeycombe, 1984)

Above mentioned slip mechanism depends on the activation of slip systems storing
the minimum energy during the dislocation motion. However, any slip can be
activated if there is enough stress applied through a proper direction. i.e. the
activation of slips depend not only on the crystal structure but also on the orientation
of the applied stress. Therefore, a general methodology is necessary to identify the
activated slips under various orientations of the applied load. The work constructed
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by Schmid (Schmid and Boas, 1935) provides a solid understanding of slip activation
identified from a principle generally referred as “Schmid law” or “Schmid rule” which
also gives a strong base for the constitutive modeling of single crystals.

II.3.2 Schmid Law

In 1924, Schmid suggested that plastic yield would begin on a slip system when the
resolved shear stress reached a critical value, independent of the orientation of the
tensile axis and thus of other components of stress resolved on the lattice (Schmid,
1924). This clear statement of Schmid law was based on the data of zinc single
crystals subjected to tension. Experiments on single crystals conducted in uniaxial
tension and compression strongly confirm Schmid law (See Figure II.11(b)), however,
observation of some deviations are likely, especially when the slip systems interact
with each other causing the hardening of inactive slips.

As a demonstration of Schmid law, a tensile test of a single crystal is studied in
Figure II.12. The resolved shear stress τα also known as “Schmid stress” acting on a
system α is given by

τα = σ cosφα cosλα with σ =
F

A
(II.2)

Figure II.12 : Schmid’s law and operative slip systems a) resolved shear stress
in an uniaxial tension test, b) characteristic triangle of the stereographic projection
demonstrating multislip activation.

where A is the crossectional area perpendicular to the applied load, F . Therefore,
the interpretation of equation II.2 is nothing but the projection of the applied stress
σ calculated from the force component in the slip direction Sα, F cosλα divided by
the area projected on the slip plane, A/ cosφα. As it is previously mentioned, plastic
slip starts when the resolved shear stress reaches a certain critical value, so called slip
resistance,ταr .
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τα = ταr (II.3)

From the equations (II.2) and (II.3), one can conclude that slip will start on the
slip system(s) with the highest Schmid factor(s) cosφα cosλα ≤ 0.5. First activated
slip systems, according to the orientation of applied stress in a tensile test can be
identified directly on a standard stereographic projection shown in Figure II.13(b).
For an extensive review on the slip activity of single crystals see (Asaro, 1983). The
generalized tensorial description of Schmid law will be presented in the next chapter
which is focused on constitutive modeling.

(a) 12 octahedral systems
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A3

D4

C3

C1A2

D1B2

B5
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D6
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C5A6
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A6

D6

D4

C3

B4

C1

C5

B2

[100]

[010]

A2

A3

(b) Stereographic projection

Figure II.13 : (a) Slip planes and slip directions defining 4x3=12 systems (b)
standard stereographic projection showing the respective slip systems activated in
a tension test.

II.4 Fatigue Behaviour

Over the last two decades, numerous fatigue studies have been conducted on various
types of single crystal NBS. Fatigue issues related to single crystal NBS generally
based on the turbine blades subjected to complex mechanical and thermal loading
during the flight cycle, which consists of three general stages, namely: take off, cruise
and landing. The thermomechanical environment during these three stages generally
determines the general framework of the research conducted on the fatigue behaviour
of these materials.

The life of a structural component under fatigue is determined by the time required
for the initially existing microcracks or other flaws to grow from subcritical dimensions
to the critical flaw size. Under a given loading condition the critical flaw size may
lead to the failure of the structure and it is determined from the plane strain fracture
toughness, KIC of the material (Suresh, 1998). For the characterisation of fatigue
crack growth, the fatigue growth rate, da/dN , is related to the stress intensity range
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Slip system
families

system s slip plane n s slip plane normal l s

octahedral

1
(111)

[101]

2 [011]

3 [110]

4
(111)

[101]

5 [011]

6 [110]

7
(111)

[011]

8 [110]

9 [101]

10
(111)

[110]

11 [101]

12 [011]

cube

13
(001)

[110]

14 [110]

15
(100)

[011]

16 [011]

17
(010)

[101]

18 [101]

Table II.4 : List of slip systems exist in an FCC crystal.
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∆K, where a is the crack length and N is the number of fatigue cycles. This relation
takes its mathematical form in the so-called Paris law :

da/dN = C(∆K)m (II.4)

where C and m are material constants and ∆K is the difference between the
maximum and minimum stress intensity factors. However, the experimental crack
growth data of metals and alloys does not fully satisfy this power law. When da/dN
versus ∆K data is plotted on a log scale, instead of a straight line, a curve with
varying slope is obtained. Moreover, it is also well-known that fatigue crack growth
rate depends on mean stress, i.e. R ratio and it is directly influenced by crack closure
phenomenon that reduces the effective stress intensity factor (∆Keff = Kmax −Kcl)
and therefore the crack driving force. The detailed discussion on crack closure
phenomenon will be done in the following chapters.

Figure II.14 demonstrates typical crack growth data of a single crystal NBS. In
the figure, the life time of the component is divided into three regions. In region I,
the cracking starts but the crack growth rate is very slow and approaches zero for a
defined stress intensity factor. This value is accepted as a characteristic property of the
material known as the fatigue threshold, ∆Kth and it is an extremely important design
parameter separating the infinite and finite life-times for a structural component under
fatigue. Microstructural parameters like volume fraction of phases, size of the γ′

precipitation sizes, lattice misfit etc. have a significant influence on the fatigue crack
growth rate and fatigue threshold (Hertzberg, 1989). Region II is the linear region
where the material generally obeys the Paris law. In region III the crack growth rate
starts to deviate from Paris line since Kmax approaches KIC resulting in faster and
unstable crack growth.

Like the crack growth rate plot, the general fatigue process can be analyzed in
different stages. In stage I, intense localized shear deformation occurs in slip bands
near the crack-tip and this leads to the creation of new crack surfaces (Dieter, 1986)
in the plane of maximum shear stress. In crystalline solids, dislocation motions
gives a discontinuous displacement field across a slip plane and this discontinuous
displacement is the primary cause of fatigue nucleation and propagation (Liu et al.,
1993) and it is generally driven by stresses in mode II (see Figure II.15 for different
modes). In stage II, the crack evolves from stage I and it is driven by stresses
activating mode I and continues to grow until ductile failure occurs. In the
case of a crystallographic material stage I crack refers to crack propagation along
crystallographic planes with the presence of both tensile and shear components at the
crack tip while stage II cracking refers to crack propagation along non-crystallographic
highly-stressed plane with only tensile component present at the crack tip.

In crystallographic solids long cracks generally fit in the linear regime of the crack
growth rate plots and can be characterized by Paris equation, however, structural
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Figure II.14 : A typical crack growth data of a metal (Suresh, 1998). Note that for
single crystals ∆Kth value is around 10 MPa

√
m.

Figure II.15 : Three different fracture modes.

components ofen contain or generate short cracks which do not obey the Paris law
(Suresh and Ritchie, 1984). Short cracks are identified as having a size comparable
to the size of the plastic zone. For the equivalent stress intensity factors, short cracks
usually grows at a much faster rate (See Fig. II.16). In the same sense, small cracks
can propagate well below the threshold stress intensity factor ∆Kth due to the lower
level of crack closure and higher ∆Keff resulting in less residual deformation. As
previously mentioned the plastic zone ahead of the crack tip is of the same size
as the crack; therefore, linear elastic fracture mechanics approach is not applicable
and alternative approaches such as J-integral or continuum damage mechanics are
necessary.
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Figure II.16 : Fatigue crack growth rate plot of short thermomechanical cracks

II.4.1 Orientation dependence

Orientation plays a strong role in the dependence of fatigue life on mechanical strain;
however, orientation dependence is not as clearly apparent when relating fatigue life
to the stress amplitude (Chieragatti and Remy, 1991; Fleury and Remy, 1994). The
greatest deviation in life usually occurs at lower mechanical strain ranges. Studies
have shown that orientation dependence is primarily due to the variations in Young’s
modulus with orientation. For instance, If the loading axis is in an orientation of
lower modulus, the observed life time will be improved accordingly. This argument is
verified by the observation that orientation dependence is less apparent when fatigue
life data is plotted in terms of cyclic plastic strain range. Several other studies have
been also conducted on the orientation dependence (Leverant et al., 1987; Aswath,
1994; Crone et al., 2004).

II.4.2 Temperature dependence

Fatigue cracks have been found to propagate predominantly along {111} planes at
low and intermediate temperatures with considerable crack branching and deflections,
while at elevated temperatures, cracks were found to propagate along {100} planes so
that they can be considered as stage II type (Leverant et al., 1987; Marchal, 2006).
In these studies, the general explanation addressed for the temperature dependence
is at room temperature, cracks propagate along coplanar cross-slip planes with out-
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of-plane noncoplanar secondary slip; however at elevated temperatures, due to the
increase in available slip systems, non crystallographic cracking occurs results from
both operative cube and octahedral slip systems.

II.4.3 Strain rate dependence

Under low cycle fatigue conditions with peak stress exceeding the yield strength, the
cyclic stress range determines the plastic strain range. As the strain rate is decreased,
the peak yield strength decreases, longer lives can be observed with increasing cycling
frequency. Leverant and Gell studied the influence of frequency for Mar-M-200 and
they found an optimum frequency resulting in maximum fatigue life (Leverant and
Gell, 1975). Another important factor is the influence of oxidation rate changing with
strain rate. At intermediate temperatures, specimens cycled at low strain rates had
shorter lives than those cycled at high strain rates. This trend is generally explained
with the environmental effect such that increased life under increased strain rate is
attributed to a decreased in both environmentally induced damage and creep damage
(Sehitoglu and Boismier, 1990).

II.4.4 Environmental effects

Most of the studies are conducted in the laboratory air; however, studies have shown
that the outcomes of fatigue tests conducted in vacuum significantly differs from the
ones conducted in air. Tests in vacuum (pressurized to 10−4N.m−2) result in a much
higher crack initiation life than air for low test frequencies. The difference results from
oxidation penetrating to the crack tip (Wright, 1988). Observations performed on the
surfaces of the failed samples show great morphological differences indicating that
environmentally controlled diffusion kinetics are involved in the local damage process
(Duquette and Gell, 1972; Reger and Remy, 1988). As previously mentioned oxidation
is temperature and strain rate dependent; while high temperature increases the
oxidation effects, slower frequency cycling and tensile conditions that allow cracking
of brittle surface grown oxides accelerate the crack initiation process (Wright, 1988;
Reger and Remy, 1988). For an extensive study on environmental effects observed on
superalloys, see (Li, 1997).

II.4.5 Creep-Fatigue effects

It is very well known that superimposed dwell periods in fatigue cycling shortens the
crack initiation lives of single crystal NBS (Reger and Remy, 1988; Koster and Rémy,
2000). The total strain life curve in CMSX-4 at 950oC shifts towards shorter lives
when tensile dwell periods are increased (Koster and Rémy, 2000). Creep-fatigue
interaction promotes the stress concentration originates from pores, inclusions and
coarsening of precipitate particles and therefore, shortens the fatigue life. Dwell
periods in compression also known to increase the environmentally induced damage.
Moreover in the work of Lucas it has been shown that for ultra-high cycle fatigue
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at high temperatures and for small amplitudes, time to fracture is tend to increase
with the increasing stress amplitude to up to some extend which is explained in
connection with the improved creep properties (Lucas et al., 2005), i.e. it is argued
that high frequency vibrations with small amplitudes have positive effect on the creep
behaviour.

II.4.6 Fatigue crack initiation

Together with the thermomechanical conditions in the operating environment, defects
existing in the material are the main sources of fatigue crack initiation in single crystal
NBS. Addressing the microstructure of these materials, majority of the intrinsic
material defects such as carbides and associated microporosity are found between the
dendrite arms perpendicular to the direction of solidification. These discontinuities
parallel to the dendrites serve as crack initiation sites in the microstructure of the alloy
due to their ability to inhibit long range dislocation motion (DeLuca and Annis, 1995).
Microporosity exists in the interdentric region is considered as the most frequently
observed fatigue crack initiator of both LCF and HCF behaviour of single crystal
NBS and can be avoided by employing special casting procedures like hot isostatic
pressing (DeLuca and Annis, 1995).

Oxidation can also be considered to be a source of crack initiation. For instance
Wright showed that the surface crack initiation in Réne N4 is caused by fatigue-
assisted cracking and spalling of oxide products which produce roughened and pitted
surfaces. With further cycling, these pits develop into oxides and then into sharp
fatigue cracks at the surfaces (Wright, 1988). Fortunately, today’s coating technology
is able to deal with that sort of initiation by isolating the material surface from the
environment.

Apart from the above definitions, crack initiation can also be classified as
crystallographic and non-crystallographic. In that context, in air and at room
temperature and low stress the majority of crack initiation results from carbide
occurring along the {111} planes and they are classified as crystallographic (Arakere
and Swanson, 2001). At moderately high temperatures (>593oC) initiations have
been observed to occur at carbides making them non-crystallographic (DeLuca and
Annis, 1995) (See Figure II.17).

II.4.7 Fatigue crack propagation

Like crack initiation, crack propagation also depends on microstructure, environ-
mental conditions, crystal orientation, temperature and stress state. However,
regardless of these effects, the majority of single crystal NBS experience crack
propagation on the planes coinciding with the {111} planes as well as a phase
where the crack propagates along a plane normal to the applied loading which
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Figure II.17 : Crack initiation at the surface of CMSX-4 specimen after fatigue at
T=1050oC ∆εt = 0.9%. a) Singular cracks at a surface casting porosity, b) crack
formation at the surface through linking-up of short cracks and c) (010) section
showing a small crack propagation from an oxidized surface pore (Mughrabi and
Ott, 1999)

might be macroscopically considered as cube planes (Antolovich, 1996), Moreover,
the relation between fatigue crack growth and the dislocation emission from the crack
tip has been shown in several experiments showing that fracture or free surface
development is aided by dislocation exhaustion on crystallographic planes in the
critical zone (DeLuca and Annis, 1995; Antolovich, 1996), Consequently, if sufficient
lattice plane dislocations accumulate or pile up, cohesive forces are weakened and
fracture undertakes the character of the deformation mechanism. Therefore, in the
context of constitutive modeling, the identification of active slip systems is vital for
a comprehensive study of crack growth in single crystal NBS.

Slip character occurring at the crack tip strongly effects the fatigue crack growth
regime. Slipping on the complementary planes may widen the crack resulting in
blunting. Upon unloading the slip direction in the end zone is reversed and the crack
faces are crushed together to form a resharpened crack tip. Theoretically, whole
slip process could be reversed; however, especially due to the oxidation, the process
becomes irreversible and enhances the crack growth rate. In that context, roughness
and oxide induced closure concepts are also to be taken into consideration. Plasticity
induced closure and its influence on crack growth will be discussed in detail in Chapter
5.

At high temperatures, creep has also considerable influence on fatigue crack
growth. The fatigue lives shown to reduced for specimens with γ − γ′ rafts
perpendicular to the stress axis and extended for specimens with γ − γ′ rafts parallel
to the stress axis.(Mughrabi and Ott, 1999). Therefore, γ−γ′ morphology and volume
fraction plays a very important role on rafting and so crack propagation (see Figure
II.18).
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Figure II.18 : Fatigue crack propagation in CMSX-4 specimen after fatigue at
T=1050oC ∆εt = 0.9%. SEM micrographs dependence on the γ − γ′ morphology
(010) section parallel to [001]. (a-b) A specimen with cuboidal γ′ particles (a-b) (c-d)
a specimen with γ − γ′ rafts perpendicular to the stress axis, (e-f) a specimen with
γ − γ′ rafts parallel to the stress axis (Mughrabi and Ott, 1999).
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Résumé

Le chapitre III fournit un historique des modéles constitutifs existants dans le cas
des monocristaux, ainsi que de la représentation thermomécanique des monocristaux
élastoviscoplastiques. Par ailleurs, la procédure d’identification des paramétres du
modèle est expliquée en détail.
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III.1 Introduction

Even though the microstructural properties, have a significant influence on the
mechanical behaviour, the models used for design are not necessarily and strictly based
on microstructural aspects (Cailletaud et al., 2003). Pure macroscopic approaches
are widely used in current practice considering viscoplastic constitutive equations
which account for isotropic and kinematic hardening in order to correctly represent
the cyclic behaviour (see Figure III.1). Due to their capability of representing
rate dependent plastic deformation coupled with non-linear hardening regimes,
macroscopic approaches became a standard base for the models estimating lifetime.

In Chapter 2, it is clearly stated that single crystal NBS have face centered
cubic crystallographic structure and their deformation behaviour is highly anisotropic.
The elastic behaviour is cubic and the plastic deformation is due to the plastic slip
on 12 octahedral {111}<110> and 6 cube {100}<110> slip systems. Therefore, a
representative model, to be used to perform structural calculations, should take into
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account the crystal lattice type, orientation in space and number of activated slip
systems and their interactions under complex thermodynamical loadings based on
Schmid law. Moreover, computation time for industrial applications must be relatively
low and the number of material parameters must be convenient and easy to calibrate.
In that context, viscoplastic models for cubic single crystals based on Hill’s criterion
can be used for one-dimensional cyclic loading; however, this type of model does
not fully consider Schmid law. Thus, the model is unable to capture observations
made on tubular specimens under torsional loading, which present inhomogeneous
deformation along the circumference (Nouailhas and Cailletaud, 1995). Taking
Schmid law into account, several crystallographic models exist in the literature to
describe the anisotropic behaviour of single crystal nickel-base superalloys, for a
wide range of temperatures. Basically, there are three categories: phenomenological
models based on theory of invariants (Nouailhas and Culié, 1991; Li and Smith, 1998),
crystallographic phenomenological models (Méric et al., 1991; Cailletaud, 1987) and
crystallographic micromechanical models (Fedelich, 2002; Busso et al., 2000).

In this work, Cailletaud’s crystallographic model (Cailletaud, 1987) is taken as a
base for the modeling due to its consistency with experimental results obtained for
various crystal orientations and the parameter sets calibrated for AM1 and CMSX-4
by Hanriot (Hanriot et al., 1991) and Koster (Koster et al., 2002) are used.

Figure III.1 : Length scales for constitutive modeling

III.2 Constitutive modeling history

After the significant work of Schmid, mathematical representation of the plastic
deformation in metals, especially in single crystals was pioneered by Taylor (Taylor,
1934). More rigorous and rational formulations for the description of plastically
deforming crystals have been developed by Hill (Hill, 1966; Hill and Rice, 1972). The
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formulation is also recast into the mathematical framework of multisurface plasticity
(Mandel, 1972; Maier, 1970). The finite strain formulation is provided in (Teodosiu,
1970; Rice, 1971; Mandel, 1972). A comprehensive review of this subject can be found
in (Asaro, 1983; Havner, 1992; Bassani, 1993; Khan, 1995). For more recent accounts
showing the success of this continuum approach based on multiplicative decomposition
and the use of scalar dislocation densities % see (Maugin, 1992; Teodosiu, 1997;
Gumbsch and Pippan, 2005; Bertram, 2005).

In that context, the numerical implementation of rate-dependent single crystal
plasticity is documented in (Needleman et al., 1985; Rashid and Nemat-Nasser, 1992;
Cailletaud and Chaboche, 1996; Steinmann and Stein, 1996) and for more recent
research for rate independent case, see (Borja and Wren, 1993; Cuitiño and Ortiz,
1993; Anand and Kothari, 1996; Miehe, 1996).

III.3 Thermomechanics of elastoviscoplastic single crys-

tals

In connection with the following chapters and for the sake of simplicity, the
thermomechanical framework of single crystals will be presented in small strain space
in this section.

Starting from the energy balance, the equations of continuum thermomechanics
can be written in local form as:

• energy balance
ρė = σ∼ : ε̇∼+ ρr − div q (III.1)

where ė is the energy rate, σ∼ is the Cauchy stress, ε̇∼ is the strain rate tensor, r
is the heat supply and q denotes the heat flux.

• entropy principle
ρη̇ + div

(q
T

)
− ρr

T
≥ 0 (III.2)

where η is the specific entropy function

• Clausius-Duhem inequality

− ρ(ė− T η̇) + σ∼ : ε̇∼−
q

T
.gradT ≥ 0 (III.3)

Defining the Helmholtz free energy as the Legende transformation of the internal
energy e by

Ψ = e− Tη (III.4)

inequality III.3 becomes

− ρ(Ψ̇− ηṪ ) + σ∼ : ε̇∼−
q

T
.gradT ≥ 0 (III.5)
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• local and conductive dissipation

ρDloc = −ρ(Ψ̇ + ηṪ ) + σ∼ : ε̇∼ ≥ 0 (III.6)

ρDcond = −q
T
.gradT ≥ 0 (III.7)

III.3.1 Coleman’s exploitation method

The thermodynamic restrictions expressed in equations III.6 and III.7 can be exploited
for thermoelastoplastic solids in order to give a reduced form of constitutive equations
by the so-called Coleman’s method. A typical dependence of the free energy function,
Ψ̂, on the internal variables are assumed:

Ψ = Ψ̂(x, T, ε∼, ε
p, α, g) (III.8)

σ∼ = σ̂(x, T, ε∼, ε
p, α, g) (III.9)

β
∼

= β̂
∼

(x, T, ε∼, ε
p, α, g) (III.10)

η = η̂(x, T, ε∼, ε
p, α, g) (III.11)

X = X̂(x, T, ε∼, ε
p, α, g) (III.12)

q = q̂(x, T, ε∼, ε
p, α, g) (III.13)

where g is the temperature gradient, gradT , and β
∼

and X are the
thermodynamical forces associated with the plastic strain, ε∼

p and internal variable,
α, respectively. By inserting Ψ̇ = ∂εΨ̂ε̇+ ∂εpΨ̂ε̇p + ∂T Ψ̂Ṫ + ∂αΨ̂α̇+ ∂gΨ̂ġ into III.6,
Clasius-Plank inequality III.6 can be exploited as:

ρDloc =
[
σ∼ − ρ∂εΨ̂

]
: ε̇∼−ρ∂εpΨ̂ : ε̇∼

p−ρ
[
η + ∂T Ψ̂

]
Ṫ−

[
∂gΨ̂

]
ġ−ρ∂αΨ̂α̇ ≥ 0 (III.14)

The inequality III.14 should be satisfied for arbitrary rates, ε̇∼, Ṫ , ġ. This is the case
if the terms in brackets vanish, which gives the basic definition of thermoelasticity
as non dissipative response (ρDloc = 0). Therefore, Coleman’s method implies a
particular form of the constitutive equations due to:

[
σ∼ − ρ∂εΨ̂

]
=
[
σ∼ − c∼∼ : (ε∼− ε∼p)

]
= 0; ρ

[
η + ∂T Ψ̂

]
= 0; ∂gΨ̂ = 0 (III.15)

where (ε∼−ε∼p) denotes the elastic strain tensor in accordance with the free energy
function proposed in the next subsection. Finally, the local dissipation inequality
takes the form:

β
∼

: ε∼
p −Xα̇ ≥ 0 (III.16)
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Equation III.14 and III.15 give the following reduced form of the constitutive
equations of thermoelasticity:

σ∼ = ρ∂εΨ̂(x, T, ε∼, ε
p, α) (III.17)

β
∼

= −ρ∂εpΨ̂(x, T, ε∼, ε
p, α) (III.18)

η = −∂T Ψ̂(x, T, ε∼, ε
p, α) (III.19)

X = ρ∂αΨ̂(x, T, ε∼, ε
p, α) (III.20)

with Ψ = Ψ̂(x, T, ε∼, ε
p, α); q = q̂(x, T, ε, εp, α, g) (III.21)

Note that the free energy serves as a potential for the stresses σ∼ and β
∼

, the entropy
η and the internal variable α and it is not a function of temperature gradient, g.

III.3.2 Presentation of a crystallographic model

Now a template model for single crystal behaviour can be introduced with specific
internal variables: dislocation density %s, internal structure αs. The free energy
function takes the form:

ψ(ε∼
e, %s, αs) =

1
2
ε∼
e : c∼∼

: ε∼
e + r0

N∑
s=1

%s +
1
2
q

N∑
r,s=1

hrs%r%s +
1
2

N∑
s=1

αs2 (III.22)

where r0 and q are the material constants and s stands for slip system.

The state laws are derived as:

σ∼ = ρ
∂ψ

∂ε∼
e

= c∼∼
: ε∼

e

rs = ρ
∂ψ

∂%s
= r0 + q

N∑
r=1

hsr%s

xs = ρ
∂ψ

∂αs
= cαs

where rs is the yield limit and xs is the back stress for each system s. Note
that the linear strain tensor ε∼ = sym[∇u] is by definition the symmetric part of the
displacement and we consider its additive decomposition:

ε∼ = ε∼
e + ε∼

p (III.23)

into elastic and plastic parts ε∼
e, ε∼

p, respectively. The latter one remains after stress
relaxation. The elastic response of the crystalline solid is governed by the lattice
deformation and by local inhomogeneous deformation fields due to dislocations and
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point defects. As it has been mentioned previously the material has an fcc structure
results in a cubic elastic behaviour. Therefore, the fourth order elasticity moduli c∼∼

is
composed of 3 constants C11, C12 and C44 as shown below.

c∼∼
=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


(III.24)

Schmid law is represented here as a multimechanism crystal plasticity yield criterion:

fs = |τ s − xs| − rs (III.25)

The driving force for plastic slip is the resolved shear stress,τ s, defined on the slip
system s:

τ s = σ∼ : (m s ⊗ n s) = σ∼ : (m s
sym⊗ n s) = (σ∼ .n

s).m s (III.26)

where n s is the normal to the plane of slip system s and m s stands for the
corresponding slip direction (see Figure III.2).

Figure III.2 : Octahedral slip systems defined by slip planes, corresponding normals,
n s and slip directions, m s

The dissipation potential is taken as:

Ω(σ∼ , r
s, xs) =

K

n+ 1

N∑
s=1

〈f
s

K
〉n+1 (III.27)

Flow and hardening rules are derived from the dissipation potential by using
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normality. Then plastic strain rate reads:

ε̇∼
p =

∂Ω
∂σ∼

=
N∑
s=1

γ̇sm s
sym⊗ n s (III.28)

The flow rule on slip system s is a classical Norton rule with threshold.

γ̇s =
〈 |τ s − xs| − rs

K

〉n
sign(τ s − xs) (III.29)

where rs and xs are the variables for isotropic and kinematic hardening
respectively and K and n are material parameters to be identified.

Evolution of other strain-like internal variables are also derived from dissipation
potential by normality:

%̇s = − ∂Ω
∂rs

= v̇s, (III.30)

α̇s = − ∂Ω
∂xs

= γ̇s (III.31)

with
v̇s = 〈f

s

K
〉n, γ̇s = v̇s sign(τ s − rs) (III.32)

Hardening rules are generally chosen nonlinear for a better representation of the
material. In this work following nonlinear isotropic hardening is chosen:

%s = 1− exp(−bvs) (III.33)

rs = r0 + q
∑
r=1

hsr(1− exp(−bvs)) (III.34)

where r0 is the initial yield stress, b isa material parameter and hsr is the
interaction matrix describing the self and latent hardening which is caused by the
interactions between the different slip systems (see Figure III.3). For single crystal
NBS, general practice suggests to take interaction matrix as identity (see (Méric et al.,
1991) for details).

In order to express a realistic cyclic behaviour, a nonlinear kinematic hardening
is chosen:

α̇s = γ̇s − dv̇sαs (III.35)

where d is a material parameter. Note that a static recovery term, − (αsM )m sign(αs),
can be added to the equation if necessary, where M and n are material constants.
Above equation can also be analytically integrated for monotonic loading as:
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xs =
c

d
(±1− exp(−dvs)) (III.36)

Figure III.3 : Interaction matrix is a symmetric matrix composed of six coefficients
which describe the interactions between the different slip systems. The coefficient h1
describes the self hardening of the given slip systems. The coefficient h2 describes the
hardening caused by the interaction with slip systems in the same slip plane. The
coefficients h3, h4, h5 and h6 describe the interaction with the other slip directions
in different slip planes. Taylor hardening can be obtained by simply setting hi = 1

III.4 Parameter Identification

Recalling single crystals anisotropic nature, several multiaxial tests have to be
performed in order to identify the model parameters for each temperature. For the
three elastic constants, three experiments are needed. Two monotonic tension tests
performed in two different orientations are necessary to identify C11 and C44 and one
torsion test is enough for the identification of constant, C12.

In order to calibrate the viscosity parameters K and n, basically the data from
monotonic tension tests performed for different strain rates is used (See Figure
III.5(a)). The parameters can be further polished by assessing available creep test data
if the temperature is high or cross checking the data of cyclic tests performed under
different loading frequencies. Constants of static recovery, M and m are calibrated
directly from the creep tests (See Figure III.5(d)). For the calibration of isotropic
hardening parameters, r0, q, b, monotonic tension tests performed for several crystal
orientations (preferably <111> and <011>) are used (See Figure III.5 (b,c)). In order
to identify the isotropic hardening parameters of cubic slip system family, tensile
test performed for the direction <111> is enough. The monotonic torsion tests of
<001> oriented tubular specimen can be used for validation of the cubic parameters
since only cubic slip systems are activated along the periphery of the specimen and
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that type of activations are observable only if local measurements are performed
(Nouailhas and Cailletaud, 1995). Finally, kinematic hardening parameters, c and
d are calibrated from the cyclic tests data taken from specimens with different
crystallographic orientations which are generally <011> are <111> oriented (See
Figure III.5(e)). Cyclic tension-torsion tests are suitable for the validation of
kinematic hardening parameters of cubic systems. Parameter sets for single crystals
CMSX-4 and PWA1483 at 950oC are provided in Appendix -C-.
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Résumé

Le chapitre IV vise à présenter un modèle de prédiction de durée de vie développé
par l’Office National d’Etudes et de Recherches Aérospatiales (ONERA) pour
les monocristaux. La formulation thermomécanique est fournie et les concepts
d’interaction entre fatigue et fluage sont étudiés. Après avoir discuter la procédure
d’identification des paramètres, les diagrammes de Goodman prédits sont démontrés
et discutés en détails. Enfin, la durée de vie d’échantillons entaillés est estimée et des
effets d’entaille sont mis en évidence.
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IV.1 Introduction

During their service life single Crystal components are generally subjected to complex
thermomechanical loading conditions. Lifetime prediction of these components under
complex loading and severe environmental conditions is an important and challenging
task of the component design process. A solid understanding of the phenomena
leading to component failure like creep and fatigue is necessary in order to achieve a
proper quantitative analysis. Here, lifetime refers to the time (or number of cycles)
required for a virgin material to exhibit a macroscopic crack initiation. For single
crystals, cracks of approximately 1 mm long are basically considered as initiated
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macroscopic cracks giving rise to a possible application of Fracture Mechanics or
alternative concepts.

Computational modeling aspects of fatigue life predictions may follow different
paths depending on the assumptions and design purposes. Regarding single crystal
components, designers are mostly interested in crack initiation and crack initiation
life is basically considered as the component service life. In that context, single crystal
industry is more interested in strain based approaches which provide more promising
results in quantifying initiation life compared to Fracture Mechanics based approaches.
History analysis of Finite element calculations is performed at the component level
in order to identify the fatigue critical zones and predict the crack initiation time.
Fatigue damage initiated in an individual loading cycle is generally determined from
multiaxial damage laws which take the material response calculated from a proper
cyclic loading plasticity model, as an input.

Models describing the material response are often written in a rate form and in
the thermodynamics framework (Lemaitre and Chaboche, 1994). On the other hand,
the fatigue response of the material is usually expressed by Woehler curves which are
mostly addressed in practical engineering approaches (Manson and Hirschberg, 1964)
(See Figure IV.1). Basic fatigue laws often mimic the straight line in the log-log
diagram of maximum applied stress, σmax vs. the number of cycles to failure, Nf

which is generally parametrized for R ratio or the mean stress. Effects of mean stress
on the fatigue life is often reproduced by introducing amplitude laws based on R ratio
(Lemaitre and Plumtree, 1979; Chaboche and Lesne, 1988).

Application of above mentioned models to real life components is not an easy task.
Modeling aspects have to be extended to 3D which brings certain complexity to the
stress amplitude, stress ratio and cycle definitions, especially when irregular cyclic
loadings or temperature changes are encountered during fatigue loading. Therefore,
in this framework, first goal to be achieved would be presenting a clear link between
stress and strain described within the scope of non-linear material behaviour in 3D.
For that purpose one can address models based on Continuum Damage Mechanics
(Lemaitre and Chaboche, 1994; Paas, 1990; Lemaitre, 1992; Lemaitre and Desmorat,
2004; Tinga, 2009) or energy-based approaches (Dang-Van and Papadopoulos, 1999;
Charkaluk and Constantinescu, 2000).

The model used in the present work is based on the works of (Cailletaud
and Chaboche, 1982) and (Gallerneau, 1995). The formulation is developed in
the Continuum Damage Mechanics framework for metallic materials working at
high temperatures by Structures and Damage Mechanics Department of French
Aerospace Lab (ONERA). The model takes multiaxial loading and mean stress
effects into account and a non-linear accumulation of creep and fatigue is considered.
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Different from the classical approaches for fatigue (Dang-Van, 1973; Kujawski
and Ellying, 1984; Manson and Halford, 1986; Leiholz, 1986; Fatemi and Yang,
1998), the present approach allows for the quantification of damage for arbitrary
cyclic thermomechanical loadings in 3D. The model works as a post-processor by
assessing the multiaxial stress-strain history generated from an elastoviscoplastic FE
calculation. A fast and robust rain-flow algorithm is used to count arbitrary cycles;
therefore, any loading history can be used as an input allowing Combined Cycled
Fatigue predictions. Note that our contribution to the modeling aspects is very
limited. The present work mainly based on the utilisation of the model on CMSX-
4 single crystal superalloy. The main objective is to generate Goodman diagrams
for various R ratios and temperatures and predict life-time for real geometries. In
that sense, after the parameter identification process, a numerical tool is developed
in order to generate Goodman diagrams automatically and the modeling aspects are
further studied on the generated Goodman diagrams for various temperatures. CCF
prediction capability of the model is presented comparing with CCF test data and
finally HCF predictions on a notched specimen are presented and results are studied.

IV.2 General formulation of the multiaxial creep-fatigue

model

As it is previously stated, the continuous damage model presented here is based
on Continuum Damage Mechanics framework which assumes that creep and fatigue
processes can be described by scalar damage variable D. The damage variable
stands for the progressive deterioration of the material where D = 0 corresponds
to the undamaged state or a virgin material and D = 1 corresponds to the fully
damaged state or crack initiation. The model supposes that regardless of the damage
mechanisms, mechanical effects of creep and fatigue damage are cumulative.

D = DC +DF (IV.1)

The interaction between creep and fatigue can be expressed in a differential form
as follows:

dDC = F1(χc, Dc)dt (IV.2)

dDF = F2(AII , σ̄H , σmax, DF )dN (IV.3)

dD = F1(χc, D)dt+ F2(AII , σ̄H , σmax, D)dN (IV.4)

where AII is the octahedral shear stress amplitude in order to introduce a
multiaxial formulation, σ̄H is the mean hydrostatic pressure, σmax is the maximum
applied load and χc is the delayed stress. Note that creep and fatigue damage
interact each other in the way to increase their counterpart in the calculation of total
damage. 1D and 3D expressions of all variables required to define a general anisotropic
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Creep Var. Multiaxial expression Uniaxial expression (isotropic)

χc αX0 + βhXh + (1− α− βh) tension = |σ|, comp. = |σ|(1− 2βh)

X0 si(Xi) |σ|
Xh N c

ijXij tr(σ∼)

Xeq

√
XijM c

ijklXkl |σ|
Fatigue Var. Multiaxial expression Uniaxial expression (isotropic)

AII
1
2

√
(σMij − σmkl)Mf1

ijkl(σ
M
kl − σmkl) ∆σ

2

σmax

√
σMij M

f2
ijklσ

M
kl |σmax|

σH
1
3mean(tr(σ∼)) σH

Table IV.1 : Multiaxial expressions for creep-fatigue model for 1D and 3D

multiaxial case are provided in Table IV.2. In the creep law, a Hayhurst’s type
criterion is used (Hayhurst, 1972) where an anisotropic creep damage evolution can be
considered by introducing second and fourth order tensorsN∼ c andM∼∼ c respectively. In
this work creep-fatigue evolution is assumed isotropic; therefore, the tensors are taken
as identity and α and βh, are taken as material parameters. Furthermore, regarding
the creep law, the frequency dependency on fatigue damage process at high frequency
loading is eliminated by introducing a delayed stress concept (Lesne and Savalle,
1987). For the fatigue law, all variables are defined for each cycle such as maximum
and mean stress and amplitude. The mean stress effect is introduced through the mean
hydrostatic pressure σ̄H . The multiaxiality is introduced through the octahedral shear
stress amplitude AII where σM and σm are the maximum and minimum values of the
each stress tensor component calculated for each cycle. Anisotropic fatigue damage
evolution is introduced by fourth order structure tensors M∼∼

f1 and M∼∼
f2 which take

place within the definition of AII and maximum stress.

IV.3 Thermomechanical formulation

The differential form of creep damage equation generalises Kachanov-Rabotnov’s
equation (Kachanov, 1958; Rabotnov, 1969) where tension and compression loadings
are differentiated and delayed stress X has been introduced:

dDc =

(
χc(X(t))
A(T (t))

r(T (t))
)

(1−Dc)−k(T (t))dt (IV.5)

from this equation the creep damage is calculated for the corresponding cycle by
simply integrating the equation at every time step. For the temperature T(t), at the
a instant “t”, a scalar quantity S̄ is built and integration is performed between t1

and t2 and the parameters A, r and k are to be supplied which can be temperature
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dependent such as:

I(t) = (k + 1)
∫ t2

t1

(
S̄

A

)r
dt (IV.6)

with S̄ = a1si(Xi) + a2N
c
ijXij + (1− a1 + a2

√
XijMijklXkl) (IV.7)

Note that parameters a1 and a2 are used to activate anisotropic creep damage
evolution. However, in this work creep damage evolution is assumed isotropic; thus,
they are set to zero. I(t) gets the value of 1, when the integration is performed from
t1 to the time of rupture and the number of cycles to rupture is set to 1. If t2 is earlier
than the time of rupture, then the time of rupture is calculated by taking the inverse
of integrated value and multiplying it with the length of loading. Pure uniaxial creep
tests in tension are necessary to identify the creep law by integrating equation IV.5
between DC = 0 and DC = 1. At a given temperature T , the rupture time is given
by the relation:

tR =
1

k(T ) + 1

(
σ

A(T )

)−r(T )

(IV.8)

The differential equation for the fatigue damage initiation takes the form:

δD =
[
1− (1−D)β+1

]α(∆σ,σH)
[

∆σ
2

M(σH)

]−β
δN (IV.9)

where ∆σ is the stress amplitude, σmax and σH are the maximum stress and mean
stress respectively and β is a temperature independent model constant. Considering
non-linear accumulation α reads:

α(∆σ, σH) = 1− a
〈

∆σ
2 − σ

′
l(σH)

σu − σmax

〉
(IV.10)

where a is a model parameter and σ
′
l is a function of fatigue limit, σl and mean

stress:

σ
′
l(σH) = σl (1− b1σH) (IV.11)

where b1 is a model parameter and M is a function depending on mean stress:

M(σH) = M (1− b2σH) (IV.12)

where M and b2 are temperature independent model coefficients. As previously
mentioned D = 0 stands for virgin material, while D = 1 is referring to the fatigue
failure. Therefore, if the differential equation IV.9 is integrated from 0 to 1, the result
simply gives the number of cycles to the failure, Nf as shown below:
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Figure IV.1 : A typical Woehler curve demonstrating number of fatigue cycles to
the failure for various stress amplitudes and showing the ultimate stress and fatigue
limit.

NF =
1

(β + 1) [1− α(∆σ, σH)]

[
∆σ
2

M(σH)

]−β
(IV.13)

which can directly be read from the Woehler curve (See Figure IV.1)
Note that model can be reduced by simply normalizing the temperature

independent coefficients with ultimate stress, σu(T ).

IV.4 Creep-fatigue damage cumulation for complex

loadings

The presented model allows for creep and fatigue damage cumulation under complex
loading cycles by assessing all loading history and count cycles by using so-called
“Rainflow” algorithm. After decomposing the complex history (See Figure IV.2) into
n individual cycles, nc, number of cycles to the failure under creep fatigue loading,
NCF is calculated from the number of cycles to failure under creep NCi and the
number of cycles to failure under fatigue, NFi, (i = 1, .., nc).

The cumulation rule uses the quantities Ci = 1
NCi

and Fi = 1
Nfi

in order
to compute the damage evolution from Di to Df in each cycle. The nonlinear
accumulation of creep-fatigue damage is expressed by the following formulas:

Ci = (1−Di)k+1 − (1−Di−1)k+1 (IV.14)

Fi =
[
1− (1−Df )β+1

]1−αi −
[
1− (1−Di)

β+1
]1−αi−1

(IV.15)
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Figure IV.2 : A complex loading histrory composed of three individual cycles

Above formulations assume that fatigue damage develops after creep damage. The
reverse case can be obtained by simply interchanging Di with Df . Di and Df stands
for the total damage value before the current cumulation process for cycle i. In
equation IV.14 values Ci and Di−1 are known; therefore, Di can be directly calculated
from the formula and inserted in the equation IV.15. Similarly, Df is calculated from
the known values of Fi and Di. Df expresses the total damage after the cycle i and
it replaces Di−1 for the next cycle i+ 1.

Note that the resulting cumulation rule predicts more conservative results than
linear accumulation ( 1

NCF
= 1

NC
+ 1

NF
) and failure under creep-fatigue interaction is

given when DCF reaches 1. As a representation of non-linear accumulation see Figure
IV.3

Figure IV.3 : Non linear interaction of creep and fatigue in IN 100 alloy (Lemaitre
and Chaboche, 1994)
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IV.5 Parameter identification

Parameter identification of creep-fatigue damage model is based on the assessment of
creep test results and Woehler curves. For each temperature, the parameters A(T )
and r(T ) can be identified from the corresponding creep curves. The identification
of k(T ) is achieved from the creep data showing strain evolution with time. The
coefficient βh introduced in Hayhurst’s creep criterion is used to distinguish tension
and compression behaviour of the material under creep. The standard creep test
data performed under tension and compression is enough to calibrate βh. However in
this work, it is assumed that for single crystals the difference between creep regime
behaviour of the material under tension and compression is insignificant. Therefore
it is set to zero. Parameter calibration for CMSX-4 is shown in figure IV.4. The
test results for various temperatures are taken from the literature (Report No5 of BE
96-3911, 1999). As it is demonstrated in the figure experimental outcomes are in a
good coherence with the numerical results.
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sim.  750oC
exp. 750oC
sim. 800oC
exp. 800oC
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Figure IV.4 : CMSX-4 single crystal superalloy. Identification of the creep damage
law from 750oC to 1050oC for direction <001>

Majority of the fatigue parameters, σu, σl, ∆σ, σH and β can directly be read from
the Woehler curves constructed for each temperature. In order to identify the degree
of creep-fatigue interaction controlled by the coefficient a, Woehler curves constructed
for different loading frequencies are used for each temperature. Note that the quality
of the parameters strictly depends on the variety of R ratios generated in the test data.
Experimental data for single crystals show that even though the material is highly
anisotropic, the anisotropy in life time disappears if a stress criterion is used for the
assessment. Therefore, in this work, single crystals are assumed to be isotropic in the
sense of lifetime and the analysis have been performed mainly for the direction <001>.
Figure IV.5 demonstrates the comparison between numerical and experimental results.
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It is shown that the model is successfully predicting the experimental results within
the zone of available test data obeying the general regime of Woehler curves. The
corresponding parameter set for CMSX-4 can be found in Appendix -C-.
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Figure IV.5 : CMSX-4 single crystal superalloy. Identification of the fatigue damage
from data at 600oC and 950oC

IV.6 Validation based on CCF tests

Single crystal components especially in turbine blade industry, are generally subjected
to high cycle fatigue (HCF) conditions. Nevertheless, it is well known in the
engineering practice that low cycle fatigue (LCF) has also an significant influence
on the life-time resulting in combined cycled fatigue (CCF). As it is mentioned in
Chapter 1, to determine the interaction between LCF and HCF in single crystal
components would be one of the major goals of the project PREMECCY. The aim
of this section is to investigate the outcomes of the creep-fatigue model in order to
see whether the identified parameters are good enough to perform CCF predictions.
For that purpose the CCF tests performed on CMSX-4 components by Institute of
Physics of Materials of the Academy of Sciences of the Czech Republic are utilized
(IPM).

For a clear presentation of the CCF results, specific definitions for R ratio, σmax
and σmin are necessary. Figure IV.6 illustrates a typical CCF loading cycle expressing
the necessary definitions. As it is schematically presented in the figure, CCF loading
is nothing but superposition of LCF and HCF loadings. LCF is taken as the backbone
of the loading regime, where R ratio of LCF is zero, σmin is zero and σmax is taken
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always as positive. The dwell time is fixed as 1. min. and the frequency of the HCF
is arranged in a way that there has to be 6000 HCF cycles for each LCF cycle. The R
ratio of the HCF is also assumed as that of the CCF. The time spent between σlower
and σupper is only 2 seconds;therefore it can be numerically ignored.

Figure IV.6 : CCF definitons of IPM

The schematical description of the CCF cycles used in the numerical analysis is
shown in figure IV.7. The figure also demonstrates the interaction between LCF
and HCF by demonstrating the life-time with the change of loading regime. The
calculation is performed for 950oC with an endurance of 107 by taking alternating
stress 110 MPa and R ratio 0.6. Regarding the life-time analysis, first of all, pure LCF
cycles are taken and the corresponding life-time is calculated. After that a single HCF
cycle is superimposed over the LCF cycle. Note that, even though there exist only
one HCF cycle on the main LCF cycle, due to the change in maximum stress, σmax,
the drop in life-time is significant. When HCF reaches to the target number (6000
cycles), the drop in life-time for superimposed LCF becomes even larger; therefore
the consideration of interaction between LCF and HCF in the model leads to a more
conservative estimation.

Figures IV.8 and IV.9 show the CCF test results for CMSX-4. The main goal
was to identify the stress amplitude corresponding to the endurance limit of 107. For
that purpose a specific stair case method is used as it is demonstrated in the figures.
Model predictions are also presented within the results. It is clear that for R ratio 0.6
model predictions have a good match with the experimental results. However, for R
ratio 0.8, model is overestimating the life-time. This is simply because the material
data used for the identification of the parameters for that specific amplitude and R
ratio was very limited. Another possible reason could be the influence of HCF on
creep properties at high temperatures. In the literature this issue is still not fully
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Figure IV.7 : Superposition of HCF on to LCF loading and their interaction at
950oC.

understood yet and therefore not introduced in the model. For instance, in the work
of Lucas it has been shown that for ultra-HCF at high temperatures and for small
amplitudes time to fracture is tend to increase with the increasing stress amplitude
to some extend in connection with the improved creep properties (Lucas et al., 2005).

In order to recalibrate the model parameters an optimization procedure is
performed by the optimization tool of the in-house FE software ZeBuLoN. The
results are presented in Figure IV.10 and IV.11 both showing good coherence between
experimental data and model predictions.

IV.7 Post-processing

The multiaxial creep-fatigue damage model operates on the finite element simulations
results and predicts the life-time through a post calculation. First the necessary
history is taken from each Gauss point throughout the mesh or a critical area of
the meshed geometry and afterwards model criterion is evaluated and life time is
predicted at a given instant. Note that, the calculations are based only on the data
contained at the points of concern and the output of the post computation is stored
in an ASCII file. The numerical example in Figure IV.12 demonstrates a 3D post
calculation of a single crystal tube geometry with a notched at the center. The
necessary finite element calculation is performed by using crystal plasticity model
presented in the previous chapter and the stress-strain history is post-processed over
the whole structure. It shows notch effect that the life time varies from 1 to infinity.
The red regions neighbouring the notch fails in the first cycle where the life-time
increases proportionally with an increase of distance to the core of the notch. An
extensive discussion will be done in the next sections where application to real-life
components are presented.

In this work, the development of Goodman diagram generation tool is based
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Figure IV.8 : Results from a series of CCF tests performed at 950oC with R=0.6
and target endurance 107 cycles. Values are normalized by the maximum applied
stress amplitude.

on the automatic generation of specific input files in order to obtain the output
necessary to construct Goodman diagrams. For that purpose a series of ASCII output
files are generated through a numerical routine and the outcomes are automatically
transformed into Goodman curves.
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Figure IV.9 : Results from a series of CCF tests performed at 950oC with R=0.8
and target endurance 107 cycles. Values are normalized by the maximum applied
stress amplitude.

IV.8 Goodman diagram predictions

The most common method of assessing the fatigue characteristics of an engineering
component is to construct a Goodman Diagram. The diagram has two axes: the
horizontal axis stands for the mean stress or steady stress and the vertical axis



56 CHAPTER IV. LIFE-TIME ASSESSMENT MODELING OF SINGLE CRYSTALS

Figure IV.10 : Optimization of model coefficients based on CCF tests performed
at 950oC with R=0.6 and target endurance 107 cycles. Values are normalized by the
maximum applied stress amplitude.

Figure IV.11 : Optimization of model coefficients based on CCF tests performed
at 950oC with R=0.8 and target endurance 107 cycles. Values are normalized by the
maximum applied stress amplitude

represents the alternating stress or stress amplitude (See Figure IV.13). Different from
the Woehler curves, a Goodman diagram is based on a certain life-time which is the
target endurance limit for design. Any fatigue stress state above the Goodman curve
violates the structural integrity of the component during the service life; therefore,
should be avoided. Each Woehler curve provides only one point on the Goodman
curve which is the stress values corresponding to the target life time. Hence, the
construction of Goodman diagrams are costly since experimental results for various
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Figure IV.12 : 3D post calculation of a single crystal tube geometry with a notched
at the center. The history variable is life-time

R ratios are necessary. Moreover, specific material testing strategies like stair-case
method are necessary, in order to generate maximum valuable data from a limited
number of specimens. In that context, the work presented here aims at the prediction
of Goodman diagrams based on the results of creep-fatigue damage model. As
it is previously pointed out, the current model only predicts the life time under
certain thermomechanical conditions. Therefore, an efficient numerical algorithm
which calculates the possible stress conditions resulting in the target life-time is
necessary. The numerical tool so-called “Goodman diagram generator” developed in
this work takes the target life-time as an input and looks for all possible fatigue
loading conditions giving the corresponding target life-time. As a comparison a
dimensional analogy can be done through the outputs of the creep-fatigue damage
model and the Goodman diagram generator such as the output of the model is just a
number referring to the life-time at the given instant which can be considered as 1D.
However, Goodman diagram is generated from a series of points resulting in a line
in the space of alternating stress and mean stress, separating the infinite life and the
component failure zones. Thus, the possible effects of changes in service environment
or loading regime can be visually observed on the Goodman curves providing valuable
information for the design purposes. Note that an additional model validation for
Goodman diagram generator is not necessary. i.e. all predictions can be compared
with the experimental data through the model itself.

This section is aiming at the presentation of predicted Goodman diagrams for
CMSX-4 based on the parameters calibrated from standard test data and studying
the possible effects of multiaxial loading, dwell times and temperature changes on
the life time. Figure IV.13 demonstrates a typical Goodman diagram for a CMSX-4
single crystal at 600oC taking 107 cycles as an endurance limit. Note that the diagram
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provides a life time for all R ratios.

Figure IV.13 : A typical Goodman diagram of CMSX-4 generated for the endurance
of 107 cycles at 600oC

Figure IV.14 shows the change in the Goodman curve for different target
endurance limits. It is worth to mention that all curves shrink to the same line
approaching to the steady stress. This is due to the low alternating stress values
where fatigue loading cycles can be considered as small vibrations. Thus, the failure
is independent of the small oscillations but strongly depends on the ultimate stress
which can be read from the point where Goodman curve crosses the horizontal axis.
As expected, alternating stress values are decreasing with increasing target life.

Figure IV.15 demonstrates the evolution of Goodman curved with the change
of temperature. It is clear from the figure that life time of the material decreases
with an increase of temperature. For a defined endurance limit corresponding stress
values resulting in failure decreases with an increase of temperature. Note that the
negative effect of temperature on life time increases while approaching to the creep
temperatures.

Figure IV.16 illustrates the creep fatigue interaction. For that purpose, a high
temperature (950oC) is chosen at which significant interactions can be observed and
the endurance limit is assumed very low in order to see a complete evolution in
Goodman curve. In the figure three Goodman curves are presented. First of all, pure
fatigue life is demonstrated at 950oC then a 4 second dwell time is introduced and
a significant drop in the life-time has been observed. With a further increase in the
dwell time, the nonlinear decrease in life time and domination of creep damage is
observed.

As a final example, a multiaxial case is studied in Figure IV.17. Goodman curve
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Figure IV.14 : Predicted Goodman diagram of CMSX-4 generated for the several
endurance definitions at 600oC

Figure IV.15 : Predicted Goodman diagram of CMSX-4 generated for several
temperatures with an endurance life of 107 cycles

in Figure IV.13 is taken with an endurance limit of 107 cycles at 600oC and a
constant shear of 200 MPa is applied as it is illustrated in the figure. The effect
is directly observed on the steady stress side. This is due to the increase in the value
of maximum stress and trace of the stress which are the dominating factors for small
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Figure IV.16 : Illustration of creep-fatigue interaction Predicted Goodman diagram
of CMSX-4 generated for the several temperatures with an endurance life of 107 cycles

stress amplitudes. No effect is observed on the alternating side since the applied shear
is constant and has no direct contribution to the alternating stress. The increase of
shear has significant influence on the life-time as far as small stress amplitudes are
concerned.

Figure IV.17 : Evolution of the Goodman diagram of CMSX-4 under increasing
shear applied constantly
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IV.9 Application to real-life components

IV.9.1 Notched geometry

For high temperature engineering applications (generally aircraft gas turbine engines)
high cycle fatigue (HCF) related failures are frequently experienced. Unlike low cycle
fatigue, due to the high frequency and low stress amplitude, HCF requires a large
fraction of life to produce cracks of inspectable sizes and leaves a very small fraction
of life for propagation to failure (Ren and Nicholas, 2003). Therefore, detection of
cracks and prediction of HCF failures is a challenging task during the service life.
Despite the fact that pure HCF conditions may not lead to a total component failure,
a pre-existing crack may decrease the life time catastrophically.

The traditional method to study the life-time behaviour of components under HCF
is to investigate notched specimens under HCF loading. In these tests the notch is
considered as a pre-damaged zone or pre-existing crack causing stress concentration.
Depending on the notch geometry and for elastic cases, the stress concentration is
characterized by an elastic stress concentration factor, Kt from which the stress at
the notch tip can be calculated as:

σt = Ktσn (IV.16)

where σt is the stress at the notch tip and σn denotes the nominal stress. However,
the use of Kt values in the classical life-time estimation approaches usually leads
to very conservative results. The observed conservatism basically results from high
stress gradients and low effective volume of material under high stresses, i.e. the
volume of the material under high stress is too small compared to the overall geometry
so that the probability of possessing a defect leading to a structural failure for the
corresponding stress level is very low. Moreover, plastic yielding of the material in
the vicinity of the notch gives rise to redistribution of stresses which causes a decrease
in the R ratio. It is well known that in most materials for the same stress amplitudes
a local decrease in the R ratio has a positive effect on the life-time.

Considering the above mentioned aspects, one can conclude that a proper life-
time approach should tackle all these complications with reasonable numerical and
experimental costs. In that sense, presented creep-fatigue damage model provides
powerful tools in order to deal with gradient effects and calculation of life-time. In
order to demonstrate the full capability of the model, reproduction of the HCF tests
performed on a cylindrical notched specimens within the frame work of PREMECCY
project is aimed. To achieve that, first of all, the original specimen geometry is
recreated and meshed in 3D. (See Figure IV.18). The specimen is subjected to HCF
loading with an R ratio of 0.8 0.6 and 0.0 for several load amplitudes consequently.
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Figure IV.18 : Cylindrical notched specimen drawing and corresponding FE mesh.

Finite element analyses have been performed by using the previously presented
crystal plasticity model for the characteristic cycle. Afterwards, the results are post-
processed by creep-fatigue damage model. Initial results show that even though
the stress values are estimated correctly (coherent with the Kt factor) life-time is
extremely underestimated due to the stress concentration as previously discussed (See
Figure IV.20). A characteristic stress distribution along the specimen is demonstrated
in Figure IV.19. In the Figure it is pointed out that depending on the stress gradient
a critical stress value can be assigned which outlines the critically high stressed zone.
A point in the vicinity of the inflection point of the stress curve can be considered
as a good candidate.Therefore, it strictly depends on the notch geometry and the
stress state. After deciding the critical domain a volume averaging procedure can be
performed on the stresses in order to resolve the stress concentration and calculate
the proper life time. Different techniques used in the decision of critical stress can be
found in the work of Kaminski (Kaminski, 2007). This method represents a nonlocal
smoothing of the stress field and introduces a characteristic length r0 which should
coincide with a statistically representative volume element for the distribution of
defects in the material. Unfortunately, we have not used microscopic observations
to obtain the statistic of porosity distribution. In in the work of Kaminski the
phenomenologically identified domain is close to interdendritic spacing in the material.

In the present work, the distance from the notch tip indicating the average domain
is taken as 0.6 mm as it is presented in Figure IV.19. For the numerical procedure,
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Figure IV.19 : Stress distribution along the notched specimen showing the stress
concentration and the critical zone considered as a domain to be averaged.

this distance is taken as the radius,r0 of the circle (for 2D) or the sphere (for 3D)
which defines the average domain. Volume averaging procedure on a variable ψ can
be expressed as follows:

〈ξ(r0)〉 =
1
V

∫
V
ξdV (IV.17)

where V (X, r0) denotes the volume of the domain centered at X and r0 is the
radius of the circle or the sphere. Afterwards, the values at the Gauss points within
this region is averaged and assigned to the Gauss point at the center. For a schematic
description see Figure IV.21. Note that, at the free boundry only the volume of
contributed elements are considered. In the case of existing symmetries values at the
Gauss points are not mirrored. Therefore, axisymmetric calculations are not possible.

Figure IV.22 shows the life-time maps of the notched specimen under fatigue
load with an R ratio of 0.8. A cut oriented at (100)[001] has been taken from the
cylinder in order to fully demonstrate the life time distribution and it is topographical
change after the averaging process. From the figure, it is clear that averaging process
considerably smoothes the stress concentration over the domain so that the critical
life-time zone expands and in the same sense, minimum life-time increases. It is
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Figure IV.20 : A section cut taken from the 3D mesh demonstrating the post-
processing.

Figure IV.21 : Averaging procedure performed on the Gauss values within the
average domain.

important to notice that even though quantitatively averaging gives more sensible
results qualitative assessment of the crack initiation location becomes ambiguous.
Therefore, initial maps might be used for the determination of the crack initiation
location and the life-time can be estimated through averaging. Figure IV.22 shows
that without averaging, life-time is vanishing not exactly at the notch tip but locates a
bit above or below which is coherent with the experimental observations. Stress-strain
and a general distribution of life-time after averaging is demonstrated in Figure IV.23.

Comparison between numerical and experimental results are given for various
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Figure IV.22 : Demonstration of the life-time maps of the notched specimen on the
cut oriented (100)[001].

Figure IV.23 : Stress-strain and life-time distribution of a notch specimen under
fatigue with R ratio 0.8 on the cut oriented at (100)[001]. Stress-strain maps belong
to the instant when applied stress is maximum

stress amplitudes for R ratio 0.8, 0.6 and 0.0 are demonstrated in Figures IV.24, IV.25
and IV.26, consequently. Figure IV.24 and IV.24 demonstrate a good coherence with
the experimental values, while results for R ratio 0.0 are overestimated (See Figure
IV.26). This is due to the very low stress amplitudes for R=0.0, which result in infinite
life-times (say 1012) outside the critical zone. Therefore, averaging becomes too
sensitive around the notch and the size of the average domain must be reconsidered.
In contrast, the values generated without averaging for R=0.0 match very well with
the experiments.
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Figure IV.24 : Comparison between numerical results and experimental data of a
notched specimen under HCF loading with R=0.8 and frequency=118 Hz. Values are
normalized with the maximum applied nominal stress, σn.
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Figure IV.25 : Comparison between numerical results and experimental data of a
notched specimen under HCF loading with R=0.6 and frequency=118 Hz. Values are
normalized with the maximum applied nominal stress, σn.
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Figure IV.26 : Comparison between numerical results and experimental data of a
notched specimen under HCF loading with R=0.0 and frequency=118 Hz. Values are
normalized with the maximum applied nominal stress, σn

In brief, volume averaging mimics the non-local approaches by averaging and
reassigning the local values. It is crucial to mention that the determination of the
size of the average domain is the key factor in life-time assessment of the notched
specimens. In that sense, proper investigation of the representative volume element
size for defects is vital. In particular, the post-processing model is now an uncoupled
nonlocal model (damage uncoupled with the mechanics). In the next chapter we
will consider a fully coupled nonlocal model based on the mechanics of generalized
continua which accounts for intrinsic length scales in order to capture size effects and
address mesh, geometry and size independencies.
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IV.9.2 Advanced specimens

In addition to the notch specimens, further investigation of life-time is possible
through advanced specimen testing. Figure IV.27 shows an advanced specimen
designed to imitate a real blade behaviour within the PREMECCY project. For that
purpose, an elliptic lump mass is attached to the center of the specimen mimicking the
root of the blade which attaches to the disc. It also allows for dynamical excitation
and simulates realistic HCF loading by the help of a shaker. Different R ratios can
be tested through one test due to the elliptical lump mass attached to the specimen.

Figure IV.27 : PREMECCY type-5 advanced specimen geometry meshed with
yams.

Life-time prediction of this specimen is left as a prospective work which requires
advanced dynamical analysis.
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Résumé

Le chapitre V présente le développement d’un modèle couplé d’initiation et
de propagation de fissure basé sur la mécanique des milieux continus et de
l’endommagement. Le problème de dépendance au maillage est discuté et les
méthodes de régularisation basées sur les milieux généralisés sont étudiées. Les
milieux micro-endommagés sont choisis comme étant l’approche la plus prometteuse
et sont ainsi présentés plus en détails. Les effets de fermeture de fissure sont étudiés
et quelques solutions sont données pour certains problèmes. Ensuite, les concepts
numériques et la procédure d’implémentation par éléments finis sont expliqués en
détails. Après la procédure d’identification des paramètres, le modèle est validé et
calibré pour le monocristal PWA1483. Une discussion détaillées est fournie en fin de
chapitre.
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V.1 Introduction

Conventional lifetime assessment models of crystalline solids are based on crack
initiation criteria (Gallerneau and Chaboche, 1999; Koster et al., 2002). However
in the case of single crystals, anisotropic mechanical behaviour resulting from crystal
structure and their general use in complex geometries (turbine industry) necessitates
the consideration of growth of cracks (Marchal et al., 2006b). In single crystals,
initiation of cracks are generally triggered by complex thermomechanical loading
conditions; therefore, the chosen constitutive model should satisfactorily describe the
strongly anisotropic and nonlinear behaviour of single crystals under these various
loading conditions.

The proper modeling of crack growth under cyclic loading is essential for the life-
time assessment of single crystals. A deep understanding of plasticity and fatigue
damage is necessary for a realistic coupling of these two phenomena resulting in crack
initiation and propagation. For instance, a node release technique (Kiyak et al., 2008)
is uncoupled and does not consider crack initiation under fatigue loading, although
the plastic zones are well described and crack openings are well predicted. In that
sense, this approach can not be considered as fully predictive.

In the literature, there have been many attempts which consider a coupling
between plasticity and damage generally formalized in the framework of continuum
damage mechanics. The models present a weak coupling (Simo and Ju, 1989; Lemaitre
and Chaboche, 1994; Murakami et al., 1998) posses two independent flow rules for
damage and plasticity which is not realistic for life-time prediction modeling under
fatigue loading. Moreover, there are other attempts proposing a relatively strong
coupling considering a single associated flow rule for the evolutions of plasticity and
damage (Gurson, 1977; Tvergaard and Needleman, 1984; Mahnken, 2002). Another
possible way of coupling could be keeping the flow rules separate but strongly relating
the potentials for plasticity and damage. i.e. each flow rule becomes strongly
dependent on the other as proposed in (Voyiadjis and Deliktas, 2000).

Concerning crystallographic materials, strong relation between plasticity and crack
growth has been shown by (Leverant and Gell, 1975; Crompton and Martin, 1984)
and (Aswath, 1994). After the significant work of Rice (Rice, 1987; Flouriot et al.,
2003), the crystal plasticity theory has received great interest as a candidate to model
crack growth in crystalline solids. In these works, growing cracks are associated to the
crystallographic slip with a visco-plastic relation and the structure of the localization
bands are linked to the slip systems. Especially in the field of fatigue, growing cracks
and strain localization are mentioned together with the localization of plastic strain
and damage.
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The crack tip plastic zones in a single crystal grain were further studied by (Gall
et al., 1996). In connection with the latter approach (Voyiadjis and Deliktas, 2000),
damage localization has been associated to the crystallographic planes and inelastic
deformations (Qi and Bertram, 1999; Ekh et al., 2004). A recent predictive cohesive
approach has also been proposed by (Bouvard et al., 2009), where plasticity and
damage are coupled in order to model creep-fatigue crack growth in single crystals
with a prescribed crack path.

In this context, we focused on the continuum damage model for single crystals
proposed by Marchal et. al. (Marchal et al., 2006b). In this model, three damage
systems are associated to each {111} plane in FCC crystals. The first damage system
is assigned as an opening system, activated by the normal stress, and mainly reflects
a cleavage–like mechanism. The other two accommodate in plane deformations and
enable arbitrary movements after fracture. The main advantage of the approach
against the methods with prescribed crack paths, like cohesive zone model (CZM)
(Bouvard et al., 2009), is the multi-plane damage descriptions which allow to simulate
non-straight crack paths with branching and crack bifurcation. However, the model
is identified for a given mesh size and type as in many damage models (Besson,
2004). The mesh dependency arises from the loss of ellipticity of the continuum
damage model after strong localization. Therefore, the boundary and the initial value
problems become ill–posed (Billardon et al., 1988) and the numerical solution does
not converge to a physically meaningful solution.

The main objective of this chapter, which is partially based on the articles (Aslan
and Forest, 2009; Aslan and Forest, 2010) is to solve the above mentioned mesh
dependency problem by exploring the regularization capabilities of the micromorphic
theory applied to the continuum damage single crystal model. The main motivation
for switching to a higher order continuum theory was introducing an intrinsic length-
scale in order to capture size effects and to deal with mesh size and alignment
dependency of the approach within a thermodynamically consistent framework. For
that purpose, primarily, the continuous damage model developed by Marchal et
al. is presented and simplified to concentrate on the regularization problem. In
particular, the framework is limited to brittle cleavage fracture in single crystals
with one single cleavage plane (suitable for instance for zinc single crystals). Two
variants of the micromorphic continuum are considered. First, the microstrain
theory (Forest and Sievert, 2006) is applied, which introduce a microstrain tensor
associated to each material point. Secondly, another variant of the micromorphic
approach, microdamage model, is presented and its numerical capabilities as a
powerful regularization technique are illustrated. The theory is shown to be well
suited for a finite element formulation and a detailed implementation procedure of
an implicit scheme is presented. Afterwards, the numerical model is validated for
monotonic loading. Finally, finite element analysis of a single edge notched (SEN)
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specimen under cyclic loading is analyzed and a comparison between numerical and
experimental results has been done. For simplicity, all theory and simulations are
presented within the small strain framework.

V.2 Strain-based damage model coupled with crystal

plasticity

In this model, viscoplasticity and damage are coupled by introducing an additional
damage strain variable ε̇∼

d, into the strain rate partition equation:

ε̇∼ = ε̇∼
e + ε̇∼

p + ε̇∼
d (V.1)

where ε̇∼
e and ε̇∼

p are the elastic and the plastic strain rates, respectively. The flow
rule for plastic part is written at the slip system level and the plastic strain rate ε̇∼

p is
obtained with the orientation tensor m∼

s:

m∼
s =

1
2

(n s ⊗ l s + l s ⊗ n s) (V.2)

where n s is the normal to the plane of slip system s and l s stands for the
corresponding slip direction. Then, plastic strain rate reads:

ε̇∼
p =

Nslip∑
s=1

γ̇sm∼
s (V.3)

The flow rule on slip system s is a classical Norton rule with threshold.

γ̇s =
〈 |τ s − xs| − rs

K

〉n
sign(τ s − xs) (V.4)

where rs and xs are the variables for isotropic and kinematic hardening
respectively and K and n are the material parameters to be fit (Nouailhas and
Cailletaud, 1995). In this work, isotropic hardening is considered constant and
no interaction between slip systems is accounted. Therefore, isotropic hardening
becomes:

rs = r0 (V.5)

The kinematic hardening is taken as non-linear:

xs = Cαs with α̇s = γ̇s −Dν̇sαs (V.6)

where C and D are material constants and ν̇s = |γ̇s|.
The damage strain ε̇∼

d is decomposed in the following crystallographic
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contributions:

ε̇∼
d =

Ndamage∑
s=1

δ̇scn
s
d ⊗ n s

d + δ̇s1n
s
d

sym⊗ l sd1 + δ̇s2n
s
d

sym⊗ l sd2 (V.7)

where δ̇s, δ̇s1 and δ̇s2 are the strain rates for mode I, mode II and mode III crack
growth, respectively and Nd

damage stands for the number of damage planes which
are fixed crystallographic planes depending on the crystal structure. Cleavage
damage is represented by the opening δs of crystallographic cleavage planes with
the normal vector n s and other damage systems must be introduced for the in-plane
accommodation along orthogonal directions l s1 and l s2, once cleavage has started (Fig.
V.1). Material separation is assumed to take place w.r.t. specific crystallographic
planes, like cleavage planes in single crystals. Three damage criteria are associated to
one cleavage and two accommodation systems:

fsc =
∣∣n s

d · σ∼ · n s
d

∣∣− Y s (V.8)

fsi =
∣∣n s

d · σ∼ · l sdi
∣∣− Y s (i = 1, 2) (V.9)

where Y s is the critical normal stress. The evolution of crack openings are given
by the following equations:

δ̇sc =
〈
f sc
Kd

〉nd
sign

(
n s
d · σ∼ · n s

d

)
(V.10)

δ̇si =
〈
fsi
Kd

〉nd
sign

(
n s
d · σ∼ · l sdi

)
(V.11)

where Kd and nd are material parameters. The damage evolution is defined as
the sum of absolute value of all system evolutions.

ḋ =
Nplanes∑
s=1

|δ̇sc |+ |δ̇s1|+ |δ̇s2| (V.12)

These equations hold for all conditions except when the crack is closed (δsc < 0)
and compressive forces are applied (n s

d · σ∼ · n s
d < 0). In this case, damage evolution

stops (δ̇sc = δ̇si = 0), due to the unilateral damage conditions (a detailed explanation
is provided in the next section).

The material softening resulting from damage is achieved by the decrease in critical
normal stress which is controlled by the scalar damage variable, d:

Y s = Y s
0 +Hd+ σult (V.13)

where Y s
0 is the initial damage stress (usually coupled to plasticity), H is a negative

modulus which controls material softening rate due to the damage and σult is the
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ultimate stress. It is important to notice that crack opening variables δsc and δsi are
strain like variables and they only contribute in the decrease of initial damage stress
without modifying the elastic properties.

Figure V.1 : Illustration of the cleavage and two accommodation systems to be
associated to the crystallographic planes.

Coupling between plasticity and damage is generated through initial damage stress
Y0 in (V.13) which is controlled by cumulative slip variable γcum:

γ̇cum =
Nslips∑
s=1

|γ̇s| (V.14)

Then, Y0 takes the form:

Y s
0 = σcn e

−Θγcum + σult (V.15)

This formulation suggests an exponential decaying regime from a preferably high
initial cleavage stress value σcn, to an ultimate stress, σult which is close to but not
equal to zero for numerical reasons and Θ is the parameter controlling the coupling
rate. This form could also be considered as a crack initiation criterion which is
activated by cumulative plastic slip. Note that the coupling established in this
approach is not reciprocal. The evolution equation of damage is plasticity dependent
but the influence of damage evolution on plastic flow is ignored, since, for single
crystals, there exists no clear experimental evidence proving a direct influence of
damage on the evolution of plastic deformation. Therefore, the coupling is performed
only in one way.

This model, complemented by the suitable constitutive equations for viscoplastic
strain, has been used for the simulation of crack growth under complex cyclic loading
at high temperature (Marchal et al., 2006a). Significant mesh dependency of results
was found (Marchal, 2006).
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V.3 Mesh dependency and regularization

Local description of damage mechanism for various materials based on phenomeno-
logical approaches aims at predictive computations of propagating damaged zones
in real-life structures. Even though, in the past decades, there has been a great
progress in phenomenological modeling of damage process, numerical modeling of
localization phenomenon still remains a challenging objective. The difficulty arises
from the ill-posed problem originating from the constitutive equations which describe
the structural behaviour. For instance, for elastoplastic solids, the problem exhibits
loss of uniqueness and loss of ellipticity and in the context of finite element solutions,
this problem manifests itself as spurious mesh-dependency. Any remedy that is
able to remove mesh-dependency observed in the simulation of strain localization
phenomena is called a regularization method which generally introduces an additional
intrinsic length scale into the modeling that lead to harmonic solutions. For a better
representation of damage regularization a 1-D model problem is studied.

Problem description: For the regularization analysis of damage, the simplest
geometry is a 1D rod which obeys a brittle elastic law as it is represented in figure
V.2. Since the structure is 1D, the strain and stress fields decay into scalar values, ε
and σ respectively. The rod is clamped at one hand and subjected to an increasing
displacement U.

In the framework of classical continuum, the constitutive law is stated as; while
the strain remains smaller than a critical value εy, the stress-strain relation is linear
elastic with stiffness E.

σ = Eε if ε ≤ εy (V.16)

Above the critical value, the stress decreases with a function of strain with slope H,
up to a vanishing stress that corresponds to the complete fracture of the rod.

σ = Eεy −H(ε− εy) if ε > εy (V.17)

Such a law exhibits strain-softening since the threshold, V.17, decreases with the
load history. Considering the finite element solution of the problem, the strain field
is approximated by piecewise constant functions such that the length of the damaged
zone is necessarily a multiple of the size of a single element. Due to the numerical noise,
one element reaches the threshold slightly before the others and this encapsulates the
damage zone in a single finite element. Therefore, damage simply localizes in a narrow
band with a size of one element, regardless of its size, and the rest of the body tends to
a pure elastic unloading as it is demonstrated in Figure V.2. However, in a regularized
behaviour solution for the damage variable usually has an harmonic form (for some
cases hyperbolic) and described in a smoothed damage field addressing the intrinsic
length scale introduced within the formulation. For instance, in a sinusoidal form it
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Figure V.2 : Localization in a 1D rod specimen

becomes nothing but the wave length of the sine. (See Figure V.3)

In the case of a 2D crack growth, the damage field follows a line of element
regardless of their size (See Figure V.4). This mesh dependency can only be handled
by regularizing damage by introducing non-locality into the classical theory results in
a harmonic solution throughout the geometry.

Recalling the work of (Marchal et al., 2006b), the crack growth model is identified
for given mesh size and type as in many damage models. It has been observed that
without regularization the mesh size and allignment strictly influence the localization
fields (See Figure V.5).

This work aims at solving this problem by exploring the regularization capabilities
of the micromorphic theory presented in (Eringen, 1976) and further developed by
(Forest and Sievert, 2006), applied to continuum damage single crystal model. After
the presentation of the micromorphic continuum two higher order extensions of the
theory will be studied.

V.4 Micromorphic continuum

As it is previously discussed classical Cauchy continuum theory fails to capture size
effects bringing mesh dependent results, especially if localisation is observed. On
the contrary based on the assumption of local action, generalized continuum theories
enhance the classical theory by introducing additional degrees of freedom which result
in gradient terms delivering intrinsic length scales and regularized field solutions. In



V.4. MICROMORPHIC CONTINUUM 79

Figure V.3 : Regularized damage zone in a 1D rod specimen

Figure V.4 : Regularization of damage fileds in a 2-D notched geometry under
tension

that context, generalized continua can be classified into two main groups. The first
group is characterized by higher order derivatives of the displacement or additionally
defined degrees of freedom which can be traced back to the work of Cosserat
brothers (Cosserat and Cosserat, 1909) in which they consider additional independent
rotational degrees of freedom at each continuum point. The second gradient theory of
Mindlin (Mindlin, 1964; Mindlin and Eshel, 1968) and micromorphic theory of Eringen
(Eringen and Suhubi, 1964; Eringen, 1999), which recovers the Mindlin’s theory, can
be considered as the major contributions to that group. The second group takes its
bases from the work of Aifantis (Aifantis, 1987; Mühlhaus and Aifantis, 1991) which
considers the gradient of internal variables in order to formalise the so-called “strain
gradient plasticity”.
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Figure V.5 : Mesh dependency observed in crack growth simulations of a CT-
specimen. Note that the change of mesh size from 100 µm to 10 µm changes the
plane of localization entirely.

Containing additional degrees of freedom and balance equations, the micromorphic
continuum approach can be considered as the main framework for most generalized
continuum models (Forest, 2009). The present work recognizes the micromorphic
approach in a broader sense as a unifying theory (Forest, 2009) and uses the same
thermodynamical framework in order to introduce two variants of the approach
corresponding to each group. Microstrain continuum is proposed as a regularization
technique based on the higher order derivatives of the displacement field, while
microdamage continuum considers a scalar damage variable as a degree of freedom
and introduces its gradient in order to capture size effects.

The micromorphic medium introduced by Eringen and Suhubi (Eringen and
Suhubi, 1964; Hirschberger et al., 2007) possesses a full microdeformation field χ

∼

representing 9 microdeformation degrees of freedom, in addition to the classical
displacement field u . Therefore the material behaviour is characterized by the
reference sets of degrees of freedom and state variables on which the free energy
density function,psi, may depend such as:

DOF := {u ,χ
∼
}, STATE := {u ⊗∇,χ

∼
⊗∇} (V.18)

Generalized strain measures can be introduced as Cauchy strain,ε∼ relative deformation
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tensor, e∼ and the gradient of micro deformation tensor as follows:

ε∼ = u ⊗∇, e∼ = u ⊗∇− χ
∼
, K

∼
= χ
∼
⊗∇} (V.19)

The virtual power of internal forces to the power done by the micromorphic variable
and its first gradient can be extended as:

P (i) = −
∫
D
p(i)dV (V.20)

p(i) = σ∼ : ε̇∼+ s∼ : ė∼ + S
∼

...K̇
∼

(V.21)

where D is a subdomain of the current configuration Ω of the body.-σ∼ , is the
Cauchy stress, s∼ is the relative stress and S

∼
is the generalized stress tensor. Then,

the power of contact forces are extended as:

P (c) =
∫
∂D

p(c)dS (V.22)

p(c) = t .u̇ +M∼ : χ̇
∼

(V.23)

where t is the traction vector and M∼ stands for generalized traction. Ignoring
the simple and generalized body forces, generalized principle of virtual power reads
for the static case: ∫

D
p(i)dV +

∫
∂D

p(c)dS = 0, ∀D ⊂ Ω (V.24)

From this point, using the method of virtual power suggested by Maugin (Maugin,
1980), standard local balance of momentum and generalized balance of moment of
momentum can be derived consequently as follows:

(σ∼ + s∼).∇ = 0 (V.25)

S
∼
.∇+ s∼ = 0 (V.26)

Finally, the associated boundary conditions for the simple and generalized
tractions takes the form:

t = (σ∼ + s∼).n (V.27)

M∼ = S
∼
.n (V.28)

This thermodynamical framework can be used as a standard methodology for all
variants of micromorphic continuum in order to derive balance equations with proper
boundary conditions. For a detailed systematic method see (Forest, 2009). Note
that, in this work, all presented higher order extensions to the classical continuum are
accepted as non-dissipative, for the dissipative forms see (Forest and Sievert, 2006).
Elasticity relations for micromorphic media and analytical solutions for the elastic
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problems for micro extension and microglide are provided in Appendix.

V.5 Microstrain continuum

Splitting microdeformation tensor of the micromorphic continuum into symmetric and
skew–symmetric part i.e. pure strain part and rotational part. If one introduces a
symmetric tensor by disregarding the skew–symmetric part of the microdeformation,
the theory decays into the microstrain model. Therefore, the full micromorphic theory
then can be seen as the combination of Cosserat and microstrain theories.

V.5.1 Balance and constitutive equations

A symmetric microstrain tensor χε∼ associated with the macrostrain ε∼ is introduced
and considered as a degree of freedom (DOF) in addition to the displacement vector
u :

DOF = {u , χε∼} (V.29)

Generalized strain measures can be defined as the strain, relative deformation and
gradient of micro-deformation tensors respectively:

ε∼ = u
sym⊗ ∇, e∼ = ε∼− χε∼, K

∼
= χε∼⊗∇ (V.30)

The symmetric part of the displacement gradient is denoted by u ⊗sym∇. The
symmetric force stress tensor σ∼ , the relative stress tensor s∼ and a third order stress
tensor S

∼
are associated with these strain measures in the work of internal forces. The

following balance of momentum and balance of moment of momentum equations must
be fulfilled:

(σ∼ + s∼).∇ = 0 (V.31)

S
∼
.∇+ s∼ = 0 (V.32)

where ·∇ represents the divergence operator. These equations are coupled by relative
stress tensor s∼. The boundary conditions for the traction vector t and double traction
tensor M

∼
read:

t = (σ∼ + s∼).n , M
∼

= S
∼
.n (V.33)

Elasticity relations are of the form:

σ∼ = c∼∼
: ε∼

e, s∼ = b∼∼
: e∼, S

∼
= A∼∼∼

...K
∼

(V.34)

In this work, only the symmetric strain tensor is decomposed into elastic and damage
part for the sake of simplicity.

ε∼ = ε∼
e + ε∼

d (V.35)
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Considering only cleavage, the evolution equation is derived from the yield function
fc using normality, such as:

ε̇∼
d = δ̇

∂fc
∂σ∼

(V.36)

For the localization analysis, softening rule (V.13) and damage criteria (V.8) are used.

V.5.2 Application to 1D problem:

Figure V.6 : 1D rod under tension with an initial imperfection

For the 1D problem, a bar with length L under monotonic tension (d = δ) is
analyzed (Fig. V.6). For the analysis, a vanishing Poisson ratio is taken and elastic
tensors c∼∼

and b∼∼
are assumed equal. Viscosity is excluded from the solutions and

the cleavage plane is normal to direction 2. For the damage threshold function, two
different cases are investigated. First, the yield function which is controlled by the
normal stress |n ·σ∼ ·n | is studied and a comparison between analytical and numerical
results is drawn. As a second case, the yield function is modified by introducing the
relative stress tensor in addition to the Cauchy stress.

V.5.3 Classical linear softening

Recalling the equation (V.13), one can write the classical linear yield function in a
complete form for 1D as:

fc = |σ22| − (Y0 +Hδ) (V.37)

From the consistency condition of the yield function, ḟc = 0, δ̇ can be solved as:

δ̇ =
2µ(ε̇22 − ε̇d22)

H
(V.38)

where µ is the second Lamé constant. Inserting (V.36) into the above equation:

δ̇ =
2µε̇22

2µ+H
(V.39)

and for monotonic loading one gets:

δ =
2µ

2µ+H
(ε22 − Y0

2µ
) (V.40)

The balance equations (V.31) and (V.32) must be taken into account for the analytical
solution:

σ22,2 + s22,2 = 0, S222,2 + s22 = 0 (V.41)
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σ22 = 2µ(ε22 − εd22) =
2µ

2µ+H
(Hε22 + Y0) (V.42)

s22 = 2µ(ε22 − χε22), S222 = Aχε22,2 (V.43)

and a system of equations is obtained for the unknowns ε22,2 and χε22,2 which can be
solved for boundary conditions (V.33):

H̄ε22,2 + 2µ(ε22,2 − χε22,2) = 0, (V.44)

Aχε22,22 + 2µ(ε22 − χε22) = 0 (V.45)

where H̄ = 2µH/(2µ + H). The strain component ε22 can be eliminated from the
previous system to get:

χε22,222 − 2µH̄
A(H̄ + 2µ)

χε22,2 = 0 (V.46)

When H is negative and H̄ + 2µ remains positive, the solution is sinusoidal:

χε22 = α sin(wx2) + β cos(wx2) + γ (V.47)

with a wave length:
2π
ω

= 2π

√∥∥∥∥A(H + µ)
µH

∥∥∥∥ (V.48)

Finally, solving (V.44) and (V.45) for ε22 and inserting it into (V.40), the crack
opening δ is found to read:

δ =
1

2µ+H
[(2µ−Aω2)χε22 −Aω2γ − Y0] (V.49)

From figure V.7, it is concluded that the damage is regularized throughout the rod
and the computations are perfectly matching with the analytical solution. However,
the model exhibits an inability to soften up to final fracture (Fig. V.8). This is due to
the divergence contribution of the higher order stress S

∼
to the relative stress s∼ as it is

postulated in the balance equation (V.32). As long as there exists gradient of S
∼

, the
complement relative stress remains. Since the traction vector on the cleavage plane
is related to σ22 + s22, it cannot vanish even for ever-increasing crack opening. This
shortcoming is also mentioned by Engelen et al. in the context of gradient enhanced
approach for softening (Engelen et al., 2003).

As a remedy, a coupling between the force stress σ∼ and the relative stress s∼ must
be introduced into the yield function in order to achieve a total softening in all stress
spaces, as investigated in the next subsection.



V.5. MICROSTRAIN CONTINUUM 85

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.5  1  1.5  2  2.5

da
m

ag
e

coordinate x2 (mm)

microstrain-computation
analytical solution

Figure V.7 : Comparison between numerical and analytical solution of a 1D rod
under uniaxial tension with a central initial defect for linear softening. The analytical
solution holds for the damaged zone and the rest of the rod behaves purely elastically
(A=30 MPa.mm2, H=400 MPa, µ=200000 MPa).
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Figure V.8 : Force vs. displacement diagram of a 1D softening rod for microstrain
continua.

V.5.4 Modified damage threshold function

The damage threshold function (V.8) is modified so as to incorporate the effective
stress σ∼ + s∼:

fc =
∣∣n · (σ∼ + s∼) · n ∣∣− Y (V.50)
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Similar to the first case, for monotonic loading, one gets:

δ =
2µ

2µ+H
(2ε22 − Y0

2µ
− χε22) (V.51)

and stress terms read:

σ22 =
2µ

2µ+H
[(H − 2µ)ε22 + 2µχε22 + Y0] (V.52)

s22 = 2µ(ε22 − χε22), S222 = Aχε22,2 (V.53)

Writing the first balance equation (V.31) and taking the derivative w.r.t. the second
coordinate one gets:

σ22,2 + s22,2 = 0 (V.54)

2µ(ε22,2 − χε22,2) +
2µ

2µ+H
[(H − 2µ)ε22,2 + 2µχε22,2] = 0 (V.55)

which reduces to the following relation:

ε22,2 =
1
2
χε22,2 (V.56)

Rewriting the second balance equation (V.32) and taking the derivative, the following
additional relation is obtained:

Aχε22,222 + 2µ(ε22,2 − χε22,2) = 0 (V.57)

Inserting now (V.56) into (V.57) gives:

Aχε22,222 − µχε22,2 = 0 (V.58)

The general solution can be written in terms of hyperbolic functions, such as:

χε22 = α sinh(wx2) + β cosh(wx2) + γ (V.59)

with the wave length
2π
w

= 2π

√
A

µ
(V.60)

which is independent of H and acts as a length scale for the model.

Note that this solution holds for each side of the defective zone. Furthermore, the
analytical solution for ε22 is of the same kind with different constants such that

ε22 = C1 sinh(wx2) + C2 cosh(wx2) + C3 (V.61)

where C1 = 2α, C2 = 2β and C3 = γ. γ is nothing but the elastic strain outside the
damaged part of the rod, Y0/2µ and other constants can be solved by taking S22 = 0
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at x2 = 0 and x2 = l.
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Figure V.9 : Comparison between numerical and analytical solution of a 1D rod
under uniaxial tension with a central initial defect with modified damage threshold
(A=2500 MPa.mm2, H=1 MPa, µ=200000 MPa).
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Figure V.10 : Damage distribution along the rod for the modified damage threshold.
Note that damage is trapped in the imperfection zone

Figure V.11 shows that the present model is able to describe final fracture of
the bar. However, if we take the derivative of (V.51) and insert (V.56) into it, the
derivative of damage variable, δ, w.r.t the second coordinate, is shown to vanish. This
means that damage becomes piecewise constant throughout the bar and the damage
distribution is trapped into the element which has the imperfection as it is illustrated
in figure V.10. Nevertheless, micro and macro strain still possesses the hyperbolic
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Figure V.11 : Force vs. displacement diagram of a 1D softening rod for microstrain
with modified damage treshold function.

distribution (Fig. V.9). As a result, this variant of the microstrain model is not
satisfying.

In general, the higher order stress tensor S∼ could also enter the yield condition
(V.8). Keeping the normality rule implies that elastic and plastic parts should be
considered for the microstrain χ

∼
and the microstrain gradientK∼ . This track, although

possible, is not pursued here (See (de Borst, 1993; Forest and Sievert, 2003)).

V.5.5 Examples

In order to demonstrate the mesh dependency of the microstrain approach three 2D
blocks with an initial notch on the left are analyzed. Every block is meshed with
a different unit mesh size (See Figure V.12) and a tensile load is applied through
the vertical axis up to a vertical strain of 8 % is reached. It has been shown
that for the material parameters corresponding to the same characteristic length,
damage localization bands are same. Therefore, the regularized solution previously
demonstrated for a 1D bar also holds for 2D geometries.

Figure V.13 demonstrates localization patern of the same 2D block by rotating
the cleavage plane of the damage system consequently. As it is shown in Figure V.13,
the crack path perfectly follows the cleavage plane oriented 15o from the horizontal
axis. However, with an increase in the cleavage plane angle another localization path
is formed due to the boundary effects. It is observed that this effect dominates the
damage pattern in the case of a further increase in the cleavage angle.
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Figure V.12 : Mesh independent crack propagation for microstrain theory, through
a 2D block with a single inclined cleavage plane under vertical tension with 8 % strain.
Field variable δ. (A = 20 MPa.mm2, H = 1000MPa, µ = 200000 MPa)

Figure V.13 : Crack propagating through a 2D block for microstrain theory, with a
single inclined cleavage plane oriented at 15o, 30o and 45o relative to the horizontal
axis consequently, under vertical tension. Field variable δ.
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V.6 Microdamage continuum

The foundation of the microdamage continuum lies in micromorphic theory introduced
by Eringen and Suhubi (Eringen and Suhubi, 1964). As it is previously pointed out
alternative micromorphic variables other than the full strain tensor can be chosen
(Forest, 2009). The strain gradient effect can be limited to the damage strain ε∼

d

gradient and more specifically to the scalar damage variable d.

V.6.1 Balance and constitutive equations

In microdamage theory, the selected microvariable is a scalar microdamage degree of
freedom (DOF) χd, in addition to the displacement DOFs u . The DOFs and the
extended state space on which constitutive functions may depend are as follows:

DOF = {u , χd} STRAIN = {ε∼, χd,∇ χd} (V.62)

The power of internal forces is extended as

p(i) = σ∼ : ε̇∼+ a χḋ+ b .∇ χḋ (V.63)

where generalized stresses a, b have been introduced. The generalized balance
equations are (Aslan and Forest, 2009):

divσ∼ = 0, (V.64)

a = div b (V.65)

The free energy density is taken as a quadratic potential in the elastic strain, damage
d, relative damage d− χd and microdamage gradient ∇χd:

ρψ =
1
2
ε∼
e : c∼∼

: ε∼
e +

1
2

Ndamage∑
s=1

Hd+
1
2
χH(d− χd)2 +

1
2
A∇χd∇χd (V.66)

where H, χH and A are scalar material constants and H is negative for softening.
Then, the elastic response of the material becomes:

σ∼ = ρ
∂ψ

∂ε∼
e

= c∼∼
: ε∼

e (V.67)

The generalized stresses read:

a = ρ
∂ψ

∂χd
= − χH(d− χd) , b = A∇χd (V.68)

and the driving force for the damage can be derived as:

Yf = ρ
∂ψ

∂d
= Hd+ χH(d− χd) (V.69)
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The damage criterion now takes the form:

fs =
∣∣n s · σ∼ · n s

∣∣− Y s = 0 (V.70)

where Y s is the critical stress for the damage evolution.

Y s = Y0 + Yf + σult (V.71)

Inserting the generalized stress terms into the balance law (V.65) and assuming
homogeneous material properties, the following differential form can be deduced:

χd− A
χH

∆χd = d (V.72)

where the macrodamage d can be considered as a source term. As previously
mentioned in (Aslan and Forest, 2009), this type of Helmholtz equations appear in
the so–called implicit gradient theory and it is variants, as an additional equilibrium
equation (Peerlings et al., 2001; Engelen et al., 2003; Peerlings et al., 2004; Germain
et al., 2007). However, in these approaches generalized stresses a and b are not
explicitly introduced and the microvariables are called non local variables (Forest,
2009; Dillard et al., 2006). Moreover, χH seems as a Lagrange multiplier and a very
high value leads the formulation to a gradient model (Aifantis, 1999).

V.6.2 Solution for 1D bar

The damage function can be rewritten for the 1D-rod case as follows:

f = 2µ(ε22 − d)− Y0 − (H + χH)d+ χH χd = 0 (V.73)

The system of equations to be solved for ε∼, d and χd reads:

σ22,2 = 2µ(ε22,2 − d,2) = 0 (V.74)

A χd,22 + χH(d− χd) = 0 (V.75)

Due to the equation (V.74), taking the derivative of (V.73) w.r.t. the second
coordinate gives

− d,2(H + χH) + χH χd,2 = 0 (V.76)

Taking the derivative of (V.75) w.r.t. the second coordinate and inserting (V.76) into
(V.75) gives:

χd,222 =
χHH

A(H + χH)
χd,2 (V.77)

It appears that when H χH
H+ χH < 0, the solution for χd is sinusoidal:

χd = α sin(ωx2) + β cos(ωx2) + γ (V.78)
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where ω =
√|H χH/A(H + χH)|. Same solution also holds for ε and d with different

constants as shown in figure V.15.
In comparison with the microstrain approach, the microdamage theory eliminates

the final fracture problem without any modification since there exists no direct
coupling between force stress σ∼ and generalized stresses (see Figure V.14). It provides
consistent crack growth on the cleavage plane with various orientation (see Figure V.20
for an inclined cleavage plane with respect to the load axis).
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Figure V.14 : Comparison between force vs. displacement diagram of a 1D softening
rod for microstrain and microdamage continua.

It is worth mentioning that the penalization between microdamage and damage
variable in the damage criterion (V.66), χH(d− χd), stabilizes the softening term, Hd,
therefore; the critical stress for damage evolution takes the same value throughout
the regularized damage zone (Fig. V.17).

When a material element is broken, the stored energy, especially the energy stored by
generalized stresses should vanish. Therefore, an exponential drop for the modulus A
is suggested:

b = Ae−Qd∇ χd (V.79)

where Q is a material parameter. Note that due to the decay of the modulus A, the
characteristic length starts to shrink which results in a steeper softening regime as it
is illustrated in figure V.19.

V.6.3 Examples

In this section several FE analyses performed by microdamage theory are
demonstrated. As a 2D example, a plate under uniaxial tension with an inclined
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Figure V.15 : Comparison between numerical and analytical solutions of a 1D rod
under tension for microdamage continuum. The analytical solution is only valid at
the damage zone, the rest undergoes elastic unloading (A=200 MPa.mm2, H=-16000
MPa, χH=50000 MPa, µ=200000 MPa).

cleavage plane is investigated (Fig. V.20). In order to trigger localization, an initial
geometric defect is created on the left edge and the cleavage plane is oriented at 30
degrees from the horizontal axis. FEA results show that localization path is perfectly
matching with the cleavage plane and the size of the localization band is controlled
by ω in (V.78).

In figure V.21, FEA of a CT-like fracture mechanics specimen under tension is
considered (Flouriot et al., 2003). The analysis is done by creating a cleavage plane
parallel to the horizontal axis and the loading is performed from the center of the
pin. For a given characteristic length (associated with parameters A=200 MPa.mm2,
H=-16000 MPa, χH=50000 MPa), mesh refinement of the specimen leads to a unique
fracture curve and a finite size crack width, as shown in figures V.21 and V.22.

V.7 Fatigue crack closure effects

Finite element analysis of plasticity-induced fatigue crack growth necessitates
particular investigation of crack closure phenomenon. The main mechanism behind
crack closure is the large tensile plastic strains developed near the crack tip. In a cyclic
loading regime, during unloading, previously initiated plastic strains are not fully
recovered; therefore, behind the crack tip, formation of a plastic wake develops which
reduces the driving force for crack growth. Moreover, during unloading, the zone near
the crack tip which has already been plastically deformed, undergoes compression.
The compressive residual stress in the vicinity of the crack tip strongly effects the crack
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Figure V.16 : Comparison of damage and microdamage values penalized in free
energy density function (V.66).
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Figure V.17 : Evolution of critical damage stress stabilized throughout the damaged
zone.
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Figure V.18 : Force vs. displacement diagram of a 1D softening rod with an
exponentially decaying modulus A
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Figure V.19 : Shrinkage of the damage band observed in a 1D softening rod with
an exponentially decaying modulus A
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Figure V.20 : Crack propagating through a 2D single crystal block with a single
inclined cleavage plane under vertical tension with 8 % strain. Field variable δ.

tip driving force and a proper treatment in mechanical behavior becomes necessary.

In the literature, crack closure problem was first investigated by (Elber, 1970) and
a more general overview for finite element analysis is recently presented by (Pommier,
2002; Pommier, 2001; Solanki et al., 2004). In the present work, a special treatment
of crack closure phenomenon has been established in the numerical model such that a
previously damaged Gauss point deforms continuously, if the critical damage stress is
reached under compressive forces (n s

d ·σ∼ ·n s
d < 0). In that condition, when the crack

is unilaterally closed (δsc ≤ 0) damage evolution stops (δ̇sc = δ̇si = 0) as it is pointed
out in the previous section.

Figure V.23 demonstrates the crack closure behavior of a 1D specimen subjected
to tensile and compressive forces respectively, where plasticity is excluded for a clear
representation. The specimen is first broken under tension and then crack opening is
closed under compression. Note that the specimen recovers its elastic behavior when
the opening is entirely closed. Figure V.24 shows the behavior of the same specimen
under consecutive tensile and compressive forces without causing final fracture similar
to a possible loading cycle under fatigue. From the figure, one can also observe that
during unloading and compression, elastic behavior is preserved up to the critical
damage stress, Y s, and the specimen deforms again continuously up to the crack
closure. The value of critical damage stress does not change since the unrecoverable
damage variable d stays constant due to the unilateral damage conditions. An
elastoplastic case for fatigue is shown up to final fracture in fig. V.25.
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Figure V.21 : Crack growth in a CT-like specimen under tension. Field variable d.
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Figure V.22 : Mesh independency of the numerical solution for the CT-like specimen
demonstrated in figure V.21; force vs. displacement diagrams for an increasing number
of total degrees of freedom.
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Figure V.26 demonstrates a special 1D model problem explaining the interaction
between the cleavage and the accomodation systems, in addition to the interaction
between the crack opening variable, δ and the damage variable, d. For that purpose,
at first, an initial defect has been introduced at the central element of the 1D rod.
At stage I, the rod is loaded in the direction 2, up to the initial damage stress, Y0.
The deformation at stage I is totally elastic; therefore, only a change in F2 vs disp2

diagram showing the elastic loading is observed. At stage II, the softening starts at
the weak element and continues up to the final fracture. Thus, the crack opening for
the cleavage system δ2 starts to initiate and the damage, d evolves untill the critical
normal stress reaches the ultimate stress, (Y0 = σult), which is very close to zero.
At stage III, the rod is further deformed in the direction 2 and the crack continues
to be opened. However, since the critical normal stress is at its ultimate value, the
material can not sustain any force and deforms freely. As it is demonstrated in the d
vs. time(s) diagram, when the ultimate values is reached, (Y0 = σult), the evolution
of damage stops regardless of the further evolutions of crack openings. In that sense,
at stage IV, the rod is deformed in the direction 1 and no resistance is recorded
(F1 = F2 = σult), even though the accomodation system in that direction is activated
(δ1 > 0). Stage V, proves that the cracked element is able to deform freely in all
directions. At stage VI, the rod is placed back to its original position in the direction
1; therefore, the crack opening for the accomodation system is closed (δ1 = 0). At
stage VII, the rod is totally deformed back and it takes it is initial configuration in
all directions; therefore, in addition to the accomodation system, the crack opening
for the cleavage system is also closed (δ2 = 0). If the rod is further compressed after
the closure of the cleavage system, the material behaves elastically as it is performed
at stage VIII and demonstrated in F2 vs. disp2 diagram.

V.8 Finite element implementation

V.8.1 Variational formulation and discretization

The variational formulation of the microdamage approach can be derived directly
from the principle of virtual power (V.63):

−
∫

Ω
p(i)dV +

∫
∂Ω
p(c)dS = 0 (V.80)

−
∫

Ω
(σ∼ : ε̇∼+ a χδ̇ + b .∇ χδ̇)dV +

∫
∂Ω

(t .u̇ + a χδ̇)dS = 0 (V.81)

Finite element discretization of the displacement field u and the microdamage field
χδ take the following form:

u = Nudu, ∇u = Budu,
χδ = Nδdδ, ∇χδ = Bδdδ (V.82)
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Figure V.23 : Force vs. displacement diagram of a 1D softening rod under fatigue.
Final fracture occurs in the first cycle

Figure V.24 : Force vs. displacement diagram of a 1D partially damaged rod under
fatigue.
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Figure V.25 : Representation of a material damaging under cyclic loading
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Figure V.26 : 1D FE problem demonstrating the evolution of forces,F1, F2, crack
openings, δ1, δ2 and damage, d, through time(s) with the corresponding loading
sequences above.
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where du and dδ are the nodal degrees of freedom. Nu and Nδ represent the shape
functions and Bu and Bδ stand for their partial derivatives with respect to the
coordinates. In this work we use isoparametric quadratic elements for both types
of degrees of freedom (Nu = Nδ).
Finally, the discretized equilibrium equations read:∫

Ω
BT
u σ∼dV =

∫
Ω
Nu

Tf dV +
∫

Γ
Nu

T t dS (V.83)

∫
Ω

(Nδ
Ta+Bδ

Tb )dV =
∫

Γ
Nδ

TacdS (V.84)

V.8.2 Implicit incremental formulation

A fully implicit Newton–Raphson incremental formulation is developed for solving
(V.83, V.84). The corresponding time discretization is now introduced. Using the
known values of the state variables ε∼

e(t), υs(t) (integrated from υ̇s = |γ̇s|), δsc,i(t),
δscum(t) for the current time step, the values at t + ∆t are estimated by a straight
forward linearization procedure.

ε∼
e(t+ ∆t) = ∆t ε̇∼

e(t+ ∆t)︸ ︷︷ ︸
∆ε∼

e

+ε∼
e(t) (V.85)

υs(t+ ∆t) = ∆t υ̇s(t+ ∆t) + υs(t) (V.86)

δsc,i(t+ ∆t) = ∆t δ̇sc,i(t+ ∆t) + δsc,i(t) (V.87)

d(t+ ∆t) = ∆t ḋ(t+ ∆t) + d(t) (V.88)

Note that for the sake of simplicity, kinematic hardening variable is not included
in this presentation. The necessary terms for the implementation are provided by
(Cailletaud and Chaboche, 1996).

The presented model is implemented into the FE code ZeBuLoN (Besson et al.,
1998), using a θ–method for the local integration. In order to calculate the state
variable increments, the residuals and their Jacobian are written as follows:

Rε∼
e = ∆ε∼

e + ∆ε∼
p + ∆ε∼

d −∆ε∼ (V.89)

= ∆εe +
Nslip∑
s=1

m∼
s∆υssign(τ s − xs) (V.90)

+
Nplanes∑
s=1

∆δscn
s
d ⊗ n s

d + ∆δsin
s
d ⊗ l sdi (i = 1, 2) (V.91)
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Rυs = ∆υs −∆t
〈

Φs

K

〉n
(V.92)

Rδsc = ∆δsc −∆t
〈
fsc
Kd

〉nd
sign(n s

d · σ∼ · n s
d) (V.93)

Rδsi = ∆δic −∆t
〈
fsi
Kd

〉nd
sign(n s

d · σ∼ · l sdi) (V.94)

Rd = ∆d−∆

Nplanes∑
s=1

|δsc |+ |δs1|+ |δs2|
 (V.95)

(V.96)

[J ] =
∂{R}
∂{∆ϑ} = 1−∆t

∂{ϑ̇}
∂{∆ϑ}

∣∣∣∣∣
t+∆t

(V.97)

where {R}T = {Rεe , Rυs , Rδsc , Rδsi , Rd} and ϑ stands for the internal state variables
to be integrated locally. Then, the Jacobian matrix becomes:

[J ] =



∂Rεe
∂∆εe

∂Rεe
∂∆υs

∂Rεe
∂∆δsc

∂Rεe
∂∆δsi

∂Rεe
∂∆d

∂Rυs
∂∆εe

∂Rυs
∂∆υe

∂Rυs
∂∆δsc

∂Rυs
∂∆δsi

∂Rυs
∂∆d

∂Rδsc
∂∆εe

∂Rδsc
∂∆υe

∂Rδsc
∂δsc

∂Rδsc
∂d

∂Rδsc
∂d

∂Rδs
i

∂∆εe
∂Rδs

i

∂∆υe
∂Rδs

i

∂δsc

∂Rδs
i

∂δsi

∂Rδs
i

∂d

∂Rd
∂∆εe

∂Rd
∂∆υe

∂Rd
∂∆δsi

∂Rd
∂∆δsc

∂Rd
∂∆d


(V.98)

After convergence, the θ–method allows the calculation of the tangent matrix of
the behavior. R can be decomposed into two parts as:

{R} = {Ri} − {Re} (V.99)

where Re corresponds to the applied load. After the convergence (i.e. {R} ≈ {0}),
an infinitesimal variation can be applied to the residual equation such as:

δ{R} = {0} = δ{Ri} − δ{Re} (V.100)

which can be rewritten in the form:

δ∆ϑ = [J ]−1 δ{Re} (V.101)
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Table V.1 : Jacobian matrix terms for εe.

∂Rεe
∂∆εe = I∼∼
∂Rεe
∂∆υ∼

s = sign(τ s − xs)m∼ s
∂Rε∼

e

∂∆δsc
= n s

d ⊗ n s
d

∂Rε∼
e

∂∆δsi
= n s

d ⊗ l sdi(n = 1, 2)

∂Rε∼
e

∂∆d = 0

Table V.2 : Jacobian matrix terms for υs.

∂Rυs
∂∆ε∼

e = −sign(τ s − xs)g(f)(c∼∼
: m∼

s), g(f) = ∆t
〈

Φs

K

〉n−1

∂Rυs
∂∆υe = I∼ − g(f)∂Φs

∂υs

∂Rυs
∂∆δsc,i

= 0

∂Rυs
∂∆d = 0

For the calculation of elastic strain increment, above relation reads:

δ∆ε∼
e = J∼∼

eδ∆ε∼, δ∆σ∼ = C∼∼
: J∼∼e

δ∆ε∼ (V.102)

where
[
J∼∼
e

]
is the upper left part of [J ]−1:

[J ]−1 =

 [J∼∼e] [Jij ]

[Jji] [Jjj ]

 (V.103)

Note that a consistent tangent matrix can directly be obtained from [C∼∼
: J∼∼e

] and it
is non-symmetric, since the coupling between plasticity and damage is established in
one way.

V.9 Mixed element

A mixed element based on the formulation proposed by Bargellini (Bargellini et al.,
2009) is implemented. In that work, Bargellini proposes a three-field formulation in
which volume change is a new unknown and try to eliminate volumetric locking. The
proposed formulation can be easily adapted to the microdamage formulation where
microdamage is taken as the new field. The main advantage would be the possibility to
spare additional degrees of freedom by choosing the interpolation of the displacement
field quadratic while interpolation of higher degrees of freedom are linear. Another
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Table V.3 : Jacobian matrix terms for δsc,i.

∂δsc
∂∆ε∼

e = −h(f)c : (n s
d ⊗ n s

d), h(f) = ∆t ndKd

〈
fsc
Kd

〉nd−1

∂δsi
∂∆ε∼

e = −h(f)c : (n s
d ⊗ l sdi)

∂δsc
∂∆υs = −sign(n s

d · σ∼ · n s
d)h(f)σ∼

c
n
de−dγcum

∂δsi
∂∆υs = −sign(n s

d · σ∼ · l sdi)h(f)σcnde
−dγcum

∂δsc,i
∂δsc,i

= I∼

∂δsc
∂d = sign(n s

d · σ∼ · n s
d)h(f)(H + χH)

∂δsi
∂d = sign(n s

d · σ∼ · l sdi)h(f)(H + χH)

Table V.4 : Jacobian matrix terms for d.

∂d
∂∆εe = 0

∂d
∂∆υs = 0

∂d
∂∆δsc

= −sign(n s
d · σ∼ ·nsd)

∂d
∂∆δsi

= −sign(n s
d · σ∼ · lsdi)

∂d
∂∆d = 1
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Figure V.27 : Mixed element demonstrating a tetrahedron element quadratic for
displacemen degree of freedoms and linear for microdamage

advantage would be to attain same order of interpolation in the very important
coupling, constructed between strain-like variable damage δ and the microdamage
χδ which is a degree of freedom (see equation V.66). For instance, considering a
classical quadratic finite element, interpolation for scalar damage becomes linear while
the interpolation for microdamage is quadratic. Therefore, applying the proposed
formulation linear interpolation for both variables can be satisfied (see Figure V.27
for a graphical representation).

As a numerical example, damage growth in a plate is reconsidered. An artificial
notch is introduced on the left face and a tensile load is applied. Regularized band
with is exaggerated. Maps of damage and the microdamage fields are provided in
Figure V.28. For the sake of demonstration microdamage field is visualized only on the
defined nodes. Therefore, a star-like shape is attained indicating a linear interpolation.
Displacement field is interpolated quadratically so that the scalar damage field is
visualized everywhere. For the benchmarking of the new element the previous 1-D
rod geometry is used. The damage bandwidth and FE mesh is given in Figure V.29.
Same parameters provided in microdamage section is used. The bar is subjected
to tensile loads up to the final fracture and the normalized computation time and
number of iterations are recorded. The outcomes are listed in Table V.9. It has been
concluded that even though some of the higher order degrees of freedom are spared,
computation time is not improved significantly. The main reason is microdamage is
only activated for the cracking elements which are very few compared to the overall
geometry. Therefore, sparing degrees of freedom is only possible for a certain number
of elements which does not bring the anticipated numerical efficiency. However, for
the sake of integrity, mixed elements will be used in the further calculations.
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Figure V.28 : A plate under tension with an initial notch. FE calculation is
performed with mixed elements. Microdamage field on the left, scalar damage field
on the right.

Figure V.29 : 1-D rod with an initial defect at the center under tension

Element type Integration method Computation time (s) Number of iterations

Mixed Theta 1.0 1778

Classical Theta 1.05 1866

Classical Runge Kutta 8.85 555
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Figure V.30 : Finite element mesh of a CT-like specimen created by ZeBuLoN GUI.

V.10 Model validation

For the model validation, a 2D single crystal CT-like specimen under monotonic
loading is analyzed. The corresponding finite element mesh is given in Fig. V.30.
Analyses are performed for two different crack widths, obtained by furnishing different
material parameters which control the size of intrinsic length scale, L which can be
calculated from equation V.78. The propagation of a crack, corresponding stress
fields and the comparison with classical elastic solutions are given in Fig. V.32. This
comparison shows that the microdamage model is able to reproduce the elastic stress
concentration at the crack tip except very close to the crack tip where finite stress
values are predicted. Moreover, the size of the zone of departure from the elastic
solution is comparable with the size of the intrinsic length scale (process zone ≈ 3L).

Another 2D example, namely a plate under uniaxial tension with several cleavage
planes, is investigated (see Fig. V.33). In order to trigger localization, an initial
geometric defect is created on the left edge. First, a cleavage plane is oriented at
30◦ from the horizontal axis. FEA results show that localization path is perfectly
matching with the cleavage plane and the size of the localization band is controlled
by ω in (V.78)(Fig. V.33 - (left)). Second, two orthogonal cleavage planes are placed
with an orientation of 45◦ from the horizontal axis representing {111} planes. For the
former case, damage–plasticity coupling leads to merged localization bands forming
a straight crack path which can be considered as a type of ductile crack (Fig. V.33 -
middle). For the latter case, plasticity is excluded from the calculation and crack path
is allowed to choose its path between the orthogonal planes resulting in a brittle type
of crack propagation (Fig. V.33 - right). Corresponding finite element results validate
that the model is able to predict crack bifurcation. However, physical relevance of
this fracture has to be investigated in the future.
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Figure V.31 : Crack growth in a 2D single crystal CT-like specimen with a single
cleavage plane aligned through the horizontal axis under vertical tension. Field
variable δ.(Left) A=100 MPa.mm2, H=-20000 MPa, χH=30000 MPa, (Right) A=150
MPa.mm2, H=-10000 MPa, χH=30000 MPa.
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Figure V.32 : Evolution of the crack and the stress fields in a CT-like specimen
compared with corresponding elastic solutions.



V.11. APPLICATION TO FATIGUE CRACK GROWTH IN SINGLE CRYSTALS 109

Figure V.33 : Crack growth in a 2D single crystal block with a single inclined
cleavage plane (left) and two orthogonal planes oriented at 45 degrees (middle and
right) under vertical tension with 10 % strain. Field variable δ.

V.11 Application to fatigue crack growth in single

crystals

In this section, the crack growth tests of superalloy PWA1483 performed at 950oC
and presented in (Marchal, 2006) are simulated. For this purpose a standard single
edge notched specimen geometry is used. The mesh and the boundary conditions
are provided in figure V.35. As an initial defect, a 2.25 mm long artificial crack
is introduced and the geometric symmetry is taken into account. Crack tip zone
is regularly meshed and element size is fixed to 2µm which is considered as a
representative value concerning crack growth in single crystals. All elements are
chosen to be 2D quadratic 10-node bricks with reduced integration. A single cleavage
plane is fixed to horizontal axis and the crack is oriented as (001)[100]. A sinusoidal
cyclic loading regime is applied to the geometry with an R ratio=0.1 with a frequency
of 0.1 Hz as it is defined in (Marchal, 2006). The parameter identification procedure
has been performed for ∆K = 25, 35, 45 and 60MPa

√
m respectively, where ∆K is

related to the applied force and the geometry with the relation:

KI =
F

B
√
w

{√
2 tan( πa2w )
cos( πa2w )

[
0.752 + 2.02

a

w
+ 0.37

[
1− sin(

πa

2w
)
]3
]}

(V.104)

The parameter values used for the life time prediction are provided in table V.5.
One can observe that parameters for the damage Norton rule are taken in the same
order of plastic parameters. A and χH which mainly control the characteristic length
were identified in order to obtain a damage band size of 4µm which corresponds
to one element size concerning a symmetric calculation as demonstrated in Figure
V.35. The parameters Θ, σcn and H control the crack initiation and crack growth
rate. Therefore, they were identified from the experimental data provided in figure
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Figure V.34 : Illustration of a SEN geometry corresponding to the equation (V.104),
where B is the specimen thickness.

V.37. The initial threshold value for ∆K determines the σcn and from the slope of the
da/dN vs. ∆K diagram, one can identify the parameter Θ which generally deviates
from 2. to 7. for single crystals. From tensile test performed up to the final fracture
one can fit H which is directly determined from the softening slope. For the FE
calculation, mixed type elements presented in the previous section are used and an
element removing procedure has been conducted such that the element is removed
from the calculation when the critical damage stress becomes zero at all gauss points
accomodating in the element. Several FEA results are shown in figure V.36. First,
FEA maps for opening stress, σ22 are provided. As it is noticed from the figure, the
stress field perfectly moves with the crack tip and the broken elements undergo zero
stress representing a realistic crack. The exact place of the crack tip can be easily
tracked by the damage field demonstrated at the middle and the plastic wake zone
induced by the crack growth is presented underneath. The ability of the model to
predict crack growth rate is demonstrated in figure V.37. Experimental and numerical
results indicate that model predictions are in good agreement with the experimental
observations. The parameter values used for the life time prediction are provided in
table V.5.

Figure V.38 demonstrates the strain rate behaviour of the model. Experimental
investigations show that with the increase of loading frequency, crack growth rates
are decreasing. As it has been addressed in previous chapters, this increase in life
time result from the decrease in oxidation rates, i.e. specimens under high frequency
loadings are less prone to oxidation. In contrast, microdamage model predicts lower
life times under higher frequencies. This is due to the viscosity induced higher stresses
in the vicinity of the crack tip. High strain rates increases the local stress values;
therefore, damage initiations are prematurely activated even though the damage
threshold is rather high. Even though the model is quantitatively not very sensitive
to strain rates a special care must be taken. Potential remedy to the problem could
be considering time dependent creep damage and oxidation which are not explicitly
included in the model.

Figure V.39 shows the influence of the orientation on the crack growth rate. In
connection with the discussions done in Chapter 2, experimental results show no
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Table V.5 : Microdamage parameters for the life-time assessment of PWA1483

Parameters A Θ Kd nd σcn
χH H σult

Units MPamm2 – MPas1/n – MPa MPa MPa MPa
Values 2. 3. 550 6.5 1200 30000 -15000 0.1

significant dependence on the crack growth rates. It has been shown that numerical
results also match with the experimental observations. Orientation dependence is
primarily due to the variations in elastic properties with orientation; however the
damage criteria introduced in the current work strictly depends on the cumulated
plastic slip where orientation dependence is less apparent.

Figure V.35 : Illustration of the finite element mesh of the SEN specimen with
boundary conditions

V.12 Multi-plane concepts

It is crucial to state that the selection of the damage plane orientation extremely
depends on the temperature and the level of observation which characterizes the
morphology of the crack path. For instance, in the work of Geuffrard (Geuffrard,
2010), crack growth tests for AM1, performed relatively at low temperatures (650oC),
result in sharp cracks which follow slips on {111} planes with many macro zigzags (See
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Figure V.36 : Demonstration of the FEA results of the SEN specimen after 10 cycles
for the opening stress, σ22, cumulative damage, δcum and the plastic strain normal to
the crack propagation direction, εp22, respectively

figure V.40). On the contrary, it has been shown that same type of specimens tested
at relatively high temperatures (950oC) experience crack growth on straight paths.
The observations have been done for 100µm size. As the Figure V.41 demonstrates,
the temperature, crack path character and characteristic size of the observation made
in the latter case is in coherence with the numerical simulation represented in Figure
V.36. However, if we look closer to the latter case a micro zigzag type crack path
lying on {111} planes can be observed (see Figure V.42). Figure V.42 presents that
at the micron level high number of crack branching and bifurcations take place on
{111} planes under fatigue loading. Note that, this path is previously considered as
straight from the observation made from a relatively remote distance.
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Figure V.37 : Comparison between the numerical simulation and the experimental
data of the fatigue test performed for PWA1483 for different strain rates.

Regarding the numerical modeling, it is substantial to mention that presented
microdamage model gives the possibility to associate damage on the preferred planes
and able to capture size effects. In that sense, for a given experimental data, same
phenomenon can be simulated by simply considering {111} planes as the damage
planes and the characteristic length can be adapted to a convenient size, (for instance
500 nm) which can be regarded as the superiority of the approach against the
models prescribing the crack path before the numerical analysis like CZM. Figure
V.43 qualitatively represents the corresponding numerical simulation performed with
micro damage model showing the crack bifurcation and branching through {111}
planes. Quantitative analysis are assigned as a prospective work.
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Figure V.38 : Comparison between the numerical simulation and the experimental
data of the fatigue test performed for PWA1483 for different orientations.

Figure V.39 : Comparison between the numerical simulation and the experimental
data of the fatigue test performed for PWA1483.
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Figure V.40 : Crack growth test of AM1 tubular specimen under fatigue at 650oC,
initial notch is oriented at (001)[100] (Geuffrard, 2010).

Figure V.41 : Crack growth test of AM1 tubular specimen under fatigue at 950oC,
initial notch is oriented at (001)[100] (Geuffrard, 2010).

Figure V.42 : Crack bifurcation and branching on {111} planes in a single crystal
under fatigue (Flouriot, 2004)
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Figure V.43 : Comparison between the successive crack bifurcations in a (001)[110]
CT specimen under fatigue (T=650o C) (Marchal, 2006) and the numerical simulation
showing the crack bifurcation and branching through {111} planes. Field variable d.



Chapter -VI-

Conclusion

The main objective of the thesis was to develop a consistent methodology in order
to predict crack initiation and crack growth in single crystals in the presence of
strong stress and temperature gradients. Life-time prediction of the single crystal
components of the turbine blades is accepted as a major task. In that context, damage
mechanics is taken as a well-suited theoretical framework for the development of crack
initiation and growth modeling in single crystals. On the basis of crystal plasticity
theory which provides a solid link between stress and plastic strains, an uncoupled
damage mechanics model based on the history of FE calculations was accepted as a
fast and robust method to estimate the life-time.

The most common method of assessing the fatigue characteristics of an engineering
component is to construct a Goodman Diagram. Therefore, main focus was on the
generation of Goodman diagrams by using the uncoupled damage mechanics model.
In fact, that sort of model requires simple procedures in calibrating the parameters
from the standard experimental data. Parameter identification process is explained in
detail in chapter 4 and it is concluded that all parameters can be calibrated from the
standard tests. It is important to point out that generation of Goodman diagrams
become very expensive if it is going to be constructed only from experimental data.
Therefore, proper model predictions are highly desirable in order to construct a
realistic Goodman curve. For single crystals, it has been shown that life-time is
decreased with an increase of temperature and dwell time and multiaxial loadings
are undesired. Thus, the model should account for multiaxial loads and introduce
creep-fatigue interactions. In that context, presented model is shown to suit these
aspects. In the case of a real geometry life-time predictions are highly influenced by
stress concentrations which result in conservative life-time estimations. The observed
conservatism basically results from high stress gradients and low effective volume of
material under high stresses. In that sense, notched specimens have been considered as
good candidates to be investigated under the existence of stress gradients. The major
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issue here would be to identify the statistically critical zone in order to perform a non-
local averaging process which smooths the local high stress values. It is important
to notice that averaging process brings certain ambiguity to the determination of
crack initiation location. An important conclusion here is standard approach is more
suitable for the determination of the crack initiation zone, while proper life-time values
can only be obtain by utilizing averaging process.

In particular, the presented post-processing model was an uncoupled nonlocal
model (damage uncoupled with the mechanics). A reasonable coupling requires
further effort. Chapter 6 mainly aimed at introducing a fully coupled nonlocal
model based on the mechanics of generalized continua which accounts for intrinsic
length scales in order to capture size effects and address mesh, geometry and size
independences. Two variants of micromorphic continuum and their regularization
capabilities for the modeling of crack propagation in single crystals have been
scrutinized. First, a crystallographic constitutive model which accounts for continuum
damage with respect to fracture planes has been presented. Then, the theory has
been extended from classical continuum to microstrain and microdamage continua,
respectively. It has been concluded that both approaches can be good candidates
in solving mesh dependency. Analytical fits and numerical results showed both
theories are well suited for FEA. However, introducing only one degree of freedom
and recovering classical elasticity, microdamage continuum was considered as a
more promising approach and further studied. A 1D geometry was investigated
for the observation of stable critical damage stress evolution and the crack closure
phenomenon. It has been shown that critical stress for damage is continuously
stabilized and the model is capable of simulating crack closure in the desired way
successfully. After giving the details of numerical implementation procedure a mixed
element was presented as a potential numerical enhancement. It has been observed
that even though some of the higher order degrees of freedom are spared, computation
time is not improved significantly. The main reason is microdamage is only activated
for the cracking elements which are very few compared to the overall geometry.
Therefore, sparing degrees of freedom is only possible for a certain number of elements
which does not bring the anticipated numerical efficiency. Afterwards, the model
has been validated through several 2D specimens under monotonic loading. The
results have shown that the model is able to reproduce the elastic stress concentration
at the crack tip and predict the crack bifurcation by defining multi-plane damage
systems which could be considered as the main advantage compared to the cohesive
zone models where the crack paths are predefined. After the model validation, a
parameter fitting procedure was conducted in order to simulate the crack growth
tests performed on single crystal PWA1483 at 950oC. A standard SEN specimen has
been analyzed for several K values and a good agreement between the experimental
data and the numerical results has been found. It was strictly pointed out that
oxidation and creep damage is not considered in the modeling. Therefore, a slight
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deviation from the experimental results has been observed for different strain rates.
Orientation dependency of both numerical and experimental results were insignificant
because of the fact that orientation dependence is primarily due to the variations
in elastic properties with orientation. However, the damage criteria introduced in
the current work strictly depends on the cumulated plastic slip where orientation
dependence is less apparent. Finally, in connection with the future aspects the
necessity of considering multiplane damage has been pointed out. Strong bifurcation
and branching character of the cracks at high temperatures are demonstrated and
size effects regarding the crack path character have been addressed.

As a prospective issue, introducing a multi plane damage system, a bifurcation
analysis under realistic creep-fatigue loadings are to be considered. The influence of
crystal orientation and mixed mode loadings (modes I and II) on crack growth rate
are to be investigated. Moreover, combining crystal plasticity, continuum damage and
a strain gradient formulation, the model possess a great potential for modeling fatigue
crack growth in polycrystals. Therefore, simulation of crack growth in polycrystals
are considered as a major goal to be accomplished. Microdamage model considers
many aspects: crystal plasticity, continuum damage, mixed FE formulations, higher
order continuum theory etc. Therefore, numerics will always comprise a boundary for
the modeling issues. In that sense, potential enhancements must always be pursued
for the numerical efficiency.
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Degrees of freedom
(u ,χ

∼
) (ui, χij)

Strain measures
ε∼ = u ⊗∇, e∼ = u ⊗∇− χ

∼
, K

∼
= χ
∼
⊗∇

εij = u(i,j), eij = ui,j − χij , Kijk = χij,k

Balance equations
(σ∼ + s∼).∇+ f = 0, S

∼
.∇+ s∼+ P∼ = 0

(σij + sij),j + fi = 0, Sijk,k + sij + Pij = 0
Boundary conditions

t = (σ∼ + s∼).n , M∼ = S
∼
.n

ti = (σij + sij)nj , Mij = Sijknk

Linear isotropic elasticity potential

W =
1
2
λεiiεjj + µεijεij +

1
2
b1eiiejj +

1
2
b2eijeij +

1
2
b3eijeji + g1εiiejj + g2εij(eij + eji)

+ A1KikiKjjk +A2KikiKkjj +
1
2
A3KikiKjkj +

1
2
A4KiijKkkj

+ A5KiijKjkk +
1
2
A8KijjKikk +

1
2
A10KijkKijk +A11KijkKjki

+
1
2
A13KijkKjik +

1
2
A14KijkKkji +

1
2
A15KijkKikj

Linear isotropic elasticity relations

σij = λεppδij + 2µεij + g1eppδij + g2(eij + eji)

sij = g1εppδij + 2g2εij + b1eppδij + b2eij + b3eji

Spqr = A1(Kiiqδpr +Kiriδpq) +A2(Kqiiδpr +Kipiδqr) +A3Kiqiδpr

+ A4Kiirδpq +A5(Kriiδpq +Kiipδqr) +A8Kpiiδqr +A10Kpqr

+ A11(Kqrp +Krpq) +A13Kqpr +A14Krpq +A15Kprq

S111

S112

S121

S122

S211

S212

S221

S222


=



AA 0 0 A2,5,8 0 A1,2,3 A1,4,5 0
0 A4,10,13 A1,11,15 0 A5,11,14 0 0 A1,4,5

0 A1,11,15 A3,10,14 0 A2,11,13 0 0 A1,2,3

A2,5,8 0 0 A8,10,15 0 A2,11,13 A5,11,14 0
0 A5,11,14 A2,11,13 0 A8,10,15 0 0 A2,5,8

A1,2,3 0 0 A2,11,13 0 A3,10,14 A1,11,15 0
A1,4,5 0 0 A5,11,14 0 A1,11,15 A4,10,13 0

0 A1,4,5 A1,2,3 0 A2,5,8 0 0 AA



K111

K112

K121

K122

K211

K212

K221

K222

AA = 2A1 + 2A2 +A3 +A4 + 2A5 +A8 +A10 + 2A11 +A13 +A14 +A15

Table A.1 : Micromorphic meduim: balance equations and isotropic linear elastic
relations
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Degrees of freedom
(u , χε∼) (ui, χεij)

Strain measures
ε∼ = u ⊗∇, e∼ = u ⊗∇− χε∼ εij = ui,j , eij = ui,j − χεij

K
∼

= χε∼⊗∇ Kijk = χεij,k

Balance equations
(σ∼ + s∼).∇+ f = 0, S

∼
.∇+ s∼+ P∼ = 0

(σij + sij),j + fi = 0, Sijk,k + sij + Pij = 0
Boundary conditions

t = (σ∼ + s∼).n , M∼ = S
∼
.n

ti = (σij + sij)nj , Mij = Sijknk

Linear isotropic elasticity potential

W =
1
2
λεiiεjj + µεijεij +

1
2
b1eiiejj +

1
2

(b2 + b3)eijeij + g1εiiejj + 2g2εijeij

+ A1KikiKjjk + (A2 +A3)KikiKkjj +
1
2
A4KiijKkkj

+ A5KiijKjkk +
1
2
A8KijjKikk +

1
2

(A10 +A13)KijkKijk

+ (A11 +A14)KijkKjki +
1
2
A15KijkKikj

Linear isotropic elasticity relations

σij = λεppδij + 2µεij + g1eppδij + 2g2eij

sij = g1εppδij + 2g2εij + b1eppδij + (b2 + b3)eij

Spqr = A1Kiiqδpr + (A1 +A5)Kiriδpq + (A2 +A3)Kiqiδpr + (A2 +A8)Kipiδqr

+ A4Kiirδpq +A5Kiipδqr + (A10 +A13)Kpqr + (A11 +A14)Kqrp

+ (A11 +A15)Krpq

S111

S112

S121

S122

S221

S222


=



AA 0 0 A+ C B 0
0 I F +H 0 0 B

0 F +H D + 2E +G 0 0 A+ C

A+ C 0 0 G+ 2E +D F +H 0
B 0 0 F +H I 0
0 B A+ C 0 0 AA





K111

K112

K121

K122

K221

K222


AA = 2A1 + 2A2 +A3 +A4 + 2A5 +A8 +A10 + 2A11 +A13 +A14 +A15

A = A1 +A2 +A3 ;B = A1 +A4 +A5 ;C = A2 +A5 +A8

D = A3 +A10 +A14 ;E = A2 +A11 +A13 ;F = A1 +A11 +A15

G = A8 +A10 +A15 ;H = A5 +A11 +A14 ; I = A4 +A10 +A13

Table A.2 : Microstrain medium: balance equations and isotropic linear elasticity
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Model problems

Model problems for micromorpic
and microstrain continua

Simple micro-stretch
One of the simplest deformation case of micromorphic continuum is simple
microstretch of an infinite layer with a unit height fixed along one side as it is
demonstrated in Fig.1. Due to the symmetry of the problem elastic solutions for
both micromorphic and microstrain theory are identical in the case of being assigned
identical moduli.

Figure B.1 : Simple micro-stretch test for a micromorphic infinite layer and
corresponding boundary conditions

The unknowns of the problem are u 2 = u(x2) and χ
∼22

= χ(x2). Several boundary
conditions are possible, the chosen boundary condition set is expressed as following

u(0) = 0, χ(0) = 0, σ22 + s22 = 0 (B.1)
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For the analytical solution of the problem, a suggested way would be vanishing u
and solving the differential equation for χ. To begin with let us recall the elasticity
relations for isotropic case.

For micromorphic medium;

σ∼ = λtr(ε∼)1∼ + 2µε∼+ g1tr(e∼)1∼ + g2(e∼ + e∼
T ) (B.2)

s∼ = g1tr(ε∼)1∼ + 2g2(ε∼) + b1tr(e∼)1∼ + b2e∼ + b3e∼
T (B.3)

S
∼

= A∼∼∼
K
∼

(B.4)

For microstrain medium;

σ∼ = λtr(ε∼)1∼ + 2µε∼+ g1tr(e∼)1∼ + 2g2(e∼) (B.5)

s∼ = g1tr(ε∼)1∼ + 2g2(ε∼) + b1tr(e∼)1∼ + 2b2e∼ (B.6)

S
∼

= A∼∼∼
K
∼

(B.7)

Where λ and µ are Lame constants b1, b2, b3, g1, g2 are additional moduli and A is
the 6th order elasticity tensor for S

∼
. Note that assuming no coupling between stress

and micro-stress and taking b2 = b3 makes the behavior of both medium identical for
this model problem. For b = b1 + b2 + b3, the evaluation of elasticity law and balance
equations leads to the following equations:

σ22,2 + s22,2 = (λ+ 2µ)u′′ + b(u′′ − χ′) = 0 (B.8)

S222,2 + s22 = Aχ′′ + b(u′ − χ) = 0 (B.9)

σ22 + s22 = (λ+ 2µ)u′ + b(u′ − χ) = 0 (B.10)

Solving B.8 for u′′ one optains:

u′′ =
b

(λ+ 2µ+ b)
χ′ (B.11)

Taking derivative of B.9 and plugging B.11 into it gives
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Aχ′′′ + b(
b

λ+ 2µ+ b
− 1)χ′ = 0 (B.12)

Solving for χ′′′ equation becomes;

χ′′′ =
b(λ+ 2µ)

A(λ+ 2µ+ b)
χ′ (B.13)

From the above differential equation one can solve χ and u as

χ = αcosh(wx2) + βsinh(wx2) + γ (B.14)

u = αcosh(wx2)(1− A

b
w2) + βsinh(wx2)(1− A

b
w2) + γ = 0 (B.15)

where,

w =

√
b(λ+ 2µ

A(λ+ 2µ+ b)
(B.16)

To identify the constants, boundary conditions must be used. For instance,
from σ22 + s22 = 0, we deduce the following:

λu′ + 2µu′ + b(u′ − χ) = 0 (B.17)

which can be solved for u′ as

u′ =
b

λ+ 2µ+ b
χ (B.18)

Plugging B.18 into B.9 gives

Aχ′′ + b(
b

λ+ 2µ+ b
)− 1)χ = 0 (B.19)

which can be solved for χ′′ as

χ′′ =
b(λ+ 2µ)
λ+ 2µ+ b

χ (B.20)

From the above equation it is clear that γ = 0. Moreover, from the boundary
condition: χ(0) = 0 it is known that α = −γ which decays the solution into a
sinusoidal function with a wave length of 1/w as follows:
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Figure B.2 : Comparison between numerical and analytical solutions of simple
micro-stretch test. E = 70000Mpa, v = 0.3, b1 = 100000Mpa, b2 = b3 =
100000Mpa,Ai = 200Mpa.mm2, h = 1mm,χ0 = 0.1

χ = βsinh(wx2) (B.21)

where, β can be solved from the boundary condition χ(h) = χ0 as

β =
χ0

sinh(wh)
(B.22)

As it is represented in Fig.2, computations perfectly agree with the analytical solution.

Simple micro-glide of micromorphic media

Micro-glide of a micromorphic media should be also considered as a special case of
deformation. For the model problem, again an infinite layer with a unit height has
been taken and fixed along one side as it is demonstrated in figure B.4. microstrain
tensor both χε12 and χε21 are fixed to χ0 at the free edge and everything is fixed at
the bottom. χε12 =χ ε21 = χ0

The unknowns of the problem are u 1 = u(x2) and χε12∼
= χε21∼

= χε∼ (x2). Several
boundary conditions are possible, the chosen boundary condition set is expressed as
following

ui(0) = 0, χεij(0) = 0, σ12 + s12 = 0 (B.23)
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Figure B.3 : Simulation of the model problem: Same boundary conditions were
applied with fixing lateral displacement due to symmetry

For the analytical solution of the problem, a suggested way would be again
vanishing u and solving the differential equation for chi. To begin with let us recall
the elasticity relations of microstrain medium for isotropic case.

σ∼ = λtr(ε∼)1∼ + 2µε∼+ g1tr(e∼)1∼ + 2g2(e∼) (B.24)

s∼ = g1tr(ε∼)1∼ + 2g2(ε∼) + b1tr(e∼)1∼ + 2b2e∼ (B.25)

S
∼

= A∼∼∼
K
∼

(B.26)

Where λ and µ are Lame constants b1, b2, g1, g2 are additional moduli and A is
the 6th order elasticity tensor for S

∼
. Note that no coupling between stress and micro-

stress is assumed (g1 = g2 = 0). The evaluation of elasticity law and balance equations
leads to the following equations:

σ12,2 + s12,2 = µu′′ + b2(u′′ − 2χ′) = 0 (B.27)

S122,2 + s12 = Aχ′′ + b2(u′ − 2χ) = 0 (B.28)

σ12 + s12 = µu′ + b2(u′ − 2χ) = 0 (B.29)
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Figure B.4 : Pure microglide test for a micromorphic infinite layer and corresponding
boundary conditions

Solving B.45 for u′′ leads to

u′′ =
2b2

(µ+ b2)
χ′ (B.30)

Taking derivative of B.46 and plugging B.48 gives

Aχ′′′ + b2(
2b2

µ+ b2
− 2)χ′ = 0 (B.31)

Solving for χ′′′ equation becomes;

χ′′′ =
2µ+ b2
A(µ+ b2)

χ′ (B.32)

From the above differential equation, χ can be solved as

χ = αcosh(wx2) + βsinh(wx2) + γ (B.33)

where,

w =

√
2µb2

A(µ+ b2)
(B.34)

The constants are identified by using boundary conditions. For instance,
from σ12 + s12 = 0, we deduce the following:

µu′ + b2(u′ − 2χ) = 0 (B.35)
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which can be solved for u′ as

u′ =
2b2

µ+ b2
χ (B.36)

Plugging B.54 into B.46 gives

Aχ′′ + 2b2(
b2

µ+ b2
)− 1)χ = 0 (B.37)

which can be solved for χ′′ as

χ′′ =
2b2µ

A(µ+ b2)
χ (B.38)

From B.56 it is clear that γ = 0. Furthermore, from the boundary condition:
χεij(0) = 0 it is known that α = −γ; therefore, the solution becomes a sinusoidal
function with a wave length of 1/w as follows:

χ = βsinh(wx2) (B.39)

where, β can be solved from the boundary condition χ(h) = χ0 as

β =
χ0

sinh(wh)
(B.40)

From the figure B.8, it is concluded that computations are perfectly matching with
the analytical solution.

Simple micro-glide of microstrain media

Another special case of deformation of a microstrain continuum is pure microglide
of an infinite layer with a unit height fixed along one side as it is demonstrated in
figure B.7. Due to the symmetry of microstrain tensor both χε12 and χε21 are fixed
to χ0 at the free edge and everything is fixed at the bottom. χε12 =χ ε21 = χ0

The unknowns of the problem are u 1 = u(x2) and χε12∼
= χε21∼

= χε∼ (x2). Several
boundary conditions are possible, the chosen boundary condition set is expressed as
following

ui(0) = 0, χεij(0) = 0, σ12 + s12 = 0 (B.41)

For the analytical solution of the problem, a suggested way would be again
vanishing u and solving the differential equation for chi. To begin with let us recall
the elasticity relations of microstrain medium for isotropic case.
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Figure B.5 : Comparison between numerical and analytical solutions of
simple micro-stretch test. E = 70000Mpa, v = 0.3, b2 = 76923Mpa,Ai =
1000Mpa.mm2, h = 1mm,χ0 = 0.1

Figure B.6 : Simulation of the simpleglide problem: Symmetry conditions were
applied to the sides in order to eliminate the boundary effects
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Figure B.7 : Pure microglide test for a micromorphic infinite layer and corresponding
boundary conditions

σ∼ = λtr(ε∼)1∼ + 2µε∼+ g1tr(e∼)1∼ + 2g2(e∼) (B.42)

s∼ = g1tr(ε∼)1∼ + 2g2(ε∼) + b1tr(e∼)1∼ + 2b2e∼ (B.43)

S
∼

= A∼∼∼
K
∼

(B.44)

Where λ and µ are Lame constants b1, b2, g1, g2 are additional moduli and A is
the 6th order elasticity tensor for S

∼
. Note that no coupling between stress and micro-

stress is assumed (g1 = g2 = 0). The evaluation of elasticity law and balance equations
leads to the following equations:

σ12,2 + s12,2 = µu′′ + b2(u′′ − 2χ′) = 0 (B.45)

S122,2 + s12 = Aχ′′ + b2(u′ − 2χ) = 0 (B.46)

σ12 + s12 = µu′ + b2(u′ − 2χ) = 0 (B.47)

Solving B.45 for u′′ leads to

u′′ =
2b2

(µ+ b2)
χ′ (B.48)

Taking derivative of B.46 and plugging B.48 gives

Aχ′′′ + b2(
2b2

µ+ b2
− 2)χ′ = 0 (B.49)
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Solving for χ′′′ equation becomes;

χ′′′ =
2µ+ b2
A(µ+ b2)

χ′ (B.50)

From the above differential equation, χ can be solved as

χ = αcosh(wx2) + βsinh(wx2) + γ (B.51)

where,

w =

√
2µb2

A(µ+ b2)
(B.52)

The constants are identified by using boundary conditions. For instance,
from σ12 + s12 = 0, we deduce the following:

µu′ + b2(u′ − 2χ) = 0 (B.53)

which can be solved for u′ as

u′ =
2b2

µ+ b2
χ (B.54)

Plugging B.54 into B.46 gives

Aχ′′ + 2b2(
b2

µ+ b2
)− 1)χ = 0 (B.55)

which can be solved for χ′′ as

χ′′ =
2b2µ

A(µ+ b2)
χ (B.56)

From B.56 it is clear that γ = 0. Furthermore, from the boundary condition:
χεij(0) = 0 it is known that α = −γ; therefore, the solution becomes a sinusoidal
function with a wave length of 1/w as follows:

χ = βsinh(wx2) (B.57)

where, β can be solved from the boundary condition χ(h) = χ0 as

β =
χ0

sinh(wh)
(B.58)
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Figure B.8 : Comparison between numerical and analytical solutions of
simple micro-stretch test. E = 70000Mpa, v = 0.3, b2 = 76923Mpa,Ai =
1000Mpa.mm2, h = 1mm,χ0 = 0.1

From the figure B.8, it is concluded that computations are perfectly matching with
the analytical solution.

Figure B.9 : Simulation of the simple glide problem: Symmetry conditions were
applied to the sides in order to eliminate the boundary effects





Appendix -C-

Parameters

Crystal Plasticity Parameters

slip K n ro q b c d M n
Material systems MPa1/n MPa MPa MPa

octa. 551.3 7.8 108.1 – – 163514.9 1821.5 – –
CMSX-4

cubic 541.04 7.8 36.8 -4.7 5400.5 97189.9 1879.4 – –

octa. 770.0 5.3 18.0 – – 105500.0 900.0 600. 8.0
PWA1483

cubic 570.0 5.3 11.0 – – 63000.0 850.0 720. 8.0

Table C.1 : Crystal plasticity parameters for CMSX-4 and PWA1483 at 950oC

M β σl b1 b2 a k

2.9 5.8 0.71 0.71 0.71 0.1 5.0

temp (oC) 20 600 750 950 1000 1050
σu 1025. 1025. 1200. 800. 630. 370.
A 2000. 2000. 1800. 1070. 845. 685.
r 30. 15. 10. 5.5 5.2 5.

Table C.2 : Parameters for creep-fatigue damage model for CMSX-4. Temperature
independent variables are normalized by σu
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