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Résumé

Cette these est divisée en deux parties. Dans la premiére partie on s’intéresse
aux problémes de commande optimale déterministes et on étudie des ap-
proximations intérieures pour deux problémes modéles avec des contraintes
de non-négativité sur la commande. Le premier modéle est un probléeme de
commande optimale dont la fonction de colt est quadratique et dont la dy-
namique est régie par une équation différentielle ordinaire. Pour une classe
générale de fonctions de pénalité intérieure, on montre comment calculer le
terme principal du développement ponctuel de I'état et de I’état adjoint.
Notre argument principal se fonde sur le fait suivant: si la commande op-
timale pour le probléme initial satisfait les conditions de complémentarité
stricte pour le Hamiltonien sauf en un nombre fini d’instants, les estimations
pour le probléme de commande optimale pénalisé peuvent étre obtenues a
partir des estimations pour un probléme stationnaire associé. Nos résultats
fournissent plusieurs types de mesures de qualité de 'approximation pour
la technique de pénalisation: estimations des erreurs de la commande pour
les normes L* (s dans [1,+00]), estimations des erreurs pour I'état et I'état
adjoint dans les espaces de Sobolev W* (s dans [1,+00)) et aussi estima-
tions de erreurs pour la fonction valeur. Pour la norme L' et la pénalisation
logarithmique, les résultats optimaux sont donnés. Dans ce cas-la on ob-
tient des erreurs pour la trajectoire centrale du probléme pénalisé de 1’ordre
O(ellogel).

Le second modéle est le probléme de commande optimale d’une équation
semi-linéaire elliptique avec conditions de Dirichlet homogéne au bord, la
commande étant distribuée sur le domaine et positive. L’approche est la
méme que pour le premier modéle, ¢’est-a-dire que I'on considére une famille
de problémes pénalisés par € > 0, dont la solution définit une trajectoire
centrale qui converge vers la solution du probléme initial. De cette maniére,
on peut étendre les résultats, obtenus dans le cadre d’équations différentielles,
au controle optimal d’équations elliptiques semi-linéaires.

Dans la deuxiéme partie on s’intéresse aux problémes de commande op-
timale stochastiques. Dans un premier temps, on considére un probléme
linéaire quadratique stochastique avec des contraintes de non-negativité sur la
commande et on étend les estimations d’erreur pour ’approximation par pé-
nalisation logarithmique. La preuve s’appuie sur le principe de Pontriaguine
stochastique et un argument de dualité.

Ensuite, on considére un probléme de commande stochastique général
avec des contraintes convexes sur la commande. L’approche dite variation-
nelle nous permet d’obtenir un développement au premier et au second or-
dre pour I’état et la fonction de cout, autour d’'un minimum local. Avec




ces développements on peut montrer des conditions genérales d’optimalité
de premier ordre et, sous une hypothése géométrique sur ’ensemble des con-
traintes, des conditions nécessaires du second ordre sont aussi établies.




Abstract

This thesis is divided in two parts. In the first one we consider deterministic
optimal control problems and we study interior approximations for two model
problems with non-negativity constraints. The first model is a quadratic op-
timal control problem governed by a nonautonomous affine ordinary differ-
ential equation. We provide a first-order expansion for the penalized state an
adjoint state (around the corresponding state and adjoint state of the orig-
inal problem), for a general class of penalty functions. Our main argument
relies on the following fact: if the optimal control satisfies strict comple-
mentarity conditions for its Hamiltonian, except for a set of times with null
Lebesgue measure, the functional estimates of the penalized optimal control
problem can be derived from the estimates of a related finite dimensional
problem. Our results provide three types of measure to analyze the penal-
ization technique: error estimates of the control for L® norms (s in [1, +00]),
error estimates of the state and the adjoint state in Sobolev spaces W* (s
in [1,4+00)) and also error estimates for the value function. The sharpest
results are given for the L' norm and a logarithmic penalty, establishing an
error estimate for the central path of order O(e|loge|) where € > 0 is the
(small) penalty parameter.

The second model we study is the optimal control problem of a semilinear
elliptic PDE with a Dirichlet boundary condition, where the control variable
is distributed over the domain and is constrained to be non-negative. Fol-
lowing the same approach as in the first model, we consider an associated
family of penalized problems, parametrized by € > 0, whose solutions define
a central path converging to the solution of the original one. In this fashion,
we are able to extend the results obtained in the ODE framework to the case
of semilinear elliptic PDE constraints.

In the second part of the thesis we consider stochastic optimal control
problems. We begin with the study of a stochastic linear quadratic problem
with non-negativity control constraints and we extend the error estimates
for the approximation by logarithmic penalization. The proof is based is the
stochastic Pontryagin’s principle and a duality argument.

Next, we deal with a general stochastic optimal control problem with
convex control constraints. Using the variational approach, we are able to
obtain first and second-order expansions for the state and cost function,
around a local minimum. This analysis allows us to prove general first order
necessary condition and, under a geometrical assumption over the constraint
set, second-order necessary conditions are also established.
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In this part of the thesis we review some elementary concepts of both de-
terministic and stochastic optimal control problems with control constraints.
After giving the necessary elements of the theory we will expose the main
results obtained. Let us start with the study of deterministic optimal control
problems.

0.1 Deterministic optimal control

An optimal control problem of ordinary differential equations (ODE) with
control constraints can be written in the following form:

infiyuevxy fo 00t y(t), u(t))dt + (T, y(T))
5.t y(t) = f(t,y(t),u(t)) fort €[0,T]; y(0)=yo,  (DCP)o
ueU.

In the notation above, ¢ : R®™ x R™ — R represents the running cost,
¢ : R* — R the final cost and y(¢f) € R" represents the state variable
controlled by u(t) € R™ through the dynamics f : R® x R™ — R™. If f is
affine with respect to u we may take as control space V = L*([0,T]; R™) and
as state space ) = W12([0, T|; R"). Otherwise, we take V = L>([0,T]; R™)
and Y = WH([0,T];R"). The control variable is constrained to belong to
U C V. Note that this framework includes global constraints, e.g. U =
{veV /|lv|la <1}, as well as local constraints, e.g. the so-called box con-
straints U :={v €V /a<w(t) <b, fora.a. te€[0,T]}. In the first part of
this thesis we will focus our attention to the case of box constraints. In order
to simplify the analysis, we will restrict ourselves to the case of non negativ-
ity constraints. In the second part of the thesis we will determine first and
second-order optimality condition for the stochastic version of (DCP), and
we will work with a more general constraint set /.
Thus, in what follows we assume that

U:={veV /u(t)>0, fora.a. te[0,T]}. (1)

Since, the active set (i.e. the set of times where the optimal control is 0) is a
priori not known, numerical difficulties appear in the implementation of any
direct algorithm. One way to tackle this problem is to extend the natural
ideas of interior-point methods for nonlinear programming problems. More
precisely, we consider a family of perturbed optimal control problems satisfy-
ing that their solutions are strictly positive (and thus they can be computed
efficiently), and we expect to obtain some good convergence properties for
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the procedure. As an example, for the logarithmic-penalty case, a natural
approximation of (DCP)y is the following problem

infy ey fy (), u(t)) — elogu(t)] dt + ¢(y(T))
s.t. yt) = f(y(t), u(t)) for t € [0,T]; y(0) = yo, (DCP).
u€eU.

The convergence of the solutions of (DCP). to the solution of (DCP)y, as
e | 0, is shown in [22], but no error estimates are obtained. As we will see,
these estimates can be obtained as a by-product of the qualitative properties
of the central path (defined in section 0.1.2.1), which are strongly related to
their finite-dimensional counterparts, recalled in the next section.

0.1.1 A brief review of interior point methods for quadratic
programming

Consider the following finite dimensional optimization problem

Mingcgrn %mTRx +c'a Ar=0b, x>0, (QP)o

where R € R™ " is a positive-semidefinite matrix, ¢ € R™ and b € R?. We
say that the problem is linear if R = 0. If (QP), has at least one solution
T, there there exists (sg, Ag) € R} x RP such that zy := (20, s0, Ag) solves

x's =0,
Az =b, c+Rx+ AT\ =35, (2)
rz>0, s2>0.

In view of this property, from now on we refer to zq as a solution of (QP)y.

Now, consider a parameterized family of problems that penalize the non
negativity constraint of (QP)o. That is, for every € > 0, define the problem
(QP). as

p
Mingcgn %xTRx +cr—¢ Z logz;; Ax =0b. (QP)..
i=1
It is possible to prove that if (QP)y has a solution x( then, for & small
enough, problem (QP). has a solution z.. Moreover, there exists (s., \.) €
R" x RP such that z. := (z., s, A;) solves

z's=c¢,

Az =0, c+Rx+A"\=s, (3)
z>0, s2>0.
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Thus, we refer to z. as a solution of (QP).. The application ¢ — z. is
called central path and it is well known that as € | 0, we have z. — 2.
Moreover, qualitative properties of the central path (error estimates of its
slope) are related with the following notion of strict complementarity:

Definition 1 We say that the solution zy of (QP)o is strictly complementary
Zf T+ sg > 0.

In the linear case (R = 0), if the set of solutions of (QPy) is nonempty,
there exists at least one strictly complementary solution and the central
path converges to one solution of this kind (see [82]). In the strictly convex
quadratic case (R > 0), the problem (QP), has a unique solution z, and
z. — zp. In addition, if z is strictly complementary, then ||z. — z|| = O(¢).
If strict complementarity does not hold, ||z. — zo|| = O(1/2) - see [92]. Let us
give a trivial example where we see the importance of strict complementarity
for the speed of convergence of the central path.

Example 1 Consider the problem
Minger 32% @20,

which has as unique solution xo = 0. The penalized version of the above
problem s
Min,cr %xQ —clogx,

which has as unique solution x. = \/¢, and thus |x. — xo| = \/e. One can
easily verify that xy is not strictly complementary. On the other hand, the
problem

Mingcr %xZ; x> 1,

has a unique solution xq = 1. In this case strict complementarity is satisfied
and a simple computation shows that the solution x. of the penalized problem
satisfies |x. — xo| = O(e).

These properties of the central path allow us to justify theoretically the use of
several types of interior point algorithms for (QP)y. For example, for a fixed
¢ the penalized problem can be solved by applying Newton’s method. Then, ¢
is decreased and the mentioned method is re-initialized taking as the starting
point the approximate solution of the previous problem. Thus, a prior:i this
point must belong to the convergence region of the new Newton’s algorithm.
There are several variations of this general principle, for detailed expositions
and complexity analysis we refer the reader to the books |21, 82, 91| and
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references therein. Finally, let us mention that these methods are studied
for more general settings, as general convex problems with self concordant
barrier functions |74, linear monotone complementarity problems [21] and
semidefinite programming [82], etc.

0.1.2 Presentation of our main results

In this section we apply the barrier-method ideas to the optimal control of an
ordinary differential equation (ODE) and to the optimal control of a semilin-
ear elliptic partial differential equation (PDE). In both cases a parameterized
family of penalized problems is considered, for which optimality conditions
are derived. The main idea is to eliminate the control variable from the re-
sulting equations and to apply a variation of the implicit function theorem
to the reduced optimality system.

The main tool will be the following theorem and its corollary, which is a
variant of the surjective mapping theorem of Graves [49].

Theorem 2 (Restoration Theorem) Let X and Y be Banach spaces, E a
metric space and F': U C X X E — Y a continuous mapping on a nonempty
open set U. Let (z,e9) € U be such that F(&,e0) = 0. Assume that there
exists a surjective linear continuous mapping A : X — 'Y, with bounded right
inverse B, and a function ¢ : Ry — Ry with ¢(8') | 0 when ' | 0, such
that: if B > 0 satisfies ¢(B)||B|| <1 and ¢ € B(ey, 3), then

|2, e)=F(x,e)=A(2'=2)|| < c(B)l|a"=2|, for all (x,2") € E(@,B)XE(&)@-

Under the assumptions above, for all (x,€) close enough to (Z,eq), there exists
Z such that F(z,e) =0 and the following estimate holds:

B
17—l < T el )

Corollary 3 Suppose that the assumptions of Theorem 2 hold and denote
by B a bounded right inverse of A. Then, for € close to gy, there exists x. in
a neighborhood of & such that F(x.,e) =0 and

r. =1 — BF(Z,¢) +7(e), (6)
where the remainder r(e) satisfies
lr(@)l < e(B)(1 = BB IBIPIIF(,2)ll. (7)

For the proof of the above results, we refer the reader to the appendix of
Chapter 1.
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0.1.2.1 Optimal control of ODEs

In this section we present the main results obtained in Chapter 1, which are
the subject of report [2]|. For the sake of clarity, we study a simplified version
of the general linear quadratic problem analyzed in Chapter 1. We consider
the problem (DCP), with

(b, ) = 3uf? + 4 C(O) |y~ 5(0)"

o(T,y) =My —g(T)", (8)
f(ty,u) == A(t)y + u,

and U given by (1) with V = L?([0,T];R). In the notation above, C' €
C°([0,T]) with C(t) > 0, M > 0, A € C°[0,T]) and y € C°([0,T)) is a
reference state function.

For every ¢ > 0 define (DCP)., the logarithmic penalized version of

(DCP)(), by

inf ey 7 Lot y(0), u(®))dt + H(y(T))
8.t y(t) = f(t,y(t),u(t)) forte[0,T]; y(0)=yo, (DCP).
uelu,

where (.(t,y,u) := {(t,y,u) — logu. For notational convenience we also set
lo(t,y,u) = €(t,y,u). Classical arguments yield that for every ¢ € [0, c0)
problem (DCP). has a unique solution, denoted by (y., u.). Moreover, it can
be shown [22] that there exists ¢ > 0 such that for every ¢ > 0 we have that
ue(t) > ce for a.a. t € [0,7].

For € € [0, 00), define the Hamiltonian H, : [0,7] x R x R x R — R by

He(t7y7pu u) = gs(tai%u) —i—pf(t,y,u). (9)

The Pontryagin minimum principle (cf. [77]) yields the existence of p. €
W2([0, T); R) such that

Ue(t) = A(t)y-(t) + us(t) for a.a. t €0,T], (10)
—p=(t) = A@)p:(t) + C(t)[y(t) — y(t)] for a.a. t €[0,7], (11)
ye(o) = Yo, pe(T) = M[ya(T) - Q(T)]a (12)

us(t) = argmin{H.(t,y.(t),pe(t),v) : v>0} fora.a. te[0,T]. (13)

Our aim is to establish the relations between (y.,p.,u.), the so-called the
central path, and (yo, po, ug), for € > 0 small enough. The first step is to use

(13) in order to eliminate u. in the system (10)-(12). In fact, condition (13)
yields that for a.a. ¢ € [0, 7], us(t) := p(—pe(t)), where

%(x—l—\/x?—i—éls) if e >0,

pelz) = { max{x,0} if e = 0. (14)
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Thus, for every ¢ € [0, 00), optimality conditions (10)-(12) are equivalent to

ya(t) = A(t)ya( ) + 905( (t))
—pe(t) = A(t)p(t) + C(t )[ =(t) — y(1)], (15)
ys(o) = Yo, pE(T) M[ys (T) y(T)]'

The forward backward system (15) induces the definition of the mapping:
F W0, T, R)xWhH([0, T); R) xR — LY([0, T]; R)xRx L* ([0, T]; R) xR

defined by
9= A = -2t
. ) Yo
Flo:p )= | 50y 4 ag)p PO+ COWO 50 (16)

p(T) = Mly(T) = y(T)]

In order to obtain a first order expansion of (y.,p.) around (yo, po) the first
idea that comes to mind, as in the classical sensitivity analysis, is to apply
the implicit function theorem to the mapping F" at (yo, po, 0). Unfortunately,
it is shown in Chapter 1 that this theorem is not applicable since, in general,
D.F(yo,po,0) does not exist. As an alternative we use the restoration theo-
rem (theorem 2) and its corollary (corollary 3), to obtain the desired asymp-
totic expansion and the associated error estimates for the central path. It is
seen that the strict differentiability hypothesis (4), which in our case is with
respect to (y,p) at (o, po,0), is strongly related with the concept of strict
complementary for the solution of a finite-dimensional problem, exposed in
subsection 0.1.1. In fact, let us assume the

Strict complementarity assumption: There exists a subset Tsing of [0, T
with meas(Tgipe) = 0, such that for each t in [0,T]\ T, sing the point uo(t)
satisfies the strict complementarity conditions for the minimization problem

min { Hy(t, yo(t), po(t), w) : w € Ry} .

The assumption above can be reformulated in the following geometrical form:
Except for a null Lebesgue set the curve py(t) does not intersect the x-axis,
i.e. the function ¢ € [0,T] — Spo(—po(t)) is a.s. well defined.

Under this hypothesis we can apply theorem 2 and prove our main results.
The first one concerns the error estimates for the central path, and it says that
the error bounds can be calculated from the error bounds of the analogous
finite dimensional problems (which, in the case of the logarithmic penalty,
are of order /¢).
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Theorem 4 (Error estimates for interior penalty) Under the strict com-
plementarity assumption , for € small enough we have that:
(i) The error estimates for u.,y. and p. are given by

Hua - u0||oo + ||p€ _pOHLoo + ||ye - yOHl,oo - O(\/E)

with in addition u. — ug in WHi.

(ii) In addition, let us assume that {t € [0,T] ; po(t) = 0} is finite and that
the following implication holds:

d
Then
lJue — o1 + |[pe — poll1,1 + [|Ye — voll11 = O(ellogel). (18)

Now, we state our second main result which yields the asymptotic expan-
sion of (y., p.) around (yo, po) in WHL([0, T]; R).

Theorem 5 (Asymptotic expansion) Suppose that the strict complemen-
tarity assumption (1.53) holds, then for e small enough,

( Ye ) = ( Yo ) — D(y,p)F(ympm0)71F(y0>p0>5) +T(€)’

Pe Do

where
r(e) = o(|[F (40, po, €)|]1)-

Moreover, the first term of the expansion —Dy ) F(yo, po, 0) "' F(yo, po, €) is
the unique solution of

Mind [ (w0 + CO () dt + LMlo(D)P

s.t.

o(t) = At)o(t) + v(t) + [pe(=po(t)) — wo(—po(t))]
o(0)=0, v(t)=0 if po(t) > 0.

Finally, let us mention that theorems 4 and 5 are proved in Chapter 1 for a
general linear quadratic problem and for a general class of penalty functions.
Of course, the error bounds obtained there depend on the chosen penalty
function. The main technical difficulty appears when the control is coupled
in the cost function by a non diagonal matrix R(t).
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0.1.2.2 Optimal control of PDEs

The study presented here is the subject of the report [25], which extends the
results of the previous section to the optimal control problem of a semilinear
PDE, under non negativity constraints over the control. For u € L*(Q)
(s € [2,00]) denote by y, € W(2) the unique solution of

{_Ay(a;)+¢(y(x)) = f(z) +ulz) for zeQ, (19)
yz) = 0 for € 09,

where Q is a bounded open set of R" with C? boundary, f € L*(Q) and ¢ is
a C? Lipschitz nondecreasing real valued function over R. For s > n/2 (s = 2
if n < 3), let us define Jy : L*(©2) — R by

Jo(u) == %/(yu(a:) — g(x))*dx + %N/ u(z)*dz. (20)
Q Q
We are interested in the following optimization problem
Min Jo(u) subject to u € US. (CPP)

where

Ui ={v e L*(Q) /v(x) >0, for a.a. x € Q}.

Since ¢ can be nonlinear, problem (CPj) is a non-convex one. Nevertheless,
it can be shown (corollary 51) that (CP;) has at least one solution. Our main
results will depend heavily on a second-order sufficient condition at a local
minimum of (CP{). Lemma 6.27 in [24] yields that Jy : L*(2) — R is C? if
s >n/2 (s =2 if n < 3). That is the main reason for considering L*(2) as
control space, rather than the standard space L?(().

For every u € L*(Q) define the adjoint state p, € W?>%(Q), as the unique
solution of

{—Ap($)+¢/(yu($))p($) = Yu(z) —y(z) for xe€Q, (21)
plx) = 0 for z € 09.

Let ug € U7 be a local solution of (CPg) and denote respectively by yo and
po its associated state and adjoint state. Applying classical techniques (see
[55, 67, 73]) we obtain that (recall (14))

uo(z) = po(—po(z)) for a.a. x € Q.

Now, let us suppose that ug is locally unique in the L*(Q) ball B,(uq, )
and, for € > 0, consider the following logarithmic penalized version of (CPg)

Min J.(u) := Jo(u) — 5/ log(u(z))dz s. t. u € U3 N By(ug,b) (CPY*),
Q
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As for (CP), problem (CP”*) has at least one solution. Note that the ap-
plication
u€eL*(Q) — —/ log(u(x))dz € RU{+o00}
0

is not continuous, hence not differentiable. Thus it is not immediate to
write optimality conditions for (CP"*). However, using an L' () contraction
principle (lemma 54), we get that, as ¢ | 0, the solutions u. of (CP”*)
converge to ug in L*(€2). In addition, there exists ¢, K > 0 such that for ¢
small enough

ce <u.(r) < K foraa. ze (22)

The estimates (22) imply that u. solves
Min J.(u) subject to u € U5 N By(ug, bo) N L>()

and the application u € L®(Q) — — [, log(u(z))dz € RU {+oc} is differ-
entiable at u., which allows us to write first order optimality conditions. In
fact, denoting respectively by y. and p. the state and adjoint state associated
to ue, we have that (recall (14))

us(z) = @ (—pe(x)) for a.a. x € Q.

Therefore, it is natural to define the map F : W' x Wb x R, — L*(Q) x
L*(Q) by

_ (DU + =N + 10 — 6(y(0)
rna0 = (Mol 50 deont ) @

Let us assume the following hypothesis

(H1) For the adjoint state pg, associated to any local solution uy of (CPy),
it holds that

meas ({z € Q / po(x) =0}) = 0.

(H2) At any local solution ug of (CPg), the following second-order condition
holds

D?Jo(uo)(h,h) > 0 for all h € Clup) \ {0} (24)

where C(ug) := Ty (ug) N DJ(ug)* is the usual critical cone at ug.

Asummptions (H1), (H2) imply that the hypothesis of theorem 2 are satis-
fied at (yo, po, 0). More precisely, assumption (H1) allows to prove (4), while
(H2) yields the surjectivity assumption of the operator A.

Now we can state our main results:
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Theorem 6 Let ug be a solution of (CPy), suppose that ¢ is C* and that
(H1), (H2) hold. Denote respectively by yo and py the state and adjoint
state associated to ug. Then there are b >0 and & > 0 such that for ¢ € [0, ]
problem (CPS’S) has a unique solution u.. In addition, denoting by y. and p.
the associated state and adjoint state for u., the following expansion around

(y07 po) holds

( ie ) - ( gz ) + Dy ) F (0, 20, 0) ™" F (yo, po, €) + 7(e), (25)

where r(g) = o(||F(yo, po, €)||s). Moreover, D, F(yo, po,0) " F (o, po, €) is
characterized as being the unique solution of

Min/ [ANV? + 1 (1 —pod”(yo)) 2°] du,
0
S.t.

—Az(x) + ¢ (yu(r))2(x) = v+ ¢=(q0) = po(qo) forz €,
2(x) =0 forxedQ, wv(r)=0 ifuy(z)=0.

Theorem 7 Suppose that the assumptions of theorem 6 hold. Let b > 0 be
such that (CP?S) has a unique solution u. for € > 0 small enough. Then:
(i) We have

Hus_uOHOO"i"||ps_p0H2,s+Hys—ZJOHZS = O(Ve). (26)

(ii) If in addition n < 3 (hence s = 2), there exist m € N, positive real num-
bers « > 0, 0 < 6 < 1 and a finite collection of closed C* curves (Cy)1<i<m
such that:

o The singular set {x € Q / po(x) = 0} can be expressed as
{z €9/ po(x) =0} =JCu (27)

o Forallie{1,..,m}, defining C% := {x € Q; dist(x,C;) < 8}, it holds
that: )
Ipo(x)| > adist(z,C;)  for all v € C?. (28)

Then ,
|[ue — uol|2 + |[pe — poll2.2 + [|Ye — voll22 = O(e). (29)

We conclude this section remarking that the above results are generalized in
Chapter 2 for a large class of penalty functions.
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0.2 Stochastic optimal control

Let T" > 0 and consider a filtered probability space (2, F,F,P), on which a
d-dimensional (d € N*) Brownian motion W (-) is defined with F = {F} o,
being its natural filtration, augmented by all P-null sets in F. Consider the
following controlled stochastic differential equation (SDE)

dy(t) = F(y(t).u())dt + o (y(t),u(®)dW (D), for s € (¢,T)

y(t) = T, (30)

where x € R" and 0 < ¢t < T. In the notation above, y(t) represents the
state variable, controlled by u € U[0, T, where

U0, 7] :={u:[0,7] x @ — U / u is prog. measurable}

for some subset U C R™. We say that u is admissible if u € U[0, 7] and the
SDE (30) has a unique solution yZ. The set of admissible process is denoted
by U,q. For a fixed xy € R", we are interested in problem V(0, zo) defined as

V(0,20) = Infucyy, E ( |t uenar+ ¢>(yff°(T))) |

where ¢ and ¢ are the running and final cost, respectively. Standard assump-
tions are supposed to hold for the functions that define the dynamics and
the cost.

0.2.1 A review of the global approach

We begin by briefly reviewing the global approach (for a detailed exposition
we refer the reader to the excellent books [45, 76, 93|). It consists in to
embed the problem V(0,zy) into a family of problems, parameterized by
(t,z) € [0,T] x R", defined by

V(t,2) i= Infuery, E ( | 0. uwhar + ¢<yz<T>>) .

If Ve CY%([0,T] x R™) then, it is proved, using the dynamic programming
principle, that V' is a solution of the following second-order PDE:

P (t,x)+H (z,V(t,z),DV(t,z), D*V(t,x)) = 0, (t,z)€[0,T)xR"
V(T,z) = ¢(x), ze€R™ -
31
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where H : R™ x R" x R™*"™ — R is defined by
H (z,r,p, A) ;= inf,cp {E(:U, u) 4+ p' f(z,u) + %Tr [aa(x, u)TA} } )

Unfortunately, only continuity results hold a priori for V. Nevertheless, it
can be shown that V' is the unique solution of (31) in the weak sense of
viscosity solutions (see [37]). In this thesis we will not deal with the latter
approach, which has been widely studied theoretically and numerically in the
recent years. In fact, we will analyze the stochastic optimal control problem
from a variational point of view, which we review in the next section.

0.2.2 A review of the variational approach

We offer here only a brief review of the variational approach. For a complete
exposition we refer the reader to [10], [93, Chapter 3| and the references
therein. In this approach we work directly with problem V(0,z¢) and, for
simplicity, we suppose that the admissible controls belong to a Banach space.
This fact allow us to use general optimization techniques in order to establish
optimality conditions. More precisely, consider the spaces

L% = {u:[0,T] x Q— R™ /u is prog. measurable and ||u||; < oo},
L2® = {y:[0,T] x Q —R" / y is prog. measurable and ||y||2,o < o0},
where

T
ol =& ([ latorar) ol :=E(sup ry<t>\2).
0 t€[0,T]

It is well known that if f,o have linear growth, then for every u € L%
equation (30) admits a unique solution y, € L% and the there exists C' > 0
such that

yul 3,00 < C (J20* + |0, ()5 + [lo(0, u())]]5) - (32)
Therefore, it is natural to assume that
Ug={u€ Ly [ ult,w) €U foraa. (t,w)e[0,T] x Q}. (33)

Since xq is fixed, we will write y, = y*. Thus, problem V(0,z() can be
expressed in the following way

Inf J(u) :=E (/t Oy (t), u(t))dt + qb(yu(T))) S.t. U € Upg. (SP)o
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The existence problem for (SP), is a difficult task, which has been analyzed
by several researchers. Let us cite the works [7, 38, 41, 44, 60| and the survey
[28]. From now on we assume that a solution of (SP), exists. The variational
approach consists in to study the effects of perturbations of a local minimum
on the cost function J. In a very general framework, first order conditions can
be established. The procedure is the natural extension of the analysis in the
deterministic case. In fact, let « be a solution and set ¢ := y;. Consider the
following backward stochastic differential equation (BSDE), with variables

(. q),

m

dp(t) = - [fy(t)T + £, () Tp(t) +Zaé(t)Tqi(t) dt +g(OAW (@), 5,
p(T) = DD,
where
C,(t) := Dyl(y(t),u(t)); fy(t) == Dy f(y(t),u(t)).

Under standard assumptions (see |8, 18|), the above equation admits a unique
adapted solution (p, ) € L?r’oo X (LQf)d called the adjoint state associated to
u. Moreover, there exists C’ > 0 such that

1511300 + Z 1313 < €' [E (IDye@(T)F) +116,()II] - (35)

The Hamiltonian H of the problem is defined as

H(y,p,q,u) ==Ly, u) +p- fy,u) + Z ¢ o'y, u). (36)

When o, = 0 then by perturbing @ with the so-called needle (or spike)
variations (see |[77]), it can be shown that the optimal control u satisfies the
following Pontryagin principle (see [8, 9, 15, 16, 18, 53, 61, 62, 63| for related
works)

(t,w) € argmin, e H(F(t,w), bt w), d(t,w),v) for aa. (hw).  (37)
Also, by introducing a generalized Hamiltonian and adding a second pair of

adjoint variables, the previous condition (37) has been generalized, to the
case when o can depend on u by Peng in [75].
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0.2.3 Presentation of our main results

We begin by extending the logarithmic barrier method of chapter 1 to the
case of a stochastic L) problem. Even if we do not obtain an asymptotic
expansion for the state and adjoint state, we are able to prove the convergence
for the central path together with some error estimates. Such estimates are
the natural extensions of those obtained in chapter 1 in the deterministic
framework.

Next, we deal with a general stochastic optimal control problem with con-
vex constraints but not necessarily of local type. Indeed, using the variational
approach we are able to derive first and second order optimality conditions
for a local solution. They are the natural extensions of well know results in
the deterministic case.

0.2.3.1 Error estimates for a penalized stochastic LQ problem

In this section we consider an important instance of (SP)o, which is the case
of a control constrained stochastic L(Q problem. The analysis presented here
are the subject of report [26]. In order to illustrate the result in a simple
manner, we consider a very particular convex L(Q problem. For a more general
convex LQ problem we refer the reader to chapter 3. We suppose here that
m =n=d =1 and that the data of (SP), is

Uy, u) =5 (@ +y?), oly) =3¢
f(yau):y+ua J(y,u):y—i—u, IBOGR

and
Upg = {u e Ly [ u(t,w) >0 foraa (t,w) € [0,T] x Q}.

Since the cost function is strongly convex and continuous, problem (SP)g
admits a unique solution uy. We denote respectively by yo = v, and
(P, q0) = (Pugy, qu,) for the state and the adjoint state associated to wuy.
The stochastic Pontryagin minimum principle (SPMP) (37) implies that

uo(t,w) = ¢o(—po(t,w) — qo(t,w)) for a.a. (t,w) € [0,T] x Q,

where we recall that ¢ is defined in (14).
As in section 0.1.2.1, for € > 0 we define problem (SP). by modifying the
cost £ of (SP)o by
C(t,y,u) = L(t,y,u) — € logu.

It can be checked that the new cost function is strongly convex and lower
semicontinuous. Thus, problem (SP). admits a unique solution u.. We
denote respectively by y. := y,. and (pe, ¢:) := (Pu., Gue) the corresponding

€
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state and adjoint state. Recalling the definition of ¢. in (14), the SPMP
yields that

ue(t,w) = ¢o(—pe(t,w) — ¢ (t,w)) for a.a. (t,w) € [0,T] x Q.

Moreover, with the help of the SPMP again in can be proved that (see chapter
3 for details)

Proposition 8 There exist C" > 0 such that

C"e
Uug (t,w) > for a.a. (t,w) € 10,T] x €.
) 2 Tl + a6 o) () € 0]

Proposition above and a duality argument yield the following error estimate
for the cost function.

Proposition 9 For every € > 0, it holds that
J(us) — J(ug) < Te.
Sketch of proof. Consider the Lagrangian £ : L5 x L% — R defined as
L(u, A) := Jo(u) — (A, u)a.
The dual function d : Usq — R is given by d(}) := inf,cr2 L(u, A). Proposi-

tion 8 and estimate (35) imply that 1/u. € U,g. The SPMP, in its sufficient
form for the convex case (see [31, Theorem 3.2|), implies that

1
d (5—) = Jo(ue) — €T
uE
Therefore, by weak duality

Jo(us) —eT < max zfrelgi[’(u’ A) < 1?6122]1_- [max L(u, \) = urg/l{?d Jo(u) = Jo(up).

O
The strong convexity of J(-) and estimates (32), (35), easily yield

Theorem 10 For every € > 0, the following estimates hold

e = uoll5 + lye = woll300 = Ofe)
1 — pol 3,00 + [lge — @0ll5 = Ofe)
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0.2.3.2 Optimality conditions in stochastic optimal control theory

The results presented here are studied in report [27]. In this section we
consider the following stochastic optimal control problem

Min J(u) :==E [fOT C(t, yu(t), u(t))dt + o(yu(T)) (SP)
subject to ueu.

In the notation above & C L% is a nonempty closed, convex set and v, is the
unique solution of the following SDE

W) = SO0 oy OO,
y(0) = xo.

Precise assumptions over the data of (SP) are specified in Chapter 4. Let
us notice that the structure of (SP) differs slightly to that of (SP)o, in the
sense that in the former the control variable belongs to a Banach space and
it is constrained to be in a general closed, convex set of L%. This framework
contains in particular the case of convex global and local constraints.

In this work we present first and second-order necessary conditions for
a local optimum @ of (SP). The main idea is to analyze the behavior of J
under perturbations of @ in LY, defined as

L :={v:]0,T] x Q@ — R™ /v is prog. measurable and ||v|| < 00},

where
[|0||so := ess sup {|v(t,w)]|, (t,w) € [0,T] x Q}.

Thus, in some sense, the perturbations considered in this work are more
regular than the solution itself. From now on we fix a local solution « and
we denote by ¥ its associated state. As before, (p, ¢) is defined as the unique
solution of (34). We set (recall (36)) H,(t) := H,(t,y(t),u(t),p(t),q(t)) and
define Ty : L® — R as

T
T, (0) = E ( / Ho(t) v(t)dt) | (39)
0
Using a generalization of estimate (32) and some technical computations
(that take into account a first order linearization of the state), we obtain:

Proposition 11 Let v € L¥F. Then, the following first order expansion of
J around u holds

J(u+wv)=J(a)+ Ti(v) +r1(v)
where T1(v) = O(|[v]|2) and r1(v) = O(|[v]|%,).
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The radial and tangent cone to U at u are defined respectively by
Ru(u) := {vel%; 3o>0 suchthat [u,u+ov] CU},
Ty(u) == {vel%; Ju(oc)=u+ov+o(o)elU, cd>0, ||o(o)/o]|, — 0}

For a subset A C L% we write adhy(A) for the adherence of A in L%. It is
well known, since U is closed and convex, that Ty(a) = adha(Ry(@)). Let us
assume that for every u € U

Ty(u) = adhg (Ry(u) N LE) . (40)

Remark 12 Assumption (40) is satisfied, for ezample, by constraint sets U
which are stable under some truncation processes.

Estimate T4 (v) = O(||v||2) in proposition 11 implies that the linear form T
can be extended continuously to L. Henceforth, proposition 11 the following
first order necessary condition holds

Proposition 13 Assume that (40) holds and let u be a local solution of
(SP). Then
Ti(v) >0 forallve Ty(u). (41)

In order to obtain second-order necessary conditions, a second-order lin-
earization of the state variable, detailed in Chapter 3, is considered. In

our main results we will need that at least one of the following assumptions
holds:

(A1) It holds that oy, = 0 and the following maps are Lipschitz
(u,y) e R xR" = l(u,y) e R, yeR" — ¢(y) € R.
(A2) It holds that the following maps are affine
(u,y) € R™ x R" — f(u,y) €R™, (u,y) € R™ x R" — o(u,y) € R
Let us set H, 2 () = Hy w2 (t, (t), u(t), p(t), q(t)) and define Ty : LF —
R by

T
Ya(0) =B ([ Hie00(0) (00t + 0 (0T (T)?)
where y; = y;(v) is defined as the unique solution of the following SDE

dyi(t) = Df(E)(ya(t), v(t))dt + Do (t)(y(t), v(t))dW (2),

In the above expression Df(t) := Df((t,y(t),u(t))), similarly notation hold
for Do. Again, technical computations yield the following second-order ex-
pansion for J around u (see corollary 97).

(42)
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Proposition 14 Assume that either (A1) or (A2) holds. Then, the fol-
lowing expansion holds:

J(u+v) = J(@)+ Ti(v) + 3T2(v) + r2(v) for allv e LF. (43)
where T1(v) = O([[v]l2), T2(v) = O(|Jv][3) and ra(v) = O(|[vllsc][v]]3)-

Using this expansion, second-order necessary conditions can be obtained un-
der a generalization of assumption (40), to the second-order case, and assum-
ing that U is polyhedric. For a precise statement of this result, we refer the
reader to theorem 106 and corollary 109 in Chapter 3. However, for the sake
of completeness let us state second-order necessary conditions in the scalar
box constraint case, i.e. when

U={vel}/a<v(t,w)<b, foraa. (t,w)e[0,T]xQ}. (44)

Proposition 15 Let @ be a local solution of (SP) whereU is defined in (44).
Suppose that either (A1) or (A2) holds. Then, the following second-order
necessary conditions hold at u:

Ty(v) >0, for allv e C(u),
where C(u) = {v € Ty(u) / H,(t)v(t,w) =0, if u(t,w) € {a,b}}.

Finally, let us mention that proposition 14 directly implies (see proposi-
tion 110) a second-order sufficient condition for the unconstrained case, i.e.
when U = L%. However, for the constrained case only very partial re-
sults are obtained. The main difficulty lies in the fact that the application
u € L% — y,(T) € L*(Q) is not weakly continuous. This fact is proved with
two counterexamples (even in the case when o, = 0) in section 3.5. Thus,
the interesting question of characterizing Y5 in order to obtain a non-gap
second-order sufficient condition remains open.
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Asymptotic expansions for
interior penalty solutions of
control constrained problems
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1.1 Introduction

For finite dimensional optimization problems interior-point methods are rec-
ognized as being presently among the most efficient algorithms. For de-
tailed expositions of the theory and recent developments see, for instance,
[46, 74, 91| and references therein. In particular, path-following algorithms
based on the logarithmic penalty are very popular by virtue of their well-
known convergence properties (see [21, Part IV] and [48]).

Penalty and interior-point methods are especially well-suited for opti-
mal control problems. A possible procedure is indeed as follows: fix a
small penalty parameter, write the optimality conditions of the resulting
unconstrained problem, discretize the system and apply a procedure for solv-
ing nonlinear equations. This discretization can be analyzed and evaluated
with a good precision, allowing to design efficient grid refinement algorithms
[11, 23]. On the other hand the system of equations corresponding to op-
timality conditions has a Jacobian with a band structure and can be, for
instance, efficiently solved using QR factorization algorithm (see [11]). The
corresponding approach has been applied to real-world aerospace optimiza-
tion problems (see [12]).

When the dynamics are described by an ordinary differential equation,
interior-point methods have been investigated by several authors (see e.g.
[58, 64, 85, 86, 90]). Some convergence results are discussed in [22| and
[85]. The latter uses a primal-dual interior point method, based on the
Fisher-Burmeister complementarity function, and obtains an O(+/¢) error es-
timate for the L*° norm and linear convergence of a short-step path-following
method, where £ > 0 is the approximation parameter.

For the PDE framework see [13, 14, 79, 87, 88]. In [87] a control reduced
method is developed and error estimates of O(y/e) for the L* norm are
obtained. Superlinear convergence is established in [79]. See also [84] for a L*-
analysis (s € [2,400[) where global linear and local superlinear convergence
are studied.

In this work we consider a rather general linear-quadratic optimal control
problem where the dynamics are described by a non autonomous affine differ-
ential equation, while nonnegativity restrictions are imposed on the control.
These restrictions are penalized with a general barrier function. For this
kind of problems the theoretical result obtained in [85] is not applicable (at
least because of the non-boundedness of the constraint set). Let us remark
that, even in a more general setting, numerical methods for optimal control
problems are analyzed in [50, 51|, in which a family of perturbed problems is
studied and it is proved that their solutions converge to the solution of the
original problem. In addition, error estimates are provided by means of a gen-
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eralized implicit function theorem. Nevertheless, for interior point methods
the cost function is perturbed by adding a parametrized barrier function. As
we will see in section 1.4, this type of perturbation is not regular in the sense
that the implicit function theorem approach is not applicable. Instead, in
our case error estimates are obtained using a so-called Restoration Theorem
(see Appendix) whose applicability depends on a rather general assumption:
as time elapses the control of the initial problem satisfies strict complemen-
tarity conditions with respect to its Hamiltonian (except eventually on a set
of times with null Lebesgue measure). Within this framework error estimates
of the state, adjoint state, control and value function are derived from some
associated stationary problems. These estimates depend on the regularity
of the underlying dynamics: they involve either L® norms or Sobolev norms
(see Theorem 30).

In the particular case of the logarithmic penalty, one recovers the O(1/€)
bound for the control error in the L® norm and, under a transversality
assumption, a bound of order O(e|logel|) for the L' norm. This is a sharp
estimate in view of the example solved in [3].

On the other hand, asymptotic expansions of the state and adjoint state
are obtained. This result together with the strict complementarity assump-
tion provide a deeper understanding of the interplay between the variations
of the optimal control and its junction points (times where the set of active
constraints changes).

The paper is organized as follows: Section 1.2 is devoted to the prob-
lem statement and the description of its penalized versions; standard results
revolving around these aspects are recalled. In Section 1.3 some associated
stationary problems are described into depth, this allows in Section 1.4 to
establish our main results. The last Section provides illustrative applica-
tions and a thorough study of the logarithmic penalty case for which optimal
bounds are given.

The Restoration Theorem is an important tool of the present paper, it
was provided in [3| and its proof is reproduced in the Appendix.

1.2 Problem statement and preliminary results

The space R™ (m € N*) is endowed with its standard Euclidean norm de-
noted by |- |. The ith coordinate of a vector = is denoted by z'. We set
R? :={z € R™ : ' > 0}, and R7, := {x € R™ : 2" > 0}. As usual, the
vector 1 € R™ is defined by (1)* =1 for all i € {1,...,m}.

Fix T > 0 and set U := L*([0,T];R™), Uy = L*([0,T];R7}"). Given
n € Nand s € [1,00], set L* := L*([0,T];R") and define the Sobolev space
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by Whs .= {y € L*; y € L*}, where y is the derivative of y in the weak
sense (1). The standard norms of these spaces are denoted by || - ||s and
| - |]1,s respectively. Denote respectively by S™, ST and ST, the sets of
symmetric, symmetric positive semidefinite and symmetric positive definite
matrices of order m. For S € 8™, let A\pin(S) (resp. Amaz(S)) denote the
smallest (resp. largest) eigenvalue of S.

Let m,n be two positive integers. Consider the following controlled state
equation

y(t) = A@)y(t) + B(t)u(t) + (1), t€(0,T); y(0) = o, (1.1)

with data T > 0, A € C°([0, T};R™™), B € C°([0, T];R™™), zp € R" and
¢ € L*. For any control u € U, equation (1.1) has a unique solution in W11
denoted by y, and called the state associated with wu.

It is well known that the mapping v — v, is linear continuous from U into
WHL In fact, this follows easily by Gronwall’s lemma which implies that:

Yu — Yolloo = O (J|lu —v|]1) for all u,v € U. (1.2)

1.2.1 Main problem

Let R € C°([0,T);8T,), C € C°([0,T]; S%), ¢ € L', and M € S7". Consider
the function g defined by

R™ x R" x [0,T] 3 (u,y,t) + g(u,y,t) = 3u' Rt)u+ 3y" C(t)y + o(t) 'y,

and the cost function Jy : Y — R defined by

T
o) = [ glult).a®) = 5(2).8)d + 3 (T) ~ 9] Mlgn(T) ~ 5(T)
0
(1.3)
where i € C°([0, T]; R™) is a reference state function. Under our assumptions
an elementary argument shows that J; is strongly convex and continuous.
Let us consider the following linear-quadratic optimal control problem:

Min Jy(u) subject to u € U, . (CP,y)

Classical arguments (see e.g. [30, 57]) imply that Jy has a unique minimum
up over U, . For notational convenience we set yp := ¥y,-

For (u,y,p,t) € R xR" xR" x [0, T, the classical Hamiltonian for (CP)
is defined by

Ho(u,y,p,t) == g(u,y — 4(t), ) + p' [A(t)y + B(t)u + (2)].

'We recall that every element of W'* is continuous.
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The first-order necessary optimality conditions for (CPy) give the existence
of po € Wt such that

o(t) = A)yo(t) + B(t)uo(t) +¢(t)  for a.a. t€[0,T], (1.4)
—po(t) = A1) 'po(t) + C(O)lyo(t) — g(t)] + ¢(t)  for aa. te[0,T]1.5)
wo(0) = w0, po(T) = Mlyo(T) — 5(T). (16)
up(t) € argmin{Ho(w,yo(t),po(t),t) : w >0} fora.a. te[0,T1.7)

For (R, z) € ST, x R™, let us denote by mo(R, 2) € R the unique solution
of
Mini(z —2)"R(z —2), st. z€RT. (Py)

Indeed, the mapping z — mo(R, z) is the projection of z onto R’ with respect
to the norm induced by the scalar product (x,y)r := (Rx,y). For all ¢ in
[0, 7], the Hamiltonian can be rewritten as

Ho(u,y,p,t) = (u + R( )7'B(t) Tp,y — y(t),t) + pT[A)y + (1))
—3p' Bt) R(t)"'B(t)'p
(1.8)
Thus, by using (1.7), the optimal control may be expressed as

up(t) = mo(R(t), —R(t) " B(t) "po(t)) for a.a. t € [0,T]. (1.9)

1.2.2 Penalized problems

Let us introduce interior penalty approximations of (CPy). Let L be the

class of barrier functions on R of the form L(z) = >""", ¢(z"), where ( is a

convex function whose domain is either R, or R, ,, and which satisfies: ¢ is
COO on R++ and

" (r)

(I) lj{glﬁ'(?“) = —o0; (II) 17%1 e = —00. (1.10)

Remark 16 Standard examples of functions satisfying these properties are:

(i) [Logarithmic penalty| £(r) = —logr, for all r € (0,00) and £(0) = +oc.
(ii) [Entropy penalty] €(r) = rlogr, for all r € (0,00) and £(0) = 0.

(iii) [Negatzve power penalty| For p > 0, {(r) = r~P, for all r € (0,00) and
0(0) =

(iv) [Power penalty| For p € (0,1), ¢(r) = —rP, for all r € [0, c0).
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Note that, for L € £ and u € U, the integral fo u(t))dt belongs to RU
{+00}, since L, being convex over R" with a nonempty domain, is bounded
from below by an affine function. Let us define L : U — R U {400} by

L(u) = /0 L(u(t)) dt. (1.11)

Lemma 17 The convez function L is lower semicontinuous (I.s.c.).

Proof. Let u € U, and suppose that L is not lower semicontinuous at .
Consider a sequence of functions u,, in U, converging to @ such that L( ) >
lim,, . L( »). Extracting a subsequence if necessary, we can assume that u,
converges almost surely to u. Since L is convex there exists a € R™, b € R
such that L(u,) > a'u, +b. Applying Fatou’s lemma to the nonnegative
sequence L(u,) —a' u, —b and using the fact that L is lower semicontinuous
we obtain

lim T(u,) > / i inf I (uy (£))d > / " L(a()dt = L),

n—oo n—oo

which yields the desired contradiction. m
For £ > 0, the perturbed cost function J. : Y — R U {+o0} is defined as

Jo(u) == Jo(u) + eL(u).
The penalized problem is defined by
Min J.(u) subject to u € U,. (CP.)

Since Jj is strongly convex continuous and L is convex, Lemma 17 implies
that J. is strongly convex l.s.c. function. As before, classical arguments
yield that J. has a unique minimum wu. over U, . Next, we prove that u. is
uniformly positive over [0, T']. First, we set

yE = yus'
Proposition 18 For any & > 0 it holds that:
(i) There exist strictly positive constants Ko = Ko(&), Ky = K1(&) such that:
lluella < Koy Yelloo < K1, foralle € (0,¢). (1.12)

(i) If € is sufficiently small, there ezists a constant Ky = K5(£) > 0 such
that for alli € {1,...,m}

i = ey (-2

6 ) for a.a. t € [0,T] and € (0,¢). (1.13)
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Proof. (i) Let us define 1 as the constant mapping 1(¢) := 1 for all ¢ € [0, T7.
Since u,. is the solution of (CP,), for all € € (0,£) we have that

J.(u2) < Jo(1) = Jo(1) + eTL(1) < Jo(1) + e7 max{0, L(1)}.  (1.14)

Now, the continuity of A, (R(-)) implies that A(R) := mingejo, 7] Amin (R(t)) >
0. Let y — a'y + b be an affine minorant of L. We have that

T
Je(ue) = Jo(ue)+eL(u) = GAMR)||ucl 3=l ell1]lye— ?J\\oo+/0 a'uc(t)dt+0T.

Estimate (1.2) and the Cauchy-Schwarz inequality yield the existence of C; >
0 and C; € R (both constants independent of ¢) such that

Jo(ue) + eL(u) = JAR)| |3 = Gl ]2 + Co. (1.15)

Thus, completing the square in the r.h.s. of (1.15), the first inequality in
(1.12) follows from (1.14), while the second one follows from (1.2) and the
fact that u. is bounded in U.

(ii) We argue along the lines of [22] (where the logarithmic penalty is con-
sidered) to extend the result for the class £. With no loss of generality, we
suppose that m = 1. By (1.10) (I) there exists 0 < ¢ < 1 such that £ is
decreasing on [0, ]. For ¢ € (0,() set

Ic= {t € [0.T]; uc(t) < ¢/2},

and define
ub(t) := {ie(t) i)ftfleervﬁse coys(t) = y,c(t) foraa. tel0,T].
Now,
J(ué) — J(us) = §JE 4+ 6J2 + 6.2, (1.16)

where

0Jb =[5 {ARM[E(#) — u(O)ué (t) + u ()] + o() T[S (1) — y-(£)]} dt,
002 = 3 Jy W (0) = ye()]TCO[E (1) + ye(t) — 2g(1)] dt,

002 = 3lye(T) - (T)]TM[ S(T) +ye(T) — 25(T)].
Note that

1= 4 [ ROWE® — ut)aso) + el + [ o0 ) - o)t
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Since ¢ € L' and ¢ € (0,1) we obtain, with (1.2) and the definition of S,
the existence of C35 > 0 (independent of € and () such that

3
002 < ZCIIR ool g = elly + Colfug — uelly < Calfug = el s,

where Cy := 3/4||R||~ + C5. In view of (i) the functions y. are uniformly
bounded in L*> for ¢ € (0,2). Together with the fact that y € L*™ and
¢ < 1, estimate (1.2) yields that 3¢ + y. — 2y = ¢ — y. + 2(y. — ¥) is
uniformly bounded for € € (0,&). Thus, since the matrix C' is bounded, we
obtain with estimate (1.2) the existence of C5 > 0 (independent of ¢ and
¢) such that §J2 < Cs||lué — u.]|;. Analogously, we have the existence of
Cs > 0 (independent of € and () such that §.J3 < Csl|ué — u.||;. By (1.16),
the definition of I, and u¢, we have the existence of C; > 0 (independent of
e and () such that

J()(Ug) — Jo(ue) S (04 + 05 + Cﬁ)Hug — u€||1 = C%Cmeas(lg).

Hence,

() = J(us) < Cr¢meas(I) + ¢ / [e(uS (1)) — €(ua(t))] dt.

I

Using the convexity of ¢ and that ¢'(¢) < 0, we find that for a.a. ¢t € I,
(uS(8)) — U(ua(t)) < LSO () — ue(B)] < 2.
This in turn implies that
J-(ué) — J(u.) < (meas(Ie) (Cr + 2el/(¢)) forall ¢ € (0,¢).  (1.17)

Shrinking ¢ if necessary, assumptions (1.10)(I), (II) show that ¢ defines a
bijection from (0,¢) to (—oc,'(¢)). This implies the existence of Ky =
K,(€) > C7 such that equation Kg—i—%sf’((’) = 0 has a unique solution in (0, ¢)
given by ((¢) := (¢)~! (—2£2) . Equation (1.17) yields 0 < J.(u¢) — J-(u.) <
(meas(I¢) (Ka + 2el/(¢)) for all ¢ € (0,¢). Since ¢ is stricly decreasing in
(0,¢), we have that K5+ %66’({) < 0forall 0 < ¢ < ((¢), hence meas(I;) =0
for all 0 < ¢ < ((¢). Thus 2u.(t) > ¢ for a.a. t € [0,7] and the result follows

by letting ¢ T ¢(¢). =

Remark 19 a) When ((r) = —logr estimate (1.13) reduces to the estimate
ue(t) > ce (¢ > 0) obtained in [22].

b) The fact that u. is uniformly positive over [0,7] has important conse-
quences from the numerical point of view. The reason is that if in the dis-
cretization of the penalized optimal control problem the optimal solution is
strictly feasible (no active constraint), then efficient unconstrained solvers
can be used to compute its solution (see [11, 23|).




39

For (u,y,p,t) € R x R" x R" x [0, 7] and ¢ > 0, the Hamiltonian H. for
the problem (CP.) is defined by

H.(u,y,p,t) := Ho(u,y,p,t) + eL(u),

where we recall that Hy, defined in (1.8), is the Hamiltonian associated to
the original problem (CPy).

The first-order necessary conditions for (CP.) ensure the existence of
p. € Wt such that

= A(t)y-(t) + B(t)u(t) + ¥(t) for a.a. t €[0,T],
= A1) p(t) + C(O)[y=(t) — ()] + (1) fort € [0,T],
= o, pe(T) = M[y(T) —y(T)],

= DyH_(u.(t),y.(t),p.(t),t) fora.a. te|0,T)

1.18
1.19
1.20
1.21

~—

Y (t
(0

~— ~—

(1.18)
(1.19)
(1.20)
(1.21)

e}

Condition (1.21) yields that u. is the unique solution in U, of
R(t)u.(t) +eVL(u(t)) = —B(t) 'p.(t) fora.a. te[0,T]. (1.22)

For (R, z) € 87’ x R™ and ¢ > 0, we denote by m.(R, z) the unique solution
of
Mini(z — 2)"R(z — z) + eL(z), st. z€R]. (PE3)

Equation (1.22) yields that
uc(t) = m.(R(t), ~R™*B(t) 'p.(t)) for a.a. t€[0,T]. (1.23)

Note that (P%#) is the penalized version of the finite dimensional problem
(P3*). Expressions (1.9) and (1.23) suggest that in order to study the re-
lation between u. (solution of (CP.)) and wg (solution of (CPy)) it will be
useful to present a detailed analysis of the analogous problems (P%*) and
(PS*) in the finite dimensional setting.

1.3 Interior penalty analysis in the finite di-
mensional setting

Given (R,z) € S}, x R™ recall that m(R, z) is defined as the unique mini-

mum of fi*(z) := 5(z — 2)"R(x — 2z) over R7. Standard results of convex

analysis ensures that z — mo(R, z) is nonexpansive with respect to the norm
induced by R. Also, given L € £ and ¢ > 0, recall that 7.(R, z) is defined as
the unique minimum of f*(z) := (z — 2)"R(z — z) + eL(x) over R}. By
a classical argument, it is easy to see that m.(R, z) actually belongs to R’
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1.3.1 Convergence properties of the approximate pro-
jectors

This section provides several topological and asymptotic results for the family
of approximated projection mappings ..

Lemma 20 (boundedness) Let K C 87", x R™ be a compact set. Then
for every € > 0, there is a constant Cy, = C1(K, &) such that

|T(R,2)| < Cy  foralle € (0,8) and (R, 2) € K. (1.24)

Proof. We argue along the lines of Proposition 18(i). Let ¢ € (0,) and
y+— a'y+ b be an affine minorant of L. We have

3(me(R,2)=2)  R(m=(R, z)—2)+e(a’ m(R, 2)+b) < L¥(m(R, 2)) < f54(1),
Since fF#(1) < max{f"*(1), ff*(1)}, we obtain

5 me(R2) =2 +e(a'm(R,2) +b) < sup max{ fI* (1), f"* (1)}
(R',z"eK

which is a finite number. The conclusion follows. m
Proposition 21 (Pointwise convergence) Let (R,z) € ST, x R™, then

li{(r)l (R, z) = m(R, 2).

Proof. Since (R, z) is fixed, we omit it in the notation. Let y — a'y + b be
an affine minorant of L and ¢ be a lower bound of y — |y|>*+(a"y+0b). For all
v € R, we have that (. —2) " R(m. —2) +e(a’ m.4b) < [ (7.) < fF=(v),
thus

Yme—2) R(m. — 2) + ec — e|m.|* < fF*(v), forallveRT,. (1.25)

Lemma 20 (for the particular case K = {(R, z)}) implies that 7. has a cluster
point my when ¢ | 0. Passing to the limit in (1.25) yields fi**(mo) < fa*(v)
for all v € R7, and thus for all v € RT. Hence my € argmin(P?*) and since
this property holds for every cluster point of the sequence 7. the conclusion
follows by using the fact that (P;*) has as unique solution (R, z). m

In order to investigate further the converge properties of ., it is useful
to write down the first-order condition for problems (Pi"*) and (P%*).The
first-order condition for (Pf"*) writes

R(my(R,z) —z) — u(R,2) =0

u(R,2) >0 ; m(R,2) >0; p'(R,z)my(R,2)=0 forallie{l,..m},
(1.26)
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where (R, z) is the Lagrange multiplier of the problem. On the other hand,

the first-order condition for (P%*) shows that 7.(R, z) is the unique solution
in R, of

R(m.(R,z) — 2) + eVL(m.(R, 2)) = 0. (1.27)

Proposition 21 asserts that for each z € R™ and R € ST'_ the vector

7-(R, z) converges to my(R, z). Actually uniform convergence holds over each
compact subset of S", x R™. Let us first state a preliminary lemma.

Lemma 22 (Equicontinuity) Let R € S| and set k(R) := ||R||/Amin(R)
for its condition number. Then for all € > 0

|me(R,y) — m(R,x)| < k(R)|ly — x|, forall z,ye€R™. (1.28)
Proof. Equation (1.27) yields

Rm(R,y) — (R, z)| + e [VL (m.(R,y)) — VL (7-(R, x))] = R(y — z).
(1.29)
Multiplying the above equation by 7.(R,y) — 7.(R, x) and using the mono-
tonicity of VL, we obtain

[me(R,y) = m(R,2)]" R[m(R,y) — m(R,2)] < (2~y)"R[r.(Ry) — m(R,)].

Whence Apin(R)|7(R,y) — m(R, z)* < [|R|] |z — y| |7(R,2) — 7(R,y)],
and the conclusion follows. =

Proposition 23 (First order derivatives and uniform convergence)

(i) The function (e,R,z) € Ryy x ST, x R™ = 7.(R, 2) € R™ is of class
C>.

(ii) Let Ky € ST, be a compact set. For every € > 0 the partial derivative
D.7.(-,+) is bounded, uniformly in e, over K1 x R™ and is given by

D.7.(R,z) = (I +eR'V2L(m.(R,2)) " for all (R,z) € ST xR™. (1.30)

(iii) Leteg > 0 be fizred. Then, fore € (0,¢), the partial derivative Drm.(-, -)
is bounded over compact subsets of ', x R™ uniformly in € and is charac-
terized by

Dpr.(R,2)V = D7 (R, )RV (2 — (R, 2)) forall V €8™. (1.31)
(iv) The function 7. converges to my uniformly on each compact subset of

Sl x R™.
(v) The function (¢, R, z) — m-(R, 2) is continuous on Ry x ST, x R™.
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Proof. (i) It follows from the implicit function theorem applied to (1.27).
(ii) Since the condition number x is a continuous function, the uniform
boundedness of D, 7. (-, -) over K7 x R™ is a consequence of Lemma 22, while
equation (1.30) is obtained by differentiating (1.27) with respect to z.

(iii) Formula (1.31) follows from the differentiation of (1.27) with respect to
R. The first assertion is then deduced from (ii) and Lemma 20.

(iv) Items (ii) and (iii) imply that the family (7.).s¢ is equicontinuous. The
result follows then from Proposition 21.

(v) Let (R, z) € 8T x R™. The continuity of m.(R,z) for £ > 0 is a conse-
quence of the implicit function theorem. Consider now the case ¢ = 0. For
(R,2), (R,z) € 87", x R™ we have |1.(R,%') — mo(R,2)| < |n.(R,7) —
mo(R, 2| + |mo(R,2") — mo(R, 2)|. By using (iv) and the fact that mp is
continuous the result follows readily. m

1.3.2 Stratification results and strict complementarity
reformulations

In this subsection we will characterize the differentiability domain of the
projection mapping mo(R, -). In fact, we will construct 2™ nonempty disjoint
subsets of R™ having the property that the restriction of m(R, -) to each one
of these regions is a linear projection into an appropriate subspace of R™.

In order to motivate the definitions given below, let us consider the case
R = I. Optimality conditions (1.26) yield that for every z € R, we have
(mo(1, 2)); = max{0, z;} for all i € {1,...,m}. Therefore, my(Z,-) is differen-
tiable at z if and only if z; # 0 for all ¢ € {1,...,m}. This fact is strongly re-
lated with the so-called strict complementarity nature of the solution mo(7, 2)
as we will see later.

For R € 87, and z € R™ consider the following partition of {1,...,m}

IT(R,z) = {ie{l,..,m} : Wé(R, z) >0},
I(R,z) = {ie€{l,..m} : my(R,2) =0, p'(R,2) >0}, (1.32)
I°%R,2) = {ie{l,..m} : wi(R,2)=0, p(R,z)=0}.

Definition 24 We say that strict complementarity holds for the ith-coordinate
of mo(R, 2) if i ¢ I°(R,2). If strict complementarity holds for every coordi-
nate of mo(R, z) (i.e. I°(R,2) = 0) we say that strict complementary holds
at mo(R, 2).

Thus, partition (1.32) describes the subsets of coordinates of m(R, z)
of inactive constraints, active constraints satisfying strict complementary,
and active constraints where strict complementarity does not hold. In our
example, i.e. when R = I, the first equation in (1.26) yields my(I,2) = z +
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p(I, z). This implies that strict complementarity holds for the i-coordinate of
mo(1, z) if and only if z; # 0. Therefore, we have that m(7, -) is differentiable
at z if and only if strict complementarity holds at my(Z, z).

Our aim now is to extend the above analysis for a general R € S",. The
first equation in conditions (1.26) yields

z=m(R,2) — R™'u(R, 2). (1.33)

Equation (1.33) can be interpreted in the following way: the vector z can
be “recovered” from my(R,z) and p(R,z). Note that if strict complemen-
tarity holds at my(R, z) then m(R, z) and p(R, z) belong to supplementary
subspaces of R™. More precisely, given a subset 3 of {1, ..., m}, define

{0} ifi ex, o o
Q; = {R e ex Ml Qu=TILQr (1.34)

Thus, if strict complementarity holds at m(R, z), then m(R, z) € Qs and
po(R, z) € Qse with ¥ = I*(R, z). Now, since every z' € R™ can be written
uniquely as 2’ = 2§, + 2§ with 2§ € Qx and 2§, € Qxe, the discussion above
suggest to define a linear mapping

hs : R™ = R™, hg(?) = 2% — R 2. (1.35)

Hence, if strict complementarity holds at my(R, z), equation (1.33) can be
rewritten as

z=hx(2") where ¥ =1%R,z) and 2z’ =m(R,2)+ p(R,z) € R},

This fact suggests that strict complementarity should hold at mo(R, z) for
every z € D(R), where

D(R):= |J Ds(R) and Dy(R):=hg(R},) for T e€{l,.. m}.

(1.36)
The last assertion is actually proved in Lemma 25 as well as the differen-
tiability of mo(R,-) over D(R). Conversely, we will also show that strict
complementarity at mo(R, z) and differentiability of my(R, -) at z do not hold
for every for z € sing(R), where

sing(R) := D(R)". (1.37)

In order to illustrate the concepts introduced above let us consider the fol-
lowing example.
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R4V
DZz (R) Dzl (R)
H()(R, Z)
Dy, (R) DZ:; (R) \ z
RiV,

Figure 1.1: The regions Dy, (R) where i =1, ..., 4.

Ezxample: Here m = 2 and R, R~! are given by :

R:(? ;) R—lzé(_f _;) (1.38)

Set ¥y := 0, Xy := {1}, X3 := {2} and X, := {1,2}. The singular region
sing(R) is given by

smg(m:&(é) U R+((1)) U R | RV,

where V, V5 denote respectevely the first and second column of —R~!. The
regions Dy, (R) for ¢ = 1,...,4 are displayed in Figure 1.1. It is also shown
how a general vector z of Dy, (R) is projected.

Lemma 25 (Differentiability and singular sets) LetY C {1,...,m}. We
have:

(i) The mapping hx, is bijective and linear. Thus, Dx(R) is a nonempty
open convex subset of R™.

(ii) For every ' in R™, the linear projection of hx(2') on the subspace Qx
(with respect to the metric induced by R) is z5.

(iii) The restriction of the mapping z — mo(R, z) to Dx(R) is the projection
on the subspace Qx, with respect to the metric induced by R. Thus, mo(R, ")
is smooth on D(R).

(iv) It holds that

Ds(R)={z€eR™ : I'(R,z) =%, I°(R,z) =%, I°(R,2) =0}, (1.39)
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and strict complementarity does not hold at mo(R, z) iff z € sing(R).

(v) Let X1, X9 be subsets of {1,...,m} with ¥y # Y¥o. Then, Dx,(R) N
DZQ (R> = (Z)

(vi) For every z € sing(R) there exist subsets of {1,...,m} 3y, ¥o with ¥y #
Yy and z, € Dy, (R), 2, € Ds,(R) such that Z = limy e 2, = limypee 2,
Consequently, mo(R, ) is not differentiable over sing(R).

Proof. (i) Assume that z{, — R™'2{. = 0. Multiplying by z{. we get
(2%)"TR™'2%. = 0 and so 2%, = 2§ = 0. The second assertion follows directly
since hgl exists and is continuous.

(ii) Since @y is a subspace of R™, a point py is the projection of hy(z') with
respect to the metric induced by R iff py, € Qs and

(R(hs(2') = ps),qs) =0 forall g» € @s. (1.40)

It can be easily verified that ps = 2§, solves (1.40). The conclusion follows.
(iii) Let 2/ € R7T,. The projection my(R, hx(z')) is characterized by the
existence of (R, hg(2')) € R™ such that

Rmo(R, h(2') = ho(2)] = p(R, hs(2)) = 0
(R, hs(z')) >0 m(R, he(z')) > 0; (1.41)
(R, hs(2)mi (R, 2') =0 for all i € {1,...,m}.

Since the optimality system above has as unique solution my(R, hx(z')) = 25
and (R, hx(2')) = 2., the result follows by (i) and (ii).

(iv) First we prove (1.39). Let 2’ € R, , then, as in (ii), mo(R, hx(2')) = 25
and p(R, hx(2")) = 25.. Whence hx(z') belongs to the right hand side of
(1.39). Conversely, suppose that z belongs to the right hand side of (1.39).
Since, by (1.26),

z=mo(R,2) — R™'u(R, 2) = hs(2),

with 2 = m(R, 2) + n(R, z) € R}, it holds that z € Dyx(R). Thus (1.39) is
proved.

The second assertion is straightforward by definition of sing(R) and (1.39).

(v) It follows directly from characterization (1.39) of Dy(R).

(vi) Let X := I%(R,z2)UI°(R, 2) and z, = my(R, z) — R~ ', where p!, = 1/n
if i € I°(R,z) and p!, = p'(R,z) otherwise. Clearly, 2, € Ds, (R) and
Z = limyje0 2n. On the other hand, let us consider ¥y := I*(R, 2) and &, =
7, — R7'u(R, 2) with 7, = 7{(R,2) + 1/nif i € I°(R,z) and 7!, = 7w}(R, 2)
otherwise. Thus, &, € Dy,(R) and z = lim,jo&,. Assertion (ii) implies
that the derivatives of my(R, ) over Dy, (R) and Dy, (R) are respectively the
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linear projections (with respect to the metric induced by R) into Qx, and
Q@s,. The conclusion follows using that ¥; # ¥ and hence Qy, # Qs,. ®

In view of Lemma 25, the three statements below are equivalent:

- There exists ¥ C {1,...,m} such that z € Dx(R),
- The mapping mo(R, -) is differentiable at z,
- Strict complementarity holds at my(R, z).

Now we turn our attention to the convergence of the derivatives of ..

Let R € 87, and z € D(R). Note that since z € D(R) it follows that
1°(z,R) = 0. Define I'* := I'"(R,z), I*:=I"(R, %) and consider a compact
neighborhood V of (R, 2) in ST, x R™ satisfying

I"(R,Z)=1", I“(R,2)=1" forall (R, 2)eV. (1.42)

Lemma 26 Using the notation introduced above:
(i) There exists Cy > 0 such that, for e small enough,

(" (7(R,z)) < Cy forallie It and (R,z) € V. (1.43)

(ii) For every j € I?, the function —el' (7(-,-)) converges uniformly in V to
W (-, +), which is a strictly positive function in V.

Proof. Let (R,z) € V. By definition 7 (R, 2z) > 0 for all i € I'*. Hence,
assertion (i) follows from the continuity of ¢” and Proposition 23(iv). The
first equation in conditions (1.26) together with equation (1.27) yield

Rlmo(R, z) — (R, 2)] = eV L(7(R, 2)) + u(R, 2). (1.44)

Therefore, assertion (ii) follows from Proposition 23(iv). m
For (R, z) € V the indices I and I* induce a partition of the underlying
matrix R, defined as follows:

Definition 27 For (R, z) € V define the matrices

Ry = (R;;) for (i,j) e [T x I, Riq = (R;;) for (i,j) € It x I*,
Roy = (R;;) for (i,5) € I* x IT, Ruq = (R;;) for (i,5) € I* x 1.

The vectors 2T and 2 are respectively obtained by removing all the coordi-
nates of z except for those in I and .
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Proposition 28 Let R € ST, and z € D(R) and let V be a compact neigh-
borhood of (R, %) in ST x R™ satisfying (1.42). Then:

(i) The function D,m.(-,-) converges to D,mo(-,-), uniformly in V.

(ii) The function Dgm.(-,-) converges to Dgmo(-,-), uniformly in V. In addi-
tion,

Drmo(R, 2)V = D,m(R, 2)R'V (2 — m(R, 2))  for all V € 8™ (1.45)

(iii) The mapping (¢, R, 2) — D m(R,z) is continuous in (£,R,z) for
every € > 0.

Proof. In the sequel, for (R, z) € V the coordinates of R and z are par-
titioned according to Definition 27. Since I¢(-,-) = I is constant in V,
for (R,z) € V we have that 7§(R,z) = 0. Consequently, we obtain that
D.m§(R, z) = 0. On the other hand, complementarity conditions in (1.26) im-
ply that (R, z) = 0. Thus, the first equation in conditions (1.26) yields that
0 = (R[m(R,2) — 2])". Therefore, we obtain that 7j (R, 2) = R1(Rz)"
and as a result

D.rf (R, z2)w = R, (Rw)* for all w € R™, (1.46)
Now, suppose that |w| =1 and set
ve(R, 2) := D,m.(R, z)w, foralle>0and (R,z2) € V.
Equation (1.30) yields
Rv.(R, 2) +eV?L(m.(R, 2))v.(R, 2) = Rw. (1.47)

Denote by diag,[V?L(7.(R, z))] the diagonal matrix with diagonal ¢ (7%(R, z)),
where ¢ is applied componentwise. Lemma 26(i) implies that

R v (R, z) + Riqv®(R,2) +O(e) = (Rw)t,
Ra-i—U;r(R? Z) + Raavg(Ru Z) + gdia’ga [VZL(WE(Ru Z))]US(R7 Z) = (Rw)a,
(1.48)
where the O(¢) is uniformly in V. In particular,
v (R, 2) = R (Rw)™ — RELRL (R, 2) + O(e). (1.49)

Let us set BT := Rgq—Roy R7} Ryq and AL(R, 2) := Rt +ediag, [V2L(m.(R, 2))].
Note that R+ € ST is the Schur complement of R, in R (see for example
[94]). Substituting the expression of vF (R, z) given in (1.49) in the second
equation of (1.48) yields

A (R, 2)vY(R, 2) = (Rw)® — Ry RYL (Rw)™ + O(e).
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On the other hand, since A\pin(A:(R,2)) = inf{v" A.(R, 2)v ;|v] = 1}, we
have that

Nin(As(R, 2)) = Aon(R*) + min el (n(R, 2)) %

icla ‘
Assumption (1.10)(II), Lemma 26(ii) and (1.50) imply that ||A-'(R, 2)|| — 0
uniformly in V. Thus, we obtain that v?(R, z) — 0 = D,7§(R, z)w uniformly
in |w| =1 and (R,z) € V. Finally, equation (1.49) yields that vX (R, z) —
R7L (Rw)*, also uniformly in |w| = 1 and (R, z) € V. Thus, the conclusion
follows from (1.46).
(ii) By assertion (i) and Proposition 23 (iii), (iv), we have that

Dp7o(R,2) — D,mo(R,2)R™'V (2 — mo(R, 2))  uniformly for (R, z) € V.

Therefore, we have that D7 (-, -) converges locally uniformly and since 7. (-, )
converges to (-, -) uniformly in V', we conclude (cf. [32] Theorem 3.6.1) that
Dr.(-,-) — Dmo(+,-), from which the result follows.
(iii) Follows in a manner analogous to that in the proof of Proposition 23(v).
[

We end this section with an elementary lemma that gives a geometrical
meaning to the assumptiom of strict complementarity (see Theorems 30 and
35 in the next section).

(1.50)

Lemma 29 (Strict complementarity reformulation) Consider the prob-
lem

min {%xTRx +c'xtd:xc Ri} ,
where R, c,d belong respectively to ST, R™ and R. The optimal solution
of this problem satisfies the strict complementarity conditions if and only if
—R'c ¢ sing(R).
Proof. We have sz'Rz+c¢'z+d=4(z+ R '¢)'R(z+ R 'c)—ic"R e+
d. Thus, the solution of the above problem is 7y(R, —R'c) and the result
follows by Lemma 25 (iv). m

1.4 Main results

The notation are those of the previous section. Let ¢ € [0, 00), recall that by
equations (1.9) and (1.23) the solution u. of (CP.) is given by

us(t) = m.(R(t), —R(t) ' B(t)"p.(t)) for a.a. t €[0,T]. (1.51)

Note that the curve (y.,p.) belong to W1* x W1* and hence the optimal
control u. is continuous. Consequently the optimal control u. satisfies

us(t) = argmin { H. (w, y-(t), p-(t),t) : w > 0}  for all t € [0,T].
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1.4.1 Error estimates for interior penalties

Let us now introduce our main assumption.
Strict complementarity assumption: There exists a subset Tsing of
[0, T with meas(TSing) = 0, such that for eacht in [0, T]\Tsing the point ug(t)

satisfies the strict complementarity conditions for the minimization problem
min {HO(wa yO(t)7p0(t)7 t) Tw e Ri} :

This assumption can be reformulated in an alternative form. Note first
that for almost all ¢, the control ug(t) actually solves the following (sim-
plified) quadratic problem: min {v" R(¢)v + po(t)"'B(t)v:v € RT}. As in
Lemma 29, define

go(t) :== —R(t) "' B(t) " po(t), (1.52)

where p is the adjoint state for problem (CPg). In view of Lemma 29, the
strict complementarity assumption above exactly amounts to

meas{t € [0,T] : qo(t) € sing(R(¢))} = 0. (1.53)
Wi assumption: We shall say that W1 assumption holds if:

ReW'™(0.T:SY,). C e Wh([0.T]; 8}).
Ac Wl’oo([O,T];Rnxn), Be WLOO([O7T];R7ZXm).

(1.54)
Clearly, under this assumption, u. € W' for all € > 0.
For ¢ > 0 define II, : W% — L* by
I (w)(t) :== m(R(t), w(t)). (1.55)

In view of Proposition 23 this function is well defined. For each fixed ¢, the
quantity |[TI.(w)(t) — Ho(w)(t)| therefore measures the error estimate of the
penalty method for the finite dimensional problem

min {(z — w(t)) ' R(t)(x — w(t)) : z € RT}.

The following result shows that these finite dimensional error bounds can be
used to recover the error bounds for the penalized optimal control problem

(CP.).

Theorem 30 (Error estimates for interior penalty) Lets be in [1,+00)
and suppose that ¥ and ¢ belong to L*. Assume further that the strict com-
plementarity assumption (1.53) and the Wb assumption (1.54) hold. Then,
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for e close to 0 we have that:
(i) For 1< <s, the error estimates for u.,y. and p. are given by

[|ue = wolls + 119 = voll1s + [lpe = poll1s = O ([IHe(go) — To(go)lls), (1.56)

with in addition u. — ug in WHs,
(ii) The error bound for the control with respect to the supremum norm is
given by

|[ue = wo|]oe = O ([Tc(g0) — Mo(go)lloo) - (1.57)
(iii) The error estimate for the cost is given by
| Jo(ue) = Jo(uo)| = O (|He(go) — Mo(qo)l]1) - (1.58)

Remark 31 Note that the quality of the approxzimation in (i) depends on the
reqularity of @ and . Since s > 1, we always have that ¢ and 1 belong to
L' and estimate

l|1e — uol|r + ||ye — voll1,1 + |[Pe — poll1,1 = O (||Me(qo) — Mo(qo)|[1) (1.59)

always holds. On the other hand, if ¢ and ¢ belong to L*> we have, for all
s € [1,00),

[lue = wolls + [y = Yol l1.s + llpe = pollrs = O (|[He(go) — To(go)lls) - (1.60)

From now on, we assume that the hypotheses of Theorem 30 hold. For
the proof of that result, we begin by introducing the map

F W5 x W xR, — L* x R" x L* x R"

defined by
J() — AC)y() — B()r. %z)(-), “R(TBO)TP() — ()
o ) — 2o
Fly,pe)() = )+ AC)TP() + CO () = 50)) + ()

p(T) = M[y(T) — y(T)]
(1.61)
The optimality system of problem (CP.) may be therefore expressed as

F(ye,pe,e) =0  for every € > 0. (1.62)

Remark 32 In general, F' is not differentiable at (yo,po,0). Indeed, take
m=n=1, R(t)=1, B(t) =1, L(x) = —logz. In this case, for py € W*
and € > 0, it holds that 7.(1, py) = w-(—po) where

pe(x) =3 <x + Va2 + 46) : (1.63)
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For every ¢ € [0, 7] it holds that

(1, po(t)) — mo (1, po(t)) _ { mo@) L Po(t) # 0

i +oo if po(t) =0

el0 g

(1.64)

and generally, this limit does not belong to L°.

In view of the above remark, a direct application of the Implicit Func-
tion Theorem to (1.62) is not possible. Instead, we will use the so-called
Restoration Theorem (see [3] and the Appendix), which is a variant of the
standard Surjective Mapping Theorem of Graves (see [49]). In the following
two lemmas we show that, under very general conditions, the assumptions of
the Restoration Theorem are fulfilled.

Lemma 33 (Strict uniform differentiability) Let s € [1,+oo] and w €
Ws be such that

meas{t € [0,T] : w(t) € sing(R(t))} =0, (1.65)

where the set sing(R) is defined in (1.37). Then :
(i) For everye >0, w € W5, the function 1. is differentiable at w and for
every h € Wt we have that

(DIl (w)h) (t) = D,m.(R(t), w(t))h(t), for a.a. t € (0,T).
(ii) The function Wy is differentiable at w € W'* and for every h € W
(DILy(w)h) (t) = D,mo(R(t), w(t))h(t), for a.a. t € (0,T).

(iii) There ezists a nondecreasing function ¢ : R, — Ry with limgyoc(8) =0
such that: For any w',w € Wb with ||w' — ©||; s < 8, |Jw —@||1s < 8 and
e € [0, 5] we have

[T (w') = Il (w) — DIg(@) (w' — w)[s < e(B)||w" — wl]1.s. (1.66)

Proof. (i) Follows directly from the implicit function theorem.
(ii) For h € W'* and t € [0, T] denote

D(h)(t) = |mo(R(t), W(t) + h(t)) — mo(R(t), w(t)) — D.mo(R(t), w(t))h(t)].
We have

1 . _ s 1
i IHo(@ + h) = Io(@) — Demo(R(), W)AI[T = s
[IA]7 s [IAl13

/ .

,S
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Since W1* is continuously embedded in L*°, there exists ¢, > 0 such that
|h(t)] < ||h]loo < csl|h]]1s for a.a. ¢t € [0,T]. (1.67)

It follows that

1
[1A]17,6

T
_ _ - 9
TIo(@ + h) — TIo(@) — Domo(R(E), D)HI[S < e, /
0

By using Lemma 22 with ¢ = 0, it follows that ¥(h)(¢)/|h(t)|° is uniformly
bounded for ||h]l1s < 1 and ¢t € [0,7]. Also, by Lemma 25, m(R(t),")
is differentiable at w(t) iff w(t) ¢ sing(R(t)). Thus, in view of hypothesis
(1.65),

O(h)(1)

A ()]
and the result follows by Lebesgue’s dominated convergence theorem.
(iii) Let us first observe that

— 0 foraa.tel0,T],

[T (w") — I (w) — DHo()(w" — w)]|s =

H (/o1 [DIL(w + r(w' = w)) = Dllo(@)] dT) (w' — w)

< sup [[DIe(z) — DIo(@)][yy1s_ s
2€B1,4(8,)

s

w' — le,s )

where Bj 4(w, 3) denotes the ball in W'* of center @ and radius 8 and || -
|lw1s s denotes the standard norm of the space of linear bounded functions
from W'* to L*. Let h € W* with ||h]|; s < 1. For every z € By ((w, 3) we
have that

||DILe(2)h — DIg(w)hl[; < HhHio/O | Dre(R(1), 2(t)) — Dro(R(1), w(t))|*dt

and thus, in view of (1.67) and that ||h|]1 s = 1,

sup || DI (2) — DIIo(@)|lyy16 s < (B),
2€B14 (@)

where ¢(3) is defined by

1

s

c(f) = cs (/0 sup sup |D,m(R(t),z) — DZWO(R(t),@(t))\Sdt>

€€[0,8] zeB(w(t),3)
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In light of Proposition 23 (ii), Proposition 28 (iii), assumption (1.65) and
Lebesgue’s dominated convergence theorem, we conclude that ¢(3) | 0 as

B10. m

The following result establishes the surjectivity of the derivative of F' at
(Yo, Po, 0) (where F'is defined in (1.61)): this fact is central for the application
of the restoration theorem (see Theorem 43). Define

Y(t) :={1,...m}\ I (R(t),q(t)), foralltel0,T] (1.68)

and recall that for all ¥ C {1,...,m} the linear subspace @y was defined in
(1.34).

Lemma 34 (Surjectivity of F') Consider problems (CPy) and (CP.) of
Section 2. If the strict complementarity assumption (1.53) holds, then the
function F is differentiable with respect to (y,p) at (yo,po,0) and the lin-

ear application D, F (yo, po,0) is an isomorphism. In addition, for every
(01,02,03,04) € L* x R™ x L* x R™, the curve

D(yyp)F(y()?p()? 0)_1(617 627 537 54)

is the unique solution of the reduced optimality system of

Min ! /0 ()T Rt () + o (t) CE)o(t) — 65 - o (1)) dt

+3(0(T) + M~16,) T M (a(T) + M~16,),
)+ B(t)v(t) 4 0, (¢),
t

s.t. o(t)=A(t)o
o ) € Qs

t
(0) 62’ U(

(7)51 ,52753,54)

Proof. The differentiability property of F'is a direct consequence of Lemma
33 (ii). Now, for ¢ and < in W'* we have

l)(y,p)F’1 (y% 2;07 0)(07 §)
o(0
Dy p)F (Y0, 0,0)(0,5) () = )+ AO T +COe() |
(T) — Mo (T)
where
Dy F (40,10, 0)(0,6) = 6(-)=A()o (-)+B(-) Do (R(-), 4o(-)) R(-) "' B(-) "< ().
Let 0, € L?, 65 € R™, 93 € L?, 64 € R™ and consider the system of equations
o(t) — A(t)o(t) + B(t)D.mo (R(t), qo(t)) R(t) ' B(t) Ts(t) = ai(t),
<) +A(t) <(t) + C(t)a(t) = (),
S(T)—Mo(T)=064 ; o09=0s.
(1.69)
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Note that, by Lemma 25(iii), the vector
Do (R(1), qot)) [=R(6) " B() "s(8)]

is the projection of —R(t)™'B(t)"¢(t), with respect to the metric induced by
R(t), into Qx. Using this fact it is routine to verify that equations (1.69)
are the reduced first-order optimality conditions of (Ps, 5,.4..6,)- Arguments
similar to those already used for the problem (CPg) show that (Ps, s,.64.6,)
has a unique solution, which concludes the proof. m

Now we are in a position to give a proof of Theorem 30.

Proof of Theorem 30. Since L* is continuously embedded in L% it suffices
to prove the result for s’ = s. First, for ¢ > 0 let us define

q-(t) == —R(t)"'B(t) "p.(t) forall t € [0,T]. (1.70)
(i) Let us first note that

F(y0>p07€)(t> = F(y0>p078)(t> - F(y0>p070)(t)7
— (=B() [r-(R(), (1)) — mo(R(2), a0(1))] ,0,0,0)"
(1.71)
In view of Lemma 33 and Lemma 34 the mapping F' defined in (1.61)(page
50), satisfies the assumptions of the Restoration Theorem (see the Appendix).
Therefore, by (1.71) and the definition (1.55) of I,

llve — voll1s + |[Pe — poll1s = O (||H(q0) — o(qo0)]]s)

On the other hand, for every ¢t € [0,7] we have

|ue(t) — uo(?)]

Therefore, Lemma 22 implies that

|ue(t) — uo(t)] < K(R(1))lge(t) — qo(t)| + |me(R(2), qo(t)) — mo(R(t), qo(t))]
(1.72)
and the first assertion follows by taking the L® norm.
Let us prove the second assertion. Since the convergence of u. to ug in
L? is already established, it suffices to prove the convergence in L° of the
derivatives. For almost all ¢t € [0, 7], we have that

e () = o (t)| < A1 ()] + |As(1))]
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where

Ay(t) = [Drme(R(t),q-(t)) — Drmo(R(t), qo(t))] R(1)
AQ(t) = Dzﬂ'a(R(t)? QE(t))QE(t) - DzTrO(R(t)v QO(t))CJO(t)-

The convergence of A; to 0 in L*® follows from Proposition 28 (ii) and

Lebesgue dominated convergence theorem. As for A,, let us first rewrite
As(t) as

D.me(R(t), g (1)) [6=(t) — Go(t)]+D2me(R(t), ge (t))do(t) = Do (R(E), qo(t) o (t)

and apply Proposition 28 (i) and Lebesgue theorem.
(ii) Equation (1.72) implies that

[|ue = wolloo < up R(R()]1g= = golloo + [ITe(g0) = To(g0)loo-  (1.73)
tel0,T

From (i) we obtain that

|lg — qolloo = O (|lpe = poll1.s) = O (|[11=(q0)
O (|M(go)

which concludes the proof in view of (1.73).

(iii) As in the proof of Proposition 18(ii) we have that |Jo(u.) — Jo(uo)| =

O (||ue — uo||1). The result follows by taking s' = 1 in (i). Thus the proof of

Theorem 30 is complete. O

1.4.2 Asymptotic expansion

Now we present our second result, which is based on Corollary 45 of the
Restoration Theorem (see the Appendix). This provides asymptotic expan-
sions for the state and the adjoint state of the penalized problems around
the state and adjoint state of the original problem.

Theorem 35 (Asymptotic expansion) Assume that 1 and ¢ belong to
L* where s € [1,400). Suppose that the strict complementarity assumption

(1.53) holds. Then

(ga ) N (gz ) B D(Z/,p)F(y07p0>0)71F(y07p078) +T(€)’

where
r(e) = o([|F'(yo, po, €)l]s)-
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Moreover the first term of the expansion — Dy, » F(yo, po,0) " F (yo, po, €) is
the unique solution to

Min %/O (v@®)TR(t)v(t) + o(t) ' C(t)o(t)) dt + 3o(t) T Mo(t),

S.1.
o(t) = A(t)o(t) + B(t)v(t) + B(t) [m(R(t), o(t)) — mo(R(t), qo(t))],
J(O) = 0, U(t) € Qg(t).

Proof. Since for every t € [0,7]]

F(yo, po, €)(t) = (=B(#) [r(R(1), q0(t)) — mo(R(t), 00(t))] ,0,0,0) ",

the result follows directly from Corollary 45 (see the Appendix), taking e = £,
and Lemma 34 taking 61 = B(¢) [r-(R(t), qo(t)) — mo(R(t), qo(t))], 62 = 0,
53:0311(154:0..

1.5 Examples

As the following examples show, Theorem 30 can be used to reduce the esti-
mate of error bounds of an optimal control problem to standard computations
used in mathematical programming.

1.5.1 Decoupled case: R(t) =1

Since R is no longer a variable, we simply write 7 (z) for m.(R, z). In this
case one has

Dr.(2) = (I +eV2L(r.(2))) " > 0. (1.74)

Since (mp(2)); = max{0, z;} for all ¢ € {1,...,m}, we have

IT(I,z)={ie{l,...m} : >0} ; I°(I,z)={ie{l,...m} : z <0};
I°,2)={ie{l,...m} : z =0}

Clearly Dr.(z) is a positive-definite diagonal matrix. Therefore, for every
i € {1,...,m} the function (m.); is nondecreasing with respect to z; and
constant with respect to z; for j # 4. This implies that

1T8(2) — 7 (2)] = |7i(2)| < |7L(0)] for all z € R™, i€ I*(2) UI’(2). (1.75)
On the other hand, equations (1.27) and (1.26) give

mi(2) +eVL(rS(2)) = 27 m(2) =27




o7

and so D(nt — 7 )(2) = —eV2L(n} (2))Drt (2) < 0. Therefore

7 (2) = 75 (2)| < |72 (0) = mg ()] = |7 (0)]- (1.76)
Finally, Theorem 30 (ii) together with equations (1.75) and (1.76) imply that
[lue = wolloo = O (I7=(0)]) - (1.77)

Let us now compute |7.(0)| for some specific barriers.

1.5.1.1 Negative power penalty

For the negative power penalty ¢(z) = 277, (with p > 0), we obtain 7.(0) —
1 1

pe/m(0)PT! = 0 by taking z = 0 in (1.27). Therefore 7.(0) = p2rre2rl.
Conclude with (1.77) that

e — || = O(777). (1.78)

The next example shows that the logarithmic barrier provides a smaller
L> error bound, and even more importantly, a considerably better and
sharper bound for the L' norm.

1.5.1.2 Logarithmic penalty

The logarithmic penalty corresponds to the choice ¢(x) = —log z. By taking
z=01n (1.27), we get 7.(0) —&/m.(0) = 0. Therefore 7.(0) = y/c1 and, thus

(1.77) yields
[|ue = uolloo = O(VE).

Our aim now is to obtain a sharp estimate in L' for u. — uy. Note that from
(1.27)

Ti(2) =2 <2Z + v/ (2)% + 46) = ¢.(2") forall z e R™, i€ {l,..,m},
(1.79)
where ¢. is defined as in (1.63). The family (¢.)o<c<oo enjoy several properties
which can be easily established by the reader.

Lemma 36 For every e > 0:
(i) The function s — ¢-(s) — ¢o(s) is even, increasing in (—o00,0) (and
decreasing in (0, +00) ).
(ii) A primitive of ¢. is given by
1

1
U (z) = 1x2 + Zx\/xQ +4e +elog (x + Va? + 45) . (1.80)

(iii) For every s >0 and v € R, ¢, (sx) = /sd.(\/s7).
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Figure 1.2: Left: ¢.,, ¢, and ¢g. Right: ¢, — ¢o, ¢, — @0, for 1 = 0.005,
E9 = 0.001.

The following lemma is fundamental for the error estimate in the L! norm.

Lemma 37 Let ¢ € C([0,T)). Assume that Z(q) :={t € [0,T] : ¢(t) =0}
is finite and that for every so € Z(q) the curve q is differentiable at sq with
%(30) # 0. Then

/0 (6-(a(t)) — dola(£))] dt = O(e| loge]). (1.81)

Proof. With no loss of generality, let us assume that Z(q) = {so} and that

%(so) > 0. We have [ [¢.(q(t)) — ¢o(q(t))]ds = Ay + By, where

A= oa®) - e ds & Bi= [ ou(alt) ~ dnla(e)] ds.
{t :q(t)>0} {t :q(t)<0}

Since ¢. — ¢q is even, it suffices to obtain an estimate for A;. Note that

{t :q(t) > 0} = (50,7 since we are assuming that Z(q) = {so}. Since

d—z(so) > 0, there exists a > 0 such that ¢(s) > a(s—sg) > 0 forall s € [sg, T.

On the other hand, by Lemma 36 (i) the function s — ¢.(s) — ¢o(s) is

decreasing in |0, +o00[ and so

A< [ 1odals = s0) — dolals — soplds = = [ (6e(s) — ) ds

S0 a Jo

where ¢ := a(T — sy). By Lemma 36 (ii)

Js (9e(s) —s)ds = —%—|—E\/CQ+45—|—610g(c2+\/02+45)—510g\/E

< 1 C+fc§@> + O(e|loge|) = O(e|logel).
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By combining Theorem 30 and Lemma 37, one obtains:

Theorem 38 Assume that ¢ and v belong to L°. Consider problems (CPy)
and (CP.), with R(t) = I and ((r) = —log(r). Suppose that the strict
complementarity conditions (1.53) and W assumption (1.54) hold. Then:
(i) We have that

Hus_uOHoo+Hps_p0’|1,oo+Hy5_y0H1,oo = O(\/E)>
| Jo(us) — Jo(uo)| = O(Ve).

(ii) In addition, let us assume that {t € [0,T] ; qo(t) € Sing(I)} is finite and
that the following implication holds:

d
(q0(t0))" = 0 = B is differentiable at to and T (qo(to))* # 0. (1.82)

Then

l[ue = uollr + [Ipe — poll11 + [lye — wollin = Ofellogel),
| Jo(ue) — Jo(uo)| = Of(ellogel).

Remark 39 The exact computations performed in [3] for a specific problem
show that the first bound provided in (ii) is optimal.

1.5.2 Coupled case: R(t) >0

Recall that uo(t) = mo(R(t),qo(t)) for all t € [0,T]. Roughly speaking our
hypothesis is that:

— qo(t) meets the singular region sing(R(t)) a finite numbers of times,

— when the singular region is met at most one inactive (active) constraint
can become active (inactive).

This assumption allows, after a localization argument, to bound |7, — |
in terms of |p. — ¢g| (see Subsection 5.1).

Consider again problems (Pg°%) and (P#?) as defined in Section 2. We
say that z € sing(R) is a singular point if I°(R, z) # (). If in addition I°(R, 2)
is a singleton we will say that z is a simple singular point.

Let R € 8T, and k € {1,...,m}. Consider a simple singular point z €
sing(R) such that I°(R, z) = {k}. Now we proceed to the study of |7.(-,") —
(-, +)| around (R, z). Let K x Ky C 8™, x R™ be a compact neighborhood
of (R, z) satisfying:

V(R,z) € K; x Ky, (2 € Kynsing(R) = I°(R,2) = {k}).
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In other words the singular points in K5 are all simple and the active con-
straint with null multiplier is the same for all of them . The coordinates
of (R,z) € K; x K, are partitioned according to I*(R,Z2), I*(R,2) and
I°(R, 2) = {k}. For all (R,z2) € K, x Ky, let us define

(R,z) = (R2)"— Ry RL(R2)", (1.83)
Lemma 40 Using the notation introduced above, for all (R,z) € Ki X K,
we have:
(R R
w2 (R —mf (R, 9) < O fon | B2} gy (LE2D) | 4 o)
V Rk Rk
85)
[T (R, 2) — w5 (R, 2)| = [7(R, z)| = O(e), (1.86)
(R (R
[7E(R, 2) -5 (R, 9)] = Ci | 6. <(F)> " ( ( ;Z’) +0(e), (187)
k Rk
where .
o IRAIIRG

V Rk RF

and the bounds O(e) are uniform on Ky x K.

Proof. Let (R,z) € K; x K. Estimate (1.86) is a direct consequence of
Lemma 26(ii) using that

4 1
lOg/(H;(R, Z)) = m fOI' all ¢ c {1, ,m}

In view of (1.86) and optimality system (1.27), we have that

£
Ry (R, 2) + Rymi(R, 2) — (R (Rz)" + O(e)
k )
£

Rk+7T6+(R, Z) + Rkkﬂf(R, Z) — m = (RZ)k + 0(5),

(1.88)

where the bounds O(e) are uniform on K, x K and correspond to the coor-
dinates in I*(R, Z). From the first equation in (1.88) we obtain

(R, z) = R7L ((R2)Y — Ryt (R, 2)) + O(e). (1.89)

Substituting 7 (R, z) in the second equation of (1.88), we find

REnE(R, 2) — m = r5(R, 2) + O(e), (1.90)
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which is a scalar equation in 7¥(R, z). Lemma 36(iii) yields

Ri(R.2) = o (P24 00) ) = o (M) 1 o)

Letting € | 0 we obtain that 7}(R,2) = \/_gbo ( i}li_: ) , from which esti-

mate (1.87) follows. Finally, letting € | 0 in equation (1.89) yields

75 (R,z) = Ry} ((R2)" — Rymh(R, 2)) . (1.91)
Thus, estimate (1.85) follows by subtracting equations (1.91), (1.89) and
using estimate (1.87). m
Now we can extend Theorem 38 for the coupled case:
Theorem 41 Let ¢ and ¢ belong to L®. Consider problems (CPy) and (CP.)

with ¢(x) = —log(x). Suppose that the strict complementarity conditions
(1.53) and WH* assumption (1.54) hold. Also, we assume that

qo(to) € sing(R(to)) = qo(to) is a simple singular point. (1.92)

Under these assumptions we have that:
(1) The following estimates hold:

||U5 - uOHoo + Hpe _p0||1,oo + Hya - y0||1,oo = O(\/E),

| Jo(ue) — Jo(ug)] = O(Ve).

(ii) In addition, let us assume that {t € [0,T] ; qo(t) € sing(R(t))} is finite
and that R, B are differentiable. Suppose that the following implication holds:

P(R(to),ao(t0) = (K} = 57

(Rl wlt) 20, (1.93)

Then, the following estimates hold:

l[ue = uollr + [Ipe — poll11 + [lye — wollin = Ofellogel),
| Jo(ue) — Jo(uo)| = Of(ellogel).

Remark 42 Ifty € [0, T] is such that I°(R(ty), qo(to)) = {k} then by letting
e | 0in (1.90) we see that r*(R(to), qo(to)) = 0. Thus assumption (1.93) is
an extension of the coupled case (see (1.82)).

Proof. Item (i) is a direct consequence of Theorem 30 and Lemma 40, while
item (ii) follows from Theorem 30, Lemma 37 and Lemma 40. m
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1.6 Conclusions

Interior point methods for control constrained optimal control problems have
been shown to be very efficient from the practical point of view (see the refer-
ences given at the introduction), specially when the constraints are penalized
with the logarithmic barrier. In this work, for a linear quadratic problem with
nonnegativity constraint on the control, we have obtained an explicit expan-
sion for the state and adjoint state, of the penalized problems, around the
state and the adjoint state of the main problem. Since the standard implicit
function theorem is not applicable to the system of equations associated with
the parameterized optimality conditions (see (1.61)), the main results (see
Theorems 30 and 35) rely on the Restoration Theorem (see the Appendix),
which is a variation of the standard Surjective Mapping Theorem of Graves
[49]. The main difficulty in the verification of the assumptions of Theorem
43 comes from the fact that the controls are coupled in the cost function
through a positive-definite matrix. To overcome this difficulty the thorough
analysis of the associated finite dimensional problems (see section 1.3) seems
to be unavoidable. It is important to emphasize that the error estimates
obtained in Theorem 30, in the different Sobolev norms and for a general
class of penalty functions, are derived from a similar analysis in a finite di-
mensional space. In particular, we obtain (see section 1.5) sharp estimates
for the important case of the logarithmic penalty.

An extension of the results of this paper to the case of the optimal con-
trol problem of a semilinear elliptic partial differential equation, has been
obtained in [2]. As open interesting problems we can mention the compu-
tation of the complexity of the method when a self-concordant barrier is
considered (in the spirit of [74]), the generalization of the results obtained in
this article to the case of state constraints and to the case when the cost and
the dynamics are general nonlinear mappings.

Acknowledgements. The authors are indebted to the anonymous refer-
ees and specially to the associated editor for various helpful comments that
helped to improve the original manuscrip.

Appendix: Restoration Theorem

This material is taken from [3]. Recall that if X and Y are Banach spaces
and A: X — Y is a surjective linear continuous mapping then, by the open
mapping theorem, there exists a bounded right inverse of A, which we denote
by B, i.e. a (possibly nonlinear) mapping B : Y — X such that ABy =y
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forally € Y, and

| B]| == sup{|| Byl : lyll |y € Y, y # 0} (1.94)

is finite.

Theorem 43 (Restoration Theorem) Let X and Y be Banach spaces,
E a metric space and F : U C X x E — Y a continuous mapping on a
nonempty open set U. Let (Z,e0) € U be such that F(Z,e0) = 0. Assume
that there exists a surjective linear continuous mapping A : X — Y, with
bounded right inverse B, and a function ¢ : Ry — Ry with c(8') | 0 when
B' 10, such that: if 3 > 0 satisfies c(5)||B|| < 1 and € € B(go, 3), then

|F(a',e)=F(z,6)=A(a'—2)|| < c(B)||a"~z|, for all (x,2") € B(z,8)xB(&, ).
(1.95)

Under the assumptions above, for all (z,€) close enough to (&,¢eq), there exists

T such that F(Z,e) = 0 and the following estimate holds:

Bl
o = ol < Ty 7 1F ) (1.96)

Proof. Let py > 0 and take x € B(Z, po), € € B(eo, po). By taking py > 0
small enough, as F' is continuous, we may assume that

po+ (1= Lg) || BIF (z,e)]|| < 5. (1.97)

Let {z,}, n € N, be the sequence defined by 2o = = and the (modified
Newton like) step

Tpi1 = T — BF(zp,€). (1.98)
Then
[2n 1 =zl = | BLE (@, ]Il < (B [[F(zn, €] (1.99)
Relation (1.98) implies
F(zn,e) + Az —x,) = 0. (1.100)

We show by induction that {z,,} remains in B(Z, 3). By (1.97), this is true
if n = 0. For n = 1, we have with (1.99) and (1.97)

lz1 = & < lla1 = zoll + llzo — &l < || B[F(wo,)][| + po < 5
Then if z; € B(#,8), for all 1 <i < n, (1.95) and (1.100) imply

1E (@, )| < c(B)llen — znall (1.101)
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Combining with (1.99), we get
[2n1 = @all < Lpllen = @nall < - < (Lg)" 21 = 20, (1.102)
and hence, with (1.97),
l2n 1 = zoll < (1= Lg) My — aoll < (L= Lg) I B[F (z0, )]l < 8 — po.

Since [|zg — Z|| < po, we deduce that z,.; € B(Z,(), and hence, the
sequence {z,} remains in B(Z, ). With (1.101) and (1.102), we obtain
that x, converges to some Z such that F(Z,e) = 0 and ||z — z¢|| < (1 —
Lg) Y| B||||F(z0,€)]|, which proves (1.96) with constant 7 given by

n=(1-Lg) || Bl| (1.103)
O m

Remark 44 The proof of Theorem 43 shows that the assumption that (x,¢)
is “close enough to (Z,€0)” can be formulated as: “z € B(Z,po) and ¢ €
Bl(eo, po), where py is such that the following inequality holds

po+ (1 —c(B)|BIN B (z,e)]ll < 8.7 (1.104)

Now we state an interesting corollary of the Restoration Theorem which
is a key tool in the proof of Theorem 35. Its short proof is taken from [3]
and is reproduced here for the reader convenience.

Corollary 45 Assume that the assumptions of Theorem 43 hold and denote
by B a bounded right inverse of A. Then, for e close to g, there exists x. in
a neighborhood of & such that F(z.,e) =0 and

x. =& — BF(&,¢e) + r(e), (1.105)
where the remainder r(e) satisfies
Ir(@)l < e(B)(1 = cB)BI)IBIFIIF(E, )]l (1.106)
Proof. Let #(¢) := & — BF(Z,¢). We have that F(z,e)+A(z(e)—2) = 0 and
c

Z,€
[2(e)=2|| < || BI[IF(2,¢)||. Inview of (1.95), |[F(2(e),e)l| < c(B)| B[ F(Z,e)]l-
We conclude with Theorem 43. m
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2.1 Introduction

Optimal control of control constrained PDEs is a very rich subject from the
theoretical and applied point of view. For an overview of the theory we
refer the reader to the classic book [67] and the more recent monographs
[43, 65, 55, 73]. Sensitivity analysis as well as second-order conditions have
been established in [19, 34, 80|.

Numerical methods for these types of problems have been an very active
subject of research and we can distinguish two main approaches that are
usually referred as direct and indirect methods. Direct methods are those
based on the discretize and then optimize approach, which means that the
infinite dimensional problem is transformed into a finite dimensional one with
a very large dimension. Then standard methods of nonlinear programming
optimization are used to solve the discretized problem, see for example [4,
5, 33, 40, 69, 68|. In contrast, indirect methods are based on the optimize
and then discretize approach where optimality conditions are obtained for
the infinite dimensional problem and the resulting variational inequalities
are discretized, see for example [54, 83, 84|.

Interior point methods are among the most popular methods in the indi-
rect approach. They have been investigated, even in the state constraint case
[78], extensively in [13, 14, 79, 87, 88]. Specifically, in [79], for box constraints
over the control, the optimal solution ug, with associated state 39, can be ex-
pressed pointwisely as a projection of a linear function of the adjoint state
po. This enables to avoid the explicit discretization of the control and leads
to a very efficient implementation of the method. From the theoretical point
of view, the method consists in introducing a family of penalized problems
parametrized by € > 0 whose solution u. are strictly feasible and studying
the convergence of the central path defined by (., p.), the state and adjoint
state associated with u., towards (yo, po)-

Motivated by these works, we consider the optimal control of a semilinear
PDE where the control is distributed over the domain €2 and is constrained to
be nonnegative. Associated with any isolated solution ug we consider a family
of localized penalized problems parametrized by € > 0. We study in detail the
relationship between the solution u. of the penalized problem and ug. Our
approach is the same that in 2], which was studied in the ODE framework,
and consists in obtaining an asymptotic expansion for state y. and the adjoint
state p., which are associated to u., around the state gy, and adjoint state
Po, which are associated to ug. In this sense, our approach is complementary
to that in [79] where the slope of the central path, defined by (y.,p.), is
integrated in order to obtain error bounds. Under very general hypothesis
we can show that (y.,p.) can be expressed as (Yo, po) plus a principal term
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which is characterized as being the state and adjoint state associated to the
solution of a tangent optimization problem. This fact enable us to obtain,
as a corollary, precise error bounds for the central path in various Sobolev
norms and for a rather general class of penalty functions.

The paper is organized as follows: In Section 2, after introducing the
necessary notations, we state the problem as well as its penalized versions.
Regularity results are specified and convergence of the central path is ob-
tained, which allows us to write the solution of the penalized problem in
term of its associated adjoint state. This fact will be crucial for Section
3, since the optimality system for the penalized problem can be written in
terms of (ye, p.) only. Then we show, by means of a Restoration theorem as
in [2] and under very general conditions, that is possible to obtain the desired
asymptotic expansion of the central path around (yo,po). We finalize Sec-
tion 3 by obtaining that error bounds for the infinite dimensional problem,
in various norms, can be obtained from its finite dimensional counterparts,
generalizing the result of [2|. In particular, for the logarithmic penalty, we
recover in Section 4 an error for the control of O(y/¢) in the L*> norm and
under more restrictive hypothesis we improve this bound in the L? norm to
O(e%4). Similar results are obtained for the error of the central path (y., p.)
in the H? norm.

2.2 Problem statement and preliminary results

Consider the following semilinear elliptic equation

—Ay(z) + o(y(x)) = g(x) for =z €,
{ s (ygg(x) = g ) for xz € 09, (2.1)

where € is a bounded open set of R" with C? boundary, g € L*(Q2) and
¢ is a nondecreasing real valued function over R, Lipschitz with associated
constant L, and continuously differentiable. Given s € [2,00], denote by
|| - ||s the standard norm in L*(€2). For m € N set

Wms(Q) :={y € L*(Q) ; D% € L*() for a such that |a| < m},

where a = (o, ..., ) € N, |a| :== oy + ... + o, and

aa1+---+an

DY = ———————
a1 n
Ox{"...0x2

represents a derivative operator in the distribution sense. As usual, for s = 2
we will write H™(Q) := W™2(Q). Tt is well know that W™*(Q) endowed
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with the norm

1Yllms = > 1Dyl

0<|a|<m
is a Banach space and H™(£2) endowed with the norm

1/2

lyllmz = > 11D%ll3

0<|a<m

is a Hilbert space. We also denote W;"*(£2), which will be written as HJ*(£2)
when s = 2, the space defined as the closure of D(Q2) in W™*(Q2), where
D(Q2) denotes the set of C*° functions with compact support in §2. For the

reader convenience we recall the following Sobolev embeddings (cf. [1], [42],
[47])

L1(Q) with L =1 jfs<n
Wms(Q) € { LYQ) with ¢ € [1,+00) ifs=2
Cm=El=1a(ms) () if s> 2

~—~

2.2)
where y(n, s) is defined as

_J B+ if £ ¢ 7
v(n, ) = { any positive number <1 if 2 € Z (2:3)

n

and C™~151717(9)(Q)) denotes the Holder space with exponents m — [2] — 1
and ~y(n,s) (for the definition see [42] p. 240). In this work we will use
repeatedly the fact that W2*(Q2) C C(2) when s > n/2 (s = 2 if n < 3).

This is equivalent to the existence of a constant c¢g such that

[lylloo < csllyll2.s: (2.4)
An space that will play an important role is Y* := W2%(Q) N W,"*(Q2) which
endowed with the norm || - || s is a Banach space.

In the following s € [2,00) will be fixed and we will assume, without
loss of generality, that ¢(0) = 0. We collect in the next proposition some
properties of the PDE (2.1) (see for example [19, 29]).

Proposition 46 If g € L5(Q)) the following holds:
(i) The semilinear equation (2.1) has a unique solution y, € Y° and there
exrists a constant ¢, > 0 such that

Ygll2,s < Esllglls- (2.5)

(ii) The mapping g — y, is continuous from L*(Q2) into Y°, both spaces
endowed with the weak topology.
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Proof. (i) Equation (2.1) can be interpreted as the optimality system, in
the weak sense, of the variational problem

Min [ {3199(2)F + (y(a)) - glaly(@)} do - subject to y € HY(),

? (2.6)
where @ : [0, +00) — R is defined by ®(¢) := [ (t). Since |®(t)| < 1Lt
the convex mapping y € Hj(Q) — [, ®(y(x))dz € R is bounded over the
bounded sets and whence is continuous. In addition, the cost function is
strongly convex and continuous and thus problem (2.6) has a unique solution
y, € H}(Q). Multiplying equation (2.1) by y, and using Green’s formula
yields

[ {90l + otuou)} s = [ g

Since ¢(y,)y, > 0, by the Cauchy-Schwarz and Poincaré inequalities we ob-
tain that

ygll12 < llgllo- (2.7)
On the other hand, since ¢(0) = 0, it holds that ||¢(y,)||, < Lg||y,ll» for

all 7 € [1,400). Hence, in view of (2.7), an standard boostraping argument
yields the existence of a; > 0 such that ||y,||s < as|lg|ls- Thus [|Ay,||s <
(Lgas + 1)||g]|s, from which (2.5) follows.
(ii) Let (gx)ren converge weakly to g. Then the sequence g is bounded in
L#(§2) and consequently, by (2.7), the associated states yj, := y,, are bounded
in )®. Thus, extracting a subsequence if necessary, y; converges weakly in
Y® to some y and hence strongly in L*(€2). This implies, since ¢ is Lipschitz,
that ¢(yx) — ¢(y) strongly in L*(Q2). Passing to the weak limit in L*({2) in
equation (2.1) yields that y = y, from which the conclusion follows. m

Denote respectively by R, and R, the subsets of nonnegative and pos-
itive real numbers. Also, set U5 := L*(;R,).

Suppose that g = f+u, where f € L*(Q2) and u € L?(Q). By proposition
46 we have that u € L*(Q) — y;1, € V? is well defined. In the following f
will be a fixed function and, in order to simplify the notation, we will write
Y., for the unique solution in Y? of

—Ay(x) + o(y(r)) = f(x)+u(z) for z€Q,
{ ’ yy(x) =0 for z € 90. (2.8)

Let us define the cost function Jy: L*(2) — Ry by

Jo(u) == %/Q(yu(a:) — y(x))?dx + %N/Qu(x)2dx, (2.9)

where N > 0 and y € L>() is a reference state function. It holds that:
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Corollary 47 The function Jy : L*(Q) — R is w.l.s.c. (weakly lower semi-
continuous).

Proof. We have that Jy(-) = 3||- |13+ 3N ||y¢) — 9|[3- The map u € L*(Q) —
||ul|3 is convex and continuous therefore is w.l.s.c. In view of proposition
46(ii), and since the inclusion from W?%#(Q) into L?(Q) is compact, the func-

tion u € L*(Q) — ||y, — 7|3 is weakly continuous. The result follows. m

Now, consider the following optimal control problem
Min Jy(u) subject to u € US. (CPP)

By constrast to the case when (2.8) is linear in y (for example when ¢ = 0),
problem (CPj) is not necessarily convex. Thus, the classical argument to
show the existence and uniqueness of a solution of (CP;) does not apply.
Instead, we have the following existence result.

Proposition 48 Problem (CP;) has (at least) one solution.

Proof. Any minimizing sequence u; for (CP3) is bounded in L?(f2). There-
fore, extracting a subsequence if necessary, we may suppose that it weakly
converges to some ug € L?(€2). Since U7 is weakly closed, we have that
uy € U? and, in view of corollary 47 (with s = 2), it is a solution of (CPp).
u

As usual in optimal control theory, it will be convenient to write the
derivative of .Jy in terms of an adjoint state. For every u € L?(2) the adjoint
equation associated with u is defined by

{—Ap@)m/(yu(x))igg ~ ol mal) o eB o)

It holds that (see [24] lemma 6.18):

Lemma 49 Let u € L*(Q). Then the adjoint equation has a unique solution
pu € H}(Q), called the adjoint state associated with u. In addition, the
function Jy is of class C' and

DJy(u) = py + Nu. (2.11)

Remark 50 Note that equation (2.10) and the Sobolev embeddings (2.2)
imply that p, € Y where

2 if n >4,
1= any real number in [2,00) ifn <4.
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Now, let ug be a solution of (CP}). In what follows we will write yo := ¥y,
and po := py,. The first-order condition for the optimality of v is given by

DJo(ug)(v —ug) >0, forallv e lUs. (2.12)
Expressions (2.11) and (2.12) easily yield that
ug = Pui(_N_lpo)a (2.13)

where FPy: denotes the orthogonal projection in L?(€) onto U. This in turn
implies that the following punctual relation holds

uo(z) = mo(—=N"'po(x)) for a.a. x € Q, (2.14)

where for a € R we denote mg(a) := max{0, a}.

Expression (2.14) allows us, by a bootstrapping argument and using the
Sobolev embeddings, to specify the regularity of (yo, po). In fact, proposition
48 implies the following corollary:

Corollary 51 Problem (CPy) has (at least) one solution and it holds that:

L1 () with q = 5 if s <3,

Yo € ¢ L%(N) with g € [1,400) if s = %,
Ot ) L -
L () with g = if s < % '

po € ¢ LI(Q) with q € [1,+00) ifs =17,
Cl*[n;25]77(n7QI)(Q) ’ifS > %

Proof. Let uo be a solution of (CP;). Replacing expression (2.14) into
equations (2.8) and (2.10) yields that y and py satisfy

—Ay( )+ d(y(x) = flx)+m(—N"tpo(z)) for ze€Q.

—Ap(z) + &' (yu(2))p(z) = yu(z) = Y(2) for z€Q
y(x) =p(x) = 0 for z €00
(2.16)

An standard boostraping argument in equations (2.16) implies that p, €
L%(Q) where g, = —"5-. Since g» > s, expression (2.14) yields that uy €
L#(Q2) and therefore solves (CP;). Regularity results (2.15) follow by (2.2),

using that f+uo € L°(Q2). =

Next we consider a localized penalized version of (CPj). Since we could
have several solutions of (CPy), the idea is to localize the problem around
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an strict solution (if there is any). Let ¢ be a convex function with domain
either R, or Ry, which is C? on the interior of its domain, and satisfies:

(i) limyjo 0'(t) = —o0;  (ii) limyg %(:)) = —00;

(iii) There exist o > 0 such that |[¢'(t)| < at Vit > 1.

(2.17)

Remark 52 Standard examples of functions satisfying these properties are:

0(t)=—logt; L(t)=t"P p>0; ((t)=—t*, pe(0,1); L(t) =tlogt.

Let ug be a solution of (CPy). For b,e > 0 the localized penalized problem
is defined as

Min J.(u) := Jo(u) + 5/ ((u(z))dz  subject to u € U N By(ug, b)

Q

(cP2),
where B, (ug,b) denotes the closed ball in L*(£2) centered at uo of radius b.
Note that ¢, being a convex function, is bounded by below by some affine
function and thus J. takes values in R U {+o00}.

Lemma 53 The function J. : L*(Q) — R is w.l.s.c. and problem (CP%*)
has (at least) one solution.

Proof. By corollary 47, the function J; is w.l.s.c. Adapting the argument
of proposition 1 in [2]| (which is based in Fatou’s lemma), we obtain that
u e L¥(Q) — [, ¢(u(x))dz is convex Ls.c. and hence convex w.ls.c. which
yields the first assertion. Let w, € U3 N B,(up,b) be a minimizing sequence
for J.. Since L*() is a reflexive Banach space, extracting a subsequence if
necessary, there exists u. € L*() such that w, — u. weakly. Clearly, u. is
feasible for (CP"*) and since .J; is w.l.s.c. it is a solution of the problem. m

We give here an elementary argument, for the semilinear case, to prove a
well known contraction principle which is a corollary of Stampacchia’s results
(see [81]).

Lemma 54 There exists a constant C; > 0 such that for every ui,us €
L*(2) we have

Yur — Yuo |1 < Chllur — usalls. (2.18)




73

Proof. Set z = y,,, — Yu, and h = u; — uy. Clearly z satisfies

—Az(x) + Yy up(x)2(x) = h(z) for xz €,
{ z(x) = 0 for € 0Q, (2.19)
where
wuhm (.T) - (yu2 — yul)(x) s if Yuo ([L’) 7é Yuy (-T)a (2.20)

&' (Yur) (), otherwise.

Evidently 0 < )y, 4,(z) < Ly for all x € Q. Now, let v, be the unique
solution of

{ —Av(X) + Yy o (X)v2(x) = sgn(z(z)) for z €

v.(x) = 0 for x €00 (2:21)

Multiplying by v, the first equation in (2.19) and using Green’s formula yields
that

/Q ()] dar = /Q h(z)v. (2)dz. (2.22)

On the other hand, by the maximum principle for elliptic equations (see for
example [30, proposition IX.29]) it holds that —v; < v, < v; where v; > 0
solves

{ —Av () + Yy o (T)v1(x) = 1 for x€Q

vi(z) = 0 for x €N (2.23)

Using that ¢» > 0 and the maximum principle again, we see that v; < v
where vy solves
—Avy(z) = 1 for z€Q
{ ve(x) = 0 for x € 0.

Since vy is bounded in L>°(€2) the result follows from (2.22). m

(2.24)

The following result yields that the solutions of the penalized problem
are bounded in L>*(2) by a constant which is independent of ¢.

Proposition 55 Suppose that s >n/2 (s =2 if n < 3) and let u. be a solu-
tion of (CP>*). If ¢ is small enough, there exists a constant K, (independent
of €) such that

us(x) < Ky for a.a. x € Q. (2.25)

Proof. For K > 2||ug||« set

Qg :={zx € Q; u.(r) > K}
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and

uK(x)::{K/Z itrely

- u.(z) otherwise Yo (v) == yux(v) for a.a. x €.

(2.26)
Note that uX is feasible. For all u € L*(£2) we have (omitting the function
arguments in the integral)

Jo(w) — Jo(u2) :g/ﬂ{(mua)(u—uaw(yu+y5—2g)(yu—y5)}dx.

(2.27)
Taking v = ulf in (2.27) we see that, since s > n/2 (s = 2 if n < 3)
and u. € B,(ug,b), proposition 46(i) implies that y* + y. — 27 is uniformly
bounded by a constant independent of ¢ and K. In addition, by the very

definition of Q and uf, it holds that

w

(ue +ul) (ue —ul) > §K(u5 —ul)1g, >0

where 15 is the indicator function of Q. Therefore, in view of lemma 54,
we have the existence of K5 > 0 such that

3 _
Jo(us) — Jo(u®) > <ZK + Kg) K meas(§2g). (2.28)
Using the convexity of ¢, we obtain that
— 3
Jo(ue) — J(ul) > K meas(Q) (ZK + Ky + %56’(%}()) : (2.29)

On the other hand, hypothesis (2.17)(iii) implies, for ¢ small enough, the
existence of K, (independent of ¢) such that 2K, + Ky + sel/(3K,) > 0.
Therefore meas(Q2k,) = 0 from which the conclusion follows. m

Let us give an elementary lemma that will be useful in the convergence
proof of the central path to the optimal solution (proposition 57). First,
define F': Y x Y — L*(Q) by

F(y,p):=—-Ap+d'(yp—y+7y (2.30)

and for every y € Y* denote by p[y] the unique solution of F(y,p) = 0. It
holds that:

Lemma 56 Suppose that ¢ is C* and that s >n/2 (s =2 if n < 3). Then
(i) The function F is C*.

(i) The mapping y € V* — ply] € Y* is CL.

(iii) The mapping u € L*(Q)) — y, € V* is C?.
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Proof. In order to prove (i) it is enough to note that ¢'(y)p is C' since ¢ is
C? and s > n/2 (s = 2 if n < 3). Assertions (ii) and (iii) follow directly by
the implicit function theorem. m

For the solutions u. of the penalized problems we will write y. := y,_ for
the state functions and p. := p,,_ for the adjoint state functions. Now we can
state the convergence result.

Proposition 57 Assume that s > n/2 (s = 2 if n < 3) and suppose that
there exists by > 0 such that ug is the unique minimum of (CP}) in By (uo, by).
Then

(i) The controls u., solutions of (CP**), strongly converge to uy in L*(Q) as
el 0.

(ii) It holds that J.(u.) — Jo(ug) and that Jo(ue) | Jo(uo) -

(iii) The states y. converge to yo in Y* and the adjoint states p. converge to
po tn YV°.

Proof. Since u. is bounded in L?*((2), extracting a subsequence if necessary,
it converges weakly to some @. Similary, since Jy(u.) is bounded in R, we
can assume, extracting a subsequence again, that there exists J > 0 such
that Jo(u.) converges to J.

In view of the optimality of ., for every n > 0 such that uy+ 7 is feasible
for (CP™*), we have that

Jo(ue) < Jo(ug +1n) + 6/ l(up(z) + n)de.
Q
Letting first € | 0 and then 7 | 0 yields
melo(]e(ug) S J()(UO). (231)

On the other hand, because of the convexity of ¢, there exist some (3; and [,
such {(z) > fix + (5 for all z € R,. Thus

Jo(ue) > Jo(us) + / (Bruo(z) + B) da. (2.32)
Q
Using (2.31), (2.32) and the fact that .J; is w.L.s.c. yields that
J()(U()) Z mewJa(ue) Z li_mgloja(ue) Z j Z Jo(ﬂ) (233)

Since ug is the unique minimum of (CP;) in B, (uq, by), it holds that 4 = ug
and hence (ii) is established.
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In order to prove (i) it suffices to note that thanks to proposition 46 (ii) the
states y. converge strongly in L?(Q) to yo. Therefore, since Jy(u.) — Jo(uo)
we have that ||u||» — ||uo||2. Together with the weak convergence in L*(£2)
of u. to ug, we obtain the strong convergence in L*(2). The convergence in
L#(Q) follows directly from the convergence in L?*(2) and the fact that wu,
is uniformly bounded in L*(€2) by proposition 55. Finally (iii) is a direct
consequence of lemma 56. m

Remark 58 Note that, under the hypothesis of the theorem above, the con-
vergence in L*(€2) of u. to uy implies that for € small enough the constraint
u. € Bg(ug, b) is inactive.

Now we obtain lower bounds for ..

Proposition 59 Under the hypothesis of proposition 57 there exists a con-
stant K1 > 0 such that for € > 0 small enough

'(2u(x)) > —%Kl for a.a. x € Q. (2.34)

Proof. By (2.17)(i) there exists ¢ > 0 such that ¢ is decreasing on (0, ]. Set
0 = {r e unle) <2}

and

us(z) otherwise

i ¢
ul(z) == {C ifzell o oys(z) = Yue(@) foraa. xe (2.35)

Note that, by remark 58, uS is feasible for ¢ small enough. In addition,

[N V]

0 < (ué 4 ue) (uf —ue) < =C(ug — ue)lge.

Thus, taking u = u$ in (2.27) and reasoning as in the proof of proposition
55, we obtain the existence of K > 0 such that

Jo(ué) — Jo(u.) < Kj¢meas(Q°) + 8/94 (0(ué(z)) — l(us(x))) dz.

By the mean value theorem and the convexity of ¢, which implies that ¢’ is
increasing, we find that

(ug()) — us(2)) < 5(C)C
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for a.a. « € Q°. This in turn implies that
J-(ud) — Jo(u.) < (meas(Q°) (K7 + 3e€(Q)) . (2.36)

Therefore, by the optimality of wu., if meas(Q°) > 0 we have that K| >
—3el'(¢). By choosing ¢’ such that Ki < —3ef/(¢) we obtain that for a.a.
e’

£(2u.(2)) > £(C).

Relation (2.34) follows by letting ¢'((') T —2K1e. =

Remark 60 For the examples given in remark 52 inequality (2.34) yields

(i) If £(t) = —logt then there exists C; > 0 such that u.(z) > Cie for a.a.

x € (.

(ii) If £(t) = tlogt then there exists Cy, C3 > 0 such that u.(x) > Cyexp(—C3/¢)
for a.a. z € Q.

(iii) If ¢(t) = ¢7P with p > 0 then there exists Cy > 0 such that u.(z) >
Cyet/ @t for a.a. x € Q.

(iv) If ¢(t) = —t? with p € (0,1) then there exists C5 > 0 such that
u. (1) > Cse/=P) for a.a. v € Q.

Note that v € L*(Q) — [, ¢(u(z))dz is, in general, not continuous and
whence not differentiable. This implies that we cannot write directly the first-
order condition for the optimality of u.. However, we can avoid this difficulty
by noting that, in view of propositions 55 and 59, u € L>(Q) — [, {(u(z))dx
is differentiable at any solution of (CP™*).

Proposition 61 Under the hypothesis of proposition 57, for € > 0 small
enough it holds that

u(x) = (=N "'p.()) for a.a. v € Q, (2.37)

where for every z € R, m.(2) is the unique solution of

Min %(x — 2 +el(x), st TER,,. (P-.2)

Proof. By proposition 55 it holds that u. € L>®(Q2). Hence, it is a local
solution of

Min J.(u) subject to u € U3 N B (ug, by) N L>=(K2).
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Proposition 59 implies that J. : L>°(Q2) — R is differentiable. Therefore,
writing the first-order condition for the above problem and noting remark
58, we have

DJy(ue)h + € [ U'(ue(x))h(z)dz = 0 forall h € L®(Q),
which implies that
Nu.(z) + pe(x) +el/(u.) = 0 fora.a. €. (2.38)

The conclusion follows noting that for z € 2, equation (2.38) is the first-order
optimality condition of (P. ) with z = —N"!p_(z). m

Remark 62 Note that for every z € R the function w.(2) corresponds to the
interior penalty approximation of my(z).

We collect in the following lemma, some useful properties of the family
{m.}e>0 whose proof can be found in [2] Section 3 for a more general case.

Lemma 63 The family of functions {m.}.>o satisfies
(i) There exist c,, independent of ‘c’, such that for all z1,z, € R,

| (21) — Te(22)] < |21 — 2. (2.39)

(ii) As e | O the sequence m. converges to my uniformly on each compact set
of R.

(iii) The function (g,z) — D,m.(z) is continuous in (£,Z2) for every € > 0
and zZ # 0.

(iv) The continuous function m. — o is increasing in (—o0,0) and decreasing
in (0,00). Henceforth,

sup |72(2) — 7m0(2)| = |m=(0) — mo(0)] = [ (0)].

z€R

(v) For each compact set K C R not containing 0, it holds that:

sup |7 (z) — mo(2)| = O(e).

zeK

Remark 64 Hypothesis (ii) in (2.17) is used to prove (iii) in the lemma
above.
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2.3  Main results

As before, we consider f € L*(Q2) and for the rest of the article we assume
that s > In (s = 2 if n < 3). Let uy be a solution of (CP;) and yo, po
its associated state and costate, respectively. Analogously, for ¢ > 0, b > 0
let u. be a solution of (CP>*) and denote, as in the previous section, by .

and p. its associated state and costate, respectively. Consider the mapping
F:Ysx Y xRy — L*(Q) x L*(Q) defined by

_ [ Ay +TL(=N""p) + f — é(y)
Fly.p.) = < Ap+y—y—9¢'yp ) ‘ (2.40)

In view of (2.14), proposition 57 and (2.37) we see that if ug is a local strict
solution of (CP{) then for b and € > 0 small enough

F(yg,pg,ﬁ) = 0.

Motivated by this fact, our objective is to obtain an “asymptotic expansion”
for (ye,p-) around (yo,po). As in the ODE case (see [2]), the mapping F
is, in general, not differentiable at (yo,po,0). In fact, it can be easily seen
that D.F(yo,po,0) does not always exists. Therefore, we cannot apply the
standard implicit function theorem in order to obtain such expansion. We
will overcome this difficulty in the same way as in [2]|, i.e. by using the
following restoration theorem, whose proof can be found in the Appendix of

[2].

Theorem 65 (Restoration theorem) Let X and Y be Banach spaces, E
a metric space and F' : U C X x E — Y a continuous mapping on an
open set U. Let (Z,e9) € U be such that F(z,e9) = 0. Assume that there
exists a surjective linear continuous mapping A : X — Y and a function
c: Ry — Ry with ¢(B) | 0 when 3 | 0 such that, if v € B(, ), 2’ € B(%, )
and € € B(eg, (), then

|F(a',e) = F(z,e) = A(z’ — 2)|| < c(B) 2" — . (2.41)

Then, denoting by B a bounded right inverse of A, for e close to &y, F(-,¢)
has, in a neighborhood of &, a zero denoted by x. such that the following
expansion holds

v. =& — BF(i,6) + () with ||r()]] = o (|F(,)]). (2.42)
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Remark 66 Note that hypothesis (2.41) implies that if A is invertible and
B is such that c¢(B)||A7 Y |y—x < 1 (where || - |ly—x denotes the standard
norm for the space of bounded linear functionals from Y to X ) then for all
e € B(go, 3) the mapping F(-,¢) is injective in B(&,3). In particular, for
€ € B(gy, 3) there exists a unique x. € B(%, 3) such that F(x.,¢) = 0.

In order to verify that F, defined in (2.40), satisfies the hypothesis of
theorem 65 we need the following lemmas.

Lemma 67 Let f : R — R be a Lipschitz function and denote by A(f) the
set of points were f is not differentiable. For s € [1,00) set f : L>®(Q) —
L*(Q2) defined by

flwl(z) = fw(z)). (2.43)

Then f is Fréchet differentiable at every w € L>(Q) satisfying that

meas {x € Q; w(zx) € A(f)} =0 (2.44)
and (D flw]h) (z) = f'(w(z))h(z) for all h € L>(1).
Proof. Let 0 : L>(Q2) — R, defined by

_ If @ + 1) = f(w) = f(@()A]IS

o) Tl

(2.45)

We have to show that #(h) — 0 as h — 0. In fact we have

o< o) < [ MO EHE) = H0(0) — PR ), 4

and the result follows by the dominated convergence theorem using the fact
that f is Lipschitz. m

For w € Y? set
Sing(w) = {x € Q; w(zx) =0} (2.47)

and for every € > 0 define II. : Y* — L*(Q) by (Il.(w))(z) := m.(w(x)) for
a.a. x € (). Lemmas 63 and 67 allows us to prove the following result.

Lemma 68 Let w € Y* and suppose meas(Sing(w)) = 0. Then
(i) For every e > 0, w € YV*, the function 11, is differentiable at w and for
every h € Y*

(DI (w)h) (x) = 7l (w(z))h(x), for a.a. x € Q.
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(ii) The function Iy is differentiable at W and for every h € Y*
(DIg(w)h) (z) = mp(w(x))h(z), for a.a. x € Q.

(iii) There exist a nondecreasing function ¢ : Ry — Ry with limg)gc(8) =0
such that for any w';w € Y* with ||[w' — Wl|2s < B,  |Jw — W||2s < B and
e € [0, 8] we have

[ITTe(w') = He(w) — DIlo(@) (w' = w)|ls < c(B)][w = wlla.s. (2.48)

Proof. (i) Since, for e > 0, m. is C! it holds that II., viewed as mapping
from L>(2) into L>(), is also C'. Therefore, noting that s > n/2 (s = 2 if
n < 3), the result easily follows.

(ii) Consequence of lemma 67 using that Y* C L>(Q).

(iii) Note that

||TL(w') — T (w) — DIy (@) (w' — w)]|, =

H </01 {DIL(w + s(w" — w)) — DIy(w)} dS) (' — w)

< sup ||DIl(z) — DIly(w)]
z€Ba s(w,H)
where By (w0, 3) denotes the ball in W2*(Q) of center @ and radius 3 and
|| - [lys—rs() denotes the standard norm for the space of linear bounded
functions from Y* to L*(€2). Let h € Y*® with ||A||2s < 1. Since s > n/2
(s =2if n < 3), we have

S

Vs—Ls(Q) |Jw" — wHQ,s .

|| DI (2)h — DIp(@)A[; < (/Q |mi(2(x)) — Wé(@(fﬂ))\sdw)
with ¢, being defined in (2.4). Thus,
[T (w') = T (w) — Do (@) (w' = w)|]s < ¢(B) [[w' — wl]y,

where ¢(3) is the nondecreasing function defined by

s

c(B) :== ¢, (/Q sup  sup |7mi(z(x)) — Wé(@(l’))]sdx)

€€[0,8] z€ B(w(x),B6)

Since meas(Sing(w)) = 0, lemma 63 (i) and (iii) yields that ¢(8) | Oas 5 | 0
by the dominated convergence theorem. m
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In order to establish our main result we will have to impose a second-order
sufficient condition at any solution of (CPg). First let us study the following
abstract setting:

Consider a nonempty closed and convex set K C L?(Q2) and define K :=
K N L*(Q2). We will establish some second-order sufficient conditions for the
problem

Min Jp(u) subject to u € K . (AP)

Let w € K. The radial, tangent, normal cones to K at u and the critical
cone in L*(Q) at u are defined respectively by

Ri(u) = {hel*Q); J0>0; u+ohe K},

Tx(a) = {heL*Q); Ju(oc)=u+och+os(c) €K, 0d>0,},
Ng(u) = {h* € L*(Q); (h*,u—u) <0, Vue K},

C(u) = {h € Tk(u) and DJy(u)h < 0}.

Sﬁ I

(2.49)
In the definition of Tk (u) the function oq is such that ||os(0)/c|ls — 0. If
u € K we define analogously the radial, tangent and normal cones to K at u
and the critical cone in L*(2) at @ by replacing L*(Q2) by L*(Q) and K by K|
n (2.49). We denote them by Ry, Tk, (1), Nk, (u) and Cs(u) respectively.
We say that Jy satisfies the local quadratic growth condition at u if there
exists & > 0 and a neighborhood Vs of @ in L*(€2) such that

Jo(u) > Jo(@) + af|u — al|3 + o(||[u —al|3) forallue K,NV,. (2.50)

The following notion of polyhedricity will be required (see [52, 71|). The
set K is said to be polyhedric in L*(Q) at u € K if for all u* € Ng_(u) (sets
of normal of K at u), the set Rx,(u) N (u*)*t is dense in Tr, (u) N (u*)* with
respect to the L*(€2) norm. If K is polyhedric in L*(2) at each u € K we
say that K is s-polyhedric.

For various types of optimization problems (see |24]), positivity of the
second derivative of the cost function over the critical cone at a point u can
be related to the quadratic growth condition at u. This is usually referred as
a no gap second-order sufficient condition which under some hypothesis will
be satisfied in our problem.

If ¢ is C? then, since s > n/2 (s = 2if n < 3), the function Jy : L*(Q2) — R
is C? (see [24, lemma 6.27]) and for all u,v € L*(2) we have

D2Jo(u) (v, v) = / (V@) + (1 = pu(0)" (yu () 2(2)?} do, (251
Q
where z, is the unique solution of the linearized state equation

—Az(x) + ¢ (yu(2))2(z) = wv(x) for z€Q,
{ ’ z(z) = 0 for x € 0Q. (2.52)
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In addition, it is proved that the quadratic form D?Jy(u) has a unique
continuous extension over L?(€) x L?*(2) and this extension is a Legendre
form, which means that it is sequentially w.l.s.c. and that if h; converges
weakly to h in L*(Q) and D? Jo(u)(hy, hy) — D?*Jo(u)(h, k) then hy converges
strongly to h in L*(Q).

The theorem below, which concerns to second-order sufficient conditions
for (AP), is proved in [24, theorem 6.31].

Theorem 69 Consider problem (AP) and let u € K. If K is s-polyhedric
and Cy(u) is dense in C(u), then the quadratic growth condition (2.50), the
second-order condition

3 a > 0, such that D*Jo(w)(h, h) > al|h||3 for all h € C(u) (2.53)
and the punctual relation
D?Jo(uw)(h,h) >0 for all h € C(u) \ {0} (2.54)

are equivalent.

When K = U7 and u € K it is easy to verify that

Tx(u) = {vel?*Q); v(z) >0 ifu(x) =0 for a.a. z € Q} (2.55)
Ng(u) = {ve (L*(Q)*; v(z) <0 and v(z) =0 if u(z) > 0}. '
If u € K the correspondig expressions for Tk, (u) and Ng_(u) are ob-
tained by replacing L?(Q2) by L*() in (2.55). If ug is a local solution of
(CPg) and po(x) # 0 for almost all x € Q, expression (2.11) yields that

Cs(ug) = {veLl*(Q); v(x) =0 ifup(x) =0 for a.a. x € Q}. (2.56)

Analogously, if ug is a solution of (CP3), the corresponding expression for
C(up) is obtained by replacing L*(2) by L*(£2) in (2.56).

Now we give a simple proof of the following well known result (see for
example [24, proposition 6.33|) which shows that theorem 69 can be applied
in our case (K, =U3).

Lemma 70 Suppose that Ky = U7, then
(i) The set K is s-polyhedric.
(ii) If wg is a local solution of (CP;), then Cs(ug) is dense in C'(uy).
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Proof. (i) Let u € U3 and u* € Ny (u). For h € Tys (u) N (u*)" and k € N
let hy € L>(Q2) be defined as

_Jo if 0 <u(z) <1/k
() := { max{—k, min{h(z),k}} otherwise. (2.57)

It is easy to check that hy € Ry N (u*)t and hy, — h in L*(Q)) by the
dominated convergence theorem.

(ii) Given h € C(ug) the sequence hy defined in (2.57) belongs to Cs(ug) and
converges in L?(Q) to h by the dominated convergence theorem. m

To obtain our main result we will assume two hypothesis. The first one
allows to ensure that hypothesis (2.41) holds at (yo, po,0) for the mapping
F' defined in (2.40). The second one will imply that the set of solutions of
(CPg) is isolated and that Dy, F (Yo, po,0) is an isomorphism (see lemma
72). We consider the following hypothesis:

(H1) For the adjoint state py, associated to any local solution ug of (CPy),
it holds that
meas(Sing(po)) = 0.

(H2) At any local solution ug of (CP;), condition (2.53) holds.

Remark 71 Suppose that (H1) does not hold. Then, the W** regularity
of po implies that —Apy = 0 in Sing(po) (see [30] page 195). Therefore, by
equations (2.8) and (2.10),

—Ay(x) + ¢(y(z)) = [f(z) for x € Sing(po)

which yields a compatibility condition between the data y and f.

Lemma 72 Let uy be a solution of (CP{), suppose that ¢ is C* and that
(H1), (H2) hold. Then F (defined in (2.40)) is differentiable with respect
to (y,p) at (Yo, po,0) and the linear mapping Dy ) F (Yo, po,0) is an isomor-
phism.

In addition, for every (01,02) € L*(Q) x L*(S2), we have that

D(yvp)F(y(]apOa 0)71((51, (52)

s the unique solution of the reduced optimality system of

Min {/ [%NUQ + % (1 —pod” (yo)) Z?;Jr&l + 52Zv+61] dz ;v € C(ug)
Q

(QP(SLCSQ)
where z, is defined in (2.52).
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Proof. In view of assumption (H1) and lemma 68, the mapping F' is differ-
entiable with respect to (y,p) at (yo, po,0) and

Az =TI (—=N"pg)N~tqg — ¢'(y0)2 ) '

D(y,p)F(yo,po, 00 = ( Ag+ 2z — ¢"(yo)poz — ¢'(vo)q

Let 01,6, € L*(Q2), to find (z,q) € Y° such that D, F(yo, po,0)(2,q) =
(01, 02) is equivalent to solve in Y* x Y* the following system of PDE’s

(N po(a))g(a)

—Az(x) + ¢'(yo(x))2(x) = di(x)
—Aq(x) + ¢"(yo(2))po(2)2(x) + &' (yo(2))q(x) = da(x) + 2(2)
for all z € Q2. But these equations are exactly the reduced optimality system

for problem (QPj, s,) which can be written, denoting by (-, -) ;2 the standard
duality product in L?*(Q), as

N

Min §D?Jo(uo)(v,v) + (75,6, V)12 + B35, subject to v € C(ug)

for some ~;, 5, € L*(€2) and

s = [ [0~ ot () 2 + 82 ] o
Q

In fact, since 2,45, = 2, + 25,, the cost function of (QPs, 5,) is given by

%DQJO(UO)(U, v) + /Q (1 = pod” (yo)) 2028, + d220) A + 55, 5,
Since the above integral is a linear form, as a function of v, the existence of
5, 5, follows by the Riesz’s theorem.

By (H2) this cost function is strongly convex over the closed subspace
C(ug) and therefore has a unique minimum. The W?* regularity for its
associated state and adjoint state follows readily by a boostrapping argument.
]

For every ¢ > 0 let us define ¢. := —p./N. Now we can state our main
result.

Theorem 73 Let ug be a solution of (CP;), suppose that ¢ is C* and that
(H1), (H2) hold. Denote respectevely by yo and py the state and adjoint
state associated to ug. Then there are b > 0 and € > 0 such that for e € [0, ]

problem (CPE’S) has a unique solution u.. In addition, denoting by y. and p.
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the associated state and adjoint state for u., the following expansion around

(y07 po) holds

(zs ) - <Z§ ) + Dy F (Y0, 20, 0) " F(yo, po, €) + 7(e), (2.58)

where r(g) = o(||F(yo, po,€)||s). Moreover, D(W)F(yo,po,O)_IF(yo,po,e) 18
characterized as being the unique solution of (QP(;H(E),O) where

0(e) :=T1.(qo) — Ho(qo)-

Proof. Lemma 68 (ii) implies that hypothesis (2.41) of theorem 65 is satisfied
with A = D, ) F(y0, po,0). Lemma 72 yields that A is invertible, whence the
first assertion follows from the convergence of (ye,p:) to (o, po) in V* x V*,
established in proposition 57, and remark 66.

Noting that F(yo,po,€) = F(yo,p0,€) — F(yo,po,0) = (dIl(¢),0), the
second assertion follows by theorem 65 and lemma 72 with 6; = dIl(¢) and
0o =0. m

Theorem 73 yields, in particular, the following error bounds.

Corollary 74 (Error bounds) Under the assumptions of theorem 73 we
have
(i) The error estimates for u.,y. and p. are given by

[lue = uolls + 1% = yoll2.s + [1pe = poll2.s = O ([[611(e)]]s) - (2.59)
(ii) The error bound for the control in the infinity norm is given by
[lue = uolloe = O ([[611(g)[|oc) = O(m(0)). (2.60)
(iii) The error estimate for the cost is given by
|Jo(ue) = Jo(uo)| = O (|[011(e)]]s) - (2.61)
Proof. (i) Theorem 65 yields that

[1ye = yoll2,s + |1pe = poll2.s = OUIF (5o, po, €)|[s) = O([|011(e)]]5).  (2.62)

Therefore, using proposition 63 (i) we obtain that

[lue — wolls = [IT1=(g:) = Io(go)l[s = O(llg= — qolls) + O([[o1L(e)l]s), (2.63)
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which combined with (2.62) yields (2.59).
(ii) Clearly, as in (i)

|ue = uolloe = O(llg: — qolloe) + O([I611(€)]]c), (2.64)
and thus, using that s > n/2 (s =2 if n < 3),

[lue = wolloc = O(llg: — qoll2.s) + O([|011(2)] |oo)-
Hence, using the estimation given in (i),

[lue = uolloe = O([|6TL(e)],) + O([[011(e)[|o0) = O([[0T1(e)]]oc),
and the result follows from lemma 63(iv).
(iii) We have
Jo(ue) — Jo(ug) = % / {(ue + uo) (ue — uo) + (Y= + Yo — 29)(ye — vo) } da.
Q

(2.65)
Since s > n/2 (s = 2 if n < 3), proposition 59 and lemma 46 (i) imply that
ue +ug and y. + yo — 2¢ are uniformly bounded in L*°(2). Henceforth lemma
54 implies that

Jo(ue) = Jo(uo) = O([[ue = uol1) = O([|ue — uolls)
and the result follows by (i). m

2.4 Examples

In this section the results of section 3 are applied to the examples given in
remark 52. In subsection 4.1 we obtain precise error bounds for the central
path. We pay particular attention to the logarithmic barrier in view of its
well known properties as a penalty function. In section 4.2 we study the
error for the cost function. in what follows we will assume that ¢ is C?.

2.4.1 Error estimates for the central path

First, note that combining (i) and (ii) of corollary 74 yields

|lue = wolloe + [[9= = Yoll2.s + [IPe = poll2.s = O (7=(0)) - (2.66)
First order condition for (P. () implies that 7.(0) is the unique solution of
t+el'(t)=0. (2.67)

Thus, particularizing ¢ and using (2.67) will give precise error bounds for the
central path.
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2.4.1.1 Negative power penalty

If ((t) = (1(t) := tP with p > 0, then (2.67) yields that m.(0) = O (/)
and thus

Hua - u0||oo + ||ye - y0||2,s + Hpe _pOHQ,s =0 (51/(2+p)) . (2-68)

Expression (2.68) implies that for every p > 0 the error is worst than O(/¢).

2.4.1.2 Power penalty

When £(t) = ly(t) :== —t? with p € (0,1), equation (2.67) yields that 7.(0) =
O(e"/?P) and thus

Hus - UoHoo + Hys - yOHZ,s + Hpe - pon,s =0 (€T(p)) . (2-69)

where r(p) :==1/(2 —p) < 1. Note that r(p) Tl asp T 1.

2.4.1.3 Entropy penalty

The case ((t) = ¢3(t) := tlogt will be the one with the smallest error bound.
In fact, equation (2.67) implies that 7.(0) is the unique solution of

t+e(logt+1)=0. (2.70)

Even if we do not have an explicit solution for this equation, the monotony
of left hand side of (2.70) can be used in order to obtain a precise estimate
for 7.(0). Indeed, it can be easily seen that for every k > 1, denoting by

log"(+) := log ... log(+)
(there are k logarithms), we have that 7.(0) = O(¢(¢)) where
clogk |loge| < ¥(e) < ¢|loge| for & small enough.
Thus

[lue = wolloo + 11y = Yoll2,s + [P = poll2s = O (¥(€)) (2.71)

2.4.1.4 Logarithmic penalty

It is well known that the case £(t) = (4(t) := —logt is particularly important.
Fortunately, m.(z) can be computed explicitly for all z € R. Indeed, first-
order condition for (P, ) implies that 7.(z) is the unique solution of

t—z—¢/z=0. (2.72)
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Henceforth, 7 (z) is given by
Te(z) = 3 (x + Va2 + 45) : (2.73)

If n < 3 (hence s = 2) expression (2.73) will allow us, using corollary 74(i),
to compute the error for the control in the L? norm (see (2.77)).

Theorem 75 Suppose that the assumptions of theorem 73 hold. Let b > 0
be such that (CPY*) has a unique solution u. for e >0 small enough. Then:
(i) We have

||ue = wolloo + [|Pe = poll2s + 1Yz = woll2s = O(VE). (2.74)

(ii) If in addition n < 3 (hence s = 2), there exist m € N, positive real num-
bers o > 0, 0 < 6 < 1 and a finite collection of closed C? curves (Ci)1<i<m
such that:

e The singular set Sing(py) can be expressed as

m

Sing(po) = U C;. (2.75)

=1

o Forallie{1,...m}, defining C° = {x € Q; dist(z,C;) < 8}, it holds
that: )
Ipo(x)| > adist(z,C;) for all v € CY. (2.76)

Then ,
||ue — uol|2 + ||pe — poll2,2 + [|ye — yoll2,2 = O(e*). (2.77)

Proof. (i) Follows directly from (2.66) since (2.73) implies that 7.(0) = 0.
(ii) In view of corollary 74(i), with s = 2, we will estimate the right hand
side of (2.59). For simplicity we assume that Sing(py) = 02 and that py < 0
in 2. We will use an argument based on local mappings. Set

Q:={r=(2,2,) e R xR, |2/] <1,|z,| <1}.

Since 09 is C? there exists I € N and {(w;, ¢;) }o<i<r such that for every
i € {1, ..., I} we have that w; is an open set and ¢; : w; — @ is a C? mapping
with a C? inverse satisfying that Wy C Q, Q C Ufzowi, 00 C Uf:iwi and

di(w;NQ) = Qniz=(v,z,) eR" xRz, >0} =: Q"
Gi(w;NON) = QN{r= (2,2, ER" xR, z, =0} = Q°.
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Clearly ||T.(qo) — Io(qo)|[3 < 3L, I where for every i € {1,..., I}

. /  mlan(e) = mofan(e) P

Since wy € €, lemma 63 (iv) yields that Iy = O(e?). Let us now fix i €
{1,...,I} and set T = gyo¢; . By a change of variable we obtain the existence
of K; such that

1
I; < Ki/ / (T (a2, 2)) — mo(7 (2, 2))|? dapda,
Bn1 Jo0

where B,_; denotes the unit ball in R""!. Hypothesis (2.76) implies the
existence of @ > 0 such that

(2, 2,) > ax, forall z, € [0,0]. (2.78)
Therefore, using the uniformity with respect to 2’ € B,,_; in (2.78), we have

that
I

Z.lei =0 (/01 |7 () — mo(ax,)| dxn) ‘

Expression (2.73) yields that

fol 7w () — mo(aa,) | dz, = fol (22 + 26 — 2v/2? + 4e) da
= 142 — 1(144e)%? 4 $(42)3/?

and noting that (14 4¢)%? = 1+ 6¢ + O(£?), we obtain the desired result. m

2.4.2 FError estimate for the cost function

Note that by corollary 74(iii) we have directly that
Jo(ue) = Jo(uo) = O([[ue = ol (2.79)

which is bigger than O(e) for the four examples studied in subsection 2.4.1.
Now we improve estimate (2.79) for ¢ = (5, ¢35 and ¢, by generalizing an
argument suggested by Anton Schiela, in a personal communication, for the
convex case (for example, when ¢ = 0) and for the logarithmic barrier.

Theorem 76 Let [ = (3, (3,0, (defined in subsection 2.4.1) and suppose that
the assumptions of theorem 73 hold. Let b > 0 be such that (CP>*) has a
unique solution for € > 0 small enough. Then

J()(ug) — J()(U()) = 0(6) (280)
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Proof. Since J, is of class C? we have that

us_uOHio

Jo(uo) > Jo(ue)+DJo(ue) (ue—1o)—O ( sup || D?Jo(2)]|c(ysp)

z€[ue,uo)
(2.81)
where £(Y*, Y*) denotes the space of continuous bilinear forms over }* x
Y*. Expression (2.51) yields that sup,cp,, .o |1D*Jo(2)]| (s y+) is uniformly
bounded in e. Therefore by (2.69), (2.71) and (2.74),

us = uo| |2 = O(lJus — uol[3) = Oe).  (2.82)

sup || D*Jo(2)||cys )

Z€[ue,uo)
On the other hand, optimality conditions for (CPI;”S) yield that
DJy(u.) = —el'(u.), (2.83)
hence, using (2.81) and (2.82), we have that
Jo(ue) — Jo(ug) < —5/ (us(x))(ue(x) — ug(x))dz 4+ O(e). (2.84)

Q
Since for f5(t) and £4(t) it holds that ¢4, ¢} < 0, we obtain that

%mg—%w@g—géw%@muwm+0@) (2.85)

For /5 inequality (2.85) yields

%%%Jﬁ@gwé%m%HO@:O@,

by (2.25). For ¢4 inequality (2.85)
Jo(us) — Jo(ug) < —emeas(Q) + O(e) = O(e).
<

Finally, for /3 inequality (2.84) implies that Jo(u.) — Jo(uo)
where

]1 +IQ +O(€),

I = =€ [r <y U (u=(2)) (ue(2) — uo(z))dz  and
Iy = —¢ [i, myze1y U (u=(2)) (ue(z) — uo(x))dz.

Since u, log u. is bounded uniformly in e, we have that
L < —8/ (14 loguc(x)) u.(z)de = O(e)
{ue(z)<e~1}
and
I, = —6/ (14 logue(x)) (ue(x) — up(z)) de = O(e)
{ue(z)>e~1}

by (2.25). m
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3.1 Introduction

The study of stochastic linear quadratic (LQ) optimal control problems is
an area of active research. In fact, many problems arising in engineering
design and mathematical finance can be modeled as stochastil LQ problems.
Let us cite, for example, the portfolio selection problem (|96, 66]) and the
contingent claim problem ([59]). The stochastic LQ problem, in a finite time
horizon [0, 7] and without constraints, can be stated as follows:

Minimize E ( I [u®) TR u(t) + y()TC )y (t)] di + y(T)TMy(T))

e { 072 PO+ PO LA 0+ B a0
y(0) = o

Assuming that R(t) is positive definite, the problem above was extensively
investigated in the 1960s and 1970s (see e.g. [89, 70, 16, 17, 39|, the surveys
in [6] and references therein). In the mid-1990s, using an approach based
on a stochastic Riccati equation, Chen-Li-Zhou [35] treated the stochastic
LQ problem even when R(t) can be indefinite. See also [36], where the
relations between the stochastic L(Q) problem, the stochastic Pontryagin min-
imum principle (SPMP) and linear forward-backward stochastic differential
equations, are studied.

Even if the unconstrained case is well studied, when control constraints
are present the only reference that we know is [56]. In fact, the authors
consider a stochastic LQ problem where the control is constrained in a cone.
They obtain explicit solutions for the optimal control and the optimal cost
via solutions of a system of extended stochastic Riccati equations.

In this work we study a convex stochastic L(Q problem involving non-
negativity control constraints. We consider a family of logarithmic penalized
problems, parameterized by ¢ > 0. This means that the cost function is
modified by adding a logarithmic barrier function multiplied by e, which
implies that the solution of the new problem is strictly positive. Our aim is
to study the convergence, as € | 0, of the solution of the penalized problem
to the solution of the initial one. In fact, we will obtain error estimates for
the cost, control, state and adjoint state in the appropriate spaces. This
result extend the classical error estimates obtained by Weiser [85] in the
deterministic framework.

The article is organized as follows: In section 3.2 we fix the standard no-
tation and the initial and penalized problems are stated. Using the stochastic
Pontryaguin minimum principle (SPMP) (see [8, 9, 15, 16, 18, 75, 31]), first
order necessary and sufficient conditions are derived. Our main result is pro-
vided in section 3.3, in which we derive the error estimates. The proof use a
simple duality argument and an application of the SPMP.
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3.2 Problem Statement and Optimality Condi-
tions

Let us first fix some notations. The space R™ (m € N*) is endowed with its
standard Euclidean norm denoted by | - |. The ith coordinate of a vector x
is denoted by z'. We set R := {z € R™ : 2’ > 0}, and R, := {z € R™:
' > 0}. Let T > 0 and consider a filtered probability space (Q, F,F,P),
on which a d-dimensional (d € N*) Brownian motion W (-) is defined with

F = {Fi}y<;<r being its natural filtration, augmented by all P-null sets in
F. For ¢ € N* let us define

L% ([0,T;RY) == {v:[0,T] x @ - R" / v is adapted and ||v||> < oo},
Livoo ([O,T];R‘) = {v ] x Q — R/ vis adapted and ||v]|z,00 < oo}

where we assume that all the mappings are B([0,T]) x Fr-measurable and

lolls = |2 /OT\vu)Pdt)f, lollaoo = E<£B%““)2>F'

It is well known that (L% ([0,T];RY),(-,-)2) is a Hilbert space, where

uvg—ZE(/ ul( ()dt) (3.1)

Let 7o : Q@ — R™ be Fy measurable and such that E(|z|?) < oco. Consider
the following affine stochastic differential equation (SDE)

dy(t) = f(tw,y(t) u(t)dt + Sy o' (tLw, y(0), u()AW (D), 5
y(0) = meR. |

In the notation above y(t) € R™ denotes the state function, which is con-
trolled by u(t) € R™, and

Fr0TIxQAxR"xR™ - R ¢ :[0,T] x Q x R" x R™ — R™*4
are defined by

flt,w,y,u) = Ao(t,w)y + Bo(t,w)u + Dy(t,w),
ol(t,w,y,u) = Ai(t,w)y+ Bi(t,w)u+ D;(t,w),

where, for i = 0,...,d, A; : [0,T] x Q@ — R™" B, : [0,T] x 2 — R"™ and
D; 10, T] x 2 — R". We assume that:
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(H1) The random matrices A;, B;, D; are progressively measurable with
respect to ' and bounded uniformly in (¢,w) € [0,7] by a constant D > 0.

We take as state and control space, respectively,
Y=Ly ([0, T;R™), U := L%([0,T]);R™). (3.3)

It is well known that for every u € U, equation (3.2) has a unique solution
Yy € Y and the following estimate hold:

d
191200 < La (E(yﬁ) +lull3+ ) IIDZ-HE) : (3.4)

=0

for some positive constant L;. Denote respectively by ST and S, the sets
of symmetric positive semidefinite and symmetric positive definite matrices
of order m. Now, let us consider the set

U ={uel [ u(t,w) >0 foraa. (t,w) € [0,T] x Q}, (3.5)

and the random matrices R : [0,7] x Q@ — 87, C' : [0,T] x Q@ — 87,
M : Q) — S, We assume:

(H2) The matrices R,C, M are bounded uniformly in (t,w) € [0,7] by a
constant C'. In addition, we assume that R is uniformly positive definite, i.e.
there exists a > 0 such that for a.a. (t,w) € [0,7T] x

v R(t,w)v > alv|* for all v € R™. (3.6)

3.2.1 The initial problem

Let y € Y be a reference state function and define go : [0, 7] x Q X R* x R™ —
R as

gO(t7 W, Y, u) = %UTR(tv w)u + [y - g(tv w)]TO(tv w)[y - g(tv w)] (37)

The cost function Jy : Y — R is defined as

T
() =5 (4 [ o) )i+ b dn(n)) . 69
0
We consider the following stochastic optimal control problem:
Min Jy(u) subject to u € U™, (CP)o

Assumptions (H1), (H2) imply that Jy is a strongly convex continuous
function. Since U™ is closed and convex, we have that (CP)y has a unique
solution ug. We denote yy := v, its associated state.
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As usual in optimal control theory, optimality conditions can be expressed
in terms of a Hamiltonian and an adjoint state. In fact, let

Hy:[0,T] x @ x R" x R" x R™*¢ x R™ — R

be the Hamiltonian of problem (CP)o, defined as

Ho(t,w,y,p,q,u) := go(t,w,y,u) + p- f(t,w,y,u +Zq o' (t,w,y,u),

where ¢° denotes the ith column of q. For u € U let (py,qu) € L?r’oo([(), T| x
R™) x L2([0,T] x R™?) called the adjoint state associated to u, be the

unique solution of the following linear backward stochastic differential equa-
tion (BSDE)(see [15]) :

dp(t) = —Dy,Ho(t,yu(t),p(t), q(t), u(t))dt + q(t)dW (), (3.9)
p(T) - Myu(T) .

It is well known (see e.g. |72, Proposition 3.1]) that there exists Ly > 0, such
that

12ull5.00 + llgulls < Lz (E(yu(T)?) + [|ull3) (3.10)

Let us set py := puy, and qo := qu,. Since go(t,w,y, ) is strictly convex, the
stochastic Pontryagin minimum principle (SPMP) for linear convex optimal
control with random coefficients [31, Theorem 3.2], yields that ug is a solution
of (CP)y if and only if for a.a. (t,w) € [0,T] x Q,

uo(t,w) = argminweRTHo(t,w,yo(t,w),po(t, w), qo(t,w),w). (3.11)
A straightforward computation (see |2, Section 2.1 |) yields that
up(t,w) = mo (R(t,w), 20(t,w)) for a.a. (t,w) e [0,T] x €, (3.12)

where

d
2(t,w) = —R(t,w)™" | Bo(t,w) "po(t,w) + Y B (t,w) gh(t,w)

and for (R, z) € ST, x R™ the map m(R, z) is defined as the unique solution
of

Mini(z —2)'R(z — z), st. z€RT.
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3.2.2 The penalized problem
For € > 0 define the function J. : U™ — R U {+oo} by

70 =2 (3 [ [soteon(0.6) + <Lu(t)] at + 1) D10 (D)).

) A (3.13)
where L : R? — R U {+oo} is defined as L(u) := — > ", logu’. Let us
consider the penalized problem

Min J.(u) subject tou € UT. (CP).

Using the arguments of |2, Lemma 1|, we have that

ueldt - E (/OT ﬁ(u(t))dt) € RU{+oc}

is convex lower-semicontinuous (l.s.c), hence J. is a strongly convex Ls.c.
function. Therefore, (CP). has a unique solution u. with associated state
Ye := Yu.. The Hamiltonian for (CP).

He:[0,T)x QxR" x R" x R x R — RU {+00}
is defined as
H.(t,w,y,p,q,u) = Ho(t,w,y,p,q,u) + eL(u).

We set (pe, q:) := (Pu., qu.) for the unique solution of the following BSDE:

dp(t) = —DyH(t,y=(t),p(t), q(t), uc(t))dt + q(t)dW (), (3.14)
p(T) = Mya(T)' .

As for the initial problem, the SPMP implies that u. is the solution of (CP).
if and only if for a.a. (t,w) € [0,T] x Q

u(t,w) = argminweRTHg(t,w,ys(t, w), pe(t,w), ¢:(t, w), w), (3.15)

Since H.(t,w,-) is convex and differentiable in u, condition (3.15) is satisfied
if and only if for a.a. (t,w) € [0,7] x €,

1
ue(t, w)

DuHO(tawvys(t7w)7p6(t7w)7qa(taw)7u6(t7w)) — € - 07 (316)

where 1/u.(t,w) € R™ denotes the vector whose ith component is 1/u’(¢,w).
Equation (3.16) implies that (see [2, Section 2.2|)

ue(t,w) = 7 (R(t,w), 2:(t,w)) for a.a. (t,w) € [0,T] x Q, (3.17)
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where
d
Z(t,w) == —R(t,w)™" | Bo(t,w) "p(t) + > B (t,w) ¢ (t)
i=1

and for (R, z) € ST, x R™ the map 7.(R, z) is defined as the unique solution
of

~

Mini(z —2)'R(z — z) + eL(z), st. z €RT.

3.3 Main Result

In this section we provide error estimates for the cost, control, state and
adjoint state of the penalized problem. We denote by 1/u. : [0,T] x 2 — R™
the mapping (1/u.(t,w))" := 1/ul(t,w).

Lemma 77 For every e > 0 we have that 1/u. € UT.

Proof. The proof is based on (3.15). For notational convenience we assume
that n = m = d = 1. The proof for the general case can be easily adapted.
First, note that integrability problem comes when u.(¢,w) is small. Thus, fix
Ky > 0 and set

Q= {(t,w) €[0,T] x Q / ua(t,w) < Ko}

Now, let € (0, K) and set

A

HE(t7 w? w) = Hg(t7 w? ys(t7 w)7p5(t7 w)? qa(t7 w)? w)'

If u.(t,w) < n/2 we have for a.a. (t,w) € Qg,, omitting the (¢,w) argument,

A

Hﬁ(n) - ﬁs(us) = %R(U + Us)(ﬁ - us) + [BOps + Ble] (77 - us)
+e [log(ue) — log(n)]

On the other hand, using that log(-) is concave,

)
1
1

N[

-
— < —
(UE 77) — 2

I |~

log(u.) —log(n) <
Therefore, by optimality of .,

N _ _ 13
0 < H.(n) — He(us) < CKon+ D(|pe| + |g=|)n — 5= nK1(1+ |p=| + |¢.]) — 3¢,
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where K := max {C’KO, D}. Thus, we conclude that

E
= n2> .
2K (14 |pe| + |ge)

1
U5§§77

Henceforth, for a.a. (t,w) € Q,,

E
Ue =
T TAK, (1 + |pe| + g

4K (1 + |pe| + |ge)

- (3.18)

1
and thus — <
Ue

The result follows from (3.10) using that u. € U and that y. € ) is almost
surely continuous. m

Remark 78 Estimate (3.18) generalizes [22, Theorem 1] obtained in the de-
terministic framework. In the deterministic case we have that u. is uniformly
positive, whereas in our setting we can prove only (3.18).

Consider the Lagrangian £ : U x U — R, associated to problem (CP)o,
defined by
L(u, A) = Jo(u) — (A, u)a, (3.19)
where we recall that (-,-)s is defined in (3.1). Define the dual function d :
Ut — R by d(N) := inf e L(u, ). We have:

Lemma 79 For every ¢ > 0,

d (gi) — Jo(u) — emT.

u

Proof. Consider the following auxiliary problem
Min Jy(u) — e(1/ue, u)g subject to u € U. (CP)aua

Lemma 77 implies that the above problem is well-defined. Since the cost
function is strongly convex and continuous, problem (CP)., admits a unique

solution g, with associated state y,uz := Yu,,,.- Lhe Hamiltonian H,,, of
problem (CP)qu. is defined as

1

ug(t,w)u ’

Hauz(t> w,Y,p,q, u) = HO(ta w,Y,p,q, u) — ¢ Z
i=1
We let (Paus, Gauz) be the unique solution of the following BSDE:

dp(t; = _DyHau:c (ta yaux(t)7 p(t), Q(t)7 udux(t))dt + Q(t)dw(t)7 (320)

p(T = Myuaua: (T) ‘
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Define H,,, : 0,T] x @ x R™ - R as

Hauz(t7 wa U) = Hauz(t7 CU, yuaux (ta w)? puau:ﬂ (t’ w)? quaua: (t’ w)7 U)
The SPMP yields that w,,, is a solution of (CP)4., if and only if

A

Ugua (T, w) = argmin, cpm Hayo (t, w, w).  for a.a. (t,w) € [0,T] x . (3.21)
Using that H,,(t,w,-) is convex and differentiable, (3.21) is satisfied if and
only if

1
us(t,w)

Therefore, noting that (ommiting the (¢,w) argument)

‘DUHO(t7w7yuauz(t7w)7puauz(t7w)7quauz(t7w)7u) — € - 0 (322)

DyHaux(t7 W, Yauz Pauzs aux s uauw) - DyHe(ta W, Yauzy Pauxs auz uaua:)a

equations (3.14), (3.16) imply that (y., pe, ¢, u.) satisfies (3.20)-(3.22). There-
fore, ugyuy = ue solves (CP)que. Finally,

Min yeyr Jo(u) — e(1/uc, u) = Jo(ue) — (1 /ue, ue) = Jo(ue) —emT.
|

Now, we can prove our main result, which yields error bounds for (y., p, ¢, u.),
usually referred as the central path. In particular, we obtain the convergence

of (Ye, Pe, ¢e» ue) t0 (Yo, Po, Go, Uo) in the appropriate spaces.

Theorem 80 Assume that (H1) and (H2) hold. Then for every e > 0, the
following estimates hold

J()(ug) - J()(Uo) S 6mT(323)
[lue = wol3 + [y = Yollo.00 + 1P = Polloo + llgz — qollz < O(e)(3.24)
Proof. By lemma 79, we have

_ < : < . _
Jo(ue) 8mT_/r\r€13>+<r51€1511£(u,)\)_rlflelélxr\relgﬁﬁ(u,)\) min Jo(u) = Jo(uy),

from which (3.23) follows. The strong convexity of Jy(-) implies that
[lue = uol[5 = O(e).

Taking v = u. — up in (3.4) yields that
19 = voll3.00 = O(e)-

Finally, using the estimates above and that y.—yy is almost surely continuous,
estimate (3.10) implies that

1 = pol3.00 + [l = qoll3 < Lo (E [(4(T) — 9o(T))°] + [Jue — uoll3) = O(e).
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4.1 Introduction

Because of its wide range of applications (e.g. in mathematical finance),
stochastic optimal control theory is a very active research domain. In this
work we consider the following type of stochastic optimal control problem

Min E (f; 0(t y(8), u(t))dt + 6(y(T)) )
st dy(t) = f(t,y(t),w())dt + o (t, y(t), u(t))dW () (SP)
y(0) = yo, u(t,w) e U for a.a. (t,w),

where U is a nonempty, closed and convex subset of R™ and we suppose that
the above stochastic differential equation (SDE) is well possed.

As in the case of deterministic optimal control problems, there are two
main approaches to study problem (SP). The first one is the global approach,
based in the Bellman’s dynamic programming principle, which yields that the
value function of (SP) is the unique viscocity solution of an associated sec-
ond order Hamilton-Jacobi-Bellman equation. For a complete account of this
point of view, widely used in practical computations, we refer the reader to
the books [45, 76, 93|. The second approach is the variational one, which
consists in to analyse the local behavior of the value function under small
perturbations of a local minimum. Using this technique Kushner [61, 60, 63|
Bensoussan [8, 9], Bismut [15, 16, 18] and Haussmann [53] obtained natu-
ral extensions of Pontryagin maximum principle to the stochastic case, that
were generalized by Peng [75]. Relations between the global and variational
approach are studied in [95].

Nevertheless, to the best of our knowledge, nothing has been said about
second order optimality conditions. Using the variational technique we are
able to obtain first and second order expansions for the cost function, which
are expressed in terms of the derivatives of the Hamiltonian of problem (SP).
The main tool is a kind of generalization of Gronwall’s lemma for the SDEs
(proposition 81) obtained by Mou and Yong [72|, which allows to expand
the cost with respect to directions belonging to a more regular space than
the control space. A similar idea was applied in [20] in the context of state
constrained optimal control problems. By a density argument, we esablish
first order optimality conditions, which include the case of not necessarily
local constraints. In addition, under a polyhedricity assumption (see |52, 71]),
we obtain second order necessary conditions which are the natural extensions
of their deterministic counterparts.

The article is organized as follows: After introducing the standard nota-
tions and assumptions in section 4.2, we obtain in section 4.3 first and second
order expansions for the state and cost function. In section 4.4, first and sec-
ond order necessary conditions are proved and explicit results are given for
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the case of box constraints. Finally, a discussion about a non gap second
order sufficient condition is given in section 4.5.

4.2 Notations, assumptions and problem state-
ment

Let us first fix some standard notation. For a x in a Euclidean space we will
write z’ for its i-th coordinate and |z| for its Euclidean norm. Let T' > 0 and
consider a filtered probability space (2, F,F,P), on which a d-dimensional
(d € N*) Brownian motion W(-) is defined with F = {F;},.,., being its
natural filtration, augmented by all P-null sets in F. Let (X,]|-||x) be a
Banach space and for 5 € [1,00) set

LP (X)) = {v : Q — X; v is measurable and E <Hv(w)H§) < oo} ,

L (;X) = {v:Q — X; v is measurable and ess sup,q||v(w)||x < co}.
For 3,p € [1,00] and m € N let us define
Ly = {ve LP(Q; L7 ([0, T;R™)); (t,w) — v(t,w) := v(w)(t) is -adapted } .

We endow these space with the norms

1
B
ollsp = |E (@)1 agomm)|” and 1ollaoy = ess supeqllo(@)l|zsgorymm-

For the sake of clarity, when the context is clear, the statement “for a.a.
t€[0,7], a.s. we Q (P-a.s.)” will be simplified to “for a.a. (¢t,w)”. We will
write L2 := I%” and || - ||, == || - ||pp- The spaces L2” endowed with the
norms || - ||s, are Banach spaces and for the specific case p = 2 the space
L% is a Hilbert space. We will write (-, ), for the obvious scalar product.
Evidently, for § € [1,00] and 1 < p; < p < py < 00, there exist positive
constants ¢gp,, C3.pys Cpy.3: Cpo,g SUch that

o V]lape S Nl1sp < copallVllapes Cprsllllps < NVllps < cposllVllpas

For a function [0,7] x R x R™ x Q > (t,y,u,w) — ¥(t,y,u,w) € R”
which is C? with respect to (y,u), set ¥, (t,y,u,w) = Dyb(t,y,u,w) and
Uu(t,y, u,w) == Dyb(t,y,u,w). As usual, when the context is clear, we will
systematically omit the w argument in the defined functions. Now let z € R"
and v € R™ be variations associated with y and u respectively. The second
derivatives of 1 are written in the following form

Yy (t,y,u)2? = D§y¢(t,y,u)(z, 2); Yuu(t,y,u)v? := D2 (t,y, u)(v,v);
¢yu(t7 Y, U)ZU = D;“ﬁ(t, Y, u) (Zv U)‘
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Consider the maps f,o% : [0,T] x R" x R™ x Q — R" (i = 1,...,d). These
maps will define the dynamics for our problem. Let us assume that:

(H1) [Assumptions for the dynamics|] The maps ¢ = f, o* satisfy:

(i) The maps are B([0,T] x R™ x R™) ® Fr-measurable.

(ii) For all (y,u) € R™ x R™ the process [0,T] > t — ¥(t,y,u) € R" is
[F-adapted.

(iii) For almost all (t,w) € [0,7] x © the mapping (y,u) — ¥(t,y,u,w) is
(3. Moreover, we assume that there exists a constant L; > 0 such that for
almost all (¢,w)

[t y,u,w)| < Ly (14 |y| + [ul),
’wy(tayauaw)’ + Wu(@%%w)\ S Lla (4 1)
[Vyy (t, 4, 1, W) + [y (t, Y, u, W)| + [uu(t, ¥, u, )| < Ly ‘
|D2(t,y,u,w) — D*Y(t,y, v, w)| < Ly (Jy — ¢/ + Ju—/]).

Let us define o(t,y,u) := (o'(t,y,u),...,0%t,y,u)) € R"*% For variations
z € R" and v € R™, associated with y and u, set

Uy(t7y7u)z = (U;(t7y7u)zv“'7o- ( 7 ,U) ) (42)
Uyy(ta yv u)ZZ = (U;y(t7 y7 U)ZZ, LR y(tu ) )
with analogous definitions for o, (¢, vy, u)v, 0y, (t,y, u)zv and o,,(t, y, u)v?.
For every 3 > 1, let us define the space J” as
Vo= {y e LP(Q;C([0, T;R™); (t,w) — y(t,w) := y(w)(t) is F-adapted} .

Let yo : © — R™ be Fy measurable and such that E(|yo|*) < oco. Under
(H1), we have that for every u € L2” the SDE

dy(t) = ft,y(t), u(t))dt + o(t,y(t), u(t))dW (t), (4.3)
y(0) = wo |

is well posed. In fact (see [72, Proposition 2.1]):

Proposition 81 Suppose that (H1) holds. Then, there exists C' > 0 such
that for every u € L%Q (3 > 1) equation (4.3) has a unique solution y € J°
with continuous trayectories a.s. and

E ( sup |y(t)\ﬂ) < CE (Juol” + 17, 0,u( D1+ o, 0,u(DIS)-

t€[0,T]
(4.4)




109

Remark 82 Note that by the first condition in (4.1), the right hand side of
(4.4) is finite.

Now, let us consider maps ¢ : [0, T]xR" xR"™ xQ — R" and ¢ : R*"xQ —
R. These maps will define the cost function of our problem. We assume:
(H2) [Assumptions for the cost maps] It holds that:
(i) The maps ¢ and ¢ are respectively B([0, T| xR" xR™)@F and B(R™)®Fr
measurables.
(ii) For all (y,u) € R™ x R™ the process [0,T] > t — {(t,y,u) € R" is F-
adapted.
(iii) For almost all (t,w) the maps (y,u) — ¢(t,y,u,w) and y — ¢(y,w) are
C%. In addition, there exists Ly > 0 such that:

(100t y,u,w) < Lo (1 [yl + [ul)?, |6(y,w)| < La (1 + |y)*,
|£y(t7y7u7w)| + wu(tvyvuvwﬂ S L2 (1 + ‘y‘ + |U|) )
10y (t, y, w,w)| + [y (t, y, u, w) | + [Cuu(t, y, u, w)| < Lo,
‘DQE(t7 y7u7w) - D2€(t7 y/v u/7w)‘ < Lo (‘y - y/| + |u - u/‘) )
¢y (y, w)| < Lo (14 [yl)
\ ’¢yy(y>w)‘ < Ly, ’¢yy(y>w) - ¢yy(y,>w)‘ < Ly (‘y - y,’) :

Remark 83 The assumptions above include the important case when the
cost function is quadratic in (y,u).

(4.5)

In some of the results obtained in the sequel it will be useful to strengthen
the second and fifth conditions in (4.5). In fact, as we will see in sections 4.3
and 4.4, under the assumption below the results obtained will be the natural
extensions of the well know deterministic results.

[Lipschitz cost] There exists Cy, C;; > 0 such that for almost all (t,w) €
[0,7] x © and for all (y,u), (¢/,u) € R” x R™ we have
’g(t> Yy,u, w) - g(ta y,a u,> w)‘ < Cf (’u - u,’ + ’y - y,D )
0(y,w) = oy, W) < Coly =yl

For every u € L% denote by y, € Y? the solution of (4.3). Let us define the
function J : L% — R by

(4.6)

J(u)zE[ | o w0y + otury)] (4.7

Note that, in view of the first condition in (4.5) and estimate (4.4) the func-
tion J is well defined. Let & be a nonempty closed and convex subset of L%
and consider the problem

Min J(u) subject to u € U. (SP)
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4.3 Expansions for the state and cost function

From now on we fix u € L%([0,T];R™) and set § := yz. We also suppose
that assumptions (H1) and (H2) hold. For ¢ = f,0 and t € [0, T, define

77Z)y(t) - ¢y(t7 g@)? ﬂ(t)); 77/)u(t) = ¢u(tv g(t)v ﬂ(t)), 77Z)yu(t) - 77Z)yu(tv g(t)v ﬂ(t));
wyy(t) = ¢yy(t>@?(t)>ﬂ(t)); wuu(t) = Yuu(t, g(t),a(t)).

Let 3 € [1,00] and v € L*. We define y,[a](v) € Y as the unique solution
of

dgr(t) = [0 (t) + Fulol®]dt + oy (B (1) + ou(Bo()])aw (1),
(4.8)
The second assumption in (4.1) and proposition 81 yields that the mapping
v e LY — yifa)(v) € Y7 is well defined. If the context is clear, for notational
convenience we will write y; = y;[u](v). Also, let us define 0y = dy[u](v) and
dl = dl[ﬂ](v) by
0Y = Yaro — Y, d1 =0y — 1. (4.9)

Our aim now is to obtain a first order expansion of J around . For this
purpose it will be useful to obtain bounds for y;, 0y and d;. The main tool
for obtaining such bounds is the following corollary of proposition 81, whose
proof is straightforward.

Corollary 84 Let Ay, Ay € LE([0,T]; R™™), Bi € L2*([0,T);R") and B} €
LE([0, T); R™ ) fori = 1,2. Assume that there exists a constant K > 0 such
that

1Bills.1 < K|1B;]]s2, (4.10)

Then, omitting time from function arguments, for every w € L»2, the SDE

dz = [A1z+ B} + B?w]dt + [Ayz + By + Biw]dW (t)

A0) = 0, (4.11)

has a unique solution in Y° and the following estimate holds

|g) | o (max {IBYS, N}, }) i B3 =0,

O (max { || BY|55, [|w][3 5 otherwise.

E ( sup |z(t)

te[0,7
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Remark 85 Note that the estimates given in corollary 84 are sharp. In
fact, suppose that d =1 and let w € L*([0,T];R). Consider the process z(t)
defined by

2(t) ::/O w(s)dW(s) for allt €1]0,T].

We have that B (sup,co.r |2(t)|%) > E(|2(T)|°) = |w||SE(|Z|7), where Z is
an standard normal random variable. Since, in this specific case, HngQ =

[[w||3, the conclusion follows.

Corollary 84 will be the main tool for establishing the following useful
estimates:

Lemma 86 Consider y; defined by (4.8) and 0y, di defined in (4.9). For

every 3>1 and v € L?_-ﬁ’ll, the following estimates hold:
BN e
E( sup |6yl | = O(H”Hgﬂ if ou —.0, (4.12)
t€[0,7] O(l[v]l59) otherwise.
O(|lvll,) i ou=0
E( sup |1:]? | = g1 ) 4.13
(tE[O,T]’ il > { O(HngQ) otherwise. (4.13)
23 . _
E sup ‘dlyﬂ = O(H”H%gﬂ) Zf Ouu — 07 (414)
t€[0,7) O([|vll35,4) otherwise.

Proof. For notational convenience we will suppose that m =n=d =1. We
have

doy(t) = | F(03y(E) + Fult)o(®)] dt + [6,(13y(0) + Fu(o(t)] AW (@),
dy(0) = 0

where, for ¢ = f, 0,
dy(t) = Jo Wy (G(t) + 05y (L), a(t) + u(t)) o,
Gu(t) = [l () + 05y (L), u(t) + Ov(t)) 6.

Using the second assumption in (4.1), estimates (4.12), (4.13) follow from
corollary 84 applied to (4.15) and (4.8) respectively.

We next prove (4.14). We have that

ddi(t) = [£,009) — 1,00 + (Fut) = £u0) v(t)] at +

[6()0y(t) = oy ()y1(1) + (Gu(t) = 0u(t)) v()] AW (2),

(4.15)
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For ¢ = f, 7, we have that |, (£) = 0,(8)] () = O ([ 16y(8)] + [v(®)] | 131 (1))
Also,

- O (|oy(t)[|v(t)]) if 0, =0,
[%@_%@“@:{oq&@uwﬁmwwnmmmm.

Therefore, the following equation holds for d;:
dd,(t) = [fy(t)dl(t) + O ([loy(@)] + [o@) ][y ()] + [v(B)]]) | dE +
[6,(t)d1(t) + O (D(dy, y1,v))| AW (1),
where

1]+ N [ ()] + [o@)] = [(6)? i 0 = 0.
Dioy(®), 1 (8), v()) = { 150 + 10 1 (8] + 1o(0)]) otherwise,

By (4.12) and (4.13),

8
2

oyl 152 = B | (Jo 10yl th)]
= O |E (sup [y (t)|°|y:(t) 1|ﬁ)] N (4.16)
_ 0 ([E (s (07 [E s 3 0]
= (HUHQﬂQ)

Also, by the Cauchy Schwarz inequality and (4.12), (4.13),

Il 15 =& [ (R m@PooPar) | = oGl
I 3wl 32 = & | (1 woPra) | = oqpia)

[

and (4.14) follows by corollary 84, since HU2H51 = HUHQM and Hv2Hg72 =

[o]35,4 m
The estimates obtained in lemma 86 will provide a first order expansion of J

around u. This expansion will be expressed, as usual, in terms of an adjoint
state. Let (p,q) € L%([0, T]; R™) x (L%([0, T]; R™))? be the unique solution of
the following backward stochastic differential equation (BSDE) (see [8, 18|)

m

dp(t) = — [fy(t)T + £, Tp(t) + ) oy () g (t)| dt + q(t)dW (2),

p(T) = 6,(HT)".
(4.17)
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In the notation above ¢ and ¢ denote respectively the ith column of o and
q. The following estimates hold (see [72, Proposition 3.1|):

Proposition 87 Assume that (H1), (H2) hold and that @ € L}*. Then
there ewists Cy > 0 such that

E ( sup [p(t rﬁ) F3 N <G, (1 Nall3)

t€[0,T)] i—1

Define the Hamiltonian H : [0,7] x R" x R™ x R" x R™% — R by

H(t,yu,p,q) = L(t,y,u) +p- f(t,y,u +Zq ol(t,y,u),  (4.18)

and set H,(t) := H,(t,y(t),u(t),p(t),q(t)). Define T, : L% — R by

—E(/ H( ) (4.19)

In view of proposition 87, with 3 = 2, the function Y is well defined. The
following lemma is a consequence of Itd’s lemma for multidimensional Ito
process (see [93]).

Lemma 88 Let Z; and Zy be R"-valued continuous process satisfying

{ dZy(t) = lgl(t)dtJrol(t)dW(t) for all t€0,T], (4.20)

dZy(t) = bo(t)dt + oo(t)dW (t) for all t € [0,T),

where by, by € L*(Q, L*([0,T],R™)) and o1, oo € L*(Q, L*([0, T], R™*%)) are
F-adapted process. Also, let us suppose P-a.s. we have that Z1(0) = 0. Then

E(Z,(T) - Zu(T)) = E ( /

Zy(t) - bao(t) + Za(t) - ba(t) + ) o (t) - a;‘(t)] dt) :

=1

Lemma 88 yields the following well known alternative expression for Y.

Lemma 89 For every v € L%([0,T]; R™) we have that:

w):E( / [@(t)yl(t)wu(t)v(t)]dtwy(y(T))yl(T)). (4.21)
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Proof. Noting that

y(T(T)ya(T) = p(T) "y1(T) = 5(0) '31(0),

lemma 88, applied to Z; = y; and Zy = p, yields E (¢,(y(T))y:(T)) =
Il + IQ + ]3, where

I = _E<fo yltT gy(t +fy ]5 +Zz 1f0 y )]dt)’
L= E(fy 507,000 + Lt dt).
Iyo= SLE( T [0 + o] dt).

Plugging the expressions of I, I and I3 introduced above into the right hand
side of (4.21) yields the result. m

The expression above for YT; allows to obtain a first order expansion of J
around .

Proposition 90 Assume that (H1), (H2) hold and let v € L%. Then,
T1(v) = O(||v]]2) and the following expansion holds J(u + v) = J(u) +
Ty (v) + ri(v) with

O (||v]|3)  otherwise.

ri(v) = { 0 (HUHiQ) e (4.22)

I

If in addition (4.6) holds, then
|
|

O(||vl[x) ifou=0,
10 ={ Gl nl

{ O(vll3) i 6w =0,

O (|[v]34) otherwise.
(4.23)

12) otherwise,

Proof. Let us denote 6.J := J(u +v) — J(u). By definition

Jy [+ ) = €7, D] dt + Gy (T) = 6(5(D)))

a@) = B[ 16,Od@ld+ o, GT))d(T)]

2(v) = E(supepr 0y(t)%) + |[v][3-
Now, we estimate T;(v). By assumption (H2) and the Cauchy Schwartz
inequality E ( I Eu(t)v(t)dt) — O (||v]]s) . On the other hand, by (4.13)

E (fy 6,(0m (0dt + 6, (1) (1)) z(?(ﬂEGmpmmjﬂyﬂﬂPﬂ%)
= O(/lo]l2)-
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Thus T1(v) = O(|[v|]s). If (4.6) holds, then E (fOT Eu(t)v(t)dt) = O(|]v]]h),

and
E ( / "m0+ qsy(y(T))yl(T)) e (E ) |

Thus, estimates for Yy(v) in (4.23) follow from (4.13) with 8 = 1. Let us
estimate 71 (v). Assumption (H2) and (4.12) imply that 29(v) = O(||v]|3).
On the other hand, by (H2) and the Cauchy Schwarz inequality

1
2
E ( sup \dl(t)]2>]
t€[0,T]

Thus (4.22) follows from estimates (4.14) with § = 2. If in addition (4.6)
holds, then z(v) = O (E [suptE[O,T] |d1(¢)|]) and the estimates for r;(v) in
(4.23) follows from (4.14) with S =1. m

sup |y (t)]
te[0,T]

z(v) =0

Remark 91 The above proof shows that the hypothesis for the perturbation
v can be weakened. For example, if (4.6) holds and oy, = 0, for all v € L%
we have that J(u 4+ v) = J(u) + T1(v) + ri(v) with T1(v) = O(||v|]1) and
ri(v) = O(||v||3). Thus, in this case, the function J is differentiable at .

Corollary 92 Assume that (H1), (H2) hold and letv € L. Then, T1(v) =
O(||v]|2) and J(u +v) = J(u) + T1(v) + r1(v) with r1(v) = O(||v]|%)-

The second order linearization of u € LQf — 1y, € V? around « in the
direction v € L¥ is defined as the unique solution y, = ya(v) of

dya(t) = [fy(1)1(t) + 3./ (01()* + fru @ (v (t) + quu 2] dt
+ [ (t)yz(t) + 505 (Y1 () + oy (O (O)o(t) + 50w (t)o(t)*] AW
y2(0) = 0.
(4.24)
Note that by the third assumption in (4.1) and proposition 81, we have that
Yo is well defined.

Lemma 93 Consider yy defined in (4.24) and dy := 6y —y1 — yo = dy —
For every B> 1 and v € LF, the following estimates hold:

E( sup [12®] = O(H”sz) Zfauu?O, (4.25)
te[0,7] O(Hv||2ﬂ4) otherwise.

E | sup ’dz‘ﬁ _ O(H”H2ﬁ2”””4ﬁ4) 1f0uuu?0> 4.26)
te[0,7T] O(H”Hw 2HUH4ﬁ4 + HUHw ¢) otherwise.
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Proof. As in the proof of lemma 86 we suppose that m =n =d = 1. We
will use repeatedly that for every 3, p,q € [1,00), we have

ol = llell2,, forall ve L.

Proof of (4.25): Recall that, by (H1), for ¢ = f, o we assume that ¢,,, ¥y,
and 1)y, are bounded. Using (4.13),

161 = | ([ lntorar) | =0 [ Gup b 0)] = 0 (1)

(4.27)
Analogously, the estimates associated with the term ;v is of order Hngg2

Estimate (4.25) follows from corollary 84 since ||v2||g,1 = ||v] |322 and ||v?| \gQ =

[[o1155.4

Proof of (4.26): Recall that dy = 0y — y1 — y2. We have, omitting time from
the arguments,

ddy(t) = [fde + %fyy([(sy]Q - y%) + fyU((Sy —y)v +1(f)(6y, U)Q} di+
[0y (t)da + 504, ([6y])> — Y1) + 0yu(8y — y1)v + (o) (By, v)*] AW/ (2).

where for 1) = f, o the map r;(¢) is defined by

re(¢) := /0 (1= 0) [thyy (g (t) + 00y (1), u(t) + 0v(t)) — by, (5(t), u(t))] d6.

Thus, since [0y]? — vy} = (dy + y1)dy and D is Lipschitz, we obtain

Adaft) = [fyda+ O (el {6y] + [} +|aulle] +e(PM e oo
[oyds + O (|du| {|0y| + [y1]} + [du[|v] + cu(0))] AW (E) T
where, for v = f, o,

L P + )P i £ 0,
) = { 6y()* + [5y(B)] [o()]2 i o = 0.

Now, let us estimate the terms in the dW (¢) part of (4.28),

w[@

11dilloyl 115, — E {( 7 a0 Pl6y(e)ae)

] = O [E (sup |di(t) ||y (t)]7)]
= O(|[vll3s2llvl135.).
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by (4.12) and (4.14). Analogously, estimates for the terms d;y; and djv are of
the same order. Let us estimate the terms appearing in «a,(t). Using (4.12),

1 16yPI12, = E (A wmem)g — 0 [E (sup [5y()**)] = O[22,

(4.29)
By (4.12), we obtain

1 6ullr 12 = & (1 wtoPrrar)’
= o (&[swlsor (17 wra)’|) = otlialiiz

Also, we have that Hv?’Hﬂ1 = ]|11H3ﬂ3 and HU?’HM = HvaG By the Cauchy

Schwarz inequality,
T S T §
<E (/ \v(t)\th) (/ \v(t)\4dt)
0 0

(/OT |v(t)|3dt)

Using the Cauchy Schwarz inequality again, we get ||v| ‘3ﬁ 5= O(]|v] ‘25 o] [V] ‘4ﬁ 1)
Therefore, estimate (4.26) follows from corollary 84. m

8
||UH3,63 =E

Our aim now is to obtain a second order expansion of J around u. Let us

set Hyu)2(t) = Hiy w2 (t,4(t), u(t),p(t),q(t)) and define Ty : LFE — R by

=B ([ Houp 00000+ 6,00 ()

As for T a useful alternative expression for Y5 holds.
Lemma 94 For every v € LF we have that:

300) = E ([ 6000 + 3w Om@. 0@y d) o
+—Ew¢<>><> 30w (7))

Proof. By definition of y, and p, we have that
6y (F(T))e(T) = B(T) - y2(T) — H(0) - 42 (0).

Lemma 88 yields E (¢, (9(T))y2(T))) = I} + I}, + I}, where
nzz—Euﬂn>[<>+@0Vt+zgﬁ%WFwﬂwy
Iy = E(f) 507 [£O) + w00, 00)?] dt),

I = ZHE(gq pwawumwwxmwm@ﬂdﬂ.
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Plugging the expressions of 7, I} and I} introduced above into the right hand
side of (4.30) yields the result. m

Now we are able to obtain a second order expansion of J around u.
Proposition 95 Assume that (H1), (H2) hold and let v € LE. Then,
J(u+v) = J(@)+ Ti(v) + 3T2(v) + r2(v), (4.31)

and the following estimates hold:

[ O How=0, o OUlllllelB) if o =0,
Ta(v) = { O(||v||3)  otherwise, ra(v) = O(||vlleo|[v]|3)  otherwise.
(4.32)
If in addition (4.6) holds then
_ [ Okl i ouw =0, _ [ Ollvllsllvll3) i ouwwe =0,
Ta(v) = { O(olly) otherwise, ") =\ O([vllwl[v]2,) otherwise.
(4.33)

Proof. Let us first estimate Yo(v) by using its expression obtained in lemma
94 and lemmas 86 and 93. By (4.13) with § = 2,

te[0,7

T
E ( sup [y (t)” +/ |U(t)|2dt> = O([[v[3)- (4.34)
0
In view of assumption (H2) and (4.34) we obtain that

E( / f<y,u>2<t><y1<t>,v(t))?dw¢yy<y<T>><y1<T>>2) —Oo(llR).  (4.35)

On the other hand, assumption (H2) and the Cauchy Schwartz inequality
yield

E( sup \y2\2)] , (4.36)

te[0,7

5 ([ o o6 -0

and the estimate for Ty(v) in (4.32) follows from (4.25). If (4.6) holds, then

B( [ Oty + (T (1)) = O (E

sup ‘y2|]> ) (437)

te[0,7

and the estimate for To(v) in (4.33) follows from (4.25).
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Now we proceed to obtain (4.31). As in the proof or proposition 90 we
denote §J := J(u + v) — J(u). By definition,

T

5 = ([ a4+ )~ 66,010+ 6 (7))~ 66T ) = i1
0

where, omitting the time argument in the integral,

I, = E (foT [€,0y + L, + 30002 (6y, v)? + 10(0y, v)?] dt) ;

Iy = E[¢,(G(T))0y(T) + 50y, (5(T))(6y(T))* + T¢(y(T))(5y(T))2(]4-38)
Recalling that oy = y1 + di = y1 + y2 + do, assumption (4.5) in (H2) yiélds

L = E ( I 0,8 (1 + y2) + Lu(t)o + 1D20(t) (31, v)%u) +E ( I8 Eydgdt>
+0(21(v)),
where, omitting time from function arguments,
21(v) = E (sup [|d[* + di()][ya] + [0y [*]) + [[v].E (sup |da]) + [|v]s.

On the other hand,

L = E[6,(5(T)) 1(T) + y2(T)) + 54 (5(T)) (51(T))’]
+E [0y (9(T))da(T)] + O(22(v)),

where

2(v) = E (|0y(T)P + |y (D) da(T)] + [da(T)[?) -
Denoting z(v) := 21(v) 4+ 22(v) we get that

o = 10 @(t) + 1) + Lu(0)0(E) + My (o (), (1)) )
FE [y 0T 0(T) + 32(T)) + 20y (0T)) ()] +C(0) + 2(0),

where,
C(v) :=E ( /O ' C,(t)dy(t)dt + ¢y(y(T))d2(T)) . (4.39)

Therefore, using (4.21) and (4.30), we get (4.31) with ro(v) := ((v) + z(v).
Now, we proceed to estimate z(v). By (4.14) we have that

E ( sup !dl(t)l2> = O([|vl[1) = O(||v]5[v]13)-
te[0,7




120

Estimates (4.13), (4.14) and the Cauchy Schwartz inequality yield

E ( sup \dl(t)\\yl(t)\) = O ([lvllillvllz) = O (llvllllvl]2) -
t€[0,T]
Analogously, using (4.14), we have
<HUH1 up, |d (¢ )\) = O (l[vlfillvll21) = O (o]l [v]]2) -

t€[0,T

Estimate (4.12) yields E (suptE o1 |6y(t) %) = O(|[v]|3,). But

1o]l3, =B ([ th ) (llllll12) -

and||v|]3 = O (J|v||eo]|v||3). Thus, 2(v) = O(]|v||«l|v|]3). Finally, let us
estimate ((v). Assumption (H2) and the Cauchy Schwartz inequality yield

that
1
2
= (s 00 )
t€[0,T]
Hence, using (4.26) with § = 2,

(= { Gl i o =0,

O(lfvllazllv][g 4 + 1[v][56) otherwise.

((v) =0

Since O(|[vlazl[v][54) = O([v]]solv][Z2) and O([Jv[lg ) = O(|[v]lec[v][3), the
estimate for ro(v) in (4.32) follows. If in addition assumption (4.6) holds,
then by (4.26) with g =1,

. o
s wm]) { ol

Since O(|[v]l2[[v][Z) = O(l|vllcl[vl[z) and O([jv]l55) = O(||v]54), the esti-
mate for r5(v) in (4.33) follows. m

]2/ lv]13) if Tuuu = 0,
[0ll2][v]

vlla|v]|f + [[v]|5¢) otherwise.

C(v) =0 (E

Remark 96 (i) Since Ty zs a quadratic form and, for every B,p € [1,00],
the space LE is dense in LYP, we have that: If To(v) = O(||v]|,) then Ts
admits a unique continuous extension in LPP.

(ii) The proof of proposition /.31 shows that the estimates Ta(v) = O(||v]|]3)
and r2(v) = O(||v]|so||v||3) also hold in the case when f and o are affine
mappings, since in this case ys = do = 0.
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The following corollary will allow us to state second order necessary condition
with respect to perturbations v € L.

Corollary 97 Assume that (H1), (H2) hold and either (4.6) holds and
ow = 0, or f and o are affine mappings. Then, the following expansion

holds:
J(u+v)=J(@)+ Ti(v) + 3T2(v) + r(v) forallve LF, (4.40)
where T1(v) = O([[v]|2), T2(v) = O(|[v][3) and r(v) = O(|[v]ls|[v]]3)-

4.4 Necessary optimality conditions

The asymptotic expansions obtained for J in section 4.3 allow us to obtain
first and second order necessary conditions at a local optimum u € L% for
the control constrained problem (SP). We first obtain first order optimality
conditions using the procedure explained at the introduction: According to
the regularity of the data of (SP) and the dependence on u of the o-term,
a perturbation in an appropriate space is taken. Then, the results of the
previous section yield a positivity condition of T, over a certain cone which
is extended, by a density argument, to a larger one. Similar considerations
apply in order to establish second order necessary conditions. Finally, we
give a second order sufficient condition for the unconstrained case and we
briefly discuss the difficulties arising in the constrained case.

Let us first fix some notations which are standard in optimization theory.
Consider a Banach space (X, ||||x) and a nonempty closed convex set C' C X.
For x,2’ € X define the segment [x,2'] :== {x + A(z' —x) ;A € [0,1]}. The
radial, the tangent and the normal cone to C' at = are defined respectively

Re(z) = {he X ; 30>0 suchthat [z,Z2+4 oh] C C},
Te(z) == {heX; Jz(o)=x+0ch+o(c) e C, 0 >0, |lo(o)/o||x — 0},
Nu(ﬂ) = {h* e X" / <[L'*,[L'>X*7X < 0, for all h € Tc([i')},

(4.41)
where X* denotes the dual space of X and (-,-)x+ x is the duality product.

Recall that, since C' is a closed convex set, the cone 7o (%) is the adherence
of R¢ (.f) in X.

4.4.1 First order necessary conditions

Consider as in section 4.3 a fixed 4 € L%. For 3,p € [1,00] and a subset
A C Li’p we write adhg,(A) for the adherence of A in Lff’p. If AC Lff we
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write adhg(A) = adh,gﬁ(A).
We have the following first order conditions for (SP).

Lemma 98 Assume that (H1), (H2) hold and let uw € U be a local solution
of (SP). Then:

adhy (Ry(@) N LE) if 04 = 0,
> .
Ta(v) 20 forallve { adhy (Ry(u) N LE)  otherwise. (442)
If in addition (4.6) holds then
adh; (Ry(w)) if ouy =0,
>
Ti(v) 20 forallve { adh; o ('Ru(ﬂ) N L%) otherwise. (4.43)

Proof. Let v € Ry(u) N L%. Proposition 90 implies that, for ¢ > 0 small
enough, we have

0< J(u+ov)—J@)=oYi(v)+ ||v||30(c?). (4.44)

Thus, dividing by o in (4.44) and letting o | 0, we have that T;(v) > 0. Anal-
ogously, if ,, = 0 we have that T;(v) > 0 forall v € Ru(a)mLéQ. Condition
(4.42) follows from the fact that, by proposition 90, v € L% — T;(v) can
be extended continuously to L%. The proof of (4.43) follows in the same
manner, with the obvious modifications. m

Note that the results obtained in lemma 98 are rather general, since they
include the case of non local constraints. On the other hand, for some con-
straints the result gives no information. In fact, consider the following ex-
ample.

Example 2 Let ug € L% and suppose that ug ¢ L%p for any B,p € (2,00].
The constraint U := {u = aug / for some a € [0, 1]} is such that, at u = 0,
the radial cone is given by Ry (@) = {Mug / for X > 0}, but Ry (@) N L3”

{0}.

Thus, we will assume the following assumption over the constraint set U:

(H3) For every u € U we have that
Ty(u) = adhy (Ry(u) N LF) . (4.45)

We have the following proposition whose proof is straightforward.
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Proposition 99 Asumme that (H1), (H2), (H3) hold and let u be a local
solution of (SP). Then

Ti(v) >0 forallv e Ty(u). (4.46)

Remark 100 Note that if J(-) is convez, then (4.46) is a sufficient condition
for the (global) optimality of .

Clearly, we have that (H3) can hold for non local constraints. As an ex-
ample, it can be checked that (4.45) holds for and U = {u € L% / ||ul|]s < 1}
and u € U. Now we consider the case when U/ is defined by local constraints.
Let (t,w) € [0,T] x Q — U(t,w) € P(R™) be a B([0,T]) x Fr measurable
multifunction satisfying that
(i) For all a.a. ¢ the multifunction U(t, -) is F;-measurable.

(ii) For a.a. (t,w) we have that U(t,w) is a closed convex subset of R".

We set
U:={ueLls; ultw) eUltw), aa. (t,w)e0,T]xQ}. (4.47)

Lemma 101 Suppose that u € U, where U is given by (4.47). Then,
(i) Assumption (4.45) holds at 4.

(ii) The tangent cone is given by

Tu(u) = {v e Ly ; v(t,w) € Typw(ut,w)) aa. (t,w)e[0,T] x Q}.
(4.48)

Proof. (i) By a diagonal argument, it suffices to prove that for every v €
Ruy(u) there exists a sequence v, € Ry(u) N LE such that ||vgy — v]]s — 0.
Indeed, set

[ ootw) if u(t,w)] <k
vk, w) 1= { 0 otherwise. (4.49)

The convexity of U(t,w) yields that vy, € Ry(w). Also, vi(t,w) — v(t,w)
as k — oo for a.a. (t,w). The convergence in L% follows by the dominated
convergence theorem.

(i) Let v € Tyy(u). By definition, for o small enough and a.a. (¢,w)

u(t,w) +ov(t,w) +1.(t,w) € U(t,w),

where 7,(-,-)/0c — 0 in L% as o | 0. Thus, extracting a subsequence if
necessary, we have that r,(t,w)/oc — 0 for a.a. (t,w) from which we deduce
that v(t,w) € Ty(w)(U(t,w)). Conversely, let v belongs to the r.h.s. of (4.48)
and for € > 0 set

v, = e (Py(u+ ev) — 1), (4.50)
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where Py(-) denotes the orthogonal projection in L% onto U . By definition
of Py(-) we have that v. € Ry/(u). For (t,w) in [0,T] x Q set Py.)(-) for the
orthogonal projection in R™ onto U(t,w). Definition of v. in (4.50) implies
that for a.a. (t,w)

0= (t,w) == e Py (U(t,w) + ev(t,w)) — u(t,w)) .

Clearly, v.(t,w) € Rupw)(u(t,w)) and for a.a. (t,w) we have v.(t,w) —
v(t,w). Since |v.(t,w)| < |v(t,w)|, the dominated convergence theorem im-
plies that v. — v in L%. Using that v. € Ry (1) we obtain that v € Ty(u).
]

Let a,b € R" with —oo < a’ < b’ < +oo for all i € {1,...,m} and define
Uwp ={z € R™; o’ <2’ <V'}. (4.51)
For u € L% and every index i € {1,...,m}, set

Li(u) = {(t,w) € [0,T] x Q; v'(t,w) =a'},
Li(u) = {(t,w) €[0,T] x Q; u'(t,w) =0"}.

The following corollary is a direct consequence of proposition 99 and
lemma 101.

Corollary 102 Assume that (H1), (H2) hold suppose that U is in the form
(4.47). Let u € U be a local solution of (SP), then

H,(t,w)v >0 for all v € Ty (u(t,w)). (4.52)
In particular, if U(t,w) = U,y (defined in (4.51)), then for everyi € {1,...,m}

| >0 if (t,w) € Lu(a),
H; (t,w) = <0 if (t,w) € Ii(u), (4.53)
=0 elsewhere.

Remark 103 Since (4.52) is equivalent to (4.46) when U is in the form
(4.47), we have that if J(-) is convex then (4.52) is a sufficient condition for
the (global) optimality of u.

4.4.2 Second order necessary conditions

In order to obtain second order necessary conditions for (SP) we proceed
as in the previous section, i.e. we prove a general result and after, under
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some standard assumptions, we yield a more precise characterization for the
important case of local constraints. Let us define

Ty :={veLls; Ti(v)=0}. (4.54)
We have the following general second order necessary conditions.

Proposition 104 Assume that (H1), (H2) hold and let uw € U be a local
solution of (SP). Then, the following second order necessary condition
holds:

adbys (Ru(@) 1 LE N if o = 0
To(v) 20 forallve { adhy (Ry(@) NLENYT)  otherwise. (4.59)
If in addition (4.6) holds, or f and o are affine mappings, then
adhy (Ry(@) NLENTT) i 04y =0,
>
To(v) 20 for allve { adhy 4 (Ry(2) N LE NYT)  otherwise. (4.56)

Proof. If v € Ry (i) N LE N Y, then for o small enough
2
0 < J(i+ov) = J(@) = T Ya(v) + 0°O(lo] ).

Dividing the above equation by ¢ and letting o | 0 yields T5(v) > 0 and the
result follows from remark 96 (i). =

The critical cone to U at u are defined by
C(u) = {v* e Ty(u) / Ti(v) <0}. (4.57)

In order to obtain more precise second order necessary conditions, we suppose
standard assumptions in the second order analysis of problems with convex
constraints. The first one is a natural extension of (H3) to the second order
case.

(H4) For every u € U and v* € Ny(u) (recall (4.41)), we have that
adhy (Ry(2) N LE N (v*)) = adhy (Ry(a) N (v*)*h). (4.58)

For our second assumption, we need the following notion of polyhedricity (see
[52, 71]). The set U is said to be polyhedric at u € U if for all v* € Ny(a),
the set Ry () N (v*)* is dense in Ty (@) N (v*)* with respect to the || - ||2
norm. If I is polyhedric at each u € U we say that U is polyhedric.
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Remark 105 Note that, if (H1)- (H3) hold, proposition 99 yields that, at
a local minimum, —Y1 € Ny(u) and C(u) = Ty(a) N Yi. Thus, if U is
polyhedric and (H4) holds,

adhs (Ry(2) NLE N YY) = C(a) (4.59)

We state a second order necessary condition which is a natural extension of
the deterministic counterpart.

Theorem 106 Let u be a local solution of (SP) and assume that
(i) Assumptions (H1)-(H4) hold.

(i) Either (4.6) holds and 0., =0 or f and o are affine mappings.
(iii) The constraint set U is polyhedric.

Then, the following second order necessary condition hold at u:
To(v) >0 forallve C(a). (4.60)

Proof. As in the proof of proposition 104 we have that YTo(v) > 0 for all
v € Ry(u) N LE N Y1 . The resut follows, by remark 96 (i), since under our
assumptions To(v) = O(||v]|3) and (4.59) holds. =

Now, let us focus our attention in local constraints, i.e. when U is defined
by (4.47).

Lemma 107 Let U be defined by (4.47) and let uw € U. It holds that
(i) The normal cone Ny(u) is given by

Ny(u) = {v* € L} | v*(t,w) € Nyw (u(t,w)), a.a. (t,w)e[0,T]x Q}.
(4.61)
(ii) For every v* € Ny(u) we have that

TNt = {v € Ty(a) / v*(t,w) - v(t,w) =0, a.a. (t,w)e[0,T]xQ}.
(4.62)

Proof. Since (ii) follows directly from (i) and lemma 101 (ii), it is enough
to show (i). By lemma 101 (ii), the r.h.s. of (4.61) is included in Ny (u). To
prove the other inclusion, let us argue by contradiction. Let v* € Ny(u) and
suppose that it does not belong to the r.h.s. of (4.61). Then we can find a
non null measurable set A C B([0.7]) ® F such that for each (¢,w) € A there
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exists v(t,w) € Ty (u(t,w)), which can be taken with |v(t,w)| = 1, such
that v*(t,w) - v(t,w) > a, for some o > 0. Defining © € L% by

N fu(tw) ifot(tw) - u(tw) > a,
ot w) = { 0 otherwhise,

we see that 0 € Ty(u) and (v*,0)s > 0 and thus we obtain a contradiction
with the fact that v* € Ny(u). =

In order to verify the polyhedricity assumption in the case of local con-
straints, we will need in fact to assume that for a.a. (t,w) the set U(t,w) is a
polyhedron. More precisely, let ¢ € N and suppose that there exist mappings
0,7 xQ—=PHL,....q}), a; : [0,T] x Q2 = R™ b, : [0,T] x Q2 — R™,
where i € {1,...,q}, such that X, a; and b; are B([0,T]) x Fr measurable
and for each ¢ we have that X(¢,-), a;(¢,-) and b;(¢, -) are F; measurable. We
suppose that

Ult,w) ={x € R™ / (a;(t,w),z) < bi(t,w), fori e X(t,w) }. (4.63)
We have

Lemma 108 The set of local constraints U defined in (4.47), with U(t,w)
given by (4.63), is polyhedric and satisfies (4.58).

Proof. Let @ € U and v* € Ny(u). For v € Ty (u) N (v*)+ and k > 0 set

~ _ J vtw) ifJu(t,w)| <k and a(t,w) + zu(t,w) € Ut w),
O(tw) = { 0 otherwise.
(4.64)

Lemma 107(ii) implies that 0}, € Ry (2)NLEN(v*)L. On the other hand, since
U(t,w) is a polyhedron, lemma 101(ii) implies that v(t,w) € Ty(u(t,w)) =
Ry(u(t,w)). Thus, as k T oo, we have that v, — v(t,w) for a.a. (t,w).
The dominated convergence theorem, yields that Uy — v in L%, hence U is
polyhedric and (4.58) holds. m

The following corollary is a direct consequence of theorem 106 and lemmas
107, 108.

Corollary 109 Assume that (H1) - (H2) hold and let u be a local solution
of (SP) where U is defined in (4.47), with U(t,w) given by (4.63). Further,
suppose that either (4.6) holds and oy, = 0 or f and o are affine mappings.
Then, the following second order necessary conditions hold at w:

Ty(v) >0, for allv € Ty(u) such that H,(t)v(t,w) =0 for a.a. (t,w).
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4.5 On the second order sufficient condition

Let us first consider the unconstrained case, i.e. when & = L%. Note that,
in this specific case, (H3) is trivially satisfied and for every u € U it holds
that 7y(a) = L%. The following proposition is a consequence of corollary 97.

Proposition 110 Assume that (H1), (H2) hold and that U = L%. Further,
let us assume that either (4.6) holds and oy, = 0, or f and o are affine
mappings. Suppose there exist o > 0 such that u € L% satisfies:

Ti(v) =0, and Ta2(v) > al|v||5 for allv € L3 (4.65)
Then, there exists 6 > 0 such that for all v' € LE with ||v'||s < 0§, we have
J(a+v') > J(@) + af|v]]5. (4.66)

Only very partial results are obtained when U # L%. Let us recall that a
quadratic form @) : H — R, where H is a Hilbert space, is a Legendre form
if it is weakly lower semi continuous (w.l.s.c.) quadratic form over H, such
that, if hy, — h weakly in H and Q(hx) — Q(h), then hy — h strongly. We
have the following proposition, whose proof follows the lines of the parallel
deterministic result (see [24, Section 3.3]):

Proposition 111 Assume that (H1), (H2) hold and that that either (4.6)
holds and o, =0, or f and o are affine mappings. Suppose that at u € U,
the quadratic form T4 is a Legendre form and there exist o > 0 such that

Ti(v) =0, and To(v) > al|v||5  for allv € C(u). (4.67)
Then, there exists 6 > 0 such that for all u € U with ||u — || < 6§, we have
J(u) > J(u) + sallu—alf3. (4.68)

In the deterministic case there is a well known sufficient condition for the
associated quadratic form to be a Legendre form, which is based essentialy
in the fact that the application u € L([0, T]; R™) — y;(u)(T) € R™ is weakly
continuous. We show with two examples that v € L% — y1(u)(T) € L%, (R")
is not weakly continuous.

Example 3 (0 dependent on u) Let us take m = n = 1 and let us con-
sider the dynamics

dy,(t) = w(t)dW(t) fort € [0,T); .1 (0) =0.
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Let uy, be a (deterministic) orthonormal base of L*([0, T]; R) and denote y,, :=
y1(uy). By the dominated convergence theorem it is easy to check that w,
converges weakly to 0 in L%, but

(/OTun(t)dW(t))2] = /OTui(t)dt =1

Example 4 (0 independent on u) We take m =n =1 and T = 2. Let
us consider the dynamics

E [y.(T)*] =E

dyi(t) = u(t)dt for t € [0,T]; v:1(0) =0.

Let ¢, be an orthonormal base of the Hilbert space L*(R) endowed with the
scalar product

oot = [ " g(@)h(a)e E da,

and consider the sequence u, € Ly defined by u,(t) := ¢n(W(1))I1,9(t) and
set y, := y1(uy,). For every f € L%, we have

E(Jy funlt) dt) = E(en(W(1) [ f(1)dt)
= E[o(WOE ([ F0dw()| —o.

by definition of ¢,,. Thus u, converges weakly to 0 in L%. On the other hand,

E (ya(T)?) — E <[ /0 : undt} 2) B (6a(W(1))?) = 1.
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