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Introduction

Consider the following optimization problem
Min,crn %XTRX +c'x; Ax=b, x>0, (QP)o

with R > 0. We have that xp is a solution of (QP)y iff there exists
(s0, Ao) such that zg := (xp, S0, o) solves

x'st =0, forallic{l,.. m}
Ax=b, c+Rx+ATN=s,
x>0, s>0.

Definition

We say that the solution zy of (QP)g is strictly complementary if
xy+ sy >0forallie{l,.. m}
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For € > 0 the penalized problem (QP). is defined as

p
Minyern %XTRX—FCTX—EZng,-; Ax = b. (QP)e.
i=1

In this case x. is a solution of (QP). iff there exists (s, A-) such
that z. := (x, s-, \c) solves

x'sl =¢, forallic{l,.. m}
Ax=b, c+Rx+ATA=s,
x>0, s>0.

Proposition (Wright-Orban 01)

We have that,

O(e)  if zy is strictly complementary,
|Z€ - ZO| = 0

(ve) if not.
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Optimal control of a linear ODE

The initial problem:

Consider the following optimal control problem (CP)o

. T — —
infwy) 3 0y {1+ 1y(e) = 7(e)P b de + 3 y(T) = 7(T)P,
subject to

y(t) = y(t) + u(t) for t €0, T];
y(0) =y wu(t) >0, fortel0,T].

Strong convexity + continuity imply that (CP) admits a unique
solution (yo, up) € W2 x L2,

Most popular methods: Semismooth methods e.g. M. Ulbrich 00,
Hintermiuller-Stadler 03, , Hintermiller-Ito-Kunisch 02. Interior
point methods e.g. M. Ulbrich-S. Ulbrich 00-09, Weiser 2005.
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The penalized problem:
For ¢ > 0, problem (CP). is defined as

infwy) 3 Jy {Ju()2+ 1y = 5(6)P — clogu()} at+ 31y —7(T)P,
subject to

y(t) = y(t) + u(t) fort €0, T];
y(0) =y wu(t)>0, fortel0,T].

Strong convexity + lower semi-continuity imply that (CP). admits
a unique solution (ye, u:). Moreover,

Proposition (Bonnans-Guilbaut 03, Alvarez- Bolte- Bonnans and

Silva 08)

There exists a constant C > 0, such that for every € > 0

u(t) > ce foraa. tel0,T].




Optimality conditions:
For € € [0,00) the integral part of cost of (CP); is
le(t,y,u) = |uf + 3y = 9(2)]* - elog u.
The Hamiltonian H.
H.(t,y,p,u) == Lle(t,y,u) +p- (y + u).

The Pontryagin minimum principle yields that there exists p. such

that
Ve(t) = ye(t) +ue(t), y=(0) =
_bs(t) = ( )+y<€(t) )7( ) Pe(T) = .yE(T) - )7(7_)7
us(t) = argmln{H (t,ye(t), p(t),v) : v >0}

8/39
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The above conditions yields

u:(t) :== @e(—p-(t)),

where
% (x—i—\/x2+4£) if e >0,
Pe(x) == .
max{x, 0} if e=0.
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Figure: Left: ¢g,, ¢, and ¢o. Right: ¢o, — po, ¢e, — ¢o, for 1 = 0.005,
€y = 0.001.
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Thus for ¢ € [0, 00)

Ve(t) = ye(t) + p(—p:(t)),
_pa(t) p&(t)+ [YE(t) —)_/(t)],
¥e(0) = yo, p(T)=y(T)—y(T).

Define F: W1 x WH xR — [ xR x ! xR by

y() — (')Y((O-)) — = (—p())
— y\Y) =Y
PP =1 50) +p0) + ()~ 70)
p(T) = [y(T) = y(T)]
It is easy to see that in general F is not differentiable at (yo, po, 0).

Therefore, we cannot apply the standard implicit function theorem
in order to obtain an expansion of (y., p:) around (yo, po).

10/39



Restoration theorem: [Graves 50]
Data:
e X, Y be Banach spaces and F : X x Ry — Y continuous.
e X € X such that
F(x,0) =0.
Assumptions:
e D,F(x,0) exists and also its inverse.
e There exists ¢ : Ry — R with ¢(3) | 0 when 3 | 0 such that

IF(x ) — F(x.€) — DeF(%,0)(x' — x| < c(A)x' — x|
for 0 < e < B and x,x' € B(,3).

Under the assumptions above, F(-,¢) has, in a neighborhood of X,
a zero denoted by x. and

X = X — DyF(x,0)7 F(%X,€) + r(e) with ||r(e)]] = o (|F(%X,¢)|) .

11/39
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Strict complementarity assumption

Except for a null Lebesgue set the point ug(t) satisfies the strict
complementarity conditions for the minimization problem

min {Ho(t, yo(t), po(t),w) : w € R} }.

Alternative formulation

Except for a null Lebesgue set the curve po(t) does not intersect
the x-axis, i.e. the function t € [0, T] — $o(—po(t)) is a.s. well
defined.

12/39
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Theorem (Asymptotic expansion)

Under the strict complementarity assumption there exists
r(e) = o(||F (0, po,€)||1) such that

( Zz ) _ ( ZZ ) + Saux(€) + r(€),

where sa,x(¢) = O(||F (v0, po,€)||1) is the state and adjoint state of

)
Min 1 /0 V(&) + o(£)2) de + Lo (T)P,
s.t.

a(t) = o(t) + v(t) + [p=(—po(t)) — o(—po(t))],
o(0) =0, v(t)=0 if po(t) > 0.
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Theorem (Error estimates for interior penalty)

Under the strict complementarity assumption we have that:
(i) The error estimates for u.,y. and p. are given by

lluz = tolloo + llPe = poll1,00 + llyz = Yoll1,00 = O(VE).

(ii) Assume that {t € [0, T] ; po(t) = 0} is finite and that:

d
po(to) = 0= aPo(fo) # 0 (Transversality condition). (1)

Then

[lue = woll1 + |lpe = pol[1,1 + lly= = yoll1,1 = O(eflogel).  (2)

Similar results to (i) have been obtained by e.g. Weiser 05.

14 /39
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A word about the vector control case: Consider two controls
and an integral cost including the term

u(t) " R(t)u(t).
The solution ug(t) is the projection M(R(t),-) on R2 of a
“certain” curve “involving” the adjoint state.
The singular zones are illustrated below:

15/39
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Optimal control of a semilinear PDE

Let u € L5(Q) (s € [2,00]) and y, € W?$(Q) the solution

{ —Ay(x) + ¢(y(x)) f(x)+u(x) for xeQ,
y(x) = 0 for x € 9,

where Q is bounded, open set in R” with C? boundary, f € L5(Q)
and ¢ is C? Lipschitz nondecreasing. For s > n/2 (s =2 if n < 3),
define Jp : L°(Q2) — R by

Jo(u) := %/Q(yu(x) — y(x))%dx + % /Q u(x)2dx.
Consider the optimization problem

Min Jo(u) st uvely :={vel*(Q)/v(x)>0}. (CP})

16 /39
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Problem (CPj) is non-convex one. Nevertheless, it has at least
one solution. For u € L5(R) the adjoint state p, € W2*(Q), is
the solution of

{—AP(X)+¢’(yu(X))P(X) = Yulx) =y(x) for xeQ,
p(x) = 0 for x e oQ.

Let up € U3 be a solution of (CPP) and yp and py the state and
adjoint state. Classical techniques yields

up(x) = wo(—po(x)) fora.a. x € Q.

17 /39
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The penalized local problem B
Suppose that ug is locally unique in the L°(€2) ball Bs(ug, b). For
€ > 0, define

Je(u) == Jo(u) — E/Q log(u(x)),
and consider the problem
Min J.(u) s. t. u €U N Bs(up, b) (CPbe),

Problem (CP?*) has at least one solution u.. Note that
ve l5(Q) — —/ log(u(x))dx € R U {+o0}
Q

is not continuous. However,

ce < u(x) < K foraa. xe.

18 /39
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Therefore, u. solves
Min J.(u) subject to u € US N Bs(uo, bo) N L=(Q)

Let y. and p. be the state and adjoint state associated to u..
Optimality conditions yield

us(x) = @ (—p:(x)) for a.a. x € Q.
Define F: WS x W x R, — L5(Q) x L5(R) by

Dy () e (=N"p() + F(-) — o(y(+))
Fly.p.e)0) = < A0) () — o)~ Hr ) >

19/39
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We assume

(H1) For the adjoint state pg, associated to any local solution ug
of (CP3), it holds that

meas ({x € Q / po(x) = 0}) = 0.

(H2) At any local solution ug of (CP}), the following
second-order sufficient condition holds

D? Jo(ug)(h, h) >0 for all he C(up) \ {0}

20/39
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Theorem

Suppose that (H1), (H2) hold. Then, for b, small enough
problem (CP®*) has a unique solution u. and there exists
r(€) = o(llF (o, po, €)lls) such

( Zz ) _ ( ZZ ) + Saux(€) + r(€),

where s,,x(€) is the state and adjoint state of

Min 3 / (N2 + (1= pog” (0)) 22] dx,
Q
S.t.

—Az(x) + ¢'(yo(x))z(x) = v + [¢-(q0) — po(qo)] for x € 2,
z(x) =0 forx € 0Q, v(x)=0 ifpy(x)>0.

21/39
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Theorem

We have

|lue = wolloo +[lPe = poll2,s + llye = yoll2s = O(Ve).

If in addition n < 3 (hence s = 2) and
o {xeQ/ po(x) =0} =", G. (Ci is a closed C? curve).
@ There exist positive real numbers o > 0, 0 < 5 < 1 such that

|po(x)| > adist(x, G;) for all x € C,-g.

Then

3
llue — uoll2 + ||pe — Poll2,2 + [|lye — Yoll2,2 = O(e#).

For the first estimate, similar results found in Weiser, Ganzler and
Schiela 08.
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Stochastic Control

Consider:

e (Q,F,P) a probability space. Consider a d-dimensional
Brownian motion W(t) and F its natural filtration

e UCR™and
U = {u(t) is F — adapted u(t,w) € U,a.s.,a.e.}.
e Consider the following controlled SDE:

dy(t) = f(t,y(t),u(t))dt + o(t,y(t), u(t))dW(t) forte [0, T]
y(0) = yo

24 /39
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For the control, we will work we the following spaces

L2 :={v; vis F-adapted, ||v|]» < +o0},
L® :={v; vis F-adapted, ||v||o < +00},

where ;
MB = E(f Me)Pae)

Voo = ess sup(s ) |v(t, W)

For the state space we work with
L2°°([0, TI;R™) :={y; y is F-adapted, ||y||2.00 < +0},

where
VB = E(supeepo,ry v(£)2).

25/39
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Denoting by y, the solution associated to u, there exists C > 0
such that

[1Yull3 00 < CE (Iyol? + [1£(0, u(-))I13 + [lo(0, u())II2) -

Consider the following stochastic optimal control problem:

.
(sp): | Mind@) ::E(/O e(t,u(t),yu(t))dt+¢(yu(r))>

subject to u € U.

The existence of a solution for this problem is a very difficult task.
Only partial results, specially for the linear quadratic case, have
been obtained under our strong formulation.

26 /39
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Variational approach

Let & be a solution of (SP) and let y its associated state. Define
the adjoint state (p, g) as the unique adapted solution of the
following BSDE (Bismut 73) .

[oN
o
—~

~
N—r

I

d
— [ﬂy(t,yu, u) + f,(t,yu u) TP+t yu, U)Tq’] dt

i=1
+ qdW(t)

p(T) = dyn(T)".
(3)

There exists a constant C > 0 such that

111300 + [1allZ < € (l6y (yu( THIE + 116y (£, yu, w)I3) -

27 /39
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Define the Hamiltonian H by

H(tay7u7p7q)::€(t7y7 )+P fty, +Zq 0' tXU

It holds

Theorem (Minimum principle (Bismut 73, Bensoussan 83))

If o, = 0 then

u(t) € argmin{H(t,y,v,p,q);v e U} a.e, as.

When o depends on u the above result was generalized by Peng in
1990, by introducing a generalized Hamiltonian and a second order
adjoint process.

28 /39
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The logarithmic penalty in the stochastic case

We supose here that

Ut,y,u) = %U2+%(y—?(t))2
oly) = §y2

f(t,y,u) = y+u

o(t,y,u) = y+u

and
U:={uels [u(t,w)>0 foraa (t,w)€[0,T] xQ}.

Since the problem is strongly convex, it has a unique solution wug.
We denote by yp, (po, go) for the state and the adjoint state. The
SPMP implies yields that

Uo(t,w) = (bo(—po(t,w) - qO(t7w))'

29 /39
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We consider the problem, with the same dynamics than the initial
one but the cost ¢ is modified by

gs(taya U) = g(t7y7 U) - ElOg u.

Strong convexity implies that the new problem admits a unique
solution u.. Denote by y., (p-, g-) for the state and adjoint state.
The SPMP yields that

ue(t,w) = de(—p:(t,w) — qe(t,w)).

Moreover,
Proposition
There exist C > 0 such that
Ce
us(t,w) > for a.a. (t,w) € [0, T]x Q.

(14 [pe(t, w)| + ge(t, w)l)

30/39
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Proposition
It holds that

J(uz) — J(uwp) < Te.

Sketch of proof Consider the Lagrangian L : sz X sz —R
defined as

L(u,A) == Jo(u) — (A, u)a2,
and the dual function d : i/ — R by

d(A) := inf L(u,\)

2
uel?

The SPMP, in its sufficient form, implies that

1
d (5;) = Jo(u:) —eT.
By weak duality
Jo(UE) —eT < mell?{ Jo(u) = J()(U()).

31/39
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Strong convexity and regularity result for the BSDE vyields

For every € > 0, the following estimates hold

lue — wol 3+ llye — wol3 o = O(e)
P = poll3 oo + g — @03 = O(e)

The above result present a partial extension of the error estimates
obtained in the deterministic case.

32/39
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Optimality conditions in stochastic optimal control

We return to the general problem

Min J(u) := E [fOTe(t,yu(t), u(t))dt + ¢(yu(T))

(SP)
subject to uel.

Now we suppose that U is a general convex subset of sz. It is not
necessarily defined by local constraints.

Let T be a local solution of (SP) and denote by y and (p, ) its
state and adjoint state.

33/39
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Set H,(t) := Hy(t,y(t),u(t),p(t),q(t)) and define Ty : L — R
as

Ti(v) =E </OT H,(t) v(t)dt) .
We have

Proposition

Let v € LF. Then, the following first order expansion of J around
U holds

J(@+ v) = J(@) + T1(v) + ri(v)
where Y1(v) = O(IvI]2) and r(v) = O(lIvI1Z)-

34 /39
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The radial cone to U at @ is defined as

Ry(i) = {vel%;3o>0 suchthat [a,u+ov]CU}
The tangent cone to U at i is defined as

Ty () = closure(Ry(1)).
We assume that:
(H1) Ty(@) = closure (Ry (7)) N LF) .

Important case:

U:={uelr; utw)e U(tw), aa. (t,w)e0,T]xQ}.

Using the first order of J expansion + density arguments we obtain:

Proposition

The following first order optimality condition holds

Ti(v) >0 forall v e Ty(n).

35/39
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Let y1 = y1(v) be the unique solution of

dyi(t) = DF(t)(na(t), v(t))dt + Do(t)(ya(t), v(£))dW(z),
y1(0) = 0.

and set
)
Tov) =E ( | Hoar 000+ ¢yy(y(T>)(y1(T))2> |

The following expansion holds:

Proposition

Assume that o, = 0. Then, the following expansion holds:
J(@+v) = J(@) + T1(v) + 3Ta(v) + n(v) forallv e LF.

where To(v) = O(|v|[3) and ra(v) = O(|v]loo||vI[3)-

36 /39
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The normal and the critical cone to U at i are defined by

Ny(m) = {v*el3 /(v v), <0, forallve Ty(n)},
C(u) = {v*e Ty(a)/ Ti(v) <0}.

Definition

The set U is said to be polyhedric at o € U if for all v* € Ny(1),
the set Ry () N (v*)* is dense in T (@) N (v¥)* . If U is
polyhedric at each u € U we say that U is polyhedric.

(H2) For every i € U and v* € Ny (@), we have that

closure (T\’,u(ﬂ) NLE N (v*)L> = closure (Ru(ﬂ) N (v*)L).

37/39
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Theorem

Let U be a local solution of (SP) and assume that
(i) Assumptions (H1)-(H2) hold.

(ii) We have that o, =0

(iii) The constraint set U is polyhedric.

Then, the following second order necessary condition hold at u:

Tao(v) >0 forallve C(n).
Important case: Local constrains of the form
U(t,w) ={x € R" / (ai(t,w), x) < bi(t,w), for i € £(t,w) }.

with X(t,w) finite.
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About second order sufficient conditions

We say that J satisfies the quadratic growth condition at u if there
exists & > 0 and a neighborhood V of u in LF([0, T]; R™) such
that

J(u") > J(u) + af|u' — ul)3 forall ' € V.

Evidently we have

Proposition

Suppose that o, = 0. Then J sastisfies the growth condition at u
iff there exists a > 0 such that T1(v) =0 and To(v) > al|v||3 for
all v e L%
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