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Introduction

Consider the following optimization problem

Minx∈Rn
1
2x>Rx + c>x ; Ax = b, x ≥ 0, (QP)0

with R � 0. We have that x0 is a solution of (QP)0 iff there exists
(s0, λ0) such that z0 := (x0, s0, λ0) solves







x i s i = 0, for all i ∈ {1, ...,m}
Ax = b, c + Rx + A>λ = s,
x ≥ 0, s ≥ 0.

Definition

We say that the solution z0 of (QP)0 is strictly complementary if
x i
0 + s i

0 > 0 for all i ∈ {1, ...,m}.

4 / 39



Deterministic control Stochastic Control

For ε > 0 the penalized problem (QP)ε is defined as

Minx∈Rn
1
2x>Rx + c>x − ε

p
∑

i=1

log xi ; Ax = b. (QP)ε.

In this case xε is a solution of (QP)ε iff there exists (sε, λε) such
that zε := (xε, sε, λε) solves







x i s i = ε, for all i ∈ {1, ...,m}
Ax = b, c + Rx + A>λ = s,
x ≥ 0, s ≥ 0.

Proposition (Wright-Orban 01)

We have that,

|zε − z0| =

{

O(ε) if z0 is strictly complementary,
O(

√
ε) if not.
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Optimal control of a linear ODE

The initial problem:

Consider the following optimal control problem (CP)0

inf(u,y)
1
2

∫ T

0

{

|u|2 + |y(t) − ȳ(t)|2
}

dt + 1
2 |y(T ) − ȳ(T )|2 ,

subject to

ẏ(t) = y(t) + u(t) for t ∈ [0,T ];
y(0) = y0 u(t) ≥ 0, for t ∈ [0,T ].

Strong convexity + continuity imply that (CP)0 admits a unique
solution (y0, u0) ∈ W 1,2 × L2.

Most popular methods: Semismooth methods e.g. M. Ulbrich 00,
Hintermüller-Stadler 03, , Hintermüller-Ito-Kunisch 02. Interior
point methods e.g. M. Ulbrich-S. Ulbrich 00-09, Weiser 2005.
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The penalized problem:

For ε > 0, problem (CP)ε is defined as

inf(u,y)
1
2

∫ T

0

{

|u(t)|2 + |y − ȳ(t)|2 − ε log u(t)
}

dt + 1
2 |y − ȳ(T )|2 ,

subject to

ẏ(t) = y(t) + u(t) for t ∈ [0,T ];
y(0) = y0 u(t) ≥ 0, for t ∈ [0,T ].

Strong convexity + lower semi-continuity imply that (CP)ε admits
a unique solution (yε, uε). Moreover,

Proposition (Bonnans-Guilbaut 03, Alvarez- Bolte- Bonnans and
Silva 08)

There exists a constant C > 0, such that for every ε > 0

uε(t) ≥ cε for a.a. t ∈ [0,T ].
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Optimality conditions:

For ε ∈ [0,∞) the integral part of cost of (CP)ε is

`ε(t, y , u) := 1
2 |u|

2 + 1
2 |y − ȳ(t)|2 − ε log u.

The Hamiltonian Hε

Hε(t, y , p, u) := `ε(t, y , u) + p · (y + u).

The Pontryagin minimum principle yields that there exists pε such
that

ẏε(t) = yε(t) + uε(t), yε(0) = y0

−ṗε(t) = pε(t) + yε(t) − ȳ(t) , pε(T ) = yε(T ) − ȳ(T ),
uε(t) = argmin{Hε(t, yε(t), pε(t), v) : v ≥ 0}
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The above conditions yields

uε(t) := ϕε(−pε(t)),

where

ϕε(x) :=

{

1
2

(

x +
√

x2 + 4ε
)

if ε > 0,

max{x , 0} if ε = 0.
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Figure: Left: φε1 , φε2 and φ0. Right: φε1 − φ0, φε2 − φ0, for ε1 = 0.005,
ε2 = 0.001.
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Thus for ε ∈ [0,∞)

ẏε(t) = yε(t) + ϕε(−pε(t)),
−ṗε(t) = pε(t) + [yε(t) − ȳ(t)],

yε(0) = y0, pε(T ) = yε(T ) − ȳ(T ).

Define F : W 1,1 × W 1,1 × R+ → L1 × R × L1 × R by

F (y , p, ε)(·) :=









ẏ(·) − (·)y(·) − ϕε (−p(·))
y(0) − y0

ṗ(·) + p(·) + [y(·) − ȳ(·)]
p(T ) − [y(T ) − ȳ(T )]









.

It is easy to see that in general F is not differentiable at (y0, p0, 0).
Therefore, we cannot apply the standard implicit function theorem
in order to obtain an expansion of (yε, pε) around (y0, p0).
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Restoration theorem: [Graves 50]

Data:

• X , Y be Banach spaces and F : X × R+ → Y continuous.

• x̂ ∈ X such that
F (x̂ , 0) = 0.

Assumptions:

• DxF (x̂ , 0) exists and also its inverse.

• There exists c : R+ → R+ with c(β) ↓ 0 when β ↓ 0 such that

‖F (x ′, ε) − F (x , ε) − DxF (x̂ , 0)(x ′ − x)‖ ≤ c(β)‖x ′ − x‖.
for 0 ≤ ε ≤ β and x , x ′ ∈ B(x̂ , β).

Theorem

Under the assumptions above, F (·, ε) has, in a neighborhood of x̂,
a zero denoted by xε and

xε = x̂ − DxF (x̄ , 0)−1F (x̂ , ε) + r(ε) with ||r(ε)|| = o (‖F (x̂ , ε)‖) .
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Strict complementarity assumption

Except for a null Lebesgue set the point u0(t) satisfies the strict
complementarity conditions for the minimization problem

min {H0(t, y0(t), p0(t),w) : w ∈ R+} .

Alternative formulation

Except for a null Lebesgue set the curve p0(t) does not intersect
the x-axis, i.e. the function t ∈ [0,T ] → d

dt
ϕ0(−p0(t)) is a.s. well

defined.
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Theorem (Asymptotic expansion)

Under the strict complementarity assumption there exists
r(ε) = o(||F (y0, p0, ε)||1) such that

(

yε

pε

)

=

(

y0

p0

)

+ saux(ε) + r(ε),

where saux(ε) = O(||F (y0, p0, ε)||1) is the state and adjoint state of























Min 1
2

∫ T

0

(

|v(t)|2 + |σ(t)|2
)

dt + 1
2 |σ(T )|2,

s.t.
σ̇(t) = σ(t) + v(t) + [ϕε(−p0(t)) − ϕ0(−p0(t))],
σ(0) = 0, v(t) = 0 if p0(t) ≥ 0.
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Theorem (Error estimates for interior penalty)

Under the strict complementarity assumption we have that:
(i) The error estimates for uε, yε and pε are given by

||uε − u0||∞ + ||pε − p0||1,∞ + ||yε − y0||1,∞ = O(
√

ε).

(ii) Assume that {t ∈ [0,T ] ; p0(t) = 0} is finite and that:

p0(t0) = 0 ⇒ d

dt
p0(t0) 6= 0 (Transversality condition). (1)

Then

||uε − u0||1 + ||pε − p0||1,1 + ||yε − y0||1,1 = O(ε| log ε|). (2)

Similar results to (i) have been obtained by e.g. Weiser 05.

14 / 39



Deterministic control Stochastic Control

A word about the vector control case: Consider two controls
and an integral cost including the term

u(t)>R(t)u(t).

The solution u0(t) is the projection Π(R(t), ·) on R
2
+ of a

“certain” curve “involving” the adjoint state.
The singular zones are illustrated below:

•
Π0(R, z)

z

1
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Optimal control of a semilinear PDE

Let u ∈ Ls(Ω) (s ∈ [2,∞]) and yu ∈ W 2,s(Ω) the solution

{

−∆y(x) + φ(y(x)) = f (x) + u(x) for x ∈ Ω,
y(x) = 0 for x ∈ ∂Ω,

where Ω is bounded, open set in R
n with C 2 boundary, f ∈ Ls(Ω)

and φ is C2 Lipschitz nondecreasing. For s > n/2 (s = 2 if n ≤ 3),
define J0 : Ls(Ω) → R by

J0(u) := 1
2

∫

Ω
(yu(x) − ȳ(x))2dx + 1

2

∫

Ω
u(x)2dx .

Consider the optimization problem

Min J0(u) s.t. u ∈ U s
+ := {v ∈ Ls(Ω) / v(x) ≥ 0}. (CP s

0)
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Problem (CP s
0) is non-convex one. Nevertheless, it has at least

one solution. For u ∈ Ls(Ω) the adjoint state pu ∈ W 2,s(Ω), is
the solution of
{

−∆p(x) + φ′(yu(x))p(x) = yu(x) − ȳ(x) for x ∈ Ω,
p(x) = 0 for x ∈ ∂Ω.

Let u0 ∈ U s
+ be a solution of (CPs

0) and y0 and p0 the state and
adjoint state. Classical techniques yields

u0(x) = ϕ0(−p0(x)) for a.a. x ∈ Ω.
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The penalized local problem
Suppose that u0 is locally unique in the Ls(Ω) ball B̄s(u0, b). For
ε > 0, define

Jε(u) := J0(u) − ε

∫

Ω
log(u(x)),

and consider the problem

Min Jε(u) s. t. u ∈ U s
+ ∩ B̄s(u0, b) (CPb,s

ε ),

Problem (CPb,s
ε ) has at least one solution uε. Note that

u ∈ Ls(Ω) → −
∫

Ω
log(u(x))dx ∈ R ∪ {+∞}

is not continuous. However,

cε ≤ uε(x) ≤ K for a.a. x ∈ Ω.
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Therefore, uε solves

Min Jε(u) subject to u ∈ U s
+ ∩ B̄s(u0, b0) ∩ L∞(Ω)

Let yε and pε be the state and adjoint state associated to uε.
Optimality conditions yield

uε(x) = ϕε(−pε(x)) for a.a. x ∈ Ω.

Define F : W 1,s × W 1,s × R+ → Ls(Ω) × Ls(Ω) by

F (y , p, ε)(·) :=

(

∆y(·) + ϕε(−N−1p(·)) + f (·) − φ(y(·))
∆p(·) + y(·) − ȳ(·) − φ′(y(·))p(·)

)

.
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We assume

(H1) For the adjoint state p0, associated to any local solution u0

of (CPs
0), it holds that

meas ({x ∈ Ω / p0(x) = 0}) = 0.

(H2) At any local solution u0 of (CPs
0), the following

second-order sufficient condition holds

D2J0(u0)(h, h) > 0 for all h ∈ C (u0) \ {0}
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Theorem

Suppose that (H1), (H2) hold. Then, for b̄, ε small enough

problem (CP b̄,s
ε ) has a unique solution uε and there exists

r(ε) = o(||F (y0, p0, ε)||s ) such

(

yε

pε

)

=

(

y0

p0

)

+ saux(ε) + r(ε),

where saux(ε) is the state and adjoint state of























Min 1
2

∫

Ω

[

Nv2 +
(

1 − p0φ
′′(y0)

)

z2
]

dx ,

s.t.
−∆z(x) + φ′(y0(x))z(x) = v + [ϕε(q0) − ϕ0(q0)] for x ∈ Ω,
z(x) = 0 for x ∈ ∂Ω, v(x) = 0 if p0(x) ≥ 0.
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Theorem

We have

||uε − u0||∞ + ||pε − p0||2,s + ||yε − y0||2,s = O(
√

ε).

If in addition n ≤ 3 (hence s = 2) and

{x ∈ Ω / p0(x) = 0} =
⋃m

i=1 Ci . (Ci is a closed C2 curve).

There exist positive real numbers α > 0, 0 < δ̄ < 1 such that

|p0(x)| ≥ α dist(x ,Ci ) for all x ∈ C δ̄
i .

Then

||uε − u0||2 + ||pε − p0||2,2 + ||yε − y0||2,2 = O(ε
3
4 ).

For the first estimate, similar results found in Weiser, Gänzler and
Schiela 08.
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Consider:

• (Ω,F , P) a probability space. Consider a d-dimensional
Brownian motion W (t) and F its natural filtration

• U ⊆ R
m and

U := {u(t) is F − adapted u(t, ω) ∈ U, a.s., a.e.} .

• Consider the following controlled SDE:

dy(t) = f (t, y(t), u(t))dt + σ(t, y(t), u(t))dW (t) for t ∈ [0,T ]
y(0) = y0
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For the control, we will work we the following spaces

L2
F

:= {v ; v is F-adapted, ||v ||2 < +∞} ,
L∞
F

:= {v ; v is F-adapted, ||v ||∞ < +∞} ,

where
||v ||22 := E

(

∫ T

0 |v(t)|2dt
)

||v ||∞ := ess sup(t,ω)|v(t, ω)|
.

For the state space we work with

L2,∞([0,T ]; Rn) := {y ; y is F-adapted, ||y ||2,∞ < +∞} ,

where
||y ||22,∞ := E

(

supt∈[0,T ] |y(t)|2
)

.
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Lemma

Denoting by yu the solution associated to u, there exists C > 0
such that

||yu||22,∞ ≤ CE
(

|y0|2 + ||f (0, u(·))||22 + ||σ(0, u(·))||22
)

.

Consider the following stochastic optimal control problem:

(SP) :







Min J(u) := E

(
∫ T

0
`(t, u(t), yu(t))dt + φ(yu(T ))

)

subject to u ∈ U .

The existence of a solution for this problem is a very difficult task.
Only partial results, specially for the linear quadratic case, have
been obtained under our strong formulation.
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Variational approach

Let ū be a solution of (SP) and let ȳ its associated state. Define
the adjoint state (p̄, q̄) as the unique adapted solution of the
following BSDE (Bismut 73) .

dp(t) = −
[

`y (t, yu, u) + fy (t, yu, u)>p +
d

∑

i=1

σi
y (t, yu, u)>qi

]

dt

+ qdW (t)

p(T ) = φy (yu(T ))>.
(3)

Lemma

There exists a constant C > 0 such that

||p||22,∞ + ||q||22 ≤ C
(

||φy (yu(T ))||22 + ||`y (t, yu, u)||22
)

.
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Define the Hamiltonian H by

H(t, y , u, p, q) := `(t, y , u) + p · f (t, y , u) +
d

∑

i=1

qi · σi (t, x , u).

It holds

Theorem (Minimum principle (Bismut 73, Bensoussan 83))

If σu ≡ 0 then

ū(t) ∈ argmin {H(t, ȳ , v , p̄, q̄); v ∈ U} a.e., a.s.

When σ depends on u the above result was generalized by Peng in
1990, by introducing a generalized Hamiltonian and a second order
adjoint process.
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The logarithmic penalty in the stochastic case

We supose here that

`(t, y , u) = 1
2u2 + 1

2(y − ȳ(t))2

φ(y) = 1
2y2

f (t, y , u) = y + u
σ(t, y , u) = y + u

and

U : =
{

u ∈ L2
F / u(t, ω) ≥ 0 for a.a (t, ω) ∈ [0,T ] × Ω

}

.

Since the problem is strongly convex, it has a unique solution u0.
We denote by y0, (p0, q0) for the state and the adjoint state. The
SPMP implies yields that

u0(t, ω) = φ0(−p0(t, ω) − q0(t, ω)).
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We consider the problem, with the same dynamics than the initial
one but the cost ` is modified by

`ε(t, y , u) = `(t, y , u) − ε log u.

Strong convexity implies that the new problem admits a unique
solution uε. Denote by yε, (pε, qε) for the state and adjoint state.
The SPMP yields that

uε(t, ω) = φε(−pε(t, ω) − qε(t, ω)).

Moreover,

Proposition

There exist C > 0 such that

uε(t, ω) ≥ Cε

(1 + |pε(t, ω)| + |qε(t, ω)|) . for a.a. (t, ω) ∈ [0,T ]×Ω.
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Proposition

It holds that
J(uε) − J(u0) ≤ Tε.

Sketch of proof Consider the Lagrangian L : L2
F
× L2

F
→ R

defined as
L(u, λ) := J0(u) − 〈λ, u〉2,

and the dual function d : U → R by

d(λ) := inf
u∈L2

F

L(u, λ)

The SPMP, in its sufficient form, implies that

d

(

ε
1

uε

)

= J0(uε) − εT .

By weak duality

J0(uε) − εT ≤ min
u∈U

J0(u) = J0(u0).
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Strong convexity and regularity result for the BSDE yields

Theorem

For every ε > 0, the following estimates hold

||uε − u0||22 + ||yε − y0||22,∞ = O(ε)

||pε − p0||22,∞ + ||qε − q0||22 = O(ε)

The above result present a partial extension of the error estimates
obtained in the deterministic case.
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Optimality conditions in stochastic optimal control

We return to the general problem

Min J(u) := E

[

∫ T

0 `(t, yu(t), u(t))dt + φ(yu(T ))
]

subject to u ∈ U .
(SP)

Now we suppose that U is a general convex subset of L2
F

. It is not
necessarily defined by local constraints.

Let ū be a local solution of (SP) and denote by ȳ and (p̄, q̄) its
state and adjoint state.
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Set Hu(t) := Hu(t, ȳ(t), ū(t), p̄(t), q̄(t)) and define Υ1 : L∞
F

→ R

as

Υ1(v) := E

(∫ T

0
Hu(t) v(t)dt

)

.

We have

Proposition

Let v ∈ L∞
F

. Then, the following first order expansion of J around
ū holds

J(ū + v) = J(ū) + Υ1(v) + r1(v)

where Υ1(v) = O(||v ||2) and r1(v) = O(||v ||2∞).
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The radial cone to U at ū is defined as

RU (ū) := {v ∈ L2
F

; ∃ σ > 0 such that [ū, ū + σv ] ⊆ U}
The tangent cone to U at ū is defined as

TU (ū) = closure(RU (ū)).

We assume that:

(H1) TU (ū) = closure (RU (ū) ∩ L∞
F

) .

Important case:

U :=
{

u ∈ L2
F ; u(t, ω) ∈ U(t, ω), a.a. (t, ω) ∈ [0,T ] × Ω

}

.

Using the first order of J expansion + density arguments we obtain:

Proposition

The following first order optimality condition holds

Υ1(v) ≥ 0 for all v ∈ TU (ū).
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Let y1 = y1(v) be the unique solution of

dy1(t) = Df (t)(y1(t), v(t))dt + Dσ(t)(y1(t), v(t))dW (t),
y1(0) = 0.

and set

Υ2(v) := E

(
∫ T

0
H(y ,u)2(t)(v(t), y1(t))

2dt + φyy(ȳ (T ))(y1(T ))2
)

.

The following expansion holds:

Proposition

Assume that σuu ≡ 0. Then, the following expansion holds:

J(ū + v) = J(ū) + Υ1(v) + 1
2Υ2(v) + r2(v) for all v ∈ L∞F .

where Υ2(v) = O(||v ||22) and r2(v) = O(||v ||∞||v ||22).
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The normal and the critical cone to U at ū are defined by

NU (ū) :=
{

v∗ ∈ L2
F

/ 〈v∗, v〉2 ≤ 0, for all v ∈ TU (ū)
}

,
C (ū) := {v∗ ∈ TU(ū) / Υ1(v) ≤ 0} .

Definition

The set U is said to be polyhedric at ū ∈ U if for all v∗ ∈ NU (ū),
the set RU (ū) ∩ (v∗)⊥ is dense in TU (ū) ∩ (v∗)⊥ . If U is
polyhedric at each u ∈ U we say that U is polyhedric.

(H2) For every ū ∈ U and v∗ ∈ NU (ū), we have that

closure
(

RU (ū) ∩ L∞F ∩ (v∗)⊥
)

= closure
(

RU(ū) ∩ (v∗)⊥
)

.
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Theorem

Let ū be a local solution of (SP) and assume that

(i) Assumptions (H1)-(H2) hold.

(ii) We have that σuu = 0

(iii) The constraint set U is polyhedric.

Then, the following second order necessary condition hold at ū:

Υ2(v) ≥ 0 for all v ∈ C (ū).

Important case: Local constrains of the form

U(t, ω) = {x ∈ R
m / 〈ai(t, ω), x〉 ≤ bi(t, ω), for i ∈ Σ(t, ω) } .

with Σ(t, ω) finite.
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About second order sufficient conditions

We say that J satisfies the quadratic growth condition at u if there
exists α > 0 and a neighborhood V of u in L∞

F
([0,T ]; Rm) such

that
J(u′) ≥ J(u) + α||u′ − u||22 for all u′ ∈ V.

Evidently we have

Proposition

Suppose that σuu = 0. Then J sastisfies the growth condition at ū
iff there exists α > 0 such that Υ1(v) = 0 and Υ2(v) ≥ α||v ||22 for
all v ∈ L2

F
.
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