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M. Roman NOVIKOV École Polytechnique examinateur

M. Habib AMMARI École Normale Supérieure directeur





Transient Wave Imaging

Lili Guadarrama Bustos
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Introduction

Extensive work has been carried out in the past decade to image the elastic
properties of human soft tissues by inducing motion. This broad field, called elas-
ticity imaging or elastography, is based on the initial idea that shear elasticity can
be correlated with the pathology of tissues [60].

There are several techniques that can be classified according to the type of
mechanical excitation chosen (static compression, monochromatic, or transient vi-
bration) and the way these excitations are generated (externally or internally).
Different imaging modalities can be used to estimate the resulting tissue displace-
ments.

A very interesting approach to assessing elasticity is to use the acoustic radi-
ation force of an ultrasonic focused beam to remotely generate mechanical vibra-
tions in organs. The acoustic force is generated by the momentum transfer from
the acoustic wave to the medium. The radiation force essentially acts as a dipolar
source. A spatio-temporal sequence of the propagation of the induced transient
wave can be acquired, leading to a quantitative estimation of the viscoelastic pa-
rameters of the studied medium in a source-free region [33, 34].

Our aim in this thesis is to provide a solid mathematical foundation for this
transient technique and to design accurate methods for anomaly detection using
transient measurements. We consider both the acoustic and elastic cases. We
develop efficient reconstruction techniques from not only complete measurements
but also from limited-view transient data and adapt them in the case of viscous
media, where the elastic waves are attenuated and/or dispersed.

We begin with transient imaging in a non-dissipative medium. We develop
anomaly reconstruction procedures that are based on rigorously established inner
and outer time-domain asymptotic expansions of the perturbations in the transient
measurements that are due to the presence of the anomaly. It is worth mentioning
that in order to approximate the anomaly as a dipole with certain polarizability,
one has to truncate the high-frequency component of the far-field measurements.

Using the outer asymptotic expansion, we design a time-reversal imaging tech-
nique for locating the anomaly. Based on such expansions, we propose an optimiza-
tion problem for recovering geometric properties as well as the physical parameters
of the anomaly. We justify both theoretically and numerically that scale separation
can be used to obtain local and precise reconstructions. We show the differences
between the acoustic and the elastic cases, namely, the anisotropy of the focal spot
and the birth of a near fieldlike effect by time reversing the perturbation due to an
elastic anomaly. These interesting findings were experimentally observed and first
reported in [43]. Our asymptotic formalism clearly explains them.

In the case of limited-view transient measurements, we construct Kirchhoff-,
back-propagation-, MUSIC-, and arrival time-type algorithms for imaging small

1



2 INTRODUCTION

anomalies. Our approach is based on averaging of the limited-view data, using
weights constructed by the geometrical control method [29]. It is quite robust with
respect to perturbations of the non-accessible part of the boundary. Our main
finding is that if one can construct accurately the geometric control then one can
perform imaging with the same resolution using partial data as using complete
data.

We also use our asymptotic formalism to explain how to reconstruct a small
anomaly in a viscoelastic medium from wavefield measurements. The visco-elastic
medium obeys a frequency power-law. For simplicity, we consider the Voigt model,
which corresponds to a quadratic frequency loss. By using the stationary phase
theorem, we express the ideal elastic field without any viscous effect in terms of
the measured field in a viscous medium. We then generalize the imaging tech-
niques developed for a purely quasi-incompressible elasticity model to recover the
viscoelastic and geometric properties of an anomaly from wavefield measurements.

The thesis is organized as follows. In Chapter 1 we provide a mathematical
foundation for the acoustic radiation force imaging. From the rigorously estab-
lished asymptotic expansions of near- and far-field measurements of the transient
wave induced by the anomaly, we design asymptotic imaging methods leading to a
quantitative estimation of physical and geometrical parameters of the anomaly.

In Chapter 2 we consider a purely quasi-incompressible elasticity model. We
rigorously establish asymptotic expansions of near- and far-field measurements of
the transient elastic wave induced by a small elastic anomaly. Our proof uses layer
potential techniques for the modified Stokes system. Based on these formulas, we
design asymptotic imaging methods leading to a quantitative estimation of elastic
and geometrical parameters of the anomaly. Using time-reversal, we show how to
reconstruct the location and geometric features of the anomaly from the far-field
measurements. We put a particular emphasis on the difference between the acoustic
and the elastic cases, namely, the anisotropy of the focal spot and the birth of a
near fieldlike effect by time reversing the perturbation due to an elastic anomaly.

In Chapter 3 we consider for the wave equation the inverse problem of identify-
ing locations of point sources and dipoles from limited-view data. Using as weights
particular background solutions constructed by the geometrical control method, we
recover Kirchhoff-, back-propagation-, MUSIC-, and arrival time-type algorithms
by appropriately averaging limited-view data. We show both analytically and nu-
merically that if one can construct accurately the geometric control, then one can
perform imaging with the same resolution using limited-view as using full-view
data.

Chapter 4 is devoted to the problem of reconstructing a small anomaly in a
viscoelastic medium from wavefield measurements. Expressing the ideal elastic
field without any viscous effect in terms of the measured field in a viscous medium,
we generalize the methods described in Chapter 3 to recover the viscoelastic and
geometric properties of an anomaly from wavefield measurements.

The four chapters of this thesis are self-contained and can be read indepen-
dently. Results in this thesis will appear in [4, 8, 11, 37, 61].



Introduction en Francais

L’imagerie d’élasticité, ou élastographie consiste á imager les propriétés visco-
élastiques des tissus mous du corps humain en observant la réponse en déformation à
une excitation mécanique. Cette problématique a donné lieu dans les dix dernières
années à de nombreux travaux, motivés par la corrélation entre présence d’une
pathologie et observation d’un contrast d’élasticité [60]. Différentes techniques peu-
vent être mises en oeuvre selon le type d’excitation choisie, et la manière d’estimer
les déformations résultantes.

Parmi les techniques se trouve une trés intéréssante qui consiste à induire dans le
tissu mou une onde de déplacement et à observer la propagation de l’onde pendant
sa traversée du milieu d’intérêt. La résolution d’un problème inverse permet de
déduire des données de déplacement une estimation de la carte d’élasticité du milieu
[33, 34].

L’objectif du travail présenté dans ce document est de donner un cadre mathéma
tique rigoureux à ce technique, en même temps dessiner des méthodes effectives
pour la détection des anomalies à l’aide des mesures en régime temporel. On a
consideré le cadre acoustic et le cadre élastique. On a développé des techniques
de reconstruction efficaces pour des mesures complètes sur la frontière mais aussi
pour des mesures temporelles incomplètes, on a adapté ces techniques au cadre
viscoélastique, ca veut dire que les ondes sont atténué ou dispersé ou le deux.

On commence pour considérer une milieu sans dissipation. On a développé des
méthodes de reconstruction des anomalies qui sont basé sur des développements
asymptotiques de champ proche et de champ lointain, qui sont rigoureusement
établis, du perturbation des mesures cause par l’anomalie. Il faut remarquer que
pour approximer l’effet de l’anomalie par un dipôle il faut couper les composant de
haut fréquence des mesures de champ lointain.

Le développement asymptotique de champ lointain nous permet de développer
une technique de type régression temporel pour localiser l’anomalie. On propose
en utilisant le développement asymptotique de champ proche une problème de op-
timisation pour récupérer les propriétés géométriques et les paramètres physiques
de l’anomalie. On justifie d’une manière théorique et numérique que la séparation
des échelles permet de séparer les différentes informations codées aux différentes
échelles. On montre les différences entre le cadre acoustique et l’élastique, prin-
cipalement la tache focal anisotrope et l’effet de champ proche qu’on obtient en
faisant le retournement temporal de la perturbation cause par l’anomalie. Ces ob-
servations ont été observé expérimentalement et reporté pour la première fois en
[43], les quelles sont bien expliques par nos développements asymptotiques.

En ce qui concerne le cadre des mesures partiels, on développe des algorithmes
de type Kirchhoff, back-propagation, MUSIC et arrival-time pour localiser l’anomalie.
On utilise le méthode du control géométrique [29] pour aborder la problématique
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4 INTRODUCTION EN FRANCAIS

des mesures partiels, comme resultat on obtient une méthode qui est robuste en ce
qui concerne aux perturbations dans la partie de la frontière qui n’est pas accessi-
ble. Si on construit de manier précise le control géométrique, on obtient la même
résolution d’imagerie que dans le cadre des mesures complet.

On utilise les développements asymptotiques pour expliquer comment recon-
struire une petite anomalie dans un milieu visco-élastique à partir des mesures du
champ de déplacement. Dans le milieu visco-élastique la fréquence obéit une loi
de puissance, pour simplicité on considère le modèle Voigt qui correspond à une
fréquence en puissance deux. On utilise le théorème de la phase stationnaire pour
exprimer le champ dans un milieu sans effet de viscosité, que on nommera champ
idéal , en termes du champ dans un milieu visco-élastique. Après on généralise
les techniques d’imagerie développes pour le modelé purement élastique quasi in-
compressible pour reconstruire les propriétés visco-élastiques et géométriques d’une
anomalie a partir des mesures du champ de déplacement.

Le document s’articule de la facon suivante. Dans le chapitre 1, il est donné un
cadre mathématique rigoureux à l’imagerie par force de radiation acoustique. En
utilisant les expressions asymptotiques rigoureusement établis pour les mesures du
champ proche et lointaine de l’onde temporel cause par l’anomalie, on développe
des méthodes asymptotiques d’imagerie qui permet de estimer quantitativement les
paramètres physiques et géométriques de l’anomalie.

Dans le chapitre 2 on considère un modèle purement élastique quasi incom-
pressible. Dans le même esprit que le chapitre précèdent des expansions asympto-
tiques sont rigoureusement établis pour les mesures proche et lointaine de l’onde
élastique en régime temporel induit par une petite anomalie élastique. Dans les
démonstrations, on utilise des techniques de layer potentiel pour le systéme de
Stokes modifie. En utilisant les formules on développe des méthodes asymptotiques
d’imagerie qui permet de estimer quantitativement les paramètres physiques et
géométriques de l’anomalie. En utilisant une technique de retournement temporel
on montre comment reconstruire les propriétés géométriques et localiser l’anomalie
a partir des mesures du champ lointaine. On insiste sur les différences entre le cadre
acoustique et l’élastique en particulier la tache focal anisotrope et le effet de champ
proche qu’on obtient en faisant le retournement temporel de la perturbation cause
par l’anomalie élastique.

Dans le chapitre 3 on considère pour l’équation d’onde le problème inverse de
localiser point source et dipôles a partir des mesures partiels. En utilisant des
solutions particuliers construit par le méthode de control géométrique comme fonc-
tions de poids, on recouvre des algorithmes du type Kirchhoff, back-propagation,
MUSIC, arrival-time si on fait une moyen convenable sur les mesures partiels. On
montre de manier analytique et numérique que si on arrive à construire précisément
le control géométrique alors on peut effectuer l’imagerie avec la même résolution en
utilisant mesures partiels ou mesures complet.

Le chapitre 4 est dédié à l’extension des techniques de reconstruction au cadre
de la visco-élastique dynamique. A partir d’exprimer le champ idéal en termes des
mesures du champ dans une milieu visco-élastique , on généralise les méthodes décrit
dans le Chapitre 3 pour récupérer les propriétés visco-élastiques et géométriques de
l’anomalie a partir de mesures du champ desplacement.

Les cinq chapitres de cette thèse sont indépendants et peuvent etre lus séparément.
Les résultats de cette thèse seront publiés dans [4, 8, 11, 37, 61].
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CHAPTER 1

Transient acoustic imaging

Abstract. This chapter is devoted to provide a solid mathematical founda-

tion for a promising imaging technique based on the acoustic radiation force,

which acts as a dipolar source. From the rigorously established asymptotic ex-
pansions of near- and far-field measurements of the transient wave induced by

the anomaly, we design asymptotic imaging methods leading to a quantitative

estimation of physical and geometrical parameters of the anomaly.

1.1. Introduction

An interesting approach to assessing elasticity is to use the acoustic radiation
force of an ultrasonic focused beam to remotely generate mechanical vibrations in
organs [60]. The acoustic force is generated by the momentum transfer from the
acoustic wave to the medium. The radiation force essentially acts as a dipolar
source. A spatio-temporal sequence of the propagation of the induced transient
wave can be acquired, leading to a quantitative estimation of the viscoelastic pa-
rameters of the studied medium in a source-free region [33, 34].

The aim of this chapter is to provide a solid mathematical foundation for this
technique and to design new methods for anomaly detection using the radiation
force. These reconstruction procedures are based on rigorously established inner
and outer asymptotic expansions of the perturbations of the wavefield that are due
to the presence of the anomaly.

To be more precise, suppose that an anomaly D of the form

D = εB + z

is present, where ε is the (small) diameter of D, B is a reference domain, and z
indicates the location of D. A spherical wave

Uȳ(x, t) :=
δt=|x−ȳ|
4π|x− ȳ|

is generated by a point source located at ȳ far away from z. When this wave
hits the anomaly D, it is perturbed. We will derive asymptotic expansions of this
perturbation near and far away from the anomaly as ε tends to 0. In fact, we will
derive asymptotic expansions of the perturbation u − Uȳ after the high frequency
component is truncated, where u is the solution to

{
∂2
t u−∇ ·

(
χ(R3 \D) + kχ(D)

)
∇u = δx=ȳδt=0 in R

3×]0,+∞[,

u(x, t) = 0 for x ∈ R
3 and t� 0.

For example, after truncation of the high-frequency component of the solution, the
derived asymptotic expansion far away from the anomaly shows that when the
spherical wave Uȳ reaches the anomaly, it is polarized and emits a new wave. The
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8 1. TRANSIENT ACOUSTIC IMAGING

threshold of the truncation is determined by the diameter of the anomaly and is of
order O(ε−α) for 0 ≤ α < 1.

Derivations of asymptotic expansions in this chapter are rigorous. They are
based on careful and precise estimates of the dependence with respect to the fre-
quency of the remainders in associated asymptotic formulas for the Helmholtz equa-
tion. Using the outer asymptotic expansion, we design a time-reversal imaging
technique for locating the anomaly from measurements of the perturbations in the
wavefield in the far-field. It turns out that using the far-field measurement we can
reconstruct the location and the polarization tensor of the anomaly. However, It is
known that it is impossible to separate geometric features such as the volume from
the physical parameters using only the polarization tensor. We show that in order
to reconstruct the shape and to separate the physical parameters of the anomaly
from its volume one should use near-field perturbations of the wavefield. Based
on such expansions, we propose an optimization problem for recovering geometric
properties as well as the parameters of the anomaly. The connection between our
expansions and reconstruction methods for the wave equation in this chapter and
those for the Helmholtz equation is discussed in some detail.

In connection with this work, we shall mention on one hand the papers [103,
15, 62] for the derivations of asymptotic formula for the Helmholtz equation in the
presence of small volume anomalies and on the other hand, the review paper [26]
and the recent book [14] on different algorithms in wave imaging.

The chapter is organized as follows. We rigorously derive in Section 1.2 as-
ymptotic formulas for the Helmholtz equation and estimate the dependence of the
remainders in these formulas with respect to the frequency. Based on these esti-
mates, we obtain in Section 1.3 formulas for the transient wave equation that are
valid after truncating the high-frequency components of the fields. These formulas
describe the effect of the presence of a small anomaly in both the near and far
field. In Section 1.4 we propose different methods for detecting the physical and
geometric parameters of the anomaly. A time-reversal method is proposed to locate
the anomaly and find its polarization tensor from far-field measurements while an
optimization problem is formulated for reconstructing geometric parameters of the
anomaly and its conductivity.

1.2. Asymptotic expansions for the Helmholtz equation

In this section we rigorously derive asymptotic formulas for the Helmholtz
equation and estimate the dependence of the remainders in these formulas with
respect to the frequency. For doing so, we rely on a layer-potential technique.

1.2.1. Layer potentials. For ω ≥ 0, let

(1.1) Φω(x) = −e
√
−1ω|x|

4π|x| , x ∈ R
3, x 6= 0,

which is the fundamental solution for the Helmholtz operator ∆+ω2. For a bounded
Lipschitz domain Ω in R

3 and ω ≥ 0, let SωΩ be the single-layer potential for ∆+ω2,
that is,

(1.2) SωΩ[ϕ](x) =

∫

∂Ω

Φω(x− y)ϕ(y) dσ(y), x ∈ R
3,
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for ϕ ∈ L2(∂Ω). When ω = 0, S0
Ω is the single layer potential for the Laplacian.

Note that u = SωΩ[ϕ] satisfies the Helmholtz equation (∆ + ω2)u = 0 in Ω and in

R
3 \ Ω. Moreover, if ω > 0, it satisfies the radiation condition, namely,

(1.3)

∣∣∣∣
∂u

∂r
−
√
−1ωu

∣∣∣∣ = O

(
r−2

)
as r = |x| → +∞ uniformly in

x

|x| .

It is well-known that the normal derivative of the single-layer potential on
Lipschitz domains obeys the following jump relation

(1.4)
∂(SωΩ[ϕ])

∂ν

∣∣∣∣
±

(x) =

(
± 1

2
I + (K−ω

Ω )∗
)

[ϕ](x) a.e. x ∈ ∂Ω,

for ϕ ∈ L2(∂Ω), where (K−ω
Ω )∗ is the singular integral operator defined by

(K−ω
Ω )∗[ϕ](x) = p.v.

∫

∂Ω

∂Φω(x− y)

∂ν(x)
ϕ(y)dσ(y).

Here and throughout this chapter the subscripts ± denote the limit from outside
and inside of ∂Ω.

The operator S0
Ω is bounded from L2(∂Ω) into H1(∂Ω) and invertible in three

dimensions [102]. Moreover, one can easily see that there exists ω0 > 0 such that
for ω < ω0

(1.5) ‖SωΩ[ϕ] − S0
Ω[ϕ]‖H1(∂Ω) ≤ Cω‖ϕ‖L2(∂Ω)

for all ϕ ∈ L2(∂Ω) where C is independent of ω. It is also well-known that the
singular integral operator (K0

Ω)∗ is bounded on L2(∂Ω) (see [17] for example).
Similarly to (1.5), one can see that for there exists ω0 > 0 such that for ω < ω0

‖(K−ω
Ω )∗[ϕ] − (K0

Ω)∗[ϕ]‖L2(∂Ω) ≤ Cω‖ϕ‖L2(∂Ω)

for some constant C independent of ω. In view of (1.4), it amounts to

(1.6)

∥∥∥∥∥
∂(SωΩ[ϕ])

∂ν

∣∣∣∣
±
− ∂(S0

Ω[ϕ])

∂ν

∣∣∣∣
±

∥∥∥∥∥
L2(∂Ω)

≤ Cω‖ϕ‖L2(∂Ω).

1.2.2. Derivations of the asymptotic expansions. Let D be a smooth
anomaly with conductivity 0 < k 6= 1 < +∞ inside a background medium with
conductivity 1. Suppose that D = εB + z, where B is a domain which plays the
role of a reference domain, ε denotes the small diameter of D, and z indicates the
location of D.

Let ȳ be a point in R
3 such that |ȳ − z| >> ε, and let

(1.7) V (x, ω) := Φω(x− ȳ) = −e
√
−1ω|x−ȳ|

4π|x− ȳ| ,

so that V satisfies

(1.8) ∆V + ω2V = δx=ȳ,

together with the radiation condition (1.3).
Let v(x, ω) be the solution to

(1.9) ∇ · (χ(R3 \D) + kχ(D))∇v + ω2v = δx=ȳ

satisfying the radiation condition (1.3). In this section, we derive asymptotic ex-
pansion formula for v− V as ε tends to 0. An important feature of the asymptotic
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formula derived in this section is a careful estimate of the dependency of the re-
mainder term on the frequency.

Put w = v − V . Then w is a unique solution to

(1.10) ∇ · (χ(R3 \D) + kχ(D))∇w + ω2w = (1 − k)∇ · χ(D)∇V in R
3

with the radiation condition. In other words, w is the solution to

(1.11)





∆w +
ω2

k
w = (1 − 1

k
)ω2V in D,

∆w + ω2w = 0 in R
3 \D,

w|+ − w|− = 0 on ∂D,

∂w

∂ν

∣∣∣∣
+

− k
∂w

∂ν

∣∣∣∣
−

= (k − 1)
∂V

∂ν
,

w satisfies the radiation condition.

Therefore, w can be represented as

(1.12) w(x, ω) =





(
1

k
− 1)ω2

∫

D

Φ ω√
k
(x− y)V (y)dy + S

ω√
k

D [ϕ](x), x ∈ D,

SωD[ψ](x), x ∈ R
3 \D,

where (ϕ,ψ) ∈ L2(∂D)2 is the solution to the integral equation
(1.13)



S
ω√
k

D [ϕ] − SωD[ψ] = (1 − 1

k
)ω2

∫

D

Φ ω√
k
(· − y)V (y)dy,

k
∂S

ω√
k

D [ϕ]

∂ν

∣∣∣∣
−
− ∂SωD[ψ]

∂ν

∣∣∣∣
+

= (1 − k)ω2 ∂

∂ν

∫

D

Φ ω√
k
(· − y)V (y)dy + (1 − k)

∂V

∂ν
,

on ∂D. The unique solvability of (1.13) will be shown in the sequel.
Let

ϕ̃(x̃) = ϕ(εx̃+ z), x̃ ∈ ∂B,

and define ψ̃ likewise. Then, after changes of variables, (1.13) takes the form

(1.14)





S
εω√

k

B [ϕ̃] − SεωB [ψ̃] = F,

k
∂S

εω√
k

B [ϕ̃]

∂ν

∣∣∣∣
−
− ∂SεωB [ψ̃]

∂ν

∣∣∣∣
+

= G,
on ∂B,

where

F (x̃, ω) = (1 − 1

k
)εω2

∫

B

Φ εω√
k
(x̃− ỹ)V (εỹ + z)dỹ,(1.15)

G(x̃, ω) = (1 − k)εω2 ∂

∂ν

∫

B

Φ εω√
k
(x̃− ỹ)V (εỹ + z)dỹ + (1 − k)

∂V

∂ν
(εx̃+ z).(1.16)

Define an operator T : L2(∂B) × L2(∂B) → H1(∂B) × L2(∂B) by

(1.17) T (ϕ̃, ψ̃) :=


S

εω√
k

B [ϕ̃] − SεωB [ψ̃], k
∂S

εω√
k

B [ϕ̃]

∂ν

∣∣∣∣
−
− ∂SεωB [ψ̃]

∂ν

∣∣∣∣
+


 .
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We then decompose T as

(1.18) T = T0 + Tε,

where

(1.19) T0(ϕ̃, ψ̃) :=

(
S0
B [ϕ̃] − S0

B [ψ̃], k
∂S0

B [ϕ̃]

∂ν

∣∣∣∣
−
− ∂S0

B [ψ̃]

∂ν

∣∣∣∣
+

)
,

and Tε := T − T0. In view of (1.5) and (1.6), we have

(1.20) ‖Tε(ϕ̃, ψ̃)‖H1(∂B)×L2(∂B) ≤ Cεω(‖ϕ̃‖L2(∂B) + ‖ψ̃‖L2(∂B))

for some constant C independent of ε and ω.
Since S0

B : L2(∂B) → H1(∂B) is invertible, we readily see that T0 : L2(∂B) ×
L2(∂B) → H1(∂B) × L2(∂B) is invertible. In fact, we have the following lemma.

Lemma 1.1. For (f, g) ∈ H1(∂B) × L2(∂B) let (ϕ̃, ψ̃) = T−1
0 (f, g). Then

ϕ̃ = ψ̃ + (S0
B)−1[f ],

ψ̃ =

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1 [

k

k − 1
(−1

2
I + (K0

B)∗)(S0
B)−1[f ] − 1

k − 1
g

]
.

Thanks to (1.18) and (1.20), there is ε0 > 0 such that T is invertible if εω ≤ ε0
and

(1.21) T−1 = T−1
0 + E,

where the operator E satisfies

‖E(f, g)‖L2(∂B)×L2(∂B) ≤ Cεω(‖f‖H1(∂B) + ‖g‖L2(∂B))

for some constant C independent of ε and ω.

Suppose that εω ≤ ε0 < 1. Let (ϕ̃ω, ψ̃ω) be the solution to (1.14). Then by
(1.21) we have

(1.22) (ϕ̃ω, ψ̃ω) = T−1
0 (F,G) + E(F,G).

Observe that

(1.23) ‖F‖H1(∂B) ≤ Cεω2.

On the other hand, G can be written as

G(x̃) = (1 − k)∇V (z, ω) · ν(x̃) +G1(x̃),

where G1 satisfies

‖G1‖L2(∂B) ≤ Cεω2.

Therefore, we have

(1.24) (ϕ̃ω, ψ̃ω) = T−1
0 (0, (1 − k)∇V (z) · ν) + T−1

0 (F,G1) + E(F,G).

Note that

‖T−1
0 (F,G1) + E(F,G)‖L2(∂B)×L2(∂B) ≤ Cεω2.
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We also need asymptotic expansion of ∂ eϕω

∂ω and ∂ eψω

∂ω . By differentiating both
sides of (1.14) with respect to ω, we obtain
(1.25)



S
εω√

k

B

[
∂ϕ̃ω
∂ω

]
− SεωB

[
∂ψ̃ω
∂ω

]
=
∂F

∂ω

− ε

4π
√
k

∫

∂B

e
√
−1 εω√

k
|·−ỹ|

ϕ̃ω(ỹ)dσ(ỹ) +
ε

4π

∫

∂B

e
√
−1εω|·−ỹ|ψ̃ω(ỹ)dσ(ỹ),

k
∂

∂ν
S

εω√
k

B

[
∂ϕ̃ω
∂ω

] ∣∣∣∣
−
− ∂

∂ν
SεωB

[
∂ψ̃ω
∂ω

] ∣∣∣∣
+

=
∂G

∂ω

− ε

4π
√
k

∂

∂ν

∫

∂B

e
√
−1 εω√

k
|·−ỹ|

ϕ̃ω(ỹ)dσ(ỹ) +
ε

4π

∂

∂ν

∫

∂B

e
√
−1εω|·−ỹ|ψ̃ω(ỹ)dσ(ỹ)

on ∂B. One can see from (1.15) and (1.16) that

∂F

∂ω
= O(εω) and

∂G1

∂ω
= O(εω).

Using the same argument as before, we then obtain

(1.26) (
∂ϕ̃ω
∂ω

,
∂ψ̃ω
∂ω

) = T−1
0

(
0, (1 − k)∇∂V

∂ω
(z, ω) · ν

)
+O(εω),

where the equality holds in L2(∂B) × L2(∂B).
We obtain the following proposition from Lemma 1.1 (with f = 0), (1.24), and

(1.26).

Proposition 1.2. Let (ϕ̃ω, ψ̃ω) be the solution to (1.14). There exists ε0 > 0
such that if εω < ε0, then the following asymptotic expansions hold:

ϕ̃ω =

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1

[ν] · ∇V (z, ω) +O(εω2),(1.27)

ψ̃ω =

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1

[ν] · ∇V (z, ω) +O(εω2),(1.28)

and

∂ϕ̃ω
∂ω

=

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1

[ν] · ∇∂V

∂ω
(z, ω) +O(εω),(1.29)

∂ψ̃ω
∂ω

=

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1

[ν] · ∇∂V

∂ω
(z, ω) +O(εω),(1.30)

where all the equalities hold in L2(∂B).

We are now ready to derive the inner expansion of w = v − V . Let Ω be a set

containing D and let Ω̃ = 1
εΩ− z. After changes of variables, (1.12) takes the form

(1.31)

w(εx̃+z, ω) =





(
1

k
− 1)ε2ω2

∫

B

Φ εω√
k
(x̃− ỹ)V (εỹ + z)dỹ + εS

εω√
k

B [ϕ̃ω](x̃), x̃ ∈ B,

εSεωB [ψ̃ω](x̃), x̃ ∈ Ω̃ \B.
Since ∥∥S

εω√
k

B [ϕ̃ω] − S0
B [ϕ̃ω]

∥∥
H1(∂B)

≤ Cεω‖ϕ̃ω‖L2(∂B),
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we have

w(εx̃+ z, ω) =

{
εS0
B [ϕ̃ω](x̃) +O(ε2ω2), x̃ ∈ B,

εS0
B [ψ̃ω](x̃) +O(ε2ω), x̃ ∈ Ω̃ \B.

Here we assumed that ω ≥ 1 since the case when ω < 1 is much easier to handle.
It then follows from (1.27) and (1.28) that

w(εx̃+ z, ω) = εS0
B

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1

[ν](x̃) · ∇V (z, ω) +O(ε2ω2), x̃ ∈ Ω̃.

On the other hand, we have

∂w

∂ω
(εx̃+ z, ω) =





εS
εω√

k

B

[
∂ϕ̃ω
∂ω

]
(x̃) +O(ε2ω), x̃ ∈ B,

εS
εω√

k

B

[
∂ψ̃ω
∂ω

]
(x̃) +O(ε2ω), x̃ ∈ Ω̃ \B.

Therefore, we have from (1.29) and (1.30)

∂w

∂ω
(εx̃+z, ω) = εS0

B

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1

[ν](x̃)·∇∂V

∂ω
(z, ω)+O(ε2ω), x̃ ∈ Ω̃.

Let

v̂1(x̃) := S0
B

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1

[ν](x̃).

Note that v̂1 is a vector-valued function. It is well-known that v̂1 is the solution to

(1.32)





∆v̂1 = 0 in R
3 \B,

∆v̂1 = 0 in B,

v̂1|− − v̂1|+ = 0 on ∂B,

k
∂v̂1
∂ν

∣∣∣∣
−
− ∂v̂1

∂ν

∣∣∣∣
+

= (k − 1)ν on ∂B,

v̂1(x̃) = O(|x̃|−2) as |x̃| → +∞.

We finally obtain the following theorem.

Theorem 1.3. Let Ω be a bounded domain containing D and let

(1.33) R(x, ω) = v(x, ω) − V (x, ω) − εv̂1

(
x− z

ε

)
· ∇V (z, ω).

There exists ε0 > 0 such that if εω < ε0, then

(1.34) R(x, ω) = O(ε2ω2), ∇xR(x, ω) = O(εω2) x ∈ Ω.

Moreover,

(1.35)
∂R

∂ω
(x, ω) = O(ε2ω), ∇x

(
∂R

∂ω

)
(x, ω) = O(εω) x ∈ Ω.

Note that the estimates for ∇xR in (1.34) and ∇x(
∂R
∂ω ) in (1.35) can be derived

using (1.31).



14 1. TRANSIENT ACOUSTIC IMAGING

Based on Theorem 1.3 we can easily derive an asymptotic expansion of v(x, ω)−
V (x, ω) for |x−z| ≥ C > 0 for some constant C. For doing so, we first define the po-
larization tensor M = M(k,B) associated with the domain B and the conductivity
contrast k, 0 < k 6= 1 < +∞, as follows (see [17]):

(1.36) M(k,B) := (k − 1)

∫

B

∇(v̂1(x̃) + x̃) dx̃.

It should be noticed that the polarization tensor M can be explicitly computed
for balls and ellipsoids in three-dimensional space. We also list important properties
of M [17]:

(i) M is symmetric.
(ii) If k > 1, thenM is positive definite, and it is negative definite if 0 < k < 1.
(iii) The following Hashin-Shtrikman bounds

(1.37)





1

k − 1
trace(M) ≤ (2 +

1

k
)|B|,

(k − 1) trace(M−1) ≤ 2 + k

|B| ,

hold [80, 39], where trace denotes the trace of a matrix.

It is worth mentioning that the equality in the second inequality in (1.37) holds if
and only if B is an ellipsoid [72].

Note that u := v − V satisfies

(∆ + ω2)u = (k − 1)∇ · χ(D)∇v,
with the radiation condition. Therefore, using the Lipmann-Schwinger integral
representation

v(x, ω) − V (x, ω) = (1 − k)

∫

D

∇v(y, ω) · ∇Φω(x− y) dy,

together with the asymptotic expansion of v in D in Theorem 1.3, we obtain that
for x away from z, there exists ε0 > 0 such that if εω < ε0, then

v(x, ω) − V (x, ω) = (1 − k)

∫

D

(
∇V (y, ω) + ∇v̂1(

y − z

ε
) · ∇V (z, ω)

)
· ∇Φω(x− y) dy

+ O(ε4ω3).

Now if we approximate ∇V (y, ω) and ∇Φω(x− y) for y ∈ D by ∇V (z, ω) and
∇Φω(x− z), respectively, we obtain the following theorem.

Theorem 1.4. Let Ω′ be a compact region away from D (dist(Ω′,D) ≥ C > 0
for some constant C) and let

(1.38) R(x, ω) = v(x, ω) − V (x, ω) + ε3∇V (z, ω)M(k,B)∇Φω(x− z).

There exists ε0 > 0 such that if εω < ε0, then

(1.39) R(x, ω) = O(ε4ω3), x ∈ Ω′.

Moreover,

(1.40)
∂R

∂ω
(x, ω) = O(ε4ω2), x ∈ Ω′.
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Note that, in view of the asymptotic formulae derived in [63] for the case of
a circular anomaly, the range of frequencies for which formula (1.39) is valid is
optimal.

1.3. Far- and near-field asymptotic formulas for the transient wave
equation

Let D be a smooth anomaly with conductivity 0 < k 6= 1 < +∞ inside a
background medium with conductivity 1. Suppose that D = εB + z as before.

Let ȳ be a point in R
3 such that |ȳ − z| ≥ C > 0 for some constant C. Define

(1.41) Uȳ(x, t) :=
δt=|x−ȳ|
4π|x− ȳ| ,

where δ is the Dirac mass.
Uȳ is the Green function associated with the retarded layer potentials and

satisfies [53, 58]
{

(∂2
t − ∆)Uȳ(x, t) = δx=ȳδt=0 in R

3 × R,

Uȳ(x, t) = 0 for x ∈ R
3 and t� 0.

For ρ > 0, we define the operator Pρ on tempered distributions by

(1.42) Pρ[ψ](t) =

∫

|ω|≤ρ
e−

√
−1ωtψ̂(ω) dω,

where ψ̂ denotes the Fourier transform of ψ. The operator Pρ truncates the high-
frequency component of ψ. Since

Ûȳ(x, ω) = V (x, ω) :=
e
√
−1ω|x−ȳ|

4π|x− ȳ|
using the notation in (1.7), we have

(1.43) Pρ[Uȳ](x, t) =

∫

|ω|≤ρ
e−

√
−1ωtV (x, ω)dω =

ψρ(t− |x− ȳ|)
4π|x− ȳ| for x 6= ȳ,

where

(1.44) ψρ(t) :=
2 sin ρt

t
=

∫

|ω|≤ρ
e−

√
−1ωtdω.

One can easily show that Pρ[Uȳ] satisfies

(1.45) (∂2
t − ∆)Pρ[Uȳ](x, t) = δx=ȳψρ(t) in R

3 × R.

We consider the wave equation in the whole three-dimensional space with ap-
propriate initial conditions:

(1.46)

{
∂2
t u−∇ ·

(
χ(R3 \D) + kχ(D)

)
∇u = δx=ȳδt=0 in R

3×]0,+∞[,

u(x, t) = 0 for x ∈ R
3 and t� 0.

The purpose of this section is to derive asymptotic expansions for Pρ[u −
Uȳ](x, t). For that purpose, we observe that

(1.47) Pρ[u](x, t) =

∫

|ω|≤ρ
e−

√
−1ωtv(x, ω)dω,
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where v is the solution to (1.9). Therefore, according to Theorem 1.3, we have

Pρ[u− Uȳ](x, t) − εv̂1

(
x− z

ε

)
· ∇Pρ[Uȳ](x, t) =

∫

|ω|≤ρ
e−

√
−1ωtR(x, ω)dω.

Suppose that |t| ≥ c0 for some positive number c0 (c0 is of order the distance
between ȳ and z). Then, we have by an integration by parts
∣∣∣∣∣

∫

|ω|≤ρ
e−

√
−1ωtR(x, ω)dω

∣∣∣∣∣ =
∣∣∣∣∣
1

t

∫

|ω|≤ρ

d

dω
e−

√
−1ωtR(x, ω)dω

∣∣∣∣∣

≤ 1

|t| (|R(x, ρ)| + |R(x,−ρ)|) +

∫

|ω|≤ρ

∣∣∣∣
∂

∂ω
R(x, ω)

∣∣∣∣ dω

≤ Cε2ρ2.

Since εv̂1
(
x−z
ε

)
· ∇Pρ[Uȳ] = O(ερ), we arrive at the following theorem.

Theorem 1.5. Suppose that ρ = O(ε−α) for some α < 1. Then

Pρ[u− Uȳ](x, t) = εv̂1

(
x− z

ε

)
· ∇Pρ[Uȳ](x, t) +O(ε2(1−α)).

We now derive a far-field asymptotic expansion for Pρ[u− Uȳ]. Define

(1.48) Uz(x, t) :=
δt=|x−z|
4π|x− z| .

We have

Pρ[Uz](x, t) =

∫

|ω|≤ρ
e−

√
−1ωtΦω(x− z) dω.

From Theorem 1.4, we compute
∫

|ω|≤ρ
e−

√
−1ωt(v(x, ω) − V (x, ω)) dω

= −ε3
∫

|ω|≤ρ
e−

√
−1ωt∇V (z, ω)M(k,B)∇Φω(x− z) dω

+

∫

|ω|≤ρ
e−

√
−1ωtR(x, ω) dω,

where the remainder is estimated by
∫

|ω|≤ρ
e−

√
−1ωtR(x, ω) dω = O(ε4(1−

3
4α)).

Since∫

|ω|≤ρ
e−

√
−1ωt∇V (z, ω)M(k,B)∇Φω(x− z) dω

=

∫

R

∇(
ψρ(t− τ − |x− z|)

4π|x− z| )M(k,B)∇(
ψρ(τ − |z − ȳ|)

4π|z − ȳ| ) dτ,

and

ε3
∫

R

∇Pρ[Uz](x, t− τ) ·M(k,B)∇Pρ[Uȳ](z, τ) dτ = O(ε3ρ2),

the following theorem holds.
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Theorem 1.6. Suppose that ρ = O(ε−α) for some α < 1. Then for |x − z| ≥
C > 0, the following far-field expansion holds

Pρ[u−Uȳ](x, t) = −ε3
∫

R

∇Pρ[Uz](x, t−τ) ·M(k,B)∇Pρ[Uȳ](z, τ) dτ +O(ε4(1−
3
4α))

for x away from z.

It should be noted that Theorem 1.6 says that the perturbation due to the
anomaly is (approximately) a wave emitted from the point z at t = T := |z − ȳ|.
The anomaly behaves then like a dipolar source. This is the key point of our
approach for designing time-reversal imaging procedure in the next section. We also
emphasize that the approximation holds after truncation of the frequencies higher
than ε−α (α < 1). This has an important meaning in relation to the resolution
limit in imaging as explained in the next section. Moreover, from the optimality of
the range of frequencies for which formula (1.38) is valid, it follows that α < 1 is
indeed the optimal exponent.

1.4. Reconstruction methods

A model problem for the acoustic radiation force imaging is (1.46), where ȳ
is the location of the pushing ultrasonic beam. The transient wave u(x, t) is the
induced wave. The inverse problem is to reconstruct the shape and the conductivity
of the small anomaly D from either far-field or near-field measurements of u.

1.4.1. Time-reversal. Let w(x, t) := u(x, t)−Uȳ(x, t). We present a method
for detecting the location z of the anomaly from measurements of w for x away from
z. To detect the anomaly one can use a time-reversal technique. The main idea of
time-reversal is to take advantage of the reversibility of the wave equation in a non-
dissipative unknown medium in order to back-propagate signals to the sources that
emitted them. See [54, 41, 89, 55]. Some interesting mathematical works started
to investigate different aspects of time-reversal phenomena: see, for instance, [28]
for time-reversal in the time-domain, [51, 84, 64, 44, 45] for time-reversal in the
frequency domain, and [57, 36] for time-reversal in random media.

In the context of anomaly detection, one measures the perturbation of the
wave on a closed surface surrounding the anomaly, and retransmits it through the
background medium in a time-reversed chronology. Then the perturbation will
travel back to the location of the anomaly.

Suppose that we are able to measure the perturbation w and its normal deriv-
ative at any point x on a sphere S englobing the anomaly D. The time-reversal
operation is described by the transform t 7→ t0− t. Both the perturbation w and its
normal derivative on S are time-reversed and emitted from S. Then a time-reversed
perturbation, denoted by wtr, propagates inside the volume Ω surrounded by S.
Taking into account the definition (1.48) of the outgoing fundamental solution, spa-
tial reciprocity and time reversal invariance of the wave equation, the time-reversed
perturbation wtr due to the anomaly D in Ω should be defined as follows.

Definition 1.7. The time-reversed perturbation is given by

wtr(x, t) =

∫

R

∫

S

[
Ux(x

′, t−s)∂w
∂ν

(x′, t0−s)−
∂Ux
∂ν

(x′, t−s)w(x′, t0−s)
]
dσ(x′) ds,
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where

Ux(x
′, t− s) =

δt=s+|x−x′|
4π|x− x′| .

However, with the high frequency component of w truncated, we take the fol-
lowing definition:

(1.49)

wtr(x, t) =

∫

R

∫

S

[
Ux(x

′, t− s)
∂Pρ[u− Uȳ]

∂ν
(x′, t0 − s)

−∂Ux
∂ν

(x′, t− s)Pρ[u− Uȳ](x
′, t0 − s)

]
dσ(x′) ds .

According to Theorem 1.6, we have

Pρ[u− Uȳ](x, t) ≈ −ε3
∫

R

∇Pρ[Uz](x, t− τ) · p(z, τ) dτ

where

(1.50) p(z, τ) = M(k,B)∇Pρ[Uȳ](z, τ).
Therefore it follows that

wtr(x, t) ≈ −ε3
∫

R

p(z, τ) ·
∫

R

∫

S

[
Ux(x

′, t− s)
∂∇zPρ[Uz]

∂ν
(x′, t0 − s− τ)

−∂Ux
∂ν

(x′, t− s)∇zPρ[Uz](x
′, t0 − s− τ)

]
dσ(x′) ds dτ,

≈ −ε3
∫

R

p(z, τ) · ∇z

∫

R

∫

S

[
Ux(x

′, t− s)
∂Pρ[Uz]

∂ν
(x′, t0 − s− τ)

−∂Ux
∂ν

(x′, t− s)Pρ[Uz](x
′, t0 − s− τ)

]
dσ(x′) ds dτ.

Multiplying the equation
(
∂2
s − ∆x′

)
Ux(x

′, t− s) = δs=tδx′=x

by Pρ[Uz](x
′, t0 − τ − s), integrating by parts, and using the equation

(
∂2
s − ∆x′

)
Pρ[Uz](x

′, t0 − τ − s) = ψρ(s− t0 + τ)δx′=z in R
3 × R,

we have

(1.51)

∫

R

∫

S

[
Ux(x

′, t− s)
∂Pρ[Uz]

∂ν
(x′, t0 − s− τ)

−∂Ux
∂ν

(x′, t− s)Pρ[Uz](x
′, t0 − s− τ)

]
dσ(x′) ds

= Pρ[Uz](x, t0 − τ − t) − Pρ[Uz](x, t− t0 + τ).

It then follows that

(1.52) wtr(x, t) ≈ −ε3
∫

R

p(z, τ) ·∇z

[
Pρ[Uz](x, t0−τ− t)−Pρ[Uz](x, t− t0 +τ)

]
dτ.

The formula (1.52) can be interpreted as the superposition of incoming and
outgoing waves, centered on the location z of the anomaly. To see it more clearly,
let us assume that p(z, τ) is concentrated at τ = T := |z − ȳ|, which is reasonable
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since p(z, τ) = M(k,B)∇Pρ[Uȳ](z, τ) peaks at τ = T . Under this assumption, the
formula (1.52) takes the form

(1.53) wtr(x, t) ≈ −ε3p · ∇z

[
Pρ[Uz](x, t0 − T − t) − Pρ[Uz](x, t− t0 + T )

]
,

where p = p(z, T ). It is clearly sum of incoming and outgoing spherical waves.
Formula (1.53) has an important physical interpretation. By changing the

origin of time, T can be set to 0 without loss of generality. By taking Fourier
transform of (1.52) over the time variable t, we obtain that

(1.54) ŵtr(x, ω) ∝ ε3p · ∇
(

sin(ω|x− z|)
|x− z|

)
,

where ω is the wavenumber. This shows that the anti-derivative of time-reversal
perturbation wtr focuses on the location z of the anomaly with a focal spot size
limited to one-half the wavelength which is in agreement with the Rayleigh resolu-
tion limit. It should be pointed out that in the frequency domain, (1.54) is valid
only for λ = 2π/ω � ε, ε being the characteristic size of the anomaly. In fact,
according to Theorem 1.6, it is valid for frequencies less than O(ε−α) for α < 1.

In the frequency domain, suppose that one measures the perturbation v − V
and its normal derivative on a sphere S englobing the anomaly D. To detect the
anomaly D one computes

ŵ(x, ω) :=

∫

S

[
Φω(x− x′)

∂(v − V )

∂ν
(x′, ω) − (v − V )(x′, ω)

∂Φω
∂ν

(x− x′)

]
dσ(x′),

in the domain Ω surrounded by S. Observe that ŵ(x, ω) is a solution to the
Helmholtz equation: (∆ + ω2)ŵ = 0 in Ω.

An identity parallel to (1.51) can be derived in the frequency domain. Indeed,
it plays a key role in achieving the resolution limit. Applying Green’s theorem to
Φω(x− x′) and Φω(z − x′), we have

(1.55)

∫

S

[
Φω(x− x′)

∂Φω
∂ν

(z − x′) − Φω(z − x′)
∂Φω
∂ν

(x− x′)

]
dσ(x′)

= 2
√
−1=mΦω(z − x).

In view of (1.55), we immediately find from the asymptotic expansion in Theorem
1.4 that

(1.56) (v − V )(x, ω) ∝ ε3p̂ · ∇
(

sin(ω|x− z|)
|x− z|

)
,

where p̂ = M(k,B)∇V (z, ω). The above approximation shows that the anti-
derivative of ŵ(x, ω) has a peak at the location z of the anomaly and also proves
the Rayleigh resolution limit. Note that (1.54) is in a good agreement with (1.56)
even though the high-frequency component has been truncated.

It is also worth noticing that a formula similar to (1.56) can be derived in an
inhomogeneous medium Ω surrounded by S. We have

∫

S

[
G(x− x′, ω)

∂G
∂ν

(x′ − z, ω) − G(x′ − z, ω)
∂G
∂ν

(x− x′, ω)

]
dσ(x′)

= 2
√
−1=mG(x− z, ω),(1.57)

where G is the Green function in the inhomogeneous medium Ω. Identity (1.57)
shows that the sharper the behavior of =mG at z is, the higher is the resolution.
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It would be quite interesting to see how the behavior of =mG depends on the
heterogeneity of the medium.

Once the location z of the anomaly is found, the polarization tensor associ-
ated with the anomaly D can be found using the formula in Theorem 1.6. Since
M(k,D) = ε3M(k,B), we minimize over symmetric positive matrices M(k,D) the
quantity

L∑

l=1

∣∣∣∣Pρ[u− Uȳ](xl, t) +

∫

R

∇Pρ[Uz](xl, t− τ)M(k,D) · ∇Pρ[Uȳ](z, τ) dτ
∣∣∣∣,

for L measurement points x1, . . . , xL. It is worth emphasizing that the polarization
tensor M(k,D) contains the mixed information of volume |D| and the conductivity
k of the anomaly and it is not possible to separate these two information from M .

However, from the near-field measurements, the shape and the conductivity of
the anomaly D can be approximately reconstructed.

1.4.2. Kirchhoff imaging. Suppose that |z − ȳ| � 1 and |x− z| � 1. Then

(1.58) v(x, ω) − V (x, ω) ≈ −ω2ε3

16π2

(z − ȳ)M(k,B)(z − x)

|z − ȳ|2|z − x|2 e−
√
−1ωz·( ȳ

|ȳ|+
x
|x| ),

which holds for a broadband of frequencies. Then, for a given search point zS , the
Kirchhoff imaging functional can be written as

IKI(z
S ,

x

|x| ) :=
1

L

∑

ωl,l=1,...,L

1

ω2
l

e
√
−1ωlz

S ·( ȳ
|ȳ|+

x
|x| )(v(x, ωl) − V (x, ωl)),

where L is the number of frequencies (ωl). See [52] and the references therein.
In view of (1.58), we have

IKI(z
S ,

x

|x| ) ≈ Cd

∫

ω

e
√
−1ωl(z

S−z)·( ȳ
|ȳ|+

x
|x| ) dω,

for some constant Cd independent of ω and zS and therefore,

IKI(z
S ,

x

|x| ) ≈ Cdδ(zS−z)·( ȳ
|ȳ|+

x
|x| )=0.

Hence, to determine the location z of the anomaly, one needs three different mea-
surement directions x/|x|.

1.4.3. Back-propagation imaging. From single frequency measurements,
one can detect the anomaly using a back-propagation-type algorithm. Let θl =
xl/|xl| for l = 1, . . . , L, be L measurement directions. For a given search point zS ,
the back-propagation imaging functional is given by

IBP(zS) :=
1

L

∑

θl,l=1,...,L

e
√
−1ωzS ·( ȳ

|ȳ|+θl)(v(rθl, ω) − V (rθl, ω)), r � 1.

Since for sufficiently large L, since

1

L

L∑

l=1

e
√
−1ωθl·x ≈

{
j0(ω|x|) for d = 3,

J0(ω|x|) for d = 2,
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where j0 is the spherical Bessel function of order zero and J0 is the Bessel function
of the first kind and of order zero, it follows from (1.58) that

IBP(zS) ≈ Cd

{
j0(ω|z − zS |) for d = 3,

J0(ω|z − zS |) for d = 2.

for some constant Cd independent of zS .
Note that IBP uses a single frequency which can be selected as the highest one

among those that maximize the signal-to-noise ratio.

1.4.4. Near-field imaging. In view of Theorem 1.5, to reconstruct the shape
and the conductivity of the anomaly D we solve analogously to [10] the following
minimization problem. Suppose that the location z of the anomaly D = z+εB and
its characteristic size ε are known. Let W be a domain containing D and define the
functional

L(f, k) =
1

2∆T

∫ T+∆T
2

T−∆T
2

∥∥∥∥Pρ[u− Uȳ](x, t) − εv̂1

(
x− z

ε

)
· ∇Pρ[Uȳ](x, t)

∥∥∥∥
2

L2(W )

dt

+ β

∫

W

|∇f(x)| dx,

where k is the conductivity of D, β is a regularization parameter, f is the binary
representation of D, i.e.,

f(x) =

{
1 if x ∈ D,

−1 if x /∈ D,

and v̂1 is the function corresponding to B as defined in (1.32). Here it suffices to
take ∆T to be of order O( ε√

k
). We then minimize over binary functions f and

constants 0 < k < +∞
(1.59) min

k,f
L(f, k)

subject to (1.32). We may relax the minimization problem (1.59) to function of
bounded variation. We refer to [10] for the details.

Note that we have to choose a window W that is not so small to preserve some
stability and not so big so that we can gain some accuracy. We refer to [9] for a
discussion on the critical size of the window W that switches between far-field and
near-field reconstructions.

1.5. Numerical illustrations

To illustrate our main findings in this chapter, we first tested the accuracy of
the derived asymptotic expansions. Then we implemented the imaging algorithms
for anomaly detection.

The configuration is the following: a spherical anomaly of radius 0.05 and
physical parameter k = 3 is placed at z = (−0.1, 0, 0). The source is at ȳ = (3, 0, 0).
To truncate the high frequencies, we took ρ = 2.15 or equivalently α = 1/3.

Figure 1.1 shows comparisons between the fields computed by the asymptotic
formulas and by the direct Freefem++ code. The Freefem++ code is based on a
finite element discretization in space and a finite difference scheme in time. We
have chosen a Crank-Nicolson scheme with step ∆t = 0.01. The near fields were
computed at x = (−0.3, 0, 0) and the far-fields were computed at x = (−8, 0, 0).
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The fields obtained from the asymptotic formulas are in good agreement with those
computed by the Freefem++ code.
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Figure 1.1. Comparisons between the near fields (on the left) and
between the far-fields (on the right).

Now we turn to imaging. Figure 1.2 shows the performance of the time-reversal
for detecting the anomaly.

Figure 1.2. Detection result using the time-reversal technique.
Here ’*’ shows the transceiver location.

Consider a linear array of 58 receivers placed parallel to the y-axis and spaced
by half a wavelength. Figure 1.3 shows the detection result by back-propagation.

Now, consider receivers located at

[4λ cos(π/4), 4λ sin(π/4), 0], [4λ cos(π/4),−4λ sin(π/4), 0], [4λ cos(π/4), 0, 4λ sin(π/4)].

Figures 1.4, 1.5, and 1.6 show the results of the Kirchhoff imaging functionals
for these three different receiver locations. The position of the anomaly is obtained
as the intersection of the three planes where each of the Kirchhoff functional attains
its maximum. See Figure 1.8.
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Figure 1.3. Real and imaginary parts of the Back-propagation
functional. Here ’*’ and ’+’ respectively show the transceiver and
receiver locations.

Figure 1.4. Real and imaginary part of the Kirchhoff functional
when the receiver is at [4λ cos(π/4), 4λ sin(π/4), 0], ’*’ indicates
the transceiver location and ’+’ the receiver location.

Figure 1.5. Real and imaginary part of the Kirchhoff functional
when the receiver is at [4λ cos(π/4),−4λ sin(π/4), 0].

1.6. Concluding remarks

In this chapter, based on careful estimates of the dependence with respect to the
frequency of the remainders in asymptotic formulas for the Helmholtz equation, we
have rigorously derived the effect of a small conductivity anomaly on transient wave.
We have provided near- and far-field asymptotic expansions of the perturbation
in the wavefield after truncating its high-frequency component. The threshold of
the frequency truncation is of order ε−α (α < 1) where ε is the diameter of the
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Figure 1.6. Real and imaginary part of the Kirchhoff functional
when the receiver is at the position [4λ cos(π/4), 0, 4λ sin(π/4)].

Figure 1.7. Sum of the Real and the imaginary parts of the Kirch-
hoff functional.

Figure 1.8. Intersection of the three planes where the real parts of
the Kirchhoff functionals attain their maximum for three different
receivers.
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anomaly. We have also designed a time-reversal imaging technique for locating
the anomaly from far-field measurements of the perturbations in the wavefield and
reconstructing its polarization tensor. Using a near-field asymptotic formula, we
have proposed an optimization problem to reconstruct the shape and to separate
the physical parameters of the anomaly from its volume. The connection between
our expansions and reconstruction methods for the wave equation in this chapter
and those for the Helmholtz equation has been discussed.

The method and the results of this chapter will be generalized in Chapter 2 to
dynamic elastic imaging which has important applications in medical imaging [34]
as well as in seismology [1].





CHAPTER 2

Transient elasticity imaging and time reversal

Abstract. In this chapter we consider a purely quasi-incompressible elastic-

ity model. We rigorously establish asymptotic expansions of near- and far-field

measurements of the transient elastic wave induced by a small elastic anom-
aly. Our proof uses layer potential techniques for the modified Stokes system.

Based on these formulas, we design asymptotic imaging methods leading to a

quantitative estimation of elastic and geometrical parameters of the anomaly.

2.1. Introduction

In this chapter, we neglect the viscosity effect of tissues and only consider a
purely quasi-incompressible elasticity model. We derive asymptotic expansions of
the perturbations of the elastic wavefield that are due to the presence of a small
anomaly in both the near- and far-field regions as the size of the anomaly goes
to zero. Then we design an asymptotic imaging method leading to a quantitative
estimation of the shear modulus and shape of the anomaly from near-field measure-
ments. Using time-reversal, we show how to reconstruct the location and geometric
features of the anomaly from the far-field measurements. We put a particular
emphasis on the difference between the acoustic and the elastic cases, namely, the
anisotropy of the focal spot and the birth of a near-field like effect by time reversing
the perturbation due to an elastic anomaly.

The results of this chapter extend those in Chapter 1 to transient wave propa-
gation in elastic media.

The chapter is organized as follows. In Section 2.2 we rigorously derive asymp-
totic formulas for quasi-incompressible elasticity and estimate the dependence of
the remainders in these formulas with respect to the frequency. Based on these
estimates, we obtain in Section 2.3 formulas for the transient wave equation that
are valid after truncating the high-frequency components of the elastic fields. These
formulas describe the effect of the presence of a small elastic anomaly in both the
near- and far-field. We then investigate in Section 2.4 the use of time-reversal for
locating the anomaly and detecting its overall geometric and material parameters
via the viscous moment tensor. An optimization problem is also formulated for
reconstructing geometric parameters of the anomaly and its shear modulus from
near-field measurements.

2.2. Asymptotic expansions

We suppose that an elastic medium occupies the whole space R
3. Let the

constants λ and µ denote the Lamé coefficients of the medium, that are the elastic
parameters in absence of any anomaly. With these constants, Lλ,µ denotes the

27
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linear elasticity system, namely

(2.1) Lλ,µu := µ∆u + (λ+ µ)∇∇ · u.
The traction on a smooth boundary ∂Ω is given by the conormal derivative ∂u/∂ν
associated with Lλ,µ,

(2.2)
∂u

∂ν
:= λ(∇ · u)N + µ∇̂uN,

where N denotes the outward unit normal to ∂Ω. Here ∇̂ denotes the symmetric
gradient, i.e.,

(2.3) ∇̂u := ∇u + ∇uT ,

where the superscript T denotes the transpose.
The time-dependent linear elasticity system is given by

(2.4) ∂2
t u − Lλ,µu = 0.

The fundamental solution or the Green function for the system (2.4) is given by
G = (Gij) where
(2.5)

Gij =
1

4π

3γiγj − δij
r3

H
√
µ√
λ+2µ

(x, t)+
1

4π(λ+ 2µ)

γiγj
r
δt= r√

λ+2µ
− 1

4πµ

γiγj − δij
r

δt= r√
µ
.

Here r = |x|, γi = xi/r, δij denotes the Kronecker symbol, δ denotes the Dirac

delta function, and H
√
µ√
λ+2µ

(x, t) is defined by

(2.6) H
√
µ√
λ+2µ

(x, t) :=





t if
r√

λ+ 2µ
< t <

r√
µ
,

0 otherwise.

Note that (1/r3)H
√
µ√
λ+2µ

(x, t) behaves like 1/r2 for times (r/
√
λ+ 2µ) < t <

(r/
√
µ). See [1].

Suppose that there is an elastic anomaly D, given by D = εB + z, which has

the elastic parameters (λ̃, µ̃). Here B is a C2-bounded domain containing the origin,
z the location of the anomaly, and ε a small positive parameter representing the
order of magnitude of the anomaly size.

For a given point source ȳ away from the anomaly D and a constant vector
a, we consider the following transient elastic wave problem in the presence of an
anomaly:

(2.7)





∂2
t u − Lλ,µu = δt=0δx=ȳa in (R3 \D) × R,

∂2
t u − Lλ̃,µ̃u = 0 in D × R,

u
∣∣
+
− u

∣∣
− = 0 on ∂D × R,

∂u

∂ν

∣∣
+
− ∂u

∂ν̃

∣∣
− = 0 on ∂D × R,

u(x, t) = 0 for x ∈ R
3 and t� 0,

where ∂u/∂ν and ∂u/∂ν̃ denote the conormal derivatives on ∂D associated re-
spectively with Lλ,µ and Lλ̃,µ̃. Here and throughout this chapter the subscripts ±
denote the limit from outside and inside D, respectively.
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As was observed in [60, 82], the Poisson ratio of human tissues is very close

to 1/2, which amounts to λ/µ and λ̃/µ̃ being very large. So we seek for a good

approximation of the problem (2.7) as λ and λ̃ go to +∞. To this end, let

p :=

{
λ∇ · u in (R3 \ D) × R,

λ̃∇ · u in D × R.

One can show by modifying a little the argument in [10] that as λ and λ̃ go to +∞
with λ̃/λ of order one, the displacement field u can be represented in the form of
the following series:

u(x, t) = u0(x, t) + (
1

λ
χ(R3 \D) +

1

λ̃
χ(D)) u1(x, t)

+ (
1

λ2
χ(R3 \D) +

1

λ̃2
χ(D)) u2(x, t) + . . . ,

p = p0 + (
1

λ
χ(R3 \D) +

1

λ̃
χ(D)) p1 + (

1

λ2
χ(R3 \D) +

1

λ̃2
χ(D)) p2 + . . . ,

where the leading-order term (u0(x, t), p0(x)) is solution to the following homoge-
neous time-dependent Stokes system

(2.8)





∂2
t u0 −∇ · (µ̃χ(D) + µχ(R3 \D))∇u0 −∇p0 = δt=0δx=ya in R

3 × R,

∇ · u0 = 0 in R
3 × R,

u0(x, t) = 0 for x ∈ R
3 and t� 0.

The inverse problem considered in this chapter is to image an anomaly D with
shear modulus µ̃ inside a background medium of shear modulus µ 6= µ̃ from near-
field or far-field measurements of the transient elastic wave u(x, t) (approximated
by u0(x, t)) that is the solution to (2.7) (approximated by (2.8)).

In order to design an accurate and robust algorithm to detect the anomaly D
incorporating the fact that D is of small size of order ε, we will derive an asymptotic
expansion of u0 as ε→ 0. As shown in [3], this scale separation methodology yields
to accurate imaging algorithms.

2.2.1. Layer potentials for the Stokes system. We begin by reviewing
some basic facts on layer potentials for the Stokes system, which we shall use in
the next subsection. Relevant derivations or proofs of these facts can be found in
[77] and [10].

We consider the following modified Stokes system:

(2.9)

{
(∆ + κ2)v −∇q = 0,

∇ · v = 0.

Here v is the displacement field and q is the pressure. Let ∂i = ∂
∂xi

. The funda-

mental tensor Γκ = (Γκij)
3
i,j=1 and F = (F1, F2, F3) to (2.9) in three dimensions are

given by

(2.10)





Γκij(x) = −δij
4π

e
√
−1κ|x|

|x| − 1

4πκ2
∂i∂j

e
√
−1κ|x| − 1

|x| ,

Fi(x) = − 1

4π

xi
|x|3 .
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If κ = 0, let

(2.11) Γ0
ij(x) = − 1

8π

(δij
|x| +

xixj
|x|3

)
.

Then Γ0 = (Γ0
ij) together with F is the fundamental tensor for the standard Stokes

system given by {
∆v −∇q = 0,

∇ · v = 0.

One can easily see that

(2.12) Γκij(x) = Γ0
ij(x) −

δijκ
√
−1

6π
+O(κ2)

uniformly in x as long as |x| is bounded.
For a bounded C2-domain D and κ ≥ 0, let

(2.13)





SκD[ϕ](x) :=

∫

∂D

Γκ(x− y)ϕ(y)dσ(y),

QD[ϕ](x) :=

∫

∂D

F(x− y) · ϕ(y) dσ(y),

x ∈ R
3

for ϕ = (ϕ1, ϕ2, ϕ3) ∈ L2(∂D)3. When κ = 0, S0
D is the single layer potential

for the Stokes system. It is worth emphasizing that SκD[ϕ](x) is a vector while
QD[ϕ](x) is a scalar, and the pair (SκD[ϕ],QD[ϕ]) is a solution to (2.9).

By abuse of notation, let

∂u

∂N
= (∇̂u)N on ∂D.

We define the conormal derivative ∂/∂n (for the Stokes system) on ∂D by

∂v

∂n

∣∣∣∣
±

=
∂v

∂N

∣∣∣∣
±
− q
∣∣
± N

for a pair of solutions (v, q) to (2.9). It is well-known that

(2.14)
∂SκD[ϕ]

∂n

∣∣∣∣
±

= (±1

2
I + (Kκ

D)∗)[ϕ] a.e. on ∂D,

where Kκ
D is the boundary integral operator defined by

(2.15)

Kκ
D[ϕ](x) := p.v.

∫

∂D

[
∂

∂N(y)
(Γκ(x− y)ϕ(y)) + F(x− y)N(y) · ϕ(y)

]
dσ(y)

for almost all x ∈ ∂D and (Kκ
D)∗ is the L2-adjoint operator of K−κ

D :
(2.16)

(Kκ
D)∗[ϕ](x) := p.v.

∫

∂D

[
∂

∂N(x)
(Γκ(x− y)ϕ(y)) + F(x− y) · ϕ(y)N(x)

]
dσ(y).

Here p.v. denotes the Cauchy principal value.
Let H1(∂D) := {ϕ ∈ L2(∂D), ∂ϕ/∂τ ∈ L2(∂D)}, ∂/∂τ being the tangential

derivative. The operator S0
D is bounded from L2(∂D)3 into H1(∂D)3 and invertible

in three dimensions. Moreover, one can see that for κ small

(2.17) ‖SκD[ϕ] − S0
D[ϕ]‖H1(∂D) ≤ Cκ‖ϕ‖L2(∂D)
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for all ϕ ∈ L2(∂D)3, where C is independent of κ. It is also well-known that the
singular integral operator (K0

D)∗ is bounded on L2(∂D)3. Similarly to (2.17), one
can see that for κ small

‖(K−κ
D )∗[ϕ] − (K0

D)∗[ϕ]‖L2(∂D) ≤ Cκ‖ϕ‖L2(∂D)

for some constant C independent of κ, which in view of (2.14) yields

(2.18)

∥∥∥∥∥
∂(SκD[ϕ])

∂n

∣∣∣∣
±
− ∂(S0

D[ϕ])

∂n

∣∣∣∣
±

∥∥∥∥∥
L2(∂D)

≤ Cκ‖ϕ‖L2(∂D).

2.2.2. Derivation of asymptotic expansions. Recall that ȳ is a point
source in R

3 such that |ȳ − z| � ε. Taking the Fourier transform of (2.8) in
the t-variable yields

(2.19)





(∆ +
ω2

µ
)û0 −

1

µ
∇p̂0 =

1

µ
δx=ȳ a in R

3 \D,

(∆ +
ω2

µ̃
)û0 −

1

µ̃
∇p̂0 = 0 in D,

û0|+ − û0|− = 0 on ∂D,

(p̂0|− − p̂0|+)N + µ
∂û0

∂N

∣∣∣
+
− µ̃

∂û0

∂N

∣∣∣
−

= 0 on ∂D,

∇ · û0 = 0 in R
3,

subject to the radiation condition:
(2.20)



p̂0(x) → 0 as r = |x| → +∞,

∂r∇× û0 −
√
−1

ω√
µ
∇× û0 = o(

1

r
) as r = |x| → +∞ uniformly in

x

|x| ,

where û0 and p̂0 denote the Fourier transforms of u0 and of p0, respectively. We
say that (û0, p̂0) satisfies the radiation condition if (2.20) holds.

Let

Û0(x, ω) : =
1

µ
Γ

ω√
µ (x− ȳ)a,(2.21)

q̂0(x) : = F(x− ȳ) · a.(2.22)

Then the pair (Û0(x, ω), q̂0(x)) satisfies

(2.23)





(∆ +
ω2

µ
)Û0 −

1

µ
∇q̂0 =

1

µ
δx=ȳ a in R

3,

∇ · Û0 = 0 in R
3.

In view of (2.19) and (2.23), it is natural to expect that û0 converges to Û0 as

ε tends to 0. We shall derive an asymptotic expansion for û0 − Û0 as ε tends to
zero and carefully estimate the dependence of the remainder on the frequency ω.

Let w = û0 − Û0 and introduce

p :=





1

µ
(p̂0 − q̂0) in R

3 \D,

1

µ̃
(p̂0 − q̂0) in D.
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Then the pair (w, p) satisfies

(2.24)





(∆ +
ω2

µ
)w −∇p = 0 in R

3 \D,

(∆ +
ω2

µ̃
)w −∇p = (

1

µ
− 1

µ̃
)(ω2Û0 −∇q̂0) in D,

w|+ − w|− = 0 on ∂D,

µ(
∂w

∂N

∣∣∣
+
− p|+N) − µ̃(

∂w

∂N

∣∣∣
−
− p|−N) = (µ̃− µ)

∂Û0

∂N
on ∂D,

∇ · w = 0,

(w, p) satisfies the radiation condition.

Therefore, we can represent (w, p) as
(2.25)

w(x) =





(
1

µ
− 1

µ̃
)

∫

D

Γ
ω√
µ̃ (x− y)(ω2Û0(y) −∇q̂0(y)) dy + S

ω√
µ̃

D [ϕ](x) in D,

S
ω√
µ

D [ψ](x) in R
3 \D,

and
(2.26)

p(x) =





(
1

µ
− 1

µ̃
)

∫

D

F(x− y) · (ω2Û0(y) −∇q̂0(y)) dy + QD[ϕ](x) in D,

QD[ψ](x) in R
3 \D,

where (ϕ,ψ) is the solution to the following system of integral equations
(2.27)



S
ω√
µ̃

D [ϕ](x) − S
ω√
µ

D [ψ](x) = (
1

µ
− 1

µ̃
)

∫

D

Γ
ω√
µ̃ (x− y)(ω2Û0(y) −∇q̂0(y)) dy,

µ
∂S

ω√
µ

D [ϕ]

∂n

∣∣∣
+
(x) − µ̃

∂S
ω√
µ̃

D [ψ]

∂n

∣∣∣
−

(x) = (µ̃− µ)
∂Û0

∂N

+(
µ̃

µ
− 1)

∂

∂N

∫

D

Γ
ω√
µ̃ (x− y)(ω2Û0(y) −∇q̂0(y)) dy

−(
µ̃

µ
− 1)

∫

D

F(x− y) · (ω2Û0(y) −∇q̂0(y)) dy N.

In order to prove the unique solvability of (2.27), let us make a change of
variables: Recalling that D is of the form D = εB + z, we put

(2.28) ϕ̃(x̃) = ϕ(εx̃+ z), x̃ ∈ ∂B,

and define similarly ψ̃. Then after scaling, (2.27) takes the form

(2.29)





S
εω√

µ̃

B [ϕ̃](x̃) − S
εω√

µ

B [ψ̃](x̃) = A(x̃),

µ̃
∂S

εω√
µ̃

B [ϕ̃]

∂n

∣∣∣
−

(x̃) − µ
∂S

εω√
µ

D [ψ̃]

∂n

∣∣∣
+
(x̃) = B(x̃),

x̃ ∈ ∂B
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where A = (A1, A2, A3) and B = (B1, B2, B3) are defined in an obvious way,
namely

(2.30) A(x̃) = ε(
1

µ
− 1

µ̃
)

∫

B

Γ
εω√

µ̃ (x̃− ỹ)(ω2Û0(εỹ + z) −∇q̂0(εỹ + z)) dỹ,

and

B(x̃) = (µ̃− µ)
∂Û0

∂N
(εx̃+ z)

+ ε(
µ̃

µ
− 1)

∂

∂N

∫

B

Γ
εω√

µ̃ (x̃− ỹ)(ω2Û0(εỹ + z) −∇q̂0(εỹ + z)) dỹ(2.31)

− ε(
µ̃

µ
− 1)

∫

D

F(x̃− ỹ) · (ω2Û0(εỹ + z) −∇q̂0(εỹ + z)) dy N(x̃).

We emphasize that the normal vector N above is that on ∂B.
We may rewrite (2.29) as

(2.32) T (ϕ̃, ψ̃) = (A,B),

where T is an operator from L2(∂B)3 ×L2(∂B)3 into H1(∂B)3 ×L2(∂B)3 defined
by

T (ϕ̃, ψ̃) =




S
εω√

µ̃

B −S
εω√

µ

B

µ̃
∂

∂n
S

εω√
µ̃

B |− −µ ∂

∂n
S

εω√
µ

B |+







ϕ̃

ψ̃


 .

We then decompose the operator T as

(2.33) T = T0 + Tε,

where

T0(ϕ̃, ψ̃) :=




S0
B −S0

B

µ̃
∂

∂n
S0
B |− −µ ∂

∂n
S0
B |+







ϕ̃

ψ̃


 ,

and Tε = T − T0. Then by (2.17) and (2.18), it follows that

(2.34) ||Tε(ϕ̃, ψ̃)||H1(∂B)×L2(∂B) ≤ Cεω(||ϕ̃||L2(∂B) + ||ψ̃||L2(∂B)).

Note that S0
B is invertible, and since | µ̃+µ

2(µ̃−µ) | > 1
2 , the operator − (µ̃+µ)

2(µ̃−µ)I +

(K0
B)∗ is invertible as well (see [10]). Thus one can see that T0 is also invertible.

In fact, one can readily check that the solution is explicit.

Lemma 2.1. For (f ,g) ∈ H1(∂B)3 × L2(∂B)3 the solution (ϕ̃, ψ̃) = T −1
0 (f ,g)

is given by

ϕ̃ = ψ̃ + (S0
B)−1[f ],

(2.35)

ψ̃ =
1

µ̃− µ

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[
−µ̃(−1

2
I + (K0

B)∗)(S0
B)−1[f ] + g

]
.

(2.36)
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In view of (2.33) and (2.34), one can see that there is ε0 > 0 such that T is
invertible as long as εω ≤ ε0. Moreover T −1 takes the form

(2.37) T −1 = T −1
0 + E,

where the operator E satisfies

(2.38) ‖E(f ,g)‖L2(∂B)×L2(∂B) ≤ Cεω(‖f‖H1(∂B) + ‖g‖L2(∂B)),

for some constant C independent of ε and ω.

Suppose that εω ≤ ε0 < 1. Let (ϕ̃ω, ψ̃ω) be the solution to (2.29). Then by
(2.37) we have

(ϕ̃ω, ψ̃ω) = T −1
0 (A,B) + E(A,B).

In view of (2.30) we have

(2.39) ‖A‖H1(∂B) ≤ Cε(ω2 + 1).

On the other hand, according to (2.31), B can be written as

B(x̃) = (µ̃− µ)∇̂Û0(z, ω)N(x̃) + B1(x̃),

where B1 satisfies

(2.40) ‖B1‖L2(∂B) ≤ Cε(ω2 + 1).

Therefore, we have

(2.41) (ϕ̃ω, ψ̃ω) = (µ̃− µ)T −1
0

(
0, ∇̂Û0(z, ω)N

)
+ T −1

0 (A,B1) + E(A,B).

Because of (2.38), (2.39), and (2.40), the last two terms in the above equation are
error terms satisfying

‖T −1
0 (A,B1) + E(A,B)‖L2(∂B)×L2(∂B) ≤ Cε(ω2 + 1).

We also need to derive asymptotic expansions for ∂ eϕω

∂ω and ∂ eψω

∂ω . By differenti-
ating both sides of (2.29) with respect to ω, we obtain

S
εω√

µ̃

B

[∂ϕ̃ω
∂ω

]
(x̃) − S

εω√
µ

B

[∂ψ̃ω
∂ω

]
(x̃) =

∂A(x̃)

∂ω
−
∫

∂B

∂

∂ω
Γ

εω√
µ̃ (x̃− ỹ)ϕ̃ω(ỹ)dσ(ỹ)

+

∫

∂B

∂

∂ω
Γ

εω√
µ (x̃− ỹ)ψ̃ω(ỹ)dσ(ỹ)(2.42)

and

µ̃
∂

∂n
S

εω√
µ̃

B

[∂ϕ̃ω
∂ω

]∣∣∣∣
−

(x̃) − µ
∂

∂n
S

εω√
µ

B

[∂ψ̃ω
∂ω

]∣∣∣∣
+

(x̃) =
∂B(x̃)

∂ω

− ∂

∂n

∫

∂B

∂

∂ω
Γ

εω√
µ̃ (x̃− ỹ)ϕ̃ω(ỹ)dσ(ỹ) +

∂

∂n

∫

∂B

∂

∂ω
Γ

εω√
µ (x̃− ỹ)ψ̃ω(ỹ)dσ(ỹ)(2.43)

on ∂B.
Straightforward computations using (2.10) and (2.30) show that the right-hand

side of the equality in (2.42) is of order ε(ω+ 1) in the H1(∂B)-norm. We can also
show using (2.31) that ∂G1

∂ω is also of order ε(ω + 1) in the L2(∂B)-norm. Thus,
using the same argument as before, we readily obtain

(2.44) (
∂ϕ̃ω

∂ω
,
∂ψ̃ω

∂ω
) = (µ̃− µ)T −1

0

(
0, ∇̂(

∂Û0

∂ω
)(z, ω)N

)
+O(ε(ω + 1)),

where the equality holds in L2(∂B)3 × L2(∂B)3.
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In view of (2.41) and (2.44), applying Lemma 2.1 (with f = 0) yields the
following result.

Proposition 2.2. Let (ϕ̃ω, ψ̃ω) be the solution to (2.29). There exists ε0 > 0
such that if εω < ε0, then the following asymptotic expansions hold:

ϕ̃ω =

(−(µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[∇̂Û0(z, ω)N] +O(ε(ω2 + 1)),(2.45)

ψ̃ω =

(−(µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[∇̂Û0(z, ω)N] +O(ε(ω2 + 1)),(2.46)

and

∂ϕ̃ω

∂ω
=

(−(µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[∇̂ ∂

∂ω
Û0(z, ω)N] +O(ε(ω + 1)),(2.47)

∂ψ̃ω

∂ω
=

(−(µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[∇̂ ∂

∂ω
Û0(z, ω)N] +O(ε(ω + 1)),(2.48)

where all the equalities hold in L2(∂B).

We are now ready to derive the inner expansion for w. Let Ω be a domain

containing D and let Ω̃ = 1
εΩ − z. After a change of variables, (2.25) and (2.26)

take the forms:
(2.49)

w(εx̃+ z, ω) =





ε2(
1

µ
− 1

µ̃
)

∫

B

Γ
εω√

µ̃ (x̃− ỹ)(ω2Û0(εỹ + z) −∇q̂0(εỹ + z)) dỹ

+εS
εω√

µ̃

B [ϕ̃ω](x̃) in B,

εS
εω√

µ

B [ψ̃ω](x̃) in R
3 \B,

and
(2.50)

p(εx̃+ z, ω) =





ε(
1

µ
− 1

µ̃
)

∫

B

F(x̃− ỹ) · (ω2Û0(εỹ + z) −∇q̂0(εỹ + z)) dỹ

+εQB [ϕ̃ω](x̃) in B,

εQB [ψ̃ω](x̃) in R
3 \B.

Since
∥∥S

εω√
µ

B [ϕ̃ω] − S0
B [ϕ̃ω]

∥∥
H1(∂B)

≤ Cεω‖ϕ̃ω‖L2(∂B),

we have

w(εx̃+ z, ω) =

{
εS0
B [ϕ̃ω](x̃) +O(ε2(ω2 + 1)), x̃ ∈ B,

εS0
B [ψ̃ω](x̃) +O(ε2(ω + 1)), x̃ ∈ Ω̃ \B.

It then follows from (2.45) and (2.46) that
(2.51)

w(εx̃+ z, ω) = εS0
B

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[∇̂Û0(z, ω)N](x̃) +O(ε2(ω2 + 1))

for x̃ ∈ Ω̃.
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On the other hand, we have

∂w

∂ω
(εx̃+ z, ω) =





εS
εω√

µ̃

B

[
∂ϕ̃ω

∂ω

]
(x̃) +O(ε2(ω + 1)), x̃ ∈ B,

εS
εω√

µ

B

[
∂ψ̃ω

∂ω

]
(x̃) +O(ε2), x̃ ∈ Ω̃ \B.

Therefore, from (2.47) and (2.48) we obtain that
(2.52)

∂w

∂ω
(εx̃+z, ω) = εS0

B

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[∇̂ ∂

∂ω
Û0(z, ω)N](x̃)+O(ε2(ω+1))

for x̃ ∈ Ω̃.
Let

v(x̃) := S0
B

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[∇̂Û0(z, ω)N](x̃),

q(x̃) := QB

(
− (µ̃+ µ)

2(µ̃− µ)
I + (K0

B)∗
)−1

[∇̂Û0(z, ω)N](x̃).

It is easy to check that (v, q) is the solution to

(2.53)





µ∆v −∇q = 0 in R
3 \B,

µ̃∆v −∇q = 0 in B,

v|− − v|+ = 0 on ∂B,

(qN − µ̃
∂v

∂N
)

∣∣∣∣
−
− (qN − µ

∂v

∂N
)

∣∣∣∣
+

= (µ̃− µ)∇̂Û0(z, ω)N on ∂B,

∇ · v = 0 in R
3,

v(x̃) → 0 as |x̃| → +∞,

q(x̃) → 0 as |x̃| → +∞.

We finally obtain the following theorem from (2.51) and (2.52).

Theorem 2.3. Let Ω be a small region containing D and let

(2.54) R(x, ω) = û0(x, ω) − Û0(x, ω) − εv

(
x− z

ε

)
, x ∈ Ω.

There exists ε0 > 0 such that if εω < ε0, then

(2.55) R(x, ω) = O(ε2(ω2 + 1)), ∇xR(x, ω) = O(ε(ω2 + 1)), x ∈ Ω.

Moreover,

(2.56)
∂R

∂ω
(x, ω) = O(ε2(ω + 1)), ∇x

(
∂R

∂ω

)
(x, ω) = O(ε(ω + 1)), x ∈ Ω.

Note that the estimates for ∇xR in (2.55) and ∇x(
∂R
∂ω ) in (2.56) can be derived

using (2.49).
We now derive the outer expansion of u0. To this end, let us first recall the

notion of the viscous moment tensor (VMT) from [10]. Let (vk`, p), for k, ` = 1, 2, 3,
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be the solution to

(2.57)





µ∆vk` −∇p = 0 in R
3 \B,

µ̃∆vk` −∇p = 0 in B,

vk`|− − vk`|+ = 0 on ∂B,

(pN − µ̃
∂vk`
∂N

)

∣∣∣∣
−
− (pN − µ

∂vk`
∂N

)

∣∣∣∣
+

= 0 on ∂B,

∇ · vk` = 0 in R
3,

vk`(x̃) − x̃ke` +
δk`
3

3∑

j=1

x̃jej = O(|x̃|−2) as |x̃| → +∞,

p(x̃) = O(|x̃|−3) as |x̃| → +∞.

Here (e1, e2, e3) is the standard basis of R
3.

Definition 2.4. The VMT V (µ̃, µ,B) = (Vijk`)i,j,k,`=1,2,3 is defined by

(2.58) Vijk`(µ̃, µ,B) := (µ̃− µ)

∫

B

∇vk`(x̃) : ∇̂(x̃iej) dx̃,

where : denotes the contraction of two matrices, i.e., A : B =
∑3
ij=1 aijbij.

Since (û0 − Û0, p̂0 − q̂0) satisfies
(2.59)



(∆ +
ω2

µ
)(û0 − Û0) −

1

µ
∇(p̂0 − q̂0) = 0 in R

3 \D,

(∆ +
ω2

µ
)(û0 − Û0) −

1

µ
∇(p̂0 − q̂0) = ω2

(
1

µ
− 1

µ̃

)
û0 −

(
1

µ
− 1

µ̃

)
∇p̂0 in D,

(û0 − Û0)
∣∣
+
− (û0 − Û0)

∣∣
− = 0 on ∂D,

− 1

µ
(p̂0 − q̂0)

∣∣
+
N +

∂

∂N
(û0 − Û0)

∣∣
+

= − 1

µ
(p̂0 − q̂0)

∣∣
−N +

∂

∂N
(û0 − Û0)

∣∣
− +

µ̃− µ

µ

∂û0

∂N

∣∣∣∣
−

on ∂D,

∇ · (û0 − Û0) = 0 in R
3,

together with the radiation condition, the integration of the first equation in (2.59)

against the Green function Γ
ω√
µ (x, y) over y ∈ R

3 \D and the divergence theorem
give us the following representation formula:

û0(x) = Û0(x) + (
µ̃

µ
− 1)

∫

∂D

Γ
ω√
µ (x, y)

∂û0

∂N

∣∣∣∣
−

(y)dσ(y)

− (
1

µ
− 1

µ̃
)

∫

D

Γ
ω√
µ (x, y)∇p̂0(y) dy + ω2(

1

µ
− 1

µ̃
)

∫

D

Γ
ω√
µ (x, y)û0(y) dy.(2.60)

It follows from the inner expansion in Theorem 2.3 that, for y ∈ ∂D,

(2.61)
∂û0

∂N
(y) =

∂Û0

∂N
(y) +

∂v

∂N

(
y − z

ε

)
+O(ε)
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and, for x ∈ D,

∇p̂0(x) = µ̃4û0 + ω2û0 =
µ̃

ε
(4v)

(
x− z

ε

)
+O(1) =

1

ε
(∇q)

(
x− z

ε

)
+O(1).

(2.62)

Since

µ̃

∫

∂D

∂û0

∂N

∣∣∣∣
−

(y) dσ(y) −
∫

D

∇p̂0(y) dy = −ω2

∫

D

û0(y) dy,

we obtain that for x far away from z, the following outer expansion holds:

û0(x) ≈ Û0(x) − ε3
3∑

i,j,`=1

∂iΓ
ω√
µ

`j (x, z)

[
(
µ̃

µ
− 1)

∫

∂B

(
∂Û0

∂N
(z) +

∂v

∂N

∣∣∣∣
−

(ξ)

)

j

ξi dσ(ξ)

(
1

µ
− 1

µ̃
)

∫

B

∂jq(ξ)ξi dξ

]
e`,

where ∂iΓ
ω√
µ

`j (x, z) is the differentiation with respect to the x variable and
(
∂v
∂N

)
j

is the j-th component of ∂v
∂N , which we may further simplify as follows

(2.63)

(û0 − Û0)(x)

≈ −ε3( µ̃
µ
− 1)

3∑

i,j,`=1

[
∂iΓ

ω√
µ

`j (x, z)

∫

B

∂jvi(ξ) + ∂ivj(ξ) + ∂jÛ0i(z) + ∂iÛ0j(z) dξ

]
e`.

Here vj denotes the j-th component of v.
Since

(2.64) v(ξ) =

3∑

p,q=1

∂qÛ0(z)pvpq(ξ) −∇Û0(z)ξ,

we have
(2.65)

(û0 − Û0)(x)

≈ −ε3( µ̃
µ
− 1)

3∑

i,j,`,p,q=1

[
∂iΓ

ω√
µ

`j (x, z)∂qÛ0(z)p

∫

B

∂j(vkl)i(ξ) + ∂i(vkl)j(ξ) dξ

]
e`.

We have the following theorem for the outer expansion.

Theorem 2.5. Let Ω′ be a compact region away from D, namely dist(Ω′,D) ≥
C > 0 for some constant C, and let

(2.66) R(x, ω) = û0(x, ω) − Û0(x, ω) +
ε3

µ

3∑

i,j,p,q,`=1

Vijkl∂iΓ
ω√
µ

`j (x, z)∂qÛ0(z)pe`.

There exists ε0 > 0 such that if εω < ε0, then

(2.67) R(x, ω) = O(ε4(ω3 + 1)), x ∈ Ω′.

Moreover,

(2.68)
∂R

∂ω
(x, ω) = O(ε4(ω2 + 1)), x ∈ Ω′.
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2.3. Far- and near-field asymptotic formulas in the transient regime

Recall that the inverse Fourier transform, U0, of Û0 satisfies




(∂2
t − µ∆)U0(x, t) −∇F = δx=ȳδt=0a in R

3 × R,

∇ · U0 = 0 in R
3 × R,

U0(x, t) = 0 for x ∈ R
3 and t� 0.

For ρ > 0, we define the operator Pρ on tempered distributions by

(2.69) Pρ[ψ](t) =

∫

|ω|≤ρ
e−

√
−1ωtψ̂(ω) dω,

where ψ̂ denotes the Fourier transform of ψ. The operator Pρ truncates the high-
frequency component of ψ.

One can easily show that Pρ[U0] satisfies

(2.70)
(∂2
t − ∆)Pρ[U0](x, t) −∇Pρ[F ](x− y) = δx=ȳψρ(t)a in R

3 × R,

∇ · Pρ[U0] = 0 in R
3 × R,

where

ψρ(t) :=
2 sin ρt

t
=

∫

|ω|≤ρ
e−

√
−1ωtdω.

The purpose of this section is to derive and asymptotic expansions for Pρ[u0 −
U0](x, t). For doing so, we observe that

(2.71) Pρ[u0](x, t) =

∫

|ω|≤ρ
e−

√
−1ωtû0(x, ω)dω,

where û0 is the solution to (2.19). Therefore, according to Theorem 2.3, we have

Pρ[u0−U0](x, t)−ε
3∑

p,q=1

∂qPρ[U0](z, t)p[vpq(x)−xpeq] =

∫

|ω|≤ρ
e−

√
−1ωtR(x, ω)dω.

Suppose that |t| ≥ c0 for some positive number c0 (c0 is of order the distance
between ȳ and z). Then, integrating by parts gives
∣∣∣∣∣

∫

|ω|≤ρ
e−

√
−1ωtR(x, ω)dω

∣∣∣∣∣ =
∣∣∣∣∣
1

t

∫

|ω|≤ρ

d

dω
e−

√
−1ωtR(x, ω)dω

∣∣∣∣∣

≤ 1

|t| (|R(x, ρ)| + |R(x,−ρ)|) +

∫

|ω|≤ρ

∣∣∣∣
∂

∂ω
R(x, ω)

∣∣∣∣ dω

≤ Cε2ρ2.

Since

ε

3∑

p,q=1

∂qPρ[U0](z, t)p[vpq(x) − xpeq] = O(ερ),

we arrive at the following theorem.

Theorem 2.6. Suppose that ρ = O(ε−α) for some α < 1. Then

Pρ[u0 − U0](x, t) = ε

3∑

p,q=1

∂qPρ[U0](z, t)p[vpq(x) − xpeq] +O(ε2(1−α)).
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We now derive a far-field asymptotic expansion for Pρ[u0−U0]. Let G∞(x, y, t)

be the inverse Fourier transform of Γ
ω√
µ (x, y). Note that G∞ is the limit of G given

by (2.5) as
√
λ+ 2µ→ +∞. It then follows that

Pρ[G∞](x, y, t) =

∫

|ω|≤ρ
e−

√
−1ωtΓ

ω√
µ (x, y)dω

=
1

4π

3γiγj − δij
r3

[
φρ(t) − φρ(t−

r√
µ

)

]
− 1

4πµ

γiγj − δij
r

ψρ(t−
r√
µ

),(2.72)

where φρ(t) :=
∫ t
0
ψρ(s)ds.

From Theorem 2.5, we get
∫

|ω|≤ρ
e−

√
−1ωt(û0(x, ω) − Û0(x, ω)) dω

= −ε
3

µ

∫

|ω|≤ρ
e−

√
−1ωt




3∑

i,j,p,q,`=1

Vijpq∂iΓ
ω√
µ

`j (x, z)∂qÛ0(z)pe`


 dω

+

∫

|ω|≤ρ
e−

√
−1ωtR(x, ω) dω,

where the remainder is estimated by
∫

|ω|≤ρ
e−

√
−1ωtR(x, ω) dω = O(ε4(1−

3
4α)).

Since

∫

|ω|≤ρ
e−

√
−1ωt




3∑

i,j,p,q,`=1

Vijpq∂iΓ
ω√
µ

`j (x, z)∂qÛ0(z)pe`


 dω

= µ−1

∫

|ω|≤ρ
e−

√
−1ωt




3∑

i,j,p,q,k,`=1

Vijpq∂iΓ
ω√
µ

`j (x, z)∂qΓ
ω√
µ

pk (z, ȳ)ake`


 dω

= µ−1

∫

R




3∑

i,j,p,q,k,`=1

Vijpq∂iPρ[G∞]`j(x, z, t− τ)∂qPρ[G∞]pk(z, ȳ, τ)ake`


 dτ,

the following theorem holds.

Theorem 2.7. Let Û0(x, ω) := 1
µΓ

ω√
µ (x − ȳ)a. Suppose that ρ = O(ε−α) for

some α < 1. Then for |x− z| ≥ C > 0, the following far-field expansion holds
(2.73)

Pρ[u0 − U0](x, t)

= − ε3

µ2

∫

R




3∑

i,j,p,q,k,`=1

Vijpq∂iPρ[G∞]`j(x, z, t− τ)∂qPρ[G∞]pk(z, ȳ, τ)ake`


 dτ

+O(ε4(1−
3
4α)).

Note that if we plug (2.72) in the far-field formula (2.73) then we can see that,
unlike the acoustic case investigated in [8], the perturbation Pρ[u0 − U0](x, t) can
be seen not only as a polarized wave emitted from the anomaly but it contains,
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because of the term (1/r3)φρ(t) in (2.72), a near-field like term which does not
propagate.

2.4. Asymptotic imaging

2.4.1. Far-field imaging: time-reversal. We present a time-reversal tech-
nique for detecting the location z of the anomaly from measurements of the per-
turbations at x away from the location z. As in the acoustic case, the main idea
is to take advantage of the reversibility of the elastic wave equation in a non-
viscous medium in order to back-propagate signals to the sources that emitted
them [28, 57].

Let S be a sphere englobing the anomaly D. Consider, for simplicity, the
harmonic regime, we get

∫

S

[
∂Γ

ω√
µ

∂n
(x, z)Γ

ω√
µ (x, y) − Γ

ω√
µ (x, z)

∂Γ
ω√
µ

∂n
(x, y)

]
dσ(x) = 2

√
−1=mΓ

ω√
µ (y, z),

for y ∈ Ω, and therefore, for w(x) := û0(x, ω) − Û0(x, ω), it follows that

∫

S

[
∂w

∂n
(x, ω)Γ

ω√
µ (x, z) − w(x, ω)

∂Γ
ω√
µ

∂n
(x, z)

]
dσ(x)

= 2
√
−1

ε3

µ
∇Û0(z, ω)V (µ̃, µ,B)∇z=mΓ

ω√
µ (y, z) +O(ε4ω3),

if ω > 1.
This shows that the anti-derivative of time-reversal perturbation focuses on the

location of the anomaly with an anisotropic focal spot. Because of the structure

of the Green function Γ
ω√
µ (y, z), time-reversing the perturbation gives birth to a

near-field like effect. Moreover, the resolution limit depends on the direction. It is,
unlike the acoustic case, anisotropic. These interesting findings were experimentally
observed and first reported in [43]. Our asymptotic formula (2.73) clearly explains
them.

2.4.2. Near-field imaging: optimization approach. Set Ω to be a window
containing the anomaly D. As in Chapter 1, Theorem 2.6 suggests to reconstruct
the shape and the shear modulus of the elastic inclusion D by minimizing the
following functional:

∫ T+∆T

T−∆T

||Pρ[u0 − U0](x, t) − ε

3∑

p,q=1

∂qPρ[U0](z, t)p[vpq(x) − xpeq]||2L2(Ω),

where T = |ȳ − z|/√µ is the arrival time and ∆T is a window time. One can add
a total variation regularization term.

The choice of the space and time window sizes are critical as observed in [9] for
the time-harmonic regime. If they are too large, then noisy images are obtained. If
they are too small, then resolution is poor. The optimal window sizes are related
to the signal-to-noise ratio of the recorded near-field measurements. They express
the trade-off between resolution and stability.
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2.5. Concluding remarks

In this chapter we have rigorously establish asymptotic expansions of near-
and far-field measurements of the transient elastic wave induced by a small elastic
anomaly. We have proved that, after truncation of the high-frequency component,
the perturbation due to the anomaly can be seen not only as a polarized wave
emitted from the anomaly but it contains unlike the acoustic case a near-field
like term which does not propagate. We have also shown that time-reversing this
perturbation gives birth to a near-field like effect. Moreover, the resolution limit is
anisotropic. We have then explained the experimental findings reported in [43].

In this chapter we have only considered a purely quasi-incompressible elasticity
model. In Chapter 4, we will consider the problem of reconstructing a small anomaly
in a viscoelastic medium from wavefield measurements. The Voigt model his a
common model to describe the viscoelastic properties of tissues. Catheline et al.
[42] have shown that this model is well adapted to describe the viscoelastic response
of tissues to low-frequency excitations. Expressing the ideal elastic field without any
viscous effect in terms of the measured field in a viscous medium, we will generalize
the methods described here to recover the viscoelastic and geometric properties of
an anomaly from wavefield measurements.



CHAPTER 3

Transient imaging with limited-view data

Abstract. We consider for the wave equation the inverse problem of identi-

fying locations of point sources and dipoles from limited-view data. Using as

weights particular background solutions constructed by the geometrical con-
trol method, we recover Kirchhoff-, back-propagation-, MUSIC-, and arrival

time-type algorithms by appropriately averaging limited-view data. We show

that if one can construct accurately the geometric control, then one can per-

form imaging with the same resolution using limited-view as using full-view

data.

3.1. Introduction

In Chapter 1, we have investigated the imaging of small anomalies using tran-
sient wave boundary measurements; see also the recent works [5, 7]. Different ap-
proaches for locating them and reconstructing some information about their sizes
and physical parameters have been designed. The detection algorithms make use
of complete boundary measurements. They are of Kirchhoff-, back-propagation,
MUSIC-, and arrival time-types. The resolution of those algorithms in the time-
harmonic domain is finite. It is essentially of order one-half the wavelength. See,
for instance, [3].

In this work, we extend those algorithms to the case with limited-view mea-
surements. For simplicity, we model here the small anomalies as point sources or
dipoles. We refer the reader to Chapter 1 and [5, 7] for rigorous derivations of these
approximate models and their higher-order corrections. It is worth mentioning that
in order to model a small anomaly as a point source or a dipole, one has to truncate
the high-frequency component of the transient wave reflected by the anomaly.

By using the geometrical control method [29], we show how to recover all
the classical algorithms that have been used to image point sources and dipole
locations. Our main finding in this chapter is that if one can construct accurately
the geometric control then one can perform imaging with the same resolution using
partial data as using complete data. Our algorithms apply equally well to the case of
many source points or dipole locations and are robust with respect to perturbations
of the boundary. This is quite important in real experiments since one does not
necessarily know the non-accessible part of the boundary with good accuracy.

The chapter is organized as follows. In Section 3.2 we provide a key identity
based on the averaging of the limited-view data, using weights constructed by the
geometrical control method. Section 3.3 is devoted to developing, for different
choices of weights, Kirchhoff-, back-propagation-, MUSIC-, and arrival time-type
algorithms for transient imaging with limited-view data. In Section 3.4 we discuss
potential applications of the method in emerging biomedical imaging. In Section 3.5

43
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we present results of numerical experiments and comparisons among the proposed
algorithms.

3.2. Geometric control

The basic model to be considered in this chapter is the following wave equation:

(3.1)
∂2p

∂t2
(x, t) − c2∆p(x, t) = 0, x ∈ Ω, t ∈]0, T [,

for some final observation time T , with the Dirichlet boundary conditions

(3.2) p(x, t) = 0 on ∂Ω×]0, T [,

the initial conditions

(3.3) p(x, t)|t=0 = 0 in Ω,

and

(3.4) ∂tp(x, t)|t=0 = δx=z or ∂tp(x, t)|t=0 = m0 · ∇δx=z in Ω.

Here c is the acoustic speed in Ω which we assume to be constant, and m0 is a
constant nonzero vector. We suppose that T is large enough so that

(3.5) T >
diam(Ω)

c
.

The purpose of this chapter is to design efficient algorithms for reconstructing
the location z from boundary measurements of ∂p

∂ν on Γ×]0, T [, where Γ ⊂ ∂Ω.
Suppose that T and Γ are such that they geometrically control Ω, which roughly

means that every geometrical optic ray, starting at any point x ∈ Ω, at time t = 0,
hits Γ before time T at a nondiffractive point; see [29, 78]. Let β ∈ C∞

0 (Ω) be a
cutoff function such that β(x) ≡ 1 in a sub-domain Ω′ of Ω, which contains the
source point z.

For a given function w which will be specified later, we construct by the geo-
metrical control method a function v(x, t) satisfying

(3.6)
∂2v

∂t2
− c2∆v = 0 in Ω×]0, T [,

with the initial condition

(3.7) v(x, 0) = c2β(x)w(x), ∂tv(x, 0) = 0,

the boundary condition v = 0 on ∂Ω \ Γ, and the final conditions

(3.8) v|t=T =
∂v

∂t

∣∣∣
t=T

= 0 in Ω.

Let

(3.9) gw(x, t) := v(x, t) on Γ×]0, T [.

Multiplying (3.1) by v and integrating over Ω × [0, T ] lead to the following key
identity of this chapter:

(3.10)

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt = w(z) or −m0 · ∇w(z).
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Note that the probe function constructed in [5] corresponds to one of the fol-
lowing choices for w in Ω:

(3.11) w(x) :=
δ
(
τ − |x−y|

c

)

4π|x− y| in three dimensions

or

(3.12) w(x) := δ

(
τ − 1

c
θ · x

)
in two dimensions,

where θ is a unit vector.
The reader is referred, for instance, to [25, 106, 68] for numerical investigations

of the geometrical control method.

3.3. Imaging algorithms

In this section, we only consider the initial condition ∂tp(x, t)|t=0 = δx=z in Ω.
One can treat the case of the initial data ∂tp(x, t)|t=0 = m0 · ∇δx=z in the exactly
same way. Using the functions v constructed by the geometrical control method
with different choices of initial data w, one recovers several classical algorithms for
imaging point sources. For simplicity, we only consider a single point source, but
the derived algorithms are efficient for locating multiple sources as well. The reader
is referred to [48] for a review on source localization methods.

3.3.1. Kirchhoff algorithm. Let y ∈ R
d \ Ω, d = 2, 3, and ω ∈ R. Set

w(x) = e
√
−1ω|x−y|, x ∈ Ω.

Then, for a given search point zS in Ω, we have from (3.10)
∫

R

e−
√
−1ω|zS−y|

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt dω =

∫

R

e−
√
−1ω(|zS−y|−|z−y|) dω

= δ|zS−y|−|z−y|=0,

where δ is the Dirac mass. Taking a (virtual) planar array of receivers y outside Ω
yields then a Kirchhoff-type algorithm for finding z.

In fact, let ωk, k = 1, . . . ,K, be a set of frequencies and let y1, . . . , yN , be a
set of virtual receivers. To find the location z one maximizes over zS the following
imaging functional:

IKI(z
S) :=

1

K
<e

∑

ωk

∑

yn

e−
√
−1ω|zS−yn|

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gwk,n

(x, t) dσ(x) dt,

where wk,n(x) = e
√
−1ωk|x−yn|.

3.3.2. Back-propagation algorithm. If one takes w to be a plane wave:

w(x) = e
√
−1ωθ·x, θ ∈ Sd−1,

where Sd−1 is the unit sphere in R
d, then one computes for a given search point

zS ∈ Ω,
∫

Sd−1

e−
√
−1ωθ·zS

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt dσ(θ) =

∫

Sd−1

e
√
−1ωθ·(z−zS) dσ(θ).
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But ∫

Sd−1

e
√
−1ωθ·(z−zS) dσ(θ) =

{
j0(ω|z − zS |) for d = 3,

J0(ω|z − zS |) for d = 2,

where j0 is the spherical Bessel function of order zero and J0 is the Bessel function
of the first kind and of order zero.

This is a back-propagation algorithm. Let θ1, . . . , θN , be a discretization of the
unit sphere Sd−1. One plots at each point zS in the search domain the following
imaging functional:

IBP(zS) :=
1

N
<e

∑

θn

e−
√
−1ωθn·zS

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gwn

(x, t) dσ(x) dt,

where wn(x) = e
√
−1ωθn·x. The resulting plot will have a large peak at z. Note that

the higher the frequency ω is, the better is the resolution. However, high frequency
oscillations cause numerical instabilities. There is a trade-off between resolution
and stability.

3.3.3. MUSIC algorithm. Take

w(x) = e
√
−1ω(θ+θ′)·x, θ, θ′ ∈ Sd−1.

It follows from (3.10) that
∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt = e

√
−1ω(θ+θ′)·z.

Therefore, one can design a MUSIC-type algorithm for locating z. For doing so, let
θ1, . . . , θN be N unit vectors in R

d. Define the matrix A = (Ann′)Nn,n′=1 by

Ann′ :=

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gwn,n′ (x, t) dσ(x) dt,

with

wn,n′(x) = e
√
−1ω(θn+θn′ )·x.

Let P be the orthogonal projection onto the range of A. Given any point zS in the
search domain form the vector

h(zS) := (e
√
−1ωθ1·zS

, . . . , e
√
−1ωθN ·zS

)T ,

where T denotes the transpose. Then plot the MUSIC imaging functional:

IMU(zS) :=
1

||(I − P )h(zS)|| .

The resulting plot will have a large peak at z. Again, the higher the frequency ω
is, the better is the resolution.

3.3.4. Arrival time and time-delay of arrival algorithms. Taking w to
be a distance function,

w(x) = |y − x|,
to a virtual receiver y on a planar array outside Ω yields arrival-time and time-delay
of arrival algorithms. In fact, we have

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt = |y − z|.
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Let y1, . . . , yN be N receivers and compute

rn :=

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gwn

(x, t) dσ(x) dt,

with wn(x) = |yn−x|. Then, the point z can be found as the intersection of spheres
of centers yn and radii rn.

Using time-of-arrival differences instead of arrival times would improve the
robustness of the algorithm. Introduce the time-of-arrival difference, tn,n′ , between
the receiver yn and yn′ as follows:

tn,n′ :=

∫ T

0

∫

Γ

∂p

∂ν
(x, t)(gwn

− gwn′ )(x, t) dσ(x) dt.

At least N = 4 sources are required to locate z. The location z can be found as the
intersection of three sets of hyperboloids. See, for instance, [40, 104, 96, 47, 66,
32, 48].

3.4. Applications to emerging biomedical imaging

In this section we show how to apply the designed algorithms to emerging
biomedical imaging. Of particular interest are radiation force imaging, magneto-
acoustic current imaging, and photo-acoustic imaging.

3.4.1. Radiation force imaging. As it has been said Chapter 1, in radiation
force imaging, one generates vibrations inside the organ, and acquires a spatio-
temporal sequence of the propagation of the induced transient wave to estimate the
location and the viscoelastic parameters of a small anomaly inside the medium.

Let z be the location of the anomaly. Let Ω be a large ball englobing the
anomaly. In the far-field, the problem, roughly speaking, reduces to finding the
location of the anomaly from measurements of the pressure p on ∂Ω×]0, T [, that
is, the solution to (3.1) with the initial conditions

(3.13) p(x, t)|t=0 = 0 and ∂tp(x, t)|t=0 = m0 · ∇δx=z in Ω.

A time-reversal technique can be designed to locate the anomaly. Suppose that
one is able to measure p and its normal derivative at any point x on ∂Ω. If both p
and its normal derivative on ∂Ω are time-reversed and emitted from ∂Ω, then the
time-reversed wave travels back to the location z of the anomaly. See Chapter 1.

Suppose now that the measurements of p and its normal derivative are only
done on the part Γ of ∂Ω. Note first that

∂p

∂ν
|∂Ω×]0,T [ = ΛDtN[p|∂Ω×]0,T [],

where ΛDtN is the Dirichlet-to-Neumann operator for the wave equation in R
3 \Ω.

For any function v satisfying (3.6), (3.7), and (3.8), integrating by parts yields
∫ T

0

∫

∂Ω

p(x, t)(Λ∗
DtN[v] +

∂v

∂ν
)(x, t) dσ(x) dt = m0 · ∇w(z),

where Λ∗
DtN denotes the adjoint of ΛDtN. Next, constructing by the geometrical

control method, gw such that v satisfies (3.6), (3.7), and (3.8), together with the
boundary condition

Λ∗
DtN[v] +

∂v

∂ν
=

{
0 on ∂Ω \ Γ ×]0, T [

gw on Γ×]0, T [,
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one obtains ∫ T

0

∫

Γ

p(x, t)gw(x, t) dσ(x) dt = m0 · ∇w(z).

Making similar choices for w to those in the previous section provide different
algorithms for locating the anomaly.

3.4.2. Magneto-acoustic current imaging. In magneto-acoustic current
imaging, one detects a pressure signal created in the presence of a magnetic field
by electrically active tissues [70, 90, 91]. In the presence of an externally applied
magnetic field, biological action currents, arising from active nerve or muscle fibers,
experience a Lorentz force. The resulting pressure or tissue displacement contains
information about the action current distribution.

Let z ∈ Ω be the location of an electric dipole, which represents an active nerve
or muscle fiber, with strength c. The wave equation governing the induced pressure
distribution p is (3.1), with the boundary condition (3.2), the initial conditions
(3.3), and

(3.14) ∂tp(x, t)|t=0 = δx=z in Ω.

The algorithms constructed in the previous section apply immediately to finding z
from partial boundary measurements of the normal derivative of p.

3.4.3. Photo-acoustic imaging. The photo-acoustic effect refers to the gen-
eration of acoustic waves by the absorption of optical energy [105, 56]. In photo-
acoustic imaging, energy absorption causes thermo-elastic expansion of the tissue,
which in turn leads to propagation of a pressure wave. This signal is measured by
transducers distributed on the boundary of the organ, which is in turn used for
imaging optical properties of the organ. Mathematically, the pressure p satisfies
(3.1) with the boundary condition (3.2) and the initial conditions

(3.15) p(x, t)|t=0 = aδx=z in Ω,

and

(3.16) ∂tp(x, t)|t=0 = 0 in Ω.

Here a is the absorbed energy.
Construct by the geometrical control method a function v(x, t) satisfying (3.6),

the initial condition (3.7), the boundary condition v = 0 on ∂Ω \ Γ, and the final
conditions (3.8). Choosing w as in Section 3.4 yields different detection algorithms.

3.5. Numerical illustrations

To test the geometrical control imaging approach, we implemented numerical
simulations of both the forward problem, the wave equation (3.1)-(3.4), and the
inverse problem where we compute the geometrical control function (3.6)-(3.9) and
implement the inversion algorithms of Section 3.3.

To simulate the wave equation, we used a standard P1-finite elements discretiza-
tion in space and a finite difference scheme in time. For time-cost considerations,
we settled with an explicit (leap-frog) scheme along with the use of mass lumping
(row-sum technique).

The method we present here has been implemented and tested on various types
of two-dimensional meshes. We will present results obtained on three different sets
of meshes (see Figure 3.1 and Table 3.1):
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Set name Coarse mesh Fine mesh
# of nodes # of elements h # of nodes # of elements 2h

squareReg0 36 50 0.2 121 200 0.1
squareReg2 441 800 0.05 1681 3200 0.025

circle 270 490 0.0672 1029 1960 0.0336
Table 3.1. Geometries and meshes.

• squareReg0 and squareReg2 are regular meshes of the unit square [−0.5 0.5]2.
• circle are unstructured meshes of the unit disc.
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Figure 3.1. The coarse and fine meshes used on the square and
circular geometries.

For computation of imaging functionals of Kirchhoff-, back-propagation-, and
MUSIC-types, one has to be very careful with the spatial frequency ω. One has
to make sure that the function w(x;ω) is accurately represented on the meshes we
use. This imposes strict limitations on the range of frequencies that can be used.
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Finally, the considered initial conditions for the simulated measurements are
p(x, 0) = 0 and ∂p

∂t (x, 0) = δh(x0), where δh is a Gaussian approximation of the
Dirac distribution and x0 = [0.21 − 0.17] (see Figure 3.2).

Figure 3.2. Initial time derivative, for the three geometries, used
for the simulated measures.

To illustrate the performance of our approach with regards to limiting the view,
we applied the algorithm to both a full and a partial view setting.

For the square medium, we assumed measurements were taken only on two
adjacent edges - this corresponds to the theoretical (and practical) limit that still
ensures geometric controllability. For the circular medium, we assumed measure-
ments between angles π

4 and 3π
2 , as shown in Figure 3.4.

Figure 3.3. Limited-view observation boundaries for square and disc.

Before presenting the numerical results, we describe the numerical method used
for computing the geometrical control, which is based on the Hilbert Uniqueness
Method (HUM) of Lions.
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3.5.1. Geometrical control: HUM using conjugate gradient iteration
on a bi-grid mesh. The solution gw of (3.6)-(3.9) has been shown to be unique
provided that T and the control boundary Γ geometrically control Ω [29]. A system-
atic and constructive method for computing such a control is given by the Hilbert
Uniqueness Method (HUM) of Lions [79]. A detailed study of the algorithm can be
found in [59], [25], and [106]. The method applies a conjugate gradient algorithm
as follows:

• Let e0, e1 ∈ H1
0(Ω) × L2(Ω), where H1

0(Ω) is the standard Sobolev space
with zero boundary values;

• Solve forwards on (0, T ) the wave equation

(3.17)





∂2φ

∂t2
(x, t) − c2∆φ(x, t) = 0,

φ(x, t) = 0 on ∂Ω,

φ(x, 0) = e0(x),
∂φ

∂t
(x, 0) = e1(x);

• Solve backwards the wave equation

(3.18)





∂2ψ

∂t2
(x, t) − c2∆ψ(x, t) = 0,

ψ(x, t) =

{
0 on ∂Ω\Γ̄,
∂φ
∂ν (x, t) on Γ,

ψ(x, T ) = 0,
∂ψ

∂t
(x, T ) = 0;

• Set

(3.19) Λ(e0, e1) =

{
∂ψ

∂t
(x, 0),−ψ(x, 0)

}
;

• The solution v of (3.6)-(3.8) can be identified with ψ when

Λ(e0, e1) =
{
0,−c2β(x)w(x)

}

and gw(x, t) = ψ(x, t) on Γ.

Remark 3.1. In the case where the initial condition is a pressure field (e.g.,

photo-acoustics) p(x, 0) = p0(x),
∂p
∂t (x, 0) = 0, we need to have v(x, 0) = 0,

∂v
∂t (x, 0) = c2β(x)w(x). This can be easily obtained by solving : Λ(e0, e1) ={
c2β(x)w(x), 0

}
.

To proceed, we used a conjugate gradient algorithm on a discretized version Λh
of the operator defined in (3.19), where we solve the wave equation using the finite-
element finite-difference discretization described previously. To deal with unwanted
effects linked with high spatial frequencies, we used a bi-grid method of Glowinski
[59] based on a fine mesh with discretization length h and a coarse mesh with
length 2h. The wave equation is solved on the fine mesh and the residuals of Λh
are computed after projection onto the coarse mesh.

Let us define I2h
h and Ih2h to be the projectors from the fine mesh to the coarse

mesh and vice versa. The conjugate gradient algorithm is now as follows:

• Let e00, e
0
1 be given initial guesses on the coarse mesh;

• Solve numerically (3.17) forwards with initial conditions Ih2he
0
0, I

h
2he

0
1 and

solve (3.18) backwards, both on the fine grid;
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• Compute the initial residuals g0 = {g0
0 , g

0
1} on the coarse grid as follows:





−∆g0
0 = I2h

h

ψ1 − ψ−1

2∆t
− I2h

h u1 in Ω,

g0
0 = 0 on ∂Ω,

and

g0
1 = ψ0 − I2h

h u0;

• If the norm of the residuals

‖{g0
0 , g

0
1}‖2

h =

∫

Th

|g0
1 |2 + |∇g0

0 |2

is small enough, we have our solution, else we set the first search direction
w0 = g0 and start the conjugate gradient;

• Suppose we know ek = {ek0 , ek1}, gk = {gk0 , gk1} and wk = {wk0 , wk1};
• Solve numerically (3.17) forwards with initial conditions Ih2hw

k
0 , Ih2hw

k
1 and

solve (3.18) backwards both on the fine grid;
• Compute the remaining residuals ξk = {ξk0 , ξk1} on the coarse grid as

follows: 



−∆hξ
k
0 = I2h

h

ψ1 − ψ−1

2∆t
,

ξk0 = 0 on ∂Ω,

and

ξk1 = ψ0;

• Calculate the length of the step in the wk direction

ρk =
‖gk‖h

〈ξk, wk〉h
,

where 〈ξk, wk〉h =

∫

Th

∇ξk0∇wk0 + ξk1w
k
1 ;

• Update the quantities

ek+1 = ek − ρkwk,

gk+1 = gk − ρkξk;

• If ‖gk+1‖h is small, then ek+1 is our solution, else compute

γk =
‖gk+1‖h
‖gk‖h

,

and set the new descent direction

wk+1 = gk+1 + γkwk.

Remark 3.2 (Remarks on the numerical convergence). The numerical proce-
dure described in the previous section has been proved to converge in the case of
finite difference method on the unit square [68]. This result can be easily extended
in the case of a finite element method on a regular mesh. Convergence results for
more general meshes are not available yet. They will be the subject of a future study.
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3.5.2. Reconstruction results. We present here some results obtained by
algorithms presented in Section 3.4. For each algorithm we will consider both the
full view and the partial view cases.

• Kirchhoff algorithm. We limited ourselves to the frequency range :
W = [−ωmax, ωmax] with a step-size ∆ω = ωmax/nω where ωmax and nω
depend on the mesh coarseness.

For time considerations we chose a reduced array of three virtual
receivers

– Y = {[0.6 − 0.6], [0.6 0], [0.6 0.6]} for the square medium.
– Y = {[1 − 1], [1 0], [1 1]} for the circular medium.

We compute and represent the function IKI(z
S) for zS on the fine

mesh. The estimated position is at the maximum of IKI(z
S). Recon-

struction results are given in Figure 3.4.
• Back-propagation algorithm. We chose frequencies well represented

on the mesh (ω = 9 for squareReg0, ω = 30 for squareReg2 and ω = 20
for circle) and a 30-point discretization of the unit circle for θ.

We compute and represent the function IBP(zS) for zS on the fine
mesh. The estimated position is at the maximum of IBP(zS). Results are
given in Figure 3.5.

• Arrival-time algorithm. We considered minimal arrays of two virtual
receivers Y = {[0 0.6]; [0.6 0]} for the square medium. For each receiver
we computed the value of rk = d(x0, yk), where x0 is the position of
the source and yk the position of the receiver. We represent the circles
C(yk, rk) and their intersections. Results are given in Figure 3.6.

• MUSIC algorithm. Working with the same parameters, we compute
and represent the function IMU(zS) for zS on the fine mesh. The esti-
mated position is at the maximum of IMU(zS). Reconstruction results
are given in Figure 3.7.

In Table 3.2 we give the estimations xest of the source location x0 = [0.21−0.17]
for each algorithm, and the error d(x0, xest). For comparison, we give hmin, the
smallest distance between 2 points in the fine mesh.

3.5.3. Case of multiple sources. Except for the arrival-time algorithm, all
the methods presented in this chapter are well-suited for identifying several point-
like sources. To illustrate this, we simulated measurements on squareReg2 with
three sources located at [0.21 − 0.17], [−0.22 − 0.3] and [0.05 0.27].

• We applied the Kirchhoff imaging algorithm with a different set of virtual
receivers:

Y = {[0.6 0], [0.6 0.6], [0 0.6], [−0.6 0.6], [−0.6 0]} .
The reason for taking more virtual receivers is that Kirchhoff works on in-
tersecting circles centered at the receivers and passing through the sources.
Too few receivers can generate false positives. Results are given in Figure
3.10.

• We ran the back-propagation and MUSIC algorithms with exactly the
same parameters as previously. Results are given in Figures 3.11 and 3.12
respectively.
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Algorithm Mesh View xest hmin d(x0, xest)
Kirchhoff squareReg0 Full [0.2 -0.15] 0.1 0.0224

Partial [0.2 -0.15] 0.0224
squareReg2 Full [0.2 -0.175] 0.025 0.0112

Partial [0.2 -0.175] 0.0112
circle Full [0.1949 -0.1619] 0.0336 0.0171

Partial [0.1949 -0.1619] 0.0171
Back-propagation squareReg0 Full [0.2 -0.15] 0.1 0.0224

Partial [0.2 -0.15] 0.0224
squareReg2 Full [0.2125 -0.175] 0.025 0.0056

Partial [0.2125 -0.175] 0.0056
circle Full [0.1949 -0.1619] 0.0336 0.0171

Partial [0.1949 -0.1619] 0.0171
Arrival time squareReg0 Full [0.1877 -0.1433] 0.1 0.0348

Partial [0.1882 -0.1314] 0.0444
squareReg2 Full [0.2050 -0.1768] 0.025 0.0085

Partial [0.2048 -0.1774] 0.009
circle Full [0.1802 -0.2196] 0.0336 0.0579

Partial [0.1790 -0.2119] 0.0522
MUSIC squareReg0 Full [0.15 -0.2] 0.1 0.0671

Partial [0.15 -0.2] 0.0671
squareReg2 Full [0.175 -0.1625] 0.025 0.0358

Partial [0.175 -0.175] 0.0354
circle Full [0.2804 -0.139] 0.0336 0.0769

Partial [0.2416 -0.0974] 0.0792
Table 3.2. Numerical results for localization of the source at x0 =
[0.21,−0.17] using four algorithms and three geometries.

3.5.4. Boundary perturbation. In real experiments, one does not neces-
sarily know the uncontrolled part of the boundary with good accuracy. A major
concern for real applications of the method is thus its robustness with respect to
perturbations of the boundary.

We tested our algorithms by perturbing the boundary nodes outwards

xi,perturbed = xi + εUnxi
,

where ε is an amplitude factor, U is a uniform random variable in [0 1] and nxi
is

the outward normal at the point xi. We simulated measurements on the perturbed
mesh, which is then supposed unknown since we computed the geometric control
on the unperturbed mesh.

To illustrate the results, we used squareReg2 with three levels of perturbation,
ε = 0.01, 0.025 and 0.05 (see Figure 3.5.4) and the same initial condition as before,
that is a Dirac approximation located at [0.21 − 0.17].

We give the results, with the three perturbations, for the Kirchhoff (Figure
3.13), the back-propagation (Figure 3.14) and the arrival-time (Figure 3.15) algo-
rithms. Modifying the mesh as we did generates smaller elements and thus changes
the CFL condition for the wave-equation solver. Computation time becomes too
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Figure 3.4. Kirchhoff results for the geometries of Table 3.1
- from top to bottom: squareReg0, squareReg2, circle. The
(black/white) x denotes the (numerical/theoretical) center of the
source.

expensive for the MUSIC algorithm. For this reason we do not present MUSIC
results here.

As expected the estimation of the source position deteriorates as we increase
the boundary uncertainty. The errors are summarized in Table 3.3.
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Figure 3.5. Back-propagation results for the geometries of Table
3.1 - from top to bottom: squareReg0, squareReg2, circle. The
(black/white) x denotes the (numerical/theoretical) center of the
source.

3.6. Concluding remarks

In this chapter we have constructed Kirchhoff-, back-propagation-, MUSIC-,
and arrival time-type algorithms for imaging point sources and dipoles from limited-
view data. Our approach is based on averaging of the limited-view data, using
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Figure 3.6. Example of arrival time results for squareReg2 geometry.

weights constructed by the geometrical control method. It is quite robust with
respect to perturbations of the non-accessible part of the boundary. We have shown
that if one can construct accurately the geometric control then one can perform
imaging with the same resolution using partial data as using complete data.
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Figure 3.7. MUSIC results for the geometries of Table 3.1 - from
top to bottom: sqReg0, sqReg2, circle. The (black/white) x de-
notes the (numerical/theoretical) center of the source.
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Figure 3.8. Initial time derivative for the case of multiple sources.
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Figure 3.9. Perturbation of the mesh for ε = 0.01, 0.025 and 0.05.
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Figure 3.10. Kirchhoff results for the geometry sqReg2 with sev-
eral inclusions.

Figure 3.11. Back-propagation results for the geometry sqReg2
with several inclusions.



3.6. CONCLUDING REMARKS 61

Figure 3.12. MUSIC results for the geometry sqReg2 with sev-
eral inclusions.

Figure 3.13. Kirchhoff results for the geometry sqReg2 with per-
turbed boundary (from left-to-right,ε = 0.01, 0.025 and 0.05). The
(black/white) x denotes the (numerical/theoretical) center of the
source.
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Figure 3.14. Back-propagation results for the geometry sqReg2
with perturbed boundary (from left-to-right, ε = 0.01, 0.025 and
0.05). The (black/white) x denotes the (numerical/theoretical)
center of the source.
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Figure 3.15. Arrival-time results for the geometry sqReg2 with
perturbed boundary (from left-to-right, ε = 0.01, 0.025 and 0.05)
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Algorithm Perturbation amplitude ε xest d(x0, xest)
Kirchhoff 0.01 [0.2 -0.1625] 0.0125

0.025 [0.2 -0.1625] 0.0125
0.05 [0.1875 -0.15] 0.03

Back-propagation 0.01 [0.2125 -0.1625] 0.0079
0.025 [0.2 -0.1625] 0.0125
0.05 [0.1875 -0.15] 0.03

Arrival time 0.01 [0.2022 -0.1687] 0.0079
0.025 [0.1917 -0.167] 0.0186
0.05 [0.1944 -0.1643] 0.0166

Table 3.3. Numerical results for localization of the source at x0 =
[0.21 −0.17] using sqReg2 geometry with boundary perturbations.





CHAPTER 4

Imaging in visco-elastic media obeying a frequency

power-law

Abstract. In this chapter we consider the problem of reconstructing a small

anomaly in a viscoelastic medium from wavefield measurements. We choose

Szabo’s model [95] to describe the viscoelastic properties of the medium.

Expressing the ideal elastic field without any viscous effect in terms of the
measured field in a viscous medium, we generalize the imaging procedures

in Chapter 2 to detect an anomaly in a visco-elastic medium from wavefield
measurements.

4.1. Introduction

In Chapter 2 we have considered anomaly imaging in a purely quasi-incompressible
elastic medium. In this chapter, we consider the problem of reconstructing a small
anomaly in a viscoelastic medium from wavefield measurements. The Voigt model
is a common model to describe the viscoelastic properties of tissues. Catheline et
al. [42] have shown that this model is well adapted to describe the viscoelastic
response of tissues to low-frequency excitations. We choose a more general model
derived by Szabo [95] that describes observed power-law behavior of many vis-
coelastic materials. It is based on a time-domain statement of causality. It reduces
to the Voigt model for the specific case of quadratic frequency loss. Expressing
the ideal elastic field without any viscous effect in terms of the measured field in a
viscous medium, we generalize the methods described in Chapter 2 to recover the
viscoelastic and geometric properties of an anomaly from wavefield measurements.

The chapter is organized as follows. In Section 4.2 we introduce a general visco-
elastic wave equation. Section 4.3 is devoted to the derivation of the Green function
in a viscoelastic medium. In Section 4.4 we present anomaly imaging procedures in
visco-elastic media.

4.2. General visco-elastic wave equation

When a wave travels through a biological medium, its amplitude decreases with
time due to attenuation. The attenuation coefficient for biological tissue may be
approximated by a power-law over a wide range of frequencies. Measured attenua-
tion coefficients of soft tissue typically have linear or greater than linear dependence
on frequency [95].

In an ideal medium, i.e., without attenuation, Hooke’s law expresses the fol-
lowing relationship between stress and strain tensors:

(4.1) T = C : S,
65
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where T , C and S are respectively the stress, the stiffness and the strain tensor of
orders 2, 4 and 2 and : represents the tensorial product.

Consider a dissipative medium. Suppose that the medium is homogeneous and
isotropic. We write

C = [Cijkl] = [λδijδkl + µ(δikδjl + δilδjk)] ,(4.2)

η = [ηijkl] = [ηsδijδkl + ηp(δikδjl + δilδjk)] ,(4.3)

where δ is the Kronecker delta function, µ, λ are the Lamé parameters, and ηs, ηp are
the shear and bulk viscosities, respectively. Here we have adopted the generalized
summation convention over the repeated index.

Throughout this chapter we suppose that

(4.4) ηp, ηs << 1.

For a medium obeying a power-law attenuation model and under the smallness
condition (4.4), a generalized Hooke’s law reads [95]

(4.5) T (x, t) = C : S(x, t) + η : M(S)(x, t)

where the convolution operator M is given by

(4.6) M(S) =





−(−1)y/2 ∂
y−1S
∂ty−1 y is an even integer,

2
π (y − 1)!(−1)(y+1)/2H(t)

ty ∗ S y is an odd integer,

− 2
πΓ(y) sin(yπ/2)H(t)

|t|y ∗ S y is a non integer.

Here H(t) is the Heaviside function and Γ denotes the gamma function.
Note that for the common case, y = 2, the generalized Hooke’s law (4.5) reduces

to the Voigt model,

(4.7) T = C : S + η :
∂S
∂t
.

Taking the divergence of (4.5) we get

∇ · T =
(
λ̄+ µ̄

)
∇(∇ · u) + µ̄∆u,

where

λ̄ = λ+ ηpM(·) and µ̄ = µ+ ηsM(·).
Next, considering the equation of motion for the system, i.e.,

(4.8) ρ
∂2u

∂t2
− F = ∇ · T ,

with ρ being the constant density and F the applied force and using the expression
for ∇ · T , we obtain the generalized visco-elastic wave equation

(4.9) ρ
∂2u

∂t2
− F =

(
λ̄+ µ̄

)
∇(∇ · u) + µ̄∆u.

4.3. Green’s function

In this section we find the Green function of the viscoelastic wave equation
(4.9). For doing so, we first need a Helmholtz decomposition.
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4.3.1. Helmholtz decomposition. The following lemma holds.

Lemma 4.1. If the displacement field u(t, x) satisfies (4.9) and if the body force
F = ∇ϕf + ∇× ψf then there exist potentials ϕu and ψu such that

• u = ∇ϕu + ∇× ψu; ∇ · ψu = 0;

• ∂2ϕu

∂t2 =
ϕf

ρ +c2p∆ϕu+νpM(∆ϕu) ≈ ϕf

ρ − νpM(ϕf )
ρc2p

+c2p∆ϕu+
νp

c2p
M(∂2

t ϕu);

• ∂2ψu

∂t2 =
ψf

ρ +c2s∆ψu+νsM(∆ψu) ≈ ψf

ρ − νsM(ψf )
ρc2s

+c2s∆ψu+ νs

c2s
M(∂2

t ψu),

with

c2p =
λ+ 2µ

ρ
, c2s =

µ

ρ
, νp =

ηp + 2ηs
ρ

, and νs =
ηs
ρ
.

Let

(4.10) Km(ω) = ω

√
(1 − νm

c2m
M̂(ω)), m = s, p,

where the multiplication operator M̂(ω) is the Fourier transform of the convolution
operator M.

Supposing that ϕu and ψu are causal implies the causality of the inverse Fourier
transforms of Km(ω),m = s, p. Applying the Kramers-Krönig relations, it follows
that
(4.11)

−=mKm(ω) = H
[
<eKm(ω)

]
and <eKm(ω) = H

[
=mKm(ω)

]
, m = p, s,

where H is the Hilbert transform. Note that H2 = −I. The convolution operator M
given by (4.6) is based on the constraint that causality imposes on (4.5). Under the
smallness assumption (4.4), the expressions in (4.6) can be found from the Kramers-
Krönig relations (4.11). One drawback of (4.11) is that the attenuation, =mKm(ω),
must be known at all frequencies to determine the dispersion, <eKm(ω). However,
bounds on the dispersion can be obtained from measurements of the attenuation
over a finite frequency range [85].

4.3.2. Solution of (4.9) with a concentrated force. Let uij denote the
i-th component of the solution uj of the elastic wave equation related to a force F
concentrated in the xj-direction. Let j = 1 for simplicity and suppose that

(4.12) F = T (t)δ(x− ξ)e1 = T (t)δ(x− ξ)(1, 0, 0),

where ξ is the source point and (e1, e2, e3) is an orthonormal basis of R
3. The

corresponding Helmholtz decomposition of the force F can be written as

(4.13)





F = ∇ϕf + ∇× ψf ,

ϕf = −T (t)
4π

∂
∂x1

(
1
r

)
,

ψf = T (t)
4π

(
0, ∂

∂x3

(
1
r

)
,− ∂

∂x2

(
1
r

))
,

where r = |x− ξ| [88].
Consider the Helmholtz decomposition for u1 as

(4.14) u1 = ∇ϕ1 + ∇× ψ1,
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where ϕ1 and ψ1 are respectively the solutions of the equations

∆ϕ1 −
1

c2p

∂2ϕ1

∂t2
+
νp
c4p

M(∂2
t ϕ1) =

ϕf
c2pρ

− νpM(ϕf )

ρc4p
,(4.15)

∆ψ1 −
1

c2s

∂2ψ1

∂t2
+
νs
c4s

M(∂2
t ψ1) =

ψf
c2sρ

− νsM(ψf )

ρc4s
.(4.16)

Taking the Fourier transform of (4.14),(4.15) and (4.16) with respect to t we
get

û1 = ∇ϕ̂1 + ∇× ψ̂1(4.17)

∆ϕ̂1 +
K2
p(ω)

c2p
ϕ̂1 =

ϕ̂f
ρc2p

− νpM̂(ω)ϕ̂f
ρc4p

,(4.18)

∆ψ̂1 +
K2
s (ω)

c2s
ψ̂1 =

ψ̂f
ρc2s

− νsM̂(ω)ψ̂f
ρc4s

,(4.19)

with Km(ω),m = p, s, given by (4.10).
It is well known that the Green functions of the Helmholtz equations (4.18)

and (4.19) are

ĝm(r, ω) =
e
√
−1

Km(ω)
cm

r

4πr
, m = s, p.

Therefore, following [88], we get the following expression for ϕ̂1:

(4.20) ϕ̂1(x, ω; ξ) = − 1

ρc2p
(1 − νpM̂(ω)

c2p
)
T̂ (ω)

4πρ

∂

∂x1

(
1

r

)∫ r/cp

0

ζe
√
−1Kp(ω)ζ dζ.

In the same way, the vector ψ̂1 is given by
(4.21)

ψ̂1(x, ω; ξ) =
1

ρc2s
(1−νsM̂(ω)

c2s
)
T̂ (ω)

4πρ

(
0,

∂

∂x3

(
1

r

)
,− ∂

∂x2

(
1

r

))∫ r/cs

0

ζe
√
−1Ks(ω)ζ dζ.

Introduce the following notation:

Im(x, ω) = Am

∫ r/cm

0

ζe
√
−1Km(ω)ζ dζ(4.22)

Em(x, ω) = Ame
√
−1Km(ω) r

cm ,(4.23)

Am(ω) = (1 − νmM̂(ω)

c2m
), m = p, s.(4.24)

We obtain, after a lengthy but simple calculation, that ûi1 is given by

ûi1 = T̂ (ω)
4πρ

∂2

∂xix1

(
1
r

)
[Is(r, ω) − Ip(r, ω)] + T̂ (ω)

4πρc2pr
∂r
∂xi

∂r
∂x1

Ep(r, ω)

+ T̂ (ω)
4πρc2sr

(
δi1 − ∂r

∂xi

∂r
∂x1

)
Es(r, ω),

and therefore, it follows that the solution uij for an arbitrary j is

ûij = T̂ (ω)
4πρ (3γiγj − δij)

1
r3 [Is(r, ω) − Ip(r, ω)] + T̂ (ω)

4πρc2p
γiγj

1
rEp(r, ω)

+ T̂ (ω)
4πρc2s

(δij − γiγj)
1
rEs(r, ω),
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where γi = (xi − ξi)/r.

4.3.3. Green’s function. If we substitute T (t) = δ(t), where delta is the
Dirac mass, then the function uij = Gij is the i-th component of the Green function

related to the force concentrated in the xj-direction. In this case we have T̂ (ω) = 1.

Thus we have the following expression for Ĝij :

Ĝij = 1
4πρ (3γiγj − δij)

1
r3 [Is(r, ω) − Ip(r, ω)] + 1

4πρc2p
γiγj

1
rEp(r, ω)

+ 1
4πρc2s

(δij − γiγj)
1
rEs(r, ω),

which implies that

(4.25) Ĝij(r, ω; ξ) = ĝpij(r, ω) + ĝsij(r, ω) + ĝpsij (r, ω),

where

(4.26) ĝpsij (r, ω) =
1

4πρ
(3γiγj − δij)

1

r3
[Is(r, ω) − Ip(r, ω)] ,

(4.27) ĝpij(r, ω) =
Ap(ω)

ρc2p
γiγj ĝ

p(r, ω),

and

(4.28) ĝsij(r, ω) =
As(ω)

ρc2s
(δij − γiγj) ĝ

s(r, ω).

Let G(r, t; ξ) = (Gij(r, t; ξ)) denote the transient Green function of (4.9) asso-
ciated with the source point ξ. Let Gm(r, t; ξ) and Wm(r, t) be the inverse Fourier
transforms of Am(ω)ĝm(r, ω) and Im(r, ω),m = p, s, respectively. Then, from (4.25-
4.28), we have

Gij(r, t; ξ) = 1
ρc2p

γiγjG
p(r, t; ξ) + 1

ρc2s
(δij − γiγj)G

s(r, t; ξ)

+ 1
4πρ (3γiγj − δij)

1
r3 [Ws(r, t) −Wp(r, t)] .

Note that by a change of variables,

Wm(r, t) =
4π

c2m

∫ r

0

ζ2Gm(ζ, t; ξ)dζ.

4.4. Imaging procedure

Consider the limiting case λ→ +∞. The Green function for a quasi-incompressible
visco-elastic medium is given by

Gij(r, t; ξ) = 1
ρc2s

(δij − γiγj)G
s(r, t; ξ)

+ 1
16π2ρc2s

(3γiγj − δij)
1
r3

∫ r
0
ζ2Gs(ζ, t; ξ)dζ.

To generalize the detection algorithms presented in Chapter 2 to the visco-elastic
case we shall express the ideal Green function without any viscous effect in terms
of the Green function in a viscous medium. From

Gs(r, t; ξ) =
1√
2π

∫

R

e−
√
−1ωtAs(ω)gs(r, ω) dω,
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it follows that

Gs(r, t; ξ) =
1√
2π

∫

R

As(ω)
e
√
−1(−ωt+ Ks(ω)

cs
r)

4πr
dω.

4.4.1. Approximation of the Green function. Introduce the operator

Lφ(t) =
1

2π

∫

R

∫ +∞

0

As(ω)φ(τ)e
√
−1Ks(ω)τe−

√
−1ωt dτ dω,

for a causal function φ. We have

Gs(r, t; ξ) = L(
δ(τ − r/cs)

4πr
),

and therefore,

L∗Gs(r, t; ξ) = L∗L(
δ(τ − r/cs)

4πr
),

where L∗ is the L2(0,+∞)-adjoint of L.

Consider for simplicity the Voigt model. Then, M̂(ω) = −
√
−1ω and hence,

Ks(ω) = ω

√

1 +

√
−1νs
c2s

ω ≈ ω +

√
−1νs
2c2s

ω2,

under the smallness assumption (4.4). The operator L can then be approximated
by

L̃φ(t) =
1

2π

∫

R

∫ +∞

0

As(ω)φ(τ)e
− νs

2c2s
ω2τ

e
√
−1ω(τ−t) dτ dω.

Since

∫

R

e
− νs

2c2s
ω2τ

e
√
−1ω(τ−t) dω =

√
2πcs√
νsτ

e−
c2s(τ−t)2

2νsτ ,

and
√
−1

∫

R

ωe
− νs

2c2s
ω2τ

e
√
−1ω(τ−t) dω = −

√
2πcs√
νsτ

∂

∂t
e−

c2s(τ−t)2

2νsτ ,

it follows that

(4.29) L̃φ(t) =

∫ +∞

0

t

τ
φ(τ)

cs√
2πνsτ

e−
c2s(τ−t)2

2νsτ dτ.

Analogously,

(4.30) L̃∗φ(t) =

∫ +∞

0

τ

t
φ(τ)

cs√
2πνst

e−
c2s(τ−t)2

2νst dτ.

Since the phase in (4.30) is quadratic and νs is small then by the stationary
phase theorem 4.2, we can prove that

L̃∗φ ≈ φ+
νs
2c2s

∂tt(tφ), L̃φ ≈ φ+
νs
2c2s

t∂ttφ,

and

(4.31) L̃∗L̃φ ≈ φ+
νs
c2s
∂t(t∂tφ),
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and therefore,

(4.32) (L∗L̃)−1φ ≈ φ− νs
c2s
∂t(t∂tφ).

4.4.2. Reconstruction methods. From the previous section, it follows that
the ideal Green function, δ(τ − r/cs)/(4πr), can be approximately reconstructed
from the viscous Green function, Gs(r, t; ξ), by either solving the ODE

φ+
νs
c2s
∂t(t∂tφ) = L∗Gs(r, t; ξ),

with φ = 0, t� 0 or just making the approximation

δ(τ − r/cs)/(4πr) ≈ L∗Gs(r, t; ξ) − νs
c2s
∂t(t∂tL

∗Gs(r, t; ξ)).

Once the ideal Green function is reconstructed, one can find its source ξ using
the algorithms in Chapter 2. One can also find the shear modulus of the anomaly
using the ideal near-field measurements which can be reconstructed from the near-
field measurements in the viscous medium.

4.5. Numerical illustrations

For the following illustrations, we take ρ = 1000, cs = 1, cp = 40, r = 0.015
and νp = 0.

Figure 1 : We plot, for differents values of y and νsthe function

t→ 1

ρc2p
(Gp(r, t; ξ) +Gs(r, t; ξ)) +

1

4πρr3
[Ws(r, t) −Wp(r, t)] .

Figure 2 : We plot, for differents values of y and νs at t = 0.015 the function

(x, y) → 1

ρc2p

(
(x/r)2Gp(r, t; ξ) + (1 − (x/r)2)Gs(r, t; ξ)

)
+

1

4πρr3
(3(x/r)2−1) [Ws(r, t) −Wp(r, t)] .

Figure 3 : For φ(t) = exp(−50 ∗ (t − 1).2)′′, an L∞-error between Lφ and
φ+ νs

2c2s
tφ′′ is ploted : we observe an error of two, as expected by stationary phase

theorem.

4.6. Concluding remarks

In this chapter we have computed the Green function in a visco-elastic medium
obeying a frequency power-law. For the Voigt model, which corresponds to a qua-
dratic frequency loss, we have used the stationary phase theorem to reconstruct
the ideal Green function from the visco-elastic one by solving an ODE. Once the
ideal Green function is reconstructed, one can find its source ξ using the algorithms
in Chapter 2. For more general power-law media, one can recover the ideal Green
function from the visco-elastic one by inverting a fractional derivative operator.
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Figure 4.1. Temporal response to a spatiotemporal delta function using a

purely elastic Green’s function (red line) and a viscous Green’s function (blue
line) : Left, y = 1.5, νs = 4 ; Center, y = 2, νs = 0.2 ; Right, y = 2.5,

νs = 0.002. 2

Appendix A: Proof of the approximation formula

The proof of formula (4.31) is based on the following theorem (see [65, Theorem
7.7.1]).

Theorem 4.2. (Stationary Phase)Let K ⊂ [0,∞) be a compact set, X an
open neighborhoud of K and k a positive integer. If ψ ∈ C2k

0 (K), f ∈ C3k+1(X)
and Im(f) ≥ 0 in X, Im(f(t0)) = 0, f ′(t0) = 0, f ′′(t0) 6= 0, f ′ 6= 0 in K \ {t0}
then for ε > 0
∣∣∣∣∣∣

∫

K

ψ(t)eif(t)/εdx− eif(t0)/ε (λf ′′(t0)/2πi)
−1/2

∑

j<k

εjLjψ

∣∣∣∣∣∣
≤ Cεk

∑

α≤2k

sup |ψ(α)(x)|.

Here C is bounded when f stays in a bounded set in C3k+1(X) and |t− t0|/|f ′(t)|
has a uniform bound. With,

gt0(t) = f(t) − f(t0) −
1

2
f ′′(t0)(t− t0)

2,

which vanishes up to third order at t0, we have

Ljψ =
∑

ν−µ=j

∑

2ν≥3µ

i−j
2−ν

ν!µ!
(−1)νf ′′(t0)

−ν(gµt0ψ)(2ν)(t0). 2
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Figure 4.2. 2D spatial response to a spatiotemporal delta function at t =

0.015 with a purely elastic Green’s function, a viscous Green’s function with
y = 2, νs = 0.2 and y = 2.5, νs = 0.002. 2
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Figure 4.3. Approximation of L via stationary phase theorem : Left, com-
parison between Lφ and φ+ νs

c
2
s
tφ′′ where νs

c
2
s

= 0.0001 and φ is a mexican hat,

Right, error νs
c
2
s
→ ‖Lφ − φ + νs

c
2
s
‖∞ in logarithmic scale. 2

Note that L1 can be expressed as the sum L1ψ = L1
1ψ+L2

1ψ+L3
1ψ, where Lj1

is respectively associate to the pair (νj , µj) = (1, 0), (2, 1), (3, 2) and is identified to




L1
1ψ = −1

2i f
′′(t0)−1ψ(2)(t0),

L2
1ψ = 1

222!if
′′(t0)−2(gt0u)

(4)(t0) = 1
8if

′′(t0)−2
(
g
(4)
t0 (t0)ψ(t0) + 4g

(3)
t0 (t0)ψ

′(t0)
)
,

L3
1ψ = −1

232!3!if
′′(t0)−3(g2

t0ψ)(6)(t0) = −1
232!3!if

′′(t0)−3(g2
t0)

(6)(t0)ψ(t0).
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Now we turn to the proof of formula (4.31). Let us first consider the case of
operator L∗. We have

L̃∗φ(t) =

∫ +∞

0

τ

t
φ(τ)

cs√
2πνst

e−
c2s(τ−t)2

2νst dτ =
1

t
√
ε

(∫ +∞

0

ψ(τ)eif(τ)/ε

)
,

with, f(τ) = iπ(τ − t)2, ε = 2πνst
c2s

and ψ(τ) = τφ(τ). Remark that the phase f

satisfies at τ = t , f(t) = 0, f ′(t) = 0, f ′′(t) = 2iπ 6= 0. Moreover, we have




eif(t)/ε
(
ε−1f ′′(t)/2iπ

)−1/2
=

√
ε

gt(τ) = f(τ) − f(t) − 1
2f

′′(t)(τ − t)2 = 0

L1ψ(t) = L1
1ψ(t) = −1

2i f
′′(t)−1ψ

′′
(t) = 1

4π (tφ)′′.

Thus, Theorem 4.2 implies that∣∣∣∣L̃
∗φ(t) −

(
φ(t) +

νs
2c2s

(tφ)′′
)∣∣∣∣ ≤

C

t
ε3/2

∑

α≤4

sup |(tφ)(α)|.

The case of the operator L̃ is very similar. Note that

L̃φ(t) =

∫ +∞

0

t

τ
φ(τ)

cs√
2πνsτ

e−
c2s(τ−t)2

2νsτ dτ =
t√
ε

(∫ +∞

0

ψ(τ)eif(τ)/ε

)
,

with f(τ) = iπ (τ−t)2
τ , ε = νs

2πc2s
and ψ(τ) = φ(τ)τ−

3
2 . It follows that

f ′(τ) = iπ

(
1 − t2

τ2

)
, f ′′(τ) = 2iπ

t2

τ3
, f ′′(t) = 2iπ

1

t
,

and the function gt(τ) equals to

gt(τ) = iπ
(τ − t)2

τ
− iπ

(τ − t)2

t
= iπ

(t− τ)3

τt
.

We deduce that{
(gtψ)(4)(t) =

(
g
(4)
t (t)ψ(t) + 4g

(3)
t (t)ψ′(t)

)
= iπ

(
24
t3 ψ(t) − 24

t2 ψ
′(t)
)

(g2
tψ)(6)(t) = (g2

t )
(6)(t)ψ(t) = −π2 6!

t4ψ(t),

and then,




L1
1ψ = −1

i

(
1
2 (f ′′(t))−1ψ′′(t)

)
= 1

4π t
(
φ̃√
t

)′′
= 1

4π

(√
tφ̃′′(t) − φ̃′(t)√

t
+ 3

4
φ̃
t3/2

)

L2
1ψ = 1

8if
′′(t)−2

(
g
(4)
t (s)ψ(s) + 4g

(3)
t (t)ψ′(t)

)
= 1

4π

(
3
(
φ̃(t)√
t

)′
− 3 φ̃(t)

t3/2

)
= 1

4π

(
3 φ̃

′(t)√
t

− 9
2
φ̃(t)
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)

L3
1ψ = −1

232!3!if
′′(t)−3(g2

t )
(6)(t)ψ(s) = 1

4π

(
15
4
φ̃(t)
t3/2

)
,

where φ̃(τ) = φ(τ)/τ . Then, we have

L1ψ = L1
1ψ + L2

1ψ + L3
1ψ

=
1

4π

(
√
tφ̃′′(t) + (3 − 1)

φ̃′(t)√
t

+

(
3

4
− 9

2
+

15

4

)
φ̃(t)

t3/2

)
=

1

4π
√
t

(
tφ̃(t)

)′′
=

1

4π
√
t
φ′′(t),

and again Theorem 4.2 shows that∣∣∣∣L̃φ(t) −
(
φ(t) +

νs
2c2s

tφ′′(t)

)∣∣∣∣ ≤ Ctε3/2
∑

α≤4

sup |ψ(α)(t)|.
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