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Introduction

Non-invasive medical imaging is a field in constant development, in which sci-
entists make use of various physical phenomena to reconstruct inner properties of
a patient. Today, mainly three techniques dominate the field, each coming with its
advantages and its drawbacks.

- Magnetic Resonance Imaging (MRI) produces very high resolution images,
with not so bad contrast (it images proton density), but is very expensive,
and has a long acquisition time.

- X-ray based techniques (radiography and the more advanced CT-scan)
have good resolution too, and similar contrast (they image X-ray absorp-
tion that can be linked to density information). Their main drawback is
their health hazard : X-ray exposure is harmful and has to be limited to
its minimum.

- Ultrasound techniques are cheap and achieve sub-millimetric resolution
but with quite poor contrast.

For decades, researchers have been investigating how other phenomena can be used
to produce cheaper, faster, harmless, highly resolved, more differential images.

Optical contrast is very good in biological tissues and the use of visual diag-
nostics (biopsies) is a common practice in medicine. This comes from the fact that
optical parameters (absorption, scattering coefficients) have important variations
in tissues. Moreover, the possibility to use several wavelength for the light adds a
dimension to the images and allows for functional imaging.

Optical imaging is thus being actively studied. Unfortunately, although light
can penetrate easily in tissues (especially in the near infra-red domain), the inverse
problem that has to be solved from such measurements is highly ill-posed due to
strong scattering. The achieved resolution with pure optical imaging gets poorer
and poorer with depth.

Among the other directions being followed is the so-called multiphysics imaging,
in which people use one phenomenon to image another. There are different ways to
play with this concept. First, one can use one phenomenon to perturb the other.
This is the idea used for example in Electrical Impedance Tomography (EIT) by
Elastic Deformation [4]. Another way to perform multiphysics imaging is to trigger
one phenomenon with the other. This is the idea used in photoacoustic imaging.
Enlighting a medium with an electromagnetic wave (light, radio-frequency or micro-
wave) can trigger an acoustic (ultrasonic) wave of very low amplitude. This is the
photoacoustic effect, that will be explained briefly in the next paragraph. In this
setting the source of the acoustic wave is the deposition of electromagnetic energy in
the medium, that depends on its optical properties and the illumination conditions.

9



10 INTRODUCTION

Ultrasounds are then measured on the boundary of the medium and the image is
produced using these acoustic data.

We thus get a cheap (laser illumination, acoustic measures) and fast
technique that images optical contrast with ultrasound resolution.

Passing through the medium, the electromagnetic waves interact with it, and
deposit energy. This results in a slight heating of the medium (in the range of the
milliKelvin), which locally dilates, and due to stress constraints, ultrasounds are
emitted.

To state the problem mathematically, one has to write :

- a mass conservation equation
- a momentum conservation equation (Navier-Stokes)
- a heat equation.

Then using reasonable assumptions :

- different time scales between the electromagnetic, thermal and acoustic
phenomena (thermal and stress confinement assumptions)

- small amplitude acoustic waves (linearization)
- adiabatic process.

one arrives at the scalar wave equation for the pressure [75] :

1

c2s

∂2p

∂t2
(x, t) − ∆p(x, t) = Γ

∂H

∂t
(x, t)

with zero intial conditions. Here the source term H(x, t) comes for the electro-
magnetic energy deposit, and Γ is the constant Grüneisen coefficient. If the light
pulse is short, one can separate variables and write H(x, t) = δ(t)A(x), and so the
problem becomes :





1

c2s

∂2p

∂t2
(x, t) − ∆p(x, t) = 0

p(x, 0) := p0(x) = ΓA(x)
∂p

∂t
(x, t) = 0

When the medium is acoustically non-attenuating, homogeneous and has the
same acoustic properties as the free space, the absorbed energy density A(x) can be
recovered from pressure measurements by inverting a spherical Radon transform.
The problem has been thoroughly studied and numerous inversion methods are
available.

The assumptions underlying this approach are valid most of the time. Nonethe-
less, if we stray from them, a reconstruction using the inverse spherical Radon
transform may fail.

In the first main part of this thesis, we study the mathematical problems arising
when we try to relax these assumptions. Our main findings in this direction are as
follows.

- Free space assumption: When boundary conditions are imposed on the
medium, one cannot link the measured waves with the spherical Radon
transform of the unknown initial condition. However, using a dual ap-
proach, we show that it is still possible to reconstruct the initial pressure.
We also give results in the case of asymptotically small inclusions.
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Photoacoustics with boundary conditions.

Left : true energy distribution. Center : reconstruction using spherical Radon

transform. Right : reconstruction using our dual approach.

- View-limited data: Using geometric control tools, we show that, even with
measurements taken only on part of the boundary, one can reconstruct the
initial distribution theoretically with the same precision as in the full-view
case.

Photoacoustics with boundary conditions and limited view.

Left : true energy distribution. Center : reconstruction using the dual

approach proposed in 4. Right : reconstruction using our control algorithm.

- Acoustic attenuation: We consider acoustic attenuation, with power-law
models (and their thermo-viscous approximation). Unaccounted for, it
can generate serious blurring in the reconstruction. We propose, for both
the free-space and the boundary conditions case, a correction based on
the asymptotic development of the attenuation effect (with respect to
attenuation intensity).
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Photoacoustics with attenuation.

Left : true energy distribution. Center : reconstruction using the dual

approach proposed in 4. Right : reconstruction using our asymptotic

correction.

- Random fluctuation of sound speed (around a constant): If the medium
is not acoustically homogeneous, we follow the approach proposed by G.
Papanicolaou and his co-authors. We develop a coherent interferometric-
like algorithm adapted to photoacoustics to correct the effect of medium
heterogeneity on photoacoustic image reconstruction.

Photoacoustics with cluttered sound speed.

Left : true energy distribution. Center : reconstruction using the dual

approach proposed in 4. Right : reconstruction using our CINT-like algorithm.

In a second time, we also deal with another inverse problem concerning light
propagation. The initial condition reconstructed solving the wave inverse problem is
easily linked to the absorbed EM energy density. It holds information on both the
intrinsic optical parameters of the medium and the illumination conditions/light
propagation. To obtain a more relevant image, we have to extract the intrinsic
information. To proceed, we can model light propagation in different ways. Our
main results in this second direction are as follows.

- Radiative transfer model: We prove stability estimates on the optical
coefficients given the Albedo operator which maps illumination conditions
to absorbed energy density (solution of the wave inverse problem).

- Diffusion model: We propose a method to estimate the size and absorption
coefficient of small inclusions from the absorbed energy.



INTRODUCTION 13

The thesis is organized as follows. In Chapter 1 we focus on imaging of small
absorbers. In the time domain, we develop an original algorithm to estimate accu-
rately the positions of the inclusions. We then develop asymptotic formulae to get
the product of the size of the inclusions times the absorbed energy.In the Fourier
doamin, we propose two methods for reconstructing small absorbing regions inside a
bounded domain from boundary measurements of the induced acoustic signal. The
first method consists of a MUltiple SIgnal Classification (MUSIC)-type algorithm
and the second one uses a multi-frequency approach. We also show results of com-
putational experiments to demonstrate efficiency of the algorithms. In Chapter
2 we propose, in the context of small-volume absorbers, two methods for recon-
structing the optical absorption coefficient from the absorbed energy density. In
Chapter 3 we consider the inverse problem of identifying locations of point sources
and dipoles from limited-view data, for the wave equation . Using as weights par-
ticular background solutions constructed by the geometrical control method, we
recover Kirchhoff-, back-propagation-, MUSIC-, and arrival time-type algorithms
by appropriately averaging limited-view data. We show both analytically and nu-
merically that if one can construct accurately the geometric control, then one can
perform imaging with the same resolution using limited-view as using full-view
data. Chapter 4 is devoted to photo-acoustic imaging of extended absorbers. We
provide algorithms to correct the effects of imposed boundary conditions and that
of attenuation as well on imaging extended absorbers. By testing our measurements
against an appropriate family of functions, we show that we can access the Radon
transform of the initial condition of the acoustic wave equation, and thus recover
quantitatively the absorbed energy density. We also show how to compensate the ef-
fect of acoustic attenuation on image quality by using the stationary phase theorem.
Chapter 5 presents a coherent interferometric strategy for photo-acoustic imaging
in the presence of random fluctuations of the speed of sound. Chapter 6 develops
an inverse transport theory with internal measurements to extract information on
the optical coefficient from knowledge of the absorbed energy density. It provides
stability estimates for the reconstruction. Chapter 7 investigates a topological de-
rivative based anomaly detection algorithm. A stability analysis with respect to
both medium and measurement noises as well as a resolution analysis are derived.

The seven chapters of this thesis are self-contained and can be read indepen-
dently. Results in this thesis will appear in [7, 8, 6, 9, 10, 27, 11].





CHAPTER 1

Mathematical Modelling in Photo-Acoustic

Imaging of Small Absorbers

1.1. Introduction

The photo-acoustic effect is the physical basis for photo-acoustic imaging; it
refers to the generation of acoustic waves by the absorption of optical energy [135,
72]. In photo-acoustic imaging, energy absorption causes thermo-elastic expansion
of the tissue, which in turn leads to propagation of a pressure wave. This signal
is measured by transducers distributed on the boundary of the object, which is in
turn used for imaging optical properties of the object.

In the last decade or so, work on photo-acoustic imaging in biomedical applica-
tions has come a long way. The motivation is to combine ultrasonic resolution with
high contrast due to optical absorption. In pure optical imaging, optical scattering
in soft tissues degrades spatial resolution significantly with depth. Pure optical
imaging is very sensitive to optical absorption but can only provide a spatial reso-
lution on the order of 1 cm at cm depths. Pure conventional ultrasound imaging is
based on the detection of mechanical properties (acoustic impedance) in biological
soft tissues. It can provide good spatial resolution because of its millimetric wave-
length and weak scattering at MHz frequencies. The significance of photo-acoustic
imaging combines both approaches to provide images of optical contrasts (based on
the optical absorption) with the ultrasound resolution.

In this chapter, we propose a new approach for reconstructing small absorb-
ing regions and absorbing energy density inside a bounded domain from boundary
data. We also consider a problem of selective detection, which is to locate a tar-
geted optical absorber among several absorbers from boundary measurements of
the induced acoustic signal.

We first consider the problem of identifying absorbing regions from boundary
measurements. It turns out that the spherical waves centered at some points, which
we call probe waves, may serve as solutions to adjoint problems to the wave equation
for the photo-acoustic phenomena. By integrating the boundary measurements
against such a spherical wave, we can estimate the duration of the wave on the
absorber. Then, by choosing a few waves centered at different points and taking
the intersection of durations of these waves, we can estimate the location and size
of the absorber pretty accurately.

We then turn our attention to selective detection and propose two methods to
localize the targeted absorber. The first method is based on a MUltiple SIgnal Clas-
sification (MUSIC)-type algorithm in conjunction with a time reversal technique,
namely, back-propagation of the acoustic signal [62, 63, 71, 4]. This method works
when the absorbing coefficient of the targeted absorber is in contrast with those of
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16 1. PHOTO-ACOUSTIC IMAGING OF SMALL ABSORBERS

other absorbers. We also investigate the focusing property of the back-propagated
acoustic signal. An alternative method of selective detection is based on the fact
that the absorbing coefficient may vary depending on the frequencies. Some ab-
sorbers are transparent at a certain frequency, while they are quite absorbing at
other frequencies. This phenomenon causes a multi-frequency approach to detect a
targeted absorber. We propose a detailed implementation of this multi-frequency
approach.

These methods are tested numerically using simulation data. Computational
results clearly exhibit their accuracy and efficiency. It should be emphasized that
all the methods proposed in this chapter are derived using approximations which
are valid under the assumption that the optical absorbers are of small size.

The chapter is organized as follows: In Section 1.2, we formulate the mathemat-
ical problems (in a bounded domain) and review known results of reconstruction
using the spherical Radon transform in free space. In Section 1.3 we propose a
reconstruction method using probe waves. Section 1.4 investigates the focusing
property of the back-projected signal. Section 1.5 is devoted to the selective de-
tection. Section 1.6 presents the results of computational experiments, and the
chapter ends with a short discussion.

1.2. Mathematical Formulation

Let Dl, l = 1, . . . ,m, be m absorbing domains inside the non-absorbing back-
ground bounded medium Ω ⊂ Rd, d = 2 or 3. In an acoustically homogeneous
medium, the photo-acoustic effect is described by the following equation:

(1.1)
∂2p

∂t2
(x, t) − c2∆p(x, t) = γ

∂H

∂t
(x, t), x ∈ Ω, t ∈] −∞,+∞[,

where c is the acoustic speed in Ω, γ is the dimensionless Grüneisen coefficient in
Ω, and H(x, t) is a heat source function (absorbed energy per unit time per unit
volume).

Assuming the stress-confinement condition, the source term can be modelled
as γH(x, t) = δ(t)

∑
l χDl

(x)Al(x). Here and throughout this chapter χDl
is the

indicator function of Dl. Under this assumption, the pressure in an acoustically
homogeneous medium obeys the following wave equation:

(1.2)
∂2p

∂t2
(x, t) − c2∆p(x, t) = 0, x ∈ Ω, t ∈]0, T [,

for some final observation time T . The pressure satisfies either the Dirichlet or the
Neumann boundary condition

(1.3) p = 0 or
∂p

∂ν
= 0 on ∂Ω×]0, T [

and the initial conditions

(1.4) p|t=0 =

m∑

l=1

χDl
(x)Al(x) and

∂p

∂t

∣∣∣
t=0

= 0 in Ω.

Here and throughout this chapter, ν denotes the outward normal to ∂Ω. It is
worth emphasizing that both the Dirichlet and Neumann boundary conditions in
(1.3) yield good mathematical models in practice.
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The inverse problem in photo-acoustic imaging is to determine the supports of
nonzero optical absorption (Dl, l = 1, . . . ,m) in Ω and the absorbed optical energy
density times the Grüneisen coefficient, A(x) =

∑m
l=1Al(x)χDl

(x), from boundary

measurements of ∂p
∂ν on ∂Ω×]0, T [ if p satisfies the Dirichlet boundary condition,

and p on ∂Ω×]0, T [ if p satisfies the Neumann boundary condition. We will assume
that T is large enough that

(1.5) T >
diam(Ω)

c
,

which says that the observation time is long enough for the wave initiated inside Ω
to reach the boundary ∂Ω.

The density A(x) is related to the optical absorption coefficient distribution
µa(x) =

∑m
l=1 µl(x)χDl

(x) by the equation A(x) = γµa(x)Φ(x), where Φ is the light
fluence. The function Φ depends on the distribution of scattering and absorption
within Ω, as well as the light sources. The reconstruction of the optical absorption
coefficient distribution µa(x) from A(x) is therefore a non trivial task. It will be
considered in Chapter 2.

Suppose d = 3 and consider the wave equation

∂2p

∂t2
(x, t) − c2∆p(x, t) = 0

in free space with the initial conditions p =
∑m

l=1 χDl
Al(x) and ∂tp = 0 at t = 0.

The pressure p in this case can be written explicitly as

p(x, t) =
d

dt

[ m∑

l=1

∫

|x−x′|=ct

χDl
(x′)Al(x

′)

4π|x− x′| dS(x′)

]
,

or, equivalently,

(1.6) p(x, t) =
c

4π

d

dt

[
t

m∑

l=1

∫

|x′|=1

χDl
(x+ ctx′)Al(x+ ctx′) dS(x′)

]
,

where dS is the surface area element on the unit sphere, since c2t2dS(x′) = dσ(x′).

Formula (1.6) says that c−1t−1
∫ t

0
p(x, τ)dτ is the spherical Radon transform of

A(x). Hence, we can reconstruct A by inverting the spherical Radon transform.
We refer the reader to the papers [1, 2, 96, 133, 80, 81, 3] for uniqueness of the
reconstruction and back-projection inversion procedures. See also [110] and [131],
where the half-space problem has been considered.

The main purpose of this chapter is to deal with the difficulty caused by im-
posing boundary conditions and to develop new methods to reconstruct absorbing
regions and their densities. We propose a method related to the time-reversal tech-
nique [71] for reconstructing A. We will also show the focusing property of the
back-propagated acoustic signal and provide two different methods for locating a
targeted optical absorber from boundary measurements of the induced acoustic sig-
nal. The first method consists of a MUSIC-type algorithm, while the second one
uses a multi-frequency approach. It is worth mentioning, in connection with our
reconstruction methods, the nice analysis of the sensitivity of a photo-acoustic wave
to the presence of small absorbing objects in [72].
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1.3. A Reconstruction Method

The algorithms available in the literature are limited to unbounded media.
They use the inversion of the spherical Radon transform. However, since the pres-
sure field p is significantly affected by the acoustic boundary conditions at the
tissue-air interface, where the pressure must vanish, we cannot base photo-acoustic
imaging on pressure measurements made over a free surface. Instead, we propose
the following algorithm.

Let v satisfy

(1.7)
∂2v

∂t2
− c2∆v = 0 in Ω×]0, T [,

with the final conditions

(1.8) v|t=T =
∂v

∂t

∣∣∣
t=T

= 0 in Ω,

which is an adjoint problem to (1.2)-(1.4). We will refer to v as a probe function
or a probe wave.

Multiply both sides of (1.2) by v and integrate them over Ω× [0, T ]. After some
integrations by parts, this leads to the following identity:

(1.9)

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)v(x, t) dσ(x) dt =

1

c2

m∑

l=1

∫

Dl

Al(x)∂tv(x, 0)dx.

Here we assume that p satisfies the Dirichlet boundary condition.
Suppose first that d = 3. For y ∈ R3 \ Ω, let

(1.10) vy(x, t; τ) :=
δ
(
t+ τ − |x−y|

c

)

4π|x− y| in Ω×]0, T [,

where δ is the Dirac mass at 0 and τ > dist(y,∂Ω)
c is a parameter. It is easy to check

that vy satisfies (1.7) (see, e.g., [76, p. 117]). Moreover, since

|x− y| ≤ diam(Ω) + dist(y, ∂Ω)

for all x ∈ Ω, vy satisfies (1.8) provided that the condition (1.5) is fulfilled.
We write

Dl = zl + εBl,

where zl is the “center” of Dl, Bl contains the origin and plays the role of a reference
domain, and ε is the common order of magnitude of the diameters of the Dl.
Throughout this chapter, we assume that zl’s are well-separated, i.e.,

(1.11) |zi − zj| > C0 ∀i 6= j

for some positive constant C0. Suppose that

(1.12) Al(x) =

N∑

|j|=0

1

j!
a
(l)
j · (x− zl)

j ,

which is reasonable as Dl is small. Here, j = (j1, . . . , jd), x
j = xj1

1 · · ·xjd

d , and
j! = j1! · · · jd!. Equation (1.12) corresponds to a multipolar expansion up to order
N of the optical effect of Dl.
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Choosing vy as a probe function in (1.9), we obtain the new identity
(1.13)

1

c2

m∑

l=1

N∑

|j|=0

1

j!
a
(l)
j

∫

Dl

(x− zl)
j∂tvy(x, 0; τ)dx =

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt.

Determination of location. Suppose for simplicity that there is only one ab-
sorbing object (m = 1), which we denote by D(= z + εB). Identity (1.13) shows
that

(1.14) τ 7→
∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt

is nonzero only on the interval ]τa, τe[, where τa = dist(y,D)/c is the first τ at
which the sphere of center y and radius τ hits D and τe is the last τ at which
that sphere hits D. This gives a simple way to detect the location (by chang-
ing the source point y and taking the intersection of spheres). The quantity∫ T

0

∫
∂Ω

∂p
∂ν (x, t)vy(x, t; τ) dσ(x) dt can be used to probe the medium as a function

of τ and y. For fixed y, it is a one-dimensional function and it is related to time
reversal in the sense that it is a convolution with a reversed wave.

Let us now compute
∫

D
(x − z)j∂tvy(x, 0; τ)dx for τ ∈]τa, τe[. Note that, in a

distributional sense,

(1.15) ∂tvy(x, 0; τ) =
δ′
(
τ − |x−y|

c

)

4π|x− y| .

Thus we have
∫

D

(x− z)j∂tvy(x, 0; τ)dx =

∫

D

(x− z)j

4π|x− y| δ
′
(
τ − |x− y|

c

)
dx.

Letting s = |x− y| and σ = x−y
|x−y| , we get by a change of variables

(1.16)∫

D

(x− z)j∂tvy(x, 0; τ)dx =
1

4π

∫ +∞

0

s

∫

S2

χD(sσ + y)(sσ+ y− z)jδ′(τ − s

c
) ds dσ,

where S2 is the unit sphere.
Define for multi-indices j,

bj(D, t; τ) =

∫

S2

χD(c(τ − t)σ + y)(c(τ − t)σ + y − z)jdσ.

Note that the function bj(D, t; τ) is dependent on the shape of D (bj is related to
the moment of order j of the domain D). If we take D to be a sphere of radius
r (its center is z), then one can compute bj(D, t; τ) explicitly using the spherical
coordinates.

Since
∫ +∞

0

s

∫

S2

χD(sσ+ y)(sσ+ y− z)jδ′(τ − s

c
) ds dσ = −c2 d

dt

[
(τ − t)bj(D, t; τ)

]∣∣∣∣
t=0

,

it follows from (1.16) that
∫

D

(x − z)j∂tvy(x, 0; τ)dx =
c2

4π
(bj(D, 0; τ) − τb′j(D, 0; τ)),
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where b′j is the derivative with respect to t. We then obtain the following theorem

from (1.13).

Theorem 1.1. For τ ∈]τa, τe[,
(1.17)

1

4π

N∑

|j|=0

aj

j!
· (bj(D, 0; τ) − τb′j(D, 0; τ)) =

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt.

If the Dirichlet boundary condition (1.3) is replaced by the Neumann boundary
condition

(1.18)
∂p

∂ν
= 0 on ∂Ω×]0, T [,

then (1.17) should be replaced by
(1.19)

1

4π

N∑

|j|=0

aj

j!
· (bj(D, 0; τ) − τb′j(D, 0; τ)) = −

∫ T

0

∫

∂Ω

∂vy

∂ν
(x, t; τ)p(x, t) dσ(x) dt.

Estimation of absorbing energy. Now we show how to use (1.17) for estimating
a(j) and some geometric features ofD when the location z ofD has been determined
by the variations of the function in (1.14). Suppose that N = 0, i.e., A is constant
on D. Then (1.17) reads

1

4π
a0 · (b0(D, 0; τ) − τb′0(D, 0; τ)) =

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt.

Note that b0(D, 0; τ)− τb′0(D, 0; τ) for τ > 0 is supported in [τa, τe]. We then have

|a0|
4π

·
∫ τe

τa

∣∣∣∣b0(D, 0; τ) − τb′0(D, 0; τ)

∣∣∣∣ dτ

=

∫ τe

τa

∣∣∣∣
∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt

∣∣∣∣ dτ.(1.20)

If we further assume that D = z + εB for small ε and a sphere B of radius 1,
then we can compute b0(D, t; τ) explicitly. In fact, one can show that
(1.21)

b0(D, t, τ) =




π
ε2 − (|z − y| − c|τ − t|)2

c|z − y||τ − t| if − ε < |z − y| − c|τ − t| < ε,

0 otherwise,

and hence we deduce cτa = |z − y| − ε, cτe = |z − y| + ε, and

b0(D, 0, τ) − τb′0(D, 0, τ) =
2π(|z − y| − cτ)

|z − y|
for τ > 0. Therefore, easy computations show that

(1.22) |a0|ε2 ≈ c|z − y|
∫ τe

τa

∣∣∣∣
∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt

∣∣∣∣ dτ,

which gives an approximation of |a0|ε2. Higher-order approximations can be ob-
tained from (1.17) as well.
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Suppose now d = 2. Due to the two-dimensional nature of the Green function,
we consider a new probe wave given by

(1.23) vθ(x, t; τ) = δ

(
t+ τ − 〈x, θ〉

c

)

where θ ∈ S1, 〈·, ·〉 denotes the Euclidean scalar product, and τ is a parameter
satisfying

τ > max
x∈Ω

( 〈x, θ〉
c

)
.

We can still use the function

τ 7→
∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vθ(x, t; τ) dσ(x) dt

to probe the medium as a function of τ . This quantity is non-zero on the interval
]τa, τe[, where τa and τe are defined such that planes 〈x, θ〉 = cτ for τ = τa and τe
hit D. Changing the direction θ and intersecting stripes gives us an efficient way
to reconstruct the inclusions.

By exactly the same arguments as in three dimensions, one can show that

(1.24)
1

c

N∑

|j|=0

aj

j!
· b′j(D, 0; τ) =

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vθ(x, t; τ) dσ(x) dt,

where

(1.25) bj(D, t; τ) :=

∫

R

χD(c(τ − t)θ + uθ⊥)(c(τ − t)θ + uθ⊥ − z)jdu.

Assuming N = 0 and D = z + ǫB, we can compute b0 explicitly. We have
(1.26)

b0(D, t; τ) =





2
√
ǫ2 − (c|τ − t| − 〈z, θ〉)2 if − ǫ < 〈z, θ〉 − c|τ − t| < ǫ,

0 otherwise.

Since cτa = 〈z, θ〉 − ǫ, cτ0 = 〈z, θ〉, and cτb = 〈z, θ〉 + ǫ, we get

(1.27) |a0|ǫ =
c

4

∫ τe

τa

∣∣∣∣∣

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vθ(x, t; τ) dσ(x) dt

∣∣∣∣∣ dτ.

The above formula can be used to estimate |a0|ǫ.
In the case when there arem inclusions, we first compute for each l the quantity

(1.28) θl,best = argmax
θ∈[0,π]

(
min
j 6=l

|〈zj − zl, θ〉|
)

and then, since along the direction θl,best, the inclusion Dl is well separated from
all the other inclusions, we can use (1.27) to estimate its |a0|ǫ.

To conclude this section, we make a few remarks. We first emphasize that
probe functions other than those in (1.10) and (1.23) can be used.

If the medium contains small acoustic anomalies, then the effect of the inho-
mogeneity of acoustic speed can be neglected when the anomalies are away from
the optical absorbing domains. However, we need to correct this effect when the
anomalies are close to or on the absorbing region. In this case, the probe function
vy has to be corrected and this correction can be constructed by using the inner
expansions derived in [15]. See also [4].
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Let us digress a little to the problem posed in free space. Let Ω be a large
domain containing the support D of the nonzero absorption. We can check from
the explicit formula (1.6) for p that

∫ T

0

∫

∂Ω

(
∂p

∂ν
(x, t)vy(x, t; τ) − p(x, t)

∂vy

∂ν
(x, t; τ)

)
dσ(x) dt

=
1

4π

N∑

|j|=0

aj

j!
· (bj(D, 0; τ) − τb′j(D, 0; τ)),

which shows the consistency of our approach with the free space problem.

1.4. Back-Propagation of the Acoustic Signals

If we separate out the time dependence of p, the solution to (1.2)-(1.4), by
expanding p(x, t) into a set of harmonic modes, then, for a given frequency ζ, the
harmonic mode p̂(x, ζ) satisfies the Helmholtz equation

(1.29) −(ζ2 + c2∆)p̂(x, ζ) = iζ(

m∑

l=1

χDl
Al(x)) in Ω,

with the boundary condition

p̂ = 0 or
∂p̂

∂ν
= 0 on ∂Ω.

Suppose that −ζ2/c2 is not an eigenvalue of ∆ in Ω with the Dirichlet or the
Neumann boundary condition. The inverse problem we consider in this section is
to reconstruct A =

∑m
l=1 χDl

Al from the measurements of ∂p̂
∂ν or p̂ on ∂Ω.

In this section, we show the focusing properties of the back-propagated acoustic
signals. To do so, let Γy(x), for y ∈ Rd \ Ω, be the fundamental outgoing solution
of −(ζ2 + c2∆) in Rd, i.e.,

−(ζ2 + c2∆x)Γy(x) = δx=y

subject to the outgoing radiation condition. It then follows from the divergence
theorem that

iζ

m∑

l=1

∫

Dl

Al(x)Γy(x)dx = c2
∫

∂Ω

p̂(x, ζ)
∂Γy

∂ν
(x)dσ(x)−c2

∫

∂Ω

∂p̂

∂νx
(x, ζ)Γy(x) dσ(x).

As before, suppose that Dl = zl + εBl, where ε is small. Then, we have
(1.30)

iζ

m∑

l=1

|Dl|Al(zl)Γy(zl) ≈





c2
∫

∂Ω

p̂(x, ζ)
∂Γy

∂ν
(x)dσ(x) if

∂p̂

∂ν
= 0 on ∂Ω,

−c2
∫

∂Ω

∂p̂

∂ν
(x, ζ)Γy(x) dσ(x) if p̂ = 0 on ∂Ω.

For R large enough, let SR := {|y| = R}. Set

(1.31) H(y) := − ic
2

ζ
×





∫

∂Ω

p̂(x, ζ)
∂Γy

∂ν
(x)dσ(x) if

∂p̂

∂ν
= 0 on ∂Ω,

−
∫

∂Ω

∂p̂

∂ν
(x, ζ)Γy(x) dσ(x) if p̂ = 0 on ∂Ω,

and αl = |Dl|Al(zl). Note that, for any y ∈ Rd \ Ω, the function H(y) can be
computed from the boundary measurements of p.
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Back-propagating p corresponds to computing

(1.32) W (z) :=

∫

SR

[
∂Γz

∂ν
(y)H(y) − ∂H

∂ν
(y)Γz(y)

]
dσ(y), z ∈ Ω,

where H is defined in (1.31) (see, e.g., [4]). Since from (1.30)

H(y) ≈
m∑

l=1

αlΓy(zl)

for y in a neighborhood of SR, we have

W (z) ≈
m∑

l=1

αl

∫

SR

[
∂Γz

∂ν
(y)Γzl

(y) − ∂Γzl

∂ν
(y)Γz(y)

]
dσ(y) = 2

m∑

l=1

αlℑmΓzl
(z).

(1.33)

Thus it is now easy to find the locations zl, l = 1, . . . ,m, as the points where the
functional W has its maximum. Equation (1.33) shows that the reversed signal fo-
cuses on the locations of the absorbers with a resolution determined by the behavior
of the imaginary part of the Green function.

1.5. Selective Detection

The purpose of selective detection is to focus high-intensity ultrasound toward
a targeted optical absorber in biological tissue, based on the back-propagation of
photo-acoustic waves generated by this optical absorber [74]. The main difficulty
in focusing toward a targeted optical absorber is that photo-acoustic waves are
generated by other optical absorbers in the medium as well. In this section we
propose two methods of different natures to overcome this difficulty.

1.5.1. MUSIC Algorithm. Here, we use the same notation as in Section 4.
Suppose that, for some l0, Dl0 is a targeted optical absorber and its coefficient αl0

is known. However, its location zl0 is not known. Suppose also that

(1.34) |αl0 | ≥ C, |αl0 − αl| ≥ C, ∀ l 6= l0,

for some positive constant C. This means that αl0 is significantly different from the
coefficients associated with all the other absorbers in the medium. The locations
and the αl’s of all the other absorbing inclusions (Dl for l 6= l0) are not known.

To localize the absorbing object Dl0 without knowing any of the others, we
compute the following quantity for z ∈ Ω:

(1.35) Wl0(z) :=
1

αl0 − 4πc4
∫

SR
Γy(z)H(y) dσ(y)

.

Let k = ζ
c for simplicity of notation. Recall that in three dimensions

Γy(z) =
eik|y−z|

4πc2|y − z| ≈
eik|y|

4πc2|y|e
−ik y

|y| ·z,

if |y| is sufficiently large, while in the two-dimensional case

Γy(z) =
i

4c2
H

(1)
0 (k|y − z|) ≈ eik|y|+iπ/4

2c2
√

2kπ|y|
e−ik y

|y| ·z.



24 1. PHOTO-ACOUSTIC IMAGING OF SMALL ABSORBERS

Therefore, in three dimensions we have for large R
∫

SR

Γy(z)Γy(zl) dσ(y) ≈ 1

(4πRc2)2

∫

SR

e−ik y
|y| ·(z−zl) dσ(y) =

1

4πc4
sin k|z − zl|
k|z − zl|

,

and hence

4πc4
∫

SR

Γy(z)H(y) dσ(y) ≈
m∑

l=1

αl
sin k|z − zl|
k|z − zl|

.

This yields

Wl0(z) ≈
1

αl0 −
∑

l αl
sin k|z−zl|

k|z−zl|
.

Therefore, thanks to assumption (1.11), we have

(1.36) Wl0(z) ≈
1

∑
l 6=l0

αl
sin k|z−zl|

k|z−zl|
≫ 1 for z near zl0 .

We also have from assumption (1.34)

(1.37) Wl0(z) ≈
1

αl0 −
∑

l αl
sin k|z−zl|

k|z−zl|
= O(1) for z away from zl0 .

It then follows that zl0 can be detected as the point where the functional Wl0 has
a peak. This is a MUSIC-type algorithm for locating the anomalies.

In the two-dimensional case, we compute for large R
∫

SR

Γy(z)Γy(zl) dσ(y) ≈ 1

8kπRc4

∫

SR

e−ik y

|y| ·(z−zl) dσ(y) =
1

4kc4
J0(k|z − zl|),

where J0 is the Bessel function of the first kind of order zero. It then follows that

4kc4
∫

SR

Γy(z)H(y) dσ(y) ≈
m∑

l=1

αlJ0(k|z − zl|).

In two dimensions, define Wl0 by

Wl0(z) :=
1

αl0 − 4kc4
∫

SR
Γy(z)H(y) dσ(y)

.

As in the three-dimensional case, the behavior of the function J0 yields

Wl0(z) ≈
1∑

l 6=l0
αlJ0(k|z − zl|)

≫ 1 for z near zl0

and

Wl0(z) ≈
1

αl0 −
∑

l αlJ0(k|z − zl|)
= O(1) for z away from zl0 .

Therefore, exactly as in three dimensions, zl0 can be detected as the point where
the functional Wl0 has a peak.

Note that one does not need the exact value of αl0 . One can get an approx-
imation of αl0 by looking numerically for the maximum of the function F (z) =∫

SR
Γy(z)H̄(y)dσ(y).
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1.5.2. Multi-Frequency Approach. An alternative method for isolating
the photo-acoustic signal generated by the targeted optical absorber from those
generated by the others is to make use of two light pulses with slightly different
excitation wavelengths, ω1 and ω2, tuned to the absorption spectrum of the tar-
geted optical absorber. If the wavelengths are such that ω1 corresponds to a low
value (that can be neglected) of the absorption coefficient of the optical target and
ω2 to a high value of the absorption coefficient of the optical target, then the only
difference in photo-acoustic waves generated in the medium by the two different
pulses corresponds to the photo-acoustic waves generated by the light pulse selec-
tively absorbed by the optical target (see, e.g., [74, 130]). Back-propagating this
signal will focus on the location of the optical target [74].

Suppose that there are two absorbers, say, D1 and D2, and assume that

(1.38) |D2| ≪ 1,

(1.39) dist(D1, D2) ≥ C > 0,

which means that D2 is small and D1 and D2 are apart from each other.
Let Φ1 and Φ2 be the light fluences corresponding, respectively, to illuminating

the medium with excitation wavelengths ω1 and ω2. If we take ω2 close to ω1, then
due to the assumptions (1.38) and (1.39) we have

(1.40) µ1(x, ω1)Φ1(x) ≈ µ1(x, ω2)Φ2(x) in D1.

The pressures generated by the photo-acoustic effect are given by




∂2p1

∂t2
(x, t) − c2∆p1(x, t) = 0, x ∈ Ω, t ∈]0, T [,

p1 = 0 or
∂p1

∂ν
= 0 on ∂Ω×]0, T [,

p1|t=0 = µ1(x, ω1)χD1Φ1 and
∂p1

∂t

∣∣∣
t=0

= 0 in Ω,

and




∂2p2

∂t2
(x, t) − c2∆p2(x, t) = 0, x ∈ Ω, t ∈]0, T [,

p2 = 0 or
∂p2

∂ν
= 0 on ∂Ω×]0, T [,

p2|t=0 = (µ1(x, ω2)χD1 + µ2(x, ω2)χD2)Φ2 and
∂p2

∂t

∣∣∣
t=0

= 0 in Ω.

For the sake of simplicity we work in the frequency domain. In view of (1.29),
the difference between the generated pressures p̂2 − p̂1 at frequency ζ can be ap-
proximated for x ∈ Ω as follows:

(p̂2−p̂1)(x, ζ) ≈ iζ|D2|µ2(z, ω2)Φ2(z)×





G(x, z) in the case of the

Dirichlet boundary condition,

N(x, z) in the case of the

Neumann boundary condition,
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where G is the Dirichlet function



−(ζ2 + c2∆)G(x, z) = δz in Ω,

G = 0 on ∂Ω,

and N is the Neumann function



−(ζ2 + c2∆)N(x, z) = δz in Ω,

∂N

∂ν
= 0 on ∂Ω.

Here we assume that −ζ2 is not an eigenvalue of ∆ in Ω with Dirichlet or Neumann
boundary condition.

Define, as in (1.31), H by

H(y) := − ic
2

ζ





∫

∂Ω

(p̂2 − p̂1)(x)
∂Γy

∂ν
(x)dσ(x) in the case of the Neumann

boundary condition,

−
∫

∂Ω

∂(p̂2 − p̂1)

∂ν
(x)Γy(x) dσ(x) in the case of the Dirichlet

boundary condition.

Back-propagating p̂2 − p̂1 yields

2|D2|µ2(z, ω2)Φ2(z)ℑmΓz(x) ≈
∫

SR

[
∂Γz

∂ν
(y)H(y)−∂H

∂ν
(y)Γz(y)

]
dσ(y) for x ∈ Ω.

Here, R is large enough and SR = {|x| = R}, as before. This equation shows that
the reversed frequency-difference signal focuses on the location z of the targeted
optical absorber. Using the equation we can reconstruct the location z with a
resolution given by the behavior of the imaginary part of the Green function and a
signal-to-noise ratio function of the quantity |D2|µ2(z, ω2)Φ2(z).

1.6. Numerical Examples

1.6.1. Reconstruction Algorithm. We have performed numerical simula-
tions to validate our approach. Data used were obtained by numerically solving the
two-dimensional photo-acoustic equation (1.1) (with the Dirichlet boundary condi-
tion) with a finite-difference in time-domain method. The modelled medium was
an acoustically homogeneous square (40 mm×40 mm) with c = 1.5mms−1. The
spatial step was 10 µm, and the temporal step was 9.3 ns. These steps were chosen
to allow the modelling of the temporal Dirac in the heat function by a gaussian
impulse with full width at half maximum of 250 ns. In order to have accurate
Neumann boundary data on the time interval ]0, T [, 4000 captors (spatial step=10

µm) were aligned on each edge of the square, taking 7500 measures of ∂p
∂ν over

a total time length T of 70µs (time step=9.3 ns). In our further computations,
derivatives were obtained using the finite difference approximation, integrals using
the trapezium approximation, and we approximated

∫
f(t)δ(t−t0)dt by the nearest

discrete value of f(t0). Note also that the 7500 measures of ∂p
∂ν were only used to

interpolate very accurately the integral in the quantity defined by (1.14). It has
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(a) Real configuration of the medium.
There are seven optical inclusions.
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(b) Reconstructed image of the medium. In-
clusions 6 and 7 are reconstructed as a single
inclusion.

Figure 1.1. Real and reconstructed configurations of the medium.

been checked that using 1/1000 of the data (1/10 in time and 1/10 in each space
component) still yields satisfactory reconstruction results.

A first set of data was used to validate the reconstruction algorithm. Inside
the medium were several unknown inclusions of various size and absorption. The
initial situation is shown in Figure 1(a).

We computed the probe function for K=360 values of θ and L=800 values of
τ . Then, taking the intersection of all the zero-stripes, we obtained a binary image
of the medium. We also determined the gravity centers of the inclusions. The
reconstructed image is shown in Figure 1(b). Gravity centers of the real and recon-
structed inclusions are shown in Figure 1.2. First we notice that our reconstruction
method cannot distinguish between the too-close inclusions 6 and 7.

As can be observed, results are quite accurate. Ignoring inclusions 6-7, the
mean error on the positions is less than the pixel size of our image (0.074 vs. 0.08).
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True positions
Positions determined with the algorithm

Figure 1.2. Gravity centers of actual and reconstructed inclusions.

1.6.2. Back-Propagation Algorithm. To test the back-propagation algo-
rithm, we simulated data based on the Helmholtz equation (1.29) by using a finite
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element method. For all the simulations, we used frequency ζ = 5Mrads−1. Note
that we could not use the same space-time data as in the reconstruction algorithm
since the time length of these data is limited. Because we have only access to
p(x, t) for t ∈]0;T [, taking the discrete Fourier transform of these data would not
give p̂(x, ζ), but p̂ is acquired by convolution with the sinc function.

We first applied the back-propagation algorithm on data generated by seven
inclusions of radius 1mm. Each inclusion has a similar absorbed energy a0 = 1.
The actual configuration and the resulting image of W (z) are shown in Figure 1.3.
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Figure 1.3. Back-propagation simulation. Left: Actual configu-
ration. Right: Plot of W (z).

1.6.3. Selective Detection.
1.6.3.1. MUSIC Algorithm. We first tested the MUSIC algorithm on a simple

situation with only one inclusion. In Figure 1.4, we give the initial situation, the
reconstruction function F (z) =

∫
SR

Γy(z)H̄(y)dσ(y), which is close to the time-

reversal philosophy [4], and the MUSIC function Wl0(z), which has a sharp peak
around the inclusion.

We then simulated data with different energies to verify that the MUSIC al-
gorithm could selectively distinguish an inclusion whose absorbed energy is very
different to that of any other inclusion. Results, shown in Figures 1.5 and 1.6,
are quite satisfying since we could separate the contrasted inclusion among seven
inclusions, even with contrast equal to two.

1.6.3.2. Multi-Frequency Approach. We simulated 2 sets of data corresponding
to the situation described in Section 1.5.2. We assumed that inclusion six was
totally transparent at wavelength ω1 but appeared just like the other inclusions at
ω2. As expected, one can see in Figure 1.7 that the algorithm managed to isolate
inclusion 6.

1.7. Concluding Remarks and Extensions

In this chapter, we have provided a new method for reconstructing small absorb-
ing inclusions inside a bounded medium where boundary conditions are imposed.
Because of the acoustic boundary conditions, the spherical Radon inverse trans-
form cannot be applied. Our approach is to make an appropriate averaging of the
measurements by using particular solutions to the wave equation. It is related to
time reversal in the sense that it is a convolution with a reversed wave. It has been
validated by numerical simulations.
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Figure 1.4. Selective detection: MUSIC simulation with a single
inclusion. Top left: actual configuration. Top right: plot of F (z).
Bottom: plot of Wl0(z).
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Figure 1.5. Selective detection: MUSIC simulation with seven
inclusions, and contrast=10.

In the case where the time-dependence of the induced pressure by the photo-
acoustic effect can be separated out, we have designed a back-propagation algo-
rithm to detect the absorbers. Its resolution is determined by the behavior of the
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Figure 1.6. Selective detection: MUSIC simulation with seven
inclusions, and contrast=2.
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Figure 1.7. Selective detection: Multi-frequency approach re-
sults. Inclusion 6 is transparent at one frequency (top left), is
seen at other frequency (top right), and hence is separated (bot-
tom).

imaginary part of the Green function of the acoustic medium. To isolate the photo-
acoustic signal generated by a targeted optical absorber from those generated by
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the others, we developed two different approaches: the first approach is of MUSIC-
type and the second one is a multi-frequency approach. These two approaches have
the same resolution.

All the algorithms designed in this paper can be extended to the case where
the acoustic background medium is heterogeneous but known.

An important problem is to develop a stable and accurate method for recon-
structing the optical absorption coefficient from the absorbed energy. This will be
the aim of Chapter 2.

Our approach extends to the case where only a part of the boundary is ac-
cessible. If we suppose that the measurements are only made on a part Γ of the
boundary ∂Ω, then the detection of the absorbers from these partial measurements
holds only under an extra assumption on T and Γ. The geometric control theory
[28] can be used to construct an appropriate probe function in the limited-view
data case. This will be discussed in Chapter 3. We also intend to generalize in
Chapters 4 and 5 our inversion formula to the case where the medium is acousti-
cally inhomogeneous (contains small acoustical scatterers and/or in the presence of
attenuation).





CHAPTER 2

Reconstruction of the Optical Absorption

Coefficient of a Small Absorber from the

Absorbed Energy Density

2.1. Problem Formulation

Photo-acoustic imaging is an emerging imaging technique that combines high
optical contrast and high ultrasound resolution in a single modality. It is based on
the photo-acoustic effect which refers to the generation of acoustic waves by the
absorption of the optical energy. See, for instance, [135, 72, 110, 112].

In photo-acoustic imaging, the absorbed energy density can be reconstructed
from boundary measurements of the induced pressure wave; see Chapter 1. How-
ever, in general, it is not possible to infer physiological parameters from the ab-
sorbed energy density. It is the optical absorption coefficient that directly correlates
with tissue structural and functional information such as blood oxygenation. See
[139, 99, 129].

Let D be an absorbing domain inside the non-absorbing background bounded
medium Ω ⊂ R3. Let χD be the characteristic function of D. The absorbed
energy density A(x) is related to the optical absorption coefficient distribution
µa(x) = µaχD(x), where µa is a constant, by the equation A(x) = µa(x)Φ(x),
where Φ is the fluence. The function Φ depends on the distribution of scattering
and absorption within Ω, as well as the light sources. Suppose that µs, the reduced
scattering coefficient in Ω, is constant. Based on the diffusion approximation to the
transport equation, Φ satisfies

(2.1)

(
µa(x) − 1

3
∇ · 1

µa(x) + µs
∇
)

Φ(x) = 0 in Ω,

with the boundary condition

(2.2)
∂Φ

∂ν
+ lΦ = g on ∂Ω.

See, for instance, [22, 89]. Here, ν denotes the outward normal to ∂Ω and g denotes
the light source and l a positive constant; 1/l being an extrapolation length.

Since A is a nonlinear function of µa, the reconstruction of µa from A is there-
fore a non-trivial task and of considerable practical interest.

In [112], a formula to reconstruct small changes in the absorption coefficient is
given. A fixed-point algorithm has been designed in [58, 57] in a more general case.
The algorithm starts with an initial guess for the absorption coefficient. Then, when
the (reduced) scattering coefficient distribution is known a priori, the light fluence
Φ is calculated using the diffusion approximation to the light transport model. As
long as the calculated and reconstructed absorption densities differ, these steps are

33
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repeated with an assumed absorption coefficient calculated from the quotient of the
reconstructed absorption density and the computed fluence distribution. When the
reduced scattering coefficient distribution is unknown, an optimal control approach
for estimating the absorption and reduced scattering coefficient distributions from
absorbed energies obtained at multiple optical wavelengths has been developed in
[56]. See, for instance, [99] for the validity of a multi-wavelength approach.

However, such iterative approaches are not appropriate to reconstruct the ab-
sorption coefficient of a small absorber. Suppose that the absorbing object D is
small. We write

D = z + εB,

where z is the “center” of D, B is a reference domain which contains the origin,
and ε is a small parameter. In this case, only the normalized energy density of the
absorber, ε2A with ε being the radius of D, can be reconstructed from pressure
measurements; see Chapter 1.

The main purpose of this chapter is to develop, in the context of small-volume
absorbers, new efficient methods to recover µa of the absorber D from the nor-
malized energy density ε2A. We distinguish two cases. The first case is the one
where the reduced scattering coefficient µs inside the background medium is known
a priori. In this case we develop an asymptotic approach to recover the normal-
ized absorption coefficient, ε2µa, from the normalized energy density using multiple
measurements. We make use of inner expansions of the fluence distribution Φ in
terms of the size of the absorber. We also provide an approximate formula to sepa-
rately recover ε from µa. However, this requires boundary measurements of Φ. The
feasibility of combining photo-acoustic and diffusing light measurements has been
demonstrated in [136, 137].

The second case is when the reduced scattering coefficient µs is unknown. We
use multiple optical wavelength data. We assume that the optical wavelength de-
pendence of the scattering and absorption coefficients are known. In tissues, the
wavelength-dependence of the scattering often approximates to a power law. We
propose a formula to extract the absorption coefficient µa from multiple optical
wavelength data. In fact, we combine multiple optical wavelength measurements
to separate the product of absorption coefficient and optical fluence. Note that the
approximate model we use in this case for the light transport, which is based on
the diffusion approximation, allows us to estimate |D| independently from A and
therefore, the multi-wavelength approach yields the absolute absorption coefficient.

The chapter is organized as follows. In Section 2.2, assuming that µs is known a
priori, we develop a method for reconstructing ε2µa(z) from ε2A(z). Then we show
how to separate ε from µa(z). In Section 2.3, we provide in the case where µs is un-
known (and possibly varies in Ω) an algorithm to extract the absorption coefficient
µa from absorbed energies obtained at multiple optical wavelengths. Numerical
results are presented in Section 2.4 to show the validity of our inversion algorithms.
The chapter ends with a short discussion. For the sake of simplicity, we only con-
sider the three-dimensional problem but stress that the techniques developed here
apply directly to the two-dimensional case.
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2.2. Asymptotic Approach

In this section, we consider a slightly more general equation than (2.1) and
provide an asymptotic expansion of its solution as the size of the absorbing object
D goes to zero.

Recall that the fluence Φ is the integral over time of the fluence rate Ψ which
satisfies

(2.3)

(
1

c
∂t + µa(x) − 1

3
∇ · 1

µa(x) + µs
∇
)

Ψ(x) = 0 in Ω × R,

where c is the speed of light. Taking the Fourier transform of (2.3) yields that
Φ = Φω=0, where, for a given frequency ω, Φω is the solution to

(2.4)

(
iω

c
+ µa(x) − 1

3
∇ · 1

µa(x) + µs
∇
)

Φω(x) = 0 in Ω,

with the boundary condition

(2.5)
∂Φω

∂ν
+ lΦω = g on ∂Ω.

In the sequel, for any fixed ω ≥ 0 we rigorously derive an asymptotic expansion
of Φω(z) as ǫ goes to zero, where z is the location of the absorbing object D. The
results for nonzero ω have their own mathematical and physical interests [72].

For simplicity, we assume that l ≤ C
√
µs for some constant C and drop in the

notation the dependence with respect to ω.

2.2.1. Asymptotic Formula. In this section we assume that µs is a constant
and known a priori. Recall that the space dimension is taken as 3. Define Φ(0) by

(
iω

c
− 1

3µs
∆

)
Φ(0)(x) = 0 in Ω,

subject to the boundary condition

∂Φ(0)

∂ν
+ lΦ(0) = g on ∂Ω,

where g is a bounded function on ∂Ω.
Throughout this chapter we assume that the location z of the anomaly is away

from the boundary ∂Ω, namely

(2.6) dist(z, ∂Ω) ≥ C0

for some constant C0.
Let N be the Neumann function, that is, the solution to

(2.7)





(
iω

c
− 1

3µs
∆x

)
N(x, y) = −δy in Ω,

∂N

∂ν
+ lN = 0 on ∂Ω.

Note that

(2.8) N(x, y) = N(y, x), x, y ∈ Ω, x 6= y.

Note also that

(2.9) Φ(0)(x) = − 1

3µs

∫

∂Ω

g(y)N(x, y) dσ(y), x ∈ Ω.
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Thus, multiplying (2.4) by N , using the symmetry property (2.8) and integrating
by parts, we readily get the following lemma.

Lemma 2.1. For any x ∈ Ω, the following representation formula of Φ(x) holds:

(2.10)

(Φ − Φ(0))(x) = µa

∫

D

Φ(y)N(x, y) dy

+
1

3
(

1

µa + µs
− 1

µs
)

∫

D

∇Φ(y) · ∇yN(x, y) dy.

We now derive an asymptotic expansion of (Φ−Φ(0))(z), where z is the location
of D, as the size ε of D goes to zero. The asymptotic expansion also takes the
smallness of µa/µs into account. Note that if the anomaly approaches ∂Ω, then the
expansion is not valid since the interaction between D and ∂Ω becomes significant.

Let us first recall that the (outgoing) fundamental solution to the operator
iω
c − 1

3µs
∆ is given by

(2.11) G(x, y) :=
3µs

4π

e−k|x−y|

|x− y|
where

(2.12) k = exp(
π

4
i)

√
3µsω

c
.

In particular, we have
(
iω

c
− 1

3µs
∆x

)
G(x, y) = −δy(x), x ∈ R3.

Thus, the function R1(x, y) := N(x, y) −G(x, y) is the solution to




(
iω

c
− 1

3µs
∆x

)
R1(x, y) = 0, x ∈ Ω,

∂R1

∂ν
+ lR1 = −∂G

∂ν
− lG on ∂Ω.

Observe that if y ∈ D, then

l ‖G(·, y)‖L∞(∂Ω) +

∥∥∥∥
∂G

∂νx
(·, y)

∥∥∥∥
L∞(∂Ω)

≤ Cµ3/2
s ,

since, by assumption, l ≤ C′√µs for some constant C′.
It then follows from Lemma 2.7 in Appendix A that

(2.13) sup
x,y∈D

(
µ−3/2

s |R1(x, y)| + C1µ
−2
s |∇R1(x, y)| + C2µ

−5/2
s |∇∇R1(x, y)|

)
≤ C3

for some constants (with different dimensions) Ci, i = 1, 2, 3, independent of µs.
Note that if ω = 0 then

(2.14)

sup
x,y∈D

(|R1(x, y)| + C1|∇R1(x, y)| + C2|∇∇R1(x, y)|)

≤ C3

(
l ‖G(·, y)‖L∞(∂Ω) +

∥∥∥∥
∂G

∂νx
(·, y)

∥∥∥∥
L∞(∂Ω)

)

≤ C4l,
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where Ci, i = 1, . . . , 4, are independent of µs, provided that (2.6) holds. See, for
instance, [67] for basic facts on the function spaces used throughout this chapter.

Let Γ(x) := −1/(4π|x|) be a fundamental solution of the Laplacian in three
dimensions and let

(2.15) R(x, y) = N(x, y) − 3µsΓ(x− y).

Writing

R(x, y) = R1(x, y) + (G(x, y) − 3µsΓ(x− y)),

we obtain the following lemma as an immediate consequence of (2.13).

Lemma 2.2. Let R(x, y) be defined by (2.15). There are constants Ci, i =
1, . . . , 6 (with different dimensions) depending on C0 given in (2.6) such that for
all x, y ∈ D,

|R(x, y)| ≤ C1µ
3/2
s ,(2.16)

|∇xR(x, y)| ≤ C2µ
2
s + C3

µ
3/2
s

|x− y| ,(2.17)

|∇x∇xR(x, y)| ≤ C4µ
5/2
s + C5

µ2
s

|x− y| + C6
µ

3/2
s

|x− y|2 ,(2.18)

provided that ε
√
µs is sufficiently small.

Let us now introduce some notation. Let

(2.19) n(x) :=

∫

D

N(x, y) dy, x ∈ D,

and define a multiplier M by

(2.20) M[f ](x) := µan(x)f(x).

We then define two operators N and R by

N [f ](x) := 3µaµs

∫

D

(f(y) − f(x))Γ(x− y) dy

+ µs(
1

µa + µs
− 1

µs
)

∫

D

∇f(y) · ∇yΓ(x − y) dy,(2.21)

R[f ](x) := µa

∫

D

(f(y) − f(x))R(x, y) dy

+
1

3
(

1

µa + µs
− 1

µs
)

∫

D

∇f(y) · ∇yR(x, y) dy.(2.22)

In view of Lemma 2.2, the equation (2.10) then can be rewritten as

(2.23) (I −M)[Φ] − (N + R)[Φ] = Φ(0) on D,

where I is the identity operator.
The following lemma is proved in Appendix B.
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Lemma 2.3. Let p > 3 and q be its conjugate exponent, i.e., 1/p + 1/q = 1.
Then there is a constant C depending on C0 given in (2.6) such that

‖N [f ]‖Lp(D) ≤ Cε

(
ε2µaµs +

µa

µs

)
‖∇f‖Lp(D),(2.24)

‖∇N [f ]‖Lp(D) ≤ C

(
ε2µaµs +

µa

µs

)
‖∇f‖Lp(D),(2.25)

‖R[f ]‖Lp(D) ≤ Cε2
√
µs

(
µaµsε

2 +
µa

µs

)
‖∇f‖Lp(D),(2.26)

‖∇R[f ]‖Lp(D) ≤ Cε
√
µs

(
µaµsε

2 +
µa

µs

)
‖∇f‖Lp(D).(2.27)

Note that

(2.28) ‖n‖L∞(D) = O(ε2µs) and ‖∇n‖L∞(D) = O(εµs).

We also note the simple fact that

(I −M)−1[f ](x) =
f(x)

1 − µan(x)
.

We may rewrite (2.23) as

(2.29) Φ − (I −M)−1(N + R)[Φ] = (I −M)−1[Φ(0)] on D.

Moreover, one can see from Lemma 2.3 that

‖(I −M)−1N [f ]‖W 1,p(D) ≤ C

(
ε2µaµs +

µa

µs

)
‖f‖W 1,p(D)

and

‖(I −M)−1R[f ]‖W 1,p(D) ≤ Cε
√
µs

(
ε2µaµs +

µa

µs

)
‖f‖W 1,p(D).

Here, W 1,p(D) := {f ∈ Lp(D),∇f ∈ Lp(D)}. So, if ε2µaµs and µa

µs
are sufficiently

small, then the integral equation (2.29) can be solved by the Neumann series

(2.30) Φ =

∞∑

j=0

(
(I −M)−1(N + R)

)j
(I −M)−1[Φ(0)],

which converges in W 1,p(D). It then follows from above two estimates that

(2.31) Φ = (I −M)−1[Φ(0)] + (I −M)−1(N + R)(I −M)−1[Φ(0)] + E1,

where the error term E1 satisfies

‖E1‖W 1,p(D) ≤ C

(
ε2µaµs +

µa

µs

)2

‖Φ(0)‖W 1,p(D).

We further have from (2.24), (2.26), and (2.28) that

‖M(N + R)[f ]‖W 1,p(D) ≤ Cεµaµs(1 + ε
√
µs)

(
ε2µaµs +

µa

µs

)
‖f‖W 1,p(D).

Thus we get the following asymptotic expansion:



2.2. ASYMPTOTIC APPROACH 39

Lemma 2.4. The following estimate holds:

(2.32) Φ(x) = (I −M)−1[Φ(0)](x)+ (N +R)(I −M)−1[Φ(0)](x)+E(x), x ∈ D,

where the error term E satisfies

(2.33) ‖E‖W 1,p(D) ≤ Cεµaµs(1 + ε
√
µs)

(
ε2µaµs +

µa

µs

)
‖Φ(0)‖W 1,p(D).

It is worth mentioning that since p > 3, W 1,p(D) is continuously imbedded
in L∞(D) by the Sobolev imbedding theorem, and hence the asymptotic formula
(2.32) holds uniformly in D.

Note that

(I −M)−1[Φ(0)](x) + (N + R)(I −M)−1[Φ(0)](x)

=
Φ(0)(x)

1 − µan(x)
+ µa

∫

D

Φ(0)(y)

1 − µan(y)
N(x− y) dy − µan(x)Φ(0)(x)

1 − µan(x)

+
1

3
(

1

µa + µs
− 1

µs
)

∫

D

∇
(

Φ(0)(y)

1 − µan(y)

)
· ∇yN(x− y) dy

≈ Φ(0)(x) + 3µaµs

∫

D

Φ(0)(y)Γ(x− y) dy

+ µs(
1

µa + µs
− 1

µs
)

∫

D

∇Φ(0)(y) · ∇yΓ(x− y) dy

where the error of the approximation satisfies (2.33). We then get for x ∈ D,
∫

D

Φ(0)(y)Γ(x− y) dy = Φ(0)(x)

∫

D

Γ(x− y) dy +O(ε3‖∇Φ(0)‖L∞(D))

and

µs(
1

µa + µs
− 1

µs
)

∫

D

∇Φ(0)(y) · ∇yΓ(x− y) dy

=
µa

µs
∇Φ(0)(x) ·

∫

D

∇yΓ(x− y) dy +O(ε2
µa

µs
‖∇∇Φ(0)‖L∞(D) + ε(

µa

µs
)2‖∇Φ(0)‖L∞(D)).

Let N̂B be the Newtonian potential of B, which is given by

(2.34) N̂B(x) :=

∫

B

Γ(x− y) dy, x ∈ R3,

and let SB be the single layer potential associated to B, which are given for a
density ψ ∈ L2(∂B) by

SB [ψ](x) :=

∫

∂B

Γ(x− y)ψ(y) dσ(y), x ∈ R3.

Then one can see by scaling x = εx′ + z that
∫

D

Γ(x− y) dy = ε2N̂B(x′), x′ ∈ B,

and ∫

D

∇yΓ(x− y) dy = ε

∫

B

∇yΓ(x′ − y′) dy′

= −ε
∫

∂B

Γ(x′ − y′)ν(y′) dσ(y′) = −εSB[ν](x′)
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where ν(y) the outward normal to ∂B at y. Therefore we have
(2.35)

Φ(x) ≈ Φ(0)(x) + 3ε2µaµsΦ
(0)(z)N̂B

(
x− z

ε

)
− ε

µa

µs
SB[ν]

(
x− z

ε

)
· ∇Φ(0)(z)

with the approximation error satisfying (2.33). Since this approximation holds in
W 1,p(D), we have
(2.36)

∇Φ(x) ≈ 3εµaµsΦ
(0)(z)∇N̂B

(
x− z

ε

)
+

(
I − µa

µs
∇SB[ν]

(
x− z

ε

))
∇Φ(0)(z).

Note that, again by Lemma 2.7,

‖Φ(0)‖W 1,p(D) ≤ ε1/p sup
x∈D

(|Φ(0)(x)| + |∇Φ(0)(x)|) ≤ Cε1/p√µs,

and

‖∇∇Φ(0)‖L∞(D) ≤ Cµs.

Thus we have the following asymptotic formula, which is the main result of this
section.

Proposition 2.5. We have

(2.37) (Φ − Φ(0))(z) ≈ 3ε2µaµsΦ
(0)(z)N̂B(0) − ε

µa

µs
SB[ν](0) · ∇Φ(0)(z),

where the error of the approximation is less than

C1ε
1+1/pµaµ

3/2
s (1 + ε

√
µs)

(
ε2µaµs +

µa

µs

)
+C2µ

1/2
s

(
ε3µaµs + ε(

µa

µs
)2
)

+C3ε
2µa

for p > 3 and some constants C1, C2, and C3 (with different dimensions) depending
on C0 given in (2.6) and on g.

Note that the first term in (2.37) is a point source type approximation while
the second term is a dipole approximation. Formula (2.37) also shows that if
εΦ(0)(z) is of the same order as (1/µ2

s(z))∇Φ(0)(z) then we have two contributions
in the leading-order term of the perturbations in Φ that are due to D. The first
contribution is coming from the source term µa(x, ω) and the second one from the
jump conditions. If εΦ(0)(z) is much larger than (1/µ2

s(z))∇Φ(0)(z) then we can
neglect the second contribution. It is worth emphasizing that formula (2.37) holds
for any fixed ω ≥ 0 as ε goes to zero.

Remark. If the reduced scattering coefficient µs is not constant, then the expected
asymptotic formula would be

(2.38) (Φ − Φ(0))(z) ≈ 3ε2µaµs(z)Φ
(0)(z)N̂B(0) − ε

µa

µs(z)
SB[ν](0) · ∇Φ(0)(z).

To prove it, one needs to prove (2.16) - (2.18) with variable µs. Even though these
estimates are most likely true, we do not attempt to prove them since this is out of
scope of the chapter.
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2.2.2. Reconstruction of the Absorption Coefficient. We now turn to
the reconstruction of the absorption coefficient. Given the light source g, it has been
shown in Chapter 1 that the location z and α := ε2µaΦ(z) can be reconstructed
from photo-acoustic measurements. Here Φ = Φω=0.

Suppose that B is the unit sphere. Since SB [ν](0) = 0, formula (2.37) reads

(2.39) (Φ − Φ(0))(z) ≈ 3ε2µaµsΦ
(0)(z)N̂B(0) ≈ 3αµsN̂B(0).

Thus one can easily see that

(2.40) ε2µa ≈ α

3αµsN̂B(0) + Φ(0)(z)
.

Let us see how one may separate ε from µa. Because of (2.9), it follows from
(2.10) that

− 1

3µs

∫

∂Ω

g(Φ−Φ(0)) dσ ≈ µaΦ(z)Φ(0)(z)|D|+1

3

(
1

µs + µa
− 1

µs

)∫

D

∇Φ(y)·∇Φ(0)(y)dy.

Thus we get from (2.36) that
(2.41)

− 1

3µs

∫

∂Ω

g(Φ − Φ(0)) dσ

≈ µaΦ(z)Φ(0)(z)|D| − µa

3µ2
s

∇Φ(0)(z) ·
[
3ε4µaµsΦ

(0)(z)

∫

B

∇N̂B(y) dy+

+ε3
∫

B

(
I − µa

µs
∇SB [ν]

)
(y) dy∇Φ(0)(z)

]

≈ εα|B|Φ(0)(z) − µaε
3

3µ2
s

∇Φ(0)(z) ·
[
3εµaµsΦ

(0)(z)

∫

B

∇N̂B(y) dy+

+

∫

B

(
I − µa

µs
∇SB [ν]

)
(y) dy∇Φ(0)(z)

]
.

One may use this approximation to separately recover ε from µa even in the general
case, where B not necessary a unit sphere by combining (2.41) together with (2.37).
However, this approach requires boundary measurements of Φ on ∂Ω.

2.3. Multi-Wavelength Approach

We now deal with the problem of estimating both the absorption coefficient
µa and the reduced scattering coefficient µs from A = µaΦ where Φ satisfies (2.4)
and the boundary condition (2.5). It is known that this problem at fixed optical
wavelength λ is a severely ill-posed problem. However, if the optical wavelength
dependence of both the scattering and the absorption are known, then the ill-
posedness of the inversion can be dramatically reduced.

Let µs(x, λj) and µa(x, λj) be the reduced scattering and absorption coeffi-
cients at the optical wavelength λj for j = 1, 2, respectively. Note that µa(·, λj) is
supported in the absorbing region D which is of the form D = z+ εB for ε of small
magnitude. We assume that µs(x, λ) and µa(x, λ) depend on the wavelength in the
following way:

(2.42) µs(x, λ) = fs(x)gs(λ),
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and

(2.43) µa(x, λ) = fa(x)ga(λ),

for some functions fa, fs, ga, gs. Denote

Cs :=
µs(x, λ1)

µs(x, λ2)
= constant in the x variable in Ω,

and

Ca :=
µa(x, λ1)

µa(x, λ2)
= constant in the x variable in D.

Assumptions (2.42) and (2.43) are physically acceptable. See, for instance, [56].
Let Aj be the optical absorption density at λj , j = 1, 2. Let l′1, l

′
2 be two positive

constants. Let Φj be the solution of

(2.44)

(
µa(x, λj) −

1

3
∇ · 1

µs(x, λj)
∇
)

Φj(x) = 0,

with the boundary condition

(2.45)
1

µs(x, λj)

∂Φj

∂ν
(x) + l′jΦj(x) = g′j(x) on ∂Ω.

Note that the boundary condition (2.45) is slightly different from (2.2) because µs

is assumed variable possibly up to the boundary. Moreover, in order to simplify the
derivations below we neglect µa in the denominator in the second term of (2.44).

Multiplying (2.44) for j = 1 by Φ2 and integrating by parts over Ω, we obtain
that

0 =

∫

Ω

(
µa(x, λ1) −

1

3
∇ · 1

µs(x, λ1)
∇
)

Φ1(x)Φ2(x)dx

=

∫

Ω

µa(x, λ1)Φ1Φ2dx− 1

3

∫

∂Ω

(g′1Φ2 − l′1Φ1Φ2) dσ

+
1

3

∫

Ω

1

µs(x, λ1)
∇Φ1(x) · ∇Φ2(x)dx.

We then replace µs(x, λ1) by Csµs(x, λ2) and integrate by parts further to obtain

1

3

∫

∂Ω

(
g′1Φ2 −

1

Cs
g′2Φ1

)
(x) dσ(x) +

1

3

∫

∂Ω

(
l′2
Cs

− l′1

)
Φ1(x)Φ2(x) dσ(x)

=

∫

D

(−µa(x, λ2)

Cs
+ µa(x, λ1))Φ1(x)Φ2(x) dx.

Since D = z + εB, we have the following proposition.

Proposition 2.6. The following approximation holds:
(2.46)

|D|(1 + o(1))

(
− 1

CsCa
+ 1

)
A1(z)A2(z)

µa(x, λ2)
=

1

3

∫

∂Ω

(
g′1Φ2 −

1

Cs
g′2Φ1

)
dσ

+
1

3

∫

∂Ω

(
l′2
Cs

− l′1

)
Φ1Φ2 dσ.
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Proposition 2.6 yields approximations of µa(z, λ2) and µa(z, λ1) = Caµa(z, λ2)
from A1 and A2 provided that |D| is known. To estimate |D| one can use the
following identity

(2.47)

∫

D

µa(x, λj)Φj(x) dx =
1

3

∫

∂Ω

(
g′j − l′jΦj

)
dσ.

2.4. Numerical Examples

To explore the performances of approaches in the previous sections, we run
numerical simulations in a simple 3D setting. The medium we considered is a cube
in R3 of edge 4cm ([0cm, 4cm]3), containing a small spherical inclusion D located at
(1.7cm, 2.5cm, 0.8cm). The background medium was assumed to be non-absorbing
and to have a constant realistic reduced scattering coefficient µs = 10cm−1. The
absorption coefficient µa|D inside the inclusion was set to different (positive) values,
from asymptotically small to realistic ones (µa = 0.01, 0.05 and 0.1cm−1). The
inclusion radius ε ranges from 0.03cm to 0.3cm (to 0.5cm in the multi-wavelength
setting).

We assume pure Neumann conditions (l = 0), with a focused laser beam at the
center of one edge of the square and of normalized intensity (g is a Gaussian with
full width at half maximum ≈ 2mm). The working frequency ω was set to 30Mhz
so that k = ω

c = 0.001cm−1.
Simulations were conducted using FreeFEM++ (http://www.freefem.org). We

solved the direct problem (2.4)-(2.5) using P1-elements on an adapted mesh (char-

acteristic size of the mesh h ≈ 0.1cm on the boundary of the medium; h ≈ ε

100
in

the neighborhood of the inclusion).

2.4.1. Asymptotic Approach. Following Chapter 1, we assumed that we
can accurately estimate the position z of the inclusion and the quantity α =
µaε

2Φ(z) from photoacoustic inversion. Both quantities, along with the reduced
scattering coefficient µs were assumed to be known with no error.

We computed Φ(0) solving (2.9) on the same mesh. Applying formula (2.40),
we obtained an estimate on µaε

2. The error on this estimate for the values of the
parameters can be seen in Fig.2.1.

To separate size from attenuation, we furthermore assumed that we could access
total boundary measurements Φ|∂Ω. Using the leading-order term in (2.41), we can
write

1

3µs

∫

∂Ω

g(Φ − Φ(0))dσ ≈ −4

3
πεαΦ(0)(z),

which yields a direct estimation for ε. Using both estimates, we derived an estima-
tion of µa. Errors on these estimates are given in Figs. 2.2 and 2.3.

As expected, reconstruction is very accurate in the asymptotic limit and de-
grades as µa and/or ε increase.

We mention that the asymptotic estimations of ε and µaε
2 are independent.

The latter is only based on the photoacoustic measurements. The former requires
also diffusing light measurements and seems to be more accurate (error < 3% in
the range of our parameters vs. < 30% for the estimation of µaε

2).
The estimate on µa is obtained using these two estimates, thus the quality of

the attenuation reconstruction is limited by the least-quality estimate, i.e., µaε
2.
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Figure 2.1. Error on the first estimate µaε
2 using the asymptotic approach.
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Figure 2.2. Error on the reconstruction of ε using the asymptotic approach.

2.4.2. Multi-Wavelength Approach. In this setting, we assumed that we
could access the position z of the inclusion, the quantities αj = µa(λj)ε

2Φj(z) and
the factors Cs and Ca, with no error. The factors Cs and Ca were arbitrarily fixed
at values 1.1 and 1.25 and l′j , j = 1, 2, set to 0.

We first used identity (2.47) to get estimations of ε. Indeed, if we assume that
µa is independent of x, then, in an asymptotic setting, (2.47) can be written as
follows:

4

3
πε3µa(λj)Φj(z) =

4

3
πεαj ≈ 1

3

∫

∂Ω

g′j.
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Figure 2.3. Error on the reconstruction of µa using the asymp-
totic approach.

This way to estimate the inclusion size ε is slightly different from the one used in
the previous subsection.

Assuming we had total boundary measurements, we applied formula (2.46) to
extract an estimation on µa. Errors on the estimations in this multi-wavelength
setting are given in Figs. 2.4 and 2.5.
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Figure 2.4. Error on the reconstruction of ε in the multi-
wavelength setting.

2.5. Concluding Remarks

Assuming that the reduced scattering coefficient is known, we have provided an
asymptotic approach to estimate the normalized absorption coefficient of a small
absorber from the normalized absorbed energy. We have also shown how to sepa-
rate the size of the absorber from the absolute absorption coefficient by combining
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Figure 2.5. Error on the reconstruction of µa in the multi-
wavelength setting.

photo-acoustic and diffusing light measurements. In the case where the reduced
scattering coefficient is unknown, we have developed a multi-wavelength approach
to estimate the absolute absorption coefficient. Finally, it would be of interest to
use the radiative transfer equation as a light transport model when the diffusion ap-
proximation breaks down. Another subject of future work is to develop a method,
similar to the one derived in this chapter, to estimate the normalized absorption
coefficient from the normalized absorbed energy for the half-space problem. The
Half-space model is of considerable practical interest in photo-acoustic imaging of
the skin. See [46, 127].

Appendix A: Proof of Estimate (2.13)

In this section we prove estimate (2.13). To this end, we consider

(2.48)





∆u− iαu = 0, in Ω,

∂u

∂ν
+ βu = g on ∂Ω,

where α ≥ 0 and β > 0. The estimate (2.13) is an easy consequence of the following
lemma.

Lemma 2.7. Let y ∈ Ω and r > 0 be such that B3r := B3r(y) is a subset of Ω
with dist(B3r, ∂Ω) > c0 for some positive constant c0. Here Br(y) denotes the ball
of radius r centered at y. The following estimates hold:

• If α > 1, then there is a constant C independent of α such that if u be the
solution to (2.48), then

(2.49) ‖u‖L∞(Br) + α−1/2‖∇u‖L∞(Br) + α−1‖∇∇u‖L∞(Br) ≤ C‖g‖L∞(∂Ω).

• If 0 ≤ α ≤ 1, then there is a constant C independent of α such that if u
be the solution to (2.48), then

(2.50) ‖u‖L∞(Br) + ‖∇u‖L∞(Br) + ‖∇∇u‖L∞(Br) ≤ C‖g‖L∞(∂Ω).
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Proof. Multiplying both sides of the equation in (2.48) by u and integrating by
parts yield

β

∫

∂Ω

|u|2 +

∫

Ω

|∇u|2dx+ iα

∫

Ω

|u|2dx =

∫

∂Ω

gu.

By taking the real and imaginary parts of the above identity and using the inequality
ab < a2/η + ηb2, we have

(2.51) β

∫

∂Ω

|u|2 +

∫

Ω

|∇u|2dx+ α

∫

Ω

|u|2dx ≤ C

η
‖g‖2

L∞(∂Ω) + Cη‖u‖2
L1(∂Ω)

for some constant C where η is a small constant to be determined later. Since

‖u‖2
L1(∂Ω) ≤ |∂Ω|‖u‖2

L2(∂Ω),

then by choosing η so small that Cη|∂Ω| < β
2 , we have

(2.52)
β

2

∫

∂Ω

|u|2dσ(x) +

∫

Ω

|∇u|2dx+ α

∫

Ω

|u|2dx ≤ C‖g‖2
L∞(∂Ω).

Let ϕ be a smooth function with a support in B3r such that ϕ ≡ 1 on B2r, and
let w := ϕu. Then w is a smooth function (with a compact support) satisfying

(∆ − iα)w = 2∇ϕ · ∇u+ ∆ϕu.

Recall that the fundamental solution to the operator ∆ − iα is given by

Γα(x) :=
exp(−eπ

4 i
√
α|x|)

4π|x| , x 6= 0.

Therefore, we have

w(x) =

∫

Ω

Γα(x− y)(2∇ϕ · ∇u+ ∆ϕu)(y)dy, x ∈ Ω.

Note that 2∇ϕ ·∇u+∆ϕu is supported in B3r \B2r. So (2.49) and (2.50) for α 6= 0
follow immediately. For α = 0, we shall make use of the inequality

∥∥∥∥u− 1

|∂Ω|

∫

∂Ω

u dσ

∥∥∥∥
L2(Ω)

≤ C‖∇u‖L2(Ω)

to obtain the desired estimate. This completes the proof. �

Appendix B: Proof of Lemma 2.3

We first note that since p > 3, q = p
p−1 <

3
2 . For −1 ≤ α ≤ 2, define

Tα[f ](x) =

∫

D

f(y)

|x− y|α dy, x ∈ D.

By Hölder’s inequality, we have

|Tα[f ](x)| ≤ ‖f‖Lp(D)

(∫

D

1

|x− y|αq
dy

)1/q

≤ Cε
3
q
−α‖f‖Lp(D).

It then follows that

(2.53) ‖Tα[f ]‖Lp(D) ≤ Cε3−α‖f‖Lp(D).
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Let us set

N1[f ](x) :=

∫

D

(f(y) − f(x))Γ(x− y) dy,

N2[f ](x) :=

∫

D

∇f(y) · ∇yΓ(x− y) dy,

R1[f ](x) :=

∫

D

(f(y) − f(x))R(x, y) dy,

R2[f ](x) :=

∫

D

∇f(y) · ∇yR(x, y) dy,

so that

N = 3µaµsN1 −
µa

µa + µs
N2 and R = µaR1 −

µa

3(µa + µs)µs
R2.

Note that

N1[f ](x) =

∫

D

f(y) − f(x)

|y − x| |y − x|Γ(x − y) dy.

Since |y − x|Γ(x− y) ≤ C, we have as in (2.53)

‖N1[f ]‖Lp(D) ≤ Cε
3
q

(∫

D

∫

D

|f(y) − f(x)|p
|y − x|p dxdy

)1/p

≤ Cε3‖∇f‖Lp(D).

Similarly, we have

‖∇N1[f ]‖Lp(D) ≤ Cε2‖∇f‖Lp(D).

We also have

‖N2[f ]‖Lp(D) ≤ Cε ‖∇f‖Lp(D) .

Note that ∇x∇yΓ(x−y) is a Calderón-Zygmund kernel [122] and hence the operator
∇N2 is bounded on Lp, 1 < p <∞. Therefore, we have

‖∇N2[f ]‖Lp(D) ≤ C ‖∇f‖Lp(D) .

Therefore, we obtain (2.24) and (2.25).
Similarly, we have using (2.16)-(2.18) that

‖R1[f ]‖Lp(D) ≤ Cµ3/2
s ε4‖∇f‖Lp(D),

‖∇R1[f ]‖Lp(D) ≤ C(µ2
sε

4 + µ3/2
s ε3)‖∇f‖Lp(D),

‖R2[f ]‖Lp(D) ≤ C(µ2
sε

3 + µ3/2
s ε2)‖∇f‖Lp(D),

‖∇R2[f ]‖Lp(D) ≤ C(µ5/2
s ε3 + µ2

sε
2 + µ3/2

s ε)‖∇f‖Lp(D).

Therefore we get

‖R[f ]‖Lp(D) ≤ C

(
µaµ

3/2
s ε4 +

µa

µ2
s

(µ2
sε

3 + µ3/2
s ε2)

)
‖∇f‖Lp(D),

‖∇R[f ]‖Lp(D) ≤ C

(
µa(µ2

sε
4 + µ3/2

s ε3) +
µa

µ2
s

(µ5/2
s ε3 + µ2

sε
2 + µ3/2

s ε)

)
‖∇f‖Lp(D).

Suppose that ε
√
µs is small. We obtain

µaµ
3/2
s ε4 +

µa

µ2
s

(µ2
sε

3 + µ3/2
s ε2) ≤ ε2

√
µs

(
µaµsε

2 +
µa

µs

)
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and

µa(µ2
sε

4 + µ3/2
s ε3) +

µa

µ2
s

(µ5/2
s ε3 + µ2

sε
2 + µ3/2

s ε) ≤ ε
√
µs

(
µaµsε

2 +
µa

µs

)
,

which yields (2.27) and (2.26) and thus completes the proof. �





CHAPTER 3

Transient Wave Imaging with Limited-View Data

3.1. Introduction

In Chapter 1 and the recent works [15, 14], the imaging of small anomalies
using transient wave boundary measurements has been investigated. We have de-
signed different approaches for locating them and reconstructing some information
about their sizes and physical parameters. Our algorithms make use of complete
boundary measurements. They are of Kirchhoff-, back-propagation, MUSIC-, and
arrival time-types. The resolution of those algorithms in the time-harmonic domain
is finite. It is essentially of order one-half the wavelength. See, for instance, [4].

In this work, we extend those algorithms to the case with limited-view mea-
surements. For simplicity, we model here the small anomalies as point sources or
dipoles. We refer the reader to [15, 14] and Chapter 1 for rigorous derivations of
these approximate models and their higher-order corrections. It is worth mention-
ing that in order to model a small anomaly as a point source or a dipole, one has
to truncate the high-frequency component of the transient incident and reflected
waves.

By using the geometrical control method [28], we show how to recover all
the classical algorithms that have been used to image point sources and dipole
locations. Our main finding in this chapter is that if one can construct accurately
the geometric control then one can perform imaging with the same resolution using
partial data as using complete data. Our algorithms apply equally well to the case of
many source points or dipole locations and are robust with respect to perturbations
of the boundary. This is quite important in real experiments since one does not
necessarily know the non-accessible part of the boundary with good accuracy.

The chapter is organized as follows. In Section 3.2 we provide a key identity
based on the averaging of the limited-view data, using weights constructed by the
geometrical control method. Section 3.3 is devoted to developing, for different
choices of weights, Kirchhoff-, back-propagation-, MUSIC-, and arrival time-type
algorithms for transient imaging with limited-view data. In Section 3.4 we discuss
potential applications of the method in emerging biomedical imaging. In Section 3.5
we present results of numerical experiments and comparisons among the proposed
algorithms.

3.2. Geometric Control

The basic model to be considered in this chapter is the following wave equation:

(3.1)
∂2p

∂t2
(x, t) − c2∆p(x, t) = 0, x ∈ Ω, t ∈]0, T [,

51
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for some final observation time T , with the Dirichlet boundary conditions

(3.2) p(x, t) = 0 on ∂Ω×]0, T [,

the initial conditions

(3.3) p(x, t)|t=0 = 0 in Ω,

and

(3.4) ∂tp(x, t)|t=0 = δx=z or ∂tp(x, t)|t=0 = m0 · ∇δx=z in Ω.

Here c is the acoustic speed in Ω which we assume to be constant, and m0 is a
constant nonzero vector. We suppose that T is large enough so that

(3.5) T >
diam(Ω)

c
.

The purpose of this chapter is to design efficient algorithms for reconstructing
the location z from boundary measurements of ∂p

∂ν on Γ×]0, T [, where Γ ⊂ ∂Ω.
Suppose that T and Γ are such that they geometrically control Ω, which roughly

means that every geometrical optic ray, starting at any point x ∈ Ω, at time t = 0,
hits Γ before time T at a nondiffractive point; see [28, 100]. Let β ∈ C∞

0 (Ω) be
a cutoff function such that β(x) ≡ 1 in a sub-domain Ω′ of Ω, which contains the
source point z.

For a given function w which will be specified later, we construct by the geo-
metrical control method a function v(x, t) satisfying

(3.6)
∂2v

∂t2
− c2∆v = 0 in Ω×]0, T [,

with the initial condition

(3.7) v(x, 0) = c2β(x)w(x), ∂tv(x, 0) = 0,

the boundary condition v = 0 on ∂Ω \ Γ, and the final conditions

(3.8) v|t=T =
∂v

∂t

∣∣∣
t=T

= 0 in Ω.

Let

(3.9) gw(x, t) := v(x, t) on Γ×]0, T [.

Multiplying (3.1) by v and integrating over Ω × [0, T ] lead to the following key
identity of this chapter:

(3.10)

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt = w(z) or −m0 · ∇w(z).

Note that the probe function constructed in [7] corresponds to one of the fol-
lowing choices for w in Ω:

(3.11) w(x) :=
δ
(
τ − |x−y|

c

)

4π|x− y| in three dimensions

or

(3.12) w(x) := δ

(
τ − 1

c
θ · x

)
in two dimensions,

where θ is a unit vector.
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The reader is referred, for instance, to [23, 140, 87] for numerical investigations
of the geometrical control method.

3.3. Imaging Algorithms

In this section, we only consider the initial condition ∂tp(x, t)|t=0 = δx=z in Ω.
One can treat the case of the initial data ∂tp(x, t)|t=0 = m0 · ∇δx=z in the exactly
same way. Using the functions v constructed by the geometrical control method
with different choices of initial data w, one recovers several classical algorithms for
imaging point sources. For simplicity, we only consider a single point source, but
the derived algorithms are efficient for locating multiple sources as well. The reader
is referred to [53] for a review on source localization methods.

3.3.1. Kirchhoff Algorithm. Let y ∈ Rd \ Ω, d = 2, 3, and ω ∈ R. Set

w(x) = eiω|x−y|, x ∈ Ω.

Then, for a given search point zS in Ω, we have from (3.10)

∫

R

e−iω|zS−y|
∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt dω =

∫

R

e−iω(|zS−y|−|z−y|) dω

= δ|zS−y|−|z−y|=0,

where δ is the Dirac mass. Taking a (virtual) planar array of receivers y outside Ω
yields then a Kirchhoff-type algorithm for finding z.

In fact, let ωk, k = 1, . . . ,K, be a set of frequencies and let y1, . . . , yN , be a
set of virtual receivers. To find the location z one maximizes over zS the following
imaging functional:

IKI(z
S) :=

1

K
ℜe

∑

ωk

∑

yn

e−iω|zS−yn|
∫ T

0

∫

Γ

∂p

∂ν
(x, t)gwk,n

(x, t) dσ(x) dt,

where wk,n(x) = eiωk|x−yn|.

3.3.2. Back-propagation Algorithm. If one takes w to be a plane wave:

w(x) = eiωθ·x, θ ∈ Sd−1,

where Sd−1 is the unit sphere in Rd, then one computes for a given search point
zS ∈ Ω,

∫

Sd−1

e−iωθ·zS

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt dσ(θ) =

∫

Sd−1

eiωθ·(z−zS) dσ(θ).

But

∫

Sd−1

eiωθ·(z−zS) dσ(θ) =





j0(ω|z − zS|) for d = 3,

J0(ω|z − zS|) for d = 2,

where j0 is the spherical Bessel function of order zero and J0 is the Bessel function
of the first kind and of order zero.
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This is a back-propagation algorithm. Let θ1, . . . , θN , be a discretization of the
unit sphere Sd−1. One plots at each point zS in the search domain the following
imaging functional:

IBP(zS) :=
1

N
ℜe

∑

θn

e−iωθn·zS

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gwn

(x, t) dσ(x) dt,

where wn(x) = eiωθn·x. The resulting plot will have a large peak at z. Note that
the higher the frequency ω is, the better is the resolution. However, high frequency
oscillations cause numerical instabilities. There is a trade-off between resolution
and stability.

3.3.3. MUSIC Algorithm. Take

w(x) = eiω(θ+θ′)·x, θ, θ′ ∈ Sd−1.

It follows from (3.10) that
∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt = eiω(θ+θ′)·z.

Therefore, one can design a multiple signal classification (MUSIC) algorithm for
locating z. For doing so, let θ1, . . . , θN be N unit vectors in Rd. Define the matrix
A = (Ann′)N

n,n′=1 by

Ann′ :=

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gwn,n′ (x, t) dσ(x) dt,

with
wn,n′(x) = eiω(θn+θn′)·x.

Let P be the orthogonal projection onto the range of A. Given any point zS in the
search domain form the vector

h(zS) := (eiωθ1·zS

, . . . , eiωθN ·zS

)T ,

where T denotes the transpose. Then plot the MUSIC imaging functional:

IMU(zS) :=
1

||(I − P )h(zS)|| .

The resulting plot will have a large peak at z. Again, the higher the frequency ω
is, the better is the resolution.

3.3.4. Arrival Time and Time-Delay of Arrival Algorithms. Taking w
to be a distance function,

w(x) = |y − x|,
to a virtual receiver y on a planar array outside Ω yields arrival-time and time-delay
of arrival algorithms. In fact, we have

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gw(x, t) dσ(x) dt = |y − z|.

Let y1, . . . , yN be N receivers and compute

rn :=

∫ T

0

∫

Γ

∂p

∂ν
(x, t)gwn

(x, t) dσ(x) dt,

with wn(x) = |yn−x|. Then, the point z can be found as the intersection of spheres
of centers yn and radii rn.
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Using time-of-arrival differences instead of arrival times would improve the
robustness of the algorithm. Introduce the time-of-arrival difference, tn,n′ , between
the receiver yn and yn′ as follows:

tn,n′ :=

∫ T

0

∫

Γ

∂p

∂ν
(x, t)(gwn

− gwn′ )(x, t) dσ(x) dt.

At least N = 4 sources are required to locate z. The location z can be found as
the intersection of three sets of hyperboloids. See, for instance, [47, 132, 117, 50,
86, 31, 53].

3.4. Applications to Emerging Biomedical Imaging

In this section we show how to apply the designed algorithms to emerging
biomedical imaging. Of particular interest are radiation force imaging, magneto-
acoustic current imaging, and photo-acoustic imaging.

3.4.1. Radiation Force Imaging. In radiation force imaging, one generates
vibrations inside the organ, and acquires a spatio-temporal sequence of the propa-
gation of the induced transient wave to estimate the location and the viscoelastic
parameters of a small anomaly inside the medium. See, for instance, [32, 33, 15].

Let z be the location of the anomaly. Let Ω be a large ball englobing the
anomaly. In the far-field, the problem, roughly speaking, reduces to finding the
location of the anomaly from measurements of the pressure p on ∂Ω×]0, T [, that
is, the solution to (3.1) with the initial conditions

(3.13) p(x, t)|t=0 = 0 and ∂tp(x, t)|t=0 = m0 · ∇δx=z in Ω.

A time-reversal technique can be designed to locate the anomaly. Suppose that
one is able to measure p and its normal derivative at any point x on ∂Ω. If both p
and its normal derivative on ∂Ω are time-reversed and emitted from ∂Ω, then the
time-reversed wave travels back to the location z of the anomaly. See [15].

Suppose now that the measurements of p and its normal derivative are only
done on the part Γ of ∂Ω. Note first that

∂p

∂ν
|∂Ω×]0,T [ = ΛDtN[p|∂Ω×]0,T [],

where ΛDtN is the Dirichlet-to-Neumann operator for the wave equation in R3 \Ω.
For any function v satisfying (3.6), (3.7), and (3.8), integrating by parts yields

∫ T

0

∫

∂Ω

p(x, t)(Λ∗
DtN[v] +

∂v

∂ν
)(x, t) dσ(x) dt = m0 · ∇w(z),

where Λ∗
DtN denotes the adjoint of ΛDtN. Next, constructing by the geometrical

control method, gw such that v satisfies (3.6), (3.7), and (3.8), together with the
boundary condition

Λ∗
DtN[v] +

∂v

∂ν
=





0 on ∂Ω \ Γ ×]0, T [

gw on Γ×]0, T [,

one obtains ∫ T

0

∫

Γ

p(x, t)gw(x, t) dσ(x) dt = m0 · ∇w(z).
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Making similar choices for w to those in the previous section provide different
algorithms for locating the anomaly.

3.4.2. Magneto-Acoustic Current Imaging. In magneto-acoustic current
imaging, one detects a pressure signal created in the presence of a magnetic field by
electrically active tissues [88, 115, 116]. In the presence of an externally applied
magnetic field, biological action currents, arising from active nerve or muscle fibers,
experience a Lorentz force. The resulting pressure or tissue displacement contains
information about the action current distribution.

Let z ∈ Ω be the location of an electric dipole, which represents an active nerve
or muscle fiber, with strength c. The wave equation governing the induced pressure
distribution p is (3.1), with the boundary condition (3.2), the initial conditions
(3.3), and

(3.14) ∂tp(x, t)|t=0 = δx=z in Ω.

The algorithms constructed in the previous section apply immediately to finding z
from partial boundary measurements of the normal derivative of p.

3.4.3. Photo-Acoustic Imaging. The photo-acoustic effect refers to the
generation of acoustic waves by the absorption of optical energy [135, 72]. In
photo-acoustic imaging, energy absorption causes thermo-elastic expansion of the
tissue, which in turn leads to propagation of a pressure wave. This signal is mea-
sured by transducers distributed on the boundary of the organ, which is in turn
used for imaging optical properties of the organ. Mathematically, the pressure p
satisfies (3.1) with the boundary condition (3.2) and the initial conditions

(3.15) p(x, t)|t=0 = aδx=z in Ω,

and

(3.16) ∂tp(x, t)|t=0 = 0 in Ω.

Here a is the absorbed energy.
Construct by the geometrical control method a function v(x, t) satisfying (3.6),

the initial condition (3.7), the boundary condition v = 0 on ∂Ω \ Γ, and the final
conditions (3.8). Choosing w as in Section 3.3 yields different detection algorithms.

3.5. Numerical Illustrations

To test the geometrical control imaging approach, we implemented numerical
simulations of both the forward problem, the wave equation (3.1)-(3.4), and the
inverse problem where we compute the geometrical control function (3.6)-(3.9) and
implement the inversion algorithms of Section 3.3.

To simulate the wave equation, we used a standard P1-finite elements discretiza-
tion in space and a finite difference scheme in time. For time-cost considerations,
we settled with an explicit (leap-frog) scheme along with the use of mass lumping
(row-sum technique).

The method we present here has been implemented and tested on various types
of two-dimensional meshes. We will present results obtained on three different sets
of meshes (see Figure 3.1 and Table 3.1):

• squareReg0 and squareReg2 are regular meshes of the unit square [−0.5 0.5]2.
• circle are unstructured meshes of the unit disc.
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Figure 3.1. The coarse and fine meshes used on the square and
circular geometries.

Set name Coarse mesh Fine mesh

# of nodes # of elements h # of nodes # of elements 2h

squareReg0 36 50 0.2 121 200 0.1

squareReg2 441 800 0.05 1681 3200 0.025

circle 270 490 0.0672 1029 1960 0.0336

Table 3.1. Geometries and meshes.

For computation of imaging functionals of Kirchhoff-, back-propagation-, and
MUSIC-types, one has to be very careful with the spatial frequency ω. One has
to make sure that the function w(x;ω) is accurately represented on the meshes we
use. This imposes strict limitations on the range of frequencies that can be used.
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Finally, the considered initial conditions for the simulated measurements are
p(x, 0) = 0 and ∂p

∂t (x, 0) = δh(x0), where δh is a Gaussian approximation of the
Dirac distribution and x0 = [0.21 − 0.17] (see Figure 3.2).

Figure 3.2. Initial time derivative, for the three geometries, used
for the simulated measures.

To illustrate the performance of our approach with regards to limiting the view,
we applied the algorithm to both a full and a partial view setting.

For the square medium, we assumed measurements were taken only on two
adjacent edges - this corresponds to the theoretical (and practical) limit that still
ensures geometric controllability. For the circular medium, we assumed measure-
ments between angles π

4 and 3π
2 , as shown in Figure 3.4.

Figure 3.3. Limited-view observation boundaries for square and disc.

Before presenting the numerical results, we describe the numerical method used
for computing the geometrical control, which is based on the Hilbert Uniqueness
Method (HUM) of Lions.
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3.5.1. Geometrical Control: HUM Using Conjugate Gradient Itera-
tion on a Bi-Grid Mesh. The solution gw of (3.6)-(3.9) has been shown to be
unique provided that T and the control boundary Γ geometrically control Ω [28].
A systematic and constructive method for computing such a control is given by
the Hilbert Uniqueness Method (HUM) of Lions [102]. A detailed study of the
algorithm can be found in [77], [23], and [140]. The method applies a conjugate
gradient algorithm as follows:

• Let e0, e1 ∈ H1
0(Ω) × L2(Ω), where H1

0(Ω) is the standard Sobolev space
with zero boundary values;

• Solve forwards on (0, T ) the wave equation

(3.17)





∂2φ

∂t2
(x, t) − c2∆φ(x, t) = 0,

φ(x, t) = 0 on ∂Ω,

φ(x, 0) = e0(x),
∂φ

∂t
(x, 0) = e1(x);

• Solve backwards the wave equation

(3.18)





∂2ψ

∂t2
(x, t) − c2∆ψ(x, t) = 0,

ψ(x, t) =





0 on ∂Ω\Γ̄,
∂φ
∂ν (x, t) on Γ,

ψ(x, T ) = 0,
∂ψ

∂t
(x, T ) = 0;

• Set

(3.19) Λ(e0, e1) =

{
∂ψ

∂t
(x, 0),−ψ(x, 0)

}
;

• The solution v of (3.6)-(3.8) can be identified with ψ when

Λ(e0, e1) =
{
0,−c2β(x)w(x)

}

and gw(x, t) = ψ(x, t) on Γ.

Remark 3.1. In the case where the initial condition is a pressure field (e.g.,

photo-acoustics) p(x, 0) = p0(x),
∂p
∂t (x, 0) = 0, we need to have v(x, 0) = 0,

∂v
∂t (x, 0) = c2β(x)w(x). This can be easily obtained by solving : Λ(e0, e1) ={
c2β(x)w(x), 0

}
.

To proceed, we used a conjugate gradient algorithm on a discretized version Λh

of the operator defined in (3.19), where we solve the wave equation using the finite-
element finite-difference discretization described previously. To deal with unwanted
effects linked with high spatial frequencies, we used a bi-grid method of Glowinski
[77] based on a fine mesh with discretization length h and a coarse mesh with
length 2h. The wave equation is solved on the fine mesh and the residuals of Λh

are computed after projection onto the coarse mesh.
Let us define I2h

h and Ih
2h to be the projectors from the fine mesh to the coarse

mesh and vice versa. The conjugate gradient algorithm is now as follows:

• Let e00, e
0
1 be given initial guesses on the coarse mesh;
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• Solve numerically (3.17) forwards with initial conditions Ih
2he

0
0, I

h
2he

0
1 and

solve (3.18) backwards, both on the fine grid;
• Compute the initial residuals g0 = {g0

0, g
0
1} on the coarse grid as follows:





−∆g0
0 = I2h

h

ψ1 − ψ−1

2∆t
− I2h

h u1 in Ω,

g0
0 = 0 on ∂Ω,

and
g0
1 = ψ0 − I2h

h u0;

• If the norm of the residuals

‖{g0
0, g

0
1}‖2

h =

∫

Th

|g0
1 |2 + |∇g0

0 |2

is small enough, we have our solution, else we set the first search direction
w0 = g0 and start the conjugate gradient;

• Suppose we know ek = {ek
0 , e

k
1}, gk = {gk

0 , g
k
1}and wk = {wk

0 , w
k
1};

• Solve numerically (3.17) forwards with initial conditions Ih
2hw

k
0 , Ih

2hw
k
1 and

solve (3.18) backwards both on the fine grid;
• Compute the remaining residuals ξk = {ξk

0 , ξ
k
1} on the coarse grid as

follows: 



−∆hξ
k
0 = I2h

h

ψ1 − ψ−1

2∆t
,

ξk
0 = 0 on ∂Ω,

and
ξk
1 = ψ0;

• Calculate the length of the step in the wk direction

ρk =
‖gk‖h

〈ξk, wk〉h
,

where 〈ξk, wk〉h =

∫

Th

∇ξk
0∇wk

0 + ξk
1w

k
1 ;

• Update the quantities

ek+1 = ek − ρkwk,

gk+1 = gk − ρkξk;

• If ‖gk+1‖h is small, then ek+1 is our solution, else compute

γk =
‖gk+1‖h

‖gk‖h
,

and set the new descent direction

wk+1 = gk+1 + γkwk.

Remark 3.2 (Remarks on the numerical convergence). The numerical proce-
dure described in the previous section has been proved to converge in the case of
finite difference method on the unit square [87]. This result can be easily extended
in the case of a finite element method on a regular mesh. Convergence results for
more general meshes are not available yet. They will be the subject of a future study.
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3.5.2. Reconstruction Results. We present here some results obtained by
algorithms presented in Section 3.3. For each algorithm we will consider both the
full view and the partial view cases.

• Kirchhoff algorithm. We limited ourselves to the frequency range :
W = [−ωmax, ωmax] with a step-size ∆ω = ωmax/nω where ωmax and nω

depend on the mesh coarseness.
For time considerations we chose a reduced array of three virtual

receivers
– Y = {[0.6 − 0.6], [0.6 0], [0.6 0.6]} for the square medium.
– Y = {[1 − 1], [1 0], [1 1]} for the circular medium.

We compute and represent the function IKI(z
S) for zS on the fine

mesh. The estimated position is at the maximum of IKI(z
S). Recon-

struction results are given in Figure 3.4.
• Back-propagation algorithm. We chose frequencies well represented

on the mesh (ω = 9 for squareReg0, ω = 30 for squareReg2 and ω = 20
for circle) and a 30-point discretization of the unit circle for θ.

We compute and represent the function IBP(zS) for zS on the fine
mesh. The estimated position is at the maximum of IBP(zS). Results are
given in Figure 3.5.

• Arrival-time algorithm. We considered minimal arrays of two virtual
receivers Y = {[0 0.6]; [0.6 0]} for the square medium. For each receiver
we computed the value of rk = d(x0, yk), where x0 is the position of
the source and yk the position of the receiver. We represent the circles
C(yk, rk) and their intersections. Results are given in Figure 3.6.

• MUSIC algorithm. Working with the same parameters, we compute
and represent the function IMU(zS) for zS on the fine mesh. The esti-
mated position is at the maximum of IMU(zS). Reconstruction results
are given in Figure 3.7.

In Table 3.2 we give the estimations xest of the source location x0 = [0.21−0.17]
for each algorithm, and the error d(x0, xest). For comparison, we give hmin, the
smallest distance between 2 points in the fine mesh.

3.5.3. Case of Multiple Sources. Except for the arrival-time algorithm, all
the methods presented in this chapter are well-suited for identifying several point-
like sources. To illustrate this, we simulated measurements on squareReg2 with
three sources located at [0.21 − 0.17], [−0.22 − 0.3] and [0.05 0.27].

• We applied the Kirchhoff imaging algorithm with a different set of virtual
receivers:

Y = {[0.6 0], [0.6 0.6], [0 0.6], [−0.6 0.6], [−0.6 0]} .
The reason for taking more virtual receivers is that Kirchhoff works on in-
tersecting circles centered at the receivers and passing through the sources.
Too few receivers can generate false positives. Results are given in Figure
3.10.

• We ran the back-propagation and MUSIC algorithms with exactly the
same parameters as previously. Results are given in Figures 3.11 and 3.12
respectively.
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Algorithm Mesh View xest hmin d(x0, xest)

Kirchhoff squareReg0 Full [0.2 -0.15] 0.1 0.0224

Partial [0.2 -0.15] 0.0224

squareReg2 Full [0.2 -0.175] 0.025 0.0112

Partial [0.2 -0.175] 0.0112

circle Full [0.1949 -0.1619] 0.0336 0.0171

Partial [0.1949 -0.1619] 0.0171

Back-propagation squareReg0 Full [0.2 -0.15] 0.1 0.0224

Partial [0.2 -0.15] 0.0224

squareReg2 Full [0.2125 -0.175] 0.025 0.0056

Partial [0.2125 -0.175] 0.0056

circle Full [0.1949 -0.1619] 0.0336 0.0171

Partial [0.1949 -0.1619] 0.0171

Arrival time squareReg0 Full [0.1877 -0.1433] 0.1 0.0348

Partial [0.1882 -0.1314] 0.0444

squareReg2 Full [0.2050 -0.1768] 0.025 0.0085

Partial [0.2048 -0.1774] 0.009

circle Full [0.1802 -0.2196] 0.0336 0.0579

Partial [0.1790 -0.2119] 0.0522

MUSIC squareReg0 Full [0.15 -0.2] 0.1 0.0671

Partial [0.15 -0.2] 0.0671

squareReg2 Full [0.175 -0.1625] 0.025 0.0358

Partial [0.175 -0.175] 0.0354

circle Full [0.2804 -0.139] 0.0336 0.0769

Partial [0.2416 -0.0974] 0.0792

Table 3.2. Numerical results for localization of the source at x0 =
[0.21,−0.17] using four algorithms and three geometries.

3.5.4. Boundary Perturbation. In real experiments, one does not neces-
sarily know the uncontrolled part of the boundary with good accuracy. A major
concern for real applications of the method is thus its robustness with respect to
perturbations of the boundary.

We tested our algorithms by perturbing the boundary nodes outwards

xi,perturbed = xi + ǫUnxi
,
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Figure 3.4. Kirchhoff results for the geometries of Table 3.1
- from top to bottom: squareReg0, squareReg2, circle. The
(black/white) x denotes the (numerical/theoretical) center of the
source.

where ǫ is an amplitude factor, U is a uniform random variable in [0 1] and nxi
is

the outward normal at the point xi. We simulated measurements on the perturbed
mesh, which is then supposed unknown since we computed the geometric control
on the unperturbed mesh.
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Figure 3.5. Back-propagation results for the geometries of Table
3.1 - from top to bottom: squareReg0, squareReg2, circle. The
(black/white) x denotes the (numerical/theoretical) center of the
source.

To illustrate the results, we used squareReg2 with three levels of perturbation,
ǫ = 0.01, 0.025 and 0.05 (see Figure 3.5.4) and the same initial condition as before,
that is a Dirac approximation located at [0.21 − 0.17].

We give the results, with the three perturbations, for the Kirchhoff (Figure
3.13), the back-propagation (Figure 3.14) and the arrival-time (Figure 3.15) algo-
rithms. Modifying the mesh as we did generates smaller elements and thus changes
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Figure 3.6. Example of arrival time results for squareReg2 geometry.

the CFL condition for the wave-equation solver. Computation time becomes too
expensive for the MUSIC algorithm. For this reason we do not present MUSIC
results here.

As expected the estimation of the source position deteriorates as we increase
the boundary uncertainty. The errors are summarized in Table 3.5.4.
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Figure 3.7. MUSIC results for the geometries of Table 3.1 - from
top to bottom: sqReg0, sqReg2, circle. The (black/white) x de-
notes the (numerical/theoretical) center of the source.
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Figure 3.8. Initial time derivative for the case of multiple sources.
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Figure 3.9. Perturbation of the mesh for ǫ = 0.01, 0.025 and 0.05.

3.6. Concluding Remarks

In this chapter we have constructed Kirchhoff-, back-propagation-, MUSIC-,
and arrival time-type algorithms for imaging point sources and dipoles from limited-
view data. Our approach is based on averaging of the limited-view data, using
weights constructed by the geometrical control method. It is quite robust with
respect to perturbations of the non-accessible part of the boundary. We have shown
that if one can construct accurately the geometric control then one can perform
imaging with the same resolution using partial data as using complete data. The
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Figure 3.10. Kirchhoff results for the geometry sqReg2 with sev-
eral inclusions.

Figure 3.11. Back-propagation results for the geometry sqReg2
with several inclusions.

generalization of the proposed algorithms to the case where the speed of sound has
random fluctuations will be considered in Chapter 5.
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Figure 3.12. MUSIC results for the geometry sqReg2 with sev-
eral inclusions.

Figure 3.13. Kirchhoff results for the geometry sqReg2 with per-
turbed boundary (from left-to-right,ǫ = 0.01, 0.025 and 0.05). The
(black/white) x denotes the (numerical/theoretical) center of the
source.
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Figure 3.14. Back-propagation results for the geometry sqReg2
with perturbed boundary (from left-to-right, ǫ = 0.01, 0.025 and
0.05). The (black/white) x denotes the (numerical/theoretical)
center of the source.
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Figure 3.15. Arrival-time results for the geometry sqReg2 with
perturbed boundary (from left-to-right, ǫ = 0.01, 0.025 and 0.05)
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Algorithm Perturbation amplitude ǫ xest d(x0, xest)

Kirchhoff 0.01 [0.2 -0.1625] 0.0125

0.025 [0.2 -0.1625] 0.0125

0.05 [0.1875 -0.15] 0.03

Back-propagation 0.01 [0.2125 -0.1625] 0.0079

0.025 [0.2 -0.1625] 0.0125

0.05 [0.1875 -0.15] 0.03

Arrival time 0.01 [0.2022 -0.1687] 0.0079

0.025 [0.1917 -0.167] 0.0186

0.05 [0.1944 -0.1643] 0.0166

Table 3.3. Numerical results for localization of the source at x0 =
[0.21 −0.17] using sqReg2 geometry with boundary perturbations.





CHAPTER 4

Photoacoustic Imaging of Extended Absorbers in

Attenuating Acoustic Media

4.1. Introduction

In photo-acoustic imaging, optical energy absorption causes thermo-elastic ex-
pansion of the tissue, which leads to the propagation of a pressure wave. This
signal is measured by transducers distributed on the boundary of the object, which
in turn is used for imaging optical properties of the object. The major contribution
of photo-acoustic imaging is to provide images of optical contrasts (based on the
optical absorption) with the resolution of ultrasound [135].

If the medium is acoustically homogeneous and has the same acoustic properties
as the free space, then the boundary of the object plays no role and the optical
properties of the medium can be extracted from measurements of the pressure
wave by inverting a spherical Radon transform [96].

A first challenging problem in photo-acoustic imaging is to take into account
the issue of modelling the acoustic attenuation and its compensation. This subject
is addressed in [113, 45, 110, 92, 94, 104, 124, 126]. The reader is in particular
referred to [93] for a very nice discussion on the attenuation models and their
causality properties.

Moreover, in some settings, free space assumptions does not hold. For example,
in brain imaging, the skull plays an important acoustic role, and in small animal
imaging devices, the metallic chamber may have a strong acoustic effect. In those
cases, one has to account for boundary conditions. If a boundary condition has
to be imposed on the pressure field, then an explicit inversion formula no longer
exists. However, using a quite simple duality approach, one can still reconstruct the
optical absorption coefficient. In fact, in Chapters 1 and 2, we have investigated
quantitative photoacoustic imaging in the case of a bounded medium with imposed
boundary conditions. In Chapter 3, we proposed a geometric-control approach to
deal with the case of limited view measurements. In both cases, we focused on a
situation with small optical absorbers in a non-absorbing background and proposed
adapted algorithms to locate the absorbers and estimate their absorbed energy.

In this chapter, we propose a new approach to image extended optical sources
from photo-acoustic data and to correct the effect of acoustic attenuation. By test-
ing our measurements against an appropriate family of functions, we show that we
can access the Radon transform of the initial condition, and thus recover quanti-
tatively any initial condition for the photoacoustic problem. We also show how to
compensate the effect of acoustic attenuation on image quality by using the sta-
tionary phase theorem. We use a frequency power-law model for the attenuation
losses.

73
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The chapter is organized as follows. In Section 4.2 we consider the photo-
acoustic imaging problem in free space. We first propose three algorithms to recover
the absorbing energy density from limited-view and compare their speeds of conver-
gence. We then present two approaches to correct the effect of acoustic attenuation.
We use a power-law model for the attenuation. We test the singular value decom-
position approach proposed in [113] and provide a new a technique based on the
stationary phase theorem. Section 4.3 is devoted to correct the effect of imposed
boundary conditions. By testing our measurements against an appropriate family
of functions, we show how to obtain the Radon transform of the initial condition in
the acoustic wave equation, and thus recover quantitatively the absorbing energy
density. We also show how to compensate the effect of acoustic attenuation on
image quality by using again the stationary phase theorem. The chapter ends with
a discussion.

4.2. Photo-Acoustic Imaging in Free Space

In this section, we first formulate the imaging problem in free space and present
a simulation for the reconstruction of the absorbing energy density using the spher-
ical Radon transform. Then, we provide a total variation regularization to find a
satisfactory solution of the imaging problem with limited-view data. Finally, we
present algorithms for compensating the effect of acoustic attenuation. The main
idea is to express the effect of attenuation as a convolution operator. Attenuation
correction is then achieved by inverting this operator. Two strategies are used for
such deconvolution. The first one is based on the singular value decomposition
of the operator and the second one uses its asymptotic expansion based on the
stationary phase theorem. We compare the performances of the two approaches.

4.2.1. Mathematical Formulation. We consider the wave equation in Rd,

1

c20

∂2p

∂t2
(x, t) − ∆p(x, t) = 0 in Rd × (0, T ),

with

p(x, 0) = p0 and
∂p

∂t
(x, 0) = 0.

Here c0 is the phase velocity in a non-attenuating medium.
Assume that the support of p0, the absorbing energy density, is contained in

a bounded set Ω of Rd. Our objective in this part is to reconstruct p0 from the
measurements g(y, t) = p(y, t) on ∂Ω × (0, T ), where ∂Ω denotes the boundary of
Ω.

The problem of reconstructing p0 is related to the inversion of the spherical
Radon transform given by

RΩ[f ](y, r) =

∫

S

rf(y + rξ) dσ(ξ), (y, r) ∈ ∂Ω × R+,

where S denotes the unit sphere. It is known that in dimension 2, Kirchhoff’s
formula implies that [70]





p(y, t) =
1

2π
∂t

∫ t

0

RΩ[p0](y, c0r)√
t2 − r2

dr,

RΩ[p0](y, r) = 4r

∫ r

0

p(y, t/c0)√
r2 − t2

dt.
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Let the operator W be defined by

(4.1) W [g](y, r) = 4r

∫ r

0

g(y, t/c0)√
r2 − t2

dt for all g : ∂Ω × R+ → R.

Then, it follows that

(4.2) RΩ[p0](y, r) = W [p](y, r).

In recent works, a large class of inversion retroprojection formulae for the spher-
ical Radon transform have been obtained in even and odd dimensions when Ω is a
ball, see for instance [70, 97, 69, 108]. In dimension 2 when Ω is the unit disk, it
turns out that

(4.3) p0(x) =
1

(4π2)

∫

∂Ω

∫ 2

0

[
d2

dr2
RΩ[p0](y, r)

]
ln |r2 − (y − x)2| dr dσ(y).

This formula can be rewritten as follows:

(4.4) p0(x) =
1

4π2
R∗

ΩBRΩ[p0](x),

where R∗
Ω is the adjoint of RΩ,

R∗
Ω[g](x) =

∫

∂Ω

g(y, |y − x|) dσ(y),

and B is defined by

B[g](x, t) =

∫ 2

0

d2g

dr2
(y, r) ln(|r2 − t2|) dr

for g : Ω × R+ → R.
In Figure 4.1, we give a numerical illustration for the reconstruction of p0 using

the spherical Radon transform. We adopt the same approach as in [69] for the
discretization of formulae (4.1) and (4.3). Note that in the numerical examples
presented in this section, Nθ denotes the number of equally spaced angles on ∂Ω,
the pressure signals are uniformly sampled at N time steps, and the phantom
(the initial pressure distribution p0) is sampled on a uniform Cartesian grid with
NR ×NR points.

4.2.2. Limited-View Data. In many situations, we have only at our disposal
data on Γ × (0, T ), where Γ ⊂ ∂Ω. As illustrated in Figure 4.2, restricting the
integration in formula (4.3) to Γ as follows:

(4.5) p0(x) ≃
1

(4π2)

∫

Γ

∫ 2

0

[
d2

dr2
RΩ[p0](y, r)

]
ln |r2 − (y − x)2| dr dσ(y),

is not stable enough to give a correct reconstruction of p0.
The inverse problem becomes severely ill-posed and needs to be regularized

(see for instance [134, 79]). We apply here a Tikhonov regularization with a total
variation term, which is well adapted to the reconstruction of smooth solutions with
front discontinuities. We then introduce the function p0,η as the minimizer of

J [f ] =
1

2
‖Q [RΩ[f ] − g] ‖2

L2(∂Ω×(0,2)) + η‖∇f‖L1(Ω),

where Q is a positive weight operator.
Direct computation of p0,η can be complicated as the TV term is not smooth

(not of class C1). Here, we obtain an approximation of p0,η via an iterative
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Figure 4.1. Numerical inversion using (4.3) with N = 256, NR =
200 and Nθ = 200. Top left: p0 ; Top right: p(y, t) with (y, t) ∈
∂Ω × (0, 2); Bottom left: RΩ[p0](y, t) with (y, t) ∈ ∂Ω × (0, 2);
Bottom right: 1

4π2R∗
ΩBRΩ[p0].
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Figure 4.2. Numerical inversion with truncated (4.3) formula
with N = 128, NR = 128, and Nθ = 30. Left: p0; Right:

1
4π2R∗

ΩBRΩ[p0].

shrinkage-thresholding algorithm [60, 55]. This algorithm can be viewed as a
split, gradient-descent, iterative scheme:

• Data g, initial solution f0 = 0;
• (1) Data link step: fk+1/2 = fk − γR∗

ΩQ
∗Q [RΩ[fk] − g];

• (2) Regularization step: fk = Tγη[fk+1/2],
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where γ is a virtual descent time step and the operator Tη is given by

Tη[y] = arg min
x

{
1

2
‖y − x‖2

L2 + η‖∇x‖L1

}
.

Note that Tη defines a proximal point method. One advantage of the algorithm
is to minimize implicitly the TV term using the duality algorithm of Chambolle
[49]. This algorithm converges [60, 55] under the assumption γ‖R∗

ΩQ
∗QRΩ‖ ≤ 1,

but its rate of convergence is known to be slow. Thus, in order to accelerate the
convergence rate, we will also consider the variant algorithm of Beck and Teboulle
[29] defined as

• Data g, initial set: f0 = x0 = 0, t1 = 1;
• (1) xk = Tγη (fk − γR∗

ΩQ
∗Q [RΩ[fk] − g]);

• (2) fk+1 = xk + tk−1
tk+1

(xk − xk−1) with tk+1 +
1+

√
1+4t2

k

2 .

The standard choice of Q is the identity, Id, and then it is easy to see that
‖RΩR

∗
Ω‖ ≃ 2π. It will also be interesting to use Q = 1

2πB1/2, which is well defined

since B is symmetric and positive. In this case, R∗
ΩQ

∗Q ≃ R−1
Ω and we can hope

to improve the convergence rate of the regularized algorithm.
We compare three algorithms of this kind in Figure 4.3. The first and the second

one correspond to the simplest algorithm with respectivelyQ = Id and Q = 1
2πB1/2.

The last method uses the variant of Beck and Teboulle with Q = 1
2πB1/2. The

speed of convergence of each of these algorithms is plotted in Figure 4.3. Clearly,
the third method is the best and after 30 iterations, a very good approximation of
p0 is reconstructed.

Two limited-angle experiments are presented in Figure 4.4 using the third al-
gorithm.

4.2.3. Compensation of the Effect of Acoustic Attenuation. Our aim
in this section is to compensate for the effect of acoustic attenuation. The pressures
p(x, t) and pa(x, t) are respectively solutions of the following wave equations:

1

c20

∂2p

∂t2
(x, t) − ∆p(x, t) =

1

c20
δ′t=0p0(x),

and
1

c20

∂2pa

∂t2
(x, t) − ∆pa(x, t) − L(t) ∗ pa(x, t) =

1

c20
δ′t=0p0(x),

where L is defined by

(4.6) L(t) =
1√
2π

∫

R

(
K2(ω) − ω2

c20

)
eiωtdω.

Many models exist for K(ω). Here we use the power-law model. Then K(ω) is the
complex wave number, defined by

(4.7) K(ω) =
ω

c(ω)
+ ia|ω|ζ ,

where ω is the frequency, c(ω) is the frequency dependent phase velocity and 1 ≤
ζ ≤ 2 is the power of the attenuation coefficient. See [125]. A common model,
known as the thermo-viscous model, is given byK(ω) = ω

c0

√
1−iaωc0

and corresponds

approximately to ζ = 2 with c(ω) = c0.
Our strategy is now to:
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Figure 4.3. Iterative shrinkage-thresholding solution after 30 it-
erations with η = 0.01, N = 128, NR = 128, and Nθ = 30. Top
left: simplest algorithm with Q = Id and µ = 1/(2π); Top right:
simplest algorithm with Q = 1

2πB1/2 and µ = 0.5; Bottom left:

Beck and Teboulle variant with Q = 1
2πB1/2 and µ = 0.5; Bottom

right: error k → ‖fk − p0‖∞ for each of the previous situations.
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Figure 4.4. Case of limited angle with Beck and Teboulle iter-
ative shrinkage-thresholding after 50 iterations, with parameters
equal to η = 0.01, N = 128, NR = 128, Nθ = 64 and Q = 1

2πB1/2.

Left: p0; Center: 1
4π2R∗

ΩBRΩ[p0]; Right: f50.
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• Estimate p(y, t) from pa(y, t) for all (y, t) ∈ ∂Ω × R+.
• Apply the inverse formula for the spherical Radon transform to reconstruct
p0 from the non-attenuated data.

A natural definition of an attenuated spherical Radon transform Ra,Ω is

(4.8) Ra,Ω[p0] = W [pa].

4.2.4. Relationship Between p and pa. Recall that the Fourier transforms
of p and pa satisfy
(

∆ + (
ω

c0
)2
)
p̂(x, ω) =

iω√
2πc20

p0(x) and
(
∆ +K(ω)2

)
p̂a(x, ω) =

iω√
2πc20

p0(x),

which implies that

p̂(x, c0K(ω)) =
c0K(ω)

ω
p̂a(x, ω).

The issue is to estimate p from pa using the relationship pa = L[p], where L is
defined by

L[φ](s) =
1

2π

∫

R

ω

c0K(ω)
e−iωs

∫ ∞

0

φ(t)eic0K(ω)t dt dω.

The main difficulty is that L is not well conditioned. We will compare two ap-
proaches. The first one uses a regularized inverse of L via a singular value decom-
position (SVD), which has been recently introduced in [113]. The second one is
based on the asymptotic behavior of L as the attenuation coefficient a tends to
zero.

Figure 4.5 gives some numerical illustrations of the inversion of the attenuated
spherical Radon transform without a correction of the attenuation effect, where a
thermo-viscous attenuation model is used with c0 = 1.

4.2.5. A SVD Approach. La Rivière, Zhang, and Anastasio have recently
proposed in [113] to use a regularized inverse of the operator L obtained by a
standard SVD approach:

L[φ] =
∑

l

σl〈φ, ψ̃l〉ψl,

where (ψ̃l) and (ψl) are two orthonormal bases of L2(0, T ) and σl are positives
eigenvalues such that 




L∗[φ] =
∑

l σl〈φ, ψl〉ψ̃l,

L∗L[φ] =
∑

l σ
2
l 〈φ, ψ̃l〉ψ̃l,

LL∗[φ] =
∑

l σ
2
l 〈φ, ψl〉ψl.

An ǫ-approximation inverse of L is then given by

L−1
1,ǫ [φ] =

∑

l

σl

σ2
l + ǫ2

〈φ, ψl〉ψ̃l,

where ǫ > 0.
In Figure 4.6 we present some numerical inversions of the thermo-viscous wave

equation with a = 0.0005 and a = 0.0025. We first obtain the ideal measurements
from the attenuated ones and then apply the inverse formula for the spherical Radon
transform to reconstruct p0 from the ideal data. We take ǫ respectively equal to
0.01, 0.001 and 0.0001. The operator L is discretized to obtain an NR ×NR matrix
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Figure 4.5. Numerical inversion of attenuated wave equation
with K(ω) = ω

c0
+ iaω2/2 and a = 0.001. Here N = 256,

NR = 200 and Nθ = 200. Top left: p0; Top right: pa(y, t) with
(y, t) ∈ ∂Ω×(0, 2); Bottom left: Wpa(y, t) with (y, t) ∈ ∂Ω×(0, 2);
Bottom right: 1

4π2R∗
ΩB (W [pa](y, t)).

to which we apply an SVD decomposition. A regularization of the SVD allows us
to construct L−1

1,ǫ .
As expected, this algorithm corrects a part of the attenuation effect but is

unstable when ǫ tends to zero.

4.2.6. Asymptotics of L. In physical situations, the coefficient of attenua-
tion a is very small. We will take into account this phenomenon and introduce an
approximation of L and L−1 as a goes to zero:

Lk[φ] = L[φ] + o(ak+1) and L−1
2,k[φ] = L−1[φ] + o(ak+1),

where k represents an order of approximation.
4.2.6.1. Thermo-viscous case: K(ω) = ω

c0
+ iaω2/2. Let us consider in this

section the attenuation model K(ω) = ω
c0

+ iaω2/2 at low frequencies ω ≪ 1
a , such

that
1

1 + iac0ω/2
≃ 1 − i

ac0
2
ω.

The operator L is approximated as follows

L[φ](s) ≃ 1

2π

∫ ∞

0

φ(t)

∫

R

(
1 − i

ac0
2
ω
)
e−

1
2 c0aω2teiω(t−s) dω dt.

Since
1√
2π

∫

R

e−
1
2 c0aω2teiω(t−s)dω =

1√
c0at

e
− 1

2
(s−t)2

c0at ,
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Figure 4.6. Compensation of acoustic attenuation with SVD reg-
ularization: N = 256, NR = 200 and Nθ = 200. First line:
a = 0.0005; second line: a = 0.0025. Left to right: using L−1

1,ǫ

respectively with ǫ = 0.01, ǫ = 0.001 and ǫ = 0.0001.

and
1√
2π

∫

R

−iac0ω
2

e−
1
2 c0aω2teiω(t−s)dω =

ac0
2
∂s

(
1√
c0at

e−
1
2

(s−t)2

c0at

)
,

it follows that

L[φ] ≃
(
1 +

ac0
2
∂s

)



1√
2π

∫ +∞

0

φ(t)
1√
c0at

e
−

1

2

(s− t)2

c0at dt


 .

We then investigate the asymptotic behavior of L̃ defined by

(4.9) L̃[φ] =
1√
2π

∫ +∞

0

φ(t)
1√
c0at

e
−

1

2

(s− t)2

c0at dt.

Since the phase in (4.9) is quadratic and a is small, by the stationary phase theorem
we can prove that

(4.10) L̃[φ](s) =
k∑

i=0

(c0a)
i

2ii!
Di[φ](s) + o(ak),

where the differential operators Di satisfy Di[φ](s) = (tiφ(t))(2i)(s). See Appendix

B. We can also deduce the following approximation of order k of L̃−1

(4.11) L̃−1
k [ψ] =

k∑

j=0

ajψk,j ,

where ψk,j are defined recursively by

ψk,0 = ψ and ψk,j = −
j∑

i=1

1

i!
Di[ψk,j−i], for all j ≤ k.
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Figure 4.7. Compensation of acoustic attenuation with formula
(4.12): N = 256, NR = 200 and Nθ = 200. First line: a = 0.0005;

second line: a = 0.0025. Left: L̃−1
k with k = 0; Center: L̃−1

k with

k = 1; Right: L̃−1
k with k = 8.

Finally, we define

(4.12) Lk =
(
1 +

ac0
2
∂s

)
L̃k and L−1

2,k = L̃−1
k

(
1 +

ac0
2
∂t

)−1

.

We plot in Figure 4.6 some numerical reconstructions of p0 using a thermo-
viscous wave equation with a = 0.0005 and a = 0.0025. We take the value of k
respectively equal to k = 0, k = 1 and k = 8. These reconstructions seem to be as
good as those obtained by the SVD regularization approach. Moreover, this new
algorithm has better stability properties.

4.2.6.2. General case: K(ω) = ω + ia|ω|ζ with 1 ≤ ζ < 2. We now consider
the attenuation model K(ω) = ω

c0
+ ia|ω|ζ with 1 ≤ ζ < 2. We first note that

this model is not causal but can be changed to a causal one [93, 52]. However,
since our main purpose here is to give insights for the compensation of the effect of
attenuation on image reconstruction, we work with this quite general model because
of its simplicity. As before, the problem can be reduced to the approximation of
the operator L̃ defined by

L̃[φ](s) =

∫ ∞

0

φ(t)

∫

R

eiω(t−s)e−|ω|ζc0at dωdt.

It is also interesting to see that its adjoint L̃∗ satisfies

L̃∗[φ](s) =

∫ ∞

0

φ(t)

∫

R

eiω(s−t)e−|ω|ζc0as dωdt.

Suppose for the moment that ζ = 1, and working with the adjoint operator L∗, we
see that

L̃∗[φ](s) =
1

π

∫ ∞

0

c0as

(c0as)2 + (s− t)2
φ(t)dt.

Invoking the dominated convergence theorem, we have

lim
a→0

L̃∗[φ](s) = lim
a→0

1

π

∫ ∞

− 1
ac0

1

1 + y2
φ(s + c0ays)dy =

1

π

∫ ∞

−∞

1

1 + y2
φ(s)dy = φ(s).



4.3. PHOTO-ACOUSTIC IMAGING WITH IMPOSED BOUNDARY CONDITIONS 83

More precisely, introducing the fractional Laplacian ∆1/2 as follows

∆1/2φ(s) =
1

π
p.v.

∫ +∞

−∞

φ(t) − φ(s)

(t− s)2
dt,

where p.v. stands for the Cauchy principal value, we get

1

a

(
L̃∗[φ](s) − φ(s)

)
=

1

a

∫ ∞

−∞

1

πc0as

1

1 +
(

s−t
c0as

)2 (φ(t) − φ(s)) dt

=

∫ ∞

−∞

1

π

c0s

(c0as)2 + (s− t)2
(φ(t) − φ(s)) dt

= lim
ǫ→0

∫

R\[s−ǫ,s+ǫ]

1

π

c0s

(c0as)2 + (s− t)2
(φ(t) − φ(s)) dt

→ lim
ǫ→0

∫

R\[s−ǫ,s+ǫ]

1

π

c0s

(s− t)2
(φ(t) − φ(s)) dt

= c0s∆
1/2φ(s),

as a tends to zero. We therefore deduce that

L̃∗[φ](s) = φ(s)+c0as∆
1/2φ(s)+o(a) and L̃∗[φ](s) = φ(s)+c0a∆

1/2 (sφ(s))+o(a).

Applying exactly the same argument for 1 < ζ < 2, we obtain that

L[φ](s) = φ(s) + Cc0a∆
ζ/2(sφ(s)) + o(a),

where C is a constant, depending only on ζ and ∆ζ/2, defined by

∆ζ/2φ(s) =
1

π
p.v.

∫ +∞

−∞

φ(t) − φ(s)

(t− s)1+ζ
dt.

4.2.7. Iterative Shrinkage-Thresholding Algorithm with Correction
of Attenuation. The previous correction of attenuation is not so efficient for a
large attenuation coefficient a. In this case, to improve the reconstruction, we may
use again a Tikhonov regularization. Let R−1

Ω,a,k be an approximate inverse of the
attenuated spherical Radon transform RΩ,a:

R−1
Ω,a,k = RΩ−1WL−1

2,kW−1.

Although its convergence is not clear, we will now consider the following iterative
shrinkage-thresholding algorithm:

• Data g, initial set: f0 = x0 = 0, t1 = 1;

• (1) xj = Tγη

(
fj − γR−1

Ω,a,k (RΩ,afj − g)
)
;

• (2) fj+1 = xj +
tj−1
tj+1

(xj − xj−1) with tj+1 +
1+

√
1+4t2j
2 .

Figure 4.8 shows the efficiency of this algorithm.

4.3. Photo-Acoustic Imaging with Imposed Boundary Conditions

In this section, we consider the case where a boundary condition has to be
imposed on the pressure field. We first formulate the photo-acoustic imaging prob-
lem in a bounded domain before reviewing the reconstruction procedures. We refer
the reader to [131] where the half-space problem has been considered. We then
introduce a new algorithm which reduces the reconstruction problem to the inver-
sion of a Radon transform. This procedure is particularly well-suited for extended
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Figure 4.8. Numerical results using iterative shrinkage-
thresholding algorithm with η = 0.001 and a = 0.0025. Left up:
f50 with k = 0; Top right: f50 with k = 1; Bottom left: f50 with
k = 6; Bottom right: error j → ‖fj − p0‖ for different values of k.

absorbers. Finally, we discuss the issue of correcting the attenuation effect and
propose an algorithm analogous to the one described in the previous section.

4.3.1. Mathematical Formulation. Let Ω be a bounded domain. We con-
sider the wave equation in the domain Ω:

(4.13)





1

c20

∂2p

∂t2
(x, t) − ∆p(x, t) = 0 in Ω × (0, T ),

p(x, 0) = p0(x) in Ω,
∂p

∂t
(x, 0) = 0 in Ω,

with the Dirichlet (resp. the Neumann) imposed boundary conditions:

(4.14) p(x, t) = 0

(
resp.

∂p

∂ν
(x, t) = 0

)
on ∂Ω × (0, T ).

Our objective in the next subsection is to reconstruct p0(x) from the measure-

ments of
∂p

∂ν
(x, t) (resp. p(x, t)) on the boundary ∂Ω × (0, T ).
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4.3.2. Inversion Algorithms. Consider probe functions satisfying

(4.15)





1

c20

∂2v

∂t2
(x, t) − ∆v(x, t) = 0 in Ω × (0, T ),

v(x, T ) = 0 in Ω,
∂v

∂t
(x, T ) = 0 in Ω.

Multiplying (4.13) by v and integrating by parts yields (in the case of Dirichlet
boundary conditions):

(4.16)

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)v(x, t)dσ(x)dt =

∫

Ω

p0(x)
∂v

∂t
(x, 0)dx.

Choosing a probe function v with proper initial time derivative allows us to
infer information on p0 (right-hand side in (4.16)) from our boundary measurements
(left-hand side in (4.16)).

In Chapter 1, considering a full view setting, we used a 2-parameter travelling
plane wave given by

(4.17) v
(1)
τ,θ(x, t) = δ

(
x · θ
c0

+ t− τ

)
,

and we determined the inclusions’ characteristic functions by varying (θ, τ). We
also used in three dimensions the spherical waves given by

(4.18) wτ,y(x, t) =
δ
(
t+ τ − |x−y|

c0

)

4π|x− y| ,

for y ∈ R3 \ Ω, to probe the medium.
In Chapter 3, we assumed that measurements are only made on a part of the

boundary Γ ⊂ ∂Ω. Using geometric control, we could choose the form of
∂v

∂t
(x, 0)

and design a probe function v satisfying (4.15) together with

v(x, t) = 0 on ∂Ω\Γ̄,
so that we had

(4.19)

∫ T

0

∫

Γ

∂p

∂ν
(x, t)v(x, t)dσ(x)dt =

∫

Ω

p0(x)
∂v

∂t
(x, 0)dx.

Varying our choice of
∂v

∂t
(x, 0), we could adapt classical imaging algorithms (MU-

SIC, back-propagation, Kirchhoff migration, arrival-time) to the case of limited
view data.

Now simply consider the 2-parameter family of probe functions:

(4.20) v
(2)
τ,θ(x, t) = 1 −H

(
x · θ
c0

+ t− τ

)
,

where H is the Heaviside function. The probe function v
(2)
τ,θ(x, t) is an incoming

plane wavefront. Its equivalent, still denoted by v
(2)
τ,θ, in the limited-view setting

satisfies the initial conditions

(4.21) v
(2)
τ,θ(x, 0) = 0 and

∂v
(2)
τ,θ

∂t
(x, 0) = δ

(
x · θ
c0

− τ

)
,



86 4. EXTENDED ABSORBERS IN ATTENUATING ACOUSTIC MEDIA

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.9. Reconstruction in the case of homogeneous Dirichlet
boundary conditions. Left: initial condition p0; Center: recon-
struction using spherical Radon transform; Right: reconstruction
using probe functions algorithm.

together with the boundary condition v
(2)
τ,θ = 0 on ∂Ω \ Γ × (0, T ).

Note that if T ≥ diam(Ω)
c0

in the full-view setting, our test functions v
(1)
τ,θ, v

(2)
τ,θ and

wτ,y vanish at t = T . In the limited-view case, under the geometric controllability
conditions [28] on Γ and T , existence of the test function v is guaranteed.

In both the full- and the limited-view cases, we get

(4.22)

∫ T

0

∫

∂Ω or Γ

∂p

∂ν
(x, t)v

(2)
τ,θ(x, t)dσ(x)dt = R[p0](θ, τ),

where R[f ] is the (line) Radon transform of f . Applying a classical filtered back-
projection algorithm to the data (4.22), one can reconstruct p0(x).

To illustrate the need of this approach, we present in Figure 4.9 the recon-
struction results from data with homogeneous Dirchlet boundary conditions. We
compare the reconstruction using the inverse spherical Radon transform with the
duality approach presented above. It appears that not taking boundary conditions
into account leads to important errors in the reconstruction.

We then tested this approach on the Shepp-Logan phantom, using the family of

probe functions v
(2)
τ,θ. Reconstructions are given in Figure 4.10. We notice numerical

noise due to the use of discontinuous (Heaviside) test functions against discrete
measurements.

The numerical tests were conducted using Matlab. Three different forward
solvers have been used for the wave equation:

• a FDTD solver, with Newmark scheme for time differentiation;
• a space-Fourier solver, with Crank-Nicholson finite difference scheme in

time;
• a space-(P1) FEM-time finite difference solver.

Measurements were supposed to be obtained on equi-distributed captors on a circle
or a square. The use of integral transforms (line or spherical Radon transform)
avoids inverse crime since such transforms are computed on a different class of pa-
rameters (center and radius for spherical Radon transforms, direction and shift for
line Radon transform). Indeed, their numerical inversions (achieved using formula
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Figure 4.10. Numerical inversion in the case of homogeneous
Dirichlet boundary conditions. Here, N = 256, NR = 200 and
Nθ = 200. Top left: p0; Top right: p(y, t) with (y, t) ∈ ∂Ω× (0, 3);
Bottom left: R[p0]; Bottom right: reconstruction using probe func-
tions algorithm.

(4.3) or the iradon function of Matlab) are not computed on the same grid as the
one for the forward solvers.

4.3.3. Compensation of the Effect of Acoustic Attenuation. Our aim
in this section is to compensate the effect of acoustic attenuation. Let pa(x, t) be
the solution of the wave equation in a dissipative medium:
(4.23)

1

c20

∂2pa

∂t2
(x, t) − ∆pa(x, t) − L(t) ∗ pa(x, t) =

1

c20
δ′t=0p0(x) in Ω × R,

with the Dirichlet (resp. the Neumann) imposed boundary conditions:

(4.24) pa(x, t) = 0

(
resp.

∂pa

∂ν
(x, t) = 0

)
on ∂Ω × R,

where L is defined by (4.6).
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We want to recover p0(x) from boundary measurements of
∂pa

∂ν
(x, t) (resp.

pa(x, t)). Again, we assume that a is small.
Taking the Fourier transform of (4.23) yields

(4.25)





(∆ +K2(ω))p̂a(x, ω) =
iω√
2πc20

p0(x) in Ω,

p̂a(x, ω) = 0

(
resp.

∂p̂a

∂ν
(x, ω) = 0

)
on ∂Ω,

where p̂a denotes the Fourier transform of pa.

4.3.4. Case of a Spherical Wave as a Probe Function. By multiplying
(4.25) by the Fourier transform, ŵ0,y(x, ω), of wτ=0,y given by (4.18), we arrive at,
for any τ ,
(4.26)
i√
2π

∫

Ω

p0(x)(

∫

R

ωeiωτ ŵ0,y(x,K(ω)) dω) dx =

∫

R

eiωτ

∫

∂Ω

∂p̂a

∂ν
(x, ω)ŵ0,y(x,K(ω)) dω,

for the Dirichlet problem and
(4.27)
i√
2π

∫

Ω

p0(x)(

∫

R

ωeiωτ ŵ0,y(x,K(ω)) dω) dx = −
∫

R

eiωτ

∫

∂Ω

p̂a(x, ω)
∂ŵ0,y

∂ν
(x,K(ω)) dω,

for the Neumann problem.
Next we compute

∫
R
ωeiωτ ŵ0,y(x,K(ω)) dω for the thermo-viscous model. Re-

call that in this case,

K(ω) ≈ ω

c0
+
iaω2

2
.

We have

(4.28)

∫

R

ωeiωτ ŵ0,y(x,K(ω)) dω ≈ 1

4π|x− y|

∫

R

ωeiω(τ− |x−y|
c0

)e−aω2 |x−y|
c0 dω,

and again, the stationary phase theorem can then be applied to approximate the
inversion procedure for p0(x).

Note that if we use the Fourier transform v̂ of (4.17) or (4.20) as a test function
then we have to truncate the integral in (4.26) since v̂(x,K(ω)) is exponentially
growing in some regions of Ω.

4.3.5. Case of a Plane Wave as a Probe Function. Let us first introduce

the function K̃(ω) defined by K̃(ω) =

√
K(ω)2 and consider a solution of the

Helmholtz equation (
∆ + K̃2(ω)

)
v̂a(x, ω) = 0

of the form

(4.29) v̂a(x, ω) = e−iω(x·θ−c0τ)g(ω),

where g(ω) decays sufficiently fast.

Multiplying (4.25) by v̂a(x, ω), we obtain

(4.30)
i√
2π

∫

Ω

p0(x)

(∫

R

ωv̂a(x, ω)dω

)
dx =

∫

R

∫

∂Ω

∂p̂a

∂ν
(x, ω)v̂a(x, ω)dσ(x)dω.
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Since K̃(ω) ≃ ω
c0

− iaω2

2 , then by taking in formula (4.29)

g(ω) = e−
1
2ω2ac0T and g(ω) =

1

iω
e−

1
2ω2ac0T ,

we can use the plane waves v̂
(1)
a and v̂

(2)
a given by

v̂(1)
a (x, ω) = e−iω(x·θ−c0τ)e−

1
2ω2ac0(T+ x·θ

c0
−τ),

and

v̂(2)
a (x, ω) =

1

iω
e−iω(x·θ−c0τ)e−

1
2 ω2ac0(T+ x·θ

c0
−τ),

as approximate probe functions.

Take T sufficiently large such that
(
T + x·θ

c0
− τ
)

stays positive for all x ∈ Ω.

Thus,

v(1)
a (x, t) ≃ 1√

ac0

(
T + x·θ

c0
− τ
)e

−
(x · θ − c0τ + t)

2

2ac0

(
T + x·θ

c0
− τ
)
,

and

v(2)
a (x, t) ≃ erf

(
x · θ − c0τ + t√
ac0

(
T + x·θ

c0
− τ

)
)
.

Now using v
(2)
a in formula (4.30) leads to the convolution of the Radon transform of

p0 with a quasi-Gaussian kernel. Indeed, the left hand-side of (4.30) satisfies

i√
2π

∫

Ω

p0(x)

(∫

R

ωv̂
(2)
a (x,w))dω

)
dx

≃
∫

Ω

p0(x)
1√

ac0

(
T + x·θ

c0
− τ
)e

−
(x · θ − c0τ)

2

2ac0

(
T + x·θ

c0
− τ
)
dx

=

∫ smax

smin

R[p0](θ, s)
1√

ac0

(
T + s

c0
− τ
)e

−
(s− c0τ)

2

2ac0

(
T + s

c0
− τ
)
ds,

and the right hand-side is explicitly estimated by

∫

R

∫

∂Ω

∂p̂a

∂ν
(x, ω)v̂

(2)
a (x, ω)dσ(x)dω ≃

∫ T

0

∫

∂Ω

∂pa

∂ν
(x, t)erf

(
x · θ − c0τ + t√
ac0

(
T + x·θ

c0
− τ

)
)
dσ(x)dt.
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Figure 4.11. Compensation of acoustic attenuation with formula
(4.31) in the case of homogeneous Dirichlet boundary conditions.
Here, N = 256, NR = 200 and Nθ = 200. First line: a = 0.0005;
Second line: a = 0.0025. Left: L̃−1

k with k = 0; Center: L̃−1
k with

k = 1; Right: L̃−1
k with k = 8.

As previously, we can compensate the effect of attenuation using the stationary
phase theorem for the operator L̃,

L̃[φ](τ) =

∫ smax

smin

φ(s)
1√

ac0

(
T + s

c0
− τ
)e

−
(s− c0τ)

2

2ac0

(
T + s

c0
− τ
)
ds,

which reads

(4.31) L̃[φ](τ) ≃ φ(c0τ) +
ac0T

2

(
φ′′(c0τ) +

2φ′(c0τ)

c0T

)
.

See Appendix C. More generally,

(4.32) L̃[φ](τ) =

k∑

i=0

(c0a)
i

2ii!
Di[φ] + o(ak),

where the differential operators Di satisfy

Di[φ] = ((T +
s

c0
− τ)i[φ](s))

(2i)
|s=c0τ

.

Define L̃−1
k as in (4.11). Using (4.32), we reconstructed the line Radon trans-

form of p0 correcting the effect of attenuation. We then applied a standard filtered
back-projection algorithm to inverse the Radon transform. Results are given in
Figure 4.11.
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4.4. Conclusion

In this chapter we have provided new approaches to correct the effect of im-
posed boundary conditions as well as the effect of acoustic attenuation for imaging
extended absorbers.

It would be very interesting to analytically investigate their robustness with
respect to measurement noise and medium noise. In this connection, we refer to
Chapter 5 for a coherent interferometric strategy for photo-acoustic imaging in the
presence of microscopic random fluctuations of the speed of sound.

Another important problem is to a priori estimate the attenuation coefficient
a and the frequency power ζ.

Finally, it is worth emphasizing that it is the absorption coefficient, not the
absorbed energy, that is a fundamental physiological parameter. The absorbed
energy density is in fact the product of the optical absorption coefficient and the
light fluence which depends on the distribution of scattering and absorption within
the domain, as well as the light sources. In Chapter 2, methods for reconstructing
the normalized optical absorption coefficient of small absorbers from the absorbed
density are proposed. Multi-wavelength acoustic measurements are combined with
diffusing light measurements to separate the product of absorption coefficient and
optical fluence. In the case of extended absorbers, multi-wavelength photo-acoustic
imaging is also expected to lead to a satisfactory solution [59].

Stationary Phase Theorem and Proofs of (4.10) and (4.31)

Appendix A: Stationary Phase Theorem.

Theorem 4.1. (Stationary Phase [85])Let K ⊂ [0,∞) be a compact set, X
an open neighborhood of K and k a positive integer. If ψ ∈ C2k

0 (K), f ∈ C3k+1(X)
and Im(f) ≥ 0 in X, Im(f(t0)) = 0, f ′(t0) = 0, f ′′(t0) 6= 0, f ′ 6= 0 in K \ {t0}
then for ǫ > 0∣∣∣∣∣∣

∫

K

ψ(t)eif(t)/ǫdt− eif(t0)/ǫ
(
ǫ−1f ′′(t0)/2πi

)−1/2∑

j<k

ǫjLj[ψ]

∣∣∣∣∣∣
≤ Cǫk

∑

α≤2k

sup |ψ(α)(x)|.

Here C is bounded when f stays in a bounded set in C3k+1(X) and |t − t0|/|f ′(t)|
has a uniform bound. With,

gt0(t) = f(t) − f(t0) −
1

2
f ′′(t0)(t− t0)

2,

which vanishes up to third order at t0, and

Lj[ψ] =
∑

ν−µ=j

∑

2ν≥3µ

i−j 2−ν

ν!µ!
(−1)νf ′′(t0)

−ν(gµ
t0ψ)(2ν)(t0).

We will use this theorem with k = 2. Note that L1 can be expressed as the

sum L1[ψ] = L
(1)
1 [ψ]+L

(2)
1 [ψ]+L

(3)
1 [ψ], where L

(j)
1 is respectively associated to the

couple (νj , µj) = (1, 0), (2, 1), (3, 2) and is identified as




L
(1)
1 [ψ] = − 1

2if
′′(t0)−1ψ(2)(t0),

L
(2)
1 [ψ] = 1

222!if
′′(t0)−2(gt0ψ)(4)(t0) = 1

8if
′′(t0)−2

(
g
(4)
t0 (t0)ψ(t0) + 4g

(3)
t0 (t0)ψ

′(t0)
)
,

L
(3)
1 [ψ] = −1

232!3!if
′′(t0)−3(g2

t0ψ)(6)(t0) = −1
232!3!if

′′(t0)−3(g2
t0)

(6)(t0)ψ(t0).
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Appendix B: Proof of Approximation (4.10). Let us now apply the sta-

tionary phase theorem to the operator L̃

L̃[φ] =
1√
2π

∫ +∞

0

φ(t)
1√
c0at

e
−

1

2

(s− t)2

c0at dt.

Note that the integral

J(s) =

∫ ∞

0

ψ(t)eif(t)/ǫdt,

with ψ(t) = φ(t)√
t
, ǫ = c0a, f(t) = i (t−s)2

2t , satisfies J(s) =
√
c0a2πL̃[φ]. The phase

f vanishes at t = s and satisfies

f ′(t) = i
1

2

(
1 − s2

t2

)
, f ′′(t) = i

s2

t3
, f ′′(s) = i

1

s
.

The function gs(t) is given by

gs(t) = i
1

2

(t− s)2

t
− i

1

2

(t− s)2

s
= i

1

2

(s− t)3

ts
.

We can deduce that



(gsψ)(4)(s) =
(
g
(4)
x0 (s)ψ(s) + 4g

(3)
x0 (s)ψ′(s)

)
= i 12

(
24
s3ψ(s) − 24

s2 ψ
′(s)
)
,

(g2
sψ)(6)(s) = (g2

x0
)(6)(s)ψ(s) = − 1

4
6!
s4ψ(s),

and then, with the same notation as in Theorem 4.1,




L
(1)
1 [ψ] = −1

i

(
1

2
(f ′′(s))−1ψ′′(s)

)
=

1

2
s

(
φ√
s

)′′
=

1

2

(√
sφ′′(s) − φ′(s)√

s
+

3

4

φ

s3/2

)
,

L
(2)
1 [ψ] =

1

8i
f ′′(s)−2

(
g(4)

s (s)ψ(s) + 4g(3)
s (s)ψ′(s)

)
=

1

2

(
3

(
φ(s)√
s

)′
− 3

φ(s)

s3/2

)

=
1

2

(
3
φ′(s)√
s

− 9

2

φ(s)

s3/2

)
,

L
(3)
1 [ψ] =

−1

232!3!i
f ′′(s)−3(g2

s)(6)(s)ψ(s) =
1

2

(
15

4

φ(s)

s3/2

)
.

The operator L1 is given by

L1[ψ] = L
(1)
1 [ψ] + L

(2)
1 [ψ] + L

(3)
1 [ψ]

=
1

2

(√
sφ′′(s) + (3 − 1)

φ′(s)√
s

+

(
3

4
− 9

2
+

15

4

)
φ(s)

s3/2

)
=

1

2
√
s

(sφ(s))
′′
,

and so,
∣∣∣∣J(s) −

√
2πac0s

(
φ(s)√
s

+ a
1

2
√
s

(sφ(s))
′′
)∣∣∣∣ ≤ Ca2

∑

α≤4

sup |φ(α)(x)|.

Finally, we arrive at
∣∣∣∣

1√
2π

∫ ∞

0

φ(t)
1√
ac0t

e−
(t−s)2

2ac0t dt−
(
φ(s) +

a

2
(sφ(s))

′′
)∣∣∣∣ ≤ Ca3/2

∑

α≤4

sup |φ(α)(t)|.
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Appendix C: Proof of Approximation (4.31). Let us now apply the sta-
tionary phase theorem to the operator L defined by

L̃[φ](τ) =
1√
2π

∫ smax

smin

[
φ(s) (a (c0T + s− c0τ))

− 1
2 e

−
(s− c0τ)

2

2a (c0T + s− c0τ)
]
ds

=
1√
2π

∫ smax−c0τ

smin−c0τ

[
φ(t+ c0τ)

(
a
(
T̃ + t

))− 1
2

e

−
t2

2a
(
T̃ + t

) ]
dt,

where T̃ = c0T . Note that the integral

J(τ) =

∫ smax−c0τ

smin−c0τ

ψ(t)eif(t)/ǫdt,

with ψ(t) = φ(t+c0τ)√
T̃+t

, ǫ = a, f(s) = i t2

2(T̃+t)
, satisfies J(τ) =

√
a2πL̃[φ].

The phase f vanishes at t = 0 and satisfies

f ′(t) = i
1

2

t(t+ 2T̃ )

(t+ T̃ )2
, f ′′(t) = i

T̃ 2

(t+ T̃ )3
, f ′′(0) = i

1

T̃
.

The function g0(t) is identified as

g0(t) = −i1
2

t3

T̃ (T̃ + t)
.

We have



(g0ψ)(4)(0) =
(
g
(4)
0 (0)ψ(0) + 4g

(3)
0 (0)ψ′(0)

)
= i 12

(
24
T̃ 3
ψ(0) − 24

T̃ 2
ψ′(0)

)
,

(g2
0ψ)(6)(0) = (g2

0)
(6)(0)ψ(0) = − 1

4
6!
T̃ 4
ψ(0),

and

ψ(0) =
φ(c0τ)

T̃ 1/2
, ψ′(0) =

φ′(c0τ)

T̃ 1/2
−1

2

φ(c0τ)

T̃ 3/2
, ψ′′(0) =

φ′′(c0τ)

T̃ 1/2
−φ

′(c0τ)

T̃ 3/2
+

3

4

φ(c0τ)

T̃ 5/2
.

Therefore, again with the same notation as in Theorem 4.1,




L
(1)
1 [ψ] = −1

i

(
1

2
(f ′′(0))−1ψ′′(0)

)
=

1

2

(√
T̃ φ′′(c0τ) −

φ′(c0τ)

T̃ 1/2
+

3

4

φ(c0τ)

T̃ 3/2

)
,

L
(2)
1 [ψ] =

1

8i
f ′′(0)−2

(
g
(4)
0 (0)ψ(0) + 4g

(3)
0 (0)ψ′(0)

)
=

1

2

(
3ψ′(0) − 3

ψ(0)

T̃

)

=
1

2

(
3
φ′(c0τ)

T̃ 1/2
− 9

2

φ(c0τ)

T̃ 3/2

)
,

L
(3)
1 [ψ] = − 1

232!3!i
f ′′(0)−3(g2

0)
(6)(0)ψ(0) =

1

2

(
15

4

φ(c0τ)

T̃ 3/2

)
,

and L1 is given by

L1[ψ] = L
(1)
1 [ψ] + L

(2)
1 [ψ] + L

(3)
1 [ψ] =

1

2
√
T̃

(
T̃ φ′′(c0τ) + 2φ′(c0τ)

)

=
1

2
√
T̃

(
(s− c0τ + T̃ )φ(s)

)′′
⌊s=c0τ

,
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which yields∣∣∣J(τ) −
√

2πa
(
φ(c0τ) + a/2 ((s− c0τ + c0T )φ(s))

′′
⌊s=c0τ

)∣∣∣ ≤ Ca2
∑

α≤4

sup |φ(α)(x)|.

Hence,∣∣∣∣L̃[φ] −
(
φ(c0τ) +

ac0T

2

(
φ′′(c0τ) +

2φ′(c0τ)

c0T

))∣∣∣∣ ≤ Ca3/2
∑

α≤4

sup |φ(α)(t)|.



CHAPTER 5

Coherent Interferometric Strategy for

Photoacoustic Imaging

5.1. Introduction

In the previous chapters, we developed a variety of inversion approaches which
can be extended to the case of variable but known sound speed and can correct the
effect of attenuation on image reconstructions. However, the situation of interest
for medical applications is the case where the sound speed is perturbed by an
unknown clutter noise. This means that the speed of sound of the medium is
randomly fluctuating around a known value. In this situation, waves experience
partial coherence loss [73] and the designed algorithms assuming a constant sound
speed may fail.

Interferometric methods for imaging have been considered in [51, 120, 119].
Coherent interferometry (CINT) was introduced and analyzed in [39, 40]. While
classical methods back-propagate the recorded signals directly, CINT is an array
imaging method that first computes cross-correlations of the recorded signals over
appropriately chosen space-frequency windows and then back-propagates the local
cross-correlations. As shown in [39, 40, 41, 42], CINT deals well with partial loss
of coherence in cluttered environments.

In this chapter, combining the CINT method for imaging in clutter together
with a reconstruction approach for extended targets by Radon inversions, we pro-
pose CINT-Radon algorithms for photoacoustic imaging in the presence of random
fluctuations of the sound speed. We show that these new algorithms provide sta-
tistically stable photoacoustic images. We provide a detailed analysis for their
stability and resolution and numerically illustrate their performance.

The chapter is organized as follows. In Section 5.2 we formulate the inverse
problem of photoacoustics and describe the clutter noise considered for the sound
speed. In Section 5.3 we recall the reconstruction using the circular Radon trans-
form when the sound speed is constant and describe the original CINT algorithm.
We then propose a new CINT approach which consists in pre-processing the data
(in the same way as for the circular Radon inversion) before back-projecting their
correlations. Section 5.4 is devoted to the stability analysis of this new algorithm.
Section 5.5 adapts the results presented in Sections 5.3 and 5.4 to the case of a
bounded domain. We make a parallel between the filtered back-projection of the
circular Radon inversion in free space and of the line Radon inversion when we
have boundary conditions. Both algorithms end with a back-projection step. We
propose to back-project the correlations between the (pre-processed) data in the
same way as in Section 5.3. The chapter ends with a short discussion.
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5.2. Problem Formulation

In photoacoustics, a pressure wave p(x, t) is generated by an electromagnetic
energy deposit p0(x):





∂2p

∂t2
(x, t) − c(x)2∆p(x, t) = 0,

p(x, 0) = p0(x),
∂p

∂t
(x, 0) = 0.

The imaging problem is to reconstruct the initial value of the pressure p0 from
boundary measurements. Most of the reconstruction algorithms assume constant
(or known) sound speed. However, in real applications, the sound speed is not
perfectly known. It seems more relevant to consider that it fluctuates randomly
around a known distribution. For simplicity, we will consider the model with ran-
dom fluctuations around a constant:

(5.1)
1

c(x)2
=

1

c20

(
1 + σcµ

( x

xc

))
,

where µ is a normalized stationary random process, xc is the correlation length of
the fluctuations of c and σc is their relative standard deviation.

5.3. Imaging Algorithms

Consider the two-dimensional case. Define the Fourier transform by

(5.2) f̂(ω) =

∫

R

f(t)eiωt dt, f(t) =
1

2π

∫

R

f̂(ω)e−iωt dω.

In free space, it is possible to link the measurements of the pressure waves p(y, t)
on the boundary ∂Ω to the circular Radon transform of the initial condition p0(x)
as follows [70]:

RΩ[p0](y, r) = W [p](y, r), y ∈ ∂Ω, r ∈ R+,

where the circular Radon transform is defined by

RΩ[p0](y, r) :=

∫

S1

rp0(y + rθ)dσ(θ), y ∈ ∂Ω, r ∈ R+,

and

W [p](y, r) := 4r

∫ s

0

p(y, t/c0)√
s2 − t2

dt, y ∈ ∂Ω, r ∈ R+.

Here S1 denotes the unit circle. When Ω is the unit disk with center at 0 and radius
X0 = 1, in order to find p0 we can use the following exact inversion formula [108]:

(5.3) p0 =
1

4π2
R⋆

ΩBW [p],

where R⋆
Ω (the adjoint of the circular Radon transform) is a backprojection operator

given by

R⋆
Ω[f ](x) =

∫

∂Ω

f(y, |x−y|)dσ(y) =
1

2π

∫

∂Ω

∫

R

f̂(y, ω)e−iω|x−y|dωdσ(y), x ∈ Ω,

and B is a filter defined by

B[g](y, t) =

∫ 2

0

d2g

dr2
(y, r) ln(|r2 − t2|) dr, y ∈ ∂Ω.
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Note that (5.3) holds only in two dimensions. Moreover, in the Fourier domain, it
reads

p0(x) =
1

(2π)3

∫

∂Ω

∫

R

B̂W [p](y, ω)e−iω|x−y|dωdσ(y), x ∈ Ω.

Hence, we introduce the Kirchhoff-Radon migration imaging functional:

(5.4) IKRM(x) =
1

4π2
R⋆

ΩBW [p](x) =
1

2π

∫

∂Ω

∫

R

q̂(x, ω)e−iω|x−y|dωdσ(y),

where

(5.5) q =
1

4π2
BW [p]

is the pre-processed data.
A second imaging functional is to simply back-project the raw data [36]:

(5.6) IKM(x) = R⋆
Ω[p](x) =

1

2π

∫

∂Ω

∫

R

p̂(y, ω)e−iω|x−y|dωdσ(y), x ∈ Ω.

When the sound speed varies, the phases of the measured waves are shifted
according to the unknown clutter. To correct this effect, the idea of the original
CINT algorithm is to back-project the space and frequency correlations between
the data [40]:

(5.7)
ICI(x) =

1

(2π)2

∫

∂Ω

∫

|y2−y1|≤Xd

∫

R

∫

|ω2−ω1|≤Ωd

p̂(y1, ω1)e
−iω1|x−y1|

×p̂(y2, ω2)e
iω2|x−y2|dω1dω2dσ(y1)dσ(y2).

As will be shown later, ICI is quite efficient in localizing point sources but not in
finding the true value of p0. Moreover, when the support of the initial pressure p0

is extended, ICI may fail in recovering a good photoacoustic image. We propose
two things. First, in order to avoid numerical oscillatory effects, we replace the
sharp cut-offs in the integral by Gaussian convolutions. Then instead of taking
the correlations between the back-projected raw data, we pre-process them like
we do for the Radon inversion. We thus get the following CINT-Radon imaging
functional:
(5.8)

ICIR(x) =
1

(2π)2

∫

∂Ω

∫

∂Ω

∫

R

∫

R

e
− (ω2−ω1)2

2Ω2
d e

− |y1−y2|2

2X2
d

×q̂(y1, ω1)e
−iω1|x−y1|q̂(y2, ω2)e

iω2|x−y2|dω1dω2dσ(y1)dσ(y2),

where q is given by (5.5).
Note that, when Ωd → ∞ and Xd → ∞, then ICIR is the square of the

Kirchhoff-Radon migration functional:

ICIR(x) = |IKRM(x)|2.

The purpose of the CINT-Radon imaging functional is to keep in (5.8) the pairs
(y1, ω1) and (y2, ω2) for which the pre-processed data q̂(y1, ω1) and q̂(y2, ω2) are
coherent, and to remove the pairs that do not bring information.
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5.4. Stability and Resolution Analysis

5.4.1. Noise Model. We assume that the operating bandwidth of the sensors
is of the form [ω0 − B/2, ω0 + B/2] with B ≪ ω0 and consider the following noise
model. We assume that there is an error ν(x,y) between the theoretical travel time
τ0(x,y) with the background velocity c0 and the real travel time τ(x,y) where y
is a point of the surface of the observation disk ∂Ω and x is a point of the search
domain. Therefore, we have

τ(x,y) = τ0(x,y) + ν(x,y),

where ν(x,y) is a random process. This model can be used in the presence of
low-frequency (i.e., xc ≫ (2π)/ω0) cluttered noise µ(x) in (5.1) which induces
perturbations to travel times up to leading order:

ν(x,y) =
σc|y − x|

2c0

∫ 1

0

µ
(x + (y − x)s

xc

)
ds.

Assuming that the search window is relatively small we can assume that ν depends
only on the sensor position y and we can neglect the variations of ν with respect
to x. This is perfectly correct if we analyze the expectations and the variances of
the imaging functionals for a fixed test point x (then the search region is just one
point). This is still correct if we analyze the covariance of the imaging functional
for a pair of test points x and x′ that are close to each other (closer than the
correlation radius xc of the clutter noise). This model can also be used when the
positions of the sensors are poorly characterized.

We assume that the random process µ is a random process with Gaussian
statistics, mean zero, and covariance function:

E
[
σµ
( x

xc

)
σµ
(x′

xc

)]
= σ2

c exp
(
− |x − x′|2

2x2
c

)
.

Then ν is a random process with Gaussian statistics, mean zero, and covariance
function:

(5.9) E[ν(y)ν(y′)] = τ2
c ψ
( |y − y′|

xc

)
, ψ(r) =

1

r

∫ r

0

exp
(
− s2

2

)
ds,

where τ2
c =

√
2πσ2

c lX0/(4c
2
0) is the variance of the fluctuations of the travel times.

Here E stands for the expectation (mean value) and we have assumed that xc ≪ X0.
Using the Gaussian statistics it is straightforward to compute the moments

E[eiων(y)] = exp
(
− ω2τ2

c

2

)
,

E[eiων(y)−iω′ν(y′)] = exp
(
− (ω − ω′)2τ2

c

2
− ωω′τ2

c

(
1 − ψ

( |y − y′|
xc

)))
.

If we assume that ω0τc ≫ 1, then for ω, ω′ ∈ [ω0 −B/2, ω0 +B/2], we have

E[eiων(y)] ≃ exp
(
− ω2

0τ
2
c

2

)
,(5.10)

E[eiων(y)−iω′ν(y′)] ≃ exp
(
− (ω − ω′)2τ2

c

2
− |y − y′|2

2X2
c

)
,(5.11)

with X2
c = 3x2

c/(2ω
2
0τ

2
c ).
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5.4.2. Kirchhoff-Radon Migration. Recall that the Kirchhoff-Radon mi-
gration functional is

IKRM(x) =
1

2π

∫

∂Ω

∫

R

q̂(y, ω)e−iω|y−x|dωdσ(y) =

∫

∂Ω

q(y, |y − x|)dσ(y),(5.12)

where q = BW [p]/(4π2). The functional applied to the perfect pre-processed data

(5.13) q(0) =
1

4π2
BW [p(0)]

is
(5.14)

I(0)
KRM(x) =

1

2π

∫

∂Ω

∫

R

q̂(0)(y, ω)e−iω|y−x|dωdσ(y) =

∫

∂Ω

q(0)(y, |y − x|)dσ(y),

and it is equal to the initial condition p0(x).
We consider the random travel time model to describe the recorded data set:

(5.15) q(y, t) = q(0)(y, t − ν(y)).

We first consider the expectation of the functional. Using (5.10) we find that

E[IKRM(x)] = exp
(
− ω2

0τ
2
c

2

)
I(0)

KRM(x),

which shows that the mean functional undergoes a strong damping compared to

the unperturbed functional I(0)
KRM(x).

The statistics of the fluctuations can be characterized by the covariance

E[IKRM(x)IKRM(x′)] =
1

(2π)2

∫∫

∂Ω×∂Ω

q̂(0)(y1, ω1)q̂(0)(y2, ω2)e
−iω1|y1−x|eiω2|y2−x′|

× exp
(
− (ω1 − ω2)

2τ2
c

2
− |y1 − y2|2

2X2
c

)
dω1dσ(y1)dω2dσ(y2).

In the regime in which τ−1
c > B and Xc > X0 we find that the amplitude of the

fluctuations is of the order of

Var
(
IKRM(x)

)
∼ (I(0)

KRM(x))2.

Here, Var stands for the variance. In the regime in which τ−1
c < B and Xc < X0

we find that

Var
(
IKRM(x)

)
∼ (I(0)

KRM(x))2
( 1

Bτc

)(Xc

X0

)
.

Define the signal-to-noise ratio (SNR) by

(5.16) SNRKRM =
E[IKRM(x)]

Var(IKRM(x))1/2
.

The following holds.

Proposition 5.4.1. We have

SNRKRM ∼ exp
(
− ω2

0τ
2
c

2

)(
1 +Bτc

) 1
2
(
1 +

X0

Xc

) 1
2

.

Note that SNRKRM is very small in this regime (ω0τc ≫ 1).
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5.4.3. CINT-Radon. We consider the random travel time model (5.15). We
first note that coherence in (5.8) is maintained as long as exp(iω2ν(y2)− iω1ν(y1))
is close to one. From (5.11) this requires that |ω1 − ω2| < τ−1

c and |y1 − y2| < Xc.
We can therefore anticipate that the cut-off parametersXd and Ωd should be related
to the coherence parameters Xc and τ−1

c . In the following we study the role of the
cut-off parametersXd and Ωd for resolution and stability. For doing so, we compute
the expectation and variance of the imaging functional ICIR.

We have

E[ICIR(x)] =
1

(2π)2

∫∫
dω1dω2

∫∫

∂Ω×∂Ω

dσ(y1)dσ(y2)q̂
(0)(y1, ω1)q̂(0)(y2, ω2)

×e−iω1|y1−x|eiω2|y2−x| exp
(
− (ω1 − ω2)

2

2
(τ2

c +
1

Ω2
d

) − |y1 − y2|2
2

(
1

X2
d

+
1

X2
c

)
)
,

where q(0) is the perfect pre-processed data defined by (5.13). Using the change of
variables

ω1 = ωa +
ha

2
, ω2 = ωa − ha

2
, y1 = Ya +

ya

2
, y2 = Ya − ya

2
,

the expectation of the CINT-Radon functional can be written as

E[ICIR(x)] =
1

(2π)2

∫

∂Ω

dσ(Ya)

∫
dha

∫

Y⊥
a

dσ(ya)Q̂(Ya, ha,ya;x)

× exp
(
− h2

a

2
(τ2

c +
1

Ω2
d

) − |ya|2
2

(
1

X2
d

+
1

X2
c

)
)
,(5.17)

where

Y⊥
a =

{
ya ∈ R2 , Ya − ya

2
∈ ∂Ω and Ya +

ya

2
∈ ∂Ω

}

and

Q̂(Ya, ha,ya;x) =

∫
dωaq̂

(0)(Ya +
ya

2
, ωa +

ha

2
)q̂(0)(Ya − ya

2
, ωa − ha

2
)

×e−i(ωa+ ha
2 )|Ya+ ya

2 −x|ei(ωa−ha
2 )|Ya− ya

2 −x|.

We assume that Xd is much smaller than X0, so that y1 − y2 is approximately
orthogonal to (y1 + y2)/2 when y1,y2 ∈ ∂Ω and |y1 − y2| ≤ Xd. Then

Y⊥
a = {ya ∈ R2 , Ya · ya = 0},

and

Q̂(Ya, ha,ya;x) ≃
∫
dωaq̂

(0)(Ya +
ya

2
, ωa +

ha

2
)q̂(0)(Ya − ya

2
, ωa − ha

2
)

×eiωa
x−Ya
|x−Ya| ·ya−iha|x−Ya|

≃ 1

(2π)2

∫
dωa

∫
dτa

∫

Y⊥
a

dσ(κa)Wq(Ya, ωa; κa, τa)

×ei(ωa
x−Ya
|x−Ya|−κa)·ya+(τa−|x−Ya|)ha ,
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where Wq is the Wigner transform of q(0):

Wq(Ya, ωa; κa, τa) =

∫
dha

∫

Y⊥
a

dσ(ya)q̂(0)(Ya +
ya

2
, ωa +

ha

2
)q̂(0)(Ya − ya

2
, ωa − ha

2
)

×eiκa·ya−ihaτa .(5.18)

Therefore, we get

E[ICIR(x)] =
1

(2π)3( 1
X2

d

+ 1
X2

c
)

1
2 (τ2

c + 1
Ω2

d

)
1
2

∫

∂Ω

dσ(Ya)

∫
dωa

∫

Y⊥
a

dσ(κa)

∫
dτa

×Wq(Ya, ωa; κa, τa)

× exp
(
−
∣∣κa − ωa

(
x−Ya

|x−Ya| − ( Ya

|Ya| ·
x−Ya

|x−Ya| )
Ya

|Ya|
)∣∣2

2( 1
X2

d

+ 1
X2

c
)

− (τa − |Ya − x|)2
2(τ2

c + 1
Ω2

d

)

)
.

Since, for any s,

Wq(Ya, ωa; κa + sYa, τa) = Wq(Ya, ωa; κa, τa),

we obtain the following result.

Proposition 5.4.2. We have

E[ICIR(x)] =
1

(2π)3( 1
X2

d

+ 1
X2

c
)

1
2 (τ2

c + 1
Ω2

d

)
1
2

∫

∂Ω

dσ(Ya)

∫
dωa

∫

Y⊥
a

dσ(κa)

∫
dτa

×Wq(Ya, ωa; κa, τa) exp
(
−
∣∣κa − ωa

x−Ya

|x−Ya|
∣∣2

2( 1
X2

d

+ 1
X2

c
)

− (τa − |Ya − x|)2
2(τ2

c + 1
Ω2

d

)

)
.(5.19)

Formula (5.19) shows that the coherent part (i.e., the expectation) of the
CINT-Radon functional is a smoothed version of the Wigner transform of the pre-
processed data. It selects a band of directions and time delays that are centered
around the direction and the time delay between the search point x and the point
Ya of the sensor array.

We observe that:

- if Ωd > τ−1
c and Xd > Xc then the cut-off parameters Ωd and Xd have no

influence on the coherent part of the functional which does not depend on
(Ωd, Xd).

- if Ωd < τ−1
c and Xd < Xc then CINT has an influence and reduces the

resolution of the coherent part of the functional (it enhances the smoothing
of the Wigner transform).

We next compute the covariance of the CINT-Radon functional. If

ω1 = ωa +
ha

2
, ω2 = ωa − ha

2
, ω3 = ωb +

hb

2
, ω4 = ωb −

hb

2
,

y1 = Ya +
ya

2
, y2 = Ya − ya

2
, y3 = Yb +

yb

2
, y4 = Yb −

yb

2
,

then

E
[
eiω1ν(y1)−iω2ν(y2)eiω3ν(y3)−iω4ν(y4)

]
≃ exp

(
− (ha − hb)

2τ2
c

2
− |ya − yb|2

2X2
c

)
,
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and therefore,

E[ICIR(x)ICIR(x′)] =
1

(2π)4

∫∫∫
dσ(Ya)dhadσ(ya)dσ(Yb)dhbdσ(yb)

×Q̂(Ya, ha,ya;x)Q̂(Yb, hb,yb;x′)

× exp
(
− (h2

a + h2
b)

2Ω2
d

− (|ya|2 + |yb|2)
2X2

d

)

× exp
(
− (ha − hb)

2τ2
c

2
− |ya − yb|2

2X2
c

)
.

Using (5.17) we can see that, if Ωd < τ−1
c and Xd < Xc, then we have

E[ICIR(x)] =
1

(2π)2

∫∫∫
dσ(Ya)dhadσ(ya)Q̂(Ya, ha,ya;x) exp

(
− h2

a

2Ω2
d

− |ya|2
2X2

d

)
.

Using

1 − exp
(
− (ha − hb)

2τ2
c

2
− |ya − yb|2

2X2
c

)
≃ (ha − hb)

2τ2
c

2
+

|ya − yb|2
2X2

c

,

it follows that

Var
(
ICIR(x)

)
= E[|ICIR(x)|2] − |E[ICIR(x)]|2 ∼

(
(Ωdτc)

2 +
(Xd

Xc

)2)∣∣E
[
ICIR(x)

]∣∣2.

Therefore, the following proposition, where the SNR is defined analogously to
(5.16), holds.

Proposition 5.4.3. When Ωd < τ−1
c and Xd < Xc, we have

(5.20) SNRCIR ∼ 1√
(Ωdτc)2 +

(
Xd

Xc

)2 .

Note that the SNR is greater than one when Ωd < τ−1
c and Xd < Xc.

To conclude, we notice that the values of the parametersXd ≃ Xc and Ωd ≃ τ−1
c

achieve a good trade-off between resolution and stability. When taking smaller
values Ωd < τ−1

c and Xd < Xc one increases the signal-to-noise ratio but one
also reduces the resolution. In practice, these parameters are difficult to estimate
directly from the data, so it is better to determine them adaptively, by optimizing
over Ωd and Xd the quality of the resulting image. This is exactly what is done in
adaptive CINT [41].

5.4.4. Two Particular Cases. We now discuss the following two particular
cases:

(i) If we take Xd → 0 then the CINT functional has the form
(5.21)

ICIR(x) =
1

(2π)2

∫

R

∫

R

dω1dω2

∫

∂Ω

dσ(y)e
− (ω1−ω2)2

2Ω2
d q̂(y, ω1)e

−iω1|y−x|q̂(y, ω2)e
iω2|y−x|.

This case could correspond to the situation in which Xc is very small,
which means that the signals recorded by different sensors are so noisy
that they are independent from each other.
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If Ωd > B, then (5.21) is equivalent to the incoherent matched field func-
tional

ICIR(x) ≃
∫

∂Ω

dσ(Ya)
∣∣q(Ya, |Ya − x|)

∣∣2.

If Ωd ≤ B (or, more generally, for any Ωd), then (5.21) is a smoothed (in
time) version of this functional given by

ICIR(x) =
Ωd√
2π

∫

∂Ω

dσ(Ya)

∫

R

dt
∣∣q(Ya, |Ya − x| + t)

∣∣2 exp
(
− Ω2

dt
2

2

)
.

(ii) If we take Xd → ∞ then the CINT functional has the form

ICIR(x) =
1

(2π)2

∫

R

∫

R

dω1dω2

∫∫

∂Ω×∂Ω

dσ(y1)dσ(y2)e
− (ω1−ω2)2

2Ω2
d

×q̂(y1, ω1)e
−iω1|y1−x|q̂(y2, ω2)e

iω2|y2−x|.(5.22)

This case could correspond to the situation in which Xc is very large,
which means that the signals recorded by different sensors are strongly
correlated with one another. This is a typical weak noise case.
If Ωd > B, then (5.21) is equivalent to the coherent matched field function
(or square KM functional):

ICIR(x) ≃
∣∣∣
∫

∂Ω

dσ(Ya)q(Ya, |Ya − x|)
∣∣∣
2

.

If Ωd ≤ B (or, more generally, for any Ωd), then (5.22) is a smoothed (in
time) version of this functional:

ICIR(x) =
Ωd√
2π

∫

R

dt
∣∣∣
∫

∂Ω

dσ(Ya)q(Ya, |Ya − x| + t)
∣∣∣
2

exp
(
− Ω2

dt
2

2

)
.

5.5. CINT-Radon Algorithm in a Bounded Domain

When considering photoacoustics in a bounded domain, we developed in [9]
an approach involving the line Radon transform of the initial condition. We will
consider homogeneous Dirichlet conditions:





∂2p

∂t2
(x, t) − c(x)2∆p(x, t) = 0, x ∈ Ω,

p(x, 0) = p0(x),
∂p

∂t
(x, 0) = 0, x ∈ Ω,

p(y, t) = 0, y ∈ ∂Ω.

Here, Ω is not necessarily a disk. Let n denote the outward normal to ∂Ω. When
c(x) = c0, we can express the line Radon transform of the initial condition p0(x)
in terms of the Neumann measurements ∂np(y, t) = n(y) ·∇p(y, t) on ∂Ω× [0, T ]:

R[p0](θ, s) = W [∂np](θ, s),

where the line Radon transform is defined by

R[p0](θ, r) :=

∫

R

p0(rθ + sθ⊥)ds, θ ∈ S1, r ∈ R,

and

W [g](θ, s) :=

∫ T

0

∫

∂Ω

g(x, t)H

(
x · θ
c0

+ t− s

)
dσ(x)dt, θ ∈ S1, s ∈ R.
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Here H denotes the Heaviside function. We then invert the Radon transform using
the back-projection algorithm

p0 = R⋆BW [∂np],

where R⋆ is the adjoint Radon transform:

R⋆[f ](x) =
1

2π

∫

S1

f(θ,x ·θ)dσ(θ) =
1

(2π)2

∫

S1

∫

R

f̂(θ, ω)e−iωx·θdωdσ(θ), x ∈ Ω,

and B is a ramp filter

B[g](θ, s) =
1

4π

∫

R

|ω|ĝ(θ, ω)e−iωsdω, θ ∈ S1.

Here, the hat stands for the Fourier transform (5.2) in the second (shift) variable.
In the Fourier domain, the inversion reads

p0(x) =
1

(2π)2

∫

S1

∫

R

̂BW [∂np](θ, ω)e−iωx·θdωdσ(θ), x ∈ Ω.

Therefore, a natural idea to extend the CINT imaging to bounded media is to
consider the imaging functional:

ICIR(x) :=
1

(2π)4

∫

S1

∫

S1

∫

R

∫

R

e
− (ω2−ω1)2

2Ω2
d e

− |θ2−θ1|2

2Θ2
d

× ̂BW [∂np](θ1, ω1)e
−iω1x·θ1 ̂BW [∂np](θ2, ω2)e

iω2x·θ2dω1dω2dσ(θ1)dσ(θ2).

The stability and resolution analysis in Section 5.4 applies immediately to ICIR.

5.6. Numerical Illustrations

In this section we present numerical experiments to illustrate the performance
of the CINT-Radon algorithms and to compare them with the Kirchhoff-Radon.
The wave equation (direct problem) is solved via a Lie-splitting method. It can be
rewritten as a first order PDE:

∂tP = AP +BP,

where P =


 p

∂p/∂t


, A =


 0 1

c20∆ 0


, and B =


 0 0

(c2 − c20
)
∆ 0


 . The opera-

tor A is solved exactly in the Fourier space while the operator B is treated explicitly
with a finite difference method and a PML formulation in the case of free space.
The inverse circular Radon formula is discretized as in [69].

In Figure 5.1, we consider 6 point sources which emit pulses of the form

f(t) = cos(2πω0t)tδω exp(−πt2δ2ω), with δω = 10, ω0 = 3δω.

We use the random velocity c1, visualized in Figure 5.1. Figure 5.2 presents the
pressure p(y, t) computed without and with noise, and the reconstruction of the
source locations obtained by the Kirchhoff migration functional IKM. Figure 5.2
illustrates that in the presence of noise, IKM becomes very instable and fails to
really localize the targets. The images obtained by ICI are plotted in Figure 5.3
and compared to those obtained by IKM. Note that ICI presents better stability
properties when Xd and Ωd become small as predicted by the theory.

We now consider the case of extended targets and test the imaging functional
ICIR. We use the random velocity c2 shown in Figure 5.1. Reconstructions of the
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Figure 5.1. Left: Positions of the sensors; Center: random veloc-
ity c1 with high frequencies; Right: random velocity c2 with low
frequencies.
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Figure 5.2. Test1: measured data p(y, t) and source localization
using Kirchhoff migration IKM with (right) and without (left)
noise.
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Figure 5.3. Test1: source localization using the standard CINT
functional ICI, with parameters Xd and Ωd given by Xd =
0.25, 0.5, 1 (from left to right) and Ωd = 25, 50, 100 (from top to
bottom).
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initial pressure obtained by IKRM are plotted in Figures 5.4 and 5.6. Figures 5.4 and
5.6 clearly highlight the fact that the noise significantly affects the reconstruction.
In fact, the whole line is not found.

On the other hand, plots of ICIR presented in Figures 5.5 and 5.7 provide more
stable reconstructions of p0(x). However, note that choosing small values of the
parameters Xd and Ωd can affect the reconstruction in the sense that ICIR becomes
very different from the expected value, p2

0, when Xd and Ωd tend to zero. This is a
manifestation of the trade-off between resolution and stability discussed in Section
5.4.

In the case of a bounded domain, we consider the low frequency cluttered
speed of Figure 5.1, on a square medium, with homogeneous Dirichlet conditions.
We illustrate the performance of ICIR on the Shepp-Logan phantom. Figure 5.8
shows the reconstruction using the inverse Radon transform algorithm. We notice
that the outer interface appears twice. In fact, ICIR can correct this effect. Figure
5.9 shows results for different values of Θd and Ωd. The imaging functional ICIR

can get the outer interface correctly but seems to focus too much on it. To check
if ICIR reconstructs the inside of the target with the good contrast, we show in
Figure 5.10 the same images with a colormap saturated at 80% of their maximum
values.
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Figure 5.4. Test2: measured data p(y, t) and reconstruction of
p0 using IKRM with (right) and without (left) noise.

5.7. Conclusion

In this chapter we have introduced new CINT-Radon type imaging functionals
in order to correct the effect on photoacoustic images of random fluctuations of
the background sound speed around a known constant value. We have provided a
stability and resolution analysis of the proposed algorithms and found the values
of the cut-off parameters which achieve a good trade-off between resolution and
stability. We have presented numerical reconstructions of both small and extended
targets and compared our algorithms with Kirchhoff-Radon migration functionals.
The CINT-Radon imaging functionals give better reconstruction than Kirchhoff-
Radon migration, specially for extended targets in the presence of low-frequency
medium noise.
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Figure 5.5. Test2: source localization using ICIR, with Xd and
Ωd given byXd = 0.5, 1, 2 (from left to right) and Ωd = 50, 100, 200
(from top to bottom).
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Figure 5.6. Test3: measured data p(y, t) and reconstruction of
p0 using IKRM with (right) and without (left) noise.
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Figure 5.7. Test3 : source localization using ICIR, with Xd and
Ωd given byXd = 0.5, 1, 2 (from left to right) and Ωd = 50, 100, 200
(from top to bottom).

Figure 5.8. Reconstruction of an extended target using line
Radon transform in the case of imposed boundary conditions.
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Figure 5.9. Extended target reconstruction with boundary con-
ditions using ICIR, with Θd and Ωd given by Θd = 1, 3, 6 (from top
to bottom) and Ωd = 50, 100, 200 (from left to right).
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Figure 5.10. Extended target reconstruction with boundary con-
ditions using ICIR, with Θd and Ωd given by Θd = 1, 3, 6 (from top
to bottom) and Ωd = 50, 100, 200 (from left to right). Colormaps
are saturated at 80% of the maximum values of the images.



CHAPTER 6

Inverse Transport Theory of Photoacoustics

6.1. Introduction

Photoacoustic imaging is a recent medical imaging technique combining the
large contrast between healthy and un-healthy tissues of their optical parameters
with the high spatial resolution of acoustic (ultrasonic) waves. Electromagnetic
radiation, sent through a domain of interest, generates some heating and a resulting
thermal expansion of the underlying tissues. The mechanical displacement of the
tissues generates acoustic waves, which then propagate through the medium and
are recorded by an array of detectors (ultrasound transducers). The photoacoustic
effect is now being actively investigated for its promising applications in medical
imaging.

In an idealized setting revisited below, the electromagnetic source is a very
short pulse that propagates through the domain at a scale faster than that of
the acoustic waves. The measured acoustic signals may then be seen as being
emitted by unknown initial conditions. A first step in the inversion thus consists
in reconstructing this initial condition by solving an inverse source problem for a
wave equation. This inversion is relatively simple when the sound speed is constant
and full measurements are available. It becomes much more challenging when only
partial measurements are available and the sound speed is not constant; see, e.g.,
Chapters 1 and 3.

A second step consists of analyzing the initial condition reconstructed in the
first step and extracting information about the optical coefficients of the domain
of interest. The second step is much less studied. The energy deposited by the
radiation is given by the product of σa(x), the attenuation in the tissue and of
I(x), the radiation intensity. The question is therefore what information on the
medium may be extracted from σaI. The product can be plotted as a proxy for
σa when I is more or less uniform. This, however, generates image distortions as
has been reported, e.g., in [101]. The extraction of, e.g., σa from σaI remains an
essentially unsolved problem.

Two different regimes of radiation propagation should then be considered. In
thermoacoustic tomography (TAT), low frequency (radio-frequency) waves with
wavelengths much larger than the domain of interest, are being used. We do not
consider this modality here. Rather, we assume that high frequency radiation is
generated in the near infra red (NIR) spectrum. NIR photons have the advantage
that they propagate over fairly large distances before being absorbed. Moreover,
their absorption properties have a very large contrast between healthy and cancer-
ous tissues. In this regime, I(x) may be interpreted as a spatial density of photons
propagating in the domain of interest. The density of photons is then modeled

111
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by a transport equation that accounts for photon propagation, absorption, and
scattering; see (6.11) below.

This chapter concerns the reconstruction of the optical parameters in a steady-
state transport equation from knowledge of H(x) := σa(x)I(x). The derivation of
the transport equation given in (6.11) below is addressed in section 6.2. We are
concerned here with the setting of measurements of H(x) for different radiation
patterns. Our most general measurement operator A is then the operator which to
arbitrary radiation patterns at the domain’s boundary maps the deposited energy
H(x).

We analyze the reconstruction of the absorption and scattering properties of
the photons from knowledge of A. The main tool used in the analysis is the decom-
position of A into singular components, in a spirit very similar to what was done,
e.g., in [26, 25, 54] (see also [24]) in the presence of boundary measurements rather
than internal measurements. The most singular component is related to the ballis-
tic photons. We show that the analysis of that component allows us to reconstruct
the attenuation coefficient σa and the spatial component σs of the scattering coeffi-
cient. The anisotropic behavior of scattering is partially determined by the second
most singular term in A, which accounts for photons having scattered only once in
the domain. Although the full phase function of the scattering coefficient cannot
be reconstructed with the techniques described in this chapter, we show that the
anisotropy coefficient g(x) that appears in the classical Henyey-Greenstein phase
function is uniquely determined by the measurements in spatial dimensions n = 2
and n = 3. Moreover, all the parameters that can be reconstructed are obtained
with Hölder-type stability. We present the stability results in detail.

When scattering is very large, then radiation is best modeled by a diffusion
equation characterized by two unknown coefficients, the diffusion coefficient D(x)
and the attenuation coefficient σa(x). This regime is briefly mentioned in section
6.2.8.

The rest of the chapter is structured as follows. Section 6.2 is devoted to the
derivation of the stationary inverse transport problem starting from the transient
equation for the short electromagnetic pulse. The main uniqueness and stability
results are also presented in detail in this section. The derivation of the unique-
ness and stability results is postponed to the technical sections 6.3 and 6.4. The
former section is devoted to the decomposition of the albedo operator into singular
components. Useful results on the transport equation are also recalled. The latter
section presents in detail the proofs of the stability results given in section 6.2.

6.2. Derivation and Main Results

6.2.1. Transport and Inverse Wave Problem. The propagation of radia-
tion is modeled by the following radiative transfer equation

(6.1)
1

c

∂

∂t
u(t, x, v) + Tu(t, x, v) = S(t, x, v), t ∈ R, x ∈ Rn, v ∈ Sn−1.

We assume here that S(t, x, v) is compactly supported in t ≥ 0 and in x outside of
a bounded domain of interest X we wish to probe. The domain X is assumed to
be an open subset of Rn with C1 boundary. For the sake of simplicity, X is also
assumed to be convex although all uniqueness and stability results in this chapter
remain valid when X is not convex. Here, c is light speed, Sn−1 is the unit sphere
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in Rn and T is the transport operator defined as

(6.2) Tu = v · ∇xu+ σ(x, v)u −
∫

Sn−1

k(x, v′, v)u(t, x, v′)dv′,

where σ(x, v) is the total attenuation coefficient and k(x, v′, v) is the scattering
coefficient. Both coefficients are assumed to be non-negative and bounded (by a
constant M <∞) throughout the chapter. We define

(6.3) σs(x, v) =

∫

Sn−1

k(x, v, v′)dv′, σa(x, v) = σ(x, v) − σs(x, v).

We also refer to σs as a scattering coefficient and define σa as the intrinsic atten-
uation coefficient. We assume that for (almost) all (x, v) ∈ Rn × Sn−1, we have
σa(x, v) ≥ σ0 > 0. We also assume that k(x, v, v′) = 0 for (almost) all x 6∈ X .

The optical coefficients k(x, v′, v) and σ(x, v) are the unknown coefficients in-
side X that we would like to reconstruct by probing the domain X by radiation
modeled by S(t, x, v). In photo-acoustics, the emitted radiation generates some
heating inside the domain X . Heating then causes some dilation, which mechani-
cally induces acoustic waves. Such acoustic waves are measured at the boundary
of the domain X . After time reversion, the latter measurements allow us to in-
fer the intensity of the source of heating. This gives us internal measurements of
the solution u of the transport equation (6.1). The objective of this chapter is to
understand which parts of the optical parameters may be reconstructed from such
information and with which stability.

Before doing so, we need an accurate description of the propagation of the
acoustic waves generated by the radiative heating. The proper model for the acous-
tic pressure is given by the following wave equation (see Chapter 1)

(6.4) �p(t, x) = β
∂

∂t
H(t, x),

where � is the d’Alembertian defined as

(6.5) �p =
1

c2s(x)

∂2p

∂t2
− ∆p,

with cs the sound speed, where β is a coupling coefficient assumed to be constant
and known, and where H(t, x) is the thermal energy deposited by the radiation
given by

(6.6) H(t, x) =

∫

Sn−1

σa(x, v′)u(t, x, v′)dv′.

Not surprisingly, the amount of heating generated by radiation is proportional to
the amount of radiation u and to the rate of (intrinsic) absorption σa.

As it stands, the problem of the reconstruction of the source term H(t, x)
inside X from measurements of p(t, x) on the boundary ∂X is ill-posed, because H
is (n+1)−dimensional whereas information on (t, x) ∈ R+×∂X is n−dimensional.
What allows us to simplify the inverse acoustic problem is the difference of time
scales between the sound speed cs and the light speed c.

To simplify the analysis, we assume that cs is constant and rescale time so that
cs = 1. Then c in (6.1) is replaced by c

cs
, which in water is of order 2.3 108/1.5 103 ≈

1.5 105 := 1
ε ≫ 1. The transport scale is therefore considerably faster than the

acoustic scale. As a consequence, when the radiation source term S(t, x, v) is sup-
ported on a scale much faster than the acoustic scale, then u is also supported on
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a scale much faster than the acoustic scale and as a result H(t, x) can be approxi-
mated by a source term supported at t = 0.

More specifically, let us assume that the source of radiation is defined at the
scale ε = cs

c so that S is replaced by

(6.7) Sε(t, x, v) =
1

ε
ρ
( t
ε

)
S0(x, v),

where ρ ≥ 0 is a function compactly supported in t ∈ (0,∞) such that
∫

R+
ρ(t)dt =

1. The transport solution then solves

1

c

∂

∂t
uε(t, x, v) + Tuε(t, x, v) = Sε(t, x, v).

With cs = 1, we verify that uε is given by

(6.8) uε(t, x, v) =
1

ε
u
( t
ε
, x, v

)
,

where u solves (6.1) with S(t, x, v) = ρ(t)S0(x, v). Because σa ≥ σ0 > 0, we verify
that u decays exponentially in time. This shows that uε lives at the time scale ε so
that Hε(t, x) =

∫
Sn−1 σa(x, v)uε(t, x, v)dv is also primarily supported in the vicinity

of t = 0.
Let us formally derive the equation satisfied by pε when ε → 0. Let ϕ(t, x) be

a test function and define (·, ·) as the standard inner product on R × Rn. Then we
find that

(�pε, ϕ) = β(
∂Hε

∂t
, ϕ) = −β(Hε,

∂ϕ

∂t
) = −β(H,

∂ϕ

∂t
(εt))),

where H(t, x) =
∫

Sn−1 σa(x, v)u(t, x, v)dv with u defined in (6.8) and where we have
used the change of variables t→ εt. The latter term is therefore equal to

−β(H,
∂ϕ

∂t
(0)) = −β ∂ϕ

∂t
(0)

∫

R×Sn−1

σa(x, v)u(t, x, v)dtdv,

up to a small term for ϕ sufficiently smooth. We thus find that pε converges weakly
as ε→ 0 to the solution p of the following wave equation

(6.9)

�p = 0 t > 0, x ∈ Rn

p(0, x) = H0(x) :=

∫

R×Sn−1

σa(x, v)u(t, x, v)dtdv, x ∈ Rn

∂p

∂t
(0, x) = 0 x ∈ Rn.

The inverse problem for the wave equation is now well-posed. The objective is
to reconstruct H0(x) for x ∈ X from measurements of p(t, x) for t ≥ 0 and x ∈ ∂X .
Such an inverse problem has been extensively studied in the literature. We refer
the reader to, e.g., [123] for a recent inversion with (known) variable sound speed.

In this chapter, we assume that H0(x) has been reconstructed accurately as a
functional of the radiation source S0(x, v). Our objective is to understand which
parts of the optical parameters σ(x, v) and k(x, v′, v) can be reconstructed from
knowledge of H0(x) for a given set of radiations S0(x, v). Note that we will allow
ourselves to generate many such S0(x, v) and thus consider a multi-measurement
setting.
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The time average u(x, v) :=
∫
u(t, x, v)dt satisfies a closed-form steady state

transport equation given by

(6.10) Tu = S0(x, v), (x, v) ∈ Rn × Sn−1,

as can be seen by averaging (6.1) in time since
∫
ρ(t)dt = 1.

6.2.2. Inverse Transport with Internal Measurements. Since S0(x, v)
is assumed to be supported outside of the domain X and scattering k(x, v′, v) = 0
outside of X , the above transport equation may be replaced by a boundary value
problem of the form
(6.11)

v · ∇xu+ σ(x, v)u −
∫

Sn−1

k(x, v′, v)u(x, v′)dv′ = 0, (x, v) ∈ X × Sn−1

u(x, v) = φ(x, v) (x, v) ∈ Γ−,

where the sets of outgoing and incoming boundary radiations are given by

(6.12) Γ± = {(x, v) ∈ ∂X × Sn−1, ±v · ν(x) > 0},
where ν(x) is the outward normal to X at x ∈ ∂X and φ(x, v) is an appropriate
set of incoming radiation conditions obtained by solving v · ∇xu + σa(x, v)u = S0

outside of X assuming that σa(x, v) is known outside of X .
We are now ready to state the inverse transport problem of interest in this

chapter. It is well known that (6.11) admits a unique solution in L1(X × Sn−1)
when φ(x, v) ∈ L1(Γ−, dξ), where dξ = |v·ν(x)|dµ(x)dv with dµ the surface measure
on ∂X . We thus define the albedo operator as

(6.13)
A : L1(Γ−, dξ) → L1(X)

φ(x, v) 7→ Aφ(x) = H(x) :=

∫

Sn−1

σa(x, v)u(x, v)dv.

The inverse transport problem with angularly averaged internal measurements thus
consists of understanding what can be reconstructed from the optical parameters
σ(x, v) and k(x, v′, v) from complete or partial knowledge of the albedo operator
A. We also wish to understand the stability of such reconstructions.

6.2.3. Albedo Operator and Decomposition. The inverse transport prob-
lem and its stability properties are solved by looking at a decomposition of the
albedo operator into singular components. Let α(x, x′, v′) be the Schwartz kernel
of the albedo operator A, i.e., the distribution such that

(6.14) Aφ(x) =

∫

Γ−

α(x, x′, v′)φ(x′, v′)dµ(x′)dv′.

The kernel α(x, x′, v′) corresponds to measurements of H(x) at x ∈ X for a radia-
tion condition concentrated at x′ ∈ ∂X and propagating with direction v′ ∈ Sn−1.
Such a kernel can thus be obtained as a limit of physical experiments with sources
concentrated in the vicinity of (x′, v′) and detectors concentrated in the vicinity of
x.

The kernel α(x, x′, v′) accounts for radiation propagation inside X , including
all orders of scattering of the radiation with the underlying structure. It turns out
that we can extract from α(x, x′, v′) singular components that are not affected by
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multiple scattering. Such singular components provide useful information on the
optical coefficients. Let us define the ballistic part of transport as the solution of

(6.15) v · ∇xu0 + σ(x, v)u0 = 0, in X × Sn−1, u0 = φ, on Γ−.

Then for m ≥ 1, we define iteratively
(6.16)

v·∇xum+σ(x, v)um =

∫
k(x, v′, v)um−1(x, v

′)dv′, in X×Sn−1, um = 0, on Γ−.

This allows us to decompose the albedo operator as

(6.17) A = A0 +A1 + G2,

where Ak for k = 0, 1 are defined as A in (6.13) with u replaced by uk and where
G2 is defined as A − A0 − A1. Thus, A0 is the contribution in A of particles that
have not scattered at all with the underlying structure while A1 is the contribution
of particles that have scattered exactly once.

Let αk for k = 0, 1 be the Schwartz kernel of Ak and Γ2 the Schwartz kernel
of G2 using the same convention as in (6.14). We define τ±(x, v) for x ∈ X and
v ∈ Sn−1 as τ±(x, v) = inf{s ∈ R+|x ± sv 6∈ X}. Thus, τ±(x, v) indicates the
time of escape from X of a particle at x moving in direction ±v. On ∂X , we also
define δ{x}(y) as the distribution such that

∫
∂X

δ{x}(y)φ(y)dµ(y) = φ(x) for any
continuous function φ on ∂X . Finally, we define the following terms that quantify
attenuation. We define the function E(x0, x1) on X × ∂X as

(6.18) E(x0, x1) = exp
(
−
∫ |x0−x1|

0

σ
(
x0 − s

x0 − x1

|x0 − x1|
,
x0 − x1

|x0 − x1|
)
ds
)
.

We still denote by E the function defined above for x1 in X . Then by induction on
m, we define

(6.19) E(x1, . . . , xm) = E(x1, . . . , xm−1)E(xm−1, xm).

The latter term measures the attenuation along the broken path [x1, . . . , xm].
Then we have the following result.

Theorem 6.2.1. Let α0, α1, and Γ2 be the Schwartz kernels defined as above.
Then we have:
(6.20)

α0(x, x
′, v′) = σa(x, v′) exp

(
−
∫ τ−(x,v′)

0

σ(x− sv′, v′)ds
)
δ{x−τ−(x,v′)v′}(x

′)

α1(x, x
′, v′) = |ν(x′) · v′|

∫ τ+(x′,v′)

0

σa(x, v)
E(x, x′ + t′v′, x′)

|x − x′ − t′v′|n−1
k(x′ + t′v′, v′, v)|

v= x−x′−t′v′

|x−x′−t′v′|

dt′.

Moreover, we have the bound
(6.21)

Γ2(x, x
′, v′)

|ν(x′) · v′| ∈ L∞(X × Γ−) when n = 2

|x− x′ − ((x − x′) · v′)v′|n−3Γ2(x, x
′, v′)

|ν(x′) · v′| ∈ L∞(X × Γ−) when n ≥ 3.
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This theorem will be proved in section 6.3. The results show that α0 is more
singular than α1 and Γ2. It turns out that α1 is also more singular than Γ2 in the
sense that it is asymptotically much larger than Γ2 in the vicinity of the support of
the ballistic part α0. That this is the case is the object of the following result (see
also Lemma 6.3.2 (6.48) and (6.50) for “m = 1”). For any topological space Y , we
denote by Cb(Y ) the set of the bounded continuous functions from Y to R.

Theorem 6.2.2. Let us assume that σ ∈ Cb(X × Sn−1) and that k ∈ Cb(X ×
Sn−1 × Sn−1). For (x′, v′) ∈ Γ−, let x = x′ + t′0v

′ for some t′0 ∈ (0, τ+(x′, v′)).
Let v′⊥ ∈ Sn−1 be such that v′ · v′⊥ = 0. Then we have the following asymptotic
expansion:

(6.22)

α1(x+ εv′⊥, x′, v′)

E(x, x′)|ν(x′) · v′| =
(

ln
1

ε

)(
χ(x, v′, v′) + χ(x, v′,−v′)

)
+ o
(

ln
1

ε

)

α1(x+ εv′⊥, x′, v′)

E(x, x′)|ν(x′) · v′| =
1

εn−2

∫ π

0

sinn−3 θχ(x, v′, v(θ))dθ + o
( 1

εn−2

)
,

for n = 2 and n ≥ 3, respectively, where we have defined the functions χ(x, v′, v) =
σa(x, v)k(x, v′, v) and v(θ) = cos θv′ + sin θv′⊥.

Theorem 6.2.2 will be proved in section 6.3.
We thus observe that α1 blows up a priori faster than Γ2 as ε → 0, i.e., as

the observation point x becomes closer to the segment where the ballistic term
α0 is supported. This singularity allows us to obtain information on the optical
coefficients that is not contained in the ballistic part α0. Moreover, because of the
singular behavior of α1, such information can be reconstructed in a stable manner.

6.2.4. Stability Estimates. As mentioned above, the singular behaviors of
α0 and α1 allow us to extract them from the full measurements α. Moreover,
such an extraction can be carried out in a stable fashion, in the sense that small
errors in the measurement of the albedo operator translates into small errors in the
extraction of the terms characterizing α0 and α1.

More precisely, let A be the albedo operator corresponding to optical parame-
ters (σ, k) and Ã the operator corresponding to the optical parameters (σ̃, k̃). From
now on, a term superimposed with the ˜ sign means a term calculated using the
optical parameters (σ̃, k̃) instead of (σ, k). For instance Ẽ(x, y) is the equivalent of

E(x, y) defined in (6.18) with (σ, k) replaced by (σ̃, k̃).
We first derive the stability of useful functionals of the optical parameters in

terms of errors made on the measurements. Let us assume that A is the “real”
albedo operator and that Ã is the “measured” operator. We want to obtain error
estimates on the useful functionals of the optical parameters in terms of appropriate
metrics for A− Ã. We obtain the following two results. The first result pertains to
the stability of the ballistic term in the albedo operator:

Theorem 6.2.3. Let A and Ã be two albedo operators and (x′, v′) ∈ Γ−. Then
we obtain that
(6.23)∫ τ+(x′,v′)

0

∣∣∣σa(x′ + tv′, v′)e−
∫

t

0
σ(x′+sv′,v′)ds − σ̃a(x′ + tv′, v′)e−

∫
t

0
σ̃(x′+sv′,v′)ds

∣∣∣dt

≤ ‖A− Ã‖L(L1(Γ−,dξ);L1(X)).



118 6. INVERSE TRANSPORT THEORY OF PHOTOACOUSTICS

Theorem 6.2.3 is proved in section 6.4.1.
The stability result obtained from the single scattering component is based

on a singular behavior obtained in the vicinity of the ballistic component. Such
a behavior cannot be captured by the L1 norm used above. Instead, we define
Γ1 = α − α0 as the Schwartz kernel of the albedo operator where the ballistic
part has been removed, i.e., for measurements that are performed away from the
support of the ballistic part. Our stability results are obtained in terms of errors
on Γ1 rather than on A. We can then show the following stability result.

Theorem 6.2.4. Let us assume that (σ, σ̃) ∈ Cb(X × Sn−1)2 and that (k, k̃) ∈
Cb(X×Sn−1×Sn−1)2. Let (x, x′) ∈ X×∂X and define v′ = x−x′

|x−x′| . Let v′⊥ ∈ Sn−1

such that v′ · v′⊥ = 0. In dimension n = 2, we have
(6.24) ∣∣∣E(x, x′)(χ(x, v′, v′) + χ(x, v′,−v′)) − Ẽ(x, x′)(χ̃(x, v′, v′) + χ̃(x, v′,−v′))

∣∣∣

≤
∥∥∥ (Γ1 − Γ̃1)(x, x

′, v′)

|ν(x′) · v′|w2(x, x′, v′)

∥∥∥
L∞(X×Γ−)

,

where w2(x, x
′, v′) = 1+ln

( |x−x′−τ+(x′,v′)v′|−(x−x′−τ+(x′,v′)v′)·v′

|x−x′|−(x−x′)·v′

)
. When n ≥ 3, we

have

(6.25)

∣∣∣
∫ π

0

sinn−3(θ)
(
E(x, x′)χ(x, v′, v(θ)) − Ẽ(x, x′)χ̃(x, v′, v(θ))

)
dθ
∣∣∣

≤
∥∥∥ (Γ1 − Γ̃1)(x, x

′, v′)

|ν(x′) · v′|wn(x, x′, v′)

∥∥∥
L∞(X×Γ−)

,

where wn(x, x′, v′) = |x − x′ − ((x − x′) · v′)v′|2−n and where we use the same
notation as in Theorem 6.2.2.

Theorem 6.2.4 is proved in section 6.4.2.
Such results do not grant uniqueness of the reconstruction of the optical pa-

rameters in the most general setting. However, they do provide stable, unique,
reconstructions in several settings of interest.

6.2.5. Scattering-Free Setting. Let us first assume that k ≡ 0 so that σ ≡
σa. Then knowledge of the albedo operator uniquely determines σa(x, v) for all
x ∈ X and v ∈ Sn−1.

Indeed, we deduce from Theorem 6.2.3 that

σa(x′ + tv′, v′)e−
∫

t

0
σa(x′+sv′,v′)ds = − d

dt

(
e−

∫
t

0
σa(x′+sv′,v′)ds

)

is uniquely determined and hence e−
∫

t

0
σa(x′+sv′,v′)ds since the latter equals 1 when

t = 0. Taking the derivative of the negative of the logarithm of the latter expression
gives us σ(x′ + tv′, v′) for all (x′, v′) ∈ Γ− and t > 0 and hence σ(x, v) for all
(x, v) ∈ X × Sn−1.

Moreover, we have the following stability result.

Theorem 6.2.5. Recalling that σa(x, v) is bounded from above and below by
positive constants, we find that when k ≡ 0,

(6.26) ‖σa − σ̃a‖L∞(Sn−1;L1(X)) ≤ C‖A− Ã‖L(L1(Γ−,dξ);L1(X)).

Here, C is a constant that depends on the uniform bound M .
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The above theorem is proved in section 6.4.1. Note that the above result is
local in x′ and v′. In other words, σa(x, v′) is uniquely determined by {α(y, x −
τ−(x, v′)v′, v′)|y = x+tv′ for −τ−(x, v′) < t < τ+(x, v′)}, that is by the experiment
that consists of sending a beam of radiation in direction v′ passing through the
point x (at least asymptotically since such a transport solution is not an element
in L1(X × Sn−1)).

6.2.6. Reconstruction of the Spatial Optical Parameters. We now as-
sume that k 6= 0. Then the ballistic component of A and the estimate in Theorem
6.2.3 allow us to uniquely reconstruct both σa(x, v) and σ(x, v) under the assump-
tion that

(6.27) σa(x, v) = σa(x,−v), σ(x, v) = σ(x,−v).
We recall that σa(x, v) is bounded from below by σ0 > 0. For technical reasons,

we also assume that σ(x, v) is known in the δ0−vicinity of ∂X , i.e., for all (x, v) ∈
Rn × Sn−1 such that dist(x, ∂X) < δ0 for some δ0 > 0. Such a hypothesis is not
very restrictive from a practical viewpoint.

We denote by W−1,1(X) the Banach space of the continuous linear functionals

on the Banach space W 1,∞
0 (X) := {φ ∈ L∞(X) | suppφ ⊂ X, ∇φ ∈ L∞(X,Cn)}

(where the gradient ∇ is understood in the distributional sense).
Under the above assumptions, we have the following result.

Theorem 6.2.6. The coefficients σa(x, v) and σ(x, v) are uniquely determined
by the albedo operator A. Moreover, we have the following stability estimate

(6.28)
‖σ − σ̃‖L∞(Sn−1;W−1,1(X))

+ ‖σa − σ̃a‖L∞(Sn−1;L1(X)) ≤ C‖A− Ã‖L(L1(Γ−,dξ);L1(X)).

The constant C depends on the parameter δ0 as well as the uniform bounds σ0 and
M .

This theorem is proved in section 6.4.1. The above result is also local in x′

and v′. In other words, σa(x, v′) and σ(x, v′) are uniquely determined by {α(y, x−
τ−(x, v′)v′, v′)|y = x + tv′ for − τ−(x, v′) < t < τ+(x, v′)}, i.e., by the experiment
that consists of sending a beam of radiation in direction v′ passing through the
point x.

Stability estimates may be obtained in stronger norms for σ provided that a
priori regularity assumptions be imposed. We show the

Corollary 6.2.7. Let us assume that σ and σ̃ are bounded in L∞(Sn−1,W r,p(X))
by C0 for p > 1 and r > −1. Then for all −1 ≤ s ≤ r, we have

(6.29) ‖σ − σ̃‖L∞(Sn−1;W s,p(X)) ≤ C‖A− Ã‖
1
p

r−s
1+r

L(L1(Γ−,dξ);L1(X)),

where the constant C depends on C0 and on the uniform bounds σ0 and M .

The corollary is proved in section 6.4.1.

6.2.7. Application to Henyey-Greenstein Kernels. Let us assume that
σ ∈ Cb(X × Sn−1) and that k ∈ Cb(X × Sn−1 × Sn−1) and let us assume again that
σ(x) is known in the δ0−vicinity of ∂X , i.e., for all x ∈ Rn such that dist(x, ∂X) <
δ0 for some δ0 > 0 .
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The stability estimate (6.23) allows one to uniquely reconstruct σa and σ un-
der the symmetry hypothesis (6.27), which is quite general physically. Indeed, even
when attenuation is anisotropic, there is no reason to observe different attenua-
tions in direction v and direction −v. The stability estimate in Theorem 6.2.4
provides additional information on the optical coefficients, but not enough to fully
reconstruct the scattering kernel k(x, v′, v).

In dimension n = 2, we gain information only on k(x, v′, v′) + k(x, v′,−v′). In
dimension n ≥ 3, we garner information about

∫ π

0
χ(x, v′, cos θv′+sin θv′⊥)dθ for all

v′⊥ orthogonal to v′. The integration in θ means that one dimension of information
is lost in the measurements. Thus, 3n− 3 dimensions of information are available
on the (3n− 2)−dimensional object k(x, v′, v).

Let us consider the case of an isotropic absorption σa = σa(x) and isotropic
scattering in the sense that k(x, v′, v) = k(x, v′ · v). In such a setting, k(x, v′ · v)
becomes (n + 1)−dimensional. Yet, available data in dimension n ≥ 2 give us
information on

σg(x) := k(x,−1) + k(x, 1), when n = 2,(6.30)

σg(x) :=

∫ π

0

k(x, cos θ) sinn−3 θdθ, when n ≥ 3.(6.31)

This is different information from the normalization in (6.3)

σs(x) =

∫

Sn−1

k(x, v′ · v)dv′ = |Sn−2|
∫ π

0

k(x, cos θ) sinn−2 θdθ.

As a consequence, if k(x, cos θ) is of the form σs(x)f(x, cos θ), where f(x, cos θ) is
parameterized by one function g(x), then we have a chance of reconstructing g(x)
from knowledge of σg(x) and σs(x) provided σs(x) > 0 (where σs = σ − σa).

This occurs for the classical Henyey-Greenstein (HG) phase function in dimen-
sions n = 2 and n = 3 , where

k(x, λ) := σs(x)
1 − g2(x)

2π(1 + g(x)2 − 2g(x)λ)
, when n = 2,(6.32)

k(x, λ) := σs(x)
1 − g2(x)

4π(1 + g(x)2 − 2g(x)λ)
3
2

, when n ≥ 3,(6.33)

where g ∈ Cb(X) and 0 ≤ g(x) < 1 for a.e. x ∈ X . Note that

(6.34) σg(x) = σs(x)h(g(x)),

for x ∈ X where the function h : [0, 1) → R is given by

h(κ) :=
1 + κ2

π(1 − κ2)
, when n = 2,(6.35)

h(κ) :=

∫ π

0

1 − κ2

4π(1 + κ2 − 2κ cos(θ))
3
2

dθ, when n ≥ 3.(6.36)

Theorem 6.2.8. In the HG phase function in dimension n = 2, 3, the param-
eter g(x) is uniquely determined by the data provided σs(x) > 0 for a.e. x ∈ X.

Theorem 6.2.8 follows from Theorems 6.2.6, 6.2.4, and from (6.30), (6.31),
(6.34) and the following Lemma.

Lemma 6.2.9. The function h is strictly increasing on [0, 1), ḣ(0) = 0, ḧ(0) > 0,

limg→1−(1−g)h(g) = c(n), where ḣ(g) = dh
dg (g) and c(2) = π−1 and c(3) = (2π)−1.
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Considering (6.35), Lemma 6.2.9 in dimension n = 2 is trivial. The proof of
Lemma 6.2.9 in dimension n = 3 is given in section 6.4.2.

Moreover we have the following stability estimates.

Theorem 6.2.10. In dimension n ≥ 2, we have
(6.37)

‖σg(x) − σ̃g(x)‖L1(X) ≤ C
(∥∥∥ (Γ1 − Γ̃1)(x, x

′, v′)

|ν(x′) · v′|wn(x, x′, v′)

∥∥∥
∞

+ ‖A− Ã‖L(L1(Γ−,dξ);L1(X))

)
,

where wn(x, x′, v′) is defined in Theorem 6.2.4, and where the constant C depends
on δ0, σ0 and M .

In addition, for the HG phase function in dimension n = 2, 3, we have the fol-
lowing stability estimate: assume min(σs(x), σ̃s(x)) ≥ σs,0 > 0 and (h(g(x)), h(g̃(x))) ∈
W 1,∞(X)2, then
(6.38)

‖h(g(x)) − h(g̃(x))‖L1(X) ≤ C
(∥∥∥ (Γ1 − Γ̃1)(x, x

′, v′)

|ν(x′) · v′|wn(x, x′, v′)

∥∥∥
∞

+ ‖A− Ã‖L(L1(Γ−,dξ);L1(X))

)
,

where the constant C depends on δ0, σ0, σs,0, M and min(‖h(g)‖W 1,∞(X), ‖h(g̃)‖W 1,∞(X)).

Theorem 6.2.10 is proved in section 6.4.2.
The sensitivity of the reconstruction of g(x) degrades as g converges to 0 in the

sense that C(G0) → ∞ asG0 → 0, G0 = max(‖g‖∞, ‖g̃‖∞), where C is the constant
that appears on the right-hand side of (6.38) when we replace h(g(x))−h(g̃(x)) by
g − g̃ on the left-hand side of (6.38). On the other hand, C(g0) → 0 when g0 → 1,
g0 = min(‖g‖∞, ‖g̃‖∞), so that reconstructions of g(x) are very accurate for g(x)
close to 1, i.e., in the case of very anisotropic media.

More precisely, using the properties of the function h, one can replace the left-
hand side of (6.38) by ‖g2− g̃2‖L1(X) (resp. ‖g− g̃‖L1(X), resp. ‖ 1

1−g − 1
1−g̃ ‖L1(X))

provided that max(‖g‖∞, ‖g̃‖∞) ≤ G0 < 1 (resp. 0 < g0 < min(‖g‖∞, ‖g̃‖∞) and
max(‖g‖∞, ‖g̃‖∞) ≤ G0 < 1, resp. min(‖g‖∞, ‖g̃‖∞) ≥ g0 > 0) for some constant
G0 (resp. (g0, G0), resp. g0) and the constant C on the right hand side of (6.38)
then depends also on G0 (resp. (g0, G0), resp. g0).

6.2.8. Reconstructions in the Diffusive Regime. When scattering is large
so that the mean free path 1

σ (x) is small and intrinsic attenuation σa(x) is small,
then radiation inside the domain X is best modeled by a diffusion equation

(6.39)
−∇ ·D(x)∇I(x) + σa(x)I(x) = 0 x ∈ X

I(x) = φ(x) x ∈ ∂X,

where I(x) =
∫

Sn−1 u(x, v)dv is the spatial density of photons and D(x) is the
diffusion coefficient. We refer the reader to, e.g., [24, 61] for references on the
diffusion approximation. When scattering is, e.g., isotropic, i.e., when k(x, θ′, θ) =
k(x), then we find that D(x) = 1

nσs(x) , where σs is introduced in (6.3) and n is the

spatial dimension.
When D(x) is known, then the reconstruction of σa(x) may be easily obtained

by using only one measurement. Indeed, the measurement H(x) = σa(x)I(x) so
that I(x) may be obtained by solving (6.39). Once I(x) is known, it will be positive
in X provided that φ(x) is non trivial and non-negative. Then σa(x) is obtained by
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dividing H by I. When φ(x) is bounded from below by a positive constant, then
we see that the reconstruction of σa is unique and clearly stable.

When (D(x), σa(x)) are both unknown, then multiple (at least two) measure-
ments are necessary. This problem will be analyzed elsewhere.

This concludes the section on the derivation and the display of the main results.
The mathematical proofs are presented in the following two sections.

6.3. Transport Equation and Estimates

In this section, we prove several results on the decomposition of the albedo
operator (Lemmas 6.3.1, 6.3.2 and 6.3.3) and prove Theorems 6.2.1 and 6.2.2.

We first recall the well-posedness of the boundary value problem (6.11) (here
σ ∈ L∞(X × Sn−1), k ∈ L∞(X × Sn−1 × Sn−1) and σa ≥ σ0 > 0) and give
a decomposition of the albedo operator. The boundary value problem (6.11) is
equivalent to the integral equation

(6.40) (I −K)u = Jφ

for u ∈ L1(X × Sn−1) and φ ∈ L1(Γ−, dξ), where K is the bounded operator in
L1(X × Sn−1) defined by

(6.41) Ku =

∫ τ−(x,v)

0

E(x, x− tv)

∫

Sn−1

k(x− tv, v′, v)u(x− tv, v′)dv′dt,

for a.e. (x, v) ∈ X×Sn−1 and for u ∈ L1(X×Sn−1), and J is the bounded operator
from L1(Γ−, dξ) to L1(X × Sn−1) defined by

(6.42) Jφ(x, v) = e−
∫ τ−(x,v)

0 σ(x−pv,v)dpφ(x − τ−(x, v)v, v),

for a.e. (x, v) ∈ X × Sn−1.
Since σa = σ−σs ≥ 0, it turns out that I−K is invertible in L1(X×Sn−1) [25,

Lemma 2.4], so that the albedo operator A : L1(Γ−, dξ) → L1(X) is well-defined by
(6.13) and so that the solution u of (6.11) with boundary condition φ ∈ L1(Γ−, dξ)
satisfies

(6.43) u =

n∑

m=0

KmJφ+Kn+1(I −K)−1Jφ.

It follows that

Aφ =

∫

Γ−

(
n∑

m=0

αm(x, x′, v′)

)
φ(x′, v′)dµ(x′)dv′

+

∫

X×Sn−1

γn+1(x, y, w)((I −K)−1Jφ)(y, w)dydw,(6.44)

where γm, m ≥ 0, is the distributional kernel of K̄m : L1(X × Sn−1) → L1(X)
defined by

(6.45) K̄mu(x) =

∫

Sn−1

σa(x, v)Kmu(x, v)dv,

for a.e. x ∈ X and u ∈ L1(X × Sn−1), and where αm, m ≥ 0, is the distributional
kernel of K̄mJ : L1(Γ−, dξ) → L1(X).

We give the explicit expression of the distributional kernels αm, m ≥ 2, and
γm, m ≥ 3 in Lemma 6.3.1 and study the boundedness of αm in Lemma 6.3.2 and
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of γn+1 in Lemma 6.3.3. We then prove Theorems 6.2.1 and 6.2.2 and Lemmas
6.3.2 and 6.3.3. The proof of Lemma 6.3.1 is given in the appendix. For w ∈ Rn,
w 6= 0, we set ŵ := w

|w| .

Lemma 6.3.1. For m ≥ 2 and a.e. (z0, zm, vm) ∈ X × Γ−, we have

αm(z0, zm, vm) = |ν(zm) · vm|
∫

Xm−1

∫ τ+(zm,vm)

0

[σa(z0, v0)(6.46)

×E(z0, . . . , zm−1, zm + t′vm, zm)k(zm + t′vm, vm, vm−1)

|zm + t′vm − zm−1|n−1Πm−2
i=0 |zi − zi+1|n+1

×Πm−1
i=1 k(zi, vi, vi−1)

]
vi=

̂zi−zi+1, i=0...m−2,

vm−1= ̂zm−1−zm−t′zm

dt′dz1 . . . dzm−1.

For m ≥ 3 and a.e. (z0, zm, vm) ∈ X ×X × Sn−1, we have

γm(z0, zm, vm) =

∫

Xm−1

E(z0, . . . , zm)

Πm
i=1|zi − zi−1|n−1

(6.47)

× [σa(z0, v0)Π
m
i=1k(zi, vi, vi−1)]vi= ̂zi−zi+1, i=0...m−1 dz1 . . . dzm−1.

Lemma 6.3.2. For n = 2,

α1(x, x
′, v′)

|ν(x′) · v′| ln
(

|x−x′−τ+(x′,v′)v′|−(x−x′−τ+(x′,v′)v′)·v′

|x−x′|−(x−x′)·v′

) ∈ L∞(X × Γ−),(6.48)

α2(x, x
′, v′)

|ν(x′) · v′| ∈ L∞(X × Γ−).(6.49)

For n ≥ 3, we have
(6.50)

|x− x′ − ((x− x′) · v′)v′|n−1−mαm(x, x′, v′)

|ν(x′) · v′| ∈ L∞(X × Γ−), 1 ≤ m ≤ n− 2,

αn−1(x, x
′, v′)

|ν(x′) · v′| ln
(

1
|x−x′−((x−x′)·v′)v′|

) ∈ L∞(X × Γ−),(6.51)

αn(x, x′, v′)

|ν(x′) · v′| ∈ L∞(X × Γ−).(6.52)

We do not use (6.48) and (6.50) for m = 1 in order to prove (6.21). However
we will use them in the proof of the stability estimates given in Theorem 6.2.4.

Lemma 6.3.3. For n ≥ 2, we have

(6.53) γn+1 ∈ L∞(X ×X × Sn−1).

In addition, we have

(6.54) K̄n+1(I −K)−1Jφ(x) =

∫

Γ−

Γn+1(x, x
′, v′)φ(x′, v′)dµ(x′)dv′,

for a.e. x ∈ X and for φ ∈ L1(Γ−, dξ), where

(6.55)
Γn+1(x, x

′, v′)

|ν(x′) · v′| ∈ L∞(X × Γ−).
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Proof of Theorem 6.2.1. The equality (6.20) for α0 follows from the definition
of the operator J (6.42). From (6.45), (6.41) and (6.42) it follows that

K̄Jφ(x) =

∫

Sn−1

σa(x, v)

∫ τ−(x,v)

0

∫

Sn−1

E(x, x− tv, x− tv − τ−(x − tv, v′)v′)

×k(x− tv, v′, v)φ(x − tv − τ−(x − tv, v′)v′, v′)dv′dtdv,(6.56)

for a.e. x ∈ X and φ ∈ L1(Γ−, dξ). Performing the change of variables z = x− tv
(dz = tn−1dtdv, t = |z − x|) on the right-hand side of (6.56), we obtain

K̄Jφ(x) =

∫

X×Sn−1

σa(x, x̂ − z)

|x− z|n−1
E(x, z, z − τ−(z, v′)v′)

×k(z, v′, x̂− z)φ(z − τ−(z, v′)v′, v′)dv′dz,(6.57)

for a.e. x ∈ X and φ ∈ L1(Γ−, dξ). Performing the change of variables z = x′ + tv′

(x′ ∈ ∂X , t > 0, dz = |ν(x′) · v′|dtdµ(x′)) on the right hand side of (6.57), we
obtain

K̄Jφ(x) =

∫

Γ−

∫ τ+(x′,v′)

0

σa(x, ̂x− x′ − t′v′)

|x− x′ − t′v′|n−1
E(x, x′ + t′v′, x′)

×k(x′ + t′v′, v′, ̂x− x′ − t′v′)φ(x′, v′)dtdξ(x′, v′),(6.58)

for a.e. x ∈ X and φ ∈ L1(Γ−, dξ), which yields (6.20) for α1.
Now set Γ2 :=

∑n
m=2 αm + Γn+1 when n ≥ 2. Taking account of Lemma 6.3.2

(6.49)–(6.52) and Lemma 6.3.3 (6.55), we obtain (6.21). 2

Proof of Theorem 6.2.2. We assume that σ ∈ Cb(X × Sn−1) and k ∈ Cb(X ×
Sn−1 × Sn−1). Let (x′, v′) ∈ Γ− and let t′0 ∈ (0, τ+(x′, v′)) and let v′⊥ be such that

v′ · v′⊥ = 0. Set x = x′ + t′0v
′. From (6.20), it follows that

(6.59)
α1(x+ εv′⊥, x′, v′)

|ν(x′) · v′| = (L+ + L−)(ε), where

(6.60)

L+(ε) :=

∫ t′0

0

E(x+ εv′⊥, x′ + t′v′, x′)

((t′ − t′0)
2 + ε2)

n−1
2

σa(x+ εv′
⊥
, vt′,ε)k(x

′ + t′v′, v′, vt′,ε)dt
′,

(6.61)

L−(ε) :=

∫ τ+(x′,v′)

t′0

E(x+ εv′⊥, x′ + t′v′, x′)

((t′ − t′0)
2 + ε2)

n−1
2

σa(x+εv′
⊥
, vt′,ε)k(x

′+t′v′, v′, vt′,ε)dt
′,

for ε ∈ (0, τ+(x, v′⊥)), where vt′,ε =
̂(t′0−t′)

ε v′ + v′⊥ for t′ ∈ R.
We prove (6.22) for n = 2. Consider the function arcsinh : R → R defined by

arcsinh(y) := ln(y+
√

1 + y2), for y ∈ R. Then performing the change of variables

η :=
arcsinh(

t′0−t′

ε
)

arcsinh(
t′
0
ε

)
on the right hand side of (6.60) and performing the change of

variables η :=
arcsinh(

t′−t′0
ε

)

arcsinh(
τ+(x′,v′)−t′0

ε
)

on the right hand side of (6.61), we obtain

(6.62) L±(ε) := arcsinh(
s±
ε

)L′
±(ε),



6.3. TRANSPORT EQUATION AND ESTIMATES 125

for ε ∈ (0, τ+(x, v′⊥)), where

s+ := t′0, s− := τ+(x′, v′) − t′0,(6.63)

L′
±(ε) :=

∫ 1

0

E(x+ εv′
⊥
, x′ + t′±(η, ε)v′, x′)

σa(x + εv′
⊥
, v±(η, ε))k(x′ + t′±(η, ε)v′, v′, v±(η, ε))dη(6.64)

t′±(η, ε) := t′0 ∓ ε sinh
(
ηarcsinh(

s±
ε

)
)
,(6.65)

v±(η, ε) :=
± sinh

(
ηarcsinh( s±

ε )
)
v′ + v′⊥√

sinh
(
ηarcsinh( s±

ε )
)2

+ 1
,(6.66)

for η ∈ (0, 1) (we recall that sinh(y) = ey−e−y

2 , y ∈ R). Note that using the
definition of sinh and arcsinh, we obtain

(6.67) |ε sinh
(
ηarcsinh(

s±
ε

)
)
| ≤ eη ln(s±+

√
s2
±+1)ε1−η

2
,

for η ∈ (0, 1). Therefore using (6.65) we obtain

(6.68) t′±(η, ε) → t′0, as ε→ 0+

for η ∈ (0, 1) and i = 1, 2. Note also that from (6.66) it follows that

(6.69) v±(η, ε) =
±v′ + sinh

(
ηarcsinh( s±

ε )
)−1

v′⊥√
1 + sinh

(
ηarcsinh( s±

ε )
)−2

−→
ε→0+

±v′,

for η ∈ (0, 1) (we used the limit sinh
(
ηarcsinh( s

ε)
)
→ +∞ as ε → 0+ which holds

for any positive real numbers s and η).
Using (6.64), (6.68), (6.69) and continuity and boundedness of σ and k and σa,

and using Lebesgue dominated convergence theorem, we obtain

(6.70) L′
±(ε) → σa(x,±v′)E(x, x′)k(x′ + t′0v

′, v′,±v′) as ε→ 0+.

Finally note that

(6.71) arcsinh(
s±
ε

) = ln
(1
ε

)
+ o
(1

ε

)
, as ε→ 0+.

Combining (6.59), (6.62), (6.70) and (6.71), we obtain (6.22) for n = 2.

We prove (6.22) for n ≥ 3. Performing the change of variables η =
t′−t′0

ε on the
right-hand side of (6.60), we obtain

(6.72)
L+(ε) = ε2−n

∫ 0

− t′
0
ε

E(x+ εv′
⊥
, x′ + t′3(ε, η)v

′, x′)

σa(x+εv′⊥,v)√
η2+1

n−1 k(x′ + t′3(ε, η)v
′, v′, v)|v= ̂−ηv′+v′⊥

dη,

for ε ∈ (0, τ+(x, v′⊥)), where t′3(ε, η) = t′0 + εη for η ∈ R. Note that

(6.73) t′3(ε, η) → t′0, as ε→ 0+.

Therefore, using the Lebesgue dominated convergence theorem and continuity and
boundedness of (σ, k, σa), we obtain

(6.74) L+(ε) = ε2−nE(x, x′)

∫ 0

−∞

σa(x, v)k(x, v′, v)|v= ̂−ηv′+v′⊥

√
η2 + 1

n−1 dη + o(ε2−n),
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as ε→ 0+. Similarly performing the change of variables η =
t′−t′0

ε on the right hand
side of (6.61), and using Lebesgue dominated convergence theorem and continuity
and boundedness of (σ, k, σa), we obtain

(6.75) L−(ε) = ε2−nE(x, x′)

∫ +∞

0

σa(x, v)k(x, v′, v)|v= ̂−ηv′+v′⊥

√
η2 + 1

n−1 dη + o(ε2−n),

as ε→ 0+. Note that performing the change of variables cos(θ) = −η√
1+η2

, θ ∈ (0, π),

(η = − cos(θ)
sin(θ) , dη = 1

sin(θ)2 dθ) we have

(6.76)
∫ +∞

−∞

σa(x, v)k(x, v′, v)|v= ̂−ηv′+v′⊥

√
η2 + 1

n−1 dη =

∫ π

0

sin(θ)n−3σa(x, v(θ))k(x, v′, v(θ))dθ.

Adding (6.74) and (6.75) and using (6.76) and (6.59), we obtain (6.22) for n ≥ 3.2
Proof of Lemma 6.3.2. First note that from (6.20) and (6.46), it follows that

(6.77) αm(x, x′, v′) ≤ ‖σa‖∞‖k‖m
∞|ν(x′) · v′|Im,n(x, x′, v′),

for a.e. (x, x′, v′) ∈ X × Γ− and for m ∈ N, m ≥ 1, where

(6.78) I1,n(z0, x
′, v′) =

∫ τ+(x′,v′)

0

dt′

|z0 − x′ − t′v′|n−1
,

(6.79) Im+1,n(z0, x
′, v′) =

∫

Xm

∫ τ+(x′,v′)

0

dt′dz1 . . . dzm

|x′ + t′v′ − zm|n−1Πm
i=1|zi − zi−1|n−1

,

for (z0, x
′, v′) ∈ X × Γ− and m ≥ 1.

We prove (6.48) and (6.49). Let n = 2. Let (x, x′, v′) ∈ X × Γ− be such that
x 6= x′ +λv′ for any λ ∈ R. Set (w)⊥ := w− (w ·v′)v′ for any w ∈ Rn. Using (6.78)
and using the equality |x− x′ − t′v′|2 = (t′ − (x− x′) · v′)2 + |(x− x′)⊥|2, we obtain

I1,n(x, x′, v′) =

∫ τ+(x′,v′)−(x−x′)·v′

−(x−x′)·v′

1

(|(x − x′)⊥|2 + t2)
n−1

2

dt,(6.80)

= ln
( |x− x′ − τ+(x′, v′)v′| − (x − x′ − τ+(x′, v′)v′) · v′

|x− x′| − (x − x′) · v′
)
,(6.81)

where we used that
∫ x

0
dt√
1+t2

= ln
(
x+

√
1 + x2

)
. Estimate (6.48) follows from

(6.77) and (6.81).
Let (x, x′, v′) ∈ X × Γ− be such that x 6= x′ + λv′ for any λ ∈ R. Using (6.81)

(with “x = z”) and (6.79), we obtain

I2,n(x, x′, v′) =

∫

X

ln
(

|z−x′−τ+(x′,v′)v′|−(z−x′−τ+(x′,v′)v′)·v′|
|z−x′|−(z−x′)·v′

)

|x− z| dz

= I ′2,n(x, x′ + τ+(x′, v′)v′, v′) − I ′2,n(x, x′, v′),(6.82)

where

(6.83) I ′2,n(x, a, v′) =

∫

X

ln(|z − a| − (z − a) · v′)
|x− z| dz,

for a ∈ X̄. We prove

(6.84) sup
(x,a,v′)∈X×X̄×Sn−1

|I ′2,n(x, a, v′)| <∞.
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Then estimate (6.49) follows from (6.77), (6.82) and (6.84).
Let (x, a, v′) ∈ X × X̄ × Sn−1. Note that by using (6.83), we obtain

|I ′2,n(x, a, v′)| ≤ C

∫

X

(|z − a| + (z − a) · v′) 1
8

|x− z|(|z − a|2 − ((z − a) · v′)2) 1
8

dz

≤ (2D)
1
8C

∫

X

1

|x− z|(|z − a|2 − ((z − a) · v′)2) 1
8

dz,(6.85)

where C := supr∈(0,6D) r
1
8 | ln(r)| <∞ and D denotes the diameter of X . Consider

v′⊥ ∈ Sn−1 a unit vector orthogonal to v′ and perform the change of variable

z = a+ λ1v
′ + λ2v

′⊥, then we obtain

(6.86) |I ′2,n(x, a, v′)| ≤ (2D)
1
8C

∫

[−D,D]2

dλ1dλ2

((λ1,x − λ1)2 + (λ2,x − λ2)2)
1
2 |λ2| 14

,

where λ1,xv
′ + λ2,xv

′⊥ = x− a. Then note that
(6.87)∫ D

−D

dλ1

((λ1,x − λ1)2 + (λ2,x − λ2))
1
2

= ln

(
D − λ1,x + ((λ2 − λ2,x)2 + (D − λ1,x)2)

1
2

−D − λ1,x + ((λ2 − λ2,x)2 + (D + λ1,x)2))
1
2

)
,

Combining (6.86) and (6.87), we obtain

|I ′2,n(x, a, v′)| ≤ C′
∫ D

−D

(D − λ1,x + ((λ2 − λ2,x)2 + (D − λ1,x)2)
1
2 )

1
8 dλ2

|λ2| 14 (−(D + λ1,x) +
√

(λ2 − λ2,x)2 + (D + λ1,x)2)
1
8

≤ C′′
∫ D

−D

(D + λ1,x + ((λ2 − λ2,x)2 + (D + λ1,x)2)
1
2 )

1
8

|λ2| 14 |λ2 − λ2,x| 14
dλ2

≤ C′′′
∫ D

−D

dλ2

|λ2| 14 |λ2 − λ2,x| 14
= C′′′|λ2,x|

1
2

∫ D
|λ2,x|

− D
|λ2,x|

ds

|s| 14 |s− 1| 14
,(6.88)

where C′ := (2D)
1
8C2, C′′ := (12D2)

1
8C2 and C′′′ := (72D3)

1
8C2. Finally note

that

(6.89) |λ2,x|
1
2

∫

|s|≤ D
|λ2,x|

1

|s| 14 |s− 1| 14
ds ≤ C1(λ2,x) + C2(λ2,x), where

C1(λ2,x) := |λ2,x|
1
2

∫

|s|≤2

|s|− 1
4 |s− 1|− 1

4 ds ≤ D
1
2

∫

|s|≤2

|s|− 1
4 |s− 1|− 1

4 ds(6.90)

C2(λ2,x) := |λ2,x|
1
2

∫

2≤|s|≤max(2, D
|λ2,x| )

|s|− 1
4 |s− 1|− 1

4 ds ≤ |λ2,x|
1
2 2

1
4

∫

2≤|s|≤max(2, D
|λ2,x| )

|s|− 1
2 ds

≤
(
|λ2,x|max(2,

D

|λ2,x|
)
) 1

2 ≤ (2D)
1
2 .(6.91)

Combining (6.88)–(6.91) we obtain (6.84).
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The statements (6.50)–(6.52) follow from (6.77) and the following statements
(6.92)–(6.94)

|x− x′ − ((x − x′) · v′)v′|n−1−mIm,n(x, x′, v′) ∈ L∞(X × Γ−),(6.92)

In−1,n(x, x′, v′)

ln
(

1
|x−x′−((x−x′)·v′)v′|

) ∈ L∞(X × Γ−),(6.93)

In,n(x, x′, v′) ∈ L∞(X × Γ−),(6.94)

for (m,n) ∈ N × N, n ≥ 3, 1 ≤ m ≤ n− 2 and where Im,n is defined by (6.78) and
(6.79).

We prove (6.92)–(6.94), which will complete the proof of Lemma 6.3.2. We
proceed by induction on m. We prove (6.92) for m = 1. Let n ≥ 3. Note that
formula (6.80) still holds. Note also that

(6.95) |w − λv′|2 = |w⊥|2 + |w · v′ − λ|2 ≥ 2−1(|w⊥| + |w · v′ − λ|)2,
for (w, λ) ∈ Rn × (−D,D), |w| ≤ 2D. Therefore

(6.96)

∫ 2D

−2D

dλ

|w − λv′|n−1
≤
∫ 2D

−2D

2
n−1

2 dλ

(|w⊥| + |λ|)n−1
≤ 2

n+1
2

(n− 2)|w⊥|n−2
.

Thus (6.92) for m = 1 follows from (6.96) and (6.80).
Let m ∈ N, m ≥ 1 be such that (6.92)–(6.94) hold for any n ≥ 3. We prove

that (6.92)–(6.94) hold for any n ≥ 3 and for “m”= m + 1. Let (x, x′, v′) be such
that x 6= x′ + λv′ for any λ ∈ R. From (6.78) and (6.79) it follows that

(6.97) Im+1,n(x, x′, v′) ≤
∫

X

Im,n(z, x′, v′)

|x− z|n−1
dz.

Assume that m+ 1 ≤ n− 1. Then from (6.97) and (6.92) for (m,n) it follows that
there exists a constant C (which does not depend on (x, x′, v′)) such that

(6.98) Im+1,n(x, x′, v′) ≤ C

∫

X

1

|x− z|n−1|(z − x′)⊥|n−1−m
dz.

Performing the change of variables z − x′ = z′ + λv′, z′ · v′ = 0, we obtain

(6.99) Im+1,n(x, x′, v′) ≤ C

∫

z′·v′=0
|z′|≤D

(∫ D

−D

dλ

|x− x′ − z′ − λv′|n−1

)
dz′

|z′|n−1−m
.

Combining (6.99) and (6.96) (with “w = x− x′ − z′”), we obtain

(6.100) Im+1,n(x, x′, v′) ≤ 2
n+1
2 C

n− 2
I ′′m+1,n(x, x′, v′), where

I ′′m+1,n(x, x′, v′) :=

∫

z′·v′=0
|z′|≤D

dz′

|(x− x′)⊥ − z′|n−2|z′|n−1−m

=

∫

z′∈Bn−1(0,D)

dz′

||(x− x′)⊥|e1 − z′|n−2|z′|n−1−m
,(6.101)

and e1 = (1, 0, . . . , 0) ∈ Rn−1 and Bn−1(0, D) denotes the Euclidean ball of Rn−1

of center 0 and radius D. Using spherical coordinates z′ = |(x − x′)⊥|e1 + rΩ,
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(r,Ω) ∈ (0,+∞) × Sn−2 and Ω = (sin(θ), cos(θ)Θ) ((θ,Θ) ∈ (−π
2 ,

π
2 ) × Sn−3) we

obtain

I ′′m+1,n(x, x′, v′) ≤ |Sn−3|
∫ π

2

−π
2

cosn−3(θ)

×
(∫ 2D

0

dr

(|r + |(x − x′)⊥| sin(θ)|2 + |(x− x′)⊥|2 cos(θ)2)
n−1−m

2

)
dθ(6.102)

(by convention |S0| := 2). Note that by performing the change of variables “r =
r + |(x− x′)⊥| sin(θ)” and using the estimate a2 + b2 ≥ 2−1(a+ b)2, we obtain

∫ 2D

0

dr

(|r + |(x− x′)⊥| sin(θ)|2 + |(x − x′)⊥|2 cos(θ)2)
n−1−m

2

≤
∫ 3D

−3D

2
n−1

2 dr

(|r| + |(x− x′)⊥| cos(θ))n−1−m
=

∫ 3D

0

2
n+1
2 dr

(r + |(x − x′)⊥| cos(θ))n−1−m

≤





2
n+1

2

(n−m− 2)(|(x− x′)⊥| cos(θ))n−2−m
, if m+ 1 < n− 1,

2
n+1
2 ln

(
3D + |(x− x′)⊥| cos(θ)

|(x− x′)⊥| cos(θ)

)
, if m+ 1 = n− 1,

(6.103)

for θ ∈ (−π
2 ,

π
2 ). Assume m+ 1 < n− 1. Then combining (6.102) and (6.103), we

obtain

(6.104) I ′′m+1,n(x, x′, v′) ≤ 2
n+1
2 |Sn−3|

(n− 2 −m)|(x− x′)⊥|n−2−m

∫ π
2

−π
2

cosm−1(θ)dθ.

Therefore using also (6.100) we obtain that (6.92) holds for “m”= m+ 1 < n− 1.
Assume m+ 1 = n− 1. Then note that

ln

(
3D + |(x − x′)⊥| cos(θ)

|(x − x′)⊥| cos(θ)

)
≤ ln

(
4D

|(x− x′)⊥| cos(θ)

)

≤ ln(4D) + ln(
1

|(x− x′)⊥|
) − ln(cos(θ)),(6.105)

for θ ∈ (−π
2 ,

π
2 ). Combining (6.102), (6.103) and (6.105), we obtain

(6.106) I ′′m+1,n(x, x′, v′) ≤ 2
n+1
2 |Sn−3|

(
C1 + C2 ln(

1

|(x− x′)⊥|
)

)
,

whereC1 :=
∫ π

2

−π
2

cosn−3(θ)(ln(4D)−ln(cos(θ)))dθ <∞ andC2 :=
∫ π

2

−π
2

cosn−3(θ)dθ.

Therefore using also (6.100), we obtain that (6.93) holds for “m”= m+ 1 = n− 1.
Assume that m + 1 = n. From (6.97) and (6.93) for (n − 1, n) it follows that

there exists a constant C (which does not depend on (x, x′, v′)) such that

(6.107) Im+1,n(x, x′, v′) ≤ C

∫

X

∣∣∣ln
(

1
|(z−x′)⊥|

)∣∣∣
|x− z|n−1

dz.

Performing the change of variables z − x′ = z′ + λv′, z′ · v′ = 0, we obtain
(6.108)

Im+1,n(x, x′, v′) ≤ C

∫

z′·v′=0
|z′|≤D

(∫ D

−D

dλ

|x− x′ − z′ − λv′|n−1

)∣∣∣∣ln
(

1

|z′|

)∣∣∣∣ dz
′.
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Combining (6.108) and (6.96) (with “w = x− x′ − z′”), we obtain

(6.109) Im+1,n(x, x′, v′) ≤ 2
n+1
2 C

n− 2
I ′′n,n(x, x′, v′),

where

I ′′n,n(x, x′, v′) :=

∫

z′·v′=0
|z′|≤D

∣∣∣ln
(

1
|z′|

)∣∣∣
|(x − x′)⊥ − z′|n−2

dz′(6.110)

=

∫

z′∈Bn−1(0,D)

∣∣∣ln
(

1
|z′|

)∣∣∣
||(x − x′)⊥|e1 − z′|n−2

dz′

≤
∫

z′∈Bn−1(0,D)

C′

|z′| 12 ||(x − x′)⊥|e1 − z′|n−2
dz′,

and C′ := supr∈(0,D) r
1
2 | ln(r)|, e1 = (1, 0, . . . , 0) ∈ Rn−1, and where Bn−1(0, D)

denotes the Euclidean ball of Rn−1 of center 0 and radius D. Using spherical coor-
dinates z′ = |(x− x′)⊥|e1 + rΩ, (r,Ω) ∈ (0,+∞) × Sn−2 and Ω = (sin(θ), cos(θ)Θ)
((θ,Θ) ∈ (−π

2 ,
π
2 )× Sn−3), and using the estimate ||(x− x′)⊥|e1 + rΩ| ≥ |r+ |(x−

x′)⊥| sin(θ)|, we obtain
(6.111)

I ′′n,n(x, x′, v′) ≤ |Sn−3|
∫ π

2

−π
2

cosn−3(θ)

(∫ 2D

0

C′

|r + |(x− x′)⊥| sin(θ)| 12
dr

)
dθ.

Note that
∫ 2D

0

C′

|r + |(x− x′)⊥| sin(θ)| 12
dr ≤

∫ 3D

−3D

C′

|r| 12
dr <∞,(6.112)

for θ ∈ (−π
2 ,

π
2 ). Combining (6.109), (6.111) and (6.112), we obtain

(6.113) Im+1,n(x, x′, v′) ≤ 2
n+1
2 CC′|Sn−3|
n− 2

∫ π
2

−π
2

cosn−3(θ)dθ

∫ 3D

−3D

r−
1
2 dr.

Therefore (6.94) holds for “m”= m+ 1 = n. �

Proof of Lemma 6.3.3. We first prove the estimates (6.114) and (6.115) given
below ∫

X

dz1
|z0 − z1||z1 − z|n−1

≤ C2 − C′
2 ln(|z0 − z|), when n = 2(6.114)

∫

X

dz1
|z0 − z1|m|z1 − z|n−1

≤ Cn

|z0 − z|m−1
, when n ≥ 3,(6.115)

for (z0, z) ∈ X2 and for m ∈ N such that z0 6= z and 2 ≤ m ≤ n − 1, where the
positive constants Cn, C′

2 do not depend on (z0, z).
Let (z0, z) ∈ X2 and let m ∈ N be such that z0 6= z and 1 ≤ m ≤ n − 1.

Performing the change of variables z1 = z + r1Ω1, (r1,Ω1) ∈ (0, D) × Sn−1 (where
D denotes the diameter of X), we obtain

∫

X

dz1
|z0 − z1|m|z1 − z|n−1

≤
∫ D

0

∫

Sn−1

dΩ1

|rΩ − r1Ω1|m
dr1

≤
∫ D

0

∫

Sn−1

dΩ1

|re1 − r1Ω1|m
dr1(6.116)
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where e1 = (1, 0, . . . , 0) ∈ Rn (we also used a rotation that maps Ω to the vector
e1) and

(6.117) r = |z − z0|, Ω =
z0 − z

|z0 − z| .

Performing the change of variables Ω1 = (sin(θ1), cos(θ1)Θ1), (θ1,Θ1) ∈ (−π
2 ,

π
2 )×

Sn−2), on the right hand side of (6.116) we obtain
(6.118)∫ D

0

∫

Sn−1

dΩ1

|re1 − r1Ω1|m
dr1 = c(n)

∫ D

0

∫ π
2

−π
2

cos(θ1)
n−2dθ1

(r2 + r21 − 2rr1 sin(θ1))
m
2
dr1,

where c(n) := |Sn−2| (by convention c(2) := 2).
Consider the case n = 2 and m = 1. Using (6.118) and the estimate (r2 + r21 −

2rr1 sin(θ1))
1
2 ≥ 2−

1
2 (|r1 − r sin(θ1)| + r| cos(θ1)|), we obtain

(6.119) S(r) :=

∫ D

0

∫ π
2

−π
2

dθ1

(r2 + r21 − 2rr1 sin(θ1))
m
2
dr1

≤
∫ 2π

0

∫ D

0

√
2dr1

|r1 − r sin(θ1)| + r| cos(θ1)|
dθ1

≤
∫ 2π

0

∫ 2D

−2D

√
2dr1

|r1| + r| cos(θ1)|
dθ1 ≤

∫ 2π

0

∫ 2D

0

2
3
2 dr1

r1 + r| cos(θ1)|
dθ1

(6.120)

≤ 2
3
2

∫ 2π

0

ln

(
2D + r| cos(θ1)|
r| cos(θ1)|

)
dθ1 ≤ 2

3
2

∫ 2π

0

ln

(
4D

r| cos(θ1)|

)
dθ1 ≤ C1−2

7
2π ln(r),

where C1 := 2
3
2

∫ 2π

0 (ln(4D)− ln(| cos(θ2)|))dθ2 <∞. Estimate (6.114) follows from
(6.116), (6.118) and (6.120).

Consider the case n ≥ 3 and 2 ≤ m ≤ n− 1. Note that

(6.121) r cos(θ1) ≤
√
r2 + r21 − 2rr1 sin(θ1),

for (r, r1, θ1) ∈ (0,+∞)2 × (−π
2 ,

π
2 ). Combining (6.118) and (6.121), we obtain

∫ D

0

∫

Sn−1

dΩ1

|re1 − r1Ω1|m
dr ≤ c(n)

rm−2

∫ D

0

∫ π
2

−π
2

cos(θ1)
n−mdθ1

(r2 + r21 − 2rr1 sin(θ1))
dr1

≤ c(n)

rm−2

∫ D

0

∫ π
2

−π
2

cos(θ1)dθ1
(r2 + r21 − 2rr1 sin(θ1))

dr1 =
c(n)

rm−1

∫ D

0

ln
(

r+r1

r−r1

)

r1
dr1

=
c(n)

rm−1

∫ D
r

0

ln
(

1+η
1−η

)

η
dη(6.122)

(we perform the change of variables r1 = rη, dr1 = rdη). Finally (6.115) follows

from (6.122) and (6.116) and the estimate
∫ +∞
0

ln( 1+η
1−η )
η dη < +∞.

We are now ready to prove (6.53). Let n ≥ 2. From (6.47), it follows that

(6.123) |γn+1(z0, zn+1, vn+1)| ≤ ‖σa‖∞‖k‖n+1
L∞(X×Sn−1×Sn−1)R(z0, zn+1),
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for a.e. (z0, zn+1, vn+1) ∈ X ×X × Sn−1, where

(6.124) R(z0, zn+1) =

∫

Xn

1

Πn+1
i=1 |zi − zi−1|n−1

dz1 . . . dzn,

for (z0, zn+1) ∈ X ×X .
Assume n = 2. Combining (6.114) and (6.124) we obtain

(6.125) R(z0, z3) ≤
∫

X

C − C′ ln(|z3 − z1|)
|z1 − z0|

dz1.

Performing the change of variables z1 = z0+r1Ω1, on the right hand side of (6.125),
we obtain

(6.126) R(z0, z3) ≤
∫ D

0

∫

S1

(C − C′ ln(|r1Ω1 + z0 − z3|))dΩ1dr1.

Assume n ≥ 3. Using (6.124) and (6.115), we obtain

(6.127) R(z0, zn+1) ≤ C

∫

X2

1

|zn+1 − zn|n−1|zn − zn−1|n−1|zn−1 − z0|
dzndzn−1,

where C does not depend on (z0, zn+1). Performing the change of variables zi =
zi+1 + riΩi, (ri,Ωi) ∈ (0,+∞) × Sn−1, i = n− 1, n, we obtain

R(z0, zn+1) ≤
∫

(0,D)2×(Sn−1)2

drn−1drndΩn−1dΩn

|zn+1 − z0 + rnΩn + rn−1Ωn−1|

=

∫

(0,D)×Sn−1

∫

(0,D)×Sn−1

drn−1dΩn−1

||zn+1 − z0 + rnΩn|e1 + rn−1|
drndΩn,(6.128)

where e1 = (1, 0, . . . , 0) ∈ Rn. Performing the change of variables Ω = (sin(θ), cos(θ)Θ),
(θ,Θ) ∈ (−π

2 ,
π
2 ) × Sn−2, we obtain

(6.129)

∫ D

0

∫

Sn−1

dΩ

||w|e1 − rΩ|dr ≤ c(n)S(|w|),

for w ∈ Rn, w 6= 0, where c(n) := |Sn−2| and S(|w|) is defined by (6.119). Therefore
from (6.129), (6.120) and (6.128), it follows that

(6.130) R(z0, zn+1) ≤
∫

(0,D)×Sn−1

(C − C′ ln(|zn+1 − z0 + rnΩn|))drndΩn,

where the positive constants C, C′ do not depend on (z0, zn+1).
Finally from (6.126) and (6.130), it follows that

(6.131) R(z0, zn+1) ≤
∫

(0,D)×Sn−1

(C − C′ ln(|zn+1 − z0 + rnΩn|))drndΩn,

for n ≥ 2 and for (z0, zn+1) ∈ X2, z0 6= zn+1, where the positive constants C, C′

do not depend on (z0, zn+1).
Let n ≥ 2 and let (z0, zn+1) ∈ X2, z0 6= zn+1. From (6.131) and the estimate

|rn + (z0 − zn+1) · Ωn| ≤ |rnΩn + z0 − zn+1| it follows that

R(z0, zn+1) ≤ c(n)CD − C′
∫

Sn−1

∫ D

0

ln(|rn + (z0 − zn+1) · Ωn|)drndΩn

≤ c(n)(CD − C′
∫ 2D

−2D

ln(|rn|)drn) = c(n)(CD − 2C′
∫ 2D

0

ln(rn)drn),(6.132)

where c(n) := |Sn−1|. Statement (6.53) follows from (6.123) and (6.132).
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We prove (6.54). We first obtain

(6.133) K̄n+1(I −K)−1Jφ(x) =

∫

X×Sn−1

γn+1(x, x
′, v′)(I −K)−1Jφ(x, v)dv,

for a.e. x ∈ X and for φ ∈ L1(Γ−, dξ). Therefore using (6.53) we obtain

(6.134) ‖K̄n+1(I −K)−1Jφ(x)‖L∞(X) ≤ C‖φ‖L1(Γ−,dξ),

for φ ∈ L1(Γ−, dξ), where C := ‖γn+1‖L∞(X×X×Sn−1)‖(I−K)−1J‖L(L1(Γ−,dξ),L1(X×Sn−1)).
Therefore there exists a (unique) function Φ ∈ L∞(X × Γ−) such that

(6.135) K̄n+1(I −K)−1Jφ(x) =

∫

Γ−

Φ(x, x′, v′)φ(x′, v′)dξ(x′, v′).

Set Γn+1(x, x
′, v′) := |ν(x′) · v′|Φ(x, x′, v′) for a.e. (x, x′, v′) ∈ X × Γ− and recall

the definition of dξ. Then (6.54) follows from (6.135). �

6.4. Derivation of Stability Estimates

6.4.1. Estimates for Ballistic Part.
Proof of Theorem 6.2.3. Let φ ∈ L∞(X), ‖φ‖L∞(X) ≤ 1 and ψ ∈ L1(Γ−, dξ),

‖ψ‖L1(Γ−,dξ) ≤ 1. We have :

(6.136)

∣∣∣∣
∫

X

φ(x)
[(
A− Ã

)
ψ
]
(x)dx

∣∣∣∣ ≤ ‖A− Ã‖L(L1(Γ−,dξ),L1(X)).

Using (6.136) and the decomposition of the albedo operator (see Theorem 6.2.1)
we obtain

(6.137) |∆0(φ, ψ)| ≤ ‖A− Ã‖L(L1(Γ−,dξ),L1(X)) + |∆1(φ, ψ)| ,
where

∆0(φ, ψ) =

∫

X×Sn−1

φ(x) (σa(x, v′)E(x, x − τ−(x, v′)v′)

−σ̃a(x, v′)Ẽ(x, x − τ−(x, v′)v′)
)
ψ(x− τ−(x, v′)v′, v′)dv′dx,(6.138)

∆1(φ, ψ) =

∫

X

φ(x)

∫

Γ−

(Γ1 − Γ̃1)(x, x
′, v′)ψ(x′, v′)dµ(x′)dv′dx,(6.139)

and where Γ1 = α1 + Γ2 (and Γ̃1 = α̃1 + Γ̃2).
Note that performing the change of variables x = x′ + tv′ on the right-hand

side of (6.138), we obtain

(6.140) ∆0(φ, ψ) =

∫

Γ−

∫ τ+(x′,v′)

0

φ(x′ + tv′)(η − η̃)(t;x′, v′)dtψ(x′, v′)dξ(x′, v′),

where
(6.141)

η(t;x′, v′) = σa(x′+tv′, v′)e−
∫

t

0
σ(x′+sv′,v′)ds, η̃(t;x′, v′) = σ̃a(x′+tv′, v′)e−

∫
t

0
σ̃(x′+sv′,v′)ds.

We use the following result: For any function G ∈ L1(Γ−, dξ) and for a.e.
(x′0, v

′
0) ∈ Γ− there exists a sequence of functions ψε,x′

0,v′
0
∈ L1(Γ−, dξ) (which

does not depend on the function G), ‖ψε,x′
0,v′

0
‖L1(Γ−,dξ) = 1, ψε,x′

0,v′
0
≥ 0 and
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suppψε,x′
0,v′

0
⊆ {(x′, v′) ∈ Γ− | |x′ −x′0|+ |v− v′0| < ε} such that the following limit

holds

(6.142)

∫

Γ−

G(x′, v′)ψε,x′
0,v′

0
(x′, v′)dξ(x′, v′) → G(x′0, v

′
0), as ε→ 0+

(we refer the reader to [106, Corollary 4.2] for the proof of this statement). In
particular, the limits (6.142) holds for some sequence ψε,x′

0,v′
0

when (x′0, v
′
0) belongs

to the Lebesgue set ofG denoted by L(G) and the complement of L(G) is a negligible
subset of Γ− (see [106]).

Let L := ∩m∈N∪{0}L(Gm) where Gm is the measurable function on Γ− defined
by

(6.143) Gm(x′, v′) =

∫ τ+(x′,v′)

0

tm(η − η̃)(t;x′, v′)dt,

for m ∈ N∪{0}. Note that the complement of L is still negligible. Let (x′0, v
′
0) ∈ L

and let φ ∈ C0(0, τ+(x′0, v
′
0)) where C0(0, τ+(x′0, v

′
0)) denotes the set of continu-

ous and compactly supported functions on (0, τ+(x′0, v
′
0)). Consider the sequence

(φm) ∈ (L∞(X))N defined by

(6.144) φm(x) = χ[0, 1
m+1 )(|x′|)φ(t),

for x ∈ X and m ∈ N where x = x′0 + tv′0 + x′, x′ · v′0 = 0, where χ[0, 1
m+1 )(t) = 0

when t ≥ 1
m+1 and χ[0, 1

m+1 )(t) = 1 otherwise. The support of φm concentrates

around the line which passes through x′0 with direction v′0. From (6.140), (6.142),
(6.143) (and the Stone-Weierstrass theorem), we obtain that

(6.145) lim
ε→0+

∆0(φm, ψε,x′
0,v′

0
) =

∫ τ+(x′
0,v′

0)

0

φm(x′0 + tv′0)(η − η̃)(t;x′0, v
′
0)dt.

For the single-scattering part, using (6.21) and (6.48) and (6.50) for m = 1 we
obtain:

(6.146) |∆1(φm, ψε,x′
0,v′

0
)| ≤ C

∫

Γ−

Φm(x′, v′)ψε,x′
0,v′

0
(x′, v′)dξ(x′, v′)

where C = ‖ (Γ1−Γ̃1)(x,x′,v′)
|ν(x′)·v′|wn(x,x′,v′)‖∞ and Φ is the function from Γ− to R defined by

(6.147) Φm(x′, v′) =

∫

X

wn(x, x′, v′)|φm(x)|dx

(where wn(x, x′, v′) is defined in Theorem 6.2.4). From the definition of wn, it
follows that Φm is a bounded and continuous function on Γ−. Therefore using
Lebesgue dominated convergence theorem, we obtain
(6.148)

lim
ε→0+

∫

Γ−

Φm(x′, v′)ψε,x′
0,v′

0
(x′, v′)dξ(x′, v′) = Φm(x′0, v

′
0) =

∫

X

wn(x, x′0, v
′
0)|φm(x)|dx.

Then using (6.144), (6.148) and Lebesgue convergence theorem, we obtain
limm→+∞

∫
X
wn(x, x′0, v

′
0)|φm(x)|dx = 0. Therefore taking account of (6.146) and

(6.148), we obtain

(6.149) lim
m→+∞

lim
ε→0+

∆1(φm, ψε,x′
0,v′

0
) = 0.
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Combining (6.137) (with ψ = ψε,x′,v′), (6.145), (6.144), (6.149), we obtain

(6.150)

∣∣∣∣∣

∫ τ+(x′,v′)

0

φ(t)(η − η̃)(t;x′, v′)dt

∣∣∣∣∣ ≤ ‖A− Ã‖L(L1(Γ−,dξ),L1(X)),

for (x′, v′) ∈ L and φ ∈ C0(0, τ+(x′, v′)). From the density of C0(0, τ+(x′, v′)) in
L1(0, τ+(x′, v′)), it follows that (6.150) also holds for φ ∈ L1(0, τ+(x′, v′)). Applying
(6.150) on φ(t) := sign(η − η̃)(t;x′, v′) for a.e. t ∈ (0, τ+(x′, v′)) (where sign(s) = 1
when s ≥ 0 and sign(s) = −1 otherwise), we obtain (6.23). 2

Proof of Theorem 6.2.5. Let us define

ζ(t) := ζ(t;x′, v′) = e−
∫

t

0
σa(x′+sv′,v′)ds, η(t) := η(t;x′, v′) = σa(x′+tv′, v′)ζ(t;x′, v′).

Note that η(t) =
d

dt
ζ(t). Then,

|ζ(t) − ζ̃(t)| =
∣∣∣
∫ t

0

d

dt
(ζ − ζ̃)(s)ds

∣∣∣ ≤
∫ t

0

|η − η̃|(s)ds ≤ ‖A− Ã‖L(L1(Γ−,dξ);L1(X)),

thanks to (6.23). The point-wise (in t) control on ζ(t) and the estimate (6.23) for
η(t) show by application of the triangle inequality and the fact that ζ(t) is bounded
from below by the positive constant e−Mdiam(X) that
(6.151)∫ τ+(x′,v′)

0

∣∣∣σa(x′ + tv′, v′) − σ̃a(x′ + tv′, v′)
∣∣∣dt ≤ C‖A− Ã‖L(L1(Γ−,dξ);L1(X)).

Here, the constant C depends on M and is of order eMdiam(X). Not surprisingly,
reconstructions deteriorate when the optical depth Mdiam(X) of the domain in-
creases. This shows that∫

X

∣∣σa(x, v′) − σ̃a(x, v′)
∣∣dx ≤ C‖A− Ã‖L(L1(Γ−,dξ);L1(X)).

This concludes the proof of the theorem. �

Proof of Theorem 6.2.6. Let G := {(t, x′, v′) ∈ (0,+∞)×Γ− | t ∈ (0, τ+(x′, v′))}
and let h ∈ L∞(G) be defined by

(6.152) h(t;x′, v′) = −
∫ t

0

σ(x′ + sv′, v′)ds+

∫ τ+(y′,v′)

t

σ(y′ + sv′, v′)ds,

for (t, x′, v′) ∈ G. The function h̃ ∈ L∞(G) is defined similarly.

We first prove a stability estimate (6.158) on h, h̃. Let (y0, v0) ∈ Γ−, t ∈
(0, τ+(y0, v0)). Set (y1, v1) := (y0 + τ+(y0, v0)v0,−v0) and t1 = τ+(y0, v0) − t. Due
to the symmetry of σa, σ with respect to the speed variable v (σa, σ̃a bounded from
below), we obtain:

(6.153)
η(t; y0, v0)

η(t1; y1, v1)
= eh(t;y0,v0),

η̃(t; y0, v0)

η̃(t1; y1, v1)
= eh̃(t;y0,v0),

where η is defined by (6.141). Note that from (6.152), it follows that |h(t; y0, v0)| ≤
‖σ‖∞τ+(y0, v0) ≤ D‖σ‖∞ where D denotes the diameter of X . A similar estimate

is valid for h̃ and σ̃. Therefore using the fact that |a− ã| ≤ e−min(a,ã)|ea − eã| for
ã = h(t), we obtain

(6.154) |h− h̃|(t; y0, v0) ≤ eD max(‖σ‖∞,‖σ̃‖∞)

∣∣∣∣
η(t; y0, v0)

η(t1; y1, v1)
− η̃(t; y0, v0)

η̃(t1; y1, v1)

∣∣∣∣ .
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Note that from (6.141) it follows that

(6.155) 0 < σ0e
−D‖σ‖∞ ≤ η(s; y, v) ≤ ‖σa‖∞.

for (y, v) ∈ Γ− and s ∈ (0, τ+(y, v)), where D is the diameter of X . A similar

estimate is valid for (σ̃a, η̃). Therefore using the equality a
b − ã

b̃
= (a−ã)b̃+(b−b̃)ã

bb̃
(for

a = η(t; y0, v0), b = η(t1; y1, v1)), we obtain
∣∣∣∣
η(t; y0, v0)

η(t1; y1, v1)
− η̃(t; y0, v0)

η̃(t; y1, v1)

∣∣∣∣

≤ eD(‖σ‖∞+‖σ̃‖∞)

σ0σ̃0

(
η(t; y0, v0)|η − η̃|(t1; y1, v1) + η(t1; y1, v1)|η − η̃|(t; y0, v0)

)

≤ eD(‖σ‖∞+‖σ̃‖∞)

σ0σ̃0

(
‖σa‖∞|η − η̃|(t1; y1, v1) + ‖σ̃a‖∞|η − η̃|(t; y0, v0)

)
.(6.156)

Using (6.156), integrating in the t variable (t1 = τ+(y0, v0) − t) and using (6.23),
we obtain

∫ τ+(y0,v0)

0

∣∣∣∣
η(t; y0, v0)

η(t1; y1, v1)
− η̃(t; y0, v0)

η̃(t1; y1, v1)

∣∣∣∣ dt ≤ eD(‖σ‖∞+‖σ̃‖∞)

σ0σ̃0
(‖σa‖∞ + ‖σ̃a‖∞)

×‖A− Ã‖L(L1(Γ−,dξ),L1(X)).(6.157)

Combining (6.154) and (6.157) we obtain

(6.158)

∫ τ+(y0,v0)

0

|h− h̃|(t; y0, v0)dt ≤ C‖A − Ã‖L(L1(Γ−,dξ),L1(X))

for a.e. (y0, v0) ∈ Γ−, where the constant C depends only on D, ‖σ‖∞, ‖σ̃‖∞,
‖σa‖∞ and ‖σ̃a‖∞. We now prove (6.161). Estimate (6.161) is, in particular, a
consequence of the identities

dh(t; y0, v0)

dt
= −2σ(y0 + sv0, v0),

dh̃(t; y0, v0)

dt
= −2σ̃(y0 + sv0, v0),

for a.e. (y0, v0) ∈ Γ− and t ∈ (0, τ+(y0, v0)).
Consider the operator Tδσ(.,v) associated with δσ = σ − σ̃ :

Tδσ(.,v) : W 1,∞
0 (X) → R, φ 7→

∫

X

δσ(x, v)ϕ(x)dx

for v ∈ Sn−1. Using the change of variable x = y + tv (dx = |ν(y) · v|dtdy,
y ∈ ∂X−(v) := {x′ ∈ ∂X | ν(x′) · v < 0}, t ∈ (0, τ+(y, v))) we have

∣∣〈Tδσ(.,v), ϕ〉
∣∣ =

∣∣∣∣∣

∫

∂X−(v)

|ν(y) · v|
∫ τ+(y,v)

0

δσ(y + tv, v)ϕ(y + tv)dtdµ(y)

∣∣∣∣∣ ,

and using integration by part in the inner integral we have:
(6.159)

∣∣〈Tδσ(.,v), ϕ〉
∣∣ ≤

∫

∂X−(v)

|ν(y) · v|
2

∣∣∣∣∣

∫ τ+(y,v)

0

(h− h̃)(t; y, v)v · ∇ϕ(y + tv)dt

∣∣∣∣∣ dµ(y)

≤ 1

2
‖∇ϕ‖∞

∫

∂X−(v)

∫ τ+(y,v)

0

∣∣∣h− h̃
∣∣∣ (t; y, v)dtdµ(y)

≤ C‖A− Ã‖L(L1(Γ−,dξ),L1(X))‖ϕ‖W 1,∞
0 (X),(6.160)
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for a.e. v ∈ Sn−1 (we used (6.158)). Identifying δσ and Tδσ, we obtain

(6.161) ‖σ − σ̃‖L∞(Sn−1,W−1,1(X)) ≤ C‖A − Ã‖L(L1(Γ−,dξ),L1(X)).

We prove the following estimate

(6.162) ‖σa − σ̃a‖L∞(Sn−1,L1(X)) ≤ C‖A− Ã‖L(L1(Γ−);L1(X)),

where C depends on the uniform bounds σ0 andM . Combining (6.161) and (6.162),
we obtain (6.28), which completes the proof of Theorem 6.2.6. The estimate on

σa(x, v′) comes from an estimate on
∫ t

0 σ(x′ + sv′, v′)ds by the triangle inequality.
The latter is given by

2

∫ t

0

σ(x′ + sv′, v′)ds =

∫ τ+(x′,v′)

0

σ(x′ + sv′, v′)ds+
( ∫ t

0

−
∫ τ+(x′,v′)

t

)
σ(x′ + sv′, v′)ds.

We just obtained control of

( ∫ t

0

−
∫ τ+(x′,v′)

t

)
(σ − σ̃)(x′ + sv′, v′)ds,

in the L1 sense in the t−variable. It thus remains to control the constant term∫ τ+(x′,v′)

0 (σ − σ̃)(x′ + sv′, v′)ds.
Note that the latter term is nothing but the X-ray transform (Radon transform

when n = 2) of σ along the line of direction v′ passing through x′. In the setting of
measurements that are supposed to be accurate in L(L1(Γ−, dξ);L1(X)), the line
integral is not directly captured as it corresponds to a measurement performed at
a point x = x′ + τ+(x′, v′)v′. This is the reason why we assume that σ is known in
the δ−vicinity of ∂X .

Knowledge of σ and σ̃ in the δ0-vicinity of ∂X allows one to control
∫ τ+(x′,v′)

0 σ(x′+

sv′, v′)ds by ‖A − Ã‖L(L1(Γ−,dξ);L1(X)). When the X-ray transform of σ is well
captured by available measurements, as for instance in the presence of boundary
measurements [24], then δ0 can be set to 0.

More precisely, we find that

∫ τ+(x′,v′)

0

(σ − σ̃)(x′ + sv′, v′)ds =

∫ τ+(x′,v′)

0

φ(s)(σ − σ̃)(x′ + sv′, v′)ds,

where φ(s) ∈ C∞
0 (0, τ+(x′, v′)) is equal to 1 for δ0 < s < τ+(x′, v′)− δ0. Integrating

by parts, this shows that

∣∣∣
∫ τ+(x′,v′)

0

(σ − σ̃)(x′ + sv′, v′)ds
∣∣∣

≤‖(σ − σ̃)(x′ + tv′, v′)‖W−1,1
t (0,τ+(x′,v′))‖φ‖W 1,∞(0,τ+(x′,v′)) ≤C‖A− Ã‖L(L1(Γ−,dξ);L1(X)),

thanks to estimate (6.158). By Lipschitz regularity of the exponential, we thus have
that
(6.163)∫ τ+(x′,v′)

0

∣∣∣e−
∫

t

0
σ(x′+sv′,v′) − e−

∫
t

0
σ̃(x′+sv′,v′)

∣∣∣dt ≤ C‖A− Ã‖L(L1(Γ−,dξ);L1(X)).

The stability result (6.162) on σa(x, v′) follows from (6.23) and the triangle inequal-
ity as in the proof of Theorem 6.2.5. �
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Proof of Corollary 6.2.7. Let p > 1. We first derive (6.29) from the following
estimate

(6.164) ‖σ − σ̃‖L∞(Sn−1,W−1,p(X)) ≤ C‖A − Ã‖
1
p

L(L1(Γ−,dξ),L1(X)).

Assuming that σ− σ̃ is bounded by C0 in L∞ (Sn−1,W r,p(X)
)
, then using (6.164)

and using the complex interpolation result [34, Theorem 6.4.5 pp. 153], we obtain
(6.165)

‖σ − σ̃‖W s,p(X) ≤ ‖σ − σ̃‖1−θ
W−1,p(X)‖σ − σ̃‖θ

W r,p(X) ≤ C′‖A− Ã‖
1−θ

p

L(L1(Γ−,dξ),L1(X)),

for −1 ≤ s ≤ r, where s = (1 − θ) × (−1) + rθ and C′ = C1−θCθ
0 . This proves

(6.29).

We prove (6.164). From (6.152), it follows that |h − h̃|(t;x′, v′) ≤ (|h| +

|h̃|)(t; y0, v0) ≤ D(‖σ‖∞ + ‖σ̃‖∞), where D is the diameter of X . Hence we obtain

(6.166)
∣∣∣h− h̃

∣∣∣
p

(t;x′, v′) ≤ Dp−1(‖σ‖∞ + ‖σ̃‖∞)p−1|h− h̃|(t;x′, v′),

for (x′, v′) ∈ Γ− and t ∈ (0, τ+(x′, v′)). Using (6.159) and Hölder inequality, and
using (6.166), we obtain

∣∣∣∣
∫

X

(σ − σ̃)(x, v)ϕ(x)dx

∣∣∣∣ ≤ 1

2

(∫

∂X−(v)

∫ τ+(y,v)

0

|h− h̃|p(t; y, v)dtdµ(y)

) 1
p

‖∇ϕ‖Lp′(X)

≤ C‖A − Ã‖
1
p

L(L1(Γ−,dξ),L1(X))‖ϕ‖W 1,p′(X),(6.167)

for a.e. v ∈ Sn−1 and for ϕ ∈ W 1,p′

0 (X) := {ψ ∈ Lp′

(X) | suppψ ⊂ X, ∇ψ ∈
Lp′

(X,Cn)} where p′−1
+ p−1 = 1. Estimate (6.167) proves (6.164). �

6.4.2. Estimates for Single Scattering.

Proof of Theorem 6.2.4. Let (x, x′) ∈ X × ∂X . Set v′ = x̂− x′ and let v′⊥ ∈
Sn−1 be such that v′ · v′⊥ = 0. Let t′0 = |x − x′|, then x = x′ + t′0v

′. First assume
n = 2. Using the equality α1 = Γ1 − Γ2, and using (6.21), (6.48), we obtain

|α1 − α̃1|(x + εv′⊥, x′, v′)

|ν(x′) · v′|
(
1 + ln

(
|(t′0−τ+(x′,v′))v′+εv′⊥|+(τ+(x′,v′)−t′0)

|t′0v′+εv′⊥|−t′0

))

≤
∥∥∥∥∥

(Γ1 − Γ̃1)(z, z
′, w′)

|ν(z′) · w′|w2(z, z′, w′)

∥∥∥∥∥
∞
+

∥∥∥ (Γ2−Γ̃2)(z,z′,w′)
|ν(z′)·w′|

∥∥∥
∞

1 + ln
(

|(t′0−τ+(x′,v′))v′+εv′⊥|+(τ+(x′,v′)−t′0)

|t′0v′+εv′⊥|−t′0

)(6.168)

for ε > 0. Therefore using (6.168) as ε→ 0+ and (6.22), we obtain (6.24).
Assume n ≥ 3. Using the equality α1 = Γ1 − Γ2, and using (6.21), (6.50) (for

“m = 1”), we obtain

εn−2 |α1 − α̃1|(x+ εv′⊥, x′, v′)

|ν(x′) · v′| ≤
∥∥∥∥∥

(Γ1 − Γ̃1)(z, z
′, w′)

|ν(z′) · w′|wn(z, z′, w′)

∥∥∥∥∥
L∞(X×Γ−)

+ε

∥∥∥∥∥
|z − z′ − ((z − z′) · w′)w′|n−3(Γ2 − Γ̃2)(z, z

′, w′)

|ν(z′) · w′|

∥∥∥∥∥
L∞(X×Γ−)

(6.169)

for ε > 0. Therefore using (6.169) as ε→ 0+ and (6.22), we obtain (6.25). 2
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Proof of Lemma 6.2.9. First consider the case n = 2. The statement in Lemma
6.2.9 is a straightforward consequence of (6.35) and we have the following inversion
formula:

(6.170) g =
(πh(g) − 1

πh(g) + 1

) 1
2

, g ∈ [0, 1).

Let now n = 3. Using (6.36) and the identity cos(θ) = 1 − 2 sin2( θ
2 ), θ ∈ R, we

obtain

2πh(g) =
1 + g

(1 − g)2

∫ π

0

1

2

(
1 +

4g

(1 − g)2
sin2

(θ
2

))− 3
2

dθ,

for g ∈ [0, 1). Performing the change of variables θ = 2 arcsin( t√
1+t2

) (dθ = 2dt
1+t2 ),

we obtain

2πh(g) =
1 + g

(1 − g)2

∫ +∞

0

(1 + t2)
1
2

(
1 +

(
1 + g

1 − g

)2

t2
)− 3

2

dt.

Performing the change of variables v = 1+g
1−g t, we obtain

2πh(g) =

∫ +∞

0

√√√√√
(

1
1−g

)2

+
(

1
1+g

)2

v2

(1 + v2)3
dv

=
1

1 − g

∫ +∞

0

√√√√√1 +
(

1−g
1+g

)2

v2

(1 + v2)3
dv,(6.171)

for g ∈ [0, 1). Note that from the above, it follows that 2πh(g) = 1
1−g + o( 1

1−g ) as

g → 1− (where we used the integral value
∫ +∞
0

dv

(1+v2)
3
2

=
[

v√
1+v2

]+∞

0
= 1).

Differentiating (6.171) with respect to g, we obtain

2πḣ(g) =
1

(1 − g)3

∫ +∞

0

dv

(1 + v2)
3
2

√
ω2

1(g) + ω2
2(g)v

2

− 1

(1 + g)3
h2(g),(6.172)

for g ∈ [0, 1), where ḣ = dh
dg , ω1(g) := 1

1−g , ω2(g) := 1
1+g , and

(6.173) h2(g) :=

∫ +∞

0

v2dv

(1 + v2)
3
2

√
ω2

1(g) + ω2
2(g)v

2
.

Integrating by parts, we obtain

h2(g) =

∫ +∞

0

ω2
1(g)dv

(1 + v2)
1
2 (ω2

1(g) + ω2
2(g)v

2)
3
2

,(6.174)

for g ∈ [0, 1), where we use that a primitive of the function r(v) := v(1 + v2)−
3
2 is

given by the function R(v) := −(1+v2)−
1
2 and where we used that the derivative of

the function s(v) :=
(
ω2

1(g) + ω2
2(g)v

2
)− 1

2 is given by ṡ(v) = ω2
1(g)

(
ω2

1(g) + ω2
2(g)v

2
)− 3

2 .
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Performing the change of variables “v”= 1−g
1+g v on the right hand side of (6.174),

we obtain

(6.175) h2(g) = ω2
2(g)

∫ +∞

0

(1 + v2)−
3
2

(
1 +

(
1 + g

1 − g

)2

v2

)− 1
2

dv,

for g ∈ [0, 1). Combining (6.172) and (6.175), we obtain

2πḣ(g) =
1

(1 − g)2

[ ∫ +∞

0

(1 + v2)−
3
2

(
1 +

(
1 − g

1 + g

)2

v2
)− 1

2

dv

−
(

1 − g

1 + g

)2 ∫ +∞

0

(1 + v2)−
3
2

(
1 +

(
1 + g

1 − g

)2

v2
)− 1

2

dv
]
,(6.176)

for g ∈ [0, 1). Using the estimate 1 +
(

1+g
1−g

)2

v2 > 1 +
(

1−g
1+g

)2

v2 for v ∈ (0,+∞)

and g ∈ (0, 1), we obtain that the second integral on the right hand side of (6.176) is
less than the first integral on the right-hand side of (6.176) for g ∈ (0, 1). Therefore

using also that the second integral is multiplied by
(

1−g
1+g

)2

(< 1), we obtain ḣ(g) > 0

for g ∈ (0, 1), which proves that h is strictly increasing on (0, 1). �

Proof of Theorem 6.2.10. We prove (6.37). From (6.24), (6.25), (6.30) and
(6.31), it follows that

(6.177) |E(x, x′)σg(x) − Ẽ(x, x′)σg(x)| ≤
∥∥∥∥∥

(Γ1 − Γ̃1)(x, x
′, v′)

|ν(x′) · v′|wn(x, x′, v′)

∥∥∥∥∥
∞
,

for (x, x′) ∈ X × Γ−. Using (6.177) and the estimate min(E(x, x′), Ẽ(x, x′)) ≥
e−D max(‖σ‖∞,‖σ̃‖∞) (see (6.18)) where D is the diameter of X , we obtain

|σg − σ̃g|(x) ≤

eD max(‖σ‖∞,‖σ̃‖∞)
(∥∥∥∥∥

(Γ1 − Γ̃1)(x, x
′, v′)

|ν(x′) · v′|wn(x, x′, v′)

∥∥∥∥∥
∞

+ |E − Ẽ|(x, x′)
)
,(6.178)

for (x, x′) ∈ X×Γ− (we used the identity ab− ãb̃ = (a− ã)b+(b− b̃)ã for a := σg(x)
and b := E(x, x′)). Let (x′, v′) ∈ Γ−. Integrating (6.178) over the line which passes
through x′ with direction v′ and using the stability estimate (6.163) and (6.18), we
obtain

∫ τ+(x′,v′)

0

|σg − σ̃g|(x′+ tv′)dt ≤

C

∥∥∥∥∥
(Γ1 − Γ̃1)(x, x

′, v′)

|ν(x′) · v′|wn(x, x′, v′)

∥∥∥∥∥
∞
+ C‖A− Ã‖L(L1(Γ−,dξ),L1(X)),(6.179)

where C = eD max(‖σ‖∞,‖σ̃‖∞) max(D,C) and C is the constant on the right-hand
side of (6.163). Integrating (6.179) over ∂X−(v′) := {x′ ∈ ∂X | v′ · ν(x′) < 0}
with measure |ν(x′) · v′|dµ(x′), we obtain (6.37). We now prove (6.38). Assume
‖h(g)‖W 1,∞(X) ≤ ‖h(g̃)‖W 1,∞(X). Using (6.34) and min(σs, σ̃s) ≥ σs,0, we obtain

(6.180) ‖h(g) − h(g̃)‖L1(X) ≤
1

σs,0

(
‖(σs − σ̃s)h(g)‖L1(X) + ‖σg − σ̃g‖L1(X)

)
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(we used the identity ab− ãb̃ = (a− ã)b+ (b− b̃)ã for a = σs and b = h(g)). Using
the identity σs = σ − σa, we have

‖(σs − σ̃s)h(g)‖L1(X) ≤ ‖σa − σ̃a‖L1(X)‖h(g)‖L∞(X) + ‖(σ − σ̃)h(g)‖L1(X)

≤ ‖σa − σ̃a‖L1(X)‖h(g)‖L∞(X) + ‖σ − σ̃‖W−1,1(X)‖∇h(g)‖L∞(X)(6.181)

(we used the fact that σ = σ̃ at the vicinity of the boundary ∂X). Finally combining
(6.180), (6.181), (6.37) and (6.28), we obtain (6.38). �

Appendix

For m ≥ 2, let βm denotes the distributional kernel of the operator Km where
K is defined by (6.41). We first give the explicit expression of β2, β3. Then by
induction we give the explicit expression of the kernel βm. Finally we prove Lemma
6.3.1.
From (6.41) it follows that

K2ψ(x, v) =

∫ τ−(x,v)

0

∫

Sn−1

k(x− tv, v1, v)

∫ τ−(x−tv,v1)

0

E(x, x− tv, x− tv − t1v1)

×
∫

Sn−1

k(x− tv − t1v1, v
′, v1)ψ(x − tv − t1v1, v

′)dv′dt1dv1dt,(6.182)

for a.e. (x, v) ∈ X × Sn−1 and for ψ ∈ L1(X × Sn−1). Performing the change of
variables x′ = x − tv − t1v1 (dx′ = tn−1

1 dt1dv1) on the right hand side of (6.182),
we obtain

K2ψ(x, v) =

∫ τ−(x,v)

0

∫

X

k(x− tv, ̂x− tv − x′, v)E(x, x − tv, x′)

×
∫

Sn−1

k(x′, v′, ̂x− tv − x′)ψ(x′, v′)dv′dx′dt,(6.183)

for a.e. (x, v) ∈ X × Sn−1 and for ψ ∈ L1(X × Sn−1). Therefore
(6.184)

β2(x, v, x
′, v′) =

∫ τ−(x,v)

0

E(x, x− tv, x′)
k(x− tv, v1, v)k(x

′, v′, v1)|v1= ̂x−tv−x′

|x− tv − x′|n−1
dt,

for a.e. (x, v, x′, v′) ∈ X × Sn−1 × X × Sn−1. From (6.184) and (6.41) it follows
that

K3ψ(x, v) =
∫
(0,τ−(x,v))×Sn−1 E(x, x− tv)k(x − tv, v1, v)

×
∫

X×Sn−1 β2(x− tv, v1, x
′, v′)ψ(x′, v′)dx′dv′dv1dt

=

∫

X×Sn−1

ψ(x′, v′)

∫ τ−(x,v)

0

∫

Sn−1

k(x− tv, v1, v)

∫ τ−(x−tv,v1)

0

E(x, x − tv, x− tv − t1v1, x
′)

|x− tv − t1v1 − x′|n−1

×k(x− tv − t1v1, v2, v1)k(x
′, v′, v2)v2= ̂x−tv−t1v1−x′dt1dv1dtdx

′dv′,(6.185)

for a.e. (x, v) ∈ X × Sn−1 and for ψ ∈ L1(X × Sn−1). Therefore performing the
change of variables z = x − tv − t1v1 (dz = tn−1

1 dt1dv1) on the right hand side of
(6.184) we obtain

β3(x, v, x
′, v′) =

∫ τ−(x,v)

0

∫

X

E(x, x − tv, z, x′)k(x′, v′, ẑ − x′)

|x− tv − z|n−1|z − x′|n−1

×k(x− tv, ̂x− tv − z, v)k(z, ẑ − x′, ̂x− tv − z)dtdz,(6.186)
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for a.e. (x, v, x′, v′) ∈ X × Sn−1 ×X × Sn−1. Then by induction we have

βm(x, v, zm, vm) =

∫ τ−(x,v)

0

∫

Xm−2

E(x, x − tv, z2, . . . , zm)

|x− tv − z2|n−1Πm−1
i=2 |zi − zi+1|n−1

(6.187)

×k(x− tv, v1, v)Π
m
i=2k(zi, vi, vi−1)|v1= ̂x−tv−z2, vi= ̂zi−zi+1, i=2...m−1dtdz2 . . . dzm−1,

for a.e. (x, v, x′, v′) ∈ X × Sn−1 ×X × Sn−1.
We prove (6.46) for m = 2. From (6.184), (6.45) and (6.42) it follows that

K̄2Jψ(x) =

∫

Sn−1

σa(x, v)

∫

X×Sn−1

∫ τ−(x,v)

0

E(x, x − tv, y)
k(x− tv, v1, v)k(y, v

′, v1)|v1= ̂x−tv−y

|x− tv − y|n−1
dt

×E(y, y − τ−(y, v′)v′)ψ(y − τ−(y, v′)v′, v′)dydv′dv,(6.188)

for a.e. x ∈ X and for ψ ∈ L1(Γ−, dξ). Then performing the change of variable

z = x − tv (t = |x − z|, v = x̂− z and dz = tn−1dtdv) on the right hand side of
(6.188), we obtain

K̄2Jψ(x) =

∫

X×X×Sn−1

σa(x, x̂− z)E(x, z, y)
k(z, v1, v)k(y, v

′, v1)|v1=ẑ−y

|x− z|n−1|z − y|n−1

×E(y, y − τ−(y, v′)v′)ψ(y − τ−(y, v′)v′, v′)dzdydv′,(6.189)

for a.e. x ∈ X and for ψ ∈ L1(Γ−, dξ). Performing the change of variables y =
x′ + t′v′ (x′ ∈ ∂X , t′ > 0, dz = |ν(x′) · v′|dµ(x′)dt′) on the right hand side of
(6.189), we obtain K̄2Jψ(x) =

∫
Γ−
α2(x, x

′, v′)ψ(x′, v′)dµ(x′)dv′ for a.e. x ∈ X

and for ψ ∈ L1(Γ−, dξ), which proves (6.46) for m = 2.
Then we prove (6.47) before proving (6.46) for m ≥ 3. Let m ≥ 3. From

(6.187) and the definition of the operator K̄m (6.45), it follows that

K̄mψ(z0) =

∫

Sn−1

σa(z0, v0)

∫

X×Sn−1

βm(z0, v0, zm, vm)ψ(zm, vm)dzmdvmdv0

=

∫

Sn−1

σa(z0, v0)

∫

X×Sn−1

∫ τ−(z0,v0)

0

∫

Xm−2

E(z0, z0 − tv0, z2, . . . , zm)

×
k(z0 − tv0, v1, v0)Π

m
i=2k(zi, vi, vi−1)|v1= ̂z0−tv0−z2, vi= ̂zi−zi+1, i=2...m−1

|z0 − tv0 − z2|n−1Πm−1
i=2 |zi − zi+1|n−1

×dtdz2 . . . dzm−1ψ(zm, vm)dzmdvmdv0,

for a.e. z0 ∈ X and for ψ ∈ L1(X×Sn−1). Therefore performing the change of vari-

ables z1 = z0−tv0 (dz1 = tn−1dtdv0, t = |z0−z1| and v0 = ẑ0 − z1) on the right hand
side of the above equation we obtain K̄mψ(z0) =

∫
X×Sn−1 γm(z0, zm, vm)ψ(zm, vm)

dzmdvm, for a.e. z0 ∈ X and for ψ ∈ L1(X × Sn−1), which proves (6.47).
We prove (6.46). Let m ≥ 3. From (6.47), (6.45) and (6.42), it follows that

K̄mJψ(z0) =

∫

X×Sn−1

γm(z0, zm, vm)

×E(zm, zm − τ−(zm, vm)vm)ψ(zm − τ−(zm, vm)vm, vm)dzmdvm

=

∫

X×Sn−1

∫

Xm−1

E(z0, . . . , zm, zm − τ−(zm, vm)vm)

Πm
i=1|zi − zi−1|n−1

ψ(zm − τ−(zm, vm)vm, vm)

× [σa(z0, v0)Π
m
i=1k(zi, vi, vi−1)]vi= ̂zi−zi+1, i=0...m−1 dz1 . . . dzm−1dzmdvm,
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for a.e. z0 ∈ X and for ψ ∈ L1(Γ−, dξ). Then performing the change of variables
zm = “zm” +t′vm (“zm”∈ ∂X , t′ > 0, dzm = |ν(“zm”) · vm|dµ(“zm”)dt′), we
obtain K̄mJψ(z0) =

∫
Γ−

αm(z0, zm, vm)ψ(zm, vm)dµ(zm)dvm for a.e. z0 ∈ X and

for ψ ∈ L1(Γ−, dξ), which proves (6.46). �





CHAPTER 7

Stability and Resolution Analysis for a Topological

Derivative Based Imaging Functional

7.1. Problem Formulation

Consider an acoustic anomaly with constant bulk modulus K and volumetric
mass density ρ. The background medium Ω is smooth and homogeneous with bulk
modulus and density equal to one. Suppose that the operating frequency ω is
such that ω2 is not an eigenvalue for the operator −∆ in L2(Ω) with homogeneous
Neumann boundary conditions. The scalar acoustic pressure u generated by the
Neumann data g in the presence of the anomaly D is the solution to the Helmholtz
equation:
(7.1)



∇ ·
(
1Ω\D(x) + ρ−11D(x)

)
∇u+ ω2

(
1Ω\D(x) +K−11D(x)

)
u = 0 in Ω,

∂u

∂ν
= g on ∂Ω,

while the background solution U satisfies

(7.2)





∆U + ω2U = 0 in Ω,

∂U

∂ν
= g on ∂Ω.

Here, ν is the outward normal to ∂Ω and 1D is the characteristic function of D.
The problem under consideration is the following one: given the field u mea-

sured at the surface of the domain Ω, we want to estimate the location of the
anomaly D.

Recently, the concept of topological derivative has been applied in the imaging
of small anomalies. See, for instance, [64, 65, 68, 38, 105, 84, 83]. The concept
first appeared in shape optimization [66, 121, 48]. However, the use of the topo-
logical based imaging functional has been heuristic. As far as we know, it lacks
mathematical justification. A stability and resolution investigation is also missing
in the literature.

The goal of this chapter is threefold: (i) to explain why the concept of topo-
logical derivative works for imaging small acoustic anomalies, (ii) to compare the
topological derivative based imaging functional with other widely used imaging ap-
proaches such as MUltiple Signal Classification (MUSIC), backpropagation, and
Kirchhoff migration, and (iii) to carry out a detailed stability and resolution analy-
sis for the topological derivative based algorithm. Both medium and measurement
noises are considered.
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The chapter is organized as follows. In Section 7.2, we recall an asymptotic
expansion of the boundary pressure perturbations. In Section 7.3, we introduce
the topological derivative based imaging functional and prove that it attains its
maximum at the location of the anomaly. Sections 7.4 and 7.5 are devoted to a
stability and resolution analysis of the topological derivative based functional in the
presence of medium and measurement noise, respectively. In Section 7.6, we review
MUSIC, backpropagation, and Kirchhoff migration imaging approaches. In Section
7.7, we perform a variety of numerical tests to compare the topological derivative
based imaging functional with MUSIC and backpropagation. The chapter ends
with a short discussion.

7.2. Asymptotic Analysis of the Boundary Pressure Perturbations

Suppose that the anomaly is D = za + δB, where za is the “center” of D, B is
a smooth reference domain which contains the origin, and δ, the characteristic size
of D, is a small parameter.

In this section, we provide an asymptotic expansion of the boundary pressure
perturbations, u − U , as δ goes to zero. For doing so, we need to introduce a few
auxiliary functions that can be computed either analytically or numerically.

For B a smooth bounded domain in Rd and 0 < k 6= 1 < +∞ a material
parameter, let v̂ = v̂(k,B) be the solution to

(7.3)





∆v̂ = 0 in Rd \B,

∆v̂ = 0 in B,

v̂|− − v̂|+ = 0 on ∂B,

k
∂v̂

∂ν

∣∣∣∣
−
− ∂v̂

∂ν

∣∣∣∣
+

= 0 on ∂B,

v̂(ξ) − ξ → 0 as |ξ| → +∞.

Here we denote

v|±(ξ) := lim
t→0+

v(ξ ± tνξ), ξ ∈ ∂B,

and
∂v

∂ν

∣∣∣∣
±

(ξ) := lim
t→0+

νT
ξ ∇v(ξ ± tνξ), ξ ∈ ∂B,

if the limits exist, where νξ is the outward unit normal to ∂B at ξ and T stands for
the transpose (so that aT b is the scalar product of the two vectors a and b). Recall
that v̂ plays the role of the first-order corrector in the theory of homogenization
[107].

Define the polarization tensor M(k,B) = (Mpq)
d
p,q=1 by

(7.4) Mpq(k,B) := (k − 1)

∫

B

∂v̂q

∂ξp
(ξ) dξ,

where v̂ = (v̂1, . . . , v̂d)
T is the solution to (7.3).

The formula of the polarization tensor for ellipses will be useful. Let B be
an ellipse whose semi-axes along the x1− and x2−axes and of length a and b,
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respectively. Then, M(k,B) takes the form

(7.5) M(k,B) = (k − 1)|B|




a+ b

a+ kb
0

0
a+ b

b+ ka


 .

For ω ≥ 0, let for x 6= 0,

(7.6) Γω(x) =





eiω|x|

4π|x| , d = 3,

i

4
H

(1)
0 (ω|x|), d = 2,

which is the outgoing fundamental solution for the Helmholtz operator −(∆ + ω2)

in Rd. Here, H
(1)
0 is the Hankel function of the first kind of order zero.

Let Sω
Ω be the single-layer potential for ∆ + ω2, that is,

(7.7) Sω
Ω [ϕ](x) =

∫

∂Ω

Γω(x − y)ϕ(y) dσ(y), x ∈ Rd,

for ϕ ∈ L2(∂Ω). Let the integral operator Kω
Ω be defined by

Kω
Ω[ϕ](x) =

∫

∂Ω

∂Γω(x − y)

∂ν(y)
ϕ(y)dσ(y), x ∈ ∂Ω.

It is well-known that the normal derivative of Sω
Ω obeys the following jump relation:

(7.8)
∂(Sω

Ω[ϕ])

∂ν

∣∣∣∣
±

(x) =

(
± 1

2
I + (K−ω

Ω )∗
)

[ϕ](x) a.e. x ∈ ∂Ω,

for ϕ ∈ L2(∂Ω), where (K−ω
Ω )∗ is the L2-adjoint of K−ω

Ω ; that is,

(K−ω
Ω )∗[ϕ](x) =

∫

∂Ω

∂Γω(x − y)

∂ν(x)
ϕ(y)dσ(y).

For z ∈ Ω, let us now introduce the Neumann function for −(∆ + ω2) in Ω
corresponding to a Dirac mass at z. That is, Nω is the solution to

(7.9)





−(∆x + ω2)Nω(x, z) = δz in Ω,

∂Nω

∂ν
= 0 on ∂Ω.

We will need the following lemma from [19, Proposition 2.8].

Lemma 7.1. The following identity relating the fundamental solution Γω to the
Neumann function Nω holds:

(7.10)

(
− 1

2
I + Kω

Ω

)
[Nω(·, z)](x) = Γω(x − z), x ∈ ∂Ω, z ∈ Ω.

In (7.10), I denotes the identity. Assuming that ω2 is not an eigenvalue for
the operator −∆ in L2(Ω) with homogeneous Neumann boundary conditions, we
can prove, using the theory of relatively compact operators, the existence and
uniqueness of a solution to (7.1) at least for δ small enough [128]. Moreover, the
following asymptotic formula for boundary pressure perturbations that are due to
the presence of a small acoustic anomaly holds [128, 17].
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Theorem 7.2. Let u be the solution of (7.1) and let U be the background
solution. Suppose that D = za + δB, with 0 < (K, ρ) 6= (1, 1) < +∞. Suppose that
ωδ ≪ 1.

(i): For any x ∈ ∂Ω,

u(x) = U(x) − δd
(
∇U(za)T M(1/ρ,B)∇zNω(x, za)

+ω2(K−1 − 1)|B|U(z)Nω(x, za)
)

+ o(δd),(7.11)

where M(1/ρ,B) is the polarization tensor associated with B and 1/ρ.
(ii): Let w be a smooth function such that (∆+ω2)w = 0 in Ω. The weighted

boundary measurements Iw [U, ω] defined by

(7.12) Iw[U, ω] :=

∫

∂Ω

(u − U)(x)
∂w

∂ν
(x) dσ(x)

satisfies

(7.13) Iw [U, ω] ≃ −δd
(
∇U(za)T M(1/ρ,B)∇w(za)+ω2(K−1−1)|B|U(za)w(za)

)
.

Combining (7.11) and Lemma 7.1, the following corollary immediately holds.

Corollary 7.3. For any x ∈ ∂Ω,

(−1

2
I + Kω

Ω)[u− U ](x) = −δd
(
∇U(za)T M(1/ρ,B)∇zΓω(x − za)

+ω2(K−1 − 1)|B|U(z)Γω(x − za)
)

+ o(δd).(7.14)

7.3. Topological Derivative Based Imaging Functional

Suppose thatK > 1 and ρ > 1 (one of the two inequalities could be an equality).
To locate the anomaly D, we consider the quadratic misfit

(7.15) E [U ](zS) =
1

2

∫

∂Ω

|(−1

2
I + Kω

Ω)[uzS − umeas](x)|2 dσ(x)

over the search points zS , where uzS is the solution of (7.1) with D′ = zS + δ′B′,
K ′ > 1, ρ′ > 1, B′ being chosen a priori, and δ′ being small. If K < 1 and ρ < 1,
then we choose K ′ < 1 and ρ′ < 1. According to Theorem 7.2, the synthetic field
uzS can be expanded with respect to δ′ as

uzS (x) = U(x) − (δ′)d
(
∇U(zS)T M(1/ρ′, B′)∇zNω(x, zS)

+ω2(K ′−1 − 1)|B′|U(zS)Nω(x, zS)
)

+ o
(
(δ′)d

)
.
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Therefore, in view of Corollary 7.3, the quadratic misfit function can be expanded
as powers of δ′ as

E [U ](zS) =
1

2

∫

∂Ω

∣∣(−1

2
I + Kω

Ω)[uzS − U + U − umeas](x)
∣∣2 dσ(x)

=
1

2

∫

∂Ω

∣∣(−1

2
I + Kω

Ω)[U − umeas](x)
∣∣2 dσ(x)

−(δ′)dRe
{
∇U(zS)T M(1/ρ′, B′)

∫

∂Ω

∇zΓω(x − zS)
(
(−1

2
I + Kω

Ω)[U − umeas](x)
)
dσ(x)

}

−(δ′)dω2(K ′−1 − 1)|B′|Re
{
U(zS)

∫

∂Ω

Γω(x − zS)
(
(−1

2
I + Kω

Ω)[U − umeas](x)
)
dσ(x)

}

+o
(
(δδ′)d + (δ′)2d

)
.

Let w be defined in terms of umeas − U as

(7.16) w(x) = Sω
Ω(−1

2
I + Kω

Ω)[U − umeas](x) for x ∈ Ω,

where Sω
Ω is defined by (7.7). From (7.8), it follows that w is the solution of the

Helmholtz equation

(7.17)





∆w + ω2w = 0 in Ω,

∂w

∂ν
= (−1

2
I + (K−ω

Ω )∗)(−1

2
I + Kω

Ω)[U − umeas] on ∂Ω.

The function w is obtained by backpropagating the Neumann data

(−1

2
I + (Kω

Ω)∗)(−1

2
I + Kω

Ω)[U − umeas]

inside the background medium (without any anomaly). Note that (Kω
Ω)∗ = (K−ω

Ω )∗.
Therefore, we can rewrite the expansion of the quadratic misfit function as

E [U ](zS) =
1

2

∫

∂Ω

|(−1

2
I + Kω

Ω)[U − umeas](x)|2 dσ(x)

−(δ′)dRe

{
∇U(zS)TM(1/ρ′, B′)∇w(zS) + ω2(K ′−1 − 1)|B′|U(zS)w(zS)

}

+o((δδ′)d + (δ′)2d).

By computing the topological derivative for zS ∈ Ω,

ITD[U ](zS) := −∂E [U ]

∂(δ′)d

∣∣∣∣
(δ′)d=0

,

i.e., minus the derivative of E [U ] with respect to the volume (δ′)d at zero, we obtain
the values of the topological derivative imaging functional:
(7.18)

ITD[U ](zS) = Re

{
∇U(zS)T M(1/ρ′, B′)∇w(zS) + ω2(K ′−1 − 1)|B′|U(zS)w(zS)

}
.

The functional ITD[U ](zS) gives, at every search point zS ∈ Ω, the sensitivity
of the misfit function relative to the insertion of an anomaly D′ = zS + δ′B′ at
the point zS . The maximum of ITD[U ](zS) corresponds to the point at which
the insertion of an anomaly centered at that point maximally decreases the misfit
function. The location of the maximum of ITD[U ](zS) is, therefore, a good estimate
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of the location za of the anomaly that determines the measured field umeas. In fact,
as we show below the functional ITD attains its maximum at zS = za.

Substituting (7.11) into (7.16), we find that

w(zS) = δd

(
∇U(za)T M(1/ρ,B)

∫

∂Ω

∇zΓω(x − za)∇Γω(x − zS) dσ(x)

+ω2(K−1 − 1)U(za)

∫

∂Ω

Γω(x − za)Γω(x − zS) dσ(x)

)
+ o(δd),

and, for j = 1, . . . , d,

∂w(zS)

∂zS
j

= δd

(
∇U(za)T M(1/ρ,B)

∫

∂Ω

∇zΓω(x − za)
∂Γω(x − zS)

∂zS
j

dσ(x)

+ω2(K−1 − 1)U(za)

∫

∂Ω

Γω(x − za)
∂Γω(x − zS)

∂zS
j

dσ(x)

)
+ o(δd).

We now explain in more detail why the topological derivative imaging functional
attains its highest value at the location za of the anomaly. For simplicity assume
that K = 1 or ρ = 1.

If ρ = 1 then

ITD[U ](zS) = δdω4(K ′−1 − 1)(K−1 − 1)|B′|Re

{
U(zS)rω(zS , za)U(za)

}

+o(δd),(7.19)

rω(zS , z) :=

∫

∂Ω

Γω(x − zS)Γω(x − z) dσ(x).(7.20)

If K = 1 then

ITD[U ](zS) = δd Re

{
∇U(zS)TM(1/ρ′, B′)Rω(zS , za)M(1/ρ,B)T∇U(za)

}

+o(δd),

Rω(zS , z) :=

∫

∂Ω

∇zΓω(x − zS)∇zΓω(x − z)T dσ(x).

Recall that Helmholtz-Kirchhoff theorem (see, e.g., [4]) states that, for z and
zS away from the boundary ∂Ω, the quantities rω(zS , z) and Rω(zS , z) are (ap-
proximately) proportional to the imaginary part of Γω:

∫

∂Ω

Γω(x − z)Γω(x − zS) dσ(x) ∼ 1

ω
Im
{
Γω(zS − z)

}
,

∫

∂Ω

∇zΓω(x − zS)∇zΓω(x − z)T dσ(x) ∼ ω Im
{
Γω(zS − z)

}( z− zS

|z− zS |

)(
z − zS

|z − zS |

)T

.

Here, A ∼ B means A ≃ CB for some constant C.
Let, for simplicity, (θ1, . . . ,θn) be n equi-distributed directions on the unit

sphere and denote by Uj the plane wave

(7.21) Uj(x) = eiωθT
j x, x ∈ Ω, j = 1, . . . , n.
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For sufficiently large n we have

(7.22)
1

n

n∑

l=1

eiωθT
l x ≃ 4(

π

ω
)d−2 Im

{
Γω(x)

}
=





sinc(ω|x|) for d = 3,

J0(ω|x|) for d = 2,

where sinc(s) = sin(s)/s is the sinc function and J0 is the Bessel function of the
first kind and of order zero.

When ρ = 1, by computing the topological derivatives for the n plane waves,
we obtain

1

n

n∑

j=1

ITD[Uj ](z
S) ≃ δdω4

n

n∑

j=1

Re
{
eiωθT

j (zS−za)rω(zS , za)
}

∼ ω5−d(Im
{
Γω(zS − za)

}
)2.(7.23)

Similarly, when K = 1, by computing the topological derivatives for the n plane
waves, Uj , j = 1, . . . , n, given by (7.21), we obtain

1

n

n∑

j=1

ITD[Uj](z
S) ≃ δdω2 1

n

n∑

j=1

Re
{
eiωθT

j (zS−za)
[
θT

j M(1/ρ′, B′)Rω(zS , za)M(1/ρ,B)T θj

]}
.

Using ρ′ = 0 and B′ the unit disk, the polarization tensor M(1/ρ′, B′) = CdI, where
Cd is a constant, is proportional to the identity. If, additionally, we assume that
M(1/ρ,B) is approximately proportional to the identity, which occurs in particular
when B is a disk or a ball, then

(7.24)
1

n

n∑

j=1

ITD[Uj ](z
S) ∼ ω5−d(Im

{
Γω(zS − za)

}
)2.

Therefore, the topological derivative based imaging functional

(7.25) ITD(zS) :=
1

n

n∑

j=1

ITD[Uj ](z
S)

attains its maximum at za. Moreover, the resolution for the location estimation is
given by the diffraction limit. It is of the order of half the wavelength λ = 2π/ω.

We conclude this section by making a few remarks:

- In (7.15), we postprocess uz − umeas by applying the integral operator
(− 1

2I+Kω
Ω). This postprocessing is essential in order to derive an efficient

topological based imaging functional. See Section 7.7.
- The topological derivative based imaging functional cannot detect anom-

alies close to the boundary.
- The results of this section apply to the Dirichlet problem as well as to the

case of a hard anomaly.

7.4. Stability with Respect to Medium Noise

7.4.1. The Topological Derivative in the Presence of Medium Noise.
We consider the case in which the medium is randomly heterogeneous around a
constant background. Let K be the bulk modulus of the anomaly D. We assume
that the density ρ of the anomaly is equal to one (i.e., the same as the density of
the background) in order to simplify the analysis, but the results could be extended
to the general case in which ρ 6= 1. The scalar acoustic pressure u generated by the
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Neumann data g in the presence of the anomaly D is the solution to the Helmholtz
equation:

(7.26)





∆u + ω2n2(x)u = 0 in Ω,

∂u

∂ν
= g on ∂Ω.

The index of refraction is of the form

n2(x) = 1 + (K−1 − 1)1D(x) + µ(x),

where 1 stands for the constant background, (K−1−1)1D(x) stands for the localized
perturbation of the index of refraction due to the anomaly, and µ(x) stands for the
fluctuations of the index of refraction due to clutter. We assume that µ is a random
process with Gaussian statistics and mean zero, and that it is compactly supported
within Ω. The background solution U , i.e., the field that would be observed without
the anomaly, satisfies

(7.27)





∆U + ω2(1 + µ)U = 0 in Ω,

∂U

∂ν
= g on ∂Ω.

Note that U is not known because it depends on µ, only the background reference
solution U (0) can be computed:

(7.28)





∆U (0) + ω2U (0) = 0 in Ω,

∂U (0)

∂ν
= g on ∂Ω.

If the anomaly is of the form D = za + δB, then one can show that the field
measured at the surface of Ω can be expanded as

(7.29) umeas(x) = U(x) − δdω2(K−1 − 1)|B|U(za)Nω(x, za) + o(δd),

where Nω is the unknown Neumann function for −(∆ + ω2(1 + µ)) (it is unknown
because it depends on µ). It is worth mentioning that we changed the notation in
this section: Nω is the Neumann function for −(∆+ω2(1 +µ)), not for −(∆+ω2)
as in the previous section. The Neumann function for −(∆ + ω2) will be denoted

by N
(0)
ω (the superscript (0) indicates the ‘zero noise’).

We want to compare the measured data with the synthetic field uzS , which is
the solution of




∆uzS + ω2
(
1 + (K ′−1 − 1)1D′(x)

)
uzS = 0 in Ω,

∂uzS

∂ν
= g on ∂Ω,

with D′ = zS + δ′B′, K ′ and B′ being chosen a priori, and δ′ being a small
parameter. We can expand the synthetic field uzS in powers of δ′ and we find that

uzS (x) = U (0)(x) − (δ′)dω2(K ′−1 − 1)|B′|U (0)(zS)N (0)
ω (x, zS) + o

(
(δ′)d

)
.

The quadratic misfit functional

E [U (0)](zS) =
1

2

∫

∂Ω

|(−1

2
I + Kω,(0)

Ω )[uzS − umeas](x)|2 dσ(x)
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uses the background reference solution U (0) and the known integral operator Kω,(0)
Ω

defined in terms of the Green function Γω of the reference background medium. It
can be expanded as powers of δ′ as

E [U (0)](zS) =
1

2

∫

∂Ω

∣∣(−1

2
I + Kω,(0)

Ω )[U (0) − umeas](x)
∣∣2 dσ(x)

−(δ′)dω2(K ′−1 − 1)|B′|Re
{
U (0)(zS)

∫

∂Ω

Γω(x − zS)
(
(−1

2
I + Kω,(0)

Ω )[U (0) − umeas](x)
)
dσ(x)

}

+o
(
(δδ′)d + (δ′)2d

)
,

This shows that the computation of the topological derivative gives the imaging
functional

(7.30) ITD[U (0)](zS) = ω2(K ′−1 − 1)|B′|Re
{
U (0)(zS)w(0)(zS)

}
,

where w(0) is given by

(7.31) w(0)(zS) = Sω,(0)
Ω

(
(−1

2
I + Kω,(0)

Ω )[U (0) − umeas]
)
(zS),

which is the known solution of



∆w(0) + ω2w(0) = 0 in Ω,

∂w(0)

∂ν
= (−1

2
I + (K−ω,(0)

Ω )∗)(−1

2
I + Kω,(0)

Ω )[U (0) − umeas] on ∂Ω.

Here, Sω,(0)
Ω is the single-layer potential associated with the Green function Γω of

the reference background medium. The function w(0) is known because it depends
only on U (0) that can be computed and on umeas that is measured at the boundary.

7.4.2. Stability and Resolution Analysis. Let Λ(0) = (− 1
2I+Kω,(0)

Ω )∗(− 1
2I+

Kω,(0)
Ω ). We want now to carry out a resolution and stability analysis. Using (7.29)

we have

w(0)(zS) =

∫

∂Ω

N (0)
ω (x, zS)Λ(0)[U (0) − U ](x) dσ(x)

+δdω2(K−1 − 1)|B|U(za)

∫

∂Ω

Λ(0)[N (0)
ω (·, zS)](x)Nω(x, za) dσ(x)

+o
(
δd
)
.(7.32)

This expression shows that clutter noise has two effects:

- First the background field U is not known, so that the backpropagation
step transports not only the field due to the anomaly but also the field U−
U (0) due to clutter, which generates a contribution (the first term of the
right-hand side of (7.32)) which is spatially distributed for zS throughout
the domain Ω.

- Second the Neumann function Nω is not known exactly, so that the back-

propagation by N
(0)
ω of the field generated by the anomaly is not perfect

and may alter the sharp peak around zS ∼ za that is observed when the
two Neumann functions are identical.

In the sequel we study the imaging functional in the weak fluctuation regime
(when the standard deviation of µ is small). For this we need to characterize the
statistical distribution of the function w(0) defined by (7.32):
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- The first term of the right-hand side of (7.32) requires to model the dif-
ference U − U (0). If we assume that the random process µ has small
amplitude, then we can expand U as U = U (0) + U (1) where U (1) is the
solution of

(7.33)





∆U (1) + ω2U (1) = −ω2µU (0) in Ω,

∂U (0)

∂ν
= 0 on ∂Ω.

This is a single scattering approximation for the cluttered field as we have
neglected the term µU (1) in this equation. Therefore U (1) is given by

U (1)(x) = −ω2

∫

Ω

N (0)
ω (x,y)µ(y)U (0)(y) dy.

- The second term of the right-hand side of (7.32) requires to model the term
Nω. In the weak fluctuation regime, the error in this term is essentially de-

termined by the phase mismatch betweenNω(x, za) and Λ(0)[N
(0)
ω (·, zS)](x)

when zS is close to za (which is the position of the peak). This phase mis-
match comes from the random fluctuations of the travel time between x
and za which is approximately equal to the integral of µ/2 along the ray
from x to za:

Nω(x, za)Λ(0)[N (0)
ω (·, zS)](x) ≃ N

(0)
ω (x, za)Λ(0)[N (0)

ω (·, zS)](x)e−iωT (x),

with

T (x) ≃ |x − za|
2

∫ 1

0

µ
(
za +

x − za

|x − za|
s
)
ds.

Therefore w(0) can be expanded as

w(0)(zS) = ω2

∫

Ω

µ(y)U (0)(y)

[ ∫

∂Ω

N (0)
ω (x, zS)Λ(0)[N

(0)
ω (·,y)](x) dσ(x)

]
dy

+δdω2(K−1 − 1)|B|U (0)(za)

∫

∂Ω

Λ(0)[N (0)
ω (·, zS)](x)N

(0)
ω (x, za)e−iωT (x) dσ(x).

If the correlation radius of the random process µ is small, then the last integral is
self-averaging and therefore

w(0)(zS) = ω2

∫

Ω

µ(y)U (0)(y)

[ ∫

∂Ω

N (0)
ω (x, zS)Λ(0)[N

(0)
ω (·,y)](x) dσ(x)

]
dy

+δdω2(K−1 − 1)|B|U (0)(za)

∫

∂Ω

Λ(0)[N (0)
ω (·, zS)](x)N

(0)
ω (x, za)e−

ω2Var(T (x))
2 dσ(x).

Let us introduce the kernel

Q(zS , za) := Re
{
U (0)(zS)U (0)(za)

∫

∂Ω

Λ(0)[N (0)
ω (·, zS)](x)N

(0)
ω (x, za) dσ(x)

}
,

and the function

(7.34) Q0(z
S) =

λ3−d

π25−d
|U (0)(zS)|2 for d = 2 or 3.

As shown in Section 7.3, we have

Q(zS , za) = Re
{
U (0)(zS)U (0)(za)

∫

∂Ω

Γω(x − zS)Γω(x − za) dσ(x)
}
.
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Moreover, the function zS → Q(zS , za) is maximal for zS = za, its maximal value
is Q0(za) and the width of the peak of zS → Q(zS , za) centered at zS = za is of the
order of half the wavelength λ. We can express the topological derivative imaging
functional in terms of the kernel Q:
(7.35)

ITD[U (0)](zS) ≃ ω4(K ′−1 − 1)|B′|
∫

Ω

µ(y)Q(zS ,y) dy

+δdω4(K ′−1 − 1)(K−1 − 1)|B′||B|Q(zS , za)e−
ω2Var(T )

2 ,

where we have assumed that Var(T (x)) is constant for x ∈ ∂Ω in order to simplify
the analysis.

The topological derivative has the form of a peak centered at the location za of
the anomaly (second term of the right-hand side of (7.35)) buried in a zero-mean
Gaussian field or speckle pattern (first term of the right-hand side of (7.35)) that
we can characterize statistically.

On the one hand clutter noise reduces the height of the main peak by the

damping factor e−ω2Var(T )/2 and on the other hand it induces random fluctuations
of the image in the form of a speckle field. The covariance function of the speckle
field is

Cov
(
ITD(zS), ITD(zS′

)
)

= ω8(K ′−1 − 1)2|B′|2

×
∫

Ω

∫

Ω

Q(zS ,y)Cµ(y,y′)Q(zS′

,y′) dydy′,

where Cµ is the covariance function of the process µ: Cµ(y,y′) = E[µ(y)µ(y′)].
If we assume that the process µ is supported and stationary in Ωµ ⊂ Ω, that

the correlation radius lµ of µ is smaller than the wavelength, and if we denote by
σµ the standard deviation of µ, then we have

Var(T ) ≃ 1

8
σ2

µdiam(Ωµ)lµ,

and

Cov
(
ITD(zS), ITD(zS′

)
)
≃ ω8(K ′−1 − 1)2|B′|2σ2

µl
d
µ

∫

Ωµ

Q(zS ,y)Q(zS′

,y) dy.

Since the typical width of the kernel Q is about half-a-wavelength, we can see
that the correlation radius of the speckle field is of the order of half the wavelength,
that is to say, of the same order as the main peak centered at the anomaly location.
Therefore, there is no way to distinguish the main peak from the hot spots of the
speckle field based on their shapes. Only the height of the main peak can allow it
to be visible out of the speckle field.

It is interesting to notice that the variance of the speckle field depends on the
diameter of the heterogeneous region Ωµ, because Q(zS ,y)2 decays as 1/|zS−y|d−1

since |zS − y| ≫ λ, so that

Var
(
ITD(zS)

)
≃ ω8(K ′−1 − 1)2|B′|2σ2

µl
d
µQ

2
0(za)λd−1diam(Ωµ).

Therefore, a large heterogeneous domain implies large fluctuations in the topo-
logical derivative, and the peak centered at the anomaly location za can be buried
in these fluctuations. More quantitatively, the Signal-to-Noise Ratio (SNR) defined
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by

SNR =
E[ITD(za)]

Var(ITD(za))1/2

is equal to

(7.36) SNR =
(K−1 − 1)

σµ

δd|B|
λd

λ1/2

diam(Ωµ)1/2

λd/2

l
d/2
µ

e−
π2

2 σ2
µ

lµ

λ2 .

As shown by (7.36), the SNR is proportional to the contrast (K−1−1) and the
volume of the anomaly, δd|B| over the standard deviation the noise, σµ. Moreover,
it depends on the dimensionless parameters lµ/λ, diam(Ωµ)/λ, and δ/λ.

7.5. Stability with Respect to Measurement Noise

7.5.1. The Topological Derivative in the Presence of Measurement
Noise. We consider the case in which the field umeas(x) measured at the surface of
the domain is corrupted by an additive noise that we denote by νnoise(x), x ∈ ∂Ω.
Again, in order to simplify the presentation, we suppose that ρ = 1.

If we assume that the surface of the domain Ω is covered with sensors half the
wavelength apart from each other and that the additive noises have variance σ2

1 and
are independent from one sensor to the other one, then we can model the additive
noise process νnoise by a Gaussian white noise with covariance function

E
[
νnoise(x)νnoise(x′)

]
= σ2

noiseδ(x − x′), σ2
noise = σ2

1λ
d−121−d.

The topological derivative imaging functional is

ITD[U (0)](zS) = ω2(K ′−1 − 1)|B′|Re
{
U (0)(zS)

(
w(0)(zS) + wnoise(z

S)
)}
,

where

(7.37) wnoise(z
S) = −Sω,(0)

Ω (−1

2
I + Kω,(0)

Ω )[νnoise](z
S),

and

(7.38) w(0)(zS) = Sω,(0)
Ω (−1

2
I + Kω,(0)

Ω )[U (0) − (umeas − νnoise)](z
S).

7.5.2. Stability and Resolution Analysis. We find from (7.37) and (7.38)
that

ITD[U (0)](zS) = δdω4(K ′−1 − 1)(K−1 − 1)|B′||B|Q(zS , za) − ω2(K ′−1 − 1)|B′|

×Re
{∫

∂Ω

U (0)(zS)Γω(zS − y)(−1

2
I + Kω,(0)

Ω )[νnoise](y) dσ(y)
}
.(7.39)

Therefore, the imaging functional ITD has the form of a peak centered at the loca-
tion za of the anomaly. Moreover, (7.39) shows that the peak is buried in a speckle
field, as in the case of clutter noise. However, on contrary to the clutter noise, the
value of the main peak itself is not reduced by the additive noise, which means that
the imaging functional is much more robust with respect to additive measurement
noise than with respect to clutter noise. Let us compute the covariance function of
the speckle field. We first introduce the auxiliary field defined on ∂Ω:

νnoise,1(y) = (−1

2
I + Kω,(0)

Ω )[νnoise](y).
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It is a zero-mean with Gaussian statistics and covariance

E
[
νnoise,1(y)νnoise,1(y′)

]
=

σ2
noise

4
δ(y − y′) − σ2

noise

2

(∂Γω(y′ − y)

∂ν(y)
+
∂Γω(y′ − y)

∂ν(y′)

)

+σ2
noise

∫

∂Ω

∂Γω(y − x)

∂ν(x)

∂Γω(y′ − x)

∂ν(x)
dσ(x).

We next introduce the auxiliary field defined on Ω:

νnoise,2(z) =

∫

∂Ω

Γω(z − y)νnoise,1(y) dσ(y).

It is a zero-mean with Gaussian statistics with covariance:

E
[
νnoise,2(z)νnoise,2(z′)

]
=

∫

∂Ω

∫

∂Ω

Γω(z−y)Γω(z′ − y′)E
[
νnoise,1(z)νnoise,1(z′)

]
dσ(y) dσ(y′).

Using Helmholtz-Kirchhoff theorem the covariance of νnoise,2(z) can be expressed
as

E
[
νnoise,2(z)νnoise,2(z′)

]
=

σ2
noise

4ω
Im
{
Γω(z − z′)

}

−σ
2
noise

2ω

∫

∂Ω

Γω(z − y)
∂Im

{
Γω(z′ − y)

}

∂ν(y)
dσ(y)

−σ
2
noise

2ω

∫

∂Ω

Γω(z′ − y)
∂Im

{
Γω(z − y)

}

∂ν(y)
dσ(y)

+
σ2

noise

ω2

∫

∂Ω

∂Im
{
Γω(z − y)

}

∂ν(y)

∂Im
{
Γω(z′ − y)

}

∂ν(y)
dσ(y).

When z and z′ are far from the boundary, using ∂Γω(z−y)
∂ν(y) ≃ iωΓω(z − y) and

Helmholtz-Kirchhoff theorem, we get

E
[
νnoise,2(z)νnoise,2(z′)

]
=
σ2

noise

4ω
Im
{
Γ(z − z′)

}
,

and therefore

Cov
(
ITD(zS), ITD(zS′

)
)

=
1

8
ω4(K ′−1 − 1)2|B′|2σ2

noiseQ(zS , zS′

),

for the search points zS , zS′ ∈ Ω. This shows that the typical shape of a hot spot
of the speckle field is exactly the form of the main peak. Moreover, the variance of
the speckle field is

Var
(
ITD(zS)

)
=

1

8
ω4(K ′−1 − 1)2|B′|2σ2

noiseQ0(z
S),

with Q0 given by (7.34), which shows that the SNR is equal to
(7.40)

SNR =
2
√

2ω2Q0(za)1/2(K−1 − 1)δd|B|
σnoise

= 2d−1π3/2 |U (0)(za)|(K−1 − 1)

σ1

δd|B|
λd

.

From (7.40), the SNR is proportional to the contrast (K−1−1) and the volume
of the anomaly, δd|B|, over the standard deviation of the noise, σnoise.
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7.6. Other Imaging Algorithms

Consider P well-separated anomalies Dp = zp + δBp, p = 1, . . . , P . The volu-
metric mass density and bulk modulus ofDp are denoted by ρp andKp, respectively.
Suppose that all the domains Bp are disks.

7.6.1. MUSIC-type Algorithm. Let (θ1, . . . ,θn) be n unit vectors in Rd.
For θ ∈ {θ1, . . . ,θn}, we assume that we are in possession of the boundary data u

when the domain Ω is illuminated with the plane wave U(x) = eiωθT x. Therefore,

taking the harmonic function w(x) = e−iωθ′T
x for θ′ ∈ {θ1, . . . ,θn} and using (7.5)

shows that the weighted boundary measurement is approximately equal to

Iw [U, ω] ≃ −
P∑

p=1

|Dp|ω2
(
2
ρ−1

p − 1

ρ−1
p + 1

θT θ′ +K−1
p − 1

)
eiω(θ−θ′)T zp .

Define the response matrix A = (All′ )
n
l,l′=1 ∈ Cn×n by

(7.41) All′ := Iwl′
[Ul, ω].

It is approximately given by

All′ ≃ −
P∑

p=1

|Dp|ω2
(
2
ρ−1

p − 1

ρ−1
p + 1

θT
l θl′ +K−1

p − 1
)
eiω(θl−θl′)

T zp ,

for l, l′ = 1, . . . , n. Introduce the n-dimensional vector fields g(j), defined for j =
1, . . . , d+ 1, by

(7.42) g(j)(x) =
(
eT

j θ1e
iωθT

1 x, . . . , eT
j θne

iωθT
nx
)T
, j = 1, . . . , d,

and

(7.43) g(d+1)(x) =
(
eiωθT

1 x, . . . , eiωθT
nx
)T
,

where (e1, . . . , ed) is an orthonormal basis of Rd. Let Pnoise = I−P, where P is the
orthogonal projection onto the range of A. The MUSIC-type imaging functional is
defined by

(7.44) IMU(zS) :=
( d+1∑

j=1

‖Pnoiseg
(j)(zS)‖2

)−1/2

.

This functional has large peaks only at the locations of the anomalies; see, e.g., [4].

7.6.2. Backpropagation-type Algorithms. Let (θ1, . . . ,θn) be n unit vec-
tors in Rd. A backpropagation-type imaging functional at a single frequency ω is
given by

(7.45) IBP(zS) :=
1

n

n∑

l=1

e−2iωθT
l zS

Iwl
[Ul, ω],

where Ul(x) = wl(x) = eiωθT
l x, l = 1, . . . , n. Suppose that (θ1, . . . ,θn) are equidis-

tant points on the unit sphere Sd−1. For sufficiently large n, we have (7.22) and it
follows that

IBP(zS) ≃
P∑

p=1

|Dp|ω2
(
2
ρ−1

p − 1

ρ−1
p + 1

− (K−1
p − 1)

)
×





sinc(2ω|zS − zp|) for d = 3,

J0(2ω|zS − zp|) for d = 2.
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These formulae show that the resolution of the imaging functional is the standard
diffraction limit. Note that the above backpropagation-type algorithm is a simpli-
fied version of the algorithm studied in [12, 13]. In fact, instead of using only the
diagonal terms of the response matrix A, defined by (7.41), we can use the whole
matrix to define the Kirchhoff migration functional:

(7.46) IKM(zS) =
d+1∑

j=1

∑

l

(
g(j)(zS)

T
ul

)(
g(j)(zS)

T
vl

)
,

where ul and vl are respectively the left and right singular vectors of A and g(j)

are defined by (7.42) and (7.43).

7.7. Numerical Illustrations

In this section we present results of numerical experiments that give quali-
tative illustrations of some of the main findings in this chapter. We consider the
two-dimensional case (d = 2). The domain Ω is the unit disk. We simulate the mea-
surements using a finite-element method to solve the Helmholtz equation. We use a
piecewise linear representation of the solution u and piecewise constant representa-
tions of the parameter distributions 1Ω\D(x)+ρ−11D(x) and 1Ω\D(x)+K−11D(x).

We consider a small anomaly D = za + δB with za = (−0.3, 0.5), δ = 0.05, and B
being the unit disk. We fix the working frequency ω to be equal to 6, which cor-
responds to a wavelength λ ≃ 1. We assume that the measurements corresponding

to the plane wave illuminations, Ul(x) = eiωθT
l x, at the equi-distributed directions

θl, for l = 1, . . . , n = 50.

7.7.1. Bulk Modulus Contrast Only. Here, the parameters of the anomaly
are ρ = 1 and K = 1/2.

7.7.1.1. Resolution in the Absence of Noise. Within the above setting, we first
present results of the described algorithms in the absence of noise. In Figure 7.1,
plots of ITD(zS), defined by (7.25), with respectively n = 50 and n = 2 illustrate
the efficiency of the proposed topological derivative based imaging procedure. The
imaging functional ITD(zS) reaches its maximum at the location za of the anomaly
and behaves, accordingly to (7.23), like J0(ω|zS − za|)2 if the number n of incident
waves is large while for small n, it behaves, as expected, like J0(ω|zS − za|).

In Figures 7.2 and 7.3, we compare the performance of the topological based
imaging functionals with and without postprocessing the data by applying the
integral operator (− 1

2I + Kω
Ω). It is clear that the data postprocessing step is

essential, specially if the number n of incident waves is small. In Figure 7.4, we show
that this postprocessing is even more essential in the case of multiple anomalies.

In Figure 7.5, we present two MUSIC-type reconstructions. Given the structure
of the response matrix A with ρ = 1 (contrast only on the K distribution), it is
known that its SVD yields only one significant singular value. See, e.g., [16, 4].
Thus, the illumination vectors g(1) and g(2) do not belong to the signal subspace
of A. Using these vectors in the projection step generates a blurred MUSIC image
(figure on the left). To get a sharp peak, we should project only the illumination
vector g(3) (figure on the right), which assumes a priori knowledge of the physical
nature of the contrast.
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Figure 7.1. Plots of ITD(zS) defined by (7.25) with n = 50 (left)
and n = 2 (right).

Figure 7.2. Comparison for n = 50 between topological deriva-
tive based images with (left) and without (right) postprocessing
the data.

As shown in Figure 7.6, the backpropagation image of the anomaly has the
expected behavior of the Bessel function and reaches its maximum at the location
of the anomaly.
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Figure 7.3. Comparison for n = 2 between topological derivative
based images with (left) and without (right) postprocessing the
data.

Figure 7.4. Comparison between topological derivative based im-
ages of multiple anomalies with (second line) and without (first
line) postprocessing the data. The first column corresponds to
n = 1, the second to n = 2, and the third to n = 50.

7.7.1.2. Stability with Respect to Measurement and Medium Noises. We now
consider imaging from noisy data. We first add electronic (measurement) noise
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Figure 7.5. Left: MUSIC image using the projection of g(1), g(2),
and g(3) on the signal subspace of A. Right: MUSIC image using
the projection of g(3) on the signal subspace of A.

Figure 7.6. Plot of IBP(zS) defined by (7.45) with n = 50.

νnoise to the previous measurements ui,meas, i = 1, . . . , n. Here, νnoise is a white
Gaussian noise with standard deviation σ% of the L2 norm of umeas and σ ranges
from 0 to 30. We compute Nr = 250 realizations of such noise and apply different
imaging algorithms. Figure 7.7 presents the results of computational experiments.
It clearly shows that the topological derivative based functional performs as good
as Kirchhoff migration and much better than MUSIC and backpropagation, spe-
cially at high levels of electronic noise. Figure 7.8 shows the dramatic effect of the
postprocessing step in the topological derivative based imaging when the number
of plane wave illuminations n is small.

We now suppose that the medium bulk modulus is randomly heterogeneous
around a constant background: K−1(x) = 1+ (K−1− 1)1D(x)+µ(x). To simulate
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Figure 7.7. Standard deviations of localization error with respect
to electronic noise level for IMU, IBP, IKM, and ITD with n = 50.

Figure 7.8. Effect of the data postprocessing on the standard
deviation of localization error with respect to electronic noise level.

µ, we compute a white Gaussian noise in the medium and then apply a low-pass
Gaussian filter. The parameters of this filter can be linked to the correlation length
lµ of µ.

Comparisons between the standard deviations of the localization error with
respect to clutter noise for the discussed imaging algorithms are given in Figures
7.9 and 7.10. Again, the topological derivative based imaging functional is the most
robust functional.

7.7.2. Density Contrast Only. Here, the parameters of the anomaly are
ρ = 1/2 and K = 1.

7.7.2.1. Resolution in the Absence of Noise. As shown in Figure 7.11, the topo-
logical derivative based imaging functional ITD(zS) reaches its maximum at the
location of the anomaly.
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Figure 7.9. Standard deviations of localization error with respect
to clutter noise for IMU, IBP, IKM, and ITD with n = 50.

Figure 7.10. Effect of the data postprocessing on the standard
deviation of localization error with respect to clutter noise.

In Figures 7.12 and 7.13, we compare the performance of the topological based
imaging functionals with and without the postprocessing step. In Figure 7.14, we
show that this postprocessing is even more critical in the case of multiple anomalies.

Figure 7.15 shows MUSIC images. As expected from the structure of the re-
sponse matrix with K = 1 (ρ contrast only), its SVD yields two significant singular
values [44, 16, 4]. Thus, the illumination vector g(3) does not belong to the signal
subspace of the response matrix A. As before, using this vector in the projection
step generates a blurred MUSIC peak (figure on the left). To get a sharp peak, we
should only project the illumination vectors g(1) and g(2) (figure on the right).

As shown in Figure 7.16, the backpropagation image has the expected behavior
and reaches its maximum at the location of the anomaly. In the case of multiple
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Figure 7.11. Plots of ITD(zS) with (left) n = 50 and (right)
n = 2.

Figure 7.12. Comparison for n = 50 between topological deriv-
ative based images with (left) and without (right) postprocessing
the data.

anomalies, the oscillatory pattern of the backpropagation imaging functional can
be troublesome.

7.7.2.2. Stability with Respect to Measurement and Medium Noises. We carry
out the same analysis as in the case of only a bulk modulus contrast. Figure 7.17
gives the standard deviation of the localization error as function of the noise level
σ for each algorithm.
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Figure 7.13. Comparison for n = 2 between topological deriv-
ative based images with (left) and without (right) postprocessing
the data.

Figure 7.14. Comparison between topological derivative based
images of multiple anomalies with (second line) and without (first
line) postprocessing the data. The first column corresponds to
n = 1, the second to n = 2, and the third to n = 50.

Again, the topological derivative algorithm with postprocessing seems to be
the most robust. However, the effect of the data postprocessing step seems less
dramatic here than in the case of bulk modulus contrast.

Finally, we suppose that the medium density is randomly heterogeneous around
a constant background: ρ−1(x) = 1+(ρ−1−1)1D(x)+µ(x), with µ a random process
of mean zero and tunable standard deviation σ. As before, we compute Nr = 250
realizations of such clutter and the corresponding measurements. We then apply
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Figure 7.15. Left: MUSIC image using projection of
g(1), g(2), g(3) on the signal subspace of A. Right: image using
projection of g(1) and g(2) on the signal subspace of A.

Figure 7.16. Backpropagation image.

the localization algorithms. Stability results are given in Figure 7.19. They clearly
indicate the robustness of the topological derivative based imaging functional.

7.8. Conclusion

In this chapter we have explained why the concept of topological derivative
works for imaging small acoustic anomalies and carried out a stability and resolu-
tion analysis in the presence of medium and measurement noises. We have shown
that in order to design an efficient topological derivative based imaging functional,
we have first to postprocess the data. We have proved that the functional be-
haves like the square of the imaginary part of the Green function and then attains
its maximum at the location of the anomaly with a resolution limit of the order
of half-a-wavelength. We have also shown that the topological derivative based
imaging functional, compared to other more classical imaging functionals, is more
robust in both cases of measurement and medium noise. Another advantage of
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Figure 7.17. Standard deviations of localization error with re-
spect to electronic noise level for IMU, IBP, IKM, and ITD with
n = 50.

Figure 7.18. Standard deviations of localization error with re-
spect to electronic noise level for the topological derivative based
functionals with and without postprocessing the data.

the proposed functional is that it works with a very small number of plane wave
illuminations. However, its complexity is roughly speaking O(nm3) while the com-
plexities of MUSIC and backpropagation are respectively O(n3 +n2m) and O(nm),
where n is the number of plane wave illuminations and m is the number of space
discretization points in the domain Ω. Note that in general n≪ m.

Our results in this chapter apply to the electrical impedance tomography prob-
lem. In fact, let Γ be the fundamental solution of the Laplacian in Rd and denote
by KΩ the integral operator given by

KΩ[ϕ](x) =

∫

∂Ω

∂Γ(x − y)

∂ν(y)
ϕ(y)dσ(y), x ∈ ∂Ω.
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Figure 7.19. Standard deviations of the localization error with
respect to clutter noise for IMU, IBP, IKM, and ITD with n = 50.

Let ITD be the topological derivative of the misfit

E [U ](zS) =
1

2

∫

∂Ω

|(−1

2
I + KΩ)[uzS − umeas](x)|2 dσ(x),

where uzS and umeas are respectively the computed and the measured voltage po-
tential. In exactly the same manner as in this chapter, we can prove that, for
d = 2,

ITD(zS) ∼
∫

∂Ω

∇Γ(x − zS)∇Γ(x − za) dσ(x) ∼
∫

∂Ω

1

|x|2
(x − zS)T

|x − zS |
(x − za)

|x − za|
dσ(x)

provided that dist(zS , ∂Ω), dist(za, ∂Ω) ≫ 1. A similar result holds in three dimen-
sions. Therefore, ITD(zS) yields an image similar to the one proposed in [98].

Our results extend to elastic and electromagnetic waves as well as to the tran-
sient regime [103]. They can also be generalized to imaging functionals based on
high-order topological derivatives [37, 114, 84], which are based on high-order
asymptotic expansions for the boundary pressure perturbations derived in [17].
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