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Abstract

The full connectivity offered by the nature of wireless communication poses
a vast number of benefits and challenges to the designers of future generation
wireless networks. One of the main challenges being faced is dealing with
the unresolvable interference at the receivers. It is widely recognized that
the heart of this challenge lies in the design of resource allocation schemes
which provide the best trade-off between efficiency and complexity

Exploration of this trade-off requires appropriate choices of performance
metrics and mathematical models. In this regard, the thesis is concerned
with certain technical and mathematical aspects of resource allocation in
wireless networks. We specifically argue that an efficient resource allocation
in wireless networks needs to take into account the following parameters: (i)
rate of environment changes, (ii) traffic model, and (iii) amount of informa-
tion available at transmitters. As mathematical tools for our investigation,
we use optimization theory and game theory.

We are especially interested in distributed resource allocation in net-
works with slow fading channels and with partial channel side information
at the transmitters. Transmitters with partial channel side information have
exact information of their own channel as well as statistical knowledge of
other channels. In such a context, the system is inherently impaired by
a nonzero outage probability. We propose low complexity distributed algo-
rithms for joint rate and power allocation, aiming at maximizing the individ-
ual throughput, defined as the successfully-received-information rate, under
a power constraint. We study this problem in two network setups.

First, we consider throughput maximization in an OFDM-based MAC
network with 2 transmitters. As well known, the problem is non-convex with
exponential complexity in the number of transmitters and subcarriers. We
introduce a two-level approach to the problem based on duality theory and
Bayesian game theory. The trade-off between complexity and performance
is investigated.

Secondly, we study the resource allocation problem in a single hop ad hoc
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network. We relax the intrinsic assumption on infinite backlog of packets in
the queues made in the previous study. Therefore, each transmitter is pro-
vided by a finite buffer. We introduce distributed cross-layer algorithms for
joint admission control, rate and power allocation aiming at maximizing the
individual and the global throughput. The problem is modeled as a stochas-
tic game in which mixed strategies are based on the statistical knowledge of
the states (channel attenuation and buffer length) of the other transmission
pairs and on the exact knowledge of their own states.

Finally, we consider the same problem in a dense interference network
with a large number of transmitter-receiver pairs. The asymptotic approach
of large interference networks enables a considerable complexity reduction
and is used to evaluate the performance of finite networks.



Résumé

La connectivité totale offerte par la communication sans fil pose un grand
nombre d’avantages et de défis pour les concepteurs de la future généra-
tion des réseaux sans fil. Un des principaux défis qui se posent est lié &
I'interférence au niveau des récepteurs. Il est bien reconnu que ce défi ré-
side dans la conception des systémes d’allocation des ressources qui offrent
le meilleur compromis entre Uefficacité et la complexité.

L’exploration de ce compromis nécessite des choix judicieux d’indicateurs
de performance et des modéles mathématiques. A cet égard, cette thése est
consacrée a certains aspects techniques et mathématiques d’allocation des
ressources dans les réseaux sans fil. En particulier, nous démontrons que
I’allocation de ressources efficace dans les réseaux sans fil doit prendre en
compte les parameétres suivants: (i) le taux de changement de I’environnement,
(ii) le modele de trafic, et (iii) la quantité d’informations disponibles aux
émetteurs. Comme modéles mathématiques dans cet étude, nous utilisons
la théorie d’optimisation et la théorie des jeux.

Nous sommes particuliérement intéressés a 1’allocation distribuée des
ressources dans les réseaux avec des canaux & évanouissement lent et avec
des informations partielles du canal aux émetteurs. Les émetteurs avec infor-
mation partielle disposent d’informations exactes de leur propre canal ainsi
que la connaissance statistique des autres canaux. Dans un tel contexte, le
systeme est fondamentalement détérioré par une probabilité outage non nul.
Nous proposons des algorithmes distribués a faible complexité d’allocation
conjointe du débit et de la puissance visant & maximiser le "throughput"
individuel, défini comme le débit d’information recu avec succes, avec une
contrainte de puissance. Nous étudions ce probléme dans deux configurations
réseau. Premieérement, nous considérons la maximisation du débit dans un
réseau OFDM Mac avec 2 transmetteurs. Comme on le sait, le probléme est
non-convexe avec une complexité exponentielle du nombre des émetteurs et
des sous-porteuses. Nous introduisons une approche & deux niveaux basée
sur la théorie de la dualité et la théorie des jeux Bayésienne. Le compromis

iii
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entre la complexité et la performance est étudiée.

Deuxiémement, nous étudions le probléme d’allocation de ressources dans
un réseau ad hoc sans relais. Nous considérons une file d’attente avec un
nombre limité de paquets. Par conséquent, chaque émetteur est assuré par
une capacité limitée. Nous introduisons des algorithmes distribués d’inter-
couche pour le controle d’admission, 'allocation du débit et de puissance
visant & maximiser le "throughput" individuel et global. Le probléme est
modélisé comme un jeu stochastique dans lequel les stratégies mixtes sont
fondées sur les connaissances statistiques des états (atténuation du canal et
longueur de la file d’attente) de la transmission d’autres paires d’émetteurs-
récepteur et sur la connaissance exacte de leurs propres Etats.

Enfin, nous considérons le méme probléme dans un réseau dense d’interférences
avec un grand nombre de paires d’émetteurs-récepteur. L’approche asymp-
totique des réseaux d’interférences dense permet une réduction considérable
de la complexité et elle est utilisée pour évaluer les performances des réseaux
finis.
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Chapter 1

Algorithmes Distribués
d’Allocation de Ressources
dans les Réseaux Sans Fil

Dans un réseau sans fil, les utilisateurs communiquent en émettant de ’énergie
dans toutes les directions. Cela crée une connectivité totale entre tous les
utilisateurs, et un lien isolé n’existe pas. L’un des défis de ce moyen de
communication est d’affronter I'interférence que les différentes transmissions
s’imposent 1'un a l'autre.

La génération actuelle de réseau sans fil réduit la complexité du probléme
en utilisant des protocoles d’accés multiples, et en exploitant de ’atténuation
naturelle du médium (par le contréle de puissance ou la réutilisation des
bandes de fréquences). Dans un tel contexte, une autorité centrale modifie
les stratégies d’utilisateurs afin de satisfaire & un critére global. Toutefois, ces
réseaux ne parviennent pas a bénéficier de la connectivité compléte offerte
par l'interface air.

La prochaine génération de réseau sans fil vise & exploiter la connectiv-
ité compléte en affaiblissant la notion d’une autorité centrale (par exemple,
la radio cognitive) ou l'annuler complétement (par exemple, les réseaux ad
hoc) sans réduire la flexibilité totale et le niveau de services déja offerts
par les réseaux cellulaires. L’approche centralisée implique généralement
des techniques d’optimisation compliquées et des charges de signalisation
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qui croissent avec le nombre d’émetteurs et de récepteurs dans le réseau.
Comme ces algorithmes ont tendance & étre complexe et pas facilement ex-
tensible, des algorithmes décentralisés sont préférés dans les scénarios de
prochaine génération. Différents niveaux de coopération entre les émetteurs
et/ou les récepteurs peuvent étre envisagés, mais en général, la délocalisation
des mécanismes de controle, tels que ’attribution de débit et de la puissance,
la planification, le controle d’admission, et le routage sont souhaités.

Dans les régimes décentralisés, les décisions concernant les paramétres
du réseau (les debits et/ou les puissances) et des conditions de transmis-
sion sont effectuées par des émetteurs individuels a base de I'information sur
l’environnement qui est localement disponible. Un régime efficace d’allocation
de ressources nécessite un choix approprié¢ d’une mesure de performance
prenant en compte les deux paramétres suivants: (i) le rythme de mod-
ifications de l'environnement, et (ii) la quantité d’information disponible
aux émetteurs. Récemment, une quantité considérable de recherche dans
les réseaux multi-utilisateur a mis 'accent sur des modeles réalistes dans
lesquels chaque terminal a une connaissance compléte de son propre canal
ainsi que la connaissance statistique des canaux des autres terminaux. Dans
ce contexte, L’approche innovante de Shamai et Wyner [1] suivie par les deux
articles trés référencés de Hanly et Tse |2,3] ont mis en place les fonctions
de capacité qui conviennent pour les différents modéles de I’évanouissement
et différents niveaux d’information des canaux aux émetteurs.

L’allocation de ressources dans les réseaux sans fil doit étre adaptée non
seulement aux changements dans les canaux de transmission, mais aussi aux
applications. Ce sujet a été traditionnellement étudié soit par la théorie de
I'information soit par la théorie de réseau de communication. Toutefois, afin
de briser les barriéres entre ces deux approches distinctes, il y a un besoin
des modeéles de communication qui rapproche la couche physique des couches
supérieures grace aux techniques inter-couche d’allocation de ressources.

L’allocation de ressources inter-couche permet une optimisation des ressources
d’un réseau et permet aussi aux ingénieurs d’améliorer la qualité du signal,
d’améliorer le réseau et l'utilisation des canaux, d’augmenter le débit, et de
régler le probléme de shadowing. Un exemple pertinent pour notre étude est
que, l'affectation des ressources basée uniquement sur 'information de canal
(CSI) est incapable de mettre & jour correctement ’allocation de débit en
fonction de la dynamique du trafic d’arrivé. En ignorant le caractére aléa-
toire de l'arrivée des paquets et de files d’attente, telles approches peuvent
garantir ni la stabilité des files d’attente, ni un délai d’attente acceptable.
Les avantages de ’approche inter-couche et ’optimisation conjointe de ces
mécanismes de controle sont bien connus dans les systéemes de communica-
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tion sans fil (par exemple, [4] et références citées).

Les transmissions sur un support sans fil sont toujours affectuées par des
interférences de transmissions des autres. En outre, certaines contraintes
sont imposées par les appareils sans fil en raison des limites du systéme (telles
que le charge limité de la batterie) et/ou d’exigences de service. Il est essen-
tiel de prendre ces facteurs en compte dans la conception d’algorithmes pour
I’allocation efficace des ressources. Par conséquent, un probléme d’allocation
de ressources est trés souvent défini comme un probléme d’optimisation sous
contraintes (OPC). OPC est un domaine qui offre la possibilité d’optimiser
certaines fonctions objectives compte tenue des limites imposées par le sys-
téme ou les services. En outre, dans le cas de l'allocation de ressources
distribuées, la théorie des jeux joue également un role important en offrant
des méthodes moins complexes et plus évolutives. Un exemple de ceci,
lalgorithme de Waterfilling itératif [5, 6], est défini dans la littérature basée
sur la théorie de 'optimisation et également la théorie des jeux. Certaines
caractéristiques des réseaux sans fil font la théorie des jeux un moyen pratique
pour les analyser [7]: (i) les terminaux mobiles sont équipés d'un certain de-
gré d’intelligence qui rend la configuration distribuée des décideurs possible,
(ii) les appareils mobiles partagent des ressources communes qui implique une
interaction naturelle entre eux, et (iii) les réseaux sans fil sont trés structurés.

Dans ce qui suit, nous examinons d’abord les différents aspects de ’allocation
de ressources dans les réseaux sans fil, compte tenue des hypothéses et des
configurations différentes. En plus, on représente la littérature liées aux ces
sujets. Nous présentons deux théories fondamentales, & savoir, la théorie
d’optimisation sous contrainte et la théorie des jeux, ainsi que quelques
exemples de leur application dans les communications sans fil, fournissant
les principaux outils mathématiques utilisés dans cette thése. Enfin, nous
représentons le plan de thése, I’hypothése de base et les principales contri-
butions.

1.1 L’allocation de Ressources dans les Réseaux Sans
Fil

L’allocation de ressources est une évaluation pour décider la facon de di-
viser une quantité limitée (e.g., la puissance de transmission) ou restreinte
(e.g., le débit) des ressources entre les individus qui sont en concurrence
ou s’influencent mutuellement. Les ressources de communication sans fil
varient selon les différentes configurations de réseau. Les ressources, dans
cette étude, sont la puissance, le débit et la bande de fréquence. Les algo-
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rithmes existants tentent de répartir séparément ou conjointement une ou
plusieurs ressources.

Dans ce rapport, nous avons spécialement tenir compte de trois facteurs
principaux qui influent sur le choix d’un régime d’allocation de ressources:

e Reéserve de la file d’attente: La performance de scheduling a été princi-
palement évalué en supposant qu’il existe une réserve infini de paquets
dans chaque file d’attente. Afin d’évaluer le service recu par un util-
isateur dans un systéme qui contient diverses demandes de service,
il est nécessaire de tenir compte de 'occupation des files d’attentes.
Par exemple, un algorithme d’allocation de ressources qui offre a haut
débit aux utilisateurs ayant des conditions favorables de canal auront
tendance a satisfaire les demandes de service de ces utilisateurs plus t6t.
Par conséquent, ’algorithme ferait face & une population d’utilisateurs
avec une proportion plus élevée d’utilisateurs ayant des conditions de
canal pauvres.

e Hypotheéses sur canal: Les hypothéses liées au canal sont traitées de
deux maniéres: (i) la disponibilité des informations d’état de canal, et
(ii) la méthode d’acces au canal et la topologie de réseau. Une parfaite
connaissance de 1’état de canal a souvent été prise dans la littérature
d’étude de la performance de scheduling. Bien que les systémes 3G
utilisent des mécanismes d’estimation de canal et mécanisme de rap-
port, les informations d’état de canal & la disposition de la station de
base ne sont pas parfaites: ils sont retardées et souvent dépassées. En
outre, le mécanisme de l'estimation du canal lui-méme introduit des
erreurs d’estimation de canal & la station mobile. Trois niveaux de
connaissances peuvent étre envisagées: une connaissance parfaite du
canal, une connaissance imparfaite, et aucune connaissance. Il faut
cependant noter que dans le cas intitulé par aucune connaissance on
suppose toujours que les informations statistiques sont disponibles.

En ce qui concerne la méthode d’acces au canal et la topologie du
réseau, '’hypothése peut comprendre toutes les techniques suivantes:

canal 4 acceés multiple/canal de diffusion/canal d’interférence/ TDMA /FDMA,
ainsi que la consideration de la diversité dans les systémes CDMA et
SDMA.

e Les contraintes de systémes et de services: Les contraintes peuvent étre
divisées en deux classes: (i) les contraintes liées au systéme, y compris
ressource limitée et le canal variant dans le temps et dans le fréquence,
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(ii) les contraintes liées au service, y compris le débit minimum , la
consommation maximum d’énergie, le délai maximum, la probabilité
maximum d’outag.

Nous nous concentrons sur 'allocation distribuée de ressources dans les
deux systémes OFDM, & base de MAC et & base de canaux & interférences.
Pour le systéme MAC OFDM, nous avons tenu compte d'un modeéle classique
considérant une seule couche (une réserve infinie de file d’attente). Une lit-
térature étendue sur l’allocation de ressources dans des configurations OFDM
et OFDMA est donnée dans [8]. Dans cette section, nous passons en revue
la littérature sélectionnée qui est d’un intérét particulier pour notre étude.

Pour le canal de 'interférences, en raison du fait que la stabilité des files
d’attente est d’une importance particuliére dans les réseaux ad hoc, nous
avons étudié ’'allocation de ressources inter-couche.

1.1.1 L’allocation de ressources en OFDM MAC

Il y a beaucoup de place pour exploiter le haut degré de flexibilité de la
gestion des ressources radio dans le cadre de 'OFDM. Comme ’état du
canal est différent aux différentes fréquences ou pour les différents util-
isateurs dans un réseau, la performance du réseau peut étre considérable-
ment améliorée grace a ’adaptation du débit des données sur chaque sous-
porteuse, 'affectuation dynamique sous-porteuse , et l’allocation adaptive
de puissance et de débit.

Cette propriété des systemes OFDM a conduit a la spécification des
différents systémes sur la base OFDM. Le systéme de radio numérique mod-
erne en diffusion d’audio [9] et de vidéo [10] dépend d’OFDM. Une grande
partie de 'Europe et I’Asie a adopté OFDM pour la diffusion terrestre de la
télévision numérique (DVB-T, DVB-H et T-DMB) et radio numérique (Dig-
ital Radio Mondial, HD Radio et T-DMB). Certains standards bien connus
pour réseau haut débit de Local Area Network (LAN), par exemple, IEEE
802.11a/g [11], sont fondés sur OFDM, ainsi que d’autres normes de réseau
sans fil tels que IEEE 802.16 [12|. Toutefois, OFDM a aussi été appliqué
aux canaux sélectifs en fréquence dans les réseaux filaires, comme dans le
cas de Digital Subscriber Line (DSL) pour les systémes de cables & paire
torsadée [13]. En raison de cette popularité récente du régime de transmis-
sion OFDM, il est également considéré comme candidat pour les extensions
a haut débit des systémes de communication de la troisiéme génération ainsi
que pour la quatriéme génération de systémes de communication mobile. I1
est également utilisé aujourd’hui dans la norme WiMedia/Ecma-368 pour les
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réseaux Personal Area Networks (PAN) a haut débit dans le spectre de 3.1
a 10.6 GHz en bande ultralarge.

Les performances des systémes sans fil OFDM peut étre considérablement
accru si la paire émetteur-récepteur d’adapter constamment les conditions
de canal en cours. Pour les connexions point a point , ’émetteur génére une
puissance et/ou une modulation (y compris éventuellement aussi I’encodage)
par sous-porteuse. Les sous-porteuses avec des atténuations relativement
faibles transmettent plus information, sous-porteuses avec des atténuations
relativement élevées contribuent moins & la transmission. De la théorie
d’information, l'algorithme de Waterfilling, compte tenu que tous les gains
des canaux sont connus, fournit la capacité de la transmission point a point
OFDM [14]. La capacité est obtenue en adaptant la puissance d’émission
au gain du canal. Plus précisément, étant donné une puissance limitée de
transmettre, plus de puissance est appliquée a zone de fréquence avec une
faible atténuation par rapport aux autres fréquences. En supposant un gain
moyen fixe de canal et une bande fixe de fréquence, la capacité du canal
augmente si le canal est plus divers (par exemple, ayant plus de variance).

Dans le cas des systémes multiaccess, le probleme d’allocation de ressources
est plus complexe. En plus de I'allocation de la puissance et de modulation
par sous-porteuse, la mise & disposition sous-porteuses doivent étre affec-
tés & plusieurs terminaux. En général, un algorithme basé sur 1’allocation
disjointe des sous-porteuses et de la puissance n’est pas optimal.

Les aspects liés & la théorie d’information de ce probléme sont étudiées
principalement dans le cadre du canal MAC Gaussien ou du canal inter-
ference Gaussien, avec un évanouissement sélectifs en fréquence. Gallager
a formulé le probléeme dans [15|. Dans [2|, Tse et Hanly ont caractérisé la
capacité ergodique du canal MAC Gaussien, variable dans le temps et sélec-
tifs en fréquence , ot la réponse en fréquence est continue. Le probléme
dans une dimension infinie (un domaine de fréquence continue) peut étre
transformé en une dimension finie (un domaine de fréquences discrétes) , en
divisant le spectre de fréquences dans un grand nombre de sous-porteuses
orthogonales.

Dans ce contexte, les algorithmes centralisés et distribués itératifs qui
convergent vers le point optimal de somme des débits, sur la limite de la
région de capacité sont proposés respectivement par Yu et Lui dans [16] et
par Huang et al. dans [17]. Certains articles a ajouté la restriction FDMA
dans le modele. FDMA, dans lequel plusieurs bandes sont pré-affectés a des
utilisateurs sur une base non-recouvrement, est principalement utilisé dans
les systémes DSL comme une approche standard pour éliminer I'interférence
multi-utilisateur. Dans [18], Yu et Cioffi ont proposé une méthode numeérique
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pour qui ils caractérisent la région atteintes par le systéme de Gaussien MAC
avec ISI en vertu de la restriction FDMA, 'examen d’une nombre fini de cas
de fréquence. Dans [19], Verdu et Cheng ont montré que la méthode optimale
de waterfilling multi-utilisateur implique la superposition de la fréquence, par
consequence FDMA n’est pas optimale, sauf dans des cas particuliers.

La conception des systémes de communication multi-porteuse implique
souvent une maximisation de débit total sous certaines contraintes. [16] a
fourni une méthode pour trouver la solution optimale globale pour ce prob-
léeme. Bien que le document met 'accent sur le canal OFDM d’interférence,
les mémes résultats peuvent aussi étre représentés dans le cas ’OFDM MAC.
Il est montré que l’écart de la dualité d’'un probléme d’optimisation non-
convexe est nul si le probléme d’optimisation corresponde & une condition de
temps partagé. En outre, la condition de temps partagé est toujours satis-
faite pour le probléme d’optimisation multi-utilisateur du spectre radioélec-
trique dans les systémes multi-porteuse lorsque le nombre de transporteurs
de fréquence augmente vers I'infini.

En général, les problémes d’optimisation dans les systémes OFDM multi-
utilisateur sont les problémes NP-complets , avec une complexité exponen-
tielle au nombre de sous-porteuses, pour les allocations fixes de puissance,
ainsi que aux allocations de puissance, pour les numéros fixes de sous-
porteuses. La formulation générale des problémes d’optimisation pour I’allocation
des sous-porteuses et des puissances pour les réseaux qui consistent des liens
d’interference sont fournis par Luo et Zhang dans [20]. Une partie de la
complexité provient de la nature combinatoire du probléme, en qu’il y a des
nombreux sous-porteuses par émetteur, et chacun a un gain de canal différent
(bien qu’il existe généralement une forte corrélation entre sous-porteuses
voisines). En outre, le probléme est non-convexe en cas ou l'interférence est
pris en compte [21]. En plus de ces défis qui sont directement liés aux carac-
téristiques du probléme d’optimisation, la variabilité dans le temps demande
les algorithmes de faible complexité réalisables en temps réel. Une algo-
rithme d’allocation de ressources & partir des informations d’état de canal
exige que le mesure du canal, le feedback, le calcul, et la convergence des al-
gorithmes sont tous effectués dans un intervalle de temps de cohérence. Cela
pourrait étre possible dans les systémes centralisés et les scénarios de mobil-
ité faible, mais il semble plus difficile autrement. Des efforts importants de
la recherche actuelle dans les réseaux sans fil sont consacrés a la conception
des algorithmes d’allocation des ressources basés sur 'information limitée du
canal (I'information partielle et/ou statistique).

Malgré la complexité relativement élevée, 'amélioration potentielle de
performance apportée par le régime dynamique de systéme OFDM est trés
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pertinente. Ainsi, des nombreux régimes sous-optimales ont été étudiés
récemment. Le Waterfilling Itératif (IWF) est lalgorithme sous-optimal
d’allocation de ressources la plupart du temps utilisé dans cette structure.
Toutefois, le processus IWF ne cherche pas a trouver ’optimum global pour
I’ensemble du réseau. Deux méthodes communes pour diminuer la com-
plexité du probléme sont les suivants: (i) réduire le nombre des variables
de décision, (2) remplacer les optimisations centralisées par des algorithmes
d’optimisation distribué ou du jeux.

Dans les systémes centralisés avec CSI compléte aux émetteurs, la plu-
part des recherches ont étudiées I'impact de la réduction de la complexité en
réduisant le nombre des variables de décision dans le probléme d’optimisation
(en fixant certains d’entre eux). Un exemple courant dans le systéme OFDM
est lorsque le sous-porteuses sont pré-assignés a des utilisateurs (FDMA).
Dans ce cas, l'allocation optimale de puissance de tous les utilisateurs sur
leurs sous-porteuses fixes sont évalués par ’algorithme d’allocation de ressources.
Dans [22], Wong et al. ont proposé un algorithme OFDM multi-utilisateur
pour l’allocation des sous-porteuse, du bit, et de la puissance pour minimiser
la puissance totale de transmission. Cet algorithme est basé sur une répar-
tition sous-optimale des sous-porteuse, suivi par une allocation des bits sur
les sous-porteuses assignées. Dans [23], Thanabalasingham et al. ont exam-
iné le probléme de I’allocation conjointe des sous-porteuse et de la puissance
pour le downlink d'un réseau multi-utilisateur multi-cellulaire OFDM. Ils
ont étudié les dégradation des performances a cause de 'allocation statique
sous-optimale des sous-porteuse ou de la puissance. Le modéle utilisé pour le
canal prend en compte I'ombrage et la perte de chemin d’un rythme lognor-
mal , mais pas de multipath fading sélectif en fréquence. Il est montré que
les performances des deux algorithmes sous-optimaux sont presque aussi bien
que l'algorithme optimal qui alloue conjointement sous-porteuses et densités
spectrales de puissance vers les mobiles.

L’allocation centralisée des ressources dans un systéme multi-utilisateur
est un problémes d’optimisation sous contraintes dans un espace vectoriel.
Ainsi, le remplacement d’un algorithme centralisée d’allocation multi-utilisateur
des ressources par le correspondant distribué principalement réduit la complexité
qui etait imposée par la fonction non-convexe en raison de 'interférence. En
outre, les décisions peuvent étre fondées sur des données locales et la quantité
de signalisation est réduite. La performance de 'algorithme distribué peut
étre utilisé comme une limite inférieure de la performance de ’algorithme
centralisé correspondant.

L’hypothése de la CSI compléte & tous les émetteurs ne peuvent pas étre
réaliste dans les réseaux cellulaires mobiles qui comprennent les canaux vari-
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ant dans le temps ainsi que dans les réseaux ad hoc. Dans ce cas, 'allocation
des ressource doit étre effectuée sur la base de la connaissance statistique de
la condition du canal. Lorsque le canal évolue lentement, le systeme de
communication est intrinséquement affecté par 'événement d’outage. A cet
égard, Hanly et Tse [3| introduit la notion de la région de capacité avec un
délai limité. Ils ont proposé que on peut voir le canal & I’évanouissement
sélectif en fréquence comme un canal variant dans le temps ou, & chaque
état de fading, une réponse en fréquence est spécifiée pour chaque utilisa-
teur, ce qui représente la propagation par trajets multiples. Ainsi, il peut
étre considéré comme un ensemble des canaux paralléles , chacun conjointe-
ment spécifié par I’état de I’évanouissement et la fréquence. Afin d’avoir un
retard limité dans ce canal, chaque utilisateur peut affecter des débits sur
des différentes fréquences mais le débit minimum sommeé sur les différentes
fréquences doit étre rempli pour chaque état de I’évanouissement. Dans [24],
Hanly et al. ont considéré comme un probléme de ’allocation de ressources
fondé sur la probabilité d’outage pour les systémes multi-utilisateur multi-
cellulaire. Ils formulent le probleme de probabilité d’outage min-max et le
résolvent sous la contrainte que la puissance de transmettre a chaque station
de base est plate. Si plus de puissance doit étre affectée & un mobile afin de
conserver une certaine qualité de service, par exemple, lorsque le mobile se
déplace & proximité de la limites de la cellule, il y a deux maniéres indépen-
dantes pour y parvenir: soit en augmentant le niveau de la puissance de
cellules dans son ensemble, soit en augmentant la nombre de sous-porteuses
attribuées au service mobile. Les auteurs ont considéré un second algorithme
basé sur la répartition fixe des sous-porteuse et l'allocation dynamique de la
puissance. Ils ont fait valoir que l'algorithme proposé a base de 'allocation
plate de la puissance est significativement supérieur par rapport a l'objectif
de minimiser la probabilité maximum d’outage.

Beaucoup de travail a été fait sur la théorie des jeux appliquée aux
reseaux d’interférences comprenant les canaux a évanouissement sélectif en
fréquence, avec le premiére article par Yu et al. [25], des articles ultérieurs
de Scutari et al. (Voir [5] et ses références) et un article récent de Gaoning et
al. [6]. Un sujet particuliérement intéressant est l'utilisation des jeux Nash
généralisés sur le canal d’interférence faible [26].

Une autre maniére de surmonter la sous-optimalité de ’approche con-
currentielle est d’utiliser le concept des jeux répétés et de la dynamique
d’apprentissage. Cette approche a été largement appliqué dans la répar-
tition de la puissance [28-31]. L’allocation de puissance dans les réseaux
d’interférence est en soi un processus répétitive et il est naturel de mod-
éler les interactions entre les utilisateurs par jeux répétés. Ces approches
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introduisent une phase d’apprentissage qui fournit aux utilisateurs des infor-
mations (intelligence) pour prendre une décision correcte. La convergence
de la dynamique d’apprentissage dans le jeu répété est le défi principal de
ces régimes. En outre, ils supposent les canaux a évanouissements lentes.

Apres cet apercu de la littérature, nous mettons en évidence notre con-
tribution sur le sujet. En fait, seuls quelques travaux dans la littérature
sont concentrés sur le canal & évanouissement lent avec l'information par-
tielle des canaux aux émetteurs. Dans [21]|, Etkin et al. ont considéré un
canal d’interférence & évanouissement lent supposant une information par-
tielle d’état de canal au début du jeu. En utilisant ’approche des jeux
répétés, I'information sur le canal et les interactions est acquis. Récemment,
Xiao Lei et al. [32] ont considéré un canal d’interférence a évanouissements
par blocs ayant la connaissance de I’état des liens directs, mais seulement la
connaissance statistique sur les liens interférents. Avec cette hypotheése, des
communications fiables ne sont pas possibles et un certain niveau d’outage
doit étre toléré. Les auteurs ont considéré le jeu d’allocation de ressources
pour une fonction a base des débits instantanes pour les événements d’outage.
Dans ce contexte, ils ont étudiés les deux cas de répartition de la puissance
pour un debit prédéfinis de transmission ainsi que ’allocation conjointe de
la puissance et du débit.

1.1.2  L’approche Inter-couches d’allocation de ressources
dans les Canaux d’Interférence

L’allocation de ressources fondée uniquement sur CSI n’est pas en mesure de
mettre & jour correctement l’allocation de débit en fonction de la dynamique
du trafic en entrée. En ignorant le caractére aléatoire de 'arrivée des paquets
et des files d’attente, telles approches peuvent garantir ni la stabilité des files
d’attente, ni le délai d’attente acceptable. Pour tenir compte des paramétres
de files d’attente, les approches inter-couches sont nécessaires.

L’avantage de la conception inter-couches et ’optimisation conjointe de
ces mécanismes de controle est bien connu dans les systémes centralisés de
communication (par exemple, [4] et les références citées).

Les approches centralisées inter-couches pour 'allocation de ressources
ont été proposé a la fois pour la liaison uplink et la liaison downlink (canal
de diffusion). La connaissance & la fois d’information d’état de canal (CSI)
et d'information d’état de file d’attente (QSI) permet d’obtenir les stratégies
avec un débit optimal, i.e. les stratégies qui atteindre la région de capacité
ergodique d’un réseau des canaux a évanouissements [33,34| (voir, par ex-
emple Maximum Weighting Matching Scheduling - MWMS [35]). D’autres
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approches, en dehors de 'optimalité de débit instantané, comme le retard
moyen des files d’attente , ont été également l'objet d’études [4, 36].

Les algorithmes décentralisés d’allocation de ressources dans les réseaux
d’interférences est un probléme complexe et intrigante, car la décision affecte
de nombreux aspects fondamentaux de fonctionnement de la réseau et la
performance qui en résulte. Plusieurs autres approches ont été proposées
dans les deux régimes, conventionnals et inter-couches, et ayant considéré
I’existence d’interférence. Deux approches principaux peuvent étre identifiés:
(I) les algorithmes basés sur des jeux répétés et la dynamique d’apprentissage,
(ii) les jeux stochastiques sous contraintes .

La premiére approche a été principalement appliquée la répartition de
puissance dans les systémes couche-unique classique [30,31,37,38]. L’allocation
de puissance dans les réseaux d’interférence est intrinséquement un proces-
sus itératif et il est naturel de modéler les interactions entre les utilisateurs
avec des jeux répétés. Ces approches introduisent une phase d’apprentissage
qui fournit aux utilisateurs des informations (intelligence) pour prendre une
décision correcte. La convergence de la dynamique d’apprentissage dans le
jeu répété est le défi principal de ces régimes. En outre, ils supposent les
canaux & évanouissements lents.

Les jeux stochastiques sous contraints ont été appliquées & la conception
des algorithmes décentralisée inter-couches pour accés multiple. Dans [39],
Altman et al. ont considérés un canal & évanouissement MAC avec les états
du canal qui suivis une chaine de Markov. En outre, chaque émetteur est
fourni avec une file d’attente rempli par un processus de Poisson. Les jeux
décentralisés égoistes ou coopératifs, éventuellement corrélés, sont proposés
pour optimiser une fonction d’utilitée sous les contraintes sur le retard maxi-
mum de file d’attente et la puissance maximale. Considérant I’hypothése du
débit transmission fixe pour tous les utilisateurs ainsi que les communications
fiables sont toujours possibles dans le contexte de la décentralisation, la fonc-
tion d’utilitée pour le probléme d’optimisation dans [39] est le débit moyenne
maximale. Les algorithmes proposés permettent 1’allocation de puissance et
le controle d’admission (accepter ou rejeter les paquets entrants dans les files
d’attente). Dans un systéme avec des mécanismes de controle décentralisé ou
chaque émetteur n’est pas au courant de la présence de brouilleurs (et leurs
effets) et il est intrinséquement soumis aux outages, ’hypothése des com-
munications fiables est assez forte. En outre, le contrainte d’un débit fixe
dans toutes les conditions de canal ne permet pas une utilisation optimale
du canal et une utilisation plus efficace du canal est prévu par le controle et
I’adaptation du débit de transmission & CSI. Une extension de ces travaux
précéndanr aux réseaux d’interférence est présenté dans le chapitre 6 et 7.
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1.2 Les Préliminaires Mathématiques

Dans le chapitre 4, nous introduisons deux théories mathématiques fonda-
mentales, a savoir la théorie de 'optimisation et la théorie des jeux. Notez
que, seulement une extension de ces sujets qui sont pertinentes a notre étude
est présentée ici. La premiére partie représente les concepts mathématiques
de base qui sont utilisées dans les sections suivantes. Nous procédons par
I'introduction de la théorie de I'optimisation et des sujets connexes, & savoir
théorie de dualité et les conditions KKT. La définition du jeu suivi par
I'introduction de deux catégories particulieres de jeux, nommeément les jeux
bayésiens et les jeux stochastiques, ainsi que leur application dans la com-
munication sans fil. Nous avons finalement donné une introduction bréve a
la théorie des matrices aléatoires.

1.2.1 Application de Jeux Bayésienne dans les Réseaux Sans
Fil

Geoning et al., Dans leur récent ouvrage sur I’approche de la théorie des jeux
bayésienne pour 1’allocation de ressources distribuées dans un réseau com-
prenant les canaux & évanouissement et un modéle d’access MAC [84], ont
étudié 'utilisation de cette classe de jeux dans les systémes multi-émetteur.
Dans un travail précédent , El Gamal et al. introduitent un jeu statique non
coopératif dans le cadre des canaux a évanouissement et d’un modéle d’access
MAC comprenant 2 utilisateur, connu sous le nom jeu waterfilling. En sup-
posant que les utilisateurs se faient concurrence avec les debits de trans-
mission comme un utilité et que ils ajustent leurs puissances comme leurs
stratégies, les auteurs montrent qu’il existe un unique équilibre de Nash [86]
qui correspond au point de la somme maximum des débits sur la région de
capacité. Cette affirmation est un peu surprenant, car ’équilibre de Nash
est en général inefficace par rapport a l'optimum de Pareto. Cependant,
leurs résultats s’appuient sur le fait que les deux émetteurs ont une connais-
sance compléte de la CSI, et en particulier, parfait CSI de tous les émetteurs
dans le réseau. Cette hypothése est rarement réalisable en pratique. Ainsi,
ce jeu de répartition de puissance doit étre reconstruit avec des hypothéses
réalistes faites sur le niveau de connaissance des mobiles. En vertu de cette
considération, il est d’un grand intérét d’étudier plusieurs scénarios dans
lesquels les mobiles ont des informations incomplétes au sujet de leurs com-
posants, par exemple, une entité de transmission est au courant du gain de
son propre canal, sans savoir le gain des canaux d’autres mobiles. Au cours
des dix derniéres années, des outils basé sur la théorie des jeux Bayésiens
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n’ont été utilisés pour concevoir des stratégies d’allocation de ressources dis-
tribuées que dans certains contextes, par exemple, les réseaux CDMA [87,88],
réseaux d’interférences multiporteuse [89,90], ainsi que MAC avec les canaux
a évanouissement [84]. Le quatriéme chapitre de la these actuelle représente
notre contribution & ce sujet.

1.2.2 Application des Jeux Stochastiques en Communica-
tions Sans Fil

La dynamique des réseaux sans fil peuvent étre classés en deux types, I'un est
des perturbations dues & 'environnement, et ’autre est I'impact causé par
les utilisateurs concurrents. Le comportement stochastique des concurrents,
les canaux variables dans le temps vécu par 'utilisateur d’intérét, et le trafic
source variable dans le temps qui doit étre transmises par 1'utilisateur sont
quelques exemples. Ces types de dynamiques sont généralement modélisées
comme des processus stationnaires. Par exemple, 'utilisation de chaque
canal par un utilisateur peut étre modélisé comme un chaine de Markov
avec les états ON/OFF. Les conditions de canal peuvent étre modélisées en
utilisant un modéle de Markov & états finis. La loi d’arrivée des paquets
du trafic source peut étre modélisée comme un processus de Poisson 3.1.2.
Une telle approche n’a été utilisée pour concevoir la répartition inter-couches
des ressource que dans certains contextes, & savoir des jeux a somme nulle
sous contrainte [100], radio cognitive [101] et MAC avec une contrainte de
puissance [39]. L’extension ses travaux antérieurs aux réseaux d’interférence
est présenté dans le chapitre 6 et 7.

1.2.3 Application de la Théorie des Matrices Aléatoires en
Communications Sans Fil

Tse [43]| et Verdu [42] en 1999 ont introduit la théorie des matrices aléa-
toires comme un outil pour analyser les systémes mutli-utilisateur. Ils ont
etudié les performances des récepteurs linéaires pour les systémes CDMA,
dans la limite ot le nombre d’utilisateurs ainsi que la longueur d’étalement
tend vers l'infini, avec un taux fixe. Dans ces scénarios asymptotique,
I'utilisation de la théorie des matrices aléatoires conduit aux expressions
explicites pour diverses mesures d’intérét tels que la capacité ou le rapport
signal-a-interférence plus bruit (SINR). Fait intéressant, il permet d’isoler
les principaux paramétres d’intérét qui déterminent la performance dans les
nombreux modeéles de systémes de communication avec les modéles d’atténuation
plus ou moins impliqués [42,43,102-104]|. En outre, ces résultats asympto-
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tiques fournissent de bonnes approximations pour les cas pratiques de taille
finie. Une récente théorie des matrices aléatoires, centré sur les applications
de la théorie de I'information, est donnée dans le livre de Tulino et Verdu
[105]. Les effets d’interférence sur les performances d'un grand réseau sont
étudiés dans [?,110]. L’extension de leur résultats vers le réseau d’interférence
est présenté dans le chapitre 7.

1.3 Plan de Thése

Les étapes méthodologiques principales pour atteindre I'objectif de la con-
ception et ’analyse des performances des algorithmes distribués d’allocation
de ressources sont énumeérées ci-aprés.

e de définir le probléme d’allocation de ressources qui est approprié pour
les hypothéses de réseau, tels que (i)capacité de file d’attente, i.e.,
fini/infini, (ii) les hypothéses liées aux canaux (par exemple, la disponi-
bilité des informations d’état de canal, la méthode d’accés au canal), et
(iii) les contraintes du systéme et de service (par exemple, la puissance
limitée, le délai tolérable).

e de revoir les fondements de la théorie de 'optimisation, ainsi que la
théorie des jeux tels que: (i) la définition mathématique des problémes
d’optimisation sous contrainte et le probléme correspondant en cadre
de la théorie des jeux (ii) l'introduction du probléme dual qui nous
fournit une borne inférieure 'exécution du probléme initial, et les con-
ditions dans lesquelles cette borne est exacte, (iii) l'introduction de
I’équilibre de Nash qui nous fournissent avec une limite inférieure sur
la performance des solutions globalement optimales, et les conditions
dans lesquelles cette borne est atteinte .

e de modéliser les problémes d’allocation de ressources dans les commu-
nications sans fil multi-utilisateur comme des problémes de théorie des
jeux et de proposer des algorithmes itérative de complexité faible qui
convergent vers 1’équilibre de Nash du jeu en question.

e d’analyser le résultat de probléme de la théorie des jeux, tels que
Iexistence d’un équilibre, son unicité possible, ’existence des stratégies
purs ou mixtes.

e d’évaluer la performance des réseaux sans fil provenant des solutions
de théorie des jeux en terme d’efficacité.
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1.4

Les Hypothéses

Ce qui suit sont des hypothéses communes réalisés dans cette thése

L’allocation de ressources par intervalle de temps de transmission: le
canal est supposé d’étre & évanouissement par bloc, i.e. constante
dans la durée d’un bloc. En outre, les codewords sont complétement
transmis pendant un seul intervalle de temps. Ainsi, 'allocation de
ressources doit étre mis & jour chaque intervalle de temps.

La disponibilité d’informations d’états: Nous supposons que chaque
émetteur a une connaissance statistique des états de canaux des autres
paires de communication (et des états de leur files d’attente) et une
connaissance exacte de 1’état de son propre canal (et sa propre file
d’attnete).

La distribution de signal: Le signal est Gaussien. En pratique, le
niveau de modulation est supposé étre suffisamment élevée pour que
I'information mutuelle est environ la capacité du canal. Par con-
séquent, la capacité du canal, C' = log(1 + SNR), est utilisé comme
débit réalisable par lien.

La rationalité: Une des hypothéses, qui est trés souvent considéré dans
la théorie des jeux, est la rationalité [40,41]. Cela signifie que chaque
joueur toujours maximise son profit, étant ainsi en mesure de parfaite-
ment calculer le résultat probabilistique de chaque action. Cependant,
en réalité, cette hypothése peut étre raisonnablement approchée comme
la rationalité d’un individu est limitée par l'information qu’il a et la
quantité finie de temps il dispose pour prendre des décisions.

Les hypotheéses liées aux certains chapitres, sont les suivants.

le modéle de canal: Notre étude se concentre spécifiquement sur des
canaux a évanouissements lents et ceci est 'hypothése courante dans
les chapitres 5 a 7. En outre, le modéle de canal est supposé étre
sélectif en fréquence dans le chapitre 5 et nous avons adopté le systéme
d’accé Orthogonal Frequency Division Multiplexing (OFDM) dans le
chapitre 5. Le canal dans les chapitres 6 et 7 est supposé étre plate en
fréquence.

les procés d’arrivées dan la file d’attnete: Dans le chapitre 5, la per-
formance du réseau est évalué en supposant un retard infini de pa-
quets dans les files d’attente. Ainsi, le probléme est défini comme une
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allocation de ressources & une seule couche classique. Toutefois, dans
les chapitres 6 et 7, nous avons considéré une capacité fini de paquets
dans les files d’attente et nous adoptons 'allocation de ressources inter-
couches.

e La méthode d’accés du canal et la structure du réseau: Dans le chapitre
5, nous nous concentrons sur le canal d’accés multiple (MAC), ou
2 émetteurs indépendants & la fois communiquent avec un récepteur
OFDM utilisant plus de N sous-porteuses. Dans les chapitres 6 et
7, nous considérons un réseau d’interférences (IN) avec K couples
émetteur-récepteur. Nous supposons en outre que (i) les paires d’émetteur-
récepteur communiquent directement, i.e., hop unique ou sans relais,
(i) chaque noeud est soit un émetteur ou un récepteur, et (iii) les émet-
teurs sont distincts bien que un noeud peut étre la destination des flux
différents.

1.5 Structure de la Thése

Dans cette thése, 'objectif principal est de representer, théoriquement et
mathématiquement, le sujet d’allocation de ressources dans un systéme multi-
utilisateurs, par exemple, le canal d’accés multiples ou le canal d’interférences,
et la facon d’obtenir des algorithmes de complexité faible qui nous four-
nissent un bon compromis performance-complexité par rapport & la perfor-
mance de la méthode originale. Le contour de la thése est la suivante. Le
chapitre 3 examine les différents aspects de l'allocation de ressources dans
les réseaux sans fil, avec des hypothéses et des configurations différentes,
et les articles liés. Le chapitre 4 introduit deux théories fondamentales, &
savoir, la théorie d’optimisation sous contrainte et la théorie des jeux, ainsi
que quelques exemples de leur application dans les communications sans fil,
fournissant les outils mathématiques principaux utilisés dans cette thése.
Aux chapitres 5 & 7, nous considérons 'allocation communes du débit et de
la puissance dans les différents réseaux , supposant les canaux & évanouisse-
ments lents et que d’'information partielle de ’état du canal est disponible
aux émetteurs. Ici, 'information partielle sur 1’état du canal signifie que
chaque émetteur a connaissance de son propre lien, qui peut étre estimé au
niveau local, mais uniquement des informations statistiques sur les atténu-
ations de puissances des autres émetteurs. Sous cette condition, le systéme
de communication est intrinséquement affecté par 1’événement d’outage et
les émetteurs sont intéressés & maximiser le débit, c’est a dire le débit de
I'information recue par succés, ce qui permet d’événement d’outage. Nous
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commencons notre étude par un exemple de réseau cellulaire en supposant
retard infini de paquets dans les files d’attente. Ainsi, le chapitre 5 consid-
ére un systéme deux-utilisateur ’OFDM MAC avec un grand nombre de
sous-porteuses. Nous modélisons la maximisation distribuée des débits dans
un réseau de systéme OFDM MAC avec 2 émetteurs comme deux COPs
paralléles. Compte-tenu de la solution optimale du probléme dual comme
une solution fournissant une borne inférieure sur la performance optimale du
probléme primaire et les équilibres de Nash comme une limite inférieure sur la
performance de la solution globalement optimale, la complexité du probléme
est réduit en le représentant comme un jeu bayésien basé sur le probléeme
dual (nous l'avons appelé jeu dual). Le compromis entre la performance et
la complexité est discutée. Dans les deux prochains chapitres, nous relachons
I’hypothése de backlog infini et impliquons 1’état de la file d’attente dans nos
décisions. Dans le chapitre 6, nous considérons une allocation de ressources
distribuées inter-couche dans un réseau ad-hoc d’hop unique composé de K
paires source-destination. Nous nous référons également & ce réseau en tant
que réseau d’interférence (IN). Nous modélisons la maximisation de débit,
compte tenu de I'état statistique (état du canal et I’état de file d’attente) des
informations des autres utilisateurs, comme un jeu stochastique. En outre,
nous proposons un algorithme itératif & un complexité faible basé sur la pro-
grammation linéaire (LP) pour obtenir des équilibres de Nash. Dans le cas
d’un nombre fini de paires de communication, ce probléme a un intensité
de calcul extrémement forte avec une complexité exponentielle dans le nom-
bre d’utilisateurs. Chapitre 7 étend le probléme & un réseau dense ad hoc,
avec un grand nombre de paires d’émetteur-récepteur. L’approche asymp-
totique des réseaux larges & interférences permet une réduction considérable
de la complexité et est utilisée pour évaluer la performance des réseaux finis.
Les avantages d'une approche inter-couches par rapport d’une allocation de
ressources en ignorant les états des files d’attente sont également évalués.

1.6 Nos Contributions a la Recherche

1.6.1 Chapitre 5

Dans la transmission a la bande large, les trajets multiples peut étre ré-
solu, et donc le canal a une mémoire. Un modéle approprié est le canal
a I’évanouissement qui est variable dans le temps et sélectif en fréquence.
Comme une large gamme de composants de fréquence est utilisé, il est trés
peu probable que toutes les parties du signal sera simultanément touchés
par un évanouissement profond. Certaines modulations telles que OFDM
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et CDMA sont bien adaptées a ’emploi de la diversité de fréquence pour
fournir robustesse contre 1’évanouissement.

L’OFDM divise le signal & large bande large en de nombreuses sous-
porteuses modulées en bande étroite Chaque sous-porteuse est exposé a un
évanouissement plat plutdot qu’a un évanouissement sélectif en fréquence.

Le roéle principal joué par OFDM dans les réseaux sans fil des derniéres
technologies a initialisé une recherche trés intense sur le réseau sans fil
OFDM. Un examen des résultats existants sur ’allocation de ressources
dans le canal d’accé multiples d’OFDM est donné dans la section 3.2.1.
La complexité de 'obtention des solutions optimales globales ainsi que les
compromis du remplacement de ces solution optimales avec des solutions
sous-optimales ou Equilibres de Nash ont été étudiés & travers des références
respectives.

Dans ce chapitre, nous considérons l’allocation conjointe de débits et
de puissances dans un systéme OFDM MAC deux-utilisateur avec un grand
nombre de sous-porteuses et supposant 'information partielle d’état de canal
a I’émetteur pour un canal & évanouissements lents et sélectifs en fréquence.
Chaque émetteur a une connaissance de son propre état, qui peut étre es-
timé localement, mais il n a pas d’information sur les atténuations de puis-
sance d’autres émetteurs. Dans ces conditions, les émetteurs sont intéressés
A maximiser le débit, soit le débit des informations recues correctement,
permettant d’événements d’outage. Le débit total du systéme satisfait aux
conditions de partage du temps dans [16] et 'approche de dualité est asymp-
totiquement l'allocation optimale des ressources oi N — oco. Cependant,
la complexité d’un algorithme d’optimisation est encore significativement
élevé. Ensuite, nous considérons un jeu bayésienne basée sur la fonction
sous-optimale obtenu du probléme dual. Le jeu bayésienne se résume a un
jeu par sous-porteuse et un jeu global. Les premiers jeux déterminent les
équilibres de Nash pour la puissance et le débit paramétrique des coefficients
de Lagrange des fonctions d’utilité duale. Le jeu global, basé sur la solution
d’un ensemble des jeux sous-modulaire, fournir les valeurs de la coefficients
de Lagrange a 1’équilibre de Nash bayésien. Nous proposons un algorithme
pour la recherche de tous les équilibres de Nash bayésien de ce jeu. La perfor-
mance de 'allocation conjointe de la puissance et du débit pour notre jeu est
évaluée et comparée a la performance de ’allocation optimum de puissance
et la répartition de puissance uniforme pour les deux cas des connaissances
complétes et partielles du canal aux émetteurs.

Les simulations montrent que tous les NEs obtenu a partir du jeu sont
ceux auquels un seul émetteur émet avec pleine puissance et autre reste
éteint. Au contraire, les allocations optimales de puissance pour le cas
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d’informations complet d’état de canal contient des solutions qui ont la super-
position de puissance de les deux utilisateurs sur le méme canal. Toutefois,
dans ce dernier cas, les solutions ne peuvent étre obtenues par un algorithme
itératif dont la convergence vers un point optimal local dépend du choix de
la valeur initiale. La comparaison de la performance de solution optimale,
obtenu en moyenne sur plusieurs points de départ, avec celui du NE choisis
par les critéres de sélection, montre que le NE est quasi optimale dans cette
configuration du réseau.

La recherche menée dans ce chapitre a été présentée dans le document
suivant

e S. Akbarzadeh and L. Cottatellucci and C. Bonnet, "Bayesian equi-
libria in slow fading OFDM systémes with partial channel state in-
formation" ICT Mobile Summit 2010, 19th Future Network & Mobile
Summyat, June 16-18, 2010, Florence, Italy.

1.6.2 Chapitre 6

Ce chapitre étudie les algorithmes distribués inter-couches dans un réseau ad
hoc single-hop pour I’allocation conjoint de puissance et de débit, la plan-
ification et le controle d’admission. Une littérature étendue du sujet est
représenté dans Section 3.2.2. Nous continuons & nous concentrer sur les
canaux a I’évanouissement lent avec des informations partielles du canal.
Nous utilisons ’approche similaire & celle de [39] pour caractériser le réseau
et les noeuds avec des modifications évidentes pour modéliser les character-
istiques particularités des reseaux ad hoc et des canaux a évanouissements
lents. A savoir, nous considérons les canaux d’interférence au lieu de MAC.

Selon la méme approche que dans le chapitre précédent, nous définis-
sons une fonction d’utilité qui comptes pour la probabilité intrinséque des
événements d’ayant outage dans les réseaux & évanouissemens lents et des
mécanismes de controle décentralisée. La fonction d’utilité proposé maximise
le débit du systéeme défini comme le débit moyen des informations recues
avec succés. Cette optimisation est 'objet d’un contraint sur la puissance
moyenne maximale de transmission.

Ce travail propose a la fois les stratégies décentralisés ol chaque émet-
teur vise & maximiser son propre débit moyen d’information recu avec suc-
cés (jeu égoiste) ou le débit du systéme (Jeu d’équipe) dans ’hypothese de
décodage seul-utilisateur a la récepteur (canal point & point) ou décodage
multi-utilisateur (canal composé). La performance des stratégies différents
est évaluée contre les stratégies obtenus de [39], en termes de débit, proba-
bilité d’outage, et taux de rejet (la fraction de paquets arrivant pas accepté
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dans les file d’attente). L’amélioration entre 19% et 68% pour le débit a été
obtenue. Fait intéressant, les algorithmes itératifs d’optimisation avec points
de départ différents gagnent le méme équilibre si un algorithme de meilleure
réponse avec un complexité faible est appliqué et que le décodage mono-
utilisateur est utilisé aux récepteurs. Cela encourage a croire que ’équilibre
de Nash obtenu est aussi un optimum de Pareto. Au contraire, lorsque
décodage multi-utilisateur est appliqué au niveau des récepteurs, plusieurs
équilibres sont obtenus avec les différences considérables en termes de débit.
Le Multiplicité des points équilibres et la convergence de l'approche meilleure
réponse & un équilibre de Nash ont été que partiellement traitées dans ce tra-
vail et sont toujours objets de recherche.

La recherche menée dans ce chapitre a été présentée dans le document
suivant

e S. Akbarzadeh, L. Cottatellucci, E. Altman and C. Bonnet "Distributed
communication control mechanisms for ad hoc networks" I1CC’°09, In-
ternational Conference on Communications, June 14-18, 2009, Dres-
den, Germany, pp 1-6.

1.6.3 Chapitre 7

Dans ce chapitre, nous intéressons plus spécialement au probléme du chapitre
6 dans le cas difficile d’un réseau ad hoc dense. En fait, I’approche proposée
dans le chapitre 6 a une complexité exponentielle du nombre d’utilisateurs.
Ensuite, il est pratique et des intéréts théoriques de déterminer les algo-
rithmes de complexité faible dans le cas des réseaux denses ot le nombre de
communications est trés élevé.

Dans ce contexte, nous supposons que les liens entre ’émetteur et récep-
teur sont caractérisés par une sorte de diversité (par exemple dans I'espace
ou dans le fréquence) et nous le référons comme le canal de vecteur avec
N chemins de diversité. En outre, nous supposons que les N chemins de
diversité sont aléatoires et K est le nombre de liens du réseau et N tend
vers l'infini avec un rapport constant. Cette approche est motivée par le
fait que la conception et ’analyse asymptotique du réseau dans les envi-
ronnements aléatoires diminue la complexité d’une maniére significative et
fournit des résultats perspicaces pour les analyses . Ce modéle peut car-
actériser les réseaux d’interférence avec la diffusion des signaux transmis a
partir des séquences aléatoires (Code Division Multiple Access - CDMA -
dans les réseaux d’accés multiples ), ou des systémes a plusieurs antennes au
récepteur, ou le caractére aléatoire est due a canal a évanouissement. Dans
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un tel contexte, lorsque le nombre d’utilisateurs et la diversité des chemins
augmentent, les mesures fondamentales comme la capacité et SINR a la sortie
d’un détecteur de récepteur convergent aux limites déterministiques.

L’analyse de performance des récepteurs différents (par exemple les fil-
tres adoptés, linear minimum mean square error - LMMSE -, détecteur opti-
mal), pour les canaux d’accés multiples representer par un vecteur et dans un
environnement aléatoire a été largement étudié dans la littérature (par exem-
ple [42], [43], |44]). Nous étendrons ces résultats & des canaux d’interférence
et les appliquer a la conception et ’analyse des algorithmes distribués inter-
couches dans les grands réseaux d’interférences.

L’hypothése d’analyse des réseaux larges & interférences entraine deux
grands fonctionnalités fondamentales dans le systéeme de controle du chapitre
6, caractérisée par un ensemble des variables discrétes de décision et une en-
semble des variables discrétes de statistiques du canal. Tout d’abord, un
réseau d’interférence avec un nombre limité d’utilisateurs et un mécanisme
de controle décentralisé , une transmission est intrinséquement soumise a
un outage comme chaque émetteur n’est pas au courant des décisions des
interfereurs et leurs effets. Au contraire, dans les canaux d’interférence d’un
systeme large, 'effet des interfereurs tend vers une limite déterministique
indépendamment des états instantanés des liens. Dabord, un émetteur peut
éviter les événements d’outage par des algorithmes de controle. Deuxieme-
ment, la complexité des algorithmes des couches basses, qui augmente de
fagon exponentielle avec le nombre d’utilisateurs en Chapitre 6, varie seule-
ment selon le nombre des groupes d’utilisateurs, caractérisés par le méme
statistiques de canal dans un systeme large.

Pour les systémes larges d’interférence nous considérons la conception
inter-couches pour l’allocation conjointe de débit et de puissance, la plani-
fication et le contréle d’admission de quatre différents types de récepteurs.
A savoir, nous considérons deux récepteurs, 'un basé sur détection linéaire
MMSE et 'autre sur la détection optimale et le dernier ce qui inclut le dé-
codage de tous les utilisateurs ayant la méme débit et la puissance regue.
Les récepteurs n’ont qu’une connaissance statistique des états de canaux des
interfereurs. Un troisiéme récepteur est basé sur la function conjointe de
la détection ptimale et le décodage de tous les utilisateurs ayant la méme
puissance recue et débit, mais avec une connaissance supplémentaire de la
structure d’interférence au niveau du récepteur. Le quatriéme récepteur dé-
code conjointement et de maniére optimale tous les utilisateurs décodable
tout en sachant la structure d’interférence.

Nous comparons la performance des récepteurs avec les stratégies opti-
males congues. Le décalage entre la performance des stratégies optimales
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pour les grands systémes et des stratégies optimales pour des systémes finis
est également évalué.

Les stratégies optimals obtenues avec I’approche asymptotique peut étre
effectivement appliquées dans les réseaux a interférence finie. En fait, nous
avons étudié les pertes de performance due & D'application des stratégies
concues pour des conditions asymptotiques en réseau avec un nombre fini
des communications actives. Nous avons observé que, méme pour un réseau
contenant 4 communications actives, la performance des réseaux finis atteint
presque celle des réseaux a grande interférence. Des résultats similaires sont
obtenus pour la comparaison réciproque. Nous avons comparé les perfor-
mances d’un réseau fini quand les stratégies du réseau asymptotique est
adaptées a celles obtenues avec des stratégies adaptées aux réseaux finis
dans le chapitre 6. Méme pour les cas les plus difficiles d’un réseau avec 2
paires de communication, la stratégie optimale du probléme asymptotique
est presque aussi bonne que la stratégie adaptée au réseau.

Nous avons aussi examiné les avantages d’une approche inter-couches par
rapport & une allocation des algorithmes conventionnels en ignorant les états
des files d’attente. Dans 'approche classique plus d’énergie est consommée
pour l’envoi de certaine quantité de données comme il existe des cas ou la
puissance est répartie de satisfaire un certain débit bien qu’il n’y ait pas
suffisamment de données dans la file d’attente pour atteindre ce débit. A
négliger 1’état de la file d’attente, on provoque une perte notable de perfor-
mance comme la puissance n’est pas alloués de maniére efficace.

Fait intéressant, la stratégie optimale du grand réseau étudié ici présente
un découplage intéressant. Plus précisément, le débit est une fonction crois-
sante de I’état file d’attente lorsque la puissance allouée est fonction de ’état
du canal seulement.

La recherche menée dans ce chapitre a été présentée dans le document
suivant

e S. Akbarzadeh, L. Cottatellucci and C. Bonnet, "Low complexity cross-
layer design for dense interference networks" WiOpt/PHYSCOMNET
2009, Tth International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks, June 23-27, 2009, Seoul, Ko-

rea, pp 1-10.

1.7 Conclusion

Cette recherche a deux objectifs: concevoir et analyser la performance les
algorithmes distribués d’allocation de ressources dans les canaux a évanouisse-
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ments lents avec des informations partielles sur les canaux aux émetteurs.
Nous avons développé des algorithmes en supposant que chaque émetteur dis-
pose d’une information exacte de son propre canal ainsi que la connaissance
statistique des autres canaux. Dans un tel contexte, le systéme est fondamen-
talement affectué par une probabilité d’outage non nul. Nous avons proposé
des algorithmes distribués de faible complexité pour ’allocation conjointe
de débit et de la répartition de puissance visant a maximiser le débit indi-
viduel, défini comme le taux d’information recu par succés, en vertu d’une
contrainte sur la puissance moyenne.

Nous avons commencé notre étude dans un réseau de systéme MAC
OFDM, avec 2 émetteurs. Comme on le sait, le probléme qui se pose est
non-convexe avec une complexité exponentielle dans le nombre des émet-
teurs et des sous-porteuses. Nous avons introduit une simplification a deux
niveaux au probléme. Par une approche duale, on obtiene 'allocation op-
timale des ressources asymptotiquement quand le nombre de sous-porteuses
tend vers l'infini. Le probléme dual a une complexité linéaire selon le nom-
bre de sous-porteuses, mais sa complexité est toujours exponentielle selon
le nombre d’utilisateurs. Nous avons introduit une approche sous-optimale
a complexité faible sous la forme de jeu bayésien (jeu & information incom-
pléte) comprenant 2 joueurs. Ce probléme de jeu se résume en deux équations
polynomiales & plusieurs variables, paramétriques en les multiplicateurs de
Lagrange des deux utilisateurs, a travers lesquelles nous avons trouvé tous
les NEs du probléme. Nous avons en outre adopté la somme maximum de
débits comme le critére de sélection d’un NE.

La performance des points de NE est comparée & la performance de
I’allocation de puissance optimale pour le cas ou l'information sur 1’état
de canal est complet et 'allocation uniforme de la puissance dans le cas
d’information partielle de I’état de canal. Les simulations ont montré que
tous les NEs obtenus & partir du jeu sont ceux ot un seul émetteur transmet
la puissance maximale et I’autre reste éteint. Au contraire, les allocations de
puissance optimale pour le cas d’information complet d’état de canal contient
des solutions qui ont la superposition des puissances de deux utilisateurs sur
le méme canal. Toutefois, dans ce dernier cas, les solutions ne peuvent étre
obtenues par un algorithme itératif dont la convergence vers un point optimal
local dépend du choix de la valeur initiale. La comparaison des performances
de la solution optimale et le NE, a montré que le NE est quasi optimal dans
cette configuration du réseau.

Ensuite, nous avons étendu le probléme en un seul bond dans un réseau
ad hoc. Nous avons relaché ’hypothése intrinseque de la capacite infini de
paquets dans les files d’attente fait dans ’étude précédente. Par conséquent,
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chaque émetteur posséde un buffer de taille bornée et accepte les paquets
a partir d’'une distribution de Poisson. Nous avons étudié les algorithmes
inter-couche répartis de controle d’admission, ’allocation du débit et de la
puissance visant a maximiser le débit d’individuel et le débit global. Les
décisions sont fondées sur la connaissance statistique des états (atténuation
du canal et la longueur de file d’attente) de la transmission d’autres couples
et sur la connaissance exacte de leurs propres états. Ce probléme est formulé
comme un jeu stochastique avec stratégies mixtes. En outre, la structure du
probléme satisfait les conditions dans lesquelles les stratégies de point-col de
jeux stochastiques existent entre les stratégies de Markov et sont plus faciles
a calculer. Suite a cette observation, un algorithme itératif de meilleure
réponse basé sur la programmation linéaire a été introduite. L’algorithme
proposé apporte des améliorations considérables en forme d’une extension
simple pour les réseaux ad hoc des algorithmes décentralisés qui est utilisée
pour les canaux d’accés multiples dans la littérature .

Toutefois, dans un cadre fini, ce probléme présente une complexité trés
élevée lorsque le nombre d’utilisateurs et/ou des états émetteur augmentent.
Ce fait rend les approches inter-couches distribuées trés cotiteuses en calcul.

La complexité élevée des algorithmes distribués d’allocation de ressources
pour les approches inter-couches nous ont motivés & considérer le méme
probléme dans un réseau larg a interférence avec un grand nombre de paires
d’émetteur-récepteur. L’approche asymptotique des réseaux large d’interférence
permet une réduction considérable de la complexité. Plus précisément, la
complexité ne varue pas selon le nombre d’utilisateurs mais selon le nom-
bre de groupes d’utilisateurs ayant des statistiques identiques. Le probléme
a une complexité particuliérement faible dans le cas pratique des réseaux
symétriques. Fait intéressant, la stratégie optimale du réseau de grandes in-
terférences étudié ici présente un découplage entre les differenets parametres
de decision. Plus précisément, le débit est une fonction croissante de 1’état
de la file d’attente alors que la puissance allouée est seulement une fonction
de I'état du canal.

Nous avons étudié la perte de performance due a ’application des poli-
tiques concues pour des conditions asymptotiques en réseau avec un nombre
fini de communications actives et vice versa. Nous avons observé que, méme
pour un réseau contenant 4 communications actives, les deux stratégies ont
pratiquement les mémes performances. Nous avons aussi examiné les avan-
tages d'une approche inter-couches par rapport & une allocation de ressources
conventionnelles en ignorant les états des files d’attente. Les résultats sug-
gérent que négliger ’état de la file d’attente provoque une perte sévére de
performances, puisque la puissance n’est pas allouée de maniére efficace.



Chapter 2

Introduction

In a wireless medium, users communicate by radiating energy in all direc-
tions. This creates a natural inter-connection among all users, and an iso-
lated link does not intrinsically exist. One of the challenges of this commu-
nication medium is to deal with the interference that different transmissions
cause to each others.

The current generation of wireless networks reduces the problem com-
plexity by using multiple access protocols, and exploiting the natural atten-
uation of the medium (power control, frequency reuse). In such a setting,
a central authority adjust the strategies of users in order to satisfy a global
criteria. However, these networks fail to benefit from the full connectivity
offered by the air interface.

Next generation wireless networks aim at exploiting the full connectivity
by weakening the notion of a central authority (e.g., cognitive radio) or
removing it completely (e.g., ad hoc networks) without reducing the full
flexibility and level of services already offered by cellular networks. The
centralized approach usually involves sophisticated optimization techniques
and signaling loads that grow with the number of transmitters and receivers
in the network. As these algorithms tend to be complex and not easily
scalable, decentralized algorithms are preferred in next generation scenarios.
Different levels of cooperation among transmitters and/or receivers can be
envisaged but in general the delocalization of control mechanisms, such as
rate and power allocation, scheduling, admission control, and routing, is
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desired.

In decentralized schemes, decisions concerning network parameters (rates
and/or powers) and transmission conditions are made by individual transmit-
ters based on locally available information about the transmission medium
or environment. An efficient resource allocation scheme requires an appropri-
ate choice of a performance metric based on the following two parameters:
(i) rate of environment changes, and (ii) amount of information available
at transmitters. Recently, a considerable amount of research in multiuser
networks has focused on realistic models in which each node has complete
knowledge of its own channel as well as statistical knowledge of the chan-
nels of the other nodes. In this context, Shamai and Wyner’s pioneering
approach [1] followed by Hanly and Tse’s two highly referenced works [2, 3]
have introduced the capacity functions appropriate for different fading mod-
els and different levels of channel side information at the transmitters.

Resource allocation in wireless networks needs to be adapted not only
to the changes in the transmission medium but also to the applications.
This topic was traditionally approached either through information theory
or communications network theory. However, to break down the barriers
between these distinct approaches, there is a need for communication models
which bridge the physical layer and the upper layers by providing cross-layer
resource allocation techniques.

Cross-layer resource allocation allows optimization of network resources
and enables engineers to improve signal quality, enhance network and spec-
trum utilization, increase throughput, and deal with the problem of shad-
owing. An example relevant to our study is that, resource allocation based
solely on channel side information (CSI) is unable to update rate allocation
properly according to the dynamics of input traffic. By ignoring the random-
ness in packet arrival and queueing, such approaches can guarantee neither
the stability of queueing systems nor an acceptable queueing delay. The ben-
efits of cross-layer design and joint optimization of these control mechanisms
are well known in wireless communication systems (e.g., [4] and references
therein).

Transmissions over a wireless medium are always subject to fading and
unresolvable interference from other transmissions. In addition, some con-
straints are imposed by wireless devices due to the system limits (such as
limited battery life) and/or service requirements. It is crucial to take these
factors into account in the design of algorithms for efficient resource allo-
cation. Therefore, resource allocation problems are very often defined as
Constrained Optimization Problems (COPs). COP is a domain which pro-
vides the possibility to optimize certain objective functions subject to the
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limits imposed by a system or services. Moreover, in the case of distributed
resource allocation, game theory also plays a significant role in offering less
complex and more scalable methods. An example of which, Iterative water
filling algorithms [5, 6], are defined in literature based both on optimization
theory and game theory. Some properties of wireless networks make game
theory a convenient method for their analysis and design [7| : (i) mobile
terminals are equipped with a certain degree of intelligence which makes the
distributed decision-makers configuration possible, (ii) mobile devices share
some common resources which implies natural interaction between them, and
(iii) wireless networks are highly structured.

2.1 Thesis Plan

The main methodological steps to achieve the objective of design and per-
formance analysis of distributed resource allocation algorithms are listed in
the following.

e to define the resource allocation problem which is appropriate for net-
work assumptions, such as (i) queue backlog, i.e, finite/infinite, (ii)
channel related assumptions (e.g., availability of the channel state in-
formation, channel access method), and (iii) system and service con-
straints (e.g., limited power, maximum tolerable delay).

e to review the fundamentals of optimization theory as well as game
theory such as: (i) the mathematical definition of constrained opti-
mization problems and the corresponding game theory problem (ii)
the introduction of the dual problem which provides us with a lower
bound on the performance of the original problem, and the conditions
under which this bound is tight, (iii) introduction of the Nash equi-
libria which provide us with a lower bound on the performance of the
globally optimal solutions, and the conditions under which this bound
is tight.

e to model the resource allocation problems in multiuser wireless com-
munications as game-theoretical problems and propose low complexity
iterative algorithms which converge to the Nash equilibria of the game
in question.

e to analyze the outcome of game-theoretical problems, such as the exis-
tence of an equilibrium, its possible uniqueness, pure or mixed strate-
gies.
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e to evaluate the performance of wireless networks derived from game-
theoretic solutions in terms of efficiency.
2.2 Basic Assumptions

The following are common assumptions made in this dissertation

Resource allocation per transmission time slot: The channel is assumed
to be block fading, i.e. constant within duration. Furthermore, code-
words are completely transmitted during a single time slot. Thus,
resource allocation needs to be updated every time slot.

Availability of state information: We assume that transmitters have
statistical knowledge of the channel (and buffer) states of the other
communication pairs and exact knowledge of their own channel (and
buffer) states.

Signal distribution: The signal is assumed to be Gaussian. In prac-
tice, the modulation level is assumed to be high enough that the mu-
tual information is approximately the channel capacity. Therefore, the
channel capacity, C' = log(14+ SN R), is used as the achievable rate per
link.

Rationality: One of the most common assumptions made in game the-
ory is rationality [40,41]. It means that every player always maximizes
her payoff, thus being able to perfectly calculate the probabilistic result
of every action. However, in reality this assumption can only be rea-
sonably approximated since the rationality of an individual is limited
by the information they have, the cognitive limitations of their minds,
and the finite amount of time they have to make decisions.

The assumptions relevant to certain chapter(s), are as follows.

Channel model: Our study is specifically focused on slow fading chan-
nels and this is the common assumption in chapters 5 to 7. Addi-
tionally, the channel model is assumed to be frequency selective in
chapter 5 and we adopted Orthogonal Frequency Division Multiplex-
ing (OFDM) access scheme in Chapter 5. The channel in chapters 6
and 7 is assumed to be frequency flat.

Queue backlogs: In chapter 5, the network performance is evaluated as-
suming an infinite backlog of packets in the queues. Thus, the problem
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is defined as a conventional single-layer resource allocation. However,
in chapters 6 and 7, we considered finite backlog of packets in the
queues and we adopt cross-layer resource allocation.

e Channel access method and network structure: In chapter 5, we focus
on the Multiple Access Channel (MAC) where 2 independent transmit-
ters are simultaneously communicating with a receiver using OFDM
over N sub-carriers. In chapters 6 and 7, we consider an Interference
Network (IN) with K transmitter-receiver pairs. We further assume
that (i) transmitter-receiver pairs communicate directly, i.e., single hop
or no relaying, (ii) each node is either a transmitter or a receiver, and
(iii) the transmitters are distinct while one node can be the destination
of different information streams.

2.3 Outline of the Dissertation

In this thesis the primary focus is to theoretically and mathematically allo-
cate resources in a multi-user system, e.g., multiple access channel or inter-
ference channel, and how to obtain low complexity algorithms which provide
us a good trade-off performance-complexity compared to the performance of
the original method. The outline of the thesis is as follows. Chapter 3 reviews
the different aspects of resource allocation in wireless networks, with different
assumptions and setups, and the related existing literature. Chapter 4 in-
troduces two fundamental theories, namely, constrained optimization theory
and game theory, as well as some examples of their application in wireless
communications, providing the main mathematical tools used in this disser-
tation. In chapters 5 to 7, we consider the joint rate and power allocation in
different network structures, assuming partial channel state information is
available at the transmitters for slow fading channels. Here, partial channel
state information means that each transmitter has knowledge of its own link,
which can be estimated locally, but only statistical information about the
other transmitters’ power attenuations. Under this condition, the communi-
cation system is intrinsically affected by outage event and the transmitters
are interested in maximizing the throughput, i.e. the rate of information
successfully received, allowing for outage events. We start our study with
an example of cellular network assuming infinite backlog of packets in the
queues. Thus, Chapter 5 considers a two-user OFDM-based MAC system
with a large number of subcarriers. We model the distributed throughput
maximization in an OFDM-based MAC network with 2 transmitters as two
parallel COPs. Considering the dual optimal as a solution providing a lower
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bound on the performance of the primal optimal and the Nash equilibria as
a lower bound on the performance of the globally optimal solution, the prob-
lem complexity is reduced by representing it as a Bayesian game based on the
dual problem (we called it dual game). The trade-off between performance
and complexity is discussed. In the next two chapters, we relax the infinite
backlog assumption and involve the queue state in our decisions. In Chapter
6, we consider a distributed cross-layer resource allocation in a single hop
ad-hoc network consisting of K source-destination pairs. We also refer to
this network as interference network (IN). We model the throughput max-
imization, considering the statistical state (channel state and queue state)
infomation of the other users, as a stochastic game. We further propose a
low-complexity iterative algorithm based on Linear Programming (LP) to
obtain Nash equilibria. In the case of a finite number of communication
pairs, this problem is extremely computationally intensive with an exponen-
tial complexity in the number of users. Chapter 7 extends the problem to
a dense ad hoc network, with a large number of transmitter-receiver pairs.
The asymptotic approach of large interference networks enables a consider-
able complexity reduction and is used to evaluate the performance of finite
networks. The benefits of a cross layer approach compared to a resource
allocation ignoring the states of the queues are also assessed.

2.4 Research Contributions

2.4.1 Chapter 5

In this chapter, we consider a slow frequency selective fading multiple access
channel (MAC) where 2 independent transmitters are simultaneously com-
municating with a receiver using orthogonal frequency division multiplexing
(OFDM) over N sub-carriers. Each transmitter has partial knowledge of
the channel state. In such a context, the system is inherently impaired
by a nonzero outage probability. We propose a low complexity distributed
algorithm for joint rate and power allocation aiming at maximizing the in-
dividual throughput, defined as the successfully-received-information rate,
under a average power constraint. As is well known, the problem at hand is
non-convex with exponential complexity in the number of transmitters and
subcarriers. Inspired by effective almost optimum recent results using the
duality principle, we propose a low complexity distributed algorithm based
on Bayesian games and duality. We show that the Bayesian game boils down
to a two-level game, referred to as a per-subcarrier game and a global game.
The per-subcarrier game reduces to the solution of a linear system of equa-
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tions while the global game boils down to the solution of several constrained
submodular games. The provided algorithm determines all the possible Nash
equilibria of the game, if they exist. The work carried out in this chapter
was presented in the following paper

e S. Akbarzadeh and L. Cottatellucci and C. Bonnet, "Bayesian equi-
libria in slow fading OFDM systems with partial channel state in-
formation" ICT Mobile Summit 2010, 19th Future Network & Mobile
Summyat, June 16-18, 2010, Florence, Italy.

2.4.2 Chapter 6

In the previous chapter, we assumed infinite backlog of packets in the queues.
In this chapter, we relax this assumption and define a cross-layer resource
allocation which account for queue states in the strategy selection decisions.
An interference network consisting of N source-destination pairs is consid-
ered. Each transmitter is endowed with a finite buffer and accepts packets
from a Poisson distributed arrival process. The channel is described by a
Markov chain. We investigate distributed algorithms for joint admission
control, rate and power allocation aiming at maximizing the individual or
the global throughput defined as the average information rate successfully
received. The decisions are based on the statistical knowledge of the chan-
nel and buffer states of the other communication pairs and on the exact
knowledge of one’s own channel and buffer states. This problem is model as
a stochastic game whose saddle point (mixed) policies exist among Markov
strategies. Following this, a low complexity iterative best response algorithm
based on linear programming is proposed.

The work carried out in this chapter was presented in the following paper

e S. Akbarzadeh, L. Cottatellucci, E. Altman and C. Bonnet "Distributed
communication control mechanisms for ad hoc networks" ICC"09, In-
ternational Conference on Communications, June 14-18, 2009, Dres-
den, Germany, pp 1-6.

2.4.3 Chapter 7

The problem introduced in Chapter 6, for a finite number of communication
pairs, is extremely computationally intensive with an exponential complex-
ity in the number of users. In this chapter, we consider the same problem
in a dense IN with a large number (K — o0) of transmitter-receiver pairs.
Each transmitter-receiver link is a fading vector channel with N diversity
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paths whose statistics are described by a Markov chain. By assuming that
K, N — oo with constant ratio the algorithm complexity becomes substan-
tially independent of the number of active communications and grows with
the groups of users having distinct asymptotic channel statistics. The cross-
layer design is investigated for different kind of decoders at the receiver. The
benefits of a cross layer approach compared to a resource allocation ignoring
the states of the queues are assessed. The performance loss due to the use
of policies designed for asymptotic conditions and applied to networks with
a finite number of active communications is studied. The work carried out
in this chapter was presented in the following paper

e S. Akbarzadeh, L. Cottatellucci and C. Bonnet, "Low complexity cross-
layer design for dense interference networks" WiOpt/PHYSCOMNET
2009, Tth International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks, June 23-27, 2009, Seoul, Ko-
rea, pp 1-10.



Chapter 3

Resource Allocation in
Wireless Networks

It has been over 30 years since the two wireless networks structure, namely
cellular and ad hoc, have been introduced in wireless communications. Al-
though both concepts are initiated around the same time, the cellular tech-
nology is in a leading position in the current wireless networks.

Today, millions of people around the world use cellular phones. Cellu-
lar phones allow a person to make or receive a call from almost anywhere.
Likewise, it allows a person to continue a phone conversation while on the
move. Cellular communications is supported by an infrastructure called a
cellular network, which integrates cellular phones into the Public Switched
Telephone Network (PSTN). The cellular network has gone through three
generations. The first generation of cellular networks were analog in nature.
Two such standards are TACS (Total Access Communications System) in
Europe and AMPS (Advanced Mobile Phone System) used in the United
States and Australia. To accommodate more cellular phone subscribers, the
second generation (2G) networks used digital TDMA (Time Division Mul-
tiple Access) and CDMA (Code Division Multiple Access) technologies to
increase the network capacity. With digital technologies, digitized voice can
be encoded and encrypted. Therefore, the 2G cellular networks were also
more secure. GSM (Global System for Mobile Communications), the most
popular standard for mobile telephony systems in the world, is an example of
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2G systems. The third generation (3G) networks integrates cellular phones
into the Internet world by providing high speed packet-switching data trans-
mission in addition to circuit-switching voice transmission. Since 2002, the
3G cellular networks have been deployed in some parts of Asia, Europe, and
the United States (e.g., EDGE and UMTS) and will be widely deployed in
the coming years (e.g., LTE). The application services envisaged for this
generation include wide-area wireless voice telephone, Internet access, video
calls and TV, all in a mobile environment.

The merits of having an infrastructureless network were discovered in the
1970s and resulted in the introduction of ad hoc networks as new wireless
technology. Ad hoc networks are suited for use in situations where infras-
tructure is either not available, is not required to be trustable or reliable
but needed to be flexible and easy to be installed as in emergency situa-
tions. A few examples include: military solders in the field; sensors scattered
throughout a city for biological detection; an infrastructureless network of
notebook computers in a conference or campus setting; the forestry or lum-
ber industry; rare animal tracking; space exploration; undersea operations;
and temporary offices such as campaign headquarters. An ad hoc network
is a possibly mobile collection of communications devices nodes that wish to
communicate, but have no fixed infrastructure available, and have no pre-
determined organization of available links. Individual nodes are responsible
for dynamically discovering which other nodes they can directly communi-
cate with. Ad hoc networking is a multi-layer problem. The physical layer
must adapt to rapid changes in link characteristics. The Medium Access
Control layer (MAC layer) needs to minimize bit error rate, allow for fair
access, and semi-reliably transport data over the shared wireless links in the
presence of rapid changes and hidden or exposed terminals. The network
layer needs to determine and distribute information used to calculate paths
in a way that maintains efficiency when links change often and bandwidth is
at a premium. It also needs to integrate smoothly with traditional, non ad
hoc-aware internetworks and perform functions such as auto-configuration
in this changing environment. The transport layer must be able to handle
delay and packet loss statistics that are very different than wired networks.
Finally, applications need to be designed to handle frequent disconnection
and reconnection with peer applications as well as widely varying delay and
packet loss characteristics.

In this dissertation, we focus on single-hop transmissions in either struc-
tures, cellular or ad hoc. For the cellular architecture, we focus on uplink
transmission where there is a single receiver (base station) for all transmis-
sions. For the ad hoc architecture, we assume that (i) transmitter-receiver
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pairs communicate directly, i.e., no relays, (ii) one node cannot transmit and
receive at the same time, and (iii) the transmitters are distinct while one
node can be the destination of different information streams. Such a setting
simplifies the network layer functionality as the routes between transmitter
node and the receiver node is considered fixed. In the rest of this chapter,
we review different aspects of resource allocation in wireless networks, with
different assumptions and setups, and the related existing literature. First
of all, we introduce physical layer and MAC layer characteristics. Then in
second section, we introduce some essential features of resource allocation
in wireless networks. Note that, in this chapter, the acronym "MAC" is
employed to signify both "Multiple Access Channel" and "Medium Access
Control". However, "MAC" as "Medium Access Control" is always suc-
ceeded by the word "layer".

3.1 Physical Layer and MAC Layer Characteristics

In this section, we first classify the wireless channels based on their variations
in time and frequency domains. Next, we introduce some parameters of
transmitters and receivers which are of special importance in our resource
allocation analysis. Finally we introduce multiple access techniques as well
as capacity or achievable rate regions of MAC and interference channel.

3.1.1 Wireless Links

Land-mobile communication is burdened with particular propagation com-
plications compared to the channel characteristics in radio systems with fixed
and carefully positioned antennas. The antenna height at a mobile terminal
is usually very small, typically less than a few meters. Hence, the antenna is
expected to have very little 'clearance’, thus obstacles and reflecting surfaces
in the vicinity of the antenna have a substantial influence on the charac-
teristics of the propagation path. Moreover, the propagation characteristics
change from place to place and, from time to time. Thus, the transmission
path between the transmitter and the receiver can vary from simple direct
line of sight to one that is severely obstructed by buildings, foliage, and the
terrain.

In generic system studies, the mobile radio channel is usually evaluated
from ’statistical’ propagation models: no specific terrain data is considered,
and channel parameters are modeled as stochastic variables. The mean sig-
nal strength for an arbitrary transmitter-receiver (T-R) separation is useful
in estimating the radio coverage of a given transmitter whereas measures
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of signal variability are key determinants in system design issues such as
antenna diversity and signal coding. Three mutually independent, multi-
plicative propagation phenomena can usually be distinguished: multipath
fading, shadowing and large-scale path loss.

Multipath propagation leads to rapid fluctuations of the phase and am-
plitude of the signal if the mobile moves over a distance in the order of a
wave length or more. Multipath fading thus has a small-scale effect. Shad-
owing is a medium-scale effect: field strength variations occur if the antenna
is displaced over distances larger than a few tens or hundreds of meters. The
large-scale effects of path losses cause the received power to vary gradually
due to signal attenuation determined by the geometry of the path profile in
its entirety. This is in contrast to the local propagation mechanisms, which
are determined by building and terrain features in the immediate vicinity of
the antennas. The large-scale effects determine a power level averaged over
an area of tens or hundreds of meters and therefore called the ’area-mean’
power. Shadowing introduces additional fluctuations, so the received local-
mean power varies around the area-mean. The term ’local-mean’ is used to
denote the signal level averaged over a few tens of wave lengths, typically 40
wavelengths. This ensures that the rapid fluctuations of the instantaneous
received power due to multipath effects are largely removed.

Fading

Delay spread and coherence bandwidth are parameters which describe the
time dispersive nature of the channel in a local area. The delay spread
can be interpreted as the difference between the time of arrival of the first
significant multipath component (typically the line-of-sight component) and
the time of arrival of the last multipath component. If the multipath time
delay spread equals D seconds, then the coherence bandwidth W, in rad/s
is given approximately by W, = %r. However, these parameters do not offer
information about the time varying nature of the channel caused by either
relative motion between the mobile and base station, or by movement of
objects in the channel. Doppler spread and coherence time are parameters
which describe the time varying nature of the channel in a small-scale region.
Doppler spread bandwidth is a measure of the spectral broadening caused
by the time rate of change of the mobile radio channel and is defined as the
range of frequencies over which the received Doppler spectrum is essentially
non-zero. Coherence time T is the time domain dual of Doppler spread and
is used to characterize the time varying nature of the frequency dispersive
channel, in the time domain.
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When time coherence is concerned, wireless channels are categorized as
slow and fast fading. Fast fading occurs when the channel coherence time
is much shorter than the delay requirement of the application. Slow fading
arises if the channel coherence time is longer. In a fast fading channel, one
can transmit the coded symbols over multiple fades of the channel, while in
a slow fading channel, the channel is constant during the transmission of a
codeword.

When coherence bandwidth is concerned, wireless channels are catego-
rized into frequency-selective and flat fading. When the bandwidth of the
input signal is much larger than the coherence bandwidth, the channel is said
to be frequency-selective. When the bandwidth is considerably less than the
coherence bandwidth, the channel is said to be frequency-flat, since it af-
fects all signal frequencies in almost the same manner. Note that whether
a channel is fast or slow fading, flat or frequency-selective fading depends
not only on the wireless environment but also on the input signal and its
applications, i.e., the delay requirement of the application, the bandwidth of
the input signal.

An extended discussion on this topic can be followed in [45].

3.1.2 Transmitters
Applications and Traffic Source Models

Selecting the appropriate traffic source model to reflect the behavior of the
users in a telecommunication system is an important issue in order to perform
a successful design of new networks. Unlike existing GSM systems that
primarily serve voice users and to some extent simple facsimile or short
message services (SMS), next generation of wireless technologies supports a
wide range of variable-bit-rate applications with high bandwidth efficiency.

Teletraffic engineering has been used for a long time to dimension tele-
phone networks. Similar to the more sophisticated models described later,
the voice users can be characterized in a layered structure. The most macro-
scopic behavior describes the activity of the user from the time of a connec-
tion setup until call termination. Within this period, the user will create
talk spurts describing the time when the actively talks followed by periods
of inactivity while listening to his counterpart. Since the activity phases
continuously occupy the channel, the traffic generated by this type of users
is usually characterized by an ON/OFF Process. Parameters for this type
of traffic can be obtained from empirical measurements and consist of the
mean interarrival time between connection setups, together with the mean
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connection duration. In conventional systems and classical telephone net-
works, it has been widely accepted to use exponential distributions for both
parameters resulting in a Poisson process description for voice users.

Poisson processes are examples of continuous-time Markov processes. A
continuous-time Markov process is a stochastic process {X (¢) : t > 0} that
satisfies the Markov property and takes values from a set called the state
space; it is the continuous-time version of a Markov chain. The Markov
property states that at any times 0 < ¢t < s, the conditional probability
distribution of the process at time s given the whole history of the process
up to and including time ¢, depends only on the state of the process at time
t. In effect, the state of the process at time s is conditionally independent
of the history of the process before time ¢, given the state of the process at
time t.

While the characterization of voice users is fairly straightforward, the
traffic generated by data users is highly dependent on the application and
has a high burstiness, i.e., the variance of the interarrival times between
data packets as well as the variance of the packet length can be very high.
Therefore, due to the mostly feedback-oriented nature of packet oriented
data applications the simple Poisson model is no longer sufficient and the
correlation in the interarrival time distribution of the packet streams should
be found.

Queueing Process

All data that enter the network are associated with a particular commodity,
which minimally define the destination of the data, but might also specify
other information, such as the source node of the data or its priority service
class. These commodities can also be directly mapped into the type of traffic,
e.g., audio, video, and data. Each node maintains a set of internal queues
for sorting network layer data according to its commodity. The arrival event
at a queue is due to the data generated at the upper layer as well as the
data destined for the corresponding node, i.e., as a receiver or relay for
the message. In addition, the queue length evolution at a node follows a
random /deterministic process resulted from the processes modeling both the
arrival and departure events at that node. More precisely, in all states except
the empty queue and full queue (for finite queues), there are two events
possible, (i) an arrival (which is possibly rejected), and (ii) a departure.
The most commonly used model for transition instants between the possible
queue states, namely Markov decision process, is of special interest to the
study of stochastic games (Section 4.3.2).
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Coding and Modulation

In 1948, Shannon demonstrated in a landmark paper [46] that, by proper
encoding of the information, errors induced by noisy channel can be reduced
to any desired level without sacrificing the rate of information transmission,
as long as the information rate is less than the capacity of the channel.
Since Shannon’s work much effort has been expended on the problem of
devising efficient encoding and decoding methods for error control in a noisy
environment.

The channel encoder introduces, in a controlled manner, some redun-
dancy in the binary information sequence that can be used at the receiver to
overcome the effects of noise and interference encountered in the transmis-
sion of the signal through the channel. The binary sequence at the output
of the channel encoder is passed to the digital modulator, which serves as
the interface to the communication channel. Since nearly all the communi-
cation channels encountered in practice are capable of propagating electrical
signals (waveforms), the primary purpose of the digital modulator is to map
the binary information sequence into signal waveforms.

In wireless communication systems, the quality of a signal received by a
destination node depends on the quality of the corresponding wireless link,
i.e., the path loss, the shadowing and the fading as well as the interfering
transmissions. In order to improve system capacity, peak data rate and
coverage reliability, the signal transmitted to and by a particular user is
modified to account for the signal quality variation through a process com-
monly referred to as link adaptation. Traditionally, CDMA systems have
used fast power control as the preferred method for link adaptation. Re-
cently, Adaptive Modulation and Coding (AMC) have offered an alternative
link adaptation method that promises to raise the overall system capacity.
AMC provides the flexibility to match the modulation-coding scheme to the
average channel conditions for each user.

In addition, in multiuser communication systems, finding the capacity
achieving coding and decoding schemes is recently of a great interest. The
power control, single user subchannels (non overlapping time slots or fre-
quency bands), superposition coding, and introduction of diversity paths
(CDMA/MIMO) are few techniques used in transmitter side in order to
achieve such a goal.
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3.1.3 Receivers

At the receiving end of a multiuser system, the digital demodulator processes
the channel-corrupted transmitted waveform and deduces the data symbols
(binary or M-ary). This sequence of numbers is passed to the channel de-
coder, which attempts to reconstruct the original information sequence from
knowledge of the code used by the channel encoder and the redundancy con-
tained in the received data. The optimum receiver is defined as the receiver
that selects the most probable sequence of information bits given the received
signal observed over a time interval.

In vector access channel ', which is of special interest in our asymp-
totic study in Chapter 7, the optimum maximum-likelihood receiver [47]
has a computational complexity that grows exponentially with the number
of users. Such a high complexity serves as a motivation to devise subop-
timum receivers having lower computational complexities. Near capacity
receivers with lower complexity were proposed first in [48]. They have an
iterative structure and consist of a multiuser detector followed by a bank of
soft input-soft output single user (SISO-SU) decoders. The soft outputs of
the SISO-SU decoders are fed back to the multiuser detector for the itera-
tive procedure. Although, those receivers reduce drastically the complexity
of the receiver in [48], their complexity is still very intensive for practical
real time infrastructures. Typical receivers are often based on a multiuser
detector followed by a bank of SISO-SU decoders.

The conventional single user detector, decorrelating detector, and mini-
mum mean-square-error detector are the most used linear detectors.

In conventional single user detection, the receiver for each user consists
of a demodulator that properly weights or match-filters the multiple re-
ceived replica of the signal and passes the correlated output directly to the
decoder. Since the detector is based on the single correlator output, the
conventional detector neglects the presence of the other users of the channel
or, equivalently, assume that the aggregate noise plus interference is white
and Gaussian.

In case of orthogonal transmissions, the interference from the other users
is completely removed and the conventional single user detector is optimum.
In non-synchronous transmissions and/or for non-orthogonal signatures, this
type of detector is vulnerable to interference from other users. Better per-
formance in practical systems are obtained by using one of the two other

'We refer as vector channel any multiuser communication system receiving multiple
copies of the transmitted signal at the receiver. Typical examples of vector channels are
CDMA and multiple input multiple output systems
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detectors. The decorrelator is a linear detector that optimally cancels out
the multiuser interference under the constraint of linearity. However, it does
not account for the noise of the receiver. An additional linear approach is
to minimize the mean square error of the received signal. This yields linear
MMSE receiver which find the best tradeoff between the minimization of
multiuser interference and noise cancelation.

A further multiuser decoding technique is called successive interference
cancelation (SIC). This technique is based on removing the interfering signal
waveforms from the received signal, one at a time as they are decoded.
Typically, the user having the strongest received signal is demodulated first.
After a signal has been decoded, the reconstructed information signal is
subtracted from the received signal. This multiuser decoder is of primary
theoretical interest since it achieves capacity [49]. However, in practical
systems cancelation of erroneous systems could imply severe performance
degradation [50].

3.1.4 Multiple Access Techniques

In wireless communications, limited number of radio channels are available.
These channels are shared simultaneously by many mobile users using Mul-
tiple Access Techniques. Widely spread multi-access techniques are:

FDMA: Frequency Division Multiple Access is based on the frequency-
division multiplex (FDM) scheme, which provides different frequency bands
to different data-streams. In the FDMA case, the data streams are allocated
to different users or nodes.

TDMA: Time Division Multiple Access allows several users to share the
same frequency channel by schedule os their transmission in different time
slots.

CDMA: Code Division Multiple Access is a channel access scheme em-
ploying spread-spectrum technology: different modulation waveform is as-
signed to each transmitter to allow multiple users to be multiplexed over the
same physical link.

SDMA: Space Division multiple Access is a multiple input and multiple
output (MIMO) based wireless communication technology. Multiple anten-
nas at the transmitter enable to form beams that are directed to the user,
possibly with nulls to other receivers, so as not to cause them interference.

However, the optimal multiuser resource allocation may involves super-
position in a common channel, e.g., time slot or frequency band. This topic,
in the context of OFDM, is discussed in Section 3.2.1.
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Figure 3.1: Multiple access channel

3.1.5 Capacity Region

The network capacity problem deals with finding the fundamental limits on
achievable communication rates in wireless networks. A set of rates between
source-destination pairs is called achievable if there exists a network control
policy and a coding strategy that guarantee those rates. When time sharing
is possible, the closure of the set of achievable rates is the capacity region of
the network. Our main focus here is on networks containing simultaneous
single-hop transmissions. In this respect, the related information theoretic
results are those of MAC and interference channel.

Multiple Access Channel

This is the channel in which two or more senders send information to a
common receiver (Figure 2.1). We consider K senders sending their cor-
responding messages Sp, .59, ..., Sk, over the channel. We denote a subset
of senders by J C {1,2,...,K}. Let J¢ denote the complement of J. Let
R(J) =) ;c; Ri denotes the sum of the rate of all users in subset J,and let
X(J) ={X; :i € J} be the vector of transmitted signals by the users in J.
Then we have the following theorem.

Theorem 1. The capacity region of the K-user multiple-access channel is
the closure of the convex hull of the rate vectors satisfying (see e.g. [14])

R(J) < I(X(J);Y|X(J)) forallJ C{1,2,..,K}  (3.1)

for some product distribution pi(x1)p2(2)...pr(TK).
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Now we discuss the Gaussian multiple access channel in somewhat more
detail. The input-output equation for K —user MAC at time ¢ can be written
as

K
y(t) =D Vr®)zi(t) + 2(1) (3.2)
k=1
where x5 (t) and gx(t) are the input signal and fading gain of the k' trans-
mitter, respectively. The input signal zj(¢) can be further written as x(t) =
/Pr(t)sk(t) where pi(t) and si(t) are user k’s transmit power and data with
normalized power, respectively. User k is subject to an average transmit
power constraint P;"**. The variable z(t) is assumed to be zero-mean white

Gaussian noise with variance o?.
We consider first the simple situation of MAC with time-invariant chan-
nels, and the signal of user k is attenuated by a constant factor of g; at
the receiver. The capacity region of a K —user time-invariant MAC is well

known [14]. It is the set of all rate vectors r = {rq, ..., 7k } satisfying

R={(r1,.7K) 10 < ;rk STX),¥X C{1,2,.,K}}  (33)

where Z(X) is defined as Z(X') = I(Xx;Y), the mutual information between
the input variable Xy = {X}j}rer and the output variable Y. Note that X
is any subset of users in {1,2, ..., K'}. The channel capacity [46], denoted by
C(X), is obtained by maximizing the mutual information over all possible
input distributions Pr(Xx),

+ Zke){ 9Pk } (3'4)

C(X) = max I(XX;Y):log{l a
g

Pr(Xx)

where the maximum is achieved when all the inputs X1, ..., Xk are indepen-
dent Gaussian variables. We can derive the capacity region as

C={(r1,ri) 10 < ];rk <C(X),YX C {1,2,.., K} } (3.5)

which is known to be a convex polytope. This capacity region has exactly K'!
vertices in the positive quadrant, each is achievable by successive decoding
using K'! possible decoding orders. Successive decoding consists in decoding
the users sequentially by single user decoding and treating the users not
decoded yet as noise. At each iteration, the decoded user signal is subtracted
from the sum signal.
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Figure 3.2: Capacity of two-user fast fading MAC with CSIT

Now, we consider the multiple access fading channel. In general, there
are two notions of capacity for the fading channel depending on how fast
the cannel varies and the delay requirement of the application. The first
is the classic notion of Shannon capacity directly applied to the fast fading
channel. In this case, the fading process is assumed to be stationary and
ergodic during the transmission of a codeword. Then the codeword length
has to be sufficiently long such that during the codeword transmission all
the channel states happen. Fast fading multiple access channels have been
deeply investigated in the two cases as both transmitters and receiver have
knowledge of the channel state and when the receiver has knowledge of the
channel state but not the transmitters.

When channel state information (CSI) is perfectly known to the receiver
but the transmitters do not have such information, the codewords cannot
be chosen as a function of the CSI but the decoding can take advantage of
such information. The capacity region of multiple access fast-fading channel
is known [1,2], and is given by

Co={(ri i) 10 Y m<CX) VA C (1,2, K} (36)

Here, Co(X) is the ergodic capacity

> kex JkDk
e

C.(X) = Eg[log (1+ (3.7)
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where g = {g1, ..., gk } is a random vector having the stationary distribution
of the joint fading process.

When channel state information at the transmitter (CSIT) is also avail-
able, the capacity region is a union of capacity regions (Figure 2.2), each
corresponding to a feasible transmit power strategy [3]). A transmit power
policy p(.) is a mapping from the fading state space to ]Rff. Given a joint
fading state g, pr(g) can be interpreted as the transmit power of user k. For
a given power policy p, we can write the set of rates in (3.6) as a function of
p, i.e., C(p). Thus, the capacity region for multiple access fast-fading chan-
nel with both CST at the transmitter and CSI at the receiver (CSIR) can be
written as 3

Cp) = cp) (38)

pEP

where P is the set of all feasible transmit power strategies satisfying
P ={p:Elpr(g)] < P, Vk} (3.9)

The second notation of capacity for fading channels is the concept of delay
limited capacity. Let us turn now to slow fading channels where the delay
requirements for the transmission of a codeword is shorter than the time
scale for channel ergodicity. It is well known that the Shannon capacity is in
general zero for slow-fading channels with CSIR only [46]. This is because
with a strict delay constraint, the channel may remain in deep fading over
the whole transmission duration of a codeword, and a nonzero possibility
of error exists for any positive rate target. In this case, it is reasonable to
allow a certain percentage of outage and try to achieve a rate target for
the remainder of the time. With this in mind, we will later introduce an
appropriate performance metric for our network settings in chapters 5 to 7.

The case of slow fading channels with full CSI at both ends has been
addressed in [3| Assume that the set of possible fading states G is bounded.
The delay-limited capacity region for the case when all the transmitters and
receivers know the current state of the channel is

Ca(p) = |J () Co(g,p(9)) (3.10)

pEP geG

where P is the set of all feasible power control policies satisfying the av-
erage power constraints, and C,(g,p(g)) is the capacity of the time-variant
Gaussian multiaccess channel, for the channel realistic g, given by

Cy(g.p(g)) = {r : 7(%) < log (1+W),w C{1,2,...K}} (311)
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Figure 3.3: Interference channel

The intuitive content of the above equation is that a rate vector r is achiev-
able in the delay-limited sense if one can choose a feasible power control
policy such that sufficient mutual information is maintained between the
transmitters and the receiver at all fading states.

Interference Channel

The interference channel (IC) is currently object of intensive studies both
in information and communications theory. IC consists of several transmit-
ters aiming to convey independent messages to their corresponding receivers
through a common channel (Figure 2.3). The study of this kind of channels
was initiated by C. E. Shannon [51], and further by R. Ahlswede [52] who
gave simple but fundamental inner and outer bounds to the capacity region.
Ever since, several achievable rate regions as well as inner and outer bounds
for capacity region are obtained by transforming the problem to one of the
associated multiple-access or broadcast channel, i.e., [53-56]. Despite some
special cases, such as very strong and strong interference and degraded IC,
where the exact capacity region has been derived [57, 58], the characteri-
zation of the capacity region for the general case is still an open problem.
Carleial [57] introduced the Gaussian IC with power constraints and showed
that very strong interference is equivalent to no interference. In their pio-
neering work, Han and Kobayashi proposed a coding scheme in which the
receivers are allowed to decode part of the interference as well as their own
data [54]. Their achievable region in a two-user network is still the best
inner bound for the capacity region. Specially, in their scheme, the message
of each user is split into two independent parts, the common part and the
private part. The common part is encoded such that both users can decode
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it. The private part, on the other hand, can be decoded only by the in-
tended receiver and the other receiver treats it as noise. Tse and Etkin [59]
showed that the existing outer bounds can in fact be arbitrarily loose in some
parameter ranges, and by deriving new outer bounds, they showed that a
simplified Han-Kobayashi type scheme can achieve to within a single bit the
capacity for all values of the channel parameters.

As an example, we represent the achievable rate region of a strong IC.
Consider the two-user Gaussian IC. The input-output equations can be rep-
resented in standard form as

y1 =1 +Vazry + 2 (3.12)
yo = Vb1 + 2 + z0. (3.13)

where z; and y; denote the input and output alphabets of user i € {1, 2},
respectively, and z; and 2y are standard random Gaussian variables. We
assume g1 = ¢goo = 1, and the constants a > 0 and b > 0 represent the
gains of the interference links. Furthermore, transmitter ¢ is subject to the
power constraint P/***. Depending on a and b, the two-user Gaussian IC is
classified into weak, strong, mixed, one-sided, and degraded Gaussian IC. In
Figure 2.4, regions in ab—plane together with associated names are shown.
Among all the classes shown in the figure, the capacity region of the strong
Gaussian IC is fully characterized. In this case, the capacity region can be
stated as the collection of all rate pairs (r1,r9) satisfying

r1 < v(p1) (3.14)
ry < v(p2) (3.15)
1 4 re < min{y(p1 + ap2), y(bp1 + p2)}- (3.16)

where 7(p) = log(1 + ).

A review of the inner bounds and outer bounds for all the three classes
is presented by Khandani et al. in [60]. Treating interference as noise is not
always the best strategy. Since the interference caused by another user is
intrinsically a codeword from a codebook, it is possible to decode the inter-
ference at the receiver side which results in transmitting at higher rates. By
establishing certain properties of the mazimum decodable subset, Khandani
et al. proposed a polynomial time algorithm that separate the interfering
users into two disjoint parts [61]: the users that the receiver is able to jointly
decode their messages and its complement. They introduced an optimiza-
tion problem that gives an achievable rate for this channel. Their proposed
method on finding the maximum decodable subset of interferers is exploited
in Chapter 7 where a SIC decoder is considered at the receivers.
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3.2 Resource Allocation

Resource allocation is an assessment to decide about how to divide limited
(e.g., power) or restricted (e.g., rate) amount of resources among individu-
als who compete or interact with each other. The wireless communication
resources vary among different network setups. The resources, in this study,
are power, rate, and frequency bandwidth. The existing algorithms are at-
tempting to separately or jointly allocate one or more resources.

In the following review, we specifically take into account three main fac-
tors which affect the choice of a resource allocation scheme

e Queue backlog: The scheduling performance has been mostly evaluated
assuming that there is an infinite backlog of packets in each queue. In
order to evaluate the service received by a user in a system that con-
tains variety of service demands, it is necessary to take into account the
occupancy of the queues. For example, a resource allocation algorithm
that provides high throughput to users with favorable channel condi-
tions will tend to satisfy the service demands of these users sooner. As
a result, the algorithm would be left facing a user population with a
higher fraction of users with poor channel conditions.

e Channel related assumptions: The channel-related assumptions are
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addressed in two ways: (i) availability of the channel state informa-
tion, and (ii) channel access method and network topology. Perfect
knowledge of the channel state has often been assumed in the litera-
ture studying the performance of opportunistic scheduling. Although
3G systems employ channel estimation and reporting mechanisms, the
channel state information available to the base station is not perfect:
it is delayed and often outdated. In addition, the channel estimation
mechanism itself introduces channel estimation errors at the mobile
station. Three levels of knowledge can be considered: perfect channel
knowledge, imperfect knowledge, and no knowledge. Note however that
no knowledge still assumes that the statistical information is available.

Regarding the channel access method and network topology, the as-
sumption can include any following techniques: multiple access chan-
nel /broadcast channel/interference channel, TDMA /FDMA, as well as
consideration of diversity paths in CDMA and SDMA.

e System and service constraints: The constraints can be divided into
two classes: (i) system-related constraints including limited spectrum,
limited energy, and variant channel in time and frequency, (ii) service-
related constraints including minimum throughput, maximum delay,
maximum outage probability, and maximum power consumption.

We focus on the distributed resource allocation in both OFDM-based
MAC and interference channel. For OFDM-based MAC setting, we have
taken into account the conventional single layer resource allocation (infinite
queue backlog). An extended literature of resource allocation in OFDM
and OFDMA setups is given in [8]. In this section, we review the selected
literature which is of special interest for our study.

For the interference channel, due to the fact that queues’ stability is of
special importance in ad hoc networks, we studied the existing cross-layer
resource allocations.

3.2.1 Resource Allocation in OFDM-based MAC

There is plenty of room to exploit the high degree of flexibility of radio
resource management in the context of OFDM. Since channel frequency re-
sponses are different at different frequencies or for different users in a net-
work, the performance of the network can be significantly improved through
data rate adaptation over each subcarrier, dynamic subcarrier assignment,
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and adaptive bit and power allocation.?

The performance of wireless OFDM systems can be significantly in-
creased if the transmitter and receiver pair adapt constantly to the current
channel conditions. For point-to-point connections the transmitter generates
a power and/or modulation (possibly including also encoding) assignment
per subcarrier. Sub-carriers with relatively low attenuations convey more
information, sub-carriers with relatively high attenuations contribute less to
the transmission. From information theory the water-filling algorithm, given
all the channel gains are known, provides the capacity of the point-to-point
OFDM transmission [14]. The capacity is achieved by adapting the trans-
mit power to the channel gain. Roughly speaking, given a limited transmit
power, more power is applied to frequency areas with a lower attenuation
gain compared to the other frequencies. Assuming a fixed average channel
gain and a fixed bandwidth, the capacity of the channel increases the more
diverse the channel is (i.e., the higher the variance is).

In the case of multiaccess systems, the resource allocation problem is
more complex. In addition to the power and modulation assignment per sub-
carrier, the available sub-carriers have to be assigned to multiple terminals.
In general, a resource allocation based on disjoint subcarrier assignment and
power allocation is not optimal.

The information theoretical aspects of this problem are studied mostly
in the frame of frequency-selective Gaussian MAC or interference channel.
Gallager formulated the problem in [15]. In [2]|, Tse and Hanly characterized
the ergodic capacity of a time-varying frequency-selective Gaussian MAC
where the channel frequency response is continuous. The problem in an
infinite dimension (a continuous frequency domain) can be transformed into
a finite dimension (a discrete frequency domain) problem, by dividing the
frequency spectrum into a large number of orthogonal subchannels.

2This property of OFDM systems has lead to the specification of various systems
based on OFDM. Modern digital audio [9] and video [10] broadcasting systems rely on
OFDM. Much of Europe and Asia has adopted OFDM for terrestrial broadcasting of digital
television (DVB-T, DVB-H and T-DMB) and radio (Digital Radio Mondial, HD Radio
and T-DMB). Some well known High speed wireless Local Area Network (LAN) standards,
e.g., IEEE 802.11a/g [?], are based on OFDM, as well as other wireless network standards
such as IEEE 802.16 [12]. However, OFDM has also been applied to wired frequency-
selective channels, as in the case of Digital Subscriber Line (DSL) systems for twisted-
pair cables [13]. Due to this recent popularity of the OFDM transmission scheme, it is
also considered as candidate for high-rate extensions to third generation communication
systems as well as for forth generation mobile communication systems. It is also now being
used in the WiMedia/Ecma-368 standard for high-speed wireless personal area networks
(PAN) in the 3.1-10.6 GHz ultrawideband spectrum.
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In this context, centralized and distributed iterative algorithms which
converge to the sum-rate optimal point on the boundary of the capacity
region are proposed respectively by Yu and Lui in [16] and by Huang et
al. in [17]. Some early works added the FDMA restriction into the model.
FDMA, in which multiple bands are pre-assigned to the users on a non-
overlapping basis, is mainly used in DSL systems as a standard approach
to eliminate the multiuser interference. In [18], Yu and Cioffi proposed a
numerical method for characterizing the achievable rate region for Gaussian
multiple access channel with IST under the FDMA restriction, considering a
finite number of frequency bins. Verdu and Cheng in [19] showed that the
optimum multiuser waterfilling spectrum involves superposition in frequency,
so FDMA alone is not optimal except in special cases.

The design of multicarrier communications systems often involves a max-
imization of the total throughput subject to system resource constraints. [16]
provided a method for finding the global optimum for this problem. Although
the paper focuses on OFDM interference channel but the same results can
be represented in OFDM-based MAC as well. It is shown that the duality
gap for a non-convex optimization problem is zero if the optimization prob-
lem satisfies a time-sharing condition. Further, the time-sharing condition
is always satisfied for the multiuser spectrum optimization problem in mul-
ticarrier systems when the number of frequency carriers increases towards
infinity.

In general, the optimization problems in multiuser OFDM systems are
NP-complete problems, with exponential complexity both in the number of
subcarriers, for fixed links, and in the number of links, for fixed numbers
of subcarriers. General formulation of optimization problems for allocating
subcarriers and powers for networks of interfering links are provided by Luo
and Zhang in [20]. Part of the complexity comes from the combinatorial na-
ture of the problem, in that there are many subcarriers per transmitter, and
each has a different channel gain (although there are typically strong corre-
lation between neighboring subcarriers). Further, the problem is non convex
when interference is taken into account [21]. In addition to these challenges
which directly related to the characteristics of the optimization problem, the
time-varying property demand low complexity algorithms implementable in
real-time. A spectrum allocation algorithm based on channel state informa-
tion requires channel measurement, feedback, computation, and convergence
in a coherence time interval. This could be possible in centralized systems
and in low mobility scenarios but seems more difficult otherwise. Significant
efforts of current research in wireless are devoted to the design of resource
allcoation algoeithms based on limited (partial and/or statistical) channel
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side information.

Despite the relatively high complexity, the potential performance im-
provements achieved by dynamic OFDM schemes is very relevant. Thus,
many suboptimal schemes have been studied recently. Iterative waterfilling
(IWF) is the mostly used resource allocation in this structure. However, the
IWF process does not seek to find the global optimum for the entire net-
work. Two common methods for decreasing the complexity of problem are:
(i) reducing the number of decision variables, (2) replacing the centralized
optimizations by the distributed ones or game.

In centralized systems with complete CSI at transmitters most researches
have investigated the impact of reducing the complexity by reducing the
number of decision variables in the optimization problem (by fixing some of
them). A common example in OFDM system is when the subcarriers are
pre-assigned to the users (FDMA). In this case, the optimal power allocation
of all users over their fixed subcarriers are assessed by resource allocation al-
gorithm. In [22], Wong et al. proposed a multiuser OFDM subcarrier, bit,
and power allocation algorithm to minimize the total transmit power. This
algorithm is based on a suboptimal subcarrier allocation, and a subsequent
single-user bit allocation is applied on the allocated subcarriers. In [23],
Thanabalasingham et al. considered the problem of joint subcarrier and
power allocation for the downlink of a multiuser multi-cell OFDM cellular
network. They investigated the performance degradation due to either the
suboptimal static subcarrier allocation or flat transmit power spectrum. The
model used for the channel takes into account the lognormal shadowing and
path loss, but not frequency-selective multipath fading. It is shown that the
performance of the two suboptimal algorithms is nearly as good as the opti-
mal algorithm that jointly allocates subcarriers and power spectral densities
to the mobiles.

Centralized multiuser resource allocations are constrained optimization
problems in a vector space. Thus, replacing a centralized multiuser resource
allocation by the corresponding distributed one mainly reduces the complex-
ity imposed by non-convex utility functions due to the interference. Addi-
tionally, decisions can be made based on local information and the amount of
signalling is reduced. The performance of the distributed algorithm can be
used as a lower bound for the performance of the corresponding centralized
algorithm.

The assumption of complete CSI at all transmitters may not be realistic
in mobile cellular scenarios with time-varying channel conditions as well as
in ad hoc networks. In this case, the resource allocation needs to be per-
formed based on statistical knowledge of the channel conditions. When the
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channel evolves slowly, the communication system is intrinsically affected by
outage event. In this regard, Hanly and Tse [3] introduced the concept of
delay-limited capacity region. They proposed that one can look upon the
frequency-selective fading channel as a time-varying channel where, at each
fading state, a frequency response is specified for each user, representing
the multipath. Thus it can be viewed as a set of parallel channels, each
one jointly specified by the fading state and the frequency. In order to be
delay-limited in this channel, each user can allocate rates over the differ-
ent frequencies but the minimum rate summed over the frequencies must be
satisfied for each fading state. In [24], Hanly et al. considered an outage-
probability-based resource allocation problem for multiuser, multi-cell sys-
tem. They formulate a min-max outage probability problem and solve it
under the constraint that the transmit power spectrum at each base station
is flat. If more power must be allocated to a mobile to keep a certain quality
of service, for example, when the mobile moves close to the cell boundary,
there are two independent ways to achieve this: by increasing the cell power
level as a whole, or by increasing the number of subcarriers allocated to the
mobile. The authors considered a second algorithm based on fixed subcar-
rier allocation and dynamic power allocation. They argued that the proposed
flat power algorithm is significantly superior with respect to the objective of
minimizing the maximum outage probability.

Much work has been done on competitive game theory applied to fre-
quency selective interference channel, with the early works of Yu et al. [25],
subsequent works of Scutari et al.(see |5] and the references therein) and a
recent paper by Gaoning et al. [6]. A particularly interesting topic is the
use of generalized Nash games to the weak interference channel 26|, and the
algorithm in [27] which extends the fixed margin IWF to iterative pricing
under fixed rate constraint.

An alternative way to overcome the suboptimality of the competitive ap-
proach is to use the concept of repeated games and learning dynamics. This
approach has been extensively applied in power allocation [28-31|. Power
allocation in interference networks is inherently a repetitive process and it
is natural to model interactions among users by repeated games. These ap-
proaches introduce a learning phase which provides users with information
(intelligence) to make a correct decision. The convergence of the learning
dynamics in the repeated game is the main challenge of these schemes. Ad-
ditionally, they assume slow fading channels.

Following this literature overview, now we highlight our contribution into
the subject. In fact, only few works in literature are concentrated on slow
fading channel with partial channel side information. In [21], Etkin et al.
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considered a slow fading interference channel with initial partial channel
state information. By using the approach of repeated games, information
about the channel and the interactions is acquired. Recently, Xiao Lei et
al. [32| considered a block fading interference channel with knowledge of the
state of the direct links but only statistical knowledge on the interfering
link. With this assumption, reliable communications are not possible and
a certain level of outage has to be tolerated. The authors considered the
resource allocation games for utility functions based on the real throughput
accounting for the outage events. In this context they investigated the two
cases of power allocation for predefined transmission rates as well as joint
power and rate allocation.

3.2.2 Cross-layer Resource Allocation in Interference Chan-
nel

Resource allocation solely based on CSI is unable to update rate allocation
properly according to the dynamics of the input traffic. By ignoring the
randomness in packet arrival and queueing, such approaches can guarantee
neither the stability of queueing systems nor the acceptable queueing delay.
To account for queueing parameters, a cross layer approach is needed.

The benefit of cross-layer design and joint optimization of this control
mechanisms are well known in centralized communication systems (e.g., [4]
and references therein).

Centralized cross-layer approaches for resource allocation have been pro-
posed both for the uplink and the downlink (broadcast channel). Awareness
of both channel state information (CSI) and queue state information (QSI)
enables for throughput optimal policies, i.e., policies which achieve the er-
godic capacity region of a fading channel network [33,34] (see e.g., maximum
weighting matching scheduling [35]). Other properties, besides the through-
put optimality, like the average queueing delay, have been also object of
studies [4,36].

The decentralized algorithms for resource allocation in interference net-
works is a complex and intriguing problem since the decision affects many
fundamental operational aspects of the network and its resulting perfor-
mance. Several alternative approaches have been proposed in both conven-
tional and cross-layer schemes in interference networks. Two main streams
can be identified: (i) schemes based on repeated games and learning dynam-
ics, (ii) constrained stochastic games.

The first approach has been mainly applied for conventional single layer
power allocation schemes [30,31,37,38|. Power allocation in interference
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networks is inherently a repetitive process and it is natural to model inter-
actions among users with repeated games. These approaches introduce a
learning phase which provides users with information (intelligence) to make
a correct decision. The convergence of the learning dynamics in the repeated
game [37] is the main challenge of these schemes. Additionally, they assume
slow varying channels.

Constrained stochastic games have been applied to decentralized cross
layer design for multiple access. In [39], Altman et al. considered a MAC
fading channel with channel states distributed according to a Markov chain.
Furthermore, each transmitter is provided with a queue fed by a Poisson
process. Decentralized selfish and cooperative games, eventually correlated,
are proposed to optimize a utility function under the constraints on the
maximum average queueing delay and maximum average power. Under the
assumption of fixed transmission rate for all users and the assumption that
reliable communications are always possible in the decentralized context,
the utility function in [39] is the average maximum achievable rate. The
proposed algorithms enable power allocation and admission control (accept
or reject incoming packets in the queues). In a system with decentralized
control mechanisms where each transmitter is not aware of the interferers’
presence (and effects) and it is intrinsically subject to outage, the assumption
of reliable communications is rather strong. Additionally, the constraint of a
fix transmission rate in any channel condition does not allow for an optimal
utilization of the channel and a more efficient use of the channel is expected
by controlling and adapting the transmission rates to the CSI. An extension
of the previous works to the interference networks is presented in chapter 6
and 7.
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Chapter 4

Mathematical Preliminaries

In this chapter, we introduce two fundamental mathematical theories, namely
optimization theory and game theory. Note that, only an extension of these
topics which is relevant to our study is presented here. The first section
represents the basic math concepts which are used in the later sections.
We proceed by introducing the optimization theory and related topics, i.e.
duality theory and KKT conditions. The definition of game followed by in-
troduction of two special categories of games, namely Bayesian game and
stochastic game, as well as their application in wireless communication. We
finally gave a brief introduction to random matrix theory.

4.1 Basic Math Concepts

Definition 1. (Stationary point) Let f : R™ — R be a differentiable function
inxg € R™. xq is a stationary point of function f(x) if </ f(x), the gradiant
of f(x), is null in xq, i.e., vf(:n)|m0 =0.

Definition 2. (Bounded set:) In an Euclidean space E", a set C is said to
be bounded if and only if it is contained inside some hypersphere of finite
radius.

Definition 3. (Compact set) A subset of an Euclidean space is called com-
pact if it is closed and bounded.

o7
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Definition 4. (Convex set) In an Euclidean space E", a set C is convex if
for every pair of points within C, every point on the straight line segment that
join them is also within C, i.e., if for any x1,x2 € C and any 0 € [0, 1], we
have

Oxq + (1 — 9)%‘2 eC (4.1)

Definition 5. (Lattice) A lattice is a partially ordered set or poset in which
any two elements have a unique supremum (the elements’ least upper bound;
called their joint) and a unique infimum (greatest lower bound; called their
meet). In other word, a poset (L,<) is a lattice if it satisfies the following
two conditions. For any a,b € L, the set {a,b}, (i) has a joint aV b, and (ii)
has a meet a N\ b.

Definition 6. (Sublattice) A sublattice of a lattice L is a nonempty subset
of L which is a lattice with the same meet and join operations as L. That is,
if L is a lattice and M is a subset of L such that for every pair of elements
a,b € M both aV b and aNb are in M, then M 1is a sublattice of L.

Definition 7. (Concave function) A function f : X — R is concave if the

domain of the function f is a convex set and if for any x1,x9 € X and any
6 € [0, 1], we have

f(Oz1+ (1 = 0)xz) = 0f (1) + (1 - 0)f(22) (4.2)

Definition 8. (Quasi-concave function) A function f : X — R is quasi-
concave if the domain of the function f is a convez set and if for any 1,z €
X and any 6 € [0, 1], we have

f(Ox1 + (1 = 0)xz) = min{f(x1), f(x2)} (4.3)
Note that a concave function is quasi-concave.

Definition 9. (Semi-continuous function ) An real-valued function f is up-
per (lower) semi-continuous at a point xq if, roughly speaking, the function
values for arguments near xo are either equal to f(xo) or less than (greater

than) f(xo).

Definition 10. (Piecewise function) A piecewise function is a function that
s defined on a sequence of intervals. In addition, a piecewise linear function
15 a precewise-defined function whose pieces are linear.

Definition 11. (Supermodular function) A function f : REX — R is super-
modular if

flavy)+flxAy) > flz)+ fy) (4.4)



4.2 Elements of Constrained Optimization 59

for all x,y € RE. If f is twice differentiable, then supermodularity is equiv-
2
alent to the condition az—afzj >0  forall i#3j. [62]

Definition 12. (Submodular function) A function f : RE — R is submodu-
lar if

flzvy)+ flxAy) < f(z)+ fy) (4.5)

for all z,y € RE. If f is twice differentiable, then submodularity is equivalent

to the condition 8228];j <0 forall i#j.

4.2 Elements of Constrained Optimization

Constrained optimization is the maximization (minimization) of an objec-
tive function subject to constraints on the possible values of the indepen-
dent variable. Constraints can be either equality constraints or inequality
constraints. Since the scalar-variable case follows easily from the vector one,
only the latter is discussed here.

The typical constrained optimization problem has the

minimize fo(x)
s.t. fi(x) <0 i=1,...,m
hj(x) =0 j=1..p. (4.6)

with & € RX. The functions f;(x) define the inequality constraints and the
hj(x) functions define the equality constraints. A point that satisfies all
constraints is said to be a feasible point. An inequality constraint is said to
be active at a feasible point @ if f;(x) = 0 and inactive if f;(x) < 0. Equality
constraints are always active at any feasible point. To simplify notation we
write h = [h1,...,hy] and f = [f1,..., fm], and the constraints now become
h(z) =0 and f(x) < 0. The convext optimization is defined as follows.

Definition 13. (Convex Optimization) A convex optimization problem is an
optimization of form (4.6), where f;,;i =0,1,...,m are convex functions, and
hj,j=1,...,p are affine functions.

Convex optimization problem has a unique minimizer, i.e., the optimal
solutions set is a single point. Note that, strict convexity of the objective
function is not sufficient to guarantee a unique optimum. In addition, each
component of the constraint must be strictly convex to guarantee that the
problem has a unique solution. Because of the constraints, being a stationary
points (Definition 1) of f(.) is not a necessary neither a sufficient condition
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to be solution to the constrained problem. In fact, the stationary points
may not satisfy the constraints or the optimum is out of the boundary and
the solutions to the constrained problem are often not stationary points of
the objective function. Consequently, ad hoc techniques of searching for all
stationary points of the objective function that also satisfy the constraint
are not sufficient [63].

Classical approach to solving constrained optimization problems is the
method of Lagrange multipliers. This approach converts the constrained op-
timization problem into an unconstrained optimization. The Lagrangian of
a constrained optimization problem is defined to be the scalar-valued func-
tion L(z, A\, ) = folx) + AT f(x) + pTh(z), for any non-negative vectors
of A and p. The essential observation is that stationary points of the La-
grangian are potential solutions of the constrained problem. This fact has
led to introduction of several methods for solving constrained optimization
problems, e.g., duality theory and Karush-Kuhn-Tucker (KKT) condtions.
In the following, we first define the dual of problem (4.6). Next, we introduce
KKT necessary conditions which can be used to investigate whether the dual
optimal solutions coincide with the primal optimal solutions. KKT condi-
tions are necessary for a solution in nonlinear programming to be optimal,
provided that some regularity conditions are satisfied. For certain classes
of optimizations, KKT conditions are sufficient as well. In such cases, this
set of multivariate equations can be solved in order to obtain the global op-
timal solutions of problem (4.6). In mathematics, much research has been
focused on methods for finding the closed form solutions of such a set of
equations, e.g., linear complementarity problem and variational inequality
problem (non-linear complementarity problem).

4.2.1 Duality Theory

The basic idea in Lagrangian duality is to take the constraints in (4.6) into
account by augmenting the objective function with a weighted sum of the
constraint functions. The Lagrangian L : RE x R™ x RP — R is defined as

m p
L(m, A\, 1) = fol@) + > Nifi(x) + Y pihy() (4.7)
i=1 j=1

We refer to \; as the Lagrangian multiplier associated with the ith inequality
constraint f;(x) < 0; similarly we refer to p; as the Lagrangian multiplier
associated with the jth equality constraint h;(x) = 0. We assume the feasible
set D= "y(fi <0)N ﬂ?zl(hj = 0) is nonempty, and denote a solution of
(4.6) by p*.
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The vector A and p are called the dual variables or Lagrange multiplier
vectors associated with the problem (4.6). We define the Lagrange dual
function (or just dual function) as

g(A, 1)

m P
= inf (fol@)+ Z Nifile) + Z pihj(@)). (48)
When the Lagrangian is unbounded below in &, the dual function takes on
the value —oo. Since the dual function is the pointwise infimum of a family
affine functions of (A, ), it is concave, even when the problem (4.6) is not
convex.

For each pair (A, u) with A > 0, (element-wise comparison) the La-
grange dual function gives us a lower bound on the optimal value p* of the
optimization problem (4.6). Thus we have a lower bound that depends on
some parameters A, g A natural question is: What is the best lower bound
that can be obtained from the Lagrange dual function? This leads to the
optimization problem

maximize g\, ) (4.9)
s.t. A=0

This problem is called the Lagrange dual problem associated with the prob-
lem (4.6). In this contex the original problem (4.6) is called the primal
problem. The term dual feasible is to describe a pair (X, p) with A = 0 and
g(A, ) > —oo. We refer to (A*, u*) as dual optimal or optimal Lagrange
multipliers if they are optimal for the problem (4.9). The Lagrange dual
problem (4.9) is a convex optimization problem, since the objective to be
maximized is concave and the constraint set is convex. This is the case
whether or not the primal problem is convex.

The optimal value of the Lagrange dual problem, which we denote d*,
is, by definition, the best lower bound on p* that can be obtained from the
Lagrange dual function. In particular, we have the simple but important
inequality

d <p* (4.10)

which holds even if the original problem is not convex. This property is
called weak duality. We refer to the difference p* — d* as the gap between
the optimal value of the primal problem and the best (i.e., greatest) lower
bound on it that can be obtained from the Lagrange dual function. The
optimal duality gap is always nonnegative. The bound (4.10) can sometimes
be used to find a lower bound on the optimal value of a primal problem that
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is difficult to solve, since the dual problem is always convex, and in many
cases can be solved efficiently. In other words, dual feasible points allow us
to determine how suboptimal a given feasible point is, without knowing the
exact value of p*. If the equality

d* = p* (4.11)

holds, i.e., the optimal duality gap is zero, then we say that strong duality
holds. This means that the best bound that can be obtained from the La-
grange dual function is tight. Strong duality holds when the primal problem
is convex. There are many results that establish conditions on the problem,
beyond convexity, under which strong duality holds. These conditions are
called constraint qualifications. One simple constraint qualifiction is Slater’s
condition: There exists an x interior to D such that

fi(x) <0, i=1,..,m. h(x) = 0. (4.12)

Such a point is sometimes called strictly feasible, since the inequality con-
straints hold with strict inequality.

In the context of nonconvex multiuser spectrum optimization problems
in wireless communications, the duality theory plays a signifcant role. In
Chapter 5, the multiuser spectrum optimization of multicarrier communica-
tions systems is modeled through its dual problem. In fact, [16] showed that
the duality gap of nonconvex optimization problem for the multiuser spec-
trum optimization problem in multicarrier systems is zero when the number
of frequency carriers goes to infinity. This observation leads to a low com-
plexity algorithm which evaluates a tight lower bound on the performance
optimal values.

An alternative way in order to check whether the solutions of Lagrange
dual problem are optimal for primal problem, is to investigate whether they
satisfy the KKT conditions.

4.2.2 KKT Conditions

We now assume that the function f, .., fm, b1, ..., hy are differentiable (and
therefore have open domains), but we make no assumptions yet about con-
vexity. Let * and (A*, u*) be any primal and dual optimal points with
zero duality gap. Since &* minimizes L(x, A\*, u*) over x, it follows that its
gradient must vanish at x*, i.e.,

m p
Vho(®) + > X fil®) + Y 1y v hy(@) =0 (4.13)
j=1

i=1
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Thus we have

filx*) <0,i=1,....m
hi(x*) =0,i=1,...,p
A =0i=1,...,m

A filx®*)=0,i=1,...,m

m p
V fo®) + > NV fil@) + D>y v (@) =0 (4.18)
i=1 7=1

which are called the Karush-Kuhn-Tucker (KKT) conditions [64]. To sum-
marize, for any optimization problem with differentiable objective and con-
straint functions for which strong duality holds, any pair of optimal and
dual optimal points must satisfy the KKT conditions. The KKT necessary
conditions are sufficient for optimality if the objective function and the in-
equality constraints are continuously differentiable convex functions and the
equality constraints are affine functions. The KKT conditions play an im-
portant role in optimization. In a few special cases it is possible to solve
the KKT conditions (and therefore, the optimization problem) analytically.
A common method is to transform the problem into a Linear/Non-Linear
Complementarity Problem. Often, these problems boils down to some iter-
ative algorithms where each iteration is a linear or quadretic programming
problem. These approaches are out of the scope of this dissertation. The
interested readers are referred to [65] or the reference book by Cottle [66].

4.3 Elements of Game Theory

Game theory is a field of applied mathematics that describes and analyzes
interactive decision situations. It provides analytical tools to predict the
outcome of complex interactions among rational entities, where rationality
demands strict adherence to a strategy based on perceived or measured re-
sults. The main areas of application of game theory are economics, political
science, biology and sociology. From the early 1990s, engineering and com-
puter science have been added to this list. The rational decision makers in
a game are referred to as players. In the most straightforward approach,
players select a single action from a set of feasible actions. Interaction be-
tween the players is represented by the influence that each player has on
the resulting outcome after all players have selected their actions. Fach
player evaluates the resulting outcome through a payoff or utility function
representing her objectives.



64 Chapter 4 Mathematical Preliminaries

Formally, a normal form of a game G is given by G = (Z, A, {w;}) where
7 ={1,2,..., K} is the set of players (decision makers), A; is the action set
(strategy set) for player i, A = A X Ag X ... x Ak is the Cartesian product
of the sets of actions available to each player, and {w;} = {w1,...,wk} is
the set of utility functions that each player ¢ wishes to maximize, where
w; : A — R. An strategy can be either pure or mixed. A pure strategy
provides a complete definition of how a player will play a game. However,
a mixed strategy is an assignment of a probability to each pure strategy.
This allows for a player to randomly select strategy. Since probabilities are
continuous, there are infinitely many mixed strategies available to a player,
even if their strategy set is finite. We focus on pure strategies first. Mixed
strategies discussed in more detail in a subsequent section where we present
stochastic games.

The utility can represent either a cost function or a payoff function.
Without loss of generality, we considered a payoff function w; and the corre-
sponding maximization problem here. For every player ¢, the utility function
is a function of the action chosen by player i, a; and the actions chosen by
all the players in the game other than player i, denoted as a_;. Together, a;
and a_; make up the action tuple a. An action tuple is a unique choice of
actions by each player. From this model, steady-state conditions known as
Nash equilibria can be identified. Before describing the Nash equilibrium we
define the best response of a player as an action that maximizes her payoff
function for a given action tuple of the other players. Mathematically, a(a_;)
is a best response by player i to a_; if

ala—_;) € {ai\ai € A;, arg maxwi(ai,a_i)} (4.19)

A Nash equilibrium (NE) is an action tuple that corresponds to the mutual
best response: for each player i, the action selected is a best response to
the actions of all others. Equivalently, a NE is an action tuple where no
individual player can benefit from unilateral deviation. Formally, the action
tuple a* = (aj, a’, ...,a% ) is a NE if

wi(a;", a*,l) > wi(ai, a*,z) Na, € A, VieT (420)

The action tuples corresponding to the Nash equilibria are a consistent pre-
diction of the outcome of the game, in the sense that if all players predict
that a Nash equilibrium will occur then no player has any incentive to choose
a different strategy. There are issues with using the Nash equilibrium as a
prediction of likely outcomes (for instance, what happens when multiple
such equilibria exist?). There are also refinements to the concept of Nash
equilibrium tailored to certain classes of games.
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Normal High
Normal | (win,win) (win much,lose much)
High (lose much,win much) | (lose,lose)

Table 4.1: Payoff matrix

There is no guarantee that a Nash equilibrium, when one exists, will
correspond to an efficient or desirable outcome for a game (indeed, sometimes
the opposite is true). Pareto optimality is often used as a measure of the
efficiency of an outcome. An outcome is Pareto optimal if there is no other
outcome that makes every player at least as well off while making at least
one player better off. Mathematically, we can say that an action tuple a =
(a1,as,...,arx) is Pareto optimal if and only if there exists no other action
tuple b = (by, ba, ...,bx ) € A such that w;(b) > w;(a) for i € Z and w(b) >
wk(a), for at least one k € 7.

Example: Prisoner’s Dilemma in Wireless Communications A
strategic games well-known for being non efficient is the Prisoners Dilemma.
The game models a situation in which there are gains from cooperation but
each player has an incentive to "free ride" whatever the other player chooses.
This model is important because many other situations have similar struc-
tures. Consider a two-user MAC, in which two users (transmitters) compete
to send information towards a single base station (receiver). Suppose that
users can only transmit with one of the two power levels, i.e., normal power
(denote by "Normal") or very high power (denote by "High"). They must de-
cide simultaneously (without communication) which power level to choose.
We can model this problem as a static game, in which the player set is
7 = {1,2}, and each player i has the same action set A = { Normal, High}.
Typically, the payoff set w can be generalized to the following matrix shown
in Table 3.1. In each entry (a,b), the values a and b represent the payoffs of
player 1 and 2, respectively. Intuitively, we have the following observations:

e If both users transmit with high power, they will suffer from the in-
creased interference caused by the other, which results in a "lose-lose"
situation.

e If one user transmit with normal power and the other transmits with
high power, compared to the "lose-lose" case, the former will get a
worse performance (denote by "lose much") and the latter will benefit
from the reduced interference and enjoy a better performance (denote
by "win much").
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e if both users transmit with normal power, the result is "win-win".

Obviously, to find the solution of this problem is beyond the capability
of optimization theory, since user 1’s best strategy depends on the strategy
chosen by user 2, which user 1 does not know, and reciprocally for user2.
One may guess that both users must strictly prefer to transmit with normal
power, which results in "win-win". However, it is not the solution of this
game, i.e., it is not a natural outcome of selfish and rational players. It might
be quite surprising that the only solution, i.e., NE, of this game is the "lose-
lose" situation. The reason is the following: from player 1’s standpoint, she
strictly prefers to choose "High", because she is always better off regardless
of player 2’s choice, since "win much" > "win" and "lose" > "lose much".
And similarly for player 2. From Definition 4.20, the policy where both
players choose "High" resultting in "lose-lose", is a NE, and it is the only
strategy NE in this game.

Methodologies for Analyzing Equilibrium

In general, to analyze Nash equilibrium, one needs to consider three main
aspects:

e Existence - Does an equilibrium exist?
e Uniqueness - Does there exist a unique equilibrium or multiple ones?

e Equilibrium selection - How to select an equilibrium from multiple
ones?

Existence is the very first question that naturally comes into our mind,
since it is known that, in general, an equilibrium point does not necessarily
exist [67]. Mathematically speaking, proving the existence of an equilibrium
is equivalent to prove the existence of a solution to a fixed-point problem.
Since the existence of the fixed-point hints the existence of some strategy set
which is a best response to itself, no player could increase her payoff by devi-
ating, and so it is an equilibrium. In literature, there exists several theorems
providing sufficient conditions for the existence of an equilibrium. There are
many scenarios assuming usual wireless channel models and performance
metrics where the existing theorems can be applied. For example, channel
capacity (3.4) has desirable convexity properties satisfying the conditions of
the following well-known theorem.

Theorem 2. (Debreu’s sufficient condition) [68] If the strategy sets A; are
nonempty, compact, and conver subsets of an FEuclidean space, and if the
payoff functions w; are continuous in a and quasi-concave in a;, there exists
a pure strategy Nash equilibrium.



4.3 Elements of Game Theory 67

Uniqueness of NE is the second fundamental problem that we need to
address when the existence is ensured. The uniqueness of an equilibrium
is a very desirable property, if we wish to predict what will be the net-
work behavior. Unfortunately, there are not many general results for the
uniqueness analysis. For constrained concave K-person games, useful suffi-
cient conditions for the uniqueness of NE are provided in [69]. It is shown
that the uniqueness is guaranteed if the payoff functions satisfy the so called
diagonally strictly concave condition. However, there are many important
scenarios where the equilibrium is not unique, e.g., routing games [70]|, co-
ordination games [71], non-cooperative games with correlated constraints
together with the concept of generalized Nash equilibrium [72], etc.

Equilibrium selection is a topic which lately attracted much research.
However this area is outside the scope of the current dissertation.

If a game is non-concave, it may still have some appealing properties that
ensure the existence of pure NE. This is the case for two interesting classes
of games for which the existence of pure Nash equilibria is obtained under
certain conditions, namely (i) the class of potential games [73|; (ii) the class
of supermodular games [62].

Supermodular(submodular) games are those characterized by strategic
complementarities. Informally, this means that with some technical condi-
tions on the strategy space (essentially, the lattice property), the supermod-
ular property ensures that the maximizer of a player’s payoff function is in-
creasing in the strategy values of the other players. Hence, although there is
no direct coordination among the players, supermodularity (submodularity)
still provides incentive for all the players to increase or decrease strategies in
the same direction. In other words, the incentive of the players are compati-
ble. An important implication of this monotonicity is that one can construct
simple algorithms to compute Nash equilibria. Such algorithms generate a
monotone sequence of strategies converging to Nash equilibria under mild
technical conditions, such as compactness of the strategy space and continu-
ity of the payoff functions [62,74]. Supermodular games are interesting for
a number of reasons including

e They arise in many models.

e One can establish the existence of a pure strategy equilibrium without
requiring the quasiconcavity of the payoff functions.

e NEs can be attained using greedy best-response type algorithms.

e The equilibrium set is ordered, i.e., it has a smallest and a largest
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element and there exists a simple method in order to converge to either
ones.

The following monotonicity property in maximizing a supermodular function
is known. This property implies that the maximizer with respect to a; is
increasing in a_;. Let
BR;(a_;) = arg max w;(a;,a_;). (4.21)
a; CA;

!/

be the best response of user 7 to strategy a_;. Then, a_; < a’;

BRZ'(G,_Z') < BRZ(CLLZ)

In applications, it is often requested to allow the strategy space of each
player to depend on the other player’s strategy. Assume S;(a_;) as the
strategy space of player ¢, given other players’ strategies are set to a_;. Let
us introduce the same property for strategy profiles.

Definition 14. (Monotonicity of Strateqy Profiles) [7/] Let A and B denote
two strategy spaces and A and V denote the componentwise min and max
operators. Let the order < between two strategqy spaces A and B defined as:
A X B, if for any a € A and b € B, we have a Nb € A and aV b € B.
The strategy set S;(a—;) satisfies the ascending property if a_; < a’_, implies
Si(a_;) = Si(a’y).

implies

We now introduce the class of supermodular(submodular) games.

Definition 15. (Supermodular/submodular Game) [7}] The strategic form
game (Z,(A;), (w;)) is a supermodular(submodular) game if for all i,

1. A; is a compact subset of R or more generally A; is a sublattice of R¥.
2. wj; 18 upper semi continuous in a; and continuous in a_;

3. the strategy profile A; satisfies the ascending property

4. function w; is supermodular(submodular) in (a;,a_;)

Topkis [62] proved that the equilibrium set in a supermodular game is
ordered.

Corollary 1. Assume (Z,(A;), (w;)) is a supermodular game. Let
BR;(a_;) = arg majlc wi(ag, a_;). (4.22)
€A

then (i) BR;(a_;) has a greatest and least element, denoted by BR;(a_;)
and BR,(a_;), (ii) if a_; > a_; then BR;(a_;) > BR;(a_;) and BR,(a_;) >
ﬂi(a—i)-
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By [75], supermodular games have weak finite improvement path (FIP),
i.e., from any initial action vector, there exists a sequence of selfish adapta-
tions that lead to a NE. Specifically for supermodular games, when the deci-
sion rules for all players are best responses, play will converge to a NE [75].

In general, there exist multiple Nash equilibria for supermodular game.
The convergence to a specific equilibrium point depends critically on the
choice of strategy profile at each iteration and on the initial point of the
algorithm. In other words, if all players starts at the smallest (largest) point
of their strategy space and that, in each iteration they pick the smallest
(largest) element of the sublattice of maximizers, the algorithm will converge
to the smallest (largest) NE of the game.

The notion S-modularity was developed by Yao [74]. S-modularity al-
lows the objective function to be supermodular in some variables and sub-
modular in others. It models both compatible and conflicting incentives,
and hence conveniently accommodates a wide variety of applications. As
an example, power control in wireless network has been analyzed within
this framework [31]. This is due to the fact that the capacity function
in wireless communications is a supermodular function of the trasmitting
power and the interfering powers. Through S-modularity theory, the mono-
tone convergence of distributed power control algorithms can be directly
obtained [28,30,31,76-79].

The study of potential games is outside of the scope of this dissertation.
The interested readers are recommended to refer to [73,80,81].

4.3.1 Bayesian Game

A game with incomplete information is a game wherein the players can begin
to plan their moves while at least one player does not know the complete
description of the game, i.e., he does not know either one or several of the
following [82,83]:

- The payoff function of the other player(s)
- The available strategies of the other player(s)
- The information available to the other player(s)

We will introduce the notion of a player’s type to describe the private
information of a player. A player’s type fully describes any information
available to her which is not common knowledge. A player may have several
types, even an infinity of types, one for each possible state of her private
information. Each player knows her own type with complete certainty. Her
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beliefs about other players’ types are captured by a common knowledge joint
probability distribution over the others’ types.

We can think of the game as beginning with a move by Nature, which
assigns a type to each player. Nature’s move is imperfectly observed, however
each player observes the type which nature has bestowed upon her, but no
player directly observes the type bestowed upon any other player. We can
think of the game which follows as being played by a single type of each
player, where at least one player doesn’t know which type of some other
player she is facing.

To define a Bayesian game, we must specify a set of players Z =1, ..., K
and, for each player i € Z, we must specify a set of possible actions A;,
a set of possible types 7;, a probability function p;, and a utility function
w;. We denote a type profile as K-tuple of types, one for each player, i.e.,
t=(t1,..,tx) € T = XierT;, where T is the type-profile space. When we
focus on the types of a player’s opponents, we consider deleted type profiles
of the form t_; = (t1,...,ti—1,tix+1,.-,tx) € T4, the set of possible type
excluding 7;. The probability function P;(t_;|t;) in the Bayesian game is a
function from 7; into A(7_;), the set of probability distributions over 7_;.
That is, for any possible type t; € 7;, the probability function must specify
a probability distribution P;(.|t;) over the set T_;, representing what player
i would believe about the other players’ type if his own type were ¢;. For
any player ¢ € Z, the utility function w; in the Bayesian game must be a
function from 7 x A into the real numbers R. These structure together define
a Bayesian game I = (Z, (Ai)iez, (Ti)iez, (Pi)iez, (wi)icz). When we study
such a Bayesian game I'’, we assume that each player i knows the entire
structure of the game and his own actual type in 7; and this fact is common
knowledge among all the players.

We assume that there is an objective probability distribution P € A(T)
over the type space T, which nature consults when assigning types. In
other words, the probability with which nature draws the type profile t =
(t1,...,tx) and hence assigns type t; to player 1, type to to player 2, etc .. is
P(t). The marginal distribution of player i’s type is P; € A(t;), where

Pi(t) = > Pltit) (4.23)

t_;€T_;

The beliefs of user i, denoted by P;(t_;|t;), represent that opponents’ types
are a particular deleted type profile t_; € 7_; given that player i’s known
type is t;. By Bayes’ Rule we have
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Pi(t_i|t;) = I;TEZ))

Player i’s knowledge of her own type may or may not affect her beliefs
about the types of her opponents. When players’ types are independent, the
probability of a particular type profile ¢ is just the product of the players’
marginal distributions, each evaluated at the type t; specified by ¢, i.e
Vte T,

(4.24)

t) =[]ty (4.25)
Jjel
Therefore, when players’ types are independent, player i’s subjective be-
liefs about others’ types are independent of her own type:

ittty = T Pity) (4.26)
jen\{i}

A pure strategy for player i in a static Bayesian game is type contingent;
it is a function o; : t; — A;. The space of all such functions and hence
player i’s pure-strategy space is ¥; = A , i.e., A; possible strategies per
user type. For a particular type ¢; of player 1, her strategy o; specifies some
action a; = o;(t;) € A;. A mixed strategy u; : 7; — A; for player i assigns
a probability to each pure strategy a; € A; for each type of player i; i.e.,
Vt; € Ti,ui(a;|t;), where u;(a;|t;) indicates the probability of a; given t;.
Since probabilities are continuous, there are infinitely many mixed strategies
available to a player, even if their strategy set is finite.

Consider a particular player ¢ € I and a particular one of her types t; € 7;.
Assume that her K — 1 opponents’ types are described by some deleted type
profile t_; € T_; and that they play some deleted action profilea_; € A_;. If
player i chooses an action a; € A;, her utility will be w;((a;, a—;), (ti,t—;)).

Now assume player ¢ knows the strategies a_; € A_; her opponents are
playing; i.e., she knows what actions they would take for any given set of
types. However, she doesn’t know their realized types, so she doesn’t know
the actual deleted action profile a_; which will occur as a result of their type-
contingent strategies. What action a; € A; should player ¢ choose? Although
player i doesn’t know ¢_;, she does know the probability distribution P(¢) by
which nature generates type profiles additionally she knows her own type t;,
upon which she conditions her subjective probability about the types t_; of
her opponents. For any particular combination £_; of other players’ types,
player ¢ assesses this combination the probability P;(t_;|t;). Therefore she
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also adds this probability to the event that her opponents will choose the
particular deleted action profile a_;(t_;) € A_;. Player i’s expected utility,
then, given player i’s knowledge of her own type t; and of her opponents’
type-contingent strategies a_;, corresponding to action a; € A;, is

D Piltilt)wi((as, a i), (t, ) (4.27)

t_, €T

For a; to be a best response by type t; of player ¢, that choice must
maximize over her action space A;. We define player i’s best-response BR; :
A_; x T; — A;, mapping opponents strategy profiles and player-i type into
player-i actions, by

BRi(a_t;) =argmax > Pi(t_i[t;)wi((a;, a_i(t_)), (ti,t_)) (4.28)

A Bayesian Nash equilibrium of a game of incomplete information is a
strategy profile a € A maximizing the expected utility of every type of every
player given the type contingent strategies of her opponents. Thus, the
strategy profile a* is a pure strategy Bayesian equiltbrium if for all ¢ € Z, all
t_,eT_;andt; €T;

Et—ieT—iwi((aZ? a’ii(t—i))v (tia t—i)) > Et_iGT_iwi((aiv a*—i (t—i))? (ti’ t—i))

(4.29)
where
Et et ,wil(ai, a—i(t-)), (i, i) = Z Pi(t—s[ti)wi((ai, a—i(t-)), (i, t-:))
t_,€T_;
(4.30)

Application in Wireless Networks

Geoning He et al., in their recent work on Bayesian game-theoretic approach
for distributed resource allocation in fading MAC [84], investigated the ap-
plication of this class of games in multi-transmitter systems. In an earlier
work, El Lai and El Gamal [85] introduced a static noncooperative game in
the context of the two-user fading MAC, known as waterfilling game. By
assuming that users compete maximizing their transmission rates by adjust-
ing their transmit powers, the authors show that there exists a unique Nash
equilibrium [86] which corresponds to the maximum sum-rate point of the
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capacity region. This claim is somewhat surprising, since the Nash equilib-
rium is often inefficient compared to the Pareto optimality. However, their
results rely on the fact that both transmitters have complete knowledge of
the CSI, and in particular, perfect CSI of all transmitters in the network.
This assumption is rarely realistic in practice. Thus, this power allocation
game needs to be reconstructed with some realistic assumptions made about
the knowledge level of mobile devices. Under this consideration, it is of great
interest to investigate scenarios in which devices have incomplete informa-
tion about their opponents, for example, a transmission entity is aware of its
own channel gain, but unaware of the channel gains of other devices. Over
the last ten years, Bayesian game-theoretic tools have been used to design
distributed resource allocation strategies only in a few contexts, for example,
CDMA networks [87,88|, multicarrier interference networks [89,90], as well
as fading MAC [84]. The fourth chapter of current dissertation represents
our contribution to this topic.

4.3.2 Markov Equilibria of Stochastic Game

Stochastic games were first introduced by Shapley (1935) [91]. In such games,
players meet for a number of periods. The nature of the game they play
changes from one period to another and can be described by a state variable.
That state variable evolves according to a stochastic process parameterized
by the past history of the game. Stochastic games provide us with a way of
modeling dynamic behavior in a changing environment. Full characterization
of the set of equilibria of a stochastic game is an intractable problem in
many cases, due to the complex dynamic structure of these equilibria. A
more achievable objective consists in describing the Markov equilibria of a
stochastic game. In Markov equilibria, player’s action at every period is
a function of the current state variables only. Strong existence results are
obtained in the case of finite or countable state space in [92]. In [93], a proof
of existence of stationary Markov equilibria in pure strategies for a class of
stochastic games with a continuum of states is provided.

It is well known that identifying equilibrium policies (even in the absence
of constraints) is hard. Unlike the situation in Markov Decision Process
(MDP) in which strategies are known to exist (under suitable conditions),
and unlike the situation in constrained MDPs with a multichain structure,
in which optimal Markov policies exist [94-98|, we know that equilibrium
strategies in stochastic games depend in general on the whole history. This
difficulty has motivated researchers to search for various possible structures
of stochastic games in which saddle point policies exist among stationary
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or Markov strategies and are easier to compute. In [99], Altman et al.
considered a non-cooperative constrained stochastic game, which is called
cost-coupled constrained stochastic games. In this paper, under certain con-
ditions, the existence of NE among Markov strategies is proved.

Application in Wireless Communications

The dynamics in wireless networks can be categorized into two types, one is
the disturbance due to the environment, and the other is the impact caused
by competing users. The stochastic behavior of the competitors, the time-
varying channel conditions experienced by the user of interest, and the time-
varying source traffic that needs to be transmitted by the user are some of
the examples. These types of dynamics are generally modeled as stationary
processes. For instance, the use of each channel by a user can be modeled as a
two-state Markov chain with ON/OFF states. The channel conditions can be
modeled using a finite-state Markov model. The packet arrival of the source
traffic can be modeled as a Poisson process (Section 3.1.2). Such an approach
has been used to design the cross layer resource allocation only in a few
contexts, namely zero-sum constrained games [100], cognative radio [101],
and MAC with power constraint [39]. The extension of these previous works
to the interference networks is presented in chapters 6 and 7.

4.4 Random Matrix Theory in Wireless Communi-
cations

In 1999, Tse [43] and Verdu [42| adapted Random Matrix Theory as a tool
to analyze mutliuser systems. Both considered the performance of linear
receivers for CDMA systems, in the limit when the number of users as well
as the spreading length tend to infinity, with a fixed ratio. In such asymp-
totic scenarios, the use of random matrix theory leeds to explicit expressions
for various measures of interest such as capacity or signal to interference
plus noise ratio (SINR). Interestingly, it enables to single out the main pa-
rameters of interest that determine the performance in numerous models
of communication systems with more or less involved models of attenua-
tion [42,43,102-104]. In addition, these asymptotic results provide good
approximations for the practical finite size cases. A recent overview on the
applications of random matrix theory to information theory is given in the
book by Tulino and Verdu [105].

A typical question is to characterize the distribution of the eigenvalues
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of random matrices. For finite matrix size this distribution itself is usually
random. The real interest in random matrices surged when non-random
limit distributions were derived for matrices whose dimensions tend to infin-
ity, among others in 1955 by Wigner [106] and in 1967 by Marchenko and
Pastur [107], under simple hypotheses on the distribution of the matrix ele-
ments. The introduction of Stieltjes transform [108,109] then enabled to de-
rive distributions for more general matrix forms: matrices with independent
non-identically distributed elements or matrices with correlated elements.

Example of Application in Wireless Communications In infor-
mation theory, communication over a noisy medium between one or several
transmitters and a receiver is often considered. The model can be sum-
marized by a single equation. A significant part of information theoretic
literature focuses on vector memoryless channels of the form:

y=Hs+n (4.31)

Here, y is the received signal vector of dimension N, if N is the number of
received replicas of the transmitted signal. s is the K —dimensional vector of
transmitted signal vector, n is additive white Gaussian noise with variance
02, and H is the channel matrix, representing the attenuation that affects
the transmitted signal vector. Equation (4.31) covers the cases of a number
of multiple access techniques, including but not limited to Code Division
Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access
(OFDMA) and Multiple Input Multiple Output (MIMO). The characteristics
of the channel matrix H depends on the transmission technique and the
channel model considered. Under some assumptions, the capacity perceived

replica of trsnamitted signals is given by the following expression .

1 I
C= N log det (I + ;HH ) (4.32)

Considering the property that the determinant is equal to the product of the

!For example, the capacity perceived replica of the transmitted signals related to av-
erage capacity per chip for CDMA systems, average capacity per received antennas for
MIMO systems, average capacity per subcarrier in case of OFDM systems
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eigenvalues,
1 1
C== } Nlog (1+ in(HHH)) (4.33)
=1
1 1Y
_ / log (1+ ) N;l: FON= N(FLHM))dx (4.34)
1
_ / log (1+ ;A)FHHH(A)d)\, (4.35)

where f denote the empirical probability density function and FHH " de-
notes the empirical cumulative distribution function of eigenvalues of HH .
Thus, as shown by the derivation above, the empirical eigenvalue distribu-
tion naturally appears in the expression of the capacity. The knowledge of
the empirical eigenvalue distribution of a family of random matrices thus
enables to get immediate insight on the performance of the corresponding
communication system. In addition, even if the result is obtained in the
asymptotic regime, when the dimension of the matrix both tend to infinity
with a fixed ratio, the asymptotic results give very good approximations of
finite-size system behavior, as shown by simulations, e.g., in Chapter 7.

The large system analysis of multiple access vector channels with ran-
dom channel vectors is in [42-44]. Effects of interference on large network
performance are investigated in [110,111]. We use results of random matrix
theory to design low complexity resource allocation algorithms for interfer-
ence networks in Chapter 7.



Chapter 5

Distributed Resource
Allocation in Slow
Frequency-Selective Fading

MAC

5.1 Introduction

In wideband transmission, the multipaths can be resolved, and hence the
channel has memory. An appropriate model is the time-varying frequency-
selective fading channel. Since a wide range of frequency components is used,
it is highly unlikely that all parts of the signal will be simultaneously affected
by a deep fade. Certain modulation schemes such as OFDM and CDMA are
well-suited to employing frequency diversity to provide robustness to fading.

OFDM divides the wideband signal into many slowly modulated narrow-
band subcarriers, each exposed to flat fading rather than frequency selective
fading.

The main role played by OFDM in the recent wireless networks tech-
nologies fueled a very intense research on OFDM-based wireless networks.
A review of the existing results on resource allocation in OFDM-based mul-
tiple access channel is given in Section 3.2.1. The complexity of obtaining
the global optimal solutions as well as the trade off in considering the sub-

7
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optimal ones or Nash Equilibriums have been studied through the respective
references.

In this chapter, we consider the joint rate and power allocation in a
two-user OFDM-based MAC system with a large number of subcarriers and
partial channel state information at the transmitters for slow frequency se-
lective fading. Each transmitter has knowledge of its own link, which can
be estimated locally, but no information about the other transmitter power
attenuations. In these conditions, the transmitters are interested in max-
imizing the throughput, i.e. the rate of information successfully received,
allowing for outage events. The total throughput of the system satisfies the
time sharing conditions in [16] and the duality approach yields optimum
resource allocation asymptotically as N — +o0o. However, the complexity
of an optimization algorithm is still significantly high. Then, we consider
a Bayesian game based on suboptimal dual cost functions. The Bayesian
game boils down into per subcarrier games and a global game. The first
games determine Nash equilibria for power and rate allocation parametric in
the Lagrangian coefficients of the dual utility functions. The following global
game, based on the solution of a set of submodular games, provide the values
of the Lagrangian coefficients at the Bayesian Nash equilibria. We propose
an algorithm for the search of all the Bayesian Nash equilibria of the game.
The performance of the joint power and rate allocation game is assessed and
compared to the performance of the optimum power allocation and uniform
power allocation for the two cases of complete and partial channel knowledge
at the transmitters, respectively.

Simulations show that all the NEs obtained from the game are those
wherein only one transmitter emits with full power and the other remains
off. On the contrary, the optimum power allocations for the case of complete
channel state information contains solutions which have the superposition
of two users’ power on the same channel. However, in the later case, the
solutions can only be obtained through an iterative algorithm whose conver-
gence to some local optimal point depends on the choice of the initial value.
Comparing the performance of the optimal solution averaged over several
initial points and the NE chosen through the selection criteria, shows that
the NE performs near optimal in this network setup.

5.2 System Model

We consider a frequency selective multiple access channel (MAC) with K = 2
independent transmitters and a receiver. Orthogonal frequency division mul-
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tiplexing (OFDM) modulation over N subcarriers is applied. In each sub-
carrier the channel is flat fading. Power attenuation of the channel between
transmitter k and the receiver over subcarrier n is denoted by gp. Chan-
nel attenuations take values in a discrete set @ with a certain probability
distribution ~;(g). We assume that the channel is block fading, i.e. the
channel is constant during the transmission of a codeword and changes from
a codeword to the following one. Furthermore, we assume that each trans-
mitter has a perfect knowledge of the channel attenuations of its own link,
i.e. transmitter k knows exactly g;’, n = 1,... N, and has statistical knowl-
edge of the channel attenuations on all the links, i.e. 77 (g7), k € {1,2}
and n = 1,... N. Note that this is a realistic assumption for time division
duplex (TDD) systems without feedback channels where the channels gains
gy from transmitter k to the destination can be estimated at the transmitter
via the received signal from the destination assuming that the power attenu-
ation in the two directions is identical (reciprocity principle). We denote by
pp € RT the power transmitted by user k on subcarrier n and by R} € R™
the information rate over the same subcarrier. The signal at the receiver
is impaired by additive Gaussian noise with variance o2 and the receiver
adopts single user decoding on each subcarrier. When the realizations of the
channel attenuation vector and the transmitted power vector on subcarrier
n are g" = (g7, ¢4 ) and p" = (pT, p}), respectively, the maximum achievable
rate on subcarrier n by user k is’

" g") = log (14 5 LEk (5.1
, . i
0%+ 3k P97

If transmitter & transmits on subcarrier n with a rate R} greater than
rk(p", g"), the transmitted information cannot be decoded reliably and an
outage event happens. Because of the system assumptions, transmitter k
has only statistical knowledge of the interference term ) itk p7g; which can
be arbitrarily large or bounded by a maximum value Injax . For any finite

rate R} > log (1 +

o2 +IMAX, k

PlRp > log (14 2% )L (5.2)
g +Zj7ékpjgj

!Throughout this work log(-) is the natural logarithm and the rates are expressed in
nat/sec.

) there is a nonzero outage probability
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If the transmitter can tolerate a nonzero information IOSSZHan considers
too restrictive the guaranteed transmission rate log (1 + 2197% , it can

o2 +1IMax,k
transmits at a rate I} to attain a throughput

pr = RgP{Ry; <r;(g",p")} (5.3)

defined as the the average rate of information that can be successfully trans-
mitted by transmitter k over subchannel n.

In this context, we study joint power and rate allocation strategies for a
transmitter k£ under a power constraint for each transmitter® k

N
> Eg{pi(gi)} < Pr. (5.4)

n=1

5.3 Optimum Joint Power and Rate Allocation

In the case of complete channel state information (CSI) at all the transmit-
ters, it is well known (see e.g. [16]) that the optimum rate allocation is given
by R} = ri}(g",p") and the joint source and rate allocation reduces to the
power allocation for the following constrained optimization problem

maxv(p, g) (5.5)
2
N
subject to sz <Py ke{1,2} (5.6)
n=1

where p = (p',...p"), g = (g',...g") is given, and the objective function

is defined as v(p,g) = Y7_; Yooy 119", P").

This problem is intrinsically non-convex and numerical optimization is
difficult. As observed in [16], an exhaustive search would have a complexity
exponential in the number of variables which is 2N. In order to introduce
a low complexity solution for this numerical problem we briefly recall the
definition of time-sharing condition for an optimization problem of the form
(5.5).

2This depends typically on the services supported by the communication For example,
voice services can tolerate a certain level of information loss.
3In the asymptotic case, N — oo, this is equivalent to 27]:7:1 pr < Py.
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Definition 16. [16] Let p* and p”® be the optimal solutions of the optimiza-
tion problem (5.5) with P = (P1,Py) equal to P* = (P],P,) and P° =
(?f,?QA), respectively. An optimization problem of the form (5.5) satisfies
the time sharing condition if for any P and ?A, and for any 0 < v < 1,
there always exists a feasible solution p® such that ), pp® < I/ﬁ*-i-(l—l/)FA,
and v(g,p°) > vv(g,p*) + (1 — v)v(g, p*).

By observing that [16]

e The dual problem (see e.g. [64] for a definition) of a primary problem
of the form (5.5) has zero duality gap if the primary problem satisfies
the time sharing conditions (see Theorem 1 in [16]);

e The problem (5.5) with v(g,p) = >, >, (9", p") satisfies the time
sharing condition (see Theorem 2 in [16]) as N — oc;

the optimization (5.5) reduces to the optimization over the dual problem
as N — oo. The dual problem has linear complexity in the number of sub-
carriers. Note that the complexity is still exponential in the number of
transmitters K.

In the case of partial channel knowledge at the transmitters, the joint
power and rate allocation is solution to the optimization problem

max u(p, R, 5.7

s u(p. R.g) 5.1)
N

subject to sz < Py ke {1,2} (5.8)

n=1
where R:(Rl,...,RN), R"=(R},RY), g, = (g,i,...g,]cv) and

2 N

u(p, R.g) =) > B i (g vk (9r). Rk (9r)). (5.9)
k=1n=1

Note that p} (g, pE(gx), Rit(g;)) coincides with the function defined in (5.3)
but here we underline the dependence of the optimization variables p;' and
R} on gy, the partial knowledge of transmitter k on the channel.

Similarly to the optimization (5.5), the optimization (5.7) is not convex
and has exponential complexity in 2N variables. Asin [16], a low complexity
approach based on the dual problem can be proposed and justified by the
following Theorem 3.
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Theorem 3. The optimization problem (5.7) satisfies the time-sharing con-
dition in the limit as N — oo.

The proof of this theorem follows along the same lines as Theorem 1
in [16] and is omitted here.
Let us define the Lagrangian

K

N
k=1 n=1

with A = (A1,... A\g), and the dual function

¢(A) = max L(p, R, \). (5.11)
(p,R)

The dual optimization problem is defined as

m}in q(A) (5.12)
subject to Ag > 0. (5.13)

It is worth noticing that the optimization in (5.11) boils down to N inde-
pendent optimization problems

2

nax > By (0 (9, Pk(91): Fic(gk)) = M) (5.14)

T k=1
The optimization (5.14) focuses on power and rate allocation in a single
subcarrier and pi and R} depend only on the knowledge of g;'. The opti-
mization (5.14) is still complex. In order to further reduce the complexity of

the problem we introduce a Bayesian game.

5.4 Equilibria for Joint Power and Rate Allocation

The previous resource allocation problem can be formulated as a 2-player
Bayesian game G = (S,7,D,U,P), where S = {1,2} is the set of play-
ers/transmitters, 7 = 71 x Tz is the type set consisting of all possible real-
izations of the channel attenuation g with 7 = {g;} being the type set for
transmitter k, D is the action set defined by
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K

N
Ry € Ry,pp €Ryand Y Eg{pp} <Pr}. (5.15)

n=1

Note that the set of strategies of each transmitter is orthogonal to the strate-
gies of the others and consists of a vector of rate-power pairs, with the powers
satisfying the average power constraint (5.4). In game G, U is the set of payoff
functions with the payoff for transmitter £ defined by

N
)
n=1 i ] J

(5.16)
N
n pk gk gk
=E R} (g, )Pr< RE(gy) <log [ 1+ ‘g
o (g i(9x) { t(gx) S SR L
(517

where d = (di,d3), 1(€) is the indicator function equal to 1 if the event £
is verified and equal to zero elsewhere. Finally, in G, P is the probability set
consisting of the probability functions of g;’.

Similarly to the optimization problem in Section 5.3, the game G is not
convex and a numerical solution is too demanding. By following the same
approach as in Section 5.3 we look at an approximation of the solutions of
game G by considering the dual game GP = (S, T,DP,U",P), where the
set UP consists of the cost functions

CP(A) =E max Li(p, R, 5.18
() = Eg, (Ri(g1):P4 (91,)) €D o(p. R, A) (5.18)

with

N . .
Ly(p, B, A) = Z R (gr)P {RZ(gk) < log <1 + Pi(94)0k ) ‘gk}

o+ £k Pj 7(g;) 95

n=1

+ A (Fk -3 Egz{p2}> , (5.19)
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and the action set DP is based on the sets
DP = { M|\ > 0}. (5.20)

The dual game G? is convex in X. The Nash equilibrium is the vector A such
that

CPNe, Ag) < CP (e, Ay, Vg > 0 (5.21)
)‘—k = ()\17---7)\k—1u)\k+17---7)\K)- (522)

Note that, for each strategy A, the solutions of the system given by

max Eg {Lr(p, R, )}, Vk € S. 5.93
(Ri(g1):pr(9k))E(D) o {Li(P )} (5.23)

are required. These solutions are the Nash equilibria of the game Gy =
(S, T, DU, P), where the set of utility functions U consists of the functions
Eg {Lr(p, R,A\)}, k€ S. )

By following the same lines as in the optimization problem, game Gy
can be decomposed into N games, one for each subcarrier. Therefore, the
solution of the game GP can be decomposed into the solutions of two level
of games, a game for each subcarrier whose solutions are functions of the
strategy A, and a global game based on the solutions of the games for the
subcarriers. In the following, we analytically define these two level of games.

Per Subcarrier Game - We define N independent games, one for
each subcarrier, in the parameter X, Gy = (S, 7", D", Uy, P"), where the
type set of transmitter k is the set of possible realizations of g;' and 7" is
the product of the type sets of all transmitters. The set of actions D" is
based on the feasible strategies of user k on subcarrier n, D} = (d}|d} =
(R}, py), R}, py € RT). The set of payoffs U is given by

G N) =Egk{Rz<gk>P {R:J(gk) < log (1+J2+§’3 f:jﬁq ,)g,,}> qu} —Akpchw} .

(5.24)

Finally, the probability set P™ consists of the probability of channel attenu-
ations g; for k =1, 2.

Global Game — It is the game defined by Ggop = (S, Dglob,ul’) where
the cost function set is UP. The action set is Dgior, = AXe € RT k=
1,2, and P — Zgzl Egn{pi (g, A)} > 0), where pf(gy, A) are the solutions
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of the per subcarrier games parametric in X. Then, the definition of Dy,
implies that only values of A yielding solutions for Gy satisfying the constraint
P — Zgzl Egr {pi (g, A)} > 0 are of interest for the game Ggiop,. The cost
functions CP(A) can be expressed as

N
CPAN) =D gt (d" (A A) + M Py k=1,2 (5.25)

n=1

with d” (M) being the solution of the per subcarrier game Gy. In the following
subsections 5.4.1 and 5.4.2 we analyze independently the games G@, and
the global game Gy, respectively. In Section 5.5 we provide an algorithm to
determine all the Bayesian-Nash equilibria.

5.4.1 Per Subcarrier Games G}

We assume that the number of fading states per subcarrier per transmit-
ter is equal to 2. For the sake of notation, we concatenate the power
vectors of the two transmitters to form a 4-dimensional column vector,
T . .
p= [pu,plg,pgl,pgg] , where py; denotes the power allocation of user £ in
fading state j. The same notation is used later for channel gains and their
e T T

probabilities, i.e. g = [911,912,9217922} and v = [711,71277217722] . Thus,
S = {1,2}, the type set of transmitter k on subcarrier n is 7" = {g} 1, g} o}
and the corresponding probability set is P" = {v}},7/,}. We denote the
user of interest by subscript k£ € {1,2} and the interfering user by subscript
m € {1,2},m # k.

In this section, we focus on the resource allocation of any arbitrary sub-
carrier. The payoff function (5.24) specializes as follows

;" R X) =1 Win " . R" A +7i Wi @™ R A) (5.26)
with
Win(R"p" N = Ry, <7" i1 (RZh <log <1+ M))
o " ; o2+ D9

+%221< . < log <H%)>)—szh- (5.27)
0%+ Pma9m2

Here, R}, = R (g9i,,A) and pi, = pi(g)y,.A) are the rate and power al-
located by transmitter & on subcarrier n when the channel realization is
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gy, and R™ and p" are the pairs (R}, R}) and (p};,p},)- Throughout this
section, we consider a single subcarrier and omit the index n.

By considering the possible values of the indicator functions, (5.27) boils
down to the following piecewise function (Chapter 4-Definition 10)

th(pv Rv )‘)
Ry — Akpkn PR — 02 > G Dimg
Yms Bih — AkPkn GmePme < fn’fzgihl —0? < 9mgPmg (5.28)
—AePkh Gkt — 0% < GrgPme

where gimgpmg = Max(gm1Pm1s Gm2Pm2) ad greDme = MiN(Grn1 Pm1, m2Pm2)-
In other words, index g and ¢ denote the greatest and the lowest interference,
respectively.

When we aim at maximizing Wy, it is straightforward to recognize that
the decision variables pg; and Ry are not independent, but for a certain
value pgp of the transmitted power, Wy, is maximized for Ry, = log(1 +
~lkhdkh ) - heing x € {g;¢}. Therefore, our problem reduces to consider

the following functions in p and A

(D) log(1 + -2 s ) — A
th(p, A) = (II) Yme log(l + %) — A\kDkh- (5.29)
(11I) — AkDkh-

Taking into account the dependency of the decision variables Ry and pgp,
the payoff function (5.26) reduces to

(P, A) = M W1 (D, A) + Y2 Wi (P, A) (5.30)

Note that Wk (p, A) depends on pgj, the power to be allocated in the channel
state gpp. Now, we assume that the power allocation of the interfering user
and consequently the interference pairs (gm1Pm1, gmaPm2) are known. There-
fore, the greatest and the lowest interference can be obtained, i.e. PygGmg
and ppegme. Then, the best response of user k to this interference would be
given by

Prp = arg r;llix th(p, A), Vh € {1, 2} (531)

and the Nash equilibrium P of the per subcarrier game satisfies the following
condition

Qk(ﬁkvﬁm?A) > Qk(pkaﬁmv)‘);Vk’m € {1?2}?k 7é mavpkER-l-' (532)
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Let us denote the three branches of the function (5.29) by W,gfl) where
x € {(I),(II),(II1)}. In addition, we denote the best response in a spe-

cific branch = by }3,(53 and by p_,,;, the vector obtained from p by suppress-
ing pgp. In the following, we define three disjoint regions for the best re-
sponse pgp, corresponding to the three branches of the function, i.e. R,(fh), T €

{(I),(II),(III)}. In other words, if pyp = argmax,,, Win(p, X) belongs to
the region 7'\’,,(53, it satisfies pyj, = argmax,, , ng;g}? (p, A).

The following disjoint regions for the best response pxp, can be defined: (1)

R](fh) where ngz) is the maximizing function, i.e. py = argmax,,, ngz) (p, A).

The function ngz)((ﬁl(fh)’ P_rn), A) should be positive and the following in-
equality should be satisfied: W,iz)((ﬁlgl;l),p_kh), A) > W,gg) (ﬁl(fhl), A); (2)
R](fhl) where W]gf) is the maximizing function, i.e. Py, € argmax,,, W]gf) (p, A).
The function W,gf)((ﬁ,(fh[),p,kh),)\) should be positive and the following
inequality should be satisfied: W,gg)((ﬁ,(jl[),p_kh),)\) > W,i?(ﬁ,(fh),)\); (3)
R,(;ZI) where both functions ngz) ((}5,(61;3 ,P_rn), ) and W,gf) ((}5,(61;11) s P_in)s )
are non-positive. The maximum value of Wgy, is equal to zero and pgp = 0.

Note that, in a single piece, the function W]gfl) (p, A) is a concave function

of pgn. Therefore, the argument pgj, which maximizes Wiy (p, A) in each piece
can be obtained directly by the first derivative. The resulting best response
of player k is

1 _gmg, _ o ()
» g Pme T g € RI(thI)

Pkh = W)\—T - %pmf — 95 € RI(CIhH) (5.33)
0 S Rkh

The corresponding utility of user k, Win((Prp, P—kp)s N), is given by the
following piecewise function.

A (1)
'8 Sty ~ 1 g ImaPmg +0) P € R
Wih(Prns P—n)s A) = 4 log 5 mldhh—s — o, + 2 (GoiPme + ) Py € Ry,
111
0 Pm € Rl(ch :
(5.34)

Note that the pieces implies constraints on the power value py;, specified as
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follows.
a1 _ - DkhIJkh
Ry = {Pm‘pkh > 0, PmgGmg < i — 1
Pmegme + 0 A
log(u) —-1- log Yme + Yme + — (pmggmg pmégmé) > O}
Pmgdmg + O 9kh
1 _ PkhJkh
R](gh) = {pm|pkh > 0, pregme < VY Tl
e Yme —1
DmeGme + 0 Ak
log (=) — 1 — 10g Yt + Vit + — (PmgGmg — Pmegme) < 0}-
Pmgdmg + O 9kh
III DkhIkh DkhIJkh
R( ) = {pm|pmggmg > epen — 1 O Pmegme VY T U} (5.35)
e Yme —1

The pieces are defined by conditions which are functions of the interfering
elements (DpeGmes Pmggmg). Now, by making use of the best responses we
determine the Nash equilibria for the per subcarrier game as the intersections
of the best responses.

The following theorem provides the set of all power allocations which
jointly maximize {Wi1, Wiz, Wa1, Wao}. These are the Nash equilibria of

the per subcarrier game G, .

Theorem 4. The per subcarrier game for a 2-transmitters network with
the best responses defined as (5.31), has a unique NE if and only if the
two following conditions are satisfied: (I) for a pair (A1, A2), the matrizc M
defined as

0 1 O 0, 2 ,O 0, £22 ,O 0, 22
M = 0. 0 0. 9L 0 0. %2 gz g 9121 g12 g12 0 912
: @, EA !
{O’ g2’ 0’92} {0 0, 922’9;’0} 0 1( )
5.36
is full rank, and (II) the unique solution P of the system of equation
P=M"'b()\, ), (5.37)
with
1 o 021 o 1 22 o
TN T T T A T
0 L_<o 22 _ o 1 _To 22_ o
[N DN (DN LAY
b1, A9 = {0 SRR SR S U v_lll_g}
) )\12 gczrl’ 3\122 931’ )\12 ggl’ ’Y)\121 921
05— % % N )
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belongs to the regions defined by

(R (RS 142), (R1}"]42), (R1)[42), (R{}"| A2
(R (RD]42), (RUID | 42), (R | A2), (R\ID| A2
(R ,<R<’ A1), (R5,7]A1), (RS |A1), (RS | A1
(R, (RD]AL), (RED A1), (R A1), (RUD A1)}

)}
Ry = ﬁ (5.38)
)

Here, Al = {(P11,P12)[P11911 > Diagr2} and A2 = {(Py1,D22)[Prog22 >
D21921}. The complementary regions are denoted by Al and A2. The notation

{.} with several variables suggests that the corresponding element takes one
of the values. In addition, the notation (.|.) conditions the region whereto
the power of user of interest belongs, to an specific order of the interfering
signal. In each row, there is a one-to-one correspondence between the values

in {.} of M,b, and Rp.

Note that (5.37) provides the intersection of the best responses (5.33).

Remark 1: The condition that matrix M is full rank implies that the
matrix M cannot be symmetric. Additionally, if rank(M) = rank(M) < 4,
where M is the matrix built by concatenating the two matrices M and
b, i.e. [M]b], the system of equations MP = b(A;,\2) admits infinite
solutions. They are Nash equilibria if they also belong to R,. No NE exists
if rank(M) # rank(M). It is straightforward to verify that the condition
rank(M ) = rank (M) enforces a linear restriction on the variables A; and As.
For the sake of notation, we denote this linear restriction by F.p) 4 (A) = 0.

Remark 2: Taking into account the structure of vector b(Ai, A2), in a

given channel state g = [gn gi2  go1 ggg]T, the solution to system (5.37)
can be expressed as a function of the pair (A, A2). Let us denote M ~! by
A. We rewrite (5.37) as

- b L’

Pu A | A 11(’\11 %)

DPi2| _ bi2(5;50)

Pzl _\___ \ (5.39)
Pa1 A A b21()\_27 U)

— 3 ‘ 4 T

P22 baa(5;:0)

where A;,i € {1,2,3,4} are 2 x 2 matrices. It can be verified that all the
non-zero elements of Ay and A4 are positive and all the non-zero elements
of Ay and Ajg are negative.

Proposition 1. Any non-zero power allocation of transmitter k at the Nash
equilibrium of GY s linear in the pair ()\ g ) Let us assume that the solution

D satisfies condition (II) of Theorem 4 with Ry = Rff, being Rp one of
the possible regions defined by Rp. The corresponding region for vector A =
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[A1, Ao is referred to as RY = {(A1, A2)[A1 > 0, A0 > 0,B(M\1,\2) € R}
Then

an —Pu ) c11

_ a2 P |x 12
AL ) = . o 5.40
p(A1, A2) —B21 a2 [%j 21 (5.40)

—B22 o 22

for (A1, \2) € Rf and being o j, Bij, cij, with i,j € {1,2} positive and de-
pending on g,7, and Rff.

Let us denote the set of all possible regions R, defined in (5.38) by V.
The cardinality of the set is Ny. We index the regions in an arbitrary order
with a number between 1 and Ny and denote the index by y.

In the rest of this section, in order to simplify the analysis, we concen-
trate on a single region Ry, y € {1, ..., Ny }. The following analysis holds in
general for any arbitrary region. Hereafter, the region index y is considered
as a parameter of the functions whenever a single region is intended, e.g..
Win(y: P(A); A).

Let us assume that p,, € R,(fh) The value of the corresponding function
in (5.34) is

_ 9kh
Win(y, P(A), A) = log
M (Gmg (522 = 522 — engo) + 0)
Ak Qmyg ﬁmg
— 14+ —(9gmg(—— — —= —cmg0) +0
gkh( g( )\m )\k g ) ))

where, based on Proposition 1, the value of p,, is replaced by O;\";Lg — ﬁ)\—":’ —
cmgo. Two properties of function Wiy (y, P(X), A), namely submodularity
(decreasing differences) and convexity, are presented in the following two

lemmas. We will elaborated more on these properties in the next subsection.

Lemma 1. The continuous and twice differentiable function Wyn(X) has
decreasing differences property.

Proof: This lemma is proven in Appendix 5.A.

Lemma 2. For a fix Ay, the continuous and twice differentiable function
Win(y, P(A), A) is concave in A, when the pair (Mg, Am) satisfies the following
condition

{(Aks Am)| Ak > 0, Ay > 0, D( Ak, A\py) > 0} (5.41)
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Proof: The proof of this lemma is in Appendix 5.B. Note that the
condition on the power P(Ag, Ayp) in (5.41) is implied by physical reasons
and it is not restrictive for our study. In the following section, we consider
a global game per each possible region R, and we discuss the existence of a
Nash equilibrium in that region.

5.4.2 Global Game

We consider a network wherein all subcarriers have the same channel state
distribution. In such a network the global game utility function (5.25) boils
down to

Cr(N) = NLi(d"(A\); A) + \P, k=12 (5.42)

Let us consider the above problem in a single region Ry, y € {1,..., Ny }. In
order to specialize all the functions as the ones of this region we add the
variable y as a parameter to all the functions, e.g. Ly(y,d (A);A). From
(5.42) and (5.30) we have

Ck(yaA):N(%1Wk1(yaﬁ(A)aA)JWme(y,ﬁ(A))\))Jr)\iPk k=1,2 (543)

For further studies, we define the global game per region by gglob = (S, Dé’l ob Ugl ob)

where the cost functions L{gylob are defined in (5.43) and the action set is
Dglob = <A|ﬁ(A) € R%;)\k € RJr,k = 1,2).

Let us define a relaxed game G .4 = (S, Dypaveqs Usion) Obtained by

relaxing the condition of type ngz) < W]gf)(or ngz) > W]gf)) from the set

Dy

elob- 11 Other words, the action sef is DY ved = (}\\ﬁk(A) > 0 and Py 9mg =

max(pmlgmlame.ng)u )\k S R+7 k= 17 2) .
In the following, we prove the submodularity of G Based on this

relaxed”
property the existence of a Nash equilibrium for Qfelaxed follows.

Theorem 5. The two-player global game Qfelaxed 15 a submodular game when
the strategy set Dgelaxed 15 not empty.

Proof. A two player game G, . is submodular if for each player k € {1,2}

the following conditions hold: (i) the strategy space is nonempty and com-
pact sublattice; (ii) the strategy profile Dfelaxed satisfies the ascending prop-

erty; (iii) the utility function Ck(y,A) is continuous in both players’ strate-
gies, and has decreasing differences between A, and A, for k,m € {1,2}, k #
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m. The validity of conditions (i) and (ii) can be verified directly from Ap-
pendix 5.C.1 and Lemma 5 of Appendix 5.C.2. The decreasing differences

property of Ci(y, A) follows from Lemma 2. O

Property 1. Nash equilibria in Dfelaxed, the interior of Dfelaxed, are all the
solutions of the system

— =0 k=1,2 5.44

8}\k 9y Y ( )

mn Di{elaxed’ if the per subcarrier game has a single NE. On the other hand,

if the per subcarrier game has infinite NEs the condition ank<4(}" 0)=0

should be satisfied (Remark 1). The KKT conditions for this case boils down
nto

ICk(y,A) +u OF punpca (X 0)

ikFrankea(X o) =0 k=1,2 (5.46)

=0 (5.45)

As the function Fp,o1_,(X,0) is linear, the KKT conditions are necessary
and sufficient (Section 4.2.2).

Note that systems (5.44) and (5.45) is a system of rational functions in
A, and all its solutions can be determined as roots of a polynomial in Ag or
A

Property 2. The Nash equilibria ofgfelaxed on the boundary satisfying Dy, =
0,k,h € {1,2} are Nash equilibria of Ggion, only if they are Nash equilibria in
z

D: jaxeds the action set interior of the game GZ,. 4,
obtained from the region Ry by enforcing Py, = 0.

where the region Ry, is

Thanks to this property, we do not ignore any NE of the global game if
we ignore the equilibrium at the boundary determined by pg; = 0.

Lemma 3. The Nash equilibria of gé’lob on the boundary corresponding to
a condition of type DyyiGmi > Pmoadm2 (07 Ppidml < Dmagm?2) are Nash
[¢]

equilibria of Ggon, only if they are Nash equilibria in D}y, . 4, the action set
interior of the game G\ 4, where the Ry is the region which shares the

. : Y
boundary of interest with Dglob.

Proof. This lemma is proven in Appendix 5.C.2 as straightforward conse-
quence of Lemma 6 in the same appendix. ]
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Property 3. Let A\* be a NE of GY q corresponding to the per subcarrier

relaxe

game equilibrium pY(XN*). X* is a NE of Gglob if and only if (1) it belongs to
the actions set of the global game per region, Dé{lob and (2) it satisfies the
following inequality

Ck(yv)‘lt?)‘;kn) < Ck(za)‘k’)\;kn)a
V)\k Z 07 k,m — 1,2,]{: # m, Rzy) S y,R; S ycond (5-47)

being Veond s a subset of YV wherein the per subcarrier game strategy of
transmitter m is identical to the one’s in region Rjp.

Lemma 4. A NE of Gglo belongs to a boundary of type ngz) = W,gf), if
and only if it is a NE for both regions sharing this boundary, i.e. the region

py'" C Dfelaxed corresponding to condition ngz) < WIS;I), and the region
Dym C Dfelaxed corresponding to condition ngz) > W,gf). We refer to these

two regions as side regions.
Let Wy, = WIE;Q — ,gf). The NEs of Gglon, which belong to a boundary
of type dWy, = 0 are a subset of the set of solutions to the following system

of equations.

ICK(y D, X) AWy

O o 0
ACL(yUD X adw
k(y ) + m kh —0
Ok O\
,udekh = 0; k= 1, 2. (5.48)

Property 3, Lemma 4 and Theorem 3 yield the following theorem.
Theorem 6. The NEs of Gglop are the union of all the NEs of G q and

relaxe
o

the solutions of (5.48), for ally € {1,..., Ny}, which (1) belong to Dglobv and
(2) satisfy condition (5.47).

5.5 Algorithm

The algorithm to determine the NE of the dual game GP consists in deter-
mining all the NEs of the A relaxed games G, . defined over the regions
Rj € Y. Then, among them, it selects the ones which satisfy all the con-
ditions for being NE of the global game. Such conditions are expressed in

Property 3. The algorithm is presented in Table 4.1. Note that the NE
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obtained with this algorithm are not unique. A selection criterion has to
be enforced to both transmitters in order to guarantee the convergence of
the system toward to an equilibrium. Several criteria can be enforced. As
an example we can propose the selection of the NE which maximizes the
sum throughput for symmetric systems, i.e. systems with the same channel
statistics for both transmitters.

We consider a 2-transmitter network in which the transmitters simulta-
neously communicate with a single receiver over 10 subcarriers. In the first
set of results, the system parameters are set as follows. The channel gains for
the two transmitters are set to (g11,912) = (1/3,2/3); (921, 922) = (7/8,1/8)
and the corresponding probabilities are (v11,712) = (0.3,0.7); (721,722) =
(0.1,0.9). Note that the gap between the two gain levels for transmitter 2
is greater than the ones of transmitter 1. Moreover, the values of ~s in-
dicate that for transmitter 2 the occurrence of the higher channel gain is
less probable than the lower. A reversed situation occurs for transmitter 1.
Additionally, we consider two levels of information at the transmitters: (i)
T — CCSI : complete channel side information at both transmitters, (ii)
T — PCSI : partial channel side information, i.e. each transmitter know its
own channel state and the statistics of the other’s links.

For T — CCSI, the problem is defined in (5.5). The power allocation
algorithm based on the dual method introduced in [16] is implemented. The
algorithm is detailed in Table 4.2 and assigns an initial value to the powers
and the Lagrangian multipliers and iterates until convergence to a local opti-
mum power allocation of the constrained optimization (5.5). Note that this
algorithm converges into a local optimum depending on the initial value.

For T'— PC'S1, the distributed joint rate and power allocation is obtained
via three different algorithms. The first two algorithms are based on heuristic
approaches and the last one is the proposed algorithm in Table 4.1. Note
that, unlike Algorithm II, Algorithm I is not iterative and will immediately
provide all the NEs of the global game.

In both heuristic approaches, transmitter £k = 1,2 divides the maximum
available power P}, equally among the subcarriers. Let us assume P, =
Prax/N. In the first approach, namely EqPowl, with the intention to avoid
outage, we set the transmission rate on channel g, to Rgp, = log(l—i—%)
where gp,g = max(gm1,gmz2). The value of the average throughput is pg, =
Ryp. In the second heuristic approach, namely EFqPow2, we accept a certain

level of outage. We calculate the two rates R}}Y = log(1 + P:g.fnig’i‘ag) and

R = log(1 + %) where g,y = min(gm1, gme). We further calculate

the average throughput for both cases, i.e. pZ}Zg = RZZQ and pz;blg = 'ymlRZ}f,
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Algorithm [: finding the NEs of the global game for 7' — PCST
Initialize & = ().
for y € {1,..., Ny }.
Set matrix M for Rj.
Initialize £Y = 0.
if rank(M) = 4.
compute A = M1,
compute P(A1, A2).
else determine constraints on A such that Rank(M) = Rank(M).
determine the infinite solutions of Mp = b parametric
in the unknown pgp.
endif.
compute Ci(y,A), k=1,2.
find all the solutions X of %L =0k = 1,2
find all the solutions of 5.48 if boundary dWy, pass through region y
collect all above solutions in the set £Y.
set EY = EY (DY,

glob*
for each \* € &Y
check=1
for all A\

for all regions R* such that Rf; € Veond
if Ck(?j, )‘27 )‘;kn) < Ck(Z, Ak, )‘;kn)
check =1.
else
check=0.
endif.
endfor.
endfor.
if check=1
€=Ul A7)}
endif.
set £E=EYEY.
endfor
endfor

Table 5.1: Algorithm I: finding the NEs of the global game for 7' — PCST
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Iterative algorithm for T'— CCST
initilaize (A1, A2)

repeate
initilize p = (p11(g11), P12(912), P51 (921), Pho (922))
repeate
fork=1:2
py, = argmaxBEgn S0 (rk(g™, p") — Mep} (gr))
end

until p converges
update (A1, \2) using subgradient method
untill (A1, Ay) converges.

Table 5.2: Algorithm II: Iterative algorithm for 7"— CCSI

and we determine the maximum. Finally, we set the rate Ry to the one
corresponding to the maximum throughput.

Let us compare the performance of the above four algorithms. We adopt
the throughput attained by each algorithm as performance measure and
we plot it versus the maximum available power at the transmitter. The
throughput here is in bits/sec. For the T'— CC ST optimization, the through-
put is equal to the sum of the maximum achievable rate over each subcar-
rier. The maximum available powers at both transmitters are identical, i.e.
P = Py = Ppax. For the first set of simulations the noise power is fixed at
—5db and Ppax increases linearly from 0.3 W (—5db) to 28 W (15db).

Figure 4.1 compares the performance of Algorithm I for 7" — PC'SI and
Algorithm IT for T'—C'C'S1 separately for the two transmitters. Note that the
optimization based on Algorithm II does not guarantee the global optimum
but only a local optimum. For Algorithm I we adopt the maximum sum
throughput as selection criterion of a Nash equilibrium.

Interestingly, the simulations show that all the NE points obtained through
Algorithm I are those wherein only one transmitter emits with the full power
and the other remains off. This kind of result holds also for all the sets of
parameters we consider for simulations. This suggests that Algorithm I can
be simplified to finding the NEs in which only one transmitter emits. The
set of the NE and/or retained NE after the application of a selection crite-
rion includes the cases where transmitter k allocates the whole power in only
one channel state gx,,h = 1,2 and/or when it divides the power optimally
among the channel gains gr1 and ggo assuming that there is no interference
from the other transmitter.
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Throughput per transmitter vs. maximum available power,
" K=2,N=10, g, =(1/3,2/3), 92:(7/8.1/8), V1:(0'3’O'7)' y2:(0.1,0.9)
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Figure 5.1: Aggregate throughput vs maximum available power at the trans-
mitter, K =2, N = 10,91 = (1/3,2/3),92 = (7/8,1/8),71 = (0.3,0.7),72 =
(0.1,0.9)

By performing Algorithm II, Transmitters of type T'— C'C'ST have in-
creasing throughput while the power budget increases.

Figure 4.2 shows the aggregate throughput obtained by the four algo-
rithms. The two heuristic algorithms have a saturating behavior at very low
power levels compared to the optimization and the game based algorithm.
In other words, these algorithms are not able to exploit the additional avail-
able resources. Interestingly, the increase of the throughput for a NE in
T — PCSI, follows closely the increase of the optimal power allocation in
the case of T — CCSI.

5.6 Conclusions

The joint power and rate allocation in a two-user OFDM system with a
large number of subcarriers and partial channel state information at the
transmitters for slow frequency selective fading channel is studied. A total
throughput maximization problem is introduced and it is proved that the
dual approach yields optimum resource allocation asymptotically as N —
+o00. Although, the dual problem has linear complexity in the number of
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Aggregate throughput vs. maximum available power
K=2, N=10, g, =(1/3,2/3), 9,=(7/8,1/8), y,=(0.3,0.7), ¥,=(0.1,0.9)
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Figure 5.2: Throughput per transmitter vs maximum available power at
the transmitter, K = 2,N = 10,g1 = (1/3,2/3),92 = (7/8,1/8),71 =
(0.3,0.7),v2 = (0.1,0.9)

subcarriers, the complexity of per subcarrier optimization is still very high
due to the fact that the objective function is not convex. A suboptimal
low complexity approach is introduced in the form of 2-player game. We
defined a two-level game, namely per subcarrier games and global game,
whose NEs are obtained. Since the game admits multiple NEs, selection
criteria are necessary. Thus we adopt the maximum sum throughput as
selection criteria of a NE. The performance of such NE points is compared
to the performance of the optimum power allocation for the case of complete
channel state information and the uniform power allocation for the case of
partial channel side information.

The simulations showed that all the NEs obtained from the game are
characterized by the fact that only one transmitter emits with full power and
the other remains off. On the contrary, the optimum power allocations for
the case of complete channel state information contains solutions which have
the superposition of two users’ power on the same channel. However, in the
later case, the solutions can only be obtained through an iterative algorithm
whose convergence to some local optimal point depends on the choice of the
initial value. Comparing the performance of the optimal solution averaged
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over several initial points and the NE chosen through the selection criteria,
shows that the NE performs near optimal in this network setup.

5.A Proof of Lemma 1:

The second derivative in \; is given by

62th . L n gmg/Bmg)\k(Q(O:jng - 5)\_77;g - CmgU) + BYS + 0') (5 49)
ONLONE M2 4 Qmg _ Pmg _ 2 ’ ‘
kOAK k Ak (Gmg (T2 — 52 — Cmgo) + 0)

When the power p,,, = O;\mg — ﬂ)\—";g — CmgO 1s nonnegative, the second deriva-
m

tive is positive. Therefore, the function Wy, is locally concave if condition
(5.41) is satisfied.

5.B Proof of Lemma 2:

The decreasing difference property reduces to g;:gﬁ’; <0 for all A\g, Ay, >0

when the second mixed derivative exists. Since

82th _ _gmg2amgﬁmg _ GmgQmyg (5 50)
Qmy m 2 :
ONOAR, A2 A2 (Gmg( oL — 5}\_}:; — Cmgo) +0)2  GkhAm

and observing that all the coefficients appearing in (5.50) are positive it
follows immediately that the second mixed derivative is negative for any
pair A\g, Ay, and the mixed derivative in (5.50) follows.

5.C Analysis of The NEs on The Boundaries

We define the following two boundaries:

e B; = {(\1, \2)|one of the power allocations tends to zero, i.e. pgp(A1, A2) —
Ok, h € {1,2}},

o By = {(A1, Ao)for some k € {1,2} : pr1(A1, A2)gr1 = pra(A1, A2)gk2},

Note that the boundary B; is the boundary between valid values and
non-valid values for power allocation. In other words, the region wherein
one of the power allocations is negative is not valid. We call the region
where all power elements are non-negative as feasible region. On the other
hand, By sets a boundary between two distinct pieces of the feasible region,
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i.e., boundary between pri1gr1 > progre and pr1gr1 < Dr2gik2. The transition
between these pieces will be studied in this section.

Moreover, as in our definition of the regions in (5.35) we considered a
separate case for pgp = 0, i.e., defined as pyp € R,(CIhH), the boundary B;
is itself an independent region. In other words, all points on the boundary
where a single power element pgp — 0, are interior to the region where that
power element is equal to zero , prp = 0, while the other power elements stay

the same.

5.C.1 Boundary of type B,
For any non-zero power allocation of transmitter k, we have Py, = Of\% —
%’; —cppo? >0 for k,m = 1,2,k # m,h = 1,2. Three possible cases are:

o 71: if Brp # 0 and cxp # 0
o 72: if Brp # 0 and cxp, =0
e 73 if B, =0

Note that by definition agp > 1. Lets assume a coordinate plane with A and
Am as the axis. In case Z1, on the boundary where pg, = 0 the following
relation is satisfied

Brn Ak

Am = fen(Ae) = .

(5.51)
The first and second derivatives of \,, with respect to A\, are positive. In
case Z2, the boundary where pg; = 0 is a line with a positive slope passing
through the origin. In both cases, at pg, = 0, A\, is an increasing convex
function of Ag. Finally, in case Z3, the boundary where pi, = 0 is the line
A = C;‘:gg. Note that, the region corresponding to pgp > 0 for each case
is the region which is enveloped between the boundary curve and the axis
corresponding to A,.

The region where the power vector satisfies p > 0 is an intersection of
the regions corresponding to all conditions pg, > 0,k, h = 1,2, one per each
element. In general, the nonempty intersection is a sublattice and it is easy
to verify that it satisfies the ascending property (Chapter 4-Definition 14)
defined as follows.

Am < N = Dp(Am) < Dp(N,) (5.52)

The typical shape of a non-empty intersection is shown in Figure 4.3.
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Figure 5.3: Feasible region: the region corresponding to p > 0

For further studies, we are also interested in the slop of the fin(\x) at
the origin, i.e. (A1, A2) = (0,0). In order to find the relative position of the
boundaries we need to have a uniform definition for our coordinate plane.
For this purpose, we define a coordinate plane with A9 as y-axis and A; as the
x-axis, denoted by Ao — A1 plane. The slop of the boundary corresponding
to pgn, = 0 in such a plane is denoted by a:%h and is defined as

oA

0 2

= — 1,2}, .
Lrh a)\l ()\17)\2):(070)7 k’h G{ 9 } (5 53)

5.C.2 Boundary of type B;

The analysis of boundaries of type By can be summarized in following two
lemmas.

Lemma 5. The boundary Bo divides the feasible region into two sublattices,
each of which satisfies the ascending property.

Lemma 6. If a NE of the game G, belongs to a boundary of type Ba,
that point is an interior NE of the game gglob, where R, is one of the side
regions, i.e., the regions sharing that boundary.

We analyze By through an example. However, the following analysis
holds in general for any arbitrary region. We are specially interested in
investigating the existence of a NE on such a boundary.
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Lets assume the case where the only zero element of power vector is pas.
In addition, the conditions Al and A2 are satisfied, i.e. pi11911 > pP12912,
and p21go1 > paages. Further, we assume that (1) p1; € Rglll)\AQ, (2) p12 €
Rg?\AQ, (3) pa1 € R§€)|A1, and pao € R%H).

We denote the NE of per-subcarrier game for this region by p*. It is
straightforward to see that if the NE p* is close to the boundary By =
{(A1,A2)]911751 (A1, A2) = g12P72(A1, A2)}, the greatest and the lowest inter-
ference to user 2 are almost equal and p3; belongs to the region Rgll) Note
that, the two power elements of user 1, pj; and pj,, are chosen to be non-
zero. In other words, we provided a general example wherein the boundary
Bg does not coincide with a boundary Bj.

Considering the above region, the power vector p* is as follows:

= 22 0_2
D VI
o = 1 puagn  o*
27N 912 912
= 1 pugn 0_2
DY 921 921
Therefore matrix M ™ is
g
! ) 9(2)1 g%
0O 1 2L 0
m g % (5.55)
921
0O 0 O 1
We have define d;,i¢ as follows
dingt = 911911 — 912D12
% gi2 — 722911
= 921P21 — S VI (5.56)

The condition Al implies that dje > 0.

Note that if g12 —v22911 < 0, there is no possible positive solution for p3; .
Therefore, the boundary Bs is outside the feasible region and no analysis need
to be done on it. We now consider the opposite case where g1o2 — Y2211 > 0.
Lets assume that the NE of the current region ,T\’,é? |A1, approaches the
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boundary Bs where diys = 0. Replacing D5y by its value in (5.54), we con-
clude that the equation diys = 0 in region Rgll) is satisfied if and only if

A2 _ g2

5.57
Al 912 (5:57)

Therefore, in the Ay — A1 plane, the line passing from origin with a slope
equal to % contains all the points belonging to the boundary Bs.

The following two questions should be answered at this point: (1) is the
boundary Bs passing through the feasible region, i.e. satisfies p > 07, and
if the answer is positive (2) is there any incentive for user 2 to deviate from
this point and enter the region on the other side of the boundary By, namely
Rgm/ﬂ, where the condition A1 implies dips < 07

To answer the first question, we find the values of the initial slopes, 29,
and z9;, for our example.

0 g21
Tio = ——F
g21 + 722911
0 g21
g 5.58
2 V722911 ( )

Taking into account our basic assumption on gi2 — 22911 > 0, we conclude
that the boundary Bs pass through the feasible region. This fact is shown in
Figure 4.4. For the sake of later reference, we call the regions T\’,é?\Al and
Rgl)|/i1 sharing boundary Bs the side regions. It is straightforward to see
that the side regions are sublattices and they satisfy the ascending property
(Chapter 4-Definition 14). We can immediately conclude Lemma 5.

Now let us assume that, at the boundary Bg, user 2 deviates and enters
the region Rgm/ﬂ We denote the per subcarrier NE of this region by p**.
Note that, following the same logics as for p*, if the NE p** is close to B,
the power element P57 belongs to the region Rg?

The power vector p** is as follows:

2
—xx Y22 g

P11 = M - g:

—wk 1 P21921 o’
PREN T e e
e 1 progi 0?
TN T T

p5s = 0. (5.59)
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ZyY A=Y By o)
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Figure 5.4: Position of boundary By with respect to the feasible region

and matrix M™** is

1 0 0 22

0 1 @ 9

0 m: (5.60)
g21

0 0 0 1

The symmetric structure of the new matrix suggests that there exists solu-
tions for pjo and pop if and only if rank(M™) = rank(M™**) = 3 (Remark
1-Section 5.4.1). This condition is satisfied if i—f = %. We denote this ratio
by Zs. Interestingly, this condition coincides with the condition (5.57) for

the power element p3,, in region Rg€)|A1, being on the boundary B (figure
4.4).

In general, crossing the boundary B, the matrix M of one of the side
regions is of rank 3. Therefore, the above analysis is general and we conclude
Lemma 6.

Thanks to this property, we do not ignore any NE of the global game if
we ignore the equilibrium at the boundaries of type Bs.



Chapter 6

Distributed Cross-Layer
Resource Allocation in Slow
Fading Interference Networks

6.1 Introduction

This chapter investigates distributed cross-layer algorithms in single-hop ad
hoc networks for joint power and rate allocation, scheduling and admission
control. An extended literature of the subject represented in Section 3.2.2.
We keep our focus on slow fading channels with partial channel side infor-
mation. We use similar approach as in [39] for characterizing the network
and the nodes with obvious modifications to model the peculiarities of ad hoc
networks and slow fading channels. Namely, we consider interfering channels
instead of MAC.

Following the same approach as in the previous chapter, we define a
utility function that accounts for the intrinsic probability of having outage
events in networks with slow fading and decentralized control mechanisms.
The proposed utility function maximizes the system throughput defined as
the average information rate successfully received. This optimization is sub-
ject to a maximum average transmission power.

This work proposes both decentralized policies where each transmitter
alms at maximizing its own average information rate successfully received

105
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(selfish game) or the system throughput (team game) under the assumption
of single user decoding at the receiver (point-to-point channel with interfer-
ence noise) or multiuser decoding (compound channel). The performance of
the various policies is assessed against the policy in [39] in terms of through-
put, outage probability, and drop rate (fraction of arriving packets not ac-
cepted in the queue). Improvements between the 19% and the 68% for the
throughput have been obtained. Interestingly, iterative optimization algo-
rithms with different random initial points yield to the same equilibrium
when a low complexity best response approach is applied and single user
decoding is utilized at the receivers. This encourages to believe that the ob-
tained equilibrium is also Pareto optimal. On the contrary, when multiuser
decoding is applied at the receivers, multiple equilibria where obtained with
considerable differences in terms of throughput. Multiplicity of the equilibria
points, convergence of the best response approach eventually to a Nash equi-
librium have been only partially addressed in this work and are still object
of investigation.

6.2 System Model

We consider a system consisting of K arbitrary source-destination pairs shar-
ing the same medium. For example, we may assume that these K pairs are
chosen from a larger number of nodes in an ad hoc network. The time is uni-
formly slotted. We assume on our model that (i) one node cannot transmit
and receive at the same time and (ii) the transmitters are distinct while one
node can be the destination of different information streams. Thus, there are
K transmitters and in general Ny receivers, with Ng < K, in the system.
The channel is block fading with duration of a block equal to a time slot.
Furthermore, codewords are completely transmitted during a single time slot.
The channel in time slot ¢ € N is described by and K x Nr matrix Y (t)
whose (i, ) element y!(¢) is the power attenuation of the channel between
transmitter ¢ and receiver j. Throughout this work we refer to them as the
channel states (CS). The matrix of channel states is shown in Figure (6.1).
The row 4 includes the states of the channels from the transmitting node ¢
to all the destination nodes. This is the vector of known CS information at
node ¢ and it is denoted by y;,(¢). The j-th column includes the states of the
channels from all the transmitting nodes to the receiver j. This is the column
vector denoted by y/(t). It contains all the CS information necessary to de-
termine the signal to interference and noise ratio (SINR) at the destination
node j at time slot ¢. Furthermore, each power attenuation yf is modelled
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as an ergodic Markov chain taking values in the discrete set F of cardinality
L. For the sake of notation, we define a bijection between the set £ and the
set of the natural numbers {0,1,...,L — 1}, ¢ : £ — {0,1,...,L — 1}. Let
its inverse be ¢ = ¢~ !. The Markov chain of y] is defined by the transition
matrix T'(i, j) whose (k,¢) element T} (i,7) is the probability of transition
from the CS (k) to the state ¢(¢). The conditional probability nature of
TF(i,5) reflects on the fact that Zé::l TF(i,7) = 1. We assume throughout
that T'(4, j) is irreducible and aperiodic as in [39]. The steady CS probability
distribution of the channel between transmitter ¢ and destination j is given
by the column vector (i, j).

At each node, packets arrive from the upper layer according to an inde-
pendent and identically distributed arrival process 7;(t),t € N with arrival
rate \;. Here P(~;(t)) is the probability of receiving 7;(t) packets at time
instant ¢t. The packets have constant length.

Each transmitter is endowed with a buffer of finite length. We denote
by B; the maximum length of the buffer at node i and by ¢;(¢) number of
queuing packets at the beginning of slot ¢. In the following, we address the
variable ¢;(t) also as the queue state (QS). In a given time slot we assume
that all the arrivals from the upper layer occur after transmission of packets
to the network.

In each time slot, on the basis of the available information at time ¢
transmitter ¢ decides (a) the transmission power level p; € P;, where P; is
a finite set of nonnegative reals including zero; (b) the number of packets
to transmit p; € M;, with M; = {0,1,...,M;} and M; < B;; (c) to accept
or reject new packets arriving from upper layers. We denote with ¢; = 1
and ¢; = 0 the decision of accepting and rejecting the packets, respectively.
Therefore, the action of the node 4 at time slot ¢ is described by the triplet
ai(t) = (pi(t), pi(t), ci(t)).

The information available at node i at time ¢ is given by the pair z;(t) =
(y;(t),q(t)), i.e. the CSs from transmitter ¢ to all receivers and the number
of the packets in the queue at the beginning of time slot ¢ (QS). We refer to
the pair z;(t) as the transmitter state (TS). Additionally, each transmitter
knows the statistics of the other channels and the statistics of the arrival
process in the buffer.

For further studies it is convenient to define two other state variables for
transmitter 7, namely the receiver state (RS), and the network state (NS).
RS is given by the pair x¢(t) = (y'(t),;(t)). In order to define the NS, we
divide the information of the matrix into two sets: (i) row vector y; which
is the TS of user ¢ (ii) remaining row vectors in the matrix. We denote the
latter set by y_;. Additionally, g_; contains the queue states of users other
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Figure 6.1: Definition of (a) RS and (b) NS

than user i. Therefore, NS is z_; = (y_;,¢—;). In a similar way, we can
denote the set of actions of other users by a_;.

A complete characterization of transmitter i requires the diagram of its
TS. The TS is a combination of channel state y;(t) and queue state g;(t).
The CS transitions are independent of the buffer state. They are further in-
dependent of the action. As already mentioned each CS can independently
be defined as a Markov chain. Then, the TS is also a Markov chain with

. e (41
transition probabilities Py (4. (141) = Hfil ;((55 ((t;)L )
of the transition probabilities from the CS yf (t) to the CS yf (t+1) or, equiv-
alently,from go(yf (t)) to go(yf (t)). On the contrary, the queue state depends
on the transmitter action. In fact, the dynamics of the queue length are
given by ¢;(t+1) = min([q; (¢) +¢; (¢)7: (t) — ; ()] T, B;) and can be described
as Markov decision chains (MDC). Its transition probability is denoted by
Py, (#)a: (t)gi (t+1), the probability of transition from the queue state ¢;(t) to the
queue state ¢;(t + 1) when action a;(t) is adopted by the transmitter. Since
the channel state is independent of the queue state, the transmitter state can
also be described by a MDC with transition probability Py, )4, (t)a; (t+1)s 1-€-
the probability of transition from the state x;(t) to state z;(¢ + 1) when the
action a;(t) is adopted. Here, Py, ()a; (t)e: (t+1) = Pri()y: (t41) Paa(t)as (t): (t4+1)-

The signal of the user of interest is impaired by the interfering signals and
additive white Gaussian noise with variance o2. We denote by d; the index of
destination node for traffic of transmitter ;. When the power level choices of
the active transmitters are p = (p1,p2, ..., Pk ), the RS vector for transmitter
iis 2(t) = (y'(t), ¢ (t)), and the receiver performs single user decoding, the

(,7), i.e. the product



6.3 Problem Statement 109

maximum instantaneous achievable rate for the i-th communication pair is
given by
SU/,.i _ SU/, i
i (2'(t), p) = logy(1 + SINR7™ (2*(t), p)) (6.1)

where SINRZ-SU is the signal to interference and noise ratio of node i at its
destination d; given by

d.
()it
s e 07
i o Y; pPj
SINR}Y (2'(t), p) = i !
q;j (t)>0
0, otherwise.

If the receiver performs successive interference cancellation (SIC) decoding
and, additionally, knows the transmission rate of the decodable interferes in
the set D; = {j1,...J¢}, the maximum instantaneous achievable rate for the
i-th communication pair is given by

rPC(a' (1), p) = logy (1 + SINRY'® (2 (1), p), (6.2)
where
yi (Dpi(t)
SINRJ'C (" m § st
e = 7,
J€Di
0, otherwise.

In the following, we will write shortly r;(x%(t),p) when it is irrelevant to
specify the decoding approach.

6.3 Problem Statement

At each time slot, a node chooses its action without having a global view of
the channel states and the other users’ interference. There is no coordination
among transmitters’ actions and only local information is available at each
node. Therefore, for any choice (p;, i1;), there is no guarantee that the pu;
packets can be received correctly when the TS is x;. In such scenario, we aim
at maximizing the throughput, i.e. the average number of packets success-
fully received by the destination. We will consider two different approaches:
(A — self) each user independently optimizes its strategy to maximize its
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own throughput (selfish game); (A — coop) each user independently from
others optimizes its strategy to maximize the joint throughput of the whole
network (team game). Each approach can be investigated for two different
kinds of receivers: (a) receivers performing single user decoding; (b) receiver
performing SIC decoding. Approach Az with decoding j, j € {SU,SIC}, is
addressed as Ax — j.

Let R be the rate required to transmit a packet in a time slot. The
probability that p;(t) packets can be transmitted successfully in a time slot
t by source i is

Pr{r;(z'(t),p) > pi(t)R} (6.3)
and the average throughput for source 1 is
= ‘
lim sup— Z E(Pr{r;(z*(t),p) > pi(t)R|x;(0) = B; }i(t)R (6.4)
T—+o00 T =0

where the expectation is conditioned to x;(0) = 3;, the initial TS of user i.

For physical and QoS reasons the transmitters are subjected to con-
straints on the average transmitted powers, on the average queue length,
and eventually on the maximum outage probability. More specifically, the
average power of transmitter ¢ is constrained to a maximum value p; and the
following upper bound is enforced

T-1

lmsup: S~ B0 04()i0) = 5} <, (63

where p;(z;(t),a;(t)) is the power, eventually zero, transmitted by the source
i at time instant ¢ when the action a;(t) is selected. The expectation is
conditioned to the initial TS z;(0) = f; of transmitter ¢. Similarly, in order
to keep the average delay of the packets limited, the average queue length is
constrained by the following bound:

T-1

lé‘ii‘ii’% > Bla (0l (0) = i} <1 (6.6)

where g; is maximum allowed average queue and the expectation is condi-
tioned to x;(0) = f;. Finally, the outage probability in the steady state is

—=out

bounded by P;

Pl Pr{ri(zi(t),p) < ui(t)Ri(t)]2:(0) = fi} < P (6.7)
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Note that the constraint on the outage probability holds in the steady state
while in the transient of the MDC we assume that the system can eventually
tolerate higher outage probability. Throughout, a policy of transmitter ¢ is
a deterministic or probabilistic application from the space of TS &; to the
action space A;. Since the policies in stationary conditions of the Markov
chain are dominating [39], in this paper we assume that the policy of a
transmitter at time t is only a function of its current state and we omit
the time indices. Then, a probabilistic (or mixed) policy of transmitter ¢ is
u;(a;|z;), i.e. the probability that mobile i chooses the action a; when the
state is x;. The class of decentralized policies of mobile 7 is denoted by ;.

6.3.1 Problem Statement as an K-player Game

Let us formulate the previous problem as a stochastic K-player game. We
denote by g; the cardinality of the product set IC; = &X; x A; = {(x4,a;) 1 z; =
(¥i, @) € xiya; = (pi, i, &) € a;(x;)} and by < x4, a; >p, the n;-th element
of K;. The payoff matrix C¥) of transmitter i is a g1 X g X ...gp matrix
having K-dimensions and its element cﬁff na..my 1s the payoff of transmitter
1 when correspondingly to TS z; it performs action a; while the remaining
users adopt the strategies < xy,ar >5, with k& # 4. In the selfish approach,
when n; is such that < z;,a; >p,=< 5, (&,Ei,gi,) >

e mamac = Rt o,z p)>p, R (6.8)

i.e. the payoff is nonzero and equal to Ry, if transmitter ¢ can transmits 1
packets with power P, reliably. In the cooperative case

K
7=1

Let z; = zi(x;,a;) be the joint probability that transmitter ¢ performs

action a; while being in state z;. It can be expressed by the row vector
z; = (z},22,..,2)"). Then, the payoff p; equals the average throughput in

77~
(6.4) and it is given by the multilinear form

pi = Z Z Z Cf“mmnKz?lng,,,z?(K = zi.fi (6-10)
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where

gi—1 gi+1
Z Z Z Z nl ni—1kniping
ni=1 ni—1=1n;41=1 ng=1

ni Ni—1 _Mi+1 ng
X 21 .- ZZ 1 ZZ+1 ZK .

The constrained optimization problem defined in (6.4)-(6.5) can be ex-
pressed in terms of joint probabilities z; as

max Z Z zi(ws, a;) Priri(z',p) > wR}ui R (6.11a)
zi(@i,a:) T €X; a;€a;
Subject to:
3> zi(@iai)[0n,(2:) = Priag,) =0 Vri € x; (6.11b)

T, EX; a; €Q;

YD gziwna) <7 (6.11c)

T, EXT; a; €Q;

Z Z p(i,ai)zi(xi, a;) < P; (6.11d)

T,€EXT; a; €Q;

Z Z Pr{ri(z",p) < iR} zi(vi, a;) < ?;’“t (6.11e)
T, ExT; a; €a;
zi(xi, a;) = 2i(Y;r @)y (i, pi i) < pi) =0 (6.11f)
zi(xi,ai) > 0; V(xi,ai) e K;; Z zi(xi,ai) =1 (6.11g)
(24,04)ER;

where Py.q,r, is the probability to move from state x; to state r; when ac-
tion a; is performed. Additionally, (6.11b) guarantees that the graph of the
obtained MDP is closed; (6.11c) and (6.11d) correspond to the constraints
(6.5) and (6.6), respectively; (6.11f) eliminates the invalid pairs in K; such
that the number of packets to be sent is higher than the number of packets
in the queue.

Note that if the joint probabilities zp, with k # ¢ had been known the
payoff p; would have reduced to a linear equation and the optimal z; = 27
would have been solution of a linear program.

The optimal policy w}(a;|z;) of transmitter ¢ can be immediately derived
from 2z} in the steady state of the MDC system by the relation w;(a;|z;) =

z*(a:i,ai)

Za; €a; 2*(wi,af)
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6.4 Analysis of the Game

For the sake of simplicity, the Nash equilibrium problem is represented as
follows:

min  —z; £ (6.12a)

(b) Azl +a;=0 () Bizl +b;<0 (d)zf >0

where 6.12-(b) corresponds to the set of N7 linear equality constraints and
6.12-(c) corresponds to the N;"? linear inequality constraints.

6.4.1 Nash Equilibrium

The system of K-player constrained stochastic game (6.12) can be presented
in the frame of a single non-linear complementarity problem (NLCP) or a
variational inequality problem (VIP). In the following, we define our game
in the frame of a nonlinear complementarity problem. Let us introduce the
K Lagrangians

Ei(zi, u;, ’Ui) = —pPi + ’U/Z(AZZ? + ai) + ’Ui(BiZZT + bl)

where uw; and v; are row vectors of Lagrangian multipliers and ¢ = 1,... K.
A Nash equilibrium necessarily satisfies the Karush-Kuhn-Tucker conditions

01 =V Li=—f' +uA; +v,B;
O3 = Vo, Li = Aiz] 03 = Vo, Li = —Biz;"
z; >0 u; >0 v; >0
Zieli =0 uiegi =0 ’Uiegi =0.

Let w; = (zi,u;,v;)  O;(w;) = (07,01, 01)T and by concatenating differ-
ent transmitters’ vectors w = (wy, ws, ..., wk) and O(w) = (01,61, ..., 61)T,
we obtain the nonlinear complementarity problem

Ow)>0 w!' >0 wO(w)=0 (6.14)

in the Z:{([gZ + N9+ Nimeq] unknowns w.

The existence of Nash equilibria for a general class of constrained stochas-
tic games, where players have independent state processes, is proven in [99].
Therefore, the solution set of the NLCP in (6.14) is nonempty for any finite
number of users.
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6.4.2 Symmetric Network

Let us consider the case as all the transmitters have the same statistics for
the channels and the arrival processes and their sets of actions are the same.
Additionally, the constraint parameters are identical. Equivalently, they
have the same objectives and constraints. In such a case, an optimal policy
is identical for all users. A NLCP in g; + N;? + N;"“! unknown is obtained
from (6.14) omitting index ¢ and removing identical equations. In [112], an
algorithm based on extragradient method for variational inequality problems
is proposed. It converges whenever the solution set is not empty as our
game [99]. The algorithm is iterative and based on quadratic programming.
Its complexity depends on both the number of iterations and the number of
projections at each iteration required for the convergence to the solution of
the quadratic programming.

6.4.3 Best Response Algorithm

Because of the complexity of standard algorithms for NLCP, it is of great
interest to investigate simpler approaches. As already mentioned, the game
reduces to a LP when the strategies of K — 1 players is known. Thus, a
low complexity iterative algorithm is obtained by choosing a transmitter ¢
and the policies u_; of the remaining transmitters arbitrarily and solving the
corresponding LP. In this way, a complete set of policies is obtained. In the
iterative steps, a different transmitter is selected, its policy at the previous
step ignored and determined by linear programming based on the policies
obtained at the previous step.

symmetric case

In the symmetric case, the algorithm is initialized assigning an arbitrary
identical policy u(0)(a|z) to K —1 transmitters and determining the optimal
policy for the remaining one. The new policy is assigned to K — 1 nodes
for the following step. At each iteration we solve a LP and obtain a new
policy u(t+1)(a|z) using the policy u(t)(a|z) for evaluating the payoff. Note
that, if the algorithm converges, its fixed points are Nash equilibria of the
K-player game. The convergence of the best response algorithm to Nash
equilibrium is guaranteed only in a symmetric case, while in the general case
the algorithm could converge to a point which is not a Nash equilibrium.



6.5 Numerical Results and Conclusions 115

?
Scnl 5 3 4
Sen2 | 3 | 3 4 3 3 2 |4

[\
[\

K| Ng |Bi | L|M\||Pl|? |4
4 2
4

Table 6.1: Network parameters

state index 0123456 ... 17
queue state 0001112...6
channel state | 0120120 ... 2

Table 6.2: Labelling of states

6.5 Numerical Results and Conclusions

In this section, we consider the two scenarios with parameters detailed in Ta-
ble 5.1. The CS varies according to a Markov chain with the following tran-
sition probabilities: T9(3,7) = &, T4 (i,§) = &, TF i, 5) = 3, TE2(,5) =
L2 <k<K-2TF6,5) = 5, T (4,5) = 3, TF"1(i,5) = 1. This means
that at each time slot the channel preserves its state or changes by one unit.

The packet arrival process is described by a Poisson distribution with
average rate \; = 1.

We perform a two-level admission control; one is done in our offline algo-
rithm and set the variable ¢; to 1/0 corresponding to the acceptance/rejection
decision. However, as we only use one admission control flag ¢; for all the
possible number of packet arrivals, there exist situations where the remain-
ing space of the queue is less than the number of packets arrived at the time.
Therefore, a second (realtime) control is needed in order to drop the packets
when the queue is full.

In the following, we compare the equilibrium policies and the perfor-
mance of such strategies in the network. The performance measures are:
(i) Throughput (TP), i.e. the number of packets per time slot correctly
decoded by the receiver, (ii) Outage rate, i.e. the fraction of transmitted
packets which can not be decoded correctly, (iii) Drop rate, i.e. the fraction

action index 0123456789 ...47
Num of packets | 00000000111...6
power level 00112233001...3
accept/reject 01010101010...1

Table 6.3: Labelling of policies



116 Chapter 6 Distributed Cross-Layer Resource Allocation in INs
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Figure 6.2: Policies in a symmetric two user network: A — self —SU (circle
mark) versus A — self — SIC (cross and plus marks)

of arriving packets from upper layer which are rejected due to the admission
control.

Let us focus on scenario 1. In Figure 5.2, we describe the equilibria
policies obtained by the proposed algorithm in case of selfish game when
SIC and SU decoding is performed at the receiver. The action index is
presented in abscissa while the state index is represented in ordinate. Since
the state index needs to address the pair of CS and QS, the indexing approach
is presented in Table 5.2. Similarly, the Table 5.3 describe the mapping
between action indices and the triplets (p;, pi, ¢;).

As apparent from Figure 5.3, the best response algorithm converges to a
single solution in A — sel f — SU model while for A — sel f — SIC model two
distinct solutions are obtained.

The optimal policy for A — self — SU does not transmit a packet when
the channel is in the worst situation and the decision on the power level is
irrelevant. For the two other CSs, namely medium and good, the decision
on p; is not affected by the CSs. Therefore, in such cases the decision on the
number of packets to be transmitted is only dependent on the queue state.
However, a comparison between state 10 and 11 shows that less power is
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TP | Outage Rate | Drop rate
A—self —SU 0.49 | 0.42 0.15
A—self —SIC1 | 0.64 | 0.24 0.16
A—self —SIC2 | 0.69 | 0.19 0.15
A — coop — SU 0.5 |04 0.17
Policy in [39] 0.41 | 0.35 0.37

Table 6.4: Comparison A — self — SU, A — self — SIC, and A — coop — SU

in terms of performance
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Figure 6.3: Optimal policies for scenario 2
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needed when the channel state is good.

The optimal policies of A — self — SIC have the following trends. Com-
pared to A — sel f — SU, optimal policies for SIC tend to be more determin-
istic. More precisely, for pu; > 0, a single triplet a; = (4, ps, ¢;) is selected.
In medium and good states of channel, the optimal policies of SIC transmit
less or equal number of packets, comparing to SU. This yields a significantly
lower probability of outage as evident from Table 5.4.

A — coop— SU optimal policy shows little changes of decision in response
to the QS changes. More specifically, the instantaneous rate, p;, does not
increase as fast as in Aself — SU in response to a queue length increase.
Similar to A — self — SIC, one can conclude that A — coop — SU transmits
less packets but with lower probability of outage. However, the decrease in
the probability of outage is not as significant as in A — self — SIC.

Table 5.4 compares the performance of the policy obtained by the ap-
proach in [39] and our proposed policies.

A — self — SU shows sizable improvements of throughput and drop rate
compared to the policy in [39]. The A —self —SIC policies outperform con-
siderably the A — self — SU ones. The improvement in terms of throughput
of A — coop — SU over the A — self — SU is not relevant.

In order to analyze the performance of the proposed algorithm in a net-
work with more than 2 users, the optimal policy of A—sel f —SU for Scenario
2 was determined (Figure 5.3). From simulations we obtained a single opti-
mal policy, corresponding to a single Nash equilibria point. In such a case,
the optimal policy becomes less and less sensitive to the queue length. In
other words, the optimal action in a given channel state will gradually be-
come fixed while the queue length increases.



Chapter 7

Cross-Layer Design for Dense
Interference Networks

7.1 Introduction

In this chapter, we specialize the problem in Chapter 6 to the challenging
case of a dense ad hoc network. In fact, the approach proposed in Chapter 6
has exponential complexities in the number of users. Then, it is of practical
and theoretical interests to determine low complexity algorithms in case of
dense networks where the number of communication flows is very high.

In this context, we assume that the links between transmitter and re-
ceiver are characterized by some kind of diversity (e.g. in space, frequency)
and we refer to it as vector channels with N diversity paths. Furthermore,
we assume that the N diversity paths are random and K, the number of
network links, and N tend to infinity with constant ratio. This approach is
motivated by the fact that the asymptotic design and analysis of the net-
work in random environments significantly decreases the design complexity
and provides insightful analysis results. This model may characterize inter-
ference networks with spreading of the transmitted signals based on random
signature sequences (similarly to code division multiple access - CDMA - in
multiple access networks), or systems with multiple antennas at the receiver,
where the randomness is due to channel fading. In such settings, when the
number of users and diversity paths grow, fundamental performance mea-

119
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sures as capacity and signal to interference and noise ratio (SINR) at the
output of a receiver detector converge to deterministic limits.

The performance analysis of various receivers (e.g. matched filters, lin-
ear minimum mean square error - LMMSE -, optimal detector), for multiple
access vector channels in random environment has been extensively investi-
gated in literature (e.g. [42], [43], [44]). We extend the results to interference
channels and apply them to the design and analysis of distributed cross layer
algorithms in large interference networks'.

The assumption of large system analysis introduces two fundamental
features into the system setting in Chapter 6, characterized by a discrete
set of decision variables and a discrete set of channel statistics. Firstly, in
an interference system with finite number of users and decentralized con-
trol mechanisms, a transmission is intrinsically subject to outage since each
transmitter is not aware of the interferers’ decisions and effects. On the
contrary, in interference channels with infinite users, the effects of the in-
terferers tends to a deterministic limit regardless of the instantaneous link
states. Then, a transmitter can avoid outage events by convenient control
algorithms. Secondly, the complexity of the cross layer algorithms, which in-
creases exponentially with the number of users in Chapter 6, scales only with
the number of groups of users characterized by the same channel statistics
in large systems.

For large interference systems we consider the cross-layer design of rate
and power allocation jointly with scheduling and admission control for four
different kind of receivers with increasing complexity. Namely, we consider
two receivers, one based on linear MMSE detection and the other on opti-
mum detection and subsequent decoding of all users having the same rate
and received power. The receivers have only statistical knowledge of the
interferers’ channel states. A third receiver is based on joint optimum de-
tection and decoding of all users having same received power and rate but
with additional knowledge of the interference structure at the receiver. The
fourth receiver decodes jointly and optimally all the decodable users while
knowing the interference structure.

We compare the performance of the receivers with the designed optimum
policies. The mismatch between the performance of optimum policies for
large systems and that of the optimum policies for finite systems is also
assessed.

!Hereinafter, we refer to interference networks with number of users and diversity paths
growing to infinity with constant ratio as large interference networks.
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7.2 System Model

We consider a system consisting of K arbitrary source-destination pairs shar-
ing the same medium, (e.g. ad hoc network). We use the same index for the
corresponding transmitter and receiver of a single source-destination pair.
The time is uniformly slotted. We assume that the channels are Rayleigh
fading and ergodic within a time slot, while the channel statistics change
from a time slot to the following one.

Following the same approach as in Chapter 6 we define two sets of discrete
variables representing states and actions of each transmitter.

The channel in time slot ¢ € N is described by an K x K matrix 3(t)
whose (7,4) element a;- (t) is the average power attenuation of the channel
between transmitter ;7 and receiver ¢ during time slot {. Throughout this
work, we refer to them as the channel states (CS). The row j includes the
states of the channels from the transmitting node j to all the destination
nodes. This vector is denoted by o(¢). The i-th column includes the states of
the channels from all the transmitting nodes to the receiver ¢ and it is denoted
by the column vector o’(t). It contains all the CS information necessary to
determine the statistics of the signal to interference and noise ratio (SINR)
at the destination node ¢ at time slot ¢t. Furthermore, each average power

g is modelled as an ergodic Markov chain taking values in the
discrete set E of cardinality L. For the sake of notation, we define a bijection
between the set F and the set of the natural numbers {0,1,...,L — 1}, ¢ :
E —{0,1,...,L — 1}. Let its inverse be ¢ = ¢~!. The Markov chain of a;'- is
defined by the transition matrix T'(j,7) whose (k,) element T}(j,7) is the
probability of transition from the CS (k) to the state ¢)(¢). The conditional
probability nature of T} (j,7) reflects on the fact that 25:1 TE(j,1) = 1. We
assume throughout that T'(j,) is irreducible and aperiodic as in [39]. The
steady CS probability distribution of the channel between transmitter ¢ and
destination j is given by the column vector 7 (i, 7).

attenuation o

At each node, packets arrive from the upper layer according to an inde-
pendent and identically distributed arrival process v;(t),t € K with arrival
rate A\;. Here, P(v;(t)) is the probability of receiving v;(t) packets at time
instant t. The packets have constant length.

Each transmitter is endowed with a buffer of finite length. We denote
by B; the maximum length of the buffer at node ¢ and by ¢;(¢) number of
queuing packets at the beginning of slot ¢. In the following, we address the
variable ¢;(t) also as the queue state (QS).

In each time slot, on the basis of the available information at time ¢
transmitter ¢ decides (a) the transmission power level p; € P;, where P; is
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a finite set of nonnegative reals including zero; (b) the number of packets
to transmit u; € M;, with M; = {0,1,..., M;} and M; < B;; (c) to accept
or reject new packets arriving from upper layers. We denote with ¢; = 1
and ¢; = 0 the decision of accepting and rejecting the packets, respectively.
Therefore, the action of the node 7 at time slot ¢ is described by the triplet
di(t) = (pi(t), pi(t), ci(t)).

The information available at node i at time ¢ is given by the pair z;(t) =
(oi(t),qi(t)), i-e. the CSs from transmitter i to receiver i and the number of
the packets in the queue at the beginning of time slot ¢ (QS). We refer to
the pair z;(t) as the transmitter state (TS). Additionally, each transmitter
knows the statistics of the other channels and the statistics of the arrival
process in the buffer.

We assume that the link between a source and a destination is a vector
channel with equal average power attenuation over all the N paths. A vec-
tor channel can model systems with several types of diversity (e.g. spatial
diversity if the receivers are equipped with N antennas, frequency diversity
if code division multiple access, CDMA, or orthogonal frequency division
modulation, OFDM are selected as multiple access schemes).

The complex-valued channel model for receiver i is

y D [m] = S[m]H® H%H A H%H blm] + w;[m] (7.1)
where m is the index for symbol intervals and depends on the frame interval
t by the expression m = tN+p with p = 0,... N —1; y?[m] and b[m] are the
N-dimensional complex vectors of received signals by node ¢ and transmitted
symbols by all nodes, respectively. Here, S[m] is a N x K complex matrix
with zero mean independent and identically distributed (i.i.d.) entries having
variance 1/N. The matrices H® [|%]] and A [|%]] are diagonal with j-th

diagonal elements equal to ,/U;»(t) and /p;(t), respectively. Finally, w; is
the N dimensional complex vector of the additive white Gaussian noise with
zero mean and unit variance. We assume that the transmitted signals b;[m]
are i.i.d., with zero mean and unit variance.

In order to model a large interference network as K — oo, we assume
that the transition matrices T'(j,4) are taken from a finite set of transition
matrices T = {T'M, ..., T(°)} and the channel between each transmitter and
each receiver is described with probability IP’(T(@) by the transition matrix
T The same property holds for each receiver.

If (7.1) models a CDMA system, the matrix S[m| includes the effects of
the spreading sequences with spreading factor N and the randomness of a
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Rayleigh fading channel. If (7.1) models K interfering single antennas trans-
mitting to K receivers equipped with multiple antennas (SIMO systems),
then the matrix S[m| accounts for the Rayleigh fading. In both cases, the
matrix H® H%H models the effects of the pathloss. Eventual coupling ef-
fects among the receiving antennas in interfering SIMO systems are neglected
in this model.

Throughout this work we will consider a system in the steady state.
Thus, we will neglect the symbol interval m when its omission does not
cause ambiguity. In the following section, conditions for the convergence to
a steady state of the whole system will be detailed.

The probability mass function of the joint action and transmitter state
in the steady state of the Markov decision chain is denoted by P(ax, ok, qx)-
A policy of transmitter k is a deterministic or probabilistic application from
the space of TS X}, to the action space Dy. A probabilistic (or mixed) policy
of transmitter k is uy(dg|zy), i.e. the probability that mobile k& chooses the
action d; when the state is x; or equivalently, the conditional probability that
user k chooses the action triplet (pg, pk, cx) conditioned to the transmitter
state (a,lj,qk)The class of decentralized policies of mobile k is denoted by
Uy. If we assume that the user policies are known, then the probability
mass function of p}; = pka,i, k =1...K, the average received power from
transmitter k by receiver ¢ is given by

Pri) = > DD Plow, a)ur(ps ik, clof, ai)

Ok:Pk:  Ck Qr Mk
PLOL=P],

= D> > D> Pk a)Plog)ur(pr, prs cklof, ar) (7.2)

Tk:Pk:  Ck Qr Mk
PKOL=P],
where the second step is a consequence of the independence of 0,'3 and a,i.
Let us notice that the empirical eigenvalue distribution of the matrix
HOAAHTFO" converges to the probability distribution function of the
averaged received power p};, when the system is in the steady state (¢ — +00)
and the number of communication flows grows large (K — 400)
Additionally, the assumptions on the finite cardinalities of the state and
action sets induce a dynamic partition on the set of the K transmitter-
receiver pairs for each given receiver ¢. This partition consists of a finite
number of subsets: all the communication pairs having the same received
power at the receiver ¢ and the same rate at a certain time interval belong
to the same group. We denote the total number of groups by Ng(i) and Q,(q?

is the m-th group. There exist a bijection between the set of groups Q’,,(qi) and
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the set of pairs (p&, us). Let Kfi),KQ(i),...K](\Z, with 2%921 Kf,? = K, be

the cardinality of the sets g@, géi), e QJ(\Z, respectively. Let us notice that,
in general, the bijection depends on the block interval. However, when we

consider the steady state and N, K — +oo, with % — [, the convergence
N,

Ko W, with ZeSifn _ K _ g polds. For further studies, it is
useful to introduce the correlation matrix of the whole transmitted signals
RO = SHOAAHHFO" §H and R(gf()i) the correlation matrix of the signals
transmitted by nodes in G@ and received by node 7. The correlation matrix
7))
in G, Finally, we define the correlation matrix of the interfering signals to
the signals of interest in {}’\(i), R,(j)(j(i)' It is obtained from R® setting pl, = 0
if the m-th transmitter is in §(i>.

Let us turn to the structure of the receiver at each node.

We will consider different receivers depending on the assumptions we
make about (I) the level of knowledge of the interference available at the
receiver; (II) the eventual use of a suboptimal receiver based on a preliminary
pre-decoding processing (e.g. detection) followed by decoding; and (III) the
type of the decoder, i.e. single-user/joint decoder. It is important to note
that the aim of receiver k is to decode its own message of interest, i.e. the
message transmitted by the corresponding transmitter k. The other messages
are decoded if this is beneficial for decoding the message of interest. Based

on these observations, we consider four approaches detailed in the following:

is obtained by setting p/, = 0 in RY_ for all transmitting nodes not

SG-MMSE/UIS/SGD (Single Group MMSE detection/ Un-
known Interference Structure/Single Group Decoding): In this case we
assume that the receiver k£ has knowledge only of the channel vectors

\/@ sf for the communication flows which have the same received pow-
ers and transmission rate of the user of interest k, i.e. the transmitters
in Q](gk), but no knowledge of the others. The interference from the
latter communication flows is considered as a white additive Gaussian
signal. The receiver first detects the transmitted symbols for all the
flows with known vector channels by a linear minimum mean square
error (LMMSE) detector. Subsequently, it performs single-group de-
coding, i.e. it decodes jointly the information streams of the pairs in

g,

NP/UIS/SGD (No preprocessing/Unknown Interference Struc-
ture/Single Group Decoding): This case differs from the previous one
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only in the fact that no pre-processing of the received signal is per-
formed.

NP/KIS/SGD (No preprocessing/Known Interference Structure/
Single Group Joint Decoding): The receiver k has knowledge of all the

vector channels \/pfsf. It decodes jointly the information streams of

the single group Q,(ff) it belongs to, i.e. with the same received power as
the user of interest p],j and same rate uy. In the decoding it makes use of
the knowledge about all the interference structure, i.e. the knowledge
of the vector channels of all active streams.

NP/KIS/MGD (No preprocessing/Known Interference Struc-
ture/ Multi Group Joint Decoding) All the vector channels of the ac-
tive transmitters are known to receiver 7. Then, receiver ¢ identifies
the maximum decodable set of information streams and decode them
jointly while taking into account of the interference structure for the
users which are not decoded.

Let us notice that the investigated receivers are in order of increasing per-
formance in decoding the information of interest.

In the following we will denote by X, the information bits (uncoded bits)
transmitted by node k, by Xy the information bits transmitted by the trans-
mitting nodes in the set V. Finally, I(Xy; Y ®) is the mutual information of
the channel transmitting Xy and receiving y*).

7.3 Preliminary Useful Tools

In this section we will specialize known results on large multiple access net-
works and on the rate regions of interference channels to our interference
networks with a large number of nodes. Additionally, key remarks will be
stated.

7.3.1 Some Convergence Results

Let us consider the Markov chain with finite states which characterize the
statistics of a channel between a transmitter and a receiver node. If we
assume that the Markov chain is irreducible and aperiodic, then there is
a unique stationary distribution which describes the steady state. Let us
further assume that all the transmitter-receiver channels are described by
the same Markov chain. Then, applying the Glivenko-Cantelli theorem
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(e.g. [113]) the empirical distribution of the channel states in the matrix
H®Y  for any i, as the system is in the steady state, converges almost surely
to the unique stationary distribution of the unique Markov chain. If the
policies of all users, U,k =1, ..., K,, are known and identical, then also the
empirical distribution mass function of the received powers in the matrix
AHOHOH AT converges almost surely to the distribution mass function
(7.2). A similar convergence result can be obtained if the channels between
a transmitter and a receiver are described by a Markov chain defined by a
transition matrix belonging to a finite set with a given distribution P(T")

This kind of convergence satisfies the conditions for the applicability of
results on random large matrices (see e.g. [108]|) which are the key tools to
derive the following results.

7.3.2 Large System Analysis of the Receivers

The large system analysis of multiple access vector channels with random
channel vectors is done in [42-44]. Effects of interference on large network
performance are investigated in [110,111]. The extension of their results to
the interference network in Section 7.2 is presented here.

Without loss of generality, in the following we will focus on the transmitter-
receiver pair 1 and we denote by Qil) the group of all the communication
flows with received power at receiver 1 and transmission rate equal to p and
w1 R, respectively.

In the case of a SG-MMSE/NIS/SGD receiver and the system size grows

(1)
large with K, N — oo, % — 3 and ‘gl—N‘ — ,8%1), the spectral efficiency per

chip converges almost surely to [42]

1
¢ (SNR, 1)) = 81" logy(1+ SNR — 7 F(SNR, ) (7.3)

being F(z,2) = (vVa(l + 22 +1—v/a(l — V2)2 + 1)2 and SNR the signal
to noise ratio accounting in the noise also the interference from other groups,
i.e.

pi”

n_(1)°
1+ Zme{z,,,,,Ng} /67(71)137(71)

The information stream of the pair in le) can be decoded reliably if and
only if

SNR =

(7.4)

CmmSG(SNR’ /8{1))
FU

/LlR < (75)
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In fact, from the definition of group g§” and the capacity region of a

multiple access channel, the elements of all the information flows in Qil) are
reliably decodable if the following infinite conditions are satisfied:

BW R < cmmse(SNR, BY)  for 0 < BV < g,
R < logy(1 4 SNR) for any subset of G\ with (7.6)
finite cardinality and N—oc.

The condition on the dominant face (7.5) implies all the infinite other con-
mmse ~(1) ~
ditions (7.6) since the term % is a decreasing function of Bil).
1

Let us notice that the effects of interference become deterministic if ,6’](1)
are deterministic.

The derivation of the large system performance for the NP /UIS/SGD re-
ceiver follows along similar lines when we observe that the spectral efficiency

)

of the multiple access channel consisting of all the transmitters in g? and

the reference receiver 1 is given by [42]

1
CoP(SNR, 5;") = 8" logy(1 + SNR — JF(SNR, 1))

B loge
4SNR

1
+1logy(1 + SNRBY — L F(SNR, ) F(SNR, V)

with SNR defined in (7.4). Then, the information streams of the pairs in
G\Y can be decoded reliably by a NP/UIS/SGD receiver if and only if

C'(SNR, B1)

mR < %1)

(7.7)

The performance of an NP/KIS/SGD receiver can be derived by using
the fundamental relation on the mutual information

I(ng);y(l)) = I(Xga; YW) - I(X,Vgg);y(l) [Xgm)
= log, det(RWY + I) — log, det(R“;(l) +1) (7.8)
~Y1

where X e denotes the set of transmitted information streams in Qil),
1

Y is the set of the received random signals at receiver 1, and X G is
~¥1
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the set of all the information streams transmitted by the nodes in the set
1) Ng (D)
~ gl = Um:2 m -
In large systems, the spectral efficiency per chip at the receiver 1 when
all the transmitted information are decoded (multiple access vector channel)
is given by [43, 44|

Ng
CMACH(SNR, A1) = D A1 log, (1 + plHn™)

m=1

—logyn™ + (nM — 1) logy e (7.9)

being 7 the unique real nonnegative solution of the fixed point equation

1

(1) _

) = v KO (7.10)
1+Zm:1 m1+P£rIL)77(1)

Then, (7.8) and (7.9) yield the spectral efficiency per chip of an NP /KIS/SGD
receiver

cNP/KIS/SGD) GNR, A1) = BV log, (1 + p{VyM)

Ny ), (1)
1+
+ Z 57(71) 10g2 1(317;1 7(71)

m=2 LA pmn_ o

1
77(1)(1)
+logy —2L —I—(n(l) —77(1) )logy e (7.11)
2 77(1) Nggl) 2

(1)

s satisfying the relation
~Y

with 7! given in (7.10) and 7

n 1

n oo = (7.12)
S I

(p)grlb) )

1 1

1+pm'n
(V)

Let us consider the multiuser efficiency n(!) of the NP /KIS/SGD receiver
as a function of ﬁgl) and observe that it is a decreasing function of ﬁgl). Then,
making use of this property and appealing to similar arguments to the ones
adopted for the SG-MMSE/NIS/SGD receiver it can be shown that the a
reliable communication is possible if and only if the rate p; R in Qil) satisfies
the conditions on the dominant face of the rate region, i.e.
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C(NP/KIS/SGD) (SNR, 5;1))

p R < il)

(7.13)

Let us consider now a NP /KIS/MGD receiver. We aim to provide necessary
and sufficient conditions for a reliable decoding. Let us first observe that for
each receiver there exist a unique maximal decodable set of transmitters, i.e.
a set of transmitters which are jointly decodable by the receiver and is not
a proper subset of any other decodable subset [61]. Furthermore,

Theorem 7. [61] A subset QA(I) C ¢ s the unique mazximal decodable
subset at recetver 1 if and only if the transmitters’ rates satisfy the following
mequalities

o(1)

' ;1)
Z g Wi S I Xg i YOIX G 0) VG S G0, (7.14)
e ~,
2 Mt > I(X(j(l)?Y(l)\ Xsm)) v C g\GW)

This theorem was derived in [61] for finite sets G but it can be extended
to infinite sets. In this case, conditions (7.14) consist of infinite inequalities
and it is not of practical usefulness. Nevertheless, for our system, the par-
tition of the transmitter-receiver pairs in groups gm), =1,...,N4 can be
utilized to reduce the set of conditions (7.14) to a finite set. In fact, the fol-
lowing properties derive from basic inequalities in information theory: (I) If
a receiver is able to decode one transmitter in a group of users with identical
received powers and transmission rates, it is able to decode all transmitteed
information by the users in the group. Equally, if a receiver is not able to
decode jointly all the users with identical received powers and transmission
rates it is not able to decode any single transmitted information by one user
in the group. (II) If a receiver is able to decode two groups? of transmitters,
the union is also decodable by the receiver. Thus, also for large systems we
can conclude that if a transmitter of a group Q’,,(qi) belongs to the decodable
set any other transmitter belonging to the same group is also decodable and
the full set is included in the maximum decodable set 3.

Then, the conditions on all the subsets gm and (7.14) reduce to a finite
set of conditions.

2Each group consists of users having same received powers and transmission rate.

3These properties hold thanks to the existence and uniqueness of the maximum decod-
able set [61] and the fact that all users in the same set have the same transmitted and
received power.
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Let us observe that the possible decodable sets for which to verify con-
dition (7.14) are 2Vs. Because of the exponential complexity of this step, it
is of great interest to have low complexity algorithms. An algorithm with
polynomial complexity is proposed in [61]. It is based on the submodular
function f(V,S), with V 2 S O G, and G finite set transmitters?

f.8) = I(Xy; Y| Xg\y) — Ry (7.15)

and Ry is the sum of the rates of all the transmitters in V. Note that f(V,S)
is defined also for the empty set (), and f(0,S) = 0. Additionally, the algo-
rithm exploits well known polynomial time algorithms for the minimization
of submodular functions [114,115]. The application of this approach to a
large system is almost straightforward when we determine the maximum
decodable set up to a subset with zero measure. Then, if the communica-
tion of interest belongs to a set of zero measure,independently whether it is
decodable or not.

The polynomial time algorithm to verify whether the information stream
of the transmitter-receiver pair of interest in g(1>, with cardinality \Q(l)| —
oo is decodable or not is detailed in Algorithm 1.

7.4 Problem Statement

The utility function for this problem is defined as the individual through-
put of each transmission flow, i.e. the average number of information bits
transmitted by a source and successfully received by the corresponding des-
tination in the time unit. We are interested in finding the policies Uy, which
maximize the individual throughput with some constraints while using one
of the receivers described in Section II. With this aim, we investigate the
problem introduced in Chapter 6 under the assumption that % = 6>0
and [ finite. We make use of mathematical results on random matrices
successfully utilized in the analysis of several large systems.

In the rest of this section we introduce the throughput optimization prob-
lem as a stochastic game defined for the interference network under investi-
gation.

At each time slot, a node chooses its action without having a global view
of the channel states and the other users’ interference. There is no coordi-
nation among transmitters’ actions and only local information is available

“Note that the function f(V;S) > 0 if the sum rate of the information transmitted by
nodes in V is lower than the mutual information over the channel between the nodes in V
and the receiver when all the information transmitted by nodes in S\V is known at the
receiver and the information transmitted by the nodes in GV\S is treated as noise.
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Algorithm 1 Decodable transmissions
Initial Step:
Set S = U =1 ge

o040
Step 2:
Determine the set Vipin = J =1 gl C § with minimum cardinality that
BV #0
minimize the submodular funcetlon
iry o . f(vv S)
f(V’S) - K,k/’rgoo N
Kﬁg
et
Z 5@ 10g2 : min
— 1+ p( ) ( )
gg% S
(1), (1) 77(1‘)9
Z 5@ log,(1 + N ~S\Vini ) + log, #
é NS\me
g[ evmlﬂ
Ng
1 1
+(77,(V‘)S\vmin - 779;) logy e — Z ,Um/Bv(qu'
/=1
gél)evmin

with U(Nl‘)g\v _and 7799 defined as in (7.12).

Step 3
Set S + S\Vrgm If me # () go to step 2.
Step 4

If g{” C S then the transmitter-receiver pair 1 is decodable. STOP.

Step 5

If 59) = 0 then set V to a sigleton set containing the transmitter-receiver
pair 1 and compute the function

f()(V,S) = K,kfrgoof(v’s)
ios
= kfrgoo log, det(Rs + p%s%Hs% +1I)
£s

—logy det(Rs + I) — 1 R = logy (1 + p%ns) — R

with 7s defined as in (7.12).

Step 6

If fo(V,S) > 0 then the transmitter-receiver pair 1 is decodable otherwise is
not decodable. STOP.
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at each node. Therefore, in the general case, for any choice (p;, j1;), there is
no guaranty that the p; transmitted packets can be received correctly when
the TS is z;.

However, for large interference networks, as N, K — oo and % — [, the
total interference impairing user ¢ can be replaced by a deterministic value.
Therefore, during a block time ¢, p;(t) packets can be transmitted success-
fully by source ¢ if the conditions derived in Section III for the achievable rates
on the interference channel are satisfied. Namely, if an SG-MMSE/NIS/SGD
receiver is adopted , the power and transmission rate are such that (7.5) is
satisfied. For an NP /UIS/SGD receiver, condition (7.7) needs to be fulfilled.
Condition (7.13) is required for reliable communications when NP /KIS/SGD
receivers are utilized. Conditions for reliable communications over a system
based on NP /KIS/MGD receivers are provided in (7.14) or, equivalently, in
Algorithm 7.3.2.

Let P(uy(t)Rachievable |z§ = xo) be the probability of receiving cor-
rectly pg(t) transmitted packets at block time ¢, conditioned to xx(0) = xo,
the initial state of user k. This probability depends on the choice of the
receiver although it is not explicitly expressed by the adopted notation.

The average throughput for source & is

. 1 T—1
lim sup 2; E{P (1 (D) RIzf(0) = x0) ix() R} (7.16)

where the expectation is conditioned to z§(0), the initial TS of user k.

For physical and QoS reasons the transmitters are subjected to con-
straints on the average transmitted powers and on the average queue length.
More specifically, the average power of transmitter k is constrained to a
maximum value pj, and the following upper bound is enforced

T-1

imsup 3 Blpian(0. 0)len(0) = o} B (17

where pi(x(t),dr(t)) is the power, eventually zero, transmitted by the
source k at time instant ¢ when the action triplet di(t) is selected. The
expectation is conditioned to the initial TS zp(0) = xo of transmitter k.
Similarly, in order to keep the average delay of the packets limited, the av-
erage queue length is constrained by the following bound:

T-1

. 1 _
lim sup > B{g(t)lzk(0) = xo} <7y, (7.18)
T—~+o0 =0
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where g, is maximum allowed average queue and the expectation is condi-
tioned to x(0) = xo-

7.5 Game in Large Symmetric Interference Net-
works

In this section we restrict our investigation to a large symmetric interference
network. A large symmetric interference network is characterized by the fact
that all the channels are characterized by the same Markov chain and the
statistically identical processes for the arrival processes. Additionally, their
action sets and the constraint parameters are identical. Equivalently, in a
large symmetric interference network all the users have the same objectives
and constraints. In such a case, an optimal policy is identical for all users.
Furthermore, the distributions of the received powers are equal for all users.

Therefore, here on, we omit the user index and generalized our analysis to
any transmitter-receiver pair. We denote by x the cardinality of the product
set K =XxD ={(z,d) : x = (0,q) € X,d= (p,t,¢) € D} and by < z,d >,
the n-th element of IC. In the asymptotic case, the other users’ policies will
influence the payoff function only through the asymptotic distribution of the
received powers. If we denote this probability by P(p), the payoff function is

c(x,d,P(p)) = pR 1(uR achievable; P(p)) (7.19)

where 1(-) is the indicator function. The payoff function can be computed
for each given pair in K and P(p) from conditions (7.5), (7.7), (7.13) or (7.14)
according to the adopted decoding method.

Let z = z(xz,a) be the joint probability that the transmitter performs
action a while being in state z. It can be expressed by the column vector
z = (21,%2,...2:) . Then, for a given received power distribution, the payoff
p is given by the linear form

pBE) = D clz,d,P(p))z (7.20)
<z, d>eK

Therefore the constrained optimization problem defined in (7.16)-(7.18)
can be expressed as follows



134 Chapter 7 Cross-Layer Design for Dense INs

max Z Z z(x,d)pR1(puR achievable; P(p)) (7.21a)
#(@d) zeX deD
Subject to:
SN ww, d)or(x) = Poar] =0 VreX (7.21b)
TEX dED
> pla,d)z(z,d) <p (7.21c)
reX deD
Z Z qz(xz,d) <7 (7.21d)
r€X deD
z2(x,d) =0 ifqg<p (7.21e)
2(z,d) > 0; V(,d) €K D z(w,d) =1 (7.21f)
(z,d)eK

where P,g4, is the probability to move from state x to state » when action d
is performed. §,(x) is a delta function which is equal to 1 where x = r and
zero for other values of z. Additionally, (7.21b) guarantees that the graph
of the obtained MDP is closed; (7.21c)-(7.21d) correspond to the constraints
(7.17)-(7.18), respectively; (7.21e) eliminates the invalid pairs in K such that
the number of packets to be sent is not higher than the number of packets
in the queue.

Note that if the distribution P(p) had been known (7.20) would have
reduced to a linear equation and the optimal z = z* would have been solution
of a linear program.

The optimal policy u*(d|x) of a transmitter can be immediately derived
from z* in the steady state of the MDC system by the relation u(d|x) =

z*(z,d
Zd’ed(Z*(lvd/) ’

In a large symmetric network an equilibrium for the network is achieved
when all the transmitters adopt the same policy u(d|x) or z(z,d). Since the
probability of the received powers P(p) depends on u(d|z), then the game
(7.21) is intrinsically nonlinear and difficult to solve. Thus we propose a best
response algorithm as solution of the game. We choose arbitrarily a policy
for all the infinite transmitters except the reference pair 1. Based on such
a policy it is possible to determine the probability of the received powers at
receiver 1 by (7.2). Then, the new probability mass function P(p) is utilize
to solve the linear problem defined in (7.21). This procedure can be iterated.
If the algorithm converges the solution is a Nash equilibrium.



7.6 Numerical Results 135

title | B B; | L| M | |P| | | @
CL 215 |35 |4 1|2
Conv |2 | = 1|3 1|5 4 112

Table 7.1: Network parameters

state index 0123456...17
queue state 0001112..5
channel state | 0120120 ... 2

Table 7.2: Labelling of states

7.6 Numerical Results

In this section, we consider two methods for resource allocation. The first
method is the cross-layer method proposed in this work and denoted shortly
CL. The second method is the conventional resource allocation ignoring the
state of queues. It is denoted shortly as Conv. We use the setting of a
symmetric large interference network with parameters detailed in Table 6.1
for the comparisons presented here.

We compare the performance of the optimal game strategies, at receiver
1, while using the three classes of receivers described in Section 7.2, namely
(SG-MMSE/UIS/SIG), (NP/KIS/SGD), (NP/KIS/MGD). For the sake of
brevity, we address the approaches as Am — r where m € {CL,Conv} and
r € {(SG — MMSE/UIS/SIG), (NP/KIS/SGD), (NP/KIS/MGD)}.

In our setting, we assume that CS varies according to a Markov chain with
the following transition probabilities: 19 (,j) = &, T4 (i, §) = 3, TE LG, j) =
3. TE 06 0) =352 <k < L-2)TF(i5) = 5. T (6,5) = 5. TG ) = 5
This means that at each time slot the channel preserves its state or changes
by one unit. The packet arrival process is described by a Poisson distribution
with average rate A; = 1. In our simulations, we assume that the possible
rates are multiple of R = %

We perform a two-level admission control; one is defined by our offline

action index 0123456789 ...48
Num of packets | 00000000111...5
power level 00112233001...3
accept/reject 01010101010...1

Table 7.3: Labelling of policies
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policy and set the variable ¢; to 1/0 corresponding to the acceptance/rejection
decision. However, as we only use one admission control flag ¢; for all the
possible number of packet arrivals, there exist situations where the remain-
ing space of the queue is less than the number of packets arrived at the time.
The second (realtime) control is needed in order to drop the packets when
the queue is full.

The algorithm in Section 7.5 converges for all the classes of receivers.
The optimal policies are in general not unique and depend on the policy
initializing the algorithm.

The optimal policies in Figure 6.1, are obtained in high SNR regime. This
figure shows the equilibrium policies obtained by the proposed algorithm for
the three classes of receivers. The action index is presented in abscissa
while the state index is represented in ordinate. The state index addresses
the pair of CS and QS. The indexing approach is presented in Table 6.2.
Similarly, Table 6.3 describes the mapping between action indices and the
triplets (ui, pi, ¢;)-

Interestingly, the optimal policies of the large interference network stud-
ied here have the following decoupling property: (I) decision on p; is not
affected by the CSs and is an increasing function of the QS, and (II) the
power level is independent from the queue level and only a function of CS.
This property is specific of large interference networks and it does not hold
in the general case of interference networks with finite users (Chapter 5).

For all three classes of receivers, the optimal policy does not transmit
packets when the channel is in the worst situation. For two other channel
states, namely medium and good, the decision on p; is a non-decreasing
function of QS. The optimal policies for ACL-(SG-MMSE/UIS/SGD) yield
transmissions with lower rates compared to the two other receivers. ACL-
(NP/KIS/MGD) yields a number of transmitted packets not lower than the
ACL-(NP/KIS/SGD) receiver at the same power.

At high SNR, the policies of the ACL-(NP/KIS/MGD) receiver yield
transmission at the maximum allowed rate whenever the channel state of
the transmitter is nonzero. In other words, the optimal rate is limited by
the discrete rate set. In contrast, for the other two receivers the optimal rates
are limited by the interference and they show an interference limited behav-
ior. This observation helps us in a better understanding of the saturation
behavior of the receivers in the following Figure 6.2-6.4.

Figure 6.2 shows the performance of optimal policies in our cross-layer
approach for three classes of receivers. This figure shows the throughput
obtained by each class of receivers versus the energy per bit per noise level,
Eb/Ny. The value of the throughput here is obtained through averaging
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‘ ‘ TP ‘ Outage Rate ‘ Drop rate ‘
policy of asymptotic problem ‘ 0.6 ‘ 0.38 ‘ 0.09 ‘

policy adapted to the finite problem | 0.61 | 0.36 0.09

Table 7.4: comparison between the performance of the equilibrium policy
obtained for the asymptotic problem and the one adapted to a 2-flow network
(Chapter 6) in a network with 2 active communications

Optimal policies in a network with infinite transmissions
0 g pkt 1qpkt kt 3 g pkt 4 g pkt 5 q pkt

a7F T T T T % XL
5 —O ACL-(SG-MMSE/UIS/SGD)
pkt
—+ ACL-(NP/KIS/SGD)
391 | —X ACL—(NP/KIS/MGD) + % +
X ok
4 tx x
pkt
3 38r * @ 0] Oq
E 3tx * *
E pkt *
S
85 23F X% o) B
< * ®
pkt *
15+ * X i
1 * ¥
pkt @ @ o O O o
7+ H
0tx
pkt
p @ & & L ® L ® i i i
0 2 5 8 11 ? 14 @ 17

Transmitter state index

Figure 7.1: Policies in a network with infinite transmissions

the data rates of the equilibrium policies of our proposed algorithm over all
transmitter states. To be compliant with the definition of throughput, the
energy per bit per noise level is obtained by the same averaging function.

As the value of energy per bit per noise level increases, all receivers
enter into a saturation mode. For the ACL-(NP/KIS/MGD) receiver, this
behavior results from the fact that the optimal rate is limited by the discrete
rate set. In contrast, for the other two cases, the throughput is interference
limited.

Figure 6.3 compares the performances of cross-layer and conventional
mechanisms while using the best receiver, namely ACI-(NP/KIS/MGD) and
AConv-(NP/KIS/MGD). At the first glance, we can observe that in the
conventional approach more power is consumed for sending a given packet.
Indeed, the policies in this case are decided regardless of the queue states.



138 Chapter 7 Cross-Layer Design for Dense INs

Throughput vs.Eb/NO
0.48 Three diffrerent receivers
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Figure 7.2: Throughput vs Eb/NO for three different receivers

Consequently, there exist cases where the power is adjusted to satisfy a
certain rate while there is not enough data in the queue to provide that rate.
In such cases, the remaining data in the queue is sent with a power level
higher than needed.

Figure 6.4 represents the performance of the optimal policies obtained for
the asymptotic case in networks with finite transmissions. We can observe
that using the policies obtained from the asymptotic problem, even when the
number of transmitter is very low, e.g. K = 4, the finite network performs
almost as well as the large interference network. For K = 8 the performance
of a finite network attains the asymptotic one.

Finally, we compare the performance of the policy adapted to a finite
network of 2 communication flows (obtained in Chapter 6) with the one of the
asymptotic problem. The performance measures here are: (i) Throughput
(TP), i.e. the number of packets per time slot correctly decoded by the
receiver, (ii) Outage rate, i.e. the fraction of transmitted packets which can
not be decoded correctly, (iii) Drop rate, i.e. the fraction of arriving packets
from upper layers which are rejected due to admission control. The value of
the performance metrics for both policies are represented in Table 6.4. We
can observe that in a network of 2 communication flows the policy obtained
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Throughput vs. Eb/NO
cross—layer vs. conventional resource allocation

0.48

0.46- —E— = 53—

0.44- 1

©
I
T
Il

Throughput/user
o
I

—8— ACL-(NP/KIS/MGD)
—#— AConv—(NP/KIS/MGD)

12 14 16

o
w
N

10
Eb/NO
Figure 7.3: Throughput vs Eb/N0, Cross-layer vs. Conventional mechanisms
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Figure 7.4: Throughput vs Eb/N0, performance of asymptotic ACL-
(NP/KIS/MGD)in a network of finite transmissions
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through the asymptotic problem, performs almost as well as the one adapted
to this finite network. Therefore, also for a 2-flow network one can choose the
less complex problem, i.e. the asymptotic one, for obtaining good policies.

7.7 Conclusions

In the current work, we considered a dense interference network with a large
number (K — oo) of transmitter-receiver pairs. We investigated distributed
algorithms for joint admission control, rate, and power allocation aiming
at maximizing the individual throughput. The decisions are based on the
statistical knowledge of the channel and buffer states of the other commu-
nication pairs and on the exact knowledge of their own channel and buffer
states.

We considered different receivers depending on the assumptions we make
about (I) the level of knowledge of the interference available at the receiver;
(IT) the eventual use of a suboptimal receiver based on a preliminary pre-
decoding processing (e.g. detection) followed by decoding; and (IIT) the type
of decoder, i.e. single-user/joint decoder.

In a finite framework, this problem presents an extremely high complexity
when the number of users and/or transmitter states grows above a very lim-
ited range (e.g. 2, 3 users!). This makes distributed cross layer approaches
very intensive. The asymptotic approach of large interference networks en-
ables a sizable complexity reduction. More specifically, the complexity does
not scale with the number of users but with the number of groups of users
having identical statistics. The problem has an especially low complexity in
the practical case of symmetric networks.

The optimal policies obtained with the asymptotic approach can be ef-
fectively applied in finite interference networks. In fact, we studied the
performance loss due to the application of policies designed for asymptotic
conditions in network with a finite number of active communications. We
observed that even for a network containing 4 active communications, the
performance of finite networks almost attains the one of large interference
networks. Similar results are obtained for the converse comparison. We com-
pare the performance of a finite network when an asymptotic approximation
of the policies is adapted with the one obtained with policies tailored to the
finite networks in Chapter 6. Even for the most challenging case of a network
with 2 communication flows, the optimal policy of the asymptotic problem
performs almost as well as the policy adapted to the network.

We further investigated the benefits of a cross layer approach compared
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to a conventional resource allocation ignoring the states of the queues. In the
conventional approach more power is consumed for sending a given amount
of data as there exist cases where the power is allocated to satisfy a certain
rate although there is not enough data in the queue to achieve that rate. To
neglect the state of the queue causes a relevant performance loss since the
power is not efficiently allocated.

Interestingly, the optimal policy of the large interference network studied
here presents interesting decoupling properties. More specifically, the rate is
an increasing function of the queue state only while the allocated power is a
function of the channel state only.
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Chapter 8

Conclusions and Future Work

In this thesis the primary focus was the issue of how to theoretically and
mathematically model a distributed resource allocation in a multi-user sys-
tem and how to obtain low complexity algorithms which provide us with
a lower bound on the performance of the original problem. In our study,
optimization theory, game theory, and random matrix theory, provide us
mathematical tools to obtain optimal or suboptimal solutions with an af-
fordable complexity. The trade-offs between complexity and performance
has been investigated.

8.1 Conclusion

This work has the two fold objective of designing and analizing the perfor-
mance of distributed resource allocation algorithms in slow fading channels
with partial channel side information at the transmitters. We developed
algorithms assuming that each transmitter has an exact information of its
own channel as well as the statistical knowledge of other channels. In such a
context, the system is inherently impaired by a nonzero outage probability.
We proposed low complexity distributed algorithms for joint rate and power
allocation aiming at maximizing the individual throughput, defined as the
successfully-received-information rate, under a power constraint.

We started our study in an OFDM-based MAC network with 2 transmit-
ters. As well known, the problem at hand is non-convex with exponential
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complexity in the number of transmitters and subcarriers. We introduced a
two-level simplification to the problem. By exploiting the problem property
that a dual approach yields optimum resource allocation asymptotically as
the number of subcarriers tends to infinity, we proposed resource allocation
algorithms based on duality. The dual problem has linear complexity in the
number of subcarriers but its complexity is still exponential in the number of
users. We introduced a suboptimal low complexity approach in the form of 2-
player Bayesian game (game of incomplete information). This game problem
boils down into two parallel multivariate polynomial equations, parametric
in Lagrangian multipliers of the two users, through which we found all the
NEs of the problem. We further adopted the maximum sum throughput as
selection criteria of a NE.

The performance of such NE points is compared to the performance of
the optimum power allocation for the case of complete channel state infor-
mation and the uniform power allocation for the case of partial channel side
information. The simulations showed that all the NEs obtained from the
game are those wherein only one transmitter emits with full power and the
other remains off. On the contrary, the optimum power allocations for the
case of complete channel state information contains solutions which have
the superposition of two users’ power on the same channel. However, in the
later case, the solutions can only be obtained through an iterative algorithm
whose convergence to some local optimal point depends on the choice of the
initial value. The comparison of the performance of the optimal solution and
the NE, showed that the NE performs near optimal in this network setup.

Next, we extended the problem into a single hop ad hoc network. We
relaxed the intrinsic assumption on infinite backlog of packets in the queues
made in the previous study. Therefore, each transmitter is provided by a
finite buffer and accept packets from a Poisson distribution. We investigated
distributed cross-layer algorithms for joint admission control, rate and power
allocation aiming at maximizing the individual and the global throughput.
The decisions are based on the statistical knowledge of the states (channel at-
tenuation and buffer length) of the other transmission pairs and on the exact
knowledge of their own states. This problem is formulated as a stochastic
game with mixed strategies. In addition, the problem structure satisfies
the conditions by which the saddle point strategies of stochastic game exist
among Markov strategies and are easier to compute. Following this obser-
vation, an iterative best response algorithm based on linear programming
has been introduced. The proposed algorithm provide sizable improvements
with respect to straightforward extension to ad hoc networks of decentralized
algorithms for multiple access channels existing in literature.
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However, in a finite framework, this problem presents an extremely high
complexity when the number of users and/or transmitter states grows. This
makes distributed cross layer approaches very intensive.

the high coplexity of distributed resource allocation algorithms for cross-
layer approaches motivated us to consider the same problem in a dense in-
terference network with a large number of transmitter-receiver pairs. The
asymptotic approach of large interference networks enables a considerable
complexity reduction. More specifically, the complexity does not scale with
the number of users but with the number of groups of users having identical
statistics. The problem has an especially low complexity in the practical
case of symmetric networks. Interestingly, the optimal policy of the large
interference network studied here presents interesting decoupling properties.
More specifically, the rate is an increasing function of the queue state only
while the allocated power is a function of the channel state only.

We studied the performance loss due to the application of the policies
designed for asymptotic conditions in network with a finite number of active
communications and vice versa. We observed that even for a network con-
taining 4 active communications, both policies perform almost the same. We
further investigated the benefits of a cross layer approach compared to a con-
ventional resource allocation ignoring the states of the queues. The results
suggest that neglecting the state of the queue causes a relevant performance
loss since the power is not efficiently allocated.

8.2 Future Work

The work presented in this dissertation can be extended in several ways:

e Regarding the problem in chapter 5: (i) obtaining the solutions of
the original optimization problem with partial CSI (5.7), based on
the distributed pricing method proposed in [30] is in vision; (ii) to
extend the problem to more than two users and 2 channel states; (iii)
to consider the same problem in continuous channels.

e Regarding the problem in Chapter 6: (i) to analytically prove the
convergence of best response algorithm into the NE for general non-
symmetric networks (ii) to extend the problem into multi-hop INs.

e To investigate the limiting point on the NE performance in our games
of incomplete information as the number of users increase.



146 Chapter 8 Conclusions and Future Work




Bibliography

1]

2]

3]

[4]

[5]

6]

7]

18]

9]

S. S. shitz and A. D. Wyner, “Information-theoretic considerations for
symmetric, cellular, multiple-access fading channels - Part I1,” IEFE
Trans. Inf. Theory, 1997.

D. N. C. Tse and S. V. Hanly, “Multiaccess fading channels - Part
I[: Polymatroid structure, optimal resource allocation and throughput
capacities,” IEEE Trans. Inf. Theory, vol. 44, pp. 2796-2815, 1998.

S. V. Hanly and D. N. C. Tse, “Multi-access fading channels - Part
IT: Delay-limited capacities,” IEEE Trans. Inf. Theory, vol. 44, pp.
28162831, 1998.

L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, 2006.

G. Scutari, D. Palomar, and S. Barbarossa, “Asynchronous iterative
waterfilling for Gaussian frequency-selective interference channels: A
unified framework,” IEEE Trans. Inf. Theory, vol. 54, pp. 28682878,
2008.

G. He, L. Cottatellucci, and M. Debbah, “The waterfilling game - the-
oretical framework for distributed wireless network information flow,”
IEEE J. Sel. Areas Commun., 2009.

G. He, “A game theoretical approach to resource allocation in wireless
networks,” Ph.D. dissertation, Telecom Paris/ EURECOM, 01 2010.

E. Vivier, From theoretical capacity to system simulations. WILEY),
20009.

European Telecommunications Standards Institute (ETSI). Radio
broadcasting systems; Digital Audio Broadcasting (DAB) to mobile,
portable and fized receivers, ETS Std. 300 401, 1995.

147



148

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

European Telecommunications Standards Institute (ETSI). Radio
broadcasting systems; Digital Audio Broadcasting (DAB) to mobile,
Framing structure, channel coding, and modulation for digital terres-
tial television, EN Std. 300 744, Rev. 1.1.2, 1997.

IEEE P802.11a, Supplement to Standard for Telecommunications and
Information Exchange Between Systems - LAN/MAN Specific Require-
ments - Part 11: Wireless MAC and PHY Specications: High Speed
Physical Layer in the 5-GHz Band, IEEE Std., Rev. 7.0, July 1999.

IEEE 802.16, IEEE Standard for Local and Metropolitan Area Net-
works Part 16: Air Interface for Fized Broadband Wireless Access
Systems, IEEE Std., April 2001.

J. A. Bingham, ADSL, VDSL, and Multicarrier Modulation: Wiley
Series in Telecommunications and Signal Processing. New York, NY,
USA: John Wiley and Sons, Inc., 2000.

T. M. Cover and J. A. Thomas, Elements of information theory. Wiley,
1991.

G. R. G and R. G. Gallager, “An inequality on the capacity region of
multiaccess multipath channels,” http://hdl.handle.net/1721.1/3365,
1994.

W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimiza-
tion of multicarrier systems,” IEEE Trans. Commun., vol. 54, pp.
1310-1322, 2006.

J. Huang, R. A. Berry, and M. L. Honig, “Distributed interference
compensation for wireless networks,” IEEE J. Sel. Areas Commun.,
vol. 24, pp. 1074-1084, 2006.

W. Yu and J. M. Cioffi, “FDMA Capacity of the Gaussian Multiple
Access Channel with ISI,” IEEE Trans. Commun., vol. 50, pp. 102—
111, 2000.

R. S. Cheng and S. Verdu, “Gaussian multiaccess channels with [SI:
Capacity region and multiuser water-filling,” IEEFE Trans. Inf. Theory,
vol. 39, pp. 773-785, 1993.

7.-Q. Luo and S. Zhang, “Dynamic spectrum management: complexity
and duality,” IEEE Journal of Selected Topics in Signal Processing,
vol. 2, pp. 57-73, 2008.



Bibliography 149

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing for unlicensed
bands,” in in IEEE DySPAN 2005, 2005, pp. 251-258.

C.Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser
OFDM with adaptive subcarrier, bit, and power allocation,” IEEE
Journal on Selected Areas of Communications, vol. 17, pp. 1747-1758,
2006.

T. Thanabalasingham, S. V. Hanly, L. L. H. Andrew, and J. Papan-
driopoulos, “Joint allocation of subcarriers and transmit powers in a
multiuser OFDM cellular network,” in Proc. IEEE Int. Conf. on Com-
munication, 2006.

S. V. Hanly, L. L. H. Andrew, and T. Thanabalasingham, “Dynamic
allocation of subcarriers and transmit powers in an OFDMA cellular
network,” IEEE Trans. Inf. Theory, vol. 55, pp. 5445-5462, 2009.

W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser power control
for digital subscriber lines,” IEEE J. Sel. Areas Commun., vol. 20, pp.
1105-1115, 2002.

J. S. Pang, G. Scutari, F. Facchinei, and C. Wang, “Distributed power
allocation with rate constraints in Gaussian frequency selective inter-
ference channels,” IEEE Trans. Inf. Theory, vol. 54, pp. 3471-3489,
2008.

Y. Noam, A. Leshem, and S. Member, “Iterative power pricing for
distributed spectrum coordination in DSL,” IEEE Trans. Commun.,
vol. 57, 2009.

C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power
control via pricing in wireless data networks,” IEFEE Trans. Commun.,
2000.

C. H. Papadimitriou, “Algorithms, Games, and the Internet,” in In
STOC. ACM Press, 2001, pp. 749-753.

J. Huang, R. A. Berry, and M. L. Honig, “Distributed interference
compensation for wireless networks,” IEEE Trans. Commun., vol. 24,
pp- 1074-1084, 2006.

E. Altman and Z. Altman, “S-Modular games and power control in
wireless networks,” IEEE Transactions on Automatic Control, vol. 48,
pp. 839-842, 2003.



150

Bibliography

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

K. Avrachenkov, L. Cottatellucci, and A. Garnaev, “Equilibriums in
slow fading interfering channels with partial knowledge of the chan-
nels,” in Submitted to INFOCOM, 2010.

M. J. Neely, E. Modiano, C. E. Rohrs, and S. Member, “Power alloca-
tion and routing in multibeam satellites with time-varying channels,”
IEEE Transactions on Networking, vol. 11, pp. 138-152, 2003.

R. A. Berry and E. M. Yeh, “Cross-layer Wireless Resource Allocation:
Fundamental Performance Limits,” in IEEE Trans. Signal Processing,
2004, pp. 59-68.

L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transaction on Automatic Control,
vol. 37, pp. 1936-1948, 1992.

K. Seong, R. Narasimhan, and J. M. Cioffi, “Queue proportional
scheduling via geometric programming in fading broadcast channels,”
IEEE J. Sel. Areas Commun., vol. 24, pp. 1593-1602, 2006.

C. Long, Q. Zhang, B. Li, H. Yang, and X. Guan, “Non-cooperative
power control for wireless ad Hoc networks with repeated games,”
IEEE J. Sel. Areas Commun., vol. 25, 2007.

C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power
control via pricing in wireless data networks,” IEEE Trans. Commun.,
2000.

E. Altman, K. Avratchenkov, N. Bonneau, M. Debbah, R. El-Azouzi,
and D. Menasche, “Constrained stochastic games in wireless networks,”
in Proc. IEEE Global Telecomm. Conf., 2007, pp. 315-320.

H. A. Simon, “A behavioral model of rational choice,” The Quarterly
Journal of economics, vol. 69, pp. 99-118, 1955.

R. Aumann, “Backward induction and common knowledge of rational-
ity,” Games and Economic Behavior, vol. 8, pp. 6-19, 1995.

S. Verdd and S. Shamai, “Spectral efficiency of CDMA with random
spreading,” IEEE Trans. Inform. Theory, vol. 45, pp. 622-640, 1999.

D. N. C. Tse and S. V. Hanly, “Linear multiuser receivers: effective
interference, effective bandwidth and user capacity,” IEEE Trans. In-
form. Theory, vol. 45, pp. 641-657, 1999.



Bibliography 151

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

S. S. (Shitz) and S. Verdu, “The impact of frequency-flat fading on the
spectral efficiency of CDMA,” IEEE Trans. Inf. Theory, 2001.

J. G. Proakis, Digital Communications, 4th Edition. McGraw Hill,
2000.

C. Shannon, “A Mathematical Theory of communication,” Communi-
cation, Bell System Technical Journal, vol. 27, pp. 379423, 1948.

T. R. Giallorenzi and S. Wilson, “Multiuser ML sequence estimator for
convolutionally coded asynchronous DS-CDMA systems,” IEEE Trans.
Commun., vol. 44, pp. 997-1007, 1996.

M. Moher, “An iterative multiuser decoder for near capacity commu-
nications,” IEEE Trans. Commun., vol. 46, pp. 870-880, 1998.

M. K. Varanasi and T. Guess, “Optimal decision feedback multiuser
equalization with successive decoding achieves the total capacity of the
Gaussian multiple-access channel,” in Asilomar Conference on Signal,
Systems, and Computers, 1997.

R. R. Miiller, “Multiuser receivers for randomly spread signals: Funda-
mental limits with and without decision-feedback,” IEEE Trans. Inf.
Theory, vol. 47, pp. 268-283, 2000.

C. E. Shannon, “Two-way communication channels,” in Symp. on
Mathematical Statistics and Probability, 1961, pp. 611-644.

R. Ahlswede, “The capacity region of channel with two senders and
two receivers,” in Annals Probabil, 1974, pp. 805-814.

A. B. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, pp.
60-70, 1978.

T. S. Han and K. Kobayashi, “A new achievable rate region for the
interference channel,” IEEE Trans. Inf. Theory, vol. I'T-27, pp. 49-60,
1981.

[. Sason, “On achievable rate regions for the Guassian interference
channel,” IEEE Trans. Inf. Theory, pp. 1345-1356, 2004.

A. S. Motahari and A. K. Khandani, “Capacity bounds for the Gaus-
sian interfernce channel,” arXiv:0801.1306v1, 2008.



152

Bibliography

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

A. B. Carleial, “A case where interference does not reduce capacity,”
IEEE Trans. Inf. Theory, vol. IT-21, pp. 569-570, 1975.

H. Sato, “The capacity of the Gaussian interference channel under
strong interference,” IEEE Trans. Inf. Theory, vol. IT-27, pp. 786—
788, 1981.

R. H. Etkin, D. N. C. Tse, and H. Wang, “Gaussian interference channel
capacity to within one bit,” IEEE Trans. Inf. Theory, 2007.

A. S. Motahari and A. K. Khandani, “Capacity bounds for the Gaus-
sian interference channel,” in arXiw:0801.1306v1, 2007.

A. S. Motahari and A. Khandani, “To decode the interference or to
consider it as noise,” arXw:0711.5176, 2001.

D. M. Topkis, Supermodularity and Complementarity. Princeton Uni-
versity Press, 1998.

D. Johnson, Constrained Optimization.
http://cnx.org/content/m11223/1.2/, 2003.

S. Boyd and L. Vandenberghe, Convexr Optimization. New York:
Cambridge University Press, 2007.

M. C. Ferris, “Computer sciences, university of wisconsin,” http://
pages.cs.wisc.edu/ " ferris/.

R. W. Cottle, J. Pang, and R. E. Stone, The Linear Complementarity
Problem. Academic Press, 1992.

D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991.

D. Debreu, “A social equilibrium existence theorem,” in Proceedings of
the National Academy of Sciences, 1952, pp. 886—-893.

Rosen, “Existence and uniqueness of equilibrium points for concave
N-Person games,” Fconometrica, vol. 33, pp. 520-534, 1965.

T. Roughgarden, E. Tardos, and Eva Tardos, “Bounding the ineffi-
ciency of equilibria in nonatomic congestion games,” Games and Eco-
nomic Behavior, vol. 47, pp. 389-403, 2002.

R. Cooper, Coordination Games. Cambridge University Press, 1998.



Bibliography 153

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

E. Altman and A. Shwartz, “Constrained Markov Games: Nash Equi-
libria,” in Annals of the International Society of Dynamic Games.
Birkhauser, 1995, pp. 303-323.

D. Monderer and L. S. Shapley, “Potential Games,” Games And Eco-
nomic Behavior, vol. 14, pp. 124-143, 1996.

D. D. Yao, “S-modular games, with queuing applications,” Queueing
Systems, vol. 21, pp. 449-475, 1995.

J. W. Friedman and C. Mezzetti, “Learning in games by random sam-
pling,” Journal of Economic Theory, vol. 98, pp. 55-84, 2001.

K. K. Leung, C. W. Sung, W. S. Wong, and T. M. Lok, “Convergence
theorem for a general class of power control algorithms,” in Proc. IEEE
Int. Conf. on Communication, 2001, pp. 811-815.

C. W. Sung and W. S.Wong, “Mathematical aspects of the power con-
trol problem in mobile communication systems,” in Lectures at the
Morningside Center of Mathematics, 2000.

R. D. Yates, “A framework for uplink power control in cellular radio
systems,” IEEE J. Sel. Areas Commun., vol. 13, pp. 1341-1347, 1996.

C. C. Wu and D. P. Bertsekas, “Distributed power control algorithms
for wireless networks,” IEEE Trans. Vehicular Techonology, vol. 50,
pp- 504-514, 1999.

O. Candogan, I. Menache, A. Ozdaglar, and P. A. Parrilo, “Flows
and decomposition of games : harmonic and potential games,”
arXiv:1005.2405v2, 2010.

Q. jing and Z. Zheng, “Distributed resource allocation based on Game
theory in multi-cell OFDMA systems ,” International journal of wire-
less information networks, vol. 16, pp. 44-50, 2009.

J. Ratliff, Static Games of Incomplete Information.  University of
Arizona: Graduate-Level Course in Game Theory, 2005.

R. B. Myerson, Game theory: Analysis of Conflict. Cambridge, Mas-
sachusetts: Harvard University Press, 1997.

H. Gaoning, M. Debbah, and E. Altman, “A Bayesian game-theoretic
approach for distributed resource allocation in fading multiple access



154

Bibliography

[85]

[36]

[87]

[38]

[89]

[90]

[91]

192]

193]

[94]

[95]

[96]

channels,” FURASIP Journal on Wireless Communications and Net-
working, 2010.

L. Lai and H. E. Gamal, “The water-filling game in fading multiple-
access channels,” IEEE Trans. Inf. Theory, vol. 54, pp. 2110 — 2122,
2008.

J. F. Nash, “Equilibrium points in N-person games,” Proceedings of
the National Academy of Sciences of the United States Of America,
pp. 48-49, 1950.

C. S. Jean and B. Jabbari, “Bayesian game-theoretic modeling of trans-
mit power determination in a self-organizing CDMA wireless network,”
in Vehicular Technology Conferenc, 2004, pp. 3496-3500.

T. Heikkinen, “A Minimax Game of Power Control in a Wireless Net-
work under Incomplete Information,” Certer for Discrete Mathematics
and Theoretical Computer Science, Tech. Rep., 1999.

S. Adlakha, R. Johari, and A. Goldsmith, “Competition in wireless
systems via Bayesian interference games,” in arXiv:0709.0516v1, 2007.

Y. Liu and H. Man, “A Bayesian game approach for intrusion detec-
tion in wireless ad hoc networks,” in ACM International Conference
Proceeding, 2006.

L. S. Shapley, “Stochastic Games,” in Proceedings of National Academy
of Science, 1953, pp. 1095-1100.

A. Fedegruen, “On N-person stochastic games with denumerable state
space,” in Advances in Applied Probability, 1978, pp. 452-471.

L. O. Curtat, “Markov equilibria of stochastic games with complemen-
tarities,” Games and Economic Behavior, vol. 17, pp. 177-199, 1996.

A. Hordijk and L. C. M. Kallenberg, “Constrained undiscounted
stochastic dynamic programming,” Mathematics of Operations Re-
search, 1984.

——, “Linear programming and Markov games 1,” Game Theory and
Mathematical Economics, pp. 291-305, 1981.

——, “Linear programming and Markov games I1,” Game Theory and
Mathematical Economics, pp. 307-320, 1981.



Bibliography 155

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

105

[106]

107]

108

M. Huang, R. P. Malhame, and P. E. Caines, “Nash strategies and
adaptation for decentralized games involving weakly coupled agents,”
IEEE CDC, 2005.

L. C. M. Kallenberg, “Survey of linear programming for standard and
nonstandard Markovian control problems, Part I: Theory,” ZOR Meth-
ods and Models in Operations Research, 1994.

E. Altman, K. Avrachenkov, N. Bonneau, M. Debbah, R. El-Azouzi,
and D. S. Menasche, “Constrained cost-coupled stochastic games with
independent state processes,” in arXiv:cs/0703099v1, 2006.

E. Altman, K. Avrachenkov, R. Marquez, and G. Miller, “Zero-sum
constrained stochastic games with independent state processes ,” in

Mathematical Methods of Operations Research, 2005.

F. Fangwen and M. van der Schaar, “Learning to Compete for
Resources in Wireless Stochastic Games,” IEEE Trans. Vehicular
Techonology, pp- 1904-1191, 2008.

J. Evans and D. N. C. Tse, “Large system performance of linear mul-
tiuser receivers in multipath fading channels,” IEEE Trans. Inf. The-
ory, vol. 46, pp. 2059-2078, 2000.

S. S. (Shitz) and S. Verdu, “The impact of frequency-flat fading on the
spectral efficiency of CDMA,” IEEE Trans. Inf. Theory, 2001.

A. M. Tulino, L. Li, and S. Verdu, “Spectral efficiency of multicarrier
CDMA,” IEEE Trans. Inf. Theory, vol. 51, pp. 479-505, 2005.

A. Tulino and S. Verdu, Random matriz theory and wireless communi-
cations. Foundation and Trends in Communications and Information
Theory, 2004.

E. Wigner, “Characteristic vectors of bordered matrices with infinite
dimensions,” Ann. of Math., vol. 62, pp. 546564, 1955.

V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some
sets of random matrices,” Mathematics of the USSR-Sbornik, vol. 1, pp.
457-483, 1967.

J. W. Silverstein and Z. D. Bai, “On the empirical distribution of
eigenvalues of a class of large dimensional random matrices,” Journal
of Multivariate Analysis, vol. 54, pp. 175-192, 1995.



156

Bibliography

[109]

[110]

[111]

[112]

[113]

[114]

[115]

V. Girko, Theory of random determinant. Kluwer Academic Publish-
ers, Dordrecht,Ntherlands, 2004.

B. M. Zaidel, S. Member, S. S. (Shitz), and S. Verdu, “Multicell uplink
spectral efficiency of coded DS-CDMA with random signatures,” IEEE
J. Sel. Areas Commun., vol. 19, pp. 1556-1568, 2001.

D. Aktas, M. N. Bacha, J. Evans, and S. Hanly, “Scaling results on
the sum capacity of cellular networks with MIMO links,” IEEE Trans.
Inf. Theory, vol. 52, pp. 3264-3274, 2006.

Y. J. Wang, N. H. Xiu, and J. Z. Zhang, “Modified extragradient
method for variational inequalities and verification of solution exis-
tence,” Journal of Optimization Theory And Applications, pp. 167-183,
2003.

Patrick Billingsley and John Wiley, Probability and Measure. Wiley
in probability and mathematical statistics, 1995.

A. Schrijver, “A comninatorial algorithm minimizing submodular func-
tions in strongly polynomial time,” Journal of Combinatorial Theory,
2000.

S. Iwata, L. Fleischer, and S. Fujishige, “A comninatorial strongly
polynomial algorithm for minimizing submodular functions,” Journal

of ACM, 2001.



