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Multiuser Networks
Multiple Access Channel (MAC)

• All messages will be decoded at a unique

receiver

Single-hop ad hoc network (Interference Network -

IN)

• Each source transmits to an intended re-

ceiver.

• Each receiver primarily decodes its informa-

tion flows of interest. Other flows are even-

tually decoded only if beneficial.
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Resource Allocation in Wireless Networks

In a wireless network, users transmit by sharing resources, e.g. frequency spectrum, time,

code, space, and adjusting their own resources and capabilities, e.g., power, transmission

rate.

Resource allocation defines the distribution and use of shared and individual resources

with the goal of optimizing individual or global performance while considering the users’

limits and requirements.
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At the Physical Layer
Theory of saturated queues, i.e., sources transmit seamlessly.
- Essential assumptions:

• On the channels

– Type of fading (slow/fast, frequency selec-

tive/flat), multiple access methods.

– Channel Side Information (CSI) at the

transmitters and receivers.

• On the transmitter

– Encoding/modulation methods.

– System/service constraints, e.g., power con-

straint, max outage probability.

• On the receiver

– Detection/decoding methods.
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IT Assumptions and Performance Metrics (1)

• Ergodic capacity (Shamai et al. 95): Convenient for fast-fading, with no CSI at

the transmitters.

• Throughput capacity (Tse. et al. 98): Convenient for fast-fading channels with

full CSI at the transmitter.

• Delay-limited (zero-outage) capacity (Hanly et al. 98): Convenient for slow-fading

channels with full CSI at the transmitters.

– Intersection of max achievable rate regions for all possible channel states.

– Limited delay: channel non-ergodic during codeword transmission.

– Large power budget is required to compensate all possible levels of fading and

interference.
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Performance metrics in slow-fading channels

What for slow-fading channels with no or partial CSIT?

Outage event is unavoidable!

• Outage Capacity:

– Transmission at constant rate across all unknown fading states, accepting some

outage probability.

– Max transmission rates region with outage probability not greater than a given

threshold.

– Joint rate and power allocation.
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Why Slow Fading?

• Scenarios with partial CSI at the transmitters have been thoroughly studied. In

contrast, many systems with no/partial CSI at the transmitter and slow-fading

channels are not well understood.

• Slow-fading systems are relevant in practice since they are typical of services with

low delay tolerance.

We focus on slow-fading scenarios.
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Challenges of RA in Multiuser Networks (1)

• Full CSIT in multiuser networks require a large bandwidth for the feedback chan-

nel. In interference networks the feedback grows exponentialy with the number

of users. → Very costly in terms of feedback load.

• Optimum considered resource allocation have a complexity that scales exponen-

tially with the number of users. → Very costly in terms of computational com-

plexity.

• Scalability problem.
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Challenges of RA in Multiuser Networks (2)

Strategic direction to solve these challenges:

• Limit the knowledge on the channel state to reduce signaling and improve scala-

bility.

• Use distributed resource allocation algorithms to reduce complexity and improve

scalability.

We study distributed resource allocation

with partial CSI at the transmitters!
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Centralized vs. Distributed Resource Allocation

Sara Akbarzadeh: Distributed Resource Allocation in Wireless Networks c⃝ Eurecom 20 Sept. 2010



II. Background and Motivations 12

Centralized vs. Distributed Resource Allocation

Sara Akbarzadeh: Distributed Resource Allocation in Wireless Networks c⃝ Eurecom 20 Sept. 2010



II. Background and Motivations 12

Centralized vs. Distributed Resource Allocation

Sara Akbarzadeh: Distributed Resource Allocation in Wireless Networks c⃝ Eurecom 20 Sept. 2010



II. Background and Motivations 12

Centralized vs. Distributed Resource Allocation

Sara Akbarzadeh: Distributed Resource Allocation in Wireless Networks c⃝ Eurecom 20 Sept. 2010



II. Background and Motivations 12

Centralized vs. Distributed Resource Allocation

• Network structure and level

of information on the state of

network.

• Analytical complexity.

• Optimality: global, local,

NE.
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Limitations of Saturated Queue Approach

The ”saturated queue” approach breaks down when
user/traffic dynamics must be considered!
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Limitation of Saturated Queue approach

The ”saturated queue” approach breaks down when
user/traffic dynamics must be considered!

Cross-layer approach is required!
A cross-layer approach promises remarkable improvements in performance.
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Objectives of my research work

• Understand the impact of different levels of CSIT on the design and optimality

of resource allocations.

• Analyze the trade-off between performance and complexity of centralized and

distributed approaches in an interference limited network.

• Design distributed joint rate and power allocation algorithms in a slow-fading

network with partial CSIT, considering an average power constraint.

• Propose cross-layer design of distributed control mechanisms, scheduling, and

admission control in an interference network, considering relevant constraints on

average power, average queue length, and max tolerable outage probability.
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Considered Scenarios

• Saturated queue approach in:

– OFDM-based MAC

• Cross-layer approach in:

– Finite INs

– Dense INs
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Background in Centralized and Distributed Approaches

• Optimization of Centralized power allocation based

on full CSIT and capacity C.

Complexity exponential in the number of users K

and subcarriers N!

As N → ∞, complexity becomes linear in N via

duality (Yu 2006)

• Distributed power allocation based on partial a

CSIT, fast fading via Bayesian games (He et al.

2008)

Powers optimized simultaneously

Eg2{C1|g1} and Eg1{C2|g2}

aExact knowledge of the own channel and statistical knowledge of other channels.

Figures of Merit
for K = 2 usrs and N subcarriers

User 1 Achievable Rate

C1 =

N∑
n=1

ln

(
1 +

P n
1 g

n
1

N0 + P n
2 g

n
2

)
Total Achievable Rate

C = C1 + C2
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System Characteristics

• Quasistatic fading

• Partial channel state information at the transmitter

Outage event if transmit rate exceeds capacity

Rn
i︸︷︷︸ > log

(
1 +

P n
i g

n
i

N0 + P n
j g

n
j

)
︸ ︷︷ ︸

Transmit Rate Capacity

Throughput: average information reliably received

Ti(P i,Ri,P j,Rj) =

N∑
n=1

Rn
i Pr

{
Rn

i ≤ log

(
1 +

P n
i g

n
i

N0 + P n
j g

n
i

)}
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Optimum Joint Allocation in Slow Fading with Partial CSI

• Allocate jointly rates and powers to maximize the total throughput

u(P 1,R1,P 2,R2) = Eg1(T1(P 1,R1,P 2,R2))︸ ︷︷ ︸ + Eg2(T2(P 2,R2,P 1,R1))︸ ︷︷ ︸
Average Throughput Average Throughput

User1 User2

under a maximum power constraint for each user,

N∑
n=1

P n
k ≤ P k;

• Distributed approach

Exponential complexity in the number of users and subcarriers!
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Reducing Complexity via Duality

We extend the results by Yu (2006) to throughput:

For N → ∞, complexity become linear in N !

Two-Level Optimization

1st Level: For each subcarrier n find (P n∗
1 , Rn∗

1 , P n∗
2 , Rn∗

2 ) parametric in λ1

and λ2 maximizing

gn(P n
1 , R

n
1 , P

n
2 , R

n
2 , λ1, λ2) = E(T n(P n

1 , R
n
1 , P

n
2 , R

n
2))︸ ︷︷ ︸ −λ1P

n
1︸ ︷︷ ︸ −λ2P

n
2︸ ︷︷ ︸

average throughput power cost power cost
subcarrier n user 1 user 2

2nd Level: Minimization in λ1 and λ2 of

gn(P ∗
1,R

∗
1,P

∗
2,R

∗
2, λ1, λ2) =

N∑
n=1

gn(P n∗
1 , Rn∗

1 , P n∗
2 , Rn∗

2 , λ1, λ2)

Sara Akbarzadeh: Distributed Resource Allocation in Wireless Networks c⃝ Eurecom 20 Sept. 2010



III. Distributed Resource Allocation in OFDM-based MAC 21

Reducing Complexity via Bayesian Games

Complexity of the fist level still unaffordable!

Game theoretic approach to reduce complexity!
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Two-Level Bayesian Game

User k aims at minimizing its cost

ck(λ1, λ2) = max
Rk,P k

Egk

{
Tk(Rk,P k,Rℓ,P ℓ)− λk

∑
n

P n
k

}
︸ ︷︷ ︸

utility of user k

to achieve a maximum utility by properly setting its unit cost λk

Remark: In general the Nash equilibria of this game do not coincide
with the constrained Bayesian game having the average throughput
EgkTk(Rk,P k,Rℓ,P ℓ) as utility function.
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Two-Level Game Decomposition
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obtained as Nash equilibrium

Power and rate allocation parametric in λ1 and λ2

Unit cost allocation λ∗
1 and λ∗

2 determined as Nash equilibrium
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Power and rate allocation
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Global Game
• The throughput Tk(R1,P 1,R2,P 2) is a piecewise function:

For each piece we consider a two-level game.

• The two-level game in each piece is submodular and NEs exist

Algorithm to determine all NEs in a piece

• Select among all possible NEs per piece the one that are NE also for the global

game
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Global Game
• The throughput Tk(R1,P 1,R2,P 2) is a piecewise function:

For each piece we consider a two-level game.

• The two-level game in each piece is submodular and NEs exist

Algorithm to determine all NEs in a piece

• Select among all possible NEs per piece the ones that are NE also for the global

game

Global NE check

2nd level game

1st level game 1st level game

2nd level game2nd level game

1st level game

Piece #1 Piece #2

global NE

Piece #L
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Nash Equilibrium vs Other Approaches

0 5 10 15 20 25
0

5

10

15

20

25

30

Aggregate throughput vs. maximum available power
K=2, N=10, g

1
 =(1/3,2/3), g

2
=(7/8,1/8), γ

1
=(0.3,0.7), γ

2
=(0.1,0.9)

P
max

bi
ts

/s
ec

 

 

T−CCSI, Algorithm II

T−PCSI, Algorithm I

T−PCSI, EqPow1

T−PCSI, EqPow2

• Setting: g1 =
{
1
3,

2
3

}
; Pr{g1} =

{
3
10,

7
10

}
g2 =

{
7
8,

1
8

}
; Pr{g1} = {0.1, 0.9}

N = 10, P 1 = P 2 = P

• Optimization based on full channel knowl-

edge but yielding to a local minimum

• Allocation EqPow1 based on uniform power

distribution without outage;

• Allocation EqPow2 based on uniform power

distribution with outage;

• The NE curve follows closely the optimiza-

tion performance with complete CSI

• Uniform power allocations implies a remark-

able loss in performance.
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Summary, Remarks, and Observations

• Joint rate and power allocation in slow fading systems with
partial state information based on Nash equilibria.

• Low complexity algorithm as N → +∞ able to determine all
Nash equilibria if they exist. In contrast, the optimization for
partial CSI with affordable complexity is still an open problem.

• A Nash equilibrium selection criterium needs to be enforced
because of multiple Nash equilibria.
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Problem Statement

• Distinct transmitters and receivers

• Single-hop ad hoc network

Devise control mechanisms that:

• Supports the self-forming and self-haling prop-

erties of ad hoc networks → Distributed algo-

rithm.

• Is appropriate for slow-fading channels, assum-

ing partial knowledge of states of other com-

munication pairs → Throughput maximization,

joint power and rate allocation.

• Takes into account traffic dynamics → Cross-

layer approach considering queues dynamics.

• Guarantees the network stability → Finite

length buffers and admission control mecha-

nisms.
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System Model

• Arrival process at node k follows an i.i.d. dis-

tribution with average rate λk.

• The evolution of the average power attenuation

over each link is an ergodic Markov chain.

• State and action sets have finite cardinalities.
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How does the user decide?

States (xk):

Decisions (ak):

• When to transmit?

• How to transmit (power and rate)?

• Accept/Reject?
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Intended Effect of Decisions on Queue Dynamics

Remark: The transition probability of the Markov chain depends on the transmitter’s

policies (Markov Decision Process)
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Optimum Joint Power and Rate Allocation
• Maximizing the expected throughput:

Exk max
(pk(xk),µk(xk))

[
Pr
{
rk( xk(t) , (pk, p−k)︸ ︷︷ ︸ ) ≥ µk(t)R︸ ︷︷ ︸ }µk(t)R

]
Power Rate

all users user k

• Under constraints on:

Average Power: Exk

[
pk(xk(t))

]
≤ pk

Average Buffer Length: Exk

[
qk(t)

]
≤ qk

Probability of Outage

at Steady State: Pr{rk(xk(t),p) < µk(t)Rk(t)} ≤ P
out
k , ∀(xk, ak)
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Optimum Joint Power and Rate Allocation
• Maximizing the expected throughput:

Exk max
(pk(xk),µk(xk))

[
Pr
{
rk( xk(t) , (pk, p−k)︸ ︷︷ ︸ ) ≥ µk(t)R︸ ︷︷ ︸ }µk(t)R

]
Power Rate

all users user k

• Under constraints on:

Average Power: Exk

[
pk(xk(t))

]
≤ pk

Average Buffer Length: Exk

[
qk(t)

]
≤ qk

Probability of Outage

at Steady State: Pr{rk(xk(t),p) < µk(t)Rk(t)} ≤ P
out
k , ∀(xk, ak)

Exponential complexity in the number of users
and the cardinality of their state and action sets!
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Reducing Complexity Via Stochastic Games

By formulating the problem as stochastic game,
the solutions can be obtained through

an iterative linear programming.

Linear complexity in mixed strategies of the users!
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Formulation as an Stochastic Game

• A mixed strategy zk(xk, ak) is the joint probability that transmitter k performs ac-

tion ak while being in state xk (i.e. probability of< xk, ak >nk, nk ∈ {1, ..., gk}).
• Expected throughput as a multilinear function of mixed strategies:

ρk =

g1∑
n1=1

g2∑
n2=1

...

gK∑
nK=1︸ ︷︷ ︸ c(k)n1n2...nK︸ ︷︷ ︸ zn11 zn22 ...z

nK
K︸ ︷︷ ︸

Average over Throughput at Mixed strategies

the strategies fixed strategies of all users

of all users nj, j = 1, ..., K

• All constraints of transmitter k can also be presented as linear function of mixed

strategies of user k.
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Game Formulations

• Players

– Selfish: the coefficients c
(k)
n1,n2...nK account only for the throughput of user k.

– Cooperative: the coefficients c
(k)
n1,n2...nK account for the aggregate throughput.

• The individual/ aggregate throughputs depend on the decoders at the receivers:

– Single User - SU

– Successive Interference Cancelation - SIC
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Game Solutions (Nash Equilibria)

The existence of NE for general class of constraint stochastic games,

where players have independent state processes is proven in [Altman,2006].

In general, systems with SIC decoders have more than a Nash equilibrium!
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Best Response

Best response to the optimal policies of the others
reduces to Linear Programming-LP.

In a symmetric network the BR converges to NE points.
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Numerical Results: Effect of Cross-layer Design

• Single solution for SU, multiple solutions for SIC.

• SIC transfer more or equal packets with less or equal power.

• Drop rate significantly improves using out cross-layer approach.

(i) Arrival process: Poisson distribution with average rate λk = 1, (ii) CS varies according to a Markov chain with equal probability of keeping the
state or changing to adjacent channel gain levels, (iii) Buffer states = {0, ..., 5}, Channel states = {0, ..., 2}, Power levels = {0, ..., 3}, Possible rates
= {0, ..., 5}, R = 1.
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Summary, Remarks, and Observaitons

• Distributed algorithms for joint power and rate allocation and
admission control aiming at maximizing the individual through-
put.

• Using discrete sets of states and actions the utility function
yields a stochastic game with a multilinear function on the prob-
ability of state and action pairs.

– The existance of NE is proved based on the properties of LP.

– Based on the multilinear characteristic of the utility func-
tion, a best response algorithm is proposed. BR algorithm
converges to NE in a symmetric network.

• Our cross-layer approach has remarkable performance improve-
ments comparing to the models neglecting the queue dynamics
or the probability of outage events.
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Motivations

The previous cross-layer algorithm has a high complexity when the
number of users or the cardinality of state and action sets increase.

Its complexity is unaffordable in dense networks.

However, in dense interference networks the effects of interferers
tend to deterministic limits!

The complexity of the problem can be reduced.
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Extra Assumptions and Relevant Properties
• Link between a source and a destination is an N -dimensional vector channel with

identical statistics over all N paths.

• For dense networks, we determine the strategies assuming K,N → ∞ with
K
N → β > 0, and applying use of random matrix theory

Relevant Properties:

• In dense interference networks the effect of ran-

dom channels tends to deterministic limits.

• Given a receiver k, the group m of transmitters

n having the same receiver power pkm and the

same transmitting rate µk
m is gkm.

g(i)m :
{
n ∈ {1, ..., K}|(pin, µi

n) = (pim, µ
i
m)
}
.
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Single/Multi Group Decoder

Single Group Decoder:

Multi Group Decoder:
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Receiver
We consider different receivers depending on the assumptions we make about:

• The level of the information about interference structure available at the receivers.

• Use of suboptimal receivers based on preliminary pre-decoding processing (e.g.

multiuser detection) followed by decoding.

• Type of decoder: single/multi group decoder.

• KIS: Known Interference Structure

• UIS: Unknown Interference Structure

• SGD: Single Group Decoding

• MGD: Multi Group Decoding

Cases under study
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Numerical Results: Cross-layer vs. Conventional
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ACL−(NP/KIS/MGD)

AConv−(NP/KIS/MGD)

• In the conventional approach more

power is consumed for sending a

given packet.

• There are cases where power is ad-

justed to satisfy a rate while there

is not enough data in the queue.

(i) Arrival process: Poisson distribution with average rate λk = 1, (ii) CS varies according to a Markov chain with equal probability of keeping the
state or changing to adjacent channel gain levels, (iii) Buffer states = {0, ..., 5}, Channel states = {0, ..., 2}, Power levels = {0, ..., 3}, Possible rates
= {0, ..., 5}, R = 1.
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Numerical Results: Asymptotic Approximation Performance Loss
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• Even when the number of trans-

mitters is very low, a finite network

performs almost as well as the large

interference network.

(i) Arrival process: Poisson distribution with average rate λk = 1, (ii) CS varies according to a Markov chain with equal probability of keeping the
state or changing to adjacent channel gain levels, (iii) Buffer states = {0, ..., 5}, Channel states = {0, ..., 2}, Power levels = {0, ..., 3}, Possible rates
= {0, ..., 5}, R = 1.
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Numerical Results: Different Receivers
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ACL−(NP/KIS/MGD)

ACL−(NP/KIS/SGD)

ACL−(MMSE/UIS/SGD)

• For ACL-(NP/KIS/MGD) the

maximal throughput is limited by

the maximum rate (i.e. we use a

finite set of rates).

• For two other receivers, the max-

imal rate has interference limited

behavior.

(i) Arrival process: Poisson distribution with average rate λk = 1, (ii) CS varies according to a Markov chain with equal probability of keeping the
state or changing to adjacent channel gain levels, (iii) Buffer states = {0, ..., 5}, Channel states = {0, ..., 2}, Power levels = {0, ..., 3}, Possible rates
= {0, ..., 5}, R = 1.
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Summary, Remarks, and Observations

• We considered different receivers based on assumptions on: (I) the level

of knowledge about interference, (II) Use of pre-decoding processing (e.g.

detection), (III) single/multi group decoder.

• The asymptotic approach enables a sizable complexity reduction: the com-

plexity does not scale with the number of users but with the number of

transmitter groups.

• Policies obtained for dense networks are an excellent approximation also for

networks with low communication flows: performance loss is very low.

• ”Saturated queues” approach causes a relevant performance loss since the

power is not efficiently allocated.
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Outlines

1. Background and Motivations

2. Distributed Resource Allocation in OFDM-based MAC

3. Distributed Cross-layer Resource Allocation in INs

4. Cross-layer Design for Dense INs

5. Conclusions and Future Works
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Concluding Remarks

• Resource allocation schemes for slow fading networks.

• Understanding the impact of different levels of CSI at transmit-
ters on the design and optimality of resource allocations.

• Design distributed joint rate and power allocations in slow fading
networks with partial CSIT in OFDM-based MAC.

– Great complexity reduction in two steps: via duality theory
and via game theory.

– Excellent tradeoff between complexity and performance.
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Concluding Remarks

• Cross-layer design of power and rate allocation, scheduling, and
admission control in finite and dense interference networks.

– Cross-layer approaches outperform significantly ”saturated
queues” approach.

– Use of the throughput as objective function outperform sig-
nificantly the use of approaches neglecting outage events.

– Reduction of complexity via

∗ reduction of stochastic games to linear programming.

∗ asymptotic approximation of large networks via random
matrix theory.
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Possible Future Extensions

• To investigate the effects of cooperation on the performance of
the proposed distributed mechanisms (e.g., distributed pricing).

• To investigate the limiting point of the NE performance in our
games of incomplete information as the number of players in-
creases.

• To extend the problem into multi-hop ad hoc networks.
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Thank you!
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