
HAL Id: pastel-00554433
https://pastel.hal.science/pastel-00554433

Submitted on 10 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conception d’une architecture Pair-à-Pair orientée
opérateur de services

Radwane Saad

To cite this version:
Radwane Saad. Conception d’une architecture Pair-à-Pair orientée opérateur de services. Réseaux et
télécommunications [cs.NI]. Télécom ParisTech, 2010. Français. �NNT : �. �pastel-00554433�

https://pastel.hal.science/pastel-00554433
https://hal.archives-ouvertes.fr

Thèse

présentée pour obtenir le grade de

DOCTEUR de TÉLÉCOM PARISTECH
Spécialité: Informatique et Réseaux

Radwane SAAD

Une Architecture Pair-à-Pair orientée Opérateur de
Services

Soutenue le 17 Septembre 2010 devant le jury composé de :

Ken CHEN Université de Paris XIII Président

Bijan JABBARI George Mason University Rapporteur

Abdelhamid MELLOUK Université de Paris XII Rapporteur

Patrick BELLOT Télécom ParisTech Examinateur

Mohammed ACHEMLAL Orange Labs, France Telecom Examinateur

Youcef BEGRICHE Université de Paris V Invité

Ahmed SERHROUCHNI Télécom ParisTech Directeur de Thèse

Thesis

Presented to obtain the degree of

DOCTOR of TÉLÉCOM PARISTECH
Speciality: Computer Science and Networks

Radwane SAAD

A Service Provider Oriented Peer-to-Peer Architecture

Defended on the 17th of September, 2010 before the jury composed of:

Ken CHEN Université de Paris XIII President

Bijan JABBARI George Mason University Reviewer

Abdelhamid MELLOUK Université de Paris XII Reviewer

Patrick BELLOT Télécom ParisTech Examiner

Mohammed ACHEMLAL Orange Labs, France Telecom Examiner

Youcef BEGRICHE Université de Paris V Invited

Ahmed SERHROUCHNI Télécom ParisTech Supervisor

i

A mon père Habib, mon unique modèle

A ma mère Maha, ma source de vie

A ma sœur Nassrine, mon âme sœur

A ma sœur Sabrine, mon précieux trésor

A ma moitié Isaure, mon éternel amour

ii

iii

« Tu ne réussiras qu’en partageant ton temps en suivant la règle des 24

pouces des anciens, telles les 24 heures d’une journée : huit heures

seront consacrées au divin, huit heures te seront consacrées et huit

heures seront consacrées aux autres … »

 Habib Hussein SaadHabib Hussein SaadHabib Hussein SaadHabib Hussein Saad

« La vie est quête de foi et de lumière …

Réussir consiste à savoir tailler sa propre pierre …

Les outils sont volonté et mesure …

La seule règle est la droiture … »

 Radwane Habib SaadRadwane Habib SaadRadwane Habib SaadRadwane Habib Saad

iv

v

Remerciements

Je profite de cette page pour remercier l’ensemble des personnes qui de près ou de loin
ont contribués à l’achèvement de cette thèse.

C’est avec la plus grande reconnaissance et le plus grand respect que je remercie
infiniment mon directeur de thèse M. Ahmed SERHROUCHNI pour m’avoir si bien
dirigé durant ces années avec patience, dévouement et sympathie. Il a su m’apprendre à
surmonter avec courage les dures épreuves de la vie d’un doctorant.

Je remercie M. Bijan JABBARI de faire le déplacement de si loin et d’avoir accepté
rapporter ma thèse. M. Abdelhamid MELLOUK a également eut la gentillesse d’en être
le deuxième rapporteur malgré sa charge importante de travail. Je pense aussi à M. Ken
CHEN qui a accepté de faire parti du jury et surtout d’avoir toujours été présent pour me
guider et avoir réponse à mes nombreuses questions. Son acuité et sa disponibilité ont été
précieuses pour moi. Je remercie M. Patrick BELLOT de Télécom ParisTech qui fera
l’honneur d’être un des examinateurs et d’avoir un regard critique sur mes travaux, lui-
même étant impliqué dans le monde du pair-à-pair. Je remercie M. Mohammed
ACHEMLAL d’avoir accepté d’être dans mon jury et de se déplacer de Caen à cet effet.
Il sera le juré le mieux placé pour apprécier les éléments impliquant l’opérateur et le
fournisseur de service. Je ne peux oublier un ami M. Youcef BEGRICHE qui a toujours
été la pour orienter mes réflexions et m’aider à toucher au formalisme mathématique et
pour soutenir mon moral au jour le jour.

Je remercie M. Maroun CHAMOUN sans qui je n’aurais jamais eut la chance d’entamer
ce travail au sein de Télécom ParisTech. Il a su m’ouvrir la voie vers le troisième cycle.

Je remercie M. Philippe GODLEWSKI pour sa rigueur hors norme qui m’a aidé à viser
plus haut. Je n’oublie pas M. Jean LENEUTRE, M. Ahmad FADLALLAH, Mme Houda
LABIOD et Mme Nadia BOUKHATEM pour leur gentillesse, leurs conseils et leur
encouragement.

Je remercie mes amis et frères Daniel, Julien et Benoit qui ont m’ont soutenu durant ces
années.

Je remercie sincèrement mon oncle Nabil et mes cousins Rayan et Roman pour avoir su
m’aider à toujours être sur le droit chemin.

Je ne remercierai jamais assez ma fiancée Isaure GILLOT pour son sincère amour et sa
fidèle présence à mes côtés sans lesquels je n’aurai pu avancer.

Je remercie du fond du cœur ceux sans qui je ne serais pas ce que je suis aujourd’hui et
ceux qui représentent tout ce que j’ai de plus cher: mon père, modèle de sagesse et de
bravoure, ma chère mère pour son amour qui est mon éternelle source de vie, mes sœurs
Nassrine et Sabrine qui sauront à jamais me donner la force de grandir.

Je termine en m’inclinant devant l’intercession divine …

vi

vii

Une architecture Pair-à-Pair orientée opérateur de services

Les paradigmes et architectures du pair-à-pair (P2P) sont au centre des

réalisations d’applications à grande échelle de tout type. Les architectures à base de

résilience, le grid computing ou distribution de traitement, le partage de fichiers, la

distribution de données sont ainsi de plus en plus basés sur des infrastructures

overlay.

Il est nécessaire d’intégrer un niveau de contrôle sur de telles applications. Ce

contrôle peut servir de modèles économiques, intégrer de la sécurité, améliorer la

qualité de service (QoS), et cela pour atteindre des objectifs de qualité diversifiés.

De telles applications seront ainsi opérées et auront comme maître d’œuvre un

opérateur de services.

Dans la pratique actuelle les entités pairs partageant des ressources se placent

d’une manière aléatoire sur un large réseau physique (IP). Par ailleurs, certaines

applications notamment de distribution de données à contraintes temporelles sont

exigeantes en délai et bande passante. Utiliser un tel réseau de recouvrement pour

de telles applications nécessite une organisation particulière entre les pairs.

Nous proposons ainsi la conception d’une architecture globale pour la mise en

place de telles applications sur des plateformes de type P2P.

Dans ce paradigme il est possible d’isoler trois principales composantes : la

première est celle qui concerne le service applicatif proprement dit, la deuxième est

le routage (ou la recherche d’information), la troisième est celle qui traite du

transport des données.

Nous nous orientons vers une architecture où les réseaux sont divisés en

différentes zones ou systèmes autonomes pour Autonomous Systems (ASs)

contrôlés par des Opérateurs de Services. Ce travail consiste à optimiser chaque

composante du modèle P2P pour atteindre les meilleures performances en se

basant sur les différentes exigences des applications. Ces études nous permettent

de spécifier des structures pour trois principales contributions. La première a pour

viii

objectif de cloisonner le trafic P2P et, après généralisation, d’appliquer un

algorithme sensible au contexte où chaque zone ou groupe de pairs (appartenant à

un même AS ou partageant les mêmes intérêts ou performances) est basé sur une

DHT. La seconde est d’accélérer le transfert des données à l’aide du mécanisme

FEC. La troisième est d’intégrer une entité de Contrôle/Gestion qui se charge de

gérer les deux précédentes propositions et de varier des paramètres basiques du

protocole BitTorrent, utilisé pour la couche transport de l’architecture, afin que

l’application utilise le socle du P2P dans les meilleures conditions.

Ces contributions ont pour objectifs principaux de minimiser le temps de

téléchargement de la ressource et de diminuer le trafic peering, tout en gardant les

caractéristiques du P2P à savoir la robustesse et l’interopérabilité.

Nous avons effectué de nombreuses simulations à grande échelle qui valident

nos propositions. En effet, nous montrons que cloisonner le trafic peut avoir un

apport positif en particulier lorsqu’il est complété par un algorithme de routage

sensible au contexte. Une étude complète du mécanisme FEC appliqué au

protocole BitTorrent montre combien la correction d’erreur peut accélérer le

transfert de données dans certains scénarios, à la fois pour des réseaux homogènes

ou hétérogènes. Enfin, nous avons groupé ces contributions pour proposer une

architecture P2P orientée Opérateur de Services appelée SPOP pour Service

Provider Oriented Peer-to-Peer [1].

Mots-Clés: BitTorrent, DHT, FEC, Localisation, Overlay, Pair-à-Pair, Performance.

1. Pourquoi une telle architecture ?

Les réseaux P2P connaissent une grande expansion et de multiples applications

y sont intégrées à moindre coût et avec un meilleur facteur d’échelle. Nous avons

comme exemples les applications de partage de fichier qui ne demandent pas

particulièrement de QoS ou encore la VoIP et l’IPTV qui au contraire sont des

applications temps réel pour lesquelles les réseaux doivent être plus fiables. Le

challenge des opérateurs ainsi que des équipementiers est d’intégrer un contrôle et

ix

une gestion au trafic P2P dans les réseaux actuels. En effet, le réseau IP n’est pas

seul capable d’intégrer de telles possibilités. Ce contrôle est un besoin pour

l’opérateur afin de limiter l’importance du trafic inter systèmes autonomes qui peut

élever considérablement le coût d’utilisation de son trafic externe. A cela s’ajoute

l’importance pour ces opérateurs de services d’améliorer les performances en

diminuant le temps de téléchargement de la ressource pour un client ou encore le

temps de recherche de celle-ci.

Le modèle P2P peut être décomposé en trois principales composantes qui sont:

• La première composante est celle du transport propre des données dans

laquelle on définit la spécification du protocole et les règles d’échange

des messages [2]. A ce niveau nous choisissons le protocole BitTorrent

comme méthode de transport.

• La deuxième composante concerne le routage et la recherche des

ressources. L’utilisation des tables de hachage distribuées (DHT) est de

plus en plus intéressante quant à leurs efficacité et robustesse [3].

• La troisième composante décrit le service fournit au niveau applicatif

proche de l’utilisateur dépendamment du contrat entre l’opérateur et le

client.

La plupart du trafic P2P est généré par des applications qui sont totalement

indépendantes des opérateurs de services et de leurs infrastructures. Avec le succès

des algorithmes DHT qui touchent directement le routage P2P, des propositions

telles que [4] ou [5] définissent un moyen de créer une interface entre un opérateur

de services (et son AS) et les entités P2P clients. Cependant, ces solutions sont

complexes et nécessitent un nombre important de changement et un manque

d’interopérabilité.

SPOP est une solution alliant robustesse, interopérabilité et simplicité. Les

étapes suivies sont les suivantes :

x

• Optimiser le niveau de transport en proposant un mécanisme pour

assurer une entropie maximale des segments avec un taux de perte

minimal.

• Garantir au niveau routage une complétude pour chaque requête avec le

taux le plus élevé en minimisant le nombre de sauts et les messages de

signalisation.

• Elaborer des spécifications pour chaque service et ses besoins : 1)

contrôler le trafic généré à l’intérieur d’un même AS et entre les ASs

pour des raisons de coûts ; 2) garantir un environnement adapté au

service nécessitant par exemple un minimum de délai pour des

applications temps réels.

Un premier chapitre d’introduction présente la problématique de la thèse ainsi

que les solutions et contributions. Un deuxième chapitre présente des généralités

sur les réseaux P2P, plus particulièrement sur BitTorrent, ainsi que les différents

travaux existants sur les sujets traités dans ce manuscrit (performance, localisation

des pairs et correction d’erreur dans BitTorrent). Les trois chapitres suivants

détaillent les travaux et contributions de la thèse. L’avant dernier chapitre traite de

l’application de sécurité développée pour valider l’architecture SPOP. Le dernier

chapitre conclut ce manuscrit.

2. Contributions et travaux

A. hTracker : gestion et contrôle du trafic

Le trafic P2P à l’intérieur d’un même AS est plus facile à contrôler que celui

entre les ASs. Lorsqu’un pair au sein d’unAS sollicite des pairs d’un autre AS, le

premier AS est chargé de payer le trafic récupéré du deuxième AS. Ce trafic doit

donc être réparti entre les pairs de manière équitable. L’augmentation du trafic à

l’intérieur d’un même AS peut être causée par un routage qui n’est pas optimisé ou

encore la prolifération de messages inutiles. Ce nombre n’est pas contrôlé par

l’opérateur. Pour le trafic entre les ASs, le modèle P2P est un modèle distribué et

xi

les protocoles tels que BitTorrent implémentent une politique de choix de pairs qui

est totalement aléatoire. En effet, une absence quasi-totale de contrôle des

protocoles P2P ne permet pas de réguler ce trafic. D’autant plus que le P2P

représente plus de 60 % du trafic Internet global, avec 25 à 30 % du trafic global

seulement pour BitTorrent (tout clients confondus).

Nous avons fait le choix de BitTorrent qui est probablement le protocole le

plus populaire du monde P2P pour le partage de fichiers. Ce choix se fait pour le

transfert de l’information dans l’architecture SPOP.

Le système de routage Internet est composé de plusieurs systèmes autonomes.

Pour acheminer le trafic Internet les ASs entretiennent des relations entre eux. Des

accords de peering sont à la base de ces relations. Les principales catégories de ces

relations sont : client à fournisseur (C2P), pair à pair (p2p) et sibling à sibling (S2S).

Le problème est que le nombre de connexions inter-ASs a un impact sur les

performances des pairs et sur le trafic inter-domaines. Le premier impact est dans

l’overhead qui augmente linéairement avec le nombre des connexions inter-ASs.

Cela peut coûter cher à l’opérateur, en particulier si le trafic ne peut être contrôlé,

et c’est le cas des applications P2P. En général le trafic extrait d'un AS externe doit

être payé par l’AS d’origine. Habituellement, les ASs larges ne paient pas de la

même manière que les plus petits ASs car ils sont souvent le carrefour d’un volume

très important de trafic et qu’ils ont donc des accords leur permettant de disposer

de facilités avec les ASs de même niveau ou avec des ASs de niveaux inférieurs.

Toutefois, lorsque l'AS est de taille relativement moyenne ou petite, il peut avoir à

payer si des routes de plus grands ASs sont empruntées.

Le deuxième impact est le ralentissement du téléchargement et ce problème peut

être évité en choisissant des pairs situés en majorité dans le même domaine, afin de

limiter le temps de propagation lors des échanges ainsi que le trafic inter-domaines.

Un aspect complémentaire important est d'avoir des Seeds initiaux rapides offrant

une grande diversité de segments.

xii

Notre étude est basée sur des objectifs que pourrait fixer un opérateur pour

servir ses clients à l'égard de la qualité de service dans l'engagement contractuel

signé entre le prestataire et le client. En même temps, les opérateurs sont tous sous

les termes de ce qu’on appelle des stratégies de peering qu'ils doivent respecter.

L'objectif principal pour les opérateurs est de limiter les surcoûts de leurs systèmes

sans pour autant dégrader le service rendu. Certaines applications largement

utilisées aujourd'hui ont certaines contraintes temps réel de délai et de bande

passante. Des applications comme la VoIP ou l'IPTV sont les meilleurs exemples

qui illustrent l'importance de techniques et politiques pour atteindre ces objectifs.

Toutefois, il n'est pas si évident et facile pour les applications P2P largement

distribuées, dynamiques et sans contrôle d’obtenir un aperçu du comportement de

tous les pairs dans le système.

Notre intérêt dans ce travail est de traiter de cette question de localisation,

même si nous sommes conscients que ce paramètre n'est pas le seul aspect sur

lequel un opérateur doit tenir compte pour respecter ses objectifs de peering et de

QoS. La méthode originale et la plus utilisée pour contrôler le trafic P2P par les

opérateurs est de limiter la bande passante par étranglement. Des dispositifs

similaires sont utilisées pour façonner le trafic dans les routeurs de bordure.

Cependant, l'inconvénient de ces dispositifs est qu'ils ralentissent les transferts de

données et cela ne résout pas les problèmes de localité de chaque pair. On ne peut

donc pas ainsi diminuer le trafic inter-domaines. Nous proposons de modifier la

politique de sélection aléatoire des pairs par le Tracker pour une nouvelle politique

plus intéressante. Le principe est de choisir la majorité des pairs du même AS que

le Leech qui envoie la demande. Cette méthode, validée par des simulations,

permet de réduire considérablement le trafic inter-domaines et le temps de

téléchargement. Dans les propositions antérieures, la correspondance des pairs

avec leurs AS n'a pas été définie avec précision. On propose une sémantique de

cette cartographie avec les peerIds de chaque pair.

xiii

Cette proposition a été publiée dans [6] (cf Figure 1). Nous choisissons de

sélectionner des pairs au sein du même AS. On permet ainsi d’ajouter un plan de

contrôle et de gestion du trafic au modèle P2P. Pour associer le pair à l’AS auquel il

appartient nous proposons une sémantique spécifique pour le peerId de chaque pair

du réseau à l’aide d’une fonction de HMAC. Une évolution à cette technique

permet de varier la taille de la liste de pairs envoyée au pair intéressé. Le contrôle et

la gestion du trafic sont effectués par une entité appelé hTracker.

Figure 1. Diminution du temps de téléchargement et du trafic inter-ASs

B. Forward Error Correction : maximiser l’entropie des

segments

Il existe un gain de performance entre le codage réseau, le codage de source et

BitTorrent sans codage. La perte de l'efficacité du codage de source est

principalement due au fait que la propagation des segments au sein du réseau par la

duplication introduit des pertes de bande passante, en raison de coûts dans le

réseau.

Il y a deux points importants à considérer quand il est d'appliquer un mécanisme

d'erreur, en particulier dans notre cas :

• Le premier point est le niveau du codage dans les données. Dans

BitTorrent, il est possible d’appliquer le codage au niveau du bloc ou le

niveau du segment. L'avantage du codage au niveau plus fin (bloc) est

que, pour le remplacement de certains blocs d'un segment, il n’est pas

obligatoire de récupérer tout le segment. Il est possible que seuls quelques

xiv

blocs d'un segment soi remplacés. L'inconvénient est que le traitement est

plus important et complexe.

• Le deuxième point est la comparaison entre le codage réseau et le codage

FEC. Il est démontré que lorsque le réseau BitTorrent et l'ensemble des

pairs est suffisamment important, l'entropie du Rarest First (politique de

sélection de segments dans BitTorrent) est proche de 1 et aucun codage

est vraiment nécessaire. Le choix dépend des besoins de l'application et

du niveau des coûts acceptables par les développeurs qui ont choisi de le

mettre en œuvre. Pour certaines applications comme les applications

temps réel, les opérateurs veulent s'assurer davantage de garantir que leurs

clients puissent choisir d'appliquer le mécanisme de codage, même si le

coût et le traitement est plus élevé ou plus complexe. Le choix du codage

réseau est également plus compromettant car même si les performances

sont meilleures que le codage de source, le traitement est nécessaire au

niveau de tous les pairs du réseau puisque le principe est de faire

participer tous les pairs au mécanisme de codage. Le principe de codage

réseau est d'échanger des informations et de fusionner les données. Un

autre inconvénient de choisir le codage réseau est qu'il n'est pas

interopérable avec le client BitTorrent générique. Avalanche, qui mettrait

en œuvre du codage réseau, ou BitCod qui est le client proposant un

codage réseau, sont différents de BitTorrent et proposent leurs propres

algorithmes et mécanismes.

Nous choisissons d'appliquer un mécanisme de FEC plus simple et d'évaluer

les scénarios avec lesquels il présente des avantages réels sans dégradation des

performances du réseau. Il s’agit aussi d’éviter l’ajout excessif de traitement et de

complexité. L'interopérabilité avec la version précédente est aussi notre objectif

principal.

Prenons un fichier donné, il est fractionné en segments et ces segments sont aussi

divisés en blocs dans la spécification originale de BitTorrent. Nous modélisons

xv

uniquement l'échange des segments entre pairs sur le simulateur. Soit k le nombre

de segments qui forment le fichier d'origine, un certain nombre de segments

redondants (n x k) peuvent être injectés par la source avec n le nombre total de

segments retirés de l'encodeur FEC. Dans le cas de notre application, c’est le Seed

qui fournit ces segments de redondance. Une fois le simulateur en cours

d'exécution, au lieu d'injecter des segments k, n segments sont disponibles en

sachant que l'un des segments n - k peut remplacer n’importe quel segment k.

Dans ce cas le taux de codage n/k donne le pourcentage de redondance. Par

exemple, le ratio FEC = n/k = 150/100 = 1,5 c’est à dire 50 segments redondants.

Notez qu'il n’y a aucun changement d'algorithmes dans le simulateur. L'algorithme

Rarest First est appliqué d'abord et dans ce cas, il s'applique au Seed qui injecte les

segments n et non pas aux segments k. Le End Game Mode n’a pas été modélisé,

car le problème du dernier segment peut être résolu par la présence de segments

codés FEC.

Les travaux de recherches sur les mesures de performance de BitTorrent sont

variés et les différents cadres proposés sont généralement basées sur des traces

réelles. Nous décidons de nous concentrer sur le niveau segment.

Le simulateur à événements discrets développé est le même que celui utilisé pour la

validation de la contribution hTracker. La mise en œuvre du mécanisme de FEC

dans notre simulateur a été réalisé par la production de segments spéciaux basés

sur les codes Reed Solomon qui sont générés par les Seeds. Il est possible de gérer

la prolifération des segments codés et faire varier le rapport FEC. Si la valeur du

rapport est égal à 1, cela signifie qu’il n’ya pas de segments FEC injectés dans le

réseau. Par exemple, une valeur de ratio de 1,2 signifie que 20% du nombre initial

de segments sont ajoutés aux segments initiaux. Pour une ressource de 100

segments, un Seed génère 20 segments supplémentaires et fournit enfin un total de

120 segments. Un pair peut récupérer 100 segments parmi les 120 prévus pour

effectuer le téléchargement. Chaque segment téléchargé à partir des 20 segments

codés peut compenser l'un des 100 segments d'origine. Dans nos travaux le FEC

xvi

est assuré pendant toute la durée des simulations. Il s'agit de conclure sur la façon

dont l'ensemble du système réagit avec les segments FEC dans les différentes

périodes du téléchargement.

Au niveau transport les principaux problèmes concernent la pénurie de

segments due à la capacité faible des clients ou parce qu’elles subissent le problème

du dernier bloc. La complétude des requêtes et le téléchargement de ressources

dépendent directement des propriétés du réseau à chaque instant et lorsque le

réseau est affecté cela touche directement le transport.

La deuxième contribution propose une étude complète de l’implémentation du

mécanisme de correction d’erreur Forward Error Correction (FEC) [7] (cf Figure 2)

plus simple à intégrer que des solutions telles que le Network Coding [8]. Nous

montrons ainsi que pour des Leechs relativement rapides en terme de capacité de

téléchargement et d’envoi, les segments FEC permettent d’accélérer

considérablement la vitesse de récupération de la ressource. Lorsque le nombre de

Leechs est trop important et que celui des Seeds ne l’est pas assez, les segments

FEC peuvent aussi être une solution de secours pour maximiser l’entropie. Nous

montrons tout de même que dans certains cas, où le réseau n’est pas réellement en

manque de ressources, l’ajout de FEC peut dégrader le transfert.

Figure 2. CDF pour 1000 pairs et un fichier de 100 MB avec 1 Seed initial

Pour l’ensemble des résultats de simulation nous choisissons de valider la

comparaison des courbes obtenue par l’application d’un test statistique bilatéral.

xvii

C. L’architecture SPOP (Service Provider Oriented P2P)

La troisième contribution est la proposition d’une architecture globale

introduisant les deux précédentes contributions. En effet, on généralise le contrôle

de trafic en proposant un algorithme de routage sensible au contexte proposant la

formation de plusieurs groupes basés sur des DHT. On propose un service

privilégié pour fournir à certains clients qui le désirent des segments répliqués afin

d’améliorer les performances de téléchargement. Enfin, cette dernière contribution

propose l’instanciation volontaire de Seeds (fournissant aussi des segments FEC) et

de Leechs selon les besoins de l’application pour augmenter la disponibilité et

l’entropie des segments, la variation de la taille des segments, et cela pour la

composante service du modèle P2P.

De nombreux travaux de recherches actuels dans les réseaux P2P sont axés sur

la gestion du trafic et des techniques de la localisation pour le contrôle de l'activité

de peering. Dans [9] et [10] la sélection des pairs a été modifiée pour choisir les pairs

intra-domaine et réduire le trafic échangé entre les ASs. Ces techniques proposent

un nouveau concept qui est la coopération entre les opérateurs et les applications

P2P. Divers travaux proposent également d’optimiser la sélection par localisation

géographique sans nécessairement avoir besoin de cette coopération. Par exemple,

Ono [11] et TopBT [12] utilisent l'information de CDNs en se concentrant sur le

calcul de performances sans architecture structurée pour les opérateurs. Ces

propositions sont orientées client et non pas opérateur.

Les architectures proches de notre proposition sont ALTO P4P [4] et

SmoothIT [5]. Tout d'abord, ces architectures sont axées sur le trafic P2P et les

questions de qualité de service. SPOP propose également une optimisation du

transport et de routage sensible au contexte (context-aware). Ce dernier est ajouté

en complément au plan Gestion/Contrôle. Il est important de garder

l'interopérabilité et la transparence avec toutes les applications. Voici les principales

motivations pour la conception de SPOP :

xviii

• P4P propose une coopération entre les opérateurs et les applications

P2P afin d'accélérer le téléchargement et optimiser l'utilisation des

ressources réseau. Un plan de contrôle et est défini. Le iTracker du P4P

permet de créer le lien entre le P2P et les opérateurs. Les applications

P2P ont un AppTrackers qui communiquent avec les iTrackers pour

obtenir des informations sur les décisions de peering (topologie du réseau,

fournisseur de politiques et de capacités). Un des problèmes du P4P est

que cela peut ralentir les transferts de clients non P4P. Ensuite, la

coopération et le partage d'information est une idée nouvelle, mais

aucune incitation n’a été proposée pour motiver les consommateurs à

partager ces informations. Techniquement, il semble difficile d'intégrer

les deux parties.

• SmoothIT partagent les mêmes objectifs clés que le P4P, mais

SmoothIT est plus détaillé. En comparaison au P4P, SmoothIT fournit

les spécifications pour la coopération entre les opérateurs et les Trackers

pour les protocoles. En outre, SmoothIT prend en considération des

demandes autres que celles du partage de fichiers et considère les

contraintes de temps réel des applications. Le problème avec SmoothIT

est qu'il nécessite de grandes modifications au niveau des entités comme

les routeurs Internet en raison de la complexité de l'architecture.

• SPOP considère trois aspects principaux qui sont la simplicité,

l'optimisation des performances, et surtout, l'interopérabilité avec les

protocoles existants. Le plan de routage est défini sur un algorithme basé

sur une DHT sensible au contexte (cf Figure 3) qui peut prendre en

compte des paramètres différents et regrouper les pairs. Ce

regroupement peut se faire par rapport à l'appartenance à un même

domaine comme avec la contribution hTracker. Le plan de transport

propose un mécanisme de FEC qu’un opérateur de services Internet

peut proposer pour accélérer le transfert de données dans le cas où un

xix

manque de ressources est important. Enfin le plan Gestion/Contrôle est

basé sur les paramètres existants (politique de sélection des pairs, taille

de la liste des pairs, taille des segments, etc …) qui peuvent être ajustés

sans ajouter de complexité à l'Internet et l'infrastructure opérateur.

Figure 3. DHT sensible au contexte

3. Validation de SPOP

Les failles de sécurité des réseaux dans l’Internet d’aujourd’hui sont de plus en

plus courantes et les attaquants modifient constamment leurs outils pour tenter de

passer à travers les systèmes de défense mis en place. Le modèle de l’Internet à été

créé dans le but de diminuer tout contrôle du trafic. Ceci peut cependant être

considéré de nos jours comme un inconvénient. Plusieurs solutions de sécurité ont

été proposées mais ne sont pas efficaces puisqu’elles détectent les attaques bien

après que les dégâts ne soient constatés. L’attaque la plus crainte par les opérateurs

de services actuellement est le Déni de service (DoS) et surtout dans sa

composante distribuée (DDoS). Dans ce cas, un grand nombre d’attaquants sont

impliqués, ce qui rend la détection plus difficile et l’impact plus important. Les

attaques exploitent à l’origine les points faibles des protocoles. Cependant,

l’infrastructure même de l’Internet est de plus en plus la cible d’attaques comme les

xx

sites Web, les banques et les fournisseurs d’accès aux services. Des technologies

ont prouvées leurs grandes évolutions dans le cas de la détection d’intrusion. Mais

au même moment, les intrusions deviennent de plus en plus fines et sophistiquées.

Deux exemples concrets sont les attaques de Yahoo en 2000 ou récemment de

l’Estonie en 2007. Plusieurs solutions de détection d’intrusion et de filtrage

étudient la manière de représenter les attaques mais ces techniques nécessitent un

grand nombre de changement dans la structure de base des protocoles Internet.

En effet, les principaux logiciels qui rendent la détection difficile en termes de

performance et d’efficacité; et dans la plupart des cas les propositions sont basées

sur une entité centrale. Mais cette entité peut être également une cible parfaite pour

les attaquants et être un point unique de défaillance (Single Point of Failure). Toutes

ces constatations nous poussent à faire le choix d’introduire la coopération entre

des entités de défense d’un réseau pour la détection d’intrusion en particulier et la

traçabilité IP. Des systèmes comme DIDS ou NSTAT ont été développés mais

n’ont pas réellement pu écarter la nécessité d’une entité centrale d’analyse. Par

contre une approche purement distribuée et hiérarchique présente de nombreux

avantages par rapport à une approche centralisée.

Nous avons choisi de développer une application de sécurité basée sur SPOP

et qui implémente ses principales composantes afin de la valider. L’objectif est de

proposer une architecture globale et modulaire qui permette de modéliser

l’implémentation d’entités de sécurité pour la défense contre les attaques DDoS.

Cette architecture est basée sur la coopération entre les nœuds et un échange

d’informations sur un réseau P2P. Ces nœuds dans notre modèle peuvent être des

sondes de détection d’intrusion fournissant aux modules P2P les informations

d’attaques nécessaire à des applications au plus haut niveau pour réagir selon la

menace. La solution proposée cible les attaques distribuées de type DDoS par

corrélation des informations sur les trafics suspects détectés par les entités de

sécurité distribuées sur l’ensemble du réseau. Dans ce cas, chaque nœud a une

vision globale de l’activité d’intrusion par cette collaboration. Pour réussir à définir

xxi

une telle architecture il est primordial de tenir compte de la performance du

système global et de la facilité de déploiement. En effet, le traitement, la bande

passante et le stockage doivent être minimisés et un mécanisme de sécurité doit

être ajouté pour permettre le contrôle d’accès des entités au sein de l’architecture.

La figure 4 décrit chaque niveau de l’architecture. Nous la présentons avec un

degré d’abstraction suffisant pour permettre à chaque niveau de se caractériser par

des fonctions et rôles spécifiques et indépendants d’un niveau à un autre. En effet,

un équipement peut tout à fait implémenter les fonctionnalités d’une ou plusieurs

couches.

Le premier niveau est le plus proche du réseau physique. Nous l’appelons

Niveau Réseau. Dans ce niveau un équipement appartient au réseau sous-jacent.

Pour être plus spécifique, une entité de ce niveau peut être un routeur IP avec les

fonctionnalités basiques de routage, d’adressage et de transport du trafic.

Le second niveau est le Niveau Sécurité. Ce niveau comprend les entités de

sécurité et dans le cas de la détection d’intrusion ce sont les sondes IDS.

L’implémentation d’autres modules sont possibles selon le type de solution. Dans

le cas d’IDS, lorsque le trafic est analysé et qu’une attaque est détectée, une alerte

est générée et une primitive est envoyée au niveau supérieur. Ce dernier fonctionne

en suite en réaction aux alertes envoyées par le niveau Sécurité. Notons qu’un

module sécurité peut être intégré à un équipement réseau et l’entité en question

serait représentée par les deux premiers niveaux de l’architecture. Dans notre

architecture nous n’abordons pas la partie réactivité aux alertes.

Le troisième niveau de l’architecture est le Niveau SPOP qui inclut la DHT

sensible au contexte proposée pour l’indexation et la distribution des informations

à travers les nœuds. Ce niveau reçoit les informations collectées concernant le

trafic analysé du Niveau Sécurité. Lorsqu’une alerte est envoyée par le niveau

inférieur, ce qui voudrait dire qu’une attaque ait été détectée, le niveau SPOP

indexe les informations concernant ce trafic sur le nœud DHT qui gère ces

informations selon la valeur de l’adresse destination IP de la victime (et donc de

xxii

l’objectId). Le nœud avec le nodeId le plus proche numériquement se charge de garder

ces informations. Nous pouvons dans ce niveau intégrer ce module à un

équipement qui détient déjà les modules Réseau et Sécurité. Dans ce niveau nous

avons également l’optimisation du transport de SPOP ainsi que la gestion des

paramètres de QoS pour l’application de sécurité développée.

Figure 4. Les niveaux de l’architecture utilisée par l’application de sécurité intégrant SPOP

Le dernier niveau est le Niveau Application. Ce niveau est général dans notre

architecture. Il peut intégrer toute application susceptible d’utiliser les informations

d’alertes de sécurité indexées par le niveau P2P. En effet, nous proposons dans

notre cas un mécanisme de traçabilité pour un système global de défense contre les

attaques DDoS. Ceci fait partie des perspectives puisqu’une implémentation des

trois premiers niveaux a été testé.

En retirant toute entité centrale d’analyse de l’architecture nous proposons une

solution complètement décentralisée. Mais le choix de cette méthode doit fournir

une certaine garantie sur la bonne corrélation des données indexées pour une

détection des attaques DDoS et une réaction efficace à celle-ci. D’où la proposition

d’applications qui se chargeraient d’analyser les informations de trafic et décider de

la réaction en perspective à nos travaux.

Un exemple de réseau est illustré dans la figure 5, où des nœuds sont organisés

logiquement sur un anneau. Pour une plus simple compréhension nous avons

représentés les nœuds du niveau P2P de notre modèle mais qui intègre également

les niveaux Réseau et Sécurité. En effet, un trafic venant d’un attaquant est détecté

xxiii

par le module IDS d’un nœud et c’est le module DHT qui se charge de l’indexation

et de la recherche du nœud responsable des flux vers la victime en question. En

prenant l’exemple de l’IDS S771, nous voyons que la table concerne les victimes

d’indexes proche numériquement de ecee5f. Ces victimes ne sont pas connectées à

S771. La distribution logique des identifiants est calculée par la fonction HMAC et

les résultats de cette fonction dépendent des adresses IP (des victimes et des

nœuds du système de sécurité) et de la clé K indépendamment de la position sur le

réseau des entités.

 objectId
eced37
eced81
ecedad
ecee5f
ecee6a

ecee6f

…

nodeId (IDS) Fréquence R[S] R[A]

11fcae (S24) 100 10 150
76adfe (S197) 10 000 9 000 500

eb55fe (S522) 200 50 1000

ecbc12 (S680) 2 000 1 500 100
fd134f (S822) 11 000 8 000 50

…

Figure 5. Distribution et Indexation avec Pastry

Trois des nœuds de l’anneau ont détectés un trafic d’attaque ayant pour

destination la machine V780. Ces nœuds sont S197, S680 et S822. Les

informations sur cette victime sont gérées par l’IDS S771 déterminé par

l’algorithme DHT. Dans la table de référence nous avons les identifiants des

victimes gérées par le nœud courant et chaque objectId pointe vers une nouvelle

table. La primitive qui permet l’envoi d’un message de publication vers un autre

nœud est la primitive put qui nécessite la primitive lookup pour trouver le nœud

responsable de chaque objectId. Dans notre exemple, la victime concernée est

identifiée par ecee5f. La table d’information sauvegarde les différents flux ayant pour

destination V780 avec des informations concernant chacun de ces flux. Le nodeId

de chaque IDS est le résultat de la fonction HMAC et pour chacun de ces

identifiants sont représentés la fréquence, le taux R[S] (ratio de paquets SYN) et le

taux R[A] (ratio de paquets ACK). Trois de ces entrées sont considérées comme

xxiv

des attaques : les IDSs ayant découvert ce trafic malveillant sont S197, S680 et

S822.

4. Conclusion et perspectives

L’objectif de cette thèse est d’étudier la conception d’une architecture pour les

applications P2P contrôlées et gérées par les opérateurs de services. Le

management du trafic P2P et la réduction du temps de téléchargement sont de

véritables défis pour les opérateurs de services. Les clients s’attendent à recevoir le

meilleur service avec des performances maximales alors que les opérateurs sont

chargés de fournir les services avec la meilleurs QoS sans pour autant s’engager

avec un coût supplémentaire.

Nous avons fait le choix de BitTorrent pour la composante du transport de

messages. La première contribution est hTracker où l’on propose un algorithme de

sélection de pairs au sein du même AS que le demandeur et pour laquelle nous

définissons une sémantique permettant la correspondance entre peerIds des clients

et ASs auxquels ils appartiennent . En deuxième lieu nous avons effectué une étude

complète d’intégration de FEC à BitTorrent. Et enfin la généralisation du

cloisonnement de trafic par une DHT sensible au contexte afin d’intégrer au mieux

un moyen de regrouper les pairs selon un critère commun et d’optimiser ainsi la

recherche de la ressource. Une architecture appelée SPOP englobe ces différentes

contributions.

En terme de perspectives il est important que SPOP soit intégrée sur de réels

nœuds d’un réseau afin d’étudier les traitements et overhead ajoutés au réseau par

les différentes propositions. PlanetLAB [13] peut être une plateforme intéressante

pour tester notre solution. Il serait également pratique de dresser un cahier de

charges complet de certaines applications telles que l’IPTV et d’adapter SPOP à ce

type d’applications en terme de QoS.

xxv

Références

[1] R. Saad, A. Serhrouchni and K. Chen, "SPOP: A Service Provider Oriented Peer-to-

Peer architecture", à SoftCOM 2010, Septembre 2010 Split – Bol, Croatie.

[2] B. Cohen, "Incentives build robustness in BitTorrent", First Workshop on Economics of

Peer-to-Peer Systems, Juin 2003, Berkeley, Etats-Unis.

[3] J. Li, J. Striblin, T. Gil, et al, "Comparing the performance of distributed hash tables

under churn", IPTPS’04 à LNCSc 2004, 26-27 Février 2004, San Diego, Californie, Etats-

Unis

[4] H. Xie, A Krishnamurthy, YR Yang et A Silberschatz – "P4P: Proactive Provider

Participation for P2P", Tech. Rep. YALEU/DCS/TR-1377, Mars 2007, Yale University,

Etats-Unis.

[5] K. Pussep, S. Oechsner, O. Abboud, M. Kantor et B. Stiller, "Impact of Self-

Organization in Peer-to-Peer Overlays on Underlay Utilization", Fourth International

Conference on Internet and Web Applications and Services (ICIW 2009), Mai 2009, Venise, Italie.

[6] R. Saad, A. Serhrouchni and K. Chen, "hTracker: Towards a Service Provider oriented

Peer to Peer Architecture", à NOTERE 2010, Juin 2010, Tozeur, Tunisie.

[7] R. Saad, A. Serhrouchni, Y. Begriche et K. Chen, "Evaluating Forward Error

Correction in BitTorrent Protocol", to appear in Workshop on Wireless & Internet Services

(WISe) à LCN 2010, Octobre 2010, Denver, Etats-Unis.

[8] C. Gkantsidis et P. Rodriguez, "Network coding for large scale content distribution", à

INFOCOM 2005, Miami, Etats-Unis.

[9] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, et A. Zhang, “Improving

Traffic Locality in BitTorrent via Biased Neighbor Selection”, Proceedings IEEE Int'l Conf.

Distributed Computing Systems (ICDCS '06J, Juillet 2006.

[10] I. Papafili, S. Soursos, et G. D. Stamoulis, “Improvement of BitTorrent Performance

and Inter-Domain Traffic by Inserting ISP-owned Peers”, 6th International workshop on

Internet Charging and QoS Technologies (ICQT'09), Mai 2009, Aachen, Allemagne.

xxvi

[11] D. R. Choffnes et F. E. Bustamante, “Taming the Torrent: A practical approach to

reducing cross-ISP traffic in P2P systems”, Proceedings of ACM SIGCOMM 2008, Août

2008.

[12] S. Ren, E. Tan, T. Luo, L. Guo, S. Chen, et X. Zhang, "TopBT: a topology-aware

and infrastructure-independent BitTorrent client", Proceedings of INFOCOM'10, San

Diego, Californie.

[13] PlanetLab, http://www.planet-lab.org/

xxvii

Abstract

The paradigms and architectures of overlay networks and especially Peer-to-Peer
(P2P) networks became at the center of all types of large-scale applications achievements.
The architectures of resilience, grid computing or distributed processing, file sharing, the
distribution of all data types are increasingly based on overlay infrastructures.

It is necessary to incorporate a level of control over such applications. This control
can serve as economic models, security, quality of service (QoS), and this in order to
achieve various quality objectives. Such applications are would be deployed with an
Service Provider as the principal control entity.

In current practice, the entities peers sharing resources are placed in a random way on
a large physical network (IP). Furthermore, some applications including data distribution
like time constraints ones are demanding on completion time and bandwidth. Using such
an overlay network for such applications requires a special organization among peers.
We propose the design of an overall architecture for the implementation of such
applications on P2P platforms type.

In the P2P paradigm, it is possible to isolate three main components: the first is the
proper service application with all its parameters, the second one is for the routing (or
information lookup), the third one is for the data transport.

We are oriented toward architectures where networks are divided in different areas or
autonomous systems controlled by Internet Service Providers (ISPs). This work consists
in optimizing each P2P component to achieve best performances for different
application requirements. These results may lead us to specific structures for three
principal contributions. The first one has for objective to portion P2P traffic that is
generalized by applying a Context-Aware algorithm where each portion or group of peers
(peers in the same AS or sharing the same interest or capabilities) is based on a DHT.
The second one is to speed up data transfer with Forward Error Correction. The third
one is to integrate a Control/Management entity that manages the two previous
contributions and that varies BitTorrent protocol parameters depending on the
application service on top of the platform. These contributions have the following major
goals: to minimize download completion time and the peering traffic between domains
while keeping P2P robustness and interoperability.

We have made several large scale simulation studies that validate our propositions. In
fact, we showed that portioning the traffic can present positive impacts especially when
this portioning is complemented by an optimized routing Context-Aware algorithm. A
deep study concerning FEC mechanism applied to BitTorrent protocol proved how
much error correction can speed up data transfer in specific scenarios in homogeneous
and heterogeneous networks. Finally, we grouped these contributions to propose a
Service Provider Oriented P2P (P2P) architecture.

Keywords: BitTorrent, DHT, FEC, Locality, Overlay, Peer-to-Peer, Performance.

xxviii

xxix

Contents

List of figures .. xxxiii

List of tables .. xxxv

1. Introduction .. 1

1.1 Context ... 2
1.2 Problems and solutions .. 3
1.3 Contributions .. 4
1.4 Thesis plan .. 5

2. Overlay and Peer-to-Peer networks: Typology and Analysis .. 7
2.1 Overlay Networks ... 8

2.1.1 Overlay networks in Internet networks .. 9
2.1.2 Overlay functionality ... 10
2.1.3 Overlay networks emergence .. 10
2.1.4 Examples .. 11

2.2 Peer-to-Peer Networks .. 12
2.2.1 P2P objectives .. 13
2.2.2 Architectures ... 14

2.2.2.1 Centralized ... 15
2.2.2.2 Decentralized ... 15

2.2.2.2.1 Totally decentralized .. 16
2.2.2.2.2 Structured ... 16

2.2.2.3 Hybrid .. 19
2.2.3 Applications ... 19

2.2.3.1 File Sharing .. 20
2.2.3.2 Collaborative Computing ... 20
2.2.3.3 Real-Time Applications ... 20
2.2.3.4 Development Platforms .. 21

2.3 The BitTorrent protocol ... 21
2.3.1 Architecture ... 22
2.3.2 Functioning and protocol specification .. 23

2.3.2.1 How does BitTorrent works ... 23
2.3.2.2 Specification .. 28

2.3.3 Related works on BitTorrent ... 36
2.3.3.1 Performance studies based on measurements 37
2.3.3.2 Performance studies based on simulations 40
2.3.3.3 Performance studies based on analytical models 42
2.3.3.4 Contributions on locality-aware solution for BitTorrent . 43
2.3.3.5 Contributions on erasure codes applied to BitTorrent 45

2.3.4 BitTorrent simulators .. 46
2.3.4.1 NS-2 for BitTorrent .. 47
2.3.4.2 OverSim on OMNet++ ... 47

xxx

2.3.4.3 GPS ... 47
2.3.4.4 BTSim .. 48
2.3.4.5 Microsoft Research Octosim BitTorrent simulator 48

3. Peer-to-Peer traffic partitioning : a contribution 51
3.1 BitTorrent and peers locality ... 53

3.1.1 Aurora .. 56
3.1.2 Ono.. 57
3.1.3 TopBT .. 57

3.2 hTracker : Management and Control on a BitTorrent network... 57
3.2.1 Problem statements and objectives .. 57
3.2.2 The hTracker architecture ... 58
3.2.3 Mapping the AS membership with the peerId ... 59

3.3 Simulations and results ... 61
3.3.1 Homogeneous networks .. 62
3.3.2 Heterogeneous networks ... 65

3.4 Conclusion .. 67

4. Integrating Forward Error Correction (FEC) in BitTorrent
protocol: Measures and Analysis .. 69
4.1 Error correction mechanisms .. 71

4.1.1 FEC at the end ... 72
4.1.2 Network Coding .. 73
4.1.3 Digital Fountain: FEC applied on blocks .. 74

4.2 Speed up data access in Peer-to-Peer content distribution
networks .. 75

4.3 The simulation framework: Seeds providing FEC 76
4.3.1 Homogeneous networks .. 78
4.3.2 Heterogeneous networks ... 83

4.4 Statistical test model validating the results .. 86
4.5 Conclusion .. 90

5. SPOP : a Service Provider Oriented P2P architecture 91
5.1 Objectives and requirements ... 92
5.2 Related works and existing architectures .. 94

5.2.1 The ALTO Project: P4P architecture .. 94
5.2.2 The SmoothIT architecture .. 97

5.3 Why proposing SPOP ? ... 98
5.4 The Service Provider Oriented P2P architecture 99

5.4.1 SPOP architecture plans .. 99
5.4.2 Context-Aware DHT Routing plan ... 101
5.4.3 ISP oriented FEC service for the transport plan 106
5.4.4 Control/Management plan .. 111

5.4.4.1 Peers Set size variation .. 112
5.4.4.2 Pieces size variation .. 112

xxxi

5.4.4.3 Instantiate Seeds to compensate lack of resources 113

6. Global network security system: an application 117
6.1 Introduction .. 118
6.2 DDoS attacks overview .. 119
6.3 A P2P Collaborative Defense system based on SPOP 121

6.3.1 Problem Statement .. 121
6.3.2 The Distributed Hash Table algorithm ... 121
6.3.3 Description of the architecture.. 122

6.3.3.1 Principles and functioning .. 125
6.3.3.2 Simulation and results ... 127
6.3.3.3 Discussion... 128

6.4 Conclusion ... 130

7. Conclusion and general perspectives ... 131
7.1 Conclusion .. 132
7.2 Perspectives .. 133

List of publications ... 135

Bibliography ... 137

Appendix: Related Works on BitTorrent ... 151

xxxii

xxxiii

List of figures

Figure 2.1: Overlay network .. 7

Figure 2.2: Peer-to-Peer model vs Client-Server model ... 11

Figure 2.3: Peer-to-Peer applications and architectures ... 13

Figure 2.4: Chord algorithm .. 16

Figure 2.5: Pastry algorithm... 17

Figure 2.6: BitTorrent Architecture entities ... 22

Figure 2.7: BitTorrent download scenario .. 24

Figure 2.8: BitTorrent connexion states for a Leech ... 27

Figure 2.9: Get announce message... 30

Figure 2.10: BitTorrent Seeds states model.. 51

Figure 3.1: First exchange between a Leech and a Tracker .. 65

Figure 3.2: Valley-Free Path topology and AS magnitude in AURORA 67

Figure 3.3: Graph representing an example of a 4 ASs BitTorrent Network including 3
ASs using hTracker solution and one generic AS ... 70

Figure 3.4: hTracker peerId specification ... 71

Figure 3.5: hTracker policy scenario example ... 71

Figure 3.6: Completion times CDF for BitTorrent and hTracker with 1 and 20 initial
Seed(s) in a homogeneous network ... 74

Figure 3.7: Packets sent to other ASs in a homogeneous network for both solutions with
20 initial Seeds ... 75

Figure 3.8: Completion times CDF for BitTorrent and hTracker with 1 and 20 initial
Seed(s) in a heterogeneous network ... 76

Figure 3.9: Packets sent to other ASs in a heterogeneous network for both solutions with
20 initial Seeds .. 77

Figure 4.1: GF Matrix in FEC .. 82

Figure 4.2: FEC at the end ... 83

Figure 4.3: Network Coding ... 84

Figure 4.4: Digital Fountain mechanism ... 84

Figure 4.5: Model implemented in the simulator for FEC mechanism 86

Figure 4.6: Completion time depending on the Seeds number .. 87

Figure 4.7: Sent pieces depending on the Seeds number .. 87

Figure 4.8: Rarest First Policy and FEC mechanism ... 88

Figure 4.9: Leeches that become Seeds in a 50 normal Leeches swarm (homogeneous
network) .. 89

Figure 4.10: Leeches that become Seeds in a 100 Leeches swarm (homogeneous network) . 92

xxxiv

Figure 4.11: Leeches that become Seeds in a 1000 normal Leeches swarm (homogeneous
network) .. 93

Figure 4.12: Very high speed scenario with FEC mechanism (homogeneous network) . 93

Figure 4.13: Leeches that become Seeds: 1 initial Seed and 100 MB file (heterogeneous
network) .. 95

Figure 5.1: ALTO architecture .. 105

Figure 5.2: iTracker interface in P4P ... 106

Figure 5.3: P4P architecture ... 107

Figure 5.4: SPOP architecture ... 110

Figure 5.5: SPOP entities ... 111
Figure 5.6: Context-Aware DHT model ... 113

Figure 5.7: Average message number comparison between BitTorrent, generic DHT
algorithm and Context-Aware DHT .. 115

Figure 5.8: Completion download time comparison between generic DHT algorithm and
Context-Aware DHT .. 115

Figure 5.9: Network configuration for FEC service simulation .. 117

Figure 5.10: 1 Seed simulation for FEC service ... 118

Figure 5.11: 5 Seeds simulation for FEC service .. 119

Figure 5.12: 20 Seeds simulation for FEC service ... 120

Figure 5.13: Peers Set size variation impact on completion download 122

Figure 5.14: Piece size variation impact on completion download .. 123

Figure 5.15: Piece size variation impact on completion download (average time) 123

Figure 5.16: Study of the Seeds/Leeches ratio for a 10 MB resource .. 124

Figure 6.1: The architecture levels ... 132

Figure 6.2: The architecture entities ... 133

Figure 6.3: Nodes distribution and indexing with Pastry protocol .. 135

Figure 6.4: Lookup for V780’s IDS from IDS S197 .. 136

Figure 6.5: Bandwidth Consumption of ICMP Packets during an ICMP Flooding 137

Figure 6.6: Comparison of the architecture with a centralized approach 138

Figure 6.7: Sent and received packets number for 10 nodes during 2390 s 139

xxxv

List of tables

Table 2.1: Overlay network classification ... 8

Table 2.2: BEncoding data structure ... 28

Table 2.3: Single-file Torrent data structure in BitTorrent .. 28

Table 2.4: Multi-files Torrent data structure in BitTorrent ... 29

Table 2.5: Get announce message fields .. 30

Table 2.6: Get Response message fields ... 31

Table 3.1: Internet Autonomous Systems RTT measurements.. 73

Table 3.2: Parameters for homogeneous networks simulation with hTracker solution 73

Table 3.3: Parameters for heterogeneous networks simulation with hTracker solution 75

Table 4.1: Parameters for homogeneous networks simulation with FEC mechanism ... 114

Table 4.2: Parameters for heterogeneous networks simulation with FEC mechanism 94

Table 4.3: Comparing results between generic BitTorrent and BitTorrent with FEC
mechanism (100 Leeches) ... 96

Table 4.4: Comparing results between generic BitTorrent and BitTorrent with FEC
mechanism (2000 Leeches) .. 96

Table 5.1: Peers distribution in N for Context-Aware DHT simulation 114

Table 5.2: Peers distribution for FEC service solution ... 117

Table 5.3: Study of the Seeds/Leeches ratio for a 10 MB resource with the condition:

completion download time < 5 s ... 124

xxxvi

1

Chapter 1

Introduction

This chapter introduces this thesis by presenting the context of this research work in P2P networks. The
problematic is exposed with the different solutions that exist in the domain. Then we cite the different
contributions that are detailed in this thesis with their major advantages before concluding with the
manuscript plan.

2

1.1 Context

In the last few years, the Internet has experienced a huge growth in terms of number
of users and integration of new services. However, it has also shown some drawbacks. A
model has emerged and fits in with various applications. This model experiencing a real
success and that is at the center of many researches is the Peer-to-Peer (P2P) model.

The particularity of P2P networks is that they belong to overlay networks that provide
some services by using a specific logical topology and some nodes in the basic Internet
infrastructure. The nodes are still working normally: the routing and the packets transport
are still working following the network layer protocol but a layer on the top of the basic
infrastructure works with its own rules in a totally transparent manner. The principal
advantages of Overlay networks and especially P2P networks are scalability because of
their distribution and the deployment that does not need high investment. The load is
distributed among all peers and their capacities and resources are shared in order to make
all peers take advantage of this aggregate of storage capacity, CPU or bandwidth.

P2P networks are experiencing a vast expansion while various types of applications
are proposed generally with negligible costs. Applications that have been ascertained in
the P2P model are file sharing applications like Naspter [NAP] a few years ago, Emule
[KUL&al05] or BitTorrent [BIT] nowadays, instant messaging, VoIP peer-to-peer
application like Skype. The higher proportion of traffic exchanged inside and between
current Service Providers is the P2P traffic. While music and film production houses
have launched a war against illegal content providers and consumers, the ISP have
difficulties controlling and managing the P2P traffic, even before differentiating in this
traffic the legal one from the illegal one. In the academic research and industrial activity
we can distinguish common axes. Principal ones are video streaming, resources
managing, semantic overlay networks, resilient overlay networks, signaling traffic
optimization, etc.

The current Internet, composed of many Autonomous Systems, is facing an
important problem that is the future challenge of OEMs (Orginial Equipment
Manufacturers) and ISPs. It is to integrate the undeniable control and management level
that they need to mitigate the impact of P2P traffic in current networks. We know that
some techniques try to integrate QoS and resource reservation to reach some concurrent
objectives, especially in the case of real time applications that need a certain level of
quality. The IP protocol is not enough to ensure that these objectives will be reached. In
P2P networks, only a well specified and robust control level can provide the necessary
environment in which an application that needs to follow some specific objectives can
run efficiently.

It is essential to present each P2P component in order to analyze the place of each
contribution and the impact of implementing or changing any of its levels. A P2P
protocol is composed of three major components:

• The first one is the proper data transport level. In this level are defined the
protocol messages specification, the peers exchange rules, etc.

• The second component concerns data lookup and the routing algorithm that
helps find the requested resource: how the queries are redirected, is the system
logically structured as with Distributed Hash Tables (DHT) [JLI&al04].

3

• Finally we have the service that is the closest to the end user describing the
application in question and the objectives (QoS rules) depending on the
agreement signed with the ISP (TLA/SLA).

The majority of ISPs nowadays do not hold on the components described previously.
P2P traffic is in general generated by applications that are totally independent and
separated from the ISP infrastructure. After the success of structured P2P algorithms like
DHT that directly acted into the routing level of P2P model, some projects tried to go
further into these concepts by specifying a way to interface an ISP and its Autonomous
System with the P2P applications entities. ALTO project gives rise to the P4P
architecture [XIE&al07].

Following the needs of P2P protocols in terms of QoS and performance guarantee
for both customers and ISPs, we can conclude that a Control/Management level must be
added to ISP network architecture and that this level must be an interface to every level
of the P2P model. The targets are:

• Optimizing the transport level by proposing some mechanism to ensure
maximal packet entropy and the minimum loss ratio.

• Guarantying at the routing level the completion for each query with the
higher rate by minimizing the steps number and the signaling packets used by
the routing algorithm (overhead).

• Elaborating specifications for each service and its needs to 1) control the
traffic that is generated inside the ISP network and that is exchanged between
the ISP and the others for some economic reasons; 2) guarantee that the
environment is conducive to the service implemented in terms of delay,
bandwidth and loss rate depending on each application (real time application
or data sharing have not the same constraints).

1.2 Problems and solutions

The main advantage that makes the Internet have such a huge success is the absence
of the traffic control that permits deliver data with a best effort service. However, if this
is a good point for some applications, other binding applications cannot find the best
conditions to provide an optimized service in the basic Internet infrastructure. In P2P
networks that are on top of the basic IP infrastructure, clients download resources from
other peers at the same time in parallel. This flexibility in choice made P2P ton being
robust and scalable. In basic protocols, traffic control is naturally solved by TCP/IP stack
protocols. However in different new protocols, especially P2P ones, many ways must be
integrated to control and manage this traffic depending on the application.

Traffic that is inside an ISP is easier to control than inter domain traffic. When peers
from an AS1 solicit peers from AS2, the first operator responsible of AS1 must pay the
traffic that was drawn from AS2 whereas when AS1 peers are using traffic from their AS
this problem is not encountered. This does not mean that this traffic is not considered as
a cost for AS1. Indeed, this traffic also has a cost and must be fairly controlled among all
the peers depending on each QoS class required by each of them. The cause of intra
domain traffic overhead is due to two principal problems: 1) When the routing protocol
used by the applications is not optimized some signaling messages can disrupt the traffic
especially when the queries are flooded inside the network like in Gnutella for instance

4

[GNU01] 2) Some applications generated useless packets that must be controlled by the
operator. For inter domain traffic the distributed aspect of P2P caused the generation of
significant inter-domain traffic. In [KAR&al05] the authors show that for BitTorrent
protocol, 50 to 90 % of local pieces are taken from other ASs. Some ISPs tend to violate
peering agreements caused by traffic unbalance. Either the ISP control the traffic by
estimating the needs depending on the applications or the P2P applications designers
must adapt their traffic to networks variation. A compromise is here evocated concerning
both the Service and the Routing level. In addition to providing traffic engineering at the
Service level to control the traffic based on the application needs, it is important to
adopt, at the routing level, protocols that minimize the message overhead and that
provide the best performance in terms of resource lookup. The choice of DHT can be
justified by their robustness and scalability. Many P2P applications propose the
integration at the routing level of a structured algorithm like Chord [STO&al01], Pastry
[ROW&al01], Tapestry [ZHA&al04], Kadmelia [MAY&al02], etc.

At the transport level the major problems are the following: 1) Some peers experience
a lack of resources due to their weak capacities or because they are victim of the last
block problem. 2) The queries completion and the resource download directly depend on
the network properties at each instant and when the network encountered some
difficulties this can affect the transport 3) Some security issues must be considered at the
transport level. This security concerns data transport or even the signaling message
transport at the routing level. For the first problem some mechanisms and algorithms are
proposed to ensure the best entropy and data proliferation but without degrading the
network performance. Error correction [RIZ97] and network coding [GKA&al05] are
techniques proposed to speed up data access at the transport level. As mentioned
previously, the second problem depends on the network environment. This implies that
traffic engineering must be established upstream to provide the best network conditions
for data transport. Finally some security mechanisms can be integrated against Eclipse
[WAL&al02] and Sybil attacks [DOU&al02] and to ensure authentication and data
integrity.

1.3 Contributions

The objective of this work is to provide a global architecture for Service Provider
oriented P2P applications. We proposed to deal with each P2P level to integrate some
mechanisms that can perform each level, based on large scale simulation measures and
their analysis. The final goal of this step is to design a global architecture that ISPs can
adopt to launch any application based on the P2P model in the best conditions.

The protocol BitTorrent is probably the most famous P2P data sharing protocol and
can be regarded as transport method in its own right and not only as a data sharing
application. It is used in many applications like Linux distribution installation, IPTV, etc.
We decided to make BitTorrent as our transport protocol.

The first contribution of this thesis is the modification of BitTorrent peer selection
policy. This proposition has already been proposed in [BIN&al06] and [PAP&al06]
where the peers selected for the communication are mainly in the same AS as the peer
that is at the origin of the request. This allows to conciliate the traffic and to advocate
intra domain traffic at the expense of inter domain traffic that may cost a lot and require
some new peer agreements. For the best of our knowledge, no formal specification has
been proposed for peer membership in their AS. We decide to change the peerId

5

specification in BitTorrent that was forged by the client with a free manner. In our
contribution, we will show how we can use HMAC [HMC97] function to generate for
each peer a semantic to their peerId. This has two main advantages: the first one is that the
ISP will be able to control the peers to manage the generated traffic and the second one
is that among the peerId creation, we will add a security level to the system. This
contribution essentially deals with the Service level because it has the objective to
facilitate the control of the peers and their needs. We will see in addition to that peer
selection policy, that a method is proposed to vary the peers list depending on the
launched application.

The second contribution concerns the transport level of P2P model. We propose to
integrate Forward Error Correction (FEC) mechanism to BitTorrent but this integration
requires a study. In fact, the impact of FEC varies depending on many parameters such
as the peers’ number and capacities, the file size, or the FEC ratio. An evaluation study
based on large scale simulations has been undertaken to conclude in which scenario FEC
has a positive influence on the general performance of the system based on the
completion time metric. The simulations have been corroborated by a statistical test.

The third contribution of this Thesis is the proposition of a global architecture that
implements both previous contribution and that can be a full model to integrate any
application that can be managed by an ISP. We called this architecture the Service
Provider oriented Peer-to-Peer (SPOP) architecture. In this contribution we will define
and justify the choice the mechanisms that make part of the architecture. While at the
transport level we adopted BitTorrent, we chose a Context-Aware DHT at the routing
level and a QoS policy structure at the service level with the different policies that the ISP
is ready to ensure (peer selection policy, varying the peers set size depending on the
feedback, maintaining a threshold for the sliding window maximum delay in streaming
applications, etc.). In this last point we define an entity called hTracker that is the control
entity in an AS responsible of managing and controlling the system. This is the main
control point that the ISP has to interact with its members.

To validate our architecture we propose a global security application where intrusion
detection entities are distributed following our model and exchanging data information
that are used by a service to react after these alerts.

1.4 Thesis plan

The rest of this Thesis is divided as the following. Section two presents a typology
and analysis of Overlay and Peer-to-Peer networks, especially BitTorrent protocol that is
the transport protocol on which our work is based. The third section describes the first
contribution that concern the P2P traffic partitioning and the simulation results that
validate our proposition. A FEC mechanism integration to BitTorrent is evaluated and
the simulations are appreciated by a statistical test model to corroborate this other
contribution in section four. The SPOP architecture that includes previous contributions
and some other P2P service level specifications is presented in section cinq. Section six is
a case study of a security application developed to validate the SPOP architecture with
intrusion detection nodes.

6

7

Chapter 2

Overlay and Peer-to-Peer networks: Typology and
Analysis

This chapter is a global presentation of Overlay networks and especially P2P networks. We focused on
BitTorrent that is the protocol chosen to simulate and measure the efficiency of our contributions and that
is implemented at the transport level of the global architecture that finalizes our work. We define
BitTorrent specification, entities and algorithms with the different mathematical models that already exist.
We detailed also a complete related work section with some performance results that motivate our choice.

8

2.1 Overlay networks

An overlay network is a virtual network based on one or more existing physical
networks, so-called underlying or underlay networks, including the Internet (or sub-
networks of the Internet) which is a good example.

The overlay network is formed by a subset of nodes in the underlay network, and a
set of logical links between them, allowing a direct communication, while ignoring the
topology and network protocols underlay. We call a node every network equipment,
terminal or intermediate, of any kind, that acts like a router, client or server.

The overlay networks [LUA&al04] have always emerged when a new service that did
not exist in the network had to be established. Thus every computer problem was able to
be solved by a layer of indirection, or rather a redirection to a new virtual network that
implements the solution. It is possible to design systems based on one or more overlay
networks, serving as underlay networks and themselves working over a network like the
Internet or the underlay network.

Figure 2.1: Overlay network

When the Internet began, it was based on a research network running on top of the
PSTN (Public Switched Telecommunications Network). A data application was running
over the telephone public networks, and could be considered as an overlay network that
added the packet-switched data communication functionality to the basic infrastructure
of the PSTN. The Internet Service Providers (ISPs) were the principal actors of the
Internet emergence. What we could call in the past the overlay network is our basic
Internet network used by other applications and services (like multimedia data
applications) to form new generation overlay networks.

As an example we can take the existing protocol Mobile IP [MOB02] where it is
possible to physically redirect IP packets. In this system, the home agent is the router
itself that has an interface in the same home network where the mobile is connected. This

9

home agent integrates a header to the IP packets to permit their redirection with the
same IP routing classical mechanisms.

IPSec [IPS08] technique is also an example of an overlay network constructed over
the IP network for some security issues.

We can consider in the OSI model that for every level of the network architecture an
overlay network is formed over the inferior level.

Table 2.1: Overlay network classification

Type Function Examples
Peer-to-Peer (P2P) File sharing, Instant

Messaging, IPTV, etc
Gnutella, Kazaa, BitTorrent,
P2PLive, etc

Content Delivery
Network (CDN)

Content caching to reduce
transport delays

Akamai, Digital Island, FreeCast,
Contendo, etc

Routing Reducing routing and
resilient delays

Resilient Overlay Network (RON)

Security Security purposes Virtual Private Networks (VPNs),
FreeNet, IPSec, etc

Experimental and tests Experiment new protocols
and validation

PlanetLab

Other Various Multicast (MBone), IPv6 (6Bone),
VoIP (Skype), Mobility (Mobile IP),
SON, etc

An Overlay is a set of nodes deployed across the Internet that:

• provides a physical infrastructure to one or many applications (in best cases),
• are responsible for forwarding and handling application data in ways that are

different from the basic Internet protocol,
• are operated in an organized and coherent way by end-users to provide a

specific service,
• are not considered as part of the classical basic Internet infrastructure,
• have their proper routing protocol that is generally independent from the IP

routing except for exceptions like topology-aware Overlay networks.

2.1.1 Overlay networks in current Internet networks

We defined an overlay network as existing over the basic Internet infrastructure and
providing its own infrastructure and routing protocol. This permit us, based on the OSI
model, to see an overlay network as a level in the middle between the IP network layers
and the application one. Even if the OSI model provides a reference in the definition and
the analysis of protocols, it cannot address all aspects of overlay networks. In fact, it is
important to be interested on determining how overlay networks are evolving with the
current Internet infrastructure and design.

The Internet is basically composed with hosts that are the end nodes and routers that
forward the packets between the hosts. We generally see the Internet network as a group
of connected routers with hosts that are connected at the border of this group. The
applications are running on the hosts and are totally transparent for routers. The third
components that can be defined are the servers that are responsible for providing a
specific service for the profit of end users that are connected to the hosts.

10

In this specific vision we can say that this new possibility of integrating services to the
basic Internet infrastructure can be considered as an overlay network using a physical
network to provide some services to end users.

2.1.2 Overlay Functionality

It is important to study the functionality of overlay networks when it is necessary to

understand their principal objectives. Let’s consider the physical infrastructure as the
grouping of protocols like TCP/IP or UDP/IP (and even routing protocols like BGP)
that permit to form the core network necessary for any kind of applications that may be
part of the Internet. The success of the Internet network is due to its capacity to
implement any physical support (SONET, wireless, etc.) to provide any kind of
applications (data, voice, video, gaming, etc.) with a generally distinguished
interoperability.

However, the principal drawback recognized in the Internet is its best effort service.
The needs in terms of QoS (Quality of Service) for applications like multicast or delay
constraints application like VoIP, Video On Demand (VOD) or IPTV are a real
challenge. This is how overlay networks tend to bring the best solutions for these issues
that are essential for current applications in the Internet.

2.1.3 Overlay networks emergence

The reasons of the overlay networks emergence are various. The first reason is that
overlay networks are born to fit some specific needs that are different from the basic
Internet data forwarding needs, as we explained in the previous paragraph. An
application can provide a virtual cloud composed of basic physical nodes with a logical
topology. This topology would permit to connect an end user of a specific overlay
network to communicate with other peers, following some constraints fixed by the
Service Provider or the administrator of this overlay network.

Even if the best effort aspect of the current Internet is a major inconvenient, it
presents the advantage of providing an easy way to deploy applications in a large number
of nodes without any modifications of the infrastructure. However it is a real challenge to
make a new application functioning without any problems in terms of scalability, fault
tolerance and performance. The objectives of IPv6 were to integrate to IP protocol some
mechanisms that could provide the layer that needed IPv4 protocol. However, we also
know that this kind of change in the current Internet is a very difficult project. The first
solutions that allow developers to test new protocols and applications were overlay
networks. We can take the example of PlanetLab [LAB] that permits the integration and
the validation of various kinds of applications using specific nodes over the whole
Internet network.

2.1.4 Examples

MBone

The MBone [MBO], for Multicast Backbone, is a virtual network on the top of the IP
basic infrastructure that permits the integration of Multicast technique over the Internet.

11

The principle is to logically redirect the traffic to a group of users sharing the same IP
address. The MBone is formed by some multicast clouds interconnected by virtual
tunnels with routers that have the multicast functionality. In France the MBone have a
version called the FMBone.

6Bone

The 6Bone [FIN&al04] has been developed to test the implementation of IPV6
network. The principle is exactly the same as MBone. Some IPV6 networks are
interconnected by IPV4 tunnels. The problem is that to apply IPV6 in the Internet
requires the change of every routers used in the Internet today because the protocol
specification is totally different. A D-day in IPv6, when the entire infrastructure will
change, is a must and this solution is hard to imagine and very expensive actually.

RON (Resilient Overlay Network)

RON [AND&al01] is an overlay network that was created to establish a control of the
different Internet links quality and that permits the detection of alternative routes when a
service is interrupted whatever is the reason (fault, attack, etc). It allows the resilience and
the restoration of a connection between nodes in a low time delay when some other
protocols like BGP-4 can take several minutes.

SON (Semantic Overlay Network)

The problem of current overlay networks and especially P2P networks that are used
for file sharing applications is that the management of the queries volume is difficult to
maintain. It is a challenge to minimize the overhead created by an increase of useless
requests. One solution is proposed by the Semantic Overlay Network [CRE&al02] that
integrate a semantic to each file shared in a P2P network using Bloom Filters [BLO70] to
verify the presence of specific information in the file. This semantic can concern the
description, the content or the queries history of the file. This semantic signature is
integrated to the routing tables that allow performing better resource localization.

CDNs (Content Delivery Networks)

CDN is a network that is formed by several cache servers that provide an optimized
management dispositive of high data volume communication flows and permitting the
data transport in the best conditions. The major objective is to minimize the bottlenecks
in the network. Most of the CDN clients are Service Providers that need to propose
reliability and availability in their services. Akamai [AKA] and Cisco [CIS] are the main
interested companies in this domain.
OverQoS

OverQoS [SUB&al04] is an architecture that is based on an overlay network that has
for objective to enhance the best effort service of the Internet. A traffic aggregate
observe the loss rate and limit it using a virtual link called CLVL (Controlled Loss Virtual

12

Link). The different services provided can be smoothing packet losses, prioritizing
packets within an aggregate, guaranty bandwidth and statistical losses.

PlanetLab

PlanetLab [LAB] is an overlay network that connects some specific nodes (around
900) scattered around the world and that was developed as a research test platform in
network and distributed systems domains. For each project a slice is created generating
the reservation of a virtual network corresponding to a part of the PlanetLab network.
Only enterprises and academic institutes can have access to the nodes even if some free
services like OpenDHT [RHE&al05] have been launched for public use.

2.2 Peer-to-Peer networks

Figure 2.2: Peer-to-Peer model versus Client-Server model [GNT]

In this Thesis, the examples of overlay networks we are interested in are P2P (Peer-
to-Peer) networks.

A P2P network is any distributed network composed of nodes that share their
resources with other network participants without any central server. A peer is both client
and server, supplier and consumer of these resources. This model differs from the
classical Client-Server model where only servers provide the service while clients use it.
The Figure 2.2 illustrates the difference between both models.

The definition of the word “peer” reminds us the notion of equality in terms of role
or function. In fact, in a pure P2P system all peers have the same functions and roles and
no one has a higher hierarchical status. In computer networks a peer is equal to a host or
a node in a system.

Peer-to-peer is usually associated to illicit file download applications in the Internet,
and this is due to the impact that had or still have some applications like Napster [NAP],
Kazaa [KAZ] or Emule [KUL&al05]. However, Peer-to-Peer is not only characterized by
this kind of use, while sharing content is not prohibited by law if this content is not
protected by copyrights.

The Intel P2P Working Group defines P2P as the “the sharing of computer resources
and services by direct exchange between systems” [INT]. For the SETI@home [KOR01]
project members “P2P projects that do not involve communication are inverted Client-

13

Server”, which means that nodes at the edge provide the resources and those at the core
coordinate them.

2.2.1 P2P objectives

The P2P have as major objectives, like all information systems, to offer applications
and services that are satisfying users’ needs. It is important to define and analyze these
needs in our work while it is our goal to provide a platform based on the P2P model that
can guarantee the best performance and usage conditions for users. We detail in the
following the most important points that form the requirements and specifications of a
P2P system:

Costs Sharing/Reduction: Centralized systems that serve important number of clients
represent the major costs of a system. When this cost is too important, P2P architecture
can help to distribute this cost among peers. Taking the example of file sharing
application, the storage costs can be distributed among all clients while keeping an
essential index to maintain the sharing. This sharing can work thanks to the use of
unused resources aggregation (like on SETI@home [KOR01] project). This permits to
reduce the most expensive system components. While every peer tends to be
autonomous, it is important to keep consistent and balanced costs among all nodes.

Resources aggregation and interoperability: a decentralized approach tends naturally
towards resources aggregation. Every node in a P2P system keeps some resources like
CPU power or storage capacity. Applications need those resources in important
quantities, like Grid Computing or file distribution systems. A distributed system like
SETI@home [KOR01] is a good example. When thousands of computer resources are
aggregated, the systems are capable of calculating some very complex calculation
function. Even in file sharing applications like in Gnutella [GNU01] or BitTorrent [BIT],
resources aggregation is the basis of their success. In this case, the principal resources
that are aggregated are storage capacity and bandwidth. These resources are available for
the community to respectively save some information and transport it quickly. We know
that all nodes are not necessarily homogeneous in many aspects. Maintaining
interoperability between systems is important to allow communications between
heterogeneous peers.

Reliability/Scalablity/Extensibility: P2P networks are devoid of any control of
autonomous nodes and this motivates designers to increase the reliability and the
extensibility of those systems. Many innovations are introduced to fulfill these objectives.
It is essentially at the lookup and routing level that some new algorithms are integrated to
previous generic systems. Examples are decentralized structured P2P applications like
Chord [STO&al01], Pastry [ROW&al01], CAN [RAT02], etc. They are generally based on
a Distributed Hash Table (DHT) that index and distribute the resource among all nodes
in a logical deterministic way that optimizes the resource lookup in a P2P system. When
it is a question of reliability, it is important to observe the evolution of the system while
the peers’ number is increasing. A reliable and scalable system must be unchanged even if
many peers have joined it. The availability here is an aspect that is essential to quantify
the performance of any P2P system.

14

Autonomy: in most of the cases, users in a distributed system are not forced to depend
directly on a central server. Instead they prefer to store most of the information and to
keep the treatment done locally. P2P systems support this autonomy level because they
are built to let nodes execute the whole work generated by the end user. In fact, in file
sharing protocols, the users can exchange data without depending on a central point. The
drawback is that without this control, the proliferation of illegal data exchange is
encouraged.

Anonymity: Anonymity notions are directly linked to autonomy aspect described
previously. A user can prefer that its ISP and anyone else know its activity in P2P
systems. Actually some new concepts must be applied to allow ISPs to establish a real
survey on peers’ activity and traffic generate in its Autonomous System and passing by it.
Hiding will tend to be prohibited since it would be easy for a user to break the rules. It is
generally difficult in a P2P system to ensure a total anonymity since servers have to know
clients and to connect them together in some applications. Freenet [CLA&al00] is the
application that provides the best anonymity but it has not been a great success.

Dynamism: P2P systems integrate the fact that their computer environment is extremely
dynamic. In fact, the resources like all nodes in the system can join and leave in a random
and continuous manner. When an application has to support a dynamic environment, the
P2P approach is implicit. File sharing application has to manage the fact that the data is
scattered in different nodes that are not connected at the same time.

2.2.2 Architectures

Figure 2.3: Peer-to-Peer applications and architectures

In Figure 2.3 we summarize the different P2P architectures and applications. This list is
non exhaustive but references the major elements of P2P networks.

2.2.2.1 Centralized

The most famous P2P network was probably Napster. Its originality lies in the fact
that it uses a centralized architecture. This concept has contributed to its success but also

15

to its loss. On paper, such a device is currently the most comfortable solution for sharing
files in one community (music, DVD, etc.). However, in reality, this architecture requires
such a resource investment that services are rarely of good quality. Either they are
saturated, or they are limited in terms of simultaneous users allowed. Concretely, in any
centralized architecture, a server is responsible for directly connecting users between
them. The value of this technique lies in the centralized indexing of all directories and
files shared by subscribers on the network. In general, the update of the database is doing
in real time, when a new user connects or leaves the service. It works with the customer
as with a conventional search engine: a query is started by entering a keyword. The client
get a list of users currently connected to the service and whose files are shared to the
search term. Therefore, simply click on one of the titles link to connect directly to the
corresponding machine and begin the transfer. Under these conditions no files are stored
in the server.

The main advantage of a centralized list of users and files or resources that the peers
share is the speed of response from the server. Since it is dedicated to handling queries
and data referencing, it is efficient and can respond quickly as it has all the information
locally to check if at any user a particular resource can be found. We also note that it
simplifies the use because the user has no server to choose as in the case of the Hybrid
architecture presented in next section.

The limitations of this system are numerous. That is the reason why the majority of
consumer applications do not function in this model. It requires a large investment for
the servers on which the entire burden rests. This is a weak point while if the server goes
on, all users are deprived of their resources.

To solve the problems of robustness and improve the quality of connection with the
server, the central server of the centralized architecture is replaced by a ring server. This
prevents the collapse of the network if a failure occurs on a server, because there is
always a valid connection to the servers.

Furthermore, the use of multiple servers permits a better distribution of the
connection requests and it can therefore limit the drop in bandwidth. Each server can
have access to customer information connected to others. Access to shared data is
completely transparent to users. The solution improves service availability and robustness
of the architecture but it is an important investment.

We decided to put BitTorrent in this architecture category because of the Tracker
entity while we can put it as apart from all usual classification because of its specificity in
terms of functionalities and mechanisms.

2.2.2.2 Decentralized

2.2.2.2.1 Totally decentralized

This architecture is based on network nodes, rather than on a central server. The
system for exchanging files is completely decentralized. The software user connects to
the computer via the Internet to one or more other users, thereby creating a network. In
this way, each user is available to the entire community. This model is more difficult to
use than the first one because end users need to find a starting node on the network to
connect. Otherwise, the network cannot be used and a peer will have difficulty find
another one.

16

The principle is: a computer "A", with a specific program (that both acts as client and
server both), connects to a computer "B" also equipped with this program. "A" and tells
him he is "alive". "B" relays this information to all computers to which it is connected,
"C", "D", "E" and "F", etc. They will relay the information to turn to computers they are
connected, and so immediately with all computers on the network.
Once A is found "alive" by the other members of the peer network, it searches the
content of interest in the shared directories of other network members.
The request will be sent to all members of the network, starting with "B", then to all
other members. If one computer has this file, it transmits the information to "A". This
may well open a direct connection to that computer and download the file.
This model, being decentralized, is much more robust than a centralized model since it is
not dependent on the server, potential point of failure of a network. If a user disconnects
from the network, the application may be continued to other computers.
Fully decentralized architecture presents some drawbacks. The system is easily
overloaded by requests relayed (broadcast) that are multiplied with the number of
connected peers. This can reduce the burden carried by the network. The latter is more
difficult to control and to administer as it has no central node and must be, if it needs
configuration, configure all clients.

It is important to note that on a public network such as Gnutella, for example, the
responsibility is fully shared. It can be worn by the head of the software because it has no
control over the content shared on the network (which may well be legal to be illegal).
This shared responsibility has therefore introduced a concept of community.

One consequence of this architecture and the convergence time of such a network is
the slow lookup that requires a high number of messages that is proportional to the
number of network elements (and exponentially with depth lookup). However, optimized
protocols were established, based on distributed hash table, to conduct lookup in a
number of messages increasing logarithmically with the number of network elements,
such as CAN, Chord, Freenet [CLA&al00], GNUnet, Tapestry, Pastry, and Symphony.
Those protocols follow the decentralized but structured architecture.

2.2.2.2.2 Structured Decentralized model

A decentralized P2P network can be structured when an algorithm controls the
logical topology of the network and the way the resource is found by each peer follow
this algorithm. The main advantage of this type of architecture is that the peers do not
have to flood the network to ask for the resource. This avoids the overhead on the
network. The lookup can also be optimized while the resource and the peers are indexed
logically following an efficient algorithm. Most of the structured algorithms are based on
Distributed Hash Tables (DHT). We will present the most famous and interesting
algorithms depending on the type of logical architecture they are based on. These
protocols are considered as second generation P2P protocols.

Ring topology

Chord

Chord is the most famous DHT algorithm and the most simple to understand and to
implement. It is based on a ring topology unidirectional (clockwise) and like all DHT it

17

stores key-value pairs by indexing keys among all nodes of a network. The objective of
Chord is to specify the way keys are assigned to nodes and how a node request for the
value of a given key by locating the node responsible of this specific key.

In the Chord ring we have 2m nodes. The circle can have IDs/keys ranging from 0 to
2m − 1. Each node is responsible of some keys and the overall information database is
uniformly distributed and in the same identifier space due to what is called the consistent
hashing. Each node has a successor and a predecessor. Both keys and nodes are assigned
an m-bit identifier. For nodes, this is a hash of the node's IP address. For keys, this
identifier is a hash of a keyword, such as a file name. A logical ring with positions
numbered 0 to 2m − 1 is formed among nodes. Key k is assigned to node successor(k),
which is the node whose identifier is equal to or follows the identifier of k. If there are N
nodes and K keys, then each node is responsible for roughly K/N keys. When a new
node joins or leaves the network, responsibility for O(K/N) keys changes hands. If each
node knows only the location of its successor, a linear search over the network could
locate a particular key. Chord requires each node to keep a "finger table" containing up to
m entries. The ith entry of node n will contain the address of successor(n + 2i). With such
a finger table, the number of nodes that must be contacted to find a successor in an N-
node network is O(logN). In Figure 2.4 for instance K33 and K35 are managed by N39.

N60

N1

N7

N12

N24

N32

N36

N42

N48

N53 K3
K5

K61

K8

K11

K9

K21

K30
K33K35

K39

K49

K45

K47

K52

Figure 2.4: Chord algorithm

Pastry

This implementation also consists of connected nodes using a P2P network but that
follows a structured Plaxton based algorithm [PLX&al97] for resource lookup. When a
node joins the system, it is assigned a unique ID, a 160-bit value. In this 160-bit ID space
the distance between two nodes A and B must be min(A-B mod N, B-A mod N). In Pastry
the logical topology is also a ring but in this DHT implementation the ring is
bidirectional. Thus, the distance between nodes is a minimum distance along a circle
from one node to another. The main difference between Pastry and Chord is that Pastry
presents a bidirectional ring topology.

The principal objective of Pastry is to manage communication between nodes. The
algorithm is demonstrated in the following Figure 2.5. To send a message from a node
with node ID 1084 to the address 0128, Pastry first sends the message to a node that has
a matching prefix of one digit. The recipient checks the message. If the recipient has its
node ID closest to the destination address that means the message is addressed to it. If
not, the recipient forwards the message to a node that matches the destination prefix with
two digits. And so on the message arrives at its destination in log (N) hops. A node

18

sending message to address 0128 first sends it to any node that has first part of the
address 0. Then the message is sent to a node that has prefix 01, then 0128. Since the last
node ID digit cannot be matched by any node, the node 0122 processes the message as
the node 0128 has the closest node ID. In Pastry each node has a routing table, a leaf set
and a neighborhood set. The number of rows in the routing table is equal to the number
of node ID digits and the number of rows is one less than the number of distinct digits in
base 16 (if this base is chose). In the routing table, the nth row nodes have a length
matching prefix with the current node ID. The leaf set keeps nodes addresses of nodes
that have close IDs to the current node. This table helps routing. The neighborhood set
has addresses of nodes that are physically close to this node. This table is used for routing
updates.

Figure 2.5: Pastry algorithm

Tapestry [ZHA&al04]

In Tapestry the hash key is 160 bits long and the object identification is defined by a
GUID (Global Unique Identifier). A recovery graph is created to avoid faults with some
replicate objects inserted in the path towards the top of this graph. Different keys are
used in Tapestry and the routing table contains nodes that are closer numerically as in
Pastry algorithm. Tapestry takes into consideration the physical distance in the network
(RTT) but comparably to Pastry which is also a Plaxton [PLX&al97] based algorithm,
Tapestry routing is based on the identification suffix and not the prefix

Tore: CAN [RAT02]

The Content Addressable Network is a distributed P2P architecture based on a DHT
designed to be scalable, fault-tolerant and self-organizing. The principle is a virtual multi-
dimensional Cartesian coordinate space. This space is a virtual logical address
independent of the physical layer. The partitioning is done such as every node in the
system possesses at least one distinct zone within the overall space. This architecture was
one of the first DHT proposed for P2P systems.

Butterfly: Viceroy [MAL&al02]

Viceroy is a routing algorithm based on a Butterfly model. This protocol is an extension
that ameliorates Chord algorithm with a multi level dimension topology. Each peer in
Viceroy maintains two pointers for the successor and the predecessor at the same level,

19

two pointers for the successor and the predecessor at the reference ring that is usually
the level 1 ring, and three pointers for nodes in the right and in the left in lower levels
and for the closest node in the lower level. The lookup is done step by step from the
node level to the higher levels until the request reach a success.

2.2.2.3 Hybrid model

This model is also called the Super-Node or Super-Peer model. A Super-Peer acts as a
server or intermediate node for a group of peers. In this kind of model, this special peer
is chosen because it presents some special capabilities (High performance peer in terms
of memory and bandwidth) and constitutes the central entity as in centralized model but
only for a group of peers. This model is designed to take profit from the advantages of
the two types of networks which are the centralized and the decentralized ones. Indeed,
this architecture structure reduces the number of connections on each server, thereby
avoiding the problems of bandwidth.

On the other hand, the network server uses a mechanism based on decentralized
networks to maintain a client directory and a file index based on information from other
servers. A server can offer all information contained on the network to any customer.
The network is no longer polluted by broadcast frames but the counterpart is that
anonymity is no longer assured. Examples of Hybrid architecture protocols are Gnutella
version 0.6 [GNU01] and Freenet [CLA&al00]. Some literature puts BitTorrent in this
category while we think that BitTorrent is more a centralized architecture protocol
because of the Tracker entity. In fact, BitTorrent can be apart from usual classifications.

2.2.3 Applications

Distributed computing is particularly used today in finance and biotechnology ; for
instance in some financial institutions such as banks, where credit institutions must
implement extremely complex simulations for calculations of the market. In the past,
financial applications were usually performed during the night. Today, these applications
are more real time sensitive and need to be executed on time. Only certain large
institutions are able to assume the cost of setting up a system powerful enough to
support these simulations. An alternative for smaller structures is the use of P2P systems
can use all the computing resources for the calculation of these simulations.

2.2.3.1 File Sharing

The storage and sharing content are the areas where P2P technology has been and
still is the most used. With the emergence of some various media files sizes, we needed a
way to share these files without being hindered by the limited bandwidth of the time.
Distributed storage applications that concern information based on P2P technology offer
the following features:

• Spaces for file sharing: systems such as Freenet [CLA&al00] potentially
enable users unlimited storage capacity thanks to the redundancy management.
A file is stored on one or more nodes in the community but is available to all
members of the community.

• High availability of storage space: duplication and redundancy in some
projects can provide a virtually anytime availability of stored files and
protection of sensitive files.

20

• Anonymity: Some P2P applications like Freenet [CLA&al00] ensure
anonymity of authors and readers of the network.

2.2.3.2 Collaborative Computing

P2P collaborative applications are designed to enable collaboration between users at
the application level. The nature of P2P technologies enables effective collaboration
between users. The applications in this category include instant messaging, online games
and shared applications that can be used in professional environments, educational and
personal use.

In collaborative applications peers form a group and start a given task. One group
may include two peers who work directly or a wider band. When a change occurs in a
peer (the peer sends a chat message for example), an event is generated and sent to the
group. At the application level, each peer's interface is updated accordingly.
There are many technical challenges that make difficult the implementation of such
systems. Like other P2P systems, the location of other peers is a challenge for
collaborative systems. Many applications, such as rely on centralized directories that list
all peers online. To form a new group, a peer consults the directory and selects the other
peers. Other systems, such as Microsoft NetMeeting, can require peers to add members
based on their IP address.

Fault tolerance is another challenge for these systems. In the shared applications,
messages need to be transmitted with high reliability so that all peers have the same
vision of the information. In some cases, the scheduling of messages is also very
important. If non-P2P applications are not as strict on these points, P2P applications will
need to be rigorous. Indeed, the lack of autonomy of central control may curb if the
whole system is not very reliable. One of the solutions used in most P2P systems is to
stack the sent messages and messages to be issued.

Finally, real-time constraints are probably the most complicated aspect in
collaborative task implementations. Users in such environments, felt directly on time.
Unfortunately, in this case, most of the network is involved, rather than the P2P system
itself.

2.2.3.3 Real-Time Applications

Real-Time applications are one of the biggest challenges for P2P networks. Current
researches are focusing on how to distribute streaming data on P2P with the best
performance and by respecting ISP Peering strategies. Streaming engaged high traffic
volume that is difficult to manage by ISPs when they do not have control on the
applications launched in their network. PPLive [HEI&al06], PeerCast [JIA&al08] or
PPStream [WEI&al09] are examples of IPTV P2P applications that are usually used in
Asian countries and especially in China. VoD is also a killer application and is generally
based on Content Distribution Networks (CDNs) like Akamai [AKA].

2.2.3.4 Development Platforms

Operating systems are becoming less and less essential to run applications.
Middleware solutions, such as Java virtual machines or web browsers, are extremely
interesting for both end users and developers. This suggests that future systems will
depend more and more platforms will be the common denominators between users and
the services they want to access.

21

There are several candidates in competition to become the future platform P2P. The
JXTA platform [GON02] and .Net are the two industry heavyweights.

2.3 The BitTorent protocol

The challenges of current P2P applications are to permit sharing of high volume file

to a large number of peers. In file sharing communities’ efficiency, robustness and
scalability are guidelines of file distribution. BitTorrent protocol distinguishes itself from
other protocols. It is probably the most popular file-sharing protocol that is currently
used in the Internet. It represents more than 60% of the P2P traffic [IPO07]) which is
more than 30% of the Internet traffic [CAC05]. Many applications are using BitTorrent-
as protocols to deliver various content types. The first particularity of BitTorrent is that it
first focuses on how to quickly deliver the content by increasing the pieces entropy while
other P2P applications are first interested in the localization of this content. BitTorrent is
known for its performances in terms of fast download speed while it is exploited by
Linux operating systems that propose a BitTorrent download option to retrieve their
distributions. Like in Emule [KUL&al05], BitTorrent uses the multisourcing principle.
Data is divided in two levels presenting a good granularity. Technically BitTorrent is
different from other P2P protocols: no search engine is integrated to BitTorrent clients
and a metadata file is downloaded to have all information concerning how to retrieve the
resource. In BitTorrent, integrity is implicit because every piece is verified thanks to
SHA1 hashing value for each piece and if a file is corrupted, that means it is at the origin.

Comparing to other P2P applications, the BitTorrent reciprocity and incentive
mechanisms create an intuitive virtuous circle during file sharing: data proliferation is fast
and peers participate early. A swarm that contains many peers and where upload
capacities are important is the best environment for high quality data transport for
BitTorrent protocol.

BitTorrent has been imagined and developed by Bram Cohen [COH03] who
originally wanted a robust system with high efficiency with the maximal resource
utilization. It integrates an equity policy into the protocol that permits only generous
users to receive pieces abundantly. All BitTorrent clients are capable to prepare, request
and give any resource through a network using BitTorrent protocol: text files, Audio,
Video, VoIP and IPTV applications, etc.

Many clients have been developed in all languages and for every platforms and
BitTorrent is integrated to web browsers (Opera [OPE]) or other P2P clients (LimeWire
[LIM] or Emule [KUL&al05]).

2.3.1 Architecture

BitTorrent is composed of 3 major entities: the Tracker that keeps information on
peers concerning a specific Torrent file; the .torrent that identifies file that have to be
downloaded or that have been downloading; and finally the peers that are sharing the
resource. BitTorrent, in opposition to other P2P applications, does not have a search
engine integrated to the client. The customer has to download the .torrent file
corresponding to the resource(s) (file or multiple files) it wants to retrieve. An optional
contribution has been added to some clients: the DHT Kademlia [MAY&al02] algorithm
permits to distribute data and alleviates that request are sent to a unique Tracker. We talk
about Trackerless BitTorrent solution.

22

The flows that characterize a file download between different peers is also called a
Torrent while the .torrent file is the metadata file containing information about the Tracker
that has to be contacted and about the file(s) that composed the resource. Following are
the network elements that can participate into a BitTorrent network:

• A Seed has the entire file and is also uploading parts of it.
• A Leech is a peer that is downloading data but that does not have the entire file

yet. It can begin to share information with other Leeches with the piece it
already has before becoming a Seed and when a Leech becomes a Seed, it can
stay in the network swarm to share the resource it has entirely.

• The Tracker is the entity that lists the peers (Leeches or Seeds) and the data
volume that each one contains for a specific Torrent file (for a specific
resource). This entity also maintains some statistics on the peers and the
Torrent by regularly receiving reports from the peers.

A web site hosts Torrent files that are requested by the peers to contact the Tracker and

download data.
A resource in BitTorrent is divided in pieces that have the same size for a specific

resource but this size can vary depending on the resource size. The bigger the resource is,
the bigger the piece size is. Each piece is also divided in blocks that also have the same
size for a specific resource. The default values are 256 kB for the piece size and 16 kB for
the block size. The block is the transfer unit but in general, the protocol only considers
the piece level granularity because in BitTorrent, a policy called the Strict Policy forces a
piece to be completely downloaded (all blocks of the current piece) before another piece
is downloaded.
Leech states: a Leech can be Interested (if it is Interested by a piece in a distant Leech) or Not

Interested. It can also be Choked or Unchoked. A peer B chokes a peer A (that is Choked) if
the peer B decides to block its upload flow towards A (in the case where B accepts to
upload data to A, we say that A is Unchoked by peer B).

Connection: BitTorrent is based on TCP protocol. A peer can open a maximum of 40
connections in 80 available.

Figure 2.6 represents the architecture entities. We can note that the peer is a Leech
because it is in the Interested state for a resource and that it does not download a piece yet.
The first step is the .torrent file download from a Web site that corresponds to the
desired resource. This .torrent file downloaded, the peer retrieve from the .torrent the
Tracker URL responsible of the resource.

The Tracker returns a list of peers called the Peers Set containing Leeches and Seeds that
the Leech downloading will contact to retrieve data pieces. An algorithm is responsible of
coordinating the peers selection and pieces selections is also based on some policies that
we will detail.

We represent in the following figure an arbitrary scenario to understand the different
steps when a Leech connects to BitTorrent and wants to download a file. We symbolize
the order of contact from this Leech to other entities and we do not integrate the policies
in this scenario yet.

23

Web Server Tracker

Leech

Distant peers (Leechs or Seeds)

1

2

3

4

5

.Torrent

 Figure 2.6: BitTorrent Architecture entities

Distant peers that are peers of the Peers Set depend directly on the peers’ selection
algorithm. An Interested Leech can contact peers from the Peers Set but these peers are the
one to decide if they accept to upload pieces to the requesting Leech. The following details
the different algorithms in BitTorrent.

2.3.2 Functioning and protocol specification

2.3.2.1 How does BitTorrent works

Peers selection algorithm: Choke Algorithm

In BitTorrent, no resource reservation is done but every peer is responsible of
maximizing its download ratio. This is done by managing to which Leech a peer will
upload its pieces or not following a policy called Tit for Tat. The principle of this policy is
to install reciprocity between peers. The more a peer will give to others, the more it will
have a chance to receive. The distant peer is selected only if it respects that principle and
accepts that others download from its resource pieces. A distant peer that chooses to
collaborate is Unchoked and the one that does not is Choked (To Choker is to block
temporarily to send some pieces. A principle penalizes Free-riders, that means those that
do not participate and only peers that are respecting the game and sending files will be
Unchoked.

A peer sends to a maximum of five Leeches that are Unchoked. However these Leeches
must first be in the Interested state. Among these 5 peers, 4 are chosen depending on their
Downloading Rate if the local peer is a Leech. When it becomes a Seed, this choice
depends on the Uploading Rate. The cycle changes every 10 seconds and the choice of
these peers may also depend on the network configuration and the peers’ dynamicity.
The rate calculation for each peer is done every 20 seconds. This calculation was done
depending on the data volume transfer at long term but this does not exactly
correspond to reality because the Bandwidth can be quickly by the availability change for
a specific resource.

To avoid the situation where resources are lost during fast Choke and Unchoke, peers
calculate again the peer to Choke every 10 seconds. This duration is just enough for new
connections to be opened by TCP and it permits to maximize transfer capacities.

To let a chance for Leeches that do not have enough bandwidth to be chosen as
unchoked peers, a 5th peer called the Optimistic Unchoked Peer or altruist peer is chosen
randomly.

24

BitTorrent Tracker HTTP/HTTPS Protocol.

A peer A downloads the Torrent film.torrent from www.piratebay.org. It must contact the
responsible Tracker for this Torrent that would be able to inform it and send it back the list
of peers to contact to launch the download process.

The peer A sends to the Tracker information that are necessary to keep localizing the
peer (IP address and port number), its peerId, its state (started, completed or stopped), the
Uploaded and downloaded data volume in bytes (for the first contact these fields are
naturally equal to zero).

It is also important that peer A sends regularly metrics to the Tracker allowing to keep
some statistics on the torrent.

The Tracker makes a random choice of 50 peers (default value that can be changed
but that must be between 20 and 80), and sends this list called Peers Set to the peer A.

It specifies to A a time interval during which it refuses to be questioned again (in
general this interval is fixed to 15 minutes). This time must be longer than the timeout on
the http connection. It also informs the local peer A the number of Seeds and Leeches.

Peer Wire Protocol

At the very beginning of the process, a new peer that joins the Tracker and that wants
to download the specific file, does not have any available piece at its disposal. The Tit for
Tat reciprocity that we previously mentioned requires that a peer has something to share
to be able to receive very quickly. For the first piece to be downloaded, peer A randomly
chose a peer itself. This distant peer B that peer A chose sends a have message to give its
availability. Peer A sends an Interested message for a random piece. This policy is called the
Random Policy. The sending peer B can choose to Unchoke the peer A or not, depending on
peer A’s capacities or if it has the chance to be chosen as Optimistic Peer. If peer B
Unchoke peer A, it accepts to send data to local peer A. The set of peers that chose to
Unchoke peer A is a subset of the set called the Neighbor Set which is the set including to
the peers to which the peer A also sends. However, in the primary stage, peer A is a new
Leech and does not have anything to send. The peer B Active Peers Set is the peers set that
peer B chose to Unchoke.

Let’s note that a Strict Policy is applied in BitTorrent at the Blocks level. Blocks of a
piece are first downloaded before another piece is downloaded. In fact, we download
blocks in the right order from the source. In the case there is a fault for any reason
whatsoever (peer B decided for example to choke peer A), depending on the
implementation the peer A can toggle download to another peer and retrieve remaining
blocks or to drop blocks that are already retrieved, to chose to download the same piece
from another distant peer.
Random Policy detailed previously for the first piece can be applied to four or five

pieces and this in order to quickly obtain some pieces to share to have more chance to
download afterwards.

25

 Figure 2.7: BitTorrent download scenario

Peer A sends an Interested message to indicate that it wants to receive data from B.
When B is ready to send, it sends an Unchoked message. A can download data by sending
Request message indicating the piece number that peer A wants (corresponding to the
Bitfield index) and the bytes interval (offset and length). To each request message, a Piece
message is followed and corresponds to a sent piece. When a piece is entirely received,
peer A calculates the piece hash and verifies if it corresponds to the one present in the
metadata Torrent information file. If the result is the same, peer A adds the piece to the
downloaded file and announces to all its neighbors that it has a new piece by sending have

26

messages. Peer A neighbors can this report their interest to these messages with Interested
or Not Interested messages. If peer A is willing to accept some other connections in
Upload, its sends a Unchoked message in reply to an Interested message. The Choke message
on the contrary makes the peer wait.

The Choke Algorithm governs the peers selection in BitTorrent. However, it
automatically depends on the peers state (Interested or Not Interested) and it is different
depending on the peer nature (Leech or Seed) [MR05].

In the scenario represented, the peer A is a Leech. The algorithm round duration is 10
seconds and it is called any time a peer change state (Interested or Not Interested). The round
can also be shorter than 10 seconds. The following steps are also considered:

• At the beginning of every 3 rounds (30 seconds), the algorithm chose a peer as
the Optimistic Peer or POUP for Planned Optimistic Unchoked Peer. This peer is
chosen randomly.

• The algorithm lists peers that are Interested and that sent a minimum of one
block during the last 30 seconds. This choice is made depending on the
downloading peers Download Rate. A peer that did not send during the last 30
seconds is snubbed (excluded to guarantee the fact that only active peers are
Unchoked).

• The 4 fastest peers in terms of Download capacity are chosen and are
Unchoked.

• If the POUP is part of the 4 Unchoked peers, another one must be chosen
randomly. If this peer is Intersted, it is Unchoked and another one is chosen as
POUP randomly. If this one is also one of the 4 previously chosen, the
previous step is repeated. It is possible that more than 5 peers are Unchoked by
the algorithm but also 5 peers Interested will be Unchoked during one round.
Unchoking peers that are not Intersted permit to calculate again the active peers set
until one of the Unchoked peers become Interested. The algorithm is repeated
every time an Unchoked peer becomes Interested.

The algorithm in the Seed case functions differently. We have the same round
principle that lasts 10 seconds. The algorithm is called every time a Unchoked peer is
Interested or Not Interested and every time a peer leaves the Peers Set.

• The algorithm lists the peers depending on the duration they last in their last
Unchoked state. The peers that were Unchoked recently (less than 20
seconds) or that have some block requests pending are taken into
consideration. The Uploading Rate is used as the decision criterion between
peers that spend the same time in their last Unchoked state.

• The peers that have the better Uploading Rate are listed and the ones that
have the better Upload have priority.

• During 2 rounds over 3, the algorithm keeps 4 peers Unchoked and 1 POUP is
Unchoked. For the 3rd round, the algorithm keeps the 4 Unchoked peers.

• Peers in the Active Peers Set change frequently.
In previous version of BitTorrent, we used to promote peers depending on their best

Downloading rate but this is an inconvenient because a peer can monopolize the
resources of a Seed. For some voluminous Torrents, this is not a problem but for small
Torrents that have only few Seeds, one or more Seeds can be too much used and pieces
propagation of rare pieces would be penalized.

27

Taking the case of an egoist peer, it can monopolize the Seed at the beginning of
Torrent lifetime and delay its launching.

Pieces selection policy [LEG&al06]: Rarest First and End Game Mode

This algorithm has for goal to maximize piece entropy and variety for a specific
Torrent among the peers. It must avoid that exchanged pieces become rare. The principle
is to choose to download the rarest pieces first. Each Leech keeps a list that contains the
information of all peers’ pieces number. This list permits to decide which pieces are the
rarest. The last block problem must be avoided this policy in collaboration with the End
Game Mode activated at the end of a session. This latter concerns the end of the download
and allows a Leech to flood requests to all other peers at the same time to ask for the last
blocks that the local peer did not retrieve yet. This is to complete last pieces download
when a lack of some blocks is recognized.
Rarest First is the policy that follows the Random Policy. It is applied during the rest of

the download. The piece selection is important for the BitTorrent system performance. A
poor piece selection can have some bad consequences.

The local peer maintains the copies number of each piece in its Peers Set. It uses this
information to define which are the rarest pieces. If n is the copies number of the rarest
piece, then each piece id having n copies in the Peers set will be added to the rarest pieces
list. We talk about the Rarest Pieces Set. Then the peers download pieces that the distant
peers have the less. This technique permits to ensure that peers will have all pieces from
distant peers and avoid blocking at the end if peers that had rarest pieces decide to
disconnect or leave. Then sending pieces becomes more flexible. We note that therefore,
the downloading of pieces that are the most present on the Peers Set is done at the end of
the session.

The information theory shows that no peer downloading can finish until all pieces of
the file have not been sent by the Seed [LEG&al05]. In the case there exists a unique Seed
that has an upload capacity minimal compared to most of the Leeches capacity,
performances would be better in the case peers are downloading from different peers
than the Seed. This would avoid some redundant downloading that could limit Seed upload
number. The Rarest First policy is efficient for new pieces download from the Seed
because a peer that is downloading could see that distant peers have pieces that the Seed
could send before.

It can happen that the original Seed is turned off for some costs reason and allowing
Leeches to work in Upload. The risk is that a specific piece could not be found in the
Leeches. But Rarest First manages this problem by replicating as soon as possible the rarest
pieces to reduce their loss risks.

In Figure 2.7 that represents the downloading scenario, we represented for the Rarest
First a unique exchange between peer A and peer C for some simplicity reasons but this
exchange is not unique in this step. In fact, a Leech does multi-sourcing and can download
from multiple sources at the same time or one after the other. For the beginning of the
process, the first 4 pieces are in general downloaded from the same peer because the new
peer worries about having something to share quickly.

It is difficult in BitTorrent to make a standard scenario and to know exactly who
between the receiver and the sender chose the peers with whom they will communicate
and who instantiate them. In fact the receiver chose its distant peers only if it is Interested
by some pieces they have. However these distant peers have the last word because they

28

decide at the end to which they will accept to send some pieces. We detailed the Choke
Algorithm that permits the distant peers to accept to upload to the local peer or not
depending on downloading or uploading rate if the sender is a Leech or a Seed. This is why
we propose a state diagram in Figure 2.8 with transitions. At the initial state 1 a Leech is
Choked and Not Interested.

C
ho

ke

C
hoke

H
ave &

 Interested
P

iece &
 not

Interested

Figure 2.8: BitTorrent connection states for a Leech

By receiving a Have or Bitfield message from a neighbor peer that is in its Peers Set, a
peer can realize that this neighbor has a piece that interests it. The local peer becomes
Choked and Interested (state 2). From state 1 it can be Unchoked by a sender but without
being Intersted yet. In this state, it can receive a proposition in a Have message and become
Interested to reach state 3. At state 3, the peer can receive a piece or a proposition in a Have
message from the same peer or another for another piece and it will stay in state 3, or it
can receive a piece without being Interested. It returns to state 4. We can note that in this
state the local peer can receive a Have proposition or a Bitfield and stay Not Interested. The
transitions from the state Unchoked to Choked and inversely are only done between state 1
and 4 and between state 2 and 3.

2.3.2.2 Specification

It is important to study the formal protocol specification and its different messages
sent between the entities. The following specification is detailed based on [BTO] and
[BTW]. A BitTorrent specification is proposed in its version 1.0 and permits to remove
any ambiguity and generality. In the context of any improvement or modification of
BitTorrent protocol, the specification fixes the protocol exchanges and facilitates the
basic protocol understanding before passing to a possible evolution.

The specification concerns the Torrent file and its structure, the exchange protocol
between peers (Peer Wire Protocol) and the protocol between the Tracker and the peers
(Tracker HTTP/HTTPS Protocol). We will detail each message structure between the
different entities of the architecture.

29

The data structure is in BEncoding, a concept that is derived from Python language.
It specifies and organizes data within a particular format that support four types that are:
String, Integer, List and Dictionary.

Table 2.2: BEncoding data structure
Type Description Format Example
Strings Normal Strings

[series of continuous
characters]

<string length>:<string data> 7:overlay

Integers Normal integers i<integer>e I8e represents 8.
Lists They are lists of types

[strings, integers, lists,
dictionaries].

l<bencoded type>e l7:overlay:networke represents
the list of two strings:
["overlay", "network"]

Dictionaries They are a mapping
of keys to values

d<bencoded string><bencoded
element>e
The keys are bencoded strings

d4spam1:a1:bee
represents the dictionary
{« spam » => [a,b]

Metainfo .Torrent file structure

Torrent file is a dictionary that concern a Torrent linked to a simple file (simple mode)
or to multiple files (multiple mode). The dictionary is formed by 6 fields when 2 are
mandatory.

The following table gives the structure of a single-file torrent.

Table 2.3: Single-file Torrent data structure in BitTorrent
Key Description
Info A dictionary that describes the files
 - length Length of file in bytes (integer)
 -md5sum(optional) A 32 character hexadecimal string corresponding to

the MD5 sum of the file.
 -name The filename of a string (string)
 -piece length Number of bytes in each piece (integer)
 -pieces String consisting of the concatenation of all 20-byte

SHA1 hash values, one per piece.(raw binary
encoded)

Announce The announce URL of the Tracker
Announce-list(optional) This is an extension to the official specification, which

is also backwards compatible. This key is used to
implement lists of backup Trackers.

Creation date (optional) The creation time of the torrent, in standard Unix
epoch format (integer seconds since 1-Jan-1970
00:00:00 UTC)

Comment(optional) Free form text comments.(string)
Created by(optional) Name and version of the program used to create.

Table 2.4: Multi-files Torrent data structure in BitTorrent

Key Description
Info A dictionary that describes the files
 ofiles List of dictionaries, one for each file. Each dictionary

in this list contains the following keys
 - length Length of file in bytes.(integer)
 -md5sum(optional) A 32 character hexadecimal string corresponding to

the MD5 sum of the file.
 -path List containing one or more string elements that

together represent the path and filename. Each

30

element in the list corresponds to either a directory
name or (in the case of the final element) the
filename. For example, the file "dir1/dir2/file.ext"
would consist of three string elements: "dir1", "dir2",
and "file.ext".

 oname Name of the top-most directory in the structure -- the
directory which contains all of the files listed in the
above files list. (string)

 opiece length Number of bytes in each piece(integer)
 opieces String consisting of the concatenation of all 20-byte

SHA1 hash values, one per piece.(raw binary
encoded)

Announce The announce URL of the Tracker
Announce-list(optional) This is an extension to the official specification, which

is also backwards compatible. This key is used to
implement lists of backup Trackers.

Creation date (optional) The creation time of the torrent, in standard Unix
epoch format (integer seconds since 1-Jan-1970
00:00:00 UTC)

Comment(optional) Free form text comments.(string)
Created by(optional) Name and version of the program used to create.

This is for instance a multiple mode file described in Bencoding:

announce=>http://torrent.linux.duke.edu:6969/announce

creation date=>1089948866

info=><dictionnary> {

files=><list>[
<dictionnary>{length=>159332;path=>[conary, conary-0.1.tar.bz2] }
 {length=>57;path=>[linux,alpha,0.1,iso,MD5SUM]}
 {length=>1778;path=>[linux,alpha,0.1,iso,README]}
{length=>618993664;path=>[linux,alpha,0.1,iso,speci fix-linux-0.1.iso]}
]
name=>specifix
piece length=>262144
pieces=>47240:uÚÎº2D:×íÎ¡1bõJu(...)
This file specifix.torrent is formed by 4 files divided into segments with a size 262144

for each. The Tracker is available at http://torrent.linux.enst.fr:6969/announce.
If the port 6969 is not available, the Web port 80 is used.

Tracker HTTP/HTTPS protocol

This protocol defines the communication between a peer and the Tracker responsible

of the Torrent linked to the desired resource [BIT06].
We know that the Tracker permits a specific peer to obtain the Peers Set where the

local peer can find the peers that are downloading the same resource. The Tracker acts
like an HTTP server to which the local peer gives some parameters to obtain these peers
addresses. We can identify the Tracker as a HTTP/HTTPS service that answers to HTTP
GET messages that the peers send. These http requests contain some metrics that permit
the Tracker to keep various statistics on the torrent. The Tracker response contains Peers

31

list that permits clients to participate on the torrent. Like in all HTTP request, parameters
are putted following the Tracker URL. Everyone is preceded by an interrogation mark and
the Tracker URL is the one contained in the Torrent file announce URL field described
previously. Each parameter is seperated by a « & ».

This is the HTTP GET message structure:

Figure 2.9: Get announce message

Table 2.5: Get announce message fields
Parameter Description
info_hash 20-byte SHA1 hash of the value of the info key from

the Metainfo file. Note that the value will be a
bencoded dictionary, given the definition of the info
key above.

peer_id 20-byte string used as a unique ID for the client,
generated by the client at startup. This is allowed to
be any value, and may be binary data. There are
currently no guidelines for generating this peer ID.

port The port number that the client is listening on. Ports
reserved for BitTorrent are typically 6881-6889.
Clients may choose to give up if it cannot establish a
port within this range.

uploaded The total amount uploaded so far, encoded in base
ten ascii.

downloaded The total amount downloaded so far, encoded in base
ten ascii.

left The number of bytes this client still has to download,
encoded in base ten ascii.

event If specified, must be one of started, completed, or
stopped. If not specified, then this request is one
performed at regular intervals.

 -started The first request to the Tracker must include the
event key with the started value.

 -stopped Must be sent to the Tracker if the client is shutting
down gracefully.

 -completed Must be sent to the Tracker when the download
completes. However, must not be sent if the
download was already 100% complete when the client
started. Presumably, this is to allow the Tracker to
increment the "completed downloads" metric based
on this event

ip Optional. The true IP address of the client machine,
in dotted quad format or rfc3513 defined hexed IPv6
address. Notes: In general this parameter is not
necessary as the address of the client can be
determined from the IP address from which the
HTTP request came. The parameter is only needed if
the IP address that the request came in on is not the

32

IP address of the client. This happens if the client is
communicating to the Tracker through a proxy (or a
transparent web proxy/cache.) It is also necessary
when both the client and the Tracker are on the same
local side of a NAT gateway.

numwant Optional. Number of peers that the client would like
to receive from the Tracker. This value is permitted to
be zero. If omitted, typically defaults to 50 peers.

The Peers Set size is 50 by default. This list is sent in the response.

Table 2.6: Get Response message fields
Key Description

failure reason If present, then no other keys may be present. The
value is a human-readable error message as to why the
request failed (string).

interval Interval in seconds that the client should wait
between sending regular requests to the Tracker

complete number of peers with the entire file, i.e. Seeders
(integer)

incomplete number of non-Seeder peers, aka "Leechers" (integer)
peers The value is a list of dictionaries, each with the

following keys
 -peer id peer's self-selected ID, as described above for the

Tracker request (string)

 -ip peer's IP address (either IPv6 or IPv4) or DNS name
(string)

 -port peer's port number (integer)

A client can send requests at different intervals than the ones given by the Tracker but
this is possible at a state change (stopped or comlpeted) or also if the client needs to know
more about peers. The most simple way for a client to have a larger peers number is to
precise it in the numwant field

Peer Wire Protocol

The Peer Wire Protocol facilitates pieces exchange as described in the meta-info file. A
client must maintain state information for each connection that it has with a remote peer:

• Choked: Whether or not the remote peer has choked this client. When a peer
chokes the client, it is a notification that no requests will be answered until the
client is “unchoked”. The client should not attempt to send requests for
blocks, and it should consider all pending (unanswered) requests to be
discarded by the remote peer.

• Interested: Whether or not the remote peer is Interested in something this
client has to offer. This is a notification that the remote peer will begin
requesting blocks when the client unchokes it. The states are:

• am_choking: this client is choking the peer

33

• am_interested: this client is Interested in the peer
• peer_choking: peer is choking this client
• peer_interested: peer is Interested in this client

Client connections start out as "choked" and "Not Interested". In other words:

• am_choking = 1
• am_Interested = 0
• peer_choking = 1
• peer_Interested = 0

A block is downloaded by the client when the client is Interested in a peer, and that peer
is not choking the client. A block is uploaded by a client when the client is not choking a
peer, and that peer is Interested in the client. It is important for the client to keep its peers
informed as to whether or not it is Interested in them. This state information should be
kept up-to-date with each peer even when the client is choked. This will allow peers to
know if the client will begin downloading when it is unchoked (and vice-versa).

Data Types:

Unless specified otherwise, all integers in the peer wire protocol are encoded as four
byte big-endian values. This includes the length prefix on all messages that come after the
handshake.

Message flow:

The peer wire protocol consists of an initial handshake. After that, peers communicate
via an exchange of length-prefixed messages. The length-prefix is an integer as described
above.

Handshake:

The handshake is a required message and must be the first message transmitted by the
client.

• handshake: <pstrlen><pstr><reserved><info_hash><peer_id>

o pstrlen: string length of <pstr>, as a single raw byte .
o pstr: string identifier of the protocol.
o reserved: eight (8) reserved bytes. Each bit in these bytes can be used to

change the behavior of the protocol. An email from Bram suggests that
trailing bits should be used first, so that leading bits may be used to change the
meaning of trailing bits.

o info_hash: 20-byte SHA1 hash of the info key in the metainfo file. This
is the same info_hash that is transmitted in Tracker requests.

o peer_id: 20-byte string used as a unique ID for the client. This is the
same peer_id that is transmitted in Tracker requests.

34

In version 1.0 of the BitTorrent protocol, pstrlen=19, and pstr="BitTorrent
protocol". The initiator of a connection is expected to transmit their handshake
immediately. The recipient may wait for the initiator's handshake; if it is capable of
serving multiple Torrents simultaneously (torrents are uniquely identified by their
info_hash). However, the recipient must respond as soon as it sees the info_hash part of
the handshake. The Tracker's NAT-checking feature does not send the peer_id field of
the handshake.

HandShakeReply:

If a client receives a handshake with an info_hash that it is not currently serving, then
the client must drop the connection.

If the initiator of the connection receives a handshake in which the peer_id does not
match the expected peer_id, then the initiator is expected to drop the connection.

If everything matches the receiver responds with handshake message with peer_id
field modified to its own ID.

peer_id: There are mainly two conventions of coding client version information into the
peerId, Azureus-style and Shadow-style. Azureus-style uses the following encoding: '-', two
characters for client id, 4 ASCII digits for version number, '-', followed by random
numbers. For example: '-AZ2060-'... Shadow-style uses the following encoding: 1 ASCII
alphanumeric for client identification, up to five characters for version number followed
by three characters (commonly '---'), followed by random characters. Each character in
the version string represents a number from 0 to 63. For example: 'S58B-----'... for
Shadow's 5.8.11.

Messages:

All of the remaining messages in the protocol take the form of

<length prefix><message ID><payload>

The length prefix is a four byte big-endian value. The message ID is a single decimal
character. The payload is message dependent.

Keep-alive: <len=0000>

The keep-alive message is a message with zero bytes, specified with the length prefix set
to zero. There is no message ID and no payload.

Choke: <len=0001><id=0>

The choke message is fixed-length and has no payload.

Unchoke: <len=0001><id=1>

The unchoke message is fixed-length and has no payload.

35

Interested: <len=0001><id=2>

The Interested message is fixed-length and has no payload.

Not interested: <len=0001><id=3>

The Not Interested message is fixed-length and has no payload.

Have: <len=0005><id=4><piece index>

The have message is fixed length. The payload is the zero-based index of a piece that
has been successfully downloaded. Intially the peers tell each other about the pieces they
have using Bit-Field message later when they have downloaded another piece, they use
the “have” message to tell the other peers now it also has this piece.

Bitfield: <len=0001+X><id=5><bitfield>

The bitfield message may only be sent immediately after the handshaking sequence is
completed, and before any other messages are sent. It is optional, and needs not be sent
if a client has no pieces.

The bitfield message is variable length, where X is the length of the bitfield. The
payload is a bitfield representing the pieces that have been successfully downloaded. The
high bit in the first byte corresponds to piece index 0. Bits that are cleared indicated a
missing piece, and set bits indicate a valid and available piece. Spare bits at the end are set
to zero.

Request: <len=0013><id=6><index><begin><length>

The request message is fixed length, and is used to request a block. The payload
contains the following information

• index: integer specifying the zero-based piece index
• begin: integer specifying the zero-based byte offset within the piece
• Length: integer specifying the requested length. This value must not exceed

bytes, typical values are bytes.

The observant reader will note that a block is typically smaller than a piece (which is
commonly >= bytes). A client should close the connection if it receives a request for
more than bytes.

Piece: <len=0009+X><id=7><index><begin><block>

The piece message is variable length, where X is the length of the block. The payload
contains the following information

• index: integer specifying the zero-based piece index
• begin: integer specifying the zero-based byte offset within the piece

36

• Block: block of data, which is a subset of the piece specified by index.

Cancel: <len=0013><id=8><index><begin><length>

The cancel message is fixed length, and is used to cancel block requests. The payload is
identical to that of the "request" message. It is typically used during "End Game" (see the
Algorithms section below).

2.3.3 Related works on BitTorrent studies

[THE&al04] and [XIA&al10] propose complete surveys on Peer-to-Peer and

BitTorrent (for the second one) performances. They provide a good classification of the
different studies present in the literature.

BitTorrent has proved its efficiency comparing to other file sharing protocols using
the P2P model. Its performance is recognized thanks to its piece and peer policies. Many
performance studies exist in the literature but it is not easy to globally appreciate one
comparing to another. We will present in this section a general overview of the different
and major works that appreciate the popularity and performance of BitTorrent. Then we
will also list the contribution on locality-aware techniques and erasure codes applied to
BitTorrent protocol. In fact, this section is important while in our work we propose some
simulation results concerning a locality-aware technique for peer partitioning and a
specific FEC mechanism that speeds up data transfer. The different ways a performance
study is performed in BitTorrent literature are various.

The first method is to use measurements based on Tracker logs, provided from Torrent
sites, with traffic analyzers, collecting logs in clients or even experiments a PlanetLab
[LAB] network. The most famous works using this method are [IZA&al04],
[POU&al04], [LEG&al05] and [DAL&al08]. The main points in these works are the
study of peers’ evolution in BitTorrent network and traffic volume uploaded and
downloaded. Usually the analysis is done in a long period of time (from 4 to 8 months)
but measurements present less flexibility than simulation when the simulations number is
high enough.

The second method is based on simulation. In [MR05] a complete simulator modeling
all BitTorrent mechanisms and algorithms is used to study Rarest First policy and Choke
Algorithm. In [FEL&al04], [URV&al06] and [HAM&al07] authors also propose their own
simulator to study the latter mechanisms with the impact of some BitTorrent parameters
like the Peers Set size. Our work can position itself in this category while we propose a
complete study based on a greatly modified version of [MR05] simulator. We also studied
the Peers Set size variation, the Piece size variation, the localization impact on BitTorrent
[PBL05]. Our simulations were various exploiting many scenarios with various
Leeches/Seeds number integrating also FEC mechanism [PBL07]. We also proposed a
statistical test validating the results (cf Section 4). A global architecture was developed and
published in [PBL06]

The third method is to study BitTorrent based on analytical model. Many models
have been proposed as fluid model in [QIU&al04], [GUO&al07] and [TIA&al07]. Those
proposals have been extended by others as we will detail it in next sections.

We will also present contributions on locality-aware techniques in BitTorrent like

37

[CHF&al08] and [REN&al10] that are client oriented pluggin while our work is Service
Provider oriented. In [BIN&al06], [PAP&al06] or [LEG&al09] authors proposed biased
neighbor selection while we add to a new peer selection policy the possibility to adapt
some parameters like the Peers Ser size or the Piece size depending on the application
needs. The objective is to be close to ALTO [XIE&al07] and SmoothIT [PUS&al09] but
without any complexity like in the latter proposal that requires some changes in the
infrastructure and the network entities. We prefer a simpler and interoperable solution.

Erasure codes integrating in BitTorrent is a major part of our work. We propose a
complete study of their application depending on many parameters in order to evaluate
the impact (positive or not) in BitTorrent applications. Works like [BYE&al99] or
[LAC&al02] propose also to integrate erasure codes to P2P networks and the actual
research is focusing on Network Coding [GKA&al06] that is more complex and where
all peers must be implicated. We encourage a solution where only Seeds are coding
redundancy while we are Service Provider oriented.

First we present some BitTorrent-like protocols that have been proposed and having
some similarities in their policies and algorithms. At the origin, these proposals were
defined to improve file-sharing systems performance but BitTorrent stays the best
protocol and the most famous one for this issue.

In [SHE&al04] Slurpie is designed to reduce the downloading time and increase the
system scalability. The idea is to form a mesh but with the specific advantage that
download bandwidth is adapted dynamically with a proper estimation technique
proposing reports. This bandwidth while varying can change the neighbors’ number
depending on the estimation. The more the peers’ number is important the more Slurpie
is considered as efficient. The major problems with Slurpie are that the protocol is much
more complex than BitTorrent and it is a must in this protocol to estimate the number of
peers in the Slurpie network. However, Slurpie proposes less load on the central server
(equivalent to the BitTorrent Tracker) and on the principal originally source (equivalent to
the Seed in BitTorrent), but we do not have information on performances when the
network is experiencing a flash-crowd when the peers number is high.

In [SHE&al06] the Fair Optimal eXchange protocol (FOX) has been proposed as an
efficient file sharing BitTorrent-like protocol that focuses on fairness. The principle is to
achieve a symmetric communication for giving and receiving with some stable
communications. A system is able for peers that complete their download to leave by
providing some encrypted information that the other peers needed before their
departure.

Avalanche presented in [GKA’&al06] is a Microsoft proposal for a BitTorrent-like
protocol that integrates Network Coding [GKA&al05] mechanism. When a piece is
downloaded by a peer, Avalanche takes into consideration that this download can be
interesting for other peers. It avoids that this piece is requested afterwards by another
peer. In fact, when a peer download a piece a system that implementing coding inside the
network let the neighbor peers having information on pieces they did not especially asked
but that they would ask in the future. The principle is some Xor operation between the
pieces to mix the overall pieces information.

2.3.3.1 Performance studies based on measurements

In [IZA&al04] the BitTorrent protocol is evaluated during a five months study in

38

BitTorrent clients’ behavior, Seeds contribution, the Seeds/Leeches ratio, the Rarest First and
Choke Algorithm efficiency. This work is a performance evaluation that focuses principally
on the peers’ evolution and the traffic volume downloaded and uploaded during the five
months analysis. The traces are based on two principal sources of analysis on a unique
torrent. The first source performs a global and macroscopic view using a Tracker log of
thousands of peers and the second one is a session-based analysis that shows more the
Leeches behavior between each other.

In [POU&al04] the authors studied the peers’ number and their relation with Seeds,
the time peers stay as Seeds after completing the download, and the resource lifetime. Like
the previous work, they especially focused on peers behavior and content volume
distributed in the network. The way they studied BitTorrent was to use Suprnova.org
mirror site to retrieve measures during 8 months. The authors work to better understand
the performances of a global combination of BitTorrent and Suprnova, the availability
and the integrity of this network.

[LEV&al04] is a study where information has been collected from two different
Trackers to show that BitTorrent can serve large files. The Torrent is observed during a
four months period and the results are studied in comparison with other P2P systems to
show how BitTorrent availability and content management can be efficient for much
larger files (multi-gigabyte resource volume size).

In [LEG&al05] the authors proposed a complete and detailed study of BitTorrent and
complement it in [LEG&al06] to show the efficiency of Rarest First and Choke Algorithm,
proving that they are enough for BitTorrent performances. The way they studied
BitTorrent is by using the original mainline Bram Cohen’s client [COH03]. They show
with good arguments that Rarest First decreases well dynamically rarest pieces in the
network and the Choke Algorithm using Tit-For-Tat works well at the block level, better
than at the bit level ensuring fairness and robustness. They motivate the implementation
of such algorithms without introducing any other complex method as erasure codes or
network coding. It is true that in the case of complete network with high resource
availability and a high number of peers, it is unnecessary to integrate additional
mechanisms to BitTorrent. However, P2P networks are dynamic and the free aspect of
BitTorrent conduces peers to freely leave and join the network again. We will see that our
work treats the transport aspect of P2P by using simple FEC mechanism to speed up
data transfer in the case of Service Provider oriented networks and only when it is
necessary: lack of resource availability, few peers in the network, real time applications
running, etc.

[AND&al05] is a study on the cooperation in BitTorrent. The authors focus on free-
riding, Seeds importance and sharing ratio. They conclude that free-riders are less
important than in other P2P networks like Gnutella for examples. This shows that
BitTorrent mechanisms act well against low-sharing Leeches. However, the fact that Leeches
are not uploading is not only due to the fact that they voluntary want to be egoist but
because when they decide to upload the peers they contacted cannot receive at the
moment or because of the asymmetrical links in the Internet. The main final observation
is that BitTorrent is much more cooperative than other P2P protocols.

In [LEG&al07] some experiments on some private Torrents show how a peer acts
individually in BitTorrent. The study platform used is PlanetLab [LAB] using a modified
version of BitTorrent to perform clustering and prove that it can optimize uploading
utilization. In fact, the authors show that Choke Algorithm contributes to make a peer

39

contacting peers that have the same performance capabilities and more precisely the same
bandwidth. This is usually true when the original Seed has a bandwidth that is at least the
same as the fastest peers downloading the Torrent in terms of upload (while the Seed
doesn’t download). This study focuses precisely on implicit clustering of peers in
BitTorrent. We also studied various networks as homogeneous and heterogeneous but
using a simulation based study that is usually more flexible than measurements based on
logs. The authors propose a Tracker extension that permits to send the Peers Set with
peers that present similar upload bandwidth as the Leech requesting. This seems possible
only if reports are sent by Leeches frequently to let the Tracker decide which peers
correspond.

In [RAS&al07] some peers have been used to study the BitTorrent performance but
not with an overall view. The major results of this work are that the performance
distribution of peers is uniform and that the Choke Algorithm is the main factor that has an
impact on BitTorrent performance. In a BitTorrent network, different types of network
can be observed. The particularity of this work is that they explain the advantages and
inconvenients of both measurement and simulation studies and provide a measurement
methodology to overcome measurement study comparing to simulation which is that in
measurement it is difficult to be sure that the log retrieved is really representative. That
does not mean, for the authors, that simulations are not complex also while in this case, it
is important to simulate all different aspects and mechanisms of the protocol. In our
work, we prefer simulation study that is more flexible and we tried to model all
mechanisms and algorithms of BitTorrent.

The work in [DAL&al08] proposed a study of these different types of networks. They
identify four kinds of network that they studied: Connection Network, Interest Network,
Unchoked Network, and Download Network. The platform [LAB] were used to launch a
specific BitTorrent client in more than 400 nodes and essentially shows that the initial
BitTorrent stage is independent of the overall performance in general. They also explain
that this is not obvious to assert that BitTorrent implicitly clustered peers as we could
read it in [LEG&al07] except in the initial stage. Their proposition to be closer to this
configuration is to imagine what they call small-world networks that are more efficient
for spreading information. The investigation put as hypothesis that creating a small-world
is not clear. In fact, to create a maximum degree network, it is necessary to maximize the
clustering coefficient of a regular graph of these peers. The simpler solution proposed is
to implement what they called a small-world Tracker that is modified to send to each new
Leech a Peers Set composed by random peers chosen in a specific group of peers having a
maximum neighborhood number degree that has to be respected.

The neighbor selection with the Choke Algorithm has been studied in [LEI&al07] and
concludes that this random selection does not take into consideration the communication
cost and that this results in low transmission rate and high cost. They provided a protocol
called ShareStorm that seems to present good performances comparing to BitTorrent but
that needs incremental works.

[CHO&al08] presents simulations study that shows how to use more intelligently Seed
capacity in BitTorrent while improving the performance of contributing nodes. They say
that with a specific amount of Seeding capacity (medium) the schemes result in a good
impact and degrade the performance of free-riders.

The work presented in [ZHA&al10] study the behavior of BitTorrent in Darknets
from macroscopic, medium-scopic and microscopic perspectives. They conclude that the

40

Seed-to-Leech ratios and upload-download ratios are much higher than in public systems.
In fact, darknets are private networks where availability is usually much h than in generic
public networks.

We also have the studies based on simulation. The following presents the major
simulation based studies for BitTorrent-like systems.

2.3.3.2 Performance studies based on simulations

The use of measurement-studies of BitTorrent is difficult when it is important to
study every factor that can affect BitTorrent performance. The use of simulations can
add more flexibility and efficiency to the study. The variation of parameters is much
more interesting while in measurements, the results are fixed and cannot really be
adjustable. However, in BitTorrent simulations, most of the cases authors fix some
hypotheses to neglect some protocols mechanisms while focusing on the main one
without degrading the system and to retrieve the best log information to perform the
evaluation the closer from reality.

[FEL&al04] presented a deep study on piece and peer selection strategies and their
effects on BitTorrent performance. The authors in this study try to answer to a
fundamental problem which is to see if the self-scaling and self-organizing aspects of P2P
networks are encouraging to reach a highly efficient, cost effective and robust content
distribution protocol. They answer saying that the aggregation of all these resources in
P2P networks is not enough while it is important to focus on peers and pieces strategy to
reach best performances. The results show that between all different strategies, there is
not one that takes advantage on the other. However, they conclude saying that Rarest First
seems to be the best delivery strategy among all other piece strategies. This joins
[LEG&al06] work idea. We will show in our work that Rarest First is a very good strategy
in comparison to the random one and that adding FEC mechanism in some cases can
reveal better performance with Rarest First than the Rarest First working alone.

[MR05] is a very complete study of BitTorrent mechanisms. The performance is
studied during flash-crowd using a simulator that models all peers activities, policies and
mechanisms. The results made the authors conclude that BitTorrent is a robust and
scalable protocol and that is ensure high uplink bandwidth utilization. The Rarest First
policy is very important to ensure that new peers have something to share with others.
The only drawback of this study is that the number of peers in the simulation was small.
We directly extended this work by modifying greatly the simulator that they developed to
integrate ASs repartition and complete FEC mechanism.

In [THO&al05] a simulation based analysis is proposed to study the fairness
properties of BitTorrent. The metric chosen is the ratio of bytes uploaded to that
downloaded by each peer. The authors also propose three modifications to BitTorrent
and examine their impact on fairness. The Conditional Optimistic Unchoke, the Multiple
Connection Chokes and the Variable Number of Outgoing Connections are all providing
positive amelioration to BitTorrent fairness incentive mechanism.

[URV&al06] is a work that evaluates the impact of the overlay topology parameters
on BitTorrent performance. The authors show that the Peer Set size and the percentage
of outgoing connections have a significant impact on BitTorrent’s performance. This
study is also a simulation based one that performs measure under flash-crowd scenarios.
The drawback of simulating is that we must fix some parameters to study others.

41

However, when the number of simulations is high enough to allow diversification on the
parameters hypothesis, the simulations can be considered as enough representative of the
real networks. We will see in our work that we also study the impact of the Peers Set size
but fixing some quality and service objective for an ISP running a specific application.

In [WUG&al06] the authors try to find how BitTorrent can be optimal or close to it.
They proposed a new distribution scheme called the Centrally Scheduled File
Distribution (CSFD) that can considerably decrease the total download time. This
distribution scheme is compared to BitTorrent scheme. The authors find that BitTorrent
is far to be optimal and that the peer selection is not helping the protocol to optimally
decrease the overall distribution. The particularity of this study is that it concerns the
dynamics of the built-in control mechanisms. We will see in our work that we chose to
play with the peer localization and some FEC mechanism to decrease the total download
time instead of changing the protocol algorithms. Our goal is to stay the more
interoperable and simple as possible.

[GAR&al06] proposes a system called 2Fast which solves the problem of freer-riding
that affects the download performance, while preserving fairness of bandwidth sharing.
The authors propose to form groups of peers that collaborate in downloading a file on
behalf of a single group member which can thus use its full download bandwidth. A peer
can help other peers in their ongoing downloads and gets help in return during its own
downloads.

[WAN&al07] proposes an improvement study that take into consideration the
asymmetric bandwidth in Internet and BitTorrent where upload capacity is generally
limiting the transfers. The authors show that also integrating, like the previous work,
new peers called helpers can add a considerable amelioration as effective as Seeds.

[CWU&al07] is a proposal to improve the download time of BitTorrent with a new
strategy that replaces the Rarest First policy and introduces a strategy based on a greedy
concept that a peer assigns each missing piece with the highest priority for next
download. The strategy is called the weighty piece selection strategy.

In [HAM&al07] authors follow the work on [URV&al06] and perform an evaluation
study on the properties of the distribution overlay in BitTorrent and the relation of this
overlay and BitTorrent performances. They used MATLAB to create their own simulator
in order to analyze the relation between the overlay properties and the BitTorrent
performance. The authors also studied the peers set size and the time for a peer to reach
its maximum peers set size. They tried to analyze the overlay generated by BitTorrent
showing that this overlay is robust but that this is not a random graph. The authors show
two principal problems that may impact BitTorrent overlay: the NATing and the peer
exchange creating a chain-like overlay that might impact BitTorrent efficiency.

In [CHE&al09] two main Seeding strategies have been studied in details, based on
simulation with a Java simulator and a mathematical model. The original Seeding strategies
known in the Choke Algorithm is compared to the Time-based Seeding strategy where the
Seed provides data to Leeches during a uniform interval of time. The authors studied the
impact of free-riders and introduce another type of egoist Leeches that are named
Exploiters: those that leave the network just after becoming Seeds. They conclude saying
that both free-riders and exploiters harm the system despite the Seeding strategies that is
used. They also say that the time-based Seeding strategy is fairer than the original one even
if this latter is more efficient when the number of egoist peers is small. Our work does
not deal with proper Seeding strategies and their impact while we chose to keep

42

BitTorrent in its original specification.
The last method we know for studying BitTorrent performance is to model the

protocol analytically. We detailed the different works known in the literature in the
following.

2.3.3.3 Performance studies based on analytical models

The principal famous analytical modeling studies in BitTorrent are classified into two
principal categories which are the homogeneous and the heterogeneous ones. In the first
category, the peers have the same capabilities in terms of download and upload rates.
Most of the models for BitTorrent are fluid-flow models where the approach is to follow
the number of peers (Leeches and Seeds). In our work, the mathematical analytical model is
out of scope but it is important to know how BitTorrent can be modeled to understand
the peers and the protocol behavior. Following the different proposals based on
analytical model.

[QIU&al04] presented a fluid-flow model. It proposes a deterministic model
describing the evolution of the Leeches and Seeds number also. They conclude that the
average download time is not related to the arrival rate and that the system scales very
well with the peers increasing. They studied the built-in incentive mechanism in
BitTorrent and its effect on network performance. They proposed a validation part based
on both simulation and real traces obtained from the Internet. In terms of modeling, this
paper appears as a complete reference in the literature.

In [GUS&al05] the parameter that is principally studied is the service capacity for
transient and steady-state regimes. An assumption has been chosen here: no peers leaves
the system and aborted the download. Based on an abstract model of P2P system, the
authors demonstrated that the scaling is favorable for the download while load of charge
is increasing. A markovian approach has been adopted to model the stationary regime.
They concluded by proposing a specific fairness policy that they assume to be better for
dynamic P2P system like BitTorrent-like ones. The authors also partially validated their
work using traces obtained from a second generation P2P application. This work is also
developed in [YAN&al06] and detailed in section 2.3.4.1.

 [GUO&al05] is a work inspired from [QIU&al04]. The authors analyzed the file
downloading trace files obtained from Trackers. They conclude saying that the peer arrival
rate to a Torrent is exponentially decreased. This result permits them to extend the work in
[GUO&al05] for this decreasing rate. They studied various parameters like the Seed
departures, the evolution of peers in the system and they proposed a graph for analyzing
inter-torrent collaboration. [GUO&al07] is a work proposing incremental work
comparing to the previous on extensive measurement and trace analysis.

In [ART&al05] an analysis of data dissemination is proposed. The Tit For Tat strategy
is ignored and the authors assumed that the peers are homogeneous. We will see in our
work that by simulation, we can approach closer to networks reality which is to propose
some heterogeneous environments.

The authors in [KUM&al06] presented an analytical model of file sharing in P2P
networks also using a fluid-flow model. They proposed to study the advantages of a P2P
file sharing protocol comparing to a Client-Server system. They tried to find the
minimum download time to finish the distribution to all Leeches in the system. They
adopted a good heterogeneous approach very close to reality even if some non realistic

43

assumptions have been chosen concerning the bit level of data transfer. However, the
study gives a good approximation in terms of performance. Here the study is limited to
10 Leeches for a unique Seed.

In [ERM&al05] the authors performed a modeling methodology and some
measurement to study the entire session characteristics of BitTorrent. They found that
BitTorrent session inter-arrivals can be modeled by the hyper-exponential distribution
while session duration and sizes can be modeled by the lognormal distribution.

In [FAN&al06] the authors also based on the famous work in [QIU&al04] to propose
a model based on a stochastic differential equation approach. They divided peers into
three types which are Leeches that have a few pieces, Leeches that have most of pieces and
Seeds. They propose to fix a probability to each connection. They analyzed the file
completion time and the file availability. Here a discrete-event simulator has been used to
validate the results concerning the effect of various parameters like the peers’ arrival rate,
the Seeds’ departure or even the transfer bandwidth on performance measures.

[TIA&al07] is a deep and complete work that extended the fluid model in
[QIU&al04] to study the peers in different states of the download. This work is detailed
in 2.3.4.2.

With java modeling tools, [SAR&al07] presents a queuing model for BitTorrent where
each peer is considered as a load dependent host. The service is divided into slots and a
request time is equal to the time needed to download one piece. The work focuses on the
download behavior and the incentive mechanism.

[PIC&al07] is the first work that proposes a study based on heterogeneous fluid-flow
model. To work on different access link capacities, the authors developed a model with
two different capacity classes by extending the work in [QIU&al04]. The two classes are
high rate and low rate. The performance of heterogeneous networks is compared by the
homogeneous ones and they conclude saying that heterogeneous bandwidth can have a
good effect on content distribution among peers in some certain scenarios.

In the same optic, the work in [LIA&al07] proposes a model based on heterogeneous
networks with also two classes: high and low peers. The authors propose a mathematical
model that helps them to predict the average file download delay for both classes of
peers. The used the BTSim simulator [BTS] to experiment the proposed model.

2.3.3.4 Contributions on locality-aware for BitTorrent

Recently, the P2P community showed a lot of interest on peer localization and how
this can decrease inter-AS traffic and ISP costs. All these propositions choose to modify
the original random selection by a specific selection of some peers inside of ISP with a
certain fixed threshold. However, for the best of our knowledge, none of the
propositions specified a unique manner to map each peer with the AS it belongs to.

The work in [QUR04] proposes a new peer selection based on proximity. The Tracker
sends information on nearby peers to improve the download. They compare an approach
where the requesting peer floods an announcement to discover peers and an approach
based on Gossip protocols that use a low-rate probabilistic flooding mechanism.

In [KAR&al05] the authors performed a study on the impact of ISPs on BitTorrent.
They proved that BitTorrent is locality unaware and this increases ISP costs. They
showed that in BitTorrent, the content is sent 30 to 70% more times and that some
mechanisms can help decreasing the inter-ISP traffic.

44

In [BIN&al06], a new selection called the biased neighbor selection is proposed to
improve traffic locality. The idea is to select peers according to each of these AS
numbers. In this solution, the Tracker forces each new Leech to select a majority of its
neighbors within the same ISP and only few outside of it. This solution has no
proposition for the peers mapping with the AS’s.

The authors in [PAP&al06] extended the solution in [BIN&al06] by inserting ISP-
Owned peers to enhance performance within an ISP domain. They also compare
multiple locality selection with their proposition showing the added-value they bring.

In [AGG&al07] the authors evaluate the feasibility of a solution where the ISP offers
an oracle to P2P users. The peers provided a list of neighbors and the oracle ranks them
according to certain criteria like proximity or bandwidth.

In [ZHN&al07] the authors explore the use of proximity in the construction of the
overlay network and the efficient exchange of the file fragments In BitTorrent with the
main goal of reducing download time and resource usage. In our work, we propose a
Context-Aware DHT that generalizes the traffic partitioning based on the hTracker peer
selection policy. Our work also aims to reduce traffic exchanged between ASs.

In [YAM&al07] the authors propose a method to constitute P2P content distribution
networks and a reduction in ISP costs by considering the form of the ISP
interconnection in its distribution. The authors show that the proposal achieves a
reduction in ISP costs and distribution time.

The Ono project [CHF&al08] is a pluggin added to Azureus client taking pressure off
international and other long distance transfers, to increase file download speeds. To
determine which peers are close by, Ono learns from existing Content Distribution
Networks (CDNs) such as Akamai [AKA] and Limelight. Contrarily to other
propositions like P4P, Ono does not need any cooperation between ISPs and P2P
applications. It is a customer-oriented service.

Some solutions proposing locality enhancement have been implemented in
[LEG&al09] and a large study showed how far locality can be pushed and what the traffic
economy gain we can have.

[CUI&al09] presents the measurement study of locality-aware P2P solutions over real
Internet AS topology using the accesses of nodes in PlanetLab. The authors propose an
evaluation of the performances of a set of locality-aware solutions. They point out the
necessity to tradeoff between the goals of optimizing AS performance and fairness
among peers.

TopBT [REN&al10] for Topology BitTorrent is a topology-aware version of
BitTorrent protocol also implemented as a plugin to Azureus (Vuze) client. The protocol
has a discovery mechanism that allows peers to discover network proximity peers by
sending requests and waiting for responses.

Propositions like ALTO and SmoothIT are mainly focusing on traffic management

and QoS issues and data transfer optimization is not mentioned whereas increasing data
transfer performance can have positive consequences on peering traffic and QoS
agreements respect. Another drawback on these architectures is the difficulty for
deployment. In fact, interoperability is not totally ensured and major modifications are
needed in the Internet entities like routers. [CHF&al08] and [REN&al10] proved
performance results but these solutions are not totally independent while they needed
interaction with other infrastructures like CDNs. They are customer-oriented and do

45

not propose collaboration between ISPs and P2P applications. The service provider
oriented architecture we will propose in chapter 5, which is the main objective of thesis,
introduces a proper mapping for AS membership which is totally independent from
other infrastructure.

The ALTO project defined in an IEEE draft a specification for the called P4P
[XIE&al07] that permits coordination and collaboration between an ISP in the P2P
activities and applications. In this model, an entity called the iTracker is added in each AS
and permits the communication with peers and the application Trackers (like BitTorrent).
This proposition is more general to all P2P or overlay applications, while our
proposition is specified to BitTorrent.

SmoothIT [PUS&al09] consortium also proposes an architecture relying on various
criteria to evaluate the traffic management in P2P systems. However, their architecture
seems complex to implement legally and technically.

2.3.3.5 Contributions on erasure codes applied to BitTorrent

A performance study is proposed on [PLA05] where the authors present an
assessment for erasure codes in the wide area.

A comparison between replication and erasure codes is defined in [WEA&al02]. In
data networks, the FEC is usually used at the two first OSI model layers. In higher layers
some techniques such as Checksum are used to detect errors on packets. It is now
possible to see encoding and decoding FEC mechanism at the application layer.

The best examples are multicast transport protocols like SRMTP [BLO&al99] or data
storage where FEC is integrated to protect data against failures.

In content storage, FEC improves the system performance by distributing the
encoded blocks from various sources. The principle is to use some encoded blocks to
compensate the loss or the corruption of any block. The objective in this context is to
minimize the failures when it is to replace loss blocks by FEC blocks. However, FEC
mechanism can be integrated to an Internet protocol or application to speed up data
access.

In [BYE&al99] the authors propose a FEC-based alternative for multicast distribution
with a parallel access to mirror sites using Tornado Codes [COH&al02]. The data is
reconstructed as soon as the customer retrieves the necessary number of blocks. This
solution is applied to software distribution and presents some congestion problems.

In [LAC&al02], a solution to speed up data access in P2P networks is developed with
dilution of FEC fragments over all the peers based on a data storage scheme. This
permits to increase the blocks entropy and choice.

Bullet is a distributed and scalable algorithm proposed in [KOS&al03] where peers
self-organize into a high bandwidth overlay mesh. In this algorithm, the peers locate and
retrieve data from multiple peers in parallel. The proposal is emulated and the
measurements show that compared to tree based solutions, Bullet reduces the need for
peers to probe intensively.

In [MAY&al03] the authors propose a simple algorithm that allows big files to be
downloaded from multiple sources in P2P. The solution proposes low handshaking
overhead between peers. The interest is that when two peers have partially downloaded
the resource, they can benefit from each other resource parts. The codes used are linear-
time rateless erasure codes.

46

Current researches on block coding focus on Network Coding [GKA&al06], which is
an alternative of FEC. In this mechanism, the blocks are obtained by a combination of
resource held by other peers. This technique, which is a channel coding and not a source
coding like FEC, is implemented by Avalanche which is the Microsoft BitTorrent-like
P2P application.

Except BitCod [BIC&al07] that uses the Network Coding mechanism, no
development has been proposed for Avalanche yet, even if in [GKA’&al06] the authors
show that this new proposition may surpass FEC performance.

In [LUN&al06] the authors studied the block management in BitTorrent and their
circulation. They conclude that the block distribution in BitTorrent is far from being
optimal in terms of block frequency and that some blocks dominate the network and that
others become extinct nearly. They also studied this distribution depending on the
topology because blocks tend to conglomerate. Then, they propose a simple source
coding mechanism to achieve a BitTorrent-like network with better performances. The
coding use is the one presented in [BYE&al98].

[SPO&al10] is a recent work where the authors explain that in real world applications
like real time constraints ones are affected by flash crowds because peers join and leave
quickly. They propose a modification to GPS simulator [GPS] integrating LT (Luby-
Transform) codes. They prove how the changes make the protocol more robust and help
speeding up data transfer.

Comparing to those different works previously described, our work on erasure codes
presented in chapter 4 is to provide a complete study of the FEC mechanism impact on
BitTorrent in different scenarios with the variation of various parameters. It will be our
goal in our global Service Provider oriented platform to allow an ISP to choose the
redundancy degree (FEC ratio), depending on the running application and the peers
number or availability for instance. We chose FEC instead of Network Coding because
the FEC mechanism has proved more maturity until now, it is simpler and also because
we prefer a source coding to a channel network coding in order to be able to control the
FEC providers easily. In fact, in Network Coding, each peer is implicated to the process.

The main ways source coding can be integrated to BitTorrent is also detailed in section
4.1.

2.3.4 BitTorrent simulators

A simulator is used to simulate communications networks in certain scenarios or
situations. The simulators have evolved today to be able to implement the simulation of
P2P systems. The simulators such as NS2 [NS2] can be used directly to simulate a P2P
protocol while a simulator as OMNET++ [OMN01] was used to produce a simulator
called OverSim for P2P systems [OVER07]. The simulators can be classified into two
categories: packet-based simulators and simulators application-level. The first category
calculates the time, bandwidth and routing for each packet sent or used by the simulator
while the second category, does not take each packet into account but the calculation of
these same metrics mentioned above are made from a network point to another based on
flows.

47

The criteria for selecting a simulator are mainly:

• The ability to flexibly implement BitTorrent and all its aspects (algorithm,
protocol, messages, etc.).

• Having a global view of network.
• Having reasonable results in terms of performance compared to the reality of

the network.
• Having a support and documentation for use and/or development. Provide a

significant scaling factor.

Some famous simulators are used for general P2P simulations like Peersim [PEE] but

we will present a non exhaustive list of simulators specific to BitTorrent protocol.

2.3.4.1 NS-2 for BitTorrent

NS-2 simulator is a famous and complete simulator for networks. For to P2P

protocols, many protocols such as Gnutella have been simulated using NS-2. A basic
implementation of BitTorrent [EGER AL07 &] was developed by omitting the contact
part of the Tracker (Tracker HTTP Protocol). However all the algorithms are developed in
this simulator including the End Game Mode often overlooked.

2.3.4.2 OverSim on OMNeT++

OverSim [OVER07] is a simulation platform for overlay networks. It uses the

characteristics of OMNET++ as the GUI. What is interesting with OverSim was the
opportunity to interact with the model derived from the underlay INET INET
Framework used by OMNET + + and thus be able to change the settings of the current
network layer and MAC. OverSim currently implements Chord [STO&al01], Kademlia
[MAY&al02] and GIA [GIA03]. The media OverSim consists in a mailing list and a full
documentation for installation, use and development of this simulator tuning. It can be
used to simulate more than 100,000 nodes. The possibility of changing the underlying
network makes it very flexible compared to other simulators. Although most protocols
are implemented structured P2P DHT types, it is also possible to simulate P2P
unstructured and thus implement BitTorrent. In [OMBIT09], the authors propose an
integrated module to OMNET BitTorrent++ with all elements of the protocol
(algorithms and messages). Three modules were created. The first one is the Tracker, then
the Customer Tracker (Tracker module contacts to join the network) and finally Peer-Wire
Protocol module implements the full functionality of the protocol transfer between
different peers.

2.3.4.3 GPS

The GPS simulator [GPS] developed in Java is interesting because it offers a graphical

interface and visualization nodes and exchanges. However, the number of nodes that can
be introduced is limited. GPS was created to simulate P2P protocols and implementation
of custom protocol, but its operation mode is based on BitTorrent. It is described as a

48

message-level simulator that works at the application level. Choke Algorithm is integrated
in GPS. The problem with this simulator is the missing documentation and popularity.

2.3.4.4 BTSim

BTSim [BTS] is a new implementation of the BitTorrent protocol. It is used to simplify
the components of BitTorrent by emulation on a single system. The variables of the
simulator can be easily changed to adapt the code itself for specific experimentations. It is
written in Java and is based on BTOrig (in python). The Tracker and the client are two
different threads. Depending on the simulation parameters, BTSim can generate different
threads for the Tracker and the customer on the same system. Sockets created between
clients to emulate the behavior of a real socket connection and even the socket created
between the Tracker and a client. An element of the architecture emulates the algorithm
Choke, and the Choker regarding downloading each customer is the downloader that is
responsible for managing each connection. The problem is the lack of a scheduler for
managing transfer speeds of each client. A timer element is used to emulate the data
transfers.

2.3.4.5 Microsoft Research OctoSim BitTorrent simulator

MSR Simulator is a simulator that was created by the authors of [MR05] in Microsoft

Research group. The authors are at the origin of the protocol Avalanche [NC'06] we will
present in Chapter 4 of this work. MSR is the simulator that we have greatly modified for
the implementation of error correcting codes and most of the work and performance
studies of BitTorrent.

The simulator is a discrete-time simulator and represents the exchange between the
peers of the BitTorrent network. The unit of exchange is only the piece. The finer
granularity is the block (pieces fragments) has not been taken into account yet. The
simulator models peer activity (Joins, Leaves, exchange of rings) and most of the
mechanisms and algorithms of the basic BitTorrent protocol [COH03] (First rarest,
Reciprocity Tit-For-Tat, Choke Algorithm) in detail.

The network model combines speed downlink and uplink rate for each peer, which
allows modeling asymmetric access networks. Thus able to simulate heterogeneous
environments change. The simulator uses this rate to calculate the approximate time of
the pieces exchange between peers. This calculation takes into account the number of
flows sharing the uplink or downlink connection while this number may vary. The
calculation for each piece transmitted from the time depending on the flow is quite
complicated to do to limit the maximum number of peers.

One Seed is created at the beginning by default even if that value can be changed. It is
also possible to change the probability of withdrawal of the new peers become Seeds. In
effect this means that if this value is equal to 1, Leeches becoming Seeds necessarily leave
the network once the download is complete.

Despite the complexity of calculating the simple model given, above simplifications
have been made in the network model:

• Every edge of the propagation delay is neglected, only indicator taken into
account for sending control packets of small size (for example packages used
by peers for the query pieces to their neighbors). We assume that this

49

simplification does not really impact on the results, because the download time
is dominated by data traffic (transfer of segments) and the mechanism for
sending data from BitTorrent cache much of the latency Traffic control in
practice.

• The dynamics of TCP connections at the packet level is not modeled.
However, a link is shared by different connections equally, taking the variation
in the number of connections into account. Note that the procedure Store and
Forward BitTorrent is not affected by this simplification. Basically, the
anomalies (TCP timeouts) are not modeled. Note that while one piece is not
particularly large (32-256 KB), the flow of data is kept continuously.

• Finally, the bottleneck of shared connections within the network is not
represented.

• A simplification has been made in the modeling algorithms of BitTorrent. The
End Game Mode has been ignored. It is used to speed up downloading a
priori at the end of the file allowing the node to query blocks they want to and
that all peers in parallel. Knowing the End Game mode has no effect on the
performance plan and it does not solve the Last Block problem [MR05]
LEG&al06], it is better to neglect it in the simulation. We remind that the Last
Block problem takes place when the peer does not find a peer with the last
piece it needs and this may increase the overall download time.

The simulator we will use during the rest of this thesis work is a greatly modified
version of MSR Simulator.

50

51

Chapter 3

P2P traffic partitioning: a contribution

This chapter presents the first contribution of this thesis. Peer-to-Peer protocols and especially

BitTorrent do not take into consideration the importance of the large traffic volumes exchanged between
Autonomous Systems (ASs). This constrains Internet Service Providers (ISPs) to restrict BitTorrent
connections in a way of decreasing their peering costs. The difficulty in implementing such a mechanism is
that most of the P2P applications are distributed and without any real control. We propose an approach
which is based on the introduction of a control entity called hTracker. The latter consists in adding a
control level in BitTorrent with a new peer selection policy, in order to reduce the download time and as
well as the inter-ASs traffic. The principle adopted here is to fraction the traffic by using locality
information and to make each peer select its neighbors relying on the AS it belongs to. We also propose a
formal peerId specification calculated using an HMAC function to map each peer with its AS
membership. The large-scale simulations published in [PBL05] show valuable results that validate our
solution.

52

P2P applications are widely used and generate a quite large part of traffic among the
overall traffic in the Internet. Among them, BitTorrent (more than 60% of the P2P
traffic [IPO07]) represents more than 30% of the Internet traffic [CAC05]. The P2P
model is known for having many advantages compared to the Client-Server model: the
scalability due to the good load distribution and well balanced aspect of the system, the
possibility of using all peers’ cumulative resources at the same time, and finally, the easy
deployment of such systems.

However, a significant drawback of P2P model is that the overlay level is independent
of the underlay level. This brings traffic engineering problems due to the absence of a
real management for redundant and over traffic generated within an AS and especially
between ASs in the Internet. An autonomous system is an administrative entity that
groups a collection of IP addresses and routing prefixes under the control of one or more
ISPs that share the same routing policy (and protocol in general). Some peering
agreements exist for the traffic volume exchanged between ISPs [NOR03] but in general
the traffic problems and their generated over cost are entirely borne by the ISPs
themselves. The shaping devices techniques [BIN&al06] are interesting in a way that they
do not need any modification of the Tracker or the client. However, these techniques
imply that every ISP integrates the system alongside the edge routers of the ISPs.
Another disadvantage in this method is that the Tracker, which is the entity that helps
peers to contact each others, is not directly responsible of how a new joining peer choose
its neighbors and this is against the BitTorrent protocol philosophy. The peer can also
manipulate the Tracker’s response which presents a big risk in terms of security.

The BitTorrent protocol specifies algorithms for peer selection and piece selection
that are the main keys of its success [MR05]. However, a problem still exists in the
original BitTorrent client version concerning the neighbors’ selection. In fact, when a
new peer joins the network after downloading a desired Torrent file from a Torrent web
database, it must contact the Tracker responsible for this torrent. The main function of
this Tracker is to keep information on peers for each Torrent it manages. In response to
the new peer’s request the Tracker send a list of 50 peers. These peers, that constitute a
list called the Peers Set, are chosen randomly from a larger list of peers having data for the
specific torrent. No locality information is taken into account, as a consequence, the
peers forming the Peers Set are generally chosen from different domains.

This random selection has consequences on the vast inter-domain traffic. A way to
decrease this amount is to force the Tracker to send a Peers Set such as most of them are
inside the same AS as for the peer to which the Peers Set is to be sent. Even if this
technique increases the intra-domain traffic, the service provider can manage its own
overhead and (equipment investment), the main advantage resides in the reduction of
traffic passing through other ASs, and so the cost. Another advantage is the better
download duration since the peers contacted are physically (in terms of Bandwidth and
RTT) closer. This approach is commonly described as locality-aware techniques. The
impact on implementing this solution in terms of modification is mostly in the Tracker.

 Most of the current P2P architectures choose a weak control of the Peers Set in the
sense that the latter is set randomly. Our proposal consists in an enhanced control of the
peer set. We introduce into the BitTorrent infrastructure a modified Tracker, called
hTracker. The main difference with a classical BitTorrent Tracker resides in the addition of

53

a control level on the choice of the peers. Currently, Trackers are the only entities in a P2P
system, like BitTorrent, through which a system level control could be provided. In our
proposal, the hTracker will send a specific Peers Set (that is not randomly chosen anymore)
to each Leech. The choice is done in order to adjust the activity of the peers following
some criteria that we will discuss in this paper. One of the goals is to reduce the traffic
between peers of the hTracker’s AS (the AS to which is attached) and the other ASs.

The second contribution is the definition of the way to map the peers with their AS.
Most of the previous works propose to use BGP routers information [LEG&al09], or
Internet topology maps to identify ISPs [BIN&al06]. This problem is not considered as
primordial in the existing solutions in BitTorrent locality. We propose a method to
generate a unique peerId for each peer, with a formal semantic. This peerId will indicate in
particular the AS it belongs to. More precisely, we propose to generate part of the peerId
with an HMAC function [HMC97]. Each AS, say ASj, is associated to a unique private
key Kj.

Now, let us combine the hTracker and the HMAC-based semantic peerId proposals:
when a new Leech joins the network, it forges its peerId by applying this HMAC function
to its IP Address and then contacts its hTracker to obtain the Peers Set. By executing the
HMAC function with the AS key the hTracker verifies the AS membership of the peer.
This is a way for the hTracker to choose within the same AS most of the peers in the Peers
Set it sends to the new Leeches. The semantic proposed can vary, but the idea is to
integrate the AS membership to the peerId. The key Kj adds a security level when it would
be possible for a peer using only its AS identification to choose any of it to spoof its
membership.

In order to validate our proposal, we developed a large-scale discrete-event simulator
for BitTorrent with the majority of its algorithms and policies. We can inject more than
5000 peers in a multi-domain network component based on a specific study of real
propagation delays between ASs in the Internet. We validate our results by choosing two
main criteria which are the completion (download) time and the traffic volume sent from
an AS to another. The results confirm our design objectives.

3.1 BitTorrent and peers locality

The contribution concerns the Tracker and the way it chooses the Peers Set. In order to
understand it, we present here a brief recall of the general BitTorrent functioning and its
principal algorithms based on the major specifications and papers.

BitTorrent [COH03] is probably the most popular file-sharing protocol used in
Internet for large files distribution with a very good scale factor. A metadata file called a
Torrent is downloaded by the user from a web page. This file contains the address of the
Tracker responsible for the resource the user is interested in and the hash results of each
resource’s piece for data integrity verification. The piece size in BitTorrent depends on
the resource size but is the same for each piece of the same resource (usually 256 kB).
Each piece is also divided into blocks (16 kB in general for a 256 kB piece). Even if the
block is the transfer unit of the protocol, a user first finishes to download a piece before
downloading another one. The Tracker is the entity responsible for keeping information
on peers: those having only parts of the resource are called Leeches and those having the
entire resource are called Seeds [LEG&al05].

54

When a Leech wants to download a resource, it must first contact the Tracker using the
HTTP Tracker protocol [BTO] to receive a list called the Peers Set that contains, in the
regular BitTorrent version, a random list of some peers that the Leech will be able to
contact for downloading the pieces. The size of this Peers Set is by default equal to 50 and
can contain Leeches and Seeds. An interval is initiated by the Tracker to fix the time (usually
10 min) after which the Leech must contact the Tracker again and send a report. This
report contains upload and download data volumes, and the peer state. However, when
the Peers Set size is under 20, the Leech must automatically contact the Tracker to ask for a
new list. This size cannot exceed 80 in the original BitTorrent Specification [BTW]. The
peers in the Peers Set are peers that can be scattered throughout several ASs or that are
more specifically ISP domains.

The main algorithm that governs the peers choosing policy and directly the data
exchange between the peers is the Choke Algorithm [LEG&al06]. A Leech A can proceed to
a handshake with each one of its neighbors. The exchange between peers is based on the
Peer wire protocol [BTO]. The contacted peer B sends a Bitfield message containing a bitmap
of the pieces it has and the pieces it still needs to download. If A is Interested in one or
more specific piece(s) in B bitmap, A sends an Interested message for the piece(s) to B. The
contacted peer B can accept or refuse to send the piece depending on the Choke Algorithm.
This algorithm determines for each peer a so-called Active Peers Set, which is the set of
peers to whom a peer accept to send during a round (time cycle). We say that B unchokes
A when B accepts to send data to A. If not, then B will choke A. This decision depends
on the download rate of B from A when B is a Leech. If B is a Seed, the decision depends
on the upload rate from B to A and the data amount previously sent. B can upload to a
maximum of 5 peers where 4 peers are chosen every 10 s because they present the best
download rate from B (if B is a Leech for example) and 1 peer called the optimistic unchoke
peer is randomly chosen every 30 s to a let a chance to weak rate peers to participate.

The other main BitTorrent algorithm concerning the piece policy is the Rarest First
policy [LEG&al06]. A requesting peer selects the pieces to download by choosing the
pieces that are the least replicated or distributed among all the peers in the Peers Set. This
mechanism contributes to accelerate the replication of rarest pieces and to increase their
entropy in the network.

In Figure 3.1 we show the procedure launched by a new Leech to contact the Tracker
and the response including the Peers Set.

Figure 3.1: First exchange between a Leech and a Tracker

55

We focused on the Get Announce message to analyze the message fields and especially
the peerId specification before presenting the modification proposed in our work.

The following is a brief description of the most important fields of the Get message
[BTW]. For more details cf Section 2.3.2.2.
peer_id: 20-bytes string used as a unique ID for the client, generated by the client at

startup. This ID can any value, and may be binary data. There are mainly two
conventions of coding client version information into the peerId, Azureus-style and
Shadow-style. Azureus-style uses the following encoding: '-', two characters for client id,
4 ASCII digits for version number, '-', followed by random numbers. For example: '-
AZ2060-'... Shadow-style uses the following encoding: 1 ASCII alphanumeric for client
identification, up to five characters for version number followed by three characters
(commonly '---'), followed by random characters. Each character in the version string
represents a number from 0 to 63. For example: 'S58B-----'... for Shadow's 5.8.11.

port: The port number that the client is listening on. Ports reserved for BitTorrent are
typically 6881-6889.

uploaded: The total amount uploaded (since the client sent the 'started' event to the
Tracker)

downloaded: The total amount downloaded (since the client sent the 'started' event to the
Tracker)

left: The number of bytes this client still has to download

compact: Setting this to 1 indicates that the client accepts a compact response

no_peer_id: Indicates that the Tracker can omit peer_id field in peers dictionary. This option
is ignored if compact is enabled.

event: If specified, must be one of started, completed, stopped, If not specified, then this
request is one performed at regular intervals. started: the first request to the Tracker must
include the event key with this value. stopped: must be sent to the Tracker if the client is
shutting down gracefully. completed: must be sent to the Tracker when the download
completes. However, completed must not be sent if the download was already 100%
complete when the client started.

numwant: Number of peers that the client would like to receive from the Tracker. This
value is permitted to be zero. If omitted, the typically default value is 50 peers.

key: An additional identifier that is not shared with any users. It is intended to allow
clients to prove their identity if their IP address changes.

Many studies propose performance measurements of BitTorrent protocol. In
[IZA&al04] the authors show the different states in the life of BitTorrent Network. The
results are collected on a five months long period involving thousands of peers. Some
metrics are proposed to evaluate the performance of BitTorrent original algorithms. In
fact, the neighbor selection is based on a random mechanism in this case. [MEU&al10] is
a BitTorrent measurement study focusing on the data availability, the pieces integrity, the

56

flash crowd reactions and the download performance.
In the following, we present some more concrete examples concerning traffic

management in P2P systems while in section 2.3.3.4 we presented related works on
locality-aware techniques for BitTorrent.

3.1.1 AURORA [ASA&al09]

Aurora is for Autonomous System Relationship-aware Overlay Routing Architecture
in P2P CDNs. The CDNs using P2P networks are developed and deployed for efficient
transport of content across the Internet. However, those CDNs do not consider the
political and economic routing through different autonomous systems, but what is
remarkable is that they consume a huge amount of network resources.

The metrics that are generally taken into account in this kind of study is the RTT and
the number of hops for the establishment of peer selection algorithm and the relation
between ASs is not taken into account. The protocol that determines the routing is BGP.
ASs can be classified into 3 main categories in terms of traffic and economic cost:

• The Transit ASs: An AS that uses access to another AS against a load of money.
We will later broach the subject of C2P (Costumer to Provider).

• The Peering ASs: a pair of ASs can directly exchange traffic between ASs and that
traffic is free. However, if the traffic becomes unbalanced, a cost can be
generated.

• The Sibling ASs: Many ASs belong to the same organization, even if they are
managed separately from the administrative point of view. In this case, no charge
is considered.

AURORA proposes an inter-domain control based on overlay routing metrics to

monitor this traffic.
The cost-based method is first proposed. In this case, it performs a calculation of

distances at underlay network of inter-links all ASs through the path between two ASs
arbitrary. This method is not difficult to calculate. The challenge is to reveal the true cost
of these links, since such information is generally private service providers. A method
based on a metric magnitude precisely the problem of ASs undisclosed. The relationships
between ASs can be estimated mathematically. The results show significant gains in using
such a method, unlike the random selection of peers, or using the calculation of RTT or
hops count. A peer selection algorithm based on these metrics significantly reduces inter-
domain traffic.

M
a

g
n

it
u

d
e

Figure 3.2: Valley-Free Path topology and AS magnitude in AURORA

57

3.1.2 Ono

The Ono project [CHF&al08] is a software service that allows clients to efficiently
identify peers that are physically close. A pluggin is added to Azureus client taking
pressure off international and other long distance transfers, to increase file download
speeds. Ono seems to increase download rates by between 31% and 207% on average,
depending on whether the client is on an overloaded network or with large available
bandwidth. The origin of this work is Aqualab that made Ono available as an open
Tracker and with the source open. Ono is open source and does not require additional
infrastructure. To determine which peers are close by, Ono learns from existing Content
Distribution Networks (CDNs) such as Akamai [AKA] and Limelight. It assumes that if
tow hosts are sent to the same CDN server, they are likely to be close to each other.
Contrarily to other propositions like P4P, Ono does not need any cooperation between
ISPs and P2P applications.

3.1.3 TopBT

TopBT for Topology BitTorrent is a topology-aware version of BitTorrent protocol
also implemented as a plugin to Azureus (Vuze) client. The protocol has a discovery
mechanism that allows peers to discover network proximity peers by sending requests
and waiting for responses. TopBT is developed with the main objective of reducing
unnecessary traffic and maintaining at the same time the download speeds. The authors
show in [REN&al10] that they were able to decrease 25% of the unnecessary traffic.
The principles are based on discovering path proximity with some probes using TTLs.

3.2 hTracker : Management and Control on a BitTorrent
network

3.2.1 Problem Statement and Objectives

The global Internet routing system is composed of various Autonomous Systems
(ASs). To route traffic in the Internet ASs maintains relationships between them. Peering
and business agreements are the base of those relationships. The major categories of
those relationships are customer to provider (c2p), peer to peer (p2p) and sibling to
sibling (s2s) [DIM&al07].

The problem is that inter-ASs connections number has an impact on peers
performance and inter-domains traffic. This impact is multiple and concerns many
aspects [LEG&al09].

The first impact is in the overhead that increases linearly with the inter-ASs
connections number. This can cost a lot to the ISP, especially if the traffic cannot be
controlled like in P2P applications. We note that in general, traffic retrieved from an
external AS have to be paid somehow by the origin AS. Usually, large ASs do not pay like
smaller ASs because they represent the crossroads of so many traffic that they have
agreements allowing them to have facilities with ASs that are at the same level or inferior
levels. However, when an AS is of relatively middle or small size, they may have to pay
the bill when they have to use bigger ASs traffic roads.

The second impact is the slowdown and this problem can be avoided by choosing
peers located in majority within the same domain, in order to limit the propagation delay

58

during exchanges as well as inter-domain traffic. A complementary important aspect is to
have fast initial Seeds providing high pieces diversity.

Our study is based on some objectives that an ISP could fix to serve its clients with
respect of the Quality of Service in the contractual engagement signed between the
Service Provider and the customer. At the same time, ISPs are all under the terms of
what we call peering strategies [PER08] that they have to respect. The principal goal for
ISPs is to limit the over costs of their systems without degrading the service provided.
Some applications widely used nowadays have some constraints on delay time and
bandwidth. Applications like VoIP or IPTV are the best examples that illustrate the
importance for an ISP to follow some objectives and to add the technical and policy
measures to reach these objectives. However, it is not so obvious and easy in P2P
applications that are widely distributed, dynamic and control-less to preview the behavior
of every peer in the system.

Our interest in this work here is to treat this locality issue even if we are conscious
that the locality parameter is not the only aspect that an ISP must take into consideration
to respect its peering and QoS objectives. The original and most used method to control
P2P traffic (and especially BitTorrent) by ISPs is to limit the bandwidth by throttling.
Devices like [PCK] are used to shape the traffic in the edge routers. However, the
downside of these devices is that they slow down the data transfers and this does not
solve the problems of improving the locality of each peer by ISPs; thus cannot participate
to decrease the inter-domain traffic. We propose to change the Tracker peer selection
policy for a new one. Like in [BIN&al06] and [PAP&al06], the majority of the chosen
peers are picked up from the same AS as the Leech that sends the request. This method,
validated by simulations, permits to considerably reduce the inter-domain traffic and the
completion time. In previous propositions, the mapping of peers with their AS was not
defined precisely. Another good point in this chapter is the definition of this mapping
with the peerId of each peer.

3.2.2 The hTracker peer selection policy

The global BitTorrent network is formed by thousands of peers geographically
distributed among different ASs in the Internet. The Tracker entity has no specific
domain membership. When a Leech contacts a Tracker, it can’t preview that this Tracker
belongs to the same AS. In the generic BitTorrent specification the Tracker sends a Peers
Set where peers are chosen with a total random manner. Implementing the hTracker
proposition add a control level so that the Tracker contacted by a new Leech is the
hTracker in the AS this Leech is member of. Each AS is associated to a key Kj that
identifies the domain. An hTracker j in the ASj must send to every new Leech a Peers Set
with a default size of 50 peers.

The new hTracker policy consists in choosing 50 - k peers that belong to ASd and k
peers that are outside ASd. The parameter k is variable and depends on the ISP
objectives and peering agreements. The less the k value is, the less ASd Leeches will
contact peers that are outside ASd and the less inter-ASs traffic will be generated. If k =
0, the partitioning is maximum and none of the peers are chosen outside the ISP
domain. The value of k must be set by the ISP that have to take into consideration the
number of possible sources in his AS for a specific resource. In fact, if we suppose that
for a given AS k=1 and that none of the sources is available outside of this AS, the

59

download will be penalized. At the same time if k is close to the maximum (50), the ISP
must be sure that all sources inside the AS are available.

The Figure 3.3 represents an example of 4 ASs where 3 ASs use the hTracker locality
mechanism by choosing peers within the same ISP while the other AS4 use the
traditional BitTorrent implementation and chooses randomly the peers.

Figure 3.3: Graph representing an example of a 4 ASs BitTorrent Network including 3 ASs

using hTracker solution and one generic AS.

3.2.3 Mapping the AS membership with the peerId

It is primordial in our solution to specify a formal way to map the peers with their
AS. We use the HMAC function [HMC97]. It is a mechanism for message authentication
using cryptographic hash functions and the function used can be any one of the known
hash functions. Usually, HMAC is used to preserve the messages integrity transmitted
over a network. The Hash function H is associated to a key K. The result of HMAC
function using SHA1 Hash function is a 20-byte output. This corresponds to the peerId
field size. The information that is used to generate the peerId is the Leech IP address. In
P2P protocols some applications prefer anonymity, so we propose to make this field
mandatory and not optional. If it is not possible the ISP can choose to use the HMAC
function on information different from the IP address. However, this one is still the
more practical information for calculation. The Leech peerId generation process must be
changed in the client to the novel HMAC generation technique. This HMAC function is
the same used by the AS1 hTracker with K1 to verify each peer membership. This is how
the hTracker will choose the peers that are within the AS1 and those that are outside.

For some security reasons and to add an authentication mechanism in our
architecture, we decide not to choose the key Km as the key used by all members of the
ASm. This would facilitate attacks knowing that a unique key is much easier to have
especially that the number of P2P members in an AS is usually large. So we choose to use
Km with the HMAC function to generate a key Kd for each peer present in the ASm. The
key Km is not known by the peers and is the private AS key. When a peer joins the AS, it
sends its information to the hTracker that generates the key Kd by using the same HMAC
function applied to the peer IP address with the private key Km. The peer generate the

Leech

or Seed

137 .194 .192 .229

Bittorrent

Network

using random
selection

A

using

3 K

3
AS

2
K

using 2
AS

1
K

1

AS

using
4

AS

hTracker

hTracker
hTracker

60

peerId by applying the HMAC function to the IP address using the Kd peer key. The Kd
must be sent to each peer by the hTracker via a secure link.

We compare in Figure 3.4 the Azureus style method to our method. We kept the first
8 bytes for transparency with previous clients and interoperability. The Trackers keep
gathering the statistics information process. In fact the Client_info field informs the
Tracker on the client and its version. The remaining bytes that were randomly generated
are formalized to keep an information on the AS membership with the ASN and a
calculation of the last 8 bytes with a private key shared between the Leeches and the
hTracker.

Without this security level, it would be easy for any Leech, just with the ASN, to
pretend being a member of a specific AS even if it is not. The generic peerId using
Azureus style would be as follow: peerId(A)= -AZ2060-256f9ec43a77

Figure 3.4: hTracker peerId specification

Using the HMAC function on the peer A IP address we have for example the
following for the generation peer A key KA and peerId(A):

HMAC(137.194.192.229,K1)=KA

HMAC(137.194.192.229,KA)=1e43f557d89ac69e49

This result can be truncated by a specific method without losing the entropy and
with a very low collision probability [PRE&al95]. The truncation result is not formed by
the same HMAC result digits. So we have:

Truncation [HMAC(137.194.192.229,KA)]=a4b5f633

We can take the example of the France Telecom AS, which has the AS Number
(ASN) 5511 (1587 in hexadecimal). ASN were specified [19] in 16 bits then extended to
32 bits (4 bytes). We finally have in hTracker style:

peerId(A)= -AZ2060-1587a4b5f633

61

3
K

3
AS

2
K

2
AS

1
K

1
AS

3
AS

Figure 3.5: hTracker policy scenario example

In Figure 3.5, we represented the network with 3 ASs that use our solution. The Leech
B contacts the hTracker by sending a Get Announce message. In our solution, the IP
Address field which is usually optional in the generic BitTorrent solution is forced to be
given by the Leech. The hTracker can retrieve the IP address of this peer in its AS but we
decided this to eliminate any routing or NAT problems that could prevent the hTracker to
calculate the peerId with the Leech IP address.

The hTracker verifies if Leech B is in the same Autonomous System by calculating
peerId(B) with the key K3 and the same formula. If the authentication is verified, it sends a
Peers Set with k=1, and B receives in this list containing 50 peers within AS3 and 1 peer
outside AS3, which is the peer A in AS1.

3.3 Simulations and results

The discrete-event simulator we developed in C# models peer activity (joins, leaves,
pieces exchanges) and the majority of BitTorrent mechanisms (Rarest First , Choke
Algorithm, etc.). Each peer is associated to a download rate and an upload rate that can be
set. It is possible to initiate some percentage to have different peer types (depending on
its download and upload capacity). This allows us to model homogeneous and
heterogeneous networks. A delay calculation is modeled in the simulator to take into
account the number of connections that share the different links. Some simplifications
have been undertaken like the non-consideration the dynamics of TCP connections and
TCP timeouts or interior network bottlenecks. However we consider that a link is shared
equally with each connection. The End Game Mode [BTO] is not in the sense that this
algorithm is launched at the really end of the download and does not really prevent from
the last block problem. This simplification does not affect the BitTorrent protocol
measures. The peers exchange pieces and the block transfer is not modeled knowing that
in BitTorrent a piece has to be downloaded entirely before another piece download is
launched. So we decide to integrate the FEC mechanism in our simulator at the piece
level.

An important contribution in the development of this simulator compared to several
other simulators is that we modeled the network propagation delay even if the download

62

time is dominated by the pieces exchange transmission. This propagation delay
component was primordial to simulate a large-scale network with different ASs.

The method we used to add this element to our simulator was a realistic study by
taking real delay propagation in the real Internet ASs. We based our calculation on the
CAIDA [CLA&al99] statistics and by using a performing traceroute utility from the
PingER project [PIN] to provide a table that gives the better picture of current
propagation delays in the Internet from our Paris-located lab. In fact, we had to consider
from the best to the worst possible RTT, modeling a relevant set of ASs. The measures
have been taken several times at different hours of the day to take into consideration the
traffic variation because of the time difference between France and other countries. Table
I shows the results classified by each AS’s rank, referenced in [CAI].

We simulate a homogeneous network and a heterogeneous network. Our results are
validated by choosing two main criteria which are the completion time and the traffic
volume sent.

Table 3.1: Internet Autonomous Systems RTT measurements

Autonomous System ASN Rank Domain Name IP Address RTT
(ms)

GBLX Global Crossing Ltd.
(US)

3549 1 globalcrossing.com 207.218.55.80 102

AT&T WroldNet Services (US) 7018 8 att.com 12.122.2.125 111

TINET-BACKBONE Tinet
SpA (DE)

3257 14 tinet.de 82.165.73.172 23

SWISSCOM Swisscom Ltd.
(EU)

3303 22 swisscom.ch 138.190.35.25 251

OBIT-AS Obit
Telecommunications (RU)

1299 26 obit.ru 85.114.2.98 147

Bell Canada (CA) 6539 47 bell.ca 207.35.184.46 96

OPENTRANSIT France
Telecom – Orange (FR)

5511 87 opentransit.net 193.251.151.57 5

VNN-AS Vietnam Posts and
Telecommunications (VN)

7643 168 vietnamnet.vn 203.162.71.74 388

REANNS-NAT-AS-NZ
National research Network
(NZ)

38022 187 karen.net.nz 203.89.182.33 289

KREONET2-AS-KR Korean
Institute of Science and
Technology Information (KR)

17579 198 kreonet.re.kr 134.75.30.253 444

IDM Autonomous System (LB) 9051 2707 idm.net.lb 193.199.135.50 232

STEL-AS-AP SamoaTel (WS) 17993 7610 samoa.ws 123.176.73.5 487

Comores Telecom (KM) 36939 21621 comorestelecom.km 80.231.195.5 664

3.3.1 Homogeneous network

We dressed in Table 3.2 the parameters chosen for a homogeneous network
simulation. We simulated the behavior of the generic BitTorrent protocol in a network
composed of the 13 ASs given in Table 3.1 and their propagation delays. For a generic
BitTorrent protocol the parameter k is omitted and the peers chosen are totally random
while in the hTracker solution, k can take the value 1, 4 or 12 over the total number of
50, depending on the autonomous system objectives. A Service Provider should fix a
unique value of k but this is not a must. In fact, for some resource which the pieces are

63

rare, k may be variable depending on this resource or the Leech. That is why we chose to
diversify the Leeches by associating a different value of k (1, 4 or 12) equally and
uniformly among them.

Table 3.2: Parameters for homogeneous networks simulation with hTracker solution

Parameter Value
Number of Leeches 1000
Leeches Capacities (Down/Up) 800 kbps/400kbps
Number of initial Seeds1 1 or 20

Seeds Upload capacity 1500 kbps
File Size 100 MBytes (819200 kbits)

Seed leaving probability 1
Leech abort probability 0

Peers Set size 50
k (peers from other ASs)1 1, 4 and 12

Unchoked Connections per peer 5 (4 regulars and 1 optimistic)
Number of Autonomous Systems 13 (cf. TABLE I)

1 Two simulations: one with 1 initial Seed and one with 20 initial Seeds
 2 Only in the hTracker simulation case, while in the generic BitTorrent k is omitted

We simulated a case with 1 initial Seed and a case with 20 initial Seeds to identify the
impact of the initial Seeds numbers in homogeneous and heterogeneous systems for our
solution comparing to BitTorrent. The results for completion times are shown in Figure
3.6 and for packets sent from our AS to other ASs in Figure 3.7. The CDF is the
Cumulative Distribution Function corresponding in our case to the percentage from 0
to 1 of the Leeches that become Seeds.

(a)

64

(b)

Figure 3.6: Completion times CDF for BitTorrent and hTracker with 1 and 20 initial Seed(s) in a
homogeneous network

By analyzing Figure 3.6, we see a real difference and a performance gain between
BitTorrent using hTracker and the generic BitTorrent protocol. We verified this
difference for (a) and (b) using an average statistical test with an error probability equal
to 5%. This validates that the difference observed in the graph is real and not random.
For space reasons and because this is not the scope of this paper, we will not detail the
statistical average test process. This process is used for the next results.

We can note that increasing the initial Seeds number performs the completion time
especially at the beginning of the download process. This is due to the characteristic of
the Seed to have the entire pieces.

In Figure 3.7, we see that there is a large gap between the two graphs. The more
important variation in the regular BitTorrent case is due to the variation of k.

Figure 3.7: Packets sent to other ASs in a homogeneous network for both solutions with 20
initial Seeds.

65

The importance of next case is that most of current networks are composed of
nodes with different bandwidth capacities that are unpredictable by an ISP.

3.3.2 Heterogeneous network

Table 3.3: Parameters for heterogeneous networks simulation with hTracker solution
Parameter Value

Number of Leeches 1000
Leeches Capacities (Down/Up) 25% of 200 kbps/100kbps

25% of 500 kbps/200kbps
25% of 800 kbps/400kbps
25% of 1000 kbps/500kbps

Number of initial Seeds1 1 or 20

Seeds Upload capacity 1500 kbps
File Size 100 MBytes (819200 kbits)

Seed leaving probability 1
Leech abort probability 0

Peers Set size 50
k (peers from other ASs)1 1, 4 and 12
Unchoked Connections per peer 5 (4 regulars and 1 optimistic)

Number of Autonomous Systems 13 (cf. TABLE I)
1 Two simulations: one with 1 initial Seed and one with 20 initial Seeds

 2 Only in the hTracker simulation case, while in the generic BitTorrent k is omitted

We varied the Leeches capacity and we instantiated 25 % of each Leech type (4 types
are chosen, cf. TABLE III). The other parameters are kept without any changes.

We note some levels in the completion times graphs (Figure 3.8) due to the various
Leech types placed. These steps are more visible in the case of 20 initial Seeds where the
faster Leeches (1000kbps/500kbps) can differentiate themselves easily.

(a)

66

(b)

Figure 3.8: Completion times CDF for BitTorrent and hTracker with 1 and 20 initial Seed(s) in a
heterogeneous network

Figure 3.9: Packets sent to other ASs in a heterogeneous network for both solutions with 20
initial Seeds.

Concerning the packets number sent by the Leeches, the gap is approximately the
same (Figure 3.9). However, the regular BitTorrent graph presents a smaller minimum
than in the case of a homogeneous network.

Our main objective was to prove that our solution reduces two principal metrics: the
completion time and the inter-domain traffic. For the first one, the gain is more relevant
in the homogeneous network. The performance increase is between 10 and 20 %
depending on the file size and the Leeches and Seeds number. We voluntary took a difficult
case where the Leeches number is important and the portion of Seeds is small compared to
the Leeches number. Concerning the packets sent to other domains the results are
relatively similar in both networks. In fact, studying the packets sent from our AS to
other ones by simulation gives an important evaluation of the inter-domain traffic.

67

The basic key of BitTorrent exchange is the Choke Algorithm based on the reciprocal
tit-for-tat policy. When a peer chooses its Active Peers Set regularly from its Active Peers, it
implicitly chooses the peers with which it will be in contact in both ways. This is due to
the way BitTorrent system becomes steady by making peers exchange in a reciprocal
manner. We saw that the packets sent are decreased from 2 to 6 times. This implies a
diminution of the inter-ASs traffic, hence a decrease of the over costs for the ASs.

The locality parameter treated in this paper is not the only one that directly impacts
the performance of the Leeches but it is a major element for inter-domain traffic. We can
note that partitioning with hTracker implies an increase of the internal traffic in each AS.
We consider that this is not a problem and that saving a part of the over costs cannot be
done without a supplementary cost elsewhere. There is an economic compromise to be
done.

We saw that our solution proposes an interesting way to decrease the over cost but a
drawback persists in our strategy. When k is chosen, a client may be forced to use peers
presenting bad capacities inside the same AS despite that he can find better ones in other
ASs. This issue can be solved by integrating a more performing statistics report
procedure for the hTracker. This is a part of our future work.

We proposed a technique based on the HMAC function to map a peer with its AS.
The key does not play any direct role in locality but it is a determinist and robust way to
map the peers with their AS and to add a security mechanism to our solution. Indeed, the
peers keys derived from the AS key are unique.

3.4 Conclusion

While P2P is becoming more popular, the IP traffic that is crossing between ASs
increases abundantly. This implies a need for ISPs to cooperate with P2P applications for
adding a control level that is usually absent in this paradigm. In our paper, we propose a
scheme to improve the BitTorrent locality by introducing an entity called the hTracker and
a way to associate a peer with its AS using HMAC function. These two contributions
permit to move towards a Service Provider oriented P2P architecture where ISPs manage
the peers they serve with a semantic association included in the peerId definition.

Taking into consideration real applications constraints like IPTV and following ISP
objectives, it is important to discover some other aspects to improve other P2P
components like the data transport or even the routing process. The next chapter focuses
on performing error correction in BitTorrent and in order to achieve a more flexible and
complete solution.

68

69

Chapter 4

Evaluating FEC mechanism on BitTorrent protocol:
Measures and analysis

Various applications are using BitTorrent-like protocols to deliver the resource and implement
techniques to perform a reliable data transmission. Forward Error Correction (FEC) is an efficient
mechanism used for this goal. This chapter proposes a performance evaluation of FEC implemented on
BitTorrent protocol. The same simulator has been modified to evaluate the improvement of integrating
this mechanism depending on many factors like the Leeches/Seeds number and capacities, the network
nature (homogeneous or heterogeneous), the resource size, and the FEC redundancy ratio. The
completion time metric shows that FEC is a method that accelerates the data access in some specific
network configurations. On the contrary, this technique can also disrupt the system in some cases since it
introduces an overhead. This contribution has been published in [PBL07].

70

This chapter proposes a performance evaluation of Forward Error Correction (FEC)
implemented on BitTorrent protocol. The same simulation framework has been
modified to implement FEC and to evaluate its improvement depending on many
factors like the Leeches/Seeds number and capacities, the network nature (homogeneous
or heterogeneous), the resource size, and the FEC redundancy ratio. The completion
time metric shows that FEC is a method that accelerates the data access in some specific
network configurations. On the contrary, this technique can also disrupt the system in
some cases since it introduces an overhead.

BitTorrent is implemented in various applications. In [LEG&al05] and [IZA&al04]
relevant measurement studies show the protocol recognized performances that are
theoretically revealed in works like in [QIU&al04] or [GUO&al05]. Despite these
characteristics and like in all P2P protocols some significant drawbacks exist. These issues
arise because the overlay level (P2P control) is independent of the underlay level (data
transport over the internet). This brings traffic engineering problems due to the absence
of a real management and control of the peers especially when the applications require
compliance with some QoS (Quality of Service) constraints.

A major problem in BitTorrent is at the transport level and concerns the resource
pieces availability. Even if the Local Rarest First policy [LEG&al06] ensures good pieces
entropy, it is nonetheless true that in some configurations BitTorrent network can
experience a lack of resource and clients would hardly and slowly download the desired
content. Just as scalability, robustness and fault tolerance, performance in content access
over BitTorrent networks is a major issue for users because downloading the entire
resource with the minimum completion time is their principal objective.

One of the approaches consists in using replicated copies [ABE&al02] [PLX&al97]
that can be downloaded from a specific server. However, a better alternative for this
technique is to provide some pieces that are not exact copies of the origin resource bulks.
Instead of sending real copies, the FEC mechanism is an optimized and efficient
substitute of other redundancy approach to speed-up the resource access in content
distribution networks. The particularity of FEC is that the redundant blocks are coded
from the origin ones so that any coded blocks can replace a block of the origin resource.
Basically, FEC techniques are used for information error protection and transmission
losses [RIZ97], for example in Wireless transmissions or in physical data storage (e.g.,
CD, DVD, RDRAM). However, in the context of content distribution, FEC can be used
to speedup data in different servers or mirror sites [BYE&al99] [LAC&al02] especially in
P2P networks where the storage is distributed [ABE&al02].

In distributed systems like P2P ones the use of FEC techniques is addressed
differently. Indeed, the major point that differs from classical networks is that the
number of clients in these systems is large. The quantity of data exchanged can easily
reach important values and so the design of such a system becomes a real challenge. We
know that implementing a download accelerator mechanism and a system that increases
the piece availability must be done without degrading the generic system and by keeping
the system interoperable with classical protocols.

We will present a detailed measurement study based on large-scale simulations to
evaluate the real advantages of FEC implementation on BitTorrent protocol. We will
show with which types of scenario the protocol experiences a considerable gain and on
the contrary in which cases the system can quickly be degraded by an overhead that
implicates important latency during downloads. This work is a study that permits to

71

appreciate the impact of FEC coding in BitTorrent. These results can be then relatively
generalized to other P2P content distribution protocols.

A related work presentation on erasure codes applied to BitTorrent was given in
Section 2.3.3.5.

4.1 Error Correction mechanism

The FEC (Forward Error Correction) policy is to encode a data message composed by
k packets in n packets knowing that it is possible to reconstruct the original message of k
packets by receiving any of any the n provided. The number of packets sent is increased
by a factor of n/k. In the case the losses are still below the rate of redundancy injected
into the network, the retransmission procedure can be completely avoided. In fact, the
FEC main goal in today's applications is to replace costly retransmissions.
Correcting codes used today can be divided into two categories: block codes that operate
on blocks of data and independently on each block and convolutional codes where
transaction is on the blocks but the result depends on the current message, but also the m
previous blocks. A famous example of block codes is the Reed-Solomon code which is a
linear cyclic code. The encoding is systematic: part of the entry is found at the output of
the encoder. The operation is performed on message blocks of k information bits each.
A message is represented by a binary k-tuple u (u1, u2, ..., uk). The total number of
messages is . The encoder transforms each message u independently in n-tuple v = (v1,
v2, ..., vn), called the code word. The k elements of the code word v are identical to the
original message u. The receiver is able to reconstitute at least k of n elements of code
words.

In the BitTorrent case we consider the larger parts of file for a default piece size of
256 KB. In fact, even if the block is the transfer unit in the protocol the Strict Policy (cf
section 2.3.1) makes us choose the piece as the transfer element on which we apply the
FEC mechanism. Note that the introduction of coded segments is transparent to the
Choke Algorithm peers with which peer performs a data transfer. The two main limitations
of Reed Solomon codes are the small block size and coding\decoding time. The
parameters k and n are playing very important roles also in the overall effectiveness:

• A great value of n is favorable because it reduces the probability that packet is
replicated at the receiver but increasing it is increasing automatically the number
of packets in the network and this can represent an important undesirable
overhead.

• A great value of k increases the correction capability of FEC code. A redundant
packet can recover an error only in a block to which it is attached. The correction
capability is inversely proportional to the number of blocks forming a portioned
file. Ideally files should be encoded in a single block.

• Reed Solomon codes are limited by Galois Field size. For example, for a matrix
 with : for a packet size of FEC 1kB and producing as many redundant

packets as packets of origin n = 2k and operating on blocks with a maximum size
of 128 kB, any file exceeding this threshold must be portioned. Using a matrix
solves this problem because but the disadvantage is that the
coding\decoding time is very high in this case.

72

Figure 4.1: GF Matrix in FEC

We can note that the main works presented shows that the End Game Mode is often
neglected in the simulation. In fact, this mode is activated at the end of the download
during which a peer floods queries to all peers for all remaining pieces. However, this
brings overhead and the mode is effective only if the pair is exceptionally at low
download speed. The results show that except for this scenario End Game Mode is not
very useful.

4.1.1 FEC at the end

The work in [MR05] presents a complete study of BitTorrent on the basis of
simulations and shows an incremental work on FEC mechanism integrated to BitTorrent
at the piece level. We consider a small number of peers that have already downloaded the
vast majority of the pieces just before becoming Seed and the left Peers Set. We can
imagine that at a specific time when the network is overloaded and that exchanges are
important, they decide to join the set. They are seeking as some specific parts, while most
nodes are looking to all pieces.

The authors took the example of 1,000 peers that join the set the first ten seconds. A
node is then added every 200 seconds. Each node is PreSeeded with a random selection of
pieces k% (k% of pieces received entirely). Ideally, these peers have more than (1 – k<%)
T time to spend to download the remaining songs, T is the time to download the entire
file (in this case T = 2000 seconds). However, in practice this time can be more
important because the remaining pieces must be found. In this case, a Seed with an upload
of 6000kBps is selected and injected into the network at least one copy of each piece.
The less the number of pieces remaining to download is the more download time is. The
first reason is that each piece takes a while before being sent to the Seed network peers
indirectly given by the maximum uploads competitor number (5). The second reason is
that a preSeeded peer searches for specific pieces and wants it to be replicated quickly.
However, the Rarest First ensures that all pieces are equally replicated and therefore none
is rare. This resource sharing pieces decrease the distribution rate for specific pieces of
the desired PreSeeded peers involving significant download time.

The use of FEC and the injection of a large number of encoded pieces in the
equivalent system allow PreSeeded to have a large selection of pieces to download and the
loss of download time is avoided. Note that the injection of additional pieces does not
waste bandwidth in Seed since each unique piece sent by the Seed is equally useful for
everyone. By repeating the experiment with an additional contribution of 100% FEC, a

73

significant improvement is shown in download time. At 95% of the download it goes
from 5 (without FEC) to 2 (with FEC) for the download time.

This work is interesting but not complete concerning the FEC mechanism
integration, even if the presentation of BitTorrent functioning and basics are very well
studied and evaluated. An evolution of this paper is presented in next paragraph. The
same authors propose a different coding that is not at the source but provided by the
network peers themselves. This contribution is the Network Coding.

Random

Piece Policy

Rarest

First

Tit-For-Tat

with Choke

Algorithm

End Game

Mode

Random

Piece Policy

Rarest

First

Tit-For-Tat

with Choke

Algorithm

End Game

Mode

F

E

C

BitTorrent generic

algorithms

Implemented

model

Figure 4.2: FEC at the end

4.1.2 Network Coding

This is a proposal for a new scheme for large content distribution based on Network
Coding [GKA&al05]. All peers can send encoded blocks of data to allow more efficient
dissemination. In FEC mechanism only some specific peers (some Seeds) where
performing source coding. In large networks and unstructured overlay, peers need to
make decisions on sending data on the node local information only. The work compares
coding techniques at the peers of the network to those where the coding is done only at
the level of the source. They show a gain of 20-30% with network coding compared to
coding at the source like FEC on the download time and better yield of 2 to 3 times
compared to normal data transmission without coding.

In this type of study, there are many parameters to consider. Indeed, there is a need
for scalability and bandwidth increases considerably at each arrival of a new peer.
Requests and transfers are made by all peers. The peers share their resources, the system
capacity increases and this restricts the scalability.

BitTorrent is in fact the best example of cooperative system in sharing content.
Despite its success, BiTorrent suffers from problems due to large and heterogeneous
populations during critical periods of the network. Therefore, the network coding is
proposed to remedy such deficiencies.

The network coding scheme is proposed to improve the bandwidth usage in a given
network. It allows intermediate nodes to encode the pieces sent. Each time a client needs
to send a packet to another client, the source generates and sends a linear combination of
all information. A remote client can reconstruct the original information if it has received
enough independent linear combinations of packets. The difficulty is to find a pattern of
propagation package that minimizes the download time for a given client. This is what

74

the scheduler in some systems, so that the proposed network coding avoids having this
type of mechanism.

Figure 4.3: Network Coding (Figure from [GKA&al05])

Let’s consider the example in the previous scheme where the node A receives the
packets 1 and 2 of the source. If network coding is not used the Node B will download
the package 1 or 2 of A with an equal probability. While the Node B downloads a
package of Node A, Node C downloads the package 1 independently. If Node B decides
to receive a package of A, nodes B and C have the same package and a link between them
can be used. In cases where network coding is used in Node B downloads a linear
combination of packages 1 and 2 and one that can be used by C. Node B could
download the package 2 of A and use effectively the link with C. However, without a
good knowledge transfer to the rest of the network (difficult in a large and complex)
Node B can determine the correct package to download. However, network coding helps
a lot to accomplish this task. It is important to note that the decision packages to
generate and send does not require any additional information on downloads in the rest
of the network.

4.1.3 Digital Fountain: FEC applied on Blocks

Until now we presented works that applied FEC on pieces. In the source coding, a
proposal called Digital Fountain [BYE&al98] has been made in where error coding is
used to allow peers to reconstruct the original content of size n from any n symbols of a
large number of coded symbols. In this case the coding is applied to the blocks and the
coding source is considered as unlimited.

Figure 4.4: Digital Fountain mechanism (Figure from [BYE&al98])

In the previous diagram, we present the structure of a file F divided into B blocks. We
have a number of pieces for file K. And B = K / k with k the length of the blocks. We
move from some blocks of k pieces to blocks of k + l pieces. The choice of k is crucial

75

here. The smaller this value is the faster as the decoding is but the number of elements to
decode becomes more important and this can be a problem in terms of processing.

4.2 Speed up data access in Peer-to-Peer content distribution
networks

In the previous section, we presented a work that shows the performance gain of
network coding compared to source coding and the BitTorrent without any coding. The
loss of coding efficiency at the source is mainly due to the fact that the spread of the
pieces within the network by duplication (without the interior peers treat them as in the
case of network coding) introduces some loss bandwidth, due to overhead in the network
of redundant encoded packets that may replace packets that data peers seek in the
network without results.

There are two important points to think about when it is to apply an Error Coding
mechanism, especially in our case.

The first point is the level of the coding in the data. In BitTorrent, we can apply
coding at the block level or the piece level. The advantage of coding at the smaller level
(block) is that for replacing some blocks of a piece, it is not an obligation to get the entire
piece. It is possible that only some blocks of a piece need to be replaced. The
disadvantage is that the treatment is more important and complex in the block case than
for the piece case considering the same file size.

The second point is the comparison between Network Coding and FEC coding. First
of all, when it is to compare Rarest First implementation in BitTorrent without any coding
to a version where coding is implemented to increase the piece entropy, some treatment
is added to the peers that perform the coding. It is proved in [LEG&al06] that when the
BitTorrent network and the Peers Set is important enough, Rarest First entropy is close to
1 and no coding is really necessary. The choice depends on the application need and the
level of costs acceptable by the developers that chose to implement it. Some applications
like real time applications or some ISPs that want to ensure more guarantees for their
customers may choose to implement coding mechanism, even if the cost and the
treatment is higher or more complex. The choice of Network Coding is also more
compromising because even if the performances are better than source coding, the
treatment is necessary in all peers of the network since the principle is to make all peers
participate to the coding mechanism. The source-based approaches consider the
networks as in effect channels with ergodic erasures or errors, and code over them,
attempting to reduce excessive redundancy. The data is expanded, not combined to adapt
to topology and capacity. Network coding principle is to fuse data exchange information.
Another drawback of choosing Network Coding is that it is not interoperable with
generic BitTorrent client. Avalanche [GKA’&al06] that would implement Network
Coding or BitCod that is the only real network coding client, are different from
BitTorrent and propose their own algorithms and mechanisms.

We will choose to apply FEC mechanism that is simpler and evaluate in which cases it
presents some real advantages and how it is interesting to integrate, if without degrading
the network performance and the adding too much complexity and treatment to the
protocol and the network. Interoperability with previous version is also our principal
objective.

76

4.3 The simulation framework: Seeds providing FEC

Let’s consider a given file, it is fractioned into pieces and these pieces are also divided
into blocks in the original specification of BitTorrent. We only model the pieces
exchange between peers. Let k be the number of pieces that form the original file, a
number of n-k redundant pieces can be injected by the source with n the total number of
pieces removed from the FEC encoder. In the case of our implementation, it is therefore
the Seed of origin that provides these pieces nk redundancy. Once the simulator is
running, instead of injecting k pieces, n pieces are available knowing that any of the N-K
pieces can replace any pieces of the k pieces. In this case n/k or coding rate gives the
percentage of redundancy. For example, the FEC ratio = n/k = 150/100 = 1.5 = 50
pieces and n redundant ones. Note that none of the algorithms change in the simulator.
The algorithm is applied with the Rarest First and in this case, it applies to the Seed that
injects n pieces and not to k pieces anymore. However, we can turn this algorithm off.
The End Game Mode has been neglected as we mentioned earlier since the problem of
the Last segment can be adjusted by the presence of FEC coded pieces.

Random

Piece Policy

Rarest

First

Tit-For-Tat

with Choke

Algorithm

End Game

Mode

Random

Piece Policy

Rarest

First

Tit-For-Tat

with Choke

Algorithm

End Game

Mode

ON/OFF

F

E

C

BitTorrent generic

algorithms

Our implemented

model

Figure 4.5: Model implemented in the simulator for FEC mechanism

Performance measurements in BitTorrent researches are various and the different
frameworks proposed are generally based on real world experiments [IZA&al04] or
simulations at the flow level. We decide, like in [EGR&al07] where the authors developed
a BitTorrent simulator over NS2, to focus on the piece level.

The discrete-event simulator we presented in chapter 3 is the same used in this
chapter. The implementation of FEC mechanism in our BitTorrent simulator was
realized by the generation of special pieces based on Reed Solomon codes that are
generated by the Seeds. It is possible to manage the proliferation of encoded pieces and to
vary the FEC pieces ratio. If the ratio value equals 1, that means no FEC pieces are
injected in the network. For example, a ratio value of 1.2 means that a portion of 20% of
the original pieces number is added to the pieces. For a 100 pieces resource, a Seed
generates 20 additional pieces (redundant pieces) and finally provides a total of 120
pieces. A peer can retrieve 100 pieces from the 120 provided to complete the download.
Every piece downloaded from the 20 encoded pieces can compensate any of the 100
original pieces. In the next sections, the FEC is provided during the entire duration of the
simulations. This is to conclude on how the whole system reacts with the FEC pieces in
the different periods of the download time duration.

77

For some recalls and for a better understanding of this paper, the following presents
some basic aspects of BitTorrent. The Leech and the Seed have different roles in the
BitTorrent network behavior. The Choke Algorithm is a real motivation to the Leeches
participation because of tit-for-tat reciprocity characteristic. We call this motivation the
incentive [10]. Furthermore, the Seeds have the entire resource and are only uploading
pieces. The more they upload, the less Leeches will be able to participate, and so to receive
resources from other peers. However, the compromise is that Seeds are essential in the
BitTorrent activity and permit to increase consistently the protocol performance. We can
see in Figure 4.6 that the gain in the completion time is significant. In Figure 4.7, we
notice that in increasing the Seeds number, we see the decrease of the Leeches sent
segments average. When a unique Seed is present, this average is close to the resource
pieces number (400 in the example). For this simulation, we took 100 heterogeneous
Leeches. The resource size is a 100 MB size file. In the 1 initial Seed simulation 76 Leeches
completed the download and in the 50 Seeds simulation 82 Leeches completed the
download.

Figure 4.6: Completion time depending on the Seeds number

Figure 4.7: Sent pieces depending on the Seeds number

78

We showed that the Seeds important activity decreases the traffic between Leeches, even
if the BitTorrent behavior tends to motivate exchange between Leeches.

The next two sections present the simulations that we launched to evaluate FEC
mechanism in BitTorrent protocol. We choose to simulate two different environments: a
homogeneous network (peers have the same upload and download capacities) and a
heterogeneous network (with 5 different peer types). In fact, the implementation of FEC
can vary from a network nature to another. We will study the influence of the file size,
the Leeches/Seeds number and capacities and the FEC ratio. Based on the results we will
discuss the impact of these parameters in code correction within BitTorrent-like
protocols.

Rarest First Policy and FEC mechanism

Rarest First policy ensures the best entropy for pieces distribution in BitTorrent protocol.
When random policy is applied we saw that performances are degraded. When FEC is
integrates with the Random policy we see that performances are similar with Rarest First
policy. When Rarest First is complemented by FEC mechanism we see a notable
performance gain. However it is important to appreciate the integration of FEC
mechanism that can be an overhead in the network depending on the FEC ratio.

Figure 4.8: Rarest First Policy and FEC mechanism

4.3.1 Homogeneous Networks

We consider in the first part of our simulations that the network is a homogeneous
network constitute of Leeches with exactly the same capacities. We fix some parameters in
TABLE I and decide to vary the Leeches/Seeds number, and the file size. In every scenario
we simulated every case with 4 different FEC ratios and compared them to a No FEC
simulation and to each others.

In Figure 4.9 we simulate a small network with 50 Leeches. In subfigures (a) and (b) we
fixed a 100 MB file and we vary the initial Seeds number. In (a) we have only one initial
Seed as the unique media source while in (b) the Seeds number is equal to 5. For each
graph we represent 5 different simulations: the first one corresponds to the original

79

BitTorrent transport protocol with no additional FEC. For the four other simulations, we
took some different ratios: 1.1, 1.2, 1.3 and 1.5.

Table 4.1: Parameters for homogeneous networks simulation with FEC mechanism

Parameter Value
Number of Leeches 1000
Leeches Capacities (Down/Up) 800 kbps/400kbps
Number of initial Seeds1 1 or 20

Seeds Upload capacity 1500 kbps
File Size 100 MBytes (819200 kbits)

Seed leaving probability 1
Leech abort probability 0

Peers Set size 50
Unchoked Connections per peer 5 (4 regulars and 1 optimistic)

We evaluate the different performance results on the completion portion of peers

during all the simulation duration (until all the 50 peers have finished their download).
The CDF varies from 0 to 1 (1 representing 100% of the peers that completed the
download).

We can note that FEC has a positive impact on subfigure (a) case and that it varies
from a ratio to another. The low ratios (like 1.1 and 1.3) show the best performance in
the sense that for the same instant time, we have more Leeches that became Seeds than for
the higher ratios.

In (b) we increase the Seeds number for the same parameters and we show that FEC
degrades the performance of the system. The Seeds number is enough for the 50 Leeches to
correctly download the resource. The FEC is introducing here an overhead. The
subfigure (c) presents the same configuration but with a 700 MB file. We note that the
results are not deterministic and that during the three first quarters of the simulation, the
1.5 ratio applied has a positive benefit. Compared to (a), where lower ratios have some
positive impact on the performance, when the file size is increased, the FEC mechanism
is not necessary.

(a) 1Seed and 100 MB File

80

(b) 5 Seeds and 100 MB File

(c) 1 Seed and 700 MB File

Figure 4.9: Leeches that become Seeds in a 50 normal Leeches swarm (homogeneous network)

In Figure 4.10, the swarm configured is constituted by 100 Leeches. In this battery of

simulations, we decided to vary the speed capacities. In (a) the Leeches have weaker
capacities than in Figure 4.9 simulations. We note that in this case the FEC tends to add
an overhead to the system. On the contrary in subfigure (b), for 1.3 and 1.5 ratios, FEC
increases the general performance of the system. We can observe that in subfigure (b)
and subfigure (a), the Leeches number is the unique parameter that varies and that in both
cases FEC has a good impact on Leeches completion.

The case observed in subfigure (c) where the initial Seed speed is increased does not
present major performance amelioration. However, for the 1.5 ratio, until that 50% of
the Leeches have finished their download, the completion is better but for the principal
other ratios the results are similar. We can note that in this case FEC acts like an
accelerator process when the ratio is large enough. This is due to the increase of the Seed
speed.

81

The Figure 4.11 represents a swarm with 1000 Leeches with only one initial Seed. In this
case, we can see that, except for the lower ratio 1.1, we gain in performance. For the 2.0
ratio, the result degraded comparing to 1.3 or 1.5. In fact, 2.0 means that there is the
same number of coded pieces as origin pieces, which is an important overhead (the
number of pieces is doubled). However, there is only one initial Seed in this swarm for a
very large number of Leeches. This shows that when there is penury of resource, the FEC
can be a good backup solution.

(a) 1 normal Seed, 100 MB file, and weak Leeches (cf TABLE I)

(b) 1 normal Seed, 100 MB file, and normal Leeches

82

(c) 1 high speed Seed, 100 MB file, and normal Leeches

Figure 4.10: Leeches that become Seeds in a 100 Leeches swarm

From the different configurations presented previously we can conclude as following

for a homogeneous network:
• For a swarm configuration with only one initial Seed that is the first to

provide the resource and a 100 MB file size, FEC increases the system
performance, mostly when a large number of Leeches are downloading the
resource. When the Leeches number is small, providing some weak ratios (1.1 or
1.2) has a positive impact on the download. Increasing the Leeches number made
FEC interesting only if the redundant pieces are large enough (ratios equal or
greater than 1.3).

• We noted that increasing the Seeds number while implementing FEC has a
negative impact on the system. This result shows that FEC is more interesting as a
backup solution when a lack of resource is found in the swarm. In the same
manner, increasing a unique Seed upload capacity presents the same impact as
increasing their number at the beginning of the downloading. In fact in these
cases, FEC is not affecting positively the system performances.

• In the same way, we found that when the Leeches capacities are weaker, an
overhead is also added and that degrades the system. FEC provides a performance
gain if Leeches have good download and upload capacities. FEC is acting like a
booster for peers that have already good enough capacities.

• The file size parameter is also affecting the download. For a higher file size
the FEC increases the system performance only when the ratio is high enough.

83

Figure 4.11: Leeches that become Seeds in a 1000 normal Leeches swarm (homogeneous network)

In Figure 4.12 we simulate a very high speed network configuration to show how FEC
mechanism can be interesting to speed up data transfer also when Leeches in the swarm
are already presenting high capacities.

Figure 4.12: Very high speed scenario with FEC mechanism

4.3.2 Heterogeneous Networks

The second part of our simulation work consists in creating a heterogeneous
configuration to evaluate the FEC performance in a system where Leeches have different
capacities. This scenario is closer to real networks where clients can have different
connections and so on for download and upload capacities.

The parameters in which next simulations are based Figured in TABLE II. The
principal objective in this configuration is to show how FEC mechanism reacts with the
different Leeches.

84

The Figure 4.13 represents three graphs with different Leeches numbers that are the
same chosen previously. The file size is 100 MB and only one initial Seed is providing the
resource.

Table 4.2: Parameters for heterogeneous networks simulation with FEC mechanism

Parameter Value
Number of Leeches 1000
Leeches Capacities (Down/Up) 25% of 200 kbps/100kbps

25% of 500 kbps/200kbps
25% of 800 kbps/400kbps
25% of 1000 kbps/500kbps

Number of initial Seeds1 1 or 20

Seeds Upload capacity 1500 kbps

File Size 100 MBytes (819200 kbits)

Seed leaving probability 1
Leech abort probability 0
Peers Set size 50

Unchoked Connections per peer 5 (4 regulars and 1 optimistic)

In subfigure (a) the results clearly show that FEC is interesting for high speed Leeches.

We can easily distinguish by the steps observed in each simulation that represent the
Leeches types differentiated by their capacities. After 850 000 ms the FEC is degrading the
system and for type 1 to 3 (cf TABLE II), the No FEC simulation presents some better
performance. This confirms what we conclude concerning the Leeches speed and the
positive effect on fast peers.

(a) 50 Leeches swarm

85

(b) 100 Leeches swarm

(c) 1000 Leeches swarm

Figure 4.13: Leeches that become Seeds: 1 initial Seed and 100 MB file (heterogeneous network)

In subfigure (b) where 100 Leeches are running, we can note that for ratios 1.1 and 1.2,
the FEC is interesting even if the difference is not considerable. On the contrary, for
higher ratios, the system is disrupts. Increasing the Leeches number degrades the
performance of higher capacity Leeches but for the low capacity Leeches the FEC pieces
have increased the completion portion compared to the No FEC simulation. This result
is relative in the sense that adding redundant pieces is interesting if the ratio is important
(till 1.2) for fear of introducing an overhead to the network.

In subfigure (c) the swarm is large and is constitute by 1000 Leeches. In this case we
saw the particularity of FEC mechanism that is observed in the major simulation
scenarios which is the accelerator function of this technique. When Leeches have high
enough capacities, FEC provides a better startup in all the download process. This gain is
visible when the Seeds number is weak and especially equal one or when these provider
peers capacity is weak.

86

We perform deeper studies on FEC mechanism choosing a FEC ratio equals to 1.3
applied in a swarm of 100 Leeches then 2000 Leeches for a 100 MB resource size. In Table
4.3 we detailed the information showing the impact of Seeds number increase on the
Leeches participation and the download completion time for the 100 Leeches example. In
Table 4.4 we note that for 2000 Leeches the impact is also clear even if in this case the
availability is much more necessary while the Leeches number is higher.

Table 4.3: Comparing results between generic BitTorrent and BitTorrent with FEC mechanism
(100 Leeches)

NO FEC 1 Initial Seed 10 initial Seeds 20 initial Seeds 50 initial Seeds

Leeches number that
completed the download

76 79 75 82

Download average time 1 695 711 ms 933 761 ms 743 176 ms 633 827 ms
Sent pieces average
number per Leech

391 (100 096 KB)
MAX= 2065

MIN= 97

231 (59 136 KB)
MAX=1353
MIN= 36

175 (44 800 KB)
MAX= 775
MIN= 11

125 (32 000 KB)
MAX= 497
MIN= 25

Sent pieces average
number per initial Seed

732 (187 392 KB)

735 (188 160 KB)

717 (183 552 KB)

740 (189 440 KB)

FEC 1.3 1 initial Seed 10 initial Seeds 20 initial Seeds 50 initial Seeds

Leeches number that
completed the download

76 87 83 86

Download average time 1 432 473 ms 782 342 ms 623 941 ms 551 635 ms
Sent pieces average
number per Leech

399 (102 144 KB)
MAX= 2201
MIN= 124

217 (55 552 KB)
MAX= 1353

MIN= 67

197 (50 432 KB)
MAX= 683
MIN= 53

134 (34 304 KB)
MAX= 675

MIN= 1
Sent pieces average

number per initial Seed

735 (188 160 KB)

752 (192 512 KB)

765 (195 840 KB)

675 (172 800 KB)

Table 4.4: Comparing results between generic BitTorrent and BitTorrent with FEC mechanism
(2000 Leeches)

NO FEC 1 Seed Initial 10 Seeds Initiaux 20 Seeds Initiaux 50 Seeds Initiaux

Leeches number that
completed the download

1530

1502

1531

1572

Download average time
1 530 858 ms

1 432 288 ms

1 444 976 ms

1 228 195 ms

Sent pieces average
number per Leech

399 (102 144 KB)
MAX= 2402

MIN= 73

382 (87 792 KB)
MAX= 2591

MIN= 67

363 (92 928 KB)
MAX= 2341

MIN= 68

331 (84 736 KB)
MAX= 2043

MIN= 64
Sent pieces average

number per initial Seed

692 (177 152 KB)

672 (172 032 KB)

663 (169 728 KB)

704 (180 224 KB)

FEC 1.3 1 Seed Initial 10 Seeds Initiaux 20 Seeds Initiaux 50 Seeds Initiaux

Leeches number that
completed the download

1536

1512

1559

1599

Download average time
1 499 011 ms

1 416 139 ms

1 307 567 ms

1 170 657 ms

Sent pieces average
number per Leech

400 (102 400 KB)
MAX= 2935

MIN= 74

386 (98 816 KB)
MAX= 2660

MIN= 67

369 (94 464 KB)
MAX= 2433

MIN= 49

334 (85 504 KB)
MAX= 2643

MIN= 42
Sent pieces average

number per initial Seed

684 (175 104 KB)

678 (173 568 KB)

692 (177 152 KB)

666 (170 496 KB)

4.4 Statistical test model validating the results

We have two populations: that is characterizing the peers in a basic BitTorrent
system without FEC and the second population where a FEC mechanism is
integrated. We choose in this section to apply the test to Figure 4.10 simulations as an

87

example. In this case represents the No FEC simulation and the simulation with
ratio 1.5.

In these two populations we studied the completion time noted T. We take a sample
in and a sample in the population . The samples sizes are respectively and .

The issue is to know if the difference observed on both samples comes from a real
difference between the two populations or if it is due to random phenomena.

Let’s consider (respectively) the average value of T in the population
(respectively). We apply a Bilateral Test [RIO&al98] as the following:

The objective is to test against .
We have two samples: the first issue from the first population with the size and

the second issue from the second population with the size . For our example
 1000.

We take the precaution to fix the risk of the first kind which is the probability to
reject wrongly .

We note , the empirical average of the completion time in the two

populations and the level of significance , , the problem is to know if is
significatively non equal to 0 or not.

In the case of big samples like here, the central limit theorem (CTL) [28] allows us to
say that for any law of , the laws of , and , are respectively normal laws with

parameters (and (.

We note that: and

In the other case,
 (1)

 (2)
Using (1) and (2), we have:

and

Since the sum and the difference of two random variables following normal laws also
follow normal laws, the law of d is a normal law with parameters and

.

Under the hypothesis , we have .

We search for the region of rejection of the hypothesis .
It is a bilateral test, this region has the form and we have to determine k.
The risk of the first kind is the probability to reject wrongly , i.e the probability

to decide (to accept) knowing that is true.

88

Noting the distribution function of the normal law, we have:

89

) and

Setting = , we have : and .

Then the region of rejection of the hypothesis is:

In the following, we take . So .

So the region of rejection is:

We demonstrate how to compare two populations with a bilateral statistical test. We

can now calculate the region of rejection with the simulation results that we used to
obtain Figure 4.10, especially the No FEC and the 1.5 ratio graphs. They represent the
two populations that we want to compare.

The numeric application is the following:

Then we have, for a risk :

Finally is rejected against , which is the hypothesis

accepted.
Adding 1.5 ratio FEC pieces in a 1000 Leeches swarm with one initial Seed providing a

100 MB file presents some difference with a classical BitTorrent network without FEC.
This difference in terms of performance was demonstrated by the bilateral statistical test.
In the same way it is possible to compare and analyze every simulation with each other.
In our example this difference is seen as positive because FEC mechanism completion
times are better than the No FEC ones.

90

4.5 Conclusion

The FEC mechanism is based upon erasure codes and permits in many applications to

support reliable data transfer or error correction in a network that experienced high level
losses. Our paper is a simulation and evaluation study of this mechanism and its
performance in BitTorrent-like protocols.

A simulation framework was developed to configure many scenarios with
homogeneous and heterogeneous networks. In both configurations the results are similar
and proved that FEC increase the performance of Leeches when these downloading peers
have good enough capacities. This technique cannot replace BitTorrent algorithms as
rarest first but can be a complementary technique. It boosts the download when the
network experience lack of resource if a unique initial Seed is present in the swarm or
when the Seeds capacity are weak.

The results permit us to note that the more the swarm is large and the more the
resource size is consequent, the more the redundant pieces ratio must be important to
add a positive benefit into the system. At the contrary, FEC mechanism can degrade the
general performance.

We previously work on the BitTorrent performance and contribute by providing a new
selection policy inside the same autonomous system and a formal specification to map
peers with their domain membership. In the future we will be interested on providing a
unique architecture based on a BitTorrent-like protocol. We propose to integrate in the
solution the localization component and a FEC mechanism at the transport level when
the network experience some download difficulties.

91

Chapter 5

SPOP: a Service Provider Oriented P2P architecture

This chapter presents a Service Provider Oriented P2P (SPOP) architecture that takes into account the
contributions presented in the two previous chapters concerning two of the three P2P main components: the
Transport and the Service components. For the first component we propose to integrate FEC mechanism
as a parallel service that can be provided by an ISP and for the second one we added a
Control/Management level where the hTracker entity could vary some protocol parameters (Peers Ser
size, Piece size, Traffic partitioning) to adapt the network environment depending on applications
constraints. In addition we integrate a technique that optimizes the third component which is the
routing/lookup component. This latter consists in implementing a DHT that indexes the resources. The
particularity is that this DHT is Context-Aware and generalizes the hTracker contribution. Peers are
regrouped depending on criteria (AS membership for instance in hTracker) and traffic partitioning is
completed by resource lookup optimization. We validated by simulation the Context-Aware DHT
technique that was only at the specification stage. The architecture specification is available in [PBL06].

92

5.1 Introduction and Objectives

Distributed applications like file sharing, Grid computing or even real time
applications like VoD or IPTV use an important volume of the network capacity,
memory or CPU. In the case of P2P networks, unlike Client-Server model, resources are
distributed and the communication is directly done between the customers. The data
volume is sometimes very high and needs best performances to be delivered as soon as
possible.

In parallel to this, the lack of traffic control is both what made the strength of the
Internet today and what is problematic for some applications. It is important to
understand how applications use ISPs resources. The application is only interested in
indicating the destination of traffic and the ISP is responsible for conducting the Traffic
Engineering to determine the most optimal way and to satisfy some economic goals.

An advantage with P2P is that the resources are often duplicated and available at
several point of the network. However, the main difference is that in classical P2P
networks, the application does not have reliable information about the underlay network.
Generally, the peers’ selection for downloading the resource is done randomly or
depending on basic information. Before entering the real download process, the
requesting peer or any other entity in the network cannot evaluate the download rate
since the transfer did not begin. This calculation can be a major parameter for some real
time applications that needs to choose some peers depending on their capacities and
performances in providing quickly the resource.

Choosing peers without any information on the underlay network has two major
drawbacks: first, performances are not optimal since the peers are not chosen depending
on any quality criteria and second, the network can experience traffic problems that are
visible as link overload spikes due to congestion and this generates over costs for ISPs in
addition to the bad service provided.

We previously studied two major components of P2P networks and contributions
associated to these components. In chapter 3, we proposed a new scheme for peer
management with a semantic for peer AS membership and in Chapter 4, we evaluated the
efficiency of FEC mechanism on pieces transport for BitTorrent. In this chapter, we
propose a global architecture that groups our different contributions and evaluation
studies. We will also see how some parameters can be adjusted to propose some
performance optimization depending on the application requirements: Peers Set size,
Piece size, Seeds number, etc.

The principal objective is to propose a solution that fits with ISPs current
requirements and guidelines for P2P activity. Each application has some specific
constraints that the networks and so on the ISPs must take into consideration to provide
the best service or at least the service promised in the customer agreement. We have two
cases: in the first case, the P2P application is totally independent from the ISP and in the
second case, the P2P application is provided by the ISP. In the first case, it is more
difficult to control the peers’ activity while when the ISP is providing the service, it can
manage and control more easily the traffic, the transport and the parameters that can
have an impact on the QoS offered to the service customers.

The principal issues that motivate our work are directly related to each P2P
component. The global SPOP architecture results from our different contributions and
evaluations in addition to some algorithms and incremental work that we will develop in

93

this chapter. Taking into consideration the levels architecture of a P2P network, we
worked on improving the Transport level integrating FEC as a support service provided
in complement to the original data transfer, applying a DHT in the routing level to
optimize data lookup and finally managing the traffic and some protocol parameters to
follow applications requirements.

At the transport level, the objective is to improve the completion time and solve both
First Block and Last Block problems. The FEC mechanism accelerates the download
when a peer just joins the network and this allows it to have more quickly some pieces to
exchange at the beginning. When a Leech is experiencing a lack of pieces, in this case FEC
can also provide it a rescue service. However with this solution, the FEC ratio depends
on many parameters and must be adjusted to avoid overheard that could disrupt the
system and make it loose in performance. In our architecture, FEC will be provided by a
specific network with homogeneous and fast Seeds available to everyone. This
contribution will be detailed in this chapter.

At the routing level, we propose to use a structured algorithm and especially the DHT
Chord which is simple and robust. Chord will provide optimization of the resource
lookup. The idea is to structure the data lookup in parallel with the localization assured
by the Tracker. We will see in this level that we can propose an enhanced version of
Chord that is Context-Aware and that takes into account some criteria to perform the
lookup locally in groups before trying the global lookup.

At the Control and Management level, we introduce the hTracker entity that replaces
the BitTorrent generic Tracker. In this contribution, as we saw in chapter 3, some minor
modifications have to be applied in the Tracker and the Client. The objective here is to
optimize the download performance and the peering traffic by changing the peer
selection policy mainly. We can also adapt some parameters like the piece size of the
resource, the peers set size or the peers number to provide some additional performance
improvement when the completion time has to be decreased if the application is time
sensitive.

These propositions are doubtless interesting and require no major implementation
difficulty. However, all above contributions and propositions must respect the
interoperability with previous architecture. We saw in chapter 3 that for instance the
peerId specification change is transparent with generic peerdId specifications. That is the
case of the FEC mechanism that provides pieces that can totally replace any of the
resource pieces without generating any conflict.

To summarize the following architecture, we mainly care on transport and completion
performance, lookup optimization, security, QoS requirements, costs saving and
interoperability. The P2P model, on which this architecture is based, ensures scalability,
robustness, load balancing and resources aggregation for any application on top of this
system.

This chapter is divided as follows. The next section gives the related work and
existing architectures that propose some solutions to P2P collaboration with ISPs. Then
we will detail the FEC pieces network provider; and introduce the routing optimization
with the Context-Aware DHT algorithm. Finally, we define the Control and Management
plan with its objectives and results.

94

5.2 Related Work and existing architectures

The particularity of P2P networks is that they are not associated to any formal
standard that describes the real problems of P2P components with some solutions based
on some architectures. Some propositions have been done and every one defines two
major components that are:

• A discovery mechanism for resource discovery before the data transfer.

• A protocol used by the P2P applications to send some requests that allow them to
retrieve information on the underlay level and that will make them apply the peers
selection algorithm.

In the following we will present the two main architectures: P4P architecture derived
from ALTO project and SmoothIT.

5.2.1 The ALTO Project: P4P architecture

The ALTO (Application Layer Traffic Optimization) project goal is to provide
information that a P2P application can use to make a better decision when it is question
of peers’ selection. This work can also be used by non-P2P applications. The principal
objectives are to reduce resource consumption in the underlay network and improve
performances with the information. In fact, it is usually difficult for application entities to
retrieve reliable information on the underlay network for two principal reasons: first the
mechanisms of measurements calculation directly in the network are complex and second
the ISPs could help applications by providing these information but this is not their do
not especially want to give many details in their infrastructure.

Definitions and functioning

Resource: Content (file or file piece), a process server (for execution of a video stream for
example), in which an application can have access. This resource must always be available
and should be replicated. Several peers can manage these resources simultaneously.
ALTO Service: Service providers may be required to provide the same resource. The
ALTO service guide serves user with information on service providers to know how to
choose the resource and to optimize client performance. This can also improve resource
consumption at the network level underlay.
ALTO Customer: A logical entity that can launch ALTO queries. Depending on the
architecture the application can be integrated into a client consumer of the resource
and/or the resource directory.
ALTO client protocol: allows sending ALTO queries and responses between the client and
the server.
Supplying protocol: It is used to supply the ALTO server with information. Initialization

95

Figure 5.1: ALTO architecture

P4P Specification [XIE&al07]

The ALTO Project defines the P4P specification following the traffic problematic in
P2P applications. In fact, traffic control is a real challenge in P2P. First for the intra-
domain exchange, the strategy of several P2P applications causes dispersion and crossing
paths unnecessary traffic within the same ISP. It is possible according to some
calculations to reduce until a rate of 0.8 the number of hops traveled without degrading
application performance.

Second, for inter-domain cases, P2P network can generate a significant volume of
Internet traffic or route traffic between operators. Study shows on BitTorrent that 50 to
90% of the local tracks for active users are from outside. It is also the case for ISPs which
does not compensate access provider for P2P traffic which can cause a significant
imbalance resulting in breach of peering. Such inefficiency of inter-domain traffic can
disrupt the ISP economics.

ISPs try to estimate traffic patterns and determine routing based but all of these
efforts could be avoided if P2P traffic adapts their network changes and so this would
thus result to potential oscillations in traffic and route decisions.

Generally, the P2P model exposes a fundamental problem related to the control of
Internet traffic: the emerging applications can be flexible in the way the data exchange is
done. If end users are encouraged to participate in resource optimization systems could
not continue to be opaque but will need to provide a communication channel for traffic
control collaboration.

P4P is a simple architecture that presents many interfaces for communication
between networks and applications: static network policy, p4p-distances reflecting
network policy and network status, and network capabilities. The objective is to allow
network providers and applications to optimize their performance while preserving
privacy.

The p4p-distance interface is the interface through which a service provider shall
inform the applications about cost in the same AS or on the inter-domain links. The p-
distances gives an overview of the network status and preferences for the application
traffic and can be used to capture a number of interesting metrics like for instance the
maximum utilization of backbone and favorite cross-domain links. Applications use these
distances to form the connectivity and communication modes to choose efficient
network when it is possible.

96

Three plans are proposed in the architecture: the Control plan, the Management plan
and the Data Plan that is optional.

The management plan has a monitor function for the control plan behavior. The
control plan is the most important and in this plan P4P introduces the concept of
iTrackers that divides responsibilities traffic control between applications and service
providers and this makes P4P a scalable and easily deployable. Each network provider
can be commercial, a university, etc. It maintains an iTracker in its network. This iTracker
offers an information portal on the network provider. To get the address of the iTracker
you just need to run a DNS query. It can also have multiple iTracker in the same area for
security reasons and scalability. This represents the application is what we call the
appTracker for P2P. Taking the example of an application based on P2P like Bittorrent
Tracker, appTrackers interact with iTrackers and distribute information of P4P control
plane peers while for P2P application without Tracker and that does not have central
appTracker but depends on a DHT, peers given the necessary information directly from
iTrackers. In both cases, peers can assist in the distribution of information (via the
gossips). The iTracker can be run on a trusted third party rather than by the supplier itself.
It may also be an integrator that meets the aggregation of information from several
iTrackers for interaction with applications. P4P does not dictate exactly the same
information but provides a common messaging framework.

Figure 5.2: iTracker interface in P4P

iTrackers interface examples

Policy interface enables applications to obtain network usage policies. To give two
examples of policies for network usage policy, we use coarse-grained time-of-day to
identify the different uses of specific links or congestion and levels of high use.

P4p-distance interface allows others to query cost and distance as peer networks.
Interface capability allows others (peers or content providers) to request the capabilities
of network providers. For example, a supplier may offer different classes of service,
application servers or caches in its network. An appTracker can ask several iTrackers in
different popular areas for the application servers or caches that could help the
acceleration of P2P content distribution.

A supplier may choose to integrate multiple interfaces and can also define access
control to its interfaces for security reasons. For example, a deployment model can be
established where ISPs restrict access only to trusted appTrackers and integrators. The
supplier may also lead to an access control content (for example, the interface capability)
to avoid being involved in the distribution of content.

In the following example, appTracker sends a query asking iTracker B Network
Provider to reserve capacity for distributing content. This allocates the server at the
network and returns its address to the appTracker. This one will be able to insert the
server for peers sets returned to peers in network B.

97

Figure 5.3: P4P architecture

The iTracker is decomposed as a network topology G = (V, E) with V a list of nodes

and E is the list of links. V is characterized by an opaque ID: the PID. PIDs can be
composed by several different types. The first type is an aggregation node that represents
a set of customers. A PID aggregation may represent a network Point of Presence (PoP)
or a set of customers with a network status (for example the same level of congestion). A
PID is a PID aggregation visible from the outside. A client made the request to the
network (to the iTracker or the supply system) to map its IP address and the PID number
of the AS. If the mapping of IP to PID is dynamic, the client can be refreshed
periodically mapping. The iTracker provides p-distance on each link of the level of PID.
The external view of the iTracker applications is a full mesh and an application may be
just interested in a subset of these peers.

5.2.2 The SmoothIT architecture

The SmoothIT [PUS&al09] project objective is to define and develop some
mechanisms called Economical Traffic Management (ETM) to optimize the traffic
impact on overlay applications on ISPs. The method is to let network operators
cooperate and application users. When the overlay is provided by another operator than
the network operator, which is generally the case, we also have the overlay operator
included in this cooperation. SmoothIT consortium launched a deep study of the
requirements for P2P applications and their generated traffic. They classified overlay
applications and gave an overview on overlay applications describing their different
features and characteristics (in terms of traffic especially). They provided a technical,
economic and functional study of overlay application. They finally define the
requirements to design a specific architecture that ameliorates P2P traffic via cooperation
between the different parts.

The first point was to take seven different applications types and some overlays
application example to know what is the best way to implement ETM more efficiently.
Then they specified some classification criteria indicating the overlay application
relevance for the consortium that are finally used for the application selection. Then,
after a deep study, some real requirements have been derived. Finally, they present an
application classification for P2P streaming applications.
The application types and application examples chosen are File Sharing (eDonkey,
BitTorrent, Gnutella, etc.), P2P Video-on-Demand (Vuze, PeerCast, End System
Multicast, etc.), P2P Live TV (PPLive, etc.), P2P Voice-over-IP (Skype), P2P Gaming,
CDNs (Akamai) and VPNs (Hamachi).

98

The criteria are: Technical Criteria (Traffic intensity, Source Code Availability, Traffic
recognition and Emulation), Optimization Potential (Locality Information, QoS
Provisionning, and End-user Controllability) and finally Non-Technical Criteria
(Popularity and ISP Costs, Additional Charging, and Legal Content).

Based on this study, SmoothIT proposes an overall solution based on some
attributes that have been selected in order to perform an analysis of their solution: legal
issues that evaluate the viability, feasibility to deploy the architecture, complexity and
scalability to show that the proposition is not too much complex to be deployed,
optimization potential to evaluate the improvement in the overlay application domain
and finally the innovation.

The components of the architecture are the following:
• a SIS Server is the core entity of the architecture and it is responsible for receiving

request from the overlay application, to perform calculations based on the
different applied policies.

• the Configuration Database that stores ISP policies that an ISP can configure for
the SIS architecture.

• The Metering component that collects any information from the network that is
required by the ETM and all other components.

• The Security Component that performs some security mechanism.
• The QoS manager that checks availability of all the network resources and permits

to guarantee them if necessary depending on the application.

The approach used by the SmoothIT is a scenario based on a honey pot of the design
space. This approach shows a high optimization potential but the problem is the
deployment potential and the technical complexity and face to the legal issues. The
components are presented with their interaction and a specification of a simple initial
version of a protocol is also provided.

5.3 Why proposing SPOP ?

Most of current researches in P2P networks are focused on traffic management and
locality aware techniques to control the Peering activity. In [BIN&al06] and [PAP&al06]
the peering selection has been modified to choose intra-domain peers and decrease the
traffic exchanged between ASs. These techniques propose a new concept that is the
cooperation between ISPs and P2P applications. Various works also propose to optimize
BitTorrent performance with geographic locality based selection without necessarily
having this cooperation. For instance Ono [CHF&al08] and TopBT [REN&al10] use
CDNs information to optimize download completion time focusing on performance
purposes without any structured architecture for ISPs. These propositions are client
oriented.

The architectures that are close to our proposition are ALTO P4P [XIE&al07] and
SmoothIT [PUS&al09] that we described previously. First of all, these architectures are
focusing on P2P traffic and QoS issues while SPOP proposes a transport optimization
and a Context-Aware routing plan in addition to the Control/Management control with
complete interoperability and transparency for any service application that would be
designed under this architecture. We can note main point concerning our choice as
follows:

99

• P4P proposes cooperation between ISPs and P2P applications in order to
accelerate download and optimize network resources utilization. A control plan
and an optional data plan are defined. The iTrackers allow P4P to divide traffic
responsibilities between P2P and ISP. P2P applications have AppTrackers that
communicate with iTrackers to obtain information on peering decisions (network
topology, provider policies and capabilities). One of the problems with P4P is that
it might slow down transfers of non P4P customers even if it helps illegal file
sharing. Second, the cooperation and information sharing is a novel idea but no
incentives have been proposed to motivate customers to share these information.
Technically, this seems difficult to integrate to both parts.

• SmoothIT share similar key objectives as P4P but SmoothIT framework is more
detailed even if SmoothIT does not also provide a full architecture description.
Comparably to P4P, SmoothIT provides specification for cooperation between
ISPs Trackers and for protocols. Moreover, SmoothIT takes into consideration
other applications than file sharing and considers real time constraints
applications. The problem with SmoothIT is that it needs great modifications into
Internet entities like routers due to the complexity of the architecture.

• SPOP considers 3 main aspects that are simplicity, performance optimization and
mostly interoperability with the existing protocols: the routing plan is based on a
Context-Aware algorithm that can take into consideration various parameters to
regroup peers and not only the domain membership like P4P and SmoothIT, the
transport plan proposes a FEC mechanism that ISP can provide to accelerate data
transfer in some lack of resources cases, and finally the Control/Management
level is based on existing parameters (Peers selection policy, Peers Set size, Piece
size, etc.) that can be adjusted without adding complexity to the Internet and ISP
infrastructure (that would introduce extra costs when new entities have to be
integrated).

5.4 Service Provider Oriented P2P (SPOP): a simple, robust and
interoperable architecture

5.4.1 SPOP architecture plans

The SPOP architecture is designed to provide an optimized platform for P2P
applications that are service provider oriented. Nowadays the integration of new services
and applications is a big challenge: each application has its proper constraints and
functioning and ISPs must be prepared to provide the best environment for their
deployment.

We previously discussed the importance and the difficulty to manage P2P applications
and services and mainly the traffic that they can generate. The proposition with SPOP is
to define an architecture that optimizes the three main components of a P2P application
that are: the transport, the routing/lookup and the service. For the service component we
saw the traffic management in BitTorrent-like protocols that we will complement with
some contributions on existing BitTorrent parameters; for the transport component we
studied the positive impact of FEC mechanism as a transport accelerator; for the
routing/lookup component we will introduce a mechanism that generalizes our work on
traffic management. In fact it is a context-aware algorithm that will also optimize the data

100

indexing and lookup in addition to partitioning the traffic when the context is the AS
membership studied in chapter 3. In the following Figure 5.4 we present the different
SPOP plans with their main objectives.

Routing Plan

Applications

Transport Optimization Plan

Routing

algorithm:

Context Aware

DHT (local

overlays)

FEC

Mechanism

to speed up

data transfer

IP Underlay

Control and

Management

Plan

Service

component: QoS,

Peering rules,

Traffic Partitioning

FEC

Seed

hTracker

Overlay Peer

(Leech or Seed)

IP Underlay

Node

AS1

AS2

AS3
AS4

FEC

Seed

FEC

Seed

Figure 5.4: SPOP architecture

The main goal in proposing this global architecture is to provide a simple and
interoperable architecture. Optimizing P2P applications must keep the functioning of
existing protocols and architectures without degrading their performance. Dynamicity
and heterogeneity of P2P model force every work and proposal to be interoperable with
generic foundations of this model which has proved its success.

Interoperability is assured in our architecture by the fact that BitTorrent main
protocols and rules have not changed. We present in Figure 5.5 the 3 main entities that
compose BitTorrent with the light modifications that do not affect the current
functioning of the protocol. We see that some peers in the network are integrated to
provide some FEC pieces. These peers are the Seeds as we studied it in chapter 4. For the
routing plan, we integrated a Context-Aware routing DHT algorithm that will perform
lookup optimization in every peer of the architecture (Leech and Seed). We can note that
some BitTorrent clients already exist based on a DHT algorithm: Kademlia [MAY&al02].
The clients that propose this feature are various: Vuze, rTorrent, µTorrent, BitComet,
KTorrent, etc. These clients are Trackerless but we voluntary let the Tracker in our
architecture while this Tracker called hTracker has an extraordinary Control/Management
plan that keeps ISP Policies and that dynamically applies some rules on the peers
behaviors: managing the traffic when Peering strategies change, varying BitTorrent
parameters like the Peers Set size or the piece size, and this without disrupting the
network functioning or any need to modify IP entities like routers. These are the main
arguments that motivate us to propose such architecture.

101

P
e

e
r

In
fo

rm
a

tio
n

P
e

e
r In

fo
rm

a
tio

n

IP
 p

a
ck

e
ts

IP
 p

a
cke

ts

P
e

e
rs

 S
e

t,
 C

o
n

tr
o

l/M
a

n
a

g
e

m
e

n
t

R
u

le
sP

e
e

rs S
e

t, C
o

n
tro

l/M
a

n
a

g
e

m
e

n
t R

u
le

s

Figure 5.5: SPOP entities

5.4.2 A Context-Aware Routing plan

We saw in chapter 3 how partitioning traffic in a BitTorrent network can increase the
download performance and control the Peering traffic. In this study, the parameter that
permitted to decide how to choose the peers were the AS membership.

We propose in the following a solution that generalizes the precedent work where
peers are regrouped by different other specific parameters. The principle is to implement
a DHT that takes into consideration a network context. This context can be the AS
membership like in the traffic partitioning contribution defined in chapter 3. In addition
to increase download performance and decrease peering costs, the DHT characteristics
ensure a lookup optimization. The DHT that is defined is an improved Pastry DHT,
where a global network that was usually structured in one ring, is formed by multiple
local rings. The number of rings depends on the number of groups that are formed in the
network. This number depends on the context that an ISP would decide to create. In fact
a group can represent an AS, or a group sharing the same traffic type, or a group sharing
the same interest, or even a group sharing the same performances. We will show how this
Context-Aware DHT allows to optimize resource lookup and to decrease considerably
messages overhead in addition of presenting the same advantages presented in Chapter 3.

The objectives are the same and are to introduce cooperation between ISP and P2P
application in a way of optimizing performances and decreasing economic costs due to
over traffic: signaling traffic and peering data traffic.

The principle in creating a Context-Aware P2P is to enhance routing process in a
DHT algorithm. The contribution we will present next is detailed in [FAY&al08] but has
not been validated by simulation or implementation. We propose in this section to show
some simulation validation for this proposition. The idea is to consider a generic DHT

102

implementing Pastry for instance and to integrate a semantic that allows the algorithm to
take into consideration the underlay network in the routing process following some
parameters. These parameters can be various and can be simple or complex. The main
change comparably to a DHT is that we replace the hash function by HMAC function
studied in chapter 3. In fact, we previously integrated a semantic to the peerId to associate
a peer to its AS membership while here we generalize this concept by associating a peer
to any other parameter that makes it belong to a group (sharing the same interest, having
the same performances, appertaining to the same AS like in chapter 3, etc.). The
advantage is that we also add a DHT based routing that optimizes the lookup
performances. We will also see that the Context-Aware DHT proposed shows even
better performances than a generic DHT. Here are the proposition parameters:

• The hash function is still the same as the implemented DHT.
• Km is a specific key that characterizes the context. This key is the same as in

chapter 3 but here the context is more general that the AS membership and
can represent any other context.

• The generation of every nodeId depends directly on this key Km. Comparably to
the proposition in chapter 3 the nodeId will undergo the same process as the
peerId. However, in the DHT context, a major difference is that the value of
the ID has an importance because it determines the node position in the ring
and when the objectId are generated they are managed by the nodes depending
on these values. On the contrary in chapter 3, the peerId value has no real
importance while it identifies the peer and its AS membership. This is why we
decide in the Context-Aware DHT to only use the context key Km to generate
the nodeId while in chapter 3 the key Km was used to generate a key Kd used to
generate each peer peerId. Key Km is used here to generate nodeIds and objectIds
in a specific network that implemented our architecture.

• A key Km can be simple if it represents a unique criteria or parameter. In
hTracker traffic partitioning proposition Km was a simple key that represented
the AS membership. This key can also be a locality parameter, the application
type, a communication group, etc.
Key Km can be composed if it represents many parameters and so on can be
derived into many simple keys.

The advantage of using and HMAC function is that the result has the same size as the
hash function, which is totally transparent and interoperable. However, the advantage is
that the key Km can here associate a peer to the context it belongs to. The goal in the
Context-Aware DHT is to provide a local routing in every context before performing the
global routing that is launched only if locally the resource has not been found. The
routing process and algorithm do not change but are targeted to local groups before
being executed globally if the resource is not detectable locally. We will demonstrate by
some simulations that searching locally a resource in each context is more efficient in
terms of performance and messages overhead than searching it in the whole network. In
fact, imagine an IP underlay network constituted of hundreds or even thousands of peers,
regrouping peers by some criteria that they share and performing resource lookup in the
created group (that are obviously smaller than the overall network) make participate less
peers in the lookup process: the number of hops the DHT routing process will generate
is automatically smaller and the signaling traffic will also be reduced.

103

We consider in this architecture that a peer is active globally in the network but can
be part of one or more secondary overlays that are the different groups they belong to.
We will mention local overlays where the same routing algorithm used in the global
network is also used locally. Next Figure 5.6 illustrates the principle of local context
regrouping.

Figure 5.6: Context-Aware DHT model

The Global Overlay is divided into 3 local overlays while some nodes in the Global
Overlay can be free without being associated to a specific zone. In this case, the lookup
resource is done at the Global Overlay level. A peer can be associated to many local
overlays. The lookup is first executed locally, and then tested globally if the first step
failed. In the previous figure, we take a simple example with 3 groups or local overlays.
We note that if a node belongs to more than one local overlay, it must have one nodeId
per local overlay it is associated to. To avoid conflicts problems, we suggest using the
HMAC key generation only at local overlays.

Routing in the Context-Aware DHT is the same as in the global level but applied
locally. When a peer is requesting an object (resource) it begins by calculating its key
using local overlay Km where it is. Then, it launches a request in this overlay using the
corresponding DHT algorithm. Then the request will be done only at the local overlay. If
the request is not a success, then it is done at the global overlay using the algorithm and
the table that belongs to the global overlay. When the node finds the resource only at the
global overlay it executes an objectId calculation to share the resource locally using Km. If
for instance a node in local overlay 1 is in action, it would use K1 to calculate the objectId
of the resource that has a different objectId in the global overlay.

The Context-Aware DHT contribution requires managing the nodes joins and leaves
since the overlay is divided into many other overlays. The problem is that when a peer
decides to join a local overlay, it must verify if an active peer exists in this local overlay.
The first step is to identify the different local overlays it belongs to. In the case where a
local overlay the peer wants to join does not exist, the peer has to create the necessary
environment and a local table called the Zone Table that identifies the zone and that

104

references few nodes belonging to this local overlay. If the local overlay already exists, the
peer retrieves the existing Zone Table.

The advantage of this proposition integrated at the P2P Routing plan allows adding a
DHT that is Context-Aware. The DHT algorithm is still the same even if some light
modifications are applied. These modifications are related to the semantic and the ID
generation.

Experiment: We simulate a network N made of 1000 heterogeneous Leeches and 10

Seeds.
• Scenario 1: the network is a generic BitTorrent network.
• Scenario 2: we implemented an original Pastry algorithm (where all peers are in

a unique global overlay. Our choice for the DHT is bambooDHT [RHE&al05]
which is the standalone version of OpenDHT [RHE&al05]

• Scenario 3: we implemented the Context-Aware Pastry by modifying the
bambooDHT API to simulate local overlays.

In the three presented cases we retrieve information on the completion time of the

resource download and the number of messages that were generate for every lookup
process.

In the third case the configuration was a global overlay made of 5 local overlays and
100 single Leeches that are not member of any local overlay. These local overlays can be
characterized by any context parameter like for instance the AS membership (cf Chapter
3). This work would be a generalization of Chapter 3 contribution with the advantage of
integrating not only a simple DHT routing algorithm but also a Context-Aware one.

The following table is the Leeches and Seeds distribution in N for scenario 3:

Table 5.1: Peers distribution in N for Context-Aware DHT simulation
AS Peers
AS 400 Leeches + 4 Seeds
AS1 300 Leeches + 3 Seeds
AS2 100 Leeches + 1 Seed

AS3 70 Leeches + 1 Seed
AS4 30 Leeches + 1 Seed
AS5 100 Leeches + 1 Seed

The Download/Upload capacities distribution is the following in each AS to simulate
heterogeneity.

15% of 200 kbps/100 kbps, 15% of 400 kbps/200 kbps, 15% of 500 kbps/400 kbps,
15% of 600 kbps/500 kbps, 15% of 800 kbps/600 kbps, 15% of 1000 kbps/800 kbps
and 10 % of 1100 kbps/900 kbps.

105

Figure 5.7: Average message number comparison between BitTorrent, generic DHT algorithm
and Context-Aware DHT

Figure 5.8: Completion download time comparison between generic DHT algorithm and

Context-Aware DHT

In this experiment we evaluate the impact of restricting piece lookup and peering
traffic exchange in each local overlay a peer is member of. In the first scenario the peers’
communication is totally free so that no restriction has been fixed in the choice of the
peers.

In the second scenario we only integrated a DHT algorithm to optimize the lookup
component.

In the third scenario we did a hypothesis: a peer first chooses to search for peers that
are inside its local overlay then if the search is not a success, the peer contacts other peers
in the global overlay.

The Figure 5.7 shows that Context-Aware DHT minimizes considerably the message

number generated for resource lookup. This solution is also better than implementing a

106

generic DHT. We also retrieved the completion time for each Leech in Figure 5.8. In the
third scenario, we grouped and ordered the results to compare them with Scenario 1
results in a CDF curve for each of the second and the third scenario. Let’s note that for
the download completion time, there is no real difference between scenario one and
scenario two while the only difference is the way the resource and the node are founded.
For the average number of messages implicated in the lookup process, we compared the
three scenarios.

We note that for a 5000 seconds simulation, in Scenario 2 the completion reaches
only 0.83 while for Scenario 3, all Leeches have completed their download. We can also
note a gap between the two curves and this gap is increasing over time. In fact, at the end
of the simulation, we intuitively know that Leeches that have the worst capacities are the
ones that finish their download late. The more a Leech is weak in link capacity, the better
it will be advantaged by Scenario 3. It seems easy to understand because in Scenario 2, a
Leech requests pieces from peers that are in the same local overlay, so that are physically
closer.

This Context-Aware DHT is also a good solution to decrease the Peering traffic when
the different groups are ASs. This conclusion is the same as the one obtained in chapter 3
concerning Peering traffic exchanged.

5.4.3 ISP oriented FEC service for the transport plan

We propose in this section to present the impact of FEC mechanism as a provided
service. As we saw previously, one of the principal issue of SPOP architecture is to
provide a solution for peering traffic between ASs while optimizing the pieces transport
and keeping interoperability with classical BitTorrent networks. We evaluated in chapter
4 the integration of FEC mechanism in BitTorrent protocol and its impact on
completion time and we showed that FEC acts like a download accelerator. In the
following the objectives are to demonstrate that the instantiation of Seeds that integrate
FEC mechanism in a specific network can optimize the Peering traffic management and
increase data transfer performance. FEC is proposed as a service that an ISP can propose
for some economic reasons.

Experiment

We take the same peer distribution in N and we simulate a network where FEC
mechanism an optional service provided by a specific network. We suppose that a
subset of N called N2 is one of these ASs. We have N=N1 U N2 and take we N2=AS3
is composed by homogeneous Leeches (1500 kbps/1200 kbps). N2 is a network that
provides only FEC pieces available for all peers of the system. FEC is provided by Seeds
because to provide FEC pieces that can replace any of the original pieces, the source
must have the entire resource, which is the case of Seeds. We fix the FEC ratio to 1.3 and
vary the Seeds number (x) to see also how Seeds number increase can has some
consequence in the performance of FEC integration in this specific case. Seeds have the
same capacities as in Experiment 1.
We compare this scenario 2 to scenario 1 that is the same as Experiment 1 Scenario 1
with different Seeds number value (x):

• Scenario 1: The same as Experiment 1 with the Seeds number x varying.

107

• Scenario 2: The piece lookup for a specific Leech is restricted to the AS it
belongs to.

Table 5.2: Peers distribution for FEC service solution

AS Peers
AS1 400 Leeches
AS2 300 Leeches

AS3 = N2 100 Leeches + x Seeds

AS4 70 Leeches

AS5 30 Leeches

Others in N1 100 Leeches

Figure 5.9: Network configuration for FEC service simulation

The interoperability is visible here whether for the hTracker solution or the FEC one.
AS5 is devoid of both solutions we propose and peers in this AS can exchange data from
others and even take profit from AS3 FEC service.

The experiment proposed here has for objectives to evaluate the FEC mechanism as
a service provided by an ISP for instance. We will see that this has an impact on
completion times for peers and peering traffic exchanged between the ASs. We also
decide to vary the Seeds number x in the AS3 that provide FEC pieces. In this
configuration all peers can download pieces from all other ASs and of course from AS3.

In the first simulations, we fix x=1 Seed. We note a real difference for completion
times: more than 20 % most of the time. For traffic exchanged between ASs in Scenario
2, we retrieve information on the pieces number that every Leech downloadw from N2

108

and from N1 network. We note that the portion of pieces download from both parts is
the same for every Leech. Each Leech downloads between 80 and 100 pieces from N2 and
so on 300 to 320 pieces from N1. The portion downloaded from N2 represents
approximately 30% of the pieces.
We vary x taking values 5 and 20 and we note that the same portion of FEC pieces is
downloaded. The difference is observed in the Sent pieces number and this is due to the
increase of the Seeds number. The Seeds send more pieces and this decreases the Leeches
participation.

(a) Completion CDF

(b) Pieces distribution

Figure 5.10: 1 Seed simulation for FEC service

109

(a) Completion CDF

(b) Pieces distribution

Figure 5.11: 5 Seeds simulation for FEC service

110

(a) Completion CDF

(b) Pieces distribution

Figure 5.12: 20 Seeds simulation for FEC service

Following are the advantages and the drawbacks of this proposition where a FEC
network is feeding peers with pieces to accelerate the resource download. The evaluation
study shows that we can reach more than 20 % gain in the completion time and the
peering traffic taken from the FEC service provider is approximately equal to the FEC
ratio available, which is 30% in our case. We have 25% of the whole traffic that is FEC.
This is an interesting way to reach better performances with some economic interest for
the ISP that decides to provide this FEC service. However, the major point in this study
is the interoperability of this solution. In fact we do not have to change the BitTorrent
architecture. The only change is the implementation of FEC mechanism in some Seeds
with an optimized ratio. We saw in Chapter 4 that when the ratio is exceeding a limit,
some overhead can disrupt the system overall performance. The FEC is applied at the
piece level which is easier to manage and this method costs less than applying FEC to the
blocks, the treatment necessary would be higher.

111

5.4.4 Control/Management plan

This plan integrated to SPOP architecture is based on the hTracker entity. These
control entity receives reports from peers and manages the download and upload activity
of every peer in the network for a specific torrent. In section 2.3.2 we saw that the Tracker
in BitTorrent keeps interaction with the peers and receive some message with an interval
that can vary. This interval in our architecture must be reduced to its minimum to allow
the hTracker to receive information concerning the peers’ activity.

SPOP Control/Management plan is interoperable and the BitTorrent protocol
specification is not changed at all. We propose in this plan to work on the following main
parameters:

• Peers Set selection policy with hTracker policy that propose a neighbor
selection inside the same AS. We can generalize this idea here and propose a
selection inside the same context or local overlay since the Context-Aware
DHT is integrated at the Routing Plan.

• Peers Set size: some simulation results show that varying the Peers Set size can
impact download duration. hTracker can vary this Peers Set size to establish an
balanced activity among the peers. Some fast peers can need less activity than
low peers in real time applications.

• Piece size: increasing the piece size impacts on the download completion time
positively but the only reason this parameter is not always varied is that the
less the large piece size, the more pieces number would be high. This implies
more treatment since every piece is checked for integrity after being
downloaded.

• The FEC ratio: when FEC mechanism is chosen in some Seeds for speeding up
data transfer, a ratio must be fixed depending on parameters like Leeches and
Seeds number, file size, etc. (cf section 4.3). hTracker entity that has a general
view can be the intermediate control entity between the ISP and the peers to
configure the FEC ratio that the Seeds will provide.

• Seeds number: we previously saw that the ISP can instantiate voluntary some
FEC Seeds that would be compensating lack of resources or the needs for
specific applications (like time constraints: IPTV or VoD). This parameter
must be decided and controlled by the Control/Management level indirectly
with the hTracker entity.

We note that these parameters are all simple parameters that can be easily varied
without any more infrastructure deployment or physical entities change. That is the
interoperable goal of SPOP architecture.

112

5.4.4.1 Peers Set size Variation

Figure 5.13: Peers Set size variation impact on completion download

We decide to study how the variation of the Peers Set size managed by the hTracker
can change the download completion time. In fact, for some applications, we can
imagine that some Leeches are faster than others. In a heterogeneous network and
depending on the reports sent by the peers, the hTracker can decide to vary the Peers Set
size and to associate a size to each peer. This list can be sent again during the download
if a peer state changes. In Figure 5.13 we vary the Peers Set size and observed the
comportment in a heterogeneous network (1000 Leeches and 20 Seeds). The results for a
100 MB resource size show that increasing the Peers Set size ameliorates considerably the
completion time. This is due to the reciprocity in the Choke Algorithm that promotes the
peers activity when the set of peers the local peer will communicate is higher.

5.4.4.2 Pieces size Variation

We study here the Pieces size variation impact on the completion time. The Figure 5.14
show how a 10 MB resource is downloaded depending on the piece size from 16 KB
(which is the minimum in BitTorrent) to 1024 KB. We took the 10 MB size in order to
simulate a sliding video window in real time application case. As previously we can
imagine that in IPTV applications taking small piece size can optimize the download
performance even if this increases the pieces number. The treatment for integrity
verification would cost more in time and resource usage. This depends on the ISP
objectives and the peers capabilities using the application.

In Figure 5.15 we represent the average completion time depending on pieces size
chosen also between 16 KB and 1024 KB. In this figure we better saw how this variation
can impact on performances.

113

Figure 5.14: Piece size variation impact on completion download

Figure 5.15: Piece size variation impact on completion download (average time)

5.4.4.3 Instantiating Seeds or Leeches to compensate lack of resources

Seeds in BitTorrent are essential while they have the entire resource. In a configuration
where the network has enough Seeds, no lack of resources will be experienced. The
problem is that in BitTorrent, Leeches are more solicited because the Tit-For-Tat policy in
the Choke Algorithm is based on reciprocity. Leeches are downloading and uploading and
Seeds are only providing pieces. It is common in BitTorrent that Leeches becoming Seeds
decide to leave the network except in some Darknets [ZHA&al10] or networks that
propose a recompense for every data volume provided. This is the case of Torrent411 for
instance [TOR] where each client has a profile and gains some advantages depending on
the Upload/Download data volumes ratio. This is a good way to motivate peers to stay in
the network also after having downloaded the entire resource in the Seed state. In

114

[PAP&al06] the authors propose the insertion of ISP-owned peers to compensate
resources download problems.

However, even when some Seeds are present in the swarm, certain applications need
more availability also depending on the number of Leeches that want to retrieve the entire
resource. This is why it could be interesting to propose that an ISP instantiates some Seeds
that have the specificity to also provide FEC pieces when the network and the
applications running need a certain availability ratio to guarantee best performance in
terms of Download Completion time. For the peering traffic these ISP instantiated Seeds
can motivate peers in the same AS or controlled by the same ISP to download pieces
from those new Seeds instead of contacting outside peers that could increase the external
traffic.

Table 5.3: Study of the Seeds/Leeches ratio for a 10 MB resource with the condition: completion
download time < 5 s

Seeds/Leeches 1 initial Seed 10 initial Seeds 20 initial Seeds
Case 1 ≈ 50 Leeches 42/52 = 0.807 43/51 = 0.8431 48/52 = 0.923
Case 2 ≈ 100 Leeches 61/104 = 0.586 88/106 = 0.758 99/106 = 0.896
Case 3 ≈ 300 Leeches 236/334 = 0.706 270/333 = 0.811 266/334 = 0.796
Case 4 ≈ 500 Leeches 616/810 = 0.760 760/844 = 0.901 748/830 = 0.901
Case 5 ≈ 1000 Leeches 684/1000 =0.684 778/1000 = 0.778 801/1000 = 0.801

Figure 5.16: Study of the Seeds/Leeches ratio for a 10 MB resource

We saw in BitTorrent the importance of Seeds. In Figure 5.16 based on Table 5.3
simulation results, we study the impact of the Seeds/Leeches ratio variation on the
completion in BitTorrent. In fact, a 10 MB resource representing a video window for
instance must be downloaded in 5 seconds in these types of application. For each case,
representing a Leeches number, we vary the initial Seeds (1, 10 and 20) and we calculated
the percentage of Leeches that are respecting the condition: completion download time
must be less than 5 s.

We noted that in the 1 initial Seed scenarios for each case the results are less
interesting than for the 10 and 20 initial Seeds. In these two latter scenarios, case 1 and 2

115

are different while case 3 to 5 are similar. We can conclude saying that the Seeds number is
primordial but when the number of Leeches is increasing, it is possible to have a
performance gain thanks to BitTorrent Tit-for-Tat mechanism. Case 1 presents the best
results and case 2 the worst. We can also see that the ratio is not enough, while for the
same ratio but with different Seeds, number performances are not similar. Having a
Seeds/Leeches ratio of 10/1000 is more interesting than having a ratio of 1/100 even if the
ratios are equals. This simulation let us conclude also that instantiating Seeds is obviously
interesting for the performances but instantiating Leeches can also help because Leeches are
privileged when we know that they provide reciprocity and motivate the fast data
dissemination. In fact, we see in case 4 that with 800 Leeches we have better results than in
case 3 with 300 Leeches. However, the more Leeches we have, the more peers that need to
download the resource we have. Case 5 with 1000 Leeches presents a more degrading case
than case 4.

116

117

Chapter 6

Global network security system: an application

Intrusion detection and filtering are necessary mechanisms to secure networks which can be deployed
in many ways. Nowadays, we are witnessing an important increase in attacks among which distributed
denial-of-service (DDoS) that easily flood the victims from multiple paths. The major drawback of the
existing detection techniques for DDoS attacks is that their entities work in isolation. In this chapter,
we propose an efficient and distributed collaborative architecture that allows placement and cooperation
among security defense entities to address the main security challenges. The use of content based DHT
(Distributed Hash Table) algorithm permits to improve the scalability and the load balancing of the
whole system. This modular architecture has been implemented on IDS (Intrusion Detection System)
entities with the DHT Pastry protocol and has shown a promising performance. [PBL2] and [PBL3]
are publications that present the work detailed in this chapter.

118

6.1 Introduction

In today’s Internet, network security vulnerabilities are becoming common and

attackers constantly modify their tools to bypass the security systems. The Internet
paradigm was at the origin to avoid any control on the network traffic. This is considered
as the strength of the Best effort IP architecture but can also be considered as a weakness
at the same time. Many security solutions have been proposed but are still not perfectly
efficient because of the time needed to detect the attack. The most dreaded attacks by
current service providers are Denial of Service attacks and especially their distributed
form (DDoS) [MIR&al02]. In this case, a large number of attackers are implicated in the
process and make the detection more and more difficult and the impact is obviously
bigger. The attacks originally exploited the weakness of the protocols; but now they start
to attack the infrastructure of the Internet like the Web sites, banks and Internet service
providers [MIR&al04]. Some technologies have proved an important evolution in the
case of intrusion detection but at the same time the malicious intrusion becomes more
sophisticated [CER03]. We can take the examples of the Yahoo attack in 2000 or recently
the massive attack on Estonia [EST07]. Many solutions of intrusion detection and
filtering focus on the way to prevent attacks and have been defined but those techniques
need many changes of the original structure of the Internet protocols. This relative
efficiency of prevention is not enough to eliminate DDoS attacks. The placement of
some edge IDS as filtering and detection devices is necessary. The principal issues
recognized in defending wide area networks are that current software complexity and
failures make the intrusion detection difficult in terms of performance and effectiveness;
and for most of the cases, current defense propositions are based on a central server that
becomes a target for attackers and a single point of failure. All those challenges have
proved the importance of the introduction of cooperation among the defense security
entities in general. This can be for an intrusion detection system in particular or for IP
traceback nodes. Some systems have been developed but could not eliminate the central
entity necessity. Indeed, the data are collected and sent to a central server that analyses
the information. On the contrary, a fully distributed and hierarchical architecture
approach presents many advantages.

The P2P model offers the promise to exploit all the resources of vast numbers of
hosts. The distribution of data storage among several nodes, gives to this model two
main advantages, in comparison with a centralized scheme; first, it reduces the possibility
of storage overload at some points and second, it does not have a single point of failure.
The use of a P2P algorithm can also be justified by its robustness, high scalability, and
fast resource lookup. Many solutions have been proposed, which can be classified into
structured and non-structured solutions regarding resource localization methods.
Protocols developed on structured P2P networks have recently gained popularity for the
implementation of large-scale distributed systems. Most of these approaches are based on
hash tables which in turn can be centralized or distributed (named DHT for distributed
hash table). We propose the use of a DHT that can efficiently route resource information
on the victims and to share data on the claimed attacks among the peer [ZHU&al01].
This scheme is more flexible and can scale to a very large number of peers exchanging
control messages without introducing additional overhead to the whole system. In the
proposed architecture, we have the choice in the usage of many DHT solutions like
Chord [STO&al01], Pastry [ROW&al01], Tapestry [ZHA&al04], Kademlia [MAY&al02],

119

etc. However, we recommend putting this application over the SPOP architecture
described in chapter 5 where a more efficient DHT is provided: a context-aware DHT.
Here the context regrouping the peers is the global security system proposed using the
detection nodes. In fact, the objective is to solve the DDoS problem in a distributed
manner, in which a scalable and efficient intrusion detection scheme cooperates with an
accurate traceback scheme to progressively deploy filtering rules upstream until reaching
the sources of attacks. As various deployment points bring different benefits, by
combining their strengths and coordinating their actions, a distributed system can achieve
a successful defense.

6.2 DDoS Attacks Overview

A denial of service attack is launched to make a computer or network unable to provide
normal services [STE&al03]. Denials of service attacks continue to be a significant threat
for today’s Internet as they are growing in number and sophistication. Some recent
studies developed by Moore et al. [MOO&al01] estimated the DoS activity by a
backscatter method on packet traces and showed that more than 2000 DoS attacks are
launched every week. The problem is that it becomes very easy for any Internet user to
create disruptions using limited resources. Moreover, the attack damages are increased by
the distributed computing techniques. Many existing systems are successful in one aspect
of defense, but none of them offers a comprehensive solution. In such a context, there is
a tremendous need for distributed and cooperative defense architecture in order to avoid
the threat of DoS attacks.

When a DDoS defense system is deployed at the victim network, it is difficult, due to
the aggregation, to identify attack packets at the ingress [14] of the targeted network
although this deployment can facilitate the observation of the victim. This is why it is
important to push the detection upstream to the ingress points of the service provider.
This implicitly implies the distribution of the detection scheme among several locations,
which raises the problem of how to coordinate the different detection systems. Some
systems like DIDS [SNA&al99] or NSTAT [KEM&al97] have been proposed to work in
a distributed environment. In these propositions, the audit of the data collected is done in
several points of the network and the analysis is executed by a central location. With
CSM [WHI&al96] and AAFID [ZAM&al00], the usage of distributed analysis agents is
very relative. Current IDS do not offer a global solution that satisfies users’ need in
copying with the evolution of the attack types.

The deployment of DoS defense system at the attack source network cannot permit
the collection of necessary information about the attack traffic and thus detection at this
level will not be efficient. On the other hand, attack flows can be stopped before they
enter the Internet core. And this is why response can be more effective at the attack
source level. The mechanism for identifying the sources of attacks and for limiting the
rate of malicious flows is commonly known as traceback mechanism.
Current DoS solutions are many, ranging from host-based solutions to network and
infrastructure solutions. Our architecture is basically proposed for DoS detection and IP
traceback solutions. For DoS detection, we have 2 main groups:

120

• The signature-based detection schemes that search for a known identity or signature
for each attack event [SNO]. This category is not efficient against new types of
attacks.

• Anomaly based detection schemes [GIL&al01] that detect anomalies caused by DDoS
attacks. In this case a model must be established according to standard protocol
normal system activities.

In general, the intrusion detection entities are deployed on hosts or routers and the
agent is deployed at a single point or network-based where the agents cooperate either in
a centralized [KEM&al97] or a decentralized [WHI&al96] manner. A decentralized
approach is more scalable but needs more complex communication schemes to
effectively share the information between the detection entities.

For IP traceback schemes, we have two main classes:

• Backtracking techniques [HAZ&al06] that work in a hop by hop manner to construct
a summary of routed flow. In this class we have the proactive measures category
where the flow is generated independently from the presence of the attacks and the
reactive measures where the summary is generated on demand.

• Flow extension techniques bring additional information to flows during their travel.
We have the in-band messaging (packet marking), that can be probabilistic
[LIU&al03] or deterministic [BEL&al03], and the out-of-band messaging that sends
the traceback data in separated packets.

Some proposed DoS solutions have a global scope. They start from the victim side
where detection is most suitable and propagate attack alerts through intermediate
networks in order to deploy filtering rules as near as possible to attack source networks.
Mahajan et al. [MAHa&l02] proposes pushback (also implemented in [IOA&al02]) as a
complete method to deal with DoS. In this proposition, DoS are treated as a congestion-
control problem. A new functionality is added to each router to detect and preferentially
drop packets that probably belong to an attack. Upstream routers are also notified to
drop such packets (hence the term pushback) in order that router resources can be used
to route legitimate traffic. This is an interesting approach but router vendors did not show
interest in implementing this scheme. A draft was proposed at IETF which expired in
2002. Cotroeno et al. [COT&al01] use the same concept of pushback in defense
“propagation”. They propose ASSYST, a distributed system, in which network routers
cooperate in order to react to DoS attacks in a flexible and dynamic fashion. DefCOM
[MIR&al05] is a distributed collaborative framework to defend against flooding DDoS
attack. As a global architecture, it combines the advantages of source-end, victim-end and
core defenses and allows the existing heterogeneous defense systems to cooperate
through an overlay. Nodes collaborate by exchanging messages, marking packets for high
or low priority handling, and prioritizing marked traffic. However, it was not clearly
described how to authenticate and establish economic cooperative relationship across
different management domains.
We will present our architecture with its added-value characteristics compared to other
propositions.

121

6.3 The Peer-to-Peer Collaborative Defense system

The objective is to propose a global architecture that permits an efficient Intrusion
Detection System where participants can exchange information in a P2P method,
providing services to a traceback application that strengthens the network security against
DDoS attacks; or at least permits a fast and effective reaction to this kind of threats.
The proposed solution is designed to elaborate the defense against these large scale
attacks by the correlation of the suspicious evidence provided and stored by the
architecture entities from different geographical locations. Each participant gains a global
view of the intrusion activity through this collaboration. To perform this objective, we
took into consideration certain requirements in terms of performance and deployment.
In fact, the processing, the bandwidth used and the storage must be minimized and
conceptual security mechanism must be added to permit the access control for each
entity in the architecture.

6.3.1 Problem Statement

A DDoS attack is usually characterized by a high traffic rate, an IP spoofing and several
paths are taken to reach the victim. These elements are particular in a distributed attack.
Our system proposes that the detection relies on the most frequently routed destination
IP addresses during a short time period (∆) on different network points. Each IDS
deployed on the network and especially in the ingress of a network, will analyze the
traffic that passes by the router which this IDS is added too. In fact, the same equipment
can also do both jobs. Each detection system Si is responsible of a Sub-Netwok SNi. Si
monitors the traffic to/from SNi to detect potential attacks on SNi. The whole detection
system network S is formed by the set of detection system entities Si. We have S={Si|i
=1,2,3, …,n}. Each of the Si is a node in a peer-to-peer system that forms our
collaborative intrusion detection system (DS). The sharing of information between the
entities, that we will present in the following sections, must be periodic and this shared
evidence can take many forms. We consider that it is the destination IP address. For this,
a DS checks the header of each IP packet captured and records this address with a
counter that keeps the number of packets going to this destination in the last period of
time (∆). We will have for each Si the set <Target IP @, Counter, ∆ >. The problem is that
we must know how to decide if the traffic is issued by an attack. Many models like
behavioral models or probabilistic models help to study the nature of different attacks. It
is not beyond the scope of our work. We will consider that when the counter exceeds a
certain limit, the IDS considered the traffic as malicious. The counter is a vague
definition of what will be the decision factor. We will separate it in 3 principal variables
that are the packet flow frequency F, the SYN packet ratio R[T] and the ACK packet
ratio R[A]. Those values will really determine the malicious aspect of a flow.

6.3.2 The Distributed Hash Table algorithm

The development and widespread usage of peer-to-peer networks is mainly due to
their efficient overlay routing and the location function, especially in global storage
utilities and applications. We propose to apply an algorithm that defines a deterministic
way to efficiently store and share the collected data between the nodes. These nodes are

122

able to form a distributed and decentralized network with a dynamic adaptation without
affecting the whole functioning of the network.

In order to realize the flexible and balanced collection of information among the
nodes, we required an efficient approach that can scale to a large number of peers
exchanging many control messages. The choice of a DHT algorithm satisfies these
requirements. The semantics and the API [DAB&al03] specification are also developed
for a public usage. Most of the solutions use the consistent hashing providing a balanced
sharing among the peers due to the hash function. An advantage is that the joins and
leave of nodes do not affect the whole geometry of the network. DHTs are used by many
applicative routing solutions such as Chord [STO&al01], Can [RAT02], Pastry
[ROW&al01], Tapestry [ZHA&al04], etc. These solutions present a relevant robustness
since the global functioning of the network is totally independent of each application
node.

A DHT network is logically divided using generally a circular ring space of indexes. In
the space, we assigned for each node a key or identifier called a nodeId which informs
about the logical position of the node. For example in Pastry it is a 128-bit identifier and
the maximum number of possible nodes in a circle is 2128. nodeIds are simply the hash
value of the node IP address. This is why we talk about hash table indexes to identify
each node of the DHT network. The assignment of indexes is done randomly but in a
deterministic manner; the result of the hash function cannot be predicted and for each
value to which the function is applied, a unique Id is generated. In the same logical space,
resources are identified by an objectId and this objectId is the result of the same hash
function applied to the name of the resource or a part of it. For applications like storage
sharing or communication, a P2P network indexes some resources in each node by
distributing the objectIds among the different nodes. So that a node will be responsible for
a part of the whole resource indexes present in the network. This is why each DHT
builds some rules to decide how to assign keys or identifiers and how to locate them via
some tables kept by each node. In the case of Pastry, the objectIds are kept by the node
with the closest nodeId numerically.

6.3.3 Description of the architecture

Our principal contribution in this chapter is the proposition of the architecture that
serves as a model to implement a security system against DDoS attacks. This model
targets detection systems with the possibility to place some applications at the very top
level that can use the collected data of the detection system. The innovation in this case is
the addition of a new level between the application one and the detection system which is
the use of the DHT. This new level permits to index the information and to distribute it
among the participants instead of implementing a central collection entity.
The Figure 6.1 describes each level of the architecture. We present it with an abstraction
degree that permits us to put both independent and specific functions on each level. In
fact, a node can contain one or more levels. We will detail this later by giving examples.
The first level is the closest to the physical network. We called it the Network Level. In this
level, equipment belongs to the underlay network. To be more specific, an entity in this
level can for example be an IP router with the basic routing and addressing
functionalities.

123

The second level is the Security Level. In this level, we can classify our detection system
entities. The implementation of all solutions in terms of detection system can be done
here. This level’s functions are the ones of detection. When the analyzed traffic in this
level is detected as an attack, an alert is triggered and a primitive is sent to the upper level.
This level will react to the alert accordingly. We can note that a detection system can be
integrated to an equipment and the concerned entity will be represented by the two first
levels of the architecture.

The third level of the model is the P2P Level which includes the Context-Aware DHT
proposed in our architecture to index and to distribute the information among the nodes
depending on the group the peers are members of. In our case, the context share is the
fact that these peers are associated to Detection Systems that retrieve information and
send alerts managed by the upper application. This level receives the information
collected concerning the analyzed traffic from the Security Level. When an alert is sent by
the lower level, which means that an attack is detected, the P2P level treats the received
data and indexes the information on the specific DHT node (identified by a nodeId)
depending on the objectId calculated. Transport can be optimized following the SPOP
transport optimization properties presented in chapter 5 and we also have the possibility
to vary the transport protocol parameters for better QoS and decreasing the overhead
and/or the peering traffic in the application is distributed in many ASs.

Figure 6.1: The architecture levels

The last level is the Application Level. This last level is general in the description for our
architecture. It can implement all possible management systems that use the indexed
information on attacks by the DHT level to react. We propose in our case to add a
traceback application solution to integrate more complete defense architecture than only
a detection system. This traceback module is a part of the future works since the three
first levels of the architecture were implemented as we will see in the next sections.

By removing any central analysis entity in the architecture, we propose a fully
distributed solution. However, in choosing this method we must be sure that the
collected data are correlated to ensure a better detection of DDoS attacks and also a
reaction to them. Indeed, we propose that some applications retrieve the traffic
information to analyze it deciding what to do.

124

Relying on the proposed model, we presented in Figure 6.2 a network that includes some
Sub-Networks and some attackers in the same level. Each of these entities is linked to the
Internet by a Network Equipment that can include an IDS Si which is responsible for the
Sub-Network SNi. Si and the network equipment associated to it can be in the same
hardware entity but we represented both of them with different schemes to separate
every module depending on its functions. In particular, some of the network equipments
are not associated to any detection system. In association with our model, the first layer
in the example represents the 2 first levels that are the Network Level and the Security Level.

In the second layer, we illustrated the DHT ring that manages the Underlay Network by
collecting the information on the attacks and indexing them in a distributed way. This is
Management Network. The ring contains the DHT nodes modules and represents them in a
logical manner. In DHT algorithms the representation is not always a ring or circular but
in most of the case, this scheme is used in a simple way to show the logical overlay
network of the DHT modules.

Research/Management

Attacker

Context-

Aware DHT

group

Managed

Sub-Netwok

SNi

Applications

DSi

Network

Equipment

Underlay Network

Figure 6.2: The architecture entities

The applications are in a unique layer in the top according to the architecture levels
presented before. The entities in this layer are specific to every application that can use
the information collected by the nodes in the Underlay Network and indexed by the DHT
algorithm. It is a reaction to the detection of DDoS attacks. The action can be some
maintenance and management or in some cases it can be a more detailed study of the
information by applying a mathematical or a compartmental model on the whole
collected traffic. In fact, at the top level, we have an aggregate flow of traffic to analyze
but with some information given by the detection system entities and distributed by the
DHT nodes.

125

6.3.3.1 Principles and functioning

To illustrate our proposition, we chose the Pastry protocol to place the resources in a
decentralized way on all the nodes. The resources are represented by data that the
detection systems share and look for when they cooperate to exchange attacks
information. As mentioned before, every IDS shares information about suspicious
activities detected on its Sub-Network. We can imagine that all the information on each
victim V is a database and this database is divided into small data tables distributed
among all the IDS nodes. Pastry protocol acts in a manner to choose how to distribute
those tables and how to refund them. As we presented before, Pastry uses a hash
function H to calculate the Id of the resources and the Id of the nodes which contains
those resources. We propose that the victims (Vk) addresses are used to calculate the
objectId as for the IDS Id (nodeId); so we have the hash function applied to the victims and
IDS addresses: objectId= H(@Vk) and nodeId =H(@Sk). In the rest of the work, Vk and
Sk are given randomly with an integer value for an easier comprehension of the
algorithm but the indexes respect the 2b base which is 16 because b = 4. The results of
those formulas are 128 bits keys distributed in the same space logically placed in a ring. In
this ring like in the original Pastry implementation, we have the victims’ indexes placed
between the detection systems’ indexes and each objectId is located in the IDS with an
index numerically closest to the concerned victim index. In fact, the placement in the ring
of the victim indexes is completely independent of the physical position of the nodes. In
our solution, the resources represented by the base 16 words and associated to an IDS Si
are neither physically, nor geographically near the IDS that keeps the resources on those
victims. The important aspect of the proposition is that the shared resource is the attack
information on victims in a way that each Pastry node will store information received by
other Pastry nodes on victims the current node is responsible for.

As a contribution to Pastry protocol, we propose that instead of using a hash function
we choose a HMAC function [HMC97]. The good thing in HMAC is that the Hash
function H can be used without any modifications. Implemented to the proposed
solution, we can take the example of a resource R comparing the hash function to the
HMAC one. In fact, in spite of having H(R)=I, we will have H(K, R) = I’. Using in our
proposition the HMAC function adds to a new security level. This type of
implementation permits access control between the detection systems and this option can
be used in all possible applications that use a DHT algorithm. Finally, we have the
indexes calculated with the formulas objectId = H(K, @Vk) and nodeId = H(K, @Sk).

An example of the network is illustrated in the Figure 6.3, where some nodes are
organized logically in a Pastry ring. For a better understanding, we represented nodes that
belong to the P2P level of the model and that also integrate the Security and Network levels.
In fact, a traffic coming from an attacker will be detected by the node, implicitly its IDS
module, and its DHT module will do the indexing job. Each node is connected to a Sub-
Network physically but logically it is not absolutely keeping information on the nodes
(possible victims) physically connected to it. In fact, taking the example of the IDS S771,
we see that the data table is for the victims for which the objectIds are numerically the
closest to ecee5f. Those victims are not connected to S771. The logical distribution of Ids is
calculated with the HMAC function and the results of this function depend on the IP
address used as entry and the key K, independently of the geographic and physical links.

126

Three of the nodes noticed a suspect traffic flow with V780 as destination. These
nodes are S197, S680 and S822. The victim’s information is kept by the IDS S771
determined by the DHT HMAC function. In the reference table we have the victims’
indexes that are managed by this current node and each objectId points to another table.
The primitive that permits to send a publish message on another node is the put function
[DAB&al03] that needs a lookup function [DAB&al03] to find the responsible node for a
specific victim objectId.

Figure 6.3: Nodes distribution and indexing with Pastry protocol

In our example, the concerned victim has an Id value equal to ecee5f. The information
table saves the different flows where V780 is the destination with some information
concerning each one. We represented in the table the nodeId of the IDS which are the
result of the HMAC function applied to each IDS address. For each IDS, we have the
packet flow frequency, the SYN packets ratio (R[S]) and the ACK packets ratio (R[A]).
Three of the entries are considered as possible attacks: the detection systems that saw a
suspect traffic are S197, S680 and S822. The other entries that are not underlined are not
considered as suspect peers.

The table that stores for each node the traffic detected and sent by the other nodes in
the ring permits to correlate the entire information on a specific victim. In fact, we can be
sure that for any victim of the network, one node will store the traffic data for this node.
Of course this information can be replicated on other nodes by the replication function
[DAB&al03] of the DHT.

We represented in the Figure 6.4 the attacks without showing how all the IDS, from
where the attacks passed, inform the IDS S771 and how they are looking for it with the
Pastry protocol.

In the Figure 3.4 the lookup primitive [DAB&al03] is detailed for a resource’s
responsible ID. One of the 3 attacks that pass by S197 makes it looking up for the
victim’s responsible node. V780 with the index ecee5f is managed by S771 that has the
index eced33. As we previously mentioned, the first table stores the victims’ objectIds
managed by S771 and for each of this table’s entries, a second table keeps the
information on presumed attacks. In this last table, we save the nodeIds of the detection
systems that detected the traffic and the information on each of these traffic flows. We

127

can note that if any node of the ring needs to retrieve information kept by another node,
the get function [] is used after a lookup of this particular node.

Figure 6.4: Lookup for V780’s IDS from IDS S197

6.3.3.2 Simulation and results

To test our solution, we focused on two levels of our architecture which are the
Security level and the P2P level. For the Security Level, we implemented the open source and
non commercial detection system Snort [SNO]. Snort can perform detection and
prevention by applying a packet logging and real-time traffic analysis on IP networks.
Snort uses the libcap library to capture the network packets. After decoding the packets to
have the protocols information, a preprocessor (SPAD) classifies and transforms the data
to facilitate the treatment by Snort. After this, the detection engine applies the rules
(signatures for attacks). Then the output modules generated an alert and logged the
information.

Many solutions can be used to implement a DHT node locally and all those solutions
propose a global scheme for a large-scale testing of the proposed applications. We chose
BambooDHT that proposes a light-modified version of Pastry protocol that we used to
illustrate the principles of our architecture. Some nodes in the PlanetLab [LAB] platform
form the OpenDHT [RHE&al05] network that is a large-scale implementation of
BambooDHT nodes. This platform can be used in the future work that is currently in
progress in our laboratory for a larger implementation study.

The first step of our evaluation was to take a group of nodes that run our version of
bambooDHT with the use of its API developed in Java to route the message between the
nodes. On every node, a system socket is developed to permit the link between the Snort
module and the DHT one. This brings the indexing and distribution function by the P2P
level every time the Security level generates an alert primitive because it detects a suspect
traffic. To simulate an attack, we generate a high number of ICMP packets sent to a
specific victim. In this case, we only took the case of one type of attack which is ICMP
Flooding. In the developed program, we fixed a threshold that must be reached to decide
that the traffic is probably malicious.

We illustrated in Figure 6.5 the evolution of the ICMP packets ratio and more
precisely their bandwidth consumption in a victim node of our evaluation system during
a created ICMP Flooding attack. We saw that during the attack, the increase of ICMP
packets reach 75% of the bandwidth many times.

128

To evaluate our implementation, we tested the decentralized solution and compared it
with a centralized solution where a central node is receiving all of the data by the nodes
that integrated the detection systems. To study the comparison, we varied the size of the
records that every node generates and wants to store. In the centralized solution, all the
storage is done on the central node. We showed on the Figure 3.6 the delay time in each
approach for a group of 10 nodes and a group of 30 nodes.

Figure 6.5: Bandwidth Consumption of ICMP Packets during an ICMP Flooding attack

This delay time is the time taken between the sending of a publish message by a node
to the destination node (central or distributed according to each approach). We saw that
from a certain number of records (100) the distributed approach out-performs the
centralized one. Passing from 10 nodes to 30 nodes reveals the better adaptation to the
variation of the nodes number for the decentralized solution. The centralized graph
presents a particular increase when the records number is important. We launched the
decentralized system with 10 nodes during less than one hour (2390 seconds exactly),
then we collected the packets arrival and departure to show the homogeneity of the P2P
system associated to the IDS solution. In fact, we can see in the Figure 6.7 that the
variation is between 650 and 930 packets. The packets number includes the signaling
messages, the requests and responses only for the P2P Level during the attacks detection.
It does not include the packets flow from the outside entities. An important result is also
that, for each node, the sent packets number is always very close to the received one, due
to the stable aspect of the system.

6.3.3.3 Discussion

The modular model proposed here presents many advantages at each level we
specified. The Security Level can implement any IDS module that can provide data
information and alerts on possible attacks. For the P2P Level, it can be based on any
DHT algorithm that permits the efficient distribution and exchange of data among the
different nodes of the architecture. We also know that those algorithms are adequate to a
distributed cooperative system that must be scalable without affecting the overall system.

129

Nevertheless, we are aware that the results previously presented cannot be the only
arguments to validate a solution comparing another. We must study the load-balancing
and the peer number variation in a large-scale area with more than few nodes. In fact, a
vast implementation is needed with more scenarios in order to design a mathematic or
compartmental that will really validate the proposition. An issue is that fixing a threshold
is not enough to decide if a flow is an attack, because each of the distributed flows can be
under this limit and present a danger to the victim when they are aggregated. These steps
are, as we said earlier, currently in development.

Figure 6.6: Comparison of the architecture with a centralized approach

Concerning the Application Level, the principal objective is to provide a system that can
analyze the information distributed in the lower levels and especially in the P2P Level. It is
important to elaborate a complete and secure application that can react to the detected
attacks, which information is stored in the lower levels detailed previously. For the
traceback mechanism example, some nodes could analyze the information on possible
attacks and perform a traceability of every flow by marking packets to detect the attack
sources. For keeping the same model constraint, we recommend a distributed traceback
mechanism that will be compared to current traceback solutions and studied to be more
efficient in terms of scalability and precision. The information correlated in the Context-
Aware DHT algorithm can serve to possibly mark abnormal detected packets and to limit
the rate of malicious flows by identifying the sources of attacks. Comparing to
[SNA&al99] or [KEM&al97] we are proposing a distributed treatment of the attack
traffic information in the application layer where any node can correlate its information
with any other one. This could avoid a central analysis in addition to the distributed audit
that we already performed. Like [BEL&al03] we must elaborate an out-of-band manner
to send the traceback data in separate packets between the Security Level IDS first, then
between the Application Level entities. We think about developing an extension to our
BambooDHT program that adds the Application Level module functions for the traceback
mechanism. A more detailed study is in progress.

130

 Figure 6.7: Sent and received packets number for 10 nodes during 2390 s.

6.4 Conclusion

In this chapter, we proposed a modular architecture for a collaborative defense against
DDoS attacks relying on the performance and scalability of DHT algorithms. This model
was designed with the aim of proposing the integration of an intrusion detection system
that can bring an attacks’ information collect service to some applications like traceback.
An efficient DHT indexing protocol is used to interface these two levels of our
architecture. Our proposition overcomes the challenges of the collaboration. The load-
balancing is ensured by the consistent hashing of the DHT and every node keeps
information on specific victims. The replication primitive permits the copy of this
information in other nodes for some security reasons, even if our distributed architecture
removes the single point of failure major problem. Finally, the integration of an HMAC
function adds a robust access control with the sharing of a key in association with the
original hash function. However, the scope of this chapter is the description of the
architecture and the way that the lower levels offer services to the application level. The
management and the traceback application that can retrieve and analyze the data sent by
the lower levels to react to the possible attacks must be more specifically specified, and
this is a major issue for future work.

131

Chapter 7

General conclusion and perspectives

This last chapter concludes this thesis by summarizing the objectives and the contributions presented. It
also gives the different perspectives that could be elaborated to provide some more validation results.

132

7.1 Conclusion

The main objective of this thesis was to focus on studying the design of an
architecture for P2P applications that is controlled and managed by a Service Provider.
Managing P2P traffic and reducing completion download time are a real challenge for
ISPs. While customers are interested in having the best service with the maximal
performance, providers must keep their services working efficiently with the best QoS
without experiencing consequent over costs.

We divided the P2P model in three main components that are the transport level, the
routing/lookup level and the service level. We took into account each of these
components and especially the way to propose real improvements to them.

First of all we presented a general state of art of overlay networks and Peer-to-Peer
networks. We focused on BitTorrent which is the protocol chosen for the transport in
our architecture. A complete related work section shows the different performance
studies and the contributions in locality-aware techniques and erasure codes mechanisms
in this protocol.

The first contribution is a new peer selection policy with a specific Autonomous
System mapping for each peer in BitTorrent. Large scale simulations validated some
interesting results on how to decrease download completion time and peering traffic
between domains. This partitioning is based on a special entity called the hTracker.

The second contribution was to perform a deep study of the integration of erasure
codes techniques in BitTorrent. This evaluation work permits us to know in which
special cases it can be interesting to use mechanism. The simulation based results
validated with a statistical test show that FEC can speed up data transfer when the peers
experience a lack of resources. However these peers must be fast enough to take profit
from this efficient technique provided by BitTorrent Seeds.

The third contribution is the proper architecture implementing a generalization of
the partitioning proposal. In fact we extended it in a Context-Aware algorilthm that has
the characteristic to be a DHT optimizing lookup and routing. The architecture
implements a FEC service for peers that can be offered a faster service. Finally, we
propose to use hTracker entity at the P2P Service component level to prepare the
environment for some QoS constraints if some peers are demanding. This Service level
proposes also the changing of some basic parameters while keeping interoperability with
existing architectures.

The final step of our work was to implement an application that validates the Service
Provider Oriented P2P (SPOP) architecture. The application is a global security system
that indexes and manages intrusion detection nodes. These entities send information on
detected DDoS attacks in a distributed and scalable manner.

We are aware that the global Service Provider oriented architecture proposed
requires to studying management and control policies if an ISP decide to implement it.
Even if this perform a real optimization level is referred to each application requirements,
the solution introduces some overhead and more treatment. Thus it is important to note
that this solution must be evaluated in terms of implementation and design costs. This
study, that can be a perspective work, must be taken into account by an ISP that decides
to choose SPOP. More technical perspectives are presented in the next section.

133

7.2 Perspectives

The SPOP architecture was validated by large scale simulations. The main
perspective is to implement in the real world the different components of the proposed
solution. P2P dynamicity and scalability can be studied using some real nodes in
experiment platforms like the PlanetLab one.

The application implemented in SPOP to validate this architecture was also tested in
our labs and requires a real world large scale implementation in PlanetLab nodes. This
application requires also a service level that has not been defined in yet. In fact we
focused on how the alerts and information on attacks are stored in a distributed manner
but no service has been already developed to use this data in order to apply a traceback
system.

In erasure codes research domain Network Coding aims to be a good alternative to
FEC mechanism. However it requires that each peer implicates itself to the error
correction. Even if our architecture is Service Provider oriented, it can be interesting to
study an alternative that allow peers to use Network Coding and to dress a complete
comparison of both solutions while it is certain that FEC is still a good value.

One interesting issue is to adapt SPOP architecture to IPTV P2P applications. The
service level adaptation proposed is necessary but not enough while it is important to
formalize the video sliding window and the pieces transfer in the BitTorrent transport
protocol.

134

135

List of Publications

[PBL1] G. Doyen, D. Gaïti, R. Khatoun, L. Merghem-Boulahia, R. Saad and A.
Serhouchni, "A cooperative agent approach based on a peer-to-peer model for DDoS
attacks detection and reaction", in Proceedings of NAEC 2008, September 25 - 28, 2008 in
Riva Del Garda, Italy.

[PBL2] R. Saad, F. Naït-Abdesselam and A. Serhrouchni, "A Peer-To-Peer Collaborative
Architecture to Defend against DDoS Attacks", in Proceedings of LCN 2008, October 13 -
17, 2008 in Montreal, Canada.

[PBL3] R. Saad, F. Naït-Abdesselam and A. Serhrouchni, "Une Architecture Peer-to-
Peer de Défense Contre les Attaques DDoS", in Proceedings of SAR-SSI 2008, October 13
- 17, 2008 in Loctudy, France.

[PBL4] G. Doyen, D. Gaïti, R. Khatoun, R. Saad and A. Serhrouchni, "Decentralized
Alerts Correlation Approach for DDoS Intrusion Detection", in Proceedings of NTMS
2008, November 5 - 7, 2008 in Tangier, Morroco.

[PBL5] R. Saad, A. Serhrouchni and K. Chen, "hTracker: Towards a Service Provider
oriented Peer to Peer Architecture", in Proceedings of NOTERE 2010, May 31st - June 2nd,
2010 in Tozeur, Tunisia.

[PBL6] R. Saad, A. Serhrouchni and K. Chen, "SPOP: A Service Provider Oriented
Peer-to-Peer architecture", to appear in SoftCOM 2010, September 23 - 25, Split – Bol,
Croatia.

[PBL7] R. Saad, A. Serhrouchni, Y. Begriche and K. Chen, "Evaluating Forward Error
Correction in BitTorrent Protocol", to appear in Workshop on Wireless & Internet Services
(WISe) in Proceedings of LCN 2010, October 11 - 14, 2010 in Denver, USA.

136

137

Bibliography

[ABE&al02] K. Aberer, M. Punceva, M. Hauswirth, R. Schmidt, “Improving Data
Access in P2P Systems”, IEEE Internet Computing 6,1, pp. 58–67, Jan./Feb. 2002.

[AGG&al07] V. Aggarwal , A. Feldmann , C. Scheideler, “Can ISPS and P2P users
cooperate for improved performance?”, ACM SIGCOMM Computer Communication
Review, v.37 n.3, July 2007.

[AKA] Akamai, http://www.akamai.com.

[AND&al01] D. Andersen G., H. Balakrishnan, F. Kaashoek, et al., “Resilient Overlay
Networks”, in ACM. 18th Symposium on Operating Systems Principles (SOSP), 21-24
october 2001, Banff, Canada. New-York : ACM Press, 2001, pp.131-145.

[AND&al05] N. Andrade, M. Mowbray, A. Lima, G. Wagner, M. Ripeanu, “Influences
on cooperation in BitTorrent communities”, in proceeding of the 2005 ACM SIGCOMM
workshop on Economics of peer-to-peer systems, August 22-22, 2005, Philadelphia, Pennsylvania,
USA.

[ART&al05] D. Arthur and R. Panigraphy, “Analyzing the efficiency of BitTorrent and
related peer-to-peer networks,” in Proceedings Seventeenth annual ACMSIAM symposium on
Discrete algorithms, January 2005, pp. 961–969.

[ASA&al09] H. Asai, H. Esaki, “AURORA: Autonomous System relationships-aware
overlay routing architecture in P2P CDNs”, Asia Future Internet summer school, Jeju,
Korea, 2009.

[BEL&al03] A. Belenky, N. Ansarin, “Tracing multiple attackers with deterministic
packet marking (DPM)”, in Proceedings of IEEE PacRim vol. 1, pp. 49-52, August 2003.

[BIC&al07] D. Bickson, R. Borer: The BitCod Client: A BitTorrent Clone using
Network Coding. Peer-to-Peer Computing 2007: 231-232.

[BIN&al06] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and A. Zhang,
“Improving Traffic Locality in BitTorrent via Biased Neighbor Selection”, in Proceedings
IEEE Int'l Conf. Distributed Computing Systems (ICDCS '06), pp. 1-9, July, 2006.

[BIT] BitTorrent, http://www.bittorrent.com.

[BLO&al99] S. Block, K. Chen, P. Godlewski, and A. Serhrouchni, “Some Design
Issues of SRMTP, a Scalable Reliable Multicast Transport Protocol”, In Helmut Leopold
and Narciso Garcia, Proceedings ECMAST’99, Madrid, Spain, May 1999. Springer Verlag.

[BLO70] Bloom H. (1970). Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (Jul. 1970), 422-426.

138

[BTO] The Official Protocol Specification,
http://www.bittorrent.org/beps/bep_0003.html.

[BTS] BitTorrent Simulator, http://www.ug.bcc.bilkent.edu.tr/~e_yildirim/.

[BTW] The Unofficial BitTorrent Protocol Specification v1.0,
http://wiki.theory.org/BitTorrentSpecification

[BYE&al98] J. W. Byers, M. Luby, M. Mitzenmacher, A. Rege, “A Digital Fountain
Approach to Reliable Distribution of Bulk Data”, ACM SIGCOMM’ 98, September 2–4,
1998.

[BYE&al99] J. W. Byers, M. Luby, M. Mitzenmacher, “Accessing Multiple Mirror Sites
in Parallel: Using Tornado Codes to Speed Up downloads”, INFOCOM 99, 1999.

[BYE&al02] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
content delivery across adaptive overlay networks,” in SIGCOMM, Pittsburgh, PA, ACM,
2002.

[CAC05] CacheLogic. CacheLogic – advanced solutions for peer-to-peer networks, 2005.

[CAI] CAIDA, The Cooperative Association for Internet Data Analysis, http://as-
rank.caida.org/.

[CER03] CERT Coordination Center, “Module 2 - Internet Security Overview”, 2003.

[CHE&al09] Xinuo Chen, Stephen A. Jarvis, "Analysing BitTorrent's Seeding Strategies,"
cse, vol. 2, pp.140-149, 2009 International Conference on Computational Science and
Engineering, 2009.

[CHF&al08] D. R. Choffnes and F. E. Bustamante, “Taming the Torrent: A practical
approach to reducing cross-ISP traffic in P2P systems”, in Proceedings of ACM SIGCOMM
2008, August 2008.

[CHO&al08] A.L.H. Chow, L. Golubchik, V.Misra, "Improving BitTorrent: a Simple
Approach", in the 7th international workshop on Peer-to-Peer Systems (IPTPS'08), Tampa Bay,
Florida, February 2008.

[CIS] Cisco, http://www.cisco.com

[CLA&al99] K. Claffy and S. McCreary, “Internet measurement and data analysis:
passive and active measurement”, Univ. of California, CAIDA, 1999.

[CLA&al00] I. Clark , O. Sandberg, B. Willey, et al, “Freenet: A distributed anonymous
Information storage and retrieval system”, in FEDERRATH H., editor. Designing Privacy
Enhancing Technologies: International workshop on Design Issues in Anonymity and Unobservability,
Berkeley, California, USA, 25-26 juillet 2000.

139

[COH&al02] E. Cohen and S. Shenker “Replication Strategies in Unstructured Peer-to-
peer Networks”, ACM SIGCOMM 2002, August 2002.

[COH03] B. Cohen, “Incentives build robustness in BitTorrent,” in Proceedings First
Workshop on Economics of Peer-to-Peer Systems, Berkeley, USA, June 2003.

[COT&al01] L. Peluso, D. Cotroneo, S. P. Romano, G. Ventre, “ASSYST: an Active
Security System against DoS attacks”, Technical Report. Dept.of Computer Sciences, University
of Napoli, Italy, April 2001.

[CRE&al02] A. Crespo and H. Garcia-Molina, “Semantic Overlay Networks for P2P
Systems”, Technical report, Computer Science Department, Stanford University, 2002.

[CUE&al02] F. Cuenca-Acuna, C. Peery, P. Martin et D. Thu Nguyen, “PlanetP : Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing
Communities”, in 12th IEEE International Symposium on High Performance Distributed
Computing (HPDC-12), 2002.

[CUI&al09] B. Liu , Y. Cui , Y. Lu , Y. Xue, “Locality-awareness in BitTorrent-like P2P
applications”, IEEE Transactions on Multimedia, v.11 n.3, p.361-371, April 2009.

[CWU&al07] C.-J. Wu, C.-Y. Li, and J.-M. Ho, “Improving the download time of
BitTorrent-like systems,” in IEEE International Conference on Communications 2007 (ICC
2007), Glasgow, Scotland, June 2007.

[DAB&al03] F. Dabek, B. Zhao, P. Druschel, and I. Stoica.
Towards a common API for structured peer-to-peer overlays, in 2nd International workshop
on Peer-to-Peer Systems (IPTPS'02), February 2003.

[DAL&al07] C. Dale and J. Liu, “A Measurement Study of Piece Population in
BitTorrent,” in IEEE GLOBECOM’07.

[DAL&al08] C. Dale, J. Liu, J. Peters, and B. Li, “Evolution and enhancement of
BitTorrent network topologies,” Quality of Service, 2008. IWQoS 2008. 16th International
workshop on, pp. 1–10, June 2008.

[DIM&al07] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, K.
Claffy, and G. Riley, “AS Relationships: Inference and Validation”, in ACM SIGCOMM
Computer Communication Review (CCR), vol.37, no.1, pp. 29-40, January 2007.

[DOU&al02] J.R. Douceur, “The Sybil Attack”, in 1st International workshop on Peer-to-Peer
Systems (IPTPS '02), Cambridge, MA, 2002.

[EGR&al07] K. Eger, T. Hoßfeld, A. Binzenhöfer, G. Kunzmann: "Efficient Simulation
of Large-Scale P2P Networks: Packet-level vs. Flow-level Simulations", 2nd Workshop on
the Use of P2P, GRID and Agents for the Development of Content Networks (UPGRADE-

140

CN'07), in conjunction with 16th IEEE HPDC (High Performance Distributed Computing), June
25-29, 2007, Monterey Bay California, USA.

[ERM&al05] D. Erman, D. Ilie, and A. Popescu, "BitTorrent session characteristics and
models," presented at the 3rd Int. Working Conf. Performance Modelling and Evaluation of
Heterogeneous Networks (HET-NETs'05), Ilkley, U.K., 2005.

[EST07] Cyber Assaults on Estonia Typify a New Battle Tactic, by Peter Finn,
Washington Post Foreign Service, May 19, 2007.

[FAN&al06] B. Fan, D.-M. Chiu, and J. Lui, “Stochastic analysis and file availability
enhancement for BT-like file sharing systems,” Quality of Service, 2006.IWQoS 2006. 14th
IEEE International workshop on, pp. 30–39, June 2006.

[FAY&al08] M. Fayçal and A. Serhrouchni, “An Efficient Management Technique for
Peer-to-Peer Networks”, in International Conference on Software Telecommunications and
Computer Networks, SoftCom2008, Split-Dubrovnik, Croatia, September 2008.

[FEL&al04] P. A. Felber and E. W. Biersack, “Self-scaling networks for content
distribution,” in Int. Workshop on Self-* Properties in Complex Information Systems, Bertinoro,
Italy, May-June 2004.

[FER&al98] P. Ferguson and D. Senie, “Network ingress filtering: defeating denial of
service attacks which employ IP source address spoofing”. In IETF, RFC 2267, Janurary
1998.

[FIN&al04] R. Fink and R. Hinden, “RFC 3701: 6bone (IPv6 Testing Address
Allocation) Phaseout”, March 2004.

[GAR&al06] P. Garbacki, A. Iosup, D. Epema, M. van Steen: 2Fast: Collaborative
downloads in P2P networks. In Proceedings of P2P 2006, 2006.

[GAR] P. Garcia, C. Pairot, R. Mondejar, et al. “PlanetSim: A New Overlay network
Simulation Framework”, in 4th Software Engineering and Middleware (SEM’04), 20-21
septembre 2004, Linz, Autriche. New York : Springer-Verlag, number 3437, pp. 123-136.

[GIA03] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker, “Making
Gnutella-like P2P systems scalable”, in Proceedings of SIGCOMM, ACM, 2003.

[GIL&al01] T.M. Gil and M. Poleto, “MULTOPS: a data-structure for bandwidth attack
detection” In Proceedings of 10th Usenix Security Symposium, Washington, DC, pp. 23–38,
August 2001.

[GKA&al05] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content
distribution”, in proceedings of INFOCOM 2005.

141

[GKA&al06] C. Gkantsidis, J. Miller, and P. Rodriguez, “Anatomy of a P2P Content
Distribution System with Network Coding”, in Proceedings of the 5th International workshop on
Peer-to-Peer Systems (IPTPS 2006), 2006.

[GKA’&al06] C. Gkantsidis , J. Miller , P. Rodriguez, “Comprehensive view of a live
network coding P2P system”, in Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, October 25-27, 2006, Rio de Janeriro, Brazil

[GNU01] M. Ripeanu, “Peer-to-Peer Architecture Case Study: Gnutella Network”, in
IEEE 1st International Conference on Peer-to-Peer Computing (P2P’01), 27-29 août 2001,
Linköpings, Suède. Washington DC : IEEE Computer Society, 2002, pp. 99-100.

[GNT] http://www.generation-nt.com/.

[GON02] L. Gong, “Project JXTA: A Technology Overview”, Palo Alto : SUN
Microsystems, Inc., 2002, 12 p.

[GPS] W. Yang, N. Abu-Ghazaleh, “GPS: A General Peer-to-Peer Simulator and its Use
for Modeling BitTorrent”, Department of Computer Science, Binghamton University.

[GUO&al05] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang,
“Measurements, analysis, and modeling of bittorrent systems”, in Proceedings of ACM
SIGCOMM Internet Measurement Conference (IMC'05), Oct. 2005.

[GUO&al07] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “A
performance study of bittorrent-like peer-to-peer systems”, in IEEE Journal on Selected
Areas in Communications (IEEE JSAC), first Quarter of 2007.

[GUS&al05] G. de Veciana, G., and X. Yang, "Fairness, incentives, and performance in
peer-to-peer networks," in 41st Annual Allerton Conference on Communication, Control and
Computing, Monticello, October 2003.

[HAZ&al06] H. Hazeyama, Y. Kadobayashi, D. Miyamoto, and M. Oe. An autonomous
architecture for inter-domain Traceback across the borders of network operation. In
Proceedings of 11th IEEE Symposium on Computers and Communications (ISCC ’06), pages 378–
385, June 2006.

[HAM&al07] A. Al Hamra, A. Legout, and C. Barakat, “Understanding the properties
of the BitTorrent overlay,” INRIA, Sophia Antipolis, Tech. Rep., July 2007.

[HEI&al06] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross, ‘Insightsinto PPLive: A
Measurement Study of a Large-Scale P2P IPTV System”, in IPTV Workshop,
International World Wide Web Conference, May 2006.

[HOF03] J.Hoffman, “About Super-Seed mode” http://bittornado.com.

[HMC97] H. Krawczyk, M. Bellare, R. Canetti, “RFC 2104: HMAC: Keyed-Hashing for
Message Authentication”, February 1997.

142

[INT] “Intel Peer-to-peer working group”, http://www.p2pwg.org/

[IOA&al02] J. Ioannidis and S. M. Bellovin, “Implementing pushback : Routerbased
defense against ddos attacks”, in NDSS. The Internet Society, 2002.

[IPO09] Ipoque, Available online at: http://www.ipoque.com/resources/internet-
studies/internet-study-2008_2009.

[IPS08] S. Kent and R. Atkinson, “RFC 2401: Security Architecture for the Internet
Protocol”, November 2008.

[IZA&al04] M. Izal, G. Urvoy-Keller, E. W Biersack, P. A Felber, A. Al Hamra and L.
Garces-Erice, “Dissecting BitTorrent: five months in a torrent’s lifetime”, in PAM’2004,
5th annual Passive & Active Measurement Workshop, April 19-20, 2004, Antibes Juan-les-Pins,
France.

[JIA&al08] J. Zhang, L. Liu , L. Ramaswamy , C. Pu, “PeerCast: Churn-resilient end
system multicast on heterogeneous overlay networks”, Journal of Network and Computer
Applications, v.31 n.4, p.821-850, November, 2008

[JLI&al04] J. Li, J. Stribling and T. Gil, et al, “Comparing the performance of distributed
hash tables under churn”, In S. SCHENKER, G. M. VOELKER, editors, in 3rd
International workshop on Peer-to-Peer Systems (IPTPS’04) in LNCSc 2004, 26-27 february
2004, San Diego, California. New York : Springer-Verlag, number 3279, pp. 87-99.

[JON04] G. L. Jones, “On the Markov chain central limit theorem”, Probab. Surv. 1 299
320. 2004.

[JUN&al05] S. Jun and M. Ahamad, “Incentives in Bittorrent induce Free-Riding”, in
Proceeding of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems, August
22-22, 2005, Philadelphia, Pennsylvania, USA .

[KAR&al05] T. Karagiannis, P. Rodriguez, D. Papagiannaki, “Should Internet Service
Providers Fear Peer-Assisted Content Distribution?”, Internet Measurement Conference
(IMC), Berkeley, CA, USA, October, 2005.

[KAZ] T. Hargreaves, The FastTrack Protocol, http://www.kazaa.com.

[KEM&al97] RA. Kemmerer, “NSTAT: a model-based real-time network intrusion
detection system” in Technical Report TRCS97-18, Reliable Software Group, Department of
Computer Science, University of California at Santa Barbara, 1997.

[KOR01] E. Korpela, “SETI@home - Massively Distributed Computing for SETI”,
in Computing in Science & Engineering, January 2001, p. 78-83.

[KOS&al03] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” in Symposium on Operating Systems
Principles (SOSP), 2003.

143

[KUL&al05] Y. Kulbak and D. Bickson The eMule Protocol Specification. HUJI-CSE-
LTR 2005-3. Jérusalem : The Hebrew University of Jerusalem, 2005, 68 p.

[KUM&al06] R. Kumar and K. Ross, “Peer-assisted file distribution: The minimum
distribution time,” Hot Topics in Web Systems and Technologies, 2006. HOTWEB ’06. 1st
IEEE Workshop on, pp. 1–11, Nov. 2006.

[LAB] PlanetLab, http://www.planet-lab.org/

[LAC&al02] J. Lacan, L. Lancérica, L. Dairaine, “When FEC Speed Up Data Access in
P2P Networks”, in Proceedings of IDMS-PROMS, LNCS, Springer, 2002.

[LEI&al07] Y. Lei, L. Yang, Q. Jiang, and C. Wu, “Experimental views on neighbor
selection in BitTorrent,” Network and Parallel Computing Workshops,2007. NPC Workshops.
IFIP International Conference on, pp. 813–818, Sept. 2007.

[LEG&al05] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Understanding BitTorrent:
An Experimental Perspective”, Technical Report (inria-00000156, version 3 - 9 November
2005), INRIA, Sophia Antipolis, November 2005.

[LEG&al06] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest First and Choke
Algorithms Are Enough”, in Proceedings of ACM SIGCOMM/USENIX IMC'2006, October
25--27, 2006, Rio de Janeiro, Brazil.

[LEG&al07] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing
incentives in BitTorrent systems,” in SIGMETRICS ’07: Proceedings of the 2007 ACM
SIGMETRICS international conference on Measurement and modeling of computer systems. New
York, NY, USA: ACM, 2007, pp. 301–312.

[LEG&al08] P. Marciniak, N. Liogkas, A. Legout, E. Kohler, “Small Is Not Always
Beautiful”, in Proceedings of IPTPS'2008, February 25--26, 2008, Tampa Bay, FL, USA.

[LEG&al09] S. Le Blond, A. Legout, W. Dabbous, “Pushing BitTorrent Locality to the
Limit”, Technical Report (inria-00343822, version 2-12 May 2009), INRIA, Sophia Antipolis,
May 2009.

[LEV&al04] A. Bellissimo, B. N. Levine, and P. Shenoy, “Exploring the use of
BitTorrent as the basis for a large trace repository,” Technical report, University of
Massachusetts Amherst, Dept. of Computer Science, Tech. Rep., June 2004.

[LIA&al07] W.-C. Liao, F. Papadopoulos, and K. Psounis, “Performance analysis of
BitTorrent-like systems with heterogeneous users,” Performance Evaluation, vol. 64, no. 9-
12, pp. 876 – 891, 2007.

[LIM] Limewire, http://www.limewire.com.

144

[LIU&al03] J. Liu, Z. Lee, and Y. Chung, “Efficient dynamic probabilistic packet
marking for IP traceback”, in Proceedingd of the 11th International Conf. Networks (ICON
2003), Sydney, Australia, , pp.475-480, September 2003.

[LUA&al04] E. K. Lua, J. Crowcroft and M. Pias, et al, “A Survey and Comparison of
Peer-to-Peer Overlay Network Schemes”, IEEE Communications Survey and Tutorial, 2004,
pp. 72-93.

[LUN&al06] Tom H. Luan, and Danny H. K. Tsang, "A simulation study of block
management in BitTorrent", Proceedings of International Conference on Scalable Information
Systems (Infoscale), Hong Kong, May 2006.

[MAH&al02] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S.
Shenker, “Controlling high bandwidth aggregates”, in The network SIGCOMM Comput.
Commun. Rev., 32(3) :62_73, 2002.

[MAL&al02] D. Malkhi , M. Naor and D. Ratajczak, “Viceroy: a scalable and dynamic
emulation of the Butterfly”, In ACM. 21st symposium on Principles of Distributed Computing
(PODC’02), 21-24 july 2002, Monterey, California.

[MAY&al02] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information
system based on the XOR metric”, in 1st International workshop on Peer-to-Peer Systems
(IPTPS’02), 07-08 mars 2002, Cambridge, Massachusetts, USA.

[MAY&al03] P. Maymounkov and D. Mazieres, “Rateless Codes and Big Downloads. In
IPTPS'03, February 2003.

[MBO] H. Eriksson, “MBone: The Multicast Backbone”, Communications of the ACM,
1994, vol. 37, n° 8, pp. 54-60.

[MEU&al10] M. Meulpolder, L. D'Acunto, M. Capota, M. Wojciechowski, J.A.
Pouwelse, D.H.J. Epema, and H.J. Sips, “Public and Private BitTorrent Communities: A
Measurement Study”, in 9th Int'l Workshop on Peer-to-Peer Systems (IPTPS'10), April 2010.

[MIR&al02] J. Mirkovic, PhD Proposal, “D-WARD: DDoS Network Attack
Recognition and Defense”, January 23, 2002.

[MIR&al04] J. Mirkovic , S. Dietrich , D. Dittrich , P. Reiher, “Internet Denial of
Service: Attack and Defense Mechanisms” (Radia Perlman Computer Networking and
Security), Prentice Hall PTR, Upper Saddle River, NJ, 2004.

[MIR&al05] J. Mirkovic, M. Robinson, P. Reiher, and G. Oikonomou, “Distributed
Defense Against DDOS Attacks”, University of Delaware CIS Department Technical Report
CIS-TR-2005-02, 2005.

[MOB02] C. Perkins, Nokia research center, “IP Mobility Support for IPv4”, RFC 3220,
IETF, 2002.

145

[MOO&al01] D. Moore, G. Voelker, and S. Savage, “Inferring Internet Denial of
Service Activity”. In Proceedings of the 2001 USENIX Security Symposium, Washington D.C.,
August 2001.

[MR05] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and improving
BitTorrent performance”, Technical Report MSR-TR-2005-03, Microsoft Research, February
2005.

[NAP] Napster, http://www.napster.com.

[NBR] Cisco Systems Incorporated. Network based application recognition (nbar).

[NOR03] W. B. Norton, “The evolution of the u.s. internet peering system”, 2003.

[NS2] NS-2, http://www.isi.edu/nsnam/ns.

[OMN01] Varga, András, "The OMNeT++ Discrete Event Simulation System", in
Proceedings of the European Simulation Multiconference (ESM'2001), http://www.omnetpp.org.

[OMN09] K. Katsaros, V. P. Kemerlis, C. Stais and G. Xylomenos, "A BitTorrent
Module for the OMNeT++ Simulator," in Proceedings 17th Annual Meeting of the IEEE
International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), London, UK, September 2009.

[OPE] Opera, http://www.opera.com.

[OVER07] I.Baumgart, B. Heep, S. Krause, OverSim: A Flexible Overlay Network
Simulation Framework, in Proceedings of 10th IEEE Global Internet Symposium (GI '07) in
conjunction with IEEE INFOCOM 2007, Anchorage, AK, USA, May 2007,
http://www.oversim.org.

[PAP&al06] I. Papafili, S. Soursos, G. D. Stamoulis, “Improvement of BitTorrent
Performance and Inter-Domain Traffic by Inserting ISP-owned Peers”, in 6th International
workshop on Internet Charging and QoS Technologies (ICQT'09), Aachen, Germany, May 2009.

[PCK] Packeteer packetshaper, http://www.packeteer.com

[PEE] M. Jelasity, A. Montresor and G. P. Jesi, “PeerSim P2P Simulator",
http://peersim.sourceforge.net/.

[PER08] “Opentransit 2008 Peering Policy”, http://vision.opentransit.net/docs/

[PIA&al07] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani.
“Do incentives build robustness in BitTorrent?”, in Proceedings of NSDI'07, Cambridge,
MA, April 2007.

146

[PIC&al07] F. Lo Piccolo and G. Neglia, “The effect of heterogeneous link capacities in
BitTorrent-like file sharing systems,” Peer-to-Peer Systems, 2004. International workshop on Hot
Topics in, pp. 40–47, Oct. 2004.

[PIN] The PingER Project, http://www-iepm.slac.stanford.edu/pinger/.

[PLA05] J. S. Plank, “Assessing the Performance of Erasure Codes in the Wide-Area”, in
Proceedings of the 2005 International Conference on Dependable Systems and Networks, p.182-187,
June 28-July 01, 2005.

[PLX&al97] C. G. Plaxton, R. Rajaraman, A. W. Richa, “Accessing Nearby Copies of
Replicated Objects in Distributed Environment”, Proceedings ACM Symp. Parallel
Algorithms and Architectures, ACM Press, New York, June 1997.

[POU&al04] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, H.J. Sips, “The BitTorrent P2P
file-sharing system: Measurements and Analysis”, Department of Computer Science,
Delft University of Technology the Netherlands.

[POU&al06] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J.
Epema, M. Reinders, M. van Steen, and H. Sips, “Tribler: A social-based peer-to-peer
system”, in Proceedings of IPTPS, 2006.

[PRE&al95] B. Preneel, P.C. van Oorschot, “MDx-MAC and building fast MACs from
hash functions” Crypto'95, Springer LNCS vol.963, 1995.

[PUS&al09] K. Pussep, S. Oechsner, O. Abboud, M. Kantor and B. Stiller, “Impact of
Self-Organization in Peer-to-Peer Overlays on Underlay Utilization”, Fourth International
Conference on Internet and Web Applications and Services (ICIW 2009), Venice, Italy
Ma y 2009.

[PWG] Peer to Peer Working Group, 2003, http://p2p.internet2.edu/

[QIU&al04] D.Qiu and R. Srikant, “Modeling and performance analysis of BitTorrent-
like peer-to-peer networks”, in Proceedings of ACM SIGCOMM 2004, August 2004.

[QUR04] A. Qureshi, "Exploring Proximity Based Peer Selection in BitTorrent-like
Protocol," MIT 6.824 student project, 2004.

[RAS&al07] A. Rasti and R. Rejaie, “Understanding peer-level performance in
BitTorrent: A measurement study,” Computer Communications and Networks, 2007. ICCCN
2007. Proceedings of 16th International Conference on, pp. 109–114, Aug. 2007.

[RAT02] S. Ratnasamy, “A Scalable Content-Addressable Network”, PhD Thesis,
University of California at Berkeley, 2002, 108 p.

[REE&al60] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Field”,
J. SIAM, vol. 8, pp. 300–304, 1960.

147

[REN&al10] S. Ren, E. Tan, T. Luo, L. Guo, S. Chen, and X. Zhang, "TopBT: a
topology-aware and infrastructure-independent BitTorrent client", in proceedings of
INFOCOM'10, San Diego, California.

[RHE&al05] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I.
Stoica, and H. Yu, "OpenDHT: A Public DHT Service and Its Uses", in Proceedings of
ACM Special Interest Group on Data Communications Conference (SIGCOMM 2005),
Philadelphia, Pennsylvania, pp. 73-84, August 2005.

[RIO&al98] B. Riou and P. Landais, “Principes des tests d'hypothèse en statistique: α, β
et P”, Ann Fr Anesth Réanim 17 (1998), pp. 1168–1180.

[RIZ97] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communication
Protocols”, In Computer Communication Review, April 1997.

[ROS&al08] P. Dhungel, D. Wu, B. Schonhorst, and K. W. Ross, "A Measurement
Study of Atatcks on BitTorrent Leechers", In Proceedings of 7th International workshop on Peer-
to-Peer Systems, 2008.

[ROW&al01] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems”, in IFIP/ACM. 18th International
Conference on Distributed Systems Platforms (Middleware’01), 12-16 novembre 2001, Heidelberg,
Allemagne. Berlin : Springer, 2001, pp. 329-350.

[SAR&al07] P. Saraswat and P. Batra, “An empirical performance evaluation and
modelling of BitTorrent peer-to-peer file sharing system using queuing network models,”
Research project, Advanced Learning and Research Institute, Switzerland, 2007.

[SHE&al04] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: a cooperative bulk
data transfer protocol,” INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, vol. 2, pp. 941–951, March 2004.

[SHE&al06] D. Levin, R. Sherwood, and B. Bhattacharjee, “Fair file swarming with
FOX,” in In Fifth International workshop on Peer-to-peer Systems (IPTPS 2006), 2006.

[SNA&al99] SR. Snapp & al. “DIDS (Distributed Intrusion Detection System)-
motivation architecture and an early prototype”, in Proceedings of the 14th national computer
security conference, Washington DC, October 1999.

[SNO] Snort: The Open Source Network Intrusion Detection System,
http://www.snort.org.

[SPO&al10] S. Spoto, R Gaeta, M. Grangetto, M. Sereno, “Bittorrent and fountain
codes: friends or foes ?”, in Proceedings in IDPDPS 2010, Atlanta 2010.

[STE&al03] L.D. Stein, J.N. Stewart, “The World Wide Web Security FAQ, version 1.7,
February 23rd, 2003”, http://www.w3.org/Security/faq/

148

[STO&al01] I. Stoica, R. Morris, and D. Liben-Nowell, “Chord: A Scalable Peer-to-peer
Lookup Protocol for Internet Applications”, in ACM. SIGCOMM 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication, 27-31 august
2001, UC San Diego, California, USA: ACM Press, 2001, pp. 149-160.

[SUB&al04] L. Subramanian, I. Stoica and R. Katz, “OverQoS: An Overlay Based
Architecture for Enhancing Internet QoS”, in 1st Symposium on Networked Systems Design
and Implementation (NSDI 2004), March 29-31, 2004, San Francisco, California, USA,
Proceedings 2004.

[THE&al04] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies”, in ACM Computing Surveys, 36(4):335–371, December
2004.

[THO&al05] R. Thommes, M. Coates, “Bittorrent fairness: analysis and
improvements”, in Proceedings of Workshop Internet, Telecom. and Signal Proceedings, Noosa,
Australia, 2005.

[TIA&al07] Y. Tian, D.Wu and K.W. Ng, “Performance analysis and improvement for
Bittorrent-like sharing systems”, 2007.

[TOR] Torrent 411, http://torrent411.com

[URV&al06] G. Urvoy-Keller and P. Michiardi, “Impact of inner parameters and
overlay structure on the performance of BitTorrent”, INFOCOM 2006.25th IEEE
International Conference on Computer Communications.Proceedings, pp. 1–6, April 2006.

[XIE&al07] H. Xie, A Krishnamurthy, YR Yang and A Silberschatz - “P4P: Proactive
Provider Participation for P2P”, Tech. Rep. YALEU/DCS/TR-1377, Yale University
March 2007.

[WAL&al02] D.S. Wallach, “A Survey of Peer-to-Peer Security Issues”, International
Symposium on Software Security Tokyo, Japan, 2002.

[WAN&al07] J. Wang, C. Yeo, V. Prabhakaran, and K. Ramchandran. On the role of
helpers in peer-to-peer file download systems: design, analysis, and simulation. In
Proceedings of IPTPS, 2007.

[WEA&al02] H. Weatherspoon and J. Kubiatowicz, “Erasure Coding vs. Replication: A
Quantitative Comparison”, Revised Papers from the First International workshop on Peer-to-Peer
Systems, p.328-338, March 07-08, 2002.

[WEI&al09] W. Liang , J. Bi , R. Wu , Z. Li , C. Li, “On characterizing PPStream:
measurement and analysis of P2P IPTV under large-scale broadcasting”, in proceedings of
the 28th IEEE conference on Global telecommunications, p.3552-3557, November 30-December
04, 2009, Honolulu, Hawaii, USA.

149

[WHI&al96] G. B. White, E. A. Fisch, U. W. Pooch, “Cooperating security managers: A
peer-based intrusion detection system”. IEEE Network, 10(1):20-23, January / February
1996.

[WUG&al06] G. Wu and T. cker Chiueh, “How efficient is BitTorrent?” in Multimedia
Computing and Networking 2006, S. Chandra and C. Griwodz, Eds., vol. 6071, no. 1. SPIE,
2006, p. 607100.

[YAM&al07] S. Yamazaki, H. Tode, K. Murakami, “CAT: A Cost-Aware BitTorrent”, In
32nd IEEE Conference on Local Computer Networks, pp. 226–227, 2007.

[YAN&al03] B. Yang and H. Garcia-Molina, “Designing a Super-Peer Network”, in
IEEE. 21st International Council for Open and Distance Education (ICDE’03), 05-08 mars 2003,
Bangalore, India. Washington DC : IEEE Computer Society, 2003, pp. 49-60.

[XIA&al10] L. Xia and J. K. Muppala, A Survey of BitTorrent Performance, in IEEE
Communications Surveys and Tutorials, to appear.

[YAN&al06] X. Yang and G. de Veciana, “Performance of peer-topeer networks:
Service capacity and role of resource sharing policies,” Performance Evaluation, vol. 63, no.
3, pp. 175 – 194, 2006, p2P Computing Systems.

[ZAM&al00] E. H. Spafford, and D. Zamboni, “Intrusion detection using autonomous
agents”, In Computer Networks, vol. 34, No. 4, pp. 547-570, 2000.

[ZHA&al04] B. Y. Zhao, L. Huang, J. Stribling, et al, “Tapestry: A Resilient Global-
Scale Overlay for Service Deployment”, January 2004, vol 22, no 1, pp. 41-53.

[ZHN&al07] L. Zhang, J. K. Muppala, W. Tu, "Exploiting Proximity in Cooperative
Download of Large Files in Peer-to-Peer Networks," iciw, pp.1, Second International
Conference on Internet and Web Applications and Services (ICIW'07), 2007

[ZHA&al10] C. Zhang, P. Dhungel, Di Wu, Z. Liu,and K.W. Ross, “BitTorrent
Darknets,” in Proceedings of Infocom 2010, San Diego, 2010.

[ZHU&al01] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz, “Bayeux: An architecture ZHA&al05e for scalable and fault-tolerant wide-
area data dissemination”, in Proceedings of NOSSDAV (June 2001).

150

151

Appendix: Related works on BitTorrent

Performance

studies

Measurement [IZA&al04]: peers’ evolution and the traffic volume downloaded and
uploaded during the five months analysis.
[POU&al04]: peers’ number and their relation with Seeds, the time
peers stay as Seeds after completing the download, and the resource
lifetime. Eight months analysis.
[LEV&al04]: information has been collected from two different
Trackers to show that BitTorrent can serve large files. The Torrent is
observed during a four months period.
[LEG&al05]: Complete study of BitTorrent mechanisms.
 [AND&al05]: a study on the cooperation in BitTorrent. The authors
focuses on free-riding, Seeds importance and sharing ratio. Free-riders
are less important than in other P2P networks.
[LEG&al06]: show the efficiency of Rarest First and Choke Algorithm,
proving that they are enough for BitTorrent performances.
[LEG&al07]: experiments on some private Torrents show how a peer
acts individually in BitTorrent.
[RAS&al07]: some peers used to study the BitTorrent performance
but not with an overall view. The performance distribution of peers is
uniform and that the Choke Algorithm is the main factor that has an
impact on BitTorrent performance.
[LEI&al07]: The neighbor selection with the Choke Algorithm has been
studied. This random selection does not take into consideration the
communication cost and that this results in low transmission rate and
high cost.
[PIA&al07]: study of BitTorrent incentive. The authors demonstrate
that all peers contribute resources that do not directly improve their
performance. They develop BitTyrant BitTorrent client.
[DAL&al08]: proposed a study of these different types of networks.
They also explain that this is not obvious to say that BitTorrent
implicitly clustered peers as we could read it in [LEG&al07] except in
the initial stage.
[ZHA&al10]: the behavior study of BitTorrent in Darknets from
macroscopic, medium-scopic and microscopic perspectives.

Simulation [FEL&al04]: deep study on piece and peer selection strategies and
their effects on BitTorrent performance. See if the self-scaling and self-
organizing aspects of P2P networks are encouraging to reach a highly
efficient, cost effective and robust content distribution protocol.
[MR05]: a very complete study of BitTorrent mechanisms. The
performance is studied during flash-crowd using a simulator that
models all peers activities, policies and mechanisms. C# simulator.
[THO&al05]: a simulation based analysis proposed to study the
fairness properties of BitTorrent. The authors also propose three
modifications to BitTorrent and examine their impact on fairness. They
show that these modifications provide positive amelioration to
BitTorrent fairness incentive mechanism.
[JUN&al05]: study of the incentive mechanism in the Choke Algorithm
showing that the high number of Free-riders in BitTorrent. There is a
lot of egoist peers that do not participate to the Torrent evolution and
that finish to download faster than other peers.

[URV&al06]: work that evaluates the impact of the overlay topology
parameters on BitTorrent performance. The authors show that the Peer
Set size and the percentage of outgoing connections have a significant
impact on the BitTorrent’s performance.
[WUG&al06]: the authors try to find how BitTorrent can be optimal
or close to it. They proposed a new distribution scheme called the
Centrally Scheduled File Distribution (CSFD) that can decrease
considerably the total download time. BitTorrent is far to be optimal
and the peer selection is not helping the protocol to decrease optimally

152

the overall distribution.
[GAR&al06]: 2Fast solves the problem of freer-riding that affect the
download performance, while preserving fairness of bandwidth sharing.
The authors propose to form groups of peers that collaborate in
downloading a file on behalf of a single group member which can thus
use its full download bandwidth. A peer can help other peers in their
ongoing downloads and get in return help during its own downloads.
[CWU&al07]: improve the download time of BitTorrent with a new
strategy that replace the Rarest First policy and introduces a strategy
based on a greedy concept that a peer assigns each missing piece with
the highest priority for next download. The strategy is called the
weighty piece selection strategy.
[WAN&al07]: improvement study that take into consideration the
asymmetric bandwidth in Internet and BitTorrent where upload
capacity is generally limiting the transfers. The authors show that
integrating also new peers called helpers can add a considerable
amelioration as effective as Seeds.
[HAM&al07]: authors follow the work on [URV&al06] and perform
an evaluation study on the properties of the distribution overlay in
BitTorrent and the relation of this overlay and BitTorrent
performances. MATLAB simulation.
[CHO&al08]: presents simulations study that show how to use more
intelligently Seed capacity in BitTorrent while improving the
performance of contributing nodes.
[CHE&al09]: two main Seeding strategies have been studied in details
based on simulation with a Java simulator and a mathematical model.
The original Seeding strategies known in the Choke Algorithm is
compared to the time-based Seeding strategy where the Seed provide
data to Leeches during a uniform interval of time. Both free-riders and
exploiters harm the system despite the Seeding strategies that is used.

Analytical [QIU&al04]: fluid-flow model. This work proposes a deterministic
model describing the evolution of the Leeches and Seeds number also.
They conclude that the average download time is not related to the
arrival rate and that the system scales very well with the peers
increasing. They proposed a validation part based on both simulation
and real traces obtained from the Internet.
[GUS&al05]: the parameter that is studied principally is the service
capacity for transient and steady-state regimes. Authors concluded by
proposing a specific fairness policy that they assume to be better for
dynamic P2P system like BitTorrent-like ones. The authors also
validated partially their work using traces obtained from a second
generation P2P application.
[ART&al05]: analysis of data dissemination is proposed. The Tit For
Tat strategy is ignored and the authors assumed that the peers are
homogeneous.
[ERM&al05]: modeling methodology and some measurement to study
the entire session characteristics of BitTorrent. BitTorrent session inter-
arrivals can be modeled by the hyper-exponential distribution while
session duration and sizes can be modeled by the lognormal
distribution.
[GUO&al05]: a work inspired from [QIU&al04]. The authors analyzed
the file downloading trace files obtained from Trackers. They conclude
saying that the peer arrival rate to a Torrent is exponentially decreases.
[YAN&al06]: extension of [GUS&al05] work.
[KUM&al06]: an analytical model of file sharing in P2P networks
using also a fluid-flow model. They proposed to study the advantages
of a P2P file sharing protocol comparing to a Client-Server system.
They tried to find the minimum download time to finish the
distribution to all Leeches in the system.
[FAN&al06]: the authors also based on the famous work in
[QIU&al04]: to propose a model based on a stochastic differential
equation approach. They divided peers into three types which are

153

Leeches that have a few pieces, Leeches that have most of pieces and Seeds.
[GUO&al07]: a work proposing incremental work comparing to the
precedent on extensive measurement and trace analysis. This result
permits them to extend the work in [GUO&al05].
[TIA&al07]: a deep and complete work that extended the fluid model
in [QIU&al04] to study the peers in different states of the download.
[SAR&al07]: present a queuing model for BitTorrent where each peer
is considered as a load dependent host. The service is divided into slots
and a request time is equal to the time needed to download one piece.
The work focuses on the download behavior and the incentive
mechanism.
[PIC&al07]: the first work that proposes a study based on
heterogeneous fluid-flow model. To work on different access link
capacities the authors developed a model with two different capacity
classes by extending the work in [QIU&al04].
[LIA&al07]: propose a model based on heterogeneous networks with
also two classes: high and low peers. The authors propose a
mathematical model that helps them to predict the average file
download delay for both classes of peers. The used the BTSim
simulator [BTS] to experiment the proposed model.

BitTorrent-like Protocols Slurpie [SHE&al04]: Mesh where download bandwidth is adapted
dynamically with estimation technique.
FOX [SHE&al06]: Protocol that focuses on fairness and symmetric
communication.
Avalanche [GKA’&al06]: Protocol proposed by Microsoft and
integrating Network Coding.

Locality-Aware techniques

for BT

[QUR04]: proposal of a new peer selection based on proximity. The
Tracker sends information on nearby peers to improve the download.
They compare an approach where the requesting peer floods an
announcement to discover peers and an approach based on Gossip
protocols that use a low-rate probabilistic flooding mechanism.
[KAR&al05]: study on the impact of ISPs on BitTorrent. BitTorrent is
locality unaware and this increases ISP costs. Their showed that in
BitTorrent the content is sent 30 to 70% more times and that some
mechanisms can help decreasing the inter-ISP traffic.
[BIN&al06]: biased neighbor selection to improve traffic locality.
Select peers according to each of these AS numbers. The Tracker forces
each new Leech to select a majority of his neighbors within the same ISP
and only few outside of it. This solution has no proposition for the
peers mapping with the AS’s.
[PAP&al06]: extended the solution in [BIN&al06] by inserting ISP-
Owned peers to enhance performance within an ISP domain.
[POU&al06]: proposes a novel social-based P2P system that exploits
social phenomena by maintaining social networks and using these in
content discovery and delivery. Tribler is composed by a set of
extensions to BitTorrent.
[AGG&al07]: evaluation of the feasibility of a solution where the ISP
offers an oracle to P2P users. The peers provided a list of neighbors
and the oracle ranks them according to certain criteria like proximity or
bandwidth.
[ZHN&al07]: explore the use of proximity in the construction of the
overlay network and the efficient exchange of the file fragments In
BitTorrent with the main goal of reducing download time and resource
usage.
[YAM&al07]: proposal for a method to constitute P2P content
distribution networks and a reduction in ISP costs by considering the
form of the ISP interconnection in its distribution. The authors show
that the proposal achieves a reduction in ISP costs and distribution
time.
Ono [CHF&al08]: pluggin added to Azureus client considering long
distance transfers to increase file download speeds. Ono learns from
existing Content Distribution Networks (CDNs) such as Akamai

154

[AKA] and Limelight. It is a customer oriented service.
[CUI&al09]: measurement study of locality-aware P2P solutions over
real Internet AS topology using the accesses of nodes in PlanetLab. The
authors propose an evaluation of the performances of a set of locality-
aware solutions. They point out the necessity to tradeoff between the
goals of optimizing AS performance and fairness among peers.
[LEG&al09]: locality enhancement and a large study showed how far
locality can be pushed and what the traffic economy gain we can have.
TopBT [REN&al10]: Topology BitTorrent is a topology-aware
version of BitTorrent protocol implemented also as a plugin to Azureus
(Vuze) client also that discovers network proximity peers by sending
requests and waiting for responses. Customer oriented service.

Erasure Codes in BT [PLA05]: A performance study where the authors present an
assessment for erasure codes in the wide area.
[WEA&al02]: comparison between replication and erasure codes.
[BYE&al99]: FEC-based alternative for multicast distribution with a
parallel access to mirror sites using Tornado Codes [COH&al02].
[LAC&al02]: a solution to speed up data access in P2P networks is
developed with dilution of FEC fragments over all the peers based on a
data storage scheme. This permits to increase the blocks entropy and
choice.
[KOS&al03]: Bullet is a distributed and scalable algorithm proposed in
where peers self-organize into a high bandwidth overlay mesh. In this
algorithm the peers locate and retrieve data from multiple peers in
parallel.
[MAY&al03]: the authors propose a simple algorithm that allows big
files to be downloaded from multiple sources in P2P. The solution
proposes low handshaking overhead between peers. The interest is that
when two peers have partially downloaded the resource, they can
benefit from each other resource parts.
[GKA&al06]: Network Coding which is an alternative of FEC. In this
mechanism the blocks are obtained by a combination of resource held
by other peers. This technique, which is a channel coding and not a
source coding like FEC, is implemented by Avalanche which is the
Microsoft BitTorrent-like P2P application.
[BIC&al07]: BiCod uses the Network Coding mechanism, no
development has been proposed for Avalanche yet even if in
[GKA’&al06] the authors show that this new proposition may surpass
FEC performance.
[LUN&al06]: the authors studied the block management in BitTorrent
and their circulation. They conclude that the block distribution in
BitTorrent is far from being optimal in terms of block frequency and
that some blocks dominate the network and that others become extinct
nearly. The coding use is the one presented in [BYE&al98].
[SPO&al10]: is a recent work where the authors explain that in real
world applications like real time constraints ones are affected by flash
crowds because peers join and leave quickly. They propose a
modification to GPS simulator [GPS] integrating LT (Luby-Transform)
codes.

Architectures for ISP and

P2P collaboration

ALTO [XIE&al07]: project defined in an IEEE draft a specification
for the called P4P that permit coordination and collaboration between
an ISP in the P2P activities and applications. This proposition is more
general to all P2P or overlay applications.
SmoothIT [PUS&al09] consortium proposes also an architecture
relying on various criteria to evaluate the traffic management in P2P
systems. However their architecture seems complex to implement
legally and technically.

