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Every form in reality is empty,

and emptiness is the true form.

-Heart Sūtra



ABSTRACT

Recently emerging complex systems sciences tackle the systems where complex in-
teractions between components lead to the manifestation of emergent property linking
different levels of organization. This thesis aims to reveal the mechanism of emergent
property in complex systems, both in concrete modeling as well as comparative analysis
between different systems. We tackle various subjects in complex systems science with
newly proposed unified theoretical framework, based on the dialectic between dynam-
ical system theory and information geometry. The thesis has therefore two levels of
objectives: 1) Modeling and understanding of concrete complex systems with the use
of constructive and interaction-analytical methodologies, and 2) comparison between
different complex systems to characterize universal structure of emergence.

The thesis consists of 7 Parts, in which Part 2 to 6 correspond to the first objective,
and the Part 7 to the second one:

In Part 1, we review the historical context of complex systems science and propose
a dialectical strategy between the constructive and interaction-analytical methodology,
based on the dynamical system theory and information geometry, respectively.

In Part 2, we treat a candidate model of brain cortex dynamics known as “chaotic
itinerancy”, and incorporate the effect of autonomous learning seeking for the creativity
of intelligence as emergent property of neural system. The interpretation of emergence
in terms of the internal measurement theory is extended to derive the concept of “chaotic
itinerancy as catalyst of learning”.

In Part 3, the dynamics of chaotic neural network is applied to emergent collective
behavior of robots, so that to realize optimal intermittent search of sporadic informa-
tion. The effectiveness of the collective infotaxis is analyzed on a simulator basis.

In Part 4, we define novel complexity measures from information geometrical point
of view and apply to the analysis of social network data. The established complexity
measures play a key role in comparative analysis between different systems in Part 7.

In Part 5, we apply the dialectical strategy between dynamical system and infor-
mation geometry toward the understanding of morphogenesis during zebrafish embryo-
genesis. Theoretical propositions are tested with tentative experimental data from two
european projects, Embryomics and BioEMERGENCES.

In Part 6, complex systems related to linguistics are investigated. We discovered
novel invariants and geometrical relation between japanese vowels, as a system-level
emergent property. Ecological modeling approach to multilingual environment is also
proposed along the dialectical strategy between linguistic theory and mathematical
modeling.

In Part 7, we review the obtained results in previous Parts with comparative per-
spective, seeking for a characterization of universal structure of emergence in terms
of the organization of interactions that does not explicitly depend on the property of
components. Comparison between Part 2 and 4, as well as 5 and 6, derived candi-
date qualitative dynamics of emergence and its detection strategy as the dynamics and
constraint between functors and meta-functors. Further possibility of the proposed
strategy is discussed.
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Système Dynamique et Géométrie

Informationnelle

-Une Approche Complémentaire aux Systèmes Complexes-

RÉSUMÉ

Un des défis majeurs de la science de complexité se situe à l’investigation de l’émergence,
où les interactions entre les composants microscopiques d’un système produisent la pro-
priété globale, et réciproquement, la dynamique globale influence le bas niveau. Cette
thèse a comme ambition de 1) élucider le mécanisme sous-jacent des systèmes com-
plexes par la modélisation concrète des systèmes réels, et aussi 2) comparer entre les
différents modèles proposés pour détecter la condition universelle de l’émergence. Pour
cela, nous développons la nouvelle méthodologie basé sur l’interaction entre la théorie
des systèmes dynamiques et la géométrie informationnelle, afin d’avoir la dialectique
entre la modélisation constructive/déterministe et l’analyse des interactions sous la
formalisation stochastique.

La thèse se compose de 7 Parties, parmi lesquelles la Partie 2 à 6 correspondent au
premier objectif, et la Partie 7 au seconde.

Dans la Partie 1, nous allons réviser l’histoire de la science de la complexité et
proposer la stratégie dialectique entre les méthodologies constructive et interactions-
analytique, basé sur la théorie de système dynamique et la géométrie informationnelle.

En Partie 2, nous traitons un modèle de réseau neuronal avec le comportement chao-
tique nommé “l’itinérance chaotique” comme un candidat de la dynamique du cortex
cérébral, et analysons l’effet de l’apprentissage autonome sans superviseur comme une
source de créativité qui est la propriété émergente du système neuronal. La théorie de la
mesure intérieure est étendue afin de interpréter l’émergence des nouveaux attracteurs
par “le chaos comme le catalyseur d’apprentissage.”

En Partie 3, nous avons appliqué la dynamique du réseau neuronal chaotique aux
robots qui manifestent la dynamique de recherche collective de manière émergente, au
défi de la détection optimale des informations sporadiques. L’efficacité de la recherche
collective est évaluée avec un simulateur virtuel.

En Partie 4, nous développons les nouvelles mesures de la complexité du point de
vue de la géométrie informationnelle, et analysons les données des réseaux sociaux. Les
mesures de la complexité jouera un rôle principal dans la Partie 7.

En Partie 5, nous appliquons la stratégie dialectique entre le système dynamique
et la géométrie informationnelle vers la compréhension de la morphogenèse lors de
l’embryogenèse chez le poisson zèbre. Quelques propositions théoriques sont établies
et testées avec les données tentatives dérivées des projets européens Embryomics et
BioEMERGENCES.

En Partie 6, nous analysons les systèmes complexes liés au linguistique. Nous
avons découvert les nouveaux invariants et la composition géométrique entre les voyelles
japonaises, qui sont les propriétés émergentes au niveau du système. Nous développons
aussi la modélisation écologique de l’environnement multilingue dans un contexte de la
dialectique entre la théorie linguistique et la modélisation mathématique.

En Partie 7, nous révisons les résultats obtenus dans les Parties précédentes sous
une perspective comparative, en vue de détecter la structure universelle de l’émergence
comme l’organisation des interactions qui ne dépende pas explicitement sur la propriété
des composants. Surtout la comparaison entre les Parties 2 et 4, ainsi 5 et 6, nous
indique la typologie et la stratégie de détection de la dynamique de l’émergence comme
la relation et le contraint entre les foncteurs et méta-foncteurs. D’autre possibilité
d’application de la stratégie établie est mise en discussion.
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Résumé des Chapitres

Partie I Introduction Générale

Chapitre 1 Qu’est-ce que sont les systèmes complexes ?
Nous introduisons les concepts des systèmes complexes et les termes épistémologiques

en révisant l’histoire de la science et de la modélisation. Nous proposons ainsi une nou-
velle approche complémentaire basé sur les théories de système dynamique et géométrie
informationnelle. Cette méthodologie jouera un rôle principal et transversal dans
l’ensemble de cette thèse.

Mots clés: Système complexe, émergence, système dynamique de haute dimension,
chaos, observation intérieure, méthodologie constructive, méthodologie interaction-analytique

Chapitre 2 Préliminaires de système dynamique
Préliminaires de système dynamique.
Mots clés: Système dynamique à temps discret, bifurcation, crise d’attracteur,

itinérance chaotique, exposant de Lyapunov

Chapitre 3 Préliminaires de géométrie informationnelle
Préliminaires de géométrie informationnelle.
Mots clés: Variété statistique, métrique Riemannien, α-connexion, coordonnés

double-plat, Kullback-Leibler divergence, théorème de Pythagore étendu

Partie II Modélisation synthétique avec réseau neu-
ronal chaotique

Chapitre 4 Modélisation synthétique de l’apprentissage au-
tonome avec réseau neuronal chaotique

Nous étudions un modèle de réseau neuronal chaotique (CNN) qui manifeste la dy-
namique intermittente et chaotique nommée l’itinérance chaotique, en interaction avec
les règles d’apprentissage autonome sans superviseur. Premièrement, nous analysons la
stabilité du modèle de manière hiérarchique selon la structure des espaces invariants.
La transition irrégulière entre les ruines d’attracteur est observée avec le valeur positif
de l’exposant de Lyapunov, provoqué par la blowout bifurcation des sous-espaces où les
attracteurs sont situés. Cette crise est associée de la génération de la structure ridée
des bassins. Ensuite, nous modélisons 2 sortes d’apprentissage autonome avec les règles
classiques, de Hebb et STDP, afin d’observer l’effet de la dynamique de l’itinérance chao-
tique sur l’apprentissage. L’apprentissage de Hebb a augmenté le temps de résidence
aux ruines d’attracteur et le degré de synchronisation entre les neurones, en produisant
la modularité uniforme dans la dynamique et réalisa l’émergence des nouveaux at-
tracteurs dans l’espace convergé des ceux mémorisés auparavant. L’apprentissage avec
STDP a contrairement réduit le temps de résidence aux ruines d’attracteur, mais intro-
duit une large variété de périodicité aux attracteurs émergents, indiquant la possibilité
de l’apparition des attracteurs étranges. Les deux règles d’apprentissage autonome ont
détruit et préservé les espaces invariants du modèle de manière sélective mais différente,
selon les règles et la dynamique de synchronisation des neurones sur les sous-espaces
où les orbites sont situées.

Mots clés: Itinérance chaotique, espace invariant, blowout bifurcation, bassin ridé,
apprentissage de Hebb, apprentissage de STDP.

Méthodologie: Modélisation des apprentissages autonomes avec CNN comme un
système dynamique → Analyse de stabilité linéaire de CNN comme un système dy-
namique → Analyse de corrélation neuronale émergente par la géométrie information-
nelle
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Chapitre 5 Mesure intérieur de l’itinérance chaotique comme
catalyseur d’apprentissage

Nous révisons et étendre la “théorie orientée à la mesure” de Y.-P, Gunji, afin
d’interpréter le processus émergent des nouveaux attracteurs dans le CNN étudié au
chapitre précédent. Les résultats peuvent être interprétés avec une extension d’un
fameux concept du “chaos comme catalyseur d’apprentissage,” qui trouve aussi le lien
avec la théorie de la mesure intérieure. L’émergence des nouveaux attracteurs peu-
vent être considérés comme un processus vers la réalisation de pseudo-solution, qui se
génère de la dynamique d’apprentissage autonome basée sur la mécanisme intrinsèque
du système, et qui effectue la modification de l’interface au sens de la mesure intérieure
afin de résoudre l’état de contradiction que représente l’itinérance chaotique.

Mots clés: Mesure intérieure, physique orienté à la mesure, pseudo-solution

Méthodologie: Formalisation du chaos dans le système dynamique comme un
observateur intérieur → Formalisation du CNN comme un observateur intérieur → In-
terprétation des résultats des apprentissages autonomes avec la théorie orientée à la
mesure

Partie III Application de réseau neuronal chaotique
en robotique émergente

Chapitre 6 Introduction de neurorobotique
Nous introduisons le concept de “neurorobotique” comme une source d’invention

technologique et le champs de recherche interdisciplinaire situé entre les neurosciences
et la robotique. Le contexte des projets de la partie 3.

Mots clés: Neurosciences, robotique, énaction

Chapitre 7 Équilibration entre l’ autonomie et la réponse à l’
environnement avec la dynamique chaotique hiérarchique

La structure hiérarchique entre les espaces invariants de la dynamique chaotique
déterministe du CNN est analysée et mise en application dans la robotique. Il s’est
révélé que la dynamique intrinsèque de l’ itinérance chaotique du CNN permet de
contrôler la synchronisation d’activité des neurones de manière sélective à la hiérarchie,
aussi de réagir rapidement aux entrés sensoriels extérieurs. Avec les configurations
des paramètres appropriées, le robot a réalisé le mouvement chaotique de recherche
entre tous les combinaisons possibles des trois directions par le simple contrôle de
synchronisation partielle des neurones. L’ entré extérieur faible est montré suffisant
pour avoir le dérive macroscopique à la direction visée avec la fluctuation chaotique.
Le robot a démontré la capacité de contourner les obstacles par la simulation virtuelle.

Mots clés: Réseau neuronal chaotique, espace invariant, itinérance chaotique

Méthodologie: Modélisation d’un robot itinérant utilisant la dynamique hiérarchique
du CNN comme le système dynamique complètement déterministe→ Analyse stochas-
tique du comportement et la réponse à l’ entré extérieur du système

Chapitre 8 Recherche intermittente optimale avec le robot
chaotique itinérant et infotaxis par l’interaction collective

Nous allons appliquer le robot modélisé au chapitre précédent à la recherche collec-
tive des informations dans leur environnement. Un modèle stochastique de recherche
en 2 phases basé sur le comportement des animaux est étendu à la recherche des in-
formations sporadiques sur la surface de 2 dimensions. Le réseau de contacte entre les
robots est analysé, à partir duquel nous modélisons la recherche collective en partageant
les informations détectés dans l’environnement par la communication locale entre les
robots. L’efficacité de la recherche collective est examiné sur un simulateur virtuel.

Mots clés: Recherche d’information sporadique en 2 phase, infotaxis, interaction
collective, partage d’information
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Méthodologie: Modélisation de la recherche en 2 phase du robot comme le système
dynamique complètement déterministe basé sur l’analyse stochastique du chapitre précédent
→ Analyse des paramètres optimales sur un simulateur virtuel sous la formalisation
stochastique → Modélisation et simulation de la recherche collective des informations
comme un ensemble des systèmes dynamiques complètement déterministes → Con-
struction de la théorie d’évaluation de la recherche avec la géométrie informationnelle

Partie IV Mesures de la complexité et application à
l’analyse de la dynamique de réseau social

Chapitre 9 Dynamique des corrélations ordonnées dans bases
de données de texte

Nous appliquons la géométrie informationnelle pour l’analyse de cooccurrence du
réseau des mots au-delà de la corrélation de seconde ordre. Afin de traiter tous les
informations hiérarchiques contenu dans l’ensemble de corrélation entre les variables, la
dynamique du méta-niveau est considéré. Le résultat de l’analyse des weblogs politiques
démontre qu’ il existe une structure riche de la dynamique à la fois au niveau de l’ordre
de corrélation et aussi au méta-niveau de corrélation.

Mots clés: Clustering hiérarchique, géométrie informationnelle, réseau de cooccur-
rence, weblog politique, communauté épistémique

Méthodologie: Définition des corrélations à chaque ordre comme contexte et ses
méta-contextes avec la géométrie informationnelle → Analyse des tendances de la dy-
namique des contextes et méta-contextes comme système dynamique → Analyse de la
carte de retour et de la stabilité locale des contextes et méta-contextes avec la formali-
sation du système dynamique

Chapitre 10 Décomposition de réseau: Une approche de la
théorie informationnelle

Nous considérons la représentation du graphe des modèles stochastiques avec en
général n variables binaires, et construisons un cadre théorique qui nous permet de
mesurer tous les degrés des interactions existants entre tous les sous-systèmes, aussi
bien ceux représentés par chaque lien entre les noeuds. L’étude de cas sur les weblogs
politiques est démontré.

Mots clés: Géométrie informationnelle, réseau complexe, clustering hiérarchique

Méthodologie: Formalisation de la décomposition du système et le coupure du
lien par la géométrie informationnelle → Analyse des tendances des weblogs politiques
comme système dynamique

Chapitre 11 Reconstruction des liens de graphe comprenant
les interactions ordonnées et substantives en référence multi-
noeuds

Nous étudions de nouveau les informations représentées par les liens du réseau
définies comme “l’information du lien” dans le chapitre précédent, afin de reconstruire
le réseau à grande échelle à partir des données. La définition de l’information du lien
est étendue afin de distinguer les interactions de chaque ordre entre corrélation positive
et négative, de manière compatible avec le théorème de Pythagore. Pour résumer, une
nouvelle définition de l’information du lien qui réuni ses décompositions est établie.
Du côté de la reconstruction du réseau à grande échelle, nous proposons une stratégie
pour la réduction du temps de calcul en limitant les combinaisons des variables à ceux
qui contient les interactions substantives. Les mesures de l’information du lien et la
méthodologie de la reconstruction efficace du réseau sont mis en application avec les
jeux de donnée des weblogs politiques.

Mots clés: Géométrie informationnelle, interaction de chaque ordre, information
du lien, réduction des paramètres, weblog politique, réseau social
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Méthodologie: Décomposition de l’information du lien à chaque ordre de l’interaction
et formalisation de la reconstruction du réseau de corrélation en référence multi-échelle
par la géométrie informationnelle → Application à l’analyse des weblogs politiques
comme système dynamique

Chapitre 12 Mesures de la complexité par rapport à la facilité
de décomposition de système

Plusieurs mesures de la complexité de point de vue de la théorie d’information sont
inventées jusqu’à présent, qui sont en principe les produits arithmétiques des infor-
mations. Nous considérons une nouvelle classe de mesure de la complexité basé sur
les produits géométriques du KL divergence, par nécessité de évaluer la facilité de
la décomposition du système stochastique à plusieurs critères, la décompositionabilité
du système. Cette nouvelle classe de complexité remplit aussi la condition aux lim-
ites des mesures de la complexité arithmétique, qui disparâıt à l’état complètement
déterministe ou aléatoire, et en outre par la présence d’un sous-système complètement
indépendant. L’analyse du réseau sociale reconstruit des weblogs politiques a révélé la
dynamique de chaque sous-système en relation avec le comportement global associé à
l’augmentation de la complexité totale. Nous proposons une hypothèse théorique que
la décompositionabilité de chaque sous-système peut être conçue comme une fonction
de potentiel sur la variété statistique, qui caractérise certain aspect de la dynamique
actuelle des données.

Mots clés: Mesure de la complexité, condition aux limites, décompositionabilité
du système, moyen géométrique

Méthodologie: Définition des nouvelles mesures de la complexité par rapport à la
décompositionabilité du système basé sur la géométrie informationnelle → Analyse des
tendances des weblogs politiques comme système dynamique→ Considération théorique
sur les nouvelles mesures de la complexité comme le potentiel du flux géodésique avec
le perspective système dynamique

Partie V Reconstruction d’embryogenèse

Chapitre 13 Description du projet
Le contexte du travail de la partie 5 qui est réalisé au sein des projets européens,

Embryomics et BioEMERGENCES est présenté. Ce chapitre résume le défi des projets,
et la stratégie globale qui définissent l’ objectif des études développées dans cette partie.

Mots clés: Embryogenèse, poisson zèbre, reconstruction phénoménologique, recon-
struction théorique

Chapitre 14 Vers la définition dynamique de tissu: Détection
des corrélations signifiantes dans le déplacement de cellule

Nous établissons la définition du “tissu dynamique” qui se fond sur les paramètres
dynamiques de résolution cellulaire dérivé des projets Embryomics et BioEMERGENCES,
en contraste du concept traditionnel du “tissu statique” basé principalement sur les
traits morphologiques et anatomiques. Pour ce but, nous construisons la théorie de
test statistique par la géométrie informationnelle, afin de détecter les corrélations sig-
nifiantes et la non-uniformité dans le champs de vecteur de déplacement des cellules. Le
résultat provisoire sur les jeux de donnée de l’embryon de poisson zèbre est obtenu, qui
nous donne l’information sur la mode coordonnée de migration des cellules pour la fu-
tur reconstruction théorique. La mesure de la stabilité temporelle est aussi développée
théoriquement à la base du tissu dynamique.

Mots clés: Tissu statique, tissu dynamique, déplacement de cellule, test statistique

Méthodologie: Définition du tissu dynamique par la géométrie informationnelle
traitant les jeux de donnée expérimentals comme système dynamique → Analyse des
jeux de donnée → Considération théorique sur la durée temporelle du tissu dynamique
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avec le perspective système dynamique

Chapitre 15 Vers la caractérisation multi-échelle d’embryogenèse:
Incorporation des variables biologiques dans clustering sémi-paramétrique

Nous considérons la stratégie qui fait le lien entre la reconstruction phénoménologique
et théorique, par l’ investigation du modèle phénoménologique avec les variables bi-
ologiques. Nous proposons une méthode de clustering basée sur les “descripteurs mini-
mums” qui incorporent l’intérêt biologique pour caractériser la dynamique de l’embryogenèse.
Les résultats provisoires sont obtenu, et la théorie pour la mesure de la variation inter-
individuelle est développée à multi-échelle en extension spatiale et temporelle, afin
d’évaluer l’effet du traitement des drogues sous condition expérimentale.

Mots clés: Descripteur minimum, algorithme EM, variation individuelle
Méthodologie: Définition du descripteur minimum pour la caractérisation des

données primaires comme système dynamique à grande échelle → Clustering avec les
descripteurs minimums de manière compatible à algorithme em de géométrie infor-
mationnelle → Proposition théorique pour la mesure de la variation individuelle des
embryons basé sur la distance informationnelle et le perspective de système dynamique

Chapitre 16 Étude sur l’ entropie morphogénétique par géométrie
informationnelle

Nous développons l’analyse de l’arbre de lignage des cellules par la géométrie infor-
mationnelle. Nous considérons la probabilité de chaque cellule à devenir chaque champ
morphogénétique, basé sur le concept de “l’ entropie morphogénétique” défini par
Miguel A. Luengo-Oroz, qui représente la quantité d’information nécessaire à spécifier
complètement le profile de la futur différentiation d’ une cellule. Telle mesure de
différentiation est utile à comparer entre deux arbres de lignage avec différentes con-
ditions comme avec/sans traitement des drogues. Nous démontrons théoriquement
comment évaluer l’effet extérieur entre deux groupes qui chaqu’ un est soumis des
traitements différents, et proposons une série de quantité avec KL divergence, nommée
“l’ entropie morphogénétique relative” qui nous permet d’évaluer l’effet du traitement
extérieur propagé à chaque génération. Ce chapitre est limité à l’étude purement
théorique.

Mots clés: Entropie morphogénétique, entropie morphogénétique relative, arbre de
lignage cellulaire, traitement polydrogue, géométrie informationnelle, KL divergence,
information mutuelle

Méthodologie: Définition de l’entropie morphogénétique relative utilisant la dis-
tance informationnelle sur l’arbre de lignage cellulaire comme une mesure de la différentiation
de cellule→ Développement théorique de la décomposition de l’effet extérieur à chaque
génération par la géométrie informationnelle

Partie VI Systèmes complexes dans linguistique

Chapitre 17 Invariance dans le système des voyelles
Nous modélisons le système des voyelles de la langue japonaise en appliquant la

géométrie informationnelle de la distribution normale aux deux premiers formants.
Nous étudions la distribution de KL divergence à plusieurs échelles et la relation entre
les composants séparés par l’ordre de statistique, afin de détecter le trait invariant au
niveau systémique. Le résultat implique que malgré l’existence d’une forte fluctuation
au niveau individuel, la distribution de KL divergence au niveau de population con-
verge à la distribution log-normale, de manière invariante entre homme et femme. Cette
distribution de population peut être donc considéré comme la distribution invariante
des locuteurs du japonais standard. En outre, nous montrons que la relation entre les
composants logarithmique du moyen et de la variance de KL divergence est linéaire
au niveau de population. La signification de cettes invariances est contextualisée par
l’étude bibliographique dans la discussion.
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Mots clés: Géométrie informationnelle, formant de voyelle, distribution Gaussienne
2-dimensionelle, distribution log-normale, KL divergence

Méthodologie: Formalisation par la géométrie informationnelle de la distribution
des formants du système des voyelles → Analyse de la distance informationnelle entre
les voyelles et ses composants de chaque ordre de statistique

Chapitre 18 Étude sur la composition géométrique de système
des voyelles

Nous continuons l’étude sur le système des voyelles du côté de dépendance statistique
par le moyen de géométrie informationnelle. Commençant par l’analyse de corrélation,
la dépendance sur la m-géodésique entre les voyelles est examinée qui correspond au
chemin de projection de KL divergence au chapitre précédent.

Nous montrons que les cinq voyelles du japonais se situent approximativement dans
une surface de deux dimensions dans l’espace des coordonnés η, et la fluctuation du
circoncentre défini sur la m-géodésique entre les voyelles contient le bruit incorrélé des
voyelles.

La localisation des circoncentres sur les coordonnés θ est examinée par rapport au
valeur du déterminant |S| dans la distribution des formants.

Le résultat démontre l’origine de la distribution log-normale invariante de KL di-
vergence découvert au chapitre précédent, qui implique la condition cognitive liée à la
dépendance quadratique entre les voyelles sur les coordonnés η.

Mots clés: Géométrie informationnelle, formant de voyelle, circoncentre, déterminant
de la distribution de formant

Méthodologie: Analyse de la composition géométrique sur les coordonnés double-
plat de géométrie informationnelle → Définition du circoncentre entre les pairs des
voyelles par géométrie informationnelle→ Analyse de la composition géométrique et la
fluctuation des circoncentres sur les coordonnés double-plat de géométrie information-
nelle

Chapitre 19 Méthodologie pour la dialectique entre théorie
linguistique et modélisation mathématique et application à la
modélisation d’ environnement multilingue avec processus de
contacte

Nous cherchons le point de synergie entre la modélisation mathématique et la théorie
conceptuelle des sciences humaines, notamment l’écolinguistique. Nous proposons deux
étapes de l’interaction qui intègrent les deux côtés: Premièrement, nous formalisons la
théorie linguistique de manière compatible à la modélisation mathématique en sym-
bolisant proprement les observables comme les variables primaires, et ses fonctions
avec suffisamment de profondeur logique. Ensuite, on étudie le modèle par le moyen
mathématique et de simulation, et déduit les variables secondaires sur la dynamique
simulée afin de étendre la théorie linguistique au niveau conceptuel.

Un exemple de cette modélisation dialectique est établi avec le processus de contacte,
en vue de modéliser l’acquisition des langages dans un état multilingue. La dynamique
de simulation a reproduit les patterns spatio-temporels de la propagation des états
multilingues, qui contient les corrélations fortement signifiants de hauts ordres entre
les langues. L’instabilité relative de l’état bilingue est observé. Les résultats trouvent
certains points d’interprétation sur l’hypothèse de travail pour l’acquisition multilingue
exercée par le Hippo Family Club.

Mots clés: Processus de contacte, environnement multilingue, multilinguisme, ac-
quisition naturelle de langage, écologie

Méthodologie: Formalisation de la stratégie dialectique entre la théorie linguis-
tique et la modélisation mathématique, de manière compatible à la modélisation avec
le système dynamique et l’analyse par la géométrie informationnelle→ Modélisation de
l’environnement multilingue avec le processus de contacte comme le système dynamique
stochastique → Analyse provisoire du processus de contacte sur la corrélation par la
géométrie informationnelle→ Développement théorique sur l’analyse de la propagation
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de probabilité avec la perspective du système dynamique et la géométrie information-
nelle

Partie VII Discussion générale

Chapitre 20 Discussion générale
Nous révisons les résultats d’étude effectué dans cette thèse et examinons les points

de contribution au science des systèmes complexes par rapport à la stratégie complémentaire
entre système dynamique et géométrie informationnelle introduit à la partie 1(Intro-
duction Générale). Nous prenons comme exemples représentatifs la comparaison de la
propriété émergente entre les organisations neuronales et sociales. La discussion est
développée avec le perspective au plus large, en mettant l’accent sur la possibilité d’
application y compris hors des sujets traités et la nouveauté de la stratégie proposée.
Les résultats impliquent l’efficacité et le potentiel riche de cette stratégie au défi de la
caractérisation universelle de l’émergence du point de vue relationnel.

Mots clés: Méthodologie constructive, méthodologie interaction-analytique, fonc-
teur, méta-foncteur, organisation des interaction

Chapitre 20 Méthodologie dialectique entre système dynamique
et géométrie informationnelle :
Vers une typologie transversale des systèmes complexes

Ce chapitre résume en français la contribution méthodologique et métathéorique
de cette thèse. Nous étudions d’ abord l’ ensemble des interactions possibles du
système qui deviennent les paramètres dominants par rapport à l’ augmentation de
sa taille. Ensuite, nous développons la méthodologie dialectique entre la théorie de
système dynamique et géométrie informationnelle afin de analyser l’ effet des interac-
tions comme origine des phénomènes émergentes. Application de cette méthode aux
plusieurs systèmes à différentes échelles implique la possibilité de construire la typolo-
gie transversale de l’ émergence, basé sur la nature statistique et la dynamique de l’
organisation des interactions qui ne dépendent pas explicitement de la propriété des
composants.
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gamins. D’akujem, molto grazie, muchas gracias, les équipes de Bratislava, Bologne, et Malaga
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à l’̂ıle de Berder, à Frédéric pour ta terminologie sportivement philosophique, à Alexandra pour ta
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21.5 Ex.1 Réseau neuronale : Emergence des nouveaux attracteurs dans la modélisation
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Chapter 1

What are Complex Systems ?

Abstract

In this chapter, we introduce the concept of complex systems and related episte-
mological terms looking back the history of science and modeling based mainly on [3]
[4]. A complementary approach with the constructive methodology and interaction-
analytical methodology is proposed with the foundation of dynamical system modeling
and information geometrical analysis, which provides the consistent theoretical axis of
this thesis.

Keywords: Complex systems, emergence, high-dimensional dynamical system,
chaos, internal observation, constructive methodology, interaction-analytical method-
ology

1.1 What are Complex Systems ?

1.1.1 Multi-scale Hierarchy of the World

Let us illustrate the world around us according to the micro-macro hierarchy in a schematic way
(Fig.1.1). Each level is distinctively different from others, and follows their proper rules. It does
not mean, however, that each level is independent. The upper level consists of lower ones. For
example, molecules are combinations of atoms, individual organisms are made of cells, and so on.

Such hierarchy being so apparent, usually sciences have been taking the reductionist approach
to understand the system. Reductionism is based on the thesis that to understand the lower level
would naturally lead to the understanding of the upper one.

Though, in complex systems such as living organisms, society, etc., it is the way of organization
itself that is essential, which severely limits the effectiveness of the reductionism. This does not
mean simply that the system is too complicated to understand, but the reductionism is not sufficient
methodologically to understand them. Typically, the “living” systems can not be fully understood
by decomposing them into parts. The aim of complex systems sciences is to tackle these areas that
usual reductionism fails to investigate (Fig.1.2).

1.1.2 Hierarchy in Sciences

The word “science” in english and french is derived from a latin word “scientia”, which in a broad
sense means knowledge. “Science” originally stood for the entire scholarship, deeply connected
to what we call philosophy today, and investigated a wide range of problems in a comprehensive
manner, such as the relation between human and society. From the 19th century, it became
segmentalized into various professions and established their own independency. From this time on
appears the usage of plural form “sciences”.

In the early 19th century, french philosopher Auguste Comte represented the hierarchy among
sciences as follows: Beginning from mathematics being most abstract and independent from others,
follow the astronomy, physics, chemistry, biology, then finally sociology as “the queen of sciences”,
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Figure 1.1: An illustrated hierarchy of the world. Based on [4] .

Figure 1.2: Reductionism approach (Left) and complex systems approach (Right).
Based on [4] .
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in this order augmenting the complexity (Fig. 1.3 Left ). In this case, each level is supported by
the rest of lower levels.

Based on this ordering, british management scientist Peter Checkland established the hierarchy
of today’s major experimental sciences (Fig. 1.3 Right ). In this alignment, Checkland insists
that there exist certain gaps between the neighboring levels of sciences. Although physical laws
are supposed to explain chemical reactions, which would then explain biological process, in reality
there exists too much complexity to connect different levels coherently.

Figure 1.3: Hierarchy of sciences by Auguste Comte (Left) and Peter Checkland
(Right). Based on [4] .

These hierarchies of scientific knowledge have its root in the principal language of science, logical
and axiomatic reasoning based on the symbolization of concepts. As is positioned to the most basic
line of science in both Compte’s and Checkland’s hierarchy, mathematics is the most refined and
fundamental form of scientific language. Although the separation between different levels of sciences
becomes unavoidable, the symbolization of concepts and investigation on logical structure between
them is what established modern mathematics in algebraic aspect, and simultaneously affected
philosophical thought. Jules Vuillemin analyzed and conditioned the transition of formal logic into
mathematics, and characterized the kind and dynamics of cognition underlying this process [5]. In
this perspective, the pure reason of Kant, for example, is a matrix of both formal logic creating the
gap between different levels of sciences, and the intuitive cognition of the logical gap between them.
The phenomenology of Edmund Husserl, which escape from naive objectivism to transcendental
subjectivism, also includes ambiguous but constructive relation with mathematics, expanding our
faculty of cognition involved in philosophical conceptualization. If complex systems sciences aim
to go beyond the formal limit of logic that has created the existing hierarchy of sciences, we have
to proceed into phenomenological perspective to set up an effective language with logical form
describing ignored gaps.

1.1.3 Complex Systems Paradigm

What is the stand point of complex systems sciences with respect to the other area of sciences
? One important perspective is that usually sciences have been investigating the substance of
a phenomenon, while complex systems deal with their synthesis. Therefore, complex systems
sciences are something which bridge the gaps between preexisting sciences, such as physics, biology,
psychology, economics, and so forth.
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Until recently, it seems that we do not necessary have strict common definition on complex
systems, but some kind of common perceptions are shared among researchers. We take here as an
example the result of questionnaire performed by the Japanese Electronic Industry Development
Association:

The complex systems are the nonlinear systems that consist of various kind of, multiple, non-
linear components, among which there exist dynamically altering nonlinear interactions. Each
component is under effect of superior global structure, at the same time global orders emerge from
the interaction of the components. (Translation by M. Funabashi)

They also classified the complex systems as follows:

1. Natural systems which consist of simple components. e.g. Fluid, meteorological phenomenon.

2. Natural systems which consist of complex components. e.g. Brain, immune system, ecological
system.

3. Artificial systems which consist of simple components. e.g. Plant, computer network, dis-
tributed robotic system.

4. Artificial systems which consist of complex components. e.g. Economical system, transporta-
tion system.

As we consider the history of complex systems science, we should review the work of W. Weaver
who brought intellectual insight in this domain [6]. In his pioneering work of 1948, Weaver classified
the history of natural sciences after 17th century into three categories:

1. Problems of Simplicity, investigated from 17th to 19th century, which seek for the determin-
istic laws among a small number of variables.

2. Problems of Disorganized Complexity, generated around 1900, which seek for the averaged
statistical laws of systems with a huge number of variables.

3. Problems of Organized Complexity, problems to be tackled seriously hereafter, which corre-
sponds to the today’s complex systems science.

He pointed out living systems, economical systems, and social systems as examples of 3., and
predicted that the electronic computer drastically developed during the world war II would play
an essential role for the research of these systems.

The modeling paradigm is also deeply associated with the genesis of complex systems science
[7]. There exists a classification such that:

1. Newton paradigm (17th - 19th century): Both physical laws and the solutions are expressed
with mathematical formula.

2. Poincaré paradigm (early 20th century): Geometrical and qualitative analysis. For example,
problems such as “Is this system stable ?”, “Does the dynamics asymptotically converge
to periodic state ?”, “How the structure of the solution change when the parameters are
modified ?”, were explored without explicitly showing the solution in mathematical formula.
Only formula of the physical laws are given.

3. Algorithmic modeling paradigm (present): Both physical laws and the solutions are approx-
imately calculated with the use of computer.

The 3. Algorithmic modeling paradigm has become first realizable with the progress of computer
technology, and is revealed to be fruitful to simulate the complex systems such as blast furnace
and biological system, which is difficult to establish the model from the first principles.

As previously mentioned, the definition of complex systems is not necessary clear, but in a large
sense it is considered as “large-scale nonlinear systems”. We can further point out some important
features as follows:
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• Systems that are difficult to apply reductionism (applicable to the Problems of Simplicity and
Complicated Systems) and statistical averaging (applicable to the Problems of Disorganized
Complexity) for the understanding.

• Systems which themselves are the best simulators. We never know what would happen unless
we actually operate the system in real world. In this sense, such systems are unpredictable,
difficult to compress information for control, and possibly undecidable.

We will further overview the history of statistical and algorithmic complexity in Ch. 12.

1.1.4 Emergent Property of a System

The concept of “emergence” is also essential in complex systems science. The emergence is gen-
erally defined as the generation of global dynamics and functions that are self-organized from
non-linearity, interactions, and feedbacks between the whole and the components, which can not
be understood by the simple combination of the components dynamics. In wider sense, it can
be considered as the spontaneous generation of non-trivial properties that are not incorporated a
priori in the system.

The word “emergence” has mainly been derived from two disciplines: Systems methodology
and artificial life. Let us briefly introduce their meaning in each context.

In systems methodology, we investigate the phenomena according to the levels of description, as
shown in Fig.1.1. There exists specific characteristics in each level, such as atom, matter, society,
etc., which is described as “emergent property”. Usually, the laws which describe certain level seem
to contain more information than the ones in lower levels. This fact is the very core of the concept
of emergence in systems methodology [8]. The emergence occurs when the characteristic property
of a given level can not be reduced in the nature of lower levels. Take an apple, for example, which
is a physical form with biological function. Such global characteristics lose its meaning if we look
the apple in atomic level. Therefore, the property of the apple is something emerged in the level
of matter beyond the atomic level. If we follow this definition, the emergence exist in every level
of description, regardless of its complexity.

The definition of emergence in systems methodology belongs to an bottom-up way of interpre-
tation. In artificial intelligence, on the other hand, the word emergence also contain the top-down
feedback Fig.1.4. Here, the emergence is the mechanism in which plural components produce
global order by interacting locally with each others, at the same time global dynamics affect the
property of each component. This scheme is named as “collectionism” by Christopher Langton.
This mechanism can be easily understood in social life. Taking generally the dynamics of cul-
ture, people behave only with limited information and communication, which forms a global entity
called culture, beyond individual’s intention. At the same time, each person is in cultural context,
affected by the impersonal and global culture, which eventually reproduce novel culture along the
bi-directional dynamics.

The concept of emergence in complex systems sciences include these two definitions. In complex
systems, rules dominating the components change according to the context of entire system, which
leads to the change of the global context itself. This corresponds to the concept of emergence in
artificial life. To investigate the relation between the global rules and its components is one of the
major tasks in investigating complex systems.

We should also seek for the origin of such systems. How does the global property emerge from
lower levels ? How the coupling of bottom-up and top-down feedback is generated ? In other words,
how the complex systems came into existence ? These correspond to the concept of emergence in
systems methodology.

1.1.5 The Limit of Linear Approximation in Complex Systems

Behind the emergence of complex systems science, there exists an expectation to discover the uni-
versality in a large variety of natural phenomena by modeling them as high-dimensional nonlinear
systems.
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Figure 1.4: The concept of emergence in artificial life. Based on [4] .

During the 20th century, natural sciences have been successful in pursuit of the reductionism
principle. The reductionism is based on decomposing the target system into the smaller compo-
nents which are easier to analyze, and trying to understand the whole property of the system by
assembling the discovered characteristics of the components. This strategy is supported by the
conviction of the modern science that the nature is ultimately dominated by simple laws. To dis-
cover the simple law lying beneath the complex phenomena was one of the goals in modern science.
The reductionism is also associated with the linear system theory, which is a strong theoretical
tool of 20th century sciences. Technically, the superposition principle in linear system confirmed
this belief, which assure that the superposition of solutions is also a solution.

However, generally in non-linear systems, the superposition principle does not hold. Therefore,
it is basically impossible to grasp the global property of non-linear system with the reductionism
strategy, which ignore the effect of non-linear interaction. Furthermore, recent development of
technology also raised the problem of the system control based on the reductionism. There are
cases that the unintended interaction in the system can produce uncontrollable disturbance, even
if we are able to construct basic units and parts properly. We are now confronted to the necessity
of science and technology which can handle complex systems for a given purpose. The complex
systems sciences show us the limit of analytic approach based on the linear system theory and the
reductionism, and bring a great influence on today’s science and technology.

1.1.6 High-Dimensional Dynamical Systems and Modeling of Complex
Systems

Several types of mathematical model have been proposed for the modeling of complex systems [9]
[10]:

1. C.A.: Cellular Automaton or Cellular Automata

2. CML: Coupled Map Lattice

3. GCM: Globally Coupled Map

4. CNN: Chaotic Neural Network

5. ODE: Ordinary Differential Equation
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Table 1.1: Classification of models in complex systems science. The D,C,L,G, and A stand
for Discrete, Continuous, Local, Global, and Arbitrary, respectively.

Model Time State Space Interaction

CA D D D L
CML D C D L
GCM D C D G
CNN D C D A
ODE C C D A
DDE C C D A
PDE C C C L

6. DDE: Difference-Differential Equation or Delay-Differential Equation

7. PDE: Partial Differential Equation

In general cases, complex systems consist of a large number of components. The modeling
naturally require a corresponding number of variables. Therefore, it is important to consider how
to describe the complex systems as high-dimensional dynamical systems.

Mathematical models of complex systems can be classified loosely with the following properties:

• Whether temporal development that determines the state in next step is discrete or contin-
uous: Discrete-time dynamical system or continuous-time dynamical system.

• Whether the variables that define the state of the system is discrete or continuous: Integer
variables or real variables.

• Whether the components spatially exist as discrete units or continuous (as a fluid).

• Whether the interactions between the components are local or global.

The Tab. 1.3 shows the classification of the previously mentioned models with these criterions.
Recent study on chaotic systems has achieved not only the deep understanding of low-dimensional

chaos, but even realized engineering application. On the other hand, the rapid development of
computation technology enables us to perform large scale simulations, which greatly promote the
analysis of the dynamics of high-dimensional chaotic systems. Such area of research concerning
the high-dimensional chaos is situated at the core of complex systems science.

The understanding of complex systems in the real world is expected to realize a new paradigm
of science and technology of 21st century by integrating previously opposing concepts in the history
of science, such as determinism vs. stochasticity, chance vs. necessity, order vs. chaos, whole vs.
part, universality vs. specificity, subjectivity vs. objectivity, and mechanistic theory vs. teleology.

1.2 Internal Observation

1.2.1 Introduction of Internal Measurement

The observation of complex systems requires a more refined understanding of “measurement”.
Above the fact that the system is huge and complex, we have to reconsider why we can determine
the “state” of the system. Generally, the word “measurement” stands for the observation of an
object by a person. Though, if we consider the hierarchy of emergence in this world, it is impossible
to hold a complete understanding of an object in arbitrary resolution.

In internal measurement theory, we decline in principle the possibility to observe the system with
the accuracy of Maxwell’s Demon, but define the measurement as the interaction between object
and observer. In this framework, the object and the observer can not be separated independently,
and the observer always acts as an agent, in unceasing interaction with the object. The internal
measurement is expected to play a key role to interpret the process of emergence in complex
systems.
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We introduce here the discussion by Kouichiro Matsuno, based on material science [11] [4].
Another stream of internal measurement is developed by Pegio-Yukio Gunji, taking after the dis-
cussion of Wittgenstein and Kripke, which will be introduced in Part 2.

1.2.2 Reconsidering Measurement

How can we know the “present” state of a distant object ? To see something means that there
exist some photons reflected from the object to reach our eyes. Even though the speed of light is
as high as about 300 km/s, in principle there exists temporal delay in any observation. This is also
the principle of relativity theory.

The temporal delay in measurement is more apparent when we look up the stars in the night.
What we see as the stars do not represent their present state. Even the closest fixed star from our
solar system is as far as 4.3 light years, which shows us the state of 4.3 year before. Augmenting
the resolution of measurement does not change this delay, unless we develop a way to measure
faster than with the light.

Such problems have not been discussed in central issue of physics, since the delay of mea-
surement appears to be significant only in astronomic scale. When we observe a system in an
ordinary scale, we usually consider its entire state. Especially in the modeling, we are based on an
assumption that we can determine well the state of the system (except for uncertainty principles
under theoretical assumption such as in quantum level). The speed of light can be approximated
as infinity. In this sense, present physics can be called as state-oriented physics.

On the other hand, in complex systems such as the chemical reaction inside of a cell, the
propagation of energy is mediated by macrobiomolecules, which significantly limit the speed of
interaction. Here, it becomes important to consider the interacting process including its time
delay.

1.2.3 Local Interaction of Components and Internal Measurement

Matsuno formalized the energy conservation law as an internal measurement process as follows.
Take for example a many-particle system, and simulate the relaxation process after certain amount
of energy was added externally (Fig. 1.5). We consider the case only a part of the particles receive
the external energy. For an experimenter observing the system from the outside, the relaxation
process proceeds toward equilibrium where the total amount of energy remain unchanged. The
experimenter observed the two state of the system in equilibrium, before and after adding the
energy, as an external observer.

On the other hand, if we consider the transition of energy between each particle as internal
observer, the process of measurement becomes qualitatively different. Particles only react with
their neighbors, and never obtain global information. In other words, there exists no signal to let
the particles know the definitive state of equilibrium, and energy transition occurs only through the
local interaction. The particles therefore change their own state along the measurement or inter-
action with others, and as a result of collective internal measurement, realize a global equilibrium
state without knowing the total amount of energy.

The particles in this example are interacting, at the same time identifying the present state
of others to compare the amount of energy. In this sense, identification or recognition precedes
the interaction. Matsuno then defined the internal measurement as such identification/recognition
process inevitably associating with the interaction [12]. Internal measurement therefore means
the act of a system’s components recognizing other ones through interaction, and is in opposition
to the external measurement where hypothetical observer detects all the details of the system
instantaneously.

External measurement is based on the assumption that the observer and the object can be
separated and does not affect with each other. In internal measurement, however, it is in principle
impossible to separate or ignore the interaction between them. Since internal measurement is de-
fined based on the interaction, internal observer is in constant change affected by the measurement.
Internal measurement theory places particular emphasis on this framework, and tries to investigate
complex systems from the inside.
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Such framework of thinking becomes non-trivial when investigating complex systems where the
propagation of interaction is significantly constrained with respect to the system size. How does
each component realize a global state with complex structure, by means of only local interaction,
without knowing the information of other distant components ? Naive subjective observation on
emergent phenomena in living systems gives us the impression that as if some global context deter-
mines the behavior of each component, and historically provided the long-held trend of teleology
in organicism.

We will further develop and apply internal measurement in Part 2 in order to interpret the
emergent attractors observed in chaotic neural network.

Figure 1.5: Schematic representation of internal measurement and external measure-
ment in many-particle system. Internal observers interact only locally and propagate energy
with time delay. In the beginning, other end of the system does not even know whether the energy
was added or not. External observer measures the resulting equilibrium where total amount of
energy is observed. Based on [4] .

1.2.4 Mathematical Closure of Open System and Internal Measurement

Physics have been succeeded by using the mathematics as the principle language to describe natural
phenomena. The logical perfection and empirical symbolization are the strong property to establish
scientific thinking, but requires to be extremely rigorous and precise to observe the state of a system.
For this reason, mathematical modeling tends to require external measurement due to both its form
of description and to ensure non-tribial logical autonomy.

Still, some principles in modern physics can be found accessible to the internal measurement.
Even though the eventual model need to form a mathematically coherent closure, local property
of the model tolerates certain uncertainty in the way of measurement under invariance property
of the model. For examples, In information theory, the topological entropy does not depend on
the way to make partition of the state space. The Fisher information matrix which defines the
information theoretical metric in information geometry does not depend on the way of observation
as long as the variables are sufficient statistics. The Gauge invariance in particle physics also
stands on the same principle [13]. With these invariance properties, one does not need to have
the global coordinates of observation to identify the system on the model. The data from internal
measurement with sufficient degrees of freedom with respect to the whole system may find its way
to be expressed in a state-oriented model.

Dynamical system is another example of mathematical closure describing open system. Al-
though the overall kinds of components need to be symbolized with interactions, the quantitative
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Table 1.2: Complex systems and their major emergent properties investigated in this
thesis.

Part Object Emergent property
Part 2 Chaotic neural network (CNN) Chaotic Itinerancy

Synthesis of novel attractors
Part 3 Collective robots with CNN Optimal intermittent search
Part 4 Social network Order-wise correlations dynamics

Dynamics of complexity measures
Part 5 Embryogenesis Morphogenetic fields
Part 6 Vowel system Formants distribution

Multilingual environment Multilingual community patterns

change of energy and material flows including external environment is possible to simulate as a
non-equilibrium open system. The modeling of dissipative structure in non-equilibrium thermody-
namics is a historical landmark of this possibility, which is also extended to model dynamical brain
activity on the basis of neural network.

1.3 Complex Systems Treated in this Thesis

We list the complex systems and their major emergent property which will be investigated in this
thesis in Tab. 1.3. The emergent property will be investigated with the use of complementary anal-
ysis between the constructive and interaction-analytical methodologies explained in the following
section.

1.4 Methodologies toward the Understanding of Complex
Systems

1.4.1 Constructive Methodology

Analysis of complex systems requires not only the identification of the components, but the inves-
tigation on the interactions between them. The constructive method is an engineering approach to
model this coupling between the components and the interactions in its entity. The methodology
is based on the construction of a virtual model in computer, and try to simulate the phenomenon
of interest. We try to extract the essential property of the system by ameliorating the model. For
example, models such as multi-agents systems simulating economical exchange and coupled chaotic
oscillators to observe emergent global dynamics are part of it. We will apply constructive method
in Part 2 and 6.

“Simulation” and “analogy” are two important tools in constructive method. Simulation is
the construction and heuristic operation of a model which encapsulate the components and their
relations of the target system. In most case, simulation is performed by computing in silico derived
mathematical model.

The objectives of simulation can be classified into two reasons: One is the case that we know
rather well about the structure of the system, but are difficult to perform experiment for reason of
safety and cost. Examples are crash experiment of cars and flight simulator. The second one is the
case that we do not know about the internal structure of the system, and try to understand that by
simulating the components with interactions. Simulation in complex systems sciences corresponds
to the latter case.

How is simulation different from experiment ? Experiment is performed in real world and is
a way to verify a theory. It inevitably includes uncertainty factors out of theoretical considera-
tion. On the other hand, simulation only shows the dynamics of the model following strictly the
defined logical operation. We can simulate the pure dynamics of hypothetical theory in itself with
idealized condition. This is a strong point of simulation when investigating complex interactions
in the system. Recent physics also call for the simulation as the third methodology besides the



1.4. METHODOLOGIES TOWARD THE UNDERSTANDING OF COMPLEX SYSTEMS 13

traditional dialectic between theory and experiment. Computational physics try to investigate
complex phenomena by simulating them from a series of fundamental equations of basic laws.

Modeling precedes simulation, as hypothesis precedes experiment. The way of modeling gen-
erally varies, such as simplified, constructive, replicate, homologous ones. In complex systems
sciences, the constructive modeling is especially important. It is used to model a system that we
do not know its internal structure in detail, by putting certain assumption. Constructive model is
therefore hypothetical, and does not guarantee a complete understanding of the object. It is nec-
essary to evaluate its plausibility through simulation. This process is called as the “identification”
of the model, and can be described as the following procedures:

1. Observation of the System

Observe the system in detail and try to investigate the internal structure as clear as possible.

2. Extraction

Based on the observation, extract the property which are supposed to be essential for the
reproduction of the phenomenon. In general, there exist plural possibilities in the way to
extract from the same observation.

3. Constructive Modeling

Create a constructive model based on the extracted property. The model generally combines
not only the revealed fact but hypothetical notions. We should compensate the missing
information with provisional assumption.

4. Simulation

Compute the model dynamics with necessary range of parameters and initial conditions, and
register the results.

5. Investigation of Simulation Result

Visualize and investigate the results. Focus on important characteristics and replan the
simulation to better characterize them. Reconsider the hypothesis and model structure.

6. Evaluation with the Comparison between the Model and the System

Compare between the dynamics of the model and that of the system in real world, and
evaluate the plausibility of the model. Taking analogy between the simulation and real world
is an important methodology. Though we do not have yet an objective measure for the
evaluation.

Simulation is a method to understand the object with the use of hypothetical constructive
model. Simulation forms a closure of virtual world, where the model and its computed dynamics
are logically coherent on the basis of programming language. However, simulation does not directly
tell us about the plausibility of the model. The model seems to be “correct” if the dynamics is
similar to that of real world, though there exist no objective criteria to judge its authenticity. We
can only notice the similarity, which does not necessary mean to elucidate the mechanism of the
object. We should call for a conceptual methodology for the evaluation of the model. In this sense,
considering the analogy between the model and the object becomes important.

Constructive modeling requires analogy for the evaluation. Analogy is the comparison between
two different systems, which evaluate the similarity and dissimilarity between them. The corre-
spondence between economical and ecological systems is an example. M. Hesse pointed out that
there exist three kinds of analogy in scientific models based on the similarity/dissimilarity relation:

1. Positive analogies. The features which are known or thought to be shared by both systems.
For example, similarity of the mechanism between the competition of companies and the
natural selection of species can be considered as positive analogy.

2. Negative analogies. The features which are known or thought to be present in one system
but absent in the other. The fact that the components of business company are humans
with thinking ability and that the components of living organisms are the cells without such
mental capacity is an example of negative analogy.
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3. Neutral analogies. The features whose status as positive or negative analogies is uncertain
at present. Neutral analogies will be further classified into positive or negative ones through
further investigation. The change of business companies and biological evolution does not
hold clear correspondence in its mechanism, therefore belongs to neutral analogy. Neutral
analogies are by far the most interesting of the three types of analogies, for they suggest ways
to test the limits of our models, guiding the way for scientific advancement.

Usually sciences emphasize the positive analogies when we describe a theory or law. In con-
structive modeling, we also include neutral analogies in the model. It is by incorporating the
neutral analogies into the model and investigating by simulation that we can further classify them
into positive/negative analogies. This is the very understanding process of constructive modeling.

Taking analogy also raises the problem of the appropriate level of comparison. It is important
to consider in which features of simulation we should discuss analogy. In the following we quote
an interesting dialogue concerning the interpretation of a hurricane simulation [14]:

Sandy: I mean that to see the winds and the wetness of the hurricane, you have to be
able to look at it in the proper way.

Chris: No, no, no! A simulated hurricane isn’t wet ! No matter how much it might
seem wet to simulated people, it won’t ever be “genuinely” wet! And no computer will
ever get torn apart in the process of simulating winds!

Sandy: Certainly not, but you’re confusing levels. The laws of physics don’t get torn
apart by real hurricanes either. In the case of the simulated hurricane, if you go peering
at the computer’s memory expecting to find broken wires and so forth, you’ll be dis-
appointed. But look at the proper level. Look into the “structures” that are coded for
in the memory. You’ll see that some abstract links have been broken, some values of
variables radically changed, and so forth. There’s your flood, your devastation - real,
only a little concealed, a little hard to detect.

In this conversation, Chris sees the simulation as a part of natural phenomenon in real world,
and cares if the simulation is “wet” as the actual hurricane is. Chris is trying to take analogy
between the behavior of computer processor and the hurricane all in the same actual world. While
Sandy conceptually distinguishes between what is happening in the virtual world of computer and
the phenomena of real world. Sandy is taking the analogy between the representation of the model
inside of computer and the hurricane of actual world.

We should always pay attention on which levels of the object and simulation we can find
meaning in comparison. With this condition, we can for the first time appropriately discuss the
classification of neutral analogies into positive and negative ones.

Complex systems such as life, intelligence, society, etc., have been investigated in various way
for a long time. We do not practically know however, even the certain way to understand them.
Complex systems sciences therefore need also to seek for the methodology to understand them.

Constructive modeling in Complex systems sciences does not necessary require to produce a
copy of the real world. We are investigating the mechanism of the object, and not the object itself.
It is similar to creating a map does not require to realize with the same scale and the real substance.
We construct a model to understand the object, and not to create a precise approximation model.

In this thesis, we mainly use dynamical systems or stochastic dynamical systems for the con-
structive methodology.

1.4.2 Interaction-Analytical Methodology

The difficulty of the constructive methodology is situated not only in the complexity of the compo-
nents, but the interactions. Traditional physics has been principally succeeded in the system with
small number of variables, or in the large system with simple interactions such as linear or random
relation. The effectiveness of the reductionism reduces quickly as the system size augments with
complex effective interactions. Let us consider this fact in terms of the degrees of freedom in a
stochastic system.



1.4. METHODOLOGIES TOWARD THE UNDERSTANDING OF COMPLEX SYSTEMS 15

We consider a system with n stochastic variables allowing all orders of many-body correlation.
We take the measurement-oriented theory viewpoint and suppose that the propagation of the
interaction is limited to a certain speed v. Then the relative propagation scale of the effect of
a component is given by v/n as depicted in the top figure of Figs. 1.6, which represents the
domination degree of a component over the whole system. The value of v/n qualitatively reflects
the importance of elementalism on the system and the effectiveness of the reductionism with respect
to the system size n.

On the other hand, the possible many-body correlations exist at the order of combinatorics as∑n
k=1 nCk. By renormalizing it with the system size n as

∑n
k=1 nCk/n, this quantity represents the

domination degree of the interactions over a component, and qualitatively reflects the importance
of relationalism. As depicted in the bottom figure of Figs. 1.6, the combinatorial explosion occurs
to the renormalized number of interactions. The degrees of freedom necessary to identify the model
is therefore almost the parameters of interactions which augments in factorial order. For example,
at n = 7 the degrees of freedom of each component’s marginal distribution become less than 1 %
of those of joint distributions. Even if we define the interaction propagation speed as infinity, the
effectiveness of the reductionism inevitably reduces with the presence of these interactions. The
role of relationalism becomes dominant.

It is therefore quite important to consider how to analyze the interactions in complex sys-
tems. The constructive methodology should put relatively greater emphasis on the analysis of
interactions than the simple elements. Furthermore, the hierarchical multi-body interactions also
includes the relations of the relations between the subsystems. To encapsulate the variation and
complexity of the interactions, we consider the following “interaction-analytical methodology” as
a complementary strategy of the constructive methodology.

In this thesis, we mainly use the information geometry as a theoretical foundation of the
interaction-analytical methodology.

We first consider the dual expression between the variables and the interactions of a model.
Schematic representation is depicted in Fig. 1.7. The interactions are usually described as a
function of the variables. For example, the interactions between a set of the variables {xi|1 ≤
i ≤ n} can be formulated as {fj{xi}|1 ≤ j ≤

∑n
k=2 nCk}. The network representation usually

takes the variables as nodes, and the interactions as edges between nodes. We call this orthodox
representation as the “variable network”. However, we can also describe the model with a network
whose nodes represent the interactions and the edges correspond to the variables. We call this the
“dual expression of variable network”. Here, we can formulate the variables as a function of the
interactions such as {xi({fj})}.

The dual expression is itself a trivial translation of the variable network, but becomes the start
point to investigate the interactions. We call the symbolized functions {fj{xi}|1 ≤ j ≤

∑n
k=2 nCk}

as functor, taking after the same word representing “function object” in C++ language. By
materializing the interactions as functors, we can for the first time treat the interactions between
the interactions, which are formalized as the interactions between functors as {f ′i({fj})}. Since the
{f ′i} are the functors of functors, we call them as “meta-functors”. We then define the “functor
network” whose nodes consist of the functors {fj} and edges are the meta-functors {f ′i}. This
representation gives a non-tribial information on the way emergent property of a system is organized
via interactions.

We can further construct a meta-level expression as meta-functor network, meta-meta-functor
network, etc., according to the necessity of investigation. We describe these meta-level networks
with a general expression “metal-functor network”, where l ≥ 1 represents the hierarchical super-
script of meta-level.

Note that the nodes number of metal-functor network augment in factorial order with respect
to meta-order l if the system size is n ≥ 4.

This strategy aims to contribute to discover the universality between different scales of emergent
phenomena. Fig. 1.8 represents the expected universality we aim to discover with the use of
the metal-functor network model. Suppose we have a series of emergent phenomena in a nested
structure ranging from micro to macro scale. For example, human society consists of individuals
who has brain, which consists of neurons. The ways human organize society and neurons express
brain activity are typical examples of emergent phenomena in complex systems. If we are satisfied to
independently model these two different levels of emergence and do not discuss on the commonality
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between them, we loose a big picture of the universal theory in complex systems. Complex systems
sciences try to deal the way of organization, or the way the interactions contribute to emergent
phenomena. The universal theory to understand the emergence should be situated in the highest
level of abstraction which does not primarily depend on the specific property of components. If
there exists transversal universality of interactions in different levels of organization, such physical
law is a strong candidate for the general theory of emergence.

The analysis and comparison of the metal-functor network is a concrete strategy toward this
possibility. Simple modeling with variable network can reveal the organization of complex inter-
actions to some extent, but is not accessible to the comparison of different systems with different
scales. Functor networks, on the other hand, deal with the interactions of the interactions, which
do not explicitly depend on the property of the components. If there exists some universal struc-
ture between the functor networks of different scale systems, such feature is a candidate for the
general theory of emergence. If the functor network still depends too much on the components
particularity of the systems and is not sufficient to abstract the organization of interactions, we
can augment the level of relationalistic abstraction l ≥ 1 to obtain the sufficient metal-functor
network, until we can judge the existence of a transversal universality.

1.4.3 Dialectic Between Constructive and Interaction-Analytical Method-
ologies

The constructive methodology and the proposed interaction-analytical methodology are comple-
mentary with each other toward the understanding of complex systems. Constructive methodology
usually utilizes dynamical or stochastic systems for mathematical modeling. On the other hand,
a strong theoretical framework is needed for the interaction-analytical methodology, which should
be also compatible to constructive modeling.

For a stochastic system, analysis of interaction can be performed with the use of a statistical
model. In a completely deterministic dynamical system, chaotic dynamics is situated at one of
the cores of complex systems sciences. Since chaotic dynamics both has the deterministic and
stochastic aspects, stochastic model is one of the important approach to analyze the interactions
in dynamical system with chaos.

In this thesis, we use the information geometry on stochastic models describing the interactions
of both dynamical and stochastic systems as a concrete strategy of the interaction-analytical mod-
eling. The dialectic between the two methodologies are based on the complementarity between the
dynamical system and information geometry in actual analysis.

The strategy of the investigation is schematized in Figs. 1.9. The interaction-analytical strategy
can serve both to construct and evaluate a constructive modeling. Usually a constructive model of
complex systems, such as chaotic dynamical system and contact process, expresses quite complex
dynamics, which itself is difficult to analyze and contains huge theoretical interest. The formaliza-
tion of the interactions with the use of a stochastic model and the analysis with the information
geometry is expected to reveal and characterize the dynamics of the model, which would serve to
evaluate and identify the model with respect to the actual phenomenon.

The analysis of interactions with the use of the information geometry is also valid for actual
data. If we establish a constructive model based on the analysis of a functor network of actual
data, it would be possible to attribute more relationalistic property to the model. This approach is
especially fruitful when we do not have a priori information on the components, or the components
are themselves extremely complex such as social dynamics. In such cases where the construction
of the variable network is difficult, the constructive modeling would still be possible with the use
of the functor network extracted directly from stochastic interactions of data.

The concrete complementarity between the analyses with dynamical system and information
geometry in this thesis is listed in Tab. 1.3. The vertical axis aligns the part number which
corresponds to the different objects in complex systems as listed in Tab. 1.3. The horizontal axis
aligns the theoretical concepts related to the dynamical system and information geometry. Note
that we used the term “dynamical system” in a large sense including stochastic dynamical systems
such as contact process.

The comprehensive objective of this thesis is to apply the proposed complementary strategy
to a wide range of complex systems, seeking for a universal characteristics of emergence in a
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Figure 1.6: Domination degree of components and interactions. Top: System size n vs
renormalized propagation speed of interaction v/n (blue line) representing the domination degree
of a component over the whole system. Bottom: System size n vs renormalized interaction numbers∑n
k=1 nCk/n (red line) representing the domination degree of interactions over a component. The

effectiveness of the reductionism/elementalism qualitatively reduces as the role of relationalism
becomes dominant in large system.
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Figure 1.7: Duality between variables and interactions, and reconstruction of (meta-
)functor network. x1, x2, x3 stand for the variables of the system, and f1, f2, f3 are their
functions representing the interactions. We take these function as objects and call them as functors
in the dual expression of the usual variable network. This leads to a formalization of functor
network, where we consider the interactions f ′1, f

′
2, f

′
3 between functors. This abstraction will

continue to create another meta-functor network until we would reach to an sufficient understanding
of the system organization.
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Figure 1.8: Expected universality in functor networks structures in different levels of
emergence.

relationalistic viewpoint.

1.5 Conclusion

We briefly reviewed the objective of complex systems sciences including historical context. The
novel interaction-analytical methodology based on information geometry is proposed, as a com-
plementary approach to the constructive methodology based on dynamical system, as well as an
unified strategy to tackle the complex systems treated in this thesis.
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Figure 1.9: Dialectic between Constructive and Interaction-analytical methodologies.
Top: Identification of constructive model. Bottom: Derivation of constructive model.
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Table 1.3: Theory VS Object matrix for the investigation of complex systems in this
thesis.

Dynamical System Information Geometry

Part 2 Chaotic itinerancy in CNN
Hierarchical stability analysis System decompositionability

Part 3 Simulation of chaotic roving robot
Optimal intermittent search strategy Multi-scale evaluation of infotaxis

Part 4 Return map analysis Order-wise correlation
Dynamics of Network decomposition

system decompositionability Edge information
and complexities Complexity measures

Part 5 Cell movement vector field Dynamical tissue detection
Embryo development EM-clustering

in clustering space Analysis on morphogenetic entropy
Part 6 Invariance of KL div. distribution Decomposition of KL divergence

Formant localization Vowel center
Non-linear contact process Multilingual accumulation effect
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Chapter 2

Preliminaries of dynamical system

Abstract

In this chapter, we review the preliminary knowledge of dynamical system used in
this thesis based on [1] [15].

Keywords: Discrete-time dynamical system, bifurcation, crisis, chaotic itinerancy,
Lyapunov exponent

2.1 Introduction

Dynamical system is a set of variables changing its values along the time line according to an inter-
action rule. The mathematical definition of dynamical system can be defined both with continuous
and discrete representation of time. Typical examples of continuous-time dynamical system are
differential equation and vector field. Discrete-time dynamical system is mostly expressed as dif-
ference equation or map. In this chapter, we introduce basic concepts of discrete-time dynamical
system as a preliminary of this thesis.

2.2 Discrete-Time Dynamical System: Map

Definition.

1. We represent a point x in n-dimensional real value space Rn with x = (x1, · · · , xn)T ,
where the superscript T means the transpose of a vector.

We define a continuous map f : Rn → Rn as follows:

f(x) = (f1(x), · · · , fn(x))T

= (f1((x1, · · · , xn)), · · · , fn((x1, · · · , xn)))T . (2.1)

Then we call the following discrete-time difference equation as discrete-time
dynamical system:

x(t+ 1) = f(x(t)), (t = 0, 1, 2, · · · )

⇔

 x1(t+ 1) = f1((x1, · · · , xn))
· · ·

xn(t+ 1) = fn((x1, · · · , xn))
(2.2)

This is nothing but a renaming of f : Rn → Rn. In the context of dynamical
system, we simply call discrete-time dynamical system as map.



24 CHAPTER 2. PRELIMINARIES OF DYNAMICAL SYSTEM

2. For a point x0 ∈ Rn, we define the positive semi-orbit of x0 with a sequence
{xt : t = 0, 1, 2, · · · } as follows:

xt+1 = f(xt), (t = 0, 1, 2, · · · ). (2.3)

3. We call f invertible if f is homeomorphism(there exists continuous inverse map-
ping f−1), if not noninvertible. In case f is invertible, we can obtain the time
development in the negative direction(past). For x0 ∈ Rn, we consider the follow-
ing sequence {xt : t = −1,−2, · · · }:

xt−1 = f−1(xt), (t = 0,−1,−2, · · · ). (2.4)

Combining with positive semi-orbit {xt : t = 0, 1, 2, · · · }, we call the sequence
{xt : t = 0,±1,±2, · · · } as orbit of x0.

For example, the chaotic neural network model in Part 2 is noninvertible.

2.3 Bifurcation of Periodic Point in Discrete-Time Map

We consider the dynamical systems with parameters. If the dynamics of a dynamical system
qualitatively changes when the parameters are changed, it is called bifurcation phenomenon.
In this section, we introduce the example list of bifurcation phenomena in 2-dimensional map.

We consider the bifurcation of periodic point in discrete-time map. Consider the following map
with parameters µ ∈ Rp :

x 7→ f(x, µ), x ∈ Rn. (2.5)

Then define that x = x0 is a fixed point when µ = µ0.

f(x0, µ0) = x0. (2.6)

Definition.
The linearized map at x0, consider the following Jacobian A:

µ 7→ Aµ, µ ∈ Rn, (2.7)

A = Dxf(x0, µ0) =

(
∂fi
∂xj

(x0, µ0)

)
1≤i,j≤n

. (2.8)

If all eigenvalues of A do not exist on unit circle S = {λ ∈ C||λ| = 1}, the fixed point x is
called hyperbolic. If all eigenvalues of A exist inside of the unit circle {λ ∈ C||λ| < 1},
the fixed point x is called stable. If there exists at least one eigenvalue of A at the
exterior of the unit circle {λ ∈ C||λ| > 1}, the fixed point x is called unstable.

Definition.
Fix the parameter µ and represent the p times composite mapping of f(·, µ) : Rn 7→ Rn

as fp.

x 7→ fp(x, µ), (2.9)

fp(·, µ) = f(·, µ) ◦ · · · ◦ f(·, µ). (2.10)
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If a point p is the fixed point of fp and is not for f i with arbitrary i (1 ≤ i < p), p is
said to be the p-periodic point of f .

fp(p, µ) = p, (2.11)

f i(p, µ) 6= p (1 ≤ i < p). (2.12)

The meaning of being hyperbolic, stable, and unstable of the p-periodic point p
corresponds those of the fixed point fp.

The bifurcation of the periodic point of a map f is equivalent to the bifurcation of the fixed
point of fp. Then it suffices to consider the bifurcation of the fixed point of a general map f .
The following theorem gives the sufficient condition that a fixed point of a map do not trigger
bifurcation.

Theorem.
If a fixed point x0 at µ = µ0 is hyperbolic, the fixed point does not disappear with
respect to the perturbation of parameter µ in the neighborhood of µ0, and the type of
stability does not change.

Therefore, to examine the bifurcation of a map, it suffices to consider a general form that a
map hold the non-hyperbolic fixed point x0 = 0 when parameter µ = 0.

2.4 Bifurcation List of 2-Dimensional Map

We introduce the bifurcation list of 2-dimensional discrete-time map. Consider the following map

x 7→ f(x, µ) = (f1(x, y, µ), f2(x, y, µ)), (2.13)

x = (x, y) ∈ R2, µ ∈ R, (2.14)

and examine the case of the non-hyperbolic fixed point x = 0 with parameter µ = 0. If the
Jacobian

A =

(
(f1)x (f1)y
(f2)x (f2)y

)
(0, 0), (2.15)

takes real eigenvalues λ1 and λ2, the bifurcation list is as follows:
Since we examine the non-hyperbolic case, suppose λ1 6= 1. Then the condition that x = 0 is a

non-hyperbolic fixed point is λ2 = 1 or λ2 = −1.

1. If λ2 = 1, saddle-node bifurcation occurs. If the map f(x, µ) always has a fixed point
at x = 0 as f(0, µ) = 0, transcritical bifurcation occurs. If the map f(x, µ) is an odd
function of x as f(−x, µ) = −f(x, µ), pitchfork bifurcation occurs.

2. If λ2 = −1, period-doubling bifurcation occurs.

Figs. 2.4 depict these bifurcation phenomena in 2-dimensional map. The top middle figure
shows the moment of saddle-node bifurcation at µ = 0 and the fixed point x = 0 belongs to
Milnor attractor that has both unstable direction and Lebesgue measure positive basin.

These bifurcations and conditions are analogous to the case of 1-dimensional map. Generally,
bifurcation phenomena of low-dimensional map naturally appear in high-dimensional cases.

If the Jacobian A takes complex conjugate eigen values, the stable fixed point x = 0 becomes
destabilized according to the parameter change, and a stable invariant circle appears around un-
stable fixed point x = 0. This is equivalent to the time reversal case where the unstable fixed
point x = 0 changes to the stable one with the apparition of an unstable invariant circle. These
bifurcations are called Naimark-Sacker bifurcation.
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Figure 2.1: Bifurcation list of 2-dimensional discrete-time map on x-plane. From top to bottom:
Saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation, and period-doubling bifur-
cation. 0 < λ1 < 1. Blue points represent stable fix points or 2-periodic attractor, red points are
unstable fix points, and green points are Milnor attractors. Naimark-Sacker bifurcation is omitted.
Based on [1].



2.5. CHAOTIC ITINERANCY AS CRISIS-INDUCED INTERMITTENCY 27

Figure 2.2: Conceptual scheme of chaotic itinerancy in 10-dimensional GCM. When the projected
point y(t) of the orbit x(t) moves inside of the attractor ruin Λ1, transversal stability of the invariant
subspace H is stable and x(t) moves closer to H. When the projected point y(t) reaches the exit
of Λ1 and moves inside of Λ2, transversal stability of H becomes unstable and x(t) moves away
from H. Based on [1].

2.5 Chaotic Itinerancy as Crisis-Induced Intermittency

Besides the change of stability of periodic point, there exists another class of bifurcation called
global bifurcation. Generally, the global expansion of an attractor by touching to unstable
periodic orbit is called crisis. The crisis is further classified into interior crisis and boundary
crisis according to whether the orbit is constrained inside of a finite domain. The mechanism of
global bifurcation is not yet well understood in high-dimensional map.

Chaotic itinerancy observed in globally coupled map (GCM) is characterized in terms of crisis-
induced intermittency. Interior crisis of attractors produces plural attractor ruins similar to
the destabilized Milner attractor, and the orbit shows intermittent dynamics between them. The
mechanism of chaotic itinerancy in GCM is partially characterized as the crisis-induced intermit-
tency on invariant subspaces and the inversion of stability in its orthogonal directions. Fig. 2.5
shows the qualitative stability structure of attractor ruin in GCM examined in [1].

2.6 Lyapunov Exponent

Chaotic dynamics is originated from the coexistence of stability and unstability of the orbits, which
is expressed as the stretching and folding by the map. To evaluate the existence of chaos, we need
to detect orbital unstability. Let us consider the stability of an orbit with 1-dimensional map
x(t + 1) = f(x(t)). We add a small perturbation δx(t) to x(t) and measure its time development
δx(t+ 1):

δx(t+ 1) = f(x(t) + δx(t))− f(x(t))

=
df(x(t))

dx
δx(t) +O(2) (2.16)

≈ f ′(x(t))δx(t). (2.17)

Where (2.16) uses Taylor expansion at x(t) and O(2) is more than 2nd order terms of δx(t). The
last approximation suppose that δx(t) is sufficiently small. By repeating this linear approximation
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for N time steps, we obtain

δx(t+N) ≈
N∏
k=l

f ′(x(t+ k − 1))δx(t). (2.18)

This means that if the inclination of the map f ′(x(t+ k− 1)) is larger than 1, the perturbation
of the orbit is amplified at time t+ k, and reduced if less than 1. The exponential amplification of
the distance between adjacent two points is the definition of chaos. Therefore, the long-term mean
of the exponents of f ′(x(t + k − 1)) gives global information on the stability of the orbit. This is
called Lyapunov exponent and defined as follows:

λ = lim
N→∞

1

N

N−1∑
k=0

log |f ′x(t+ k)| . (2.19)

If λ > 0, the distance between adjacent orbits increases temporally in an exponential scale.
Such property is described as unstable system.

For the ergodic maps with irregular orbits that are non-uniformly distributed in the domain of
x, we can calculate the Lyapunov exponent by using the spacial mean weighted with the density
of invariant measure ρ(x):

λ =

∫
log |f ′x| ρ(x)dx. (2.20)

Lyapunov exponent is also defined in high-dimensional dynamical system, and generally we
obtain n exponents for n-dimensional variable. In most cases, if the maximum Lyapunov exponent
is positive, we call the system is chaotic.
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Chapter 3

Preliminaries of Information
Geometry

Abstract

In this chapter, we review the preliminary knowledge of information geometry used
in this thesis based on [16] and [2].

Keywords: Statistical manifold, Riemannian metric, α-connection, dual flat coor-
dinates, Kullback-Leibler divergence, extended Pythagorean theorem

3.1 Introduction

Information geometry treats an ensemble of probabilistic distributions as a Riemannian space with a
natural geometrical structure compatible to various fields concerning probability, such as statistical,
information, and systems theories. The transversal property of information geometry allows us to
examine the existing methods from different viewpoints or revealing the relation between different
methods. In this sense, information geometry has a property of mutual language for the fields
relating to probability.

Information geometry is based on differential geometry of Riemannian space following the nature
of probability distributions. In Euclidian space, the concept of “straight” and “flat” is almost trivial
and do not need specification. However, in general space (such as Riemannian) these need rigorous
mathematical definition.

3.2 Space of Probability Distributions

The start point of information geometry is the probabilistic distribution model f(X; ξ) with
stochastic variable X and n-dimensional parameters ξ = (ξ1, · · · , ξn). If we take the parame-
ters ξ as coordinates, the whole ensemble of this model can be considered as a smooth space, in
geometrical term manifold, and each probability distribution is a point in this space.

• Ex. 1. Discrete distribution. Consider X is discrete variable taking {x0, x1, · · · , xn}, and set
Prob(X = xi) = qi(> 0). Since

∑n
i=0 qi = 1, the number of independent parameters is n,

and if we take for example q1, · · · , qn, it becomes a n-dimensional parameter space.

• Ex. 2. Normal distribution. Define X as 1-dimensional real value whose probabilistic density
is f(X;µ, σ2) = exp(−(x−µ)2/(2σ2))/

√
2πσ2. Then this model forms a 2-dimensional space

with parameters µ and σ as coordinates.

As were shown in above examples, generally parameters are not defined in the whole range of
real value but with its subsets (such as qi > 0, σ > 0).
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Figure 3.1: Curved space is locally linear if sufficiently magnified. Based on [2].

3.3 Neighborhood of a Point: Euclidian Space

We introduce geometrical structure in the space of statistical model S. The global scenario is first
to approximate the neighborhood of each point with Euclidian space and define the local structure
with a matrix called metric. Next, we define the connectivity between the adjacent neighborhoods
with a tensor called connection, which leads to define the global structure of S.

Let us explain these concepts by moving a point p on S in a “straight” manner. We describe
the coordinates ξ of the point p ∈ S as ξ(p). Whatever sharp the curvature is, if the space is
smooth, sufficiently small neighbor of p can be approximated by the well-known Euclidian space
as in Fig. 3.3. Setting p as original point, let us call this local linear space as Tp. In Euclidian
space, to move straight a point is simply to follow rectilinear direction.

Though, this notion of moving straight is only valid in the neighborhood of p, and mathemati-
cally speaking, the point can only move infinitesimally small distance. Therefore, the straight line
direction we considered in this local Euclidian space only specifies the tangent direction associated
with the orbit of global straight movement. We call this tangent direction as tangent vector, and
since Tp is an ensemble of tangent vectors at p, we call is as tangent space.

To further pursuit the “straight” movement beyond the linearized neighborhood, we need to
use the concept of connection, which will be introduced in the next section. In this section, we
further focus on the local structure in the tangent space.

We describe the basis of Tp as e1, · · · , en, each corresponding to the direction of coordinates
ξ1, · · · , ξn in S. Then a point on Tp can be specified by the linear sum

∑n
i=1 aiei. To decide the

structure of Tp so that to calculate geometrical quantities such as angle and length, we need to
define the following inner product between ei and ej :

gij(ξ) = 〈ei, ej〉. (3.1)

We call the product gij(ξ) as (Riemannian) metric and list in the matrix G = (gij(ξ)). gij(ξ)
can be defined arbitrary, even be dependent on ξ, according to the nature of geometry we want to
construct, as long as G satisfies to be a positive definite symmetric matrix.
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In information geometry, we use the following Fisher information matrix as Riemannian
metric:

gij(ξ) = Eξ[(∂il)(∂j l)]. (3.2)

For simplicity, we set ∂i = ∂
∂ξi and l = log f(X; ξ). Eξ[ ] represents the expected value of f(X; ξ):

Eξ[g(x)] =

∫
f(X; ξ)g(x)dx. (3.3)

There are several important reasons to choose Fisher information matrix among possible Rie-
mannian metrics for information geometry. Besides the properties of Fisher information, we intro-
duce here the relation with Cramer-Rao inequality that is a fundamental in statistical estima-
tion. We first represent the estimated parameters with ξ̂ that are estimated with some estimation
method from N independent sample data. Then the ξ̂ stochastically fluctuates according to the
finiteness of sampling. If the estimated parameters ξ̂ coincide with the true ones ξ∗, the variance
of ξ̂ satisfies the following with G as Fisher information matrix:

V ar[ξ̂] ≥ 1

N
G−1. (3.4)

We call this relation as information inequality or Cramer-Rao inequality. For “good” estimators
such as maximum likelihood estimators, the equality of this relation asymptotically holds with
respect to the sample number N . Therefore, Fisher information can be considered as the inverse of
estimator’s variance, so that it is natural to consider it as a distance measure between distributions.
For example, if a pair of adjacent distributions have high V ar[ξ̂], the distinction between these
two distributions are “difficult” in terms of estimation. Therefore, the distance should be defined
“close” between them, which is the case of using Fisher information giving small value as V ar[ξ̂]
converges high.

• Ex. 3. In case of normal distribution. Taking (ξ1, ξ2) = (µ, σ) as coordinates, we have

log f(X; ξ) = (X−µ)2
2σ2 − log(2πσ2)

2 . Then the Fisher information is calculated as the following:

G =
1

σ2

(
1 0
0 2

)
. (3.5)

Using this, the length of a linear element in Tp by infinitesimally changing (µ, σ) to the

direction of (dµ, dσ) is obtained as

√
dµ2+2dσ2

σ . This reflects the fact that when σ is small,
tiny change of parameters causes relatively big change of distribution form, while large σ keep
the distribution form similar with respect to parameters change. For example, with small σ
giving sharp normal distribution, change of mean value µ causes larger deviation of f(X; ξ)
than in case of wide distribution with high σ.

If we take another coordinates θ on S, whatever the nonlinear transformation between θ and
ξ is, we can always approximate linearly for the neighborhood of a point p. More concretely, it

suffices to linearly transform with a Jacobian matrix B taking i, j element as ∂θi

∂ξi at p. Then the
point in Tp can be simply transformed from ξ to θ coordinates by multiplying the basis ei and
its coefficient ai with B. In the same way, Riemannian metric can be also transformed into the
expression on θ using B. This means that the concept of tangent space and Riemannian metric is
essentially independent or invariant from the way of taking coordinate systems. This concept of
invariance is one of the principal tools in modern geometry.
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Figure 3.2: Connection coefficient decides the parallel translation between adjacent tangent spaces.
Based on [2].

3.4 Connecting Euclidian space

In previous section, we could only move a point p on F for an infinitesimal distance dξ by considering
the tangent space Tp. In this section, we further extend the movement to a global scale. The
coordinates of the new point p̃ is given by ξ(p̃) = ξ(p) + dξ. At p̃, we need to reconstruct the
corresponding new tangent space Tp̃ so that to define the infinitesimal vector dξ′ that is supposed
to be in the “same direction” as dξ. By repeating infinitely this procedure, we can continue to
move a point locally and mathematically obtain the global movement by integration.

Let us formulate this process in a general form. Consider a point p and move it to another point
p̃ for an infinitesimal distance dε = (dε1, · · · , dεn). Then the vector dξ on Tp moves on Tp̃, which
we describe as Πdε[dξ]. We call the movement from dξ to Πdε[dξ] as parallel translation (Fig.
3.4). Since dε is infinitesimal, this movement can be approximated with linear transformation.
More concretely, we describe the parallel transformation of a basis ej on Tp as follows:

Πdε[ej ] = ẽj −
∑
i,k

dεiΓkij ẽk. (3.6)

We call Γkij as connection (coefficient). Intuitively speaking, a tangent vector changes its
direction proportionally to the moving distance with the rate of connection coefficient. General
tangent vector dξ =

∑n
j=1 ajej then moves to

∑n
j=1 ajΠdε[ej ].

The global “straight” movement of a point can then be defined by continuing local parallel trans-
lation of the tangent vector as dξ′ = Πdε[dξ]. The obtained trajectory defines the “straight” line
with respect to the defined Riemannian metric and connection coefficient and called as geodesic.
Note a geodesic does not necessary look straight for an arbitrary coordinates ξ.

3.5 α-connection

How can we decide the connection coefficient ? Natural geometrical requisition is that the parallel
translation of two tangent vectors dξ1 and dξ2 should not change their geometric relation. More
concretely, the inner product should remain invariant before and after the movement. Under this
constraint, the connection coefficient is dependent on Riemannian metric gij and unique. This is
called as Riemannian connection or Levi-Civita connection and used in normal differential
geometry where the geometrical structure of space is defined only by Riemannian metric.
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However, from a viewpoint of statistical theory, the invariance of inner product is not a primal
requisition. The concept of statistical invariance is rather the main issue. The invariance with
respect to the transformation of parameters ξ and stochastic variable X are more natural and ap-
propriate to consider. For this reason, in information geometry, we use the following α-connection

Γ
(α)
ij,k with a free parameter α:

Γ
(α)
ij,k = Eξ

[(
∂i∂j +

1− α
2

∂il∂j l

)
∂kl

]
, (3.7)

where

Γij,k =
∑
h

Γhijghk. (3.8)

It contains the Riemannian connection since it coincides in case of α = 0. In information
geometry, the cases of α = ±1 are particularly important, which will be explained in the following
section.

3.6 Flat Space

The connection coefficient represents the difference of alignment between infinitesimally separated
tangent spaces. Taking a coordinate system ξ, if all connection coefficient of α-connection is 0, the
spacial difference is also 0. Generally such coordinates do not necessary exist, but if exist, we call
these as α-(affine) coordinates and the space is α-flat.

In α-flat space, a geodesic is represented as a straight line on α-coordinates, namely α-geodesic.
This structure is similar to the straight lines in Euclidian space, although the metric may be
different at each point. For this and other utilities, α-flat space is often used for applications in
engineering.

• Ex. 4. Exponential family is defined as follows, and is 1-flat with respect to θ as affine
coordinates:

f(X; θ) = exp

(
n∑
i=1

θiFi(X)− ψ(θ) + C(X)

)
. (3.9)

This family of distribution plays principal role in information geometry of statistics, and we
particularly call 1-connection, 1-flat as e-connection and e-flat, respectively, taking after e of
exponential.

For example, normal distribution belongs to exponential family by replacing F1(X) = X,
F2(X) = X2, and its e-coordinates are θ1 = µ

σ2 , θ2 = −1
2σ2 .

• Ex. 5. Mixture family is defined as a linear sum of probability distribution Fi(X), and is
−1-flat with respect to the affine coordinates θ:

f(X; θ) =

n∑
i=1

θiFi(X)

(
1−

n∑
i=1

θi

)
F0(X). (3.10)

We particularly call −1-connection, −1-flat as m-connection and m-flat, respectively, taking
after m of mixture.

• Ex. 6. Consider more generally α-family with parameter α 6= 1 as follows:
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f(X; θ) ∝

(
n∑
i=1

θiFi(X)

) 2
1−α

. (3.11)

If renormalized as
∫
X
f(X; θ)dX = 1, this family is not generally α-flat except the case

α = −1 that coincides with mixture family.

As were seen with above examples, only the cases of α = ±1 are important when considering
generally probability distribution. Therefore, in application of information geometry, in most cases
we focus on ±1-connection, namely e- and m-connections.

3.7 Dual Coordinates

The pair of α- and −α- connections has interesting properties in mathematical sense. The most
fundamental one is the fact that if a space is α-flat, then it is also −α-flat, namely dual flat
structure. Though generally, the corresponding affine coordinates are different. Let us represent the
α-coordinates and −α-coordinates of a dual flat space S with θ = (θ1, · · · , θn) and η = (η1, · · · , ηn),
respectively. These coordinates are interchangeable with the following Legendre transformation
with potential functions ψ(θ) and φ(η):

ψ(θ) + φ(η)−
n∑
i=1

θiηi = 0, (3.12)

∂ψ(θ)

∂θ
= η,

∂φ(η)

∂η
= θ. (3.13)

Note that if we describe the Riemannian metrics of θ coordinates and η coordinates with gij
and gij , respectively, the followings hold:

∂ηi
∂θj

= gij ,
∂θi
∂ηj

= gij , (3.14)

(gij) = (gij)−1. (3.15)

Therefore, gij and gij are at the same time metrics and Jacobian matrices of local coordinates
transformation.

For the basis vectors ei of α-coordinates and ej of −α-coordinates on a tangent space Tp, there
exists the following dual orthogonal relation:

〈ei, ej〉 = δji . (3.16)

This gives the basis of orthogonal projection explained in the next section. Orthogonality in
±α-flat space appears between the dual coordinates.

• Ex. 7. From dual flat structure, 1-flat (e-flat) exponential family is also −1-flat (m-flat).
The corresponding m-coordinates are ηi = Eθ[Fi(X)] that forms a space of sufficient statistics.
Therefore, given a series of observation data, one can specify the e-coordinates of the point
on S by calculating sufficient statistics.

In case of normal distribution (Ex. 4), for instance, η1 = E[X] = µ, η2 = E[X2] = µ2 +σ2, and
observation data can be expressed as η = (µ̂, µ̂2 + σ̂2) using sample mean µ̂ and sample variance
σ̂. The potential function ψ(θ) is analytically derived from (3.9), and ψ(η) can be calculated from
(3.12).

In case of mixture family, since it is −1-flat (m-flat), from dual flat structure it is also 1-flat
(e-flat). Though, the corresponding e-coordinates are not as simple as those of exponential family.
Therefore, although both incorporate dual flat structure, exponential family is easier to relate with
statistical estimation than mixture family.
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3.8 Subspace and Projection

In information geometry, we generally consider a dual flat statistical manifold S (such as exponen-
tial family) including both observed data as a point of empirical distribution and the model as a
subspace. In application to machine learning, the learning algorithm is geometrically interpreted
as to find the projection of observed data to a model subspace. In this section, we introduce the
property of subspaces in S and projection.

In Euclidian space, a projection to a flat subspace is easier to consider than to a curved one.
The concept of flat subspace is also important in information geometry. Given a dual flat space
S, the flat subspace with α-coordinates M (actually a linear subspace) is called α-flat subspace.
It is however not assured whether α-flat subspace is −α-flat, since the transformation between
±α-coordinates are generally non-linear and can not be separated into different independent sets
of sub-coordinates.

The concept of divergence is important to consider a projection to a subspace. α-divergence
between two points p, q in a dual flat space is defined as follows, similar to the Legendre transfor-
mation (3.12):

Dα[p : q] = ψ(θ(p)) + φ(η(q))−
n∑
i=1

θi(p)ηi(q). (3.17)

This quantity represents the discrepancy between the two points, but does not satisfy the axioms of
mathematical “distance” in terms of symmetric law and triangle inequality. Nevertheless, we dare
consider α-divergence since it is compatible to the affine coordinates and still possesses important
property of distance. More concretely, Dα[p : q] ≥ 0 and the equality holds for p = q. When
p is sufficiently close to q, it converges to the conventional distance. The dual −α-divergence is
D−α[p : q] = Dα[q : p].

Particularly for exponential family, the e-divergence with α = 1 coincides with Kullback-Leibler
divergence between two distributions f(X) and g(X):

D1[f : g] =

∫
f(X)[log f(X)− log g(X)]dX. (3.18)

The dual m-divergence with α = −1 is D−1[f : g] = D1[g : f ].

The projection in Euclidian space is defined in relation to Pythagorean theorem. In this case, the
distance between a point and a subspace is decomposed between orthogonal and parallel elements.
In information geometry, we utilize the following extended Pythagorean theorem in dual flat space.

Extended Pythagorean theorem.
For the points p, q, r on a dual flat space S, connect p and q with α-geodesic, and q and
r with −α-geodesic. When the tangent vectors of these geodesics cross orthogonally at
q, the following holds:

Dα[p : r] = Dα[p : q] +Dα[q : r]. (3.19)

Here, if the α-geodesic between the point p on S and the subspace M crosses orthogonally with
M at q, we call this projection as α-projection. From the extended Pythagorean theorem, we
derive the following relation between the α-projection to a subspace and α-divergence.

Projection theorem.
The α-projection q on M from a point p on dual flat space S is a stationary point of
α-divergence Dα[p : q]. If M is a −α-flat subspace, the projection is unique and take
the minimum value of Dα[p : q].
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Figure 3.3: Projection is a stationery point of divergence. Based on [2].

This theorem is schematically represented in Fig. 3.8.
Since S is dual flat, the extended Pythagorean theorem and the projection theorem also hold

with the permutation of α and −α. From the projection theorem, if M is a −α-flat subspace, it is
natural to take α-projection. In such case, if we take separately −α-coordinates inside of M and
α-coordinates outside of M , the geometrical situation becomes similar to that of Euclidian space.

Suppose M is a k-dimensional −α-flat subspace, and describe separately the first k coordinates
from the rest n− k ones as (θI , θII) and (ηI , ηII). Using appropriate linear transformation, M can
be defined as a linear subspace ηII = η̂II = Const. as depicted in Fig. 3.8. Then consider newly
another coordinates (θI , ηII), namely mixture coordinates. Still, any point on S can be uniquely
specified with this system. Using the mixture coordinates, the α-projection from (θI , ηII) to M
is simply represented with the difference of latter n − k elements as (θI , η̂II), giving a concrete
expression of the projected point.
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Figure 3.4: Representation with mixture coordinates looks like Euclidian space. Based on [2].
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Chapter 4

Synthetic Modeling of
Autonomous Learning with a
Chaotic Neural Network

Abstract

We investigate the possible role of intermittent chaotic dynamics called chaotic
itinerancy, in interaction with non-supervised learnings that reinforce and weaken the
neural connection depending on the dynamics itself. We first performed hierarchical
stability analysis of the chaotic neural network model (CNN) according to the structure
of invariant subspaces. Irregular transition between two attractor ruins with positive
maximum Lyapunov exponent was triggered by the blowout bifurcation of the attrac-
tor spaces, and was associated with riddled basins structure. We secondly modeled two
autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP)
rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learn-
ing increased the residence time on attractor ruins, and produced novel attractors in
the minimum higher dimensional subspace. It also augmented the neuronal synchrony
and established the uniform modularity in chaotic itinerancy. STDP rule reduced the
residence time on attractor ruins, and brought a wide range of periodicity in emerged at-
tractors, possibly including strange attractors. Both learning rules selectively destroyed
and preserved the specific invariant subspaces, depending on the neuron synchrony of
the subspace where the orbits are situated.

Keywords: Chaotic itinerancy, invariant subspace, blowout bifurcation, riddled
basins, Hebbian learning, STDP learning.

Methodology: Modeling of autonomous learnings with CNN as a dynamical sys-
tem → Linear stability analysis of CNN as a dynamical system → Analysis of emerged
neural correlation with information geometry

4.1 Introduction

Recent development of neuroscience has been largely promoted by the interaction between biological
experiment and mathematical modeling. Although experimental setting is limited to a part of
entire phenomenon situated in the ultimate interest, different measurement methods varying in
both temporal and spacial scales enable us to acquire experimental evidences ranging from single
neuron to cortical and cerebral activities, and integrate them into a simulated model with certain
assumption. This interaction between experimental measurement and mathematical modeling
helps us not only to reproduce the observed brain dynamics itself, but to discover appropriate
levels of description that are accessible to mathematical analysis and eventually help hypothesis
testing and further hypothesis forming in experiment.
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Skarda and Freeman investigated the chaotic dynamics in olfactory bulb of rabbit with such
experiment-modeling interaction, and discovered the function of chaos as catalyst of learning in
macroscopic level [17]. Here, the chaotic wandering state among memorized patterns is shown to
additionally create another attractor corresponding to the novel oder.

Later Tsuda showed in a modeling study of cortical chaos that such intermittent chaos associ-
ated with temporal laminar phase realizes the acquisition of externally exposed patterns without
loosing the former memory structure [18]. This dynamical linking of memory with chaotic transi-
tion is further investigated in a more physiologically detailed settings, and are conceptualized with
the name of chaotic itinerancy [19] [20].

Chaotic itinerancy is based on the concept of attractor ruins, where plural attractors localized
in low-dimensional states loses their transverse stability. Possible candidate of attractor ruin is
considered as destabilized Milnor attractor that went through the crisis [21][22][23]. Chaotic itin-
erancy is also observed in a chaotic neural network model (CNN), with the chaotic neuron based
on the physiological property of the squid giant axon [24] [25].

Besides the learning of the exposed patterns, there has recently been studies on the self-
organizing change of the network’ s connectivity without any supervisor signals in neural network
model [26] and in relevance to neural network [27]. These spontaneous changes of connectivity are
based on the local learning rule such as Hebbian learning and the spike-time-dependent plasticity
(STDP) learning. Indeed, such autonomous learning depending on the dynamics of the network
itself can be considered to happen widely and permanently as long as the brain manifests spon-
taneous activity and possesses plasticity. It is of further interest whether and how such internal
dynamics can lead to structure formation of neural network and realize adaptive function.

In this article, we investigate the possible role of chaotic itinerancy associated with autonomous
learning without supervisor signal. For this purpose, we combine the chaotic neural network model
with Hebbian and STDP learning rules and investigate the dynamics.

4.2 Dynamics of Chaotic Neural Network

We first define the chaotic neural network model (CNN) with two periodic attractors in different
invariant subspaces, and investigate the dynamics without any learning rule.

4.2.1 Definition of Chaotic Neural Network

The architecture of CNN is defined as in Fig. 4.1. CNN is a discrete time system that consists of
two layers of neuron model: Context and Output. Each neuron of the Context layer is connected
to all neurons in the Output layer. The output of the Context layer at time t is identical to that of
the Output layer at time t− 1 . The chaotic neuron used in the Output layer of CNN are defined
as follows [24]:

xi(t+ 1) = f(

n∑
j=1

wij

t∑
d=0

kdfxj(t− d)

−α
t∑

d=0

kdrxi(t− d) + θout), (4.1)

where at time t , xi(t) is the output of the ith chaotic neuron, and θouti is its threshold. The
parameters α ≥ 0 and kr (0 ≤ kr ≤ 1) control the refractoriness of neuron. By augmenting these
parameters, the orbital stability changes, and can induce chaotic dynamics. Hence, the situation
α = kr = 0 corresponds to simple analog neuron model. The exponentially decreasing influences
of past outputs (outputs of the Context layer) are controlled by kf (0 ≤ kf ≤ 1). n is the number
of chaotic neurons. In this study, eight chaotic neurons with fixed parameter kf = 0.1 were used
in the Output layer of CNN. θout will be defined as a function of kr in the following section.

The sigmoid function f(·) is defined as follows, with the increment parameter β.

f(x) =
1

1 + exp(−βx)
. (4.2)
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Table 4.1: Definition of the four patterns A, B, C, D to be memorized in the Output
layer of CNN.

Pattern symbol Pattern vector
A (1, 1, 1, 1, 0, 0, 0, 0)T

B (0, 0, 0, 0, 1, 1, 1, 1)T

C (1, 1, 0, 0, 0, 0, 1, 1)T

D (0, 0, 1, 1, 1, 1, 0, 0)T

We used β = 5.0 in this study.
The connection matrix W = (wij) was set with Hebbian rule to memorize two two-periodic

patterns A
B and C
D defined in Tab. 4.1. Let A = (a1, · · · , a8)T , B = (b1, · · · , b8)T , C =
(c1, · · · , c8)T , D = (d1, · · · , d8)T , where T is the transpose of vector. Then W = (wij) (1 ≤ i, j ≤ 8)
was defined as follows:

wij =
1

4
{(2ai − 1)(2bj − 1) + (2bi − 1)(2aj − 1) + (2ci − 1)(2dj − 1) + (2di − 1)(2cj − 1)}. (4.3)

Consequently,

W =



−1 −1 0 0 1 1 0 0
−1 −1 0 0 1 1 0 0
0 0 −1 −1 0 0 1 1
0 0 −1 −1 0 0 1 1
1 1 0 0 −1 −1 0 0
1 1 0 0 −1 −1 0 0
0 0 1 1 0 0 −1 −1
0 0 1 1 0 0 −1 −1


, (4.4)

was obtained. Note that the number of neurons and the patterns of the attractors was chosen to
realize chaotic itinerancy between attractor ruins situated in different invariant subspaces with the
simplest network, which is described in the following section.

We judge the retrieval of a pattern at time t by interpreting the output x(t) = (x1(t), · · · , x8(t))T

into binary value h(t) = (h1(t), · · · , h8(t))T as follows:

hi(t) =

{
0 if xi(t) < 0.5
1 else

. (4.5)

We state that the network retrieved a pattern when the value of h(t) coincides with any of the
patterns A,B,C,D. By setting the refractoriness parameters kr = α = 0, the network retrieved
either of two-periodic patterns A
B or C
D depending on the initial condition. Note almost
all initial conditions converge either of these patterns, unless specifically taken on the invariant
subspaces where (11335577) is not included (See next section).

Figure 4.1: Architecture of CNN.
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4.2.2 Invariant Subspaces

In discrete time neural networks, considering certain symmetry of the model, it is possible to de-
compose its dynamics into subspaces of the whole state space. The decomposition of the dynamics
into lower dimensions has a possibility to characterize the network dynamics more precisely. The
decomposed subspaces in which dynamics can fall and remains permanently are called invariant
subspaces. In this section, we derive the invariant subspaces of CNN based on [28].

First of all, let the CNN be a differentiable map

Φ = (Φf ,Φr) : Rn ×Rn → Rn ×Rn, (4.6)

defined by

{
Φf (η, ζ) = kfη +Wx
Φr(η, ζ) = krζ + θr − αx

. (4.7)

Where

x = x(η, ζ) = (f(ηi + ζi))
n
i=1, (4.8)

and

θr = θout(1− kr). (4.9)

θr = 0.0 was used for the following simulation.
Now, let Sn be a symmetric group with degrees of n , and C(W ) be a subgroup of Sn. For

σ ∈ Sn , we define a linear transformation Pσ : Rn → Rn by

Pσ : (u1, · · · , un)T 7→ (uσ(1), · · · , uσ(n))T . (4.10)

For σ ∈ Sn, we define that σ belongs to C(W ) if and only if

PσW = WPσ. (4.11)

This condition corresponds to the condition wij = wσ(i)σ(j) of the connection matrix between the
Output and Context layer. Using this symmetry of the connection matrix, we define the invariant
subspaces of CNN as follows. Let σ ∈ C(W ). Then Φ = (Φf ,Φr) of a CNN is Pσ × Pσ -invariant;

(Pσ × Pσ)Φ = Φ(Pσ × Pσ). (4.12)

We define a linear subspace H1(σ) of Rn by

H1(σ) = {(u1, · · · , un)T ∈ Rn | ui = uσ(i), 1 ≤ i ≤ n}. (4.13)

We also define the invariant subspace H(σ) of R2n by

H(σ) = H1(σ)×H1(σ) = {(η1, · · · , ηN ; ζ1, · · · , ζN )T ∈ (ηi, ζi) = (ησ(i), ζσ(i)), 1 ≤ i ≤ n}. (4.14)

For each σ ∈ Sn , H(σ) ⊂ R2n is Φ -invariant;

Φ(H(σ)) ⊂ H(σ). (4.15)
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Hence, this holds for all time steps of CNN. Consequently, it means that if the initial states of CNN
were taken inside of H(σ) , the i th neuron and the σ(i) th neuron of the Output layer are always
synchronized regardless of transversal stability, and output the same value at each time step.

Here, we give an example of the invariant subspace. If

σ =

(
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)
∈ C(W ), (4.16)

then

H(σ) = {(η1, η1, η3, η3, η5, η5, η7, η7; ζ1, ζ1, ζ3, ζ3, ζ5, ζ5, ζ7, ζ7)T }. (4.17)

For simplicity, let us denote

H(σ) = (11335577), (4.18)

representing H(σ) with the minimum subscripts of vector η and ζ that are identical by Pσ . We
take this notation rule for the following sections.

The defined patterns A and B are situated inside of (11115555), while C and D are inside of
(11333311). These two invariant subspaces are isomorphic from the symmetry of the model, and
therefore it is sufficient to investigate only one subspace to know the dynamics in both.

Figure 4.2: Invariant subspaces of CNN in the defined setting. Top: Above (11335577).
Bottom: Below (11335577). The lines denote inclusion relation. Although there exist actually
76 invariant subspaces, for simplicity only those in the above/below hierarchy of (11335577) are
shown.
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4.2.3 Periodicity Analysis

In chaotic itinerancy state of CNN, the orbit is reported to visit irregularly among memorized
patterns [25]. We investigated the periodicity of the temporal dynamics to search for irregular
orbits where chaotic itinerancy may occur, by changing empirically the refractoriness parameters
kr and α. The result is shown in Fig. 4.3.

Figure 4.3: Periodicity of CNN. Horizontal axis: α. Vertical axis: kr. After cutting 5000
transient, periodicity was judged with the tolerance of 1.0e-6 for each neuron output. More than
30 periodic orbit is depicted in brown. After cutting 5000 transient, 10000 steps were used to
calculate the periodicity at each 0.01 step of kr and α. Initial conditions were taken randomly.

4.2.4 Deviation Rate from Attractor Ruins

Chaotic itinerancy is characterized not only by the lack of periodicity, but the intermittent visit to
the attractor ruins. To find out such parameter region in kr−α plane, we calculated the deviation
rate DR(kr, α) from the patterns A,B,C,D, which is defined as follows:

DR(kr, α) =
1

N
lim
N→∞

N∑
t=1

[1−
n∏
i=1

{δ(hi(t), ai)} −
n∏
i=1

{δ(hi(t), bi)} (4.19)

−
n∏
i=1

{δ(hi(t), ci)} −
n∏
i=1

{δ(hi(t), di)}],

where δ(·, ·) is the delta function. N = 10000 was used for the calculation. The result is shown in
Fig. 4.4. In case of DR(kr, α) = 0, the orbit stays either of the periodic cycle A
B or C
D. While
in case DR(kr, α) = 1, the orbit never visit any of the memorized patterns. Chaotic itinerancy can
occur in 0 < DR(kr, α) < 1.

We also investigated the wandering range among the patterns A,B,C,D in kr − α plane to find
out the parameter region where the orbits visit both pair of patterns A
B and C
D. In such
case, both periodic cycle are partially destabilized and become the attractor ruins that allow the
orbits to escape and be attracted intermittently. The result is shown in Fig. 4.5.

The irregular transition between two attractor ruins is therefore occurring in the parameter
regions where there is no obvious periodicity (inside of brown regions in Fig. 4.3), more than 0 but
less than 1 deviation rate in Fig.4.4, and wandering orbit ranging among all patterns (red regions
in Fig. 4.5).
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Figure 4.4: Deviation rate from memorized patterns of CNN. Horizontal axis: α. Vertical
axis: kr. After cutting 5000 transient, 10000 steps were used to calculate the deviation rate at
each 0.01 step of kr and α. Initial conditions were taken randomly.

Figure 4.5: Wandering range among memorized patterns of CNN. Horizontal axis: α.
Vertical axis: kr. The blue region is where the dynamics visit none of the patterns A, B, C, D.
The yellow region is where the dynamics visit only either pair of patterns A
B or C
D. The
red region is where the dynamics visit both pairs of patterns A
B and C
D. After cutting 5000
transient, 10000 steps were used to calculate the wandering range at each 0.01 step of kr and α.
Initial conditions were taken randomly.
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4.2.5 Linear Stability Analysis

Chaotic itinerancy state is assumed to follow chaotic orbit in the transition process between at-
tractor ruins. Therefore, the orbital stability should be investigated to prove the existence of
chaos. Since possible attractor ruins A
B and C
D are situated inside of the invariant subspaces
(11115555) and (11333311) respectively, chaotic wandering orbits between these patterns are sit-
uated in the upper hierarchy of invariant subspaces. Indeed, in most of the parameter region,
the dynamics is situated inside of (11335577). To properly examine the stability of each invariant
subspace, it is important to consider the effect of such hierarchical structure on the dynamics .
Classical method to calculate Lyapunov spectrum such as Gram-Schmidt orthonormalization sim-
ply calculate the Lyapunov exponents in the descending order, and does not necessary consider
such symmetry of the model. We derive here the method to decompose the Lyapunov spectrum
according to a series of chosen invariant subspaces.

First, we formulate the Jacobian matrix DΦ(η, ζ) of CNN as follows:

DΦ(η, ζ) =

(
DηΦf (η, ζ) DζΦf (η, ζ)
DηΦr(η, ζ) DζΦr(η, ζ)

)
, (4.20)

where

DηΦf (η, ζ) =

 kf 0
. . .

0 kf

+W

 Dηf(η1 + ζ1) 0
. . .

0 Dηf(ηn + ζn)

 , (4.21)

DζΦf (η, ζ) = W

 Dζf(η1 + ζ1) 0
. . .

0 Dζf(ηn + ζn)

 , (4.22)

DηΦr(η, ζ) = −α

 Dζf(η1 + ζ1) 0
. . .

0 Dζf(ηn + ζn)

 , (4.23)

DζΦr(η, ζ) =

 kr 0
. . .

0 kr

− α
 Dζf(η1 + ζ1) 0

. . .

0 Dζf(ηn + ζn)

 . (4.24)

Dη and Dζ denote the differential operator with respect to η and ζ, respectively.

We consider the perturbation in the state apace of the chaotic neuron (η, ζ) ∈ R2n to the
directions inside and outside of the invariant subspaces (11115555) and (11335577), where chaotic
itinerancy takes place. For simplicity, we define the transpose σ2 and σ4 as follows, under which
the orbits inside of two-dimensional (11115555) and four-dimensional (11335577) are invariant,
respectively.

σ2 =

(
1 2 3 4 5 6 7 8
4 1 2 3 8 5 6 7

)
∈ C(W ), (4.25)

σ4 =

(
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)
∈ C(W ). (4.26)

We then define the perturbation vectors p2in1 , · · · , p2in4 to the directions inside of (11115555),
and p2out1 , · · · , p2out4 to the directions outside of (11115555) but inside of (11335577) as follows:
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(p2in1 , · · · , p2in4 ) = δ



1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1



, (p2out1 , · · · , p2out4 ) = δ



1 0 0 0
1 0 0 0
−1 0 0 0
−1 0 0 0
0 1 0 0
0 1 0 0
0 −1 0 0
0 −1 0 0
0 0 1 0
0 0 1 0
0 0 −1 0
0 0 −1 0
0 0 0 −1
0 0 0 −1
0 0 0 −1
0 0 0 −1



, (4.27)

where δ represents infinitesimal quantity. Hence the eight vectors p2in1 , · · · , p2in4 , p2out1 , · · · , p2out4

form the linearly independent basis of the state space (η, ζ) ∈ (11335577).
In the same way, we also define the perturbations p4in1 , · · · , p4in8 to the direction inside of

(11335577), and p4out1 , · · · , p4out8 to the direction outside of (11335577) as follows:

(p4in1 , · · · , p4in8 ) = δ



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1



, (4.28)

(p4out1 , · · · , p4out8 ) = δ



1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1



. (4.29)
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The sixteen vectors p4in1 , · · · , p4in8 , p4out1 , · · · , p4out8 form the linearly independent basis of the state
space (η, ζ) ∈ (12345678).

We then consider the development of these perturbations with time development. Using the
numerical symmetry of Jacobian matrix DΦ(η, ζ), the linear approximation of the perturbation
development for one time step DΦ(η, ζ)p has the following relation.

DΦ(η, ζ)p ∈ (11115555) if p ∈ {p2in1 , · · · , p2in4 }, (η, ζ) ∈ (11115555), (4.30)

DΦ(η, ζ)p ∈ (11115555)⊥ if p ∈ {p2out1 , · · · , p2out4 }, (η, ζ) ∈ (11115555), (4.31)

DΦ(η, ζ)p ∈ (11335577) if p ∈ {p4in1 , · · · , p4in8 }, (η, ζ) ∈ (11335577), (4.32)

DΦ(η, ζ)p ∈ (11335577)⊥ if p ∈ {p4out1 , · · · , p4out8 }, (η, ζ) ∈ (11335577). (4.33)

Here, (11115555)⊥ is the state space outside of (11115555) but inside of (11335577), while (11335577)⊥

is outside of (11335577). For simplicity, we call (11115555)⊥ simply as “outside of (11115555)”.
These relations mean that the perturbation developments are strictly separated according to the
hierarchical structure of the invariant subspaces, and it is possible to decompose them into the
directions inside and outside of where the orbit are situated.

Since the invariant subspaces are defined on the synchrony of the state space, their geometrical
compositions are situated always in the diagonal lines of the coordinates (η, ζ). We are now
motivated to choose another coordinate system to separate the independent development of the
perturbations. We first define the coordinates (H,Z) = (H1, · · · , H8, Z1, · · · , Z8)T which separate
(11335577) and (11335577)⊥ as follows.

(H,Z) = A(η, ζ), (4.34)

where

A = (aij) (4.35)

=



cos(π/4) sin(π/4) 0 0 0 0 0 0
0 0 cos(π/4) sin(π/4) 0 0 0 0
0 0 0 0 cos(π/4) sin(π/4) 0 0
0 0 0 0 0 0 cos(π/4) sin(π/4)

−cos(π/4) sin(π/4) 0 0 0 0 0 0
0 0 −cos(π/4) sin(π/4) 0 0 0 0
0 0 0 0 −cos(π/4) sin(π/4) 0 0
0 0 0 0 0 0 −cos(π/4) sin(π/4)


.(4.36)

The transformation matrix A is chosen so that H1, · · · , H4 and Z1, · · · , Z4 form the coordinates
inside of (11335577), while H5, · · · , H8 and Z5, · · · , Z8 outside of (11335577).

Then the CNN Φ : R2n → R2n can be reformulated on the coordinates (H,Z) as Ψ : R2n → R2n:

Ψ = (Ψf ,Ψr) : Rn ×Rn → Rn ×Rn, (4.37){
Ψf (H(t),Z(t)) = H(t+ 1)
Ψr(H(t),Z(t)) = Z(t+ 1)

, (4.38){
Hi(t+ 1) = kfHi(t) +

∑
k aik

∑
j wkjf(

∑
l alj(Hl(t) + Zl(t)))

Zi(t+ 1) = krZi(t) +
∑
k aikθr − α

∑
k aikf(

∑
l alk(Hl(t) + Zl(t)))

(1 ≤ i ≤ 8). (4.39)

The corresponding Jacobian matrix DΨ(H,Z) becomes as follows:

DΨ(H,Z) =

(
DHΨf (H,Z) DZΨf (H,Z)
DHΨr(H,Z) DZΨr(H,Z)

)
, (4.40)
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where

DHΨf (H,Z) =

 kf 0
. . .

0 kf

+


∑
k a1k

∑
j wkjDH1

f(
∑
l alj(Hl + Zl)) · · ·

∑
k a1k

∑
j wkjDH8

f(
∑
l alj(Hl + Zl))

...
. . .

...∑
k a8k

∑
j wkjDH1f(

∑
l alj(Hl + Zl)) · · ·

∑
k a8k

∑
j wkjDH8f(

∑
l alj(Hl + Zl))

 ,(4.41)

DZΨf (H,Z) =
∑
k a1k

∑
j wkjDZ1f(

∑
l alj(Hl + Zl)) · · ·

∑
k a1k

∑
j wkjDZ8f(

∑
l alj(Hl + Zl))

...
. . .

...∑
k a8k

∑
j wkjDZ1

f(
∑
l alj(Hl + Zl)) · · ·

∑
k a8k

∑
j wkjDZ8

f(
∑
l alj(Hl + Zl))

 ,(4.42)

DHΨr(H,Z) =

−α


∑
k a1kDH1

f(
∑
l alk(Hl + Zl)) · · ·

∑
k a1kDH8

f(
∑
l alk(Hl + Zl))

...
. . .

...∑
k a8kDH1

f(
∑
l alk(Hl + Zl)) · · ·

∑
k a8kDH8

f(
∑
l alk(Hl + Zl))

 , (4.43)

DZΨr(H,Z) =

 kr 0
. . .

0 kr


−α


∑
k a1kDZ1f(

∑
l alk(Hl + Zl)) · · ·

∑
k a1kDZ8f(

∑
l alk(Hl + Zl))

...
. . .

...∑
k a8kDZ1

f(
∑
l alk(Hl + Zl)) · · ·

∑
k a8kDZ8

f(
∑
l alk(Hl + Zl))

 . (4.44)

For simplicity, we denote the (i, j)-th element of the matrixDHΨf (H,Z), DZΨf (H,Z), DHΨr(H,Z),
DZΨr(H,Z) as DHiΨfj , DZiΨfj , DHiΨrj , DZiΨrj , respectively.

From the fact (4.32) and (4.33), The Jacobian DΨ(H,Z) can be decomposed into the following,
since the perturbation inside of (11335577) never turns outside and vice versa.

DΨ(H,Z) =


DHinΨfin 0 DZinΨfin 0

0 DHout
Ψfout 0 DZoutΨfout

DHin
Ψrin 0 DZinΨrin 0

0 DHout
Ψrout 0 DZoutΨrout

 , (4.45)

where
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DHin
Ψfin =

 DH1
Ψf1 · · · DH4

Ψf1
...

. . .
...

DH1
Ψf4 · · · DH4

Ψf4

 , (4.46)

DZinΨfin =

 DZ1
Ψf1 · · · DZ4

Ψf1
...

. . .
...

DZ1
Ψf4 · · · DZ4

Ψf4

 , (4.47)

DHoutΨfout =

 DH5Ψf5 · · · DH8Ψf5
...

. . .
...

DH5Ψf8 · · · DH8Ψf8

 , (4.48)

DZoutΨfout =

 DZ5Ψf5 · · · DZ8Ψf5
...

. . .
...

DZ5
Ψf8 · · · DZ8

Ψf8

 , (4.49)

DHin
Ψrin =

 DH1
Ψr1 · · · DH4

Ψr1
...

. . .
...

DH1
Ψr4 · · · DH4

Ψr4

 , (4.50)

DZinΨrin =

 DZ1Ψr1 · · · DZ4Ψr1
...

. . .
...

DZ1Ψr4 · · · DZ4Ψr4

 , (4.51)

DHout
Ψrout =

 DH5Ψr5 · · · DH8Ψr5
...

. . .
...

DH5
Ψr8 · · · DH8

Ψr8

 , (4.52)

DZoutΨrout =

 DZ5
Ψr5 · · · DZ8

Ψr5
...

. . .
...

DZ5
Ψr8 · · · DZ8

Ψr8

 . (4.53)

Therefore, the Lyapunov spectrum to the direction inside and outside of (11335577) can simply
be calculated from the corresponding non-zero Jacobian elements. Let

DinΨin =

(
DHin

Ψfin DZinΨfin

DHin
Ψrin DZinΨrin

)
, (4.54)

and

DoutΨout =

(
DHoutΨfout DZoutΨfout

DHoutΨrout DZoutΨrout

)
. (4.55)

Then the Lyapunov spectrum to the directions inside of (11335577) and outside of (11335577) can
be obtained separately from the time series of DinΨin and DoutΨout, with a classical method such
as QR decomposition.

In the same way, we can also decompose the Lyapunov spectrum into the directions inside of
(11115555), outside of (11115555) in (11335577), and outside of (11335577). To avoid redundancy,
we only give here the definition of the coordinates (H′,Z′) = (H ′1, · · · , H ′8, Z ′1, · · · , Z ′8)T which
separate the elements of Jacobian DΨ(H′,Z′) according to the hierarchy.

(H′,Z′) = A′A(η, ζ), (4.56)
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where

A′ = (a′ij) (4.57)

=



cos(π/4) sin(π/4) 0 0 0 0 0 0
0 0 cos(π/4) sin(π/4) 0 0 0 0

−cos(π/4) sin(π/4) 0 0 0 0 0 0
0 0 −cos(π/4) sin(π/4) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (4.58)

In this case, (H ′1, H
′
2, Z

′
1, Z

′
2)T are the coordinates inside of (11115555), (H ′3, H

′
4, Z

′
3, Z

′
4)T are out-

side of (11115555), and (H ′5, · · · , H ′8, Z ′5, · · · , Z ′8)T are outside of (11335577). The last coordinates
(H ′5, · · · , H ′8, Z ′5, · · · , Z ′8)T coincide with (H5, · · · , H8, Z5, · · · , Z8)T .

The result of calculation of the maximum Lyapunov exponents in the decomposed directions
are shown in Figs. 4.6 and 4.7. This enable us to verify the existence of chaos in each hierarchy of
the invariant subspace. To investigate the possible role of chaos in this model, chaotic itinerancy
between patterns A
B and C
D should have at least positive maximum Lyapunov exponent
inside of (11335577).

4.2.6 Temporal Dynamics of Chaotic Itinerancy State

Among the possible regions of chaotic itinerancy state, we investigate the temporal dynamics on
a specific refractory parameters, kr = 0.4 and α = 5.0. In this parameters, there exists chaotic
attractive set inside of (11115555) and (11333311) including the patterns A,B and C,D, respec-
tively (Fig.4.8), and the maximum Lyapunov exponents to the direction inside and outside of the
(11115555) and (11333311) are positive (Fig.4.6). The transversal instability of (11115555) and
(11333311) to the direction inside of (11335577) implies these subspaces went through the blowout
bifurcation. The temporal dynamics of the maximum moment Lyapunov exponents inside and
outside of (11115555) and (11333311) are also dominantly positive (Fig.4.10), and the orbits inside
of (11335577) fall neither inside of (11115555) nor (11333311) at least for a quite long period (We
tested the case until t = 1000, 000, 000). The orbits starting from almost all points of (12345678)
are attracted inside of (11335577), which reflect the transversal stability of (11335577) (Fig.4.7).
The orbits inside of (11335577) irregularly visit the patterns A,B,C,D, including partially preserved
temporal sequences of two-periodic cycles A
B and C
D (Fig.4.8), and the maximum Lyapunov
exponent and moment Lyapunov exponent are positive (Figs.4.7 and 4.9). This support the ex-
istence of chaos in term of the positive maximum Lyapunov exponent in this chaotic itinerancy
state.

The loss of stability to the transversal directions of (11115555) and (11333311) can be considered
as the blowout bifurcation. It has been widely reported in continuous time systems that the blowout
bifurcations of plural attractors associate the riddled structure of the attractors’ basins [29][30].
In this CNN, there exist two attractors A
B and C
D that are destabilized to their transversal
directions. To reveal whether there exists similar phenomenon in the chaotic itinerancy state, we
investigated the basin structure of CNN inside of (11335577). Since the dynamics seems to settle
on neither of the patterns A
B nor C
D, these attractors are considered to have gone through
the transversal crisis, and became the attractor ruins with attractive basins of positive measure.
We judged the basins according to the first retrieval of the patterns A,B or C,D, with respect to
the values of hi(t) (1 ≤ i ≤ 8).

The result shows a fractal boundary structure of two basins (Fig.4.11). The spatially complex
mixture strongly supports the occurring mechanism of the intermittent transition between two
attractor ruins. Due to the fractal boundary structure and orbital instability, each orbit is expected
to show a unique visiting sequence order and residence time to the attractor ruins, which becomes
distinguishable from others in a short time period. Note it is of further question whether the
blowout bifurcation associated with riddled basins is the general occurring mechanism of chaotic
itinerancy.
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Figure 4.6: Positive/Negative sign of the maximum Lyapunov exponents in (11115555).
Top: Directions inside of (11115555). Bottom: Outside of (11115555). Vertical axis: kr. Horizontal
axis: α. Initial conditions were taken randomly inside of (11115555). The blue region is where
the maximum Lyapunov exponent is negative, while the red region is positive. After cutting 5000
transient, 1000 steps were used for calculation at each kr and α. The values of kr and α were taken
for each 0.01 and 0.1 step, respectively.
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Figure 4.7: Positive/Negative sign of the maximum Lyapunov exponents in (11335577).
Top: Inside of (11335577). Bottom: Outside of (11335577). Vertical axis: kr. Horizontal axis: α.
Initial conditions were taken randomly inside of (11335577). The blue region is where the maximum
Lyapunov exponent is negative, while the red region is positive. After cutting 5000 transient, 1000
steps were used for calculation at each kr and α. The values of kr and α were taken for each 0.01
and 0.1 step, respectively.
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Similar situation is also investigated in other stochastic and dynamical system, with the interest
of defining “emergence” with respect to the temporal development of probability distribution of
the system variables, namely space-time phase [31] [32]. R.S. Mackay defined the emergence as
the existence of plural states of convergence for space-time phase, with weak/strong distinction.
The converged space-time phase corresponds to the SRB measure on an attractor with measure
positive attractive basin in dynamical system. “Weak emergence” is defined as due to the trivial
topological reason of the system, such as the existence of simple separatrix between plural attractors
in dynamical system. The coexistence of stable attractors in CNN at low refractoriness parameters
region corresponds to such case. While “strong emergence” is referred to as the sensitivity of
converged space-time phase to the initial condition, where tiny perturbation at the beginning can
lead to different phase. This is similar to the riddled basin situation at the bifurcation point in CNN.
Furthermore, Mackay mentioned to a more complex class of dynamics where space-time phase never
settles down (e.g. biological evolution, gravitational systems, aggregation and coarsening models).
In dynamical system counterpart, chaotic itinerancy in CNN is an example of such class of complex
system which goes beyond the definition of strong emergence.

Figure 4.8: Temporal dynamics of CNN. Top: Initial condition inside of (11335577). Bottom:
Initial condition inside of (11115555). Horizontal axis: Time step t. Vertical axis: CNN output
x(t). The color dots representing the patterns A,B,C,D are superimposed to the value of x(t) when
the network retrieved them. kr = 0.4, α = 5.0.
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Figure 4.9: Temporal dynamics of moment Lyapunov exponents with initial condition
inside of (11335577). Top: Moment Lyapunov exponents to the direction inside of (11335577).
Bottom: Moment Lyapunov exponents to the direction outside of (11335577). Horizontal axis:
Time step t. Vertical axis: Moment Lyapunov exponent. kr = 0.4, α = 5.0.

Figure 4.10: Temporal dynamics of moment Lyapunov exponents with initial condition
inside of (11115555). Top: Moment Lyapunov exponents to the direction inside of (11115555).
Bottom: Moment Lyapunov exponents to the direction outside of (11115555). Horizontal axis:
Time step t. Vertical axis: Moment Lyapunov exponent. kr = 0.4, α = 5.0.
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Figure 4.11: Basins structure of CNN. Horizontal axis: Value of x2i.c.. Vertical axis: Value of
x1i.c.. Initial condition were taken inside (11335577) and close to (11331133) as (η1, · · · , η8)T =
(ζ1, · · · , ζ8)T = (x1i.c. + δ, x1i.c. + δ, x2i.c. + δ, x2i.c. + δ, x1i.c. − δ, x1i.c. − δ, x2i.c. − δ, x2i.c. − δ)T with
δ = 1.0e− 6. The red region is where the orbits reach to the neighbor of the patterns A
B first,
while the blue region reach to the neighbor of the patterns C
D first. x1i.c. and x2i.c. were taken
for each 0.002 step with parameters kr = 0.4 and α = 5.0.
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4.3 Synthetic Modeling of Autonomous Learning

Based on the chaotic itinerancy state we have investigated in the above section with refractoriness
parameters kr = 0.4 and α = 5.0, we add and simulate the effect of autonomous learning. We
chose two basic ways of autonomous learning that are expected to exist widely and generally in
neuronal activity: Hebbian learning and the spike-timing-dependent plasticity (STDP) rule [33]
[34]. Of course, actual learning dynamics of in situ neurons have their own specificity and variation,
and cannot be reduced into simple rules with a small number of parameters. What we investigate
here is the possible role of mathematically simplified form of autonomous learning during chaotic
itinerancy. This is not necessary the modeling of experimentally observed neural dynamics, but
the combination of prototypical learning rules with a biological neuron model expressing candidate
dynamics of cortical transitory activity, which is accessible to mathematical analysis. In this sense,
we call it as synthetic modeling. In a wide sense, synthetic modeling is a part of constructive
modeling in complex system sciences, but rather emphasizes on the generic and qualitative property
which appears in the combination of candidate models, than the reconstruction of some observed
phenomenon with quantitative reproducibility.

4.3.1 Autonomous Learning with Hebb’s Learning Rule

Hebbian learning is the most classical rule to explain the self-organization of neural network, and
is based on the “cells that fire together, wire together” principle. We implemented this rule to
CNN to reinforce the connection matrix W = (wij) (1 ≤ i, j ≤ 8) depending on the dynamics itself
of the network. The additional Hebbian learning in CNN was defined as follows:

wij(t+ 1) = wij(t) + ε(2xi(t)− 1)(2xj(t− 1)− 1), (4.59)

where t is the time step of CNN and ε is the learning coefficient. We chose ε = 0.001 for the
following simulation.

4.3.2 Autonomous Learning with STDP Rule

The STDP rule is known to modify the synaptic conductance depending asymmetrically on the
difference of pre-synaptic and post-synaptic firing time. We defined the discrete time version of
STDP rule as follows:

wij(t+ 1) = wij(t) + ∆wij(t), (4.60)

∆wij(t) = gij(t)− gji(t), (4.61)

gij(t) = A

df∑
d=1

kd−1STDPAND(xi(t), xj(t− d)), (4.62)

where A is the norm of learning coefficient, and kSTDP controls the exponential decrease of learning
effect with respect to the spike timing difference d. We use A = 1 and kSTDP = 0.1 for the following
simulation. To implement the ‘nearest neighbor model’ of STDP learning between single pair of
neuron spikes, df is defined at each time step and neuron in relation to the past neuron activity,
so that

xj(t− d) < 0.5 (1 ≤ d < df ), (4.63)

xj(t− df ) ≥ 0.5. (4.64)

hold. In actual learning dynamics of CNN with STDP rule, neuron spikes are generally sparse and
past influence quickly decay in exponential. For the given parameters, it is approximately equal to
set df =∞. The AND(·, ·) is the extended Boolean expression defined as follows:

AND(xi(t), xj(t− d)) = hi(t)hj(t− d)xi(t)xj(t− d). (4.65)
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This means the function returns the value xi(t)xj(t − d) only when there exist spikes xi(t) ≥ 0.5
and xj(t− d) ≥ 0.5 of interval d. The defined STDP rule is depicted in Fig. 4.12.

Figure 4.12: STDP rule for discrete time CNN. Horizontal axis: Spike time interval d. Vertical
axis: Modification to wij defined in equation (4.62). kSTDP = 0.1.

4.4 Simulation Result and Discussion

The simulation is performed by adding Hebbian or STDP rule on the chaotic itinerancy state with
the parameters kr = 0.4 and α = 5.0, over an empirical range of the learning time steps. After the
learning, the refractoriness parameters were set to kr = α = 0 to investigate the memory structure.
Note that such transition between chaotic wandering state and ordered state is also reported in
EEG data [17]. We summarize here the observed modifications of the dynamics.

4.4.1 Periodicity of Emergent Attractors

Both Hebbian learning and STDP rules brought the network novel attractors, based on the pat-
terns A,B,C,D and transitional chaotic dynamics. We investigated the periodicity of the emergent
attractors, which is shown in Fig. 4.13 Top. Hebbian learning did not change the periodicity and
the modified attractors are always two-periodic, except the divergent case where the only attractor
is the fix point x = (1, 1, 1, 1, 1, 1, 1, 1)T . As for STDP learning, the periodicity of newly emerged
attractors varies in a quite wide range (Fig. 4.13 Middle). There exist orbits even more than ten
thousand period, which strongly implies the synthesis of strange attractors. Almost all periodicity
between 1 to 100 are observed. The histogram of the obtained periodicity is shown in Fig. 4.13
Bottom.

Such difference of results between Hebbian and STDP rules can be considered to relate the
temporal symmetry of the learning rules. STDP rule has the temporal asymmetry which is not
expressed in Hebbian rule. The effect of the past inputs with more than one time step interval
may also bring variation to periodicity.

4.4.2 Spatial Configuration of Emergent Attractors

The two-periodic patterns emerged from Hebbian learning consists of two kinds; the former attrac-
tor A
B, C
D or the novel patterns which are different from any of A, B,C,D. The cases of A
B
and C
D are investigated in the following section. We examine here the spatial configuration of
the novel patterns, which are depicted in Fig. 4.14.

The newly emerged patterns are also limited to two kinds, and they are both situated in the
equidistance points from A
B and C
D. Furthermore, these patterns are situated in the invari-
ant subspace (11335577), which is the minimum union of the (11115555) and (11333311) where
former attractors were situated. This geometry implies that the novel patterns are in a sense the
integration of the attractors A
B and C
D in the smallest subspace preserving their periodicity.
This is interesting as an analogical process of dialectic, where the opposing two theses find the way
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Figure 4.13: Periodicity of attractor after autonomous learning. Top: Hebbian learning.
Horizontal axis: Time step of Hebb learning. Vertical axis: Periodicity of attractor after the
learning. Middle: STDP learning. Horizontal axis: Time step of STDP learning. Vertical axis:
Periodicity of attractor after the learning. Bottom: Histogram of periodicity after STDP learning.
Horizontal axis: Periodicity of attractor after the learning. Vertical axis: Percentage (Values more
than 3.0e-3 are cut off). The periodicity after the learning was judged by resetting kr = α = 0 and
cutting 5000 transient. 100 trials are superimposed for each learning step. Initial conditions were
taken randomly.

to be sublated not by logically solving the contradiction but by changing the way of asking itself.
Here, we used the analogy of chaotic itinerancy state as the contemplation process comparing two
symmetric patterns [35] [36], and the result of autonomous learning as the formation of an sub-
lated idea. Although this is a quite simplified realization, this may lead to one of the adaptive
computing principles with neural network, where neuronal plasticity plays essential role to produce
internal complexity of the system dynamics to cope with external environment. This perspective
is further discussed in later section, in relation to the formal logic in topological psychology. On
the other hand, computing with dynamical systems such as associative memory generally utilizes
the retrieval process to classify the input patterns according to memory structure, and does not
consider the modification of the memory itself in interaction with the retrieval dynamics.

Although the possible emergent patterns are limited with Hebbian learning, its reproducibility
requires a quite high numerical precision of initial condition down to the order of 1.0e-17 (in case
of 350 learning steps). This may be a reflection of the observed riddled basins structure to the
learning dynamics and orbital instability, since the global behaviors of the orbits differ depending
quite sensitively on the initial conditions.

The emerged attractors from STDP rule are more suppressive, and in most cases express the
output patterns h(t) = (0, 0, 0, 0, 0, 0, 0, 0)T and a few patterns with only a single pair of neurons
firing inside (11335577) according to the varying periodicity, such as h(t) = (1, 1, 0, 0, 0, 0, 0, 0)T .
The sensitive dependence on initial conditions was also observed numerically in the same order as
Hebbian learning.

4.4.3 Modification of Invariant Subspaces

Since the connection matrix W is modified by autonomous learning, the structure of the invariant
subspaces reflecting its symmetry also changes temporally. In both Hebbian and STDP leaning, the
remaining invariant subspaces in rigorous definition are only those in above hierarchy of (11335577)
(Fig. 4.2 Top). This is due to the loss of the other synchronizations in the orbits. Since chaotic
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Figure 4.14: Possible emergent attractors after Hebb learning. The arrows are four-
dimensional coordinates (x1 = x2, x3 = x4, x5 = x6, x7 = x8)T of the CNN output inside of
(11335577). The blue points are memorized patterns A, B, C, D. The red points E, F, G, H are
possible emergent two-periodic attractors, and are situated at the equidistance points from A
B
and C
D. Only two-periodic patterns E
F and G
H are possible to emerge. The green point is
the divergent case that corresponds to the fix point (1, 1, 1, 1)T .
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Table 4.2: Oscillation of the number of invariant subspaces in case of the asymmetric
convergence to one attractor C
D. Invariant subspaces were calculated for each 100 time
steps with the allowance of 0.01. kr = 0.4, α = 4.0. Only the relative differences with respect to
the past time step are listed.

Number of Time Steps of
Invariant Hebbian
Subspaces Learning

76 0
49 100
34 200
43 1100
25 10000+

itinerancy takes place in (11335577), four pairs of neurons are always synchronized regardless of its
irregularity. Therefore, although all values of connection matrix are being modified, the symmetry
of the connection matrix supporting the above hierarchy of (11335577) is completely maintained.
While other invariant subspaces are destroyed by the chaotic irregularity.

Since (11115555) and (11333311) are situated below (11335577), the attractors A
B and C
D
are destabilized along with the destruction of the invariant subspaces (Fig. 4.2 Bottom). The
invariant subspaces which are neither above nor below (11335577) also possess attractor inside
(11111111). Although these are measure zero subspaces with respect to the whole state space,
their dimensions vary from one to seven. These can also be considered as a part of memory
structure. As the invariant subspaces are trimmed leaving only the structure used in retrieval
process, the observed modification can be interpreted as the simplification or refinement of the
memory. Hence, the selective destruction and conservation of invariant subspaces are impossible
to realize with stochastic noise. Such utility of chaos lies in its completely deterministic property.

Although the rigorous invariant subspaces other than above (11335577) are instantaneously
destroyed by the autonomous learning, approximate invariant subspaces shows certain dynamics
which reflects the nature of dynamics. We consider the case of Hebbian learning in which the
competition between two attractors A
B and C
D takes place. We define the approximate
invariant subspaces by admitting certain tolerance to the condition (4.11), and investigate the
asymmetric convergence to one attractor.

Tab. 4.2 shows an example with kr = 0.4 and α = 4.0. In this case, the number of the approx-
imate invariant subspaces is oscillating with respect to the time steps of Hebbian learning. The
dynamics finally settled to the pattern C
D after more than 10000 learning steps.This dynamics
implies that certain invariant subspaces are repeatedly destroyed and recovering during the learn-
ing. The prevalence of certain invariant subspaces are assumed to relate the localization of orbit
between two attractors. The oscillation of the number of invariant subspaces continues until one
basin structure becomes completely dominant and fixed. This can be analogically interpreted as
the decision-making process, where one is supposed to choose only one side from the two possibil-
ities. The chaotic itinerancy state is again the analogy of contemplation process comparing two
patterns. The final settlement to the pattern C
D that drove out the pattern A
B corresponds
to the decision-making.

4.4.4 Change of Residence Time Distribution

The defined autonomous learnings always follow the principle that the more frequently causal
temporal structures appear, the more they are reinforced. The way of visiting each attractor ruin
during the learning gives us the information how the self-organization of novel attractors proceeds.
We investigated the residence time distributions for the typical emergent cases of the novel two-
periodic attractor E
F (see Fig. 4.14) in Hebbian learning and three-periodic attractor in STDP
learning in Fig.4.15.

Residence time distribution of the chaotic itinerancy state with kr = 0.4 and α = 5.0 shows uni-
modal pattern that may be approximated with gamma-distribution. Additional Hebbian learning
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triggers the right shift of the distribution and the overall increase of the visiting rate. This means
that the more Hebbian learning proceeds, the more frequently and the longer the learning orbit
visits on the patterns A
B and C
D. This can be considered as the self-organized reinforcement
of attractiveness to each attractor ruin, and the learning was revealed to augment the neural cor-
relations of memorized patterns during chaotic itinerancy. The increase of correlations may also
be supported by the learning of transitional chaotic state with low neural activity. The continuous
sequences of low outputs also increase the connection weight in the defined setting. Though, the
simple increase of the Hebbian learning step does not lead the network to the divergent pattern.

As for STDP learning, generally the learning orbits become periodic regardless of the refrac-
toriness, and the residence time distribution shrink to the residence time 1. The dynamics do not
stay more than 1 step on each pattern during learning, including no residence time on the four pat-
terns. STDP learning on attractor ruins seems to be cancelled out with the periodicity two of the
patterns A
B and C
D, since the reinforced connections at A→B and C→D are weakened by the
successive B→A and D→C. On the other hand, the exponential duration of STDP rule seems also
to reinforce the firing patterns other than A,B,C,D in transitional chaotic state which are generally
sparse. Such isolated patterns are weakened in Hebbian learning. In chaotic dynamics, it is known
that there exist countably infinite sets of unstable periodic orbits with arbitrary periodicity. It is of
interest whether the STDP rule brings rich variation of periodicity by stabilizing long periodicities
from chaotic orbit.

Figure 4.15: Residence time distribution on memorized patterns before and after au-
tonomous learning during chaotic itinerancy (CI). Horizontal axis: Residence time step
on patterns A, B, C, D. Vertical axis: Occurrence number of each residence time divided by the
total time step 10000. The blue line is calculated from the dynamics without any modification to
connection matrix W , while the red line is after adding 350 steps of Hebbian learning. The green
line is after adding 350 steps of STDP learning. The distribution of STDP learning is multiplied by
0.1. Initial condition was chosen to emerge the patterns E
F (see Fig. 4.14) for Hebbian learning,
and three-periodic patterns h(t) = (1, 0, 0, 0)T → (0, 0, 0, 0)T → (0, 0, 0, 0)T · · · for STDP learning
in (11335577). kr = 0.4, α = 5.0.

4.4.5 Change of System Decompositionability by Hebbian Learning

The effect of Hebbian learning during chaotic itinerancy was revealed to reinforce simultaneous
neural correlation in this model. It is of interest which combinations of the neuronal synchrony
arise. The augmentation of coincident firing patterns rate can be interpreted as the formation
of modularity, which can lead to the functional differentiation. To investigate the emerged sys-
tem modularity during Hebbian learning, we consider the time-averaged four-dimensional discrete
distribution P (y1, y2, y3, y4) of binary outputs h(t) in (11335577) as

P (y1, y2, y3, y4) =
1

T

T∑
t=1

δ(h1(t) = h2(t), y1)δ(h3(t) = h4(t), y2)

·δ(h5(t) = h6(t), y3)δ(h7(t) = h8(t), y4). (4.66)
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Where δ(·, ·) is the delta function, T is the temporal average window and yi(t) ∈ {0, 1} (1 ≤ i ≤ 4).
To measure the statistical modularity expressed as correlation among (y1, y2, y3, y4), we define

the decomposed distribution P dec(y1, y2, y3, y4) as the product of two joint distributions P (y1) and
P (y2) of the decomposed subsystems y1 and y2 .

P dec(y1, y2, y3, y4) = P (y1)P (y2), (4.67)

where

y1 = (yi1 , · · · , yik), {i1, · · · , ik} ⊂ {1, · · · , 4}, k ∈ {1, 2, 3}, (4.68)

y2 = (yj1 , · · · , yi4−k), {i1, · · · , ik} 6⊃ {j1, · · · , j4−k} ⊂ {1, · · · , 4}. (4.69)

Note that the system decomposition is not limited to two parts, and there exist up to the four
subsystems in (11335577) which can be easily generalized such as

P dec(y1, y2, y3, y4) = P (y1)P (y2)P (y3), (4.70)

y1 = (yi1 , yi2), {i1, i2} ⊂ {1, · · · , 4}, (4.71)

y2 = (yj), {i1, i2} 63 {j} ∈ {1, · · · , 4}, (4.72)

y3 = (yk), {i1, i2, j} 63 {k} ∈ {1, · · · , 4}, (4.73)

for three subsystems, and

P dec(y1, y2, y3, y4) = P (y1)P (y2)P (y3)P (y4)

= P (y1)P (y2)P (y3)P (y4), (4.74)

for four subsystems. In each decomposed distribution P dec(y1, y2, y3, y4), only correlations between
the defined subsystems are set to be independent, and the correlations inside of each subsystem
are preserved.

We measured the decompositionability of the system P (y1, y2, y3, y4) into P dec(y1, y2, y3, y4)
with Kullback-Leibler (KL) divergence D[· : ·] as follows.

D[P (y1, y2, y3, y4) : P dec(y1, y2, y3, y4)]

=
∑

y1,y2,y3,y4∈{0,1}

P (y1, y2, y3, y4) log
P (y1, y2, y3, y4)

P dec(y1, y2, y3, y4)
. (4.75)

This means that if the value of D[P (y1, y2, y3, y4) : P dec(y1, y2, y3, y4)] is large, the system loses
much information by the decomposition, therefore there exist high modularity on the nullified in-
teractions. Note that the total system decompositionability D[P : P dec = P (y1)P (y2)P (y3)P (y4)]
is referred to as a complexity measure in several studies [31] [37][38].

The calculation result of KL divergence for each system decomposition during chaotic itinerancy
after 350 steps of Hebbian learning is shown in Figs. 4.16. The parameters were chosen to realize the
emergence of novel two-periodic attractor E
F (see Fig. 4.14) after the learning. Before adding
the learning, the chaotic itinerancy state showed modularity in y = (y1, y3) and y = (y2, y4)
because cutting between them do not lose much information measured with KL divergence. As the
Hebbian learning proceeded, the KL divergences strongly augmented, meaning the system increased
the corresponding statistical coherence. After 350 steps of learning, chaotic itinerancy state showed
three kinds of uniform KL divergence values proportional to the number of decomposed subsystems.
Interestingly, the relation

1

4− 1
D[P : P dec = P (y1)P (y2)P (y3)P (y4)]

=
1

3− 1
D[P : P dec = P (y1)P (y2)P (y3)]

=
1

2− 1
D[P : P dec = P (y1)P (y2)], (4.76)
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holds. This relation stands for the fact that the system loses the same amount of information when
isolating any arbitrary subsystem. This means that the neuronal synchrony rate augmented in the
way that the degrees of interactions became identical among all elements. In such distribution,
there exists no easiest decomposition. In other word, the existed modularity of the dynamics are
integrated in the total coherence of the system after the learning.

Figure 4.16: KL divergence of the system decompositions. Top: Chaotic itinerancy (CI)
state before learning. Bottom: Chaotic itinerancy (CI) state after 350 steps of Hebbian learning
with learning coefficient ε = 0.01. Horizontal axis: < · · · · > represent system decompositions in
which correlations between different numbers of elements are set to be independent. e.g. < 1212 >
corresponds to P dec(y1, y2, y3, y4) = P (y1)P (y2) where y1 = (y1, y3) and y2 = (y2, y4). Vertical
axis: KL divergence D[P : P dec]. kr = 0.4, α = 5.0, T = 10000 were used for the calculation.

4.4.6 Computational Rationale of Autonomous Learning in Relation to
Topological Psychology

We finally revisit the analogy with dialectic of the emerged attractors during the autonomous
learning, in relation to a formal logical description of dialectic in topological psychology. We aim
here to investigate the computational rationale of autonomous learning in view of realization of a
system which incorporate dialectical information processing.

Usually dialectic describes the one’s mental process which wander around contradictory experi-
ence or thoughts, meanwhile creating a solution which trivializes the cognitive dissonance to some
extent. Such dynamical view on mental activity was also one of the connectionist’s motivation
concerning the versatility and generativity of cognitive system. Neural network model based on
parallel distributed information processing was proposed analogous to the physiological structure
of neural systems, with expectation to realize certain aspect of our mental activity missing in
classicist’s way of serial-processing symbolic computation. [39]

Indeed, several authors have proposed connectionist models of dialectical psychology with dy-
namical system, in both on-going mental process [40][41][42][43][44] and long-term developmental
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process [45].
Our model with CNN also find common interest with this stream, but gives distinguished em-

phasis on chaotic dynamics with neurophysiological basis. The representation of memory structure
is also particularly grounded on intermittent chaotic dynamics in CNN called chaotic itinerancy,
in which the interior crisis of attractors leads to the dynamical transition between plural attractor
ruins. The analogy of chaotic itinerancy with volatile aspect of mental process were assigned by
I. Tsuda and insisted to be a core concept of hermeneutics and mathematical model of dynamical
brain activity [21] [35] [36].

Acknowledging the background of connectionist’s interest on dialectic, we go back to the rela-
tion between our model and topological psychology. One of the classical philosophical descriptions
of dialectic with particular emphasis on the contradiction process was developed by celebrated
philosopher G.W.F. Hegel [46]. It was further adapted in the context of Piagetian theory of cogni-
tive development in dialectical psychology by K. Riegel [47]. Riegel’s psychological interpretation
of Hegel’s dialectic are summarized by C.W. Hoffman as follows, namely Hegel-Riegel laws [48]:

1. The unity and struggle of opposites.

2. The transformation of quantitative into qualitative change.

3. The negation of the negation.

C.W. Hoffman expressed these principles with formal logic by means of set-theoretic operation
with symmetric difference structure, and further relation to various mental activities are investi-
gated in the name of topological psychology. We briefly introduce his framework for the following
argument [48][49]. The symmetric difference $ between two cognitive sets S and S′ is defined using
set-theoretic intersection (∩) and union (∪)as follows:

S$S′ = (S ∪ S′) \ (S ∩ S′). (4.77)

The symmetric difference and the complements ¬(S ∪ S′) are equivalent to Sheffer stroke in
logic, which is the NAND operation in Boolean algebra and the generator of other operators in
ordinary first order logic such as AND, OR, NOT, and IMP [50]. Formal operation is thus realizable
by the combination of the symmetric difference and NOT (¬), AND (∩) operation. For example,
the OR (∪) operation is derived as follows:

S ∪ S′ = (S$S′)$(S ∩ S′). (4.78)

Hoffman insists that the symmetric difference represents the first two of the Hegel-Riegel laws:
In the definition 4.77, the term (S∪S′) is naturally the unity, from which the commonality (S∩S′)
is substituted as the struggle of opposites. The quantitative change between two sets |S| − |S′| is
transformed into qualitative one S$S′ by set-theoretic definition of commonality (S∩S′). Here, |S|
corresponds to a simple quantitative measure of the set S, such as the element number. The third
law, “the negation of the negation” corresponds to a part of the complementary set of symmetric
difference −(S$S′). From

¬(S$S′) = (S ∩ S′) ∪ (¬S ∩ ¬S′), (4.79)

the complementary set ¬(S$S′) is the union between the Hegel’s union of opposite S ∩S′, and the
intersection of not S and not S′, as the negation of the negation. The second term can be considered
as the context within the universe of discourse. The commonality S∩S′ is nothing but the synthesis
through the struggle between the thesis S \ (S ∩ S′) and anti-thesis S′ \ (S ∩ S′). The cognitive
sets S and S′ are not appropriate in itself to be called thesis and anti-thesis, since the synthesis
S ∩S′ is supposed to contain a novel dimension which does not exist beforehand. The substitution
of S ∩ S′ in both theses represent the novelty of synthesis, which is at the same time a cognitive
commonality between them. Fig. 4.17 shows the Venn diagram of the symmetric difference $



4.4. SIMULATION RESULT AND DISCUSSION 69

in relation to ordinary set-theoretic operations. Dialectical pair with symmetric difference is an
elemental unit of our symbolic conceptualization, which establishes semantic relation where the
meaning is defined by contrastive reference to symmetric counterpart [47].

We utilize the introduced dialectical pair S and S′ to formalize symbolically the results of
autonomous learnings in CNN in a way compatible to set-theoretic operation. Chaotic itinerancy
actually incorporates the dynamics on dialectical pair: The orbit intermittently transit between
symmetric attractor ruins, which can be regarded as the symmetric sets without commonality. The
presence of orbit in each attractor ruin is mutually exclusive. Therefore, the memory attractors
A
B and C
D corresponds to the thesis T and anti thesis T ′ defined as a part of the cognitive
sets S and S′ as follows:

T = S \ (S ∩ S′), (4.80)

T ′ = S′ \ (S ∩ S′). (4.81)

Where T is A
B and T ′ is C
D in binary output space of CNN.
The synthesis S ∩ S′ corresponds to the emerged attractors such as E
F, G
H in Hebb

learning, and various periodic attractors in STDP learning. Fig.4.18 shows the relation between
thesis, antithesis, synthesis, and the underlying cognitive sets in case of Hebb learning. The
commonality of symmetric cognitive sets S ∩ S′ can be expressed as the OR operation of CNN
binary output patterns. According to the simulation results, the cognitive sets can be directly
defined from the geometrical composition of thesis and anti-thesis, but usually there is no analytical
way to derive it: The synthesis is only possible in the OR product space of the memory attractors.
In case of STDP learning, the situation becomes more complex since it includes further information
of the change in periodicity. Empirical simulation can still incorporate statistically major results
of emerged attractors into Boolean logic expression.

One would question what is the use of the autonomous learning, if the emerged results can be
simply classified and expressed as Boolean logic. Actually our model does not allow simple symbolic
classification of the results with respect to the parameter space: There exist high sensitivity on
initial conditions as the property of chaotic dynamics. The group of the initial conditions giving
the same result of autonomous learning is supposed to form a Cantor set. As shown in Fig.4.18,
we can only represent the results of emerged attractors with parameters specified at the digit limit
of computation. Theoretically, it may reach to real value precision. If one try to simulate the
same system as CNN with autonomous learning only by a system composed of Boolean logic, the
infinite length of the program is needed to perfectly follow the sensitivity to initial conditions.
The characterization of autonomous learning with Boolean logic only shows us the computational
rationale in classified results with specified parameters, and does not reduce the complexity of
chaos.

This raises a deeper consideration on what has been severely argued between classicists and
connectionists. With the presence of chaotic dynamics, both approaches encounter the same diffi-
culty in different aspects. The connectionists emphasize biological realism. They try to imitate the
structure of the system and expect to reconstruct the mechanism of the input-output relations. The
difficulty lies in the observational resolution of a cognitive system, which is extremely complex in
different scales. One can not incorporate hierarchical structures including chaos of molecular scale
in a macroscopic model. The artificial intelligence, on the other hand, is not necessary attached to
biological mechanisms but rather seeks for realizing “intelligent” behaviors in a more metaphysical
level. They start from abstracting human mental activity, then try to construct an algorithmic
system and implement it in artificial systems such as computer simulation and robots to test the
degree of achievement [51].

The connectionist model including chaos such as CNN can not specify the control resolution
of initial conditions with respect to the long-term prediction. No matter how small we divide the
phase space, miniscule changes quickly propagate to the system size. Therefore, one can not specify
a finite set of symbols which would accurately reproduce input-output patterns in a long run. In
a more complex case such as the emergence of strange attractors in STDP learning, the condition
requires much more resolution in shorter term.

Even without the autonomous learning, the approximation of chaotic itinerancy in CNN with
time-series analysis model such as high-order Markov process encounters a similar difficulty from
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chaos. Chaotic dynamics usually contain unstable periodic orbits of arbitrary periodicity, which
can not be expressed as a deterministic finite state automaton.

Although the CNN is defined with a finite length of algorithm, the reconstruction of the gen-
erated sequences without the mechanism becomes impossible with a finite code due to the Cantor
set structure of the phase space. The effort from the outside to capture the chaotic dynamics in
an algorithmic way with a finite symbolic set is nullified by the infinite riddled structure of Cantor
sets.

In other words, the perfect emulation of the autonomous learning in CNN is generally impossi-
ble, because the initial condition giving the same results is undecidable in computability theory. A
set of natural numbers is called recursive, computable or decidable if there is an algorithm which
terminates after a finite amount of time and correctly decides whether or not a given number
belongs to the set. Since the Cantor set is defined on the infinite self-recurrence, such algorithm
does not exist. Therefore, the emulation of CNN is undecidable in the same way as the halting
problem of Turing machines.

The approach of artificial intelligence generally consider the input-output relations from the
outside of the system, and propose the algorithm which would replace the black box, the inside of
the system. Connectionist model including CNN try to reproduce the input-output patterns by
reconstructing the internal mechanism of the system. With this, we suggest to call the top-down ap-
proach of artificial intelligence as the ”out-in emulation”, while the bottom-up connectionist model
as the ”in-out reconstruction”, considering the difficulty of the same origin that both encounter in
chaotic systems. Figs. 4.19 schematically show the difference of these conceptualizations. Besides
the conventional top-down and bottom-up classification, we propose to consider the complexity of
chaotic input-output relations, which originates from inside of the system.

Autonomous learning is difficult to control and takes much more time to calculate than simple
symbolic operation. Though, it is profoundly grounded to the intrinsic mechanism of cognitive
systems and seek for the autonomous dynamics of information processing which actually produce
novelty in living system. Interest of connectionism in terms of parallel information processing also
shares the same perspective.

It is of further interest whether the other basic Boolean operators such as AND and NOT is
realizable with autonomous learning. Actually, the emerged various periodic attractors from STDP
learning contain the AND patterns of the memorized attractors. The NOT sets of the synthesis
E
F and G
H can also be interpreted as the NAND of the two cognitive sets in Fig. 4.18.
Empirical listing of the learning rules and parameters with respect to the modification of memory
structure is needed to realize the application in analog computing.

Figure 4.17: Venn diagram of symmetric difference $. The exclusive disjunction or XOR of
two cognitive sets S and S′ coincides with S$S′, within the universe of possible cognitive sets U .
Based on [48].
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Figure 4.18: Relation between cognitive sets S and S’, including thesis T, antithesis T’
respectively, and their OR product OR(T, T’) in binary phase space of CNN outputs.
Results of Hebb learning.

4.5 Conclusion

We first analyzed the dynamics of CNN mainly in terms of the periodicity, the deviation rate from
attractors, the wandering range, and the linear stability according to the hierarchical structure of
invariant subspaces. The chaotic itinerancy state of CNN was revealed to occur with the blowout
bifurcation of the attractors, and was associated with the riddled basins structure.

Next, we synthetically investigated in the simulation the possible constructive role of chaotic
itinerancy state in interaction with the autonomous learning rules. Hebbian learning was shown
to be able to converge the memorized attractors to form novel ones in their equidistance points,
conserving the periodicity and augmenting neural correlation. STDP learning rather suppressed
average neural activity but derived a rich variation of periodicity in the emerged attractors. The
deterministic property of the system allowed both Hebbian and STDP learning to conserve the
invariant subspaces superior than where the orbits are situated, which can be interpreted as the
selective destruction and preservation of memory structure.

Further experimental verification is needed for the generalization of the results in more physiology-
grounded situations.
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Figure 4.19: Difference of approaches to chaotic systems in artificial intelligence and
connectionism. Top: Out-in emulation of artificial intelligence. Bottom: In-out reconstruction
of connectionism. Artificial intelligence generally try to imitate the complex input-output relation
of the system from the outside, by proposing the algorithm which realizes observed patterns. The
model is not necessary following the neural basis, and in most cases conceptual. The connectionism
starts from knowing the neural structure of cognitive system from the inside, and imitate its
mechanism, expecting the reconstructed system would produce similar input-output relation.
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Chapter 5

Internal Measurement of Chaotic
Itinerancy as Catalyst of Learning

Abstract

We review and extend the measurement-oriented theory proposed by Y.-P. Gunji
to interpret the emergent process of novel attractors in CNN investigated in the pre-
vious chapter. The results will be interpreted as an extension of celebrated concept of
“chaos as catalyst of learning”, which also finds the interpretation in terms of internal
measurement. The novel attractors can be explained as a process toward the realiza-
tion of pseudo-solution, generated by the autonomous learning based on the intrinsic
mechanism of the system, introducing the modification of the interface to avoid chaotic
itinerancy state as contradiction.

Keywords: Internal measurement, Measurement-oriented physics, Pseudo-solution

Methodology: Formulation of chaos in dynamical system as an internal observer
→ Formulation of CNN as an internal observer → Interpretation of the results of
autonomous learning with measurement-oriented theory

5.1 Introduction of Measurement-Oriented Physics

Yukio-Pegio Gunji has been insisting the importance of transition from “state-oriented physics” to
“measurement-oriented physics” in complex systems sciences. The measurement-oriented theory is
based on the process of the internal observation by which it becomes conceptually accessible to the
problem of emergence such as the origin of autonomous system. Such approach is also expected
to bring novel explanation on the genesis of some observed laws in state-oriented physics, such
as Zipf’s law and 1/f fluctuation, to name a few. In this section, we will briefly introduce the
perspective of Y.-P. Gunji based mainly on [4] (Ch.15) and [52], for further application on CNN
dynamics observed in the previous chapter.

5.1.1 Cartesian Cut

The separation between an observer and an object is called Cartesian cut taking after the celebrated
philosopher René Descartes. If we observe a system according to the Cartesian cut, we encounter
the following problem:

When we try to identify an object, namely Xn, we have to define the observer Xn+1 that is
independent from Xn. Here, the relation between Xn and Xn+1 defines the context of observation
and we call it as interface, as depicted in Fig. 5.1. The interface of the observation, however, does
not have any foundation since the Xn and Xn+1 is supposed to be completely independent. The
interface was chosen in its own terms, without any comprehensive ground. If we then look for
the foundation of the interface between Xn and Xn+1, it requires a larger perspective that can be
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called Xn+2. Then follows the foundation of Xn+2 as Xn+3, whose foundation as Xn+4, ... and so
forth. The pursuit of the foundation of observation ends up with infinite regression as in Fig. 5.2.

Gunji formalized such infinite regression by representing the interface as F , and symbolized
with the following equation [52]:

F (Xn) = Xn+1. (5.1)

Here, the object and observer are in absolutely relative relation, therefore for any i < j, the
following holds.

F (Xi) = Xj . (5.2)

Figure 5.1: Cartesian cut between object and observer, and connecting interface. Based
on [52].

Figure 5.2: Infinite regression between object and observer. Based on [52].

5.1.2 Genesis of Contradiction and Pseudo-Solution

From the compatibility with respect to the limit operation of F in equation 5.2, we have the
following:

F (lim
i
Xi) = lim

F
F (Xi). (5.3)

Then with F (Xi) = Xi+1, we have

F (X∞) = X∞. (5.4)

The X∞ is formally called as fix point since it is invariant under the operation F . However,
this notation seems to be contradicting the proper definition of F , which is to define the observer
from the object. In Cartesian cut, the object and observer always have to be separated.

To solve this contradiction, we recall here that the equation 5.4 is not the definition, and
reconsider it as an equation that corresponds to establishing a novel problem. We are interested
in what brings the framework of measurement-oriented theory, at the limit of infinite regression.
Therefore, the X∞ is something that is at the same time object and observer. In actual situation,
the fix point of a dynamical system is at the same time the input (object) and output (observer),
if we consider that the system is described by F .
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5.1.3 Groundlessness of Interface

In previous section, the pursuit of the foundation of interface between the object and observer
led to the contradiction with the definition of F . Gunji introduced a perspective to identify the
definition with the equation to solve this contradiction, but one should ask what is the justifi-
cation of this identity. In fact, Gunji admits that there is no foundation for this rhetoric. The
definition and the equation was groundlessly considered as compatible in equation 5.4. Therefore,
the pursuit of the foundation of interface was shifted to that of between definition and equation,
and the problematics are just postponed in another conceptual framework. In this sense, Gunji
called this treatment as pseudo-solution, and rather insisted that this paradoxically supports the
groundlessness of the interface. Gunji describes the situation as the following [52]:

If the goal of science is to establish a perfect, consistent description of the world by converging
all movement and process into geometry, what we finally obtain would only be an absolutely relative
interface. (Translation by M. Funabashi)

This indication is not only the criticism of usual sciences, but rather based on the problem
consciousness in internal measurement theory, which tries to tackle the problem of groundlessness
in a positive manner. Internal measurement theory is an attempt to start from an absolutely
indefinite interface to describe the living world such as time, history, evolution, etc.

5.1.4 Dynamical Model of Internal Measurement

Gunji incorporated the groundlessness of interface into dynamical model (See Fig. 5.3). Let us
think in discrete time steps t, t + 1, t + 2, · · · , which is also a groundless definition called time.
The state of the time t develops to that of t + 1 with function ft. Then, the contradiction to use
infinitely the rule ft appears to be the fix point in the equation (5.4), whose solution provides a
novel rule of time development. This pseudo-solution defines the new function, for example, ft+1.

Continuing this sequence, the time development produces at each time step a novel problem
and solves it, which never reaches to a complete settlement but an endless continuation [52]. This
is exactly the process of the identification between the definition and equation, and the derivation
of its pseudo-solution in equation 5.4.

In this process, at every time step the system regenerates the time development rule, demolishing
the previous one. Therefore, as long as we observe such system from exterior, the time development
seems not to follow the principle of causality. Gunji concludes that the situation where the pseudo-
solution in the form of the fix point is temporally admitted as an solution by the system is the very
process of happening in internal measurement. He incorporated this principle in cellular automata
and propose a basic model of internal measurement that provided further insights on this subject
[52]..

5.1.5 Emergence as Pseudo-Solution of Contradiction

In our subjective cognitive process, when we encounter some contradiction, it is also possible to
ignore such dissociation and change the context or way of asking the question, which would bring
another way of dealing with than directly tackling it. Such attitude can be abstracted to create
another dimension to eliminate the contradiction into it and pretend to have solved the problem in
former context (Fig. 5.4). This treatment is abundant in our real life, although it is not permitted
in the rhetoric of usual physics or logical operation. Such process is nothing but a pseudo-solution,
as previously mentioned, but by declaring it as a temporal solution in former context, the contra-
diction actually disappears in that level. Gunji insists that this is the very core of the emergence
[52]:

Emergence is the connection between the former and later logic, which are irrelevant with each
other. The later logic appears only when the contradiction in former logic is solved at the limit of
infinite regression with it. (Translation by M. Funabashi)
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Figure 5.3: Dynamical Model of Internal Measurement. The time development rule ft is
reconsidered by the system itself due to the internal contradiction arising from the dynamics itself.
The groundlessness of the interface ft produces a contradiction at the limit of infinite regression,
which can find its pseudo-solution by solving the fix point in equation (5.4). Based on [52].

After the emergence, novel logic (later logic) becomes the rule of the system, and produces
another contradiction in given level. In any case, the contradiction is not completely solved, but
continues to create another pseudo-solution.

5.1.6 Selection from outside of selective region

Let us rethink on the identification of the state in terms of the internal measurement. When we
select something in the context of our daily life, one may think that there exist already some choices
from which we make decision. Though what we select actually also includes the choices outside of
the given ones. This situation is easier to understand in consideration of the “leap in the dark” by
S.A. Kripke.

Consider two persons having a conversation. When one person speaks to another, the latter
interpret the word with his own interpretation, and there exists no fundamental reason to define
the way of understanding. What intermediates them in the most profound level is nothing but
the groundless interface. Then the hearer can not only have the choice between the speaker’s
offers, but from the exterior of them. It comes quite often that we over/underestimate what lies
behind a person’s word. It becomes clearer in the communication between different language. The
conversation does not have identical basis between two persons, which corresponds to the leap in
the dark (Fig. 5.5). The identification of meaning is nothing but the risky leap in the unknown
consequence. Such relation is not limited to our natural language communication. Gunji rather
insists that similar situation also occurs when an observer identifies the state of an object in phys-
ical system [52]:

The identification of a state is in large sense a linguistic act, which means we can never define
the exact context or way of detection. The observer should make a decision resisting the ambiguity
that he never knows whether the choice is inside or outside of some context. (Translation by M.
Funabashi)
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Figure 5.4: Postponement of contradiction and emergence. By introducing a new dimen-
sion that somehow trivializes the contradiction, the system declares it as the solution in former
logic, which is actually a postponement of the problem in the new dimension. The emergence is
defined here as the apparition of pseudo-solution in former logic, coupled and supported by the
new dimension. Based on [52].
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Gunji called the selection from outside of the selective region as emergence. Concrete examples
are also abundant in biological systems:

Allergic reactions are one of the most convincing examples. The immune cells attack one’s own
organisms taking them outside of the proper context of exogenous material. In this sense, allergic
reaction is an emergent property. Here, immune cells are observers, and the antigen of allergy is the
object. Usually the antigen of allergy is harmless and its selective region is the immune tolerance.
In allergic reaction, the identification of the antigen are made from outside of this context, which
sensitizes immune cells and causes allergic reaction as the contradiction of logic between observer
and object. It is of interest that the allergy can actually be desensitized by introducing other
exogenous material such as parasites, which corresponds to add a new dimension to postpone the
conflict and lead the former contradiction to pseudo-solution.

The dynamics of embryogenesis is also a fascinating example. Despite the communication
between cells being nothing but the leap in the dark due to the large physical/chemical fluctuation,
the stability and reproducibility of the process is highly attained. Each cell seems to follow its own
logic according to their genetic and epigenetic profile, not knowing completely the state of other
cells and even less on the total embryo. In this case, each cell is an internal observer, and their
interaction is the emergence.

Figure 5.5: Selected region of object and selection by observer from outside of it. An
object B has its own context and logic which define its selective region X. The observer A identifies
the meaning of B’s state by “the leap in the dark”, not knowing whether the decision is inside or
outside of B’s selective region. The emergence occurs when the selection is made from outside of the
selective region, which arises contradiction between observer and object, leading to pseudo-solution.
Based on [52].

5.1.7 Toward Measurement-Oriented Theory

We have reviewed in this section the achievement and the possibility of measurement-oriented
theory by Gunji. So far, most of the study in complex systems sciences are indeed in state-oriented
theory. This is largely due to the accessibility to mathematical modeling and analysis developed in
the same perspective. It is of further question whether we can develop a more convincing framework



5.2. INTERNAL MEASUREMENT OF CHAOS AS CATALYST OF LEARNING 79

of modeling in measurement-oriented theory, in the level to overcome the missing aspect in the
state-oriented one.

In the following sections, we apply the measurement-oriented theory to interpret the results
of previous chapter in terms of emergence. We first consider the celebrated concept of “chaos as
catalyst of learning” in this framework, which naturally leads to the interpretation of autonomous
learning during chaotic itinerancy in CNN.

5.2 Internal Measurement of Chaos as Catalyst of Learning

5.2.1 Chaos as Catalyst of Learning

We revisit the celebrated concept of “chaos as catalyst of learning” that motivated the synthetic
modeling with CNN in the previous chapter. The concept was established based on the learning
dynamics of novel odor in rabbit’s olfactory bulb [17]. Exposure of a rabbit to already known odor
stimulus results in the quick convergence of EEG dynamics in the corresponding attractor region,
which is associated to the recognition of the odor. Novel odor, however, does not show convergence
of EEG dynamics but weakly chaotic itinerant sequence among memory attractors of known ones.
Chaos plays here the role of novelty filter. During this chaotic “I don’t know” state, synaptic
modification occurs and a novel attractor corresponding to the given odor emerges, without losing
other memories. It was shown from modeling study that such organized acquisition of novel memory
is essentially supported by the chaotic dynamics. Therefore, chaos can be functionally a catalyst
of learning.

5.2.2 Internal Measurement Formalization

Let us reconsider the experiment of Skarda and Freeman with the view of the measurement-oriented
theory. For simplicity, we formalized the qualitative change of attractor structure in olfactory bulb
with symbolic characters in Fig. 5.6. We assume that the subject only knows the odor A’ and B’,
which corresponds to the attractor A and B in its olfactory bulb. The olfactory input of novel odor
C’ evokes chaotic dynamics, and the initial state X0 of EEG dynamics wanders between A and B.
Olfactory bulb performs autonomous dynamics with external input, and with the presence of chaos,
it can be considered as an internal observer: In autonomous dynamics, the system observes itself
recurrently but there exists fundamental limit of observation. The system is not capable to observe
itself globally In real-value precision. Single neurons act according to the limited information they
obtain, without knowing the global state. The interface produces the state of the next time step
with the limited part of information of previous one. In chaos, only slight perturbation will affect
the global state in short time period. The autonomous dynamics of olfactory bulb with symbolical
time t is compatible to the following internal measurement with the interface of observation F :

Xt+1 = F (Xt). (5.5)

The recognition of known oder is therefore expressed as fix point, such as

A = F (A), (5.6)

and

B = F (B). (5.7)

While with odor C’, Xt wanders between A and B.
The wandering chaotic state is the contradiction to recognize the odor, so-called “I don’t know”

state. Further exposure to the novel odor C’ produces synaptic changes, and create the novel
attractor C that recognizes the odor C’. This process exactly corresponds to solve the fix point
equation (5.4):
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To solve the contradiction of “I don’t know state”, the olfactory bulb seeks for some attractor
X such that

X = F (X). (5.8)

Since we only have the solution of (5.8) as the attractor A and B, which corresponds to the
odor A’ and B’, respectively, the dynamics always follows Xt 6= F (Xt) under exposure of odor C’.

If we define the EEG pattern of olfactory bulb after n time step as Xn = F (X0), the pseudo-
solution of the fix point equation (5.4) corresponds to the attractor C, recognizing the odor C’:

F∞(X0) = F (X∞) = X∞ = C. (5.9)

Where the interface F represents the mechanism of olfactory bulb with the interaction between
synaptic plasticity and chaos. In this case, chaos triggers the “doubt to use the same interface”,
and synaptic modification solves the fix point equation (5.4) in Fig. 5.3.

In actual experiment, for enough large n reflecting the learning period, the following becomes
the measurement-oriented formalization of chaos as catalyst of learning:

C = Xn = F (Xn−1) = Fn(X0). (5.10)

Figure 5.6: Schematic representation of chaos as catalyst of learning with measurement-
oriented theory perspective. Known odor (A’ and B’) are quickly recognized by converging to
the corresponding attractors (A and B). While novel odor (C’) triggers chaotic transition between
memory attractors, at the same time affects synaptic connection and modifies memory structure.
In a word, chaos catalyzes the genesis of novel attractor (C) of given stimulus (C’).
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5.3 Internal Measurement of Chaotic Itinerancy as Catalyst
of Learning

5.3.1 Internal Measurement of Chaotic Itinerancy in CNN

We further develop the measurement-oriented formalization and apply it to interpret the result
of previous chapter. First of all, the simulated CNN is an internal observer in chaotic itinerancy
state, and the time development Φ is an internal measurement: A CNN of n neurons without
external input is basically a deterministic system of 2n degrees of freedom, and all of the past
history is maintained with exponential decrease by self-recurrence. In theoretical formalism, the
system’s state is completely defined with the real-value precision, but the simulation can only
realize dynamics of limited digits with rounding error. Since chaotic dynamics is sensitive to initial
condition and so is chaotic itinerancy at least to the level of computational capacity (1.0e − 16),
this rounding error is unignorable and causes nothing but “the leap in the dark”. Each neuron
model selects its future state out of the context of complete determinism. The rounding error is
also a deterministic noise, but we do not know about its sequence until we actually calculate it.
Therefore, the time development of the internal state Xt = (η(t), ζ(t)) of CNN at time t is the
internal measurement with interface Φ, which uses essentially only a part of the information of Xt:

Xt+1 = Φ(Xt). (5.11)

Chaotic itinerancy with memorized patterns A
B and C
D is therefore formally expressed
as internal measurement as follows:

A
 B = Φk(C 
 D),

C 
 D = Φk(A
 B). (5.12)

Where k stands for arbitrary iteration number according to the statistics of transition dynamics
between attractor ruins.

Considering the periodic cycles A
B and C
D each as a symbol, we have the interpretation
of chaotic itinerancy as a “contradiction” state, analogous to the “I don’t know” state of chaotic
dynamics in olfactory bulb.

5.3.2 Internal Measurement Formalization of Autonomous Learning

We consider the result of autonomous learning in the same formalism. Fig. 5.7 shows the emerging
process of novel attractors in CNN analyzed in previous chapter, and its schematic composition
corresponds to Fig. 5.3 in the context of internal measurement theory.

The increase of refractoriness parameters kr and α changes the dynamics of CNN into the
chaotic itinerancy state, which corresponds to the “doubt to use the same interface” in Fig. 5.3.
In CNN, the chaotic deviation from the memory attractors is the doubt to use permanently the
same memory structure. In olfactory bulb, such transition was triggered by the novelty of odor
stimulus.

Chaotic itinerancy can be formalized as the contradiction in eq. (5.12), which assumes the fix
point at the temporal limit as pseudo-solution.

Autonomous learning is the synaptic weight modification of the system by itself, which corre-
sponds to modify Φ at each step of t and leads to a settlement Φ∞(X∞) = X∞. Such X∞ is known
as the result of the divergence or convergence of connection matrix by learning rules.

In autonomous learning, we set the learning period n during chaotic itinerancy state. After
n steps of learning, the refractoriness parameters kr and α are reset to 0, and novel attractor
emerges as investigated in previous chapter. (Such escape from chaotic learning dynamics is realized
automatically in olfactory bulb, as a function of chaos as novelty filter.) The dynamics after the
autonomous learning in CNN can be formally summarized as follows:
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E 
 F = Φ2(E 
 F ), (5.13)

G
 H = Φ2(G
 H), (5.14)

PSTDP = Φk(PSTDP ). (5.15)

Where PSTDP represents various periodic attractors of period k emerged after STDP learning.
These results are the n step convergence of autonomous learning, and are expressed as fix points

in Fig. 5.7. Therefore, the patterns E 
 F , G
 H, and PSTDP are ones of the pseudo-solutions
that reflect the dynamics of chaotic itinerancy as contradiction. These pseudo-solutions are consis-
tent in that they contain equidistant patterns from A
 B and C 
 D, and that they exist within
the union space of those patterns in terms of effective dimension. In short, the emerged patterns do
not coincide with memorized ones, but possess intermediate feature in terms of geometrical com-
position in the state space. These properties also fit to the characteristics of the pseudo-solution
that introduces another dimension to solve the contradiction into the postponement, in this case
as a geometrical compromise.

Figure 5.7: Dynamical model of autonomous learning as internal measurement. The
increase of refractoriness parameters causes CNN chaotic dynamics that can be formalized as the
contradiction between memorized patterns. The autonomous learning modifies the interface Φ by
changing the connection matrix W according to the dynamics of the system itself, and produces
novel memory structure as fix points after n step of learning. For simplicity, we avoid the notation
of k in Φk.

5.4 Conclusion

We reviewed the measurement-oriented theory proposed by Gunji, and applied to interpret the
“chaos as catalyst of learning” in olfactory bulb, as well as the emergent patterns of the autonomous
learning during chaotic itinerancy state of CNN investigated in previous chapter. Dynamical system
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manifesting chaos is shown to be an internal observer. Internal measurement theory provided a
way to conceptually define the structure of emergence in CNN catalyzed by chaotic dynamics.
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Chapter 6

Introduction of Neurorobotics

Abstract

We introduce the concept of “neurorobotics” as a new source of invention from
interdisciplinary domain between neuroscience and robotics. Context of work of this
part is summarized.

Keywords: neuroscience, robotics, embodiment

6.1 Introduction: Context of work

The following chapters in this part were realized in cooperation with M. Shyunsuke Aoki, who
was a master student at the college of information science and technology, Donghua university
in Shanghai, china, and also the founder of a venture company in robotics, YUKAI inc. . Our
interests found coincidence in the application of mathematical model of neuroscience to robotics,
which we named “neurorobotics”. In this chapter, we introduce the concept of neurorobotics and
the motivation of our works in this part.

6.2 Neurorobotics as the Interdisciplinary Domain between
Neuroscience and Robotics

Science and technology has always been evolving depending on each other. The dead rocks for
one have often been overcome with the innovation of the other. Recently, the newly evolving
neuroscience has been greatly promoted not only by the progress of experimental equipment but
the innovation of computer technology. Simulation of dynamical systems that is widely used in
neuroscience has become numerically possible, which enable us to investigate the spatiotemporal
activity of neural circuit in its dynamics. Although mathematical modeling can only encapsulate
a part of the huge complexity in neural dynamics, it helps us analyze rigorously the dynamical
response in the defined setting. Typical feature of actual dynamics can synthetically be understood
by combining these models. The modeling is also valid not only to test hypothesis by experiment,
but to extend it purely on the model basis. Logical autonomy of the model is also a source of
theoretical innovation.

Among the existing approach in neuroscience, there is an insistence that to create the brain
artificially is a way to understand it. This constructive approach to neuroscience also has its
exit in robotics. In this field, the main issue is to find the top-down correspondence between
theoretically developed algorithms to solve given tasks in engineering and existing mechanisms
of the brain [53]. For example, relations between reinforcement learning and basal ganglia, meta-
learning and neuromodulators, the origin of reward system, etc., have been investigated by creating
the analogical robots [54][55][56][57][58] .

On the basis of such constructive approach in robotics, we focus on creating the robot with the
use of the obtained knowledge on the brain, and investigate its utility in the engineering point of
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view seeking for real-world application. Contrary to the mainstream of artificial intelligence, this
approach does not ignore the biological foundation of the brain. Our aim is to construct possible
application of biologically observed mechanism as an invention in an artificial setting to better
contrast the task solvability.

We call this approach as neurorobotics, starting from bottom-up models in neuroscience, and
by implementing them to the robots, evaluate the efficiency in terms of the top-down algorithm.

This is also a part of the embodiment approach that is often discussed when investigating the
function of the brain in the entity, including the environment and the body [59][60][61]. In this
setting, the embodiment is investigated in biological context, which is subjective to the emergence
of function in actual creatures, since the body defines the characteristic of the interface that play
essential role to connect the internal and external information of the system.

In neurorobotics, we do not necessary pursuit the effect of embodiment by imitating actual
living organism. Instead, we consider the invention of task-based embodiment to connect the
bottom-up models in neuroscience and top-down algorithms in robotics (Fig.6.1). This approach is
at the same time oriented to the engineering interest that utilizes brain dynamics out of biological
context to create a new value, and discover the hidden efficiency of the dynamics that reversely
clarifies the rationality/specialization of the biological mechanisms in generalized function space.

The use of embodiment in robotics context is also investigated in artificial life, to reveal and
experiment the abstract top-down condition of life [62]. Here, the reconstruction of life in an
artificial setting is the primal objective. Chaotic itinerancy is assumed to be a key function in this
approach.

To extend the embodiment context of brain model out of actual biological configuration also
allows us to consider the dependence of the brain on actual embodiment designed by evolution,
which is related to the design of brain-machine interface.

Figure 6.1: Motivation of neurorobotics in contrast to conventional embodiment in
robotics. Top arrow: Conventional embodiment in robotics with biological context. Bottom
arrow: Newly proposed approach using embodiment as a factor of invention in neurorobotics.



89

Chapter 7

Balancing Autonomy and
Environmental Response with
Hierarchical Chaotic Dynamics

Abstract

Hierarchical structure of deterministic chaos in a chaotic neural network model
(CNN) is investigated in the view of application in robotics. The result shows a rich
capacity of CNN in selectively controlling the synchronization of neuron outputs, and
sensitively responding to external sensory inputs, both being based on the intrinsic
mechanism of the dynamics called chaotic itinerancy. Choosing appropriate parame-
ters, the simple designed robot realized a chaotic search to the hierarchically selected
directions. The macroscopic drift preserving chaotic fluctuation was also derived by
simply adding weak external inputs to an intended direction. Obstacle avoidance was
simulated with the use of these properties.

Keywords: chaotic neural network, invariant subspaces, chaotic itinerancy
Methodology: Designing chaotic roving robot with the use of hierarchical dynam-

ics of CNN as a completely deterministic dynamical system → probabilistic analysis of
the system’s behavior and response

7.1 Introduction

Recent development of cognitive sciences has brought increasing number of application in robotics.
Especially, the model-based approach in neuroscience has a wide range of direct application in
designing sensory-motor interaction of robot [62] [63]. Learning from the mechanism of actual
brain has a great possibility to extend the information processing ability of artificial intelligence.

Among the accumulating results in neuroscience, a class of dynamics called chaotic itinerancy
has been insisted as a generic mechanism supporting brain function [21] [23] [22] [20]. The chaotic
itinerancy is phenomenologically described as the coupling of locally destabilized plural attractor
ruins. The dynamics shows irregular transition among these attractor ruins, at the same time
completely following the deterministic development rule. This non-uniform localization of stability
and instability bring the network the properties of both destroying and retaining input information.

For example, the property of sensitive response to attractor fragment input in the chaotic neural
network model (CNN) [24] has a possibility to provide a robot with quick and efficient way to react
to sensor input [64]. We applied this property to quickly coordinating sensor input with motor
output.

On the other hand, In networks with symmetry such as GCM (globally coupled map) and CNN,
there exist geometrical division called invariant subspace, which is a remarkable difference between
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chaotic itinerancy and other stochastic systems, both capable of realizing irregular transition among
attractors [28] [1].

We applied the structure of invariant subspace to control robot motion in a hierarchical way,
and propose a basic mechanism of actively interacting with environment using the both stability
and instability of chaotic dynamics.

7.2 System Description

7.2.1 Chaotic Neural Network

We define the chaotic neural network model(CNN) [24] that we used as the control system of a
robot in this paper. The architecture of CNN is defined as in Fig. 16.2. CNN is a discrete time
system that consists of three layers of neuron model: Input, Context and Output. Each neuron of
the Context layer is connected to all neurons in the Output layer. The output of the Context layer
at time t is identical to that of the Output layer at time t− 1 . The Input layer gives the external
inputs in real number to the Output layer, which will be explained in the Simulation Result section.
The chaotic neurons are used in the Output layer of CNN, that are defined as follows [24]:

xi(t+ 1) = f(

t∑
d=0

kde ιi(t− d)

+

n∑
j=1

wij

t∑
d=0

kdfxj(t− d)

−α
t∑

d=0

kdrxi(t− d) + θouti ), (7.1)

where at time t , xi(t) is the output of the ith chaotic neuron, and θouti is its threshold. ιi(t) is
the external input to the ith chaotic neuron. The parameters α and kr (0 ≤ kr ≤ 1) control the
orbital stability and can induce chaotic dynamics. The exponentially decreasing influences of past
external inputs (outputs of the Input layer) and past outputs (outputs of the Context layer) are
controlled by ke and kf (0 ≤ ke, kf ≤ 1), respectively. n is the number of chaotic neurons. In
this study, eight chaotic neurons with fixed parameters kf = 0.2 and θouti = 0.2

1−kr were used in
the Output layer of CNN. Note that the number of neurons and the patterns of the attractors was
chosen to realize a non-trivial invariant subspace structure with the most simple network, which is
described in the following section.

The function f(·) is defined as follows, with the increment parameter β.

f(x) =
1

1 + exp(−βx)
. (7.2)

We used β = 20.0 in this study.
Next, we define the connection matrix W to memorize three pairs of reverse patterns, in total

six patterns, each one as fixed point attractor. The six orthogonal patterns P1 = (p11, . . . , p
1
8)T ,· · · ,

P6 = (p61, . . . , p
6
8)T are defined as column vectors in Tab.7.1. For notational simplicity, we put each

two corresponding reverse patterns together, and call them as “a pair of patterns”, since they are
both situated in the same invariant subspace (see the Invariant Subspace section). To realize these
patterns as stable autoassociative memories in CNN, we defined the connection matrix W = (wij)
(1 ≤ i, j ≤ n) as follows, based on the Hebb’s learning rule.

wij =
1

6

6∑
k=1

{(2pki − 1)(2pkj − 1)}. (7.3)

Setting the parameters α = kr = 0, after some short transient dynamics, CNN continuously
retrieved one of the six patterns depending on the initial value. For the following analysis, we
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Table 7.1: Definition of the six patterns P1, · · · , P6 , to be memorized in the Output
layer of CNN.

Pattern symbol Pattern vector
P1 (1, 1, 1, 1, 0, 0, 0, 0)T

P2 (0, 0, 0, 0, 1, 1, 1, 1)T

P3 (1, 1, 0, 0, 1, 1, 0, 0)T

P4 (0, 0, 1, 1, 0, 0, 1, 1)T

P5 (1, 0, 1, 0, 1, 0, 1, 0)T

P6 (0, 1, 0, 1, 0, 1, 0, 1)T

judged the retrieval of the six patterns P1,· · · , P6, through the following transformation hi(t) of
the outputs xi(t) of the Output layer:

hi(t) =

{
1 if xi(t) > 0.5
0 if xi(t) ≤ 0.5

. (7.4)

For example, if hi(t) = pki (1 ≤ i ≤ 8) holds at time t , we state that the network retrieved the
pattern Pk .

Figure 7.1: Architecture of the chaotic neural network.

7.2.2 Projection of Phase Space to Motor Outputs

In this paper, we designed a simple robot capable of moving to three directions in two-dimensional
space by three directional motors. The main purpose here is to clarify the effect in real world
movement of hierarchical control and environmental response realizable with CNN dynamics, so
that this design is a primitive one, focused on the convenience of analysis.

Fig. 7.9 and Fig. 7.10 show the schematic architecture of the robot. each of three motors is
located at each corner’s bottom of triangular robot body, and control the forward (no backward)
movement to its corresponding direction. Only one motor is chosen to give output at each time
step t, according to the retrieval pattern of CNN outputs x(t). That is, the patterns P1 and P2

correspond to the motor 1, the patterns P3 and P4 correspond to the motor 2, and the patterns
P5 and P6 correspond to the motor 3, respectively. If none of these six patterns are retrieved, we
do not move the robot at this step.

The root-squared norm of CNN outputs x(t) is then calculated to give the strength of the
chosen motor output. In real robot, for example, this value will corresponds to the duty ratio of
PWM wave offered to the motor. The robot therefore moves to the motor direction proportionally
to its output norm.

Note it is easy to have extension of motor outputs in this architecture by augmenting the number
of neurons. By simply applying eq.(7.3), CNN with 2n neurons can store n pairs of orthogonal
patterns defined in the same manner as in Tab.7.1, along with the hierarchical structure of invariant
subspaces explained in later sections.

Hence, the embodiment of CNN dynamics is not restricted to this single manner, nor even to
physical movement, since this is a neural network model at the beginning. One can think of a
robot using the dynamics of CNN to trigger intelligent events of any symbolic form with similar
framework.
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7.3 Dynamics of Chaotic Neural Network

The CNN with refractoriness parameters kr = 0 and α = 0 is identical to the simple recurrent neu-
ral network with analog neuron model [24]. The stability of six autoassociative patterns P1,· · · ,
P6 as fix point attractors are therefore theoretically assured by Hebb learning and confirmed
numerically. Though, by augmenting the parameters kr and α, CNN can increase the effect of
refractory variables and cause partial instability to these attractors. The state where the attrac-
tors undergo boundary crisis and the dynamics of system expands to high-dimensional chaos is
phenomenologically described as chaotic itinerancy or chaotic wandering [23] [24]. In this stage,
irregular transition among attractor ruins is commonly observed, where the orbits stay more or
less frequently near the destabilized patterns. Since the dynamics holds both the stability towards
the memorized patterns and also the instability escaping from them, this state can be considered
as a dynamical associative memory and is useful for information processing [62] [63] [24].

In this section, we numerically analyze the nature of chaotic itinerancy occurred in our CNN.

7.3.1 Deviation Rate from the Memorized Attractors

First, we calculated the deviation rate DR(kr, α) of CNN for an empirical range of the refractoriness
parameters kr and α (0 ≤ kr ≤ 1 and 0 ≤ α ≤ 10). The deviation rate is the rate of outputs’
binary interpretation hi(t) (1 ≤ i ≤ n) that does not match to any of the six stored patterns
P1,· · · , P6 during the retrieval. This measure therefore gives us a simple notion of instability of
stored patterns, and refers to the mean visiting rate to any of them.

The deviation rate DR(kr, α) for each kr and α was defined as follows,

DR(kr, α) =
1

N
lim
N→∞

N∑
t=1

(1−
6∑
k=1

n∏
i=1

δ(hi(t), p
k
i )) (7.5)

where δ(·, ·) is the delta function. N = 10000 was used for the calculation.
Fig. 7.2 shows the result. In the blue region (DR = 0), kr and α are relatively low, and the

stored patterns exist as stable fix point attractors. With the augmentation of these parameters,
there exist regions where the deviation rate takes value between 0 and 1, suggesting the memorized
patterns are destabilized and dynamics move in and out of some of these patterns. If there exists
irregularity in periodicity, or more precisely the instability in terms of the maximum Lyapunov
exponent, the dynamics can be judged to be in chaotic itinerancy state. The brown region (DR = 1)
is where the dynamics retrieved none of the stored patterns during calculation.

Figure 7.2: Deviation rate of retrieval dynamics from memorized patterns. The deviation
rate was calculated after cutting 5000 steps of transient dynamics, with 10000 steps of retrieval at
each kr and α. Initial values were taken randomly.

7.3.2 Invariant Subspace

In discrete time neural networks, considering the symmetry of connection matrix, it is possible to
decompose its dynamics into subspaces of the whole state space. The decomposition of the dynam-
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ics into lower dimensions has a possibility to characterize the network dynamics more precisely.
This is also what distinguishes between random and chaotic process. Despite the strong irregu-
larity, chaotic dynamics in CNN can be decomposed into subspaces, according to its deterministic
development rule. The decomposed subspaces in which dynamics can fall and remains permanently
are called invariant subspaces [28].

In short, the invariance under a permutation of the connection matrix W can be interpreted
to the invariance under the same permutation of the dynamics x(t). Therefore, it is possible to
detect the partial synchronous mode of dynamics, whether it is stable or not, by just observing the
symmetry of the connection matrix.

Since we do not have enough space to explain the derivation in detail, we simply note the
minimum descriptive requirement and the calculation result.

Let Sn be a symmetric group with degrees of n, and σ be an element of Sn. If wij = wσ(i)σ(j)
holds on the connection matrix W , we can define the invariant subspace H(σ) of CNN Output
layer x(t) as follows:

H(σ) = {(x1(t), · · · , xn(t))T ∈ Rn

| xi(t) = xσ(i)(t), 1 ≤ i ≤ n}. (7.6)

Hence, this holds for all time steps t of CNN. Consequently, it means that if the initial states
of CNN were taken inside of H(σ) , the i th neuron and the σ(i) th neuron of the Output layer
are always synchronized and output the same value at each time step.

If, for example, n = 8 and take the permutation

σ =

(
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)
∈ S8, (7.7)

which satisfies the condition wij = wσ(i)σ(j), then

H(σ) = {(x1(t), x2(t), x3(t), x4(t),

x5(t), x6(t), x7(t), x8(t))T }, (7.8)

where

x1(t) = x2(t), x3(t) = x4(t),

x5(t) = x6(t), x7(t) = x8(t). (7.9)

Note that the actual dimension of dynamics in this H(σ) is reduced into four dimensions. Therefore,
we conventionally call it as a four-dimensional invariant subspace.

For simplicity, let us denote

H(σ) = (11335577), (7.10)

representing H(σ) with the minimum subscripts of vector x(t) that are identical by the permutation
σ . We take this notation rule for the following sections.

Based on the definition of H(σ) , we detected the invariant subspaces of CNN. The Fig. 16.3
shows the result. Dynamics on invariant subspaces that have the same type of clustered synchro-
nization are phase conjugate, and these are grouped by the same color in Fig. 16.3. Hence, each
pair of patterns are situated in the same two-dimensional invariant subspace, i.e., the patterns P1

and P2 are in (11115555), the patterns P3 and P4 are in (11331133), and the patterns P5 and P6

are in (12121212), respectively.
Among the detected invariant subspaces, there exists an important hierarchical structure ac-

cording to the inclusion relation. Hence, we designed these six patterns P1,· · · , P6 intending to
have the useful inclusion hierarchy for controlling the orbit of CNN. According to the Fig. 16.3 ,
each pair of two-dimensional invariant subspaces (yellow) can find their union space with one-to-one
relation in four-dimensional invariant subspaces (blue). For example, the set of two-dimensional in-
variant subspaces (11115555) and (11331133) has its unique corresponding union space (11335577),
that is different from the union of any other pair of two-dimensional subspaces. Additionally, the
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union of any two four-dimensional invariant subspaces (blue) consists of the whole state space
(12345678) (red).

From the definition of the invariant subspace, this hierarchy means that by choosing the initial
condition, we can easily restrict the retrieval dynamics of CNN inside of any subspaces shown in
Fig. 16.3. This is especially meaningful when CNN performs an itinerant dynamics among all of
the six memorized patterns, because we can hierarchically choose any combination of pattern pairs,
and eliminate other patterns’ output without changing system parameters.

For example, if the dynamics shows chaotic wandering process among six memorized patterns,
only one step of operation is sufficient to restrict the orbit in one of the invariant subspaces:

Putting the following condition at time t,

x1(t) = x2(t) = x3(t) = x4(t),

x5(t) = x6(t) = x7(t) = x8(t), (7.11)

CNN will keep the future orbit inside of (11115555), and the dynamics only retrieves the patterns
P1 and P2 intermittently, unless some external inputs destroy this synchronization.

If we put the condition (7.9), the orbit stays inside of (11335577), and the dynamics shows
intermittent retrieval among the patterns P1, P2, P3, and P4.

On the other hand, these restrictions on the orbit can immediately recover its full degree of
freedom by adding slight asynchronous noise from external inputs, due to the instability of each
invariant subspace in its transverse direction.

Figure 7.3: Hierarchical structure of invariant subspaces in CNN. The spaces of the same
color are in the isomorphic relation. The lines denote the inclusion relation regarding the degree of
freedom. Among the thirty two possible invariant subspaces detected under the defined W , only
seven of them that are important for the interpretation of CNN dynamics are shown.

7.3.3 Wandering range of retrieval dynamics and corresponding hierar-
chy of invariant subspace

Taking the hierarchical structures in previous section into account, in the same kr-α plane as
the deviation rate, we investigated the wandering range of retrieval dynamics among memorized
patterns. This is to judge roughly the localization of the high-dimensional chaos in the hierarchy
of invariant subspaces, and refers to their transverse stability/instability.

According to Fig. 7.4, the light green region is where three of the two-dimensional invariant
subspace (yellow in Fig. 16.3) are stable in its transverse direction, therefore the orbits fall and
stay inside of them. The dynamics can be either stable or chaotic, according to the parameters kr
and α, and can be rigorously judged by the Lyapunov spectrum inside of these subspaces. Note
that choosing the appropriate synchronous initial condition, the dynamics can all the way stay
inside of these subspaces even if it is not on this light green region, regardless of its transverse
stability.

The yellow region in Fig. 7.4 is where the orbits visit two pairs of stored patterns, and not all
three of them. Therefore, the three four-dimensional invariant subspace (blue in Fig. 16.3) are as-
sumed to be stable in their transverse direction, competitively absorbing the orbits inside according
to the initial condition. This fact was numerically observed as the complete synchronization into



7.3. DYNAMICS OF CHAOTIC NEURAL NETWORK 95

one of these four-dimensional subspaces in this kr, α region. Since the dynamics is not restricted
to any of a single pair of patterns, the three two-dimensional subspaces (yellow in Fig. 16.3) are
transversally unstable. The orbits show itinerant dynamics between limited two pairs of patterns.

Finally, the orange region in Fig. 7.4 is where the orbits visit all of the six stored patterns during
the retrieval. in this region, both four-dimensional and two-dimensional invariant subspaces (blue
and yellow, respectively, in Fig. 16.3) are assumed to be unstable in their transverse directions.
Consequently, the dynamics stay in the eight-dimensional whole state space (red in Fig. 16.3),
and shows itinerant dynamics among all of the six patterns. Since we can realize the restriction
of CNN dynamics into desired invariant subspace by simply changing the initial value, regardless
of the parameters kr and α, this orange region gives us an example of the parameter region where
the hierarchical control is fully effective. For the following section, we will focus on the specific
set of kr and α in this region to further investigate the nature of the dynamics and its possible
application.

Figure 7.4: Wandering range of retrieval dynamics among memorized patterns. The
light blue region is where the orbits never retrieve any of six patterns. In the light green region,
the orbits visit any of a single pair of patterns. In the yellow region, the orbits visit any of two
pairs of patterns. In the orange region, the orbits visit all three pairs of patterns. The wandering
range was judged after cutting 5000 steps of transient dynamics, with 10000 steps of retrieval at
each kr and α. Initial values were taken randomly.

7.3.4 Effective Dimension of Dynamics

In this section, we focus on the geometrical localization of orbits with respect to the hierarchical
structure of invariant subspaces during chaotic itinerancy. For this purpose, we fix the refractoriness
parameters as kr = 0.98 and α = 1.2 to situate the system inside of the orange region in Fig. 7.4,
and observe both temporal and spatial structure in the phase space. With these fixed parameters,
CNN shows chaotic itinerancy among all six stored patterns if the initial value was taken randomly
without any synchronization.

To investigate the spatiotemporal structure of retrieval dynamics, we measured the effective
dimension ED of a single orbit of CNN outputs x(t), which is defined as follows [1],

ED(x(t), δ) = min{dimHσ|Hσ ∩Bδ(x(t)) 6= φ}, (7.12)

where Bδ(x(t)) is the open sphere around x(t) with radius parameter δ. The effective dimension
means the minimum dimension of invariant subspaces that exist in the δ-neighbor of the x(t), and
reflects the geometrical location of the orbit in the hierarchy.

Figs.7.5 and 7.6 show the temporal development of the effective dimension.The initial values
were taken asynchronously in Fig. 7.5 and inside of (11335577) in Fig. 7.6. Although the distinc-
tions among the invariant subspaces with the same dimension are lost in this figure, the temporal
dynamics shows irregular transition among the three different orders of neighboring subspaces in
asynchronous case, that corresponds exactly to the hierarchy in Fig. 16.3. Since the residence rate
to the all three levels of effective dimension are dynamically well balanced, chaotic itinerancy in
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this parameters seems to be naturally affected by the hierarchical structure in Fig. 16.3 along with
their stability, at the same time maintaining the maximum degree of freedom eight. The dynamics
with the initial condition in (11335577) shows itinerancy among two-dimensional subspaces inside
of (11335577).

To put it more clearly, Figs.7.7 and 7.8 express the same dynamics as in Figs.7.5 and 7.6,
respectively, this time as Markov sources with distinction of each invariant subspace as depicted
in Fig. 16.3. In Fig. 7.5, the effective dimension eight corresponds to the neighbor of (12345678)
in Fig. 7.7, four to one of (11335577), (12125656), (12341234), and two to one of (11115555),
(11331133), (12121212). While in In Fig. 7.6, the effective dimension four corresponds to the
neighbor of (11335577) in Fig. 7.8, and two to either of (11115555) or (11331133).

With the asynchronous initial condition, the dynamics performs the intermittent search dy-
namics among all hierarchical structure of invariant subspaces.

When the initial condition is limited in (11335577), The dynamics shows similar searching pro-
cess but strictly inside of this subspace, although its transverse direction is unstable in (12345678).
This result fits to the analysis with the deviation rate and the wandering range in the previous
sections. Note that the existence of such dynamics limited under other four-dimensional subspaces
are also assured by the symmetry of the system.

Figure 7.5: Dynamics of effective dimension. The initial value was taken inside of (12345678).

Figure 7.6: Dynamics of effective dimension. The initial value was taken inside of (11335577).

7.4 Simulation Result

7.4.1 Single Robot Movement

We simulated the actual movement of the robot in two-dimensional space. Typical autonomously
wandering movement is shown in Fig. 7.9. Depending on the restriction imposed on the initial
condition, the robot demonstrated three distinctive behaviors. These three types of behaviors are
the direct consequence of hierarchical dynamics in CNN. When the initial condition is inside of
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Figure 7.7: Markov source expression of the effective dimension dynamics. The initial
value was taken inside of (12345678). The arrow width reflects the value of transition probability,
which are also displayed nearby.

Figure 7.8: Markov source expression of the effective dimension dynamics. The initial
value was taken inside of (11335577). The arrow width reflects the value of transition probability,
which are also displayed nearby.
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two-dimensional invariant subspaces, the CNN produces intermittent outputs of one corresponding
motor, and the robot can only move to this direction. In the same way, when the initial condition is
inside of four-dimensional invariant subspaces, the robot can move to the corresponding one third
of the surrounding area. When the initial condition was asynchronous, the robot began to rove
irregularly in all of the three directions, similar to random walk.

Hence the fluctuation was produced without any stochastic variable. This randomness caused
by the instability of deterministic chaos can be considered as the source of autonomy [62] [63].
In our robot, we realized a way of harnessing chaotic itinerancy with the hierarchical structure
of invariant subspaces. Since this structure gives a fundamental mechanism in generating chaotic
itinerancy [1], the control is simple and suits well to the nature of the dynamics. We do not need
to change any parameters of the system, and the delicate chaotic dynamics is never suppressed nor
disturbed externally.

Figure 7.9: The trajectory of the robot in two-dimensional space. The coordinates represent
the driving direction of the three motors. Possible movement areas are partitioned according to
the invariant subspaces where initial conditions of CNN are situated. Three trials with different
initial conditions are superimposed. The initial condition was taken inside of (11115555) for the
yellow trajectory, inside of (11335577) for the blue trajectory, and inside of (12345678) for the red
trajectory. kr = 0.98 and α = 1.2.

7.4.2 Response to Environmental Stimulus

Although CNN possesses the orbital instability in chaotic itinerancy state, the coexisting stability
toward attractor ruins also plays some essential role. Due to this partial stability, the network
possesses spatial correlations in temporal dynamics. This enables the system to retrieve the stored
patterns quickly with only a weak input of the patterns fragment [64]. Since this was proved to be
faster than a simple random search, the sensitive response can be considered to accompany with
some information processing peculiar to chaotic itinerancy state.

To see the utility of this property in the designed robot, we added the following periodic external
inputs ιi(t) (1 ≤ i ≤ n) via the Input layer of CNN, as defined in the System Description section.

ιi(t) =

 0.1 if t = 0 (mod 4) and 1 ≤ i ≤ 4
−0.1 if t = 0 (mod 4) and 5 ≤ i ≤ 8

0 else
. (7.13)

This means that the network is periodically stimulated with the weak pattern P1, that corresponds
to the motor 1. Here, the sensor input is limited to one direction to investigate the basic response
property of the system, but will be generalized in the following section.

As a result, we obtained the chaotic random walk with significant drift in its stimulated at-
tractor direction (see Fig. 7.10). The balance between chaotic fluctuation and the macroscopic
directional drift is relevant to the strength of external inputs ι(t), the period of the stimulation,
and the exponential decay parameter of Input layer ke. Hence we can also qualitatively control
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the sensitivity to the inputs by choosing the synchrony of initial condition. The more empirical
result of the retrieval ratio of the target pattern with respect to the modulus of input period is
shown in Fig. 7.11. Interestingly, the retrieval ratio is not monotonically decreasing with respect
to the modulus, and there exist certain sensitive peaks with high retrievals. The existence of such
nonlinear response can be considered to relate to the spatiotemporal localization of the orbit in
the neighbor of each invariant subspace. Especially the modulus 11 of (11335577) shows in av-
erage 97.94 percent of P1 or P2 retrievals among the retrieved patterns, which assures almost
deterministic response to the intended direction (Only P1 retrieval ratio is shown in Fig. 7.11).

These results give us the basis of controlling chaotic search of this robot by adding external
sensor input to find the intended target in situation with obstacles. This response may also be
expected to be robust and efficient in searching with sporadic information [65].

Figure 7.10: The simulated environmental response with external inputs to Input layer.
The future movement of the robot in two-dimensional space is shown with red trajectory. The
motor 1 direction is headed horizontally to the right. The initial condition was taken inside of
(12345678). The macroscopic drift is also realizable in other hierarchies of invariant subspaces.
ke = 0.2, kr = 0.98 and α = 1.2 were chosen.

Figure 7.11: Retrieval ratio of the target pattern P1 with respect to the other patterns
in each invariant subspace. Horizontal axis: modulus of the input period in equation (7.13).
Vertical axis: retrieval ratio of the target pattern P1 with respect to the other possible retrieval
patterns. The red line is inside of (12345678), the blue line is inside of (11335577), and the yellow
line is inside of (11115555). After cutting 5000 steps, 100000 steps were used for the calculation.
30 samples were averaged in each modulus.

7.4.3 Simulation with Microsoft Robotics Studio

We have also developed a simulator of the robot with Microsoft Robotics Studio software. The
above mentioned characteristics of the dynamics were also realized in the simulated condition with
physical laws, such as the existence of inertia and friction.
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Furthermore, a simple combination of the investigated dynamics in the different invariant sub-
spaces realized obstacle-avoiding motions. The dynamics was basically synchronized to one of the
four-dimensional invariant subspaces that covers the direction to the target, and was temporarily
released to the eight-dimensional (12345678) when encountered the obstacle. For example, if the
target is situated in the direction between motor 1 and motor 2, then the CNN is synchronized
inside of (11335577) (see Fig. 7.9). The robot received constantly the periodic external inputs
corresponding to the nearest motor from the target, except after bumping the obstacle, the motor
pattern stimulus farthest from the obstacle was chosen for a while.

Examples of the simulated avoiding motions are depicted in Figs. 7.12 and 7.13. Video movies
are available at our web-page: http://kappanoid.com/robio2008/

Figure 7.12: Example of obstacle avoidance. The cross is the start point of the robot, the
violet squares are obstacles, and the green square is the target. The red trajectory is where the
CNN orbit is controlled inside of eight-dimensional (12345678), while the blue trajectory is inside
of the four-dimensional invariant subspace whose corresponding moving range covers the target
direction. Modulus 4 is used for external input period.

Figure 7.13: Example of maze task. The cross is the start point of the robot, the violet
squares are obstacles, and the green square is the target. The red trajectory is where the CNN
orbit is controlled inside of eight-dimensional (12345678), while the blue trajectory is inside of the
four-dimensional invariant subspace whose corresponding moving range covers the target direction.
Modulus 4 is used for external input period.

7.5 Further Consideration and Conclusion

7.5.1 Further Consideration

Possible embodiment of the hierarchical chaotic dynamics should be further investigated in other
designs of robot.

The hierarchical restriction can also be useful considering collective robot movement. Chaotic
itinerancy may also play essential role in maximizing collective information, since similar dynamics
is reported to be abundant in actual brain dynamics [21].

The sensitive response to the external input implies useful application in infotaxis [65].
The implementation of an intrinsic learning that reinforces the temporal correlations in the

dynamics would be an interesting challenge to derive plasticity in this model [66].
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The residence time distribution on each attractor ruin of chaotic itinerancy is reported to follow
exponential distribution [67]. Since intermittent foraging behavior observed widely in animals is
known to be optimized with exponential law in stochastic model, the CNN may also have the
capacity to optimize such saltatory search [68].

7.5.2 Conclusions

We have investigated the spatiotemporal dynamics of CNN, and developed a general framework of
controlling chaotic itinerancy by making use of the existing invariant subspaces.

A possibility of implementation to robot was simulated. Obstacle avoidance was realized by
balancing the sensitive response to external signals with the autonomy of the system, and by
tactical synchronization into purposely-designed invariant subspaces.
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Chapter 8

Optimal Intermittent Search with
Chaotic Roving Robot and
Infotaxis by Collective Interaction

Abstract

We consider the application of chaotic roving robot with CNN designed in pre-
vious chapter for collective infotaxis. 2-phase sporadic information search based on
animal saltatory behavior is expanded to 2-dimensional surface. Statistical description
of chaotic itinerancy is then used to fit the formalization of 2-phase search. The contact
graph structure between robots is investigated as the basis of information sharing. The
efficiency of collective infotaxis is evaluated on a simulator basis.

Keywords: 2-phase sporadic information search, infotaxis, collective interaction,
information sharing

Methodology: Design of a single robot 2-phase search as a completely determin-
istic dynamical system based on the probabilistic analysis of the previous chapter →
Analysis of the optimal search parameter on simulator basis with probabilistic for-
mulation → Design of collective infotaxis as an ensemble of completely deterministic
dynamical systems and its simulation → Development of a search evaluation theory
with information geometry

8.1 Introduction

The hidden target search has been one of the essential task for animals to survive in natural en-
vironment. Experimental observations revealed that the evolution invented an intermittent search
strategy with two phases: the active search phase and the fast ballistic motion [69][70][71]. The
2-phase search in several species can be experimentally classified only in two classes depending on
the inequality of the duration between two phases. This implies that there exists an global and
universal optimal solution for the sparse target search. Therefore, the model of the saltatory search
behavior is expected to be useful for the searching robot in a similar condition.

We briefly summarize here the one-dimensional 2-phase search model for further application in
searching robot [72]. The model of saltatory search behavior proposed by Bénichou et al. consists
of two states. In the search phase, the searcher explores the targets in its vicinity with a relatively
slow diffusive movement. This process is approximated as a continuous random walk with diffusion
coefficient D. In the motion phase, the searcher moves relatively fast and do not detect any target.
This is a repositioning move and modeled with a ballistic motion of constant velocity v. The two
phases stochastically change with each other with given parameters fS and fM . Here, fS represents
the changing probability per unit time from the search phase to the motion phase, and fM is that
of from the motion phase to the search phase.
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Assuming the uniform target density 1/L in one-dimensional search space, modeling of the
2-phase search with the backward Chapman-Kolmogorov differential equation gives the following

solution of the average search time < t > in the low density limit L >> v
fM

,
√

D
fS

,
√

fMD
fSv

:

< t >=
L

2D

(
1

fS
+

1

fM

)
τf2M + 2fS√
τf2M + 4fS

. (8.1)

Where τ = D
v2 . The linear dependence of < t > on the typical intertarget distance L is known to

be more efficient than purely diffusive strategy without the moving phase.
The average search time < t > becomes a single minimum with respect to the following con-

straint between fS and fM ,

fS = fmaxS , (8.2)

f5M +
6

τ
f3MfS −

8

τ2
f3S = 0, (8.3)

where fmaxS is the upper bound of fS defined as the minimum time required for information
processing by sensory organs.

The minimum depends on the asymptotic between fmaxS and 1
τ and give two different forms:

In case fmaxS << 1
τ , the optimal frequencies are

fS = fmaxS , (8.4)

fM =

(
4

3τ

) 1
3

f
2
3

S . (8.5)

This solution is called the regime S (for search) since fS < fM holds, meaning the searcher spends
more time searching than moving.

In case fmaxS >> 1
τ , the optimal frequencies are

fS = fmaxS , (8.6)

fM =

(
2
√

2

τ

) 1
3

f
3
5

S . (8.7)

This solution is called the regimeM (for move) since fS > fM , and the searcher spends more time
moving than searching.

8.2 2-phase Search with Chaotic Roving Robot

In this section, we develop a framework to realize the 2-phase intermittent search robot with the
use of a chaotic neural network (CNN). The above described 2-phase search model is a stochastic
model with exponential residence time distribution for each phase. On the other hand, the CNN
is a completely deterministic system. However, the orbits in chaotic itinerancy state have the
irregularity that can be collectively characterized as a probabilistic distribution. This formalization
with the invariant density leads us to investigate the correspondence between the stochastic model
and the deterministic model with chaos.

The residence time distribution on each effective dimension is shown in Fig. 8.1. They all
converge to exponential distributions as the long-term time average. Since the stochastic model
for 2-phase search is also defined by an exponential residence time distribution for each phase, it
is possible to realize the same kind of dynamics with CNN in terms of the long-term statistics.

As for the temporal structure of the orbit, we should consider the temporal dependency of the
deterministic CNN. Though, the chaotic itinerancy states expresses the dependency on the past
states during only a short time period. It is because of the long term instability of chaotic orbits.
This means that the chaotic itinerancy can be approximated with higher order Markov process in
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Figure 8.1: Residence time distributions of each effective dimension in CNN. The distri-
butions are obtained from 1000,000 steps of output from CNN with kr = 0.98, τ = 1.2.

terms of the predictability.The effective scale of temporal dependency is related to the Lyapunov
exponent in simple chaotic systems.

Suppose that the chaotic itinerancy in chosen parameters is approximately equivalent to a k-th
order Markov process M defined as follows:

P (t+ k) = M(P (t), · · · , P (t+ k − 1)), (8.8)

where P (t) = (P1(t), · · · , P6(t)) ∈ [0, 1]6 is the joint probability distribution, which represents the
appearance rate of the six patterns P1, P2, P3, P4, P5, P6 at time t.

We now consider the expression of (8.8) with Perron-Frobenius operator F : [0, 1]8 → [0, 1]8 of
CNN Φ : R8 ×R8 → R8 ×R8 as follows:

p(t+ k) = F k(p(t)), (8.9)

p(t) = lim
N→∞

1

N

∑
(η(t), ζ(t)), (8.10)

where p(t) is the sum of the state (η(t), ζ(t)) of CNN at time t over a infinite number of initial
conditions. Since P (t) and p(t) have a correspondence between them, we formally describe this
relation as P (t) = fp(t). Note f is not necessary one-to-one projection, because it is invariant
under the permutation between ηi and ζi with arbitrary 1 ≤ i ≤ 8.

The invariant density pinv of F is then defined as follows:

pinv = F (pinv), (8.11)

where

fpinv = M(fpinv, · · · , fpinv). (8.12)

The distribution Pinv = fpinv is the stationary distribution of the k-th order Markov process.
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Table 8.1: Transition probability matrix between the six patterns of CNN. The transition
matrix as a first-order Markov process is calculated from 1000,000 time steps of CNN retrievals.
The last line is the overall appearance time for each pattern.

P1 P2 P3 P4 P5 P6

P1 0.5652 0.0248 0.1014 0.1043 0.1026 0.1044
P2 0.0249 0.5650 0.1044 0.1013 0.1044 0.1022
P3 0.1037 0.1023 0.5657 0.0256 0.1023 0.1012
P4 0.1018 0.1037 0.0254 0.5651 0.1018 0.1016
P5 0.1026 0.1011 0.1006 0.1022 0.5640 0.0251
P6 0.1014 0.1028 0.1022 0.1012 0.0246 0.5652

#Appearance 156841 156676 156421 155943 154953 155588

To obtain the concrete Pinv, we investigated the transition matrix between the six patterns of
the CNN dynamics. The result for the first-order Markov process is described in Tab. 8.1. As
a property of dynamical system, the asymmetric short-time dependency exists, though since the
overall appearance rate of the defined six patterns in CNN is uniform, the stationary distribution
is assumed to exist as

Pinv =

(
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6

)
. (8.13)

This means that the stationary distribution of the chaotic itinerancy state is equivalent to that of
the symmetric random walk on a triangular lattice. The same statistics also holds for ED = 4 or
8 and ED = 2 among the nearest patterns of the orbit. We will later use this result to obtain the
optimal solution in one-dimensional projection of 2-phase search with CNN.

We now consider the implementation of the 2-phase search in a roving robot with CNN. As
in the previous chapter, we control the three motors outputs with the six memorized patterns.
Since the residence time of each effective dimension follows exponential distribution, we can find a
natural correspondence with the search and moving phase. We define that the CNN is in the search
phase if the effective dimension is 4 or 8, and in the moving phase if 2. We fitted the residence time
distribution of the effective dimension 4 or 8 as PS(tr), and 2 as PM (tr), respectively, as follows:

PS(tr) = ASe
aStr , (8.14)

PM (tr) = AMe
aM tr , (8.15)

where tr is the residence time, and AS , aS , AM , and aM are the fitting parameters. Comparing
with the definition of fS and fM , we have

fS = 1− eaS , (8.16)

fM = 1− eaM . (8.17)

Since the dynamics of CNN with the chosen parameters kr = 0.98 and α = 1.2 have longer
residence time in the search phase (effective dimension 4 or 8), we consider the optimization in
the regime S. We introduce the control parameters γS and γM defined as follows, to realize the
distributions for the optimal 2-phase search.

fS = 1− eγSaS , (8.18)

fM = 1− eγMaM . (8.19)

This corresponds to elongate the residence time distributions of the two phases with the rate of
1/γS and 1/γM .

We define the control sequence of the robot on two-dimensional surface as follows:
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Table 8.2: Correspondence between the nearest pattern and motor output in search
phase. Motor numbers with the positive/negative signs of the output direction are listed in the
second line. For example, if the nearest pattern is P1, the robot moves to the direction of the
motor 1. If the nearest pattern is P2, the moving direction is the opposite to the motor 1 by the
inverse rotation. In the search phase, the six moving directions are defined with three motors to
have a correspondence between the chaotic itinerancy state and the diffusion of Markov process on
a triangular lattice.

Nearest Pattern P1 P2 P3 P4 P5 P6

Motor Output +1 -1 +2 -2 +3 -3

1. At each time step t, judge the effective dimension (ED) and define the search mode. If
ED = 4 or 8,then the robot is in the search phase and is able to detect targets in its vicinity.
If ED = 2, then the robot is in the motion phase and is unable to detect any target.

2. Judge the nearest pattern Pj (1 ≤ j ≤ 6) with respect to the Euclidian distance 1
8

√∑8
i=1(xi(t)− pji )2.

If the robot is in the search phase, the motor output is defined as Tab. 8.2. If the robot is in
the motion phase, the motor output is defined as Tab. 8.3.

We defined the six moving directions for the search phase, and three directions for the motion
phase, as depicted in Fig. 8.2 and 8.3. The motion phase is limited to three directions to avoid
round trip. The dynamics of the search phase corresponds to the diffusion of the k-th order Markov
process on a triangular lattice. Furthermore, from (8.13), the chaotic itinerancy state is equivalent
to a symmetric random walk in terms of the stationary distribution. The diffusion coefficient D
of a random walk is given by the variance of the stationary distribution. Defining the moving
speed of the robot during the search phase as vS , the variance of the symmetric random walk on
a triangular lattice is given by 2

3v
2
S for each of three axis.

We consider now the projection of the search dynamics on triangular lattice to one of the three
axis, to obtain the optimal solution in one-dimensional search. For simplicity, we define only the
one-dimensional moving direction of the robot in the motion phase with the speed vM = νvS . The
motion is bi-directional. (In the actual robot, the different three directions have to be considered.)
Then the parameter τ = D

vM
becomes as follows:

τ =
2

3ν2
. (8.20)

Defining fmaxS = 1 − eγSaS with the control parameter γS , and in case ν ≥ 10, for example, the
following condition of the regime S holds:

1

τ
=

3ν2

2
≥ 150 >> 1 > fmaxS . (8.21)

The optimal solution of the control parameter γM for the one-dimensional 2-phase search with
CNN is therefore given by

fmaxS = 1− eγSaS , (8.22)

γM =
1

aM
log

[
1−

(
4

3τ

) 1
3

(1− eγSaS )
2
3

]
, (8.23)

with the constraint fS < fM that is translated as γM > aSγS
aM

. This is the analytical optimal
solution for the simplified one-dimensional 2-phase search with the symmetric random walk whose
stationary distribution is equivalent to that of the chaotic itinerancy state.

The obtained theoretical solution in one-dimensional space actually contains some problems
to be directly applied to the 2-phase search of the robot in two-dimensional surface. First, the
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Table 8.3: Correspondence between the nearest pattern and motor output in motion
phase. Motor numbers with the positive/negative signs of the output direction are listed in the
second line. In the motion phase, we do not define the inverse direction of each motor so that the
dynamics become irreversible ballistic motions.

Nearest Pattern P1 P2 P3 P4 P5 P6

Motor Output +1 +1 +2 +2 +3 +3

Figure 8.2: Definition of moving directions with respect to the nearest pattern during
search phase. The side length of the triangular lattice corresponds to the moving speed vS .

Figure 8.3: Definition of moving directions with respect to the nearest pattern during
motion phase. The side length of the triangular lattice corresponds to the moving speed vM .



8.3. CONTACT OF ROBOTS IN COLLECTIVE MOVEMENT 109

robot actually moves to three directions in the motion phase to cover the searching surface, and
the one-dimensional projection of vM changes its value and directions. Next, we should consider
that in the actual orbit of chaotic itinerancy, there exists high order temporal dependency that
is averaged and lost in steady-state distribution. The approximation with the diffusion coefficient
contains corresponding fluctuations in a short time period. Therefore, the relation of the long-term
average and the temporal dynamics is not necessary straight.

Since these problems are too difficult to solve theoretically, we expect to obtain the optimal
solution by a numerical simulation. We simulated the 2-phase search on two-dimensional surface
with six directions in the search phase and three directions in the motion phase. We set the
parameters γS = 0.1 and ν = 12.5, latter to satisfy the condition of the regime S. The temporal
change of the robot speed is shown in Fig. 8.4. We located the targets as information sources
with regular distance L = 200, and simulated the 2-phase search. This value of L is not sufficient
to satisfy the low density limit L >> vM

fM
in one-dimensional model, but is sufficiently sparse in

two-dimensional surface. The vicinity of the robot for the targets detection was set as 3. The
result is shown in Figs. 8.5 and 8.6. In case of the two-dimensional search, there exists an optimal
peak around 1/γM = 9.

Figure 8.4: 2-phase search speed of the simulated robot. The speed [m/s] of the up state
corresponds to vM , while that of down state corresponds to vS . ν = 12.5, γS = 1, 1/γM = 9. 1
step of CNN is expressed as 100 time steps of the robot.

8.3 Contact of Robots in Collective Movement with Opti-
mal Intermittent Search

We consider from this section the collective dynamics of the robots in view of application to global
collective search and information sharing. We assume the collective search of sporadic information
sources in a wide or complicated environment that is beyond the capacity of the single robot search,
and define the collective interaction as the local interaction between robots. Local interaction is set
to have exchange of search history between robots, so that to deploy more robots to where there
exist more information sources. We expect here the bottom-up emergence of collective information
sharing from the local interaction.

The benefit of local interaction can be summarized as follows: First, the emerged collective
dynamics is the result of the local interaction between robots and the environment. Therefore, we
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Figure 8.5: Example of the searching orbit. Top: 1/γM = 2. Middle: 1/γM = 9. Bottom:
1/γM = 22. The blue orbits are in the search phase, while the red orbits are in the motion phase.
The targets are depicted as green square points, and are located on a square lattice with the
intertarget distance L = 200. 1/γM = 9 is the numerical optimal.
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Figure 8.6: 2-phase search result of roving robot in regime S. Horizontal axis: 1/γM .
Vertical axis: Mean discovered information. The means of 30 different orbits are depicted. The
discovery of the hidden target during the search phase is counted as the information. An optimal
peak exists around 1/γM = 9. The upper bound of 1/γM is 22.79 in regime S.

do not need a priori the global information on the searching space. The group of the robots are
expected to fit autonomously to its structure. This is a strong point when we do not know about the
optimal searching strategy in a real complicated environment, especially in case the information
sources move temporarily. Second, the local interaction can lessen the cost of global collective
search. In a wide environment, the centralized control from outside of the robots requires high-
power wireless network. Though in practice, conventional Wi-Fi devices, for example, are limited
to guarantee the communication of at most 50-100 m distance without barrier. The use of local
interaction facilitate the implementation of each robot with the existing technology.

In this section, we simply investigate the contact structure of the emerged collective dynamics
from a local interaction rule. Actual simulation of information search is developed in the following
section. The local interaction is defined as follows:

1. For each robot, in search phase, at each time step t, scan the neighbor and judge if there
exist other robots. This scanning assume the detection of other robots by Wi-Fi network.
If there are any, put external input pattern of the nearest direction to CNN. This range is
assumed to relate the strongness of the Wi-Fi connection between the robots. We consider
only the nearest robot for one-to-one communication channel. We call this additional phase
as “communication phase”.

2. For each robot, in communication phase, at each time step t, scan the neighbor and judge
if there exist other robots that are sufficiently close to establish communication. This range
is assumed to relate the strongness of the Wi-Fi connection between the robots. If there are
any, establish a contact for further information exchange.

We first simulated the group of robots with this local interaction rule without information
sources in the environment. This is to investigate the nature of the emerged collective dynamics
without environmental factors. The simulation is performed using the Microsoft Robotics Studio
software. To avoid the global divergence of robots, the searching space is confined with a circular
wall of 100 m radius. The scan range of the communication phase is 50 m, the establishment of
communication is judged by the physical contact between robots. The size of the robots are 80
cm.
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The result of the collective dynamics of 10 and 20 robots are shown in Figs. 8.7 and 8.8.
Sensitive response to external input of CNN efficiently worked to form contact structure between
robots. In a long term superposition, the robots establish almost all-to-all connection, which
guarantee the global sharing of information in the long run (Fig. 8.7).

In shorter term, mid-scale hub structures are dominant with large fluctuation for both 10 and
20 robots (Fig. 8.8). The robots are in average keeping mid-degree connection with each others,
which would assure the fast and stable spreading/sharing of information in the given confined scale.

The unconfined setting also showed similar statistics, but can lose some robots too far out of
others due to the spacial divergence.

Figure 8.7: Total communication graph between robots in confined space. Left: Com-
munication graph between 10 robots during 100000 steps of CNN in confined circle space with
radius=100m. Right: Communication graph between 10 robots during 100000 steps of CNN in
confined circle space with radius=100m.

8.4 Infotaxis in Information Landscape with Collective In-
termittent Search

We apply the collective dynamics of the robots with communication phase to autonomously fit to
the information landscape of the environment.

We defined the information gradient dynamics by the superposition of three gaussian distri-
butions that rotate temporarily. Although the 2-phase search optimization is conditioned under
sporadic information search, for simplicity we use the continuous information gradient to evaluate
its efficiency in averaged term.

By combining the intermittent search and information sharing via collective interaction, we
aim to adapt the spacial distribution of the roving robots to the gradient of information in the
environment. The group of robots is expected to concentrate and temporally follow the dynamical
information landscape.

Figs.8.9 and 8.10 shows schematic representation of the algorithm used in this section. This
time, we use the external input to follow the detected information gradient. The algorithm is
defined as follows:

1. During search phase, sense information in the environment.

2. After the search phase,communicate with other robots within communication range (50 m)
and exchange history of sensed information with global coordinates and time.

3. Calculate gradient vectors using all records within local spatial range (50 m neighbor) with
time-dependent exponentially decreasing weight. Decide the external input direction closest
to the steepest ascending gradient vector and proceed to motion phase.
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Figure 8.8: Examples of communication graph and its degree distribution between
robots in confined space. Left Up: Communication graph between 10 robots during 50001-
60000th steps of CNN in confined circle space with radius=100m. Left Down: Degree distribution
of upper graph. Right Up: Communication graph between 10 robots during 90001-100000th steps
of CNN in confined circle space with radius=100m. Right Down: Degree distribution of upper
graph.
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The global coordinates of the steepest direction (xM , yM ) with time-dependent weight is defined
as follows by calculating vM. The time dependency is to avoid the persistence of past memory in
order to adapt to the dynamical change of information landscape.

vself = (xself , yself , tself , Iself ), (8.24)

vmax = (xmax, ymax, tmax, Imax) = max
exp (µ·(tself−t))·I

{v}, (8.25)

vM = (xM , yM , tM , IM ), (8.26)

vM = sgn(Imax − Iself )(vmax − vself ) + vself , (8.27)

where {v} are the 4-dimensional vectors {(x, y, t, I)} within communication range, with 2-dimensional
global coordinates (x, y), time t, and local information I. vself is the coordinates of present state
of the robot, vmax is those having the maximum I in the past history of communication range
with time-dependent penalty weight exp (µ · (tself − t)). µ ≥ 0 is the control parameter of memory
decay, which becomes larger to set the optimal as the change of information landscape becomes
faster.

This control algorithm only controls the moving direction of motion phase, and conserves per-
fectly the residence time statistics of the 2-phase search shown in Fig. 8.5 (Middle). It is therefore
the optimal for sporadic information search assumed in actual situation.

An example of the results of this algorithm is shown in Fig. 8.11. The robots succeeded to
detect the peaks of the information gradient by the collective sharing of search history. A single
robot with the proposed algorithm can climb up the information gradient by itself, but the collective
sharing of information augments the resolution of the collective grid and realizes quicker search and
sharper localization around the information peaks. Figs. 8.12 show an example of the temporal
dynamics of sensed information in single robot and collective search. The communication between
robots augment in average the quickness of search.

The communication radius also gives the resolution of local minimum avoidance. Local mini-
mums of information landscape less than the communication radius is easily overcome by collective
sharing of information (Fig.8.13). Even though the communication radius is limited by hardware
(such as Wi-Fi network communication range), the calculation of the gradient vectors in shared
information grid is not restricted by the communication manner. Once the sensed information is
collectively shared, each robot can independently decide the local spatial range of information grid
to decide the next moving direction. Therefore, the algorithm is also adjustable to local minimum
problem according to the condition of the environment.

Dynamical information landscape is also traceable by adjusting the temporal decay parameter
µ proportional to the changing speed of the information.

8.5 Implementation Plan -Toward the Enhancement of Hu-
man Interaction-

Application in real world of the roving robots has many possibilities. The collective adaptation to
the information landscape will realize a new way of information presentation in interaction with
human population. For example, in public event, information boards can be carried by the robots
and automatically distributed to where there are more people. The distribution of information
according to the distribution of humans will create the positive loop of concentration between
them. Gathering to the populated place to find the information is natural to human behavior.

Fig. 8.14 shows the virtual project during the world exposition Expo 2010 Shanghai China.
The robots in the site are deployed automatically according to the human population and inform
the people about the on-going events as well as showing the guide map.

Other possibilities include to carry illumination and audio instrument on the robot, and create
an adaptive atmosphere according to the temporal location of the people in public space such as
outdoor cafeteria or bar. Fig.8.15 shows another virtual project in open-air cafe.

We are planning to seek for the new way of interaction with and among robots through emergent
behavior to better enhance human interactions.
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Figure 8.9: Collective estimation of information landscape by constructing local com-
munication grid between robots. The robots (red triangles) establish communication with
other ones within local communication range (red lines) and exchange information they found
during the search phase. Based on these shared information, the robots climb up the information
gradient approximated by the collective grid. The global information landscape (mesh grid) is not
given explicitly.

8.6 Multi-scale Evaluation of Collective Infotaxis with Re-
spect to the Actual Information Landscape

We investigate a theoretical framework to evaluate the efficiency of the collective infotaxis in actual
environment. Actual distribution of information such as human crowd is dynamic and varies both
in spatial and temporal scales. The quantification of the cost and benefit is an important issue to
evaluate the system.

We consider a short time period for the real-time evaluation, and compare the information and
robots distribution with the use of approximation with Gaussian mixture distribution. The actual
information landscape can be measured with the use of other empirical technology such as remote
sensing. Suppose the actual distribution of information and those sensed by a collective grid of
robots are approximated as follows:

pI(x, j; θI) =

J∑
j=1

πIjN(µIj ,Σ
I
j ), (8.28)

pR(x, j; θR) =

J∑
j=1

πRj N(µRj ,Σ
R
j ). (8.29)

Where θI = {πIj , µIj ,ΣI
j |1 ≤ j ≤ J} and θR = {πRj , µRj ,ΣR

j |1 ≤ j ≤ J} are the parameters of
Gaussian mixture distribution with J components. The πjN(µj ,Σj) represents the j-th compo-
nent, which is a 2-dimensional normal distribution with mean vector µj and covariance matrix Σj

multiplied by component weight πj (
∑J
j=1 πj = 1).

The total efficiency of the collective infotaxis can be measured by temporally integrating the
following minimum KL divergence D[· : ·] between pI and pR as follows:
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Figure 8.10: Schematic representation of the algorithm in collective infotaxis. Top:
During the search phase, each robot calculates the local information sensed in the environment.
Bottom: At the communication phase after each search phase, each robot detects other robots
in the defined communication range, and exchange all history of sensed information. Each robot
calculates the information gradient vectors using these shared records, and decide the next moving
direction of motion phase to the steepest ascending direction in collective information grid.
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Figure 8.11: Example of collective infotaxis. Top: Superposition of single robot search without
communication. Bottom: 10 robots collective search. In collective search, the robots communicate
with 50 m communication range and exchange history of search phase within globally confined
space of 100 m radius. 3 peaks of the gaussian information gradient are aligned equidistantly
on the circumference of 50 m radius, which are successfully detected. Total searching time is 60
minutes. Information landscape is stable and µ = 0. The ballistic motion speed v was adjusted to
fulfill the low density condition L >> v

fM
, preserving the motion/search speed ratio ν = 12.5.
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Figure 8.12: Dynamics of sensed information in single robot and collective search. Total
searching time vs sensed information during search phase is depicted. Top: Superposition of single
robot search without communication (corresponds to Fig.8.11 Top). Bottom: 10 robots collective
search (corresponds to Fig.8.11 Bottom). Collective search with communication between robots
realizes in average quicker search.
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Figure 8.13: Example of local minimum avoidance in 10 robots collective search. The
robots communicate with 50 m communication range and exchange history of search phase within
globally confined space of 50 m radius. 3 peaks of the gaussian information gradient are aligned
equidistantly on the circumference of 25 m radius. Only 1 peak is detected due to the winner-
take-all principle in dense communication grid. Total searching time is 60 minutes. Information
landscape is stable and µ = 0. The ballistic motion speed v was adjusted to fulfill the low density
condition L >> v

fM
, preserving the motion/search speed ratio ν = 12.5.

Figure 8.14: Virtual project 1. The robots sense the density of human population and automat-
ically adapt to the crowd distribution. The communication between robots facilitate the dynamic
deployment without a priori information. The robots display guiding information.
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Figure 8.15: Virtual project 2. The robots with lighting apparatus adapt to the residence
pattern of human in outdoor cafeteria. The robots also function as interface to command food and
beverage. Nine illuminations at the ground floor are the robots.
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D[pI : pR] =

∫
dx

J∑
j=1

πIjN(µIj ,Σ
I
j ) log

πIjN(µIj ,Σ
I
j )

πRj N(µRj ,Σ
R
j )

=

J∑
j=1

πIj

(
D[N(µIj ,Σ

I
j ) : N(µRj ,Σ

R
j )] + log

πIj
πRj

)
. (8.30)

Where the component subscript j is chosen to minimize the D[pI , pR] according to a given time
period. This quantity measures the deviation of the actual information landscape with respect to
the information sensed by the collective search. It represents the remaining difficulty to estimate the
actual information landscape with the use of the sensed information as an information theoretical
measure. The smaller the value of D[pI , pR] is than the random search, the more effective the
collective search is.

The evaluation of the infotaxis is possible to analyze in multi-scale by both ranging time period
and spacial scale by decomposing the D[pI , pR] into component-wise terms. From equation (8.30),
the following quantity Dj [p

I , pR] gives the j-th component term of the total discrepancy D[pI , pR]:

Dj [p
I : pR] = D[N(µIj ,Σ

I
j ) : N(µRj ,Σ

R
j )] + log

πIj
πRj

. (8.31)

This measure gives the component-wise comparison between the sensed and actual information
landscape, which would represent the spacial heterogeneity of search efficiency induced by an
environmental condition. The strength and defect of the collective search are then possible to
detect in actual environment. Spacial neighborhood of an important event can also be isolated by
choosing appropriate set of Dj [p

I , pR] representing the necessary components of pI covering the
region.

The component-wise comparison is further possible to decompose into different orders of statis-
tics of the Gaussian component. With the use of the mixture coordinate in information geometry,
the following decomposition of Dj [p

I , pR] between the mean value and the variance component is
derived:

Dj [p
I : pR] = D[N(µIj ,Σ

I
j ) : N(µRj ,Σ

I
j )]

+ D[N(µRj ,Σ
I
j ) : N(µRj ,Σ

R
j )]

+ log
πIj
πRj

. (8.32)

Where the first term represents the deviation with respect to the difference of the mean value,
and the second term is that of the variance. The theoretical foundation of this decomposition
will be explained in detail in Part 6. This decomposition serves to distinguish the efficiency of
the collective search between the detection of the local peak (mean value µIj ) and the sensitivity

to the spatial extension (variance ΣI
j ). If the mean value component of the deviation is large,

the robots are missing to detect the local peak of the actual information, while if the variance
component is large, the chaotic diffusion of the search and/or motion phase is too large or small with
respect to the actual spacial distribution of the information. The higher localization around the
information peak gives higher value of the averaged sensed information, but may not be appropriate
to enhance human interaction because it contains less diffusive movement. The variance component
of the deviation is therefore not a simple measure of search efficiency but rather an index of
spacial fluctuation necessary to introduce for human interactions besides the simple infotaxis.
Such functional distinction is totally omitted if we simply use the total efficiency defined in (8.30).

8.7 Conclusion

We constructed 2-phase optimal intermittent search strategy of roving robot for sporadic informa-
tion using the hierarchical statistics of effective dimension in CNN dynamics. We also investigated
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Figure 8.16: Multi-scale evaluation of collective infotaxis with respect to the actual
information landscape. Both actual information landscape (black line) and sensed information
(magenta line) are approximated as Gaussian mixture distribution. The KL divergence between
them allows us to quantify the efficiency of the collective search varying both in temporal and
spacial resolution, as well as between the mean and variance components.
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the collective interaction between the robots and applied to the collective infotaxis in dynamical
environment without a priori information. The efficiency of the proposed strategy is shown by a
simulation.
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Chapter 9

Order-wise Correlation Dynamics
in Text Data

Abstract

We applied information geometry to treat the correlation beyond second order in
network co-word analysis. We also defined the meta-level dynamics of these correlations
based on all hierarchical combination of the variables, in order to encompass all possible
relations. The result shows a rich variety of dynamics depending both on the order of
correlation and the order of meta-level dynamics.

Keywords: Hierarchical clustering, Information geometry, co-occurrence network,
political weblog, epistemic community

Methodology: Definition of order-wise correlations as contexts and their meta-
contexts with information geometry→ Trend analysis of the context and meta-context
dynamics as dynamical systems→ Return map and local stability analysis of the context
and meta-context dynamics with dynamical system formulation

9.1 Introduction

Network analysis is one of the prominent tool for addressing a wide range of complex systems
objects. Social networks have been extensively studied since the mid twentieth century [73], lexical
networks have been introduced in the 80’s [74], biological systems are now commonly analyzed
through network representation, etc [75, 76]. In this kind of framework, nodes represent elements,
and links, eventually weighted, represent the strength of the interactions between those elements.
For example, in social networks links are often assumed to represent the number of physical contacts
or collaborations ; in lexical networks links could represent the number of co-occurrences of terms
in a corpus ; in biological networks, links could represent genes co-expression ; etc. It is noteworthy
that in many cases, the value of links are processed over a large number of events where interactions
do not take place in a one-to-one way, but rather involve potentially several elements at the same
time (co-authors, co-words, etc.). This information conveyed by the patterns of interaction is lost
when representing a link has an average over pairwise interactions (9.1). Thus, the standard way
to think about links in networks only encapsulates relationships between pairs of nodes and fails to
take into account an information that might be critical for further analysis. In particular, several
clustering technics aim precisely at recovering communities of nodes that are supposed to interact
in the same context (community of co-authors, community of words defining a scientific fields,
community of genes coding for a phenotype, etc.).

In this paper, we propose a theoretical framework from information geometry that enables to
take into account the fine grained structure of links. By distinguishing different orders of cor-
relations between the variables associated with nodes, we consider links with the multiplicity of
contexts in which they appear, and propose a method to identify the most relevant contexts. In
the following, a context will be defined as a set of nodes such that their interactions are strongly
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Figure 9.1: Example of conventional network presentation. In many cases, the value of
links of a network are processed over events where interactions do not take place pairwise, but
often involve several elements at the same time (co-authors, co-words, etc.). Thus, the information
conveyed by the patterns of interaction is lost when representing a link has an average over pairwise
interactions

correlated. Reconstructing all relevant contexts can be viewed as performing an overlapping clus-
tering that takes into account all patterns of interaction at the event level, rather than patterns of
interaction on the network structure averaged over all events. In a second section, we propose to
extend this approach to higher order correlation computing meta-contexts, which is analogous to
performing multi-level clustering.

9.2 Correlations Beyond the Second Order

Although the network representation is intuitively powerful to grasp the structure of complex data
, it is not appropriate to distinguish different orders of correlations between the variables associated
with nodes. In real data, there exist correlations beyond the second order, which are very important
to analyze collective stochastic dynamics.

Let us take for example a network with 3 nodes, each node taking binary values {0, 1} at a
given time t. The dynamics of these variables as a stochastic process can be completely defined by
choosing the following 7 parameters of joint distributions at time t:

p(1, 0, 0), p(0, 1, 0), p(0, 0, 1), p(1, 1, 0), p(1, 0, 1), p(0, 1, 1), p(1, 1, 1). (9.1)

Note that p(0, 0, 0) is automatically defined from the normalization
∑
i,j,k∈{0,1} p(i, j, k) = 1.



9.3. ORDER-WISE DECOMPOSITION OF CORRELATIONS 129

Next, we consider the following hierarchical marginal distribution η.

η1 =
∑

i=1, j,k∈{0,1}

p(i, j, k), η2 =
∑
j=1, i,k∈{0,1} p(i, j, k),

η3 =
∑

k=1, i,j∈{0,1}

p(i, j, k), η12 =
∑
i,j=1, k∈{0,1} p(i, j, k),

η13 =
∑

i,k=1, j∈{0,1}

p(i, j, k), η23 =
∑
j,k=1, i∈{0,1} p(i, j, k),

η123 =
∑
i,j,k=1 p(i, j, k). (9.2)

η1, η2, and η3 are the marginal distributions of each variable. η12, η13, and η23 represent the
degrees of second-order correlations between nodes 1, 2, nodes 1,3, and nodes 2,3, respectively. In
the same way, η123 defines the degree of third-order correlation. These η can also be obtained by
the Legendre transformation of natural parameters of exponential family. This fact later implies a
crucial role of these coordinates.

Considering the links between nodes as a representation of interactions between nodes, it comes
out straight forward that the third-order correlation included in η123 cannot be decided by defining
the other η parameters. All the 7 parameters must be defined independently so that to specify a
single model. This causes a problem to graph representation when using single kind of link between
nodes, because the distinction among different orders of correlations is not considered.

The same argument also holds for the dynamics on graph with n nodes taking binary variables.
The k-tuple correlation (3 ≤ k ≤ n) can not be represented by assembling the correlations less than
k-tuple ones. The higher-order correlations are independent from the lower-order ones, so that it
should be measured separately for each order. (For example, even if there exists no significant
second order correlation, it is possible to observe the correlation among three variables.) This class
of model can be generally formulated by log-linear model, with the use of natural parameter θ.

log p(x1, x2, · · · , xn) =
∑n
i=1 θixi +

∑
i<j θijxixj + · · ·

+
∑
i<j<···<k θij···kxixj · · ·xk + · · ·+ θ12···nx1x2 · · ·xn − ψ, (9.3)

ψ = − log p(0, 0, · · · , 0). (9.4)

For example, θ are defined as follows when n = 3.

θ1 = log
p(1, 0, 0)

p(0, 0, 0)
, θ2 = log p(0,1,0)

p(0,0,0) ,

θ3 = log
p(0, 0, 1)

p(0, 0, 0)
, θ12 = log p(1,1,0)p(0,0,0)

p(1,0,0)p(0,1,0) ,

θ13 = log
p(1, 0, 1)p(0, 0, 0)

p(1, 0, 0)p(0, 0, 1)
, θ23 = log p(0,1,1)p(0,0,0)

p(0,1,0)p(0,0,1) ,

θ123 = log p(1,1,1)p(1,0,0)p(0,1,0)p(0,0,1)
p(1,1,0)p(1,0,1)p(0,1,1)p(0,0,0) . (9.5)

9.3 Order-wise Decomposition of Correlations

9.3.1 Definition of Context as Order-wise Correlation

Although the correlation between variables can be defined up to the order of total nodes number,
little is known on the correlation higher than the second order. Information geometry gives us a
clear way to decompose the correlation orthogonally into different order of statistics [77]. Let pnn
be a data distribution of n binary variables allowing up to the n-th order of correlation, and p1n be
the independent joint distribution with the same marginal distribution (η1, · · · , ηn) as the data.
The superscript of p represents the possible highest order of interaction, while the subscript of p
is the dimension of distribution. Then the Kullback-Leibler divergence D[p : p1] between the 2
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probabilities can be decomposed in the following way:

D[pnn : p1n] =

n∑
k=2

Dk(pnn), (9.6)

where Dk(pnn) represents the overall degree of interaction purely among the k variables.
The above decomposition is obtained with the use of the dual flat coordinates η and θ. The

duality and the flatness of these coordinates can be defined with respect to the Fisher information
matrix as metric, and dual α = ±1 connections. The element Dn(pnn), for example, is calculated
by the composition of the following mixture coordinate ζ and ζ0:

(ζ1, · · · , ζn; ζ12, · · · , ζn−1n; · · · · · · · · · ; ζ12···n−1, · · · , ζ2···n; ζ1···n)

= (η1, · · · , ηn; η12, · · · , ηn−1n; · · · · · · · · · ; η12···n−1, · · · , η2···n; θ1···n), (9.7)

(ζ01 , · · · , ζ0n; ζ012, · · · , ζ0n−1n; · · · · · · · · · ; ζ012···n−1, · · · , ζ02···n; ζ01···n)

= (η1, · · · , ηn; η12, · · · , ηn−1n; · · · · · · · · · ; η12···n−1, · · · , η2···n; 0), (9.8)

and

Dn(pnn) = D[ζ : ζ0]. (9.9)

With this example, we reduce the general form (9.6) to the following relation.

D[pnn : p1n] = Dn(pnn) +D[ζ0 : p1n]. (9.10)

We now try to isolate the arbitrary k-tuple interaction among k variables. By reducing the
model to arbitrary k nodes (2 ≤ k ≤ n), we obtain the same relation using the reduced mixture
coordinates ζ ′ and ζ0

′
:

(ζ ′1, · · · , ζ ′k; ζ ′12, · · · , ζ ′k−1k; · · · · · · · · · ; ζ ′12···k−1, · · · , ζ ′2···k; ζ ′1···k)

= (η1, · · · , ηk; η12, · · · , ηk−1k; · · · · · · · · · ; η12···k−1, · · · , η2···k; θ1···k), (9.11)

(ζ0
′

1 , · · · , ζ0
′

k ; ζ0
′

12, · · · , ζ0
′

k−1k; · · · · · · · · · ; ζ0
′

12···k−1, · · · , ζ0
′

2···k; ζ0
′

1···k)

= (η1, · · · , ηk; η12, · · · , ηk−1k; · · · · · · · · · ; η12···k−1, · · · , η2···k; 0), (9.12)

Dk(pkk) = D[ζ ′ : ζ0
′
], (9.13)

D[pkk : p1k] = Dk(pkk) +D[ζ0
′

: p1k]. (9.14)

Where Dk(pkk) is the interaction purely among k variables, while D[ζ0
′

: p1k] represents the rest of
the interactions lower than the k-th order. Note that ζ ′ is not a submanifold of ζ. In ζ ′, we ignore
completely the data outside of k nodes subgraph.

This decomposition is also compatible to chi-squared test to judge the significance of order-wise
correlation. Considering only the highest order of interaction in k nodes subgraph, the following
holds asymptotically with enough large sample number N .

λ = 2NDk(pkk) ∼ χ2(1). (9.15)

Where χ2(1) is the chi-squared distribution with one degree of freedom.
We also consider the distinction between positive and negative correlation by changing the

positive/negative sign of the statistics λ:

λ = sgn(η12···k − η′12···k) · 2NDk(pkk). (9.16)

Where sgn(·) is the signum function, and η′12···k is the solution of the θ12···k = 0 condition with
respect to the η12···k variable. This means that the 5 % significance level of positive/negative
correlation is judged by the λ being above/below the +/- 5 % threshold (3.841), respectively.

By changing the k, we are able to evaluate all possible sets of pure k-tuple interaction among
specific set of k variables. We call this λ the significance of k-th order context among k variables.
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Pragmatically, the sample used to calculate λ is not necessary limited to each time step of data.
In weblog data, for example, it is common to keep the history of about the past 1 week to 1 month
in the same page. Therefore, the distribution at time t should also reflect these periods in the
calculation by setting proportional length of the time window. This prescription also ameliorate
the sensitivity of the test.

For the following analysis based on text data, we define the context as the significance of
keywords co-occurence. The context of k words corresponds to the k-th order correlation of the
occurrence of k words, which is evaluated by (9.16). Therefore, there exist nc =

∑n
k=1 nCk possible

contexts in the graph of n nodes. We also define the subcontext of a context when the k-th
order context of binary variables (x1, · · · , xk) and the ksub-th order context of binary variables
(x1, · · · , xksub) exist, where 2 ≤ ksub < k and {x1, · · · , xksub} ⊂ {x1, · · · , xk} are satisfied. The
ksub-th order context is then a subcontext of the k-th order context. This gives us a way of
clustering taking the different orders of interaction into consideration. We applied this theory to
distinguish different order of correlations on the log-linear model with n = 4 binary variables.

9.3.2 Definition of Meta-Context

Furthermore, contexts between contexts can also be defined in the same manner. This is a kind
of hierarchical clustering taking the result of the previous level. From the calculation of the nc
contexts’ significance, we first judge for each order k and each period t which contexts are significant
or not. Next, we obtain the occurrence matrix of the contexts, that specifies with a binary variable
if a context is significant (true, = 1) or not (false, = 0). This new binary data has the same format
as the raw data used to calculate the contexts, except the number of variables being nc instead of
n.

It is now a question if these significant contexts also have correlations among each other. This
information cannot be treated with context only, but requires to establish relations across contexts.
It is observed in the relation between contexts. It can also be considered as the relation among nc
links of the n nodes graph. We call this co-occurrence of contexts as “meta-context.” The relation
between the binary variables, the contexts, and the meta-contexts is depicted in FIg. 9.2. In the
same way as the number of contexts, nmetac =

∑nc
k=1 ncCk meta-contexts are possible in n nodes

graph. As an expansion, performing the same operation on meta-context occurrence matrix, there

exists nmeta
2

c =
∑nmetac

k=1 nmetac
Ck meta-meta-contexts. For simplicity, we denote such expansion

as meta2-context, which is possible to generalize to the arbitrary finite levels as metal-context
(1 ≤ l <∞).

It is clear that the number of metal-context grows more than exponentially with l when n ≥ 4.
Though, it is natural to assume that there exists a certain limit of l, namely lmax, where there is
no significant metalmax -context. Ascending the hierarchy of metal-context up to this limit, we are
able to detect all relativistic relations unconsciously associated with the text data.

9.4 Data Set

The campaign for the French presidential election that ended in May 2007 was marked by the
strengthening of new modes of public expression. As the access to new communication media was
democratizing, new patterns of public intervention have been invented. The main outcome of this
new mode of intervention was that citizens could express their own views about social, political or
economical topics concerning the campaign that in turn modified deeply the political agenda. The
political blogosphere, in particular, is one of the main places of appropriation of public debate.

We have collected the content and hypertext links of a selection of 120 political blogs during
the first six months of 2007. The database allows each blog to provide a time series of semantic
attributes (quantified using a vector of occurrences of 190 key terms) that evolve according to new
posts. This provides us a daily semantic characterization of each blog from January the 1st to June
the 30th reflecting the current concerns of each blogger. The correspondence between the date of
important issues and the daily time axis is presented in Tab. 10.1.

We have analyzed these 120 weblog text data focusing on the 4 candidates (Ségolène Royal,
François Bayrou, Nicolas Sarkozy, and Jean-Marie Le Pen) of the last French presidential. For
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Figure 9.2: Hierarchical relation between binary variables, contexts, and meta-contexts.
As an example, three nodes network with binary variables A, B, and C is shown. The horizon-
tal planes and dashed lines schematically defines the combinations to define the above level of
interactions. Assume that the second order contexts AB, AC, and third order context ABC are
significant. Then the meta-contexts are defined on the co-occurrence of the contexts, in which, for
example, only AB-AC is significant.

simplicity, we will take the abbreviation of their family name, R,B,S,L to denote each candidate.
We will use these abbreviations as subscript for the binary occurrence vector (xR, xB , xS , xL)
aligned from left to right according to their political position being leftist to rightist.We set the
first or family name of each candidate as the key terms to scan the weblogs and obtain the data.
Each of 120 blogs was crawled each day to see whether these names appeared or not in their
posts, and coded accordingly as 1 (occurrence) and 0 (non-occurrence). For example, if a blog
post contained the words “Royal” and “Sarkozy” but none of the others, then the occurrence data
for this blog in this day will be (xR, xB , xS , xL) = (1, 0, 1, 0). Using this occurrence vectors, we
extracted significant order-wise correlation as context.

9.5 Result and Discussion

9.5.1 Context Dynamics

For the clarity, among the dynamics of all nc = 11 contexts, we only focus in this paper on some
interesting sets of contexts. Here, we are limited to give a case study on the above mentioned data,
and further study is needed for a generalization.

One of the novelties of this method is that we are able to distinguish the significance of a context
from its subcontexts. In other word, we can compare the different orders of correlation on a specific
set of variables. This raise an issue about whether higher-order correlation could play an important
role to characterize social dynamics. To focus on this issue, we take here 2 opposite examples, the
one where higher-order correlation is stronger (Fig.9.4), and the other where lower-order correlation
or the subcontexts are more dominant (Fig.9.3). Using the abbreviation to denote the contexts,
Fig.9.3 shows the dynamics of the 2nd order contexts RB, RS, BS and the 3rd order context RBS.
While Fig.9.4 shows the dynamics of the 2nd order contexts RS, RL, SL and the 3rd order context
RSL. Since little negative correlation is observed, only positive correlation is depicted. We took
three different time windows of daily, weekly, and biweekly scales, and the distribution for each
day was calculated taking the data of 1, 7, and 14 previous days, respectively.

These contexts remains mostly significant during the campaign except the context RBS. The
context RSL is shown to be always superior to the significance of its subcontexts. This means there
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Table 9.1: List of important issues during the election. For simplicity of the later
analysis, we introduced a daily time axis to give a decimal notation. The source in French:
http://www.presidentielle-2007.net/calendrier.php

issue Date Decimal date

Deadline for inscription to the list of candidates 31 Dec 2006 0
Decree of summons to candidates 22 Feb 2007 53

Dispatch of bulletins of sponsorship to candidates 22 Feb 2007 53
Deadline for registration of 500 sponsorships 16 Mar 18:00 75

Publication of candidate list 19 Mar 2007 78
Start of official campaign 9 Avr 2007 99

Publication of sponsorships 10 Avr 2007 100
End of official campaign 20 Avr 2007 110

First round of presidential 22 Avr 2007 112
Second round of presidential 6 Mai 2007 127

Start of new presidential term of office 17 Mai 2007 137
General elections 10 & 17 Jun 2007 161 & 168

was a general tendency to put the three names R,S, and L altogether instead of only two of them
in blog posts. Since R and S were the two persons who actually went to the final referendum, the
superiority of the context RSL suggests that L was a popular catalyst of the debate about R and
S, which was actually the case in many situations.

The context RBS, on the other hand, only shows intermittent significance, and mostly behind
its subcontexts. This shows the tendency of people who would rather compare each 2 persons
among R,B, and S instead of discussing on these 3 candidates together. Since B is considered to be
a moderate candidate, the inferiority of the context RBS may represent the lack of the arguments
with comprehensive perspective ranging from left to right wing.

The empirical results of the context dynamics are shown in Figs.9.5 9.6 9.7 and 9.8. In all
positive correlations, generally the peak comes at the second round (127th day) where the new
president S is finally chosen, except the 4th order context RBSL. The relatively low 4th order
context may be a characteristic of intense discussion. The steepness of the peak around 127th day
is relatively large in the 2nd order contexts, less in the 3rd order, and decreases in the 4th order.
This implies a tendency that as people get more involved in the discussion, the significance of the
contexts increases but in some sense inversely proportional to the orders of correlation. In other
word, the discussion becomes intense to compare every set of the candidates in detail, but less
effort is payed on more comprehensive perspectives.

There exists also daily fluctuation, which diminish as the temporal scale increases. Since the
intervals of the important issues are in most cases less than two weeks, the weekly scale would
be appropriate for the characterization, both to avoid daily fluctuation and keep the temporal
resolution. Indeed, most weblogs contain the articles of past several days, which supports the
plausibility of calculation in weekly time scale. Negative correlations tend to appear in daily
fluctuations, and are stronger in 4th and 3rd orders. Significant negative correlations in weekly
scale appear after the second round (127th day). Negative 2nd order correlations never become
significant with respect to the 5 % threshold.

9.5.2 Meta-Context Dynamics

We analyze here the contexts between the contexts RB, RS, BS, and RBS, or the meta-contexts
of R,B, and S. Figs.9.9 and 9.10 show separately the positive and negative correlation of these
meta-contexts. The distribution at each day was calculated taking the data of 30 previous days.
Therefore, the significance is judged on a monthly scale basis.

From this viewpoint, the whole election campaign can be characterized in 3 distinctive parts.
The first 78 days before the publication of the candidate list are dominated by many negative
correlations around 5 % significant level. This means the significant lack of meta-context dynamics
much more than an independent trial. There exists however one constant positive correlation of
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Figure 9.3: Context dynamics among R, B, and S.The absolute value of λ defined in (9.16)
is plotted in log-scale vertical axis. Only positive correlation is shown. The horizontal axis is the
day counted from the beginning of the campaign. The dashed line is the 5 % significant level 3.841
of χ2 test.
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Figure 9.4: Context dynamics among R, S, and L. The absolute value of λ defined in (9.16)
is plotted in log-scale vertical axis. Only positive correlation is shown. The horizontal axis is the
day counted from the beginning of the campaign. The dashed line is the 5 % significant level 3.841
of χ2 test.
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Figure 9.5: High order positive context dynamics. The absolute value of λ defined in (9.16)
is plotted in log-scale vertical axis. Only positive correlation is shown. The horizontal axis is the
day counted from the beginning of the campaign. The dashed line is the 5 % significant level 3.841
of χ2 test.
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Figure 9.6: Pair-wise positive context dynamics. The absolute value of λ defined in (9.16) is
plotted in log-scale vertical axis. Only positive correlation is shown. The horizontal axis is the day
counted from the beginning of the campaign. The dashed line is the 5 % significant level 3.841 of
χ2 test.
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Figure 9.7: High order negative context dynamics. The absolute value of λ defined in (9.16)
is plotted in log-scale vertical axis. Only negative correlation is shown. The horizontal axis is the
day counted from the beginning of the campaign. The dashed line is the 5 % significant level 3.841
of χ2 test.
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Figure 9.8: Pair-wise negative context dynamics. The absolute value of λ defined in (9.16)
is plotted in log-scale vertical axis. Only negative correlation is shown. The horizontal axis is the
day counted from the beginning of the campaign. The dashed line is the 5 % significant level 3.841
of χ2 test.
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RB-BS. This was then the only popular topic at meta-context level in this period.
Possible interpretation of the meta-context RB-BS in the first third may be an anticipation of

the second round (127th day). At the first round (112th day), people are supposed to choose two
candidates who will fight the second round. Therefore, there should be the discussion to compare
between different pairs of candidates that better represent the voter’s will, or that better compete
with the worst candidate for them. The second order meta-contexts between second order contexts
may reflect such arguments.

The mid term from 78th to 127th day including the official campaign shows the lack of significant
correlation neither positive nor negative, except the 4th-order meta-context RB-RS-BS-RBS nearly
at the 5 % threshold. Although the contexts between R,B, and S are relatively high in this period,
their meta-dynamics are less significant. Though, the significance of the meta-context dynamics is
in some sense proportional to their order, which is contrary to the result of contexts dynamics.

The last term is dominated by the 2nd-order meta-contexts around positive significance level,
and the intermittent significance of some other higher-order meta-contexts. As the new president
was chosen to be S at the 127th day, 2nd-order meta-contexts highly emerged.

The results of the 2nd-order meta-contexts of R, S, and L are also shown in Figs. 9.11 and
9.12. There exist also qualitative division of dynamics in three parts. The first period is about
before 63rd day, which we can not find specific event from the official important issues. The second
period is between 63rd to 127th day, whose end again coincides with the second round. The third
period is the same as that of R,B, and S.

The first period of the meta-contexts between R,S, and L are dominated with many 2nd-order
positive correlations. Some of them drop down during the second period, and regain the significance
at the third period. Higher-order meta-contexts tend to be higher in the second period, as observed
also in R,B, and S. On the other hand, most of the negative correlations only appear at the 3rd
period.The fourth-order meta-context RS-SL-SL-RSL remains constantly high below the threshold
during the whole sequence, regardless of the three periods.

The results of meta-contexts show completely different dynamics from that of contexts. The
remarkable thing is that there exist 3 terms that are sharply separated along the time axis, and
show the sudden drastic changes that corresponds to the important issues of the election..Such
property is not apparent in context dynamics. This implies the importance and independence of
dynamics in meta-context level, and leads us to form a hypothesis if the meta-context dynamics can
serve for the global characterization in temporal scale. If the meta-context dynamics has generally
such tendency to change discretely with typical transition patterns, and to be maintained for a
certain period, it may allow us in real time to forecast in which phase of opinion formation the
community is situated.
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Figure 9.9: Positive meta-context dynamics among the contexts RB, RS, BS, and RBS.
The absolute value of λ defined in (9.16) is plotted in log-scale vertical axis. Only positive corre-
lation is shown. The horizontal axis is the day counted from the beginning of the campaign. The
dashed line is the 5 % significant level 3.841 of χ2 test.

Figure 9.10: Negative meta-context dynamics among the contexts RB, RS, BS, and
RBS. The absolute value of λ defined in (9.16) is plotted in log-scale vertical axis. Only negative
correlation is shown. The horizontal axis is the day counted from the beginning of the campaign.
The dashed line is the 5 % significant level 3.841 of χ2 test.
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Figure 9.11: Positive meta-context dynamics among the contexts RS, RL, SL, and
RSL. The absolute value of λ defined in (9.16) is plotted in log-scale vertical axis. Only positive
correlation is shown. The horizontal axis is the day counted from the beginning of the campaign.
The dashed line is the 5 % significant level 3.841 of χ2 test.

Figure 9.12: Negative meta-context dynamics among the contexts RS, RL, SL, and
RSL. The absolute value of λ defined in (9.16) is plotted in log-scale vertical axis. Only negative
correlation is shown. The horizontal axis is the day counted from the beginning of the campaign.
The dashed line is the 5 % significant level 3.841 of χ2 test.
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9.5.3 Return Map Analysis of Context Dynamics

The existence of approximately 1-dimensional trajectory insists that there exists a function f :
R×R→ R that determines the value of λ(t+ T ) from λ(t) loosely depending on t:

λ(t+ T ) = f(λ(t), t). (9.17)

The dependence on t should satisfy certain constraint such as smoothness to exclude completely
random dynamics. This function can be modeled as an almost everywhere continuous and dif-
ferentiable function with respect to λ(t) and t. This function is conceptually a lower-dimensional
projection of the whole social dynamics as a high-dimensional nonlinear dynamical system. The
possible class of this function and its nature is an interesting open question to characterize the
collective dynamics on social networks.

The plausibility of this hypothesis can be measured by comparing with random dynamics. If
there exists no dynamical relation, the trajectory on the return map is expressed as a random walk
and does not show global structure (Fig.9.13).

Assuming the presence of such function locally, taking analogy of linear stability analysis, we
can consider the development of perturbation δ in the neighborhood of data orbit.

We first numerically estimate the function f(·, ·) by smoothing 3 adjacent points λ(t−1), λ(t), λ(t+
1) for all t. Next, we obtain the moment Lyapunov exponent of f(λ(t), t) at time t by calculating

the value of log
∣∣∣∂f(λ(t),t)∂λ(t)

∣∣∣. Since f(λ(t) + δ, t) = λ(t+ T ) + ∂f(λ(t),t)
∂t δ +O(δ2) holds, the moment

Lyapunov exponent represent the linear stability(-) and unstability(+) of the estimated dynamics
in 1 step of T interval. Following the development of δ for n step, we obtain

λ(t+ nT ) = λ(t+ T ) + Πn−1
k=0

∂f(λ(t+ kT ), t+ kT )

∂λ(t+ kT )
δ +O(δ2). (9.18)

Therefore, the Lyapunov exponent LE representing global stability/instability of the dynamics
in n steps can be defined taking the average of both the time evolution and the overlapping T
distributions as follows:

LE =
1

nT

∑
t

log

∣∣∣∣∂f(λ(t), t)

∂λ(t)

∣∣∣∣ . (9.19)

Hence, in this definition, the dependence of the function f to the time t is also taken into account,
while the classical method of Lyapunov exponent estimation from time series usually takes as a
theoretical assumption the temporal invariance of f inside of an bounded attractor [78].

The Lyapunov exponent can also be interpreted as the loss of information associated with the
evolution of dynamics. Therefore, this gives a measure of complexity in terms of predictability of
social dynamics.

Note that the above discussion holds only when there exists clear trace of 1 dimensional curve
in the return map figure. Most of the context dynamics in biweekly scale can satisfy such condition
(Fig.(9.14)). Irregular scattering on the return map reduces the plausibility of the estimation of
f(·, ·). We investigated the dynamics of the moment Lyapunov exponent and calculated the value
of the Lyapunov exponent for each context dynamics in biweekly scale (Fig.(9.15)). Although
the value of λ varies, the moment Lyapunov exponents mostly keep fluctuation between constant
boundaries. The dynamics keep similar dynamics in instantaneous complexity, but sometimes go
through steep changes observed as sharp positive peaks. These can be interpreted as the points
where fluctuation of individual opinion might lead to the macroscopic change of social trend. The
Lyapunov exponents are positive in all contexts, implying the difficulty of long-term prediction. It
can be considered as the impossibility of prediction and information compression in social dynamics.
This fact also supports one of the definitions of complex systems that there is no better simulator
than the real dynamics itself.

The relation between the moment Lyapunov exponent and the significance λ was also investi-
gated in Fig.(9.16)). Although we need to further accumulate similar data to be convinced, the
greater moment Lyapunov exponents, especially the drastic positive peaks tend to be observed
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rather close to the 5 % threshold 3.848 of λ, compared to the whole range of the dynamics. The
high values of λ, on the other hand, tend to be concentrated near the line where the moment Lya-
punov exponent is 0. This may imply that once the significance of a context is highly settled, there
are cases where the dynamics autonomously diminish unstability and form a relatively stable, short
term popular topic. Since the estimated long term Lyapunov exponents are positive, the stability
of the contexts should be evaluated in term of the weak unstability. The high significance of a
context can be considered as a stagnation of the dynamics, which is still weakly unstable, but not
as turbulent as the rest.

Figure 9.13: Return map of one-dimensional random walk. Each step change of the dynamics
follows the uniform distribution between [−1, 1]. The color indicate the value of the time t.



9.5. RESULT AND DISCUSSION 145

Figure 9.14: Return maps of the context dynamics among R, B, S and L. The value of λ
defined in (9.16) at time t vs. t+ 14 is plotted. The color indicate the value of the time t.
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Figure 9.15: Evolution of the moment Lyapunov exponent in biweekly scale. The value
of the Lyapunov exponents are shown in the legend.
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Figure 9.16: Relation between instantaneous linear stability and significance in biweekly
scale. Horizontal axis: Moment Lyapunov exponent, Vertical axis: The value of λ defined in (9.16)
. The color indicate the time t. The horizontal dashed lines are the 5 % significant level ±3.841 of
χ2 test. The vertical dashed line is the changing point 0 between stability and unstability of the
moment Lyapunov exponent.
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9.6 Conclusion

We have investigated all possible orders of interaction on the combinational hierarchy of 4-dimensional
binary variables with the use of political weblog data, and discussed their significance. The method
provided a novel way of hierarchical clustering according to the orders of interactions and its
meta-level combinations, reflecting data structure into the definition of co-occurrence matrix. The
defined setting provided a wide range of viewpoints, which is also applicable in general to the
characterization of epistemic community from text data.
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Chapter 10

Network Decomposition: An
Information Theoretical Approach

Abstract

We consider the graph representation of the stochastic model with n binary vari-
ables, and develop an information theoretical framework to measure the degree of in-
teractions existing between subsystems as well as the ones represented by each edge of
the graph representation. A case study on political weblog data is demonstrated.

Keywords: Information geometry, Complex network, Hierarchical clustering

Methodology: Formulation of system decomposition and edge cutting with infor-
mation geometry → Trend analysis of political weblog data as dynamical systems

10.1 Introduction

Complex systems sciences emphasize on the importance of non-linear interactions which can not
be easily approximated linearly. In other word, the degree of non-linear interactions are the source
of complexity. The classical reductionism approach generally decomposes a system into its compo-
nents with linear interactions, and tries to evaluate whether the whole property of the system can
still be reproduced. If this decomposition of a system destroys too much information to reproduce
the system’s whole property, the plausibility of such reductionism is lost. Inversely, if we can eval-
uate how much information is ignored by the decomposition, we can assume how much complexity
of the whole system is lost. This gives us a way to measure the complexity of a system with respect
to the system decomposition.

In stochastic systems described as a set of joint distributions, the interaction can basically be
expressed as the correlations between the variables. The simplest reductionism approach is to
separate the whole system into some subsets of variables, and assume the independence between
them. If such decomposition does not affect the system’s property, the isolated subsystem is
independent from the rest. On the other hand, if the decomposition loses too much information,
then the subsystem is inside of a larger subsystem with strong internal interactions and can not
be easily separated.

The stochastic models have often been represented with the use of graph representation, and
treated with the name of complex network [75, 76, 73]. Generally, the nodes represent the variables
and the weights on the edges are the interactions between them. However, if we consider the
information contained in the different orders of interactions among variables, the graph with a
single kind of edges is not sufficient to express the whole information of the system [79]. An edge of
a graph with n nodes contains the information of the interactions up to the n-th order interactions
among n variables. If we try to decompose the system independently by cutting the interaction,
we have to consider what it means to cut the edge of the graph from the information theoretical
point of view.
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In this paper, we consider the stochastic system with binary variables and theoretically develop
a way to measure the information between subsystems, which is consistent to the information
represented by the edges of the graph representation. A case study on the political weblog data is
also presented.

10.2 System Decomposition

Let us consider the stochastic system with n binary variables x = (x1, · · · , xn) where xi ∈
{0, 1} (1 ≤ i ≤ n). We denote the joint distribution of x by p(x). We define the decomposi-
tion pdec(x) of p(x) into two subsystems y1 = (x11, · · · , x1n1

) and y2 = (x21, · · · , x2n2
) (n1 + n2 = n,

y1 ∪ y2 = x, y1 ∩ y2 = φ) as follows:

pdec(x) = p(y1)p(y2), (10.1)

where p(y1) and p(y2) are the joint distributions of y1 and y2, respectively. For simplicity,
hereafter we denote the system decomposition using the smallest subscript of variables in each sub-
system. For example, in case n = 4, y1 = (x1, x3) and y2 = (x2, x4), we describe the decomposed
system pdec(x) as < 1212 >. The system decomposition means to cut all interactions between the
two subsystems, which is expressed as setting the independent relation between them.

We will further consider the equation (10.1) in terms of the graph representation. We define
the undirected graph Γ := (V,E) of the system p(x), whose vertices V = {x1, · · · , xn} and edges
E = V ×V represent the variables and the interaction, respectively. To express the system, we set
the value of each vertex as the value of the corresponding variable, and the weight of each edge as
the degree of interaction between the connected variables.

There is however a problem considering the representation with a single kind of edge. The
interactions among variables are not only between two variables, but can be independently defined
among plural variables up to the n-th order. Therefore, the exact definition of the weight of
the edges remains unclear. To clarify these problematics, we consider the hierarchical marginal
distributions η as another coordinates of the system p(x) as follows:

η = (η1; η2; · · · ; ηn), (10.2)

(10.3)

where

η1 = (η1, · · · , ηi, · · · , ηn), (1 < i < n), (10.4)

η2 = (η12, · · · , ηij , · · · , ηn−1n), (1 < i < j < n), (10.5)

...

ηn = η12···n, (10.6)

(10.7)
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and

η1 =
∑

i2,··· ,in∈{0,1}

p(1, i2, · · · , in), (10.8)

...

ηn =
∑

i1,··· ,in−1∈{0,1}

p(i1, · · · , in−1, 1), (10.9)

η12 =
∑

i3,··· ,in∈{0,1}

p(1, 1, i3, · · · , in), (10.10)

...

ηn−1n =
∑

i1,··· ,in−2∈{0,1}

p(i1, · · · , in−2, 1, 1), (10.11)

...

η12···n = p(1, 1, · · · , 1). (10.12)

Since the definition of η is a linear transformation of p(x), both coordinates have the degrees of
freedom

∑n
k=1 nCk.

The subcoordinates η1 is simply the set of marginal distributions of each variable. The subco-
ordinates ηk (1 < k ≤ n) include the interactions among k variables, which can not be expressed
with the coordinates less than the k-th order. This means that the different interaction exist inde-
pendently in each order among the corresponding sets of the variables. The interaction represented
by the weight of a graph edge {xi, xj} is therefore the superposition of the different interactions
defined on every subset of x including xi and xj .

To measure the degree of interaction in each order, the information geometry established the
following setting [77]. We first define another coordinates θ = (θ1; θ2; · · · ; θn) which are the
Legendre transformation of η mediated by the function ψ(θ) and φ(η) as follows:

θ1 = (θ1, · · · , θn), (10.13)

θ2 = (θ12, · · · , θn−1n), (10.14)

...

θn = θ12···n, (10.15)

(10.16)

where

ψ(θ) = log
1

p(0, · · · , 0)
, (10.17)

φ(η) =
∑
i

θiηi +
∑
i<j

θijηij + · · ·+ θ12···nη12···n − ψ(θ), (10.18)

θi =
∂φ(η)

∂ηi
, (1 ≤ i ≤ n), (10.19)

θij =
∂φ(η)

∂ηij
, (1 ≤ i < j ≤ n), (10.20)

...

θ12···n =
∂φ(η)

∂η12···n
. (10.21)
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Using the coordinates θ, the system is described in the form of the exponential family as follows:

p(x) =
∑
i

θixi +
∑
i<j

θijxixj + · · ·+ θ12···nx1x2 · · ·xn − ψ(θ). (10.22)

The information geometry revealed that the exponential family of probability distribution forms
a manifold with a dual-flat structure. More precisely, the coordinates θ form a flat manifold with
respect to the Fisher information matrix as the Riemannian metric, and α-connection with α = 1.
Dually to θ, the coordinates η are flat with respect to the same metric but α-connection with
α = −1. It is known that θ and η are orthogonal to each other with respect to the Fisher information
matrix. This structure give us a way to decompose the degree of interactions among variables into
separated elements of arbitrary orders. We define the so-called k-cut mixture coordinates ζk as
follows [80].

ζk = (ηk−; θk+), (10.23)

ηk− = (η1, · · · , ηk), (10.24)

θk+ = (θk+1, · · · , θn). (10.25)

We also define the k-cut mixture coordinates ζk0 = (ηk−; 0, · · · , 0) with no interaction above the
k-th order. We denote the system specified with ζk and ζk0 as p(x, ζk) and p(x, ζk0 ), respectively.

Then the degree of the interaction more than the k-th order in the system can be measured by
the Kullback-Leibler (KL-) divergence D[p(x, ζ) : p(x, ζk0 )]. This is also asymptotically compatible
with the classical χ2 test of the degree of freedom

∑n
i=k+1 nCi with enough sample number N :

2N ·D[p(x, ζ) : p(x, ζk0 )] ∼ χ2(

n∑
i=k+1

nCi). (10.26)

Here, the decomposition is performed according to the orders of interactions, which does not
spatially distinguish the vertices. If we define the weight of an edge {xi, xj} with the KL-divergence,
the above k-cut coordinates ζk are not appropriate to measure the information represented in each
edge. We need to set another mixture coordinates so that to separate only the existing information
between xi and xj regardless of its order.

Let us return to the definition of the system decomposition and consider on the dual-flat
coordinates θ and η. The independence between the two decomposed systems y1 = (x11, · · · , x1n1

)
and y2 = (x21, · · · , x2n2

) can be expressed on the new coordinates ηdec as follows:

ηdeci = ηi, (1 ≤ i ≤ n), (10.27)

ηdecij =

{
ηij , (1 ≤ i < j ≤ n), if {xi, xj} ⊆ y1 or ⊆ y2

ηiηj , (1 ≤ i < j ≤ n), else
, (10.28)

ηdecijk =


ηijk, (1 ≤ i < j < k ≤ n), if {xi, xj , xk} ⊆ y1 or ⊆ y2

ηijηk, (1 ≤ i < j < k ≤ n), else if {xi, xj} ⊆ y1 or ⊆ y2

ηiηjk, (1 ≤ i < j < k ≤ n), else if {xj , xk} ⊆ y1 or ⊆ y2

ηjηik, (1 ≤ i < j < k ≤ n), else (if {xi, xk} ⊆ y1 or ⊆ y2)

, (10.29)

...

ηdec12···n = ηs[ik1···kn1−1]ηs[jl1···ln2−1], (xi ∈ y1, xj ∈ y2), (10.30)

where s[· · · ] is the ascending sort of the internal sequence.
The definition of ηdec means to decompose the hierarchical marginal distributions η into the

products of the subsystems’ marginal distributions, in case the subscripts traverse the two subsys-
tems. Therefore, only the interactions between two subsystems are set to be independent, while
the internal interactions of each subsystem remain unchanged. This is analytically equivalent to
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compose another mixture coordinates ξ, namely the < · · · >-cut coordinates, with proper descrip-
tion of the system decomposition with < · · · >. The ξ consist of the η coordinates with subscripts
which does not traverse the subsystems, and the θ coordinates whose subscripts traverse the sub-
systems. For simplicity, we only describe here the case n = 4 and the decomposition < 1133 >
(the set of the first, second, and the third, fourth nodes each form a subsystem). The system p(x)
is expressed with the < 1133 >-cut coordinates ξ as

ξ1 = η1, (10.31)

...

ξ4 = η4, (10.32)

ξ12 = η12, (10.33)

ξ13 = θ13, (10.34)

ξ14 = θ14, (10.35)

ξ23 = θ23, (10.36)

ξ24 = θ24, (10.37)

ξ34 = η34, (10.38)

ξ123 = θ123, (10.39)

...

ξ234 = θ234, (10.40)

ξ1234 = θ1234. (10.41)

The decomposed system with no interactions between two subsystems have the following coor-
dinates ξdec, which is, in any decomposition, equivalent to set all θ in ξ as 0 :

ξdec1 = η1, (10.42)

...

ξdec4 = η4, (10.43)

ξdec12 = η12, (10.44)

ξdec13 = 0, (10.45)

ξdec14 = 0, (10.46)

ξdec23 = 0, (10.47)

ξdec24 = 0, (10.48)

ξdec34 = η34, (10.49)

ξdec123 = 0, (10.50)

...

ξdec234 = 0, (10.51)

ξdec1234 = 0. (10.52)

This is analytically equivalent to the definition of the decomposition (10.27)-(10.30) in case of
< 1133 >. Therefore, the KL-divergence D[p(x, ξ) : p(x, ξdec)] measures the information lost by
the system decomposition. The following asymptotic agreement to χ2 test also holds.

2N ·D[p(x, ξ) : p(x, ξdec)] ∼ χ2(]θ(ξ)), (10.53)

where ]θ(ξ) is the number of θ coordinates appearing in the ξ coordinates.
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10.3 Edge Cutting

We further expand the concept of system decomposition to eventually quantify the total amount of
information expressed by an edge of the graph. Let us consider to cut an edge {xi, xj} (1 ≤ i < j ≤
n) of the graph with n vertices. Hereafter we call this operation as the edge cutting i− j. In the
same way as the system decomposition, the edge cutting corresponds to modify the η coordinates
to produce ηec coordinates as follows:

ηecij = ηiηj , (10.54)

ηecs[ijk1] = ηs[ik1]ηs[jk1], (10.55)

ηecs[ijk1k2] = ηs[ik1k2]ηs[jk1k2], (10.56)

...

ηecs[ijk1···kn−2]
= ηs[ik1···kn−2]ηs[jk1···kn−2], (10.57)

({i, j, k1, · · · , kn−2} = {1, · · · , n}),

and the rest of ηec remains the same as those of η.

The formation of ηec from η consists of replacing the k-th order elements (k ≥ 3) of η including
both i and j in its subscripts, with the product of the k−1-th order η in maximum subgraphs (k−1
vertices) each including i or j. This means that all orders of interactions including the variables
xi and xj are set to be independent only between them. Other interactions which do not include
simultaneously xi and xj remain unchanged.

Certain combinations of edge cuttings coincide with system decompositions. For example, in
case n = 4, the edge cuttings 1 − 2, 1 − 3, and 1 − 4 are equivalent to the system decomposition
< 1222 >.

We define the i − j-cut mixture coordinates ξ for orthogonal decomposition of the interaction
represented by the edge {xi, xj}. Although actual calculation can be performed only with η coor-
dinates, this generalization is necessary to have a geometrical definition of the orthogonality. For
simplicity, we only describe the ξ in the case of n = 4:

ξ1 = η1, (10.58)

...

ξ4 = η4, (10.59)

ξ12 = θ12, (10.60)

ξ13 = η13, (10.61)

ξ14 = η14, (10.62)

ξ23 = η23, (10.63)

ξ24 = η24, (10.64)

ξ34 = η34, (10.65)

ξ123 = θ123, (10.66)

ξ124 = θ124, (10.67)

ξ134 = η134, (10.68)

ξ234 = η234, (10.69)

ξ1234 = θ1234, (10.70)

where orthogonality between the elements of η and θ holds with respect to the Fisher information
matrix.

Calculating the dual coordinates θec of ηec, we can define the coordinates ξec of the system
after the edge cutting 1− 2 as follows:
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ξec1 = η1, (10.71)

...

ξec4 = η4, (10.72)

ξec12 = θec12, (10.73)

ξec13 = η13, (10.74)

ξec14 = η14, (10.75)

ξec23 = η23, (10.76)

ξec24 = η24, (10.77)

ξec34 = η34, (10.78)

ξec123 = θec123, (10.79)

ξec124 = θec124, (10.80)

ξec134 = η134, (10.81)

ξec234 = η234, (10.82)

ξec1234 = θec1234. (10.83)

Note that the edge cutting can not be defined simply by setting the corresponding elements of θec

as 0.
Then the KL-divergence D[p(x, ξ) : p(x, ξec)] represent the total amount of information repre-

sented by the edge 1− 2.
The following asymptotic agreement to χ2 test also holds:

2N ·D[p(x, ξ) : p(x, ξec)] ∼ χ2(1 +

n−2∑
k=1

n−2Ck). (10.84)

We call this χ2 value or the KL divergence itself as edge information of edge 1− 2.

10.4 Case Study on Political Weblog Data

We applied the system decomposition and the edge cutting for the network analysis in actual data.
As a case study, we have calculated all possible system decompositions and edge cuttings for the
following data set with n = 4 binary variables.

10.4.1 Data Set

The campaign for the French presidential election which ended in May 2007 was marked by the
strengthening of new modes of public expression. As the access to new communication media was
democratizing, new patterns of public intervention have been invented. The main outcome of this
new mode of intervention was that citizens could express their own views about social, political
or economical topics concerning the campaign which in turn modified deeply the political agenda.
The political blogosphere, in particular, is one of the main places of appropriation of public debate.

We have collected the content and hypertext links of a selection of 120 political blogs during
the first six months of 2007 1. The database allows each blog to provide a time series of semantic
attributes (quantified using a vector of occurrences of 190 key terms) that evolve according to new
posts. This provides us a daily semantic characterization of each blog from January the 1st to June
the 30th reflecting the current concerns of each blogger. The correspondence between the date of
important issues and the daily time axis is presented in Tab. 10.1.

We have analyzed these 120 weblog text data focusing on the 4 candidates (Ségolène Royal,
François Bayrou, Nicolas Sarkozy, and Jean-Marie Le Pen) of the last French presidential. For

1The data were collected by Jean-Philippe Cointet.
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Table 10.1: List of important issues during the election. For simplicity of the later
analysis, we introduced a daily time axis to give a decimal notation. The source in French:
http://www.presidentielle-2007.net/calendrier.php

issue Date Decimal date

Deadline for inscription to the list of candidates 31 Dec 2006 0
Decree of summons to candidates 22 Feb 2007 53

Dispatch of bulletins of sponsorship to candidates 22 Feb 2007 53
Deadline for registration of 500 sponsorships 16 Mar 18:00 75

Publication of candidate list 19 Mar 2007 78
Start of official campaign 9 Avr 2007 99

Publication of sponsorships 10 Avr 2007 100
End of official campaign 20 Avr 2007 110

First round of presidential 22 Avr 2007 112
Second round of presidential 6 Mai 2007 127

Start of new presidential term of office 17 Mai 2007 137
General elections 10 & 17 Jun 2007 161 & 168

simplicity, we will take the abbreviation of their family name, R,B,S,L to denote each candidate.
We will use these abbreviations as subscript for the binary occurrence vector (xR, xB , xS , xL)
aligned from left to right according to their political position being leftist to rightist.We set the
first or family name of each candidate as the key terms to scan the weblogs and obtain the data.
Each of 120 blogs was crawled each day to see whether these names appeared or not in their
posts, and coded accordingly as 1 (occurrence) and 0 (non-occurrence). For example, if a blog post
contained the words “Royal” and “Sarkozy” but none of the others, then the occurrence data for
this blog in this day will be (xR, xB , xS , xL) = (1, 0, 1, 0). Using this occurrence vectors, we defined
the system p(x1, x2, x3, x4) = p(xR, xB , xS , xL).

10.4.2 Result and Discussion

We have calculated the ξ2 value of the equation (10.84) for the edge cuttings, and that of the equa-
tion (10.53) for the system decompositions. We used three time scales, daily, weekly, and biweekly
ones to obtain the distribution p(x). Concretely, the distribution of each day was calculated using
the data of following 7 and 14 days for the weekly and biweekly scale, respectively. The result are
shown in Figs. 10.1-10.5.

Comparing the three different time scales, the weekly scale seems to be appropriate for the
characterization of the dynamics. The daily scale contains much fluctuation which blurs the global
dynamics, and the biweekly scale loses time resolution too much, since most of the intervals between
important events are less than two weeks. Indeed, most of the weblogs generally contain the history
of the past several days in the same page, so that it is natural to consider the weekly time scale to
obtain the distribution.

Some general tendencies are observed in the temporal dynamics of all results. The χ2 values
tend to augment continuously as the campaign goes on, and reached its peak at between the start of
the official campaign (99th day) and the second round of the presidential (127th day). This reflects
well the interest of the people on the presidential, as the degree of interactions are augmenting
toward the peak at the decisive period. All edge cuttings and system decompositions loses highly
significant information with respect to the χ2 test. This is a strongly interacting system, and it is
difficult to apply the reductionism to the joint distribution. The exception is the daily fluctuation
and the dynamics after the second round. Significant breakdown of interest comes only after the
second round (127th day), where S was finally chosen as the new president.

The result of the edge cuttings is shown in Fig.10.1. Until the publication of the candidate
list (78th day), there exists approximately three levels of dynamics in weekly and biweekly scale,
and different edge cuttings are migrating among them. This rather discontinuous hopping of edge
informations may be interpreted as the dynamics among different rankings of the topics. The
mechanism of discontinuity is of further question.
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Edges between R-S is the strongest at the beginning, therefore the result of the first round
where R and S were chosen for the second round reflects well the advance reviews of this term.
While during the official campaign (99th to 110th day), all edges contain similarly high information,
which signifies the discussion are not localized only between R and S.

The result of the system decompositions are shown in Figs.10.2-10.4. In Fig.10.2, the dynamics
of < 1222 > and < 1131 > are almost synchronized and express the highest degree of interaction.
This means that R and S are each highly interacting with the rest of the system. In other word,
one can not isolate R or S without destroying the system’s strongest interactions. Later we will
see that the strongest one is between R and S. The highest value of < 1222 > and < 1131 > are
observed between the first round (112th day) and the second round (127th day), where R and S
had one-on-one competition including TV debate.

Fig.10.3 and 10.4 show the result of system decompositions into two half and three parts,
respectively. The decomposition < 1212 > in Fig.10.3 and < 1214 > in Fig. 10.4 have the lowest
degree of interaction. This means that it is rather easier to isolate R and S as a subsystem from
the rest. Combining with the result of Fig.10.2, R and S are highly interacting with each other,
but rather less with the rest. Although, in any period until the decision of the mew president, all
system decompositions are highly significant, which does not allow to perform any decomposition
without losing significant information.

Such hierarchical comparison of system decompositions can provide a novel way of clustering.
In this case, for example, the R and S have the strongest interaction with each other, then the
second strongest with B, and the third with L. Choosing an threshold, one can hierarchically cluster
the four candidates according to the degree of interactions.

The degree of interactions with respect to the total decomposition of the system into < 1234 >
is shown in Fig. 10.5. The dynamics represents the evolution of complexity with respect to the total
decomposition of the system. This is the total amount of information arising from the interactions
among variables. The peak of the complexity is observed around the first round (112th day), which
can be estimated as the peak of public interest. Although the result of the second round (127th
day) was not easy to predict, it did not evoke further augmentation of total information.

Finally, we revisit the result of order-wise interaction in this data and compare the result of edge
cutting with that of simple second-order interaction. Edge cutting contains more information than
the simple second-order interaction between two nodes, since it takes also the interaction higher
than second order in the expanded subgraphs into account. With this respect, we can observe how
the 4th- and 3rd-order interactions are incorporated in edge cutting. Figs. 10.6 are the reprint of
order-wise interaction dynamics in biweekly scale. Compared to the Fig. 10.1 Bottom, irregularity
of the edge cutting dynamics appear to be affected by the information higher than the second order.
Edge cutting dynamics show another way to express these higher-order interactions, preserving the
graph expression with a single kind of link.

10.5 Further Consideration: Pythagorean Relations in Sys-
tem Decomposition and Edge Cutting

We further look back at the system decomposition and edge cutting in terms of the Pythagorean
relation between KL divergences, which is based on the orthogonality between θ and η coordinates.

In system decomposition, the distribution of decomposed system is analytically obtained from
the product of subsystems’ η coordinates, which is equivalent to set all θdec parameters as 0 in
mixture coordinate ξdec. From the consistency of θdec parameters in ξdec being 0 in all system
decompositions, we have the Pythagorean relation according to the inclusion relation of system
decomposition. For example, the following holds:

D[< 1111 >:< 1234 >] = D[< 1111 >:< 1222 >] (10.85)

+ D[< 1222 >:< 1233 >] (10.86)

+ D[< 1233 >:< 1234 >]. (10.87)
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Figure 10.1: Degree of interaction lost by edge cuttings. Top: p(x) was taken as daily scale
distribution. Middle: Weekly scale. Bottom: Biweekly scale. Vertical axis: The χ2 value of the
equation (10.84). Horizontal axis: Decimal date in Tab.10.1. The dashed line is the 5 % threshold
of χ2 test. The node numbers 1,2,3,4 correspond to R,B,S,L, respectively.
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Figure 10.2: Degree of interaction lost by system decompositions into 1- and 3-nodes
subsystems. Top: p(x) was taken as daily scale distribution. Middle: Weekly scale. Bottom:
Biweekly scale. Vertical axis: The χ2 value of the equation (10.53). Horizontal axis: Decimal date
in Tab.10.1. The dashed line is the 5 % threshold of χ2 test.
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Figure 10.3: Degree of interaction lost by system decompositions into two 2-nodes
subsystems. Top: p(x) was taken as daily scale distribution. Middle: Weekly scale. Bottom:
Biweekly scale. Vertical axis: The χ2 value of the equation (10.53). Horizontal axis: Decimal date
in Tab.10.1. The dashed line is the 5 % threshold of χ2 test.
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Figure 10.4: Degree of interaction lost by system decompositions into three subsystems.
Top: p(x) was taken as daily scale distribution. Middle: Weekly scale. Bottom: Biweekly scale.
Vertical axis: The χ2 value of the equation (10.53). Horizontal axis: Decimal date in Tab.10.1.
The dashed line is the 5 % threshold of χ2 test.
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Figure 10.5: Degree of interaction lost by system decomposition < 1234 >. Top: p(x) was
taken as daily scale distribution. Middle: Weekly scale. Bottom: Biweekly scale. Vertical axis:
The χ2 value of the equation (10.53). Horizontal axis: Decimal date in Tab.10.1. The dashed line
is the 5 % threshold of χ2 test.
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Figure 10.6: Reprint of order-wise interaction dynamics in biweekly scale in the previous
chapter. Top: 4th- and 3rd-order contexts. Down: 2nd-order contexts.
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The proof is in the same way as k-cut coordinates isolating k-tuple interaction between variables
[80].

On the other hand, the edge cutting previously defined using the product of remaining maximum
cliques’ η coordinates does not coincides with the θec = 0 condition in mixture coordinates ξec.
We have defined the ηec values of edge cutting based only on the orthogonal relation between η
and θ coordinates, by generalizing the rule of system decomposition in ηec coordinates, and did
not consider the Pythagorean relation between different edge cuttings.

It is then possible to define another way of edge cutting using θec = 0 condition in ξec. Indeed,
in k-cut mixture coordinates, θk+ = 0 condition is derived from the independent condition of the
variables in all orders, and k-tuple interaction is measured by reestablishing the η parameters for
the interaction up to k − 1-tuple order. In the same way, we can set θdec = 0 condition for ξdec of
a system decomposition, and reestablish edges with respect to the η parameters, except the one in
focus for edge cutting.

As a simple example, consider the system decomposition < 1222 > and edge cutting 1 − 2 in
4-node graph. We have the mixture coordinate ξdec for the system decomposition as follows:

ξdec12 = θdec12 = 0, (10.88)

ξdec13 = θdec13 = 0, (10.89)

ξdec14 = θdec14 = 0, (10.90)

ξdec123 = θdec123 = 0, (10.91)

ξdec134 = θdec134 = 0, (10.92)

ξdec1234 = θdec1234 = 0, (10.93)

where all the rest of ξdec coordinates is equivalent to that of η coordinates.
We then consider the new way of edge cutting 1− 2 by recovering the interaction in edges 1− 3

and 1− 4 from system decomposition < 1222 >, orthogonally to the interaction of edge 1− 2. The
new mixture coordinate ξEC changes to the following:

ξEC12 = θEC12 = 0, (10.94)

ξEC13 = η13, (10.95)

ξEC14 = η14, (10.96)

ξEC123 = θEC123 = 0, (10.97)

ξEC134 = η134, (10.98)

ξEC1234 = θEC1234 = 0, (10.99)

and the rest is equivalent to that of η coordinates.
This new ξEC is also compatible with k-cut coordinates formalization for its simple θEC = 0

conditions. To obtain ξEC for arbitrary edge cutting i− j, one should take θEC containing i and
j in its subscript, set them to 0, and combine with η coordinates for the rest of the subscript. For
plural edge cuttings i− j, · · · , k− l (1 ≤ i, j, k, l ≤ n), it suffices to take θEC containing i and j, ...
, k and l in its subscript respectively, then set them to 0.

We finally obtain the Pythagorean relation between edge cuttings. Denoting the general edge
cutting(s) coordinates as ξi−j,··· ,k−l, the following holds for the example of system decomposition
< 1222 >:

D[< 1111 >:< 1222 >] = D[< 1111 >: p(ξ1−2)] (10.100)

+ D[p(ξ1−2) : p(ξ1−2,1−3)] (10.101)

+ D[p(ξ1−2,1−3) : p(ξ1−2,1−3,1−4)]. (10.102)

Despite the consistency with the dual structure between θ and η, we do not generally have
analytical solution to determine ηEC values from θEC = 0 conditions. We should call for some



10.6. CONCLUSION 165

numerical algorithm to solve θEC = 0 conditions with respect to ηEC values, which are in general
high-degree simultaneous polynomials. Furthermore, numerical convergence of the solution have
to be very strict, since tiny deviation from the conditions can become nonnegligible by passing
fractional function and logarithmic function of θ coordinates.

On the other hand, the previously defined edge cutting with ξec using the product between
subgraphs’ η coordinates is analytically simple and does not need to consider the other edges’
recovery from system decomposition or independence hypothesis. We then chose the previous way
of edge cutting for both calculability and clarity of the concept.

10.6 Conclusion

We have theoretically developed a framework to measure the degree of interactions existing between
subsystems as well as the ones represented by each edge of the graph representation. We applied
the theory to characterize the dynamics of the political weblog data, and revealed the hierarchical
structure of subsystems according to the degree of interaction. Further empirical analysis on actual
data is needed to evaluate the utility of the proposed method.
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Chapter 11

Multi-Node Reference
Reconstruction of Edge
Information Including Substantive
Order-Wise Interaction

Abstract

We reconsider the edge information defined in the previous chapter to reconstruct
large scale complex networks. Expansions of edge information measure are further
derived so that to distinguish between positive/negative order-wise interactions with
Pythagorean relation. The unified measure of edge information is also defined. The
possibility of dimension reduction according to the substantive information and the
utility of proposed edge information measures are investigated with political weblog
data.

Keywords: Information geometry, Order-wise interaction, Edge information, Pa-
rameter reduction, Political weblog, Social network

Methodology: Decomposition of order-wise edge information and formulation of
multi-node reference reconstruction of correlation graph with information geometry →
Application to political weblog data as dynamical systems

11.1 Introduction

We consider the application of previously defined edge information to reconstruct in general large
scale network from given co-occurrence data between node variables including order-wise interac-
tions.

The first problematics is how to express different orders of interaction, including positive/negative
variation, with a single kind of edge weight defined as edge information. The second one is how to
reduce the combinatory explosion of parameter number without losing essential information when
the system size increases.

For these purposes, we first develop theoretically the decomposition of edge information into
different orders, and propose an unified measure of edge information including positive/negative
signs of each order.

Second, treating actual data, we evaluate the amount of order-wise interactions to justify the
order limit of the model to avoid combinatory explosion of parameters. The result of reconstructed
graph with unified edge information as a single kind of edge weight is shown to be accessible for
further clustering.

The significance of social dynamics with respect to the order-wise interactions and unified edge
informations are also discussed.
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11.2 Order-wise Interaction in Edge Information

We revisit the edge information in case of the system size n = 3. Following the previous definition,
the 1− 2-cut mixture coordinates ξ and that of after edge cutting 1− 2 ξec are given as follows:

ξ1 = η1, (11.1)

ξ2 = η2, (11.2)

ξ3 = η3, (11.3)

ξ12 = θ12, (11.4)

ξ13 = η13, (11.5)

ξ23 = η23, (11.6)

ξ123 = θ123, (11.7)

and

ξec1 = η1, (11.8)

ξec2 = η2, (11.9)

ξec3 = η3, (11.10)

ξec12 = θec12, (11.11)

ξec13 = η13, (11.12)

ξec23 = η23, (11.13)

ξec123 = θec123, (11.14)

where θec are calculated as the Legendre transformation of the following ηec:

ηec1 = η1, (11.15)

ηec2 = η2, (11.16)

ηec3 = η3, (11.17)

ηec12 = η1η2, (11.18)

ηec13 = η13, (11.19)

ηec23 = η23, (11.20)

ηec123 = η13η23, (11.21)

We consider the KL divergence D[p(x, ξ) : p(x, ξec)] which define the amount of edge informa-
tion. The KL divergence can be decomposed into different orders in the following way, according
to the Pythagorean relation:

D[p(x, ξ) : p(x, ξec)]

= D[p(x, ξ) : p(x, ξ3)]

+ D[p(x, ξ3) : p(x, ξ23)], (11.22)

where the new mixture coordinates ξ23 and ξ3 are defined as follows:

ξ231 = η231 = η1, (11.23)

ξ232 = η232 = η2, (11.24)

ξ233 = η233 = η3, (11.25)

ξ2312 = η2312 = θec12, (11.26)

ξ2313 = η2313 = η13, (11.27)

ξ2323 = η2323 = η23, (11.28)

ξ23123 = θ23123 = θec123, (11.29)
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which are equivalent to denote ξ23 = ξec, and

ξ31 = η31 = η1, (11.30)

ξ32 = η32 = η2, (11.31)

ξ33 = η33 = η3, (11.32)

ξ312 = η312 = η12, (11.33)

ξ313 = η313 = η13, (11.34)

ξ323 = η323 = η23, (11.35)

ξ3123 = θ3123 = θec123. (11.36)

This means that ξ3 only cut the information between nodes 1 and 2 at the 3rd order, while ξ23

cut the information of both 2nd and 3rd orders. Generalizing this notation as ξk···n (2 ≤ k ≤ n)
being the mixture coordinates to cut edge information from the k-th to n-th orders, we have the
following decomposition of KL divergence for general system size n ≥ 3:

D[p(x, ξ) : p(x, ξec)]

= D[p(x, ξ) : p(x, ξn)]

+

n−1∑
k=2

D[p(x, ξk+1···n) : p(x, ξk···n)]. (11.37)

In practice, ξ2···n can be obtained from the products of remaining maximum cliques’ η, following
the analytical definition of edge cutting. On the other hand, we need some numerical solution to
obtain ξk···n in case (3 ≤ k ≤ n).

We next consider the positive/negative signs of interaction for each order of edge information.
For simplicity, we take the n = 3 case. The 3rd order interaction in edge information 1 − 2 is
denoted as D[p(x, ξ) : p(x, ξ3)] in equation (11.22). We define the positive/negative sign of this
interaction according to the following value s3:

s3 = sgn(η123 − η′123), (11.38)

where η′123 is the solution of ξ3123 = θec123 condition with respect to η3123 variable. This definition
of s3 is based on the fact that if η123 > η′123 holds, 3rd order cooccurrence of the three variables
is more than the independence principle, therefore exists positive 3rd order interaction. While in
case η123 < η′123, the 3rd order interaction is negative. Using s3, we express the 3rd order edge
information of edge 1− 2 with positive/negative sign as

s3 ·D[p(x, ξ) : p(x, ξ3)]. (11.39)

As for the positive/negative sign of the 2nd order edge information D[p(x, ξ3) : p(x, ξ23)] in
equation (11.22), we consider in the same way the following value s2:

s2 = sgn(η12 − η′12), (11.40)

where η′12 is the solution of ξ2312 = θec12 condition with respect to η2312 variable. The 2nd order edge
information of edge 1− 2 with positive/negative sign is then given by

s2 ·D[p(x, ξ3) : p(x, ξ23)]. (11.41)

We finally consider the positive/negative sign of the total edge information D[p(x, ξ) : p(x, ξec)].
From the Pythagorean relation in equation (11.22), we can equally compare the amount of 2nd
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and 3rd order interactions of edge information with additive law. The question is whether the edge
information contain rather positive or negative interaction in total of all orders. To judge that, we
define the following value s23 to judge the positive/negative sign of the total edge information:

s23 = sgn(s3D[p(x, ξ) : p(x, ξ3)] + s2D[p(x, ξ3) : p(x, ξ23)]). (11.42)

This means that we compare the amount of positive and negative interactions in all orders, and
take the sign of superior one. We then define the total edge information with positive/negative
sign, namely the unified edge information, as

s23D[p(x, ξ) : p(x, ξec)], (11.43)

or

s23D[p(x, ξ) : p(x, ξ23)]. (11.44)

This is asymptotically compatible with χ2-test of degree of freedom 2, but with distinction of
positive/negative correlation:

λ = s23 · 2N ·D[p(x, ξ) : p(x, ξec)] ∼ χ2(2). (11.45)

Where N is the sample number. We call this λ as χ2 value of edge information, or simply (the
significance of) edge information.

In general form with system size n, the unified edge information is expressed as the followings:

s2···nD[p(x, ξ) : p(x, ξec)], (11.46)

or

s2···nD[p(x, ξ) : p(x, ξ2···n)], (11.47)

where

s2···n = sgn(snD[p(x, ξ) : p(x, ξn)]

+

n−1∑
k=2

skD[p(x, ξk+1···n) : p(x, ξk···n)]), (11.48)

and the composition of ξec and ξk···n (2 ≤ k ≤ n) coordinates are chosen according to the edge
selection i− j (1 ≤ i, j ≤ n).

11.3 Multi-Node Reference Reconstruction of Graph

11.3.1 Reduction of Model Parameters According to the Substantive
Highest Order of Interaction

In this section, we consider the reconstruction of graph from cooccurrence data using the proposed
unified edge information. The interest of graph reconstruction in complex network subjects usually
postulate the large number of vertices n. Though, the dual-flat coordinates η θ and their mixture
coordinates ξ increase their degrees of freedom in combinatory with

∑n
k=1 nCk. Even if we can

afford to save the memory for these coordinates, the calculation of edge cutting requires the precise
numerical solution of high-degree simultaneous polynomials with respect to 1 +

∑n−2
k=1 n−2Ck η

variables. This quantity apparently exceed the computing capacity as n increases. Some practical
strategy to reduce the model size without losing essential information of data is needed.
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Figure 11.1: Schematic example of model reduction by multi-node reference. In case
of system size m = 6 and substantive highest order n = 3 is depicted for edge cutting 1 − 2.
We choose the 3rd node of the model by calculating the unified edge information for each triplet
including node 1 and 2, and choose the one which maximize the absolute value of the unified edge
information λ in edge 1− 2.

Suppose the data are given as an m-dimensional joint distribution. Theoretically, there exist
up to the m-th order of interaction between the variables. Though, if the significant interaction
exists only up to the n-th order (n < m), it suffices to consider the mCn combinations of n-node
subgraphs for practical analysis. In case we can find such n according to the order-wise interaction
analysis, we call this n as the substantive highest order of interaction.

Next, suppose we found such n < m. Then the unified edge information can be different for
the same edge cutting i− j (1 ≤ i, j ≤ m) according to the choice of n-node subgraph. In order to
extract as much information as possible from the data, we should choose the subgraph for each edge
cutting, such that the one which maximize the absolute value of the unified edge information. This
reduction allows us to extract maximum edge information existing up to the highest substantive
order. Simple example of this algorithm is depicted in Fig. 11.1.

11.3.2 Practical Problem and Solution

Due to the geometrical constraint of statistical manifold, there exist still some practical problems
when calculating the unified edge information and order-wise interactions in actual data. We
describe here the most popular one:

In case the cooccurrence data matrix is sparse (sparse network), there exists many zero-
parameters which show singularity (log(0) or log(∞)) in KL divergence. This corresponds to
the singular points in θ coordinates where the distribution can not find finite parameter values. To
avoid these singularity without modifying much information, we implement minimum probability
of occurrence for zero parameters of P (·, · · · , ·) (e.g. if P (·, · · · , ·) = 0 then approximate with
P (·, · · · , ·) = 1.0e− 15).

11.4 Data Set

We obtained weblog text data written in french from most-cited 10 political weblogs among popular
120 during the 181 days covering the french presidential in 2007 [81]. The occurrence of 190 political
keywords were judged on a daily basis with binary value (occurrence:1 non-occurrence:0) for each
of the 10 weblogs, and binary cooccurrence matrix between the 10 weblogs was obtained for each
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of 181 days and each of 190 keywords.
By applying order-wise interaction and edge information analysis, one can judge in which

statistical order the weblogs are correlated according to the occurrence of keywords, which reflect
their semantic contents.

The url list of the most-cited 10 weblogs is shown in Tab. 11.1. 191 political keywords are
listed in the followings:

11.4.1 Keyword List

35 heures ; action publique ; aide au développement ; Allemagne ; altermondialisme ; antisémitisme
; baisse des prélèvements ; baisses d’impôts ; banlieue ; Banque européenne ; Bayrou ; blogosphère ;
blogueurs ; bouclier fiscal ; Bové ; bravitude ; budget de la recherche ; budget de l’Etat ; capitalisme
financier ; carte scolaire ; chiffres du chômage ; Chirac ; chômage ; classes moyennes ; CO2 ;
collectivités locales ; écolo ; écologie ; communautarisme ; comptes publics ; Conseil d’analyse
économique ; contrat de travail ; contribuables ; criminalité ; croissance ; débat public ; dette
publique ; déficit budgétaire ; DIABOLISER ; dialogue social ; discrimination positive ; démocratie
participative ; démocratie sociale ; Don Quichotte ; dépense publique ; drapeau français ; droit au
logement ; éducation ; développement durable ; effet de serre ; emploi ; encadrement militaire ;
endettement ; enseignement supérieur ; entreprises ; EPR ; Eric Besson ; Etats membres ; Europe
; finances publiques ; financier ; fiscal ; fiscalité ; FN ; fonction publique ; fonctionnaires ; François
Bayrou ; François Hollande ; gauche antilibérale ; gaz à effet de serre ; hausse des prix ; hausse
des salaires ; hausse du smic ; heures supplémentaires ; Hollande ; identité française ; identité
nationale ; impôt sur les successions ; insécurité ; internautes ; Internet ; intérêt général ; islam ;
islamisme ; Jacques Chirac ; Jean-Marie Le Pen ; Jospin ; jurys citoyens ; justice sociale ; Kärcher
; Kyoto ; législatives ; Lionel Jospin ; logement ; logement opposable ; logements sociaux ; LOLF
; mâıtrise des dépenses ; MoDem ; monde agricole ; mondialisation ; Nicolas Sarkozy ; Olivier
Besancenot ; pacte écologique ; pacte présidentiel ; pauvreté ; petites retraites ; peuple ; PIB ; plein
emploi ; pouvoir d’achat ; prélèvements obligatoires ; productivité ; protection sociale ; prévention
de la délinquance ; PS ; ps udf ; réchauffement climatique ; recettes fiscales ; recherche ; réforme
des retraites ; régimes de retraite ; régimes spéciaux ; réforme ; référendum sur la Constitution ;
régularisation ; Royal ; rural ; ruralité ; salaire minimum ; salariés ; sans-abri ; Sarkozy ; Sécurité
sociale ; service minimum ; service public ; Ségolène Royal ; socialiste ; solidarité ; sondages ;
taux de chômage ; temps de travail ; territoire ; terrorisme ; Tony Blair ; traité constitutionnel
; travail ; TVA sociale ; UDF ; UMP ; Union européenne ; valeur travail ; Valérie Pécresse ;
Verts ; vieillissement ; ville ; violences urbaines ; vote utile ; Xavier Bertrand ; zones rurales ;
porte-avions ; homosexuel ; égalité des chances ; CSG ; droit de grève ; CNRS ; Gollnisch ; George
Bush ; dialogue social ; contrat unique ; assurance maladie ; johnny ; technologies ; anti-Sarkozy ;
troisième homme ; délocalisations ; précarité ; Frédéric Nihous ; Marseillaise ; Darfour ; chiffrage
; débats participatifs ; Villepinte ; Clearstream ; mai-68 ; outre-mer ; éléphants ; gare du Nord ;
Iran ; Irak

11.5 Result and Discussion

11.5.1 Order-wise Interaction

We first quantified order-wise interactions in weblog data to detect the substantive highest-order
interaction. We tested the model of up to n = 4 binary variables, which rarely gave 4th-order
interaction. We therefore estimate that the substantive interaction exists in at most 3rd order,
which justify to limit the model for multi-node reference reconstruction with n = 3.

The result of the 2nd and 3rd order interaction is depicted in Figs. 11.2 for the 1st(112th day)
and 2nd(127th day) round of the presidential. The whole dynamics of the order-wise χ2 values are
shown in Figs. 11.3.

At the first sight, there exist dominant positive 2nd-order interaction during the whole campaign
period, which shows the biggest peak during the 2nd round (113th-127th day). This dynamics is
natural because there appear common words in all weblogs due to the discussion on related subjects.
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Table 11.1: Url list of 10 most-cited weblogs among popular 120 during the french
presidential 2007.

Url

http://embruns.net
http://hugues.blogs.com
http://maitre.eolas.free.fr

http://vanb.typepad.com/versac
http://dinersroom.free.fr

http://www.radical-chic.com
http://www.koztoujours.fr
http://www.authueil.org

http://birenbaum.blog.20minutes.fr
http://bruxelles.blogs.liberation.fr

As the chosen keywords consist of politically important terms, ones can not avoid simple 2nd-order
correlation even in case they are writing opposite opinions, as long as they use the same keywords.

The 3rd-order interaction, on the other hand, shows relative superiority of negative interaction,
which we assume to reflect the semantic diversification between weblogs. Since the chosen weblogs
are the winners under the competitive criterion of citation frequency, there should exist distinctive
color of opinion in each weblog to assure the semantic variation in weblog sphere. The absence
of the 4th-order interaction also supports semantic independency between these weblogs, which
gives the upper bound of substantive interaction. Related to the substantive order of interaction,
an example of weblog citation network analysis during the american presidential in 2007 shows
that topological distance effect has its peak in 4-clique [82]. Such topological information is also
useful to limit the maximum subgraph scale for parameter reduction. The existence of such order
limit may relate to the limit of our collective interaction scale in social network with respect to the
human individual thought.

Judging the χ2 values with the 5% threshold 3.841 of χ2 test with degree of freedom 1, the
appearance rates of the significant 2nd- and 3rd-order interactions are shown in Figs. 11.4.

The peak of 2nd- and 3rd-order χ2 values around the 2nd round (127th day) are also expressed
in their appearance rates of significance (We will later see that this is not the case for unified
edge information). The negative 2nd-order interaction appears to have no significance in this
data. The appearance rate of significant 3rd-order negative interaction, on the other hand, tend
to relatively decrease during 80th-160th day, which include the 1st and 2nd round of presidential.
These facts suggest that the semantic contents in each weblog tend to include broader range of
defined keywords as the decisive rounds approach, which semantically means to discuss with more
comprehensive perspective. Especially the increase of the positive 3rd-order significance and the
decrease of the negative 3rd-order one is a strong indicator that the semantic variation between
weblogs became more expressed by the context they use with the keywords, and not by the mere
word-level presence/absence.

11.5.2 Unified Edge Information

Based on the substantive highest order of interaction, we next calculated the order-wise and unified
edge information using multi-node reference algorithm with subsystem size n = 3. The first inter-
ests are what would be the degree and sign of interaction between weblogs, if only the information
carried by an edge between a pair of vertices are considered, and if different orders are unified and
expressed with a single measure. Example of reconstructed interaction graph with unified edge
information are depicted in Figs. 11.5, which temporally correspond to the order-wise interaction
graph in Figs. 11.2. The whole dynamics of order-wise and unified edge information are shown in
Figs. 11.6.

The edge information appeared to be mostly positive in both order-wise and unified ones.
This surely relate to the dominant positive 2nd-order interaction, but one can not judge the total
positive/negative sign of interaction until we sum up the order-wise elements into unified edge
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Figure 11.2: Significant order-wise interaction between most-cited 10 weblogs during the
preceding week of the 1st(112th day) and 2nd round (127th day) in french presidential
2007. Top Left: Graph representation of positive(red) and negative(no exist) significant 2nd-order
interaction during the week of the 1st round. Top Right: Graph representation of positive(red)
and negative(no exist) significant 3rd-order interaction during the week of the 1st round. Bottom
Left: Graph representation of positive(red) and negative(blue) significant 2nd-order interaction
during the week of the 2nd round. Bottom Right: Graph representation of positive(red) and
negative(blue) significant 3rd-order interaction during the week of the 2nd round.
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Figure 11.3: Dynamics of order-wise interaction between most-cited 10 weblogs during
french presidential 2007. Top: Dynamics of χ2 values with positive/negative signs of 2nd-
order interaction. χ2 values of all edges are superimposed. Bottom: Dynamics of χ2 values with
positive/negative signs of 3rd-order interaction. χ2 values of all triplet edges are superimposed.
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Figure 11.4: Appearance rate of significant order-wise interactions between most-cited
10 weblogs during french presidential 2007. Top Up: Appearance rate of significant positive
2nd-order interaction. Top Down: Appearance rate of significant negative 2nd-order interaction.
Bottom Up: Appearance rate of significant positive 3rd-order interaction. Bottom Down: Appear-
ance rate of significant negative 3rd-order interaction.
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Figure 11.5: Significant unified edge information between most-cited 10 weblogs dur-
ing the preceding week of the 1st (112th day) and 2nd round (127th day) in french
presidential 2007. Left: Graph representation of positive(green) and negative(no exist) signif-
icant unified edge information during the week of the 1st round. Right: Graph representation of
positive(green) and negative(no exist) significant unified edge information during the week of the
2nd round.

information. The higher-order edge information is also unpredictable from corresponding higher-
order interaction, since for edge information we always consider the exact information carried by
an edge, while latter consider for instance a triplet of edges for the 3rd order. The peak during
2nd round (113th-127th day) is more distinctive than the order-wise interaction.

Figs. 11.7 show the appearance rate of the significant positive and negative unified edge infor-
mation with respect to the 5% threshold 5.991 of χ2 test with degree of freedom 2. Compared to
the augmentation of unified edge information dynamics during the 2nd round (113th-127th day) in
Fig.11.6 (Bottom), the appearance rate of positive significance is rather modest and even decreasing
in both end of the 2nd round. This fact implies that although there exist remarkable augmenta-
tion of unified edge information during the 2nd round, such edges are limited in relatively small
number with respect to the total possible combinations between vertices. This means that some
characteristic subgroup of weblogs emerged, which are highly correlated inside by themselves but
relatively less with others. Semantically, this represents the relative localization of topics between
different subgroups. This notion seems intuitively contradicting with the result of augmentation of
significant 3rd-order interaction, but is actually additive and complementary. Unified information
also include the effect of 3rd-order negative interaction, which shows rather constant dynamics
when combined with positive one. Comprehensive arguments do occur as the positive 3rd-order
interaction augment, on which there are additional diversification into further strongly correlated
subcommunity with respect to the unified edge information. Such strong interaction are spatially
localized, which are depicted in Fig.11.8 for the period of 113th-119th day. In this period, edge
information shows strongly biased localization than the order-wise interactions.

We finally insist that the unified edge information is compatible to further clustering using
generally edge weight, which largely concerns complex network subjects. Unified edge information
contains more than the simple correlation, since it includes order-wise components up to the highest
substantive order. The observed community structure in Fig. 11.8 (Bottom) may be clearly
identified by further clustering using unified edge information. Further application to empirical
range of binary occurrence data and the clustering of the derived results should be realized to
further investigate the utility of this method.

11.6 Conclusion

We theoretically developed the way to decompose edge information into different orders with posi-
tive/negative signs of interaction, and defined an unified measure, namely unified edge information
which is accessible for further clustering.
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Figure 11.6: Dynamics of order-wise and unified edge information between most-cited
10 weblogs during french presidential 2007. Top: Dynamics of χ2 values of 2nd-order edge
information 2N · s3 ·D[p(x, ξ) : p(x, ξ3)]. Values of all edges are superimposed. Middle: Dynamics
χ2 values of 3rd-order edge information 2N · s2 · D[p(x, ξ3) : p(x, ξ23)]. Values of all edges are
superimposed. Bottom: Dynamics of χ2 values of unified edge information 2N · s23 · D[p(x, ξ) :
p(x, ξ23)]. Values of all edges are superimposed. Note that Pythagorean relation 2N ·s23 ·D[p(x, ξ) :
p(x, ξ23)] = 2N · s3 ·D[p(x, ξ) : p(x, ξ3)] + 2N · s2 ·D[p(x, ξ3) : p(x, ξ23)] holds.
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Figure 11.7: Appearance rate of significant unified edge information between most-
cited 10 weblogs during french presidential 2007. Top: Appearance rate of significant
positive unified edge information. Bottom: Appearance rate of significant negative unified edge
information.
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Positive and Negative 2nd Order Interaction at t = 113 − 119
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Figure 11.8: Significant unified edge information and 2nd- and 3rd-order interaction
between most-cited 10 weblogs during the 113th-119th day in french presidential
2007. Top Left: Positive(red) and negative(no exist) significant 2nd-order interaction. Top Right:
Positive(red) and negative(blue) significant 3rd-order interaction. Bottom: Positive(green) and
negative(no exist) significant unified edge information. Unified edge information show strong lo-
calization. Edge width are proportional to the actual χ2 values in these figures.
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We also developed a practical framework to calculate a series of defined edge informations in
large scale network by reducing parameters without losing substantive information.

Order-wise interaction analysis on political weblog data during french presidential 2007 proved
the plausibility of this parameter reduction and revealed the order-wise structure related to seman-
tic variation.

Analysis with unified edge information revealed the formation of strongly correlated community
in the phase of comprehensive argument during the 2nd round of the presidential.
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Chapter 12

Measuring Complexity with
Respect to System
Decompositionability

Abstract

Many complexity measures have been proposed from information theoretical point
of view, all having the same feature based on arithmetic product of information. We
consider the novel measures of complexity with respect to the system decomposition-
ability, by introducing the geometric product of KL divergence. The novel complexity
measures satisfy the boundary condition of vanishing at the limit of completely random
and ordered state, and also with the existence of independent subsystem of any size.
Analysis of social network data revealed the subsystem-wise dynamics with respect to
the global behavior of the system during the augmentation of total complexity. The
dynamics of subsystem-wise decompositionability was further examined with hypothet-
ical view of geodesic flow with respect to the complexity measures as potential function
on statistical manifold.

Keywords: Complexity measure, Boundary condition, System decompositionabil-
ity, Geometric mean

Methodology: Definition of novel measures of complexity with respect to the sys-
tem’s decompositionability based on information geometry→ Trend analysis of political
weblog data as dynamical systems → Theoretical consideration on geodesic flow based
on the novel measures of complexity with dynamical system perspective

12.1 Introduction: Network Characterization with the Use
of Complexity Measure

There has been many attempts to define the complexity in stochastic model [83]. The complexity
measure is usually the projection from system’s variables to one-dimensional quantity, which is
composed to express the degree of characteristic that we define to be important in what means
“complexity”. Since the complexity measure is always a many-to-one association, it has both
aspects of compressing information to classify the system from simple to complex, and losing reso-
lution of the system’s phase space. If the system has n variables, we generally need n independent
complexity measures to completely characterize the system with real-value resolution. The prob-
lematics of defining a complexity measure is situated on the edge of balancing the information
compression on system’s complexity with theoretical support, and the resolution of the system
identification to be maintained high enough to avoid trivial classification. The latter criterion in-
creases its importance as the system size becomes larger, which we will see in later section. The
better complexity measure is therefore a set of indices, with as less number as possible, which
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characterizes major features related to the complexity of the system. In this sense, the ensemble
of complexity measures is also analogous to the feature space of support vector machine.

Complexity measure on stochastic model has been mostly studied with information theoreti-
cal perspective. Computation-oriented definition of complexity takes deterministic formalization
and measures the necessary information to reproduce a given symbolic sequence exactly, which is
classified with the name of algorithmic complexity. [84] [85] [86]

On the other hand, statistical approach to complexity, namely statistical complexity, assumes
some stochastic model as theoretical basis, and refers to the structure of information source on
it in measure-theoretic way [87] [88] [89]. One of the most classical statistical complexity is the
mutual information between two stochastic variables, and its generalized form measuring depen-
dence between n variables are proposed by several authors [80] [38] [31]. We should also recall
that complexity is not necessary conditioned only by information theory, but rather motivated
from the organization of living system such as brain activity. The TSE complexity shows further
extension of generalized mutual information into biological context, where complexity exists as the
heterogeneity between different system hierarchy [37]. These statistical complexities are all based
on the boundary condition of vanishing at the limit of completely random and ordered state [90].

In this chapter, we particularly focus on the generalized mutual information as a start point
of the argument, and further consider to incorporate network heterogeneity with respect to the
system’s decompositionability, in a way still missing in TSE complexity.

12.2 Generalized Mutual Information as Complexity with
Respect to the Total System Decomposition

In previous chapter, we have introduced a measure of complexity in terms of system decomposition,
by measuring the KL-divergence between a given system and its independently decomposed sub-
systems. We consider here the total system decomposition, and measure the informational distance
I between the system and the totally decomposed system where each element are independent.

I =

n∑
i=1

H(xi)−H(x1, · · · , xn), (12.1)

This quantity is the generalization of mutual information, and is named in various ways such
as generalized mutual information, integration, complexity, multi-information, etc., according to
different authors. We call the I as “multi-information taking after [38]. This quantity can be
interpreted as a measure of complexity that sums up the order-wise interactions existing in each
subset of components with information geometrical formalization [80]

For simplicity, we denote the multi-information I of n-dimensional stochastic binary variables
as follows, using the notation of the system decomposition:

I = D[< 111 · · · 1 >:< 123 · · ·n >], (12.2)

where D[· : ·] is the KL-divergence from the first system to the second one.

12.3 Rectangle-Bias Complexity

The multi-information contains some degrees of freedom in case n > 2. That is, we can define a
set of distributions {p(x)|I = const.} with different parameters but the same I value. This fact
can be clearly explained with the use of information geometry. From the Pythagorean relation, we
obtain the followings in case of n = 3:

D[< 111 >:< 113 >] +D[< 113 >:< 123 >] = D[< 111 >:< 123 >], (12.3)

D[< 111 >:< 121 >] +D[< 121 >:< 123 >] = D[< 111 >:< 123 >], (12.4)

D[< 111 >:< 122 >] +D[< 122 >:< 123 >] = D[< 111 >:< 123 >]. (12.5)
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Using these relations, we can schematically represent the decomposed systems on a circle diagram
with diameter

√
I. This representation is based on the analogous algebra between Pythagorean

relation of KL divergence, and that of Euclidian geometry where the circumferential angle of a
semi-circular arc is always π

2 .
Fig.12.1 represents two different cases with the same I value in case n = 3. The distance

between two systems in the same diagram corresponds to the square root value of KL-divergence
between them. Clearly the left and right figures represents different interaction between nodes,
although they both have the same I value. Such geometrical variation is possible by the abundance
of degree of freedom in dual coordinates compared to the given constraint. There exist 7 degrees
of freedom in η or θ coordinates for n = 3, while the only constraint is the invariance of I value,
which only reduce 1 degree of freedom. The remaining 6 degrees of freedom can then be deployed
to produce geometrical variation in the circle diagram. As for considering system decomposition,
the left figure is difficult to obtain decomposed systems without losing much information. While
in the right figure there exists relatively easy decomposition < 122 >, which loses less information
than any decompositions in the left figure. We call such degree of facility of decomposition with
respect to the losing information as system decompositionability. In this sense, the left system is
more complex although the 2 systems both have the same I value. Especially, in case D[< 111 >:<
122 >] = D[< 111 >:< 113 >] = D[< 111 >:< 121 >], the system does not have any easiest way
of decomposition, and any isolation of a node loses significant amount of information.

To further incorporate such geometrical structure reflecting system decompositionability into a
measure of complexity, we consider a mathematical way to distinguish between these two figures.
Although the total sum of KL divergence along the sequence of system decomposition is always
identical to I by Pythagorean relation, their product can vary according to the geometrical com-
position in the circle diagram. This is analogous to the isoperimetric inequality of rectangle, where
regular tetragon gives the maximum dimensions amongst constant perimeter rectangles.

We propose provisionary a new measure of complexity as follows, namely rectangle-bias com-
plexity Cr:

Cr =
1

|SD| − 2

∑
<···>∈SD

D[< 11 · · · 1 >:< · · · >] ·D[< · · · >:< 12 · · ·n >], (12.6)

where SD is the set of possible system decomposition in n binary variables, and |SD| is the element
number of SD. For example, SD = {< 111 >,< 122 >,< 121 >,< 113 >,< 123 >} and |SD| = 5
for n = 3. This measure distinguishes between the two systems in Fig.12.1, and gives larger value
for the left figure. It also gives maximum value in case D[< 111 >:< 122 >] = D[< 111 >:< 113 >
] = D[< 111 >:< 121 >].

12.4 Complementarity between Complexities Defined with
Arithmetic and Geometric Means

We evaluate the possibility and the limit of rectangle-bias complexity Cr comparing with other
proposed measures of complexity.

Interests on measuring network heterogeneity has been developed toward the incorporation of
multi-scale characteristics into complexity measures. The TSE complexity is motivated from the
structure of the functional differentiation of brain activity, which measures the difference of neural
integration between all sizes of subsystems and the whole system [37]. Biologically motivated
TSE complexity is also investigated from theoretical point of view, to further attribute desirable
property as an universal complexity measure independent of system size [91]. The hierarchical
structure of the exponential family in information geometry also leads to the order-wise description
of interaction, which can be regarded as a multi-scale complexity measure [80]. The relation
between the order-wise interaction and the TSE complexity is theoretically investigated to establish
the order-wise component correspondence between them [38].

These indices of network heterogeneity, however, all depend on the arithmetic mean of the
component-wise information theoretical measure. We show that these arithmetic means still miss
to measure certain modularity based on the statistical independence between subsystems.
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Figure 12.1: Circle diagrams of system decomposition in 3-node network. Both systems
have the same value of multi-information I that is expressed as the identical diameter length of
the circles. 2 variations are shown, where the left system is more complex (Cr high) in a sense
any system decomposition requires to lose more information than the easiest one (< 122 >) in the
right figure (Cr low).

Figs. 12.2 present the simplified cases where complexity measures with arithmetic means fail
to distinguish. We consider the two systems with different heterogeneity but identical multi-
information I. Here, the multi-information can not reflect the network heterogeneity. The TSE
complexity and its information geometrical correspondence in ?? has a sensitivity to measure the
network heterogeneity, but since the arithmetic mean is taken over all subsystems, they do not
distinguish the component-wise break of symmetry between different scales. The renormalized
TSE complexity with respect to the multi-information I still has the same insensitivity. Even
by incorporating the information of each subsystem scale, the arithmetic mean can balance out
between the scale-wise variations, and a large range of the heterogeneity in different scale can
realize the same value of these complexities. For the application in neuroscience, the assumption
of a model with simple parametric heterogeneity and the comparison of TSE complexity between
different I values alleviate this limitation [37].

In contrast to complexities with arithmetic mean, the rectangle-bias complexity Cr is related
to the geometrical mean. The Cr can distinguish the two systems in Figs. 12.2, giving relatively
high Cr value to the left system and low value to the right one.

This does not mean , however, that the Cr has a finer resolution than other complexity mea-
sures. The constant conditions of complexity measures are the constraint on

∑n
k=1 nCk degrees of

freedom in model parameter space, which define different geometrical composition of corresponding
submanifolds. We basically need

∑n
k=1 nCk independent measures to assure the real-value resolu-

tion of network feature characterization. Complexities with arithmetic and geometric means are
just giving complementary information on network heterogeneity, or different constant-complexity
submanifolds structure in statistical manifold as depicted in Fig. 12.3. Therefore, it is also possible
to construct a class of systems that has identical I and Cr values but different TSE complexity.
Complexity measures should be utilized in combination, with respect to the non-linear separation
capacity of network features of interest.

12.5 Cuboid-Bias Complexity with Respect to System De-
compositionability

We consider the expansion of Cr into general system size n. The n ≤ 4 situation is different from
n = 3 and less in the existence of a hierarchical structure between system decompositions.

Fig. 12.4 shows the hierarchy of the system decompositions in case n = 4. Such hierarchical
structure between system decompositions are not homogeneous with respect to the subsystems
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Figure 12.2: Schematic examples of stochastic systems with identical multi-information
I where complexity measures with arithmetic mean fail to distinguish. Top Left: Exam-
ple 1 of stochastic system with homogeneous mean of edge information and symmetric fluctuation
of its heterogeneity. Top Right: Example 2 of heterogeneous stochastic system with bimodal edge
information distribution and identical multi-information I and complexity based on arithmetic
mean as example 1. Bottom Left: schematic representation of the distribution of interaction (edge
information) in upper network. Bottom Right: schematic representation of the distribution of
interaction (edge information) in upper network.

Figure 12.3: Schematic representation of complementarity between complexity mea-
sures based on arithmetic mean (Ca) and geometric mean (Cg) of informational dis-
tance. An example of the n − 1 dimensional constant-complexity submanifolds with respect to
Ca = const . and Cg = const . conditions are depicted with yellow and orange surface, respectively.
The dimension of the whole statistical manifold S is the parameter number n.
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numbers, and depends on the isomorphic types of decomposed systems. This fact produces certain
difference of meaning in complexity between each KL divergences when considering the system
decompositionability.

A simple example in 4 nodes network is shown in Fig. 12.5. We consider the modification of 2
KL divergences in the figure, D[< 1111 >:< 1222 >] and D[< 1111 >:< 1133 >] from the diameter
of green dotted circle to the dashed one.

The joint distribution P (x1, x2, x3, x4) of a discrete distribution with 4 binary variables (x1, x2, x3, x4)
(x1, x2, x3, x4 ∈ {0, 1}) have 24 − 1 = 15 parameters, which define the dual-flat coordinates of sta-
tistical manifold in information geometry.

On the other hand, the possible system decompositions exist as the followings in n = 4:

SD := {< 1111 >,< 1114 >,< 1131 >,< 1211 >,< 1222 >,

< 1133 >,< 1212 >,< 1221 >,< 1134 >,< 1214 >,

< 1231 >,< 1224 >,< 1232 >,< 1233 >,< 1234 >}. (12.7)

Since the number of possible system decompositions is 15, and each is associated with the
modification of different sets of P (x1, x2, x3, x4) parameters, the system decompositions and KL
divergences between them can be defined independently. This also holds even under the constant
condition of I value or other complexity measures except the ones imposing dependency between
system decompositions.

This means that we can independently modify the diameter of green dotted circle in Fig. 12.5,
without changing the diameters of the red and blue circles, which define the system decompositions
< 1233 > and < 1134 > in the sub-hierarchy of < 1222 > and < 1133 >, respectively. Other KL
divergences can also be maintained as given constant values for the same reason.

The rectangle-biased complexity Cr increases its value with such modification, but does not
reflect the heterogeneity of KL divergences according to the hierarchy of system decompositions. If
we consider the system decompositionability as the mean facility to decompose the given system into
its finest components with respect to the “all” possible system decompositions, such hierarchical
difference also has a meaning in the definition of complexity.

The effect of modifying the diameter of the green dotted circle is different between the decom-
position sequences < 1111 >→< 1222 >→< 1233 >→< 1234 > and < 1111 >→< 1133 >→<
1134 >→< 1234 >. The decrease of the KL divergence D[< 1222 >:< 1233 >] is less than
D[< 1133 >:< 1134 >] since the diameter of the red dotted circle is larger than the blue one
in Fig. 12.5. This means that the effect of changing the same amount of KL divergences in
D[< 1111 >:< 1222 >] and D[< 1111 >:< 1133 >] produces larger effect on the sequence
< 1111 >→< 1133 >→< 1134 >→< 1234 > than < 1111 >→< 1222 >→< 1233 >→< 1234 >,
when compared at the sequence level. The rectangle-biased complexity Cr does not reflect such
characteristics since it does not distinguish between the hierarchical structure between the diame-
ters of the green, red and blue dotted circles.

To incorporate such hierarchical effect in a complexity measure with geometric mean, we have
the natural expansion of the rectangle-biased complexity Cr as the cuboid-bias complexity Cc, which
is defined as follows:

Cc =
1

|Seq|

|Seq|∑
is=1

n−1∏
i=1

D[SDi(is) : SDi+1(is)], (12.8)

Where Seq represents the possible sequences of hierarchical system decompositions as follows:

Seq = {SD1(is)→ SD2(is)→ · · ·SDi(is) · · · → SDn(is)|1 ≤ is ≤ |Seq|}. (12.9)

The elements SDi(is) of Seq corresponds to the system decomposition, which is aligned according
to the hierarchy with the following algorithmic procedure:
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1. Initialization: Set the initial sets of system decomposition of all sequences in Seq as the whole
system SD1(is) :=< 111 · · · 1 > (1 ≤ is ≤ |Seq|).

2. step i→ i+ 1: If the system decomposition is the total system decomposition (SDi(is) :=<
123 · · ·n >), then stop. Otherwise, choose a non-decomposed subsystem SSi(is) of the
system decomposition SDi(is) different for each is, and further divide it into two independent
subsystems SS1

i (is) and SS2
i (is). SDi+1(is) is then defined as the independent union of the

SS1
i (is), SS

2
i (is), and the SDi(is) without SSi(is).

3. Go to the next step i+ 1→ i+ 2.

The value of |Seq| corresponds to the number of different sequences generated by this algorithm.
For example, |Seq| = 3 and |Seq| = 18 holds for n = 3 and n = 4, respectively.

The products of KL divergences according to the hierarchical sequences of system decomposi-
tions in equation (12.8) is related to the volume of n−1-dimensional cuboids in the circle diagram.
An example in case of n = 4 is presented in Fig. 12.5, where two cuboids with 3 orthogonal
edges of the different decomposition sequences < 1111 >→< 1222 >→< 1233 >→< 1234 > and
< 1111 >→< 1133 >→< 1134 >→< 1234 > are depicted, whose cuboid volumes are

√
D[< 1111 >:< 1222 >]D[< 1222 >:< 1233 >]D[< 1233 >:< 1234 >], (12.10)

and

√
D[< 1111 >:< 1133 >]D[< 1133 >:< 1134 >]D[< 1134 >:< 1234 >], (12.11)

respectively.
In the same way as Cr, we took in the definition of Cc the arithmetic average of cuboid volumes

so that to renormalize the combinatorial increase of the decomposition paths (|Seq|) according to
the system size n.

Note that on the other hand we did not renormalize the rectangle-bias complexity Cr and the
cuboid-bias complexity Cc by taking the exact geometrical mean of each product of KL divergences

like n−1

√∏n−1
i=1 D[SDi(is) : SDi+1(is)]. This is for further accessibility to theoretical analysis such

as variational method (see “Further Consideration” section), and does not change qualitative be-
havior of Cr and Cc since the power root is a monotonically increasing function. This treatment can
be interpreted as taking the (n−1)-th power of the geometric means for the hierarchical sequences
of KL divergences.

A more comprehensive example on the utility of the cuboid-bias complexity Cc with respect
to the rectangle-biased one Cr is shown in Fig. 12.6. We consider the 6 nodes networks (n = 6)
with the same I and Cr values but different heterogeneity. The system in the top left figure
has a circularly connected structure with medium intensity, while that of the top right figure has
strongly connected 3 subsystems. These systems have qualitatively five different ways of system
decomposition that are the basic generators of all hierarchical sequences Seq = {SD1(is)→ · · · →
SD5(is)|1 ≤ is ≤ |Seq|} for these networks. The five basial system decompositions are shown with
the number 1○, 2○, 2○′, 3○ and 4○ in top figures.

The circle diagrams of these systems are depicted in the middle figures. To suppose the same
constant value of Cr in both systems, the following condition is satisfied in the middle right figure:
D[< 111111 >: 2○] < D[< 111111 >: 1○in Middle Left figure] < D[< 111111 >: 1○] < D[<
111111 >: 2○in Middle Left figure] < D[< 111111 >: 3○] < D[< 111111 >: 4○]. Furthermore, the
total surface of right triangles sharing the circle diameter as hypotenuse in the middle left and the
middle right figures are conditioned to be identical, therefore the rectangle-bias complexity Cr fails
to distinguish.

On the other hand, under the same condition, the cuboid-bias complexity Cc distinguishes be-
tween these two systems and gives higher value to the left one. The volume of 5-dimensional

cuboids of the decomposition sequence < 111111 >
1○ 2○ 2○′ 3○ 4○
−−−−−−−−−−→< 123456 > are schemati-

cally shown in the bottom figures, maintaining the qualitative difference between KL divergences.
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Figure 12.4: Hierarchy of system decomposition for 4 nodes network (n = 4). Possible
sequences of Seq = {SD1(is) → SD2(is) → SD3(is) → SD4(is)|1 ≤ is ≤ |Seq| = 18} are
connected with the lines.

Since the multi-information I is identical between the two systems, so is the values of KL diver-
gence D[< 111111 >:< 123456 >], which is the sum of the KL divergences along the sequence

< 111111 >
1○ 2○ 2○′ 3○ 4○
−−−−−−−−−−→< 123456 > from the Pythagorean theorem. This means that the

inequality between the cuboid volumes can be represented as the isoperimetric inequality of high-
dimensional cuboid. As a consequence, the left system has qualitatively higher value of Cc than
the right one. The cuboid-bias complexity Cc is also sensitive to such heterogeneity.

12.6 Regularized Cuboid-Bias Complexity with Respect to
Generalized Mutual Information

We further consider the geometrical composition of system decompositions in the circle diagram
and insist the necessity of renormalizing the cuboid-bias complexity Cc with the multi-information
I, which gives another measure of complexity namely “regularized cuboid-bias complexity CRc .”

We consider the situation in actual data where the multi-information I varies. Fig. 12.7 shows
the n = 3 cases where the Cc fails to distinguish. Both the blue and red systems are supposed
to have the same Cc value by adjusting the red system to have relatively smaller values of KL
divergences D[< 111 >:< 122 >] and D[< 113 >:< 123 >] than the blue one. Such conditioning is
possible since the KL divergences are independent parameters with each other.

Although the Cc value is identical, the two systems have different geometrical composition
of system decompositions in the circle diagram. The red system has relatively easier way of
decomposition< 111 >→< 122 > if renormalized with the total system decomposition< 111 >→<
123 >. This relative decompositionability with respect to the renormalization with the multi-
information I can be clearly understood by superimposing the circle diagram of the two systems and
comparing the angles between each and total decomposition paths (bottom figure). The red system
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Figure 12.5: Hierarchical effect of sequential system decomposition on cuboid volume
and rectangle surface. We consider to increase the diameter of the green circle from dotted
to dashed one without changing those of the red and blue circles, which gives different effect on
the change of D[< 1222 >:< 1233 >] and D[< 1133 >:< 1134 >] according to the hierarchical
structure of the decomposition sequences.
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Figure 12.6: Meaning of taking geometric mean over the sequence of system decom-
position in cuboid-bias complexity Cc. Top Left: Example of 6-node network with cir-
cularly connected structure with medium intensity. Edge width is proportional to edge infor-
mation. Top Right: Example of 6-node network with strongly connected 3 subsystems. Edge
width is proportional to edge information. The multi-information I of the two systems in Top
figures are conditioned to be identical. The dotted line schematically represent possible system
decompositions. Middle Left and Right: Circle diagrams of each system decomposition in up-
per networks. The total surface of right triangles sharing the circle diameter as hypotenuse in
Middle Left and Middle Right figures are conditioned to be identical, therefore the rectangle-
bias complexity Cr fails to distinguish. Bottom Left and Right: 5-dimensional cuboids of upper
networks(Top figures) whose edges are the root of KL divergences for the strain of system decompo-

sition < 111111 >
1○ 2○ 2○′ 3○ 4○
−−−−−−−−−−→< 123456 >. Only the first 3-dimensional part is shown with solid

line, and the remaining 2-dimensional part is represented with dotted line. The volume of Bottom
Left cuboid is larger than that of Bottom Right one, according to the isoperimetric inequality of
high-dimensional cuboid. The total squared length of each side is identical between two cuboids,
which represents multi-information I = D[< 111111 >:< 123456 >] .

has larger angle between the decomposition paths < 111 >→< 122 > and < 111 >→< 123 > than
any others in the blue system, which represents the relative facility of the decomposition under
renormalization with I. In this term, the paths < 111 >→< 121 > in the red and blue system does
not change its relative facility, and the paths < 111 >→< 113 > are easier in the blue system.

To express the system decompositionability based on these geometrical compositions in a com-
prehensive manner, we define the regularized cuboid-bias complexity CRc as follows:

CRc =
1

|Seq|

|Seq|∑
is=1

n−1∏
i=1

D[SDi(is) : SDi+1(is)]

D[< 11 · · · 1 >:< 12 · · ·n >]

=
Cc

D[< 11 · · · 1 >:< 12 · · ·n >]n−1

=
Cc
In−1

. (12.12)

The red system then has qualitatively smaller CRc value than the blue system in Fig. 12.7.

12.7 Modular Complexity with Respect to the Easiest Sys-
tem Decomposition Path

We have considered so far the system decompositionability with respect to the all possible decom-
position sequences. This was also a way to avoid the local fluctuation of the network heterogeneity
to be reflected in some specific decomposition paths. On the other hand, the easiest decomposition
is particularly important when considering the modularity of the system. If there exists hierar-
chical structure of modularity in different scales with different coherence of the system, the KL
divergence and the sequence of the easiest decomposition gives much information.

Fig. 12.8 schematically shows a typical example where there exist two levels of modularity.
Such structure with different scales of statistical coherence appears as functional segregation in
neural systems [37], and is expected to be observed widely in complex systems. The hierarchical
topology of the easiest decomposition path reflect these structures. For example, in the system of
Fig. 12.8, the decompositions between < 1 1 · · · 1 > and < 1 1 1 1 5 5 5 5 9 9 9 9 13 13 13 13 >
are easier than those inside of the 4-node subsystems. The value of KL divergences also reflect
the hierarchy, giving relatively low values for the decomposition between the 4-node subsystems,
and high values inside of them. By examining the shortest decomposition path and associated KL
divergences in possible Seq, one can project the hierarchical structure of the modularity existing
in the system.
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Figure 12.7: Examples of the 3-node systems with identical cuboid-bias complexity Cc
but different mutual-information I. Top Left: System with smaller I but larger CRc . Top
Right: System with larger I but smaller CRc . Bottom: Superposition of the above two systems.
The regularized cuboid-bias complexity CRc distinguishes between the blue and red systems.
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For this reason, we define the modular complexity Cm as follows, which is the shortest path
component of the cuboid-bias complexity Cc:

Cm =

n−1∏
i=1

D[SDi(imin) : SDi+1(imin)], (12.13)

where the index imin of the sequence SD1(imin) → SD2(imin) → · · · → SDn(imin) is chosen as
follows:

imin = {i1} ∩ {i2} ∩ · · · ∩ {in−1}, (12.14)

where

{i1} = argmin
is

{D[SD1(is) : SD2(is)]|1 ≤ is ≤ |Seq|}, (12.15)

{i2} = argmin
i1

{D[SD2(i1) : SD3(i1)]|i1 ∈ {i1}}, (12.16)

· · ·
{in−1} = argmin

in−2

{D[SDn−1(in−2) : SDn(in−2)]|in−1 ∈ {in−1}}, (12.17)

which gives eventually

imin = in−1. (12.18)

This means that beginning from the undecomposed state < 11 · · · 1 >, we continue to choose
the shortest decomposition path in the next hierarchy of system decomposition. Besides its value,
the modular complexity Cm should be utilized with the sequence information of the shortest de-
composition path to evaluate the modularity structure of a system.

The cases where Cm are identical but Cc are different can be composed by varying the system
decompositions other than in the shortest path SD1(imin) → SD2(imin) → · · · → SDn(imin)
without modifying the index imin. There exist also inverse examples with identical Cc and different
Cm, due to the complementarity between Cm and Cc.

We finally define the regularized modular complexity CRm as follows, for the same reason as
defining CRc from Cc;

CRm =

n−1∏
i=1

D[SDi(imin) : SDi+1(imin)]

D[< 11 · · · 1 >:< 12 · · ·n >]

=
Cm

D[< 11 · · · 1 >:< 12 · · ·n >]n−1

=
Cm
In−1

. (12.19)

The cuboid-bias complexities Cc and CRc are bounded by the modular complexities Cm and
CRm respectively:

Cc ≤ Cm, (12.20)

CRc ≤ CRm. (12.21)

And they coincide at the maximum values under the given multi-information I:

max{Cm|I = const .} = max{Cc|I = const .}, (12.22)

max{CRm} = max{CRc }. (12.23)
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Figure 12.8: Example of 16-node system < 11 · · · 1 > that has different levels of modu-
larity. The four 4-node subsystems < 1111 > (blue blocks) are loosely connected and easy to be
decomposed, while inside each component (red blocks) is tightly connected. The degree of connec-
tion represents statistical dependency or edge information between subsystems. Such hierarchical
structure can be detected by observing the decomposition path of the modular complexity Cm.

These relations (12.20)-(12.23) are numerically shown in the “Numerical Comparison” section.

The superiority of the modular complexities is due to the hierarchical dependency of KL di-
vergence value in decomposition paths. In the shortest decomposition path defining modular com-
plexities, the easier system decomposition relatively increase its value since they incorporate more
number of edge cutting. Since we eventually cut all edges to obtain < 12 · · ·n > at the end of the
decomposition sequence, collecting the edges with relatively weak edge information and cutting
them together augment the value of the product of KL divergences. The modular complexities
are then the maximum value components among the possible decomposition paths calculated in
cuboid-bias complexities:

Cm = max

{
n−1∏
i=1

D[SDi(is) : SDi+1(is)]

∣∣∣∣∣ 1 ≤ is ≤ |Seq|
}
, (12.24)

CRm = max

{
n−1∏
i=1

D[SDi(is) : SDi+1(is)]

D[< 11 · · · 1 >:< 12 · · ·n >]n−1

∣∣∣∣∣ 1 ≤ is ≤ |Seq|
}
. (12.25)

The difference between the cuboid-bias complexities and the modular complexities is an index of
the geometrical variation of decomposed systems in the circle graph, which reflects the fluctuation of
the sequence-wise system decompositionability. If the variation of the system decompositionability
for each system decomposition is large, accordingly the modular complexities tend to give higher
values than the cuboid-bias complexities.



12.8. NUMERICAL COMPARISON 197

12.8 Numerical Comparison

Compare between 4 complexity measure and generalized mutual information with identical eta1−

and varying eta1+ axis1: random - max interaction axis2: D[< 1111 >:< 1133 >] min - max
We numerically investigate the complementarity between the proposed complexities, Cc, C

R
c ,

Cm, and CRm. Since the minimum node number giving non-trivial meaning to these measures
is n = 4, the corresponding dimension of parameter space is

∑n
k=1 nCk = 15. The constant-

complexity submanifolds are therefore difficult to visualize due to the high dimensionality. For
simplicity, we focus on the 2-dimensional subspace of this parameter space whose first axis ranging
from random to maximum interaction of the system, and the second one representing the system
decompositionability of < 1133 >.

For this purpose, we introduce the following parameters α and β (0 ≤ α, β ≤ 1) in the η-
coordinates of the discrete distribution with 4-dimensional binary stochastic variable:

η1 = η0, (12.26)

η2 = η0, (12.27)

η3 = η0, (12.28)

η4 = η0, (12.29)

η12 = η1η2 + α(η0 − ε− η1η2), (12.30)

η34 = η3η4 + α(η0 − ε− η3η4), (12.31)

η13 = η1η3 + αβ(η0 − ε− η1η3), (12.32)

η14 = η1η4 + αβ(η0 − ε− η1η4), (12.33)

η23 = η2η3 + αβ(η0 − ε− η2η3), (12.34)

η24 = η2η4 + αβ(η0 − ε− η2η4), (12.35)

η123 = η12η3 + αβ(η0 − 2ε− η12η3), (12.36)

η124 = η12η4 + αβ(η0 − 2ε− η12η4), (12.37)

η134 = η1η34 + αβ(η0 − 2ε− η1η34), (12.38)

η234 = η2η34 + αβ(η0 − 2ε− η2η34), (12.39)

η1234 = η12η34 + αβ(η0 − 3ε− η12η34). (12.40)

Where α represents the degree of interaction from random (α = 0) to maximum (α = 1), and
β control the system decompositionability of < 1133 >. If β = 1, the system has the maximum
KL divergence D[< 1111 >:< 1133 >] under the constraint of α parameter, and β = 0 gives
D[< 1111 >:< 1133 >] = 0.

ε is the minimum value of the joint distribution of 4-dimensional variable, which is defined to be
more than 0 to avoid singularity in the dual-flat coordinates of statistical manifold. ε = 1.0e− 10
and η0 = 0.5 was chosen for the calculation.

The system with maximum interaction under given η0 corresponds to the α = β = 1 condition
in given parameters, whose η-coordinates become as follows:

η1 = η0, (12.41)

· · ·
η4 = η0, (12.42)

η12 = η0 − ε, (12.43)

· · ·
η34 = η0 − ε, (12.44)

η123 = η0 − 2ε, (12.45)

· · ·
η234 = η0 − 2ε, (12.46)

η1234 = η0 − 3ε, . (12.47)
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On the other hand, the totally decomposed system corresponds to the α = 0 condition, and the
η-coordinates are:

η1 = η0, (12.48)

· · ·
η4 = η0, (12.49)

η12 = η0η0, (12.50)

· · ·
η34 = η0η0, (12.51)

η123 = η0η0η0, (12.52)

· · ·
η234 = η0η0η0, (12.53)

η1234 = η0η0η0η0. (12.54)

Note that the completely deterministic case η0 = 1.0 and α = β = 1 gives I = 0.
The intuitive meaning of these parameters α and β are also schematically depicted in Fig. 12.10

bottom right.
Figs. 12.9 show the landscape of the proposed complexities on the α - β plane. Their contour

plots are depicted in Figs. 12.10. The proposed complexities each differs from others in almost
everywhere points on α - β plane except at the intersection lines. Therefore, these measures
serve as the independent features of the system, each has its specific meaning with respect to
the system decompositionability. The α - β plane shows a section of the actual structure of the
complementarity expressed in Fig. 12.3 between the proposed complexity measures.

The relations between the cuboid-bias complexities and modular complexities in equations
(12.20)-(12.23) are also numerically confirmed. The modular complexities are superior than the
corresponding cuboid-bias complexities, and coincide at the parameter α = β = 1 giving maximum
values and interaction in this parameterization.

In general case without the parameterization with α, β and η0, the boundary conditions of Cc,
CRc , Cm and CRm include that of the multi-information I, which vanish at the completely random
or ordered state. This is common to other complexity measures such as the LMC complexity, and
fit to the basic intuition on the concept of complexity situated equivalently far from the completely
predictable and disordered states [92] [93].

The proposed complexities further incorporate boundary conditions that vanish with the exis-
tence of a completely independent subsystem of any size. This means that the Cc, C

R
c , Cm and

CRm of a system become 0 if we add another independent variable. This property does not reflect
the intuition of complexity defined by the arithmetic average of statistical measures. The proposed
complexity can better find its meaning in comparison to other complexity measures such as the
multi-information I, and by interactively changing the system scale to avoid trivial results with
small independent subsystem. For example, the proposed complexities could be utilized as the
information criteria for the model selection problems, especially with an approximative modular
structure based on the statistical independency of data between subsystems. We insist that the
complementarity principle between plural complexity measures of different foundation is the key
to understand the complexity in a comprehensive manner.

12.9 Analysis of Social Network Data

We analyze the social network data in the previous chapter with the use of the complexity measures
Cc, C

R
c , Cm, CRm, and I. Figs. 12.11 and 12.12 show the results in biweekly scale. The complexities

of each day were calculated using the data of 14 preceding days along the time axis.
The log-scale dynamics in the top figure of Fig. 12.11 show the strong synchronization between

Cc and Cm as well as CRc and CRm. The observation in linear scale show quantitative difference
between the cuboid-bias complexities and modular complexities in the middle and bottom figures.
The difference between Cc and Cm tends to augment as the Cc becomes larger, while the difference
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Figure 12.9: Landscape of complexities I, Cc, Cm, CRc , and CRm on α-β plane. Top: Mutual-
information I. Middle Left: Cuboid-bias complexity Cc. Middle Right: Modular complexity
Cm. Bottom Left: Regularized cuboid-bias complexity CRc . Bottom Right: Regularized modular
complexity CRm. All complexity measures show the complementarity intersecting with each other,
satisfying the boundary conditions vanishing at α = 0 and β = 0 except the multi-information I.
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Figure 12.10: Contour plot of the complexity landscape of I, Cc, Cm, CRc , and CRm on α-β
plane. Top Left: Contour plot superposition of Cc and Cm. Top Right: Contour plot superposition
of CRc and CRm. Bottom Left: Contour plot of I. Bottom Right: Schematic representation of the
system in different regions of α-β plane. Edge width represents the degree of edge information,
and independence is depicted with dotted line.
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between CRc and CRm does not have simple proportional relation and varies independently from
other complexities. These differences show especially high value for Cm − Cc and low value for
CRm − CRc between the 1st and 2nd round (112th-127th day) of the presidential.

The quantitative difference between the cuboid-bias complexities and modular complexities
are the effect of the geometric composition of the shortest decomposition path, which represents
the deviation from the maximum cuboid-bias complexities. Since the multi-information I shows
high value between the 1st and 2nd round, it is natural that the complexities Cc and Cm without
renormalization with I become larger during this period. Though, the augmentation of difference
Cm−Cc larger than the simple proportional to the Cc implies the existence of a specific subsystem
contributing more than other interactions to the increase of I and Cc. This also fits to the dynamics
in the top figure of Fig. 12.11, where the dynamics after the 1st round (112th day) is decreasing
in CRc and CRm, increasing but decrease faster than I in Cc and Cm: Despite the increase of the
I, the geometric decomposition of certain subsystem changes to reduce the complexities related to
geometrical mean.

Such assumption can be verified by examining the shortest decomposition path and its KL
divergence values in Cm, which are depicted in the top figure of Figs. 12.12. During the period
between the 1st and 2nd round, the decomposition represented with D[< 1214 >:< 1234 >]
(white bar) continues to augment as other D[< 1111 >:< 1114 >] (black bar) decreases and
D[< 1114 >:< 1214 >] (magenta bar) remains within a bounded range. The decomposition
D[< 1214 >:< 1234 >] (white bar) corresponds to the interaction only between R and S, who
actually fought the 2nd round to eventually decide the next president. The dynamics of Cc and Cm
then reflected the stronger increase of interaction between R and S than between other candidates.

On the other hand, the values of the regularized complexities CRc and CRm tends to decrease

between the 1st and 2nd round. The theoretical maximum of the CRc and CRm is
(

1
n−1

)3
=

0.037 in case n = 4. The maximum regularized complexities correspond to the lowest system
decompositionability. The temporal maximum of the CRc and CRm appears around 105th day,
followed by the decrease after the 1st round (112th day).

This dynamics is consistent to the analysis of Cc and Cm, since as the interaction between R and
S increases, the relative strength of other interactions under regularization with I decreases, which
results in lower value of CRc and CRm. The relative decompositionability between the decompositions
in the shortest path of the CRm is depicted in the bottom figure in Figs. 12.12, corresponding to
the dynamics ofCm.

The difference CRm − CRc remains almost constant during the 1st to 2nd round. This can be
interpreted as the setoff between the proportional decrease of the difference with respect to the CRc
value, and the increase originated from the compositional change of system decompositions.

The shortest decomposition path in Figs. 12.12 also implies the modularity of the topics in
discussion. As the first decomposition is always < 1114 > (black bar), the extreme-rightist L is
assumed to be the most marginal in semantic context. The second decomposition is dominantly
< 1214 > (magenta bar) but varies between < 1134 > (yellow bar) before the 1st round (112th
day) and < 1224 > (red bar) after the 2nd round (127th day). This means there was a period
when people considered as the most important comparison between R and B before the 1st round,
and between B and S after the 2nd round in a collective level.

The proposed measures all have different dynamics from the multi-information I, implying
different geometrical information of the system decompositionability. Actual data analysis would
be better performed with the use of such complementary complexity measures according to one’s
interest and necessity of modeling.

12.10 Further Consideration

We further derive some analytical sketch on the proposed complexity measures.

12.10.1 Preparation for Extreme Value Analysis

We consider the extreme value analysis of the regularized cuboid-bias complexity CRc on the pa-
rameter space defined by the KL divergence of system decompositions.
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Figure 12.11: Complexities dynamics during the french presidential in 2007. Top: Log
plot of Cc, C

R
c , Cm, CRm, and I in biweekly scale. Middle and Bottom: Linear plot of Cc, C

R
c , Cm,

CRm in biweekly scale. Note that the linear scale of vertical axes is different between the middle
and bottom figures.
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Figure 12.12: Dynamics of modular complexities during the french presidential in 2007.
Top: Temporal dynamics of the modular complexity Cm in biweekly scale. Bottom: Temporal
dynamics of the regularized modular complexity CRm in biweekly scale.

For preparation, we recall that each system decomposition is defined with the modification of
the different set of p parameters defined as follows:

p =
{
p(x1, x2, · · · , xn)∣∣∣∣∣∣x1, x2, · · · , xn ∈ {0, 1},

∑
x1,x2,··· ,xn∈{0,1}

p(x1, x2, · · · , xn) = 1

 . (12.55)

Since the number of different system decompositions m is less than the number of p parameters
having

∑n
k=1 nCk degrees of freedom with respect to the system size n ≥ 3, the following renormal-

ized KL divergences of the system decompositions form another coordinates as dimension reduction
projection:

DSD =

{
D[< 11 · · · 1 >: SDi(is)]

D[< 11 · · · 1 >:< 12 · · ·n >]

∣∣∣∣ 1 ≤ i ≤ n− 1, 1 ≤ is ≤ |Seq|
}
. (12.56)

These coordinates are incomplete to specify a distribution in case n = 3, 4, but is sufficient to
determine the values of complexities Cc, C

R
c , Cm, CRm, and I. As for n ≥ 5, the number of system

decompositions m becomes larger than the model dimension. For simplicity to discuss the property
of proposed complexity measures with respect to the system decompositionability, we denote these
coordinates with KL divergences as DSD = {DSDj |1 ≤ j ≤ m} and investigate their independency.

We consider the general case where there exist 3 different systems namely i, j, k, and its
decompositions SDi, SDj and SDk, as represented in the top left figure of Fig. 12.13. We consider
the system decompositions as the sum of edge information EI compatible to Pythagorean relation,
as defined in the “Further Consideration: Pythagorean Relations in System Decomposition and
Edge Cutting” section of previous “Network Decomposition” chapter:

DSDi = EI1ij + EI2ik, (12.57)

DSDj = EI1ji + EI2jk, (12.58)

DSDk = EI1ki + EI2kj), (12.59)
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where for example, EI lij is the l-th term of edge information in the Pythagorean relation cutting
the links between subsystems i and j. For the convenience of analysis, we symmetrize the edge
information as follows, for all combinations of subscripts i, j, and k.

EI =
EI1 + EI2

2
. (12.60)

Then we have the following integrated relations between system decompositions and symmetrized
edge informations:

DSDi = EIij + EIik, (12.61)

DSDj = EIji + EIjk, (12.62)

DSDk = EIki + EIkj . (12.63)

Note the symmetrized edge information is not symmetric with respect to the order of subscript,
such as EIij 6= EIji.

For later analysis, we also define the total edge information EIkk, necessary to cut arbitrary
set of edges inside of the subsystem k as an additional part of the system decomposition SDk:

DSDk = EIki + EIkj + EIkk. (12.64)

Since the transformation between p parameters and DSD coordinates are complex, the inde-
pendency inside of DSD need to be investigated. The following describes the outline of analysis
for the general case of n ≥ 3, which is schematized in the top left figure of Fig. 12.13.

1. From the symmetry of system, it is sufficient to show in case we fix the edge information
inside of subsystems i, j to focus on the relation between the system decompositionability
DSDi and DSDj , while SDk representing other arbitrary variable system decompositions.

2. In case we only have edge information between subsystems i and j, meaning DSDi = DSDj >
0 and EIik = EIki = EIjk = EIkj = EIkk = 0, naturally the constraint is DSDi = DSDj .
The two coordinates DSDi and DSDj are completely dependent.

3. Otherwise, DSDk > 0 holds in the definition (12.64). In this case, there exists independent
region between DSDi and DSDj , under the constraint of DSDj = DSDi − (DSDk −EIkk) and
DSDi = DSDj − (DSDk − EIkk) as border lines. It is because we can change the value of
DSDi and DSDj by distributing the edge information DSDk −EIkk differently between EIki
and EIkj , maintaining the total value DSDk . The amount of DSDk −EIkk therefore defines
the limit of independency between DSDi and DSDj .

4. Another border line exists as DSDi + DSDj = DSDk − EIkk since this coincides with the
case EIij = EIji = 0. Since EIij , EIji ≥ 0, the relation DSDi +DSDj ≥ DSDk −EIkk gives
another condition of independent region of DSDi and DSDj .

5. As for changing the edge information inside of the subsystems i or j, it suffices to change
their definition so that to treat these edges with EIkk.

The independent region between two arbitrary system decompositionability DSDi and DSDj

are depicted as white region in the top right figure of Fig. 12.13. The gray region is not realizable
depending on the rest of the edge information DSDk − EIkk.

12.10.2 Extreme Value Analysis

We now consider the extreme value analysis of the regularized cuboid-bias complexity CRc in the
independent region of DSD coordinates. The extreme values of a function is usually defined as
points where all partial derivatives are 0. However, such point does not necessary have geometric
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meaning other than global maximum in cuboid-bias complexities. Instead, we consider the points
where at least one partial derivative is 0, namely “partial extreme values”.

The partial extreme values assure the existence of decomposition paths giving the maximum
value of its cuboid volume in circular diagram. This also means that the corresponding sequences
in Seq are the most difficult paths, impossible to find easier decomposition. If we count the
number of decomposition sequences giving maximum regularized cuboid volume ( 1

n−1 )n−1 with
smax (0 ≤ smax ≤ |Seq|), there exists the following hierarchical relation between the regularized
cuboid-bias complexity CRc (smax) conditioned with smax value:

CRc (0) < CRc (1) < · · · < CRc (smax) < · · · < CRc (|Seq|). (12.65)

And the corresponding sets on the DSD coordinates also follow geometrical hierarchy, as depicted
in the bottom figure of Fig. 12.13. The hierarchy corresponds to add the following constraints on
the parameter space DSD, according to the value of smax.

DSDi =
1

n− 1
, (12.66)

where

i ∈ U ⊂ {1, 2, · · · ,m}, |U | = smax. (12.67)

The corresponding sets in DSD space of each CRc (smax) give partial extreme values with respect
to the DSDi axis. This fact can also be verified with the use of variational method considering
the perturbation expansion on DSD. In any case, the proof is reduced to simple isoperimetric
inequality of n− 1-dimensional cuboid.

We can also consider the decomposition of CRc with respect to the value of smax. Beginning
from the CRc value of interest, for example calculation result from a data set, we consider the path
toward the maximum value of CRc = CRc (|Seq|), following the geometrical structure induced by
partial extreme values. If the data set belongs to the CRc (sdata) region with concrete value of sdata,
it is possible to consider the following shortest path to CRc (|Seq|) by changing only one element of
DSD in each step:

CRc (sdata)→ CRc (sdata + 1)→ · · · → CRc (|Seq|). (12.68)

For example, the decomposition path CRc (0)→ CRc (1)→ CRc (2) is depicted with dashed line in
the bottom figure of Fig. 12.13. Note that we can not necessary choose one element to follow this
decomposition, since the independence inside of DSD is not complete. In such case, we can still
find the shortest path skipping the impossible projection. The example to avoid CRc (1) and take
CRc (0)→ CRc (2) is depicted with dotted line.

The decomposition path (12.68) contains system decomposition-wise information of CRc (sdata)
with respect to CRc (|Seq|), and the difference along this hierarchy quantify the contribution of each
element in DSD to CRc .

The partial extreme values are also interesting whether it appears in actual data analysis. The
augmentation of CRc is mutually observed in social network analysis as well as the autonomous
learning process of CNN in Part 2, though the augmentation route in DSD space remains to be
revealed. This leads us to hypothesize the utility of partial extreme values as a kind of potential
function underlying the dynamics in complex systems, questioning whether the augmentation of
CRc follows subsystem-wise, hierarchically and temporally ordered maximization, or rather homo-
geneous and simultaneous increase. In earlier case, partial extreme values play important role for
the characterization of the dynamics.

Figs. 12.14 show the actual dynamics of the political weblog data on DSD coordinates. There
exist certain phases that system decompositionability approaches toward an edge of maximum
cuboid volume 1

n−1 , uncorrelated to others. These dynamics support the notion of partial extreme
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values as peaks of potential function, and explain the increase of complexity as a geodesic flow with
respect to the closest partial extreme values CRc (1). Positive correlation between two elements of
DSD means the potential of geodesic flow has its peak in CRc (2) instead of CRc (1). Further higher-
order correlations can find appropriate potential peaks in the hierarchical structure of CRc (smax)
in the same manner. Strong negative correlation was also observed between DSD, meaning the
subsystem-wise transition of complexity is occurring (last figure of Figs. 12.14, during the 1st and
the 2nd round (112th-127th day) of presidential ).

12.10.3 Relation to Algebraic Geometry

Since the landscape on DSD is important to characterize the property of CRc , it is useful to consider
the geometrical structure of the isometric surface with CRc = const . condition. For that purpose,
analysis with algebraic geometry can be considered as a prominent tool. Algebraic geometry
investigate the geometrical property of polynomial equations. The regularized-bias complexity CRc
on DSD space is simply the polynomial function, therefore directly accessible to algebraic geometry.

However, if we want to investigate the isometric surface of CRc on the p parameter space,
the definition of KL divergence inevitably include logarithmic function, which is a transcendental
function and outreach the analytical requirement of algebraic geometry.

To introduce compatibility between the p parameter space of information geometry and alge-
braic geometry, it suffices to expand the model by replacing the logarithmic functions as another
variables such as q = log p, and reconsider the intersection between the result from algebraic
geometry and q = log p function.

The isometric surface of CRc is also important to test the utility of this measure as a potential
of the dynamics.

12.10.4 Complexity of the Systems with Continuous Phase Space

We have developed the concept of system decompositionability based on discrete binary variables.
One can also apply the same principle to continuous variable.

For an ergodic map G : X → X in continuous space X, KS entropy h(µ,G) is defined as the
maximum of entropy rate with respect to all possible system decomposition A, when the invariant
measure µ exists:

h(µ,G) = sup
A
h(µ,G,A). (12.69)

Where A is the disjoint decomposition of X that consists of non-trivial sets ai, whose total number
is n(A), defined as

X =

n(A)⋃
i=1

ai, (12.70)

ai ∩ aj = φ, i 6= j, 1 ≤ i, j ≤ n(A), (12.71)

meaning the natural expansion of system decomposition into continuous space.
The entropy rate h(µ,G,A) in (12.69) is defined as

h(µ,G,A) = lim
n→∞

1

n
H(µ,A ∨G−1(A) ∨ · · · ∨G−n+1(A)), (12.72)

according to the entropy H(µ,A) based on the decomposition A = {ai}

H(µ,A) = −
n(A)∑
i=1

µ(ai) lnµ(ai), (12.73)
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Figure 12.13: Graphical explanation related to the extreme value analysis. Top Left: Def-
inition of system decompositions SDi, SDj , and SDk to decompose subsystems i, j, k, and related
edge information. Top Right: Independent region of the DSD coordinates. Bottom: Geometri-
cal hierarchy in DSD space corresponding to the hierarchy of regularized cuboid-bias complexity
CRc (smax). The coordinates belonging to CRc (1) are depicted with blue lines, while that of CRc (2)
is plotted with red point. Only DSDi - DSDj plane is shown.
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Figure 12.14: Examples of uncorrelated and correlated dynamics of political weblog
data on DSD coordinates in biweekly scale. The surface color of the circles represents the
time axis during the presidential. The blue lines correspond to the partial extreme values CRc (1),
while the red asterisk is CRc (2). Both uncorrelated and correlated dynamics can be approximatively
explained as a geodesic flow on DSD toward CRc (1) and CRc (2), respectively. The last figure shows
an example of negative correlation representing the transition of complexity from one subsystem
to another, during the 1st and the 2nd round (112th-127th day) of presidential.
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and the product C = A ∨B as

C = A ∨B
= {ci = aj ∩ bk|1 ≤ j ≤ n(A), 1 ≤ k ≤ n(B)}. (12.74)

In a more general case, topological entropy hT (G) is defined simply with the number of decom-
posed subsystem elements by preimages as follows, without requiring ergodicity, therefore neither
the existence of invariant measure µ:

hT (G) = sup
A

lim
n→∞

1

n
lnn(A ∨G−1(A) ∨ · · · ∨G−n+1(A)). (12.75)

Topological entropy take the maximum value of the possible preimages division, so that to
measure the complexity in terms of the mixing degree of the orbits. For example, if the KS entropy
is positive as h(µ,G) > 0, the dynamics of G on an invariant set of invariant measure µ is chaotic
for almost everywhere initial conditions. As for the positive topological entropy hT (G) > 0, the
dynamics of G contain chaotic orbits, but not necessary as attractive chaotic invariant set, since
hT (G) ≥ h(µ,G) and the KS entropy can be negative.

Although these definitions are useful to characterize the existence of chaotic dynamics, the
system decompositionability is another property representing different aspect complexity of the
system. It is rather the matter of the existence of independent dynamics components, or the
degree of orbit localization between arbitrary system decompositions. We propose the following
“geometric topological entropy” hg(G) applying the same principle of taking geometric product
between all hierarchical structure of the system decomposition A.

hg(G) =
∏

σ(A)>0

lim
n→∞

1

n
lnn(A ∨G−1(A) ∨ · · · ∨G−n+1(A)), (12.76)

where σ(A) > 0 means to take all components of A having positive Lebesgue measure on X.
This gives 0 if the preimage of certain ai ∈ A is ai itself, meaning there exist a subsystem

ai whose range is invariant under G, closed by itself. The system X can be completely divided
into ai and the rest. This correspond to the existence of an independent subsystem in cuboid-bias
and modular complexities. In case such independent components do not exist, it still reflects the
degree of orbit localization for all possible system decompositions in multiplicative manner. The
condition σ(A) > 0 is to avoid trivial case such as the existence of unstable limit cycle, whose
Lebesgue measure is 0.

Typical example giving hg(G) = 0 is the function having independent ergodic components, such
as the Chirikov-Taylor map with appropriate parameter [94].

12.11 Conclusion

We reconsidered the problem of how to define complexity measures in terms of the construction
of non-linear feature space. We defined new type of complexity based on the geometrical product
of KL divergence representing system decompositionability. Analysis of social network data is
demonstrated. Different complexity measures as well as newly proposed ones are compared on a
complementarity basis on statistical manifold. Further consideration implied a rich connection to
other theoretical fields.
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Chapter 13

Project Description

Abstract

The context of works in the following chapters of this part is introduced. The works
were realized in two european projects, Embryomics and BioEMERGENCES. The aims
and scope of these projects are summarized, with the global strategy that defines the
standpoint of the works in the following chapters.

Keywords: Embryogenesis, Zebrafish, Phenomenological reconstruction, Theoret-
ical reconstruction

13.1 Introduction: Context of work

The following chapters in this part was realized in two european projects, Embryomics (NEST
012916) [95] and BioEMERGENCES (NEST 028892) [96]. The members of the projects consist
mainly of experimental biologists, engineers and various scientists including applied mathemati-
cians, physicists, and computer scientists. The projects were mostly devoted to experimental
measurement of animal embryos and spatio-temporal reconstruction of their morphogenesis with
cell lineage tree, which will be explained in the next section.

As a free theorist, I was fully enjoying the discussion on theoretical aspects concerning scientific
evaluation of obtained data, during several week-long workshops in each participating laboratory.
Since the scientific evaluation with a dynamical system perspective on morphogenesis presuppose
the reconstructed 4-D morphogenetic dynamics and lineage tree, my work does not directly con-
tribute to the primal reconstruction process of cell lineage from the raw image data, but rather
seek for the possible theoretical formalization that would bring scientific impact using the derived
whole-embryo simulator.

In this chapter, we briefly summarize the aim and strategy of these projects to contextualize
the work of the following chapters.

13.2 Project Description of Embryomics and BioEMERGENCES
Projects

13.2.1 Aims and Scope

In Embryomics and BioEMERGENCES projects, we aim at providing an experimental platform to
observe in vivo emergent patterns at various scales and measure their variability between different
individuals of the same species. This is a strategy towards the measurement of the individual
susceptibility to genetic diseases or response to treatments. Emergent patterns arising at all levels
of living organisms are influenced both by the external environment (top-down) and by the internal
environment (bottom-up). As a consequence, two living beings are different even if they are two
clones of the same species because the history of their coupling with their external environment
is different. For these reasons, medicine evolves towards personalized protocols. To make them
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tangible, we have to be able to achieve the measurement at all organization levels of the individual
response to genetic defects or xenobiotics.

The emergence of personalized medicine is a good indicator that the perception and interpre-
tation of the individual variation has changed. Physicians dealing with so-called “genetic diseases”
are left with the responsibility to anticipate whether a patient with an identified genetic defect is
going to develop or not the corresponding disease. Giving an answer is a matter of measuring the
impossible.

The impossible measurement of individual differences has to be tackled in an animal model
suitable for high throughput in vivo investigations. The zebrafish Danio rerio gathers a number
of interesting features including the accessibility of its embryo and the transparency of its tissues
making it suitable for in vivo investigations at different scales, varying from genetic, molecular,
cellular, tissularÉ to whole individual. In addition, the zebrafish has been largely validated as a
powerful model for investigations related to human, and will soon become a major model organism
for pre-clinical drug testing by pharmaceutical industries. This non-mammalian vertebrate animal
model will allow us to tackle the measurement of the individual susceptibility to genetic diseases
or individual response to treatments.

The Embryomics project is a first step towards an integrated understanding of biological pro-
cesses. The Embryomics project is devoted to the morphodynamical “reconstruction” of the cell
lineage tree underlying the processes of animal embryogenesis and provides a set of strategies,
methods and algorithms to “sequence” the cell lineage tree as a branching process deployed in
space and time. This is being investigated in the scale of a single individual of several species
including zebrafish.

The BioEmergences project has a different much more general scope as it will i) address the
general problem of reconstructing various types of morphodynamical patterns for a large number
of individuals, and ii) cope with the very difficult problem of the individual variation, its various
manifestations and the question of how to measure it. The experimental platform is also applied
to a class of mutant embryos (genetic model for holoprosencephaly).

As a part of the BioEMERGENCES project, the individual response of the mutant embryos
to treatments will be investigated by testing the Dbait molecules.The Dbait molecules were very
recently designed as intelligent anti-cancer drugs to especially target tumors that are resistant to
classical therapies. The Dbait molecules, designed to delude cancer cells, are nucleic acid derivatives
thought to prevent the replication of DNA and interfere with the DNA repair process. Indeed
Dbait molecules seem to have no toxic effects by themselves but kill cancer cells in conjunction
with a DNA breaking agent (ionized radiation or chemical agent). Consequently, cells treated with
a “Dbaits combinational therapy” should stop proliferating and undergo apoptosis or cell death
rapidly and at a high rate. This should also happen even for cells resistant to classical cytotoxic
agents. This project will contribute to the extensive studies actually performed to evaluate the
therapeutic potential of the Dbait molecules and improve their design.

The main result expected from BioEMERGENCES is the specification of a European platform
to achieve high throughput measurement of individual differences and screening of drugs combi-
nations such as bi or tri-therapies. Such a platform will allow responding to both the unavoidable
scientific question of the construction of a synthetic description of individuals and the future re-
quirement for new drugs in the field of personalized nano-medicine.

13.2.2 Measurement and Reconstruction Methodology

For these purposes, the 4-D image data sets were obtained by in vivo time lapse optical sectioning
of single cells, group of cells, morphogenetic fields and possibly whole organisms, to allow the qual-
itative and quantitative measurement of individual differences. 4-D in vivo imaging are produced
by using the most recently developed imaging techniques including high-speed confocal laser scan-
ning microscopy (CLSM), multiphoton laser microscopy (MLSM) and selective plane illumination
microscopy (SPIM).

Embryo labeling was obtained through RNA injection performed at the one-cell stage to obtain
ubiquitous expression of H2B/mcherry fusion protein and farnesylated eGFP, which stained nuclei
and membranes respectively [97] [98]. While nuclear staining was instrumental to perform cell
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tracking, membrane staining was essential to assess cell morphology, behavior and neighborhood,
and to reveal morphological landmarks.

Our whole computational image-processing framework in Embryomics project was inspired
from theoretical knowledge about mammalian vision. For each low-level image-processing task
we designed specific non-linear partial differential equations (PDEs) that present the remarkable
adaptive properties of the mammalian visual system and able to deal with increasing difficulty
found at later developmental stages.

Image filtering was achieved with the so-called geometric mean curvature (GMC) flow in the
level set formulation, belonging to the geometrical nonlinear partial differential equations family,
that appeared to have the best performances in processing MLSM images [99]. The GMC contrast
invariant flows performed non-linear multiscale analysis on scalar intensity functions in grey level
scale. Filtered images were used in the subsequent algorithmic steps.

Nuclei centre detection was performed using the PDEs based nonlinear multiscale strategy
called flux-based level set centre detection (FBLSCD). All visible objects in the image can be seen
as humps of relatively higher image intensity. The multiscale FBLSCD method makes the hump
decreasing until a stopping condition adapted to the rest of the algorithm chain.

Cell nuclei and cell membrane segmentation used the approximate cell centers from the above
step as the gaze from which a point of view surface was constructed. The evolution of the point
of view surface with respect to a metric induced by the image tended to a minimal surface in
a Riemannian manifold representing the segmentation of the nucleus or membrane shape. This
subjective surface technique (SST) was used for its ability to fill missing information in the image
[100][101][102][103][104]. SST numerical implementation was based on co-volume methods [105].
Nuclei segmentation was then used to correct nuclei double centers that remained from the nuclei
centers detection step. Finally, membranes segmentation was used to detect mitosis and this
information was implemented into the tracking algorithm. The cell number in the imaged volume
increased from 3291 at t=0 (sphere stage) to 11 176 at t=540 (8-somite stage) where as a rough
estimate we observed about 1/3 of the embryo total cell number. The cell density obtained from
the segmentation of the imaged global cell volume and plotted as a function of time provided an
estimate of the average proliferation rate. As expected, the average cell density stabilized by the
end of gastrulation and early somitogenesis (time steps 300 to 360).

Cell tracking in the 4D space of the segmented data was not properly achieved by classical
methods using a nearest neighbor principle. Although we kept the temporal resolution as high
as possible (4t is 67 seconds in the image data set 070418a), cell displacement at the time of
cell division was a major problem that the tracking algorithm had to solve. The spatio-temporal
lineage tree reconstruction was best achieved with a tracking algorithm from the EM (Estimation-
Maximization) procedure family [106]. Starting with a first spatiotemporal lineage tree mainly
based on “a minimal deformation/ nearest neighbor principle” [107], the E-step provided the prob-
ability distribution of the cell dynamics in its features space and the M-step calculated the next
spatiotemporal lineage with maximum likelihood. The iterative EM procedure corrected false neg-
ative and false positive from the nuclei centers detection step. More generally, the EM procedure
is able to learn from observed errors and by iterating the two EM steps, the maximum likelihood
of the lineage tree is guaranteed to be increasing and thus convergent.

The outcome of the tracking procedure was assessed by using the Embryomics visualization
interface and following the path of individual cells. The visualization interface allows going back and
forth between the 4D rendering and the annotated flat representation of the tree. The Embryomics
algorithmic chain provided for each cell at each time step its identification number, 4D coordinates,
nucleus and membrane shape, and the time of previous and next division along the tree. A number
of features characteristics for cell dynamics might then be derived from theses parameters. The
tracking error rate was measured with the sampling on the interface. More than 15 000 links
between the t and t+1 positions of cells have been checked. For the first 300 time steps (5h34
imaging, end of gastrulation), the total error rate is lower than 2% meaning that more than 98% of
the cells were correctly tracked. Tracking accuracy degraded beyond time step 400 (7h26 imaging,
3 somite stage) and by time step 500 (9h18 minutes imaging, 7 somite stage), 90% of the links were
correctly found. Nuclei centers detection was not a major source of tracking errors as false positive
detection was kept lower than 0,5%. About half of the tracking errors were identified has false
tracks (the tracking jumped from one cell trajectory at time t to another cell trajectory at time
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t+1) and the other half was false deaths (the tracking did not find the position of the cell at time
t+1 and cell trajectory ends as for a dead cell). All the information provided by error checking and
categorization might be used to improve the performances of the EM tracking procedure in further
cycles. Thus the reconstruction accuracy is expected to improve from users annotation through
the Embryomics visualization interface.

The computational resource for massive calculation is deployed from CC-IN2P3 (Centre de
Calcul de l′Institut National de Physique Nucléaire et de Physique des Particules).

13.3 Standpoint of the Work

Besides the concrete strategy of in vivo embryo measuring experiment and 4-D reconstruction, the
project has been animated by a larger conceptual framework of P. Bourgine. His global strategy
toward the understanding of embryogenesis with complex systems perspective is depicted in Fig.
13.1.

The 4-D image data obtained from in vivo measurement is called “raw data”, and need further
image processing such as detection of each cell, segmentation of cell membrane, nuclei, and other
biological features. The acquisition of raw data and its phenomenological reconstruction is a major
derivative of Embryomics project, as well as in BioEMERGENCES with drug treatment. The
reconstructed simulator of the measured embryogenesis allows us to experience the “augmented
phenomenology”, where one can interactively investigate morphogenetic process in multiscale 4-D
dynamics with controllable viewpoint.

The phenomenological reconstruction has a high potential as an empirical database as well as
an educational interface. However, it is not sufficient for scientific understanding of embryogenesis
and to simulate drug response within: it lacks in the mechanism of the morphogenetic process.
To elucidate the underlying mechanism of embryogenesis, we further need a “theoretical recon-
struction”, which is basically an inverse problem from the recorded data, with the aid of necessary
hypotheses, theoretical methods, and tools.

The work presented in the following chapters correspond to this stage. The theoretical re-
construction requires the detection of effective physical and chemical laws driving morphogenetic
process, to find plausible applications of mechanical models that are consistent to the phenomenol-
ogy. For this purpose, the analysis with statistical models in view of reconstruction of underlying
dynamical systems is an important issue.

The projects have so far not attained the complete phenomenological reconstruction of a whole
embryo, nor the candidate model of theoretical reconstruction. Still, it is important to propose
possible observables on the partial simulators to assume global strategy of theoretical reconstruc-
tion. The phenomenological reconstruction should be compatible to the scientific interests, where
one is required to abstract biological indices necessary for theoretical reconstruction.

Theoretical reconstruction derives simulations, which are expected to reproduce the multi-scale
dynamics of embryogenesis in a way compatible to phenomenological model. The plausibility of
the theoretical reconstruction is then tested by experimental validation. The future model that
would satisfy this validation is expected to bring us the “augmented virtuality” of embryogenesis,
where one can not only understand the micro-scale mechanism of the dynamics but can simulate
the generative process of the multi-scale cell coordination as a vivid sequence in living organism.
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Figure 13.1: Reconstruction strategy of embryogenesis by Paul Bourgine. The works
of the following chapters are situated at the arrow from “phenomenological reconstruction” to
“theoretical reconstruction”.
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Chapter 14

Toward a Dynamical Definition of
Tissue: Detection of Significant Correlation in

Cell Movement

Abstract

We define the concept of “dynamical tissue” using the dynamical parameters of cel-
lular resolution obtained from Embryomics and BioEMERGENCES projects, in con-
trast to traditional, anatomical and morphology-based definition of “static tissue”. We
construct a theory of statistical testing using information geometry to detect the signifi-
cant correlation in cell movement vectors and its non-uniformity. Tentative results with
zebrafish embryo data is shown, with the possible interpretation of deterministic con-
straint which defines the way of cell migration coordination and provides information
to further theoretical reconstruction. Theoretical development for the measurement of
the chronical sustainability of the proposed dynamical tissue is also investigated.

Keywords: Static tissue, Dynamical tissue, Cell movement, Statistical testing

Methodology: Definition of dynamical tissue with information geometry based on
experimental data as dynamical systems → Analysis of experimental data → Further
theoretical consideration on temporal duration of dynamical tissue with dynamical
system perspective

14.1 Introduction

Bioimaging space-time resolution in Embryomics and BioEMERGENCES projects has a possibility
to change the paradigm of the measurement in biology, and would lead to an empirical dynamical
description of developmental process. One of remarkable things is the measurement of dynamical
parameters such as cell movement vector field. To classify the types of cells, traditional biology has
always been depended on morphological parameters such as cell form, cell size, gene expression,
etc. These parameters can be regarded as the “static” parameters since they do not consider the
“dynamical” ones arising directly from physio-chemical interactions between cells.

The dynamical parameters are closely related to the mechanical laws working among cells,
and are part of important epigenetic factors. Although the mechanical constraint apparently has
a substantial effect on tissue formation in developmental process, little is known on the hidden
loop between mechanics and genetics. For example, the lineage tree of cell differentiation is not
completely deterministic in vertebrates, and tolerate certain spatial shuffling of cells. This implies
the existence of the coupling between the genetic expression and mechanical factors.

To tackle to the mechanical side of the morphogenesis, we raise the following questions:

1. What is the coordination of cell movement in developmental process ?
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2. What kind of movement can we call “it is significant” ?

For that purpose, we introduce a measure of statistical testing so that to give a quantitative
characterization of normal development in zebrafish embryogenesis. Besides, we establish a new
concept of tissue, namely “dynamical tissue”, based on the dynamical parameters such as vec-
tor fields of cell movement. This is the mechanical counterpart of the classical, anatomy-based
definition of tissue, which we call as “static tissue”.

14.2 Detection of Significant Correlation in Cell Movement

We develop a testing theory with the application of the information geometry so that to detect
significant correlation and non-uniformity of cell movement.

14.2.1 Model Description

We established a statistical model of cell movement compatible to statistical testing. Since the
inter-cellular mechanical interaction such as osmotic pressure is assumed to be much stronger
than external field such as gravity, we need to set a model from inside of the cell movement
dynamics without global reference. For that purpose, we formalize the cell movement with an
internal measurement perspective. We consider the detection of correlation between neighboring
cells movement with respect to the marginal distribution of the movement.

Let us consider the neighboring Nc cells with their movement vector field. Fig. 14.1 schemati-
cally shows the definition of the model. We consider to compare each pair of cells in the neighbor,
by defining a cell as “cell 1” and the other cell as “cell 2”. This means to take all NcP2 permu-
tation pairs as sample data of the model. We set a radius threshold r of vector field norm of cell
movement, which will be defined in later section so that to maximize correlated component. If the
movement vector norm of a cell is less than r, the movement vector is symbolized with the direction
d0, meaning noise. If the movement vector norm of the cell 1 is larger than r, we symbolize it with
the direction d1. As for the cell 2, if the movement vector norm is larger than r and the difference
of the deflection angle between cell 1 and cell 2 with respect to the polar coordinates is less than
the angle threshold φ = π/4, the cell 2 data is symbolized with d1. We call the area within the
cone with center angle 2φ around the cell 1’s movement direction as “syn cone”, with which we
define the synchronization of 2 cells’ movement direction.

Then the NcP2 sets of data can be expressed as a joint distribution p(x1, x2) which is a statistical
model with discrete variables taking {d0, d1} for cell 1, and {d0, d1, d2} for cell 2:

log p(x1, x2) = log
pd1d0
pd0d0

δd1x1
δd0x2

(14.1)

+
∑

u2∈{d1,d2}

log
pd0u2

pd0d0
δd0x1

δu2
x2

(14.2)

+
∑

u2∈{d1,d2}

log
pd1u2pd0d0
pd1d0pd0u2

δd1x1
δu2
x2

(14.3)

−(− log pd0d0). (14.4)

Where x1 and x2 represent the symbolized vector data, and the parameters pu1u2
(u1 ∈ {d0, d1}, u2 ∈

{d0, d1, d2}) are the occurrence probability of the symbolized direction pair u1 and u2 for cell 1
and cell 2, respectively.

The following η and θ parameters with corresponding potentials Ψ and Φ form the dual-flat
coordinates of information geometry with respect to the Fisher information matrix:
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η01 = pd0d1 + pd1d1 , (14.5)

η02 = pd0d2 + pd1d2 , (14.6)

η10 = pd1d0 + pd1d1 + pd1d2 , (14.7)

η11 = pd1d1 , (14.8)

η12 = pd1d2 , (14.9)

Ψ = − log pd0d0 , (14.10)

and

θ01 = log
pd0d1
pd0d0

, (14.11)

θ02 = log
pd0d2
pd0d0

, (14.12)

θ10 = log
pd1d0
pd0d0

, (14.13)

θ11 = log
pd1d1pd0d0
pd1d0pd0d1

, (14.14)

θ12 = log
pd1d2pd0d0
pd1d0pd0d2

, (14.15)

Φ = θ01η01 + θ10η10 + θ11η11 + θ12η12 −Ψ. (14.16)

Figure 14.1: Model definition. Each pair of cell movement vectors is symbolized with discrete
variables d0, d1, d2 with respect to the radius threshold r and syn cone center angle 2φ = π

2 .

14.2.2 Statistical Testing

Based on the model p(x1, x2), we develop a statistical testing theory with the use of information
geometry to detect the following dynamics in cell movement:

• Correlation in the same direction with respect to the syn cone definition.

• Non-uniformity of cell movement deflection angle with respect to the polar coordinates.
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For that purpose, we formalize the following null hypotheses on the statistical manifold S of
p(x1, x2):

• Null Hypothesis 1: The cells moves independently following its marginal distribution η10.

• Null Hypothesis 0: The distribution of cell movement deflection angle follows uniform distri-
bution with respect to the polar coordinates.

Fig. 14.2 shows the geometrical relation between these null hypotheses. We first calculate the
coordinates ηq of the following uniform distribution q(x1, x2) from data distribution p(x1, x2):

ηq01 = (η01 + η02)SR, (14.17)

ηq02 = (η01 + η02)(1− SR), (14.18)

ηq10 = η10, (14.19)

ηq11 = η11, (14.20)

ηq12 = η12. (14.21)

Where SR is the surface ratio of the syn cone on the unit sphere. The solid angle (steradian, [sr])

of the cone with center angle 2φ (radian) in the unit sphere is calculated as 2π
(

1− cos
(

2φ
2

))
,

and is equivalent to the sphere surface isolated by the cone. Since the solid angle of an unit sphere
(center angle 2π) is 2π

(
1− cos

(
2π
2

))
= 4π which coincides with the total surface, the SR can be

calculated as the ratio of solid angles between the syn cone and total sphere as follows:

SR =
Syn cone solid angle [sr]

Unit sphere solid angle [sr]

= 2π

(
1− cos

(
2φ

2

))
· 1

4π

= 0.1464. (14.22)

We then suppose the independence between cells in q(x1, x2), and represents the joint distri-
bution with q′(x1, x2) which corresponds to the independent uniform distribution with the same
marginal distribution η10 as data p(x1, x2). The coordinates ηq

′
of the distribution q′(x1, x2) be-

come as follows:

ηq
′

01 = (η01 + η02)SR, (14.23)

ηq
′

02 = (η01 + η02)(1− SR), (14.24)

ηq
′

10 = η10, (14.25)

ηq
′

11 = η10(η01 + η02)SR, (14.26)

ηq
′

12 = η10(η01 + η02)(1− SR). (14.27)

To decompose orthogonally the effect of correlation from the non-uniformity of cell deflection
angle, we consider the other dual coordinates θ′ = (θ′01, θ

′
02, θ

′
10, θ

′
11, θ

′
12) of ηq

′
in the same way as

the definition (14.5)-(14.16). The independent uniform distribution q′(x1, x2) is then expressed as
follows with the mixture coordinates ζq

′
:

ζq
′

= (ζq
′

01, ζ
q′

02, ζ
q′

10, ζ
q′

11, ζ
q′

12), (14.28)

ζq
′

01 = ηq
′

01, (14.29)

ζq
′

02 = ηq
′

02, (14.30)

ζq
′

10 = ηq
′

10, (14.31)

ζq
′

11 = θ′11, (14.32)

ζq
′

12 = θ′12. (14.33)
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The q′(x1, x2) on the mixture coordinates is the projection point of the null hypothesis 0.
The projection origin p′(x1, x2) of the null hypothesis 0 coincides with the projection point of
null hypothesis 1 from data distribution p(x1, x2), which is defined as follows with the mixture
coordinates ζp

′
:

ζp
′

= (ζp
′

01, ζ
p′

02, ζ
p′

10, ζ
p′

11, ζ
p′

12), (14.34)

ζp
′

01 = η01, (14.35)

ζp
′

02 = η02, (14.36)

ζp
′

10 = η10, (14.37)

ζp
′

11 = θ′11, (14.38)

ζp
′

12 = θ′12. (14.39)

The distribution p′(x1, x2) has the same marginal distribution as the data p(x1, x2) but do
not have correlation between each pair of cells. The distribution q′(x1, x2) does not have either
the non-uniformity of deflection angle, nor the correlation. The mixture coordinates separate
the marginal distributions and correlation components orthogonally with respect to the Fisher
information metric, which realizes independent testing of the 2 null hypotheses.

The KL divergence D[· : ·] between data P and projected null hypothesis Q of discrete distri-
bution is known to be compatible to chi-squared test. The chi-squared value is given by

2ND[P : Q] =
∑

logP
logP

logQ
∼ χ2(dimS − dimSn.h.) (14.40)

Where N is the sample number, dimS is the dimension of statistical manifold, and dimSn.h. is
that of submanifold defined by the null hypothesis.

Then the null hypotheses 1 and 0 can be tested with chi-squared test by calculating the following
values λ1 and λ0 from corresponding KL divergences:

λ1 = 2NcP2D[p(x1, x2) : p′(x1, x2)] ∼ χ2(2), (14.41)

λ0 = 2NcP2D[p′(x1, x2) : q′(x1, x2)] ∼ χ2(4). (14.42)

Where λ1 asymptotically follows the chi-squared test with degrees of freedom 2, while λ0 is that
of degrees of freedom 4.

The significant correlation of the null hypothesis 1 can further be judged whether it is positive
or negative correlation with the following positive/negative sign of s:

s = sgn(ηp
′

11 − η11). (14.43)

In case of the null hypothesis 0, the positive/negative signs become 2-dimensional and we do not
have a simple word to describe the non-uniformity in a binary way.

In our model, the radius threshold r for the symbolization of vector norm in each cell can be
optimized by maximizing the KL divergence of the null hypothesis 1 as follows:

r = argmax
rc

(D[p(x1, x2; rc) : p′(x1, x2; rc)]). (14.44)

Where p(x1, x2; rc) and p′(x1, x2; rc) is the model and its null hypothesis 1 with radius threshold
rc for the symbolization of d0. This mean that if the r value is too large, it risks to lose the
information of correlated components by judging them as noise (d0). While if the r value is too
small, the correlated components can be blurred by actual noise. This method automatically
detects the threshold which gives the finest distinction between noise and correlated components
under information maximization principle.

Schematic examples of the relation between the null hypotheses and the cell movement distri-
bution is depicted in Fig. 14.3. The null hypothesis 0 assumes the uniform distribution of cell
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deflection angle including noise with vector norm under threshold r. While the null hypothesis
1 measure the degree of correlation on generally non-uniform distribution of cell deflection angle.
Note that this does not depend on the uniform distribution assumption. The testing is valid on
any non-uniform distribution since the non-uniformity and correlated components are independent
parameters separated orthogonally with the use of mixture coordinates.

This theory is valid not only between 2 cells, but also between 2 different levels of organism,
such as a region of tissue and cells inside. For instance, the model can detect the correlation
between tissue deformation and mitosis axis in the same setting. As long as we compare the local
correlation and uniformity of vector fields, this theory is compatible to multi-scale analysis.

Figure 14.2: Information geometrical structure of statistical testing for null hypotheses
1 and 0. The submanifolds of the null hypotheses are defined by fixing corresponding η and θ
parameters in the mixture coordinates. The manifold of the statistical model is described as S,
while the submanifolds for the null hypotheses 1 and 0 are Sn.h.1 and Sn.h.0, respectively. The KL
divergence D[p : p′] measures the significance with respect to the null hypothesis 1 and quantifies
the correlated components in the syn cone. While D[p′ : q′] represents the significance with respect
to the null hypothesis 0 and expresses the non-uniformity of the cell deflection angle distribution
including noise.

14.2.3 Test Data

We test the chi-squared values λ1 and λ0 to adjust the 5% significance threshold parameters with
respect to the fluctuation arising from the small sample number Nc. The results are shown in Figs.
14.4. The random vector fields express less than 5 % significant cells with respect to both null
hypotheses 1 and 0 (Figs. 14.4 Left column Middle and Bottom). This is the case in Figs. 14.3
Top Left. The mixture of the non-uniform small norm vectors and uniform flow with long norm
shows dominant significance in both null hypotheses 1 and 0. This corresponds to the situation in
Figs. 14.3 Bottom Right.

Since the model is based on the information maximization principle to define the noise radius
threshold r, the results on the test data is directly compatible to other data with different quan-
titative variation of vector norm parameters. The algorithm automatically detects the scale of
noise and take the threshold with the highest sensitivity to the correlated components. This is
one of the benefits of the quantization of analog data taking a discrete distribution model, and is
a strong point when investigating biological systems which we do not explicitly know about the
spatio-temporal variation of noise.
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Figure 14.3: Schematic examples of significant data with respect to the combination of
null hypotheses 1 and 0. All cell movement vectors are superimposed with the same origin,
which is expressed as “cell” in each figure. Top Left: Both null hypothesis 1 and 0 can not
be rejected. The deflection angle distribution of cell movement is uniform, including the vectors
with norm over radius threshold r shown in red. Top Right: Null hypothesis 1 is rejected, while
null hypothesis 0 is not. The non-noise red vectors are significantly localized with respect to the
overall deflection angle including noise expressed with black dashed line vectors. Bottom Left: Null
hypothesis 1 can not be rejected, while null hypothesis 0 is rejected. Cell deflection angle shows
significant non-uniformity, though the non-noise red vectors are not localized with respect to the
non-uniformity. Bottom Right: Both null hypothesis 1 and 0 are rejected. The cell deflection
angle is non-uniform, and non-noise red vectors show further significant localization besides the
non-uniformity
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Figure 14.4: Results of statistical testing on sample artificial vector field data. Left
column figures: Random vector field. Right column figures: Random mixture of small norm
vectors with non-uniform distribution of deflection angle and large norm uniform flow. Top: Vector
field visualization. Middle: Significance of the null hypothesis 1. Cells having significant correlated
components with respect to the 10 neighboring cells are depicted with red (positive correlation) and
blue circles (negative correlation). Yellow circles are not significant cells. Bottom: Significance
of the null hypothesis 0. Cells following significant non-uniform distribution of cell movement
deflection angle with respect to the 10 neighboring cells are depicted with green. Yellow circle
represents cells which are not significant.
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14.3 Tentative Results

We applied the above testing theory to the tentative data of cell movement vector field derived
from the Embryomics project.

The vector field of cell movement was calculated according to the optical flow of image inten-
sity using Thirion’s demon algorithm [108] 1, and was averaged over 20 steps of tracking on the
reconstructed cell lineage tree. Since the time interval of the observation is about 67 seconds, the
vector field represents the average movement of cells during 22 minutes and 20 seconds.

The testing results are shown in Figs. 14.5 and 14.6 with respect to the null hypothesis 1 and
0, respectively.

The animal pole of zebrafish embryo shows certain global patterns of significant cells with
respect to both null hypotheses. Such localization of cell movement correlation is a candidate of
“dynamical tissue”, which is an important feature to reveal the mechanism of morphogenesis.

The correlation with respect to the null hypothesis 1 tends to show significance first which
is followed by the non-uniformity with respect to the null hypothesis 0. This means that the
local synchronization of cell movement occurs in a bottom-up manner, expanding from between
individual cells to larger population. This fits well to the superiority of inter-cellular mechanical
interaction than the effect of external or global field.

The characteristic band pattern traversing the animal pole during the time step 201-421 in
Figs. 14.5 and 14.6 represents the cell flow at the beginning of the gastrulation process.

Such dynamical constraint is a way to define the mechanical aspect of embryogenesis from a
dynamical system’s point of view. The detected deterministic property is essential to choose the
candidate model for further theoretical reconstruction.

The evaluation of the phenomenological model with the use of dynamical tissue concept is also
important in industrial application. The perturbation of the dynamical tissue with respect to the
external drug treatment is essential to evaluate its epigenetic effect in terms of the disturbance in
morphogenetic process.

14.4 Scarcity of Correlation Duration

We further consider the utility of the proposed statistical model on a theoretical basis. We consider
how consistent the dynamical correlation persists in the same cell lineage. The following theory is
inspired by the symbolic dynamics analysis of chaotic dynamical system.

The proposed dynamical tissue is based on a synchronic relation between dynamical parameters.
We can further extend this definition to the chronological consistency with the use of the cell lineage
tree. Suppose that the statistical significance of a cell which defines the existence of a dynamical
tissue with respect to the neighboring cells is symbolized with s(t) with a given time t. For
example, the null hypothesis 1 is judged within 3 symbols as s(t) ∈ {+,−, 0}, which corresponds
to the distinction of positive/negative/no significance, respectively.

We question the temporal duration of the dynamical tissue symbolized with this significance.
We measure how long the series of s(t) in a cell lineage follows the same symbol. For that purpose,
we set the null hypothesis 2 as follows:

• Null hypothesis 2: The sequence {s(t)}mt=1 of a given cell lineage is an independent stochastic
process whose appearance rate is that of the marginal distribution of 3 symbols {+,−, 0} in
the whole embryo cells at time t.

If we express the average appearance rate of the symbols s(t) ∈ {+,−, 0} in all cells of an
embryo at time t as Pt(+), Pt(−), and Pt(0), respectively, then the appearance rate AR of a
m-step sequence {s(t)}mt=1 under the null hypothesis 2 becomes as follows:

AR = P1(s(1)) · P2(s(2)) · · ·Pm(s(m)). (14.45)

This constitutes a term-wise component in trinomial theorem when considering the total AR sum∏m
t=1(Pt(+) + Pt(−) + Pt(0)) of all possible sequences.

1The instantaneous cell velocity was calculated by Benoit Lombardot in his Ph.D dissertation.
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Figure 14.5: Testing results for null hypothesis 1 on tentative vector fields data derived
from Embryomics project. Cells with significant positive correlation in movement vectors with
respect to the 10 neighboring cells are depicted with red circles, while not significant cells are shown
with yellow circles. No negative significant correlation was observed. Observations from the 1st
to 601st steps with 20 steps interval are aligned from top left to bottom right. Data id: 070418a.
Time interval 4t between each observation: 67 seconds. Animal pole of zebrafish (danio rerio).
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Figure 14.6: Testing results for null hypothesis 0 on tentative vector fields data derived
from Embryomics project. Cells with significant non-uniformity of movement vector deflection
angle are depicted with green circle, while not significant cells are shown with yellow circles.
Observations from the 1st to 601st steps with 20 steps interval are aligned from top left to bottom
right. The data are equivalent to Figs. 14.5.
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The number of different m-step sequences {s(1)s(2) · · · s(m)|s(t) ∈ {+,−, 0}} is 3m, which is
equivalent to the number of m-digit ternary number. The combination of the possible sequences
are depicted in Fig. 14.7 in relation to the trinomial theorem.

Since there exists 3m different sequences, the mean value E[AR] of the appearance rate AR of
a sequence is given by

E[AR] =
1

3m

m∏
t=1

(Pt(+) + Pt(−) + Pt(0)) =
1

3m
, (14.46)

since Pt(+) +Pt(−) +Pt(0) = 1 always holds for any t. Whatever the variation of {Pt(s(t))|s(t) ∈
{+,−, 0}} is, the E[AR] value only depends on the number of the symbols coding the type of
significance. While the appearance rate AR of each sequence depends on the value of Pt(s(t)) at
each t.

We consider how rare a given sequence is compared to the mean appearance rate E[AR], to
measure the scarcity of the correlation duration. For that purpose, we measure the appearance
rate AR in logarithmic scale since it is based on a multiplicative sequence, and renormalize with
the mean value E[AR] so that the mean appearance rate under null hypothesis 2 is represented
with 0. The scarcity of correlation duration SCD is then expressed as follows:

SCD = log
AR

E[AR]
(14.47)

= log 3m
m∏
t=1

Pt(s(t)). (14.48)

This SCD value becomes positive if the Pts(t) are more than 1/3 in geometric average, and
negative if less. If we only measure the scarcity of the sequence and do not consider the geometric
average distribution of Pt(s(t)) of a given sequence, the SCD is defined as follows:

SCD =

∣∣∣∣∣log 3m
m∏
t=1

Pt(s(t))

∣∣∣∣∣ . (14.49)

Where | · | represents the absolute value. We take the latter definition as the formal SCD.
In general case where the number of symbols is represented with #({s}), the SCD during m

steps of tracking becomes as follows:

SCD =

∣∣∣∣∣log #({s})m
m∏
t=1

Pt(s(t))

∣∣∣∣∣ . (14.50)

The simple deviation of SCD from its mean value 0, however, can not be taken directly as the
degree of scarcity. Since the distribution of {Pt(s(t))|s(t) ∈ {+,−, 0}} is dependent to the time
t, we need to measure the fluctuation from the mean value under null hypothesis 2 to construct a
significance criterion. The 5 % significance threshold µ(m) of the m-step SCD with respect to the
null hypothesis 2 is given in the following relation:

∫ µ(m)

0

P (SCD)dSCD = 0.95. (14.51)

Where P (SCD) is the density function of the SCD values of all possible m-step sequences
{s(1)s(2) · · · s(m)}.

If the SCD value is superior to µ(m) value, the sequence has 5 % significance with respect
to the null hypothesis 2. This means that the consistency of the correlation duration is far from
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a random stochastic process, and the corresponding dynamical tissue has a long-term persistence
which belongs to a deterministic property.

The actual calculation of SCD value and the testing requires the accurate tracking of cell
lineage tree during a long period. Large value of m is required to suppress the fluctuation of SCD
around its mean value. Large m, however, contradicts with the accuracy of tracking. Even with
99 % accuracy of tracking, after m = 100 steps there remains only 36% of accuracy in each cell
lineage. The multiplicative accumulation of tracking error is the major obstacle for this theory,
but would be overcome by the obtention of the complete cell lineage tree in the near future.

Figure 14.7: Possible sequences of {s(1)s(2) · · · s(m)|s(t) ∈ {+,−, 0}} in relation to trino-
mial theorem giving AR value for each sequence. The mean appearance rate E[AR] is always
1
3m in case #({s}) = 3 regardless of the temporal fluctuation of Pt(s(t)).

14.5 Conclusion

We defined the concept of “dynamical tissue” on the basis of dynamical parameters derived from the
empirical measuring of embryogenesis in Embryomics and BioEMERGENCES projects. Tentative
results are shown which detected significant correlation of cell movement vectors and non-uniformity
of cell deflection angle, implying the bottom-up way of cell migration coordination during the
gastrulation process of zebrafish. The theory was further extended to detect the significance in the
temporal duration of the dynamical tissue.
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Chapter 15

Toward a Multi-Scale
Characterization of
Embryogenesis: Incorporating Biological

Variables in Semi-Parametric Clustering

Abstract

We consider the strategy to link the phenomenological and theoretical reconstruction
by investigating the phenomenological model with biological variables. We propose
a clustering method based on the “minimum descriptors” which incorporate specific
biological interest to characterize the dynamics of embryogenesis. Tentative results are
shown with theoretical strategy to measure and represent individual variations with
various spatio-temporal scales in contrast to external drug treatment.

Keywords: Minimum descriptor, EM-Algorithm, Individual variation

Methodology: Definition of minimum descriptors to characterize primary data set
as huge complex dynamical systems → Clustering with minimum descriptors in a way
equivalent to the em-algorithm of information geometry → Theoretical proposition to
measure individual variation of embryos based on information theoretical distance and
dynamical system perspective

15.1 Introduction: Strategy for the multi-scale characteri-
zation of embryogenesis

The high spatiotemporal resolution of 4-D embryo measurement in Embryomics and BioEMER-
GENCES projects has a potential to revolutionize the state of art of embryology. However, empir-
ical measurement does not directly lead to scientific significance without theoretical perspectives.
What we can obtain as raw data from an electrical microscopy is nothing but a complex image
without scientific characterization. As Albert Einstein said, theoretical framework precedes the
observation and define what we can observe [109].

Fig. 15.1 shows the strategy of the phenomenological reconstruction and a proposition toward
the theoretical reconstruction. Phenomenological reconstruction based on image processing is
the primary task for the understanding of raw data. Embryomics project was mainly devoted
to detecting important biological parameters to establish a complete cell lineage tree, such as
the spatial structure of cell/nuclei membrane, occurrence of mitosis, cell movement, cell tracking
between different time steps of observation, etc. These basic biological variables, or simply “primary
variables,” are the parameters of the phenomenological reconstruction, and are what define the basis
of mathematical space for further theoretical reconstruction.
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The work in this chapter is a theoretical proposition to link the phenomenological and theoretical
reconstruction. We investigate on the phenomenological data to seek for a theoretical formalization
of underlying mechanism in embryogenesis. For that purpose, we consider the transformation of
primary variables as “minimum descriptors” for efficient and meaningful clustering of cell data.
The clustering based on the minimum descriptors aims to extract important information useful
to quantify individual variations. This is at the same time parameter reduction and information
compression which augment the facility of analysis and the model sensitivity to a given biological
interest. The minimum descriptor itself can be interactively redefined based on the results of the
former clustering and its visualization. We aim to establish an integrative strategy for multi-
scale characterization of embryogenesis, gathering both theoretical and biological knowledge as an
interactive methodology.

Figure 15.1: Strategy of phenomenological investigation toward theoretical reconstruc-
tion. The scope of the work in this chapter corresponds to the red area. Main effort in the
european projects were effectively devoted to the phenomenological reconstruction, expressed as
blue area.

15.2 EM-Clustering: Semi-parametric Clustering in Biolog-
ically Meaningful Space

15.3 Primary Variable Data Set

The raw data of zebrafish embryo normal development is obtained from the Embryomics project.
We have imaged the prospective brain of zebrafish embryos by multiphoton microscopy from 4
hours post-fertilization through gastrulation and early neurulation stages 3. The imaged cells,
whose number grows from 3,000 to more than 11,000, were tracked with less than 2% error for at
least 6 hours. The tracking accuracy allows us to construct reliable lineage tree. The attempt to
calculate morphological parameters of cell and nuclei membrane from raw image data is also a part
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of the project. The primary variables were partially provided to test the clustering based on the
minimum descriptors.

15.3.1 Minimum Descriptor

The reconstruction of early stage embryogenesis in Embryomics project established a huge data
source of primary variables accessible to further characterization. The classification of cell groups
based on biological features is one of the important task besides the reconstruction of lineage tree.

For that purpose, we have to established an automated way of clustering with consistent pa-
rameters. Such parameters are not necessary the primary variables itself, but generally a function
of them reflecting biological knowledge to properly separate different cell group distributions. We
call this biologically meaningful variables for the automated clustering as “minimum descriptor”,
since they compress the characteristic information of cells, and offer possibly a minimum sufficient
mathematical space for cell group separation. Since it aims at offering a clear-cut aspect to see
the difference between cells in low dimensional space, the meaning of “minimum” depends on the
intended separability of the clustering.

For example, the following measures can be considered as minimum descriptors.

• Cell shape: The normalized product of PCA (principal component analysis) of cell membrane
spatial distribution

• Instantaneous velocity of a cell: The norm of cell movement vector field.

• Global movement of a cell: The radius of long range cell movement.

• Proliferation rate: The time distance between succeeding mitosis.

• Cell density: The number of neighboring cells.

Although the minimum descriptors are based on the quantitative primary variables, they are
not yet accessible in empirical time range of embryogenesis in the projects. Quantitative primary
variables taking real value are difficult to detect with sufficient level of validation, due to the
difficulty of establishing a control standard for the detection algorithm of image processing. On
the other hand, qualitative primary variables such as cell center are easier to extract, and can
be corrected by biologists with the use of an visual interface. For the sake of cell lineage tree
reconstruction, qualitative primary variables have a priority in the projects. In this chapter, we
are limited to test a partial data set to see the effectiveness of the clustering algorithm which is
explained in the following section.

15.3.2 EM-Clustering

We consider the clustering of cells on the space defined with minimum descriptors. The form
of cell distribution in the space of minimum descriptors is generally unknown. To fit the fitting
function to an arbitrary multimodal distribution and separate each modal component, we choose
a semiparametric clustering using Gaussian mixture distribution. The space of Gaussian mixture
family is also compatible to information geometry, and can easily derive the distance between
different individuals. We choose the EM-algorhithm to fit the function to data defined in minimum
descriptor space. EM- algorithm is also compatible to information geometrical em-algorithm to
establish its convergence [110]. This algorithm calculates the probability of each cell belonging
to each Gaussian component. We also apply the AIC (Akaike’s Information Criterion) to avoid
overfitting in this algorithm. The AIC optimizes the number of Gaussian component for clustering
in quite general assumption.

The general d-dimensional Gaussian mixture model is described as follows:

p(x, j; θ) =

J∑
j=1

πjN(µj ,Σj), (15.1)
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where x = (x1, · · · , xd), J is the total number of normal distributions, whose j-th component

is linearly connected with regularized weight πj (
∑J
j=1 πj = 1). θ = {{µj}, {Σj}, {πj}} is the

model parameters where µj is the mean values and Σj is the variance-covariance matrix of the
j-th Gaussian component. Since the EM-algorithm adjusts these parameters to fit the data by the
iteration of E-step and M-step, the parameters of distribution are conditioned by the iteration step
k such as θ(k).

The E-step of EM-algorithm stands for the expectation process, where we calculate the proba-
bility p(j|xn; θ(k)) that the element xn of data {x1, · · · ,xn, · · · ,xN} (1 ≤ n ≤ N) was generated
from the j-th distribution:

p(j|xn; θ(k)) =
N(xn;µj(k),Σj(k))πj(k)∑J
i=1N(xn;µi(k),Σi(k))πi(k)

. (15.2)

This process corresponds to the maximum likelihood estimation of the hidden parameters {j} with
respect to the fixed parameters θ of the model.

The M-step is for the maximization process, where we maximize the logarithmic likelihood of the
parameters by calculating θ(k+ 1) with given distribution of hidden parameters {p(j|xn; θ(k))|1 ≤
j ≤ J} as follows:

µj(k + 1) =

∑N
n=1 p(j|xn; θ(k))xn∑N
n=1 p(j|xn; θ(k))

, (15.3)

Σj(k + 1) =

∑N
n=1 p(j|xn; θ(k))Vnj(k + 1)∑N

n=1 p(j|xn; θ(k))
, (15.4)

πj(k + 1) =
1

N

N∑
n=1

p(j|xn; θ(k)), (15.5)

where

Vnj(k + 1) = (xn − µj(k + 1))(xn − µj(k + 1))T , (15.6)

and N is the sample number of data {x1, · · · ,xn, · · · ,xN}.
Starting from given initial parameters, the EM-algorithm repeat the E-step and M-step by

monotonically increasing the logarithmic likelihood, until it reaches to a convergence. The conver-
gence is generally assured to be a local minimum.

To avoid over-fitting problem, we introduce the AIC (Akaike’s Information criterion) to balance
Gaussian components number J and logarithmic likelihood. The convergence of EM-algorithm is
then judged by the AIC value. The AIC is defined as follows:

AIC = −2 logL+ 2#(θ). (15.7)

Where L is the maximum likelihood, and #(θ) is the number of free parameters in the model.
Local minimum problem is expected to be overcome by a proper design of minimum descriptor

and the compression of information which gives low dimension d of the model. We start the
clustering with 2 minimum descriptors (d = 2) both for clarity of visualization and simplicity of
analysis.

For simplicity, we call the clustering of cells with respect to the minimum descriptors by EM-
algorithm as “EM-clustering”.

Other generalized clustering methods using informational distance are studied on exponential
family with appropriate information criterion, which includes the case of EM-clustering [111]. The
expansion to exponential family allows the application of a wide range of fitting components other
than Gaussian, such as Poisson, multinomial, Gamma/Beta distributions, according to the charac-
teristics of data. Furthermore, the Bregman hierarchical clustering algorithm gives an automated
way to find the dendrogram according to the informational distance between the clustering com-
ponents of exponential family, which would be helpful to detect the differentiated cell groups with
respect to the minimum descriptors.



15.4. TENTATIVE RESULTS 241

15.4 Tentative Results

We tentatively applied the EM-clustering to some sample data of the projects. An example of the
EM-clustering at early stage of zebrafish embryogenesis with 2 minimum descriptor is shown in
Figs. 15.2. The cell shape and instantaneous cell velocity were defined as minimum descriptors.
The cell shape index was calculated from a spatial distribution of cell membrane markers, by
approximating it with the product of principal component analysis under hypothesis that a cell
can be represented with oval shape 1. The definition of the cell shape index CS is as follows:

CS =
PCA1 · PCA2 · PCA3

(PCA1 + PCA2 + PCA3)3
. (15.8)

Where PCA1, PCA2, PCA3 are the first 3 principal components of the spacial distribution of cell
membrane. The CS therefore represents the normalized ovality of the cell, which does not depend
on the cell size.

The instantaneous cell velocity was calculated according to the optical flow of image intensity
using Thirion’s demon algorithm [108] 2

The side view in Figs. 15.2 shows the bimodal separation of this clustering according to the
low/high cell shape index. The bimodal form can be regarded as the superposition of two different
cell groups. In this case, there exist rather round cells (high cell shape index value) and flat or
elongated cells (low cell shape index value). Visualization with actual spatial coordinates of the
cells show that these two groups have a tendency to be spatially localized in different depth of the
embryo from its surface (Figs. 15.3 ).

The results of clustering are also visualized with the use of interactive interface developed
in Embryomics project for further biological study and hypothesis forming with the support of
augmented phenomenology (Figs. 15.4).

The results imply the possibility of autonomous clustering according to the minimum descriptors
reflecting important typology of the cells. Compared to the primary variables, the clustering results
of minimum descriptors provide a clearer point of view to characterize the cell groups with specific
biological interests. Comparison between individuals is also accessible in the model space of EM-
clustering.

15.5 Toward a Measurement of Individual Variation

We consider a theoretical strategy to measure individual variation in the model space of EM-
clustering. The Gaussian mixture model is known to belong to exponential family and form dual-
flat manifold in information geometrical framework [112]. Therefore, the temporal evolution of
the clustering results of an embryo is expressed as discrete time series trajectory in the dual-flat
coordinates. In other word, we consider a dynamical system in the parameter space of information
geometry.

Evolution of different embryos is comparable in the dual-flat coordinates with the use of infor-
mational distance. Comparison of two different embryos with/without drug treatment is depicted
in Fig. 15.5. We consider to compare the clustering results between different embryos with re-
spect to an appropriate information distance. KL divergence is a canonical divergence which does
not depend on the transformation of observables as long as they are sufficient statistics. Since
the minimum descriptors usually assume the non-linear transformation of primary variables, such
characteristics of KL divergence is important to assure the objectivity of comparison using the
results of EM-clustering. However, KL divergence does not hold symmetric law. To express the
individual variations in a metric space, we consider the symmetrization Ds[·, ·] of KL divergence
D[·, ·] as follows:

Ds[x1,x2] =
D[x1,x2] +D[x2,x1]

2
, (15.9)

1The cell shape was tentatively calculated by Mariana Remesikova and Benoit Lombardot
2The instantaneous cell velocity was calculated by Benoit Lombardot in his Ph.D dissertation.
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Figure 15.2: Example of EM-clustering with two minimum descriptors. The cell shape (X-
axis) and the instantaneous cell velocity (Y-axis) were used. Up: 3D view, Down: Side view with
the cell shape axis. Data id: 070420a. Animal pole of an embryo of zebrafish (danio rerio). Cells
detected during 10 observations within 490 seconds are superimposed in the data. Red asterisks
are the plot of cell data in 2-D plane of minimum descriptors. Blue asterisks corresponds to the
mean values of each Gaussian component.
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Figure 15.3: Visualization of two cell groups separated by EM-clustering. Cells belonging
to low cell shape index distribution are depicted with red circle, while those of high cell shape
index are with green circle. The top 2 figures show the superposition of all cells, while the bottom
2 figures are the visualization of low cell shape index distribution. Side view of 3-D plot is shown.
Data id: 070420a. Partial imaging around the animal pole of an embryo of zebrafish (danio rerio).
In each figure, cells detected during 10 observations within 490 seconds are spatially superimposed.
Time interval between observations is 49 seconds.
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Figure 15.4: Visualization of clustering results with Embyomics project interface for the
augmented phenomenology. Cells belonging to low cell shape index distribution are depicted
with red dot, while those of high cell shape index are with green dot. The top figure shows the
3-D overview of the measured section of embryo, and the bottom figure is an example of the cross-
section image to investigate spacial localization of cell groups. Data id: 070420a. Partial imaging
around the animal pole of an embryo of zebrafish (danio rerio). In each figure, cells detected at an
observation (time step parameter t=15) are shown.
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where x1 and x2 are a pair of different embryo data in one observation.
This symmetrization is the half of the double-sided KL divergence, and belongs to Jeffreys-

Bregman divergences DJB1
[x1,x2] with an appropriate strictly convex and differentiable function

F representing KL divergence D[x1,x2] as Bregman divergence BF (x1,x2) [113]:

D[x1,x2] = BF (x1,x2)

:= F (x1)− F (x2)− (x1 − x2)F ′(x2), (15.10)

Ds[x1,x2] = DJB1
[x1,x2]

:=
BF (x1,x2) +BF (x2,x1)

2
. (15.11)

The Jeffreys-Bregman divergence admits a unique right-sided centroid as a minimizer independent
of the generator function F . Therefore, this symmetrization is well defined with respect to the
minimization operation and is also accessible to the evaluation of centrality of a given sequence.

Another known way to symmetrize KL divergence is the following Jensen-Bregman divergence,
which is the generalization of celebrated Jensen-Shannon divergence [114]:

DJB2
[x1,x2] :=

BF (x1,
x1+x1

2 ) +BF (x2,
x1+x1

2 )

2

:=
F (x1) + F (x2)

2
− F

(
x1 + x2

2

)
. (15.12)

This coincides with Burbea-Rao divergence that is the information-theoretic distance for F [115]
[116]. Burbea-Rao divergence is also a generalization of Jensen-Shannon divergence, and converges
with respect to a weight parameter to Bregman divergence, which represents asymptotical relation
between skew and symmetrized KL divergence in case of DJB2 [·, ·] [113].

The correspondence between two discrete trajectories can be obtained by searching the pairs
that minimize Ds[x1,x2]. Generally, such correspondence includes many-to-one association, but
is necessary to absorb the difference of experimental parameters such as growth temperature and
observation interval, which change the temporal resolution of trajectory. (For example, higher
temperature realizes faster growth during the embryogenesis of zebrafish.)

The multi-scale comparison according to the specific cell group distribution are also possible.
We consider two embryos of a given observation as follows:

p1(x, j; θ1) =

J∑
j=1

π1
jN(µ1

j ,Σ
1
j ), (15.13)

p2(x, j; θ2) =

J∑
j=1

π2
jN(µ2

j ,Σ
2
j ). (15.14)

Where p1(x, j; θ1) and p2(x, j; θ2) represent the density function of minimum descriptors for embryo
1 and 2, respectively.

The KL divergence between two embryo can be decomposed as follows:

D[p1, p2] =

∫
dx

J∑
j=1

π1
jN(µ1

j ,Σ
1
j ) log

π1
jN(µ1

j ,Σ
1
j )

π2
jN(µ2

j ,Σ
2
j )

=

J∑
j=1

π1
j

(
D[N(µ1

j ,Σ
1
j ), N(µ2

j ,Σ
2
j )] + log

π1
j

π2
j

)
. (15.15)

The D[p1, p2] is possible to minimize by choosing an appropriate component-wise correspon-
dence between the 2 distributions [117]. We then formally represent a specific cell group of each
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embryo with a partial mixture model as follows:

p′1(x, j; θ1) =

J′∑
j=1

π1
jN(µ1

j ,Σ
1
j ), (15.16)

p′2(x, j; θ2) =

J′∑
j=1

π2
jN(µ2

j ,Σ
2
j ). (15.17)

Here, the corresponding cell groups are represented with the same component number J ′ in both
embryo 1 and 2. The component number can be adjusted by minimizing the AIC of one embryo.

Then the discrepancy D′[p′1, p
′
2] between the specific cell groups p′1 and p′2 can be defined as

follows:

D′[p′1, p
′
2] =

J′∑
j=1

π1
j

(
D[N(µ1

j ,Σ
1
j ), N(µ2

j ,Σ
2
j )] + log

π1
j

π2
j

)
, (15.18)

which corresponds to the component-wise term of overall KL divergence in equation (15.15).
We then define the cell group-wise symmetrized KL divergence Dc[·, ·] as follows:

Dc[p
′
1, p
′
2] =

D′[p′1, p
′
2] +D′[p′2, p

′
1]

2
. (15.19)

The multi-scale comparison according to the different typology of cell groups with respect to
the minimum descriptors is possible using Dc[·, ·] by choosing appropriate components.

To compare between the whole trajectories of different individuals, we need to construct another
metric space between individual sequences. A simple way to introduce a metric between different
time series is to define the sup norm De(e1, e2) between the whole sequences of embryos e1 and e2
as follows:

De(e1, e2) = max
x1∈e1,x2∈e2

Ds[x1,x2]. (15.20)

This is equivalent to introduce a metric between different functions. We call the distance De(·, ·)
as “inter-embryo distance”.

Comparison with various temporal scales is also possible by setting a time window on embryo
data. Thus the De(·, ·) can incorporate multi-temporal scale varying from single observation to
whole process of embryogenesis.

The individual variations can then be expressed in the metric space with this norm, which
is accessible to further evaluation of drug effect with respect to the range of normal fluctuation
contained in normal development. Fig. 15.6 shows a schematic example of the reconstruction of
inter-embryo metric space. The distribution of normal embryos and those with drug treatment are
expected to form distinctive clusters. In this presentation, we aim to construct the definition of
“normal” development in multi-scale resolution of both cell classification and temporal dynamics,
including individual variation in contrast with other anomalies.

The dynamics of drug effect can be precisely quantified in each observation time step on the
dual coordinates of Fig. 15.5. An example on the cell lineage tree with different setting will be
investigated in the following chapter.

15.6 Conclusion

We developed a conceptual and theoretical framework for the phenomenological investigation of em-
bryogenesis toward the proposition in theoretical reconstruction. Tentative results of EM-clustering
showed the effectiveness of clustering with minimum descriptors both for theoretical facility and
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Figure 15.5: Comparison between two individuals in the dual-flat coordinates of Gaus-
sian mixture model. The coordinates are the non-linear transformation of the parameter space
of EM-clustering.

Figure 15.6: Schematic example of reconstruction of metric space with the use of inter-
embryo distance for evaluation of drug effect. According to the distance De between embryos
with a given time window, it is possible to present the results in 3-D metric space with principal
components of data distribution.
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biological clarity. Theoretical strategy toward a spatio-temporal multi-scale measurement of inter-
embryo difference is constructed using informational distance. Further acquisition and treatment
of quantitative primary variables are needed to derive an empirical presentation of embryogenesis
with individual variations.
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Chapter 16

Information Geometrical Analysis
on Morphogenetic Entropy

Abstract

We consider the information geometrical analysis on the cell differentiation probabil-
ity into different morphogenetic fields. This is based on the concept of “morphogenetic
entropy” defined by Miguel A. Luengo-Oroz, which represents the amount of informa-
tion that a cell requires to define the future differentiation profile. Such index is useful
to define the individual difference on the basis of cell lineage tree, with different con-
ditions such as with/without drug treatment. We theoretically show how to evaluate
external effect between two groups of different treatment, and propose a series of quan-
tity with KL divergence, namely “relative morphogenetic entropy”, which represents
the cell generation-wise propagation of the external effect. This chapter is limited to
theoretical investigation.

Keywords: Morphogenetic entropy, Relative morphogenetic entropy, Cell lineage
tree, Poly-drug treatment, Information geometry, KL divergence, Mutual information

Methodology: Definition of relative morphogenetic entropy on cell lineage tree
as a measure of cell differentiation using information theoretical distance → Theoret-
ical development of generation-wise decomposition of external effect with information
geometry

16.1 Introduction

16.1.1 Concepts and Definitions of Morphogenetic Entropy

A lineage tree L is a binary tree associated to cells during embryo development (Fig. 16.1 1). The
nodes of the tree correspond to cells and the links correspond to their temporal tracking. Each
level of the lineage tree corresponds to a time point, going from tmin to tmax. A lineage tree can
be a truncated portion of a complete binary lineage tree, so there could be several cells in the first
level (tmin). Each cell at the level s corresponding to time ts (tmin ≤ ts ≤ tmax) in the lineage is
linked to a (mother)cell corresponding to the upper level of the tree (ts − 1). If a cell at ts is the
only one linked to a mother cell at ts − 1, we consider that both cells are the same cell at different
time points. If two cells are linked to the same cell, we consider this structure a division of the
mother cell(mitosis). It is impossible that three cells link the same mother cell.

Let S = {s1, s2, . . . , s|S|} be a set of morphogenetic regions delimited by an expert that com-

pletely covers the lineage tree L at time ts. A cell ctsi belongs to a morphogenetic region sj with
a certain probability ptsij , so each cell ctsi has an associated probability distribution of belonging to

the different morphogenetic regions P tsi = {ptsij , sj ∈ S}. At time ts , the probability distributions

1Fig. 16.1 was offered from Miguel A. Luengo-Oroz.
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Figure 16.1: Lineage tree L = cts1 , c
ts
2 , . . . , c

ts−3

7 and morphogenetic field selection S =
{s1, s2, s3}.

P tsi are completely defined by the selection S. The lineage tree topology serves to generate the
probability distributions associated to the rest of the cells in the lineage: a cell ci maintains the
same probability distribution over time, so P tsi = P

ts−1

i (at least in this first draft of the model,
where there is no exchange of morphogenetic information between cells); for a cell ctsi in mitosis

with two children c
ts+1

i1 and c
ts+1

i2 , the probability distribution is the combination of the distribution

of both children, so P tsi = 1
2P

ts+1

i1 + 1
2P

ts+1

i2 .

The morphogenetic entropy (MH) of a cell MH(ctsi ) related to a morphogenetic selection S in
time ts is the entropy of the probability distribution P tsi (0 log 0 is defined to be 0) [118].

MH(ctsi ) = −
∑
s∈S

P tsi (s) log2 P
ts
i (s).

This measurement represents how diversified is the descendant of a cell with respect to S (this
interpretation strongly reminds the Shannon’s biodiversity index ). When the MH is zero, this
cell and all its descendants will belong to the same morphogenetic field at time s. The MH is
measured in bits and can be also understand as the quantity of information needed for coding the
future of all the successors of ctsi from time ts to tmax in terms of lineage branchings.

This information is not the possible overall capacity of the cells. Since the MH is defined recur-
ring from the final differentiation profile of an individual, it represents the amount of information
expressed in the specific developmental process of a measured individual. It can also be interpreted
as the amount of information required to code the lineage tree with a given morphogenetic field
classification.
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16.1.2 KL Divergence

We consider 2 cells ctii and c
tj
j in the same/different lineage tree. We define the KL divergence, or

the relative entropy D between the distributions of the 2 cells as follows:

D[P tii : P
tj
j ] =

∑
s∈S

P tii (s) log
P tii (s)

P
tj
j (s)

. (16.1)

This gives the amount of divergence between the 2 cells with respect to the future differentiation.
In the same cell lineage, this can be naturally interpreted as the amount of differentiation with
respect to the morphogenetic field definition. For example, taking ctii a mother cell and c

tj
j one of

its children, the KL divergence represents how much the child cell differentiated from its mother.
Note this measure is asymmetric.

We formally call the KL divergence defined in equation (16.1) as “relative morphogenetic en-
tropy.”

16.2 Information Geometrical Analysis

We investigate the information geometrical structure of the probability distributions P tsi (s) with the
use of the relative morphogenetic entropy between two cell lineage trees with different treatment in
view of the quantification of the drug effect. We derive the orthogonal decomposition of generation-
wise external effect using the canonicity of the relative morphogenetic entropy. The formalization
is generally compatible to the mutual information between the normal lineage tree and poly-drug
treatment.

16.2.1 Orthogonal Decomposition of External Effects

We take here one specific cell ctnn in a lineage tree with morphogenetic fields S = s0, · · · , s|S|, and
consider associating conditional variables.

Let’s take m + 1 kinds of external effect E = e0, . . . , em that we can experimentally control
during the morphogenesis of an embryo. These variables can be interpreted as, for example,
e1, . . . , em as m kinds of different drug treatments, and e0 as negative control. It is also compatible
to poly-drug treatment if we take the element of E as the combination of plural drugs.

To see the effect of treatments E on developmental process, we define the mutual information
between S = {si} and E = {ej} as

I(S;E) = EP tnn (S,E)

[
log

P tnn (S, ej)

P tnn (S)P tnn (ej)

]
, (16.2)

which is equivalent to

I(S;E) = EP tnn (E)[D[P tnn (S|ej) : P tnn (S)]], (16.3)

= EP tnn (S)[D[P tnn (E|si) : P tnn (E)]]. (16.4)

Here, the variables E are also included in the definition of P tnn (·) and P tnn (·, ·). P tnn (E) are
simply the sample ratio of experiments among external conditions effectuated on the same cell.
These distributions can be calculated from the overall results of reconstructed lineage trees with
the m+ 1 different external conditions.

We define the dual affine coordinate η, θ for the distributions P tnn (S) and P tnn (S|ej) as follows
(for simplicity, we eliminated the definition of η(S) and θ(S|ej) that are not needed for the following
development.):

η(S|ej) = ζ(S|ej) = (η1(S|ej), · · · , η|S|(S|ej)), (16.5)

θ(S) = ζ(S) = (θ1(S), · · · , θ|S|(S)), (16.6)
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where ηi(S|ej) = P tnn (si|ej), and θi(S) = log
P tnn (si)

P tnn (s0)
. Here, the morphogenetic field s0 was distin-

guished from the others so that to give the norm of regularization factor ψ(S) = − logP tnn (s0) for

θ(S), and φ(S|ej) =
∑|S|
i=1 θi(S|ej)ηi(S|ej)−ψ(S|ej) for η(S|ej). The s0 can be practically defined

as apoptosis, but also interchangeable with any other si according to the focus of analysis.
We use the mixed coordinates ζ ′ for isolating the external effect ej on the morphogenetic field

si. The mixed coordinates is defined by replacing the i-th component of ζ(S|ej) with that of ζ(S):

ζ ′ = ζ ′(S, ej) = (η1(S|ej), · · · , ηi−1(S|ej), θi(S), ηi+1(S|ej), · · · , η|S|(S|ej)). (16.7)

Then from the extended Pythagorean theorem, we have

D[P tnn (S|ej) : P tnn (S)] = D[ζ(S|ej) : ζ(S)] (16.8)

= D[ζ(S|ej) : ζ ′] +D[ζ ′ : ζ(S)]. (16.9)

The second line of this decomposition means that we are able to decompose, in terms of the
KL divergence, the effect of ej into the ith morphogenetic field (left term) and the others (right
term). If we also want to measure the effect on s0, it is simply done by exchanging P tnn (s0) for
P tnn (si 6=0) in the definition of the coordinates.

From the equation (16.3) and (16.9), we can derive the decomposition of mutual information:

I(S;E) = EP tnn (E)[D[ζ(S|ej) : ζ ′] +D[ζ ′ : ζ(S)]], (16.10)

= EP tnn (E)[D[ζ(S|ej) : ζ ′]] + EP tnn (E)[D[ζ ′ : ζ(S)]]. (16.11)

Here, the left term of (16.11) is the overall effect of E to si, and the right term is the effect of E
to the rest S\si.

16.2.2 Orthogonal Decomposition of Influences Appearing in the tn-th
Generation

We consider 2 pairs of succeeding generations in a lineage tree with different conditions, {P tn−1nm (S),
P tnn (S)} and {P tn−1nm (S|ej), P tnn (S|ej)}. The cell nm is the mother cell of the cell n.

The interest here is to purify the influence of external effect on morphogenetic fields at each
generation. This enable us to quantify in which stage of development the external effect can play
crucial disturbance.

Let us consider the affine transformation of the dual affine coordinates on the dually flat space
of this model. The degree of freedom of the coordinates [θi], [ηi], and the potential ψ, φ, are
expressed by [119]

θ′j =

|S|∑
i=1

Ajiθi +Bj , (16.12)

η′j =

|S|∑
i=1

Cijηi +Dj , (16.13)

ψ′ = ψ +

|S|∑
j=1

Djθ
′
j + c, (16.14)

φ′ = φ+

|S|∑
j=1

Bjη
′
j −

|S|∑
j=1

BjDj − c, (16.15)

where (Aji ) is a regular matrix, (Cij) is its inverse, Bj and Dj are real-valued vectors, and c is
the real number. Hence, the KL divergence D[p : q] between 2 distributions p,q remains invariant
under these degrees of freedom, since it is also expressed as
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D[p : q] = ψ(q) + φ(p)−
|S|∑
i=1

θi(q)ηi(p), (16.16)

which cancels completely (16.12) - (16.15). This means we can arbitrary change the coordinates
to have useful decompositions of statistics among plural distributions as long as it satisfies (16.12)
- (16.15) and orthogonality in the mixture coordinates.

We now aim to decompose the difference between P tnn (S) and P tnn (S|ej), which represents the
deviation from normal development at the tn-th generation caused by external effect.

For simplicity, we formulate the cases where we can find orthogonal mixture coordinates by the
linear transformation of the dual-flat coordinates. The results are possible to apply in general case
by combining hierarchically plural mixture coordinates in the same manner, except the Pythagorean
relation based on the orthogonality between the generation-wise effect in equations (16.26)-(16.29).

If P tnn (S) 6= P tn−1nm (S) 6= P tn−1nm (S|ej) andD[P tn−1nm (S|ej) : P tnn (S)] = D[P tn−1nm (S|ej) : P tn−1nm (S)]+
D[P tn−1nm (S) : P tnn (S)] hold, there exists a set of the affine transformation of the coordinates η and
θ such that

(θ′1(P tn−1nm (S)), · · · , θ′|S|−1(P tn−1nm (S))) = (θ′1(P tnn (S)), · · · , θ′|S|−1(P tnn (S))), (16.17)

η′|S|(P
tn−1
nm (S)) = η′|S|(P

tn−1
nm (S|ej))). (16.18)

This means the effect of ej on tn − 1 generation is parameterized only by θ′|S|.

With the new coordinates η′, θ′, and the potential ψ, φ, we can compose the mixture coordinates
of P tnn (S), P tn−1nm (S) and P tn−1nm (S|ej) as follows:

ζ ′(P tnn (S)) = (η′1(P tnn (S)), · · · , η′|S|−1(P tnn (S)), θ′|S|(P
tn
n (S))), (16.19)

ζ ′(P tn−1nm (S)) = (η′1(P tn−1nm (S)), · · · , η′|S|−1(P tn−1nm (S)), θ′|S|(P
tn−1
nm (S))), (16.20)

ζ ′(P tn−1nm (S|ej)) = (η′1(P tn−1nm (S|ej)), · · ·
· · · , η′|S|−1(P tn−1nm (S|ej)), θ′|S|(P

tn−1
nm (S|ej))). (16.21)

It is now natural to consider a point Qtnn with the following coordinates (Fig. 16.2):

(θ′1(Qtnn ), · · · , θ′|S|−1(Qtnn )) = (θ′1(P tn−1nm (S|ej)), · · · , θ′|S|−1(P tn−1nm (S|ej))), (16.22)

η′|S|(Q
tn
n ) = η′|S|(P

tn
n (S))). (16.23)

The coordinates θ′ and η′ can implement e-flat and m-flat structure, respectively, so that there
exist 2 parallel e-geodesics P tn−1nm (S) - P tn−1nm (S|ej) , P tnn (S) - Qtnn , and 2 parallel m-geodesics
P tn−1nm (S) - P tnn (S), P tn−1nm (S|ej) - Qtnn . Here, the concept of being parallel is defined by orthogo-
nality between the e-geodesics and m-geodesics.

Therefore, the difference between P tnn (S) and Qtnn can be considered as the combination of
the deviation from normal development at tn − 1 generation (difference on e-geodesic P tn−1nm (S) -
P tn−1nm (S|ej) ), and the normal development occurring in tn-th generation (difference on m-geodesic
P tn−1nm (S) - P tnn (S) ). On the other hand, the difference between Qtnn and P tnn (S|ej) is the new
information appearing for the first time at the tn-th generation.

We can decompose these different elements of change with the use of Phytagorean relation, by
defining again the new coordinates η′′, θ′′, and the potential ψ′′, φ′′, for P tnn (S), P tnn (S|ej), and
Qtnn , if the following conditions hold:

(θ′′1 (Qtnn ), · · · , θ′′|S|−1(Qtnn )) = (θ′′1 (P tnn (S|ej)), · · · , θ′′|S|−1(P tnn (Sej))), (16.24)

η′′|S|(Q
tn
n ) = η′′|S|(P

tn
n (S))). (16.25)

We then have
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D[P tnn (S|ej) : P tnn (S)] = D[Qtnn : P tnn (S)] +D[P tnn (S|ej) : Qtnn ]. (16.26)

This decomposition can be further expanded to line up all projections of the external effect at
each generation into the deviation at tn-th generation (Fig. (16.3)):

D[P tnn (S|ej) : P tnn (S)] = D[Qtn1 : P tnn (S)] +

n∑
k=2

D[Qtnk : Qtnk−1]

+ D[P tnn (S|ej) : Qtnn ]. (16.27)

Where Qtnk is the projection of P tkk (S|ej) parallel to the m-geodesic P tkk (S)-P tnn (S) and orthogonal
to the e-geodesic P tnn (S)-P tnn (S|ej). The cell numbers in 1 lineage were aligned from 1 to n with
the time from t1 to tn for simplicity.

Since the coordinates η and θ are dually flat, we can also have the following decomposition in
the opposite sense, by exchanging the role of η′′ and θ′′ in (16.24) and (16.25).

D[P tnn (S) : P tnn (S|ej)]
= D[P tnn (S) : Qtnn ] +D[Qtnn : P tnn (S|ej)], (16.28)

= D[P tnn (S) : Qtn1 ] +

n∑
k=2

D[Qtnk−1 : Qtnk ] +D[Qtnn : P tnn (S|ej)]. (16.29)

Chi-squared test can be performed on each divergence if calculated with the same type of
mixture coordinates. Defining 2 points p and q with the same η1, · · · , η|S|−1 but different θ|S| in
mixture coordinates ζ ′, the chi-squared statistics λ of degree of freedom 1 is asymptotically defined
as follows with respect to the sample number Nsample [77].

λ = 2NsampleD[p : q] ∼ χ2(1). (16.30)

These results are applicable to the general case where the existence of the orthogonal coordi-
nates between P tnn (S), P tn−1nm (S), and P tn−1nm (S|ej) are not assured. In such case, only P tnn (S) 6=
P tn−1nm (S) 6= P tn−1nm (S|ej) is required as the necessary condition of lineage tree. A series of quan-

tity {Qtlk |1 ≤ l ≤ k ≤ n} can be defined based on the parallel relation between the m-geodesics
P tn−1nm (S)-P tnn (S) and P tn−1nm (S|ej)-Qtnn . Although the generation-wise effect D[P tnn (S|ej) : Qtnn ]
and D[Qtnn : P tnn (S|ej)] are possible to calculate, the Pythagorean relation in equations (16.26)-
(16.29) are lost in general case.

To obtain the Pythagorean relations in general case, we need to modify the definition of Qtnn
as in Fig. 16.4. The new Qtnn is defined on the m-geodesic P tn−1nm (S|ej)-Qtnn which is defined as
parallel to the m-geodesic P tn−1nm (S)-P tnn (S), with the following condition:

D[P tnn (S) : P tnn (S|ej)] = D[P tnn (S) : Qtnn ] +D[Qtnn : P tnn (S|ej)], (16.31)

or

D[P tnn (S|ej) : P tnn (S)] = D[Qtnn : P tnn (S)] +D[P tnn (S|ej) : Qtnn ]. (16.32)

Which corresponds to the equation (16.26).

16.3 Industrial Application

With the measurement of the individual susceptibility to a genetic disease explored in a mutant
fish population, this theoretical framework will allow us to tackle the complexity of the genotype-
environment interaction and genotype-phenotype relationship. This will be a fundamental step
towards the measurement of the individual susceptibility to genetic diseases.
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Figure 16.2: Orthogonal Decomposition of Influences Appearing in the tn-th Generation.
The red lines are e-geodesics on θ′ coordinates, the blue lines are m-geodesics on η′ coordinates, the
yellow lines are e-geodesics on θ′′ coordinates, and the green line is an m-geodesic on η′′ coordinates.
The red and blue geodesics and the yellow and green geodesics are crossing orthogonally with each
other, respectively. Note that the divergence between P tnn (S) and Qtnn remains invariant under
these coordinates transformations.

Figure 16.3: Generation-wise Orthogonal Decomposition of Influences at the tn-th Gen-
eration. The red lines are e-geodesics, and the blue lines are m-geodesics. These geodesics are
independently defined on different coordinates to meet the condition (16.27).
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Figure 16.4: Orthogonal decomposition of influences appearing in the tn-th generation
in general case. The blue lines are m-geodesics defining parallel relation between P tn−1nm (S|ej)-
Qtnn and P tn−1nm (S)-P tnn (S). The yellow lines are e-geodesics, and the green line is an m-geodesic
on another coordinates, which define the orthogonal decomposition in equation (16.31) or (16.32).

Our platform aims to establish a new standard for the pre-clinical trials of intelligent anti-
cancer therapies. Such standard would be much more accurate and meaningful than the pre-clinical
tests currently available. This does not mean that it would substitute for the tests performed in
mammalian organisms. It would rather make a pre-pre-clinical strategy that would considerably
minimize the extent of trials performed in mammals.

Our strategy relies on the in vivo observation of biological events to record data that can
be further submitted to mathematical and computational treatment to achieve the automated
measurement of relevant parameters. This is the kind of approach that the post genomic era
requires to possibly integrate data at all levels of organization. The methodologies and tools that
we aim at developing in the present project open the way to large-scale strategies to decipher the
cell behaviors underlying biological processes, physiological or pathological, and investigate drug
effects in vivo at the cellular level.

16.4 Impact on Cancerology

Our strategy is based on the hypothesis that if an anti-cancer drug is able to distinguish between
cancer cells and normal cells, it will in vivo differentially affect the behavior of embryonic cells. This
is a corollary of the current thinking that the processes of cancerogenesis and those of embryogenesis
are related. More precisely, it is considered that cancerogenesis uses processes involved in some
steps of normal embryonic development at the wrong place and time. Investigating and measuring,
down to the cellular level, the in vivo and individual effects of therapeutic treatments will provide
a considerable enhancement of the state of the art.

Along the lines of the same paradigm, we hypothesize that if an anti-cancer drug is able to dis-
tinguish between cancer cells and normal cells, it will differentially affect the behavior of embryonic
cells in vivo according to their physiological state. The Dbaits paradigmatic example directly leads
to the design of anti-cancer drugs screening protocols in animal models that will allow making the
best possible predictions regarding drugs potential in humans.

Our strategy will allow anticipating collateral damages that are usually revealed a posteriori,
when therapeutic agents are selected through a limited number of global a priori criteria. In addi-
tion, it will allow making fine adjustments and strong predictions about the therapeutic potential
of combined therapies. So far, usual high cost pre-clinical tests performed using large numbers of
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mammalian organisms can tell very little about the actual in vivo effect of the drugs at the cellular
level and in a given individual. In such complex in vivo interaction, the theoretical reconstruc-
tion is a fundamental strategy to overcome the difficulty which can not be reduced only by the
development of experimental technology.

16.5 Conclusion

We defined the concept of the relative morphogenetic entropy based on the differentiation profile
of a lineage tree.With the use of information geometry, we showed that the relative morphogenetic
entropy can be applied to the decomposition of the generation-wise external effect. The theory is
also compatible to the evaluation of poly-drug treatment.
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Chapter 17

Invariance in Vowel System

Abstract

We applied information geometrical setting of normal distribution to model japanese
vowels based on the first and second formants. The distribution of KL divergence and its
decomposed components were investigated to reveal the statistical invariance in vowel
system. The result implies that although there exists significant variability in individual
KL divergence distributions, the population distribution tends to converge into a specific
log-normal distribution. This distribution can be considered as an invariant distribution
for the standard japanese speaking population. Furthermore, it was revealed that the
mean and the variance components of KL divergence is linearly related in the population
distribution. Significance of these invariant features are discussed.

Keywords: Information geometry, Vowel formant, 2-Dimensional Gaussian distri-
bution, Log-Normal distribution, KL divergence

Methodology: Information geometrical formulation of vowel system with formant
frequency distributions → Analysis of information theoretical distance and its order-
wise components distributions between vowels

17.1 Introduction

The sound analysis of vowel systems has been mainly focused on the time-series spectra, especially
the parameters called formant. It is well known that the first and second formants give a distinctive
feature of most vowels[120].

Many linguists have investigated on the difference or variation of vowel formants with respect
to the speaker’s physiological and social profiles such as their age, gender, occupation, living
community, etc [121] [122] [123].

On the other hands, there has recently been studies on a more universalist approach with the
use of various phonetic features in frequency space. The structural order of vowels composition
enables us to integrate the notions of language as physical and cognitive system, and some studies
refer even to the foundation of language faculty from its structural invariance [124] [125] [126].

In any case, the frequency space representing such as vowel formants or cepstrum vectors are
taken a priori as the only mathematical space to perform the analysis. However, the coordinates
transformation conserving the sufficient statistics can be considered as the change of observation
method, and there exist a particular kind of coordinates that are accessible to a strong statistical
theory called information geometry [16]. Although there exist applications of information geometry
in speech recognition, little has been investigated on the physical law preserved in the entity of
vowel system [127] [128].

In this article, we take an information geometrical formalization to the japanese five vowels
formants, and analyze with the universalist point of view to find their invariant characteristics.
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17.2 Modeling of Vowel System with Information Geometry

17.2.1 Sampling of Vowel Formants

The conventional five vowels of the standard japanese language, described as /a/, /e/, /i/, /o/,
/u/ with Hepburn system were recorded with monotonic accent and analyzed with the use of the
Praat software [129]. The first and second formants of each vowel was extracted for 500 steps with
0.01 second lapse, and 0.025 second window length for the short time Fourier transform. The data
were obtained from 26 male and 29 female japanese volunteers living in or near Tokyo, whose both
parents are japanese, and their age ranging from 20s to 60s. The distributions of the five vowels
in the first and second formants space can each be approximated with 2-dimensional Gaussian
distribution, as shown in Fig.17.1.

Figure 17.1: Example of F1-F2 distribution of japanese five vowels. Horizontal axis: first
formant frequency, Vertical axis: second formant frequency. Data of only one person is depicted.

17.2.2 Model Description

Here, we derive the expression of 2-dimensional Gaussian distribution as exponential family with
dual-affine coordinates θ = (θ1, · · · , θ5) and η = (η1, · · · , η5). The Gaussian distribution p(x) with
2-dimensional continuous variables x = (x1, x2)T can be defined as follows:

p(x) =
1

2π
√
|S|

exp{−1

2
(x− µ)TS−1(x− µ)}. (17.1)

Where µ = (µ1, µ2) is the mean value vector, and S = E[(x − µ)(x − µ)T ] =

(
σ11 σ12
σ21 σ22

)
is the variance-covariance matrix of the variable . The superscript T means the transpose of
vectors. Note that σ12 = σ21 always holds. We then need five different functions of the parameters
µ1, µ2, σ11, σ12 = σ21, σ22 as coordinates to specify a distribution.

We first have the expression of (17.1) as an exponential family of distribution by the following
variable and parameter transformations:

p(x) = exp

5∑
i=1

θiFi(x)−Ψ(θ), (17.2)

where F1(x) = x1, F2(x) = x2, F3(x) = x21, F4(x) = x22, F5(x) = x1x2, θ1 = A(−2σ22µ1 +
2σ12µ2), θ2 = A(2σ12µ1 − 2σ11µ2), θ3 = Aσ22, θ4 = Aσ11, θ5 = A(−2σ12), the potential Ψ(θ) =
log(2π

√
|S|)−A(σ22µ

2
1 − 2σ12µ1µ2 + σ11µ

2
2), and A = − 1

2|S| .
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We then define the new coordinate η = (η1, · · · , η5) that is dual to θ = (θ1, · · · , θ5) and its
corresponding potential Φ(η) as follows:

ηi = E[Fi(x)], (17.3)

Φ(η) =

5∑
i=1

θiηi −Ψ(θ). (17.4)

Hence θ and η are dual affine coordinates. By introducing θ and η, the set of all p(x) forms a dual-
flat space with respect to the following Fisher information matrix (gij), (gij) as the Riemannian

metric, and the e-, m-connection coefficients Γ
(1)
jik, Γ

(−1)
ijk , respectively [16].

gij =
∂

∂θi

∂

∂θj
Ψ(θ), (17.5)

gij =
∂

∂ηi

∂

∂ηj
Φ(η), (17.6)

Γ
(α)
jik = [ji; k]− α

2
Tijk, (17.7)

where

[ji; k] =
1

2
(
∂

∂θi
gjk +

∂

∂θj
gik −

∂

∂θk
gij), (17.8)

Tjik = E[
∂

∂θi
log p(x)

∂

∂θj
log p(x)

∂

∂θk
log p(x)]. (17.9)

17.2.3 Decomposition of KL divergence to the First- and the Second-
Order Statistics

According to the definition of the Riemannian metric, information geometry gives the following
theorem.

Theorem

The coordinates θ2 = (θ3, θ4, θ5) are orthogonal to the coordinates η1 =
(η1, η2).

Therefore, we can compose the mixed orthogonal coordinates ζ as

ζ = (η1; θ2) = (η1, η2; θ3, θ4, θ5). (17.10)

Since all parameters µ1, µ2, σ11, σ12 = σ21, σ22 are included in ζ, the mixed coor-
dinates is sufficient to specify a probability distribution.

We use the Kullback-Leibler (KL) divergence to measure the discrepancy between
two vowels v1, v2 ∈ {/a/, /e/, /i/, /o/, /u/}. Denoting the probability distribution
of the vowels v1, v2 as pv1(x) and pv2(x), respectively, the KL divergence D[pv1 : pv2 ]
is defined as follows:

D[pv1 : pv2 ] =

∫ ∫
pv1(x) log

pv1(x)

pv2(x)
dx1dx2. (17.11)

In other way, we can also calculate D[pv1 : pv2 ] with θv1 = (θv11 , · · · , θv15 ) as
the θ-coordinates of v1, ηv2 = (ηv21 , · · · , ηv25 ) as the η-coordinates of v2, and their
corresponding potentials Ψv1(θv1), Φv2(ηv2):
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D[pv1 : pv2 ] = −
5∑
i=1

θv2i η
v1
i + Ψv2(θv2) + Φv1(ηv1). (17.12)

Using the orthogonality between θ- and η-coordinates, we have the following
decomposition of D[pv1 : pv2 ].

Theorem

D[pv1 : pv2 ] = D[pv1 : pv1v2 ] +D[pv1v2 : pv2 ], (17.13)

where pv1v2 are given by ζv1v2 = (ηv11 ; θv22 ) = (ηv11 , η
v1
2 ; θv23 , θ

v2
4 , θ

v2
5 ).

Since the coordinates θv22 include only the variance and covariance parameters,
the term D[pv1 : pv1v2 ] represents the discrepancy in the second-order statistics of
pv2 from pv1 , fixing the mean values µv1 as specified by pv1 . Then, D[pv1v2 : pv2 ]
represents the residual discrepancy purely in the mean values. This means that we
are not only able to evaluate the discrepancy between the vowels, but to decompose
its dependence into different orders of statistics.

Intuitive explanation of this theorem is shown in Fig.17.2 using one-dimensional
Gaussian distributions.

For simplicity in later section, we call the logarithm of the first term as the
variance component, while the logarithm of the second term as the mean value
component of KL divergence. We also define the logarithmic variance/mean com-

ponent ratio α as α =
logD[pv1 :pv1v2 ]

logD[pv1v2 :pv2 ]
for further correlational analysis. Considering

the perceptual difference of these parameters, this decomposition can find phonet-
ical meaning to study the equilibrium of vowel system (see later section). Hence,
in KL divergence, the temporal fluctuation of the formants are also taken into ac-
count, while in traditional cepstrum analysis, for instance, the definition of distance
between vowels are instantaneous and does not consider time-averaged higher-order
statistics. In other word, the Euclidian distance between cepstrum vectors is the
distance between stochastic variables, not between their probability distributions.

17.3 Result and Discussion

17.3.1 Distribution of KL Divergence between Vowels

We have calculated the KL divergence between each set of vowels for each person, and
obtained the histogram summing up the sample population. This can be considered
as the inter-individual distribution of japanese vowels. The log-normal distribution
fits well the both male and female population, as shown in Fig.17.3 and Fig.17.4. The
fitting of the histogram was performed estimating the mean value and the unbiased
variance.

We have also calculated the KL divergence between each set of vowels of 1 male
person, and obtained the histogram. The calculation was performed from 50 samples
of the same individual. This can be considered as the intra-individual distribution
of japanese vowels. The individual histogram also follows well the log-normal distri-
bution, as shown in Fig.17.5.
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Figure 17.2: Intuitive explanation of the Pythagorean theorem. One-dimensional gaussian
distributionsN(µ, σ) are taken as an example. The KL divergence betweenN(µa, σa) andN(µb, σb)
can be decomposed into the mean and variance discrepancy elements: D[N(µa, σa) : N(µb, σb)] =
D[(µa, σ)a : N(µb, σa)] +D[(µb, σa) : N(µb, σb)].

Figure 17.3: Distribution of KL divergence between vowels in 26 male population.
Horizontal axis: logarithm of KL divergence, Vertical axis: probability density.
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Figure 17.4: Distribution of KL divergence between vowels in 29 female population.
Horizontal axis: logarithm of KL divergence, Vertical axis: probability density.

Figure 17.5: Distribution of KL divergence between vowels in 50 samples from 1 male
person (provisionally called as individual B). Horizontal axis: logarithm of KL divergence,
Vertical axis: probability density.
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Next, we consider the relation between the population and the individual dis-
tribution. Taking the assumption that these distributions follow the log-normal
distribution, the estimated probability density of KL divergence are depicted in
Fig.17.6.

We first performed the F-test to reveal whether the variance of these distributions
are significantly different or not. The two-sided significance level was set to conven-
tional value 0.25. The result is listed in Tab.17.1. The individual distribution has
significantly different variance compared to that of the male and female population
distributions. On the other hand, the male and female population distribution do
not have significant difference.

Based on the result of the F-test, we performed the t-test to investigate whether
the mean value of these distributions are significantly different or not. The two-
sided significance level was set to 0.05. The result is listed in Tab.17.2. Again, the
individual distribution has significantly different mean value compared to that of the
male and female population distributions, while there exists no significant difference
between male and female.

These results imply that the individual distributions have statistically significant
fluctuation. Though, since the population distribution is equivalent to the mixture
of individual distributions, the fact that the population statistics converge to a par-
ticular distribution gives a collective limit to the individual fluctuation. This relation
is not trivial considering the fact that the mixture of different normal distributions
is not restricted to another normal distribution. Mathematically, it even has a ca-
pacity to approximate any continuous and differentiable function. The convergence
of population distribution is a proof of collective order in individual variability. This
reveals a hierarchical structure of the KL divergence distributions between individ-
ual and population. The individual distributions are distributed according to the
population distribution, and despite the restriction inside of population statistics,
each one is still able to express its proper variation. Therefore, the population dis-
tribution can be considered as an invariant distribution for the standard japanese
speaking population.

The coincidence of male and female distributions strongly supports the notion of
invariance above the superficial phonetic variation. The gender difference is often
studied in order to give distinctive feature between the two groups [130] [131][132],
though the converged distribution implies the existence of mutual order regardless
of gender profile.

Considering the acquisition process of vowel sounds, this structure may reflect
the learning process, because the individual statistics are collectively bounded by
the population one.In this sense, the population distribution also makes part of the
structural invariance of vowel system, which links the individual perception to the
collective definition of japanese vowel system [124].
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Figure 17.6: Estimated probability density function of KL divergence between vow-
els. The estimation was performed calculating the mean value and the unbiased variance of each
distribution. Horizontal axis: logarithm of KL divergence, Vertical axis: probability density.

I vs. M and F I vs. M I vs. F M vs. F

F-Value 0.8935 0.8955 0.8357 0.9332
Left Critical Value 0.9312 0.9166 0.9192 0.9061

Right Critical Value 1.0736 1.0932 1.0896 1.1032
Null Hypothesis False False False True

Table 17.1: F-Test between population and individual distribution of KL divergence.
The F-test is designed to test if two population variances are equal. The F-values, their left and
right critical values of the significance level 0.25, and the truth value of the null hypothesis are listed
for each combination of the distributions. I, M, F denote the individual B, the male population,
and the female population, respectively.

I vs. M and F I vs. M I vs. F M vs. F

p-Value 3.0731e-17 1.9563e-12 2.6790e-12 0.8965
Null Hypothesis False False False True

Table 17.2: t-Test between population and individual distribution of KL divergence.
Depending on the result of the F-test, the first 3 columns are the results of the Welch’s t-test, while
the last column is that of Student’s t-test. The p-values and the truth value of the null hypothesis
with respect to the significance level 0.05 are listed for each combination of the distributions. I,
M, F denote the individual B, the male population, and the female population, respectively.
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17.3.2 Relation between the Mean Value Component and the Variance
Component of KL Divergence

It has been revealed that the perception of each vowel largely depends on the first
and second formant frequencies [120] [121]. In this sense, the mean value of each
vowel’s formant is essential to recognize which vowel it is. Actually, the five vowels in
most of our experimental data form distinctive clusters in F1-F2 space (Fig. 17.7),
as reported widely in vowel systems (for example, [120] [133]).

On the other hand, the variances represent the fluctuation range of the formants,
and it gives an additional phonetic feature. The difference of the formants’ variances
can be recognized as a part of the differences in so-called voice quality. Indeed,
certain fluctuation of the formants is considered to relate the naturalness of vowel
sounds [122]. The frequency variance is also associated with the naturalness of tone
timbre [134]. Furthermore, distributions of vowels in variance parameter space show
certain localization of each vowel, which may give another distinctive feature (Fig.
17.8).

In our setting, the differences between vowel distributions depend on these param-
eters, the mean values and the variance-covariance matrix, that encode qualitatively
different perceptual information. Since the KL divergence between 2 vowels gives
mathematical discrepancy between the 2 distributions depending on the parameters
which affect our perception, it is natural to consider that it also reflects our cogni-
tive distinctiveness between these vowels. The decomposition of the KL divergence
into the mean value and the variance component enables us to investigate whether
there exists a balance related to the distinctiveness between them, when comparing
2 vowels.

The relation between the mean value and the variance/mean component ratio α
are plotted with linear regression in Fig.17.9. The correlation coefficients between
the mean value component, the variance component, and α are listed in Tab.17.3. In
each distribution, the variance component is correlated to the mean value component
to certain extent. Though, if we compare the mean component to α, there exist
less correlation. Especially, the sum of the male and female population shows little
correlation. This fact implies that the α is the invariant ratio between the mean value
and the variance component in population distribution. Indeed, α is symmetrically
distributed with a sharp peak, and fit well with normal distribution, as depicted in
Fig.17.10. The sharp symmetric peak supports the invariance of α in population
distribution.

More precisely, the variance component consists of 2 elements, the one which
is linearly proportional to the mean value component, and the other which is not
linear. The linear element is canceled out when measuring the correlation with
α. Although the latter exist certainly in individual distribution, it is consistent in
any distribution that the correlations between the mean component and α show
only weak correlation. Therefore, we deduce that the α is an invariant feature in
population distribution, while it accepts certain fluctuation in each individual that
cancels each other at the population level.
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Figure 17.7: Population distribution of five vowels’ F1 F2 mean values. M and F denote
male and female, respectively. Each vowel forms cluster in its characteristic frequency region.

M and F M F I

Mean vs. Variance 0.3242 0.1050 0.4923 0.3986
Mean vs. α 0.0444 -0.0890 0.1749 0.2365

Table 17.3: Correlation coefficients between the logarithms of the mean value com-
ponent, the variance component, and the variance/mean component ratio α of KL
divergence. For simplicity, the components are referred to as Mean, Variance, and α. The results
of the population and individual distributions are listed. I, M, F denote the individual B, the male
population, and the female population, respectively.

17.3.3 Vowel Combination-wise Distribution of KL Divergence

We further investigate the content of lognormal distribution between vowels by
decomposing it into vowel combination-wise distribution. Figs. 17.12 and 17.13
show the distribution of KL divergence for different combinations of vowels. The
combination-wise distributions also show the tendency to fit lognormal distribution
with various mean and variance, but contain certain fluctuation. This may be due to
the combinatorial decrease of the sample number in combination-wise distribution,
since the combination /a/-/e/, for example, is only 1/20 of the all possible combi-
nations between 5 vowels. The fact that the fluctuation reduces by taking larger
combinations such as /a/-/e//i//o//u/ also supports this notion. The distribution
between 5 vowels of the same sample number order also show large fluctuation, as
shown in Figs. 17.14. Although more accurate forms of the vowel combination-wise
distributions can only be verified by augmenting sample number, the circumstantial
evidences suggest the hierarchical structure between the individual and combination-
wise distributions similar to that of the population and individual ones: The vowel
combination-wise distributions seem to follow different lognormal distributions, un-
der global constraint of the individual distribution.
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Figure 17.8: Population distribution of five vowels’ F1 F2 variances. M and F denote male
and female, respectively. The top figure is the distribution on

√
σ11 -

√
σ22 plane. The bottom

figure is the side view of 3D plot. /a/, /o/ and /u/ are localized in relatively low F2 variance
region compared to F1 variance, while /e/ and /i/ are in relatively low F1 variance region. The
covariance axis does not seem to give distinctive feature among vowels.
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Figure 17.9: Relation between mean value component vs. variance/mean component
ratio α of KL divergence between vowels in 26 male (blue) and 29 female (red) popu-
lation. Horizontal axis: mean value component, Vertical axis: variance/mean component ratio α.
The lines are the linear regressions.

Figure 17.10: Distribution of variance/mean component ratio α in 26 male and 29 female
population. Horizontal axis: value of α, Vertical axis: probability density.
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Figure 17.11: Relation between mean value component vs. variance/mean component
ratio α of KL divergence between vowels in 1 male person (provisionally called as
individual B). Horizontal axis: mean value component, Vertical axis: variance/mean component
ratio α. The line is the linear regression.

Figure 17.12: Vowel combination-wise distribution of KL divergence of individual B.
From left to right: distribution of /a/-/e/, /a/-/i/, /a/-/o/, /a/-/u/, and /a/-/e//i//o//u/.

Figure 17.13: Vowel combination-wise distribution of KL divergence of male and female.
From left to right: distribution of /a/-/e/, /a/-/i/, /a/-/o/, /a/-/u/, and /a/-/e//i//o//u/.

Figure 17.14: Distribution of KL divergence between 5 vowels with reduced sample
number. Top: 2 samples of individual B (40 combinations of KL divergence). Bottom: 1 each
sample from male and female (40 combinations of KL divergence).
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17.3.4 The Origin of Lognormal Distribution in Vowel System: Weber-
Fechner Law in η Coordinates

We investigate the origin of the observed lognormal distribution by analyzing the
variation of vowels distribution in η coordinates.

It is known that independent multiplicative processes converge to a lognormal
distribution [135] [136]. The distributions of 5 vowels in η coordinates do not show
correlation between them. If the variance of each vowel in η coordinates is a mul-
tiplicative noise, the KL divergence between any combination of 5 vowels naturally
converges to a lognormal distribution, because its definition is based on the linear
combination of η coordinates (see eq. (17.12)).

Figs. 17.15 show the distributions of 5 vowels projected in η1−η2 plane. To verify
the existence of multiplicative noise, we calculate the following 2 kinds of variances:
The first one is the simple variance of each vowel in η coordinates, namely the
additive variance. The second one is also the variance of each vowel in η coordinates,
but divided by their mean value, namely the multiplicative variance. If the variance
of the vowels is multiplicative, the additive variance shows proportional increase
with respect to the mean value in η coordinates, while the multiplicative variance
remains constant.

Figs. 17.16 and 17.17 show the results which support the existence of multiplica-
tive variation. Multiplicative tendency exists both in population and individual
distribution in all dimensions of η coordinates. Therefore, the distribution on η co-
ordinates implies that the origin of the observed lognormal distributions is grounded
to its multiplicative variation. Note that the η1 and η2 coordinates corresponds to
F1 and F2 value, respectively.

The multiplicative variation in frequency space has perceptual meaning known
as Weber-Fechner law: For notes spaced equally apart to the human ear, the fre-
quencies are related by a multiplicative factor. Humans hear pitch in a logarithmic
or geometric ratio-based fashion. Musical scales are always based on geometric re-
lationships for this reason. In case of vowel system, this relation would support the
distinctiveness of each vowel. The observed lognormal distribution can be consid-
ered as the result of repulsive localization of each vowel according to the constant
perceptual distance between them.

The multiplicative factor is also interesting when we assume a constant degree
of accuracy in voice control. If the control precision of vocal tract is constant, the
vocalization is naturally associated with multiplicative noise with respect to the
produced frequency.

17.3.5 Relation to Ecological Linguistics: Invariants of Gibson Expanded

We started the analysis from the universalist point of view, seeking for the com-
mon structure of vowel system which would support our perception of harmonized
resonance in human language. In visual perception, Gibson insisted geometrical
invariants in optical flow as the foundation of perceptual significance [137]. The
observed invariant relations clearly relate to the principle of Gibson’s invariants, but
outreach simple pictures such as formants localization [138] and invariant quantity
under affine transformation [124]. The observed invariance has hierarchical struc-
ture between individual and population, different orders of statistics, and possibly
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Figure 17.15: Distribution of japanese 5 vowels in η1 − η2 plane. Left: Male and female.
Right: Individual B.

Figure 17.16: Mean vs additive variance of japanese 5 vowels distributions in η coor-
dinates. Left: Male and female. Right: Individual B. The proportional increase of the additive
variance implies multiplicative noise.

Figure 17.17: Mean vs multiplicative variance of japanese 5 vowels distributions in η
coordinates. Left: Male and female. Right: Individual B. The invariance of the multiplicative
variance implies multiplicative noise.
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between the single pair and the whole combination of the vowels. One way to ex-
plain such complex structure was introduced in reference to the Weber-Fechner law,
but the convergence of the population distribution and the relation between differ-
ent orders of statistics remain untouched. These relations may become a phonetic
expansion of Gibson’s invariant, which reflect the complexity of phonetic perception
deeply linked to our language faculty. The parallel study on the acquisition of vowel
system in children would be necessary to clarify the development of these features
[139][140].

It is of further interest how such invariance affect our perception of vowels, es-
pecially in case they are perturbed. Synthetic approach of vowel system controlling
the discovered invariant relations would be fruitful to further attack these questions.

17.4 Conclusion

We investigated the distributions of KL divergence between 5 japanese vowels, and
insisted that the population lognormal distribution and the variance/mean compo-
nent ratio α are invariant features. The hierarchical relation between the population
distribution, individual distribution, and vowel combination-wise distributions are
also investigated. The origin of lognormal distribution is shown to be based on the
multiplicative variation in formant frequency.

It is of further question whether such invariance can also be observed in other
vowel systems, or by simply increasing the heterogeneity of linguistic profile in sam-
ple japanese population. Aside of statistical invariance, the geometrical composition
of each vowel in the dual coordinates space remains to be analyzed. Further devel-
opmental and multilingual comparative study will be needed to relate the discovered
invariance of vowel system to our cognitive mechanism.
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Chapter 18

On Geometric Composition of
Vowel System

Abstract

We further investigate statistical dependency between japanese five
vowels with the use of information geometry. We question not only the
simple correlational analysis but the dependency following the m-geodesic
between the vowels which defined the projection of KL divergence in pre-
vious chapter.

We show that the five vowels are effectively in 2-dimensional surface
in η coordinates, and the fluctuation of the introduced circumcenter on
inter-vowel m-geodesic has uncorrelated noise with respect to its defining
vowels.

The localization of the circumcenter in θ coordinates will be also char-
acterized with the use of determinant |S| in formants distribution.

The results support the origin of invariant lognormal KL divergence
distribution found in previous chapter, and further imply the cognitive
condition related to the quadratic dependency between the vowels in η
coordinates.

Keywords: Information geometry, Vowel formant, Circumcenter, De-
terminant of formant distribution.

Methodology: Geometrical composition analysis of vowel system on
dual-flat coordinates of information geometry → Definition of circumcen-
ter between a pair of vowels with information geometry → Analysis of
geometrical composition and fluctuation of circumcenters on dual-flat co-
ordinates of information geometry

18.1 Introduction

In previous chapter, we investigated statistical property of KL divergence between 5
japanese vowels in both individual and population distribution. On the other hand,
statistical dependency between vowels is also an important question considering the
holistic order of vowel system. Do different vowels in an individual have correlated
fluctuation in formant frequency during different trials ? Does individual variation
contain correlated change inside of the population distribution ?
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Vowel formants are also known to localize in specific region proper to each vowel
[120]. The origin of the geometrical composition of vowel system is also a funda-
mental question. Why the vowels exist in such localization and not elsewhere ?

To tackle to these questions, we investigate the geometrical composition and
the statistical dependency between the japanese 5 vowels in dual-flat coordinates
defined in information geometry. For this purpose, we introduce the circumcenter
on m-geodesic between two vowels using the dual-flat structure of the statistical
manifold.

18.2 Geometrical Composition of Vowel System in the Dual
Flat Manifold

We first investigate the geometrical composition of the japanese 5 vowels in η coordi-
nates to clarify the parametric dependence between different dimensions. It is clear
from the definition of η coordinates that each dimension has independent degree
of freedom, with respect to the 5 parameters of 2-dimensional normal distribution
(µ1, µ2, σ11, σ12, σ22) for the vowel formant distribution fitting in F1-F2 space:

η1 = µ1, (18.1)

η2 = µ2, (18.2)

η3 = σ11 + µ2
1, (18.3)

η4 = σ22 + µ2
2, (18.4)

η5 = σ12 + µ1µ2. (18.5)

Actual distribution of the vowels in η coordinates, however, shows certain ap-
proximative dependency between them. Figs. 18.1 and 18.2 plot the 5 vowels with
individual and population distribution, respectively. Clearly η3 and η4 can be well
approximated with quadratic function of η1 and η2, respectively. η5 also has strong
quadratic dependency to η1 and η2.

Indeed, from the definition of η coordinates, η3, η4, and η5 are the quadratic
function of η1 and/or η2 except the intercept term. The intercept terms are the
elements of covariance matrix. The actual approximative relation means that the
variance of the mean values in F1-F2 space is much larger than the variance of
the formants. In other word, vowel distributions generally differ in mean formant
frequency and not in their form. Therefore, there exist globally only 2 effective
dimensions in the η coordinates. In short, the 5 japanese vowels and KL divergence
between them can be represented approximately as 2-dimensional pentacle in 5-
dimensional η coordinates (Fig. 18.3).

18.3 Dependency Test between Vowel Distributions

The statistics of KL divergence between vowels were studied in previous chapter.
We did not however investigate the statistical dependency between vowels, which
can generally vary under the constraint of the same lognormal distribution of KL
divergence. The multiplicative noise of vowel formants was suggested as the gener-
ating mechanism of the lognormal distribution, but the independence between noise
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Figure 18.1: Japanese five vowels distribution of individual B in η coordinates. Top:
η1 − η2 − η5 plot. Middle: η1 − η3 plot. Bottom: η2 − η4 plot. η3, η4, and η5 show quadratic
dependency to η1 and/or η2.
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Figure 18.2: Japanese five vowels distribution of 26 male and 29 female in η coordinates.
Top: η1 − η2 − η5 plot. Middle: η1 − η3 plot. Bottom: η2 − η4 plot. η3, η4, and η5 show quadratic
dependency to η1 and/or η2.
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Figure 18.3: Schematic representation of japanese five vowels distribution in η coor-
dinates. The vowels are aligned in effectively 2-dimensional surface according to the quadratic
dependency between η coordinates. KL divergence follow m-flat projection and draw the edges of
pentacle where 5 vowels form vertices. m-geodesic is expressed as linear function on η coordinates.

was not assured. To further clarify the geometrical relation in vowel system, we
question the statistical dependence of fluctuation between vowels in this section.

We first investigate the simple correlation in η coordinates. Figs 18.4 and 18.5
show the identical η plot between different vowels. Little correlation is observed in
an individual distribution, while population distribution shows positive correlation.
The positive correlation of the five vowels with the spreading of their first principal
components directions in a fan-like form support the possibility of the affine transfor-
mation approximation between individuals in η coordinates. In speech recognition,
the distribution of vowel cepstrum vectors is studied with mixture Gaussian model.
Invariant property of the vowel composition under affine transformation in Euclidian
space is applied to the perception of speaker-variable speech [124]. Therefore, similar
structural invariance may also hold in η coordinates in population distribution.

18.4 Circumcenter in the Dual Flat Manifold

We further investigate the dependency between vowels in higher order of principal
components. We question the dependency contained in the 2nd order principal com-
ponent of identical η plot. Under the presence of positive correlation in population
distribution, such element corresponds to a negative correlation or a counterbal-
ance between the fluctuation of different vowels. In case of decorrelation such as
in individual distribution, the counterbalance between vowel fluctuation may still
exist if they cancel out by the existence of hidden positive correlation. Even if both
positive and negative correlation exist in generating mechanism of vowel system,
the overall appearance can result in decorrelation. Indeed, an individual can easily
shift formant frequencies according to his/her voice pitch to maintain the vowelness,
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Figure 18.4: Individual distribution of each pair of japanese five vowels plotted with
the same element of η coordinates. From top left to right bottom: Plot with η1, η2, η3, η4,
and η5. For example, the plot /a/ vs /e/ for η1 coordinate is the plot using both the η1 value of
/a/ (horizontal axis) and /e/ (vertical axis). The data are from individual B.
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Figure 18.5: Population distribution of each pair of japanese five vowels plotted with
the same element of η coordinates. From top left to right bottom: Plot with η1, η2, η3, η4,
and η5. For example, the plot /a/ vs /e/ for η1 coordinate is the plot using both the η1 value
of /a/ (horizontal axis) and /e/ (vertical axis). The data combined both 26 male and 29 female
samples.
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which produces nothing but a positive correlation in individual distribution [141].
Since simple correlational analysis can not separate these components, we introduce
the notion of circumcenter on dual-flat manifold to further test the existence of
counterbalance between vowels.

In Euclidian space, the midpoint of two points is defined as their minimum
equidistant point with respect to Euclidian norm. In the dual flat manifold of
exponential family, we define the midpoint vij of two vowels vi and vj as the equal
and minimum distance point with respect to m-divergence (KL divergence):

argmin
η
vij

{D(vi||vij)|D(vi||vij) = D(vj||vij)}. (18.6)

Whereηvij is the η coordinates of vij, and D(·||·) is the m-divergence (KL divergence)
from the first to the second point in the argument. Such midpoint exists in the m-
geodesic connecting vi and vj (Fig. 18.6).

The KL divergence minimum condition of vij can be proved with the use of
Pythagorean relation by defining the e-flat geodesic θe.l. as an equi- m-divergence
line from vi and vjas follows:

D(vi||θe.l.) = D(vj||θe.l.), (18.7)

where vij ∈ θe.l.. The line defined by θe.l. is an orthogonal median line of the m-
geodesic vi-vj with respect to Fisher metric and e-m- connection.

Then the following Pythagorean relations prove the KL divergence minimum
condition of the midpoint vij:

D(vi||v′) = D(vi||vij) +D(vij||v′), (18.8)

D(vj||v′) = D(vj||vij) +D(vij||v′), (18.9)

where v′ ∈ θe.l.. The minimum of D(vi||v′) = D(vj||v′) corresponds to the condition
that v′ is in the m-geodesic between vi and vj, which coincides with vij (Fig.18.6).

The midpoint and orthogonal median line can be generalized for an arbitrary set
of vowels vi, vj, · · · , vk less than seven as the following vij···k and θe.l.:

argmin
η
vij···k

{D(vi||vij···k)|D(vi||vij···k) = D(vj||vij···k) = · · · = D(vk||vij···k)}, (18.10)

D(vi||θe.l.) = D(vj||θe.l.) = · · · = D(vk||θe.l.). (18.11)

In case of the circumcenter of more than two vowels, the equidistant line is needed
as an auxiliary line for numerical algorithm.

For geometrical reason, we call this vij···k as the circumcenter, and θe.l. as the
equidistant line of vi, vj, · · · , vk. The circumcenter of different number of vowel set
represents different order of statistical dependency between vowels, which contains
up to the equivalent order of principal components in identical η plot (Figs 18.4 and
18.5). Therefore, we call the circumcenter defined on n (2 ≤ n ≤ 6) vowels as n-th
order circumcenter. For example, the distribution of the 3rd order circumcenter
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between /a/, /e/, and /i/ contains the information on the origin of 2nd and 3rd
principal components in the identical η plot.

Examples of the results of the 2nd order circumcenter between two vowels are
depicted in Figs. 18.7 and 18.8. The variance of the 2nd order circumcenter does
not differ significantly with the average of the defining vowels. This means that
there exist no significant pairwise counterbalance with respect to the informational
distance(KL divergence) between different vowels fluctuation.

These results are negative for the existence of hidden negative correlation between
vowels, though they contain some positive aspect concerning the origin of lognormal
distribution. The decorrelation between vowels in both individual and population
distributions assures the presence of uncorrelated dimension in multiplicative noise.
Despite the positively correlated distribution in population sample, uncorrelated
multiplicative process is still contained in both individual and population distribu-
tion. Furthermore, the m-geodesic connecting two vowels and their circumcenter
coincides with the projection line of KL divergence between two vowels in previous
chapter. The positive correlation was actually detected in population distribution,
and can be easily introduced by varying the voice pitch in individual. The first
principal components of these positive correlations generally differ from m-geodesic
between vowels (Fig. 18.9). Therefore, the fluctuation of the circumcenter can be
important to assure the statistical property of vowel system invariant of pitch varia-
tion. The decorrelation on the m-geodesic between different vowels strongly supports
the origin of lognormal distribution of KL divergence as uncorrelated multiplicative
noise.

Figure 18.6: Schematic representation of 2nd order circumcenter and equidistant line
between two vowels. The m-geodesic between two vowels vi and vj is orthogonal to the equidis-
tant line θe.l. which is e-geodesic. The circumcenter vij is situated at the intersection of these
geodesics, and is the closest point from vi and vj on the equidistant line with respect to KL
divergence.

18.5 Localization of Determinant |S| in Vowels and Circum-
centers

The distribution of the 2nd order circumcenter did not change significantly in vari-
ance with respect to its defining vowels. On the other hand, there exist significant
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Figure 18.7: 2nd order circumcenter distribution between vowels /a/-/e/ of individual
B in η coordinates.
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Figure 18.8: 2nd order circumcenter distribution between vowels /a/-/e/ of 26 male
and 29 female in η coordinates.
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Figure 18.9: Schematic diagram of the relation between positive correlation of two vow-
els and fluctuation of 2nd order circumcenter in η coordinates. Vowel fluctuation contains
positive correlation in population distribution, and can be introduce by voice pitch variation in in-
dividual distribution. The fluctuation of circumcenter reflects the components other than positive
correlation, including the variation on m-geodesic where inter-vowel KL divergence was measured
and followed lognormal invariant distribution. The decorrelation between the two vowels in the
direction of the m-geodesic is observed as the non-decrease of the 2nd order circumcenter variance,
which provides the uncorrelated multiplicative noise in KL divergence between vowels.

localization of circumcenter in θ coordinates. Figs. 18.10 show the examples of
localization.

Such localization was dominantly under the effect of |S| value, which is a common
multiplicative factor of θ coordinates as follows:

θ1 =
1

|S|
(σ22µ1 − σ12µ2), (18.12)

θ2 =
1

|S|
(σ11µ2 − σ12µ1), (18.13)

θ3 = − 1

2|S|
σ22, (18.14)

θ4 = − 1

2|S|
σ11, (18.15)

θ5 =
1

|S|
σ12. (18.16)

Where |S| = |σ11σ22 − σ12σ12| .
Figs. 18.11 and 18.12 show the distribution of |S| value for each pair of vowels and

their 2nd order circumcenter. The circumcenters are clearly distinguished from other
vowels by |S value in log scale. Figs. 18.13 show the color gradient expression of |S|
value projected in η1-η2 plane. The distribution of |S value in Figs. 18.11 and 18.12
suggest the existence of a sea star shape barrier of |S| value on the effective surface
made of inter-vowel m-geodesics. Since there exist superposition between vowels and
circumcenters in the projection, the color gradient interpolation are blurred at the
frontier between vowels in Figs. 18.13.
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Fig. 18.14 expresses schematically the sea star shape barrier of |S| value. Such
landscape of |S| value can be explained by the geometrical composition of the five
vowels in Figs. 18.1 and 18.2. The η coordinates of the vowels contain quadratic
dependency between different axes, while the 2nd order circumcenter is defined on
the m-geodesic, which is the first-order line connecting two vowels. This means the
2nd order circumcenter certainly deviate from the quadratic relation between vowels,
as seen in Figs. 18.7(Middle) and 18.8(Middle). These deviations are the origin of
the high |S| value in circumcenter.

The high |S| value is the result of unbalance between the variance parameters σ11,
σ22 and the covariance parameter σ12. Indeed, the quadratic dependency between
η coordinates of the five vowels has different scales in the variation of η1 and η2

values (Figs. 18.1 and 18.2 horizontal axes). The difference of these variations
results in the variation of η3, η4 and η5 values through quadratic dependency, which
becomes the variance ratio between the parameters σ11, σ22, and σ12 in the 2nd
order circumcenter: The variance ratio between σ11: σ22: σ12 is about 6 : 50 : 10
in the individual distribution (Figs. 18.1 vertical axes), and 12 : 70 : 16 in the
population one (Figs. 18.2 vertical axes). Therefore, the linear deviation of the 2nd
order circumcenter from the quadratic vowel surface is about 5 times larger in σ22

than σ12, while σ11 remains close to σ12. This causes the high |S| value distribution
in a sea star shape between vowels.

The 2nd order circumcenter exists between two vowels as their equidistant and
nearest distribution with respect to the KL divergence. It is therefore the interme-
diate distribution of two vowels with respect to the form of distribution. The high
|S| value barrier between vowels may be a way to explain the quadratic localization
of vowels in geometrical term: The intermediate vowels between the existing ones
break the balance between the mean parameters and variance parameters of formant
distribution, which contradicts to the invariance of the variance/mean component
ratio α in previous chapter. The high |S| value of the 2nd order circumcenter in-
versely suggests the role of the formants’ variance/mean ratio in the recognition of
vowels.

Following this hypothesis, the |S| value may also be considered as the filtering
function of vowels. This situation is similar to the color perception where it is
possible to find filtering functions based on optical characteristics, which largely
coincide with linguistic categorization of colors in many languages [142].

18.6 Conclusion

We investigated statistical dependency between five japanese vowels, as well as the
property of the 2nd order circumcenter distribution in dual-flat coordinates. The
results showed quadratic dependency between η coordinates, positive correlation
between different vowels in population distribution, and uncorrelated fluctuation
of 2nd order circumcenter which supports the origin of invariant KL divergence
lognormal distribution as multiplicative noise. The observed high |S| value in the 2nd
order circumcenter distribution implies the role of variance-covariance parameters
in vowel perception.



290 CHAPTER 18. ON GEOMETRIC COMPOSITION OF VOWEL SYSTEM

Figure 18.10: Examples of localization of 2nd order circumcenter in θ coordinates. Left:
Plot of /a/(blue), /e/(green) and their 2nd order circumcenter(red) in θ1-θ2 plane of individual
B. Right: Plot of /a/(blue), /e/(green) and their 2nd order circumcenter(red) in θ1-θ2 plane of 26
male and 29 female population.

Figure 18.11: |S| value of five japanese vowels (blue and green) and their 2nd order
circumcenter(red) of individual B.
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Figure 18.12: |S| value of five japanese vowels (blue and green) and their 2nd order
circumcenters(red) of 26 male and 29 female.

Figure 18.13: |S| value of five japanese vowels and their circumcenters projected as color
gradient in η1-η2 plane. Top 2: individual B. Bottom 2: 26 male and 29 female. The left figures
show |S| value as color gradient, and the right figures are the vowel distributions in η1-η2 plane.
(The low |S| regions in population distribution are blurred by the superposition of different vowels
and their circumcenters.)
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Figure 18.14: Schematic representation of |S| value landscape on the effective surface
of inter-vowel m-geodesics. The |S| value is low around the five vowels, while becomes high
around their 2nd order circumcenter.
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Chapter 19

Methodology for Dialectic
between Linguistic Theory and
Mathematical Modeling and Its
Application to Modeling
Multilingual Environment with
Contact Process

Abstract

We seek for a path to benefit a class of mathematical model to con-
cretize and develop conceptual theory in ecological linguistics. We propose
two steps of interaction both from linguistics side and modeling side: The
first step is to appropriately define the model according to a linguistic the-
ory by symbolizing the measurable primary variables and function. The
second step is to perform analysis on the simulated model, and define the
secondary variables to further expand the former linguistics theory.

An example of such dialectical modeling is demonstrated with the use
of contact process, to model language acquisition in multilingual environ-
ment. The simulated model reproduced the spacio-temporal cluster dy-
namics of multilingual states with highly significant correlation among lan-
guages. The relative instability of bilingual states are also observed. The
results support the working hypothesis of multilingual activity in Hippo
Family Club.

Keywords: Contact process, Multilingual environment, Multilingual-
ism, Natural acquisition of language, Ecology

Methodology: Formulation of dialectical strategy between linguis-
tic theory and mathematical modeling compatible to modeling with dy-
namical system and analysis with information geometry → Modeling of
multilingual environment with contact process as a stochastic dynamical
system→ Tentative correlation analysis of simulated contact process with
information geometry → Theoretical development of a probability propa-
gation analysis of the contact process model with dynamical system and



294CHAPTER 19. DIALECTIC OF LINGUISTIC THEORY & MATHEMATICAL MODELING

information geometrical perspectives

19.1 Preface: Context of work

This chapter is realized in a working group “Groupe de travail sur l’approche
écologique en linguistique et en anthropologie (GdT- ELA )”, at the Institute of

Complex System Paris-̂Ile de France (ISC-PIF), during the academic year 2007-
2008.

The project aims to develop an interdisciplinary field situated principally in the
interaction between linguistics, ecology, philosophy, anthropology, and mathemati-
cal modeling. The goal is not to complete an empirical work with already estab-
lished academic framework, but to seek for a new methodology to break the barriers
between separated fields, and to form novel transdisciplinary questions. This per-
spective inevitably shares some of important aspects with complex systems sciences,
especially in the concept of emergent patterns in interacting population dynamics
such as “écotone” proposed in ecology [143]. Similar concept in the organization of
cognition and action also exists in linguistic anthropology, as a mutual elaboration
of linguistic and gestural modalities to animate the discourse in individuals [144].

This work is realized with constant discussion and contribution of the members
with different academic backgrounds, often contradicting in their proper terminol-
ogy and methodology. The results put emphasis on the proposition of novel inter-
disciplinary methodology than the presentation of the findings. This work is also
supported by the Lex Institute (the Institute for Language Experience, Experiment,
and Exchange) in Japan, both to establish a working hypothesis in multilingual
language acquisition and to collect the questionnaire data.

19.2 Introduction

The collaboration between physics and linguistics has been difficult in the way lin-
guistic phenomena include human. The relativity of observation required to treat
human-integrated systems destroys the fundamental principle of measurement in
physics, which is based on isolating the observables from other interactions. The
remarkable encounter between the celebrated linguist and physicist in 1958 ended
up with the conclusion that declines the equivalence between linguistics and other
“exact” sciences in term of the scientific precision [145].

The difficulty also lies in the indifference that separates the literacy forming each
culture. Especially, there exist mutually exclusive dependencies in both ways around
mathematics, completely exclude it or utilizes it as fundamental description of the
nature [146].

Although, in linguistics in a large sense, there exist also interdisciplinary domains
including physics of sound, neuroscience, mathematical modeling in various levels of
syntax, etc [121][147][148]. Especially the newly emerging complex systems science
aims to promote the interdisciplinary interactions to find the descriptive parameters
specific to or universal in a variety of strongly and nonlinearly correlated systems.
This has become possible only recently with the development of the computation
technology with which we are able to simulate rapidly large-scale dynamical systems.
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Before the innovation of the high-speed computation, mathematical description
was limited to give linguists the observed facts and its mathematical orders for
further linguistic consideration. Some analytically developed models also provided
the abstract level of description that can be interpreted as essential structures of the
phenomenon [149].

With the invention of simulation technology, we have become accessible to a large
class of mathematical models that can incorporate conditions supporting linguistic
plausibility. Here, the compensation principle of Niels Bohr may still find its way in
the way of cooperation between mathematical modeling and linguistic theory.

In this article, we propose a dialectical way of interaction between mathematical
modeling and linguistic theory, to overcome the operational limit of usual linguistics.
We first try to implement the ecological approach in linguistics into mathematical
expression. Next, we try to derive new variables from the simulated phenomenon,
that can expand linguistic concepts to reinterpret the wider reality.

19.3 Minimum Requirement for Ecological Approach in Lin-
guistics

The ecological approach assumes the systems where variables and their interactions
are inseparable. The variables are the symbolized quantity which we can measure
from real phenomena. Though, isolated observation of a single variable is not suf-
ficient for ecological problem setting. We are interested in how the variables are
affected by the interactions, and how the interactions change according to the vari-
ables. The mutual spiral of the feedback between the variables and the interactions
is the irreducible unit to perceive the reality in this approach.

The variables and the interactions in issue generally range quite widely including
nonlinear forms, time dependencies, etc. We have abstracted the minimum require-
ments for plausible mathematical models that can serve for ecological linguistics.
The conditions consists of three principles:

1. The model consists of variables and functions as interactions among variables.

2. The variables and the interactions depend on each others.

3. Existence of time axis.

Possible candidate class of model can be expressed as stochastic dynamical system
in the following general forms,

d

dt
x(t) = F(x(t), σ), (19.1)

in continuous time system, and

x(t) = F(x(t− 1), σ), (19.2)

in discrete time system in case of order one. The x(t) = (x1(t), · · · , xn(t)) is the
n-dimensional variable at time t, and the function F define the interactions. σ is
the stochastic variable in case to model unavoidable noise or to adopt stochastic
model such as contact process. Hence, this class of model includes the classical
Lotka-Volterra equation in mathematical ecology [150] [151].
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19.4 Methodology for Dialectic between Linguistic Theory
and Mathematical Modeling

We define the above defined variables x as primary variables, which are the sym-
bolization of observables in reality. The primary variables are not necessary the
observables themselves, but should incorporate parameters that can be measured
from real situation. Once the model is properly established, it becomes possible to
perform a series of analysis including simulation on this model. The defined class of
model is known to produce a variety of complex dynamics including chaos and per-
colation [152][153]. Both analytical and numerical analysis further reveal the nature
of the established model, which belongs to the interest of physics. This analysis de-
pending purely on logical operations leads us to consider on the simulated dynamics
of the model, and gives us the idea to recode them with different symbols according
to linguistic interests. We call such newly defined symbols on the model dynamics
as secondary variables. For example, several statistics of simulated time series are
candidates of the secondary variables. We express the secondary variables as the
function of the primary variables V(x). The secondary variables are not necessary
the observables in reality, but are derived from the combination of the linguistic
conceptualization and mathematical analysis. This does not intend to create the
reality in the model, but to help further hypothesis forming to expand the former
linguistic theory, aiming to treat a wider and more profound range of reality. Such
interaction is dialectical in the sense both mathematical modeling and linguistic
consideration are supporting the novel concepts attributed on secondary variables,
and the meaning is only defined in the cross-reference. The expanded theory resets
the stage of discussion in purely linguistic framework, and starts in turn to seek for
actual phenomena to evaluate the new hypothesis. The conceptual scheme of this
strategy is depicted in Fig. 19.1.

19.5 Modeling Multilingual Environment with Contact Pro-
cess

We take in this section a concrete example in sociolinguistics to realize the insisted
interaction between linguistic theory and mathematical modeling. Note this is an
on-going subject and we are limited in this article to give a progress report.

19.5.1 Contact Process with Interacting Variables for Modeling Lan-
guage Acquisition in Multilingual Environment

Language acquisition is one of the important issues considering the human being in
its interacting population. Most humans communicate via oral language, and the
language faculty is one of the definitions that best differentiate human beings from
other animals.

Though, it is widely known that language itself is not a genetically programmed
characteristics. It is acquired from the environment in which other humans are
communicating with the use of it. The inability to acquire human language of feral
children is an incidental example that revealed the language environment is necessary
for the first language acquisition [154]. Languages do not generate spontaneously in
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Figure 19.1: Conceptual scheme of the dialectic between linguistic theory and math-
ematical modeling. Based on a linguistic theory, we symbolize a part of linguistic reality as
primary variables and functions to form a mathematical model which satisfies the minimum re-
quirement. Then, the logical operation on this model enable us to perform simulation and its
analysis, which have the possibility to overcome conceptual and operational limit of former linguis-
tic theory. The result of the simulation and the analysis bring us the inspiration to define secondary
variables, which can be used to reinterpret the reality with an extended theoretical framework.

a short time period from isolated individual, but rather maintained and transmitted
between individuals, evolving its structure. In this sense, the acquisition of language
in human population has a similar property with the transmission of epidemic disease
[155].

Since the acquisition of language in each individual is inseparable with the inter-
actions with other individuals, the subject typically requires the ecological approach
to treat the phenomenon in its synthetic entity. When considering the language
acquisition, we need to reconsider what the language environment is. Although
there exist politically labeled official languages in each nation, actual dynamics of
languages propagation cannot be necessary encapsulated in political system, and is
reported to be based on multilingual state where plural languages are in constant
competition [156].

Such situation can be abstracted with the use of the contact process model, which
we adopted to model language acquisition in multilingual environment. The contact
process is also used as a model of epidemic disease propagation, communication
model on the web, trend model in sociology, etc [157].

We define the contact process with interacting n-dimensional binary variables
η(j) ∈ {0, 1}n on one-dimensional circle lattice with N nodes (1 ≤ j ≤ N). Here,
the state ηi(j) = 1 represents that the node j is able to communicate in i-th language,
while ηi(j) = 0 is the lack of competence. The node can represent an individual or
a group of homogeneous language profile. If η1(j) = η2(j) = 1 and η3(j) = · · · =
ηn(j) = 0 then the person j is bilingual of the first and second languages in the list.
Network topology can further incorporate realistic contact structure, but is limited
to the circle lattice in this article for basic analysis. The model can be formulated
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using the generator Ω as follows [153]:

Ωf(η) =
∑

j∈{1,··· ,N}

c(j, η)[f(ηj)− f(η)]. (19.3)

Where the variables ηj represent ηj(k) = η(k) for (1 ≤ j 6= k ≤ N), and ηj(j) =
1 − η(j) for (1 ≤ j = k ≤ N). f(·) is any two bounded increasing function on
the real line. The transmission rate ci of the i-th language for the node j and the
variables η is given by

c = (c1, · · · , ci, · · · , cn), (19.4)

ci(j, η) = (1− ηi(j))× λ
∑

|k−j|=1 (mod N)

ηi(k)

2
× Poly (R)

R
+ ηi(j), (19.5)

R =

∑
|k−j|=1 (mod N)

∑
1≤i′≤n ηi′(k)

2
. (19.6)

The weighting function Poly(R), its regularization factor R and parameter λ (0 ≤
λ ≤ 1) define the transmission probability of languages to the j-th node in the
next time step. To incorporate the interactions between languages in multilingual
environment described in the following sections, we define Poly(·) as polynomial
function for the accessibility to data fitting. Note that the elimination rate is fixed
to 1 in contact process, therefore the time step does not necessary corresponds to the
actual generation of human population. This assumption does not change qualitative
feature of the model.

In this model, the variables η correspond to the primary variables x in equation

(19.2), defined with the parameters Poly(R)
R

measurable from the questionnaire (See
sections 19.5.3, 19.5.4, 19.5.5).

19.5.2 Multilingual Effect on Natural Language Acquisition in Experi-
mental Activity at Hippo Family Club

The multilingual activity of Hippo Family Club started in Japan to overcome the
limit of analytical linguistics in practical acquisition of languages ranging in all age
groups. Language educations based on the combination of reduced units such as
vocabulary, grammar, pronunciation, etc., tend to tear apart the integrity of the
growing language in individual in the name of “foreign” language, which attenuate
the learning motivation far before reaching one’s actual capacity [158]. This can be
considered as a typical example in complex systems that the induction from seg-
mented levels of observation does not allow us to deduce the synthetic rules of the
entire phenomenon. Natural acquisition of plural languages in multilingual coun-
tries, on the other hand, are usually associated with daily practical use, where the
achievement of communication is the primal task. The inductive units of languages
emerge through unconscious trial and error process, which is the same natural path
as the newborn baby’s first language acquisition.

In Hippo Family Club, there exist no teachers, no classes, no tests. Members
participate to the so-called “Family activity” where they play, sing and dance to-
gether in the immersion of 19 languages, by imitating the registered sound [159].
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This activity is inspired by the founder (Yo Sakakibara) from the ordinary scene
in Luxembourg, where children in the park play in several languages [160]. It is
further developed through experiences of accepting non-japanese people from over
128 countries in members’ houses in the form of homestay. Besides the Family ac-
tivity, members also have occasions to participate in short-time homestay programs
in 21 countries, not to learn the languages but simply to become friends with people
who speak these languages. One of the main objects in this program is to have the
experience of speaking spontaneously without logically considering whether one is
making mistakes.

Through these activities in Hippo Family Club, we have come to discover the fact
that people who speak more than one languages tend to acquire more rapidly new
languages. This suggests the existence of multilingual effect on language faculty,
that the acquired languages reinforce the acquisition of new languages.

Several members of Hippo Family Club also insist that intermittent exposure to
three or more languages of different competences help us to relativize them, clear
away the mental barrier to face them, and subjectively facilitate the acquisition.

These collective experiences lead us to establish the two working hypothesis:

1. The multilingual environment may facilitate simultaneous plural languages ac-
quisition.

2. Multilingual person may have greater capacity and efficiency to acquire new
languages.

In this article, we consider the first hypothesis for modeling language acquisition in
multilingual environment.

19.5.3 Investigation on Multilingual Environment in Singapore

We investigated the multilingual environment in Singapore by means of the ques-
tionnaire concerning the language environment and acquired languages of the re-
spondent. The form of questionnaire is shown in Appendix Fig. 19.12.

Singapore is a multilingual country where there exist four official languages with
equal status, Mandarin, Malay, Tamil, and English. Language education has been
strongly promoted by the People’s Action Party, which has been the ruling political
party since 1959. They insist the “bilingual policy” to manage ethnic diversity, and
expect people to acquire at least two languages including English. At the same time,
equality of three major ethnic groups, the Malays, the Chinese, and the Indians, is
strongly controlled with the principle of “multi-racialism”, so that each population
enhance their distinctive cultures, languages, heritages and values [161] [162] [163].
The situation gives us an idealistic field of investigation where people are exposed
to four distinctive languages with writing systems in daily life. Besides the official
languages, there exist local variants in each language. For instance, people originated
from the south part of china tend to speak in Cantonese, which is a dialect of chinese
languages, but phonetically quite different from Mandarin. We also reflected such
variations in the questionnaire.

We obtained the data from 30 volunteers living in Singapore. As every person
cooperated to the questionnaire spoke more than one languages, we combined the
results of additional 8 Japanese for monolingual data. We will investigate the result
with the proposed linguistics-modeling interaction in the following sections.
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Since the sample number is not sufficient to establish an empirical model with
accurate statistics, we are limited to give some hypothetical analysis based on some
typical cases of simulation results.

19.5.4 Competition Model: Linear-Response Acquisition Hypothesis

We define here the exact form of the transmission rate defined in equation (19.5).
Let us assume the total amount of information rate IT that exists in multilingual
environment with lenv languages. The IT is a measure of language stimulus that
can serve for the acquisition, represented in one-dimensional quantity. This is for
example the amount of time one spend to listen, speak, read, and write in a day.
Then the mean amount of information exchanged for each language is IT

lenv
. If we

judge the acquisition of a language by putting certain threshold in its competence, we
can assume the existence of the mean critical information IC to acquire a language.
This represents the amount of experience necessary to acquire a new language. Note
that the unit of IT and IC is not important in this approach. It cannot even be
measured properly in real situation. What is important is the ratio between IT
and IC that determines the mean acquisition rate out of lenv languages. This is
an invariant structure of the model as long as languages competitively divide the
information holding additive axiom, regardless of its way of measurement.

If we assume that each of lenv languages equally divide the total information
IT , there exist critical value nC of lenv where IT

lenv=nC
becomes less than IC . This

situation means that the individual is not able to acquire any language due to the
lack of information. At this point, it is not realistic because such incompetence
of language acquisition does not occur in real situation. The distribution of IT is
not necessary equal among coexisting languages, and anyone can acquire at least
one language more or less frequently used around him or her. Therefore, we derive
the fluctuation around the mean divided information IT

lenv
with normal distribution

N(µ, σ), where µ = IT
lenv

is the mean value and σ is the variance. Since the change
of σ is qualitatively replaceable to the corresponding scale transformation of IT and
IC that maintain the IT/IC ratio invariant, we fix the variance as σ = 1.

With such fluctuation, the mean acquisition rate lacq in the multilingual environ-
ment with lenv languages can be estimated as follows.

lacq = lenv ×
∫ IT

IC

1√
2πσ

exp

(
−

(z − IT
lenv

)2

2σ2

)
dz. (19.7)

The calculation results with realistic parameters is plotted in Fig. 19.3. The follow-
ing linear relation is observed in realistic situation lenv ≥ 1.

lacq ∝ lenv. (19.8)

We call this relation as linear-response acquisition hypothesis, based on the purely
competitive interaction between languages. The corresponding contact process model
is with the linear interaction Poly(lenv) = p1lenv + p2 (p1, p2 ∈ R) and the regular-
ization factor R = lenv as the parameters of primary variables in equation (19.5).
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Figure 19.2: Divided amount of information for each language in competition. Horizontal
axis: Number of languages lenv in the environment, Vertical axis: Mean information IT

lenv
divided

to each language. Additional fluctuation of information distribution was defined with the normal
distirbution N(µ, σ) where µ = IT

lenv
.

Figure 19.3: Estimated acquisition rate of languages in competition model. Horizontal
axis: Number of languages lenv in the environment, Vertical axis: Expecting number lacq of acquired
languages. lacq is proportional to lenv in a wide range of realistic parameters.
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19.5.5 Positive/Negative Interaction Model: Non-Linear Effect of Mul-
tilingual Environment on Language Acquisition

We test the formerly developed linear-response hypothesis with the use of actual
data, and consider a more plausible model as an expansion.

From the questionnaire, we calculated the number of languages lenv that existed
in the respondent’s ordinary language environment. We also define the acquired
number of languages lacq to investigate the acquisition rate from the environment.
The precise definition of the language environment and the acquired languages for
data extraction are described in Appendix.

Acquisition rate of actual data is plotted with linear and polynomial fitting in Fig.
19.4. Actual data generally conserved the linear relation, supporting the competition
model. On the other hand, augmenting the order of polynomial, there exist slightly
positive mean effect in 3 ≤ lenv ≤ 5 region, and negative effect in lenv = 2, 6
regions. Such deviation from linear-response model can be considered as the positive
and negative non-linear interaction effects on the acquisition between competing
languages. We call this acquisition curve as positive/negative interaction model or
simply as interaction model. We chose the polynomial of order 5 for the fitting,
since it is the minimum order that assures the minimum squared error fitting for 6
values of lenv.

The positive/negative interaction model can be formulated as contact process
using the following definition of the parameters of primary variables in equation
(19.5).

Poly(lenv) = p1l
5
env + p2l

4
env + p3l

3
env + p4l

2
env + p5lenv + p6, (19.9)

R = lenv =

∑
|k−j|=1 (mod N)

∑
1≤i′≤n ηi′(k)

2
, (19.10)

where p1, · · · , p6 ∈ R are the coefficients of the fitting polynomial.

Figure 19.4: Acquisition rate of languages in multilingual environment. Horizontal axis:
lenv. Vertical axis: lacq. The blue circles are the results of the questionnaire in Singapore with
monolingual data of Japan. The green and red lines are the fitting with first- and fifth- order
polynomials, respectively.
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19.5.6 Simulation Result

We investigate the dynamics of the established models by simulating the contact
process. To focus on the percolation state where languages prevail in the population,
we fix the model parameter λ = 0.3 in equation (19.5).

The dynamics of the competition model and the positive/negative interaction
model are depicted in Fig. 19.5 and Fig. 19.6, respectively. In each case, the
evolution of spatio-temporal clusters representing multilingual states (for example,
nodes with lacq ≥ 3) are observed. The clusters tend to be more distinctive in the
positive/negative interaction model. This implies the effect of non-linear interactions
to aggregate the multilingual state.

Since the relative stability of multilingual state and instability of bilingual state
are reported through Hippo activity, we also simulated the interaction model with
the bilingual initial condition in Fig. 19.7. The bilingual states are shown to be
extinguished after falling into monolingual states. This dynamics qualitatively fit to
the conflict between two languages in bilingual states and the associating inhibition
of the acquisition [158].

To analyze the statistical feature of the modeled dynamics, the histograms of lacq
of the models are shown in Figs. 19.8 and 19.9. Both models express equivalent
appearance rate in lacq ≤ 4 states, except the relatively high bilingual and trilingual
states in the interaction model. The uniformity of distribution in the histograms
imply the existence of correlations in high orders of interaction.

Figure 19.5: Dynamics of the competition model. Horizontal axis: Node number 1 ≤ j ≤ N .
Vertical axis: Time step. The color indicates the value of lacq. N = 100. Initial condition was
taken randomly.

19.5.7 Analysis of Order-wise Correlations

To detect the degree of interactions in simulated process, we calculated the order-
wise correlations among languages with χ2-value based on [77]. We simply analyzed
the correlations among the first four variables (x1, x2, x3, x4) summarized for all
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Figure 19.6: Dynamics of the positive/negative interaction model. Horizontal axis: Node
number 1 ≤ j ≤ N . Vertical axis: Time step. The color indicates the value of lacq. N = 100.
Initial condition was taken randomly.

Figure 19.7: Dynamics of the positive/negative interaction model with bilingual initial
condition. Horizontal axis: Node number 1 ≤ j ≤ N . Vertical axis: Time step. The color
indicates the value of lacq. N = 100. Initial condition was taken randomly for η1 and η2.
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Figure 19.8: Histogram of lacq in competition model. Horizontal axis: lacq, Vertical axis:
Occurrence number divided by the node number N = 100 and total time step 100.

Figure 19.9: Histogram of lacq in positive/negative competition model. Horizontal axis:
lacq, Vertical axis: Occurrence number divided by the node number N = 100 and total time step
100.
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nodes, ignoring x5 and x6. This statistics is an example of the secondary variable
introduced in the methodology section.

The results are shown in Figs.19.10 and 19.11. In all orders of correlations, there
exist significance with respect to the 5 percent significance level of χ2 test. Such
state can be considered as the product of transmission through contact. Remark-
ably, the fourth-order correlation in the interaction model is more significant than
some of the third- and second-order correlations. The spontaneous transition to
multilingual activity in Hippo Family Club experience may relate these statistics,
where simultaneous acquisition of plural languages was significantly promoted with
the presence of four languages [158]. If we consider the direct analogy of the sim-
ulated results, it implies that such spacial accumulation of languages is one of the
emergent property arising from the contact relation. Indeed, Hippo activity empha-
sizes to play with language sounds, together with other people, which realizes the
contact relation taking place in natural acquisition [160].

Figure 19.10: χ2-values of order-wise correlations in competition model. Horizontal axis:
Each combination of correlation represented simply with the order. Vertical axis: χ2-value (posi-
tive/negative sign imply the positive/negative correlation, respectively). The 5 percent significant
level of χ2 test is 3.841.

Figure 19.11: χ2-values of order-wise correlations in positive/negative interaction model.
Horizontal axis: Each combination of correlation represented simply with the order. Vertical
axis: χ2-value (positive/negative sign imply the positive/negative correlation, respectively). The
5 percent significant level of χ2 test is 3.841.
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19.6 Further Consideration

19.6.1 On working Hypothesis of Multilingual Acquisition

The models can further be expanded to incorporate the second working hypothesis:
non-linear effect of multilingual person on language acquisition. For this purpose, it
suffices to expand the model, introducing the axis of previously acquired language
number of each node which positively modifies the transmission rate c. We need
however much more empirical data to fit this model.

Since contact relation is estimated to be essential for the genesis of multilingual
state, network topology should be further considered including the implementation
of a real social network structure. The visiting dynamics of Hippo members to
Family activities should be investigated. If the model can propose optimal contact
frequency between individual to maximize the propagation of multilingual state, it
may be possible to apply it in the way of organizing Family and foreign exchange
activities at a collective level.

19.6.2 Theoretical Consideration

The break of symmetry in each order of the correlations may also relate the mecha-
nism of transmission through contact. The nature of the established models is also
an important issue, such as the classification of the universality class.

The contact process is mostly studied with variables without non-linear interac-
tion. The overall transmission rate is simply calculated by linearly summing the
single transmission rate according to the state of adjacent nodes. However, recent
study in epidemiology reports the existence of non-linear interaction between vari-
ables which affect the transmission rate [164]. Our model gives a standard framework
to treat such interaction with contact process. In other words, the positive/negative
interaction model incorporates non-linear interaction between variables in classical
SIR model. We add some theoretical remarks on the stability analysis of the steady
state in probability propagation.

Let us consider the probability propagation of the n-node contact process with 2
sets of n-dimensional variables, namely x = (x1, · · · , xn) and y = (y1, · · · , yn), which
interact non-linearly with each other. The transition probability function matrix T
is formally defined as follows:

T

[
xt
yt

]
=

[
Tx

Ty

] [
xt
yt

]
, (19.11)[

Tx

Ty

] [
xt
yt

]
=

[
xt+1

yt+1

]
. (19.12)

Where t is the discrete time.
Then the k-periodic steady state x1, · · · ,xk and y1, · · · ,yk of the probability

propagation T is defined as follows for 1 ≤ t ≤ k:

[
Tx

Ty

]k [
xt
yt

]
=

[
xt
yt

]
. (19.13)
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Such steady state is under constraint of network structures between nodes inde-
pendently defined for x and y. For example, two interacting epidemics can have
different transmission modalities such as vector-borne infection of malaria and sex-
ual transmission of HIV.

The stability of the steady state is compatible to linear stability analysis, and
the Lyapunov exponents can be derived from the product of Jacobian T′. If we
define the perturbation of x and y as δx and δy, respectively, we have the following
first-order approximation:

Tt

[
x0 + δx
y0 + δy

]
∼ Tt

[
x0

y0

]
+ T′

[
xt−1

yt−1

]
· · ·T′

[
x0

y0

] [
δx
δy

]
. (19.14)

Then the following product J of Jacobian T ′ gives the Lyapunov spectrum with a
standard numerical method such as Gram-Schmidt orthogonalization.

J = T′
[

xt−1

yt−1

]
· · ·T′

[
x0

y0

]
. (19.15)

The analysis of probability propagation can be further extended to the informa-
tion geometrical framework. The dynamics of probability propagation should be
considered as a dynamical system in the Riemannian space with Fisher information
matrix as the metric. The linear stability can be measured with respect to the in-
finitesimal distance on this manifold which is approximately twice the KL divergence
between adjacent points. The space also includes singular points of the zero param-
eters of a discrete distribution which are expressed as positive/negative infinity in
the natural parameters of exponential family.

19.7 Conclusion

We have developed a framework for a synergetic interaction between linguistic theory
and mathematical modeling. Ecological approach for modeling language acquisition
in multilingual environment with the use of contact process derived some examples of
qualitative correspondence between typical model statistics and the working hypoth-
esis from multilingual acquisition experiences. Further investigation with sufficiently
large number of samples is needed to augment the plausibility of the model.

19.8 Appendix

The actual format of the questionnaire used in this study is shown in Fig. 19.12.
In modeling section, the acquisition of a language was judged whether the respondent
achieved at least one level B competence in one of the Listening/Speaking/Reading/Writing
ability. The number of environmental factors lenv were calculated from the number
of languages filled in the questions 2,4,5,6,7.



19.8. APPENDIX 309



310CHAPTER 19. DIALECTIC OF LINGUISTIC THEORY & MATHEMATICAL MODELING

Figure 19.12: Template of the questionnaire about multilingual environment and mul-
tilingualism.



Part VII

General Discussion

311





313

Chapter 20

General Discussion

Abstract

We review the results of this thesis and examine the contribution to
complex systems sciences with respect to the proposed complementary
strategy between dynamical system and information geometry in Part 1
(General Introduction). Comparison between the emergent properties in
neural and social organization will be particularly issued as a concrete
example. Further possibility along this strategy and novelty of the estab-
lished models are also discussed. The results imply the effectiveness and
possibility of the proposed strategy toward a universal characterization of
complex systems in relationalistic viewpoint.

Keywords: Constructive methodology, interaction-analytical method-
ology, functor, meta-functor, organization of interactions

20.1 Introduction for General Discussion

In Parts 2 to 6, we investigated concrete subjects of complex systems using ana-
lytical tools derived from both dynamical system and information geometry. The
analysis was performed in the global view of the complementary strategy between
the constructive and interaction-analytical methodology. In Parts 2 to 6, we mainly
discussed the contribution to each discipline. In this Part, we consider inter-subject
comparison based on our modeling results to seek for universal properties of emer-
gence beyond particularity of components as universal structures of meta-functor
network, as introduced in Part 1.

20.2 Complementary Approach to Complex Systems: Di-
alectic Between Constructive and Interaction-Analytical
Modeling

We review and integrate the complementary strategy between the constructive and
interaction-analytical methodologies, based on the main results of modeling in Parts
2 to 6. Fig. 20.1 summarizes the results with respect to the proposed strategy.

The analysis of constructive modeling with the use of functor network is demon-
strated in Part 2 and 3. The chaotic neural network (CNN) is a constructive model
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of brain as a complex system. The firing patterns of the network, including the
hierarchical restriction based on the structure of invariant subspaces are the func-
tion of neuron outputs, therefore correspond to functors. The analysis of system
decompositionability after autonomous learning is the analysis of functor network
with information geometry. Investigation in Part 2 revealed the property of chaotic
itinerancy as a catalyst of learning, which implied certain role of dialectical infor-
mation processing in CNN. This contribution serves to the model identification of
autonomous learning in actual brain.

The dynamics of chaotic roving robot in Part 3 are also functors, since they are
also based on the dynamics of CNN. Analysis on the dynamics or the robots were
performed using plural statistical measures, including theoretical development of
multi-scale evaluation on collective infotaxis using information geometry. The design
of robot is not a modeling of actual system, but their collective search capacity is the
emergent property based on the interaction between robots, which are themselves
chaotic elements. The statistical analysis on the dynamics therefore serves to the
identification of the collective infotaxis as complex systems.

Analysis of social network data in Part 4, on the other hand, directly measures
the dynamics of complex systems without constructive model. The order-wise corre-
lations, edge information, system decompositionability and the proposed complexity
measures are the functors of data variables. The extraction of these functors are a
part of the measurement process of complex systems and establish functor networks
for further analysis including meta-functors.

We also proposed a way to link this interaction-analytical methodology of social
network to a constructive methodology, with the use of the return map analysis from
dynamical system theory. This is the case where a functor network model serves
directly as the phase space of dynamical system in the formalization of constructive
methodology. This realizes the constructive modeling based on the functor network
model of actual data. Here, the interaction-analytical methodology serves as an
analytical interpreter of complex systems, to better extract its interactions for a
constructive modeling.

Such association of the constructive methodology from the interaction-analytical
methodology is also proposed in Part 5. In EM-clustering, the primary variables of
an embryo are approximated with Gaussian mixture model, whose Gaussian com-
ponents form functors of data. The temporal development of embryo expressed in
the parameter space of EM-clustering is nothing but a dynamical system defined on
functor network model.

On the other hand, the primary variables for the detection of dynamical tissue is
based on the vector field, which is a dynamical system representation. The definition
of dynamical tissue is based on the statistical relation between these vectors, with
the use of information geometrical measures. This is the inverse case where we
calculate the functors from the phase space of constructive model.

The invariants of vowel system detected in Part 6 are an example of deterministic
structure in functor network. Such invariance of functors is a candidate features to
define the universality in complex systems, and is also accessible to further construc-
tive modeling. We will further investigate the relation between the invariance and
universality of functor network in the following sections.

The modeling and analysis of multilingual environment with the use of contact
process with non-linear interaction in Part 6 is simply a constructive modeling using
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stochastic dynamical system and its tentative analysis with information geometry.
Though, the conceptual framework unifying the methodologies of linguistics and
mathematical modeling aims to establish further dialectical refinement of the model.
The analysis of functor network on the constructive model is expected to bring novel
insight beyond the intuition of existing linguistics, which would lead to discover
hidden reality of the phenomena. The accumulation effect of multilingual state via
contact relation is an example of such novelty. Reconsidering the non-trivial fact
derived from the analysis of functor network, another constructive model should be
proposed including the extended reality of the target system.

Figure 20.1: Integrated constructive and interaction-analytical methodology.

20.3 Universal Structure of Functor Networks in Different
Levels of Emergence

In this section, we evaluate the contribution of the complementary strategy on the
understanding of the emergence in terms of the organization of interactions. Our
strategy had in global scope the characterization of different levels of emergence with
compatible mathematical frameworks, so that to discover the universality that does
not depend on the particularity of the components. The effectiveness of this strategy
can be examined by comparing the results of Part 2 and Part 4, which connect
the neuronal to neural network level and individual to social level of cognition,
respectively. The micro-macro hierarchy of neuron-brain-society is an important axis
for the understanding of intelligence as complex systems, whose emergent property
is always based on the interaction between different levels of dynamics.

20.3.1 Multiple Complexities Analysis as Meta-Functor Network Anal-
ysis

The comparison between the results of Part 2 and 4 is schematized in Fig. 20.2.
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In Part 2, we investigated the effect of autonomous learning on memory structure
during the chaotic itinerancy state of CNN. Information geometric characterization
of this process was performed by the measurement of inter- subsystem interactions,
which are mathematically identical to the system decomposition in Part 4. Inter-
subsystem interactions in CNN are functors since they are functions of the output
variables. The statistical interactions between each subsystem becomes larger and
more homogeneous as the autonomous learning proceed in non-trivial manner. Such
dynamics of attractor recombination is a simplified candidate model of the autonomy
of the brain producing novel information with the use of neuronal plasticity. In
terms of statistical interactions, this process can be regarded as a complexification
associated with the emergence of novel attractors.

In Part 4, direct analysis of political weblog data was performed with the use of
multiple complexity measures. Here, the order-wise interactions, multi-information,
system decompositionability, and edge information are functors. We evaluated the
temporal dynamics of the french presidential in terms of the functor network anal-
ysis. The emergence of public opinion was characterized with multiple perspectives
according to the property and relations of these functors.

On the other hand, other complexities based on the system decomposition, such as
cuboid-bias complexities and modular complexities, are classified as meta-functors,
since they are functions of system decompositionability being a functor. The analysis
of meta-functor network brought a finer view on the emergence of collective semantic
trend in the blogosphere, relating the dynamics of a single subsystem to the total
coherence of the system.

If we consider the comparison between the emergence in CNN and social network
treated in Part 2 and 4, simple comparison of functor networks is mostly limited to
state the augmentation of statistical interactions. The statistical complexification is
a long repeated insistence on the process of emergence, but we cannot find further
utility of the functors besides this ordinary regime. The dynamics of some charac-
teristic subsystems seems too much grounded to the particularity of the system, and
is difficult to find the universal platform of comparison.

The meta-functor networks of the proposed complexities in Part 4, on the other
hand, has a possibility to compare these different levels since they do not explic-
itly depend on particular variables nor interactions, but on the way interactions
are organized. The meaning of the dynamics of functors are also clarified and put
in universal platform by contextualizing them with meta-functors. The theoretical
framework enables the comparison between functors, based on the concepts associ-
ated with the definition of meta-functors. The relation between meta-functors, or
the analysis of meta-functor network, further create multiple criteria of comparison
that are self-contained and time-independent since they refer to each other. We
can close the description between them without referring to other global dynamics
depending explicitly on the time axis. The increase and decrease of a complexity
measure can be analyzed in comparison to other measures, as the way of organiza-
tion of interactions comparing different hierarchy of the system. The actual events
depending on the time axis can therefore be evaluated inversely from the functor and
meta-functor network. As the level l of metal-functor augments, possible relations
between metal-functors increase in combinatorics order. The investigation of the
universality between different levels of emergence therefore requires the theoretical
invention and selection of metal-functors in view of the comparison between different
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levels.
For a concrete comparison of CNN and social network in meta-functor level, the

regularized cuboid-bias complexity CR
c is expected to play a key role in meta-functor

network analysis. The augmentation of statistical interactions during autonomous
learning of CNN is associated with the increase of homogeneity of system decom-
positions, that corresponds to the maximization of CR

c . For the analysis of social
network, the meta-functors corresponding to novel complexities CR

c ,CR
m,Cm, and Cm

all showed different dynamics. Since the overall degree of statistical interaction such
as the multi-information I can not be an universal measure to compare different phe-
nomena, a self-contained measure of relation between subsystems and total system
is necessary for the comparison. For that purpose, the novel regularized complexities
such as CR

c and CR
m can be regarded as universal measures. Other complexities such

as Cc and Cm are dependent to the multi-information I which can differ according
to the particularity of the system. The relation between the proposed meta-functors
and other functors based on the CR

c and CR
m would be a concrete strategy in our

theoretical framework to compare different models such as CNN and social network.
In Part 2, we only analyzed the system decompositionability of CNN during

chaotic itinerancy before and after autonomous Hebb learning. To compare the
emergent properties between the CNN and social network, we calculated the cuboid-
bias and modular complexities as meta-functors of CNN. The results are shown in
Figs. 20.3 and 20.4.

The both learning dynamics of Fig. 20.3 are the emergent process of novel at-
tractor E
F with different learning coefficient ε. The top figure shows almost
monotonic increase of all complexities until it reaches to the maximum value of CR

c

and CR
m. The value of the multi-information I and other related complexities are

also bounded and maintain the maximum value after 60 learning steps. The system
decompositionability after the 0 and 350 learning steps are analyzed in Part 2.

The bottom figure, on the other hand, shows longer transient dynamics of com-
plexities change until the novel attractor emerges around after 300 learning steps.
Since the overall system is completely deterministic, the dynamics until 300 learning
steps is necessary as the accumulative learning history, and in terms of internal mea-
surement framework is a part of emergent process seeking for a pseudo-solution with
intrinsic mechanism. The dynamics of the complexities show compensatory oscilla-
tion after 140 learning steps, between the cuboid-bias complexities Cc and CR

c , as
well as between the modular complexities Cm and CR

m. Especially around the learn-
ing steps 160, 260, and 400, the relative values of I, Cc and Cm show local maxima,
while those of CR

c and CR
m are local minima. This means that the augmentation of

the multi-information I is owned by some specific subsystem.
Indeed, as we investigate the shortest decomposition path defining the modular

complexities of this dynamics in Figs. 20.4, different specific subsystems show high
internal coherence at the learning steps 160, 260, and 400. At the learning step 160
and 400, the interaction between the 1st and 4th nodes drastically increase and own
much of the information increase. While at the learning step 260, the interaction
between the 2nd and 3rd nodes is the emergent core of interaction.

Such dynamics is qualitatively similar to that of emergent process of collective
opinion in social network during the 1st and 2nd round of French presidential 2007
detected in Part 4. If we compare the emergent process of CNN in Part 2 and
social network in Part 4, in terms of the relative dynamics between meta-functors,
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or the meta-functor network analysis, such qualitatively similar structure can serve
to construct a typology of emergent process. As we have insisted, the abstraction up
to the level of meta-functor realized to set a common language to compare between
neural and social emergence in terms of the organization of interactions.

With the complementary strategy between the constructive and interaction-analytical
methodologies, we have established an information geometrical framework that en-
ables to compare between different levels of emergence with multiple analytical per-
spectives. The novel complexities as functors and meta-functors provided finer char-
acterization of emergence by referring to each other on the complementarity basis
between them.

Figure 20.2: Discovered universality in functor networks structures in different levels
of emergence.

20.3.2 Example of Common Structure as Meta-Functor in Theoretical
Neuroscience and Systems Biology

The proposed framework to compare commonality between different levels of or-
ganization can be utilized to integrate the knowledges of different research areas
with complex systems perspectives. The reinterpretation using the concepts of vari-
ables, functors, and meta-functors sets a common platform to discover the universal
structure of emergent property in different systems. This will serve for the integra-
tion of scientific knowledge, overcoming the adverse effect of highly segmentalized
professionalism, and cultivate holistic insight on what we have achieved as the un-
derstanding of living nature in relationalistic viewpoint.
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Figure 20.3: Dynamics of cuboid-bias complexities during chaotic itinerancy after au-
tonomous Hebb learning of CNN. Top: kr = 0.4, α = 5.0, T = 10000, ε = 0.01. Bottom:
kr = 0.4, α = 5.0, T = 10000, ε = 0.001.

Figure 20.4: Shortest decomposition paths and KL divergences of modular complexities
during chaotic itinerancy after autonomous Hebb learning of CNN. Top: Modular com-
plexity Cm. Bottom: Regularized modular complexity CRm. Vertical axes represent KL divergence
and regularized KL divergence, respectively. kr = 0.4, α = 5.0, T = 10000, ε = 0.001 were used
that corresponds to the Bottom of Fig. 20.3.
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Here, we cite one of the interesting common structures of systems expressed
as meta-functors in neural and cellular cognition. A multilayer perceptron is a
feedforward artificial neural network model that maps sets of input data onto a set
of appropriate output. It is more powerful than the standard linear perceptron in
that it can distinguish data that is not linearly separable [165]. The chaotic neural
network model introduced in Part 2 is also a part of it. If we interpret the multilayer
perceptron with the use of meta-functor network model, the variables of neuron
model correspond to the variables, interactions between neurons to functors, and the
network structure to meta-functor. The three or more layer structure supporting
the non-linear separation ability can be first defined in meta-functor level.

Such network structure was also found in various signal transduction pathways
by systems biology, such as epidermal growth factor receptor (EGFR), G-protein
coupled receptor (GPCR), and toll-like receptor (TLR) signaling networks [166]
[167]. The so-called bow-tie structure of these networks are topologically equivalent
to the multilayer perceptron, therefore expressed as identical feature in meta-functor
level.

In both cases, the existence of classifier hyperspace supported by the mid-layer
elements enables the network to realize complex nonlinear input-output relations.
Although the nature of components are quite different between neurons and proteins,
as well as its interactions, the meta-functor level expression codes the same structure
and the same function. It may imply more than a simple mathematical analogy, but
a possible universal structure supporting various levels of cognition, whether it is
in cellular/molecular or neural ones. The use of meta-functor concept helps us to
clarify the relation between the knowledges of different research areas in terms of
common function. Such correspondence between meta-functor levels implies further
extension of the concept of functor from function to category, which is recently
investigated in quantum physics.

20.3.3 Invariance/Determinisity in the Distribution of KL Divergence

Similar comparison of emergent property also applies in other results that are not
necessary integrated in micro-macro hierarchy. The invariance of inter-vowel KL di-
vergence distribution in Part 6 is another example of meta-functor, since it describes
the relation between the KL divergences that are functors of formant frequency vari-
ables. Such deterministic characteristic features were first observed at the level of
meta-functor. This is different from other invariant quantities in statistical physics
such as scale-free features in self-organized critical phenomena, since these belong
to the functors. The invariants that first appear at the meta-functor level are the
novel discovery for the characterization of emergence in vowel system.

The invariance of meta-functors based on KL-divergence distribution is also
strategically proposed in Part 5, for the characterization of a normal process of
embryogenesis in the EM-clustering space. Individual variations are the relation
between individuals, that are formalized with KL-divergence as functors taking each
individual process as variable. The quantification of individual variations and fuzzy
definition of normal developmental process can be formalized as the functions of
these functors, that are nothing but the quantitative classification of meta-functors.
Categorization of normal/pathological processes is possible with respect to the in-
variance of meta-functors.
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20.3.4 Toward Relationalistic Typology of Emergence

As a conclusion of this section, the comparison of functors and meta-functors dy-
namics between different systems set up a transversal perspective to universally
characterize the emergence and derive its typology. Fig. 20.5 shows the three axes
to relate emergent properties of different complex systems: The first axis is the
spacial localization of interactions, such as the degree and heterogeneity of edge
information on network presentation. The second axis is the variability of tempo-
ral evolution of these leading interactions, such as in case of CNN highly coherent
subsystems changes temporally its spacial localization during autonomous learning
(Figs. 20.3 and 20.4), while studied social dynamics showed less variability and
always maintained the hardest core of interaction. The third axis is the statistical
order of interactions first revealed and independently decomposed with the use of
information geometry. How high-order statistics are involved in emergent process is
an important key to characterize the nature of interaction in collective level. With
the use of these three axes, one can situate all kinds of emergent property of differ-
ent complex systems in terms of the organization of interactions, as long as they are
accessible to the proposed dialectical methodology.

Figure 20.5: 3 axes for relationalistic typology of emergence. Spacial localization, temporal
evolution variability, and statistical order of interactions enable to characterize emergent prop-
erties of complex systems and to transversally compare in relationalistic level as the dynamical
organization of interactions.
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20.4 Integration of Micro Model

One of the critics against our approach would be the relative lack of importance on
conventional micro models of each subject, which corresponds to the variation of
variable networks in our framework. In this thesis, we have centralized our effort
to generalize from particular to meta-level interactions to obtain universal property
of emergence in complex systems. Once the universality is characterized, we need
the opposite direction of modeling to contextualize the phenomenological models in
each subject. The integration of micro models based on various variable networks in
each discipline into our proposed universal framework is necessary to solve particular
problems in each scale.

Such effort to integrate complex systems science perspective and other system
theoretical approach is not yet necessary pursued even in rapidly developing field
such as theoretical biology. Research field seems to be divided into whether to
solve concrete problems with concrete models such as in systems biology [168], or to
establish an universal class of model beyond particularity of individual system with
strong intuition from physics which would encompass essential property of living
organism such as in complex systems life science [10].

20.5 Dynamical Tissue and Internal Measurement

The modeling and detection of dynamical tissue in Part 5 was an attempt to in-
corporate internal measurement theoretical view into empirical phenomenological
model. As discussed in Part 2, morphogenetic process during embryogenesis is a
typical example of internal measurement, where the stability of the whole coor-
dination is achieved by the components only having local information. Since the
bottom-up mechanism from cellular to tissue level can be properly explained with
measurement-oriented than state-oriented theory, the modeling also requires to in-
corporate internal observers as a representation of cells.

Indeed, the definition of dynamical tissue is based on the local relative coordi-
nates between neighboring cells, and do not depend on global information. This
is the very information that contribute to the mechanical relation between cells as
internal observers. The local relative coordinates are the functors of cell move-
ment vector fields, and their correlation are meta-functors. The dynamical tissue is
therefore based on the thresholding of meta-functors. A comprehensive theoretical
model based on such internal observers will only be simulated in high-performance
computer, to reproduce in silico experimental platform for drug test.

To validate the internal measurement theoretical formalization, we always need
the empirical measurement that belongs to the state-oriented paradigm to obtain col-
lective dynamics data. Internal measurement theory gives an appropriate definition
of the coordinates to describe effective interactions for the cells, while experimen-
tal measurement gives the database to decide the parameters of internal observers.
We believe that the dialectic between the external measurement experiment and
the internal measurement theoretical modeling is a fruitful way to decipher com-
plex emergent property in morphogenesis. The limit of empirical modeling in the
measurement-oriented theory can be compensated by the advancement of measure-
ment technology. Comprehensive simulator integrating both theoretical precision of
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local interaction and empirical measurement data will be a promised way toward
the augmented virtuality of embryogenesis.

20.6 Relation with Open Systems Science

The concept of complex systems sciences is widely spread and taken with deep
consideration in various research fields. Though, in most cases, researchers tend
to simulate complex systems based on primary variables derived from reductionist
approach, and investigate the effect of interaction between them. Such approach
is strongly limited to the primal symbolization of the variables, which in complex
systems of real world, neither guaranteed to be measurable in precision, nor even
definable as appropriate components of the system since the effective unit of com-
ponents may change in time line.

There has recently been a proposition to further expand the concept of complex
systems science and overcome those difficulties facing real world problems, with
the name of “open systems science” [169]. In contrast to closed systems that are
accessible with external observation, expert view with deep but narrow knowledge,
static modeling, and possible to provide strong/complete solutions, the open systems
are characterized by the necessity of internal observation, holistic view, consideration
of temporal development, and are only possible to “manage” the problems in the
time line with best effort. In open systems, not only the understanding of the system
by analysis and synthesis, but the “management” becomes one of the most important
scientific issues. Complex systems science actually deal with both closed and open
systems, but is basically anchored to the first definition of the system components
and does not accept the modification of their definition in the time line, which is
not sufficient to treat open systems in a long run. The concept of “management” is
neither sufficiently considered in application to technology, including the long-term
social effect of scientific invention.

In open systems science, the methodology of reductionism is strongly conditioned
by the 4th criterion of René Descartes, the process of verification, by which we should
thoroughly evaluate whether we did not omit anything to sufficiently reconstruct the
whole property of the system [170]. After a tentative establishment of a model, if
there is still something wrong or missing, we should reconsider the definition of the
components itself both in quantitative and qualitative manner to attain the sufficient
quality of modeling. The ever-changing tentative definitions of system components
are called “micro theories” in open systems science, which can be usually extracted
from a sufficiently huge and empirical database with the use of computer. With
such incessant trial and error approach always profoundly doubting the plausibility
of components definition, we may manage to adapt to the dynamical change of
open systems, find path to cope with problems in real world, and realize sustainable
society.

With this respect, the three axes for the typology of emergence should also con-
sider the way of observation behind the axis of statistical order (Fig. 20.5). Since
statistics practically depend on the past data to obtain sufficiently large sample
number, in the real-time management of open systems from inside, it is not always
useful nor available. One should consider the methodological limit of conventional
statistics for transient phenomena, and intelligently incorporate internal observer’s
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view always conditioned by the observation.
The concepts and mathematical models developed in this thesis are also pro-

foundly related to open systems science. The autonomous learning in Part 2 can
be considered as the coupling between the variables and parameters in dynamical
systems, which modify the model definition in the time line. This bring an impor-
tant methodological framework in open systems science in which the parameters of
a subsystem are basically variables of other ones.

The novel complexity measures, system decomposition, edge information, and
order-wise interactions developed in Part 4 can quantify the inter-subsystem inter-
actions, therefore express the temporally changing dominant source of information
in the system. This is compatible to the derivation of “micro theories” by flexibly
adjusting the effective definition of the system components, in this case the division
of strongly correlated subsystems.

The unification of the internal measurement model and empirical external mea-
surement of cell movement in Part 5 suggests a common ground that would unify
novel measurement-oriented theory, in toto experimental measurement and massive
calculation in silico.

Interfacing linguistics theory and mathematical modeling in Part 6 provides a
novel way of expanding science and knowledge in an opposite but constructive way
to the specialization of academic fields. To obtain deeper and wider understanding
of multilingual environment is also an important subject in open systems science,
toward the mutual understanding of human being beyond language barrier in the
coming century.

20.7 Conclusion

We reviewed the results of each Part, from a global comparative viewpoint along
the complementary strategy between the constructive and interaction-analytical
methodologies proposed in Part 1. The translation of the concrete analysis in each
Part into the definition of functors and meta-functors are performed. Meta-functor
network analysis on different levels of emergence between the chaotic neural network
and social network derived a typology of emergence in terms of the organization of
interactions. Further open-ended discussions are listed to apply the proposed com-
plimentary methodology in a wide range of complex systems sciences and beyond.
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Chapter 21

Méthodologie dialectique entre
système dynamique et géométrie
informationnelle :
Vers une typologie transversale
des systèmes complexes

Résumé

Ce chapitre résume la contribution méthodologique et métathéorique
de cette thèse. Nous étudions d’ abord l’ ensemble des interactions possi-
bles du système qui deviennent les paramètres dominants par rapport à l’
augmentation de sa taille. Ensuite, nous développons la méthodologie
dialectique entre la théorie de système dynamique et géométrie infor-
mationnelle afin de analyser l’ effet des interactions comme l’ origine
des phénomènes émergentes. Application de cette méthode aux plusieurs
systèmes à différentes échelles implique la possibilité de construire la ty-
pologie transversale de l’ émergence, basé sur la nature statistique et la
dynamique de l’ organisation des interactions qui ne dépendent pas ex-
plicitement de la propriété des composants.

21.1 La définition des systèmes complexes et les paramètres
dominants

Selon l’ enquête du communauté scientifique autour de la science des systèmes com-
plexes au japon, les systèmes complexes sont définis comme le suivant [3]:

“ les systèmes qui se constituent des composants variés, multiples, non-linéaires,
parmi lesquels existent les interactions non-linéaires qui est la source de la propriété
globale émergente, et réciproquement, les composants mêmes sont sous l’ influence
de l’ état globale. ” (Traduction par M. Funabashi)

La définition rigoureuse mathématique des systèmes complexes est difficile, cars sa
propriété émergente est conditionnée par l’ échelle d’ observation. Ce qui parâıt triv-
ial par la vue de l’ extérieur n’ est pas explicite par l’ observation intérieure, et vice
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versa. Rien que le procès de relaxation vers l’ équilibre globale en thérmodynamique
n’ est pas explicite si lÔ on se limite l’ observation aux interactions locales entre les
particules. Il est cependant évident que certain effet non-linéaire des interactions lo-
cales jouent un rôle essentiel des phénomènes émergents. S’ il existe la caractérisation
transversale de l’ émergence, la formalisation nécessite une approche relationnelle
ancrée au niveau des interactions, qui est la propriété distincte de la particularité
des composants hors de l’ état d’ organisation. Notre approche commence donc par
examiner le nombre des paramètres nécessaires pour définir un système de plusieurs
composants. Considérons la formalisation stochastique d’ un système (qui peut
être déterministe) avec en général n variables, et étudions l’ effet et nombre des
interactions. Dans l’ étude des systèmes complexes, la vitesse de propagation des
interactions est en général essentiellement limitée par rapport à sa taille, qui limite
le pouvoir de contrôle global ou centré de chaque composant. Cette prémisse est
différente de celle des systèmes physiques où on peut ignorer la plupart de cas le
temps de transmission des interactions tels que la lumière, la gravité, ou ignorer
analytiquement la phase de transmission même, ce qui n’ est pas le cas des interac-
tions locale des systèmes complexes comme l’ effet physico-chimique entre les cellules
de l’ embryogenèse. Si on limite la vitesse de propagation des interactions par un
constant, l’ effet que peut donner un composant au système entier se diminue à la
puissance −1 par rapport à la taille n de système (Fig. 21.1 haut). Contrairement,
le nombre des paramètres des interactions nécessaires pour définir complètement la
distribution jointe de système augmente en combinatoire, et devient tout de suite
les paramètres dominants du système (Fig. 21.2 bas). Les interactions se définissent
non seulement entre chaque pair des composants, mais entre tous les sous-ensembles
2 ≤ k ≤ n comme les éléments indépendants de point de vue mathématique. Déjà à
la taille n = 7, plus de 99% des paramètres représentent l’ interaction entre les distri-
butions marginales de chaque composant. Cette richesse des interactions possibles
soutient la possibilité sous-jacente des phénomènes émergents. Les paramètres des
interactions de haut niveau ne sont pas encore étudiés intensivement dans le domaine
de système complexe, bien qu’ il est important pour caractériser les phénomènes au-
delà de simple corrélation binaire.

21.2 Méthodologie pour l’ étude des interactions de la pro-
priété émergente du système

Considérons maintenant la méthodologie pour aborder cette richesse des interac-
tions. La formalisation conventionnelle de système complexe utilisant la représentation
de réseau se fait de manière centrée aux composants comme variables, et ajoute les
liens entre ces nœuds selon le degré des interactions (Fig. 21.2). Or, il est diffi-
cile de incorporer les interactions de haut niveau dans cette représentation. Nous
considérons donc la représentation duale de ce réseau en mettant les interactions
comme nœuds et les variables comme liens. Cette transformation nous permet de
représenter tous les ordres d’ interactions qui s’ échappaient auparavant, et sur lequel
on peut considérer et formaliser la relation entre les interactions. Nous allons appeler
ces interactions symbolisées par les nœuds de réseau dual comme “ foncteurs ” d’
après le nom d’ objet de langage C++, et définissions la relation entre les foncteurs
avec des fonctions mathématiques nommées “ méta-foncteurs ”. Cette échelle d’
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abstraction se fera jusqu’ il atteint suffisamment le haut niveau selon l’ intérêt d’
investigation sur l’ organisation des interactions.

21.3 Stratégie concrète : Dialectique entre système dynamique
et géométrie informationnelle

Nous intégrons maintenant la méthodologie sur l’ analyse des interactions avec la
modélisation concrète des systèmes complexes. Pour cela, nous introduisons une
théorie qui traite l’ ensemble des distributions de probabilité et considère la relation
géométrique entre eux : La géométrie informationnelle [119]. La géométrie infor-
mationnelle représente la distribution jointe d’ un système comme un point sur la
variété statistique avec le métrique Riemannien basé sur la nature statistique de
la théorie d’ estimation. L’ analyse géométrique sur cette variété nous permet d’
évaluer la contribution de chaque ordre des interactions entre chaque sous-système:
Les paramètres dominants des interactions peuvent être décomposé à chaque or-
dre de statistique et à chaque distinction de sous-système de manière orthogonale,
comme les éléments mathématiquement indépendants (Partie IV). Cette formalisa-
tion avec la géométrie informationnelle est d’ abord accessible à l’ extraction des
interactions substantives à partir des données réelles des systèmes complexes, qui
déduira la modélisation système dynamique des phénomènes au niveau des interac-
tions détectées (Fig. 21.3). Cette approche est surtout prometteuse quand le système
est extrêmement complexe comme la société, et qu’ on arrive pas à avoir une ap-
proche bottom-up à partir de modélisation directe de son mécanisme au niveau des
composants. Nous pouvons aussi bénéficier de la géométrie informationnelle pour l’
analyse des modèles système dynamique/stochastique simulés, au niveau de l’ anal-
yse des interactions émergées afin de valider le modèle par rapport au phénomène
réel et interpréter sa propriété émergente. Plus particulièrement en cas de système
dynamique, l’ apparition du chaos impose une formalisation en terme de distribution
globale comme la mesure invariante, qui est aussi compatible à la géométrie informa-
tionnelle. Nous appelons l’ analyse des interactions par la géométrie informationnelle
comme la méthodologie “interaction-analytique ”, en contraste de la modélisation
“ constructive ” des systèmes complexes par le système dynamique/stochastique.
Cette méthodologie tente donc d’ avoir l’ interaction théorique entre les modèles
conventionnels des systèmes complexes comme système dynamique/stochastique et
l’ analyse par géométrie informationnelle de manière dialectique, en sens que cela
augmente le niveau de représentation vers l’ étude de l’ organisation des interactions.

21.4 Résumé métathéorique des résultats obtenus : Vers
une typologie transversale de l’ émergence

En appliquant la méthodologie dialectique entre système dynamique et géométrie
informationnelle, nous avons examiné la dynamique, le contraint déterministe et l’
invariance des plusieurs systèmes différents qui se varient entre système neuronale,
système sociale, robotique collective, embryogenèse de poisson zèbre, système des
voyelles, et système sociolinguistique (Partie II-VI). Parmi les résultats obtenus, nous
démontrons quelques extraits d’ exemples essentiels pour la typologie transversale d’
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émergence. L’ analyse des interactions par la géométrie informationnelle est effectué
en principe sur le modèle de distribution log-normale, qui représente l’ ensemble
de distribution discrète et appartient à la famille exponentielle de la distribution
de probabilité. Quel que soit le système modélisé, en symbolisant proprement les
variables discrètes afin de représenter de manière compatible à la distribution log-
normale comme réseau de Booléen, il est possible de comparer les différents systèmes
avec l’ échelle variée sur la formalisation mathématiquement identique. Les foncteurs
représentent ici le degré des interactions selon l’ ordre de statistique ou les variables
concernées, à partir duquel nous avons défini les mesures de complexité comme
méta-foncteurs par rapport à la difficulté de décomposition du système aux sous-
systèmes. Ces nouvelles mesures représentent la plausibilité/difficulté d’ appliquer le
réductionnisme en décomposant le système aux parties indépendantes, et se forment
les axes de l’ espace de caractérisation non-linéaire sur la variété statistique comme
celui de support vector machine (Partie IV).

21.5 Ex.1 Réseau neuronale : Emergence des nouveaux at-
tracteurs dans la modélisation de l’ apprentissage au-
tonome avec réseau neuronal chaotique

L’ enjeu de plasticité neuronale est un issue fondamentale pour savoir l’ origine de la
propriété émergente de système neuronale, l’ intelligence. Il est récemment découvert
que la dynamique chaotique de l’ activité neuronale à l’ échelle de réseau est une
source d’ introduire la nouveauté dans la structure de mémoire d’ odorat [17]. Nous
avons étudié l’ effet de l’ interaction entre la plasticité neuronale et la dynamique
chaotique qui crée spontanément les nouveaux attracteurs de mémoire à partir de
la structure déjà acquis. Un modèle de réseau neuronal chaotique (CNN) est établi
de manière synthétique dans un cadre d’ apprentissage autonome sans superviseur.
L’ analyse des mesures de complexité qui reflètent la dépendance statistique entre
sous-systèmes montre que pendant l’ apprentissage autonome qui consiste de la mod-
ification synaptique des neurones selon la propriété locale de la dynamique chaotique,
la complexité totale de système augmente graduellement, qui est dirigé de manière
transitoire par plusieurs sous-systèmes changeant temporellement sa distribution
spatiale (Fig. 21.4). Il est donc important pour la caractérisation de l’ émergence
spontanée des nouveaux attracteurs d’ introduire la dimension spatio-temporelle
afin de évaluer cette variation des mesures de complexité comme méta-foncteurs,
qui représentent le changement de la manière d’ organisation des interactions entre
les neurones.

21.6 Ex.2 Réseau social : Analyse des tendances des we-
blogs politiques sur le présidentiel 2007 en France

Passons ensuite à une autre échelle et prenons un exemple de système social. L’ étude
sur la cooccurrence des mots dans les 120 weblogs politiques le plus cité pendant
le dernier présidentiel 2007 en France nous montre l’ utilité de corrélation de haut
niveau pour la caractérisation de la dynamique collective. La cooccurrence dans le
même weblog des mots “ J.M. Lepen ” le candidat extrême droite, “ N. Sarkozy
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” le président élu, et “ S. Royale ” la rivale la plus compétente de N. Sarkozy, se
trouve plus signifiante que les simples corrélations binaires entre chaque 2 person-
nes (Fig. 21.5). Ceci implique le fonctionnement catalytique de J.M. Lepen lors d’
argument public dans le blogosphère, En contraste, un autre candidat F. Bayrou,
malgré sa position centriste entre N. Sarkozy et S. Royale, n’ était pas forcément
pris en discussion compréhensive au niveau de la corrélation de 3e ordre. Si on ig-
nore la distinction entre les différents ordres d’ interactions ou ignore entièrement les
interactions de hauts ordres, on risque de perdre ces informations qualitatives pour
la caractérisation de dynamique collective. Cette dimension est peu considérée dans
l’ étude de réseau complexe en général, faute de manque de présentation approprié
de réseau. La définition mathématique de graphe considère uniquement les liens
entre deux nœuds et ignore entièrement le moyen de présenter les autres ordres des
interactions, bien qu’ ils sont nécessaire à définir la distribution jointe de réseau.
La même analyse que CNN avec les mesures de complexité est effectuée sur la dy-
namique du présidentiel, qui mesure la difficulté de décomposition entre les noms
des quatre candidats (Fig. 21.6). Nous observons l’ émergence de sous-système
Sarkozy-Royal qui reste comme noyaux dure de corrélation pendant toute la durée
de présidentiel, et qui dirige l’ augmentation imminente de la complexité totale lors
de 2e tour (pendant 112e-127 e jour). Ce sous-système le plus corrélé ne change pas
la distribution spatiale en contraste du cas de CNN.

21.7 Discussion : La caractérisation transversale de la pro-
priété émergente des différents systèmes

Considérons enfin la comparaison transversale des propriétés émergentes qui n’ ap-
partient pas à la même échelle. Les exemples introduits se composent des composants
extrêmement différents et se situent à l’ échelle complètement distincte (Fig. 21.7):
le système neuronal se compose des neurones, qui donne naissance à la propriété
émergente au niveau de la dynamique de réseau neuronale. Le système social, qui
se compose des humains et les autres infrastructures, fait émerger la dynamique
sociale aux plusieurs niveaux collectifs y compris le contenu sémantique. Chaque
échelle d’ émergence dépend à la base la propriété des composants, qui selon con-
texte et la modalité de couplage fait fonctionner les interactions. Les foncteurs
mêmes dépendent donc encore explicitement à la propriété des composants, et il
serait difficile d’ avoir la comparaison significative sur la nature des interactions.
Pour aborder à la manière d’ organisation des interactions, il faut introduire le
niveau de méta-foncteur qui traite la relation des interactions comme la structure
de réseau entre les foncteurs. Ce niveau dépend donc essentiellement sur les inter-
actions, et il est possible de comparer entre plusieurs systèmes mettant en critère
la manière d’ organiser les interactions. Si on trouve certain trait commun de la
dynamique à ce niveau, la caractéristique est le candidat de la propriété transver-
sale, idéalement universelle de l’ émergence. En outre, la variance de dynamique à
ce niveau implique la nécessité de l’ axe pour la classification des phénomènes qui
constitue l’ espace de typologie de l’ émergence avec la compatibilité transversale.
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21.8 Conclusion : 3 axes de l’ analyse des interactions vers
une typologie transversale des systèmes complexes

Nous considérons que la caractérisation transversale et “ universelle ” de l’ émergence
ignore trop la particularité de l’ échelle et/ou des composants, qui ne s’ échappe pas
de critique sur le concept universaliste de système complexe. Au contraire, notre but
est de clarifier la variance et la communauté des phénomènes émergents de manière
transversale, et s’ il existe, la particularité de l’ échelle et des composants. Nous
renonçons donc la théorie universelle de l’ émergence, mais plutôt insistons à obtenir
la typologie pour conditionner et caractériser les phénomènes émergents au niveau
des interactions du système. Selon les résultats de l’ application de la méthodologie
dialectique entre système dynamique et géométrie informationnelle aux plusieurs
systèmes différents, il est possible de proposer les trois axes relationnels suivants
pour établir la typologie transversale (Fig. 21.8): Premièrement, la localisation spa-
tiale des interactions est importante. La distribution ou l’ hétérogénéité des fortes
interactions dans le système implique le centre de contrôle ou le fournisseur d’ in-
formation. Seconde, la variabilité temporelle de l’ hétérogénéité spatiale représente
le côté dynamique et transitoire du phénomène. i.e. Par rapport à la dynamique
transitoire entre plusieurs sous-systèmes dirigeant l’ augmentation de complexité
dans CNN, la dynamique de réseau sociale restait relativement stable au niveau
de l’ évolution temporelle de noyaux dure de sous-système. Troisièmement, l’ or-
dre statistique des interactions caractérise la manière d’ organisation collective du
phénomène, qui est le côté peu développé dans l’ étude de système complexe. La
cohérence de sous-système soutenue par des simples corrélations de seconde ordre et
celle de plus haut niveau sont essentiellement différentes comme la dynamique des
interactions. L’ étude au niveau de méta-foncteur est encore moins étudiée. Ces
éléments sont essentiels pour trouver les interprétations de l’ émergence de manière
transversale au niveau de l’ organisation des interactions qui ne dépend pas explicite-
ment de la propriété des composants.
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Figure 21.1: Degré de dominance des composants et les interactions dans système com-
plexe. Haut : La taille ou le nombre des variables de système n vs la vitesse constante de
propagation des interactions renormalisé par la taille de système v/n (ligne blue). Bas : La taille
ou le nombre des variables de système n vs le nombre des combinaisons possibles des variables qui
définissent les interactions indépendantes (ligne rouge).
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Figure 21.2: Dualité entre variables, interactions, et reconstruction du réseau des (méta-
)foncteur. Les symboles x représentent les variables et les f sont des fonctions qui définissent les
interactions. Nous appelons f comme “ foncteur ” et en considérant la relation entre les foncteurs,
on obtient un niveau augmenté d’ abstraction avec les “ méta-foncteurs ” f ′ qui sont les fonctions
des foncteurs.

Figure 21.3: Intégration des méthodologies constructive et interaction-analytique.
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Figure 21.4: Dynamique des mesures de complexité pendant l’ apprentissage autonome
de CNN. Axe horizontal : Pas de temps d’ apprentissage autonome. Axe vertical : Mesures de
complexité représentant la difficulté de décomposition statistique de chaque sous-système.

Figure 21.5: Dynamique de corrélation entre S.Royal, N.Sarkozy, et J,M,Lepen dans les
weblogs politiques pendant le présidentiel 2007. Axe horizontal : jour compté du début
du présidentiel. Axe vertical : Degré de signifiance des interactions de 2e et 3e ordre de statistique.
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Figure 21.6: Dynamique des mesures de complexité entre 4 candidats pendant le
présidentiel 2007. Axe horizontal : Jour compté du début du présidentiel. Axe vertical
: Mesures de complexité représentant la difficulté de décomposition statistique de chaque sous-
système (sous-ensemble des 4 candidats).

Figure 21.7: Caractérisation transversale de réseau de foncteur par méta-foncteur à
différentes échelles de l’ émergence.
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Figure 21.8: 3 axes pour la typologie transversale de l’ émergence.
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Glossary

AIC

Akaike information criterion. An index to evaluate the plausibility of sta-
tistical model. Generally the maximum likelihood augments as the number
of model parameters increases, though it risks to have overfitting problem.
Information criterion is invented to balance between the complexity of the
model and the goodness of fitting.

Attractor Ruin

The state of attractor region that went through the interior crisis and pos-
sesses both attracting and repelling directions of orbit. The plural pres-
ence of attractor ruin is considered as the definition of chaotic itinerancy.
I. Tsuda insists that attractor ruins are generated by the crisis of Milnor
attractors. According to K. Kaneko, in globally coupled map with maxi-
mum symmetry, the augmentation of the variable dimensions around 7±2
degrees of freedom automatically realizes the situation that the number
of attractors overpasses the possible partition number of basin, therefore
each basin is crashed in confined state space and becomes attractor ruin.

Chaos

The mathematical definition of chaos still varies according to researchers,
though the common properties can be summarized as follows:

• Complex dynamics similar to random sequence appear from rather
simple equation.

• Maximum Lyapunov exponent is positive, therefore only short-time
prediction is possible.

• High sensitivity to initial condition, or a tiny change of initial condi-
tion results in global difference of long-term dynamics.

• Contains topologically homologous structure with baker’s transforma-
tion.
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Chaotic Itinerancy

Considered as an universal class of dynamics in high-dimensional dynam-
ical systems that the orbits follow intermittent chaotic transition among
relatively low-dimensional synchronous states. It was first discovered by
K. Ikeda in optical turbulence in 1989, then independently by K. Kaneko
and I. Tsuda after 1990. Its importance is stressed in many biological and
other systems.

Dynamical System

Systems that change its state according to the time development with de-
fined rules, or mathematical models to describe such systems. Generally,
we define the elements that affect the state of system as variables, and
describe the interactions between variables with differential or difference
equation.

Information Geometry

A field of applied mathematics combining statistics and geometry created
principally by S. Amari, initially to simulate the information propagation
in neural network. Information transmission in neural network often shows
stronger correlation between relatively distanced neurons than closer ones.
To analyze such dynamics, Riemannian geometry is more appropriate to
treat an ensemble of statistical models. Information geometry is an at-
tempt to interpret information theory and statistics from differential ge-
ometry, and to provide a more integrative theoretical framework.

Functor

In this thesis defined as some function of plural variables with one-dimensional
return. Named as functor to symbolize the function as an object and con-
sider the correspondence between them, taking after the “function object”
of C++ language. The expansion to relate with the concept of functor in
category theory may be possible but not treated in this thesis.

Fisher Information Matrix

Represents the amount of information that observable variables possess
with respect to the unknown parameters of likelihood function. Mathemat-
ically defined as the variance of the score, which is the partial derivatives
of the logarithm of the likelihood function with respect to the parameters.
The first idea to utilize Fisher information as Riemannian metric in tan-
gent space of statistical manifold was proposed by C.R. Rao. Geometrical
structure introduced with the use of Fisher information remains invariant
under non-linear transformation of parameters and variables, as long as
the parameters uniquely specify each distribution and the variables are
sufficient statistics.
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Minimum Descriptor

In this thesis defined as some function of physical, chemical and biological
index that represents important characteristics of morphogenetic process
in embryology. Proposed by Nadine Peyriéras in Embryomics project to
interpret the high-dimensional primary data with biological context.
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