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THÈSE DE DOCTORAT
DE L’EDITE DE PARIS
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M. Didier ERASME Président du jury
M. Daniel COMPARAT Rapporteur
M. Michael DREWSEN Rapporteur
M. Thomas UDEM Examinateur
Mme. Anne CURTIS Examinateur
M. Christophe SALOMON Examinateur
M. Pierre LEMONDE Directeur de thèse
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Introduction

During the French Revolution, the foundation of the modern metric system
for units was laid. On August 1, 1793, the meter was defined by the French
Academy of Sciences to be 1

10 000 000 of the distance from the North Pole
to Equator. Later, definitions were also adopted for weight in terms of
kilograms. On June 22, 1799, the metric system was definitely materialized
with the production of two platinum standards representing the meter and
the kilogram. The establishment of units referred to a common reference
was originally commissioned by Louis XVI of France to stop merchants from
cheating with weights by changing them to their advantage.

The common references for units have to be universally constant to be
of any use at all. At the time of the French Revolution, the circumference
of the Earth was the best available entity that could constitute this non-
changing universal reference for the unit of length. However, when it later
became apparent that the circumference of the Earth was changing with
time, the scientific community began searching for a quantity that would
really remain unchanged throughout time, or at least something that would
be more stable than the circumference of the Earth.

The search for universal references for units has continued ever since.
In 1960 at the 11th “Conférence Générale des Poids et Mesures”, the Inter-
national System of units (SI) was agreed upon; defining seven fundamental
units from which all other units can be derived: the meter, the kilogram,
the second, the Ampere, the Kelvin, the mole and the candela. Definitions
for each unit were adopted at the conference, and the second was defined as
“the fraction 1/31556925.9747 of the tropical year for 1900 January 0 at 12
hours ephemeris time” [1].

However, this definition did not last long since it was already clear in
1960 that the duration of a year is increasing at a rate of several seconds per
century, and referring to the duration of the year 1900 was not very conve-
nient. After the advent of quantum mechanics and greater understanding
of atomic structure, the atoms where ascribed to be the best timekeepers to
which we have access through their potentially very fine selection of which
frequency will excite an electronic transition, and because stable atoms are
thought not to change their properties during the lifetime of the Universe.
The SI second was thence redefined in 1967 at the 13th “Conférence Générale
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2 INTRODUCTION

des Poids et Mesures” by setting the frequency of the transition between the
two hyperfine ground states of 133Cs to 9 192 631 770 Hz exactly [3].

As measurements improved in precision, it became evident that of all
the basic units, a measurement of time - or rather, frequency - was the one
with a promise of the greatest accuracy. Consequently, it was decided that
the unit of length should no longer be referred to the size of any physical
object, but simply to time with the 1983 definition of the speed of light in
vacuum to be c = 299 792 458 m/s exactly [3], thus providing the meter in
terms of a second as the distance light travels in vacuum in a time interval
of 1

299 792 458 of a second. The fixing of c as an exact number also signifies a
sign of belief in the constancy of this fundamental physical entity, and is in
that sense even more satisfactory than the definition of other units.

Other units in addition to the meter have a possibility to be referred to
the second: mass can be referred to time using a Watt balance [88, 157],
and for some the hope is — like for the speed of light c — to be able to
fix the Planck constant h this way and refer the kilogram to the Planck
constant. Connections between frequency and non-fundamental constants
are also possible. For instance, a direct link between frequency and voltage
is provided by the Josephson effect [79].

A precise measurement of time or frequency is therefore of great sig-
nificance for a large number of scientific measurements. Comparing two
different references can be used to determine possible changes over time in
the value of physical constants, thereby testing the equivalence principle.
The change over time has been examined for several fundamental constants
such as the fine structure constant [138, 129], the electron-proton mass ratio
[19] and the ratio of nuclear magnetic moments [115, 60, 24]. Precise clocks
can also serve as a tool for testing fundamental theories such as the Lorentz
invariance [180, 167] and general relativity [143, 148], as well as being crucial
for precise navigation, high-speed telecommunication, and radio astronomy,
just to mention a few.

Time is measured by clocks. A clock consists of an oscillator and a
counter. The precision of a clock is determined roughly by the frequency
of oscillation - higher frequency giving smaller time intervals and hence
improved ability to decide when a certain event occurred - and the ability of
the counter to count all the periods. Thus, a measurement of the frequency
of oscillation can constitute a clock. One of the simplest clocks we can think
of is the Earth oscillating by revolving around its own axis and humans
counting the revolutions as days and years, which is the type of clock that
led to the 1960 definition of the second.

The 1967 definition of the second leads to the need of involving well-
controlled atoms in the construction of a precise clock. The principle of
the operation of an atomic clock is shown in figure A. Coherent radiation
is created by a local oscillator. The radiation is shined upon an atomic
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Figure A: A schematic for the principle of atomic clock operation.

sample, and the transition probability is detected. The fraction of atoms
that is excited will depend on the oscillator frequency, the intensity of the
interrogation field, the duration of the pulse and the atomic properties. From
the transition probability one can deduce how far the oscillator is from the
reference frequency and a correction is subsequently applied to steer the
oscillator towards the correct frequency.

Atomic clocks are characterized by their accuracy and stability. The
accuracy of a clock denotes how close the measured frequency is to the cor-
rect frequency and is usually determined by the ability to precisely evaluate
systematic shifts of the clock frequency. The instability characterizes how
much the frequency changes over time, and is usually quantified in terms of
the Allan variance (see Appendix A) which describes the statistical uncer-
tainty of the frequency measurement. It generally decreases with increas-
ing measurement time until long term fluctuations start to dominate the
measurement after a given time τlt. The fluctuations of atomic clocks are
usually dominated by white noise on the medium to long term (from ∼ 10 s
to τlt ∼ 103 − 105 s), and the Allan deviation acquires a 1/

√
τ dependence

on the measurement time τ . It can be written as [9]

σy(τ) =
ξ

QRS/N

√
Tc
τ
, (1)

where Q is the experimental line quality factor, Tc is the cycle time of the
measurement, RS/N is the signal-to-noise ratio of the atomic transition de-
tection achieved during one cycle, and ξ is a factor on the order of 1, which
accounts for the shape of the resonance. The experimental line quality factor
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Q is defined as Q = νatom/δνexp, with νatom being the resonance frequency of
the clock transition and δνexp being the experimentally achieved line width
of the transition.

From the beginning of the 1950’s, state-of-the-art frequency references
were constructed using a thermal jet of Cs atoms that propagate through
a microwave cavity where the atomic resonance is exited [57]. These clocks
remained the most accurate for 40 years, with their accuracy improving by
an order of magnitude per decade, as shown in figure B. In the beginning, the
performance of the clocks was limited by technical noise, such as detection
efficiency, spectral purity of the available sources for the local oscillator,
etc, reducing the stability of the clocks. Later, as the stability increased,
the obtainable accuracy was still limited by technical capabilities but now
more in terms of control of the atoms. Especially atomic motion was a
problem for the thermal jet standard due to Doppler and recoil effects. Even
though the introduction of Ramsey interrogation [141] eliminated the first
order Doppler effect, the second order Doppler effect still remained a large
source of uncertainty. The motional effects were greatly reduced after the

Figure B: The evolution of the obtainable accuracy (corresponding to the level at
which the systematic effects are known) of atomic clocks over the last 60 years.

invention of laser cooling [74] in the 1970’s had enabled the construction of
atomic fountains in the beginning of the 1990’s, were the atoms are laser
cooled to a few µK before the microwave interrogation is performed. Most
importantly, this technique allowed a vast increase in quality factor Q, since
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this is proportional to the time spent between the two Ramsey pulses.
In 1999, the atomic fountain clocks reached the regime where the stability

is no longer dominated by technical noise, but by the quantum mechanical
nature of the measurement in terms of the quantum projection noise due
to the limited number of atoms N [150]. Here, the signal-to-noise ratio
in (1) is given by RS/N =

√
N , and the best stability obtained so far by

an atomic fountain is σy(τ) = 1.6 · 10−14√τ [170]. The current Cs atomic
fountain clocks have reached fractional frequency uncertainties of 4 · 10−16

[20, 21, 70], but the ultimate obtainable accuracy seems to be limited to the
level of 10−16 due to motional and other effects.

To reduce the motional effects and increase the quality factor Q, in the
1980’s clocks operating at microwave frequencies were being constructed
with ions trapped and cooled in RF potentials [26, 55]. Ions had been
captured in RF potentials since the 1950’s [127] and could be cooled to
their motional ground state by employing sideband cooling [48, 121, 179],
bringing them to the Lamb-Dicke regime [51]. However, even with control
of the motional effects, the stability of these clocks is intrinsically limited
by the relatively small frequency of the clock transition in the microwave
domain, and at the mid 1990’s the best stabilities at a level of 6 · 10−14/

√
τ

[61, 166] were slightly worse than for the fountain clocks owing to the smaller
number of atoms. Looking at the expression for the Allan deviation in
(1), we see that by going to optical frequencies (f ∼ 1015 Hz) a factor of
around 105 is gained in the quality factor Q and hence in the stability with
respect to microwave frequencies, if the other parameters are kept constant.
In addition, several systematic effects such as those associated with atomic
movement lead to a shift of the clock transition frequency that is independent
of the absolute value of the frequency, and the relative shift from these effects
on optical transitions would also be reduced by a factor of 105.

By employing saturated absorption spectroscopy [77], lasers had been
stabilized to optical transitions in molecules since the late 1960’s. Some
of first clocks with unbound atoms operating at optical frequencies used a
thermal beam of hydrogen atoms, exiting the electrons from the meta-stable
2S state [18]. Also Ca and Mg were used in an atomic beam configuration
[145, 155], and later also in a fountain configuration [123, 177], but the mo-
tional effects that the microwave fountains suffered from were still present
here. From the mid-1990’s, also ion clocks using optical frequencies were
starting to appear [15, 128, 176, 140] and giving remarkable results. How-
ever, the ion clocks suffer from their limited signal-to-noise ratio, which for
a single trapped ion is at most one. From (1) we see that this limits the ob-
tainable stability. Nonetheless, due to the high control of systematic effects
ion clocks have produced the most accurate frequency measurements so far.
An accuracy of 5.2 · 10−17 was obtained in a comparison between Al+ and
Hg+ [146], and 8.6 · 10−18 between two Al+ clocks [38].
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Still, it seems that the most desirable type of clock should have a high
clock frequency and furthermore combine the high number of atoms present
in atomic fountains with the suppression of motional effects attainable in
ion clocks. In 2001, a proposal was made for this type of clock to be realized
[81]. The idea was to capture a large number of neutral atoms in a retro-
reflected dipole trap. The retro-reflection creates a standing-wave pattern in
which the atoms are strongly confined and motional effects are suppressed.
The wavelength of the trap light is tuned to the so-called magic wavelength,
were the light shift from the trap on the clock transition is cancelled; a
shift that if otherwise present would make precise frequency measurements
impossible, and had previously thwarted the use of dipole traps in atomic
clock experiments, since it is typically on the order of kHz even for a trap
that is just deep enough to cancel gravity. These clock are known as optical
lattice clocks because the optical trapping potential has the structure of a
lattice. The first proposal and demonstration of feasibility concerned Sr
atoms [163, 108, 93], but the scheme also works for other alkaline earth-like
atoms like Yb [14], Hg [71], Mg [62], Ca [47], etc.

The Sr lattice clocks proved promising early on. The first observation
of the clock transition was made at SYRTE in 2003, and the clock fre-
quency was measured with a relative uncertainty of 5 · 10−11 [44]. Other
measurements soon followed, and by 2007 measurements of the absolute
clock frequency for three different labs with completely independent setups
and three very separated locations (Paris, Tokyo and Boulder, Colorado)
agreed within the errorbar at the level of 10−15 [11, 27, 162]. The Sr lattice
clock is already recommended as a secondary representation of the second
by BIPM, and it seems like a natural and convenient step that the second
should be redefined in terms of an optical lattice clock. The excellent world-
wide agreement on the observed frequency for the Sr lattice clock and the
projected accuracy level of 10−18 [163] makes Sr a suitable candidate for a
future redefinition of the second.

The optical clocks have experienced an increase in accuracy of six or-
ders of magnitude over the last 20 years, and it will be interesting to see
how long this behaviour will continue. The rapid increase in accuracy was
aided by the development of the femtosecond frequency comb around year
2000 [72], which allowed the optical frequencies to be compared to both the
microwave and other optical standards without resorting to complex and
tedious frequency multiplication chains.

The remarkably rapid progress of optical lattice clocks is helped along
by their potentially outstanding short-term stability. Current state-of-the-
art optical clocks have already demonstrated line widths of a few Hz (see
Chapter 6 and [29]), so a quality factor of Q = 1015 does not seem unrealistic
to obtain in the near future. With this, the quantum projection noise limit
for N = 104 atoms gives a stability of 10−17 at one second.
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However, the best short-term stability obtained so far for an optical lat-
tice clock (see Chapter 4) is still two orders of magnitude above the quantum
projection noise limit. This is primarily due to the Dick effect [49] (see Chap-
ter 5). The Dick effect describes the aliasing of high frequency laser noise
by the sequential interrogation of the atoms and the impact is two-fold. On
one side enters the frequency noise of the interrogation laser with the stabil-
ity of the clock improving when the laser noise is decreased. On the other
side is the stroboscopic sampling of the laser noise by the atoms, and by
improving the sequence by increasing the fraction of the cycle time spent on
interrogation — the duty cycle — the stability will also increase.

The clock experiment with Sr atoms at SYRTE was initiated in year
2000. In 2006 construction of a second Sr lattice clock was started. The
main reason for this was to be able to make optical-optical comparisons be-
tween the two clocks and not being limited by the stability of the microwave
fountains that are otherwise available at SYRTE. I started the work on my
Ph.D. on the first Sr clock experiment in September 2007. This thesis is
mainly concerned with the different ways we have pursued to increase the
stability of the Sr lattice clock; by increasing the duty cycle of the clock and
decreasing the frequency fluctuations of the clock laser. At the time when I
started my thesis, the feasibility of Sr lattice clocks had been demonstrated
and some of the possible effects of the lattice had been shown to not pose
a problem [32]. The best demonstrated stability at the time was compara-
ble to that of the Cs fountains in the mid-10−14 at one second [27, 11], far
from the projected ultimate stability of 10−17/

√
τ . It also remained to be

demonstrated that all trap related shifts could be controlled to a level of
better than 10−16.

During my thesis work, the stability of the Sr clock at SYRTE has been
increased by more than one order of magnitude. Even more can be gained
by employing a non-destructive phase measurement to detect the transition
probability of the atoms. Finally, my latest involvement concerns lattice
related frequency shifts, which are evaluated with unprecedented accuracy
at a level of 10−18.

The thesis is organized as follows. The first chapter describes the gen-
eral theory behind the optical lattice clocks including the systematic shifts
one can expect. Chapter 2 briefly describes the experimental operation of
our Sr lattice clock with largest emphasis on the elements that have been
implemented since the beginning of my thesis. The third chapter details the
scheme we have developed to non-destructively detect the transition prob-
ability of the atoms. This method can significantly increase the duty cycle
of the clock since the atoms can be recycled from cycle to cycle, thereby
increasing the stability of the clock. The fourth chapter describes the im-
plementation of a new ultra-stable cavity for stabilization of the clock laser.
The different sources of noise are evaluated and the resulting frequency sta-
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bility demonstrated is among the best in the world. In the fifth chapter the
results of the two previous chapters are used to calculate the stability we
can expect for the Sr clock. The expected stability is one order of magni-
tude better than the current state-of-the-art. The final chapter discusses
the most recent experimental results from comparisons between the two Sr
lattice clocks at SYRTE, including ultra-narrow resonances, a reduction of
the Dick effect by synchronizing the two clocks, and an evaluation of lattice
related frequency shifts.



Chapter 1

An Optical Lattice Clock

The idea of using neutral atoms captured in an optical lattice dipole trap for
frequency metrology was formed around year 2001, when it was suggested to
cancel undesirable light shifts from the trap by keeping it at a certain wave-
length and choosing a particular atomic transition as a frequency reference.
It answered the question of how to construct a clock that combined a high
number of atoms with a tight confinement and control of motional effects.
A certain type of atoms, the alkaline earth-like atoms, are required for this
type of clock. The clock transition of these atoms lies in the optical part of
the spectrum, something that is advantageous compared to the microwave
domain with respect to both systematic and statistical uncertainties. The
confinement of several thousand neutral atoms ensures a signal-to-noise ratio
far superior to that of ion clocks.

This chapter introduces the general concepts of a lattice clock. It is
organized as follows. The first section is dedicated to a comparison of the
different types of atomic clocks, discussing the current limitations of the
clocks and why a lattice clock is a good choice as a frequency reference.
The following section explains the principles of the trap that is used for the
optical lattice clocks. The next section discusses the clock transition and
the shifts of the clock frequency one can expect from external perturbations
such as magnetic fields. The shift from the light field used for the trap is
discussed in the last section.

1.1 Why Choose a Lattice Clock?

An optical lattice clock with Sr is a promising candidate for becoming the
most stable clock in the near future. The lattice clock combines the advan-
tages the atomic fountains and ion clocks, as we shall see below.

9



10 AN OPTICAL LATTICE CLOCK

1.1.1 Microwave Clocks

Microwave clocks generally operate with either Cs or Rb atoms, where the
clock transition is between the two hyperfine groundstates. The most accu-
rate way of operating these clocks is in a fountain configuration, where the
atoms are laser cooled to form a MOT, where after they are launched up in
a free fall [142]. The resonance frequency is detected with a Ramsey inter-
rogation [141], where the atoms are put in a superposition of the two clock
states at the beginning of the trajectory by a π/2-pulse. Another π/2-pulse
is applied at the end when they fall down again, and finally the transition
probability is detected. The development of this type of clock was started
in the beginning of the 1990’s [80, 41].

Current Limitations

In 1999, the stability of these clocks reached the limit posed by the quantum
projection noise [150]. It is possible in principle to go below this limit by
applying spin squeezing [7, 153], but it has yet to be demonstrated that
the squeezing does not introduce unwanted shifts of the clock frequency and
that it can actually reduce significantly the noise. So far, the best obtained
metrologically relevant reduction has been no more than 6 dB [102].

The Cs and Rb fountains at SYRTE have both shown an accuracy in the
low 10−16 region [112, 69, 70]. However, even though clever techniques have
been developed to cancel the Doppler effect from the macroscopic velocity of
the atoms being in free fall during the interrogation [103], it is already well
known that the Doppler effect most likely will limit the accuracy of atomic
fountains at the level of 10−16 [103]. Another issue is the cold collisions
that occur between the atoms in the cold atomic cloud and causes a shift
of the clock transition. Using a fountain with Rb atoms reduces the shift
by a factor of 20-30 [59, 156], and by using adiabatic transfer of the atomic
population [130] the shift can be controlled to better than 1%, but it still
remains a large contribution in the uncertainty budget for both atoms. A
comparable contribution also comes from the collective effect of a number
of things (quantum motion, background gas collisions, Ramsey and Rabi
pulling, etc. [70]) that are hard to control to better than at a level of 10−16.
All these effects add up to constitute the current accuracy level at 4 · 10−16.

1.1.2 Ion Clocks

To overcome the problem of motional effects, one can employ a confinement
of the atoms. One way to do this is to utilize ions, that are easily trapped
in an RF potential. This is most commonly done using either a Paul trap
or a Penning trap [127].

The ions used for atomic clocks can generally be split up into two groups:
ions with two outer electron such as In+ [56] and Al+ [38], that use a
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(doubly forbidden) electric dipole transition as clock transition, and ions
with only one outer electron (Hg+ [52], Yb+ [154, 172], Sr+ [114, 113], Ca+
[40]) where the clock transition is either an electric quadrupole or octopole
transition.

Current Limitations

The stability of the ion clocks is limited by their signal-to-noise ratio, which
is only 1 per measurement for a single trapped ion. The quantum projec-
tion noise then limits the attainable stability to the level of 10−15/

√
τ for

optical transitions for the current obtainable Q factor of ∼ 1015. Here, spin
squeezing is not an option and the limited short-term stability remains the
Achilles’ heel of ion clocks.

However, long measurement campaigns have been performed and ion
clocks have produced the most accurate frequency measurements to date.
An accuracy of 5.2·10−17 was achieved for ion clocks in a comparison between
Al+ and Hg+ [146], and 8.6 ·10−18 between two Al+ clocks [38]. The largest
contribution to the uncertainty at this level is associated with motional
effects that arise due to imperfections in the ion-trap geometry and collisions
with the background gas. Despite the impressive accuracy obtained, the
limited short-term stability of ion clocks is certainly a drawback that urges
one to investigate other possibilities.

1.1.3 Optical Lattice Clocks

Optical lattice clocks combine the high signal-to-noise ratio of fountain
clocks and the tight confinement of ion clocks, where the atoms are in the
Lamb-Dicke regime (see section 1.2.2) and motional effects are suppressed.
A high number of neutral atoms (typically 104) is trapped in a dipole trap
using a focalized high power laser. The laser beam is retro reflected to create
a standing wave pattern, and the atoms are trapped in the intensity maxima
for a red detuned trap. The large light shift from the dipole trap that the
atoms experience is cancelled to first order at the magic wavelength, where
the two clock states experience exactly the same shift.

Optical lattice clocks operate with alkaline earth-like atoms, such as
Sr [84, 93, 110], Yb [135, 97], Hg [71, 132], Mg [62], etc. These atoms
are indispensable for this type of clock, mainly because of the existence of
a magic wavelength, but also because they have a polarization insensitive
J = 0 → J = 0 clock transition with a narrow natural line width and
suitable transitions for cooling. A level diagram for alkaline earth-like atoms
is shown in figure 1.1, where the wavelengths and line widths are shown for
the clock and cooling transitions for Sr, Yb and Hg.

The clock transition |1S0〉 → |3P0〉 is strongly forbidden, since it is both
a J = 0→ J = 0 and a singlet-to-triplet inter-combination transition, but is
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Figure 1.1: A simplified level diagram for the some of the lowest lying levels of
alkaline earth-like atoms. The 1S0 − 1P1 transition is not used for cooling in the
case of Hg.

weakly allowed for fermionic isotopes due to hyperfine mixing of |3P0〉 with
other states (see section 1.3.1), giving an ultra-narrow natural line width of
the clock transition suitable for frequency metrology. For bosonic isotopes,
the transition is strictly forbidden for one photon excitations. However,
methods exist to make the transition allowed for bosons also. One method
consists in applying an external magnetic field to the atoms [159], thereby
inducing the needed mixing with other states. The major drawbacks of this
approach are the appreciable second order Zeeman shift [12] caused by the
large magnetic field strengths needed and the collisions that occur between
the atoms [104, 133, 4] since there is no Fermi suppression for bosons.

The transition |1S0〉 → |1P1〉 provides a convenient line width for efficient
initial capture of the atoms in a magneto-optical trap, and the transition
|1S0〉 → |3P1〉 with a smaller line width is then used for further cooling, since
the Doppler temperature of the atoms after the first stage cooling is on the
order of a few mK. After the second stage cooling the temperature is typi-
cally a few to a few tens of µK. The situation is a little different for mercury,
however, which has a very large width of the |1S0〉 → |1P1〉 transition and a
wavelength that is hard to work with experimentally. Therefore, the MOT
is created directly with the |1S0〉 → |3P1〉 transition, which has a sufficiently
large width to capture the atoms and a Doppler temperature on the order
of 30µK.

Current limitations

The lower limit for the stability of optical lattice clocks is expected to be
the quantum projection noise of the atoms, which for 104 atoms is at the
level of a few 10−17/

√
τ for the current obtainable Q factor. However, the
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best stability obtained so far is 1.7 · 10−15/
√
τ (see Chapter 4), two orders

of magnitude larger than the quantum projection noise limit. The main
limitation for the stability is the Dick effect, owing to small duty cycles of
the clocks and laser frequency noise. Hence, there is still large room for
improvement and optical lattice clocks, which have already demonstrated
better short-term stability than any other type of clock, have the potential
to become excellent time-keepers.

The projected ultimate accuracy of the Sr lattice clock is expected to be
at the level of 10−18 [163]. The main limitation to the accuracy at this level
is expected to be the black-body radiation shift discussed in section 1.3.3.

1.2 Optical Lattice Dipole Trap

In an optical lattice clock the atoms are trapped in the center of a high power
tightly focused laser beam. The beam is retro-reflected thereby creating the
optical lattice [68].

The idea of using atoms in an optical lattice for frequency metrology
stems from the tight spatial confinement of a high number of atoms attain-
able in such traps [84], along with the ability to cancel unwanted shifts of
the clock frequency from the trap. When certain conditions are met, as
discussed in section 1.2.2, the so-called Lamb-Dicke regime can be reached;
a regime where motional effects become negligible.

The theoretical foundation for trapping neutral atoms with light is that
atoms, when subjected to light with a frequency close to a resonance be-
tween two atomic states, experience a shift in energy that depends on both
the specific atomic state, the detuning, and the intensity and polarization
of the light [67]. For negative detuning, the light shift of the ground state
is negatively proportional to the intensity, and as a result the atoms will be
attracted to intensity maxima, thus trapping the atoms there. The trapping
force arises from the interaction between the light and the dipole moment
of the atoms induced by the light. The simplest dipole trap consists of a
Gaussian laser beam negatively detuned to an atomic resonance [39]. The
Gaussian beam has an intensity profile in cylindrical coordinates [120]

I(r, z) = I0

(
w0

w(z)

)2

e−2r2/w2(z), (1.1a)

w(z) = w0

√
1 +

z2λ2

π2w4
0

, (1.1b)

with I0 being the maximum intensity and w0 the waist of the beam, thus
trapping the atoms at the maximum of intensity in the center of the beam
at z = 0.
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1.2.1 The Magic Wavelength

The energy shift of the atomic levels in the dipole trap is known as the
light shift or the ac Stark shift. The exact value of the shift will in general
depend on the specific atomic state and the properties of the light. Even
for a dipole trap potential on the same order as the gravitational potential,
which is the minimum needed to trap the atoms, the corresponding shift
in frequency of each of the clock levels can be as much as several kHz, or
10−11 in fractional frequency, which is 7 orders of magnitude higher than
the projected accuracy goal.

Fortunately, there is a way to dwarf the effect that this shift will have
on the clock transition frequency. In 2001, H. Katori proposed a clever way
to cancel the first order light shift of the J = 0→ J = 0 clock transition of
87Sr from the trap [81], by selecting a certain wavelength for the trapping
light as described in the following.

The potential energy U for the electric dipole interaction between an
atom in a state |a〉 and an electromagnetic field with electric component E
is proportional to E2,

U ∝ −αaE2,

where αa is the induced atomic polarizability. For negative detuning, αa > 0
and the atoms are trapped at intensity maxima. The transition frequency
between a ground and excited state, |g〉 and |e〉, is given by

ωobs = ωe − ωg
−∆α(ωL, e)|E(ωL, e)|2/4~ +O(E4),

(1.2)

where the dependence on frequency ωL and polarization e of the trapping
laser has been written explicitly, and

∆α(ωL, e) = αe(ωL, e)− αg(ωL, e) (1.3)

is the difference in polarizability between the two states. The frequency-
dependent scalar atomic polarizability for electric dipole (E1) interaction
for a state |i〉 can be calculated with the expression given in [83],

αs|i〉,E1(ω) =
1

~
∑

j

|dij |2
(

1

ωij − ω
+

1

ωij + ω

)
, (1.4)

where the sum runs over all other states than |i〉, dij = 〈i|d|j〉 is the ma-
trix element of the electric dipole coupling and ωij is the frequency of the
transition |i〉 → |j〉. Taking into account the selection rules, three transi-
tions dominate the polarizability: |1S0〉 → |1P1〉 at 461 nm, |3P0〉 → |3D1〉 at
2.56µm and |3P0〉 → |3S1〉 at 679 nm, as shown in figure 1.2. The figure also
shows the light shift for each of the two clock states using the polarizability
from (1.4). The light shifts for the two states cross at a certain wavelength;
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Figure 1.2: a) The relevant levels of Sr for the scalar polarizability of the two clock
states |1S0〉 and |3P0〉. The transitions with the largest contribution to the scalar
polarizability of the two clock states are shown with black arrows. The red arrows
indicate the wavelength of the trap when it is at the magic wavelength. b) The
scalar light shift of the clock states as a function of wavelength.

the magic wavelength λm. Here, the scalar shift of the clock transition due
to electric dipole interaction with the lattice is zero.

In [84] the light shifts for the clock states |5s2 1S0〉 and |5s5p 3P0〉 of 87Sr
were calculated summing over transitions with principal quantum number
up to n = 11 in (1.4). Their result is shown in figure 1.3. The authors of [84]

Figure 1.3: The light shifts of |1S0〉 and |3P0〉 calculated in [84] as a function of
wavelength. The light shifts coincide at the magical wavelength around 800 nm.
The inset shows the light shifts for the different Zeeman sublevels of |3P0(F = 9/2)〉
when subjected to a magnetic field B = 30 mG for different polarizations of the
trapping light. The polarization dependence is discussed in section 1.4 and Chapter
6. The figure is taken from [84].

calculated the magic wavelength to be λm ' 800 nm. In 2008 a more detailed
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calculation gave λm ' 805 nm [136]. In 2006, our group determined the
magical wavelength experimentally for 87Sr to be λm = (813.428± 0.001) nm
[32]; a value which has since been confirmed by other groups [27, 110]. The
deviation from the calculated value can stem from not including transitions
with higher n than 11 in the theoretical calculations and from the less than
perfect knowledge of the values of all the dipole transition moments.

The scalar nature of the polarizability in (1.4) dictates that it has no
polarization dependence. And since the clock transition of 87Sr is a J =
0 → J = 0 transition one can expect that the polarization of the trapping
light will only play a minor role for the total shift including also non-scalar
terms. The polarization dependent and higher order terms are discussed in
detail in section 1.4, and a new experimental determination of some of the
shifts is described in Chapter 6.

1.2.2 Lamb-Dicke Regime

To reach the accuracy goal of 10−18, all motional effects must be suppressed.
When this is the case, the atoms are in the Lamb-Dicke regime [51].

The Lamb-Dicke parameter η for a particle with mass m trapped in
a harmonic potential with angular oscillation frequency ωt and interacting
with a light field having a wave vector k is defined as [96]

η = k

√
~

2mωT
=

√
ωrec

ωt
, (1.5)

where ωrec = ~k2/2m is the recoil frequency of the particle when absorbing
a photon from the light field. If the spatial wave function of the particle
is localized to a region much smaller than one wavelength of the probing
electromagnetic field, the particle is highly delocalized in momentum space
due to the Heisenberg uncertainty principle. When the sidebands of the
interrogated transition are resolved, the carrier transition does not change
the motional state of the atom. This decouples the internal evolution of
the particle’s wave function from the external degrees of freedom, thereby
removing the sensitivity to the recoil and Doppler effect. In other words, all
motional effects are suppressed. This regime is known as the Lamb-Dicke
regime, and it is equivalent to the condition

η
√
〈n+ 1〉 � 1, (1.6)

where n is the vibrational quantum number for particles moving in the
trapping potential.

When (1.6) is satisfied experimentally for atoms trapped in the dipole
trap, there is no shift or broadening of the clock transition due to recoil
or Doppler effect. However, there might still be line pulling from motional
sidebands, which in some cases might not be completely negligible, as we
shall see later.
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For our experiment, the trapping laser operates at the magical wave-
length, λ = 2π/k = 813.43 nm, and for the 87Sr atoms, m = 1.443 · 10−25

kg. The waist of the trap beam is w0 = 90µm, and with a typical value for
the longitudinal oscillation frequency of the trap being ωt = ωz = 2π · 200
kHz [93], we get η = 0.129 in (1.5). This means that the condition in (1.6)
becomes

√
〈nz + 1〉 � 8. This constraint is overcome by sideband cooling

in the longitudinal direction as described in section 2.2.2.

In the transverse directions the confinement is much weaker, but since
the interrogation laser is aligned with the lattice, the radial motion only
enters as a higher order contribution. This effect is described more in detail
in Chapter 6.

However, the evaluation of η above is only completely true for a single
harmonic trap. Our present case with several potential wells along the laser
beam calls for an analysis including a periodic potential, also known as a
lattice. This analysis has been done in [100] and below I will account for
the effects of the periodic potential following [100].

1.2.3 1D Standing Wave Dipole Trap: Optical Lattice

The laser beam for the dipole trap is retro-reflected to create a standing wave
pattern. For a Gaussian beam as in (1.1), this gives a trapping potential
of the form (with the z-axis being along the propagation direction of the
trapping laser)

U(r, z) = U0

(
1− e−2r2/w2

0 cos2(kz)
)
, (1.7)

where r is the distance from the center of the trap in the (x, y)-plane, U0

is the maximum potential depth, w0 is the 1/e2 beam radius, and k is the
wave vector of the trapping light. In (1.7), the longitudinal variation of the
Gaussian beam waist has been ignored, since experimentally the waist is
typically w0 = 30 − 100µm and the trapping region of a few mm is much
smaller than the Rayleigh range (a few cm) of the trapping laser.

For the periodic potential of the standing wave dipole trap, states in different
potential wells with the same vibrational quantum number are degenerate
in energy, causing tunnelling between the wells to be a resonant process.
This will spread out the spatial wave functions of the atoms so that they
are not localized to a single well, and hence do not fulfil (1.6).

The atoms (here assumed to have only a ground and excited level, |g〉
and |e〉, with an energy difference ~ωeg) are subjected to a Hamiltonian

Ĥ = ~ωeg|e〉〈e|+
(
~Ω cos(ωP t− kP ẑ)|e〉〈g|+H.C.

)
+ Ĥext, (1.8a)

Ĥext =
~2κ̂2

2m
+ U0

(
1− e−2(x̂2+ŷ2)/w2

0 cos2(kẑ)
)
, (1.8b)
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where ωP and kP are the frequency and wave vector of the clock interrogation
light, k is the wave vector of the trapping light, ~κ̂ is the momentum operator
for the free atom with mass m, x̂, ŷ and ẑ are the position operators for the
radial and longitudinal directions, respectively, U0 is the potential depth and
Ω is the Rabi frequency of the clock transition. This type of Hamiltonian

Figure 1.4: a) The band structure for 87Sr of the energy spectrum for a potential
depth of 10Er. Ground state: |1S0〉, excited state: |3P0〉. The band structure is the
same for the ground and exited state, because the trap light is assumed to be at the
magic wavelength. The n = 0 bands for the two states are not entirely constant as a
function of q, but the variations are too small to be displayed here. The blue circles
represent atoms with different q and n and the arrows show some of the possible
transitions between the two levels. b) The band width for the 4 lowest-lying bands
as a function of trap depth.

describing a lattice is well known from solid state physics and can be solved
using the Bloch theorem. The periodicity of the potential causes the energy
spectrum to attain a band structure. The eigenstates are the Bloch vectors
|n, q〉, where n is the band index and q is the quasimomentum of the atom.
The eigenstates are superpositions of the plane wave states of the free atom,
|κ〉, and are periodic in q with a period of 2k. The authors of [100] have
numerically solved the Schrödinger equation with the Hamiltonian given in
(1.8) for 87Sr with the trapping light at the magic wavelength of 813 nm.
The energies as a function of q for the three lowest-lying bands for the two
clock states can be seen in figure 1.4a for a potential depth of U0 = 10Er,
where Er = ~2k2/(2m) is the recoil energy. Some of the possible transitions
between the bands are shown with arrows. Shown in figure 1.4b is the
bandwidth for the 4 lowest-lying bands as a function of trap depth.
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When coupling to the probe light, the atoms make transitions between
a band in the ground state |g, n, q〉 and a band in the excited state |e, n′, q+
kP 〉, which has acquired an additional momentum kP from the probe light
photon. The transition frequency depends on n and n′ and also on q, even
for n = n′ = 0, due to the residual width of the band. The frequency of a
transition with n = n′ is the carrier frequency and sidebands corresponding
to transitions with n 6= n′ will appear on either side of the carrier. The
separation between the carrier and the sidebands increases with increasing
U0 as

√
U0, and for U0 as low as 5Er it is already 10 kHz, which can easily

be resolved experimentally. This means that the sidebands will not cause
any additional shift of the transition frequency, provided the resonances are
narrow enough. For a worst case estimate of the line pulling for a sideband
separated by δ = 10 kHz from the carrier, we can take the height ratio b
between the carrier and sideband as b = 1. For a typical carrier line width
of ∆ = 10 Hz, we get the upper limit for the line pulling [10]

δνpull =
√
b
∆2

δ
= 10 mHz,

or 2 · 10−17 in fractional units and it will be negligible for all realistic values
of b and U0.

There are, however, other things that cause shifts and broadening of
the carrier transition. To realize this we can consider two extreme cases:
one with a pure |n, q〉 state fully localized in q-space, or another where
the n’th band is uniformly populated with a superposition

∫
dq|n, q〉. In

the first case, it is shown in [100] that for n = 0, which is the case for a
large fraction of the atoms experimentally because of sideband cooling, the
carrier is shifted by an amount depending on q and periodic in q with a
period of 2k. This shift can be thought of as the residual Doppler shift due
to tunneling motion between the wells. The size of the shift is on the order of
the bandwidth, and for U0 = 10Er the shift varies between about −250 Hz
and +250 Hz. Physically, this is due to the q dependence of the energy,
which for k 6= 2kP , as is the case experimentally, will cause a dependence of
the transition frequency on q.

In the second case of a uniformly populated band, the shift averages
out due to the equal distribution of q’s on the n = 0 band. But now the
carrier transition will be broadened by an amount also on the order of the
bandwidth. Physically, this is seen to be due to the different transition fre-
quencies of the superpositions of q’s constituting the state. This broadening
is equivalent to the normal Doppler broadening.

Both of these effects can present a severe degradation of the accuracy of
the clock. In general, the state will be somewhere between the two extremes
described above and there will therefore be both a shift and broadening of
the carrier frequency on the order of the bandwidth. Thus, it is crucial
to have a bandwidth below ∼ 1 mHz to be able to reach the goal of a
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fractional uncertainty ∼ 10−18 for the clock frequency. From figure 1.4b it
is clear that for n = 0, this requires a potential depth of ∼ 100Er. This
corresponds to an intensity of the dipole trapping light of ∼ 25 kW/cm2

which might cause unwanted light shifts of the clock transition, as well as
being difficult to obtain experimentally if one were using the blue-detuned
lattice at λm = 390 nm discussed in section 1.4.4, or for a Hg lattice clock
where the magical wavelength is expected to be λHg ' 360 nm. For Hg,
the polarizability αHg is furthermore a factor of 10 smaller [76] than for Sr,
making it even more difficult to obtain the trap depth needed.

Vertical Lattice

Fortunately, the authors of [100] have come up with an elegant and effective
solution: if the lattice is subjected to a constant acceleration, the degeneracy
of the states in adjacent wells will be lifted, thus severely limiting the tun-
neling between the wells. A very easy way to implement this experimentally
is to align the dipole trap vertically. Then gravity will provide the constant
acceleration needed.

In this case, the Hamiltonian in (1.8b) now becomes

Ĥext =
~2κ̂2

2m
+ U0

(
1− e−2(x̂2+ŷ2)/w2

0 cos2(kẑ)
)

+mgẑ, (1.9)

where g is the acceleration of the Earth’s gravity. The potential correspond-
ing to (1.9) is shown in figure 1.5. There are no bound solutions to the

Figure 1.5: The dipole trap potential for a vertically oriented trap including the
gravity.

Schrödinger equation with the Hamiltonian in (1.9), and an atom initially
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confined to one well will eventually end up in the continuum due to Landau-
Zener tunneling. The time scale for this process is, however, very large if
the trap depth is not very small. Even for U0 as low as 5Er, the lifetime
of the ground state in each well is about 1010 s. Thus, approximate bound
solutions can be found, and these are known as the Wannier-Stark states
|Wm〉, where m is a quantum number characterizing the state [171]. In the
position representation, |Wm〉 exhibits a main peak in well number m of
the lattice and small revivals in the adjacent wells. The size of the revivals
depends on the depth of the trapping potential, as can be seen in figure 1.6.
Here, it is evident that even for U0 = 10Er, corresponding to an intensity of

Figure 1.6: The spatial representation of the Wannier-Stark states with m = 0
for different values of the potential depth of the trap. Even for U0 = 10Er, the
wave function is almost completely localized to one well. λ = 813 nm is the lattice
wavelength.

∼ 2.5 kW/cm2, the wave function is almost completely localized to one well.
For this potential depth it was shown in [100] that the shift and broadening
of the carrier frequency from atomic motion can be controlled at the level
of 10−18 in fractional units1.

In conclusion, the vertical standing wave red-detuned dipole trap at the
magical wavelength constitutes a trap for Sr atoms in which the effects of
the trap on the clock transition potentially can be controlled down to a level
of ∼ 10−18 in relative units. However, it remains to be demonstrated exper-
imentally that this is indeed the case. In section 1.4 we explore the various
shifts associated with the lattice, and the measurements described in Chap-

1There will be a graviational shift and broadening of the clock frequency in the vertical
lattice configuration due to the vertical separation between atoms in different potential
wells. However, for typical lattice clocks the atoms are distributed over at most a few mm
giving rise to a shift and broadening on the order of ∆ν

ν
∼ gh

c2
= 10−19 for h = 1 mm.
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ter 6 represent a very large step towards the experimental demonstration.

1.2.4 Properties of the Lattice

With the framework developed above, it is convenient to investigate a little
further the energy scales of the atoms trapped in the lattice. To simplify
the problem, we can expand the lattice potential in terms of r =

√
x2 + y2

and z

U(r, z) = U0

(
1− e−2r2/w2

0 cos2(kz)
)

+mgz (1.10)

' U0(k2z2 +
2r2

w2
0︸ ︷︷ ︸

Uhar

−2k2

w2
0

z2r2

︸ ︷︷ ︸
Ucoup

−k
4z4

3︸ ︷︷ ︸
Uq

) +mgz, (1.11)

where we have a term in the form of a harmonic potential Uhar, and a term
Ucoup coupling the r and z degrees of freedom,

Uhar =
1

2
mω2

zz
2 +

1

2
mω2

rr
2 (1.12)

Ucoup = − 1

4U0
m2ω2

rω
2
zr

2z2, (1.13)

where the oscillation frequencies ωr and ωz in the radial and longitudinal
direction, respectively, are obtained as

1

2
mω2

z = U0k
2 and

1

2
mω2

r =
2U0

w2
0

. (1.14)

The quartic distortion Uq is a higher order contribution, which will be neg-
ligible in most cases.

For most purposes, the lattice trap can therefore be characterized as
harmonic oscillator with a certain coupling between the vertical and radial
directions, and the characteristic quantities are the oscillation frequencies
ωr and ωz in the radial and longitudinal direction, respectively, and the
trap depth U0, which is usually given in units of the recoil energy Er =
~2k2/(2m). From this we get the following useful relations

ωz =

√
2U0k2

m
=

2

~
√
U0Er, (1.15a)

ωr =
λ√

2πw0

ωz, (1.15b)

U0

Er
=

ω2
zm

2λ4

16π4~2
. (1.15c)
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The Hamiltonian and Eigenenergy

The Hamiltonian for the system can be expressed as a harmonic oscillator
in three dimensions with given oscillation frequencies in the longitudinal
and transverse directions, which are modified by coupling between the two
directions and the quartic distortion. We then have

Ĥ = Ĥhar + Ĥcoup + Ĥq, (1.16)

Ĥhar =
p̂2

2m
+

1

2
mω2

z ẑ
2 +

1

2
mω2

r (x̂
2 + ŷ2), (1.17)

Ĥcoup = − 1

4U0
m2ω2

z ẑ
2ω2

r (x̂
2 + ŷ2), (1.18)

Ĥq = −m
2ω4

z ẑ
4

12U0
. (1.19)

The energy levels can be found if we treat Ĥcoup and Ĥq as perturbations
to the analytical solution of Ĥhar.

Introducing the creation â† and annihilation â operators defined in each
direction as

x̂2 =
~

2mωr
(âx + â†x)2, p̂2

x = −~mωr
2

(âx − â†x)2, (1.20)

ŷ2 =
~

2mωr
(ây + â†y)

2, p̂2
y = −~mωr

2
(ây − â†y)2, (1.21)

ẑ2 =
~

2mωz
(âz + â†z)

2, p̂2
z = −~mωz

2
(âz − â†z)2, (1.22)

and the number operator n̂i = â†i âi, the harmonic Hamiltonian can be writ-
ten

Ĥhar = ~ωr(n̂x + n̂y + 1) + ~ωz(n̂z + 1/2). (1.23)

The unperturbed eigenenergy is thus

E0(n = nx, ny, nz) = ~ωr(nx + ny + 1) + ~ωz(nz + 1/2), (1.24)

where ni is the vibrational quantum number for direction i.

Applying first order perturbation theory to Ĥcoup and disregarding Ĥq,
we end up with the eigenenergy E(n) of Ĥ,

E(n) = ~ωr(nx + ny + 1) + ~ωz(nz + 1/2)

− ~2ωrωz
4U0

(nx + ny + 1)(nz + 1/2),
(1.25)

where ωrec = Erec/~ is the recoil frequency.
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The Vertical Temperature

As we have seen in section 1.2.3, the effect of the gravitational potential mgz
is that it breaks the translational symmetry and strongly inhibits intersite
tunneling. For high trap depths (& 10Er), the resulting Wannier-Stark
states are almost exclusively confined to one well. For low density, high trap
depths and low temperatures (∼ 10µK), which is the case experimentally,
we can limit our analysis to single particles in isolated wells, neglect intersite
tunneling, and use thermal averaging to evaluate the relevant spectroscopic
parameters.

In the vertical z-direction we can consider the sidebands coming from
transitions |g, nz〉 → |e, nz ± 1〉. The height ratio bbr between the blue
(nz → nz + 1) and red (nz → nz − 1) sideband is given by the inverse of the
fraction of atoms in state |nz 6= 0〉,

bbr =
Ntot

Ntot −N(nz = 0)
, (1.26)

where Ntot is the total number of atoms and N(nz = 0) is the number of
atoms with nz = 0. The number of atoms with a given nz can be found
from a thermal average, assuming that the atoms are distributed among the
levels according to a classical Maxwell-Boltzmann distribution, since the
temperature is still high enough that we are far from quantum degeneracy.
This gives

P (nz) =

(
1− e−

hνz
kBTz

)
e
−nz hνz

kBTz , giving (1.27)

〈nz〉 =

(
e
hνz
kBTz − 1

)−1

. (1.28)

From (1.26) and (1.28) we then get the temperature in the z-direction

Tz =
hνz

kB ln(bbr)
. (1.29)

1.3 The Clock Transition 1S0 − 3P0

The transition |1S0〉 → |3P0〉 was chosen as the clock transition for the Sr
lattice clock for a number of reasons. First of all, there exists a magic
wavelength for the transition, laying the whole foundation for optical lattice
clocks, along with the fact that it is a J = 0 → J = 0 transition, ensuring
that it is not very sensitive to the polarization of the lattice (in 1D) and
is also relatively insensitive to tensorial lightshifts. Finally, the natural line
width is very narrow; it is expected to be Γ = 2π ·1 mHz for 87Sr, as detailed
in section 1.3.1. This corresponds to 2 · 10−18 in fractional units and should
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not constitute a limitation for the ultimate performance of the clock. The
small line width comes about from hyperfine mixing of |3P0〉 with other
states, making the J = 0 → J = 0 transition, which is otherwise strictly
forbidden, weakly allowed.

1.3.1 State Mixing and Line Width

For the fermion 87Sr with nuclear spin I = 9/2, the upper clock state |3P0〉
is not a pure state due to mixing from hyperfine interaction. To find the
real eigenstate we consider the two-electron system in intermediate coupling,
which has been described in detail by Breit and Wills [30] and Lurio [111].
Using the notation and approach taken in [28], we start by writing the
relevant states in terms of the pure spin-orbit coupling (LS) states |2S+1LJ〉,

|3P0〉 = |3P 0
0 〉, |3P1〉 = α|3P 0

1 〉+ β|1P 0
1 〉, (1.30a)

|3P2〉 = |3P 0
2 〉, |1P1〉 = −β|3P 0

1 〉+ α|1P 0
1 〉. (1.30b)

The coefficients α and β can be found from experimental values of the

Figure 1.7: The coupling between the states relevant for |3P0〉. HFI: Hyper-Fine
Interaction. The figure is taken from [28].

atomic properties. The life time of state |nP1〉 can be expressed as [42]

1

τ(nP1)
=

8π2e2

3ε0~λ3
n

|〈1S0|r|nP1〉|2, (1.31)

where ε0 is the vaccum permittivity, λn is the wavelength for the transition
|1S0〉 → |nP1〉 and r is the position operator. Inserting (1.30) and using the
selection rule ∆j = 0, we get the relation

τ(1P1)

τ(3P1)
=

(
λ1

λ3

)3 β2

α2
. (1.32)
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Inserting the experimental values τ(1P1) = 5.263(4) ns [182], τ(3P1) = 21.5(2)µs
[185], λ1 = 460.73 nm and λ3 = 689.25 nm along with the normalization con-
dition α2 + β2 = 1, we get

α = 0.9996 , β = −0.0286. (1.33)

We now move on to include the hyperfine coupling as well. The Hamiltonian
giving rise to the hyperfine structure consists of a magnetic dipole term ĤA

and an electric quadropole term ĤQ [28],

Ĥhf = AI · J︸ ︷︷ ︸
ĤA

+Q
3

4

I · J(2I · J + 1)− IJ(I + 1)(J + 1)

IJ(2I − 1)(2J − 1)︸ ︷︷ ︸
ĤQ

, (1.34)

where A and Q are the hyperfine coupling constants.
The upper clock state |3P0〉 is a mixture of states sharing the same total

spin F = I + J. For 87Sr we have I = 9/2 giving F = 9/2 for |3P0〉 and we
can write

|3P0〉 = |3P 0
0 〉+ α0|3P1, F = 9/2〉+ β0|1P1, F = 9/2〉+ γ0|3P2, F = 9/2〉,

(1.35)

where the coupling constants are shown in figure 1.7. Equation (1.35) can
be written in terms of the pure LS states using (1.30) as

|3P0〉 = |3P 0
0 〉+ (α0α− β0β)|3P 0

1 〉+ (α0β + β0α)|1P 0
1 〉+ γ0|3P 0

2 〉. (1.36)

Following the discussion leading up to (1.32), this leads to the lifetime of
|3P0〉 [16]

τ(3P0) =

(
λ0

λ1

)3 α2

(α0β + β0α)2
τ(1P1), (1.37)

where λ0 = 698.44 nm.
The hyperfine coupling coefficients in (1.36, 1.37) can be calculated from

the matrix elements of the hyperfine interaction Hamiltonian (1.34) as

α0 =
〈3P1, F = 9/2|ĤA|3P 0

0 〉
ν(3P0)− ν(3P1)

(1.38a)

β0 =
〈1P1, F = 9/2|ĤA|3P 0

0 〉
ν(3P0)− ν(1P1)

(1.38b)

γ0 =
〈3P2, F = 9/2|ĤQ|3P 0

0 〉
ν(3P0)− ν(3P2)

, (1.38c)

where ν(nPj) is the frequency for the transition |1S0〉 → |nPj〉. The resulting
values for the coupling coefficients depend somewhat on the model used to
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calculate the matrix elements. However, for an order of magnitude evalua-
tion we can employ the approximate values [28]: α0 ' 2 · 10−4, β0 ' 4 · 10−6

and γ0 ' 4 · 10−6. This gives a lifetime on the order of

τ(3P0) ∼ 100 s, (1.39)

corresponding to a natural line width of a few mHz.

1.3.2 Zeeman Shift

The Zeeman shift describes the change in energy of the atomic levels when
a magnetic field is applied to the atom. The Hamiltonian for the Zeeman
interaction with a magnetic field B is given by

ĤZ = −µ̂ ·B, (1.40)

where the µ̂ is the operator for the total magnetic moment of the atom. It is
composed of three terms; the orbital magnetic moment µ̂L = −gLµBL̂/~, the
spin magnetic moment µ̂S = −gsµBŜ/~ and the nuclear magnetic moment
µ̂I = gIµB Î/~. Here, µB = e~/2me is the Bohr magneton. The Landé
factors are gs ' 2 and gL = 1 for the spin and orbital angular momentum,
respectively. For a magnetic field of size B in the z-direction we therefore
get the Hamiltonian

ĤZ = (2Ŝz + L̂z − gI Îz)µBB/~. (1.41)

The nuclear Landé factor is given by gI = µI(1−σd)
|I|µB/~ , where µI is the nuclear

magnetic moment and σd is the diamagnetic correction. For 87Sr, µI =
−1.0924(7)µN [125] with µN being the nuclear magneton and σd = 0.00345
[91].

The Zeeman shift of the clock transition comes about due to a difference
in Landé factor between the two clock states. If the clock states were pure
LS states, their Landé factor would be identical (assuming a negligible dif-
ferential contribution from the diamagnetic effect) and there would be no
Zeeman shift. However, the upper state |3P0〉 is modified due to the hyper-
fine mixing described in section 1.3.1, which causes a non-zero differential
Landé factor between the two clock states.
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Differential Landé Factor

The differential Landé factor is given by

δg = g(3P0)− g(1S0) = g(3P0)− g(3P 0
0 ) (1.42a)

=
〈3P0|ĤZ |3P0〉 − 〈3P 0

0 |ĤZ |3P 0
0 〉

mFµBB
(1.42b)

= (α0α− β0β)
〈3P 0

0 |ĤZ |3P 0
1 , F = 9/2,mF 〉

mFµBB
+O(α2

0, β
2
0 , γ

2
0 , . . .) (1.42c)

=
4

3

√
2

33
(α0α− β0β) +O(α2

0, β
2
0 , γ

2
0 , . . .), (1.42d)

where the matrix element 〈3P 0
0 |ĤZ |3P 0

1 , F = 9/2,mF 〉 = 2
3

√
2
33mFµBB [28].

Omitting the higher order terms and inserting the values given in section
1.3.1 for the coupling constants, we get

δg ' 6.6 · 10−5. (1.43)

The experimental value of δg was in [11] found to be δg = 7.90(7) ·10−5 and
in [28] the authors found δg = 7.75(3) · 10−5. The two experimental values
agree within two standard deviations and I will use a weighted mean in the
following,

δg = 7.77(3) · 10−5. (1.44)

The discrepancy with the theoretical value is most likely due to the insuffi-
cient knowledge of the coupling constants.

First and Second Order Shift

For a π-transition, |1S0,mF 〉 → |3P0,m
′
F 〉 with mF = m′F , the first order

Zeeman shift of the clock transition is given directly by the differential Landé
factor,

∆
(1)
B = δgµBmFB/h. (1.45)

For the extreme state mF = 9/2 the shift amounts to

∆
(1)
B (mF = 9/2) = 4890(20) Hz (B/mT) (1.46)

using the value for δg in (1.44).

The second order shift arises from levels separated in energy by the fine-
structure splitting and not the hyper-fine splitting, since J = 0 for both
clock states. The main contributor is the interaction between |3P0〉 and
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|3P1〉, since these are the two closest fine-structure states in terms of energy.
Thus, the second order Zeeman shift becomes

∆
(2)
B = −

∑

F ′

|〈3P0, F = 9/2,mF |ĤZ |3P1, F
′,mF 〉|2

ν(3P1, F ′)− ν(3P0)
. (1.47)

Because the fine structure splitting between the two levels is much larger
than the hyperfine structure within |3P1〉, the frequency difference is almost
independent of F ′ and can be taken out of the sum. Using (1.30) and (1.41),
we therefore get

∆
(2)
B ' −α2

∑
F ′ |〈3P0, F = 9/2,mF |ĤZ |3P 0

1 , F
′,mF 〉|2

ν(3P1)− ν(3P0)
(1.48)

= − 2α2µ2
B

3h2(ν(3P1)− ν(3P0))
B2, (1.49)

where the matrix elements can be found in [28]. For 87Sr this gives

∆
(2)
B = −23.3 Hz (B/mT)2. (1.50)

An experimental value was found in [11] as

∆
(2)
B = −24.9(1.7) Hz (B/mT)2, (1.51)

agreeing with the theoretical value within the measurement error. A more
accurate experimental value is given in Chapter 6.

1.3.3 Black-Body Radiation Shift

The black-body radiation shift of the clock frequency stems from a difference
in the shift in energy for the two clock levels due to the thermal radiation
at temperature T . The main contribution to the BBR at room temperature
(T = 300 K) is at λ = 10µm.

The energy shift of level |j〉 from the BBR is given by [126, 134]

∆E|j〉 =
−1

4hε0π3c3

∫ ∞

0
α|j〉(ω)

ω3

e~ω/kBT − 1
dω, (1.52)

where α|j〉(ω) is the dynamic polarizability of state |j〉 and ε0 is the vacuum
electric permittivity. We see that the problem is reduced to finding the
difference in polarizability between the two clock states.

As we shall see below, the largest contribution by far to the polarizability
comes from electric dipole transitions (E1). But for completeness, let us
first consider the higher order transitions, magnetic dipole (M1) and eletric
quadropole (E2). Here, one should expect some contribution to the excited
state polarizability, since the transitions between the fine-structure states
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|3Pj〉 are just at the thermal wavelengths. However, these contributions are
highly attenuated by powers of the coupling constant, the fine structure
constant αf . The transition |3P0〉 → |3P1〉 allowed by M1 coupling gives a
contribution ∆E|3P0〉,M1/h ' 2.4 ·10−5 Hz, while the transition |3P0〉 → |3P2〉
allowed by E2 coupling gives a contribution ∆E|3P0〉,E2/h ' 2.5 · 10−8 Hz
[134]. Both are completely negligible compared to the E1 contribution, as
we will see below.

Regarding the higher order contributions for the ground state, it turns
out that the M1 contribution is more significant than for the excited state.
Compared to the E1 contribution, the contribution of M1 transitions is
suppressed by a factor of α2

f ∼ 10−4 and E2 by α2
f (kBT/EH)2 ∼ 10−10

[134], where EH = ~2/mea
2
0 is the Hartree energy with me being the elec-

tron mass and a0 the Bohr radius, hence giving shifts on the order of
∆E|1S0〉,M1/h ' 2 · 10−3 Hz and ∆E|1S0〉,E2/h ' 2 · 10−9 Hz, respectively.
Contributions from M2 and higher orders are suppressed even more. The
M1 coupling will give a contribution to the BBR shift on the order of 10−18

in fractional frequency, at the same level as the projected ultimate accuracy
of the Sr clock, and must be taken into account eventually.

Considering now the electric dipole transitions (E1), the largest contribution
to the ground state |1S0〉 polarizability is essentially the coupling with state
|1P1〉 at a wavelength of 461 nm. This is so far away from the thermal wave-
lengths, that the polarizability can be considered independent of frequency,
and we can perform the calculation using the static polarizability αE1

|1S0〉(0).

Concerning the excited clock state |3P0〉, there are two transitions prin-
cipally contributing; the transition to |3S1〉 at 679 nm and the transition to
|3D1〉 at 2.56µm. These are much closer to the thermal wavelengths and the
frequency dependence of the polarizability can not be ignored. However, it
can be included in a simple way as a dynamic correction ηj to the frequency
independent polarizability α|j〉,E1(0) in the energy shift as [134]

∆E|j〉,E1 ' −πk2
B

60ε0~4c3
T 4α|j〉,E1(0)(1 + ηj). (1.53)

For the excited state, η|3P0〉 contributes by 5% wheras it is completely neg-
ligible for |1S0〉. The shift of the clock transition from (1.53) for 87Sr at
T = 300 K is then given by [134]

∆ν|1S0〉→|3P0〉,E1 = −2.354± 0.032 Hz. (1.54)

To obtain a reduction of the uncertainty of the theoretical estimate,
we note that the largest contribution to the 1% uncertainty in (1.54), corre-
sponding to 7·10−17 in fractional frequency, comes from the calculation of the
polarizability of the excited state |3P0〉. The uncertainty of the polarizability
of |1S0〉 is only at the 0.1% level. Further calculations performed in [136]
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show that four low-lying even parity states (|5s4d 3D1〉, |5s6s 3S1〉, |5s5d 3D1〉
and |5p2 3P1〉) contribute to the polarizability of |3P0〉 by more than 90%,
and experimental knowledge of these contributions at the level of 0.1% would
also provide a 0.1% uncertainty on the theoretical BBR shift, provided we
have a 1% uncertainty for the remaining states contributing with 10%. Still,
the validity of these calculations should be verified experimentally before we
can draw any final conclusions.

For the moment being, however, it is an experimental parameter that is
responsible for most of the uncertainty due to BBR. Owing to the T 4 de-
pendence in (1.53), the temperature of the vacuum chamber and surround-
ings must be controlled at the level of 10−2 K to reach the 10−18 level in
fractional frequency. Experimentally, it is hard to obtain anything better
than a 0.1 K control, and one solution could be to place the experiment in a
cryogenic environment where the frequency shift would be significantly re-
duced; at T = 77 K the BBR shift would only amount to 0.01 Hz. However,
it is very tedious since the experiment requires a lot of optical access, and
it still remains an experimental challenge to overcome the limits set by the
BBR shift.

Other alkaline earth-like atoms have different BBR shifts, and especially
mercury is promising in that respect. The size of the fractional shift at
room temperature is only 2.4 · 10−16 [147], compared to 5.5 · 10−15 for Sr,
making the 10−18 level of accuracy more feasible to reach without resorting
to cryogenics. Construction of a lattice clock with Hg is under way at
SYRTE [132, 117].

1.4 Lattice Light Shift

The idea of constructing optical lattice clocks hinges on the possibility to
cancel the light shift from the lattice at the magic wavelength. As we shall
see below, this is only possible to a certain degree, but hopefully it will not
be a limiting factor for the accuracy goal of 10−18.

The shift in clock transition frequency due to the presence of the lattice
light is given in general by

∆ν = − 1

4h
∆α(ω, e)E2 − 1

16h
∆γ(ω, e)E4 − · · · , (1.55)

where E is the electric field component of the lattice light, ω is its frequency,
e its polarization, α(ω, e) is the dynamic polarizability, γ(ω, e) the hyperpo-
larizability and ∆ denotes the difference in polarizability between the excited
and ground state.

The electric dipole polarizability α(ω, e) has three terms that should be
taken into account: the scalar, vector and tensor term. For an external mag-
netic field B, the frequency shift due to these terms of the clock transition
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probed by a laser linearly polarized along the quantization axis defined by
the magnetic field will be of the form (see Chapter 6)

∆να =
(
∆κs + ∆κvξmF sinψ + ∆κtf(θ, ψ, ξ)[3m2

F − F (F + 1)]
)
U0,
(1.56)

where U0 is the trap depth and ξ quantifies the degree of circularity for the
polarization of the lattice laser, where ξ = 0(±1) represents perfect linear
(circular) polarization, and ∆κs,v,t are constant coefficients for the scalar,
vector, and tensor shifts, respectively. f(θ, ψ, ξ) is a function characterzing
the geometrical dependence of the tensor shift on the angles θ and ψ between
the polarization and k vector of the lattice laser and the quantization axis of
the external magnetic field, respectively. The derivation of (1.56) is carried
out in Chapter 6.

The electric dipole scalar shift ∆νsα,E1 was discussed in section 1.2.1, so
we will concentrate on the other contributions here.

1.4.1 Multipole Scalar Shift

First we consider the contributions from other interactions than the electric
dipole (E1), namely from magnetic dipole (M1) and electric quadropole
(E2) transitions to the scalar polarizability. In the original proposal [84],
it was determined that these effects would give a shift being a factor of
107 smaller than the E1 contribution, and that they could be compensated
for by a small shift of the magic wavelength. However, the calculation was
performed for traveling waves, not for the standing wave pattern that is the
basis of the optical lattice and, most importantly, it was not noted that the
spatial dependence of this shift is not the same as for the E1 contribution
and cannot be taken into account by a redefinition of the magic wavelength.

When the atoms are trapped in a standing wave pattern, the motion is
quantified in vibrational states. This leads to a an additional frequency shift
from the lattice due to M1 and E2 interactions, which is not cancelled at the
magic wavelength, as pointed out in [161]. We consider the electric dipole
lattice potential from (1.7), were we neglect the radial dependence and omit
the constant term,

Uj(z) = −U0,j cos2(kz) (1.57)

' −U0,j +
1

2
mω2

z,jz
2, (1.58)

for state |j〉, where ωz,j =

√
2U0,jk2

2m is the oscillation frequency in the z-
direction as shown in section 1.2.4. The frequency shift that we want to
evaluate for the carrier transition |g, n〉 → |e, n〉 for vibrational quantum
number n is given by

∆νn = −(U0,e − U0,g)/h+ (ωz,e − ωz,g)(n+ 1/2). (1.59)
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At the magic wavelength, the potential is the same for the two states, and
we have

U0,e = U0,g and ωz,e = ωz,g,

and the frequency shift in (1.59) vanishes. But if we now take into account
the magnetic dipole coupling (M1), the potential from the magnetic compo-
nent of the lattice field will vary as sin2(kz). It can be shown that also the
E2 transitions lead to a sin2(kz) dependence since the E2 transitions arise
from the gradient of the electric field. Thus, the potential now becomes

Uj(z) = −U0,j cos2(kz) + (UB,j + UQ,j) sin2(kz) (1.60)

' −U0,j +
1

2
mω̃2

z,jz
2, (1.61)

where UB,j and UQ,j are the potential depths due to M1 and E2 coupling,
respectively. The oscillation frequency ω̃z,j is modified compared to the pure
electric dipole value ωz,j as [161]

ω̃z,j =

√
2(U0,j + UB,j + UQ,j)k2

2m
. (1.62)

Generally, even at the magic wavelength, we now have

ω̃z,e 6= ω̃z,g,

and there will be a shift of the resonance frequency

∆νn ' (n+ 1/2)ωzς 6= 0, (1.63)

where at the magic wavelength ωz = ωz,g = ωz,e and the dimensionless
coefficient ς is given by [161]

ς = ςM1 + ςE2 =
UB,e − UB,g

2U0
+
UQ,e − UQ,g

2U0
. (1.64)

The coefficient ς is independent of the intensity I of the lattice light, since
both UB,j , UQ,j and U0 all are proportional to I. Since ωz ∝

√
I the whole

shift in (1.63) is therefore proportional to
√
I.

To evaluate the size of this shift, we expect the coefficient ς to be on
the same order as the relative coupling strength of M1 and E2 compared
to E1; in the range 10−7 − 10−6. With the typical value ωz = 200 kHz
for our experiment, we therefore find the upper limit ∆νn=0 ' 200 mHz
corresponding to 4 ·10−16 in fractional units for the maximal trap depth U0.
This upper limit is at the level of the current accuracy of Sr lattice clocks,
and while the effect discussed here will be significantly reduced when the
trap is ramped down during clock interrogation, it might not be negligible at
the level of 10−18 and it is something that should be investigated in future
experimental work. Fortunately, the functional dependence in (1.63) gives a
clear signature ∝ (n+ 1/2)

√
U0 for identifying and characterizing this shift.
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1.4.2 Vector and Tensor Shift

The vector shift

∆νvα = ∆κvξmF sin(ψ)U0

and tensor shift

∆νtα = ∆κtf(θ, ψ, ξ)[3m2
F − F (F + 1)]U0

both arise due to the nuclear structure of the atoms and depend on the
orientation of the light polarization and the bias magnetic field.

The vector shift can be described as a shift from a pseudomagnetic field
along the propagation axis of the trapping laser. It is scaled by the po-
larization circularity ξ and vanishes for linear polarization. Until recently,
there were no experimental measurements of this shift, since even for com-
pletely circularly polarized light (|ξ| = 1), the shift was expected to be much
smaller than the Zeeman shift described in section 1.3.2. The measurements
described in Chapter 6 comparing the two Sr clocks allowed us to put an ex-
perimental upper limit on this shift with a 1.5% errorbar, verifying that it is
indeed a minor effect. Futhermore, for one of the Sr clocks there is a strong
selection of linear polarization within the lattice cavity giving |ξ| ≤ 10−4.
Also, when taking the average of mF = ±9/2 transitions, as described in
section 2.2.3, the vector shift vanishes completely due to mF symmetry. The
main source of uncertainty concerning this shift is then the stability of the
polarization circularity ξ and of the magnetic field strenght.

The tensor shift is proportional to m2
F and will generally be non-zero.

The tensor component ∆κt is small compared to the scalar shift. In [28]
it was found experimentally to be ∆κt/Er = −(6 ± 20) · 10−4 Hz/Er, thus
not resolved within the errorbar, leading potentially to non-negligible shifts
for large lattice depths. This shift can be absorbed as a small change (∼
10−2 nm) in the definition of the magic wavelength, but it depends strongly
on the lattice geometry, as we shall see in Chapter 6, and the main source of
uncertainty then becomes the stability of the polarization and direction and
size of the magnetic field. As described in Chapter 6, we have performed
measurements that reduce the errorbar on the tensor shift with a factor of
more than 100 compared to [28], resolving the value of the tensor shift; a
value which is in reality ten times smaller than the (un-resolved) value given
in [28].

1.4.3 Hyperpolarizability

The shift from the hyperpolarizability γ(ω, e) term in (1.55) is proportional
to U2

0 and arises from two-photon transitions. The wavelength of the lattice
is fixed at λm, where the first order (∝ U0) term cancels, and in order for
the two-photon transitions to give anything considerable, their combined
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wavelength must be close to the magic one. In other words, the transi-
tions that should be considered must have a wavelength λ ' λm/2. A
few transitions fulfill this; |5s5p 3P0〉 → |5s7p 1P1〉 at λ1 = 813.36/2 nm,
|5s5p 3P0〉 → |5s4f 3F2〉 at λ2 = 818.57/2 nm and |5s5p 3P0〉 → |5s7p 3P0〉
at λ3 = 796.3/2 nm. Although the first transition is close to half the magic
wavelength, it should not contribute significantly since it is a J = 0→ J = 1
transition which is forbidden by the selection rules for a two-photon transi-
tion. The two last transitions are allowed, but 5 nm and 17 nm, respectively,
away from the magic wavelength leading to the expectation that their con-
tribution is non-fatal for the magic wavelength scheme.

Indeed, in 2006 in [32] it was shown that the hyperpolarizability poses
no immediate limitation for reaching an accuracy level of 10−18 for a Sr
lattice clock. The differential hyperpolarizability was found to be ∆γ =
(7± 6) · 10−6 Hz/(U0/Er)

2 and the desired level of accuracy can be reached
when keeping U0 ≤ 10Er. It was also suggested at the time that it should
be possible to cancel the shift from hyperpolarizability by tuning the polar-
ization of the lattice [160].

However, the orientation of the polarization is also important for the
vector and tensor shifts described above, and with respect to the constraint
U0 ≤ 10Er for the hyperpolarizability given by the measured value in [32],
there are some experimental problems that arise when the trap depth is kept
below 10Er. Most notable is the reduced range of trap depths available to
test lattice related and motional effects. One can also expect a loss of a
large number of atoms that most often follows when the trap is ramped so
deep with a subsequent loss of signal and possibly degraded stability (see
Chapter 5). We have recently performed new measurements that not only
reduce the errorbar on ∆γ by more than a factor of 10, but also allows
trap depths up to 50Er, since the measured value for ∆γ is more than one
order of magnitude lower than the value given in [32]. The measurement is
described in Chapter 6.

1.4.4 Blue-Detuned Trap

Recently, proposals have been made to trap atoms with a blue-detuned
dipole trap [164] instead of the usual red-detuned trap. The advantage of
this approach is that the atoms are trapped at the nodes of the electric field
where the amplitude is zero, so that light shift effects should be smaller than
in the red-detuned case. Atoms in the vibrational ground state captured at
the nodes of the electric field typically experience only one tenth of the
maximum intensity of the trapping light. The authors of [164] found a
blue magical wavelength at λm = 389.889(9) nm where the first order light
shift is cancelled. They estimate hyperpolarizability effects to lead to an
uncertainty at the level of 2 · 10−19, and it should not limit the ultimate
performance of the clock.



36 AN OPTICAL LATTICE CLOCK

However, certain problems do arise for a trap with this wavelength. First
of all, a lot more power is required experimentally to obtain the same confine-
ment, since for constant ωz the trap depth U0 scales as λ2 (see (1.15)). Sec-
ondly, for the wavelength in question λm = 390 nm, powerful laser sources
are hard to construct and the power requirement is hard to meet. Also, since
the atoms are trapped at the nodes of the electric field, the electric field gra-
dient is maximal here. This could lead to increased shifts from higher order
transitions, as discussed in section 1.4.1.

This point was raised in [82], where the authors propose a way to circum-
vent this by redefining the magic wavelength so as to eliminate the spatial
mismatch in electric dipole, magnetic dipole, and electric quadrupole inter-
actions. By selecting a certain lattice geometry the authors show that the
M1 and E2 transitions will contribute with a spatially constant shift which
can then be absorbed in the definition of the magic wavelength. The discus-
sion in [82] refers to a 3D blue-detuned lattice, but the same strategy should
also apply to a 1D red-detuned lattice like in our experiment, and could
be beneficial to remove the intensity dependence in the

√
I dependent shift

discussed in section 1.4.1, which would leave a constant shift characterized
only by the trap frequencies.

So although the prospects of using a blue detuned lattice indicate that
it will not introduce uncertainties comparable to or larger than the red-
detuned lattice, it remains to be experimentally demonstrated. In any case,
at first sight it does not solve any problem that cannot be solved for the red-
detuned trap, and the justification for changing to a blue-detuned trap with
the additional power requirement and experimental difficulty is virtually
non-existent.

1.5 Conclusion

This chapter has described the theoretical basis for lattice clocks. One
motivating factor for constructing optical lattice clocks is the high short-
term stability that can be obtained with this type of clock, potentially orders
of magnitude better than both ion and microwave clocks.

It has been shown that when the lattice light is tuned to the magic
wavelength, the shifts of the clock frequency from the lattice should be
controllable to a high degree, possibly to the level of 10−18. However, no
lattice clock has yet demonstrated an accuracy below 10−16, and the level
of several lattice related shifts need to be confirmed experimentally. The
measurements shown in Chapter 6 are an important step in that direction,
confirming with new precision the feasibility of making extremely accurate
lattice clocks. The main limitation to the ultimate accuracy of a Sr lattice
clock is expected to be the shift from the black-body radiation.
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Another shift, which was long thought to be negligible for fermions, has
lately taken up some attention. The shift arises due to collisions between the
cold atoms in the trap. For identical fermions, this shift should be very small
since s-wave collisions are completely removed by the Fermi suppression.
However, slight misalignment between the clock laser and the lattice can
induce distinguishability between the fermions due to the transverse motion
in the trap [25], and hence allow s-wave collisions leading to the frequency
shift. The shift was measured in 2009 in [35] but not clearly resolved owing
to different theoretical predictions [63], and further investigations are still
underway to determine the significance of this shift.
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Chapter 2

Operation of the Clock

This chapter describes the general operation of the Sr lattice clock. When I
started the work on my Ph.D. thesis in 2007, the Sr experiment at SYRTE
was already operational as an atomic clock and had already produced some
remarkable results [32, 93, 11]. Most of the elements used for the current
operation of the clock were consequently already in place. The most impor-
tant experimental additions I have assisted with are described in Chapters
3 and 4.

Another large contribution to the Sr clock experiment since 2007 has
been the construction of a second Sr clock; Sr2. My thesis work has been
concentrated on Sr1, and the construction of Sr2 was done by my collegues
Jérôme Lodewyck, Arnaud Lecallier and Luca Lorini. Details can be found
in [94]. Along with the construction of Sr2 went the setting up of an all
semi-conductor source for the optical lattice light for both Sr1 and Sr2.
The first section in this chapter therefore describes this setup as well as the
consequences it has on the lifetime of the captured atoms in the trap.

The second section describes the various steps of the time sequence for
the operation of the clock. The latest experimental addition to the Sr1
experiment prior to my Ph.D. work was the optical pumping of atoms into
the extreme Zeeman sublevels, as reported in [11, 10]. However, the priority
at the time was a quick implementation rather than a thorough optimization,
and I have subsequently performed this optimization. The optical pumping
is therefore described in some detail here.

2.1 Experimental Implementation of the Lattice
Laser

In our experiment, the optical lattice is created by not only retro-reflecting
the dipole trap laser beam once, but surrounding the trapping region with
a cavity such that the intra-cavity power is amplified a number of times
depending on the finesse of the cavity. Our cavity has a finesse of F = 100

39
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giving an amplification factor on the same order.

The light for the lattice is supplied by an all semi-conductor source. The
setup was constructed mostly by Jérôme Lodewyck in 2008-2009. The setup
consists of an extended cavity diode laser, whose frequency is locked to a
cavity of finesse F ∼ 80 using the Pound-Drever-Hall technique (see Chapter
4). This laser is tuned to the magic wavelength and works as the master
for the rest of the setup. The light from the master laser of a few mW
is amplified by an injection-locked slave diode laser giving ∼ 30 mW before
the light is amplified again by a MOPA (Master Oscillator Power Amplifier).
The output power is about 1.3 W. The high-power light is sent through a
fiber to the cavity surrounding the atomic sample to create the lattice trap.
The setup is shown in figure 2.1. At the output of the fiber the power is

Figure 2.1: The setup for the all semi-conductor source for the lattice trap. ECLD
= Extended Laser Cavity Diode, PDH = Pound-Drever-Hall, OL = Optical Isolator,
IF = Interference Filter, PD = Photo Diode, PZT = Piezo-Electric actuator.

about 300 mW; sufficient to create a trap depth of U0 = 1000Er with the
lattice cavity finesse of 100.

A part of the master light goes through a similar amplification setup to
supply the light for the lattice trap of the second Sr lattice clock at SYRTE.

Before the semi-conductor setup was constructed, the lattice light was pro-
duced by a Tekhnoscan Titanium Sapphire laser injected with a Verdi V10
laser. There were both advantages and disadvantages associated with chang-
ing the setup to the semi-conductor source. The main advantage of chang-
ing the setup was that operation of the Ti:Saph was very time consuming;
cleaning and realignment had to be done at least once a day for our specific
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specimen, and most often several realignments were necessary during the
course of a day. Furthermore, at the end of 2009, the output of the Ti:Saph
system was very unstable, the power was dropping month by month and the
fluctuating behaviour of the resulting lattice trap was generally thwarting
continuous operation of the clock.

At this point, the semi-conductor setup was more or less operational and
we decided to opt for this solution instead of struggling with the Ti:Saph.
There was one major concern for the ECLD-MOPA setup, however. The
upper limit for the trap lifetime depends strongly on the noise of the intensity
of the dipole trap for frequencies at two times the trap frequency, as will
be shown below. The frequency noise of the laser is converted to amplitude
noise by the cavity where the lattice is formed. The frequency noise of
the ECDL at the relevant frequencies of a few hundred kHz is much larger
than the corresponding noise from a Ti:Saph. To reduce the frequency
fluctuations, the master was locked to an external confocal Fabry-Pérot
cavity, giving a laser line width on the order of a few hundred Hz. Although
this stabilization does reduce the noise significantly, the frequency noise is
most likely still the limiting factor for the trap lifetime. The stabilization
of the ECDL is limited by the bandwidth of a few MHz for the lock to the
cavity.

To ensure that the FP cavity provides a stable frequency reference, it
is locked to light at 689 nm (which itself is locked to the atomic resonance
1S0 − 3P1 at 689 nm) using a piezo-electric inducer (PZT) attached to one of
the cavity mirrors. The two different wavelengths of the light are separated
with an interference filter before being used for the respective locks. With
this two-colour locking system, the frequency departure for all timescales
of the 813 nm laser is much smaller than 1 MHz, and after having tuned
the laser accurately to the magic wavelength, the frequency fluctuations will
not cause a shift of the clock frequency above 10−17 for U0 < 100Er. Two
optical isolators are placed just after the output of the master laser to ensure
that there is no optical feedback disturbing the stability of the laser, since
it was found experimentally that one optical isolator was not sufficient.

With this setup, we tried to find the magical wavelength of the trap by
testing the light shift of the clock transition at different trap depths, but the
light shift behaved strangely and we got inconsistent results. The reason for
this was the residual spontaneous emission of the MOPA that remained in
the spectrum even though it was well injected. To reduce the fraction of
broadband light (a few nm wide) that reached the lattice cavity, we inserted
an interference filter before the fiber with a width of ∼ 0.1 nm [13]. After
this, the problem was dwarfed and the lattice could be operated at the magic
wavelength (see Chapter 6 for more details).
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2.1.1 Estimation of the Lifetime

The limitation due to laser noise of the life time of atoms captured in a
dipole trap was first quantified in [152]. Following the same approach, one
can model the time-varying potential by a perturbed harmonic oscillator,
giving the Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2

z [1 + ε(t)]ẑ2, (2.1)

where ωz is the trap frequency and the fractional intensity fluctuations ε(t) =
I(t)−〈I〉
〈I〉 of the dipole trap laser enters as a modification of the spring constant

of the harmonic oscillator. The average rate for an atom in a motional state
|n〉 of the harmonic oscillator to make a transition to a different state |m 6= n〉
in a time interval T is given by

Rn→m =
1

T

∣∣∣∣
−i
~

∫ T

0
〈m|Ĥ ′(t)|n〉ei(ωm−ωn)tdt

∣∣∣∣
2

, (2.2)

where the perturbation Hamiltonian is Ĥ ′(t) = 1
2mω

2ε(t)ẑ2 and ~ωn is the
energy of state |n〉. Assuming that the averaging time T is short compared
to the time scale over which the level populations vary, but large compared
to the correlation time of the fluctuations, one obtains [152]

Rn→n±2 =
πω2

z

16
Sε(2ωz)(n+ 1± 1)(n± 1), (2.3)

where the trap frequency is obtained as ωz = ωn+1 − ωn and Sε(ω) is the
one-sided power spectral density of the fractional intensity fluctuations ε(t).
Due to the appearance of ẑ2 in Ĥ ′(t), only terms with m = n± 2 survive in
(2.2).

For a probability P (n, t) that the atoms occupy |n〉 at time t, the average
rate of change in energy is

〈Ė〉 =
∑

n

〈P (n, t)2~ωz(Rn→n+2 −Rn→n−2)〉

= Γε〈E〉,
(2.4)

where the mean energy is 〈E〉 =
∑

n〈P (n, t)(n + 1/2)~ωz〉 and the heating
rate Γε is

Γε ≡
1

τt
= π2ν2

zSε(2ωz), (2.5)

where νz = ωz
2π . Here, τt is the time it takes for the mean energy to increase

by a factor of e. This is on the order of the life time of the atoms in the
trap. From (2.5) we see that most often the relevant oscillation frequency
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for the life time estimation is the longitudinal oscillation frequency of the
lattice trap, as foreseen by the notation νz, since the life time scales as 1/ν2

and the longitudinal oscillation frequency νz ' 200 kHz is almost 3 orders
of magnitude larger than the radial frequency νr ' 400 Hz. Of course, the
spectrum of the fractional intensity fluctuations ε(t) generally rises at low
frequencies but usually not enough for the radial oscillation frequency to
give a significant contribution to the heating rate, as we can see in figure
2.2.

Figure 2.2: The power spectral density of the fractional intensity fluctuations of
the lattice trap light (red curve). The dashed blue line shows the noise limit from
(2.5) for having a trap life time of 1 second. The noise at two times the frequency
of radial oscillation (∼ 2× 400 Hz) is several orders of magnitude below this limit.

Figure 2.2 shows a measurement of the typical fractional intensity fluctu-
ations Sε(ω) in the lattice trap. The measurement was obtained by measur-
ing the intensity of a leakage beam from one of the lattice mirrors. The trap
frequency is typically νz ' 200 kHz, so the life time should be evaluated for
Sε(400 kHz), which gives τt ' 1 s. Experimentally, we observe τt ' 800 ms
in agreement with the model. Most notably, we observe a drastic decrease
in life time due to conversion of laser frequency noise to amplitude noise
[34] inside the lattice cavity if the lock of the master ECLD is badly opti-
mized (for instance if the diode is on the edge of a mode) and the noise level
is higher. This leads us to the conclusion that the intensity fluctuations
converted from frequency fluctuations of the master laser by the cavity are
indeed limiting the life time of the atoms in the lattice trap.
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The process that causes the limitation of the life time is phonon induced
change of the motional state of the atoms. We can estimate the effect that
this heating process will have on the longitudinal temperature of the atomic
sample. Given the probability P (n, t) that the atoms occupy |n〉 at time t,
after a small time increment ∆t the probability will be

P (n, t+ ∆t) = P (n, t) (1−Rn→n+2∆t−Rn→n−2∆t)

+ (P (n+ 2, t)Rn+2→n + P (n− 2, t)Rn−2→n) ∆t.
(2.6)

Inserting the transition rates from (2.3), we get

Ṗ (n, t) = lim
∆t→0

P (n, t+ ∆t)− P (n, t)

∆t

=
πω2

z

16
Sε(2ωz)

(
n(n− 1)P (n− 2, t) + (n+ 1)(n+ 2)P (n+ 2, t)

− P (n, t)[n(n+ 1) + (n+ 1)(n+ 2)]
)

(2.7)

This gives a number of coupled differential equations for n up to the maximal
number nmax of motional states in the trap. This number is determined by
the the depth of the trap as1

nmax ' U0

hνz
=
mνzλ

2

2h
, (2.8)

where λ is the wavelength of the lattice. For νz = 200 kHz we get nmax = 14.
As explained in section 1.2.4, the temperature of the atoms in the lon-

gitudinal direction can be obtained from the ratio bbr of the blue and red
sideband as

Tz =
hνz

kB ln(bbr)
, (2.9)

and if the equations (2.7) are solved for P (n, t), the sideband ratio bbr as a
function of time can be found as

bbr(t) =
P (n = 0, t)∑nmax
n=1 P (n, t)

. (2.10)

To include the loss of atoms from the trap when they are heated out of the
trap, the probability is truncated P (n, t) = 0 for n > nmax.

Figure 2.3 shows the ratio bbr(t) and the corresponding temperature
Tz(t) for a numerical solution of (2.7) with the experimental parameters
νz = 200 kHz and Sε(2νz) = 1 · 10−12. The atoms are assumed all to be
in |nz = 0〉 at t = 0; P (n = 0, t = 0) = 1. The figure shows that the

1The anharmonicity of the trap introduces a small correction to nmax and (2.8) is only
an approximation.
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Figure 2.3: The ratio bbr(t) of the blue and red sideband and the corresponding
temperature in the longitudinal direction as a function of time.

temperature rises linearly with time after an initial transient, which is not
surprising considering the exponential increase of energy in (2.4) and the
logarithmic dependence in (2.9).

The heating described here essentially only affects the vertical motion be-
cause of the dependence on oscillation frequency in (2.3). For the spectrum
in figure 2.2 the transition rate Rn→n±2 is 5 orders of magnitude smaller
for the transverse directions than for the longitudinal. However, due to the
coupling between the transverse and longitudinal degrees of freedom intro-
duced by the anharmonicity of the trap (see (1.13)), the transverse modes of
oscillation might also be excited by longitudinal motion. As we shall see in
Chapter 6, transverse motion can introduce decoherence in the clock mea-
surement if the clock laser is slightly misaligned with respect to the lattice
due to changes in the Rabi frequency perceived by the atoms as they move.
Thus, this sets an upper limit for the coherence time of the system, even for
a perfect (noiseless) — but misaligned — clock laser and perfectly cooled
atoms that start with Tz = Tr = 0. However, this limit is at least on the
order of the lifetime of the trap (∼ 1 s) given by (2.5), and the limiting
factor for the coherence time during a clock measurement will usually be
the coherence of the clock laser and the atomic motion already present, as
explained in Chapter 6.
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2.2 The Time Sequence

Lattice clocks are operated sequentially. Each cycle consists of some prepa-
ration of the atoms followed by the interrogation of the clock transition by
an ultra-stable laser, and finally the transition probability is obtained at the
end of each cycle. The clock cycle is then repeated indefinitely. The time
sequence for a clock cycle of the Sr lattice clock at SYRTE is shown in figure
2.4. The level scheme with the relevant transitions is shown in figure 2.5.

Figure 2.4: The time sequence for the Sr clock at SYRTE. The sequence is shown
for Ramsey interrogation of the clock transition. Sometimes it is convenient to use
Rabi interrogation, which instead consists of a single pulse of a given duration.

The experimental sequence is controlled by a computer through a timing
board and the switching of laser beams is done with mechanical shutters
and by switching the RF power of AOMs.

The different parts of the time sequence are discussed briefly below. The
experimental realization of each step of the sequence is discussed thoroughly
in [92, 31, 43, 10].

2.2.1 Optical Lattice Loading

At the beginning of each cycle, the atoms are first captured in a magneto
optical trap (MOT) using the transition |1S0〉 → |1P1〉 at 461 nm. About
200 mW of light at 461 nm is generated by frequency doubling light at
922 nm using a PPTKP crystal in a butterfly cavity [92]. The light at
922 nm is generated using an ECLD (Extended Cavity Diode Laser) and
amplified to about 600 mW by a MOPA.

Before reaching the trapping region, the atoms are slowed down in a
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Zeeman slower. For 87Sr, about 106 atoms are captured in a few tens of ms
[45]. The lifetime of the atoms in the MOT is limited to between 30 and
40 ms due to decay from |1P1〉 to the meta-stable |3P1〉 and |3P2〉 states via
|1D2〉. The cloud of trapped atoms in the MOT has an ellipsoidal shape
with a ratio of

√
2 between the two axes and a 1/e2 diameter of about 3

mm.

Figure 2.5: The various transitions of Sr used in the experiment. The wavy arrows
indicate the alternative decay routes for |1P1〉.

The line width of Γ461 = 2π · 32 MHz and the experimental parameters
result in an experimentally observed temperature of the captured atoms of
2.3 mK [43] for a detuning of ∆ = 1.3Γ461. This is a factor of two higher than
the Doppler temperature of 1.2 mK; a fact that has been observed for alkaline
earth(-like) atoms such as Sr [181], Mg [107] and Ca [90]. The explanation
for this discrepancy was found to be a heating mechanism occurring for
atoms with a J = 0 ground state, which is the case for alkaline earth(-like)
atoms, for which Sisyphus cooling is not possible. The heating is due to
transverse spatial intensity fluctuations of the molasses beams [37]. These
intensity fluctuations arise due to imperfections in the cooling beams from
optical aberrations and dust.

In any case, the atoms in the MOT are too hot to be efficiently trapped
in the optical lattice, and furthermore the dynamics of the MOT would kick
out most of the atoms that were trapped in the lattice. One way to proceed
is to make a second stage MOT with the |1S0〉 → |3P1〉 transition at 689
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nm, which gives a temperature in the µK range owing to the small line
width of Γ689 = 2π ·7.6 kHz. The disadvantage of this is the additional need
for optic elements (mirrors, acusto-optic modulators, etc.) and the optical
power requirement (∼ 20 mW) for the 689 nm transition. The hyperfine
splitting (∼ 1 GHz) of the |3P1〉 state requires two distinct frequencies for
the MOT and, most importantly, the duration of the second stage MOT is
typically several hundreds of ms to capture a few thousand atoms. With
this technique, around 104 atoms are captured in the lattice after 700 ms of
loading [29].

For the Sr clock at SYRTE, another approach was chosen, which requires
very little optical power (∼ 10µW) and only one frequency of the 689 nm
light. The atoms in the blue MOT that are located in the lattice region and
have a temperature lower than the potential of the lattice are transferred
continuously to the lattice via the so-called “atomic drain”. The lattice
laser beam is focused to a waist of 90µm in the center of the MOT cloud.
Two lasers with frequencies addressing the transitions |1S0〉 → |3P1〉 (689
nm) and |3P1〉 → |3S1〉 (688 nm) are overlapped and tightly focused (beam
waists of 50µm) to coincide with the dipole trap. This means that when
the atoms enter the region of the dipole trap, they are pumped by the 689
nm laser to |3P1〉 and from there by the 688 nm laser to |3S1〉. The atoms
then decay to either of the three |3PJ〉 states, and with the 688 nm laser
still on, the atoms are pumped into the meta-stable states |3P0〉 and |3P2〉
with lifetimes on the order of 100 s. Due to the long lifetime of |3P1〉 (21.3
µs), none of the atoms have time to decay back to |1S0〉 and they are all
transferred to the meta-stable states, where they are not part of the MOT
cycle and remain trapped. About 104 atoms are captured this way after
600 ms of loading. The light at both 688 nm and 689 nm is generated by
ECLDs.

2.2.2 Narrow Line Cooling

When the atoms have been loaded into the trap, their temperature is on
the order of the depth of the trap, in the vertical direction typically Tz =
U0
kB
' 1000Er

kB
= 165µK. This is too much to have a well-controlled system

and further cooling is necessary.

When the atoms are trapped in the lattice they are situated in the
meta-stable states |3P0〉 and |3P2〉. After the trapping phase, the atoms are
brought to the ground state by shining the repumping lasers (|3P2〉 → |3S1〉
at 707 nm and |3P0〉 → |3S1〉 at 679 nm, both generated by ECLDs) on the
atoms. This transfers the atoms to the ground state |1S0〉 via |3P1〉. The
cooling is then performed on the |1S0〉 → |3P1〉 transition at 689 nm. The
repumping is left on during the cooling to ensure that no atoms are in the
dark |3P0〉 and |3P2〉 states. Even though there should not be any decay
to the dark states during the cooling, we found experimentally a ∼ 20%
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increase in the number of captured atoms when the repumper was left on,
and decided to keep it this way without having a satisfactory explanation
for why it had an effect.

In the vertical direction along the lattice laser, the sideband separation
(typically ∼ 200 kHz) is much larger than the line width Γ689 = 2π · 7.6 kHz
of the transition, and sideband cooling can be performed [131, 96]. Sideband
cooling works by addressing a transition where the excited state has a lower
motional quantum number n than the ground state, that is |g, n〉 → |e, n−1〉
for electronic states |g〉 and |e〉. This way, the atoms will eventually end up
in the motional ground state |n = 0〉.

In the transverse directions, the carrier-sideband separation is much
smaller, typically ∼ 400 Hz, and sideband cooling is not possible. Instead,
Doppler cooling is applied along the two transverse directions.

To evaluate the temperature of the atoms after the cooling, one can
study the line shape of the longitudinal sidebands. The relative height of
the two sidebands gives a measure of the longitudinal temperature, since
atoms in the motional ground state |nz = 0〉 cannot contribute to a red
sideband transition. The shape of the sidebands carries information about
the transverse temperature of the atoms, owing to the coupling between the
longitudinal and transverse degrees of freedom, which makes the longitudinal
transition frequency depend on the transverse motional state.

Following the approach taken in [92, 25], we can derive an expression for
the sideband shape as a function of transverse temperature.

Modeling the Spectrum

To study the effect of the temperature of the atoms on the sideband shape,
we can examine how the frequency for the longitudinal sideband frequency
is changed by the coupling between the longitudinal and transverse degrees
of freedom.

From (1.25) we get the frequency difference between the carrier and the
first longitudinal sideband

νsb± =
∆E±
h

=
Enr,nz±1 − Enr,nz

h

= ±νz
(

1− hνr
4U0

(nr + 1)

)
,

(2.11)

where nr = nx + ny.

The transition probability for the sideband transition to occur will be
proportional to the number of atoms in the given state |nx, ny, nz〉. The
number of atoms can be found from a thermal average, assuming that the
atoms are distributed among the levels according to a classical Maxwell-



50 OPERATION OF THE CLOCK

Boltzmann distribution. This gives

N(nx, ny, nz) ∝
1

W
e
−Ez(nz)

kBTz e
−Er(nx,ny,nz)

kBTr , where (2.12)

W =
∑

nx,ny ,nz

e
−Ez(nz)

kBTz e
−Er(nx,ny,nz)

kBTr , (2.13)

where the perturbed energies in the longitudinal and radial direction, re-
spectively, are written as

Ez(nz) = ~ωz(nz + 1/2), (2.14)

Er(nx, ny, nz) = ~ωr(nx + ny + 1)− ~2ωrωz
4U0

(nx + ny + 1)(nz + 1/2).

(2.15)

The sideband frequency (2.11) depends only on nr = nx + ny, and the
transition probability at frequency νsb±(nr) is proportional to the number
of atoms in state |nr〉 summed over all the nz. Since there is complete radial
symmetry of the system, there are nx + ny + 1 = nr + 1 values of nx and
ny that correspond to the same nr and give the same contribution to the
transition probability. Thus, from (2.12) we obtain

P (nr) = A′(nr + 1)
∞∑

nz=0

N(nr, 0, nz) (2.16)

= A(nr + 1)e
−nr hνr

kBTr , (2.17)

where A′ and A are multiplicative constants. By inserting nr from (2.11),
we get the transition probability as a function of detuning δ = νsb± from
resonance,

P (δ) =

{
A4U0
hνr

(
1− |δ|νz

)
e
hνr
kBTr e

− 4U0
kBTr

(
1− |δ|

νz

)
for −νz ≤ δ ≤ νz,

0 otherwise,

(2.18)

where P (δ) has been truncated for δ > |νz| to remain in the validity of the
model. Now we see that by inputting the experimental parameter νz giving

U0 = mν2
zλ

2

2 and νr = νzλ√
2πw0

, we can retrieve the transverse temperature Tr

from a frequency scan over the longitudinal sidebands by fitting with (2.18).
A good estimation of the oscillation frequency νz is easily obtained from the
scan as the carrier-sideband frequency difference, taken from the outer edge
of the sideband. Figure 2.6 shows such a scan over the sidebands. Equation
(2.18) has been fitted to the data giving Tr = 22µK.

The longitudinal temperature Tz is easily obtained from the scan as well
from (1.29). From the sidebands in figure 2.6 we have the ratio bbr = 4
giving Tz = 7.5µK.
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Figure 2.6: A scan over the longitudinal sidebands and carrier of the clock tran-
sition. The black line shows a fit of the sidebands to (2.18), where A has been
adjusted for each sideband to correspond to its height. The carrier was fitted with
a Lorentzian.

We note that the points in the first part of the blue (red) sideband at
frequencies 150 → 180 kHz (−150 → −180 kHz) do not match the fit so
well. There can be two effects that contribute to this. The most likely
is probably that the assumption of a thermalized sample is not entirely
correct. After the narrow line cooling the atoms do not always exactly
follow a Maxwell-Boltzmann distribution. Another possible effect comes
from the fact that the transition probability for the scan was obtained with
a high power (Ωτp � π) Rabi pulse of 100 ms to obtain a large signal. As
shown in section 2.1.1, the atoms are heated up a little along the vertical
direction during the scan by intensity fluctuations in the lattice light, and
due to the coupling in (1.18) the temperature in the transverse directions
also increases slightly. The resulting sideband shape will then be an average
over slightly different temperatures, but this effect is less drastic than that
of the sample being non-thermal. Nevertheless, the data still shows good
agreement with the model, and the temperatures obtained this way are a
reliable approximation.
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2.2.3 Optical Pumping

The clock transition is shifted when applying an external magnetic field
to the atoms due to the differential Landé factor between the two clock
states. To obtain a precise clock measurement the magnetic field must thus
be well-known and controlled. However, stray magnetic fields are present
in the lab from the Earth’s magnetic field, magnetized vacuum chamber
components, etc. These fields cause a broadening and a shift of the clock
transition since their size and direction are badly known. It is possible
to compensate for this to a certain degree by having a fixed current in
three pairs of compensation coils in the three spatial directions, and tuning
the currents to minimize the width of the clock resonance. However, this
method only provides a control at the level of 10 mG, corresponding to a
shift of 5 Hz or 1.25 · 10−14 in fractional units [93]. Thus, the control of the
magnetic field must be increased by 3–4 orders of magnitude in order for
it not to impede the ultimate performance of the lattice clock. This seems
difficult experimentally.

Fortunately, there exists a well-known [75], yet elegant, solution. One
can exploit the frequency dependence on magnetic field to null the shift to
a high precision by employing optical pumping into the extreme Zeeman
substates. Before probing the clock transition of the 87Sr atoms, a bias
magnetic field BOP is applied orthogonal to the axis of the lattice, and
689 nm light is shined upon the atoms addressing the transition |1S0, F =
9/2〉 → |3P1, F = 9/2〉. By alternating the polarization of the 689 nm light
between σ+ and σ− from one cycle to the next, the atoms are optically
pumped into one of the extreme Zeeman sublevels |mF = ±9/2〉 of |1S0〉 as
shown in figure 2.7.

Figure 2.7: Right: The relevant transitions of the optical pumping scheme. The
polarization of the 689 nm laser is alternated between σ+ and σ− between cycles.
Left: A sketch of the experimental realization. The blue circles represent atoms.

This way, when the interrogation laser is applied after the optical pump-
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ing with a linear π polarization, the transition frequency is shifted by an
amount

∆νZ(B,mF ) = ∆
(1)
B + ∆

(2)
B

= ∆
(1)
Z mFB + ∆

(2)
Z B2,

(2.19)

where the mF and B dependence has been written out explicitly by in-

troducing the Zeeman coefficients ∆
(1)
Z = δgµB/h (see (1.45)) and ∆

(2)
Z =

− 2α2µ2
B

3h2(ν(3P1)−ν(3P0))
(see (1.48)). The second order shift also has a term pro-

portional to m2
F , but it is 106 times smaller than the main effect [28] and

is omitted from (2.19). Thus, when taking the average of the two extremes
∆νZ(B,±9/2), the first order Zeeman shift drops out leaving only the sec-
ond order shift. Under normal operating conditions, the second order shift
is about 104 times smaller than the first order, and it can be evaluated by
the accurate calibration of the magnetic field that the first order splitting
provides. An experimental evaluation of the second order shift is presented
in Chapter 6.

Experimentally, the current in the field coils is ramped up in 3 ms to a
field BOP before the optical pumping is applied. The 689 nm light for the
optical pumping is shined on the atoms for 10 ms. The frequency of the light
is modulated over 2 MHz to reach all the Zeeman sublevels. The modulation
speed is 10 kHz. After 10 ms of pumping, between 75 % and 95 % of the
atoms are transferred to the extreme state |mF = ±9/2〉 corresponding to
the polarization chosen.

The variation of the efficiency of the pumping is most likely due to power
and polarization fluctuations of the pumping light. The 689 nm light for the
pumping is brought to the vacuum chamber by a polarization-maintaining
fiber (see figure 2.8). Before the input of the fiber, the light is combined from
two directions on a polarizing beamsplitter cube where either the transmit-
ted or the reflected beam is sent through the fiber. At the output of the
fiber, a λ/4 plate is inserted to make the polarization circular. The sign
of the polarization σ± is determined by which beam enters the fiber from
the PBS cube, which is controlled by the computer according to the chosen
sequence.

Even though the fiber is polarization maintaining and the (linear) polar-
ization of the input light has been matched to the optical axis of the fiber,
the polarization of the output light is not completely linear and fluctuates
slightly with temperature changes, air flow etc. in the lab, which, along
with power fluctuations due to the same reasons, creates the variations in
efficiency of the optical pumping.

After the optical pumping is finished, a π−polarized pulse of 698 nm light
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Figure 2.8: A sketch of the setup for the optical pumping. For the optical pumping,
the two AOMs have the same frequency. The setup is also used for one axis of the
narrow line transverse Doppler cooling, where the frequencies are slightly different
to avoid slow polarization fluctuations.

interrogates the clock transition. The polarization of the clock laser is lin-
earized by a Glan Taylor polarizer (Thorlabs GT10-B), which has extinction
ratio of 105 : 1, just before the light is sent to interrogate the atoms. The
polarization is aligned with the axis of the magnetic field using a λ/2 plate
by optimizing the population in |mF = ±9/2〉. The light linearly polar-
ized this way addresses only transitions where the Zeeman substate remains
unchanged, |mF 〉 → |mF 〉.

A scan over the whole Zeeman manifold for σ+, σ− and no optical pump-
ing can be seen in figure 2.9. The interrogation was done with a Rabi pulse of
60 ms giving a Fourier limited width of 15 Hz. The height of the extreme mF

peaks with optical pumping is determined by its efficiency, and is a measure
of the fractional population in that state. Without pumping, the popula-
tion can be assumed roughly equally distributed over the mF states, and the
relative height of the peaks are given by their Clebsch-Gordan coefficients.

2.2.4 Interrogation

Before the interrogation the magnetic field is ramped again to a value Bint.
Most often, this will be the same as for the optical pumping, except when
searching for systematics related to the magnetic field. We have observed
a change in the Zeeman splitting if the interrogation was done shortly af-
ter changing the current in the coils. This is ascribed to variations in the
magnetic field strength due to eddy currents from the change in current.
Therefore, to minimize this effect we ramp the current up instead of switch-
ing from one value to the other. Furthermore, a delay of 20 ms is inserted
after the ramp to be completely sure that the field has settled down before
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Figure 2.9: Two scans over the Zeeman substates with different polarization of
the optical pumping fitted with a Rabi excitation profile from (5.29). The Fourier
limited line width is 15 Hz. A scan without optical pumping is also shown. The
separation between mF transitions leads to a magnetic field of Bint = 56µT.

proceeding with the interrogation.

To minimize the light shift from the lattice, the lattice laser is tuned to
the magic wavelength. Furthermore, the trap depth is ramped down from
its capturing value U0 to a value Uint. This also allows us to determine
any residual lattice related lights shift by varying Uint. Typical values are
U0 ∼ 500− 1000Er and Uint ∼ 50− 100Er.

It is possible to insert a so-called cleaning pulse before the interrogation.
This consists of a Rabi π-pulse of the clock laser (typically of duration2

10 ms) tuned to resonance for |mF = ±9/2〉, which will transfer the atoms
in the given state to the excited level 3P0. Then follows a blue pulse resonant
with the 1S0 − 1P1 transition, which will blow away all the atoms remaining
in the ground state. When the clock transition is interrogated after the
cleaning pulse, it is thus with the atoms starting in the excited state and
being transferred to the ground state. Ideally, using this technique, only the
atoms in the extreme Zeeman substate |mF = ±9/2〉 remain in the trap,
and the sample is completely spin-polarized.

2The RF power for the AOM controlling the frequency and optical power of the in-
terrogation light is generally changed between the cleaning pulse and the interrogation,
allowing for much longer interrogation times than 10 ms.
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In reality, a small fraction of atoms might remain in the other Zeeman
substates after the cleaning pulse due to off-resonant excitation. The 10 ms
cleaning pulse has a Fourier limited line width of 80 Hz, and taking the σ+

scan in figure 2.9 as a typical example, 20% of the power in the cleaning
pulse remains at the mF = 7/2 resonance and 10% at mF = 5/2. Given
the population distribution in the figure, about 0.7% of the atoms remain
in mF = 7/2 after the cleaning pulse and about 0.3% in mF = 5/2. To
further reduce this, one can either choose a larger B field for the cleaning
pulse such that the Zeeman splitting is larger, or increase the pulse time to
reduce the Fourier width. The drawback of the first possibilty is that the
optical pumping is optimal for the field for which the scan in figure 2.9 was
taken, and changing the field between the OP and the interrogation increases
the cycle time because we have to wait for the eddy currents to settle. An
increase in cycle time is also a problem with the second possibility. A third
possibility exist, in which one can engineer the cleaning pulse time to have
zero amplitude at the other mF resonances. For instance, for a pulse time
of 16 ms, the power remaing at mF = 7/2 and mF = 5/2 would be more
than an order magnitude smaller than for a 10 ms pulse.

2.2.5 Detection

After the interrogation the fraction of excited atoms must be determined.
We can use two different detection methods: a standard fluorescence detec-
tion and a non-destructive phase measurement. The non-destructive method
is described in Chapter 3.

As for the fluorescence detection, the absolute probability for the atoms
to have undergone the transition |1S0〉 → |3P0〉 is obtained by using 3 pulses
of light. The first pulse consists of 5 ms of blue light resonant with the
transition |1S0〉 → |1P1〉. During the first 4 ms of this pulse, a cooled
CCD camera (Hamamatsu C9100) detects the fluorescence of the atoms
that remained in the ground state. The 5 ms pulse of blue light blows all
the atoms in the ground state out of the dipole trap. After this there is a
pulse of 10 ms with the repumping lasers (|3P2〉 → |3S1〉, |3P0〉 → |3S1〉).
This transfers the atoms in |3P0〉 to the ground state |1S0〉 via |3P1〉. The
third pulse is a detection pulse identical to the first one, giving again a
fluorescence signal detected by the camera. The probability for the atoms
having undergone the clock transition is thus obtained as the ratio of the
second and the sum of the first and second fluorescence signals, P = N2

N1+N2
.

This ratio is independent of fluctuations from cycle to cycle in the number
of atoms in the trap, and is therefore very reliable.

After completion of one cycle like this, the output frequency of the clock
fn for the n’th cycle is found from the current and previous cycle in the
following way (see figure 2.10)

fn = fn−1 + κ
(
Pn − Pn−1

)
+ δfn, (2.20)
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Figure 2.10: The profile of the clock resonance and the relevant notation. γ is the
FWHM of the transition.

where κ is the gain of the frequency correction, Pn = P (νn) is the transition
probability of the n’th cycle and δfn is the interrogation laser noise. Here, νn
is the frequency actually probing the atoms. This frequency is determined
by an AOM controlled by a frequency synthesizer, and it is alternated by
a modulation frequency νmod as νn = fn−1 + (−1)n−1νmod. This procedure
locks the clock laser to the resonance of the atoms. To minimize the technical
noise, the modulation depth is chosen as half the resonance width, νmod =
γ/2, where the slope of the resonance is maximum. The gain κ should
be comparable to νmod but the exact value depends on the slope of the
resonance and has to be optimized experimentally.

2.3 Conclusion

This chapter has briefly described the setup for an all semi-conductor source
for the light used for the lattice trap. The lifetime of the atoms in the trap
is limited by conversion of frequency noise of the laser to amplitude noise
in the lattice cavity. To increase the limit on the lifetime imposed by laser
noise, one should increase the bandwidth for the lock of the master laser onto
the confocal FP cavity. One way to do this is to insert an EOM just after
the master laser, and apply the correction from the lock to this instead of to
the current of the diode. This way, the band width might be increased by
one order of magnitude and the high frequency noise would be significantly
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reduced. Efforts in this direction are currently underway.
The operation of the clock was described via the time sequence. The

loading and cooling stage of each cycle had already been established and
optimized before my arrival. However, during my thesis work the optical
pumping has been optimized: the duration has been reduced by a factor of
3 since the first implementation and the efficiency is most often 80−90%. A
cleaning pulse has been added to the sequence to increase the purity of the
spin-polarization, and two different techniques can now be used to detect
the transition probabilty. The non-destructive technique is the subject of
the following chapter.



Chapter 3

Non-Destructive Detection
Scheme

The stability of an atomic clock operated in a cyclic way is in some cases
determined by the noise of the interrogation laser and the duty cycle of the
clock through the Dick effect (see Chapter 5). This is especially true for
optical lattice clocks. The duty cycle of a clock is defined as the ratio of
the interrogation time to the cycle time, and a larger duty cycle will give a
better stability. In optical lattice clocks, so far the transition probability for
each cycle has been obtained by a fluorescence detection [32, 27, 78, 104].
This heats the atoms out of the trap and a long loading time is required to
reload the trap. The motivation for developing a non-destructive detection
of the transition probability is thus to keep a large fraction of the atoms
from cycle to cycle, thereby increasing the duty cycle since the loading time
then can be significantly reduced.

A trivial way to envision a non-destructive measurement is simply to re-
duce the optical power of the probe that measures the transition probability
sufficiently to not blow the atoms out of the trap. The usual fluorescence
detection measures the spontaneous reemission of the light absorbed by the
atoms from the fluorescence probe. This emission is spatially distributed
according to a dipole pattern. Experimentally, a large part of the emitted
light is therefore necessarily lost due to the finite (and most often small)
solid angle of the photodetector or camera measuring the fluorescence. In
order to get a significantly high signal-to-noise ratio (SNR � 1), it is thus
necessary to use a lot of power in the fluorescence probe, and reducing the
power of the probe is therefore not a valid solution when using the emission
detection.

A solution could be an absorption measurement instead of the emission
measurement. Here, one takes advantage of the dipole pattern distribu-
tion of the reemission by measuring the decrease in optical power in a laser

59
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beam traversing the atomic sample from the absorption of the light by the
atoms. Some technical issues arise here, though. As we shall see later, the
signal-to-noise ratio of a shot noise limited detection is proportional to the
square root of the number of scattered photons nγ . However, to keep the
measurement non-destructive, nγ should be kept low enough for the atoms
to stay trapped, that is nγ ≤ U0/Er, typically allowing a few hundred scat-
tered photons. With a perfect detector, it could be possible to achieve the
desired SNR while keeping the atoms trapped, but it would require a shot
noise limited measurement. Since the absorption measurement is directly
proportional to the optical power of the probe, the power stabilization is
extremely critical for the measurement noise. The detection of the power
should be shot noise limited during the time it takes to do the detection,
typically a few tens of ms. This is something that has not yet been done,
and although probably feasible it would require quite a technical feat to do it.

However, if the measured quantity of the probe were not the optical power,
but rather the phase, this could still give a sufficiently high signal-to-noise
ratio, since the phase of light does not depend on the optical power. Of
course, there would still have to be a calibration of the measured phase
which does depend on the power of the detected light, but only to second
order, and it would not prevent the measurement of reaching the shot noise
limit. A phase measurement is in principle not more complex than an ab-
sorption measurement and furthermore, as we shall see below, it offers more
possibilities of increasing the signal and reducing the noise.

The interaction between light and atoms imprints a phase shift on the
light when it traverses an atomic medium. This is the dispersion of light.
The phase shift depends on how far the frequency of the light is from a given
resonance between two atomic states and it is proportional to the number
of atoms in the particular states. This can be exploited to convert a phase
measurement into transition probability, hence providing the tools needed
to construct a non-destructive detection scheme.

The type of phase measurements we seek have already been performed
for some years now. Most notably, they have been used to perform quantum
non-demolition measurements, that probe a system without disturbing its
quantum state [65]; something that seemingly breaks the basic laws of quan-
tum mechanics, but actually it is “just” a detector interaction that preserves
the eigenstates of a suitable operator of the quantum system. A state-of-the-
art measurement of this type in the domain of cavity QED was performed
in 2006 at LKB in Paris, where the quantum jumps of a single photon in
a cavity was observed by means of a stream of non-absorbing atoms [64].
More relevant for frequency metrology, the group of E. Polzik in Copenhagen
proposed already in 2003 a non-destructive interferometric measurement of
the state population of an ensemble of laser-cooled and trapped Cs atoms
by means of a measurement of the phase shift in light traversing the atomic
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cloud [124]. Their objective was to achieve spin squeezing of the atomic
population in order to improve the cesium clock performance beyond the
limit set by the quantum projection noise of the atoms. 3.4 dB of metro-
logically relevant squeezing was finally achieved on the Cs clock transition
by this group in 2009 [7]. The group of M. Kasevich at Standford [80] and
the group of V. Vuletić at MIT explored the possibility of surrounding the
atoms with a cavity to enhance the phase shift and squeezing, and the lat-
ter obtained 5.6 dB of metrologically relevant squeezing on the 87Rb clock
transition in 2010 [102].

The successful non-destructive phase shift measurements (especially in
[178]) let us to investigate if it were feasible to perform such a measurement
with a macroscopic phase signal for 87Sr. Owing to the fact that the Sr
atoms are trapped in an optical lattice, the atomic density is high enough
that we indeed should expect a phase shift of at least a few tens of mrad
under normal experimental conditions. Consequently, we set out to devise
a suitable setup of a non-destructive detection using a phase measurement
for the Sr lattice clock.

The chapter is organized as follows. The first section quantifies the phase
shift experienced by light traversing the atomic sample. The next sections
explain how the phase measurement is carried out experimentally and de-
scribe the performance of the non-destructive detection based on the setup
and results reported in [106].

3.1 Phase Shift

The phase shift experienced by light when traversing an atomic sample can
be seen as being be due to the retardation (or advancement) in the prop-
agation of light when the light is absorbed and re-emitted by the atoms.
This process evidently depends on the interaction between the light and the
atomic sample in question.

3.1.1 Index of Refraction

Considering only the electric dipole interaction between an atom and light,
the interaction energy will be given by

U = −d ·E,

where d is the dipole moment of the atom and

E(z, t) =
1

2
(E0êe

i(kz−ωt) + c.c.) ≡ E+(z, t) + E−(z, t) (3.1)

is the electric field of the light with wave vector k propagating in the z-
direction with polarization ê. Considering a two-level atom with states |g〉
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and |e〉, the Hamiltonian for the system can be written

Ĥ =
~ω0

2
(|e〉〈e| − |g〉〈g|) + Ĥint, (3.2)

where ~ω0 is the energy difference between the two levels, and the interaction
Hamiltonian in the semi-classical picture is given by

Ĥint = −d̂ ·E(z, t) + Γ̂r, (3.3)

where the dipole operator is given by d̂ = êdd(|e〉〈g|+ |g〉〈e|) with size d in
the direction êd. The spontaneous emission has been included by the non-
Hermetian relaxation operator defined by the matrix elements 〈n|Γ̂r|m〉 =
~
2iγnδnm, where γn is the relaxation rate for state |n〉 [53]. Assuming that |g〉
is the ground state and that relaxation is dominated by spontaneous emis-
sion, we have γg = 0 and γe = Γ, where Γ is the spontaneous emission rate
for the upper state, or equivalently the natural line width of the transition.

Introducing the density operator ρ̂ =
∑

n,m ρnm|n〉〈m|, the time evolu-
tion of the system can be found from the Schrödinger equation,

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
. (3.4)

Using the conservation of probability ρee = 1 − ρgg, the coupled equations
for the matrix elements of the density operator at z = 0 in the rotating wave
approximation become

dρee
dt

= −Γρee + iΩ0(ρ̃ge − ρ̃eg) (3.5a)

dρgg
dt

= −dρee
dt

= +Γρee − iΩ0(ρ̃ge − ρ̃eg) (3.5b)

dρ̃eg
dt

= −(Γ/2 + i∆)ρ̃eg − iΩ0(ρee − ρgg), (3.5c)

where Ω0 = dE0
~ is the Rabi frequency assuming d and E are parallel, ρge =

ρ∗eg, ∆ = ω0−ω is the detuning and ρ̃eg = ρege
iωt. The steady state solutions

to (3.5) are

ρee =
Ω2

0

4

(
1

∆2 + (Γ/2)2 + Ω2
0/2

)
(3.6a)

ρgg = 1− ρee (3.6b)

ρ̃eg =
iΩ0

2

(
Γ/2− i∆

∆2 + (Γ/2)2 + Ω2
0/2

)
. (3.6c)

The polarization density induced in a sample of atoms with density % will
then be given by

P(t) = %Tr(d̂ρ̂) = %d(ρeg + ρge) = %d
(
ρ̃ege

−iωt + ρ̃gee
+iωt

)

= %
(
α(ω)E+(t) + α∗(ω)E−(t)

)
,

(3.7)
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where the polarizability α(ω) is given by

α(ω) =
d2

~

(
iΓ/2 + ∆

∆2 + (Γ/2)2 + Ω2
0/2

)
. (3.8)

Generally, the electric field of the light must satisfy the wave equation

∇2E(z, t)− 1

c2

∂2E(z, t)

∂t2
=

1

ε0c2

∂2P(z, t)

∂t2
, (3.9)

where c is the speed of light in vacuum and ε0 is the vacuum permittivity.
Using equation (3.1) and (3.7) for z 6= 0, we get

(
−k2 +

ω2

c2

)
E0e

i(kz−ωt) = −ω
2

c2

%α(ω)

ε0
E0e

i(kz−ωt), (3.10)

giving the dispersion relation for k

k2 =
ω2

c2

(
1 +

%α(ω)

ε0

)

=
ω2

c2
n2(ω),

(3.11)

where n(ω) is the index of refraction, thus given by

n(ω) =

√
1 +

%α(ω)

ε0
' 1 +

%α(ω)

2ε0

= 1 +
%d2

2~ε0

(
iΓ/2 + ∆

∆2 + (Γ/2)2 + Ω2
0/2

)
.

(3.12)

3.1.2 Phase Shift

The phase shift of the light occurs because the wave vector k is changed
with respect to the vacuum value kv when interacting with the atoms. That
is, after having passed through the atomic sample of length l, the electric
field will be E(z, t) = E0

2 (ei(kz−ωt) + c.c.) = E0
2 (ei(kvz−ωt+∆φ) + c.c.), where

the phase shift ∆φ is given by

∆φ = kvl · Re(n(ω)− 1) =
kvl%d

2

2~ε0

(
∆

∆2 + (Γ/2)2 + Ω2
0/2

)
. (3.13)

The imaginary part of the index of refraction will cause an attenuation of
the electric field inside the atomic medium. This is the part of the light that
is absorbed by the atomic medium.

The atomic dipole moment d can be related to the natural line width Γ
of the transition as

Γ =
8π2d2

3ε0~λ3
, (3.14)
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where λ is the wavelength of the transition, λ = 2π/kv. Inserting this in
(3.13) gives

∆φ =
3λ2l%(Γ/2)

4π

(
∆

∆2 + (Γ/2)2 + Ω2
0/2

)
. (3.15)

To extend the result to atoms with more than two levels, one needs to sum
over all levels weighted by their Clebsch-Gordan coefficients. Generally, for
an atomic gas with states |J, F,mF 〉 and |J ′, F ′,m′F 〉, light with polarization
state q and wavelength λ detuned by ∆F,F ′ from the transition between the
two states will experience a phase shift [124]

ϕat =
3λ2(2J ′ + 1)l

4π

∑

F,mF ,F ′,m
′
F

NF,mF

V
(2F ′ + 1)(2F + 1)

×
(

F ′ 1 F
m′F q −mF

)

︸ ︷︷ ︸
Wigner 3j symbol

2{
J J ′ 1
F ′ F I

}

︸ ︷︷ ︸
Wigner 6j symbol

2
(Γ/2)∆F,F ′

∆2
F,F ′ + (Γ/2)2 + Ω2

0/2
,

(3.16)

whereNF,mF is now the atomic population in the hyper-fine substate |F,mF 〉,
V is the volume of the atomic gas, giving % =

NF,mF
V , and Γ is the natural

line width of the transition.

3.1.3 Cross-Section S

The derivation leading up to (3.16) assumes that the light is a plane wave
of infinite extension, giving an expression of the form

ϕat = ϕatt
Nal

V
= ϕatt l%, (3.17)

where ϕatt depends only on the transition chosen, Na is the number of atoms
in the relevant state and % is the corresponding density of atoms. To work
with experimentally more realistic parameters, we assume that both the
atomic cloud and the laser beam that experiences the phase shift (henceforth
denoted the probe beam) follow a Gaussian distribution over the transverse
directions orthogonal to the propagation of the light. Thus, the atomic
transverse density % is now written

%(r) = %0e
− r2

2r20 , (3.18)

where %0 is the maximum density and the standard deviation r0 is the size
of the atomic cloud. Equivalently, the transverse distribution of the electric
field of the light is

Et(r) = E0e
− r2

w2
0 , (3.19)
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where w0 is the Gaussian waist of the probe beam. The total number of
atoms Na can be related to the density in equation (3.18) by integrating
over the transverse directions,
Na = l

∫∞
0 %(r)2πrdr = 2πr2

0l%0.

The electric field is phase shifted by the atomic cloud as

Eps(r) = Et(r) exp(iϕat) = E0e
− r2

w2
0 exp

(
iϕatt l%0e

− r2

2r20

)
. (3.20)

The observed mean phase shift ϕat of the light after passage through the
atomic cloud is determined by how large a fraction of the laser beam ex-
perienced the phase shift. This can be calculated by the argument of the
normalized overlap of the incident beam and the phase shifted beam,

ϕat = arg




∫∞
0 Eps(r)E

∗
t (r)2πrdr√

(
∫∞

0 |Eps|22πrdr)× (
∫∞

0 |Et|22πrdr)


 , (3.21)

giving after some calculus

ϕat =
ϕatt l%0

1 +
r2
0

4w2
0

= ϕatt
Na

S
, where (3.22)

S = 2π

(
r2

0 +
w2

0

4

)
. (3.23)

S can be seen as the average overlapping cross-section of the atomic cloud
with the probe beam. Thus, using (3.16) the expression for the phase shift
finally becomes

ϕat =
3λ2(2J ′ + 1)

4πS

∑

F,mF ,F ′,m
′
F

NF,mF (2F ′ + 1)(2F + 1)

×
(

F ′ 1 F
m′F q −mF

)2{
J J ′ 1
F ′ F I

}2
(Γ/2)∆F,F ′

∆2
F,F ′ + (Γ/2)2 + Ω2

0/2
.

(3.24)

3.1.4 Choosing a Transition

Equation (3.24) shows that if |J, F,mF 〉 is one of the two clock states, ϕat

gives a measure of the number of atoms that populate this state. If this is
measured after the clock interrogation, one can extract the clock transition
probability.

To be implemented in the clock cycle, the transition for the phase mea-
surement must fulfill a number of requirements:
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1. Large λ. From (3.24) it is clear that it is advantageous to have a
large λ since the phase shift is proportional to λ2.

2. Cycling transition. The transition chosen should be a cycling tran-
sition, since decay to a dark state will reduce the signal and possibly
bias the probability measurement.

3. Involve clock state. As mentioned above, if the one of the states of
the transition is one of the clock states, the phase measurement can be
directly related to the transition probability without having to resort
to shelving of the atoms. This reduces both the time it takes to do
the non-destructive measurement of the transition probability and the
complexity of the operation, and is thus a practically desirable feature.

4. Hyperfine structure not resolved. The hyperfine structure of the
levels chosen for the transition should not be resolved with the natural
line width of the transition, since we want to be able to detect all
atoms in the given state with a single laser beam. Power broadening
is not an option, since it would thwart the non-destructive aspect of
the detection.

5. Small light shift. Similarly, the light shift of the states experienced
due to the optical lattice must not shift the resonance frequency sig-
nificantly compared to the line width Γ of the transition, since the
measured phase signal would then depend on the power stabilization
of the lattice light.

6. Clebsh-Gordan coefficients. Finally, in order to have a large signal,
the transition should have favorable Clebsh-Gordan coefficients. This
is the least strict requirement.

Figure 3.1: Energy levels of Sr of interest for the non-destructive phase
measurement. The clock transition involves the states 1S0 and 3P0.
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The levels for Sr of interest here are shown in figure 3.1. Since there is no
cycling transition involving the 3P0 state, the transition has to involve the
ground state 1S0. The transition 1S0−3P2 first of all has an extremely small Γ,
so it would be hard to accommodate the requirements above. Secondly, the
transition is an electric quadrupole; there is no dipole electric coupling, and
the derivation of the phase shift is no longer valid in that case. Furthermore,
the light for the 1S0−3P2 transition was not readily available experimentally,
so we considered only the 1S0 − 1P1 and 1S0 − 3P1 transitions at 461 nm and
689 nm, respectively, which both involve the atomic ground state.

The phase shift per atom times the cross-section is shown in figure 3.2
for both transitions. Both plots take into account the three different F ′ =
7/2, 9/2 and 11/2 levels of the upper states 1P1 and 3P1. For the 1S0 −

Figure 3.2: Theoretical phase shift ϕatS/N for the 1S0 − 1P1 transition (left)
and 1S0 − 3P1 transition (right) with zero magnetic field and a linearly polarized
probe. The frequency span for both plots corresponds to about 13Γ/(2π) for each
transition. The dashed lines are for an un-polarized sample of atoms while the solid
lines are for a completely spin-polarized sample (mF = 9/2).

1P1 transition, the three F ′ states span over 60 MHz around their average
frequency (chosen as the center of the plot). The phase shift is represented
for equally populated mF states (dashed curves) and spin-polarized atoms
in mF = 9/2 (or mF = −9/2) states (solid curves). For the 1S0 − 3P1

transition, the three F ′ states span over 2600 MHz and the plot is centered
at the F ′ = 9/2 transition frequency, since this transition has by far the
largest contribution to the phase shift.

At first sight, the 1S0 − 3P1 transition could seem more appealing due
to the λ2 dependence of ϕat. However, its small natural linewidth of Γ =
2π · 7.6 kHz introduces experimental difficulties, as mentioned in the re-
quirements above. Its Zeeman mF substates are resolved even for magnetic
fields as low as 0.3 G, which would require working at a large detuning thus
dwarfing the phase signal. Furthermore, the exact frequency of the probe
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would depend on the actual magnetic field and lattice induced light shift.
For these reasons, we chose to operate with the more robust 1S0 − 1P1 tran-
sition. However, its large natural line width forces one to use a very feeble
optical power for the probe beam to keep the detection non-destructive, as
long as the transition is not saturated. The solution to avoid technical noise
from the small power thus available for detection was to have the weak probe
as one arm in a Mach-Zender interferometer with a strong local oscillator in
the other arm, as described below.

3.2 Experimental Setup

The phase shift measurement is performed using an electro-optic phase mod-
ulator (EOM) in a Mach-Zender (MZ) interferometer as shown in figure 3.3.
A laser beam resonant with the 1S0 − 1P1 transition is split into a weak

Figure 3.3: Experimental setup. The number of atoms in the optical lattice is
proportional to the phase shift of the RF component at the modulation frequency
fm, filtered by a band-pass filter (BPF). The harmonic at frequency 2fm is used to
lock the phase of the interferometer, hence maximizing the RF power of the signal
component.

signal (typically a few nW) and a strong local oscillator (LO) (a few mW).
The signal beam is modulated at fm = 90 MHz by an EOM before it is
overlapped with the atoms in the optical lattice. The electric field of the
signal beam is then detected by a homodyne detection in which the sig-
nal interferes with the LO on a beam splitter and the light intensities in
each output arm of the beam splitter are measured with fast Si photodiodes
(Hamamatsu S5973) and electrically subtracted. In this scheme, the LO
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amplifies the signal without adding noise [101]. For an LO power of 2 mW
the electronic noise is smaller than the photon shot noise by a factor of 2.

From figure 3.2 we can see that ϕat is approximately an odd function of
the detuning. Thus, when the carrier is held at resonance the sidebands on
either side of resonance created by the modulation will experience roughly
an equal phase shift of opposite sign. So if two sidebands on either side of
resonance are subtracted, the resulting signal will be a differential measure
proportional to the number of atoms in the trap.

More quantitatively, the EOM modulates the phase of the electrical field
of the probe beam as

Es ∝ ei(ω0t+a sin(ωmt+φm)), (3.25)

where ω0 is the (angular) frequency of the electromagnetic field, a is the
modulation depth, ωm = 2πfm is the modulation frequency and φm its
phase. The expression in (3.25) can be expanded in terms Bessel functions
Jk(x) as

Es ∝ eiω0t
+∞∑

n=−∞
Jn(a)ein(ωmt+φm). (3.26)

For sideband n there is an addition of ϕn = ϕatn +δϕn+φg to the total phase
of the measured electric field after the passage through the atomic cloud,
containing the contribution from the atoms ϕatn = ϕat(nωm), a term δϕn
from the laser noise and a global phase φg. Hence, the measured electric
field is

Es,m ∝ eiω0t
+∞∑

n=−∞
Jn(a)ein(ωmt+φm)+iϕn . (3.27)

Finally, the RF output s of the interferometric measurement of the signal
with a local oscillator with phase φ0 is (up to a constant factor):

s = Re
(
Es,me

−i(ω0t+φ0)
)

= J0 cos(φ0 − ϕ0)

+ 2
+∞∑

n=1

Jn(a) g[φ0 −
ϕn + ϕ−n

2︸ ︷︷ ︸
=φs− δϕn+δϕ−n

2

] g[n(ωmt+ φm) +
ϕn − ϕ−n

2︸ ︷︷ ︸
=ϕatn

]
(3.28)

where φs = φ0 − φg and g = cos (sin) if n is even (odd). Because all the
modulation sidebands belong to the same spatial mode, the global phase
φg is independent of n and drops out when taking the difference ϕn − ϕ−n.
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As described qualitatively before, we can now see from equation (3.28) that
the phase of the RF component at angular frequency nω is the differential
atomic phase shift of the −n and +n modulation sidebands proportional to
the number of atoms in the atomic ground state. This is especially clear if
we explicitly write out the first two terms of sum, which are relevant for the
experimental setup,

s = J0 cos(φs − δϕ0)

+ 2J1(a) sin

(
φs −

δϕ1 + δϕ−1

2

)
sin
(
ωmt+ φm + ϕat(ωm)

)

+ 2J2(a) cos

(
φs −

δϕ2 + δϕ−2

2

)
cos
(
2(ωmt+ φm) + ϕat(2ωm)

)

+ · · ·
(3.29)

The phase of the RF components does not depend on the phase φ0 of the
LO nor the global phase φg of the signal, making this system insensitive to
mechanical and thermal fluctuations. These features are very welcome given
the small phase shifts we want to detect.

However, the amplitude of the RF components does depend on φs =
φ0 − φg, and will eventually cross zero as φs drifts. The parity of g shows
in particular that the odd RF sidebands have maximum power when the
amplitude of the even sidebands is null. This feature is exploited to lock φs:
we demodulate the second order RF component at angular frequency 2ωm
(see figure 3.3) and servo-loop φs with a piezoelectric transducer (PZT) to
keep the demodulation signal at zero where φs ' π/2. The lock bandwidth
is 10 kHz, limited by the mechanical properties of the PZT. The phase of
the modulation φm is optimized experimentally to maximize the signal.

Finally, the atomic phase signal is extracted by demodulating the first
order RF component, maximized by the lock. It is worth to emphasize that
the noise of this phase signal does not depend on the noise of the PZT lock
to first order because of the quadrature detection.

Given the low power at which we operate and the small line-width of
our laser (< 1 MHz), the signal s is dominated by shot noise through δϕn,
even though our interferometer features an optical path difference of about
2 m between the signal and the LO.

The contrast of our interferometer is 76% (measured with a balanced MZ
configuration) and 75% additional optical losses appear between the atoms
and the detection. These defects are attributed to the vacuum chamber win-
dows and the optics of the lattice cavity that were not originally designed
to operate at the probe wavelength. As a result the detection efficiency is
η = 19%.

The measured phase signal will depend on the ratio between the atomic
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cloud size r0 and the Gaussian waist of the probe beam w0, as can be seen
from the expression (3.23) for the cross-section S. The atomic cloud size can
be extracted from the lattice parameters and the temperature of the atoms.
The mean occupation number 〈ni〉 of the motional states in direction i in
the trap can be written as 〈ni〉 = kBTi/~ωi, where Ti is the temperature of
the atoms for the given direction and ωi is the trap oscillation frequency in
this direction. The mean spatial extension in the radial direction is then

r0 =

√
(〈nr〉+ 1/2)~

mωr
=

√
kBTr
mω2

r

+
~

2mωr
'
√
kBTr
mω2

r

. (3.30)

Inserting typical experimental parameters ωr = 2π · 500 Hz and Tr = 10µK
we get r0 = 10µm.

For the setup described here, the Gaussian waist of the probe beam is
w0 = 37µm, giving S = π(30µm)2. The waist was obtained by extrapolat-
ing measurements done with a CCD camera of the beam size in the far field.
It is clear from (3.23) that reducing w0 will increase the measured phase.
Experimentally, it was tried to decrease w0 to w0 = 15µm, but it proved
too difficult to align the setup with this waist, and finally we went back to
having w0 = 37µm.

3.3 Signal-to-Noise Ratio

The modulation frequency fm = ωm/2π and amplitude a must be chosen
to optimize the signal-to-noise ratio (SNR) of the detection. The final SNR
results from a trade-off between the phase component of the optical shot
noise which decreases at larger optical powers, and the heating of the atomic
cloud which increases with the optical power as long as the transition is not
saturated. Therefore we have to determine the optimal fm and a for a given
heating of the atoms. The signal to noise ratio is

SNR =
ϕat(+ωm)− ϕat(−ωm)√

〈δϕ2
1〉+ 〈δϕ2

−1〉
, (3.31)

where we have

ϕat(±ωn) =
C0

2

Γ(±ωm)

(ω2
m + (Γ/2)2 + Ω2

0/2)
, (3.32)

with C0/2 being the appropriate proportionality factor from (3.24).
Some subtleties are involved when deriving an expression for the phase

noise δϕ2
±1. Since there is no quantum mechanical operator for the phase,

the phase has to be defined in a slightly implicit way. One way is to define
the phase as the angle between the two canonical operators x̂ and p̂ for

light; 〈φ〉 = arctan
(
〈p̂〉
〈x̂〉

)
. For a coherent state where the variance of the
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canonical operators is given by the shot noise, we have δx = δp = 1/2 and
〈x̂2〉 + 〈p̂2〉 = 2N , where N is the number of photons in the given mode,
giving

〈δφ〉 =
1

2
√
N
.

For the phase noise δϕ±1, the number N is the detected number of photons
in the ±1 sideband, so we get

〈δϕ2
+1〉 = 〈δϕ2

−1〉 =
1

4N±1η
=

~ω0

4|J1(a)|2ηPtp
, (3.33)

where Nn is the number of photons in sideband n, ω0/2π is the transition
frequency, P is the total optical power seen by the atoms, tp is the duration
of the probe pulse and η the detection efficiency. The product Ptp is linked
to the number of photons nγ absorbed by each atom in the atomic ensemble.

3.3.1 Number of Absorbed Photons

The number of absorbed photons per atom can be deduced from the imagi-
nary part of the index of refraction calculated in (3.12). The fraction b′ of
electric field absorbed by the atomic sample of length l is

b′ = 1− e−κ·kvl, κ = Im
(
1− n(ω)

)
. (3.34)

The fraction of the intensity of the light absorbed by the atoms is thus

b = 1− e−2κ·kvl ' 2κ · kvl. (3.35)

The saturation intensity Isat can be written Isat = πhcΓ
3λ3 . Using this along

with equations (3.12, 3.14) we get

κ =
%hcΓ

8πIsat

(
(Γ/2)2

∆2 + (Γ/2)2 + Ω2
0/2

)

=
hcΓN/(Al)

8πPsat/A

(
1

1 + 4(∆/Γ)2 + s

)
,

(3.36)

where N is the total number of atoms, A is the transverse area, Psat = IsatA

is the saturation power and s = I
Isat

=
2Ω2

0
Γ2 is the saturation parameter.

Inserting this in (3.35) we get the total number of photons absorbed

Nγ = b
P tp
~ω0

=
NΓPtp
2Psat

(
1

1 + 4(∆/Γ)2 + s

)
.

(3.37)
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Including also the sidebands from the modulation in (3.26) we finally get
the number of photons absorbed per atom

nγ =
Nγ

N
= Ptp

Γ

2Psat

+∞∑

n=−∞

|Jn(a)|2
1 + 4(nωm)2/Γ2 + s

. (3.38)

The derivation above assumes the same transverse area A for the probe
beam and atomic cloud. To include the effect of the different Gaussian
distributions of these, we can use the cross-section S derived in section 3.1.3
by making the substitution Psat = πw2

0Isat → SIsat.

3.3.2 Heating

The heating of the atoms can be quantified by relating the number of scat-
tered photons to the trapping potential. From (3.38) we have

nγ =
ΓPtp
2SIsat

+∞∑

n=−∞

|Jn(a)|2
1 + 4(nωm)2/Γ2 + s

. (3.39)

Considering an isotropic re-emission of photons, the momentum transfer p
from one photon to an atom is evenly distributed1 among the three spatial
directions 〈p2

x〉 = 〈p2
y〉 = 〈p2

z〉, and the total size of the momentum is

〈p2〉 = 〈p2
x〉+ 〈p2

y〉+ 〈p2
z〉 = ~2k2, giving (3.40)

〈p2
i 〉 = ~2k2/3 (i = x, y, z). (3.41)

The central limit theorem then states that the distribution of pi after emis-
sion of nγ photons tends towards a Gaussian distribution with a variance of
σ2
pi = nγ~2k2/3.

Since the probe laser beam is aligned with the lattice trap and the atoms
in the direction of the axis of the lattice are in the Lamb-Dicke regime, it
can be assumed that the absorption of photons does not contribute to the
heating of the atoms in this direction; the momentum from the photons is
transferred to the lattice. However, when the atoms re-emit the photons in
an arbitrary direction, the components of the momentum in the transverse
directions are transmitted to the atoms thus causing the heating.

After re-emission the distribution of px and py can be written

P
( pi
~k

)
=

1√
2πσ2

e−
(pi/~k0)2

2σ2 , (3.42)

where σ2 = nγ/3 and k0 is the wave vector for the transition in question. In

terms of energy E = p2

2m =
p2
x+p2

y

2m , the distribution can be written

P

(
E

Er,p

)
=

1

2πσ2
e−

E/Er,p

2σ2 , (3.43)

1In reality, the momentum transfer is distributed according to a dipole pattern, but
assuming an isotropic distribution is a good approximation.
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where Er,p =
~2k2

0
2m is the recoil energy for the chosen transition with λ =

2π/k0 = 461 nm. The mean value for this distribution is
〈

E

Er,p

〉
= 2σ2 =

2nγ
3
. (3.44)

The remaining third of the recoil momentum is transferred to the optical
lattice. The fraction of atoms remaining in the trap after having absorbed
nγ photons per atom is thus

β =

∫ U0

E=0
P (E)dE = 1− e−

U0/Er,p

2σ2 = 1− e−
U0/Er,p
2nγ/3 , (3.45)

where U0 is the depth of the trap.

3.3.3 Modulation Parameters

The objective is to determine the optimal values of the modulation param-
eters fm = ωm/2π and a for a given constant fraction of the atoms lost in
the detection process. This fraction β depends on the number of photons
absorbed per atom nγ as shown in (3.45), so a constant β means having a
constant number nγ .

For a constant nγ we can substitute Ptp in (3.33) using (3.39) to get the
signal-to-noise ratio for a constant heating,

SNR =
2C0(ωm/Γ)

(ωm/Γ)2 + 1+s
4

√√√√η|J1(a)|2nγSIsat

~ω0Γ

( ∞∑

n=−∞

|Jn(a)|2
1 + 4(nωm/Γ)2 + s

)−1

.

(3.46)
The signal-to-noise ratio will generally decrease for increasing saturation.
This is shown in figure 3.4. The physical explanation for this is that the

Figure 3.4: The signal-to-noise ratio in units of 2C0

√
ηSIsatnγ
~ω0Γ . The right plot

shows the SNR as a function of a and s for ωm = Γ, and the left plot shows the
SNR as a function of ωm/Γ and s for a = 2.4 rad. The global maximum has s = 0.

phase shift is contained in the terms with ωm in (3.46), and when increasing
s these terms will decrease. Hence, the optimal signal-to-noise is found for
a small saturation parameter.
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Small Saturation Parameter s� 1

The signal-to-noise ratio is plotted in figure 3.5 for s � 1 as a function of
modulation depth a and modulation frequency ωm/Γ. This shows that the

Figure 3.5: The signal-to-noise ratio in units of 2C0

√
ηSIsatnγ
~ω0Γ as a function of

modulation depth a in radians and modulation frequency in units of the line width,
ωm/Γ.

value of a gives a rather sharply peaked optimum around a = 2.4 rad with
the sharpness increasing for increasing ωm. The value of a that maximizes
the SNR coincides closely with the value for which the carrier is completely
suppressed. The carrier suppression becomes more and more critical to avoid
additional heating of the atoms for increasing ωm, where the product Ptp
increases for constant nγ . This is the reason why the sharpness of the peak
increases for increasing ωm. To avoid too strict requirements on the control
of a (such as temperature stabilization of the EOM) it is thus advantageous
to choose ωm reasonably small, that is ωm . 10Γ.

The SNR for a = 2.4 rad increases with ωm until the frequency reaches
Γ and is essentially flat for ωm > Γ. This allows us to choose the modula-
tion frequency within a large range of frequencies. Keeping the number of
scattered photons nγ constant implies that a large detuning corresponds to
a large optical power of the probe. Still, the power should not be too large.
It should still satisfy s � 1, as well as having a shot noise larger than the
classical sources of noise, since the SNR will be smaller than the calculation
here if the classical noise is dominating. We chose ωm = 2π · 90 MHz ' 3Γ
as modulation frequency for our setup, which fulfills all these constraints.
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For a = 2.4 rad, the +1 and −1 modulation sidebands have 53% of the
optical power. The remaining power distributed in the higher order side-
bands contributes to the heating of the atoms but not to the signal. From the
previous equations, it can be calculated that these higher order sidebands
degrade the SNR by only 8% for ωm = 3Γ.

3.3.4 Detection Noise

The duration of the probe pulse must be chosen according to some experi-
mental constraints. The PZT lock on the interferometer in figure 3.3 takes
about 0.1 ms to stabilize, so tp must be longer than this. On the other hand,
the phase measurement should not be limited by classical sources of noise,
meaning that the detection pulse should address Fourier frequencies of the
noise spectrum above a certain limit where the noise is shot-noise limited.

Figure 3.6 shows the noise spectrum obtained experimentally for a typi-
cal detected power of ηP = 5 nW. This spectrum is shot noise limited above
10 Hz allowing for the detection2 to take as long as ∼ 30 ms, but in order
to have a reasonably low number of absorbed photons, we chose to work
with tp = 3 ms. The figure also shows that the signal is shot noise limited

Figure 3.6: The power spectral density of the detection noise(
1
2

√
〈δϕ2

1〉+ 〈δϕ2
−1〉
)

. Left: The phase noise spectrum for a typical de-

tected power ηP = 5 nW. The signal is shot noise limited above 10 Hz. Right:
The phase noise at frequencies 125 Hz and 1 kHz for different detected powers.
The blue line shows the shot noise limit calculated from (3.33) with no adjustable
parameters.

at relevant frequencies for a wide range of powers, up to ηP = 30 nW, and
scales as 1/

√
P as expected from (3.32).

2As described below the total duration to measure the transition probability is ttot =
3tp + 10 ms
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For a cross-section of S = π(30µm)2 and a modulation frequency of
ωm = 2π · 90 MHz we expect a phase shift of

ϕat(+ωm)− ϕat(−ωm) = 6.7 · 10−6 rad

per atom from (3.24). For N = 104 atoms with a pulse duration of tp = 3 ms
and a power of P = 5 nW/η = 26 nW, the signal-to-noise ratio from (3.46)
is SNR = 272.

Experimentally, for N = 104 atoms we observe a phase shift of about
40 mrad in reasonable agreement with the expected value of 67 mrad, and
the measured phase noise per shot (without atoms) is 0.4 mrad giving a
signal-to-noise ratio of 100. This is somewhat lower than expected, prob-
ably owing to some misalignment and insufficient knowledge of the optical
power seen by the atoms, but given that the quantum projection noise of
N = 104 atoms is

√
N/N = 1%, in the end the SNR of the phase measure-

ment is still sufficiently high for the non-destructive detection scheme to
have a significant impact on the stability of the clock. This will be adressed
more in detail in Chapter 5.

To measure the atomic population in 1S0, we apply two consecutive probe
pulses separated by a 5 ms interval. Between these pulses we shelve the
atoms in the the dark states 3P0 and 3P2 by optical pumping on the 1S0 − 3P1

and 3P1 − 3S1 transitions. The second probe pulse does not experience the
atomic phase shift and then acts as a zero phase reference. During the probe
pulses, the phase signal is sampled at 500 kHz and the final signal is the
difference of the averaged signal over each the probe duration.

Figure 3.7: A frequency scan over the atomic resonance using the non-destructive
technique. The longitudinal sidebands are also visible, with the red sideband being
dwarfed because most of the atoms are in the motional ground state.

The measurement of the absolute transition probability associated with
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the interrogation of the atomic ensemble with our clock laser involves a third
probe pulse. All probe pulses should be applied after the clock interrogation
since low frequency phase drifts would add noise to the detection signal for
long interrogation times. The sequence is as follows: after the clock inter-
rogation a first probe pulse measures the number of atoms that remained
in the atomic ground state. Then the atoms are repumped into the ground
state, and are probed with a second probe pulse that determines the total
number of atoms. Then, as before, we pump all the atoms into the dark
states and apply a reference pulse.

A scan over the atomic resonance using this technique is shown in figure
3.7. The measured noise on the transition probability is 2% RMS with the
previous parameters, and varies as 1/N for N up to 104.

3.4 Fraction of Atoms Kept in the Lattice

A very important feature of the non-destructive detection scheme is the
ability to recycle the atoms from one cycle to the other. To check that the
detection pulses do not heat the atoms out of the lattice more than expected,
we measured the atomic losses caused by the phase detection. Figure 3.8
shows measurements of the fraction of atoms β kept in the trap for different
trap depths. The measurements of β were done straight-forwardly by de-

Figure 3.8: The fraction β of atoms kept in the lattice after the non-destructive
detection as a function of trap depth in units of recoil energies of the probe light,

Er,p =
~2k20
2m , for typical experimental parameters P = 14 nW and tp = 3 ms. The

red curve is a fit to (3.45) using the camera data points.
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tecting the number of atoms with a fluorescence pulse with a CCD camera
at the end of each clock cycle with and without the non-destructive detec-
tion. As a practical experimental feature, it was also possible to measure
the losses “live” by directly recording the decrease over time in phase signal
during the probe pulse, and then infer the fraction β from this. Figure 3.8
shows that the values obtained this way are completely consistent with the
camera measurements.

The red curve in figure 3.8 is a fit of (3.45) to the camera data points giving
nγ = 102 photons, and showing a good agreement with the model. The
number of absorbed photons from the fit can be compared to the value one
gets from (3.39) when inserting the experimental parameters P = 14 nW
and tp = 3 ms, which gives nγ = 61, showing a reasonable agreement. The
discrepancy is probably again due to insufficient knowledge of the power P
owing to misalignment.

We observe that for an experimentally reasonable lattice depth of around
200 Er,p, more than 95% of the atoms remain trapped after the detection
pulses. This important depth does not hamper the clock accuracy since
the lattice depth is ramped down to a few tens of Er,p during the clock
interrogation.

The atoms that stay trapped have been heated by the non-destructuve
probing. They are cooled down to the ground state of the lattice before the
next clock interrogation, along with the newly accumulated atoms, in a few
tens of milliseconds as described in Chapter 2.

3.5 Conclusion

We have experimentally demonstrated a non-destructive probing method for
the transition probability in an optical lattice clock with Sr atoms. With a
differential phase measurement of two modulation sidebands, we achieve a
high detectivity without resorting to complex interferometric stabilization
methods. This detectivity is intrinsically limited by the atomic transition
we probe, and not by our detection system. We have integrated the mea-
surement procedure in the clock cycle and demonstrated the feasibility of
measuring the clock transition probability. By recycling the atoms we ex-
pect to be able to reduce the dead time of the clock cycle down to ca. 150
ms while keeping more than 3 · 103 atoms in the trap. Together with the
ultra-stable clock laser described in Chapter 4, this opens up for much bet-
ter clock stabilities as described in Chapter 5.

The state dependent interaction between atoms and light that we exploit
for the detection scheme presented here intrinsically creates entanglement
between the light and the atoms [73, 165]. This can be used to create spin-
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squeezing of the atomic ensemble, a technique that can ultimately overcome
the atomic shot noise in atomic clocks. The squeezing of atomic spin can
either be created by using back-action of the phase measurement [186, 7]
or by repeated passes of the light through the atomic sample using a cavity
[102].

The obtainable squeezing increases with the resonant optical density α0

of the atomic sample [73]. The resonant optical density can be written as
α0 = NS/A ∝ λ2%l, where A is the cross section of the atomic sample, S
is the scattering cross section and l is the interaction length. Increasing the
number of passes of the light for a given length l, i.e. by surrounding the
atoms with a cavity, corresponds to increasing the optical density.

When using a cavity, each passage of the light through the atomic sample
introduces decoherence and losses of atoms, but the gain in signal and noise
reduction is faster, so finally one gains a factor of ∼

√
F in terms of SNR by

surrounding the atoms with a cavity of finesse F for the probe beam. Hence,
a future improvement of the scheme presented here would involve such a cav-
ity. The experimental difficulty associated with this is that there is already
a cavity surrounding the atoms to create the standing wave pattern for the
optical lattice. The mirrors for this cavity are placed outside the vacuum
chamber, and the coating of the mirrors and the vacuum chamber windows
were not optimized for the blue light used for the detection scheme here,
and the current setup would present a very poor finesse for the blue light.
Efforts are currently underway to design a setup that would accommodate
a high finesse for both wavelengths.

With the current setup for the Sr lattice clock, however, it seems too
challenging experimentally to achieve spin squeezing. Each absorbed photon
from the probe beam introduces decoherence in the system owing to the
spontaneous emission that follows. To achieve spin squeezing one must thus
have nγ � 1. For the spin squeezing to make sense metrologically, the noise
of the detection must be smaller than the quantum projection noise of the
atoms. Thus, we must have nγ � 1 while still maintaining a high detection
SNR ∝ α0. Inserting a cavity certainly helps in this respect, but to really
enter the desired domain one must also find a different transition with a
higher λ, since α0 ∝ λ2.

However, even when applying the non-destructive detection technique
described here, the total stability of the lattice clock is at least one order of
magnitude higher than the quantum projection noise (see Chapter 5) and
spin squeezing is redundant.



Chapter 4

An Ultra-Stable Clock Laser

A crucial part of an atomic clock is the interrogation oscillator which is
locked to the atomic clock transition. For an optical frequency standard the
interrogation oscillator is known as the clock laser. The frequency stability of
the atomic clock in the Dick limit is determined by two things: the frequency
stability of the clock laser and the averaging of the laser noise performed
by the atoms. This averaging is governed by the atomic sensitivity function
and is addressed in Chapter 5. For anything less than perfect averaging it is
clear that improving the frequency stability of the clock laser will improve
the total stability of the atomic clock.

To obtain a laser with an ultra-high frequency stability a number of
steps have to be taken. The most effective way of achieving a high stability
is to reference the frequency of the free-running laser to a cavity [183]. The
laser frequency is held at resonance of the cavity, ensuring that the length of
the cavity corresponds to a whole number of half wavelengths of the light.
So the entity ensuring frequency stability of the laser is now the length of
a cavity, which is something that can be stabilized to a very high degree
and makes an excellent short term reference. The cavity is put in a very
well-controlled environment to have the smallest possible perturbations to
its length.

Other possibilities exist as a reference for the laser frequency. Molecular
transitions have been used for many years to stabilize lasers. The most popu-
lar molecule is iodine owing to its myriad of well suited transition frequencies
over a broad spectrum. The best stability obtained with this stabilization
is around 4 · 10−15 [184].

When using a cavity as reference, the lock of the frequency of the laser
to the cavity is usually done by a modulation of the phase or frequency
of the light going to the cavity, and mixing the reflected signal with the
modulation signal. This allows one to extract information of how far the
laser frequency is from resonance, and an electronic lock can be implemented
to keep the laser frequency on resonance. For phase modulation with a high

81
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Figure 4.1: A sketch of the Pound-Drever-Hall setup for locking to a cavity.
Ωm is the modulation frequency and ε(ω) is the error signal.

modulation frequency compared to the line width of the cavity this is known
as the Pound-Drever-Hall technique [54].

State-of-the-art laser stabilization has been achieved in this way for more
than 20 years. The last couple of years the best values for the stability of
lasers referenced to cavities of length 7 − 10 cm have been at the level of
1− 2 · 10−15 [6, 173, 109] for all ULE (Ultra Low Expansion) cavities. The
limiting factor for the stability of these cavities is the thermal noise of the
ULE mirrors. To circumvent this limit we have implemented a cavity made
from a 10 cm long ULE spacer with fused silica mirrors in the Sr experiment
at SYRTE. With this our laser shows a noise floor at 6.5 · 10−16, as detailed
later in this chapter.

The chapter is organized as follows. The first section describes the the-
ory behind the Pound-Drever-Hall locking scheme. The next sections are
dedicated to describing the sources of noise for the lock and the experimen-
tal implementation of achieving a well-controlled environment for the cavity.
In the final section the stability of the locked laser is evaluated.

4.1 Pound-Drever-Hall Lock

The Pound-Drever-Hall locking scheme is based on the reflection coefficient
of light from a laser beam incident on a cavity. As described in i.e. [23],
the laser frequency of the light impinging on the cavity is modulated with
a fixed modulation frequency Ωm and the modulation signal is mixed with
the signal of a photo diode measuring the light reflected off the cavity. This
gives an error signal to be sent to a servo loop controlling the laser frequency,
thus locking the laser. A sketch of the key components of the lock is shown
in figure 4.1.
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4.1.1 The Error Signal

To understand quantitatively how the lock works, we can consider the re-
flection coefficient F (ω) for an electromagnetic field with electric component
Ein = E0e

iωt incident on a Fabry-Pérot cavity with length L and amplitude
reflection coefficient r,

F (ω) =
Erefl

Ein
= r

eiφ(ω) − 1

1− r2eiφ(ω)
, (4.1)

where φ(ω) = ω 2L
c is the phase shift obtained during one roundtrip in the

cavity, assuming that there is vacuum inside the cavity and neglecting the
mirrors. To lock the laser to the cavity, it is crucial to know how far the

Figure 4.2: Left: The squared amplitude of F (ω) around a resonance, where
νFSR = c

2L is the free spectral range. The plot is obtained from (4.1) with the
experimental value of r = 0.999997. Right: The phase of F (ω) with the same
parameters.

frequency of the incoming light is from a resonance of the cavity as well as
on which side of the resonance it is. The amplitude of F (ω) provides us with
a measure of the distance from a resonance, but the amplitude of F (ω) is
symmetric around the resonance (see figure 4.2), so to know on which side of
the resonance the incoming light is, we have to consider the phase of F (ω).
To obtain a low noise measurement of the phase we introduce a modulation
of the incoming light of frequency Ωm and depth β, such that the incoming
field, when expanding in terms of the Bessel functions Jn(β), becomes

Ein = E0e
i(ωt+β sin Ωmt) = E0

∞∑

n=−∞
Jn(β)ei(ω+nΩm)t

' E0

(
J0(β)eiωt + J1(β)ei(ω+Ωm)t − J1(β)ei(ω−Ωm)t

)
,

(4.2)

using that J−1(β) = −J1(β). The Fourier transform of (4.2) will have a
carrier at ω and two sidebands at ω ± Ωm, and the power of the reflected
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field, which is proportional to |Erefl|2, now becomes [23]

Prefl ' J2
0 (β)Pin|F (ω)|2 + J2

1 (β)Pin

(
|F (ω + Ωm)|2 + |F (ω − Ωm)|2

)

+ 2J0(β)J1(β)Pin

(
Re
[
F (ω)F ∗(ω + Ωm)− F ∗(ω)F (ω − Ωm)

]
cos Ωmt

+ Im
[
F (ω)F ∗(ω + Ωm)− F ∗(ω)F (ω − Ωm)

]
sin Ωmt

)
,

(4.3)

where Pin is the power incident on the cavity and terms with 2Ωm have
been ignored. The reflected power in (4.3) is what we can measure with
the photodiode shown in figure 4.1. To extract information about the phase
from this, the signal from the photodiode is mixed with the modulation
signal, sin Ωmt. This gives terms from the first line of (4.3) proportional
to sin Ωmt, and from the second and third line two terms proportional to
cos Ωmt sin Ωmt = 1

2 sin 2Ωmt and sin2 Ωmt = 1
2(1 − cos 2Ωmt), respectively.

If we then insert a low-pass filter to filter out signals with a frequency above
a certain limit, we can choose this limit low enough to end up with only
the constant term coming from sin2 Ωmt. That is, after the mixer and the
low-pass filter the final signal ε(ω), also known as the error signal, becomes

ε(ω) = J0(β)J1(β)PinIm
[
ψ(ω)

]
, (4.4)

where we have defined ψ(ω) ≡ F (ω)F ∗(ω + Ωm)− F ∗(ω)F (ω − Ωm).
The cavity described in this work has a finesse1 of F = 568 000 giving

the intensity reflection coefficient R = |r|2 = 0.999994 through the relation

F = π
√
R

1−R . The length of the cavity is L = 10 cm, giving a free spectral range
of νFSR = c

2L = 1.5 GHz, and the modulation frequency is Ωm = 2π · 20
kHz. With these values, ψ(ω) is mostly imaginary. A constant phase ϕ is
introduced in the modulation and is tuned experimentally to maximize the
error signal.

A plot of the error signal from (4.4) can be seen in figure 4.3. Resonances
of the cavity will be separated by νFSR, so when locked on a resonance, the
laser should have a frequency f = nνFSR with n being an integer. Figure
4.3 shows that the error signal is linear just around the resonance, and that
it has a different sign on either side of the resonance. This is exactly the
property we are looking for, and after integrating the signal, it can be applied
as a frequency correction to the laser.

In terms of electrical signal, the error signal can be written as

ε(ω) = κηQJ0(β)J1(β)PinIm
[
ψ(ω)

]
, (4.5)

where κ is a power-to-voltage conversion factor for the photo diode and ηQ
is its quantum efficiency. If the laser is close to a resonance of the cavity,

1The finesse of a cavity is defined as the free spectral range divided by the full width
at half maximum ∆ν of a resonance peak of the cavity, that is F = νFSR

∆ν
.
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Figure 4.3: The error signal for r = 0.999994, νFSR = c
2L = 1.5 GHz, and Ωm =

2π · 20 kHz. n is an integer determined by the ratio of the laser frequency to the
free spectral range of the cavity.

the frequency of the laser can be written in terms of the frequency deviation
from resonance δω as ω = 2πnνFSR + δω. When expanding (4.5) in terms
of δω, we get the error signal

ε(δω) = −ϑ(β)δω +O(δω2), where

ϑ(β) = κηQJ0(β)J1(β)Pin
4

νFSR

R(1 +R) sin2( Ωm
2νFSR

)

(1−R)
(
1 +R2 − 2R cos( Ωm

νFSR
)
) .

(4.6)

If we expand (4.6) in terms of the small parameter Ωm/νFSR to second order,
we eventually end up with the simple expression

ε(δω) ' −εP
2δω

π∆ν
, with

εP = κηQJ0(β)J1(β)Pin,
(4.7)

where ∆ν is the line width of the cavity given by the finesse as F = νFSR
∆ν =

π
√
R

1−R ' π
1−R .

To minimize the effect of electronic noise, the slope of the error signal
should be as large as possible and hence the value of β has to be chosen
to maximize J0(β)J1(β), which can be done numerically to give β ' 1.082
giving J0(β)J1(β) ' 0.339. Also, the value of the modulation frequency
should be chosen carefully. The band width of the lock will be reduced
at low modulation frequencies, and depending on the noise spectrum of
the free running laser, this will add noise to the locked laser. So a large
modulation frequency is desirable. The maximum modulation frequency of
the synthesizer from IFR we are using is 20 kHz. This, however, does not
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Figure 4.4: The power spectral density for the error signal (red) when the
laser is locked to the cavity. The error signal has been converted to frequency.
The black line shows the expected thermal noise limit from (4.14).

seem to be the limiting factor for the band width of 1.9 kHz we obtain
experimentally. The main reason for this rather low value is most likely
due to the lock-in amplifier used. As explained in section 4.3.3, the laser is
pre-stabilized to a cavity with a finesse of F = 24 500, so a bandwidth of
1.9 kHz is high enough to reject most of the noise.

Equation (4.7) shows that the fluctuations of the frequency of the laser
with respect to the cavity can be read experimentally directly from the
errorsignal ε. When the laser is locked to the cavity, the spectrum of residual
errorsignal is a measure of the noise that is not compensated by the lock, and
it should be below the dominant noise sources for the lock to work properly.

Figure 4.4 shows the power spectral density for the error signal when the
laser is locked to the cavity. The black line shows the thermal noise limit of
the cavity (see section 4.2.2), which is expected to be the dominant source
of noise. In the relevant frequency range (f < 1000 Hz) the residual noise of
the lock is well below the thermal noise, and the lock itself should not be a
limiting factor to the obtainable stability of the locked laser.

The spectrum in figure 4.4 shows a bump at around 1.5 kHz, close to
the bandwidth of the lock at 1.9 kHz. When the gain of the loop is too
high, the error signal oscillates at this frequency. Although the gain is not
too high here, there is still some residual. This residual oscillation will
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introduce sidebands at that frequency, which could lead to some line pulling
effects if there are other transitions 1.5 kHz away from the carrier. The
line shape of the carrier transition can be distorted under the presence of
other lines, which will “pull” the center of the carrier profile away from its
un-distorted value. Under normal working conditions of the clock the only
possible transition 1.5 kHz away from the carrier could be another Zeeman
transition. Given the efficiency of the optical pumping and Zeeman splitting
described in section 2.2.3, we can estimate the upper limit of the pulling.
At 1.5 kHz from the carrier the line pulling transition must be one of the
extreme Zeeman transitions of opposite sign. For example, if the carrier
is tuned to the transition mF = 9/2 → mF = 9/2, the closest transition
1.5 kHz away is the other extreme mF = −9/2→ mF = −9/2. The height
ratio b between the transition probability of these two transitions is usually
very small, but let us set it to b = 0.1 for an upper limit estimation and
assume equal power in the carrier and the sideband. Then the line pulling

in the worst case will be δνpull =
√
b (10 Hz)2

1.5 kHz = 0.02 Hz corresponding to
5 · 10−17 in fractional units, assuming a carrier width of 10 Hz. Under
normal operation the pulling will be at least an order of magnitude smaller
than this and thus well below 10−17.

In figure 4.4 we also notice the peak at 20 kHz, which is the modulation
frequency for the lock. The low pass filtering is not effective enough to com-
pletely remove this peak, and after integration of the errorsignal the power
in the sidebands at 20 kHz is only 10 dB lower than the carrier. However,
the line pulling from this is at least an order of magnitude smaller than the
upper limit estimate above for the modulation at 1.5 kHz and hence com-
pletely negligible.

The issues discussed above are the possible sources of noise introduced by
the lock itself. Below I will list the possible sources of noise for the cavity
length and estimate their magnitude.

4.2 Sources of Noise

The limiting factor for the stability of a cavity is expected to be the ther-
mal noise of the cavity. Other sources of noise can be circumvented up to
a certain point, but the thermal noise will always be present at finite tem-
perature. As shown below, the thermal noise limit is expected to be at the
level of a few 10−16 in terms of fractional frequency.

The spacer in our experiment consists of a solid block of ULE glass with
a hole going through the entire block. Mirrors are attached on the ULE
block on either side of this hole, thus constituting the cavity.

The noise spectrum of the laser can roughly be split up into three time
domains: the short term (< 1 s), the medium term (1 − 100 s) and the
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long term (> 100 s). The short term noise affects directly the stability of
the atomic clock through the Dick effect. Most important are the Fourier
components at 1 − 100 Hz, where the noise is down-converted to the cycle
frequency. Above 100 Hz the interrogation of the atoms effectively averages
out the noise contributions.

Frequency fluctuations of the laser on the medium term can cause servo-
loop errors when the laser is locked to the atomic resonance. The frequency
correction is applied to the laser one cycle after the interrogation. The cycle
time is typically on the order of 1 s.

On timescales much larger than the cycle time of the clock, the loop of
the lock to the atoms will steer the frequency of the laser, and eliminate
long term drifts. Practically, however, it is convenient to have a small drift
of the cavity, e.g. when optimizing the experimental parameters.

4.2.1 Temperature fluctuations

The temperature plays an important part when trying to keep the length of a
cavity constant. The coefficient of thermal expansion αT = 1

L
∂L
∂T determines

the sensitivity of the length to temperature fluctuations. For ULE glass
it is about αT,ULE ∼ 10 · 10−9/K at room temperature. For fused silica,
however, at room temperature it is two orders of magnitude larger; αT,Si =
5.5 · 10−7/K. Calculating the total coefficient of thermal expansion for the
cavity we use with a ULE spacer of 10 cm with fused silica mirrors is not
straight-forward. One must employ a finite element model for the exact
geometry of the cavity and solve the equations of motion numerically. This
was done in [118] giving the value αT = 7.5 · 10−8/K at room temperature.

The length fluctuations δL of the cavity can be related to frequency
fluctuations δν of the laser as δν

ν = δL
L . Thus, in order for the temperature

fluctuations not to limit the fractional frequency stability at the level of
10−16, the temperature must be controlled on the short term to the level of at
least 10−9 K when the cavity is held at room temperature. The stabilization
of the temperature of the cavity is described in section 4.3.2.

4.2.2 Thermal noise

Even for a completely constant temperature there is still thermal noise. This
noise is due to the finite temperature of the cavity which excites its modes
of vibration.

The thermal noise of a mechanical system can be evaluated by using
the fluctuation dissipation theorem [33]. This provides the power spectral
density of the motion of an object due to thermal fluctuations. It can be
expressed in terms of the mechanical impedance Z(ω) [151],

Sx(f) =
4kBT

ω2
Re(1/Z(ω)), (4.8)
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or in terms of the force transfer function H(ω) [122],

Sx(f) = −4kBT

ω
Im(H(ω)). (4.9)

The transfer function describes the transfer of a force g(t) applied at the
point or area in question to the displacement x(t). It is defined as H(ω) =
X(ω)/G(ω) with X(ω) and G(ω) being the Fourier transforms of x(t) and
g(t), respectively. Im(H(ω)) is proportional to the loss of the system.

The mechanical loss of the system can be quantified by the loss angle
φ(ω). For instance, for a classical spring it corresponds to having a complex
spring constant, k̃ = k(1+iφ(ω)), introducing a damping of the motion. For
the system in question, a cavity constructed from different types of glass,
the loss angle has been observed to be frequency independent over a wide
range of frequencies (from a few kHz to 100 kHz [122]), so it is assumed to
be the case here, φ(ω) = φ.

The authors of [122] have derived expressions for the power spectral den-
sities for the components of a cavity: the spacer, the mirrors and the mirror
coatings. The spacer is assumed to be a cylindrical bar, and considering
the low frequency part of H(ω), this gives for one end of the spacer (with
ω = 2πf)

Sspacer(f) =
4kBT

ω

L

3πr2E
φspacer (4.10)

for a spacer of length L submersed in a heat bath of temperature T , where
r is the radius of the spacer, E is the Young’s modulus for the material used
and φspacer is the loss of the spacer. For simplicity, the mirrors are assumed
to be bodies of half-infinite volume, which is justified when the Gaussian
beam diameter of the light hitting the mirrors is much smaller than the
mirror itself. This gives

Smirror,w(f) =
4kBT

ω

1− σ2

√
πEw

φmirror, (4.11)

where σ is Poisson’s ratio, w is the Gaussian waist of the laser beam at the
mirror and φmirror is the loss of the mirror substrate. Finally, the contribu-
tion from the coating of the mirrors can be written as

Scoating,w(f) = Smirror,w(f)
2√
π

1− 2σ

1− σ
φcoating

φmirror

d

w
, (4.12)

where d is the coating thickness and φcoating its loss.
The Gaussian waist of the laser beam is determined by the mode of the

cavity. The length of the spacer is L = 10 cm, with the mirror at one end
being flat and the other convex with a radius of curvature Rc = 50 cm.
The TEM00 mode of the cavity is then a Gaussian beam with a waist of
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w0 = 211 µm at the flat mirror, given by the condition Rc(z = 10 cm, w0) =

z

(
1 +

(
πw2

0
zλ

)2
)

= 50 cm with λ = 698 nm. The waist at the curved mirror

is w1 = w(z = 10 cm, w0) = w0

√
1 +

(
zλ
πw2

0

)2
= 236 µm.

To estimate the final thermal noise of the whole cavity, the spacer and
the two mirrors are assumed to to be independent with no common mode
cancellations and no coherence enhancements in differential modes. This
gives the power spectral density for the length fluctuations of the cavity of
the form

SL(f) = 2Sspacer(f) + Smirror,w0(f) + Smirror,w1(f)

+ Scoating,w0(f) + Scoating,w1(f).
(4.13)

Here, the contribution Sspacer(f) has conservatively been added for both
ends of the spacer. In general, the suspension of the cavity will determine
how the two ends should be weighted with weights between 0.5 and 1 for
each end of the spacer.

Using the material values given in table 4.1 and r = 5 cm, the PSD in
(4.13) at 1 Hz becomes

√
SL(1 Hz) = 2.7·10−17 m/

√
Hz. The corresponding

Component Young’s modulus (Pa) Poisson’s ratio σ Loss angle φ

Spacer (ULE) 6.8 · 1010 0.18 1.7 · 10−5

Mirror (FS) 7.5 · 1010 0.17 1 · 10−6

Coating - 0.17 4 · 10−4

Table 4.1: Values for material properties for the components of the cavity. The
values are taken from [122]. FS: Fused Silica.

frequency PSD at 1 Hz then becomes

Sν(1 Hz) = 1.4 · 10−2 Hz2/Hz (4.14)

through the relation
√
SL
L =

√
Sν
ν for the clock frequency ν = 4.29 · 1014 Hz

of 87Sr. For flicker frequency noise the Allan deviation is constant, and can

then be expressed as σy =

√
2 ln(2)fSν(f)

ν and using (4.14) we get the value

σy = 3.2 · 10−16. (4.15)

The individual contributions from the three components is dominated by
the coating, σy,coat = 2.8 · 10−16. The mirror substrates contribute with
σy,mir = 1.6 · 10−16, while the contribution from the spacer is negligible,
σy,spacer = 2 · 10−17.

However, if we had used ULE as mirror substrate, the contribution from
the mirrors would have been significantly higher, σy,mir = 6.1·10−16, and the
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total Allan deviation would be σy = 7.2 · 10−16. So there is a clear effect on
the thermal noise when changing from ULE mirrors to fused silica mirrors.

The flicker floor from the thermal noise is expected to be the limiting
factor for the short to medium term stability of the locked laser. Therefore,
using fused silica mirrors should have a profound effect on the final stability
of the laser.

It also seems that the thermal noise level can be further reduced by cool-
ing the cavity, since the power spectral density here is proportional to the
temperature. However, first of all one has to significantly reduce the tem-
perature to gain from this since the Allan deviation would be proportional
to
√
T . Secondly, the material properties change drastically at low tempera-

tures. For instance, ULE is no longer a low-expansion material at cryogenic
temperatures [175] and the loss angel of fused silica increases at low temper-
atures [168]. Other materials with better low temperature properties could
be used for a cryogenic cavity, but the coating of the mirrors would still be
a problem, since φcoating increases at low temperatures. Nonetheless, efforts
are being carried out in this direction [86], although a solution for the mirror
coating has to be found before anything can be gained in terms of stability.

4.2.3 Vibrations

The crucial factors that determine the noise from vibrations are the actual
vibrations of the cavity and the acceleration sensitivity of the cavity. The
vibrations are minimized by placing the cavity on a breadboard resting on an
anti-vibrational platform, as described in section 4.3.1. The acceleration of
the breadboard on top of the anti-vibrational platform was measured before
installing the vacuum chamber with the cavity. Figure 4.5 shows the power
spectral density of the acceleration measured in all three directions. The
black line shows an upper limit estimate of the flicker noise at low frequen-
cies, Sacc(f) = 2·10−13(m/s2)2/f . The acceleration sensitivity is determined
by the suspension, shape and material of the cavity, and is addressed more
in detail in section 4.3. The high frequency part of the spectrum will largely
be dominated by acoustic and mechanical resonances. The dashed grey line
shows what the thermal flicker noise floor calculated in section 4.2.2 corre-
sponds to assuming an acceleration sensitivity of 10−11 (m/s2)−1 (see section
4.3.1), and we see that the noise from accelerations is far below the thermal
noise for frequencies < 20 Hz.

For frequencies > 40 Hz, the acceleration noise seems to be higher than
the thermal noise floor of the cavity. The noise in this regime is most
likely due to airflow and acoustics. Since the data in figure 4.5 was taken,
a box lined with acoustic foam has subsequently been placed around the
cavity. This should reduce the noise for these frequencies, but in the end
accelerations might be comparable to the thermal noise floor here. Above
∼ 100 Hz, the laser noise will be largely averaged out by the interrogation
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Figure 4.5: The power spectral density of the acceleration of the breadboard
where the cavity is placed. The right ordinate axis shows what the acceleration
corresponds to in terms of frequency of the laser assuming an acceleration sensitivity
of 10−11 (m/s2)−1 (see section 4.3.1). The solid black line shows an upper estimate
of the low frequency flicker noise. At higher frequencies (> 10 Hz) the spectrum
is dominated by peaks due to acoustic and mechanical resonances. The bump at
∼ 0.4 Hz is most likely due to ocean waves hitting the coast of France. The dashed
grey line shows the thermal flicker noise floor calculated in section 4.2.2, providing
an upper limit for an acceptable level of vibrations before they dominate the noise
of the cavity.

of the atoms.

4.2.4 Pressure fluctuations

A small hole is drilled transversely into the spacer to provide the possibility
of creating vacuum around and inside the cavity. The reason for having
low pressure inside the cavity is that the refractive index n, and hence the
optical pathlength and in turn the laser frequency ν ∝ νFSR = c

2Ln , depends
on the pressure PV in units of Pa as [17]

n− 1 ' 3 · 10−9PV , (4.16)

and the relative shift of frequency due to this will be

δνP
ν

= (1− 1/n) = 1− 1

1 + 3 · 10−9PV
' 3 · 10−9PV . (4.17)
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For a pressure of PV = 1.2 · 10−8 mbar = 1.2 · 10−6 Pa, as is the case experi-
mentally, this gives a shift of δνP ' 1.5 Hz with ν being the clock frequency
of 87Sr, corresponding to 3.6 · 10−15 in fractional units. The pressure must
therefore be stabilized to a level of better than 10% for the noise coming
from pressure fluctuations to be negligible. Experimentally, the short term
stability of the pressure is hard to evaluate but is most likely much better
than 10%. This is confirmed by experiments with a similar cavity at SYRTE
that have been carried out at a pressure two orders of magnitude higher than
in our case, showing no pressure related degradation of the stability [149],
thus leading us to the conclusion that pressure fluctuations are not limiting
the stability of our cavity.

4.2.5 Radiation pressure

When the laser light is circulating in a cavity with high finesse, the intra-
cavity power Pintra will be greatly amplified compared to the power incident
on the cavity Pin. The amplification factor is given by 1

1−R = 1.7 · 105, so
even a feeble incident power might create a non-negligible radiation force on
the mirrors of the cavity. This force will cause a deflection of the mirrors,
thus changing the effective length of the cavity. The deflection δx of each
mirror can be estimated, when assuming the mirrors to be clamped disks
of thickness t and the light acting uniformly over a concentric area much
smaller than the area of the of the mirror, as [17]

δx = 3Fρ2 1− σ2

4πEt3
, (4.18)

where F = Pintra/c is the force on each mirror, ρ is the radius of the mirrors,
and E is the Young’s modulus of elasticity for the specific material used for
the mirrors. For fused silica mirrors we have σ = 0.17 and E = 7.5 ·
1010 N/m2. Including the deflection of both mirrors, this gives the relative
frequency shift

δν

ν
=

2δx

L
= 2.5 · 10−11Pin/W, (4.19)

using ρ = 12.5 mm and t = 6 mm. For the experimental value of Pin =
3 µW, this gives δν/ν = 7.5 · 10−17, so even if the intra-cavity power fluctu-
ates as much as ±50 % the frequency fluctuations coming from the radiation
pressure are negligible.

However, more pronounced thermal effects arising from the heating of
the mirrors due to the intra-cavity light will shift the resonance frequency
of the cavity. For an identical cavity at 1062.5 nm, the power sensitivity
was measured to be as much as 100 Hz · Pin/µW [118]. Thus, it is crucial
to stabilize the input optical power of the light. Luckily, this can easily be
done to a sufficiently high degree with an active stabilization of the power.
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4.2.6 Shot noise

Even with all classical sources of noise eliminated, there will still be some
noise due to the statistical nature of coherent light; namely the shot noise.

The shot noise of light detected by the photodiode in figure 4.1 is propor-

tional to
√
Ṅm, where Ṅm is the mean flux of photons incident on the cavity

for a power Pin, Ṅm = Pin
hν . Even on resonance, where the carrier (in the

ideal case) is completely transmitted, and only the sidebands are reflected
with the N photons being distributed between the carrier and the sidebands

with a ratio ∼ J2
0 (β)

2J2
1 (β)

(see (4.2)), this is true. Because on resonance, the car-

rier is completely transmitted due to destructive interference between the
directly reflected beam and the beam having made one roundtrip in the cav-
ity. Therefore, the shot noise of these beams have to be added along with
the shot noise of the sidebands, to give the full shot noise of the reflected
beam, including all N photons from Pin.

The time-dependent flux Ṅ(t) of photons can be written as Ṅ(t) =
Ṅm + ∆N(t), where ∆N(t) is the shot noise of light with zero mean value.
Using that coherent light is Poisson distributed, we get the auto-correlation
function of the shot noise, R∆N(t) = Ṅmδ(t), where δ(t) is the Dirac delta
function. The two-sided power spectral density S′(f) is the Fourier trans-
form of the auto-correlation function, S′∆N(t)(f) = Ṅm. The output O(t) of
the photo diode shown in figure 4.1 is determined by its filtering, which can
be represented by the transfer function H(f). The two-sided PSD for the
shot noise of O(t) is then [169]

S′∆O(t)(f) = Ṅm|H(f)|2.

For an upper limit estimate we can assume that the filter is linear and of
infinite bandwidth, giving a constant transfer function, |H(f)|2 = 1, which
is essentially the case experimentally for the frequencies of interest.

When looking only at the positive frequencies, we finally get the one-
sided power spectral density for the shot noise of the flux of photons,

SSN(f) = 2S′∆O(t)(f) =
2Pin

hν
. (4.20)

Equation (4.20) can be related to the frequency noise of the locked laser by
considering the error signal of the lock. The error signal in terms of voltage
is given by (4.7). To compare this with (4.20), we need to convert the voltage
output to a flux of photons, which is done by multiplying εP in (4.7) by a

factor α = Pin/hν
κηQPin

. Thus, if the error signal is given by ε(δf) = χδf , the

power spectral density of frequency fluctuations of the locked laser due to
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shot noise will be given by SSN(f)/|χα|2. Using (4.7), this becomes

Sν,SN(f) =
2Pin(∆ν)2

16hν(Pin/hν)2J2
0 (β)J2

1 (β)

=
hν(∆ν)2

8PinJ2
0 (β)J2

1 (β)
.

(4.21)

With the experimental values (Pin = 3 µW, ∆ν = 2.6 kHz) we get

√
Sν(f) = 8.3 · 10−4Hz/

√
Hz.

This can be converted to fractional Allan variance using σ2
y(τ) =

Sy
2ντ , which

is valid for white frequency noise as is the case here. This gives

σy,SN(τ) = 1.9 · 10−18/
√
τ ,

which is a completely negligible contribution to the total frequency noise.

It is also worth mentioning that fluctuations in photon number can affect
the stability of the laser due to other effects. It will lead to fluctuations in
the radiation pressure, leading to increased instability, as described above in
section 4.2.5. However, for the power used, this is also completely negligible.

4.3 The Cavity and its Environment

The spacer material ULE is a titania silicate glass developed by Corning
which has a remarkably low coefficient of thermal expansion, typically in
the 0 ± 30 · 10−9/K range. The fused silica mirrors are optically contacted
on each side of the spacer.

A frequency scan over the resonance of the cavity showed a FWHM of
∆ν = 2.64 kHz, which leads to a finesse of F = νFSR

∆ν = 568 000. This
is shown in figure 4.6. The light used for the lock to the cavity and the
interrogation of the atoms is generated by an extended cavity diode laser.
To perform the scan over the cavity the laser was pre-stabilized to the old
ultra-stable cavity previously used in the Sr experiment giving a laser line
width of (30 ± 3) Hz [11]. Details on the setup of the laser source and the
PDH lock to the old cavity can be found in [10].

4.3.1 Cavity and Vacuum Chamber Design

The ultra-stable cavity is held under vacuum. This is done to reduce noise
from pressure fluctuations as described in section 4.2.4, to keep the cavity
mirrors clean from impurities and, most importantly, to reduce the ther-
mal coupling between the environment and the cavity. The vacuum system
constructed for the cavity consists of a double chamber, as shown in figure
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Figure 4.6: The reflection of light impinging on the cavity as the frequency is
scanned over the resonance. The reflected signal was measured with a photo diode
and normalized to give 1 far from resonance. The red line shows a Lorentzian fit
giving the line width ∆ν = 2.64 kHz, a finesse of F = 568 000 and a contrast of
65%.

Figure 4.7: Left: A cut through the mechanical design of the vacuum chamber
for the cavity. Right: A photo of the actual cavity being placed in its cradle. The
black circles show the Viton pads that serve as support points for the cavity. The
white Teflon plate and the precision screws are used to gently guide the cavity into
place, and are removed once the cavity is in place.

4.7 (orange and grey structures). The reason for this was to be able to
actively control the temperature of the inner chamber, and possibly cool
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it down if necessary, since using fused silica mirrors instead of an all ULE
cavity reduced the zero-expansion point from 10-20◦C to well below 0◦C
[118, 95]. The implementation of the temperature control is discussed in
section 4.3.2. To further reduce temperature fluctuations, three gold coated
thermal shields surround the cavity (only two of them are shown in figure
4.7, the blue and pink cylinders). Air flow, acoustic noise, and large tem-
perature fluctuations are strongly filtered by containing the whole system
in a thermoacoustic isolation box. The box was made from Plexiglas with
acoustic foam glued on the inside. The box with the vacuum chamber is
shown in figure 4.8.

Figure 4.8: The box surrounding the vacuum chamber with the cavity. The vac-
uum chamber along with the optics needed for mode matching of the light is placed
on a breadboard, which rests on an anti-vibrational platform. The platform is sup-
ported by three large concrete feet. Under normal operational conditions the door
in the right part of the picture is closed.
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Figure 4.9: The geometry and axis designations for the cavity.

Vibration Sensitivity

The vacuum system is placed on a breadboard to accommodate the optics
for alignment and mode matching of the light going to the cavity. To reduce
vibrations of the cavity, the breadboard and vacuum chamber were placed
on an anti-vibrational platform. The choice of platform was a passive vi-
bration isolation platform 500BM-1 from Minus K Technology, that works
with a combination of conventional springs and more exotic springs with
negative spring constants, such that the platform, when balanced with the
right weight, is able to “float”, virtually free of vibrations (in the ideal case).
This type of platform typically delivers more than 30 dB isolation of vibra-
tions for frequencies higher than 10 Hz. The power spectral density for the
acceleration of the platform with the breadboard on top is shown in figure
4.5. In the low frequency regime < 10 Hz, these platforms are not very
effective, so other considerations must be taken into account. The geometry
and suspension of the cavity itself plays a large role here.

Extensive simulations with finite element modeling were performed prior to
the construction of the cavity to determine the design of geometry that gave
the best acceleration sensitivity (AS) properties, as described in [118, 119].
The cavity is positioned with its optical axis horizontal. The cavity is placed
in a “cradle” resting on four contact points on a cut-out in the horizontal
plane (see figures 4.7 and 4.9). Thin squares of Viton are used as contact
points. Figure 4.9 shows the geometrical properties that needed to be de-
termined. Both the length L and diameter d of the spacer were chosen to be
L = d = 100 mm. For these conditions, the geometrical optimization then
concerned the width d/2 − Xc and height d/2 − Zc of the cut-out, as well
as the position (Yp) of the support points. The goal was not only to have
the smallest possible AS of the cavity, but also a small sensitivity to the
fine-tuning of the contact points Yp, since this fine-tuning can be a tedious
and time-consuming process with a result that is most likely imperfect.
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Two types of displacements of the cavity were considered in [119]; mirror
translation along the cavity axis and mirror tilt. Both types change the
effective length of the cavity and hence the resonance frequency. The cavity
length variations are written as δL/L = k · a, where a is the acceleration
vector and k is the vector of AS, given by ki = kLi + kTi for the three axes
i = x, y, z, where kLi and kTi are the sensitivity coefficients for the mirrors’
translation and tilt, respectively.

Suspending the cavity in the x, y-plane breaks the symmetry about this
plane leading generally to a non-zero AS in the vertical z−direction. To
compensate for this, a cut-out is made in the cavity for the support points.
The symmetry breaking and compensation both scale roughly as the width
of the cut-out, so to have a small symmetry breaking with a subsequent
small compensation, the width of the cut-out should be as small as possible.
A width of 3 mm (Xc = 47 mm) was chosen as the smallest possible value
while still keeping an effective support of the cavity.

The transverse acceleration sensitivity arises when the optical and me-
chanical axes of the cavity are not aligned, which typically occurs when the
cavity mirrors are not exactly centered on the spacer or when the cavity is
tilted. The placement of the contact points must be optimized to have the
smallest sensitivity to tilts.

As for the optimization of Zc, the simulations showed that a certain
compromise has to be made, since not all cut-out geometries give a zero-
crossing of the vertical sensitivity kLz when varying Yp. Also, for a given
choice of Zc and Yp all the components of k must have a reasonable value.
Finally, the AS must not be very sensitive on the fine-tuning of Yp.

The best compromise was Zc = 3 mm and Xc = 47 mm. A zero-crossing
for both vertical and horizontal components of k exists for Yp ' 9 mm with
a slope of ' 2 · 10−12 (m/s2)−1/mm.

Experimental measurements of the AS were carried out to confirm the
simulation. They showed a reasonable agreement with the expected val-
ues, and most importantly showed that the acceleration sensitivity is '
10−11 (m/s2)−1 or better in all directions.

This value enables us to estimate the contribution to the frequency fluc-
tuations from vibrations of the cavity. This was done in section 4.2.3, show-
ing that for most frequencies the contribution from acceleration is much
smaller than the thermal noise floor of the cavity.

4.3.2 Thermal Control

To obtain the short term temperature stability at 1 nK level that is needed
(c.f. section 4.2.1) we installed both a passive filter of temperature fluctua-
tions and an active control of the temperature.
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Thermal Shields

The passive filter consists of a number of thermal shields that surround the
cavity. The cut of the mechanical design in figure 4.7 shows all the compo-
nents, save one: a thin copper shield is also placed tightly around the cavity,
resting on the cradle made of brass. The large orange chamber in figure 4.7
surrounding the setup is the outer vacuum chamber made of stainless steel.
This chamber also acts as a thermal shield, but the shielding is less efficient
than for the inner vacuum chamber (grey) and the two inner cylinders (blue
and purple) made of aluminium. These, along with the innermost shield,
provide a significant thermal isolation from the surroundings due to a large
specific heat capacity (897 J/kgK at 293 K) and small emissivity. The emis-
sivity of aluminium ranges from ε = 0.039 for a highly polished sample to
ε = 0.31 when heavily oxidized [2]. The aluminium shields used in our
setup are not heavily oxidized but some oxidization does occur, leaving the
emissivity at a value of about ε = 0.09. This is still lower than the value

Figure 4.10: Temperature of the thermal shields as a function of time after a
sudden change of room temperature by ∆T at t = 0. The colours correspond to
the colours of the shields in figure 4.7, expect for the black curve corresponding
to the innermost shield not shown in figure 4.7. The dashed curves show the
temperature of the thermal shields when coated with gold. The red dotted line
shows an exponential fit to the last part of black, dashed curve.

ε = 0.14 for the outer chamber made of machined stainless steel, but to
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take advantage of the full potential of the shielding it was decided to have
the two aluminium shields, the copper shield and the brass cradle polished
and covered with gold. Gold has an emissivity of ε = 0.018 − 0.035 and
experiences very little oxidization, making it perfect for thermal isolation
like this.

The equation governing the temperature T (t) as a function of time of a
non-blackbody object subjected to surroundings with a temperature T0 is

csm
dT (t)

dt
=

Aσsbε

2

(
T 4

0 − T 4(t)
)
, (4.22)

where cs is the specific heat capacity of the object in question, m is the mass,
A is the area, ε is the emissivity, and σsb is the Stefan-Boltzmann constant.
To evaluate the effect of the thermal shields, the coupled equations of the
form (4.22) for all the shields were solved numerically for a sudden increase
in room temperature by ∆T . The result for εgold = 0.035 is shown in
figure 4.10. Clearly, the gold coating causes a significant increase of the
time constant of the response to the external temperature change. The
thermal shields act as a linear filter attenuating the external fluctuations
of temperature. The longer the time constant, the larger the attenuation.
For the innermost shield with gold coating, an exponential fit (red, dotted
line) to the last part of the curve (black, dashed) in figure 4.10 gives a time
constant of 6.2 days.

Figure 4.11: The frequency of the cavity with respect to a reference cavity over
a period of 40 days. After a temperature impulse, a time constant of 4 days is
observed.
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The model assumes only radiative transfer of heat between the different
shields. In reality, the time constant will be somewhat smaller, since there
is some thermal contact between the shields. Each shield has three small
feet on which it rests on the surrounding shield.

The experimentally measured time constant is 4 days, as can be seen in
figure 4.11, in reasonable agreement with the model. The frequency differ-
ence between the cavity described here and a reference cavity was recorded
over a long period. After a sudden change in temperature of the cavity,
the time constant could be measured by an exponential fit to this frequency
difference.

Active Temperature Control

A double vacuum chamber was chosen to accommodate an active control of
the temperature of the inner vacuum chamber. The temperature is regulated
by the use of Peltier elements. One Peltier element is placed on the outer
side of the inner vacuum chamber, and another Peltier element is placed
on the inner side of the outer vacuum chamber. The two Peltier elements
are connected with a thermal braid to ensure thermal contact between the
two. Figure 4.12 shows more specifically how this was implemented. The

Figure 4.12: A photo showing the thermal connection between the two vacuum
chambers when the cover of the outer vacuum chamber is opened. The Peltier
element placed on the inner chamber is hidden from the view by the thermal braid.

outer vacuum chamber has a cover on each side orthogonal to the optical
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axis of the cavity, which allows access to the inner vacuum chamber. The
cover is fitted with an electrical feedthrough for access to the electrical con-
nections inside the vacuum chamber. To ensure a large surface and mass
for evacuating the heat and to simplify the mounting, the Peltier elements
were first glued on a copper block each with a thermally conducting and
vacuum compatible glue. The two ends of a thermal braid — consisting of
many fine copper wires interleaved (“braided”) such as to give flexibility —
was then glued on the other side of each Peltier element, thus creating a
thermal connection between the two. Finally, the two copper blocks were
screwed on the outer side of the inner vacuum chamber and the inner side
of the cover, respectively, thus creating the thermal link between the two
chambers. A high thermal conduction between the copper blocks and the
vacuum chambers was ensured by laying fine wires of indium under the cop-
per before screwing, such that after screwing tightly it creates a thin sheet
between the copper and vacuum chamber filling out every small hole and
crevice.

The whole operation was repeated on the other side of the vacuum cham-
ber giving a total of four Peltier elements inside the vacuum chamber, and
the temperature is controlled in a balanced way.

A number of thermistors were placed both outside the vacuum chamber
and also glued inside the vacuum chamber to monitor the temperature and
be used for the control of the Peltier currents. The thermistors for the
control of the Peltiers were glued close to Peltier element in question. One
additional monitor thermistor was glued on top of the inner vacuum chamber
on each side. Furthermore, one thermistor was glued on the top of the outer
chamber, one thermistor was placed freely in the air inside the box, and
finally one was placed freely in the air outside the box. Figure 4.13 shows
the Allan deviation of these temperature probes.

The air conditioning of the lab provides a stability of ' 0.1 K of the
temperature of the air. The stability is increased by one order of magnitude
up to 105 s inside the Plexiglas box with acoustic foam that surrounds the
cavity. Finally, the temperature of the inner vacuum chamber is regulated
down to about 0.1 mK. The temperature of the inner vacuum chamber is
controlled by comparing the resistance of a thermistor close to the Peltier
element with a fixed, tunable resistance using a Wheatstone bridge, and
applying a correction to the Peltier current. The electronic noise for the
control of the Peltier elements is not a limiting factor for the temperature
control, as shown by the dark blue and pink points in figure 4.13.

The temperature setpoint of the two sides of the inner chamber were
tuned to be identical to minimize the temperature gradient over the cavity.
This was done by carefully tuning the setpoint for the inner Peltier element
on one side of the cavity until the error signal for both Peltier controls had
zero mean value. The temperature setpoint was put to room temperature
to have the minimum heat transfer from the cavity to the surroundings.
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Figure 4.13: The Allan deviation of the various temperature probes. Also shown
is the error signal converted to temperature for the Peltier controls.

Drift

The extensive thermal stabilization provides a thermal drift of the cavity
that is both small and very linear. The left part of figure 4.14 shows a

Figure 4.14: Left: The frequency difference between the cavity and the atoms.
The linear fit gives a drift of −66 mHz/s. Right: The same data with the linear
drift removed. Residual non-linear drift is smaller than 10−7 Hz/s2.

measurement of the frequency difference between the cavity and the atomic
clock transition as a function of time. The linear fit gives a frequency drift



4.3. The Cavity and its Environment 105

of −66 mHz/s.
The drift of the cavity is also very linear, as can be seen on the right part

of figure 4.14. This shows the frequency difference over time between the
cavity and the atoms when the linear drift has been removed. The residual
non-linear drift is < 10−7 Hz/s2.

As a practical feature, a feed-forward drift compensation has been imple-
mented in the setup. The drift of the cavity is measured experimentally by
recording a few scans over the atomic resonance with typically a few minutes
in between. The resulting drift value is manually sent to an algorithm in the
DDS (Direct Digital Synthesizer) that controls the frequency of the clock
laser, which removes the drift from the DDS output frequency at a rate of 1
kHz. This way, the drift is typically removed to within a few mHz/s. This
minimizes the servo error that could result from a large drift when the laser
is locked to the atoms, as well as it removes the need to correct for lineshape
distortion of frequency scans over the atomic resonance. Still, the biggest
advantage of the feed forward is the practical aspect of having a constant
frequency when optimizing the experimental parameters.

Figure 4.15 shows the drift of the cavity over a longer period of time.
The ion pump for the outer vacuum chamber turned out to be somewhat

Figure 4.15: The resonance frequency and corresponding drift of the cavity over
a period of 3 months. The frequency is measured with respect to the atomic tran-
sition.

unstable. We experienced several times that it had stopped pumping for no
apparent reason, causing the pressure to rise. The thermal conduction and
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hence the drift rate subsequently increased. Thus, we were forced to replace
this pump. After the replacement, the pressure was stable and we most
often observe a drift smaller in size than 200 mHz/s. The drift occasionally
changes sign, leading to the conclusion that it is not due to aging of the
ULE spacer, but rather expresses the degree of thermal stabilization we
have achieved.

Using the coefficient of thermal expansion for our ULE spacer with fused
silica mirrors of αT = 7.5·10−8/K, a frequency drift of 66 mHz/s corresponds
to a thermal drift of 2 nK/s. The high degree of linearity demonstrated in
figure 4.14 ensures that we can effectively suppress the effect of temperature
changes to a level of much better than 2 nK/s by employing the feed-forward
drift removal. Hence, we have achieved a control of temperature that fulfills
the requirement of section 4.2.1, and in the end there is no need to cool the
cavity down to the zero-expansion point of about −20◦C.

4.3.3 Implementation in the Existing Setup

Optical Setup

A schematic drawing of how the cavity is fitted in the experimental setup
is shown in figure 4.16. Before the construction of the new cavity described

Figure 4.16: A simplified diagram showing the optical setup for the lock of the
698 nm clock laser. ECLD: extended cavity laser diode, PDH: Pound-Drever-Hall,
PD: photo diode.

in this chapter, the Sr clock had already been operated several years, and
the clock laser was already locked to an ultra-stable cavity with finesse of
F = 24 500 (Cavity 1 in figure 4.16). This lock was kept after implementing
the new cavity (Cavity 2), since it serves as a pre-stabilization of the laser,
which simplifies the optical setup for the new cavity and is convenient for
evaluating its properties.

Cavity 1 is placed inside a metal box on an active anti-vibrational plat-
form. The laser light for the lock is supplied by an extended cavity laser
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diode. The light is split up, where the part (1) going to Cavity 1 is modu-
lated with an EOM. The sidebands are reflected by the cavity and detected
with an avalanche photo diode (PD1). Using that signal, the laser is locked
to the cavity using the Pound-Drever-Hall technique by applying a correc-
tion directly to both the current and piezo of the extended cavity laser diode.
With this setup a line width of 30 Hz was obtained [11].

The other part of the light (2) makes a double pass through AOM1
before going through Fiber 1 to the main optical table where the atoms are
trapped. Here, one part (3) of the light goes to interrogate the atoms, after
having made a double pass through AOM2, which is used for switching on
and off the light and to scan and lock to the atomic resonance. The other
part is split up again. Path (5) makes a double pass through AOM3, and is
sent through Fiber 2 to go inside the box with Cavity 2.

Inside the box, the light makes a single pass through AOM4, where the
first order beam (6) is reflected by a polarizing beamsplitter cuber and goes
to Cavity 2. The transmitted beam (8) goes to a standard photodiode (PD4),
and the signal is used to actively stabilize the optical power of the beam by
applying the correction to the RF power of AOM4. The modulation for the
lock on the cavity is performed by AOM3. The light reflected off the cavity
goes to a standard photo diode (PD2). The signal from PD2 is mixed with
the modulation signal for AOM3 to provide the error signal for the lock. The
correction is applied to AOM1 at the very beginning of the circuit. Since
this AOM is placed before Fiber 1, the fluctuations in frequency induced by
this fiber due to airflow and vibrations are cancelled by the lock to Cavity 2.
The noise contribution from Fiber 2, however, is not canceled by the lock,
so cancelling that has to be achieved by other means.

Doppler Cancellation of Fiber Noise

The elimination of noise due to Fiber 2 is achieved by Doppler cancellation.
A beat note between a reference beam (4) on the main table and a retro-
reflected beam (7) through the fiber is made on photo diode 3. Since the
light traverses the fiber twice, there will be a contribution of 2∆ff to the
beat note, where ∆ff is the frequency noise added to the light by one pass
through the fiber. The light used for the retro-reflected beam is the 0th
order beam of AOM4, so the frequency of the beat note on PD3 will be
given by 2(f3 + ∆ff).

Several requirements had to be taken into account. First, the frequency
correction has to be applied to the same AOM (AOM3) as is used for the
modulation for the error signal to lock to Cavity 2. So the Doppler can-
cellation should work without also cancelling the modulation for the lock.
Secondly, a reference frequency is needed to compare the beat note with,
but we also wanted to be able to scan the frequency of AOM3 to find the
resonance of Cavity 2 without having to also change the reference frequency.
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The solution that takes both problems into account, was to compose the RF
signal with frequency f3 for AOM3 of two independent RF signals with fre-
quencies fa and fb, such that f3 = fa + fb. The setup for the fiber noise
cancellation is shown in figure 4.17.

Figure 4.17: The electronic setup for the Doppler cancellation of Fiber 2. Also
shown is the relevant part of the optical setup from figure 4.16.

The modulation for the lock to Cavity 2 is applied to fa, while the
correction for the fiber noise is applied to fb. Also, the scheme makes it
possible to subtract fa completely from the correction signal to fb, such that
the modulation is unchanged. The reference frequency is fixed at fref = 4fb,
while still allowing a frequency scan of fa.

The correction signal is applied to the frequency modulation input of the
RF source for fb, which limits the band width of the Doppler cancellation
to a few tens of kHz. This is sufficient to cancel most of the noise due to
airflow and vibrations. However, a small high frequency residual remains.
When the laser is locked to the atoms, high frequency laser noise will be
down converted to lower frequencies via the Dick effect, but the frequency
of the residual noise considered here is high enough that it will play a very
small role in that respect.

Figure 4.18 shows the power spectral density of the error signal for the
fiber cancellation converted to frequency. The PSD is shown both with and
without the fiber cancellation. The Doppler cancellation reduces the noise
between 10-30 dB for frequencies below ∼ 2 kHz. The blue line shows the
expected thermal noise floor of the cavity from section 4.2.2, which gives
and upper limit for the acceptable fiber noise. We see here that without
the Doppler cancellation the noise from the fiber would be much too large,
but with the cancellation the noise is acceptable for frequencies f < 100 Hz,
which is most often sufficient since for f > 100 Hz the atoms will average
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Figure 4.18: The power spectral density of the error signal for the cavity converted
to frequency with (red curve) and without (black curve) the fiber noise cancellation.
The blue line shows the expected thermal noise floor of the cavity, 1.4 · 10−2 Hz2/f
from section 4.2.2.

out the residual noise.

4.4 Frequency Stability of the Ultra-Stable Laser

To measure the stability of the cavity, the frequency output of the locked
laser must be compared to another frequency reference. This could be an-
other laser locked to a different cavity, or simply the atoms used for clock
operation. When using the atomic resonance as a frequency reference, the
atoms show a white frequency noise spectrum coming from the quantum
projection noise. The Allan deviation corresponding to this is expected to
be at the level of 10−17/

√
τ for 104 atoms, thus providing an excellent ref-

erence for measuring the frequency stability. The actual level of the 1/
√
τ

asymptote for the atomic clock will be determined by the Dick effect, which
already gives an indication of the laser noise.

Regardless of the starting point, the flicker noise floor of the cavity will
be reached eventually as long as no other sources of low frequency noise are
dominating the measurement. This is exactly what figure 4.19 demonstrates.
The figure shows the Allan deviation for the experimentally measured fre-
quency difference between the atomic clock transition of Sr and the cavity.
A small residual linear frequency drift (a few mHz/s) not compensated by
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Figure 4.19: The Allan deviation for the experimentally measured (dedrifted)
frequency difference between the atomic clock transition of Sr and the cavity.

the feed-forward has been removed before calculating the Allan deviation to
give a clearer picture of the flicker noise floor.

The figure shows how the level of the flicker noise floor can be extracted
from this measurement. The Allan deviation of the measurement will be
dominated by two contributions: the flicker floor from the thermal noise
of the cavity, and the white noise from the atoms. However, the first few
points of the Allan deviation will be determined by the modulation depth
and gain of the lock loop and do not give unambiguous information about
the quantities we seek. But since the gain and modulation depth are known
experimentally, we can simulate the lock loop by using equation (2.20) and
extract the information in that way to correct for the effect of the lock loop.
This was done for the red circles in figure 4.19.

We expect the dominant noise contributions to be white and flicker noise,

so a noise of the form f(τ) =
√
σ2

flicker + (σwhite/
√
τ)2 should produce the

right result. The red line in figure 4.19 shows a fit of this form to the data
corrected for the loop, giving the fitted values

σflicker = 6.5 · 10−16 ± 4 · 10−17 , σwhite = 1.7 · 10−15 ± 6 · 10−16.

The flicker noise floor of the ultra-stable laser is thus (6.5 ± 0.4) · 10−16 in
terms of fractional frequency stability. The dashed line shows the Allan
deviation for a simulation of the loop when using the fitted values as input.
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The value for the flicker floor should be compared to the expected value
of 3.2 · 10−16 calculated in section 4.2.2, giving a discrepancy of a factor of
2. Given the crudeness of the model in section 4.2.2 and the fact that the
dominant factor is the mirror coating, this could explain the discrepancy,
since the loss of the coating is not known with great accuracy. It is interesting
to note, that the all-ULE cavities also have a factor of about two discrepancy
between the expected value of 7 · 10−16 and the experimental values of 1−
2 · 10−15 [6, 173, 109].

Three other similar cavities have been designed and constructed at LNE-
SYRTE. Two of them operate at 1062.5 nm. A comparison between the two
showed a flicker noise floor of 4.1 · 10−16 [118]. Performing the computation
of section 4.2.2 with the numbers corresponding to this wavelength gives a
value of 2.7 · 10−16. The discrepancy between the computed and measured
values here is a factor of 1.5. The better agreement between the expected
value and the measured value here seems again to indicate that the lack of
knowledge of the coating is mostly responsible, since a different coating was
used for the 1062.5 nm cavities.

4.5 Conclusion

In this chapter it has been demonstrated that through careful elimination
of external noise sources, the clock laser locked to an ultra-stable cavity
consisting of a ULE spacer with fused silica mirrors has shown a flicker
noise floor at 6.5 · 10−16, which is most likely dominated by the thermal
noise of the mirror coating.

This represents currently the best stability obtained for a cavity of this
length and wavelength. To further improve this, the most straight-forward
approach would be to build a longer cavity, since the thermal noise scales
as the relative length fluctuations. Another approach would be to further
investigate the mirror coating and search for a coating with smaller thermal
noise. Efforts are also being done elsewhere [86] to change from a spacer
of ULE to an all silicon cavity and cooling the whole system croygenically
to dwarf the thermal expansion coefficient of silicon. Again, care has to be
taken here of the mirror coating. The expected stability for this cavity is at
the level of 10−16.

Instead of using a cavity it is also possible to use the length of a fiber
as a reference. Here, the frequency noise of the locked laser is roughly the
same at high frequencies (f > 50 Hz) as when using a cavity as reference
[85]. However, the low frequency part of the spectrum (f < 50 Hz), which is
very important for atomic clocks, still leaves something to be desired. This is
mainly due to the fact that temperature fluctuations and vibrations are much
harder to minimize for a fiber than for a cavity. Still, work is in progress to
reduce the low frequency noise, and although not yet a mature technique,
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stabilization to a fiber seems like a promising alternative to cavities.
However, none of the proposals mentioned above will increase the sta-

bility of the laser by more than a few factors. To increase the stability
by one order of magnitude or more, entirely different ideas must be con-
trived. In this vein, a proposal was recently put forward in which alkaline
earth-like atoms, such as Sr, are used as the gain medium to create a laser
with an extremely small line width [116]. The physics behind the laser is
the same as an ordinary laser, the main difference being that it is an en-
tirely different regime. The atoms are captured in an optical lattice and are
transferred to the dark states 3P0 and 3P2 by the atomic drain lasers. A
Raman transition from 3P0 to 3P2 via 3S1 is used to implement sideband
cooling to the vibrational ground state and to optically pump all atoms to
the 3P0 state. At this stage population inversion is thus obtained. A small
cavity of length 1 mm is placed around the atoms, and for particular values
of the cavity relaxation rate and repump rate, laser action can be realized.
At threshold the pump overcomes the atomic losses which is in contrast to
conventional lasers where threshold is obtained when the pump overcomes
the cavity losses. The authors of [116] found that for optimal parameters,
the output power for 106 87Sr atoms can be as much as 10−12 W, enough
to phase lock a slave laser, with a line width of around 1 mHz. However,
enticing as this might idea seem, there are certain experimental problems
that have to be overcome before the proposal can be realized. First of all,
although not unfeasible, the assumption of trapping 106 Sr atoms in the
lattice is hard to satisfy. So far only about 104 Sr atoms have been captured
in an optical lattice, and increasing this number by two orders of magnitude
will require a lot of work. Secondly, the finesse of the small cavity is assumed
to be F = 106. Placing such a small cavity under vacuum together with the
optical lattice and the atoms while keeping a high finesse and allowing for
optical access might prove excessively laborious. Still, the proposal would
greatly increase the performance of the clock laser and with the calculated
line width, the quantum projection noise limit of the lattice clock stability
could be reached even with the limited duty cycles that have so far been
obtained.

Another approach to reach the quantum limit would be to increase sig-
nificantly the duty cycle of the clock. It was shown in Chapter 3 how one
step in this direction can be taken. In the following chapter we shall see what
impact that along with the laser performance described in this chapter has
on the stability of the clock.



Chapter 5

The Stability of an Atomic
Clock

The stability of a lattice clock is generally determined by three contributions:
the interrogation oscillator noise, the detection noise and the quantum pro-
jection noise. The stability — or rather, the instability — is characterized
by the Allan deviation σy(τ) and atomic frequency references usually show
a medium-term σy(τ) = σ0τ

−1/2 dependence on measurement time τ .

Up until the late 1980’s the frequency standards such as a Cs atomic
beam [36] and trapped Hg ions [137] operating with a microwave clock tran-
sition were limited by technical (detection) noise owing to an insufficient
atomic state selection. However, as the detection noise was improved [8],
it was clear that the noise of the interrogation oscillator did not enter in a
completely trivial way. High frequency oscillator noise is down-converted to
low frequencies due to the cyclic operation of the clock and adds instability
with a τ−1/2 dependence to Allan deviation, thus increasing the coefficient
σ0. This effect was first addressed by John Dick in 1987 [49], giving the
effect its name.

As mentioned in Chapter 1, the microwave fountains have now attained
a stability that is limited by the quantum projection noise. Also for optical
lattice clocks, the ultimate limit of the stability is expected to be the quan-
tum projection noise; here at a level of 10−17 at one second for 104 atoms.
For the current operations of lattice clocks however, the most dominating
contribution comes from the laser noise through the Dick effect, limiting
the stability to around 10−15 at one second; two orders of magnitude higher
than the quantum projection noise.

This chapter therefore concentrates mostly on the Dick effect, which is
described in detail in the first section. The following section discusses the
other contributions to the Allan deviation. In the third section an optimiza-
tion of the time sequence is performed to minimize the Allan deviation given
the non-destructive detection technique described in Chapter 3 and the laser

113



114 THE STABILITY OF AN ATOMIC CLOCK

noise described in Chapter 4. With optimized parameters, the calculation
shows a stability of the Sr lattice clock one order of magnitude better than
current state-of-the-art. Finally, the last section discusses the effect on the
stability of the clock of more complex sequences where several interrogations
of the clock transition can be performed with no loading in between.

5.1 Dick Effect

The frequency reference given by an atomic clock is effectuated by locking a
local oscillator (LO) to the atomic clock transition via a feedback loop with a
given bandwidth. Ideally (for infinite gain), the noise of the locked oscillator
is completely compensated by the loop for frequencies below the bandwidth.
However, in reality high frequency noise of the LO around multiples of the
cycle frequency will be down converted to low frequencies and affect the long
term stability of the clock.

For a sequentially operated atomic clock, this effect can be understood
easily in a qualitative manner as an aliasing of the LO noise by the atoms.
The clock sequence, which is repeated indefinitely, consists of some prepara-
tion of the atoms, followed by the interrogation of the clock transition and
finally detection of the transition probability. The duration of the prepara-
tion and detection is known as the dead time. The LO noise is only detected
during the interrogation period constituting a fraction d < 1 of the whole cy-
cle time. d is known as the duty cycle of the clock. Considering as frequency
fluctuation of the LO a perfect sine wave with an average value of zero, the
effect of this on the frequency output of the atomic clock will generally not
be zero, since the fluctuation is detected only some of the time. The feedback
loop will then, incorrectly, compensate for the perceived error, offsetting the
LO from the atomic transition. Hence, fluctuations around harmonics of
the cycle frequency fc are converted to low frequency fluctuations of the
locked oscillator. The noise contribution close to each harmonic of fc add
up independently as white noise at offset frequencies close to f = 0. This
can be understood from the fact that, even though the power spectral den-
sity of fluctuations for the LO, SLO(f), may have an arbitrary frequency
dependence, in a narrow range around each harmonic of fc, it can be ap-
proximated by a constant value. Each of these narrow bands is shifted to a
range around zero frequency by this aliasing phenomenon.

Hence, the high frequency noise of the LO may have a profound effect
on the stability of the atomic clock, adding to its white noise level.

The weighting of the Fourier noise components can be quantified by the
sensitivity function g(t) which describes the sensitivity of the atomic fre-
quency reference to fluctuations of the LO frequency.
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5.1.1 Sensitivity Function

The response of the atoms to the interrogation oscillator frequency fluc-
tuations δω(t) is dictated by the sensitivity function g(t). The change in
transition probability δP due to frequency noise is given by [49]

δP =
1

2

∫
g(t)δω(t)dt, (5.1)

where the integral is taken over one clock cycle. During the dead time the
sensitivity function is zero, g(t) = 0. With (5.1), frequency fluctuations can
be represented by an effective mean value ∆ωn of cycle n as the average of
δω(t) weighted by g(t),

∆ωn =
1

g0Tc

∫ nTc

t=(n−1)Tc

g (t− (n− 1)Tc) δω(t)dt, (5.2)

where g0 is the mean value of g(t) over the cycle and Tc is the cycle time of
the clock. The probability that a transition occurred in cycle n will then be
given by

Pn = P (∆n), ∆n = ωn + ω0 + ∆ωn, (5.3)

where ω0 is the atomic transition frequency and ωn is the frequency correc-
tion to the LO from the control loop in cycle n− 1.

The effect of having a small duty cycle is illustrated in figure 5.1, where
the aliasing of the LO noise by the atoms through the sensitivity function is
clear. The effective LO frequency seen by the atoms shows large fluctuations
when the duty cycle is small and the averaging of the noise is less efficient,
since g(t) = 0 during a large fraction of the cycle.

The appearance of g(t) depends on the type of interrogation used. To
derive an expression for g(t), we adopt the semi-classical density matrix
formulation for a two-level atom interacting with the electric field component
of the interrogation light field. Following the notation used in section 3.1.1
for an atom with levels |g〉 and |e〉 with energy difference ~ω0, we write the
electric field at z = 0 as

E(z = 0, t) =
1

2
(E0êe

−i(ωt+φ) + c.c.), (5.4)

where the phase φ of the field also has been introduced. The frequency ω
of the light field can be taken as a constant and the frequency fluctuations
are given by the derivative of the phase dφ

dt . We introduce also the quantity
δω0 as the perturbation of the clock frequency seen by the atoms. This
corresponds to a shift of the energy levels due to external perturbations of
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Figure 5.1: Graphic illustration of the Dick effect. The laser noise δω(t) sampled
at multiples of the cycle frequency fc = 1/Tc is averaged according to the atomic
sensitivity function g(t), giving a large scattering of the effective LO frequency seen
by the atoms (squares) when the duty cycle is small. The inset shows a zoom on
three cycles and the temporal appearance of the sensitivity function.

the atoms1. The equations of motion in the rotating wave approximation
then become

d

dt



a1

a2

a3


 =




0 ω0 − ω − dφ
dt + δω0 0

ω − ω0 + dφ
dt − δω0 0 Ω(t)

0 −Ω(t) 0





a1

a2

a3


 ,

(5.5)
where Ω(t) is the Rabi frequency (where the time dependence defines the in-
terrogation scheme) and we have introduced the more convenient coefficients
ai defined from the density matrix components as

ρge =
1

2
(a1 + ia2)e−i(ωt+φ), (5.6a)

ρee − ρgg = a3. (5.6b)

Generally, (5.5) has no analytical solution. Following the approach of [98,

1Certain types of frequency shifts are not accounted for with the approach taken here.
These include all effects that cannot be treated as a variation of the atomic frequency or
of the phase of the field, such as effects that depend on other levels (like line-pulling etc.).
However, these shifts are usually small compared to other shifts experienced by atoms in
an atomic clock (like Zeeman shift, light shift, ...) and can be disregarded here. See [98]
for more details.
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99], we write the equations of motion (5.5) as

d

dt
a(t) = (M0 + εMε)a(t), (5.7)

where

M0 =




0 ω0 − ω 0
−ω0 + ω 0 Ω(t)

0 −Ω(t) 0


 (5.8)

and

Mε =




0 −1 0
1 0 0
0 0 0


 , with ε =

dφ

dt
− δω0. (5.9)

The solution to (5.7) can be obtained as a unitary transformation of a(t = t1)
at a given time t1 as

a(t) = U(t, t1)a(t1), (5.10)

where the evolution matrix U(t,t1) obeys

∂

∂t
U(t, t1) = (M0(t) + ε(t)Mε)U(t, t1). (5.11)

The laser fluctuations are thus introduced as a perturbation to the solution
with ε = 0 giving an evolution matrix U0(t, t1). The sensitivity function is
then given by [98]

g(t) = −a†(t1)U0(t2, t)MεU0(t, t1)a(t1), (5.12)

where t1 is the beginning of the interaction between the interrogation laser
and the atoms and t2 the end. We note that g(t) is constant during the time
when Ω(t) = 0.

Furthermore, it can be shown that the sensitivity function has the same
symmetry as the interrogation field. This allows us to express g(t) conve-
niently if we assume that we have a symmetric interrogation around t = 0
starting at t1 = −ti/2 and ending at t2 = ti/2. We assume that all the
atoms start in the ground state, a†(t = −ti/2) = (0, 0,−1). In this case, the
sensitivity function can be written as

g(t) = a+
1 (t)a+

2 (−t) + a+
1 (−t)a+

2 (t), (5.13)

where a+(t) is defined as

a+(t) = U0(t, ti/2)a(−ti/2). (5.14)

The components of a+(t) obey the equation of motion

d

dt
a+(t) = M0(t)a+(t), (5.15)



118 THE STABILITY OF AN ATOMIC CLOCK

and in the cases where there is no analytical solution to (5.5), this notation
allows us to obtain a numerical solution for g(t) in a simple way.

The notation introduced in (5.6) allows us to write the transition prob-
ability at a time t as

P (t, t1) =
1

2

(
1− a3(t)

a3(t1)

)
. (5.16)

With equations (5.8 - 5.10) and (5.12) we can write the transition probability
in (5.16) as

P (t, t1) = P0(t, t1) +
1

2

∫ t

t1

(
dφ

dt′
(t′)− δω0(t′)

)
g(t′)dt′, (5.17)

where P0(t, t1) is the probability in absence of perturbations. Equation
(5.17) is a generalization of (5.1) and through the sensitivity function g(t) it
accounts for LO phase noise as well as perturbations of the atomic resonance
frequency, applying to every possible interrogation scheme.

5.1.2 The Dick-Limited Allan Variance

As described qualitatively in the beginning of this section, the high fre-
quency noise components that are down-converted to low frequencies are
components around multiples of the cycle frequency. Following the deriva-
tion in [9], we consider the long-term asymptotic Dick-limited stability for
an integration time τ � Tc. The loop control of the LO to the atomic ref-
erence filters high frequency components of the LO noise, and after a time
τ the bandwidth ∆f of the down-converted noise around each multiple m
of the cycle frequency 1/Tc will be on the order of ∆f ∼ 1/τ � 1/Tc. We
can then consider the part of the oscillator noise that is filtered in a set of
spectral windows centered around frequencies m/Tc with a noise bandwidth
of 2∆f .

These narrow band frequency fluctuations of the free-running LO can be
written in the Rice representation [144] as

∆ωLO,∆f (t) =

∞∑

m=1

(
pm(t) sin

(
2πmt

Tc

)
+ qm(t) cos

(
2πmt

Tc

))
, (5.18)

where pm(t) and qm(t) are random amplitudes varying slowly with respect
to Tc. They correspond to the LO frequency noise components in the narrow
bandwidth considered. These can be related via their power spectral density
to the LO noise as

Spm(f ≤ ∆f) = Sqm(f ≤ ∆f) = 2S∆ωLO,∆f
(f = m/Tc). (5.19)

Since the coefficients pm and qm are assumed to be slowly-varying, we can
replace the temporal dependence by a fixed time tn = nTc for the n’th
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cycle. By replacing the LO fluctuations δω(t) in (5.2) by the narrowband
noise ∆ωLO,∆f (t) from (5.18), we obtain the mean value ∆ωn for the offset
in frequency due to LO noise,

∆ωn = −∆ωLO,∆f (tn) +
1

g0

∞∑

m=1

(pm(tn)gsm + qm(tn)gcm) , (5.20)

where the Fourier components gs,cm of the sensitivity function g(t) are given
by

gs,cm =
1

Tc

∫ Tc

0
g(t)f(2πmt/Tc)dt, (5.21)

where f(x) = sin(x) for gsm and f(x) = cos(x) for gcm. Thus, the frequency
offset ∆ω(tn) for the slaved oscillator becomes

∆ω(tn) = −∆ωLO,∆f (tn)−∆ωn

= − 1

g0

∞∑

m=1

(pm(tn)gsm + qm(tn)gcm) .
(5.22)

The Allan variance corresponding to a white frequency noise spectrum ex-
pressed by the one-sided power spectral density Sy(f) = h0 is given by (see
[169] and Appendix A)

σ2
y(τ) =

h0

2τ
, (5.23)

and using the relation (5.19) along with (5.22), we get the the Dick-limited
Allan variance due to the narrow band white noise coming from down-
conversion of the LO frequency fluctuations

σ2
y(τ) =

1

τg2
0

∞∑

m=1

[
(gsm)2 + (gcm)2

]
SLO(m/Tc), (5.24)

where SLO(f) = S∆ωLO,∆f
(f) is the one-sided power spectral density of the

relative frequency fluctuations of the free running interrogation oscillator
taken at Fourier frequencies m/Tc.

Equation (5.24) can also be written as

σ2
y(τ) =

1

τg2
0

∞∑

m=1

|gm|2 SLO(m/Tc), (5.25)

using the complex Fourier components

gm =
1

Tc

∫ Tc

0
g(t)e−2πimt/Tcdt. (5.26)
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5.1.3 The Sensitivity Function For Rabi Interrogation

The most common choice of interrogation scheme for an optical lattice clock
is either Rabi or Ramsey interrogation. Rabi interrogation consists of a sin-
gle pulse of duration τR after which the transition probability is obtained.
The duty cycle in this case is defined as d = τR

Tc
. Assuming that the interro-

gation is symmetric around t = 0, the Rabi frequency Ω(t) is thus

Ω(t) =

{
Ω0 for −τR/2 ≤ t ≤ τR/2
0 otherwise,

(5.27)

where Ω0 is a constant. The transition probability at resonance is

P (τR) =
1

2
(1− cos(Ω0τR)) . (5.28)

The amplitude of the interrogation field is most often chosen to maximize
the transition probability, Ω0τR = π. This is known as a π-pulse for obvious
reasons. As a function of detuning, δ = ω − ω0, the line shape for a π-pulse
is given by [169]

P (δ) =

sin2

(√
π2+δ2τ2

R
2

)

1 + (τRδ/π)2
. (5.29)

The modulation depth for the lock of the LO to the atomic resonance is
chosen such that the slope is maximized. For (5.29) this is at half the
maximum where the detuning is δ/2π = ∆ν

2 = 0.80
2τR

.
The sensitivity function is obtained from (5.12) using (5.27) giving (see

also [50])

g(t) =





δ/Ω0(
1+(δ/Ω0)2

)3/2 · y(t, τR, δ) for −τR/2 ≤ t ≤ τR/2

0 otherwise,
(5.30)

for a given detuning δ, where

y(t, τR, δ) = sin[Ω̃(t/τR + 1/2)]
(
1− cos[Ω̃(1− t/τR − 1/2)]

)

+ sin[Ω̃(1− t/τR − 1/2)]
(
1− cos[Ω̃(t/τR + 1/2)]

) (5.31)

with Ω̃ =
√
π2 + δ2τ2

R. It is often convenient to express g(t) in terms of its

Fourier components gm from (5.26), since they are used for the calculation
of the Allan variance in (5.25). For a π-pulse with Ω0τR = π at a detun-
ing corresponding to half the maximum δ/2π = 0.8/(2τR), an approximate
expression for the Fourier components is given by

gm =
2d cos(πmd)

π(1− (2md)2)
. (5.32)
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Figure 5.2: The normalized Fourier components
∣∣ gm
g0

∣∣2 for Rabi interrogation with
Ω0τR = π for duty cycles d = 0.1 to 1 from light to dark red with d = 1 being the
darkest.

The normalized Fourier components
∣∣gm
g0

∣∣2 from (5.32) for different duty cy-
cles are plotted in figure 5.2. The relative size of the higher m contributions
decrease with increasing duty cycle. The relative size of each gm determines
how much the noise of the interrogation oscillator at frequency m/Tc con-
tributes with in the down-conversion to low frequencies. To have a small
Dick effect one therefore strives to have the smallest possible contribution
for increasing m. For all values of d the value of

∣∣gm
g0

∣∣2 decreases as m−4.

5.1.4 The Sensitivity Function For Ramsey Interrogation

Ramsey interrogation consists of two pulses of duration τp with a free evo-
lution period of duration T in between. Here, the duty cycle is defined as
d =

2τp+T
Tc

. Assuming again that the interrogation is symmetric around zero,
we have

Ω(t) =





Ω0 for −T/2− τp ≤ t ≤ −T/2
0 for −T/2 ≤ t ≤ T/2
Ω0 for T/2 ≤ t ≤ T/2 + τp
0 otherwise.

(5.33)
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Inserting this in (5.12), one finds in the end the sensitivity function (see e.g.
[98])

g(t) =





sin[Ω0(t+ τp + T/2)] for −T/2− τp ≤ t ≤ −T/2
sin(Ω0τp) for −T/2 ≤ t ≤ T/2
sin[Ω0(−t+ τp + T/2)] for T/2 ≤ t ≤ T/2 + τp
0 otherwise.

(5.34)

It should be noted that (5.34) is exact only for phase modulation, but the
expression is also a good approximation for frequency modulation and it is
always valid to first order in τp/T for T � τp. The Fourier components of
(5.34) become

gm =
2TcΩ0 (cos(mπT/Tc) cos(Ω0τp)− cos(mπd))

(2mπ)2 − (TcΩ0)2

− (TcΩ0)2 sin(mπT/Tc) sin(Ω0τp)

4(mπ)3 −mπ(TcΩ0)2
.

(5.35)

Here, the optimal choice is Ω0τp = π/2, where (5.35) simplifies to

gm =
2(1 + T/2τp) (cos(mπd/(1 + 2τp/T ))− cos(mπd))

d((2mπ)2 − ((1 + T/2τp)/d)2)
. (5.36)

The Fourier components (5.36) depend on the duty cycle d as well as the
interrogation parameters τp and T , more specifically the ratio τp/T .

This fact is reflected in the appearance of the gm for different d. Figure
5.3 shows the normalized Fourier components

∣∣gm
g0

∣∣2 from equation (5.36)
with τp/T = 0.025, which is the choice that will be justified and used later
in this chapter. Here we see that for small m the coefficient generally have
a lower relative value than for the Rabi case for a given d. However, the
slope is smaller; the values decrease only as m−2 (except for d = 1) for small
m until a given m value, where the slope tends to −4 as for the Rabi case.
This is easily explained physically: the m value where the slope changes
corresponds to a frequency fR ∼ 1/τp, since noise above this frequency is
filtered by the atomic response. The frequency fR corresponds to an m value

mR =
2 + T/τp

d
,

since the frequency corresponding to a given m value can be written fm =
m
Tc

= md
2τp+T = 1

τp
md

2+T/τp
.

For large duty cycles d → 1, the Fourier components tend toward zero
for a small ratio τp/T → 0. The laser noise is completely suppressed in
that case. In the other extreme, τp/T →∞, the interrogation tends toward
Rabi interrogation, and the functional dependence of gm on m tends to
“straighten out” toward a slope of −4 for all m as in the Rabi case.
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Figure 5.3: The normalized Fourier components
∣∣ gm
g0

∣∣2 for Ramsey interrogation

with Ω0τp = π/2 and τp/T = 0.025 for duty cycles d = 0.1 to 1 from light to dark
red with d = 1 being the darkest.

Which interrogation type gives the smallest Dick effect will depend on the
noise spectrum of the interrogation laser and the duty cycle of the clock. For
d→ 1 Ramsey interrogation will always be superior to Rabi interrogation.

In general, for optical lattice clocks, the spectrum of the interrogation
laser is largely dominated by flicker frequency noise, especially at low fre-
quencies. For pure flicker noise, the Ramsey interrogation will give a better
stability than the Rabi case. The real spectrum of the interrogation laser
can display different behaviour at higher frequencies than flicker noise, and
there might be situations where Rabi interrogation is preferable to Ramsey
interrogation, when the full noise spectrum is considered. However, it is
rarely the case for the type of laser used for optical lattice clocks. Figure
5.4 gives a clear graphic illustration of the situation for the type of laser
noise we expect to be dominating in optical lattice clocks. The figure shows
numerically generated frequency noise filtered around the cycle frequency
fc = 1/Tc with a bandwidth of 0.3 fc. The noise of the oscillator enters
in the clock measurement as the time average of δω(t) weighted by g(t),
according to (5.2). For a small duty cycle (squares in figure 5.4) only the
maxima of the relevant noise components contribute to the measurement,
resulting in a large dispersion of the measured frequency. When the duty
cycle d approaches 1, the sensitivity function comprises almost the totality
of each cycle, and the frequency fluctuations of the interrogation oscillator
are averaged out. This averaging effect is almost perfect in the case of Ram-
sey interaction (stars in figure 5.4 for d = 0.94) since the sensitivity function
is a constant during the free evolution period. As the dead time Td used
to prepare and detect atoms approaches 0, the measurement noise totally
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Figure 5.4: Simulated frequency noise δω(t) of the interrogation oscillator filtered
around the cycle frequency fc = 1/Tc with a bandwidth of 0.3 fc. The points show
the weighted average

∫
g(t)δω(t)dt/

∫
g(t)dt for Rabi interrogation with duty cycle

d = 0.94 (circles) and for Ramsey interrogation with duty cycles d = 0.24 (squares)
and d = 0.94 (stars). The inset shows how δω(t) is sampled over 3 cycles for the
three different sensitivity functions g(t).

vanishes provided the interrogation pulses are kept short enough (τp � Td).
The situation is quite different for Rabi interrogation (circles in figure 5.4),
since the sinusoidal shape of g(t) enfeebles the efficiency of the averaging
process.

5.1.5 Shaping the Pulse

If the laser noise is not pure flicker noise, one can imagine a situation where
it would be advantageous to have a non-square pulse. Especially if the laser
noise exhibits peaks at distinct frequencies, the pulse can be engineered
to have a sensitivity function that suppresses these noise peaks. As we
have seen in Chapter 4, even though most of the noise spectrum of the
clock laser is dominated by flicker noise, there are still important peaks at
high frequencies, for instance at the band width of the lock loop onto the
ultra-stable cavity at around 1.5 kHz. Here, one can shape the pulse of
the interrogation field such that the resulting Fourier components of the
sensitivity function show a dip at the frequency of interest.

Generally, the high frequency — or equivalently, high m — components
of gm arise due to sharp features in the temporal sensitivity function g(t)
since the gm are obtained as the Fourier transform of g(t). Thus, by engi-
neering the pulse to have less sharp features, one could expect the gm to be
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smaller at high m.

Trapezoid Pulse

As a first try, let us consider a modification to a Rabi pulse. The most simple
way to smooth the pulse is to ramp the amplitude of the interrogation field
at the beginning and end of the pulse to have a trapezoid shaped pulse
instead of the usual square pulse. In this case, the temporal dependence of
the Rabi frequency Ω(t) is given by

Ω(t) =





Ω0
τR/2+t
τ ′ for −τR/2 ≤ t ≤ −τR/2 + τ ′

Ω0 for −τR/2 + τ ′ ≤ t ≤ τR/2− τ ′
Ω0

τR/2−t
τ ′ for τR/2− τ ′ ≤ t ≤ τR/2

0 otherwise.

(5.37)

The pulse is shown in figure 5.5. Since the pulse (5.37) is only a small

Figure 5.5: The temporal appearance of the Rabi frequency for the trapeoid shaped
pulse. The pulse is ramped up to a value Ω0 = π

τR−τ ′ during a time τ ′.

modification to the normal Rabi pulse for τ ′ � τR, we expect the optimal
parameters for pulse area and detuning to be close to those for the Rabi
pulse if we make the substitution τR → τR − τ ′. Thus, the value Ω0 is
chosen such that the area of the pulse equals π, that is Ω0 = π

τR−τ ′ , and the

detuning is chosen to correspond to half the FWHM, δ/2π = 0.8
2(τR−τ ′) .

The sensitivity function is obtained from equation (5.12) by solving the
equations of motion numerically. The result for a slope duration of τ ′ =
τR/20 is shown in figure 5.6. Here we see that the main difference compared
to a Rabi pulse is a smoothing at the beginning and end of the pulse, with
the slope starting at zero instead of one in the Rabi case.

The less sharp features of the trapezoid pulse should also result in smaller
side lobes of the resonance spectrum. The transition probability can be
obtained from (5.16), and by computing the probability at the end of the
interrogation P (τR/2,−τR/2) for different detunings, we can obtain the line
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Figure 5.6: The sensitivity function g(t) for the trapezoid pulse (solid curve) with
τ ′ = τR/20. The corresponding g(t) for normal Rabi interrogation is shown with a
dashed curve.

shape of the resonance. This is shown in figure 5.7, were the corresponding
Rabi profile also is shown. The first few side lobes are almost unchanged

Figure 5.7: Left: The transition probability as a function of detuning δ/2π for
the trapezoid pulse (solid curve) with τ ′ = τR/10, and the same with τ ′ → 0
corresponding to normal square pulse Rabi interrogation (dashed curve). Right: A
wider plot of the same in log-scale showing the suppression of side lobes compared
to the Rabi case.

compared to the Rabi case. The higher order side lobes are suppressed by an
increasing factor. This will reduce possible line pulling from these side lobes
by the same factor, if there is another transition (for instance for another
Zeeman substate) close to the side lobe frequency. By trial and error one

finds that the attenuation of side lobes scales roughly as e−
√
nτ ′/τR , where

n is the order of the sidelobe. The line pulling scales as [10]

δνpull =
√
b
∆ν2

δsep
, (5.38)

where b is the height ratio of the transition probabilities, ∆ν is the line
width and δsep is the separation between the transitions. The scaling of the
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line pulling in the trapezoid case compared to the Rabi case will then be

δνtrapezoid

δνRabi
=

√
btrapezoid

bRabi
= e−

√
nτ ′/τR/2 (5.39)

for the n’th side lobe. Furthermore, in addition to the general attenuation
of the sidelopes there is a significant dip of the sidelobe amplitude around
(multiples of) a detuning δ

2π = 1
τ ′ , and this can be used to characterize the

line pulling by changing τ ′ while keeping all other parameters constant.

The Fourier components gm of the trapezoid pulse follow from (5.26). We
can expect to see the effect of the ramping of the pulse at frequencies that
are multiples of 1/τ ′ since this is the only timescale that distinguishes the
trapezoid pulse from the square. The expression for the Allan deviation
(5.25) shows that the component gm weights the laser noise at m times the
cycle frequency fc = 1/Tc. Hence, the frequency fd = 1/τ ′ corresponds to
an m value of

md =
fd
fc

=
Tc
τ ′
' τR
dτ ′

, (5.40)

where d = τR−τ ′
Tc
' τR

Tc
is the duty cycle for the trapezoid pulse. Thus, we

should see dips in the gm at multiples of md.
The gm components resulting from the sensitivity function in figure 5.6

for a duty cycle d = 0.4 are shown in figure 5.8. And indeed, we do see
dips in the gm exactly at multiples of md = 50. Not only are there dips at

Figure 5.8: The Fourier components |gm/g0|2 for the trapezoid pulse for d = 0.4
and τ ′ = τR/20. The m axis is linear in this plot to illustrate the periodic nature
of the dips.

certain frequencies, the high m components also decrease faster than in the
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Figure 5.9: The Fourier components |gm/g0|2 for the trapezoid pulse for different
duty cycles d with τ ′ = τR/20. The high m components decrease as m−6. The
inset shows a zoom on the first 10 m.

Rabi case. Figure 5.9 shows |gm/g0|2 for different duty cycles, and for high
m all the curves decrease as m−6; an improvement of m−2 over the Rabi
dependence m−4. The figure also shows the corresponding Rabi components
for a duty cycle d = 0.1. We see that the low m components are slightly
more favorable with the normal Rabi pulse until a crossing point at around
md/4.

One can expect a similar behaviour for the Ramsey case, where one then
would ramp the edges of the two short pulses. The limiting factor here is
that the pulse time τp is already short compared to the free evolution time T
and keeping the condition τ ′ � τp would limit the dips in gm to rather high
frequencies. For the value τp = 5 ms adopted later in this chapter, we would
thus have fd � 200 Hz. One could still imagine the usefulness of attenuating
the effect of laser noise at, say, 1.5 kHz but as we shall see below there is a
more effective way of attenuating the high frequency components.

Sine Pulse

We can imagine more cunning pulse shapes to reduce the high frequency
sensitivity. A completely smooth pulse would most likely have smaller high
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frequency components than the trapezoid pulse we saw above. One way to
make a smooth pulse is with a sine wave, in which case the Rabi frequency
is given by

Ω(t) =

{
Ω0

(
1 + sin

[
2π(t+τs/4)

τs

])
for −τs/2 ≤ t ≤ τs/2

0 otherwise.
(5.41)

The pulse is plotted in figure 5.10 along with the corresponding sensitivity
function g(t), which was obtained numerically from (5.13). As for the normal

Figure 5.10: Left: The temporal appearance of Ω(t) for the sine pulse in (5.41).
Right: The corresponding sensitivity function.

Rabi pulse, the height Ω0 is determined by the condition that the area under
the curve equals π, thus giving Ω0 = π

τs
.

Unlike the trapezoid case we are now far from the shape of a Rabi pulse,
and we cannot assume that the same detuning maximizes the slope. The
line shape of the resonance is obtained numerically in the same way as for
the trapezoid pulse and is shown in figure 5.11, were the corresponding
Rabi profile is also shown. The first thing to note is that the width of the

Figure 5.11: Left: The transition probability as a function of detuning δ/2π for
the sine shaped pulse (solid curve), and the corresponding one from (5.29) for Rabi
interrogation (dashed curve) with τR = τs. Right: A wider plot of the same in
log-scale showing the suppression of side lobes compared to the Rabi case.
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resonance is larger than the corresponding Rabi width by a factor of ' 1.5,
and the FWHM for the sine pulse is given by

δFWHM

2π
=

2 · 0.665

τs
,

and the slope is maximum for a detuning of δ = δFWHM
2 = 2π 0.665

τs
. Secondly,

the first side lobes are suppressed by one order of magnitude compared to
the Rabi case, and even more for the higher order lobes. The suppression
of the side lobes scales roughly as e−

√
1.5n and is more effective than for the

trapezoid pulse.
The Fourier components obtained from the sensitivity function in figure

5.10 is shown in figure 5.12 for different duty cycles, defined as d = τs
Tc

. Here

Figure 5.12: The Fourier components |gm/g0|2 for the sine pulse in (5.41). The
high m components decrease as m−9.

we see that the attenuation of the high frequency components is even better
than for the trapezoid pulse. The high m components decrease as m−9,
and the m value at which the m−9 behaviour sets in scales as 1/d like the
“dip number” md for the trapezoid pulse. The low frequency behaviour is
shown in figure 5.13. Here, the gm for the sine pulse are roughly equivalent
to a normal Rabi pulse with a smaller duty cycle, since the effective duty
cycle for the sine pulse is smaller for a given τs than for the Rabi pulse with
τR = τs. The “real” duty cycle for the sine pulse is hard to quantify, but
one can expect the scaling factor for the duty cycle to be roughly the same
as for the width of the resonance, about 1.5. The decrease in effective duty
cycle can serve as severe degradation of the performance of the clock, and
the sine pulse is generally not desirable as a replacement for the Rabi pulse.
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Figure 5.13: The ten first Fourier components |gm/g0|2 for the sine pulse in (5.41)
(empty symbols, solid lines) and the corresponding Rabi components (filled sym-
bols, dashed lines) for varying duty cycles.

Sine Pulses in a Ramsey Sequence

However, given that the only flaw of the single sine pulse described above is
the decrease in duty cycle, it is intriguing to investigate the behaviour of a
Ramsey scheme — where the duty cycle is determined mostly by the time
spent between the pulses — in which the square pulses are replaced by sine
pulses. The temporal dependence of the Rabi frequency in this case is given
by

Ω(t) =





Ω0

(
1 + sin

[
2π(t+T/2+3τsr/4)

τsr

])
for −T/2− τsr ≤ t ≤ −T/2

Ω0

(
1 + sin

[
2π(t−T/2+3τsr/4)

τsr

])
for T/2 ≤ t ≤ T/2− τsr

0 otherwise.

(5.42)

The Rabi frequency is plotted in figure 5.14 along with the corresponding
sensitivity function. Here, the height Ω0 is chosen to have the area under
each pulse equal π/2, giving Ω0 = π

2τsr
. To find the detuning that maximizes

the slope, we have to follow a numerical procedure again to obtain the line
shape of the resonance as a function of detuning. This is shown in figure
5.15. Here, the width of the central fringe is almost exactly the same as
in the normal Ramsey case, δFWHM

2π = 1
2T , and the detuning maximizing

the slope is given by δ = 2π
4T . The only noticeable difference is the Rabi

envelope, which gives a different height of the fringes away from the center.



132 THE STABILITY OF AN ATOMIC CLOCK

Figure 5.14: Left: The temporal appearance of Ω(t) for the Ramsey sequence in
(5.42) with sine pulses. Right: The corresponding sensitivity function.

Figure 5.15: The transition probability as a function of detuning δ/2π in units
of 1/T for the sine shaped pulse (solid curve) in Ramsey configuration, and the
corresponding one for normal Ramsey interrogation (dashed curve) with τp = τrs
and T = 6τsr for both plots.

The Rabi envelope with square pulses has the first zero closer to the central
peak than the one with sine pulses. The Ramsey fringes will consequently
be higher close to the central peak for sine pulses than for square pulses.
The drawback of this is possible line pulling effects for lines close to the
carrier. However, the suppression of the side lobes of the Rabi envelope will
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be the same as for the single sine pulse and further away from the central
peak the fringes will hence be more attenuated than for the square pulses.
The pulse time τsr must therefore be chosen long enough for the line pulling
not to pose a problem.

To quantify the line pulling that might occur for the Ramsey sequence
with sine pulses, let us consider an example. The most probable transitions
for line pulling come from other Zeeman levels and the transverse motional
sidebands (both of the carrier and of the other Zeeman lines). Considering
the Zeeman splitting, the scan in figure 2.9 shows Zeeman lines separated
by 60 Hz. The magnetic field for this scan was the same that optimizes the
optical pumping, and is generally a poor choice for the accuracy of the clock
since the lines are too close and line pulling can be a problem. However,
the magnetic field can easily be ramped up before the interrogation and we
assume here a separation between the Zeeman lines of 500 Hz. The motional
sidebands will typically be ∼ 100 Hz away from the carrier.

For a square Rabi pulse, the relative intensity of the interrogation field
at a detuning δsep is roughly given by

bI, square(δsep) =
I(δsep)

I(0)
∼ 1

(τsrδsep)2

for δsep > 1/τsr. As we saw earlier, this is reduced by a factor e
√

1.5n, where
n ∼ δsepτsr is the order of the sidelobe, when using sine pulses. We therefore
get the fractional intensity

bI, sine(δsep) ∼ e−
√

1.5τsrδsep

(τsrδsep)2

for the Rabi envelope with sine pulses.

We take as a worst case estimate the ratio b = 0.2 of the carrier height
and the pulling resonance height for both the closest Zeeman transition and
the motional sideband. We set T = 200 ms, which will be used later in
this chapter, and use τsr = 30 ms as an example. The relative intensity
at δsep = 500 Hz for the Zeeman line is bI, sine(500 Hz) = 4 · 10−5, and the
line pulling will be given in terms of the line width 1/(2T ) = 2.5 Hz as
δpull ∼ 4 · 10−5 ·

√
0.2 · 2.5 Hz = 4.4 · 10−5 Hz, or 10−19 in fractional units,

thus completely negligible. It is worth noting that the line pulling is reduced
by two orders of magnitude with the sines pulses here compared to the
square pulse case. The line pulling for the motional sidebands is at the level
of 10−16, and care has to be taken in this case. Still, the line pulling here
remains one order of magnitude smaller than when using square pulses. One
way to eliminate the line pulling from the motional sidebands is to operate
the lattice in a 2D or 3D configuration, which would vastly increase the
carrier-sideband separation.
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One can also note that the non-resonant Zeeman lines also have motional
sidebands themselves, and one might be in a situation were the motional
sideband of the closest Zeeman line is very close to the carrier and even if
the amplitude is suppressed by the product of the ratios b, it could still give
a large shift depending on the distance from the carrier. Any possible line
pulling from this can be evaluated by changing τsr and T , as well as the
interrogation magnetic field strength.

Later in this chapter we shall use τsr = 5 ms to calculate the stability
of the clock. This is a good choice for the stability but a poor choice for
line pulling effects. For instance, the amplitude of the sine pulsed Ramsey
field at the sideband separation δsep = 100 Hz it is about 0.8, giving a line
pulling of δpull ∼ 0.8 ·

√
0.2 · 2.5 Hz = 0.9 Hz or 2.0 · 10−15 in fractional units

for the motional sidebands. This is a very large shift indeed. The problem
here is the rather short Rabi time of τsr = 5 ms, which for the situation
described here gives a much too large width of the Rabi envelope. It is thus
clear that a compromise must be found between the stability and accuracy
of the clock in some situations. If the duty cycle is very high and the dead
time is comparable to the pulse time τsr, then reducing that time could sig-
nificantly increase the stability, but also introduce line pulling, as we have
just seen. However, for presently realistic situations the time τsr can most
often be increased enough to dwarf line pulling effects without degrading
the stability. Therefore, by utilizing sine pulses instead of square pulses line
pulling effects are usually significantly reduced.

The Fourier components for the sensitivity function shown in figure 5.14
are shown in figure 5.16 for duty cycles d = 0.1 and d = 0.9 along with the
corresponding components for normal Ramsey interrogation. For τsr � T
the low m components correspond closely to the normal Ramsey sequence
with the same T and the signature of the sine shaped pulses sets in at
high frequency (at a value around m = 3T

dτsr
) as a rapid decrease in the gm

components.

In conclusion, the Ramsey interrogation with sine pulses combines the
large duty cycles of the standard square pulse sequences with the side lobe
suppression and insensitivity to high frequency noise from the sine shaped
pulse.

Comparing the Allan Deviation

To quantify the effect that the shaped pulses described above will have on
the stability of the clock, we can calculate the Allan deviation from (5.25)
for a given laser noise Sy(f). Assuming a flicker noise Sy(f) = h−1/f with
h−1 = 0.056 Hz2/ν2

0 , as later in this chapter with ν0 = 4.29 · 1014 Hz, we get
the Allan deviation as a function of duty cycle d shown in figure 5.17. The
figure shows the Allan deviation for normal Rabi and Ramsey interrogation
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Figure 5.16: The Fourier components |gm/g0|2 for the Ramsey sequence with
sine pulses for τsr = T/40 and the corresponding components for normal Ramsey
interrogation with τp = T/40.

Figure 5.17: The fractional Allan deviation at one second for the clock when
compared to a noiseless oscillator as a function of duty cycle d for the interrogation
schemes discussed above assuming a flicker frequency noise of the laser, Sy(f) =
h−1/f with h−1 = 0.056 Hz2/ν2

0 , where ν0 = 4.29 · 1014 Hz is the clock frequency.

along with the different pulses discussed above. The Allan deviation was also
calculated for the trapezoid pulse with different values of τ ′/τR, showing that
it approaches the Allan deviation of the normal Rabi pulse when τ ′/τR → 0,
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but it remains worse than Rabi for every finite value of τ ′/τR. This is no
surprise since the pulse was designed only to affect high frequency noise
peaks, and we assume here to have a clean flicker noise with no peaks. The
same is the case for the sine pulse, for which the Allan deviation is higher
than the corresponding Rabi value for all d. While not being a good choice
for an optimized stability, the trapezoid pulse is excellent for characterizing
line pulling effects. The side lobe amplitude is vastly reduced at a detuning
around 1/τ ′, and when varying τ ′ for the line pulling characterization all
other parameters (line width, light shift effects, etc.) that otherwise might
bias the characterization remain essentially constant.

For the optimal stability, the Ramsey interrogation with sine pulses
shows promising features. The values follow closely the ones of normal
Ramsey interrogation; they are even a bit below. High frequency noise will
be highly attenuated, and the Ramsey interrogation with sine pulses seems
like a promising candidate for a change in interrogation sequence.

5.2 Contributions to the Allan Variance

5.2.1 Laser Noise via the Dick Effect

As we have seen in section 5.1.2, the Dick-limited Allan variance can be
written as

σ2
y(τ) =

1

τg2
0

∞∑

m=1

|gm|2 Sy(m/Tc), (5.43)

where Sy(f) is the one-sided power spectral density of the relative frequency
fluctuations of the free running interrogation oscillator taken at Fourier fre-
quencies m/Tc.

Generally, the noise Sy(f) can be expressed as a sum of different types
of noise,

Sy(f) =

2∑

α=−2

hαf
α, (5.44)

with different frequency dependence fα. Typically, the most dominant type
of noise for our purpose is flicker frequency noise (α = −1). Equation (5.43)
allows us to calculate the Dick limited stability for a given noise source.

For illustration purposes we can first consider white frequency noise (α =
0) since the resulting Allan variance depends only on the duty cycle d. With
the expressions for gm in (5.32) and (5.36), the Allan variance becomes [139]

σ2
y(τ) =

h0

2τ

(
π2

8d
− 1

)
, (Rabi) (5.45)

σ2
y(τ) =

h0

2τ

(
1

d
− 1

)
. (Ramsey) (5.46)
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This is plotted in figure 5.18, illustrating again how the languidness of the
averaging in the Rabi case quells the stability.

Figure 5.18: Dick limited Allan deviation σy(τ = 1 s) for white frequency noise
for Rabi and Ramsey interrogation when compared to a noiseless oscillator. In the
case of Ramsey interaction, the Dick effect vanishes for d → 1 if τp is kept much
smaller than Td.

Given the superiority of Ramsey interrogation, the rest of the analysis
in this chapter will be restricted to that type of interrogation.

The total Allan variance for a lattice clock also has other contributions
a part from the laser noise via the Dick effect. The detection noise and the
quantum projection noise of the atoms also play a role and there will be
a trade-off between the different contributions for the total stability. The
detection and quantum projection noise are discussed below.

5.2.2 Detection Noise

To examine the effect of detection noise on the stability of the atomic clock
we need to consider the loop for the lock and its error signal. The atomic
resonance is probed on each side with a modulation depth ωm, and the
frequency of the locked oscillator at cycle i will be

ω(ti) = ω0 + ∆ω(ti)− (−1)iωm, (5.47)

where ∆ω(ti) is the frequency offset of the LO compared to the reference
frequency ω0. We assume that the LO is noise-free to evaluate only the
contribution from detection noise.
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The error signal ε(t) is obtained from the two previous cycles as

ε(ti) = (∆ω(ti−1) + ∆ω(ti−2))C
∂h

∂ω

∣∣∣∣
ω=ω(ti−1)

+ δP̃ (ti−1) + δP̃ (ti), (5.48)

where h(ω) is the shape of the resonance, C its peak-to-valley difference (the
contrast in the case of Ramsey interrogation) and δP̃ (ti) = (−1)iδP (ti) is
the (demodulated) detection noise for cycle i. The detection noise is assumed
to have a white noise distribution with zero mean and variance σ2

δP .
The frequency correction to the LO is given by

∆ω(ti) = Kε′(ti), (5.49)

where ε′(ti) = ε′(ti−1) + ε(ti) is the accumulated error signal and K is the
gain. A loop with this correction constitutes a pure integrator.

The frequency is corrected with a period of the cycle time Tc, giving a
loop bandwidth of 1/(2Tc) for optimized gain. The one-sided power spectral
density of the detection noise inside the frequency band can then be written
as a constant,

SP (f) = 2Tcσ
2
δP for 0 ≤ f ≤ 1/(2Tc), (5.50)

SP (f) = 0 for f > 1/(2Tc), (5.51)

since the detection noise δP was assumed to represent a white noise process.
We have SP (f) = 0 outside the frequency band. The one-sided power spec-
tral density for the fractional frequency fluctuations of the locked oscillator
due to detection noise is then given by

Sy,det(f) =
|HP |2
ω2

0

SP (f), (5.52)

where HP is the transfer function that describes the frequency response to
the input noise δP̃ (ti). From (5.48) and (5.49) we get for low frequencies [9]

|HP |2 =

(
C
∂h

∂ω

)−2

, (5.53)

where ∂h
∂ω is evaluated at ω(ti) ' ω0− (−1)iωm. From (5.1) we note that ∂h

∂ω
can be expressed in terms of the cycle average g0 of the sensitivity function
as ∂h

∂ω = g0
Tc
2 .

For Ramsey interrogation, the shape h(ω) close to resonance is

h(ω) =
1

2
(1 + cos((ω − ω0)T )),

where T is the free evolution time. The modulation depth ωm is usually
chosen to correspond to the half-maximum of the resonance, and in this
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case we have ∂h
∂ω ' T

2 . With this and (5.50-5.53) we get

Sy,det(f) =
2Tcσ

2
δP

C2
(
ω0T

2

)2 . (5.54)

The line width for the Ramsey interrogation is ∆ν = 1
2T , so we can use the

atomic quality factor Q = ν
∆ν to write

ω0T

2
=

2πν

2 · 2∆ν
=
πQ

2
.

The contribution to the Allan variance from detection noise then becomes

σ2
det(τ) =

Sy,det(f)

2τ
=

4

(πQ)2

σ2
δP

C2

Tc
τ
. (5.55)

5.2.3 Quantum Projection Noise

The derivation of the contribution to the Allan variance from the quantum
projection noise of the atoms follows exactly the same lines as for the de-
tection noise, except that the variance is now σ2

qpn = 1
4N , where N is the

number of atoms. This then gives

σ2
qpn(τ) =

1

(πQ)2

1

NC2

Tc
τ
. (5.56)

5.3 Asymptotic Stability For a 87Sr Lattice Clock

The results in the previous sections can be used to optimize the clock se-
quence for the Sr lattice clock to obtain the best possible stability. The key
ingredients for obtaining a very high stability are the non-destructive detec-
tion technique described in Chapter 3 that allows us to increase the duty
cycle, and the ultra-stable laser described in Chapter 4 that has demon-
strated a flicker floor at σy = 6.5 · 10−16. All the plots of Allan deviations
shown in this section and the next assume a comparison with a noiseless
oscillator.

As a first step, we can observe how the Dick-limited Allan deviation de-
pends on the dead time Td spent on preparation and detection of the atoms.

From the shape of the sensitivity function in (5.34), we can see that it
is advantageous to have τp as small as possible to have the most efficient
averaging of the noise, since it gives a square-like appearance of g(t). There
is a trade-off, however, since unwanted effects such as line pulling and light
shifts start to occur for very short τp, and in addition there is no advantage
in having a τp that is several orders of magnitude smaller than T .
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Figure 5.19: The size of the fractional light shift |δν0|ν0
as a function of the Ramsey

parameters τp and T .

Let us consider the magnitude of the light shift we will have for a given
τp. The light shift for a single pulse of intensity I is given by

δνL = ξI, (5.57)

where ξ = −(12 ± 2) · 10−4 Hz/(W/m2) for Sr [12, 159]. The intensity is
defined by the condition for having a π/2-pulse, Ω0τp = π/2, allowing us to
express the intensity as

I =
2πhcΩ2

0

3Γλ3
=

π3hc

6Γτ2
pλ

3
. (5.58)

For Ramsey interrogation, the frequency shift of the central fringe is then
given by [99]

δν0 '
δνL

1 + πT
4τp

=
ξπ3hc

6Γτ2
pλ

3
(

1 + πT
4τp

) . (5.59)

For the clock transition of 87Sr we have Γ = 2π · 1 mHz and λ = 698 nm.
The light shift in (5.59) is plotted in figure 5.19 as a function of τp and T .

We choose to set τp = 5 ms for which the fractional light shift |δν0|
ν0

< 10−17

for values of T > 30 ms, which is the case for all practical applications.
As mentioned in section 5.1.5, line pulling might be a problem in some
situations for τp = 5 ms. In these cases for the duty cycles considered in the
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following, τp can be increased enough for the line pulling to be negligible
without affecting the resulting stability, and we keep the value τp = 5 ms for
the calculations below.

Figure 5.20: Fractional Allan deviation σy(τ = 1 s) vs dead time for various
durations of the Ramsey interrogation time T . The interrogation laser noise is

given by the experimental flicker noise floor of the cavity, Sy(f) = 0.056 Hz2

ν2
0f

. The

duty cycle is d = 0.02 for Td = 1.0 s and T = 0.02 s, and d = 0.95 for Td = 0.01 s
and T = 0.2 s.

Figure 5.20 displays the Allan deviation computed numerically using
(5.25) as a function of dead time Td for various Ramsey times T for τp = 5 ms.
The frequency noise Sy(f) of the interrogation oscillator appearing in (5.25)
is obtained from the experimental value for the flicker floor σy = 6.5 · 10−16

from Chapter 4, giving

Sy(f) =
σ2
y(τ)

2 ln(2)f
=

0.056 Hz2

ν2
0f

. (5.60)

Figure 5.20 illustrates again the interest of reducing the dead time. We also
note from the figure that for a given dead time, it is desirable to lengthen as
much as possible the Ramsey interaction. This is true as long as the linear
model giving (5.25) holds, i.e. as long as the interrogation laser frequency
fluctuations remain much smaller than the width of the Ramsey fringes.
With the level of noise chosen for plotting figure 5.20 - that is, frequency
fluctuations of the interrogation oscillator on the order of 0.3 Hz - the model
therefore holds for Ramsey times up to about 200 ms, corresponding to a
Fourier limited line width of 2.5 Hz.
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5.3.1 Optimizing the Clock Sequence

Following the approach taken in [174], the time sequence of the lattice clock
can be optimized to have the best stability of the clock. The time sequence
for operation of the Sr lattice clock is sketched in figure 5.21. The dead

Figure 5.21: The time sequence for the Sr lattice clock. For further details, see [93]

and Chapter 2. The minimum residual dead time T̃d = Td− TM of this sequence is
85 ms.

time Td can be split up into two components, Td = TM + T̃d, where TM
is the capture time for the atoms, and T̃d is the time used for cooling,
optical pumping, the cleaning pulse, and detection of the atoms. The present
minimum residual dead time of the sequence is T̃d = 85 ms, mainly limited by
the duration of the narrow line cooling in the lattice referred to as “Cooling
+ repumping” on the figure. The duration of this cooling was adjusted so as
to optimize the atomic temperature in the lattice at a fixed laser frequency
and power. By allowing a variation of these parameters the duration could
certainly be shortened significantly. However, to give a conservative estimate
of the optimized clock stability this duration is kept at its present value.
The two parameters left for optimization are therefore the duration of the
capture phase (“Optical lattice loading” in figure 5.21) TM and the Ramsey
interrogation time T .

The optimal time sequence results from a balance between the Dick
effect, the detection noise and the quantum projection noise. The latter will
be negligible in most configurations, but for completeness all three are taken
into account, giving the Allan variance of the clock as

σ2
tot(τ) = σ2

y(τ) + σ2
det(τ) + σ2

qpn(τ), (5.61)

where σ2
y(τ) is given by (5.25), σ2

det(τ) is given by (5.55) and σ2
qpn(τ) is given

by (5.56), where we take C = 1 in the two latter.
The detection noise σδP in (5.55) scales as the inverse of the atom number

N up to N = 104 for which σδP = 0.02 as described in section 3.3.4. This
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gives

σδP =
0.02

N/104
. (5.62)

The non-destructive detection scheme allows recycling of the atoms, so that
the number of atoms after cycle j is given by

Nj = NL + βNj−1e
−Tc/τt , (5.63)

NL = Nmax(1− e−TM/τt)e−(Tc−TM )/τt ,

where NL is the number of atoms loaded into the optical lattice in each
cycle, τt is the lifetime of the cold atoms in the lattice, and Nmax is, for a
given τt, the maximally achievable number of atoms in the trap, that is for
TM → ∞. β is the fraction of atoms kept in the trap after a cycle. Using
experimental values2, we set Nmax = τt · 1.8 · 104/s, τt = 1.5 s and β = 0.95.

From (5.63) we get the steady-state number of atoms

N = Nmax
eTM/τt − 1

eTc/τt − β , (5.64)

which can be used to find σqpn(τ) for a given T from (5.56) as well as σδP
from (5.62) and hence σdet(τ) from (5.55), thus enabling us to express σtot(τ)
as a function of only TM and T .

Figure 5.22 displays σtot(1 s) as a function of both TM and T . To remain
in the validity domain of the model, we limited the range of variation of T
up to 200 ms.

Once again, the optimal T is the longest allowed one, T = 200 ms. The
corresponding optimal value for the loading time is TM = 63 ms giving

σtot(τ) = 2.2 · 10−16 τ−1/2. (5.65)

The individual contributions of the Dick effect, detection noise and quantum
projection noise are σy(τ) = 1.8 ·10−16 τ−1/2, σdet(τ) = 1.2 ·10−16 τ−1/2 and
σqpn(τ) = 1.8 ·10−17 τ−1/2, respectively. Finally, the steady-state number of
atoms in the optimized configuration is N = 3600.

The individual contributions to σtot(τ = 1 s) for T = 200 ms are shown
in figure 5.23. The plot shows that σtot is still well above the quantum limit,
leaving room for further improvements. These improvements could include
increasing the trap lifetime and reducing the residual dead time as well as
enhancing the coherence time of the interrogation laser.

Still, with the given parameters, it is interesting to consider what the
stability would be if the normal fluorescence detection were used instead

2The lifetime τt is for the moment being around 1 s as described in section 2.1, but this
is currently subject to optimization and we take here an optimistic, but not unrealistic,
value of τt = 1.5 s.
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Figure 5.22: The total fractional Allan deviation at 1 s as a function of
capturing time TM and Ramsey dark time T with residual dead time T̃d = 85
ms.

Figure 5.23: The different contributions to the total fractional Allan deviation at
1 s as a function of capturing time TM for Ramsey dark time T = 200 ms with
residual dead time T̃d = 85 ms.

of the non-destructive detection. Here, we can just set the fraction β = 0
in (5.64), and we assume that the detection noise is the same which is
reasonable for our experimental parameters. The resulting contributions are
displayed in the left of figure 5.24. The optimal loading time is increased
and is now TM = 163 ms giving a stability of σtot(1 s) = 3.4 · 10−16; a 50%
increase with respect to the non-destructive detection. The duty cycle for
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Figure 5.24: Left: The contributions to the total stability for a destructive fluo-
rescence measurement (β = 0). The optimal loading time is TM = 163 ms giving
σtot(1 s) = 3.4 · 10−16. Right: The contributions to the total stability for an ion
clock with N = 1.

the fluorescence detection is d = 0.46.

It might seem a little disappointing to only gain 50% with respect to the
fluorescence detection, but this is due to the rather conservative numbers we
have chosen for the simulation. Figure 5.25 shows the ratio σfluo

tot (1 s)/σND
tot (1 s)

Figure 5.25: The ratio of the total fractional Allan deviation at 1 s between
fluorescence detection and non-destructive detection for Ramsey dark time T =
200 ms as a function of residual dead time T̃d and life time τt of the atoms in the
trap.

of the Allan deviation at 1 second between the normal fluorescence detec-
tion and the non-destructive detection as a function of residual dead time
T̃d and life time of the atoms in the trap. Evidently, it becomes increasingly
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advantageous to use the non-destructive detection for decreasing dead time
and increasing life time. For example, the resulting Allan deviation at 1
second for T̃d = 10 ms and a life time of 10 s would be σND

tot (1 s) = 8.5 ·10−17,
a factor of 3 better than with the fluorescence detection.

We can also compare the stability to that of an ion clock with a single
ion. Here, we should set N = 1 in (5.64) and σδP = 1 in (5.62). The
result for T = 200 ms is shown in the right of figure 5.24 as a function of
preparation time Tprep, which includes the residual dead time such that the
duty cycle is d = 1 for Tprep = 0. The resulting stability at one second is
at the level of a few 10−15; around one order of magnitude worse than for
the lattice clock even without the non-destructive detection. Furthermore,
assuming that we can take the same interrogation time T = 200 ms is opti-
mistic. Even for the same laser noise, the time constant of the lock loop is
much longer than for lattice clocks (or other clocks with many atoms) since
a number of single measurements have to be averaged before one can obtain
the transition probability. Therefore, the laser frequency fluctuations have
to remain smaller than the line width of the transition on a much longer
time scale, and the interrogation time has to be reduced for this to still be
true. This will result in an even worse short term stability than shown here,
thus demonstrating the advantage of lattice clocks.

Coming back to the non-destructive detection, one might be able to
further improve the stability by considering the way the sequence is put
together. The analysis above assumes that the same sequence is repeated
indefinitely, but one could as well imagine interleaving sequences with more
or less loading time. This is discussed below.

5.4 Irregular Strategies

The type of sequences explored in the optimization above were limited to
periodic sequences in which an atom loading phase is triggered at the begin-
ning of each sequence. However, the non-destructive aspect of our detection
enables us to adopt more complex schemes in which we load a large num-
ber of atoms at a time, at the expense of a large loading time, but then
perform several clock interrogation cycles with the same atomic ensemble.
With this kind of sequence, the average loading time could be reduced by
eliminating dead times in the loading process. Furthermore, it would be
particularly adapted to loading techniques in which large numbers of atoms
can be accumulated after a multi-step sequence (see for instance [46, 158]).
However, the linear model used in section 5.2 becomes quite intractable in
this configuration, and other numerical techniques have to be employed.

Another point to be raised is that for short time scale, i.e. for time scales
smaller than or comparable to the clock cycle, the stability of the locked
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oscillator is limited by the stability of the free-running oscillator (namely
the ultra-stable laser). Only after several clock cycles can the atomic lock
bring the stability down to the stability expected from the atomic response.
The results obtained in the section above are only valid for large time scales
for which this regime is attained (that is, for times τ � Tc). The practical
applicability of these results is justified by the relatively short clock cycle
duration associated with the non-destructive detection. However, for large
duty cycles, the expected level of the Dick effect can be quite low and a
significant integration time might be necessary to reach this level. With a
numerical approach it is possible to quantitatively show when this regime is
reached.

Following the approach taken in [105], the atomic loop control of the laser
frequency is simulated by a step by step numerical simulation of the full clock
operation. The total fluctuation in transition probability is obtained from
(5.17) as

δPtot = π

∫
g(t)(δν(t) + ∆ν)dt+ δpdet + δpqpn, (5.66)

where δν(t) is the laser noise, ∆ν is the correction applied to the laser
frequency from the lock and the detection and quantum projection noise
also have been added.

Each clock cycle with duration Tc is divided into 100 time steps. At
each step, the laser noise δν(t) is generated by a congruential long period
pseudorandom generator and is used to compute the integral in (5.66). A
the end of the cycle, the detection noise σδP with standard deviation σδP =
200/N is generated by a Gaussian white noise random generator and the
quantum projection noise is generated by a binomial random generator.
The frequency correction applied to the laser is then −GδPtot, where G is
the gain of the loop. This gain is optimized to minimize the variance of the
corrected frequency using the golden section algorithm [89].

This methodology directly implements the servo-loop algorithm analyt-
ically studied in [66]. With it, it is straight-forward to simulate sequences
with irregular patterns, or with a varying number of atoms from cycle
to cycle. The framework for the simulations was constructed by Jérôme
Lodewyck.

The algorithm has two different frequency outputs. The first one (hereafter
called output 1) is the average of the laser frequency ν(t) = ν0 + δν(t) + ∆ν
over one clock cycle. Because this output does not include the short term
fluctuations of the laser frequency inside the clock cycle, it is not represen-
tative of the actual frequency noise of the locked oscillator at timescales on
the order of or faster than the clock cycle time. Consequently, it represents
only the asymptotic stability attained for timescales much larger than the
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clock cycle, and it can be directly compared to the analytical formula (5.25)
and the results from section 5.3.

Figure 5.26: Simulated Allan deviation for the optimal sequence (cycle time Tc =
348 ms, interrogation time T = 200 ms, duty cycle d = 0.60 and number of atoms
N = 3600). The dotted line is the expected asymptotic behaviour σy(τ) = 2.2 ·
10−16/

√
τ from (5.65).

The second output (output 2) includes the corrected frequency fluctu-
ations for each time step used to compute integral (5.66). It is the actual
frequency noise of the locked oscillator when compared to an independent
(noiseless) oscillator. Using this algorithm, the Allan deviation for the op-
timal sequence found in section 5.3 was simulated. This is shown in fig-
ure 5.26. As expected, the algorithm gives the same asymptotic stability
(σy(τ) = 2.2 · 10−16/

√
τ , dotted line) as found in section 5.3, as well as the

same individual contribution for each noise component (Dick effect, detec-
tion noise and quantum projection noise). The figure also shows that the
asymptotic stability is reached after about 100 s.

For the irregular strategies, one can imagine a sequence where the tran-
sition probability is measured several times with no loading in between until
a certain minimum for the number of atoms is reached. Then a long loading
period is used to reload the trap.

To simulate this, we start with a high number of atoms N . Then, at
the end of each cycle, the number of atoms is decreased by the losses due to
the detection (5%) and the limited lifetime of the trap (set to 1.5 s). When
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the number of atoms reaches a chosen low level Nmin, a few dead cycles
nd are spent to reload the optical lattice up to N . Figure 5.27 shows the
asymptotic clock frequency stability obtained with such sequences. We can

Figure 5.27: Simulated Allan deviation (output 2) for irregular sequences with the
same parameters as the regular sequence (loading time TM = 63 ms, interrogation
time T = 200 ms). The minimum number of atoms is chosen to be Nmin = 3600
such that the number of atoms always is larger than for the regular sequence. The
dotted line shows the regular sequence stability σy(τ) = 2.2 · 10−16/

√
τ .

see that with comparable parameters, the Allan deviation for these sequences
are at least a factor of 2 higher than for the regular sequence. The effective
duty cycle deff, defined for a time t � Tc as the ratio between the total
time spent interrogating the atoms and t, is roughly the same as for the
regular sequence, deff ' 0.60. So even though the average detection noise
and QPN are smaller than for the regular sequence because the number of
atoms always is higher, the performance of the irregular sequences do not
match that of the regular. This could be attributed to the fact that irregular
patterns introduce low frequencies in the sampling of the laser noise.

5.5 Conclusion

The optimization of the time sequence demonstrated in this chapter shows
that this could be a very efficient way to minimize the Dick effect in optical
lattice clocks in parallel to the reduction of the interrogation laser frequency
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noise. By using a non-destructive detection scheme together with an adapted
time sequence, the Allan deviation of our clock could be optimized down to
about 2 · 10−16 τ−1/2, which would outperform current state-of-the-art by
about one order of magnitude. Furthermore, sensitivity to high frequency
noise can be reduced by using sine shaped pulses instead of the usual square
pulse in the Ramsey interrogation. We also note that for our present exper-
imental parameters, using a regular sequence with a loading phase in each
cycle shows a better stability than irregular sequences with several cycles
without loading.

Though very encouraging, the optimized stability is still about one or-
der of magnitude above the expected quantum limit of the clock. In the
optimized time sequence presented in section 5.3 the duty cycle is “only”
0.60 and large room for improvement remains. Cooling the atoms down to
their minimal temperature presently takes 45 ms which could probably be
strongly reduced by using a more sophisticated time sequence, for instance
allowing both the frequency and power of the cooling laser to vary during
this phase. On the other hand, the lifetime of the atoms in the lattice is
presently around 1 s, and even with the optimistic value of 1.5 s taken for
the calculation of the optimized stability in section 5.3, about 20 % of the
atoms still need to be reloaded in each cycle. This leads to a relatively long
loading time of 63 ms in the optimized configuration. By reducing the fre-
quency noise of the lattice laser, the life time could most likely be increased.
This could be done by modifying the locking procedure for the master laser,
optimizing it to have a large bandwidth, and by changing the mechanical
suspension of the vacuum chamber and lattice mirrors to something more
rigid, since mechanical movements of the lattice mirrors moves the Hänsch-
Couillaud lock away from maximum intensity in the lattice cavity, and the
lock is more susceptible to laser noise.

Another way to increase the stability of the clock is to make a “Dick-free”
measurement, where the contribution from the Dick effect is removed. This
can be done by comparing two clocks that share the same local oscillator, in
which case the laser noise should cancel in the comparison. The realization
of this is discussed in the next chapter.



Chapter 6

Experimental Results

This chapter describes the latest experimental results that have been ob-
tained, both with Sr1 alone but also in comparison with Sr2. The detection
was performed with the standard fluorescence method, but the extraordi-
nary performance of the clock laser described in Chapter 4 ensures that
the clocks still provide excellent results, even without the non-destructive
detection technique.

The chapter is organized as follows. The first section describes the spec-
troscopic results that we have been able to obtain after the implementation
of the ultra-stable cavity described in Chapter 4. Most notably, this has re-
sulted in ultra-narrow resonances and a characterization of motional effects
that appear when the clock laser is misaligned. The second section describes
comparisons between the two Sr clocks; especially interesting is the possibil-
ity to make a Dick-free measurement by synchronizing the two clocks. The
final section discusses the most recent measurements of the lattice related
light shifts as well as a precise determination of the second order Zeeman
coefficient. Both the dipole vector and tensor shift from the lattice are ob-
served for the first time, and the accuracy limit posed by hyperpolarizability
is measured with unprecedented precision.

6.1 Spectroscopic Results

The high stability of the clock laser described in Chapter 4 allowed us to
perform spectroscopy of a very high precision. To prepare the atoms for
spectroscopy, they are pumped into an extreme Zeeman substate and the
transition probability is recorded while the frequency is scanned over the
atomic resonance. A cleaning pulse was employed, blowing away atoms in
other Zeeman states than the one in question to obtain a pure sample.

151
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6.1.1 Rabi Oscillations

The coherence of the system can be evaluated by performing Rabi oscilla-
tions of the atomic sample. The transition probability on resonance as a
function of time for a two-level atomic sample interrogated by a single Rabi
pulse is given by

P (t) =
1

2

(
1− cos(Ω0t)e

−t/τc
)
, (6.1)

where Ω0 is the (angular) Rabi frequency and τc is the coherence time. The
Rabi frequency for the transition i→ j is given (on resonance) by

Ω0,i→j =
di,j · Ē

~
, (6.2)

where di,j is the dipole moment for the transition in question and Ē is the
electrical component of the light field used to interrogate the atomic sample.
For the clock spectroscopy described here, the transition in question is the
clock transition 1S0 − 3P0, and the Rabi frequency on resonance for this
transition will be denoted just Ω0 henceforth. Ω0 is proportional to the
square root of the intensity of the interrogation light field.

From (6.1) we see that by measuring the transition probability for differ-
ent interrogation times t, we can infer the coherence time of the clock. Two
typical examples of experimentally obtained Rabi oscillations are shown in
figure 6.1. The two sets of data were obtained for different Rabi times,

Figure 6.1: Rabi oscillations for different optical power of the interrogation laser,
but otherwise identical conditions, giving different Rabi times TRabi. The solid lines
are fits to (6.1), giving the values for TRabi = 2π

Ω0
and τc shown in the plot legend.
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TRabi = 2π
Ω0

, by changing the optical power of the clock laser beam. What
the figure shows is that the ratio between the coherence time and the Rabi
time is almost constant, even when TRabi is varied by ∼ 50 %. This was ob-
served for a wide range of Rabi times. Hence, the limited coherence time we
see in figure 6.1 is not due to the temporal coherence of the laser itself, but
is rather due to inhomogeneities in the interrogation of the atoms oscillating
in the trap potential.

Effect of Radial Motion

Loss of coherence occurs when all the atoms do not experience the same Rabi
frequency from the interrogation field at all times during the interrogation.
A similar effect occurs when the temporal coherence of the interrogation
oscillator is too short compared to the interrogation time, and the atoms
experience a different detuning of the frequency at different times. How-
ever, this would give a fixed τc not depending on the Rabi interrogation
time, in contrast to what we observed. A spatial decoherence, on the other
hand, would lead to the observed effect.

The trapped atoms oscillate in the trap with a frequency determined by
the potential of the trap. If atoms at different positions in the trap expe-
rience a slightly different interrogation light field, the coherence is “washed
out” after a number of oscillations in the trap. In the vertical direction along
the axis of the lattice, the effect is negligible since the nearly all the atoms
are in the ground state along this axis. In the radial direction transverse to
the lattice axis, however, the extension of the atomic wave packet is much
larger. If the interrogation laser is perfectly aligned with the lattice the ra-
dial motion will have no effect on the carrier. But if there is a misalignment
the effect of radial motion of the atoms cannot be ignored.

In order to get an estimation of the effect of radial motion, we make
a number of approximations about the trapping potential and the clock
probe. The trapping potential of the Gaussian dipole trap beam in a vertical
standing wave configuration along z is given by

U(z, r) = −U0 cos2(kz)e−2r2/w2
0 +mgz, (6.3)

where U0 is the depth of the trap, w0 is the Gaussian waist of the trapping
beam, k is the wave vector and r is the radial distance from the center. The
atoms are trapped around the waist of the lattice beam with a longitudi-
nal distribution much smaller than the Rayleigh length of the trap beam.
Then we can approximate the trap as being harmonic, and the state of an
atom in the trap can be expressed by the motional quantum numbers ni
as |n〉 = |nx, ny, nz〉. Furthermore, the waist of the Gaussian beam of the
interrogation oscillator (the clock beam) is assumed to be much larger than
the transverse spread of the atomic wave packet, so we assume that the clock
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beam can be seen as a plane wave, which finally gives the expression for the
Rabi frequency of a particle in state |n〉 probed on resonance with light of
wave vector kp = 2πk̂p/λp for the clock wavelength λp as [96]

Ωn = Ω0〈n|eikp·x|n〉 = Ω0

∏

i=x,y,z

e−η
2
i /2Lni(η

2
i ), (6.4)

where Ln is the Laguerre polynomial of order n and ηi are the Lamb-Dicke
parameters. They can be written in terms of the oscillator length ai =√
h/mνi
2π as ηi =

kipai√
2

for trap axes i = x, y, z with oscillation frequencies νi.

To include the effect of radial motion of the atoms on the carrier fre-
quency of the clock transition, we can follow the derivation in [25], assuming
that any small misalignment between the lattice, oriented along ẑ, and the
clock beam can be written as a small angle ∆θ added to the clock wave
vector as kp ' kp(ẑ + ∆θr̂) along the radial direction r̂ =

√
x̂2 + ŷ2. With

this we can write the Lamb-Dicke parameters as

ηz =

√
h/2mνz
λp

, (6.5)

ηr =
∆θ
√
h/2mνr
λp

. (6.6)

The corresponding Rabi frequency then becomes

Ωn = Ω0〈n|eikp·x
(
1 +O(a2

r/w
2
p)
)
|n〉

' Ω0〈n|eikp·x|n〉 (6.7)

= Ω0e
−(η2

r+η2
z)/2Lnr(η

2
i )Lnz(η

2
z).

The validity of the approximation in (6.7) depends on the ratio a2
r/w

2
p. For

our typical parameters, we have νr ∼ 400 Hz giving ar ∼ 0.5 µm. For
the experimental value of the clock beam waist wp = 230 µm, we have
a2
r/w

2
p = 5 · 10−6, and the approximation in (6.7) is justified.

Even though we have assumed the clock beam to be a plane wave, there
will still be a spread in kp due to the Gaussian shape of the clock beam. But
since the Gaussian beam is radially symmetric, the contribution from this
to the decoherence will average out. To confirm this, measurements were
carried out with the second Sr lattice clock at SYRTE featuring a clock
beam waist of 1 mm. The Rabi oscillations showed the same behavior as for
wp = 230 µm.

If the waist wp is comparable to the radial extension of the atomic wave
packet, there will be a spatial dependence on Rabi frequency following the
Gaussian intensity profile. The experimental value of the radial extension

is r0 =
√

kBTr
mω2

r
= 15 µm for ωr = 2π · 400 Hz and Tr = 15 µK, so we have

wp � r0, and the intensity of the light can be seen as constant.
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Finally, aberrations of the light which are likely to occur when the light
traverses optic elements before reaching the atoms will also add to the inco-
herence. However, these are higher order effects and will not be considered
here.

Using (6.7) we get the excited state probability for the motional state |n〉
for an interrogation time t

pe(n, t) =
1

2

(
1− cos(Ωnr,nz t)

)
, (6.8)

where we have left out the temporal coherence time τc to focus only on
the decoherence due to the radial motion. To include the effect of the finite
temperature of the atomic sample, we can take the thermal ensemble average
over the motional states, giving the probability

Pe(t) =
∑

nr,nz

qnr(Tr)qnz(Tz)pe(n, t) (6.9)

for the Boltzmann weights (where kB is the Boltzmann constant and i = r, z)

qni =
1− ξi
ξnii

, ξi = e−hνi/(kBTi),

for the respective temperatures Ti, oscillation frequencies νi and motional
quantum numbers ni of the atoms in the trap.

Experimentally, the atoms are in the Lamb-Dicke regime in the z-direction,
and almost exclusively all the atoms occupy nz = 0. Setting then nz = 0,
the probability in (6.9) can be expressed to first order in η2

r as

Pe(t) '
∞∑

nr=0

(1− ξr)
2ξnrr

(
1− cos[φt(1− η2

rnr)]
)

=
1

2
+

1− ξr
2

ξr cos[φt(1− η2
r )]− cos(φt)

1 + ξ2
r − 2ξr cos(φtη2

r )
,

(6.10)

where φ = Ω0e
−(η2

r+η2
z)/2. For ∆θ = 0 and ηr = ηz = 0 equation (6.10)

reduces to (6.1). For non-zero misalignment ∆θ, equation (6.10) can be
used to extract the values of ∆θ,Ω0 and Tr by fitting to the experimental
data [25, 92].

To reduce the degrees of freedom for the fit, the radial temperature
can be determined independently by recording the transition probability
while scanning across the longitudinal sidebands. From the shape of these
sidebands one can infer the radial temperature, as shown in section 2.2.2.

Figure 6.2 shows fits of (6.10) to experimental data, where Tr has been
fixed by the value measured using the longitudinal sidebands. The figure
shows data for three different temperatures of the atomic sample. The values
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Figure 6.2: Rabi oscillations for different temperatures of the atomic sample. The
solid lines are fits to (6.10) keeping Tr fixed using the values in the plot legend,
which were measured experimentally using longitudinal sideband spectroscopy. The
coolest data (blue squares) was taken under slightly different conditions than the
other two.

Sample Temperature ∆θ (mrad) Ω0 (Hz)

1 Tz = 6 µK, Tr = 19 µK 3.4± 0.1 2π · (36± 0.2)

2 Tz = 18 µK, Tr = 53 µK 4.3± 0.4 2π · (38± 1)
3 Tz = 30 µK, Tr = 85 µK 3.9± 0.3 2π · (32± 1)

Table 6.1: Values of ∆θ and Ω0 given by the fits of (6.10) to the data shown in
figure 6.2.

given by the fits are shown in table 6.1. The data for the cool sample (1)
was taken for a slightly different alignment of the probe than the other two,
giving a slightly different ∆θ.

For the two hotter samples (2 and 3) the conditions for are exactly the
same except for the cooling time, leading to different temperatures, but ∆θ
and Ω0 should be identical in the two cases. The values of ∆θ match within
the errorbars, and the values for Ω0 match within 15 %, which is accept-
able considering the limited number of points for the fits. Also, with the
lack of cooling for sample 2 and 3, we are on the edge of the validity of the
assumption nz = 0 in (6.10). The oscillation frequency in the z-direction
was measured using the longitudinal sidebands to be νz = 214 kHz. This
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gives the average occupation number 〈nz〉 = 1.3 for the smaller temperature
Tz = 18 µK corresponding to 43 % of the atoms being in the ground state.
For Tz = 30 µK the average occupation number is 〈nz〉 = 2.45 corresponding
to only 29 % of the atoms being in the ground state.

Nevertheless, the effect of radial motion of the atoms in the trap accounts
in a satisfactory fashion for the observed loss of coherence in the Rabi os-
cillations. Careful alignment of the probe beam and cooling of the atoms
along with choosing a sufficiently long interaction time should allow one to
thwart the effect of radial motion.

One reason to deliberately introduce a misalignment is to probe the cold
collisions between the fermions in the trap. Due to Fermi suppression, iden-
tical fermions should not experience s-wave collisions, so the hope was that
the collisional shift for fermions in an optical lattice clock should be can-
celled to a high degree. However, when the inhomogeneities described above
are introduced, the fermions are no longer indistinguishable and collisions
between the ultra-cold fermions can occur [63, 35].

Rabi Spectroscopy

When the alignment has been done carefully and the atoms are efficiently
cooled in all directions, the effect of the radial motion for a Rabi π-pulse
should be small enough to obtain very narrow line widths. And indeed, we
are able to do so. Figure 6.3 shows a single scan over the clock resonance
with a Rabi π-pulse of duration 250 ms. The duration of the Rabi pulse
corresponds to a Fourier limited line width of δν = 0.8

τR
= 3.2 Hz. The red

line is a fit to (5.29) scaled by the contrast C with C as the free parameter,
giving a contrast of C = 0.86. The line width of 3.2 Hz corresponds to a
quality factor of Q = ν

δν = 1.34 · 1014, representing one of the highest Q
factors ever obtained.

6.1.2 Ramsey Spectroscopy

As explained in Chapter 5, Ramsey spectroscopy is expected to enhance the
stability of optical lattice clocks compared to Rabi interrogation if the duty
cycle is high enough. The Ramsey interrogation consists of three phases
[141], as shown in figure 6.4: First, a short pulse of duration τp of interro-
gation light places the atoms in a superposition of the ground and excited
state. Then follows a free evolution period T , where the phase of the system
evolves corresponding to a precession of the Bloch vector. Finally, a second
short pulse projects the atoms into one of the two clock states. The final
excited fraction of atoms depends on the detuning δ from resonance, the



158 EXPERIMENTAL RESULTS

Figure 6.3: A single scan over the resonance using Rabi interrogation with a
250 ms pulse. The Fourier limited width is 3.2 Hz, corresponding to a quality
factor of Q = 1.34 · 1014. The fit gives a contrast of C = 0.86.

Figure 6.4: Ramsey interrogation. a) The temporal sequence. b) The correspond-
ing path on the Bloch sphere.

Rabi frequency Ω0 and the free evolution time T . It can be written as [169]

P (δ,Ω0, T ) =
4Ω2

0

Ω2
sin2(Ωτp/2)

×
(

cos(Ωτp/2) cos(Tδ/2)− δ

Ω
sin(Ωτp/2) sin(Tδ/2)

)2

,

(6.11)

where Ω is the generalized Rabi frequency given by Ω =
√

Ω2
0 + δ2. The

central part of the line shape around resonance will have a broad Rabi
pedestal of width ' 0.8/τp and narrow Ramsey fringes within the Rabi
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pedestal (see figure 6.5). For T � τp the width of the central fringe will be
given by ∆ν = 1

2T . Usually, to maximize the signal, τp is chosen such that
Ω0τp = π

2 .

When there is not perfect coherence during the free evolution period, the
contrast of the Ramsey fringes will decrease. The contrast C of the fringes
is defined as the difference between the maximum of the central fringe and
the closest minimum. The contrast can provide a rough measure of the

Figure 6.5: Ramsey fringes from (6.12) for T/τp = 20 and C = 0.5.

coherence time τc of the system1 as C ∼ e−T/τc when T � τp. Around the
central fringe the contrast C can be included in (6.11) as

P (δ,Ω0, T ) =
4Ω2

0

Ω2
sin2(Ωτp/2)×

(
Cf2(δ,Ω0, T ) + (1− C)

)
, (6.12)

where f(δ,Ω0, T ) = cos(Ωτp/2) cos(Tδ/2)− δ
Ω sin(Ωτp/2) sin(Tδ/2).

Figure 6.6 shows the experimental data for a frequency scan over the
resonance using Ramsey interrogation with T = 50 ms and τp = 5 ms. Using
these parameters along with Ω0τp = π

2 , (6.12) was fitted to the data using
the contrast C as the free parameter. This gave the value C = 0.92± 0.05.

The line width ∆ν = 8.8 Hz obtained here corresponds to a quality factor
of Q = ν

∆ν = 5 · 1013. The width is slightly smaller than 1/(2T ) because τp

is not completely negligible compared to T .

1The effect of radial motion on coherence discussed in the previous section will not
give a large contribution to the decoherence for Ramsey spectroscopy if Ω0τp < π.
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Figure 6.6: Experimental Ramsey fringes for T = 50 ms and τp = 5 ms. The red
solid line shows a fit of (6.12) for C giving C = 0.92± 0.05.

6.2 Sr — Sr Comparison

As described previously, another Sr lattice clock has been constructed at
SYRTE over the past 4 years. The reason was to be able to make optical-
optical comparisons for improved stability, and furthermore it provides an
excellent tool to test systematic shifts of the Sr clock frequency.

Following the discussion in [105], we can consider several different com-
parison techniques between the two Sr clocks. Figure 6.7 shows three pos-

Figure 6.7: The three comparison techniques for two atomic clocks. a) Two inde-
pendent clocks are compared by measuring the frequency fluctuations of the beat
note between the clocks. b) Two clocks sharing the same clock laser are compared
by measuring the difference in the frequency correction signals. c) Two clocks shar-
ing the same clock laser simulate a dead-time free clock by applying the summed
correction of the two clocks.

sible comparisons. Figure 6.7(a) shows a standard comparison between two
completely independent clocks, where the clocks are compared by measuring
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the frequency fluctuations of the beat note between the clocks.

In our experiment the situation is slightly different, since the two Sr
clocks are not strictly independent. For each of the atomic transitions, the
laser light needed for the two clocks is derived from one master laser and
subsequently amplified. This is also true for the clock laser. The comparison
between the two clocks in this case is shown in 6.7(b), where the comparison
is performed by measuring the difference in the frequency correction signals
for the interrogation oscillator.

There can be certain advantages from sharing the clock laser. If the duty
cycles of the two clocks are each larger than 0.5, it is possible to simulate
a completely dead-time free clock by interleaving the interrogation of each
clock such that the atoms are interrogated at all times, and then applying
the summed correction of the two clocks to the interrogation oscillator. This
is shown in figure 6.7(c).

There is no immediate drawback of sharing the clock laser. To simulate
a measurement of independent clocks, it suffices to have the interrogation
of the two clocks overlapping randomly, as shown in figure 6.8. This cor-

Figure 6.8: Simulated Allan deviation for different comparison techniques for two
atomic clocks. The random overlap comparison between two clocks sharing the
same clock laser resembles closely the comparison of two completely independent
clocks after a few seconds of integration time. The black crosses show the detec-
tion noise floor. The simulation was performed by utilizing the numerical method
described in section 5.4. The filled points for the independent clocks correspond to
the actual stability (defined as Output 2 in section 5.4), whereas the open circles
and all the other points correspond to the asymptotic stability (Output 1).

responds to having slightly different cycle times for the two clocks and can
easily be done experimentally.
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6.2.1 Random Synchronization

To simulate two independent clocks we performed a comparison between
the two Sr clocks where the clock interrogation was randomly synchronized.
The Allan deviation for the comparison is shown in figure 6.9. The general

Figure 6.9: The Allan deviation for a comparison between the two Sr clocks. The
two clocks have slightly different cycle times, and the comparison corresponds to
one between two completely independent clocks. The interrogation was performed
with a 100 ms Rabi pulse.

tendency is shown by the solid line, σy(τ) = 4.5 · 10−15/
√
τ , and the com-

parison reaches a level in the high 10−17 region after a few thousand seconds
of integration time.

6.2.2 Dick-Free Comparison

The sharing of clock laser can also be exploited in a different way to make
a so-called Dick-free measurement for any duty cycle. Here, the interro-
gation of the two clocks is synchronized such that the two atomic samples
experience exactly the same noise of the interrogation oscillator at the same
time, and the frequency difference between the two clock will be (ideally)
completely free of the interrogation laser noise. This effect was first demon-
strated in 2000 at SYRTE using Cs fountains [22].

Figure 6.10 shows the total Allan deviation for a comparative measurement
between the two Sr clocks at SYRTE. Two comparisons were performed;
one were the clocks were randomly synchronized and one were the clock in-
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Figure 6.10: The total Allan deviation for a comparison between the two Sr clocks.
The interrogation was performed with a 60 ms Rabi pulse.

terrogation was synchronized to within a few tens of µs. The resulting Allan
deviation for the random synchronization in figure 6.10 (black triangles) is
very close to the quadratic sum of the two clocks until around 50 s where
the drift starts to dominate the individual clocks.

The synchronized measurement should display a rejection of laser noise,
which would give an Allan deviation at least one order of magnitude lower
than for the non-synchronized measurement. The Allan deviation for the
synchronized measurement (red diamonds) does show a reduction of noise
— up to a factor of 2 — but not as much as we would expect. Nonetheless,
the synchronized comparison between the two clocks reaches a level of 10−16

after 1000 s of integration.

There might be several explanations for the lack of rejection of the noise.
For the rejection to work perfectly, the lock loop should be completely iden-
tical for the two clocks. In the measurement shown in figure 6.10 this was
not the case, since the height of the resonances and gain of the lock of the
two clocks were not completely identical. Another explanation could be that
the laser noise is indeed rejected by more than a factor of 2, and what we
see is some residual source of noise, which we have not yet characterized.
This explanation is supported by the fact that the white noise level of the Sr
clock is around σwhite = 1.7 · 10−15, as we have seen in Chapter 4. This sta-
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bility was achieved without the non-destructive detection, but as discussed
in Chapter 5 we should still expect a stability well below 10−15 at one sec-
ond, leading to the suspicion that there indeed is some other source of noise
present.

6.3 Measurements of Systematic Frequency Shifts

Comparing the two Sr clocks has nonetheless allowed us to accurately de-
termine a number of systematic shifts of the clock frequency by using one of
the clocks as a flywheel oscillator. For each data point four sequences with
different lattice depths were interleaved to provide the possibility of deter-
mining lattice related shifts and to be able to extrapolate to zero depth.
For each trap depth, each Zeeman substate is probed symmetrically (±mF )
allowing for a cancellation of the first order Zeeman shift.

An expression for the full geometrical dependence of the tensor shift
of the clock frequency on the lattice geometry due to the electric dipole
interaction with the lattice light was not readily available in the literature.
A derivation of this is therefore performed below before we move on to the
experimental measurements.

6.3.1 Scalar, Vector, and Tensor Polarizabilities

An accurate expression for the scalar, vector and tensor shifts can be ob-
tained by generalizing the approach taken in [87] to also include non-linear
polarizations of the electric field. The electric dipole interaction between the
atoms and an electric field Ē = E ê is obtained by employing perturbation
theory. The interaction energy Ē ·d has odd parity, and the change in energy
of the state |j〉 is given by the second order term,

∆E(|j〉) =
∑

i

〈j|Ē · d|i〉〈i|Ē∗ · d|j〉
E(|j〉)− E(|i〉) . (6.13)

With this, the Hamiltonian can be expressed as a sum of the normal atomic
Hamiltonian Ĥ and the perturbation Ĥ ′, where

Ĥ ′ =
∑

F ′,m′

Ē · d|F ′m′〉〈F ′m′|Ē∗ · d
E(|Fm〉)− E(|F ′m′〉) . (6.14)

Taking the Hamiltonian in (6.14) as the perturbating term, the expression
(6.13) is formally equivalent to a first-order perturbation. In (6.14) the
quantum number F has been introduced as the total momentum F = J +
I and m is the projection of the angular momentum in the quantization
direction. Since we will be deriving the light shift for the two clock states
that both have J = 0, we have F = I. The quantization axis is given by
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a bias magnetic field which we take here to be along the z-axis, B = Bẑ,
since this choice is convenient for the derivation.

By writing the electric field in terms of irreducible spherical tensors [58]
as

E1
±1 = ∓Ex ± iEy√

2
, E1

0 = Ez, (6.15)

we can construct the following tensors2,

ELM =
∑

µ

(E1
−µ)∗E1

M−µ(2L+ 1)1/2(−1)M+1+µ

×
(

1 1 L
µ M − µ −M

)

︸ ︷︷ ︸
Wigner 3j symbol

(6.16)

and

TLM =
∑

m′

|Fm′〉〈F,m′ −M |(2L+ 1)1/2(−1)M+1

×
(

F F L
m′ M −m′ −M

)
,

(6.17)

which are useful in the calculation. With them we can write the perturbation
Hamiltonian in (6.14) as [87]

Ĥ ′ =
∑

L

KL

∑

M

(−1)MEL−MT
L
M , (6.18)

where

KL =
∑

F ′

(−1)1+F+F ′

E(F )− E(F ′)

[
F F L
1 1 F ′

]

︸ ︷︷ ︸
Wigner 6j symbol

|(F ||d||F ′)|2 (6.19)

with |(F ||d||F ′)| being the reduced matrix element for the dipole moment
of the atoms.

We now consider the perturbation energy of the state |Fm〉, 〈Fm|Ĥ ′|Fm〉.
We can extract the polarizabilities αi by setting

〈Fm|Ĥ ′|Fm〉 ≡ −1

2
(αs + αv + αt)E2, (6.20)

where αs, αv, αt are the scalar, vector and tensor polarizability, respectively.

2Here, the definition of ELM differs from that in [87] to include the complex conjugation
of the electric field in (6.13, 6.14).
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To derive a completely general result, we make no assumptions on the
electric field vector Ē = (Ex, Ey, Ez). When we take the expectation value
in (6.20), we see from (6.17) that only terms with M = 0 in (6.18) and
m′ = m in (6.17) give non-zero values. By keeping the KL unevaluated and
comparing with (6.20) we thus get the polarizabilities

αs = − 2K0√
3 + 6F

(6.21)

αv =

√
6K1m√

F (F + 1)(2F + 1)
i(Ē∗ × Ē) · B

|B| (6.22)

αt = −
√

10K2[3m2 − F (F + 1)]√
3F (F + 1)(2F − 1)(2F + 1)(2F + 3)

(
1− 3

∣∣∣∣Ē ·
B

|B|

∣∣∣∣
2
)
, (6.23)

where B
|B| = ẑ, but the result is true for B oriented in any direction.

To derive a more experimentally convenient result, we consider the elec-
tric field from a light field with an elliptical polarization and a k vector in an
arbitrary direction. The situation is sketched in figure 6.11. The magnetic

Figure 6.11: The orientation of the k vector and the polarization (grey ellipse) of
the lattice light. The ratio between the minor and major axes of the ellipse is the
ellipticity γ. The magnetic field is along the z-axis.

field is oriented along the z-axis, and the k vector is rotated the angles ψ
and ϕ from the x-axis. We can take ϕ = 0 without loss of generality since
there is rotation symmetry about the z axis. The axis of polarization has
an angle θ with the magnetic field and the ellipticity is given by γ, which is
in the range −1 ≤ γ ≤ 1 with |γ| = 1 (0) corresponding to perfectly circular
(linear) polarization.
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To express the electric field’s Jones vector in the frame of the magnetic
field, we can start by expressing the elliptical polarization vector in the k
vector frame defined by aligning the x axis with the k vector. Here, it can
be written

Ēk̂ =
E√

1 + γ2




0
iγ
1



k̂.

(6.24)

To describe this vector in the magnetic field frame, we should first rotate it
an angle θ about the x axis followed by a rotation of −ψ about the y axis.
The vector then becomes

ĒB̂ =
1√

1 + γ2




cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ






1 0 0
0 cos θ − sin θ
0 sin θ cos θ






0
iγ
1




=
1√

1 + γ2



− sinψ(cos θ + iγ sin θ)
− sin θ + iγ cos θ

cosψ(cos θ + iγ sin θ)


 .

(6.25)

With this electric field vector we can now use (6.21-6.23) to get the polariz-
abilities

αs = − 2K0√
3 + 6F

(6.26)

αv =

√
6K1mξ sinψ√

F (F + 1)(2F + 1)
(6.27)

αt = −
√

10K2[3m2 − F (F + 1)]f(θ, ψ, ξ)√
3F (F + 1)(2F − 1)(2F + 1)(2F + 3)

, (6.28)

where

f(θ, ψ, ξ) = 1− 3

2
cos2 ψ

(
1−

√
1− ξ2

)
− 3
√

1− ξ2(cos θ cosψ)2 (6.29)

or equivalently

f(θ, ψ, ξ) = 1− 3

2
cos2 ψ

(
1 +

√
1− ξ2 cos 2θ

)
, (6.30)

where ξ = 2γ
1+γ2 is the degree of circularity of the polarization.

The function f(θ, ψ, ξ) containing the geometric dependence of the tensor
polarizability has been plotted in figure 6.12 for ψ = 0. The function attains
its extrema (1 and −2) for linear polarization ξ = 0. The form given in (6.29)
is convenient experimentally, since it expresses the tensor shift in terms of
the effective angle α between the polarization and the magnetic field as
cosα = cos θ cosψ. The angle α is what can be measured experimentally
along with ψ, whereas θ is generally not easily known.
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Figure 6.12: The dependence of the tensor polarizability in terms of the function
f(θ, ψ = 0, ξ) on the polarization angle θ and the degree of circularity ξ.

6.3.2 Experimental Determination of Frequency Shifts

Second Order Zeeman Shift

The precise calibration of the magnetic field that the first order Zeeman
splitting provides through the differential Landé factor in (1.44), allows us
to accurately measure the second order Zeeman shift. The second order
Zeeman shift for a given magnetic field is obtained as half the sum of the

splitting of two Zeeman states, ∆
(2)
B = ∆ν(mF )+∆ν(−mF )

2 , since the first or-
der Zeeman shift is cancelled here. The calibration of the field is obtained
similarly as the difference, where the second order shift drops out.

The second order Zeeman shift was found in this way by varying the
interrogation magnetic field of Sr2. The result is shown in figure 6.13. The

data were fitted with a parabola with zero linear coefficient, ∆
(2)
B = a0+ζB2.

The resulting coefficient

ζ = (−0.2359± 0.0025) Hz/G2 (6.31)

for the second order Zeeman shift is in agreement with the theoretical value
(1.50) within the errorbar. The errobar presented here represents a seven-
fold improvement over the previously most accurate value reported in [11].

The crossing point a0 = (−0.125 ± 0.068) Hz has a non-zero value cor-
responding to some frequency difference between the two clocks. Sr1 was
operated a fixed magnetic field of B = 0.56 G. With the coefficient ζ ob-

tained above, this should give a second order shift of ∆
(2)
B,Sr1 = (−0.0740 ±

0.0008) Hz, and keeping in mind the sign of the comparison, the frequency
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Figure 6.13: The second order Zeeman shift ∆
(2)
B as a function of magnetic field

strength. The frequency is obtained as Sr2 minus Sr1. The red line is a fit of the

form ∆
(2)
B = a0 + ζB2. The values from the fit are shown in the inset.

difference corrected for the second order Zeeman shift is

ν(Sr2 - Sr1) = a0 + ∆
(2)
B,Sr1 = (−0.20± 0.07) Hz.

This non-zero difference might be due to line pulling in Sr1 from other
Zeeman transitions, and is something that is currently being investigated.

Lattice Vector Shift

The vector shift due to the lattice light can be described as a shift from
a pseudomagnetic field along the propagation axis of the lattice laser, and
arises when the polarization of the lattice is non-linear, as we can see from
(6.27). It scales as sinψ and therefore vanishes if the lattice k vector is
orthogonal to the applied magnetic field.

To measure the vector shift experimentally, we thus applied a magnetic
field along the lattice, varying the current in the magnetic field coils to
determine the field dependence. This was done both for Sr1 and Sr2. Sr1
showed very little or no vector shift, which leads to the conclusion that
|ξ| � 1 for Sr1. For Sr2, however, the situation was quite different (ξ 6= 0)
and we saw a clear vector shift. We ascribe the non-linearity of the lattice
polarization for Sr2 to birefringence in one of the windows inside the lattice
cavity.

Figure 6.14 shows measurements performed with Sr1 as a flywheel refer-
ence while varying the current in the vertical coils along the lattice propaga-
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tion3 for Sr2. The vector shift changes the Zeeman splitting proportionally

Figure 6.14: The Zeeman splitting and the corresponding vector shift measured
with Sr2 using Sr1 as a flywheel oscillator.

to the lattice depth. The Zeeman splitting therefore displays a non-zero
slope as a function of trap depth. Four sequences with different trap depths,
varying from U0 ' 200Er to U0 ' 1200Er, were interleaved to provide a
measure of this slope. For each trap depth the Zeeman splitting (carrier to
Zeeman substate) was recorded. A magnetic field along z orthogonal to the
lattice is kept at a constant value, much higher than the vertical field, and is
used for the optical pumping into the extreme Zeeman states (mF = ±9/2).
By geometrical considerations, the Zeeman splitting extrapolated to zero
trap depth can be expressed in terms of the vertical current Ix as

∆
(1)
B (Ix) =

√
a2
x(Ix − IBx,0)2 + a2

⊥I
2
⊥, (6.32)

where ax is a conversion factor between current and frequency shift (assum-
ing the magnetic field is strictly proportional to the current) in the vertical
x direction, a⊥ is the same in the orthogonal z direction and I⊥ is the cor-
responding current in the z direction. The current IBx,0 corresponds to the
magnetic field where the stray magnetic field (mostly due to the Earth’s
magnetic field) in the vertical direction is exactly cancelled. In figure 6.14
the Zeeman splitting extrapolated to zero depth (black squares) has been

3Keeping the notation from section 6.3.1, we take the orientation of the lattice to be
along the x axis, and not in the z direction as in the previous chapters.
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fitted with the expression (6.32). This gives the values

ax = (1.44± 0.02) Hz/mA,

IBx,0 = (−121.1± 0.7) mA,

a⊥I⊥ = (684.8± 0.1) Hz.

(6.33)

The data recored for the four different lattice depths allowed us to obtain
the vector shift as the slope of a straight line fit of the Zeeman splitting as
a function of trap depth. The result is shown as red circles in figure 6.14.
The vector shift is proportional to

sinψ =
Bx√

B2
x +B2

⊥

' Bx
B⊥
∝ Ix,

since Bz � B⊥ and B⊥ is kept constant. Thus, by fitting a straight line,

∆νv(Ix) = av(Ix − Ivx,0),

the slope av should give us information about the vector shift coefficient. The
fit gives av = (0.1236 ± 0.0028) mHz/(Er ·mA) and Ivx,0 = (−107 ± 1) mA.
Using this along with the values (6.33) from the previous fit, we thus get

ξ∆κv =
ava⊥I⊥
|mF |ax

= (13.04± 0.19) mHz/Er, (6.34)

when combining (6.27) with (1.56) where |mF | = 9/2. We have tried to
determine the degree of circularity ξ in several ways, but the results were
inconsistent, which leaves us with a lower bound for the vector shift coeffi-
cient,

|∆κv| ≥ (13.04± 0.19) mHz/Er, (6.35)

since |ξ| ≤ 1. Nevertheless, this represents the first experimental determi-
nation of the vector shift coefficient.

We note that the value of the current for which the vector shift is zero,
Ivx,0, is not equal to IBx,0. A possible explanation for this could be that
the magnetic field is not strictly proportional to the current we measure,
most likely due to non-linearities in the power supply’s conversion of the
control voltage to current. This explanation is supported by the fact that
we observed a small systematic curvature on the first order Zeeman shift as
a function of the trap depth. The curvature is not due to the second order
Zeeman shift, since it is cancelled when the first order splitting is measured.
Another explanation could be that there is an angle between the axis for
the vertical coil and the k vector of the lattice. Given discrepancy of more
than 10% between Ivx,0 and IBx,0, this angle would have to be quite large and
it seems unlikely given the geometry of the setup, but the issue remains
unresolved.
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Lattice Tensor Shift

The measurement of the tensor shift coefficient was done by varying param-
eters for Sr1 and keeping Sr2 as a flywheel reference. The lack of vector
shift in Sr1 ensures that the polarization of the lattice light is linear to a
high degree. The function f(θ, ψ, ξ) in (6.29) then reduces to

f(θ, ψ, ξ) = 1− 3 cos2 α, (6.36)

where cosα = cos θ cosψ. From this we can construct a coefficient

β(α,mF ) = −
(
3m3

F − F (F + 1)
)

(1− 3 cos2 α) (6.37)

which is what can be varied experimentally. The tensor shift is then given
by

∆νt = ∆κtβ(α,mF )U0, (6.38)

where the coefficient ∆κt is what we want to determine experimentally.
Figure 6.15 shows the experimental result of comparisons between the two

Figure 6.15: The dependence of the tensor shift on the coefficient β(α,mF ) =
−(3m3

F − F (F + 1))(1− 3(cosα)2).

Sr clocks when varying the coefficient β(α,mF ) for Sr1 by changing the
orientation of the lattice polarization, the direction of the quantization axis
by applying an external magnetic field in a given direction, and varying the
mF state used for the spectroscopy between mF = ±9/2 and mF = ±7/2.
The shift is given in terms of the slope of the light shift from the lattice as
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a function of trap depth. Four sequences with different trap depth, varying
from U0 ' 100Er to U0 ' 600Er, were interleaved to provide a measure
of this slope. For each trap depth the mean value for the Zeeman shift is
subtracted from each data point to cancel the first order Zeeman shift. We
note that for β = 0, the slope is close to 0, which means that the trap is
close to the magic wavelength (within a few 100 kHz).

The resulting coefficient ∆κt is given by the slope of a linear fit to the
data points, giving the value

∆κt = (0.0463± 0.0015) mHz/Er. (6.39)

The 3% error bar represents more than a 100 fold improvement over the pre-
viously reported (un-resolved) value in [28], and the measurement presented
here represents the first observation of the tensor shift.

Lattice Hyperpolarizability

The hyperpolarizability was extracted for the same data that gave the tensor
shift measurement, varying the parameters for Sr1 and keeping Sr2 as a
reference. The linear dependence of the clock frequency on the lattice depth
was removed and the residual was fitted with a parabola. The resulting
coefficient for the second order shift is plotted in figure 6.16. Since the

Figure 6.16: The hyperpolarizability measured with Sr1 as a function of β(α,mF ).

measurement was extracted for the same data, the hyperpolarizability is
plotted as a function of the coefficient β(α,mF ) with ξ = 0 as for the tensor
shift.
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However, the hyperpolarizability shows no dependence on β(α,mF ) and
we fit the data with a constant. The fit gives

∆νγ,Sr1 = (0.369± 0.361)µHz (U0/Er)
2. (6.40)

From the measurements performed with Sr2 using Sr1 as a flywheel oscillator
we were also able to extract information about the hyperpolarizability. Fig-
ure 6.17 shows the hypolarizability as a function of current in the magnetic
coils in two directions; along the lattice in the y direction and orthogonal
to the lattice in the z direction, effectively varying the coefficient β(α,mF ).
Again here, we see no clear dependence on β(α,mF ) and we fit with a con-

Figure 6.17: The hyperpolarizability measured with Sr2.

stant giving

∆νγ,Sr2 = (0.144± 0.106)µHz (U0/Er)
2. (6.41)

The two values for the two clocks agree within the errorbar and we take as
the final value for the hyperpolarizability a weighted mean of the two;

∆νγ = (0.162± 0.102)µHz (U0/Er)
2. (6.42)

Although the shift is hardly resolved within the errorbar, the upper limit
is a factor of 40 lower than the previous evaluation in [32], and the effects
of hyperpolarizability are at the level of 10−18 or lower if the lattice depth
is kept at U0 ≤ 50Er.



6.4. Conclusion 175

6.4 Conclusion

In this chapter we have seen the latest experimental results from the two
Sr lattice clocks at SYRTE. In the first section we saw how atomic motion
and misalignment of the clock laser can degrade the coherence of the clock.
However, the effect is small when the product of the interrogation time
and the Rabi frequency is kept ≤ π, and we could still obtain very narrow
resonances. An experimental quality factor of Q = ν

δν = 1.34 · 1014 was
obtained, representing one of the highest ever measured.

The second section showed that by comparing two Sr clocks sharing the
same clock laser, we can reduce the noise due to the Dick effect by synchro-
nizing the interrogation of the two clocks. Even without the synchronization
both clocks still show a short term stability in the low 10−15/

√
τ region.

In the last section, several systematic frequency shifts have been evalu-
ated with unprecedented accuracy by comparing the two (un-synchronized)
Sr clocks. The second order Zeeman coefficient ζ has been determined with
a 1% uncertainty, corresponding to a control of the shift at the level of
6 · 10−18 /G2 in fractional units. The Zeeman splitting is usually known
with a much better accuracy than 1%, and the uncertainty of the magnetic
field strength is due to the uncertainty of the differential Landé factor. This
uncertainty is 0.3% (see (1.44)), so when the first order Zeeman splitting is
cancelled the systematic uncertainty due to the Zeeman effect will be dom-
inated by the uncertainty of the coefficient ζ and will thus be on the order
of 6 · 10−18 for a typical magnetic field of ∼ 1 G.

We have for the first time measured the vector shift from the lattice.
Due to insufficient knowledge about the polarization of the lattice light, we
can only set a lower limit for the shift. However, when the clock is operated
symmetrically with respect to the Zeeman levels, the shift drops out.

The tensor shift was also observed for the first time. Here, the uncer-
tainty of 0.0015 mHz/Er ensures that even for lattice depths of as much as
U0 = 100Er, the tensor shift is known at a level of 4 · 10−19 when the lattice
is operated at the magic wavelength.

Finally, the measurement of the hyperpolarizability shows that it will
contribute by no more than at the level of 10−18 if the lattice is kept at
U0 ≤ 50Er.
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Conclusion

In this thesis I have presented the work I have done during my Ph.D. on the
Sr optical lattice clock experiment at SYRTE, Observatoire de Paris, from
September 2007 to the end of August 2010.

Optical lattice clocks are a new generation of clocks where several thou-
sands of neutral atoms are trapped in a dipole trap. The idea was conceived
around 2001 [81], with the central point being the ability to cancel light shifts
from the trap along with having a polarization insensitive J = 0 → J = 0
clock transition, which in principle allows for the clock to reach an accuracy
level of 10−18 [163].

By orienting the lattice vertically, the intersite tunneling is strongly pro-
hibited, and the Lamb-Dicke regime can be reached even for shallow trap
depths [100]. It is still very important, though, for the accuracy of the clock
to evaluate the lattice related frequency shifts for the depth at which the
clock is operated. At the beginning of my thesis, some the these shifts had
been measured, but not resolved [28], some had not yet been observed [161],
and finally, some of these evaluations ensured only that the lattice effects
could be controlled at the projected ultimate accuracy level of 10−18 if the
lattice depth was kept small, U0 ≤ 10Er [32]. Above U0 = 10Er the effect
of the lattice was not known.

The resolved observation and small size of the lattice related shifts is
very important to provide evidence that optical lattice clocks can indeed
reach the 10−18 level also for higher trap depths — something that is ad-
vantageous in a number of ways.

During the last part of my thesis work several of these lattice related
frequency shifts were evaluated with unprecedented accuracy by comparing
two Sr lattice clocks.

The tensor shift was observed for the first time with an uncertainty of
0.0015 mHz/Er, ensuring that even for lattice depths of as much as U0 =
200Er, the tensor shift is known at a level of better than 10−18 when the
lattice is operated at the magic wavelength. At this level of accuracy, for
U0 = 200Er the frequency of the lattice laser must be controlled at the
100 kHz level to remain at the magic wavelength.
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From a new measurement of the hyperpolarizability, we were able to
loosen the constraints on the lattice depth significantly, showing that the
contributing to the uncertainty will be by no more than at the level of 10−18

if the lattice is kept at U0 ≤ 50Er.
Finally, we have for the first time measured the vector shift from the

lattice. The measurements resulted in a lower limit for the shift of |∆νv| ≥
(13.04± 0.19) mHz (U0/Er). Under normal operation of the clock, the mag-
netic field used for the optical pumping is aligned orhtogonal to the lattice
and the polarization of the lattice is made linear to a high degree, both
of which help to drastically reduce the vector shift. Furthermore, due to
the symmetrical probing of Zeeman states (±mF ) the shift drops out on
average and the vector shift should not be a limiting factor for the ultimate
performance of Sr lattice clocks.

The precise evaluation of the lattice related shifts is indispensable for an
unambiguous determination of the feasibility of an ultra-high accuracy lat-
tice clock, and the measurements described here ensure that even for large
trap depths up to U0 = 50Er, lattice related shifts can be controlled at the
10−18 level. A deep trap provides the opportunity to more accurately test
other effects related to the confinement, such as linepulling from motional
sidebands and shifts from cold collisions between the atoms [63]. It also en-
ables a verification of the calculations in [100], making sure that the atoms
are indeed in the Lamb-Dicke regime. Finally, for most experimental situa-
tions, having a deeper trap during the interrogation will result in a higher
number of atoms and a larger signal.

One of the great advantages of optical lattice clocks is the possibility to
obtain a short term stability several orders of magnitude better than that
of the ion clocks. Currently, however, this is not yet the case. The main
reason for this is that the periodic sampling of the clock laser noise by the
atoms reduces the stability through the Dick effect [49]. Two roads can be
taken which both lead to a smaller Dick effect. Reducing the laser noise is
one and increasing the duty cycle of the clock is the other.

The high accuracy of the measurements of lattice related shifts was made
possible by an increase in stability from the implementation of a new ultra-
stable cavity for the clock laser. The cavity is made using a ULE spacer with
fused silica mirrors. The use of fused silica for the mirror substrate instead
of ULE ensures a small thermal noise. The experimentally demonstrated
thermal noise floor was at the level of 6.5 · 10−16. This currently represents
the best stability obtained for a cavity of this length and wavelength.

Owing to the excellent stability of the laser, an atomic line width of
3.2 Hz, corresponding to a quality factor of Q = 1.34 · 1014, was obtained in
a single scan over the resonance of Sr1. This represents one of the highest
Q factors ever obtained.
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Currently, with the new cavity installed, the stabilities of both Sr clocks
at SYRTE lie in the low 10−15/

√
τ region. To push the stability below

10−15/
√
τ , the Dick effect can be further reduced by employing the non-

destructive detection technique that we have developed. Here, a weak probe
beam acquires a phase shift proportional to the number of atoms in the
ground state. The phase measurement is achieved in a Mach-Zender in-
terferometer with a strong local oscillator. The measurement is shot noise
limited giving a signal-to-noise ratio of 100 per shot. We keep 95% of the
atoms in the trap from one cycle to the next, which allows us to recycle the
atoms, thereby increasing the duty cycle and decreasing the Dick effect.

The demonstrated stability of the cavity can be used to estimate what
the Dick-limited stability of the Sr clock would be when using the non-
destructive detection technique. The result of the calculation for typical
experimental parameters is at the level of 2 · 10−16/

√
τ , one order of magni-

tude better than current state-of-the-art.
Further improvement is possible by rejection of the laser noise through

synchronization of the interrogation of the two clocks, since they share the
same clock laser. When synchronized, it was possible to reject the laser
noise by up to a factor of two in the comparison between the two clocks,
thus reaching a level of 10−16 after about 1000 seconds of integration time.

The immediate future prospects of the Sr clock ensemble would be to
further determine lattice related shifts, such as the shift related to atomic
motion proportional to

√
U0, as described in section 1.4.1 and [161].

Having two Sr lattice clocks in the same laboratory provides a unique
opportunity to test all systematic effects, and making a complete errorbud-
get for the clocks is the next step. Since the two Sr clocks are kept in the
same room, we expect the frequency difference to be exactly zero. Any
deviation from this must be ascribed to a systematic shift, and can be in-
vestigated by keeping one of the clocks as a flywheel reference while varying
the parameters for the other.

Another prospect is a change in the lattice cavity geometry which is
currently underway at SYRTE. In the new setup, the cavity is placed inside
the vacuum chamber, and the coating is such that there is a high reflectivity
for both the lattice light and the blue 461 nm light resonant with the 1S0− 1P1

transition. The design has several advantages over the current one. First of
all, the fact that the cavity mirrors are inside the vacuum chamber allows
them to be much closer than before giving a higher finesse — we expect
around F = 400 — and along with an increased coupling efficiency we expect
lattice depths of up to U0 = 20 000Er for the current input power. This
not only increases enormously the possibilities to test all the lattice related
shifts, especially the hyperpolarizability, but should also result in a larger
lifetime and hence a larger number of trapped atoms. The lifetime limitation
due to frequency noise of the lattice laser is determined by the noise level
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at twice the oscillation frequency. The increase in U0 leads to an increase in
the oscillation frequency to a regime where the laser is expected to be more
quiet. The more rigid structure should also increase the bandwidth of the
lock of the intra-cavity power thereby increasing the ability to compensate
for frequency fluctuations of the lattice laser. Another feature is that the
cavity is linear so the intra-cavity polarization is the same as outside the
cavity, which is useful for the determination of the vector shift coefficient.

Secondly, since the cavity is also designed to have a similar finesse for
the blue light, we expect a significant increase in the signal-to-noise ratio of
a factor of ∼

√
F = 20 when using the non-destructive detection technique.

This along with the increased number of trapped atoms in the very deep
trap should allow us to further increase the short term stability of the clock.

Still, there is a long way to go before reaching the projected quantum
limit of the stability at 10−17/

√
τ . The tools described in this thesis can

help this journey along, although new ideas must be thought of to reach the
10−17/

√
τ level.

One such idea is hinted in [116] (see also section 4.5), where a high Q
cavity for the clock laser is placed inside the vacuum chamber. Here, not only
the stability of the clock laser would benefit; a whole new physical domain
might be reached — the strong coupling regime — which, in addition to
entanglement and spin squeezing, might lead to observations of unknown
effects, since having both a strong confinement of the atoms and a strong
coupling to light with an extremely narrow line width is something that has
not yet been achieved.

As mentioned in the Introduction, atomic clocks can also be used to test
the time variation of fundamental constants. When the accuracy and stabil-
ity of atomic clocks increase, the limits on the variation become more strict
and the time it takes to obtain these limits is reduced, leading to the possibil-
ity of testing some of the fundamental physical theories with unprecedented
precision. State-of-the-art atomic fountains with Cs and Rb have been oper-
ated at SYRTE for several years already, and with the construction of a Hg
lattice clock underway, there will be an exceptional opportunity to perform
these tests between four different atomic species.

The comparison between the two Sr lattice clocks described here has
already demonstrated an Allan deviation going below 10−16 after about an
hour of integration, and with the control of lattice related shifts demon-
strated in this thesis, the Sr clock ensemble at SYRTE is now a state-of-the-
art atomic clock, comparable to the best ion clock standards. The errorbud-
get will most likely be dominated by the contribution from the black-body
radiation, and to achieve an accuracy below 10−17 the clock should probably
be contained in a cryogenic environment. In this case, the biggest obsta-
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cle for reaching the accuracy obtained by the best ion clocks — or indeed,
go beyond — is the possible shift from cold collisions between the atoms
[35, 63]. If it turns out to be problematic, the shift can presumably be re-
duced significantly by changing to a 2D or 3D lattice configuration.

The control of the lattice related shifts and the possibility of an impend-
ing large increase in short term stability ensures a promising future for Sr
lattice clocks.
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Appendix A

The Allan Deviation

The Allan deviation σy(τ) is used extensively throughout this work to char-
acterize the stability of any measurable quantity y(t) as a function of av-
eraging time τ . The Allan variance, σ2

y(τ), is defined as one half of the
time average of the squares of the differences between successive readings
of the deviation of y(t) averaged over the sampling period. For a frequency

measurement where y(t) = ν(t)
〈ν〉 , this becomes

σ2
y(τ) =

1

2

〈
(yn+1,τ − yn,τ )2

〉
, (A.1a)

yn,τ =

〈
δν

ν

〉

n,τ

, (A.1b)

where yn,τ is the fractional frequency departure, averaged over sample period
n of duration τ . It can be expressed equivalently in terms of the one-sided
power spectral density Sy(f) of y(t) as [169]

σ2
y(τ) =

∫ ∞

0
Sy(f)|H(f)|2df, (A.2)

where H(f) is the transfer function of the detector. Generally, the noise
Sy(f) can be expressed as a sum of different types of noise,

Sy(f) =

2∑

α=−2

hαf
α, (A.3)

with a frequency dependence fα. This translates into a dependence for the
Allan variance on τ as σ2

y(τ) ∝ τa. The value of α or a will tell us which
type of noise is dominating the measurement, as shown in table A.1. For
white frequency noise (α = 0), which typically dominates atomic clocks on
the medium to long term, the Allan deviation as a function of integration
time τ can be expressed as [9]

σy(τ) =
ξ

QRS/N

√
Tc
τ
, (A.4)
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α a Type of noise

2 −2 White PM
1 −2 Flicker PM
0 −1 White FM
−1 0 Flicker FM
−2 1 Frequency random walk
−2 2 Frequency drift

Table A.1: The values of α and a for different types of noise [5]. PM: Phase
Modulated, FM: Frequency Modulated.

where Q is the experimental line quality factor, Tc is the cycle time of
the measurement, RS/N is the signal-to-noise ratio of the atomic transition
detection achieved during one cycle, and ξ is a factor on the order of 1, which
accounts for the shape of the resonance. The experimental line quality factor
Q is defined as Q = νatom/δνexp, with νatom being the resonance frequency of
the clock transition and δνexp being the experimentally achieved line width
of the transition.
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Abstract—We discuss the minimization of the Dick effect in 
an optical lattice clock. We show that optimizing the time se-
quence of operation of the clock can lead to a significant reduc-
tion of the clock stability degradation by the frequency noise 
of the interrogation laser. By using a nondestructive detection 
of the atoms, we are able to recycle most of the atoms between 
cycles and consequently to strongly reduce the time spent cap-
turing the atoms in each cycle. With optimized parameters, we 
expect a fractional Allan deviation better than 2 ∙ 10−16τ−1/2 
for the lattice clock.

I. Introduction

Combined with a superb frequency accuracy, superior 
ultimate stabilities have been advocated as appealing 

advantages of optical lattice clocks [1]. In such devices, 
optical resonances with linewidth down to 2 Hz have been 
observed [2]. For a typical atom number of 105, the cor-
responding standard quantum limit of the clock Allan de-
viation lies below 10−17τ−1/2 with τ being the averaging 
time in seconds. Although vast improvements have been 
performed over the last few years [3]–[6], the stability of 
actual lattice clocks is presently more than 2 orders of 
magnitude above this “Holy Grail.” One stumbles upon 
the Dick effect, by which the probe laser frequency noise is 
converted down to low Fourier frequencies by the sampling 
process inherent to the clock’s cyclic operation [7]–[9]. A 
strenuous effort is presently going on to further reduce 
the noise of ultra-stable laser sources [10]–[14] but quite 
inflexible limitations like the thermal noise of high-finesse 
Fabry-Pérot cavities limit progress in that direction [15]. 
Comparatively little effort has been put so far toward the 
optimization of the time sequence for the operation of 
lattice clocks in order to reduce the Dick effect. We show 
here that following this direction can lead to very signifi-
cant improvements.

A key parameter for the Dick effect is the dead time 
of the clock cycle, during which atoms are prepared (cap-
tured, cooled, optically pumped) and detected and do not 
experience the probe laser frequency noise. This loss of 
information leads to the frequency stability degradation. 
To decrease the dead time of the experiment, we propose 

to keep the atoms from one clock cycle to the next, which 
is made possible by a nondestructive measurement scheme 
[16]. We discuss here in detail the potential gain in terms 
of frequency stability that can be achieved using this de-
tection scheme.

In Section II, we give a quantitative discussion of the 
Dick effect in the limit where the dead time approaches 
0. We show that for dead times below 100 ms, the limita-
tion of the Allan deviation due to the Dick effect can be 
reduced to below 10−16τ−1/2 using Ramsey spectroscopy 
and state-of-the-art ultra-stable lasers. In Section III, the 
new nondestructive detection scheme is described. Finally, 
Section IV discusses the optimization of a Sr lattice clock 
sequence using the nondestructive scheme, and gives an 
estimate on the expected stability of the clock.

II. The Dick Effect in the Low Dead Time Limit

In a sequentially operated atomic clock, the response 
of the atoms to the interrogation oscillator frequency fluc-
tuations δω(t) is dictated by the sensitivity function g(t). 
The change in transition probability δP caused by fre-
quency noise is given by

	 d dwP g t t dt=
1
2

( ) ( ) ,ò 	 (1)

where the integral is taken over one clock cycle. The ap-
pearance of g(t) depends on the type of interrogation used. 
In an optical lattice clock, either Rabi or Ramsey inter-
rogation can be used. We call Ti the duration of the inter-
rogation π-pulse in the Rabi case and τp the duration of 
each of the two π/2-pulses and T the free evolution time 
in the Ramsey case. We define the duty cycle d = Ti/Tc 
(Rabi) and d = (2τp + T)/Tc (Ramsey) with Tc being the 
duration of the clock cycle.

Fig. 1 gives a clear graphic illustration of the Dick ef-
fect and of the role of the dead time. The figure shows 
numerically generated noise around the cycle frequency 
fc = 1/Tc with a bandwidth of 0.3fc. The noise of the oscil-
lator enters in the clock measurement as the time average 
of δω(t) weighted by g(t), according to (1). For a small 
duty cycle (squares in Fig. 1) only the maxima of the rel-
evant noise components contribute to the measurement, 
resulting in a large dispersion of the measured frequency. 
When the duty cycle d approaches 1, the sensitivity func-
tion comprises almost the totality of each cycle, and the 
frequency fluctuations of the interrogation oscillator are 
averaged out. This averaging effect is almost perfect in the 
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case of Ramsey interaction (stars in Fig. 1 for d = 0.94) 
because the sensitivity function is a constant during the 
free evolution period. As the dead time Td used to prepare 
and detect atoms approaches 0, the measurement noise to-
tally vanishes, provided the interrogation pulses are kept 
short enough (τp ≪ Td). The situation is quite different 
for Rabi interrogation (circles in Fig. 1), because the sinu-
soidal shape of g(t) reduces the efficiency of the averaging 
process. The averaging effect and the different behaviors 
depending on the interrogation scheme are further illus-
trated in Fig. 2, where the Allan deviation as a function of 
the duty cycle is plotted.1 Because of this clear advantage 
of Ramsey interrogation, we restrict further analysis to 
this case only.

The limitation of the fractional Allan variance caused 
by the interrogation laser frequency noise is given by [8]

	 s t
t

y
m

m y c
g

g S m T2

0
2

=1

2
( ) =

1
( ),

¥

å / 	 (2)

where Sy( f ) is the one-sided power spectral density of the 
relative frequency fluctuations of the free running inter-
rogation oscillator taken at Fourier frequencies m/Tc. The 
Fourier coefficients of g(t) are given by

	 g
T

g t e dtm
c

T
imt Tc

c=
1

( ) .
0

2 /ò - p 	 (3)

State-of-the-art interrogation laser stabilization is per-
formed by locking the laser frequency to an ultra-stable 
Fabry-Perot cavity. In the following, we assume that the 
dominant source of noise is the thermal noise of the cav-
ity Sy( f ) = h−1f−1/ν2 with ν being the clock frequency (ν 
= 4.29 ∙ 1014 Hz for a Sr lattice clock). We take h−1 = 4 
∙ 10−2 Hz2 which is a worst case estimate for the ultra-
low expansion (ULE) glass cavity with fused silica mirrors 
described in [14]. It corresponds to a constant Allan stan-
dard deviation of 6 ∙ 10−16.

Fig. 3 displays the Allan deviation computed numeri-
cally using (2) as a function of dead time Td for various T. 
We choose τp = 5 ms, which is significantly shorter than 
the shortest Td considered here and still long enough to 
keep the τp dependent frequency shifts (light shift, line 
pulling by other atomic resonances, etc.) reasonably small 
(see [17] and references therein). Fig. 3 is another illus-
tration of the averaging process discussed previously. In 
present optical lattice clocks, the dead time is on the order 
of 1 s and the limitation of the clock stability caused by 
the Dick effect is close2 to 10−15. Reducing this dead time 
down to 10 ms would improve the clock stability by al-
most 2 orders of magnitude. This consideration motivated 
the development of the nondestructive detection scheme 
which is presented in the next section. Note also that for a 
given dead time, it is desirable to lengthen as much as pos-
sible the Ramsey interaction. This is true as long as the 
linear model giving (1) and (2) holds, i.e., as long as the 
interrogation laser frequency fluctuations remain much 
smaller than the width of the Ramsey fringes. With the 
level of noise chosen for plotting Fig. 3 (that is, frequency 
fluctuations of the interrogation oscillator on the order of 
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Fig. 1. Simulated frequency noise δω(t) of the interrogation oscillator 
filtered around the cycle frequency fc = 1/T with a bandwidth of 0.3fc. 
The points show the weighted average ò òg t t dt g t dt( ) ( ) ( )dw /  for Rabi inter-
rogation with duty cycle d = 0.94 (circles) and for Ramsey interrogation 
with duty cycles d = 0.24 (squares) and d = 0.94 (stars). The inset shows 
how δω(t) is sampled over 3 cycles for the 3 different sensitivity functions 
g(t). 

Fig. 2. Dick-limited Allan deviation σy (τ = 1s) for white frequency noise 
for Rabi and Ramsey interrogation. In the case of Ramsey interaction, 
the Dick effect vanishes for d → 1 if τp is kept smaller than Td. The 
curves are computed using (2).

1	For illustration purposes we chose to plot Fig. 2 in the case for which 
the interrogation laser exhibits white frequency noise. This is the only 
type of noise where the Allan deviation only depends on the duty cycle, 
and not on the specific parameters chosen. For subsequent discussion, 
however, we will assume a more experimentally realistic flicker frequency 
noise.

2	Measured Allan deviations are somehow higher than the value cal-
culated here (experimental state-of-the-art value is about 2 ∙ 10−15 for 
one second [18]). This difference results mainly from the fact that the 
interrogation lasers used for these experiments are referenced to cavities 
with ULE mirror substrates, which exhibit substantially higher thermal 
noise than the cavities considered here.
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0.3 Hz) the model therefore holds for Ramsey times up to 
about 200 ms.

III. Nondestructive Measurement

We briefly recall here the main features of the detection 
scheme which allows optimization of the clock stability 
as discussed in Section IV. More details can be found in 
[16].

A. Experimental Setup

The scheme is based on the measurement of the phase 
shift accumulated by a weak probe beam tuned close to an 
atomic resonance when passing through the atomic cloud 
[19], [20].

If the atomic resonance involves one of the 2 clock 
states, the accumulated phase gives a measure of the num-
ber of atoms that populate this state. When imposed after 
the clock interrogation, the phase measurement can then 
yield the clock transition probability.

We have chosen to operate with the 1S0–1P1 transition 
(the relevant energy levels of Sr are plotted in Fig. 4), for 
which the expected phase shift is plotted in Fig. 5. Two 
frequency components detuned symmetrically around the 
resonance accumulate opposite phase shifts while passing 
through the atomic cloud. Their difference therefore gives 
a differential measure of the number of atoms. This is 
implemented using the first modulation sidebands induced 
by an electro-optic phase modulator (EOM) in a Mach-
Zender interferometer (MZI) as illustrated in Fig. 6.

A laser beam tuned to the 1S0–1P1 transition is split 
into a weak signal and a strong local oscillator (LO). Their 
power is a few nanowatts and a couple of milliwatts, re-
spectively. The phase of the signal beam is modulated at 
f = 90 MHz by the EOM before traveling through the 
atomic sample in the optical lattice. The electric field of 
the signal beam is detected by a homodyne detection. The 
signal interferes with the LO on the beam splitter closing 

the MZI and the light intensities in each output arm of 
the beam splitter are measured with fast Si photodiodes 
and electrically subtracted. The output signal component 
at frequency f is then demodulated, giving a measure of 
the phase difference accumulated by the first sidebands. 
It should be noted that this measurement is highly dif-
ferential, being immune to first order to the probe laser 
frequency and amplitude noise, as well as to fluctuations 
of the optical propagation lengths.

B. Performance of the Detection Scheme

The atomic population in 1S0 is measured by applying 
2 consecutive probe pulses of duration τnd = 3 ms and 
typical power P = 12 nW (ηP = 5 nW, with η being the 
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Fig. 3. Fractional Allan deviation σy (τ = 1s) versus dead time for vari-
ous durations of the Ramsey interrogation T. The interrogation laser 
noise is assumed to be flicker dominated (see text). The duty cycle is d 
= 0.02 for Td = 1.0 s and T = 0.02 s, and d = 0.95 for Td = 0.01 s and 
T = 0.2 s. Fig. 4. Energy levels of Sr of interest here. The inset shows a typical 

spectrum of the clock transition using the nondestructive detection.

Fig. 5. Theoretical phase shift for the 1S0–1P1 transition with zero mag-
netic field and a linearly polarized probe. It takes into account the 3 
different F′ = 7/2, 9/2, and 11/2 levels of 1P1, spanning over 60 MHz 
around their average frequency (center of the plot). The phase shift 
is represented for equally populated mF states (solid curve) and spin-
polarized atoms in mF  = 9/2 or mF  = −9/2 states (dashed curve). For 
a 90 MHz detuning, these phase shifts are comparable and amount to a 
few tens of milliradians with a typical number of N = 104 atoms.
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detection efficiency). The 2 pulses are separated by a 
7-ms interval during which the atoms are optically 
pumped in the dark states 3P0 and 3P2 using the 1S0–3P1 
and 3P1–3S1 transitions (Fig. 4). The second probe pulse 
does not experience the atomic phase shift and thus 
acts as a phase reference. A typical noise spectrum of 
the phase signal is shown in Fig. 7. It is shot noise lim-
ited for Fourier frequencies higher than 10 H z. The 
noise of the resulting signal, as measured with no atoms 
in the lattice, is 0.4 mrad rms for ηP = 5 nW and scales 
as 1/ P.

With about N = 104 atoms in the lattice, the measured 
phase shift is 40 mrad, corresponding to a SNR of 100 
per cycle, which is close to the expected atomic quantum 
projection noise.

The measurement of the absolute transition probability 
associated with the interrogation of the atomic ensemble 
with our clock laser involves a third probe pulse to deter-
mine the total atom number. The measured noise on the 
transition probability is σδP = 2% rms with the previous 
parameters, varying as 1/N for N up to 104. A typical 
spectrum of the clock transition acquired with this meth-
od is shown in Fig. 4.

Finally, a key aspect of the detection scheme perfor-
mance is the ability to recycle the atoms from one cycle to 
the other. The fraction of atoms remaining in the lattice 
after the detection pulses is measured to be larger than 
0.95 for a lattice depth of 200 ER.

IV. Optimization of the Strontium Clock  
Time Sequence

The time sequence for operation of the Sr lattice clock 
is illustrated in Fig. 8. The dead time Td can be split up 
into 2 components, T T Td M d= +  , where TM is the cap-
ture time for the atoms, and T d

  is the time used for cool-
ing, optical pumping, and detection of the atoms. The 
present minimum residual dead time of the sequence is 
T d
 = 70 ms, mainly limited by the duration of the narrow 
line cooling in the lattice (Red cooling in Fig. 8). The 
duration of this cooling was adjusted to optimize the 
atomic temperature in the lattice at a fixed laser frequen-
cy and power. By allowing a variation of these parameters, 
the duration could certainly be shortened significantly. 
However, we keep this duration at its present value to give 
a conservative estimate of the optimized clock stability. 
The 2 parameters left for optimization are, therefore, the 
duration of the capture phase (MOT+Drain in Fig. 8) TM 
and the Ramsey interrogation time T.

The optimal time sequence results from a balance be-
tween the Dick effect and the detection noise. Taking both 
into account, the Allan variance of the clock is given by

	 s t s t s ttot det
2 2 2( ) = ( ) ( ),y + 	 (4)

where σy is defined in Section II and σdet is given by [8]
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Q and σδP being the atomic quality factor and the stan-
dard deviation of the detected transition probability. σδP 
scales as the inverse of the atom number N up to N = 104 
for which σδP = 0.02 as described in Section III-B.
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Fig. 6. Experimental setup. The number of atoms in the optical lattice 
is proportional to the phase shift of the RF component at the modula-
tion frequency f, filtered by a band-pass filter (BPF). The harmonic at 
frequency 2f is used to lock the phase of the interferometer, hence maxi-
mizing the RF power of the signal component.

Fig. 7. Detection noise power spectral density at 125 Hz and 1  kHz. 
The signal is shot noise limited (diagonal line) for powers up to 30 nW. 
The inset shows the full phase noise spectrum for a typical detected 
optical power ηP = 3 nW, corresponding to a white noise level of 2 × 
10−10 rad2/Hz.
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The nondestructive detection scheme allows recycling 
of the atoms, so that the number of atoms after cycle j is 
given by
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where NL is the number of atoms loaded into the optical 
lattice in each cycle; τt is the lifetime of the cold atoms in 
the lattice; Nmax is, for a given τt, the maximally achiev-
able number of atoms in the trap, that is, for TM → ∞; 
and ξ is the fraction of atoms kept in the trap after a 
cycle. For our experiment, Nmax = τt ∙ 1.8 ∙ 104/s, τt = 
1.5 s, and ξ = 0.95.

From Eq. (6) we get the steady-state number of atoms
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which can be used to find σδP and hence σdet(τ ) using (5), 
thus enabling us to express σtot(τ ) as a function of only 
TM and T.

Fig. 9 displays σtot(τ = 1s) as a function of both TM 
and T. To remain in the validity domain of the model, we 
limited the range of variation of T up to 200 ms as in Fig. 
3. Once again, the optimal T is the longest allowed one, T 
= 200 ms. The corresponding optimal value for the load-
ing time is TM = 69 ms, giving σtot(τ) = 1.8 ∙ 10−16τ−1/2. 
The individual contributions of the Dick effect and of the 
detection noise are σy(τ) = 1.5 ∙ 10−16τ−1/2 and σdet(τ) 
= 1.0 ∙ 10−16τ−1/2, respectively. Finally, the steady-state 
number of atoms in the optimized configuration is N = 
4000.

The individual contributions to σtot(τ = 1s) for T = 
200 ms are shown in Fig. 10. The contribution from the 
quantum projection noise also is included in the plot, 
showing that σtot is still well above the quantum limit, 
leaving room for further improvements. These improve-
ments would include increasing the trap lifetime and re-
ducing the residual dead time, as well as enhancing the 
coherence time of the interrogation laser.

V. Conclusion

We have shown that in parallel to the reduction of the 
interrogation laser frequency noise, the optimization of 
the time sequence could be a very efficient way to mini-
mize the Dick effect in optical lattice clocks. By using a 
nondestructive detection scheme together with an adapted 
time sequence, the Allan deviation of our clock could be 
optimized down to below 2 ∙ 10−16τ−1/2, which would out-
perform the current state-of-the-art by about one order of 
magnitude.

Though very encouraging, this result is still about one 
order of magnitude above the expected quantum limit of 
the clock. In the optimized time sequence presented in 
Section IV, the duty cycle is only 0.60 and large room for 
improvement remains. Cooling the atoms down to their 
minimal temperature presently takes 45 ms which could 
probably be strongly reduced by using a more sophisti-
cated time sequence, for instance, by allowing both the 
frequency and power of the cooling laser to vary during 
this phase. On the other hand, the lifetime of the atoms 
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Fig. 8. The time sequence for the Sr lattice clock. For further details, see 
[21]. The minimum residual dead time T T Td d M

 = -  of this sequence is 
70 ms.

Fig. 9. The total fractional Allan deviation at 1 s as a function of captur-
ing time TM and Ramsey dark time T with residual dead time 
T d
 = 70 ms . 

Fig. 10. The different contributions to the total fractional Allan devia-
tion at 1 s as a function of capturing time TM for Ramsey dark time T 
= 200 ms with residual dead time T d

 = 70 ms .
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in the lattice is presently 1.5 s, so that about 20% of the 
atoms need to be reloaded at each cycle. This leads to 
a relatively long loading time of 69 ms in the optimized 
configuration. We have not yet investigated in detail the 
limiting factors of this lifetime in our setup, but we see no 
fundamental reasons preventing atoms from being kept 
in the lattice for 10 s or more. With such a lifetime, one 
would take full advantage of the nondestructive detection 
scheme described in Section III, giving a σtot(τ = 1s ) on 
the order of 1 ∙ 10−16 or below.
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We present the experimental demonstration of nondestructive probing of the 1S0-3P0 clock transition prob-
ability in an optical lattice clock with 87Sr atoms. It is based on the phase shift induced by the atoms on a weak
off-resonant laser beam. The method we propose is a differential measurement of this phase shift on two
modulation sidebands with opposite detuning with respect to the 1S0-1P1 transition, allowing a detection
limited by the photon shot noise. We have measured an atomic population of 104 atoms with a signal-to-noise
ratio of 100 per cycle, while keeping more than 95% of the atoms in the optical lattice with a depth of 0.1 mK.
The method proves simple and robust enough to be operated as part of the whole clock setup. This detection
scheme enables us to reuse atoms for subsequent clock state interrogations, dramatically reducing the loading
time and thereby improving the clock frequency stability.
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Optical lattice clocks with neutral atoms have recently
experienced dramatic improvements in both frequency sta-
bility and accuracy �1–4�, now surpassing microwave stan-
dards �5� and comparable with optical clocks using single
ions �6�. Nonetheless, large improvements are still possible,
especially in terms of frequency stability. The current best
recorded stability is 2�10−15 /�� �3�, with � being the aver-
aging time expressed in seconds. This is about 1 order of
magnitude above the expected quantum limit. With a reason-
able number of atoms larger than 104, one could even antici-
pate a quantum limit in the 10−17 /�� range.

The excess noise is due to the Dick effect �7,8�. The dis-
continuous interrogation of the atoms introduces a sampling
of the interrogation laser frequency noise which is folded to
low frequencies. To overcome this degradation and take full
advantage of the high signal-to-noise ratio that is potentially
achievable with a large number of neutral atoms, one should
reduce the laser noise and/or minimize the dead time in the
clock cycle. This latter possibility has been somewhat over-
looked in existing lattice clocks. In present experiments the
clock transition probability is detected by collecting the fluo-
rescence photons scattered from an intense probe laser. At-
oms are correspondingly heated and escape the trap during
the detection. Most of each clock cycle is therefore spent
capturing the atoms, leading to duty cycles of typically 10%.
By keeping the atoms in the lattice between clock cycles, the
duty cycle could be increased up to 80% or more, leading to
a significant improvement of the clock frequency stability,
expectedly close to 10−16 /�� with a clock laser with a sub-
hertz linewidth. This could be achieved with a nondestruc-
tive method to measure the transition probability. We dem-
onstrate here such a detection scheme for an 87Sr lattice
clock.

The scheme is based on the measurement of the phase
shift accumulated by a weak probe beam when passing
through the atomic cloud. A method using the same physical
effect was demonstrated with Cs atoms in �9,10�. For an
atomic gas with states �J ,F ,mF� and �J� ,F� ,mF��, light with
polarization state q, and wavelength � detuned by �F,F� from
the transition between the two states will experience a phase
shift,

�at =
3�2�2J� + 1�

4�S
�

F,mF,F�,mF�

NmF
�2F� + 1��2F + 1�

��F� 1 F

mF� q − mF
�

Wigner 3j symbol

2 J J� 1

F� F I

Wigner 6j symbol

2 ��/2��F,F�

�F,F�
2 + ��/2�2

,

�1�

where NmF
is the atomic population in the hyperfine substate

�J ,F ,mF�, � is the natural linewidth of the transition, and S is
the cross section of the atomic cloud. With a Gaussian dis-
tributed laser beam and atomic cloud, averaging the phase
shift over the transverse directions gives S=2��r0

2+w2 /4�,
where r0 is the cloud standard deviation and w is the 1 /e2

radius of the laser beam.
Equation �1� shows that if �J ,F ,mF� is one of the two

clock states, �at gives a measure of the number of atoms that
populates this state after the clock interrogation, yielding the
clock transition probability. Since there is no cycling transi-
tion involving the 3P0 state, we considered only the 1S0-1P1
and 1S0-3P1 transitions at 461 and 689 nm, respectively �Fig.
1�, which both involve the atomic ground state. At first sight,
the 1S0-3P1 transition could seem more appealing due to the
�2 dependence of �at. However, its small natural linewidth
�=7.6 kHz introduces experimental difficulties. Its Zeeman
mF substates are resolved even for magnetic fields as low as
0.3 G, which would imply working at a large detuning thus
dwarfing the phase signal. Further, the exact frequency of the
probe would depend on the actual magnetic field and lattice
induced light shift. For these reasons, we chose to operate
with the more robust 1S0-1P1 transition for which the in-
duced phase shift is plotted in Fig. 2.

We propose a phase shift measurement setup using an
electro-optic phase modulator �EOM� in a Mach-Zender
�MZ� interferometer �Fig. 3�. A laser beam resonant with the
1S0-1P1 transition is split into a weak signal �typically a few
nW� and a strong local oscillator �LO� �a few mW�. The
signal beam is modulated at 90 MHz by the EOM before it is
overlapped with the atoms in the optical lattice. The signal
beam waist is w=37 �m, comparable to the transverse size
of the atomic ensemble �r0=10 �m�. The electric field of
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the signal beam is detected by a homodyne detection in
which the signal interferes with the LO on a beam splitter,
and the light intensities in each output arm of the beam split-
ter are measured with fast Si photodiodes �Hamamatsu
S5973� and electrically subtracted. In this scheme, the LO
amplifies the signal without degrading its signal-to-noise ra-
tio �SNR� �11�. For a LO power of 2 mW the electronic noise
is smaller than the photon shot noise by a factor of 2.

The rf output s of the difference of the photocurrents is
�up to a constant factor�,

s = �
n=1

+	

Jn�a�g	
0 −
�n + �−n

2

g	n�t +

�n − �−n

2

 , �2�

where Jn is the Bessel function of the first kind, 
0 is the
phase of the LO, a is the modulation depth, � is the modu-
lation angular frequency, and g=cos �sin� if n is even �odd�.
�n is the total phase shift experienced by the modulation
sideband n. It can be expanded as �n=�at�n��+��n+
s
where �at�n�� is the atomic phase shift for a detuning n�
given by Eq. �1�, 
s is a global phase, and ��n is the laser
phase noise. Because all the modulation sidebands belong to
the same spatial mode, 
s is independent of n. Given the low
power at which we operate and the small linewidth of our
laser �
1 MHz�, ��n is dominated by shot noise, even
though our interferometer features an optical path difference
of about 2 m between the signal and the LO.

We can see from Eq. �2� that the phase of the rf compo-
nent at angular frequency n� is the differential atomic phase
shift of the −n and +n modulation sidebands. Since �at is
approximately an odd function of the probe detuning, this
phase shift is proportional to the number of atoms in the
atomic ground state. Furthermore, it does not depend on the
phase 
0 of the LO nor the global phase 
s of the signal,
making our system independent of mechanical and thermal
fluctuations. These features are very welcome given the
small phase shifts we want to detect. However, the amplitude
of the rf components does depend on 
0 and will eventually
cross zero as 
0 drifts. The parity of g shows in particular
that the odd rf sidebands have maximum power when the
amplitude of the even sidebands is null. We use this feature
to lock 
0: we demodulate the second-order rf component at
angular frequency 2� and servoloop 
0 with a piezoelectric
transducer �PZT� to keep the demodulation signal at zero.
The lock bandwidth is 10 kHz, limited by the mechanical
properties of the PZT. Finally, the atomic phase signal is
extracted by demodulating the first-order rf component,
maximized by the lock �Fig. 3�. We emphasize that the noise
of this phase signal does not depend on the noise of the PZT
lock to first-order due to the quadrature detection.

In our setup, we choose the modulation frequency f
=� /2� and amplitude a to optimize the SNR of the detec-
tion scheme. The final SNR results from a trade-off between
the phase component of the optical shot noise which de-
creases at larger optical powers and the heating of the atomic
cloud which increases with the optical power as long as the
transition is not saturated. Therefore we have to determine
the optimal f and a for a given heating of the atoms. The
signal-to-noise ratio is

SNR =
�at�+ �� − �at�− ��
����1

2� + ���−1
2 �

, �3�

with ���+1
2 � = ���−1

2 � =
hc

4��J1�a��2�PT
, �4�

where P is the total optical power seen by the atoms, T is the
probe time, and � is the detection efficiency. The product PT
is linked to the number of photons n� absorbed by each atom
of the atomic ensemble, characterizing the fraction of the

FIG. 1. �Color online� Energy levels of Sr of interest in this
Rapid Communication. A typical spectroscopy of the clock transi-
tion using the nondestructive detection is inset. The transition is
saturated and power broadened so that the blue detuned lattice mo-
tional sideband is visible. The red detuned sideband is absent be-
cause most of the atoms are in the fundamental state of the lattice.
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FIG. 2. �Color online� Theoretical phase shift �atS /N for the
1S0-1P1 transition with a zero magnetic field and a linearly polar-
ized probe. It takes into account the three different F�=7 /2, 9/2,
and 11/2 levels of 1P1, spanning over 60 MHz around their average
frequency �center of the plot�. The phase shift is represented for
equally populated mF states �solid red curve� and spin-polarized
atoms in mF=9 /2 or mF=−9 /2 states �dashed blue curve�. For a 90
MHz detuning, these phase shifts are comparable and amount to a
few tens of mrad with typical parameters N=104 atoms and S
=2.8�103 �m2.
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atoms lost during the nondestructive probing,

n� = PT
�

2Psat
�

n=−	

+	 �Jn�a��2

1 + 4�n��2/�2 . �5�

Here, Psat=1.2 �W is the saturation power averaged over
the atomic cloud. Combining Eqs. �3�–�5� gives an expres-
sion of the SNR as a function of � and a. We find that the
SNR increases with � and becomes nearly constant after a
few �. In our experimental setup, we chose �=2�90 MHz
�3� for which the SNR is nearly optimal. For this fre-
quency, the optimal a computed from Eqs. �3�–�5� is very
close to the modulation amplitude for which the resonant
carrier is completely suppressed �a=2.4 rad�. Furthermore,
the SNR is very flat around this optimum so that temperature
control of the EOM is not required. For a=2.4 rad, the +1
and −1 modulation sidebands have 53% of the optical power.
The remaining power distributed in the higher order side-
bands contributes to the heating of the atoms but not to the
signal. From the previous equations, we calculate that these
higher order sidebands degrade the SNR by only 8%.

Finally, the contrast of our interferometer is 76% �mea-
sured with a balanced MZ configuration� and 25% additional
optical losses appear between the atoms and the detection.
These defects are attributed to the vacuum chamber windows
and the optics of the lattice cavity that were not originally
designed to operate at the probe wavelength. As a result the
detection efficiency is �=43%.

We characterize the noise of the measurement setup as
follows. A typical noise spectrum of the phase signal is
shown in Fig. 4. It is shot noise limited from 60 Hz. The
detection system features a noise floor at 10−11 rad2 /Hz so
that the signal is shot noise limited for total optical powers
up to 30 nW. Given this noise figure, we probe the atoms
with T=3 ms signal pulses of typically P=12 nW ��P
=5 nW�. These pulses have a product PT low enough to

keep most of the atoms in the lattice �see below�. They are
short enough to escape the low-frequency noise and long
compared to the PZT lock bandwidth.

To measure the atomic population in 1S0, we apply two
consecutive probe pulses separated by a 7 ms interval. Be-
tween these pulses we shelve the atoms in the dark states 3P0
and 3P2 by optical pumping on the 1S0-3P1 and 3P1-3S1 tran-
sitions. The second probe pulse does not experience the
atomic phase shift and then acts as a zero phase reference.
During the probe pulses, the phase signal is sampled at 500
kHz and the final signal is the difference of the averaged
signal over each the probe duration. The noise of the result-
ing signal, as measured with no atoms in the lattice, is 0.4
mrad rms for �P=5 nW and scales as 1 /�P as expected
from Eq. �3�. With about N=104 atoms in the lattice, we
measured a phase shift of 40 mrad corresponding to a SNR
of 100 per cycle, which is close to the atomic shot noise.

The measurement of the absolute transition probability
associated with the interrogation of the atomic ensemble
with our clock laser involves a third probe pulse. All probe
pulses should be applied after the clock interrogation since
low-frequency phase drifts would add noise to the detection
signal for long interrogation times. The sequence is as fol-
lows: after the clock interrogation a first probe pulse mea-
sures the number of atoms that remained in the atomic
ground state. Then the atoms are repumped into the funda-
mental state and are probed with a second probe pulse that
determines the total number of atoms. Then, as before, we
pump all the atoms into the dark states and apply a reference
pulse. The measured noise on the transition probability is 2%
rms with the previous parameters and varies as 1 /N for N up
to 104. This sequence is illustrated by the clock transition
spectroscopy shown in Fig. 1.

A key feature of the detection scheme is the ability to
recycle the atoms from one cycle to the other. To check that
the detection pulses do not heat the atoms out of the lattice,
we measured the atomic losses caused by the phase detection

FIG. 3. �Color online� Experimental setup. The number of atoms
in the optical lattice is proportional to the phase shift of the RF
component at the modulation frequency f , filtered by a bandpass
filter �BPF�. The harmonic at frequency 2f is used to lock the phase
of the interferometer and hence maximizing the RF power of the
signal component.
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power �P=5 nW, corresponding to a white noise level of
10−10 rad2 /Hz.
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with a fluorescence probe at the end of each clock cycle. This
measurement has been repeated for different lattice depths
�Fig. 5�. We model the heating process by absorption and
spontaneous emission. Because the probe beam is aligned
with the lattice axis and the atoms are in the Lamb-Dicke
regime in this direction, we assume that the recoil momen-
tum associated with photon absorption is absorbed by the
lattice and does not contribute to heating the atoms. How-
ever, the trapping potential is loose in the transverse direc-
tions, and therefore the horizontal component of the recoil
momentum associated with spontaneous emission is entirely
transferred to the atoms. For atoms initially in the vibrational
ground state of the lattice, the fraction � of atoms remaining
in the lattice after detection is

� = 1 − exp	−
U0/ER

2n�/3 
 , �6�

where U0 is the lattice depth, ER= h2

2m�2 is the recoil energy
associated with the interaction between a Sr atom with mass

m and a probe photon ��=461 nm�, and n� is the number of
absorbed photons per atom, as given by Eq. �5�. As shown in
Fig. 5, this model is in agreement with the experiment. We
observed that for a lattice depth around 200 ER, more than
95% of the atoms remain trapped after the detection pulses.
This important depth does not hamper the clock accuracy
since the lattice depth is ramped down to a few ER during the
clock interrogation.

The atoms that stay trapped have been heated by the non-
destructive probing. They are cooled down to the fundamen-
tal state of the lattice before the next clock interrogation,
along with the newly accumulated atoms, in a few tens of
milliseconds �2�.

We have experimentally demonstrated a nondestructive
probing method for the transition probability in an optical
lattice clock with Sr atoms. With a differential phase mea-
surement of two modulation sidebands, we achieve a high
detectivity without resorting to complex interferometric sta-
bilization methods. This detectivity is intrinsically limited by
the atomic transition we probe and not by our detection sys-
tem. We have integrated the measurement procedure in the
clock cycle and demonstrated the feasibility of measuring the
clock transition probability. By recycling the atoms we ex-
pect to be able to reduce the dead time of the clock cycle
down to 
100 ms while keeping more than 103 atoms in the
experiment. Together with an improved clock laser currently
under development �12�, this would open the way to better
clock stabilities, well below 10−15 /��. Furthermore, as re-
cently shown �13,14�, the detection scheme presented here is
capable of spin squeezing the atomic ensemble, a technique
that can ultimately overcome the atomic shot noise in atomic
clocks.
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Résumé en français

Introduction

Pendant la Révolution française, la fondation du système métrique mo-
derne pour les unités était construit. Le premier août 1793 le mètre était
défini par l’Académie Française des Sciences à 1

10 000 000
de la distance entre

le Nord Pôle à l’équateur. Plus tard, une définition était également adoptée
pour le poids en termes de kilogrammes. Le 22 juin 1799 le système métrique
était définitivement concrétisé par la production de deux étalons en platine
représentant le mètre et le kilogramme. La mise en place des unités visées
à une référence commune était commandée par Louis XVI de France pour
arrêter la tricherie des commerçants avec les poids en les changeant à leur
avantage.

Les références communes pour les unités doivent être universellement
constantes pour être de quelque utilité du tout. Au moment de la Révolution
française, le circonférence de la Terre était le meilleur entité disponible qui
pourrait constituer cette référence non-évoluante universelle pour l’unité de
longueur. Cependant, plus tard quand il devenait évident que le circonférence
de la Terre change avec le temps, la communauté scientifique a commencé à
chercher une quantité qui resterait vraiment constante au fil du temps, ou
bien, au moins quelques choses qui serait plus stable que la circonférence de
la Terre.

La recherche des références universelles pour les unités ne s’est pas démentie
depuis. En 1960, lors de la 11ème Conférence Générale des Poids et Mesures,
le système international d’unités (SI) était convenu ; on a définit sept unités
fondamentales à partir de lesquelles toutes les autres unités peuvent être
dérivées : le mètre, le kilogramme, la seconde, l’Ampère, le Kelvin, la mole
et la candela. Les définitions pour chaque unité ont été adoptés lors de la
conférence, et la seconde était définie comme “la fraction 1/31556925.9747
de l’année tropique 1900 Janvier 0 à 12 heures de temps éphémérides” [1].

Après que la précision des mesures était améliorée, il est devenu évident
que de toutes les unités de base, une mesure du temps - ou plutôt, de la
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fréquence - était celle avec une promesse de la plus grande exactitude. Par
conséquent, il a été décidé que l’unité de longueur ne devrait plus être référée
à la taille de n’importe quel objet physique, mais simplement au temps avec
la définition de 1983 de la vitesse de la lumière dans le vide à c = 299 792 458
m/s exactement [2], ainsi fournissant le mètre en termes de la seconde comme
la distance traversée de la lumière dans le vide dans un intervalle de temps de

1
299 792 458

d’une seconde. La fixation de c comme un nombre exact signifie aussi
un signe de la croyance en la constance de cette entité physique fondamentale,
et est dans ce sens encore plus satisfaisante que la définition d’autres unités.

D’autres unités en plus du mètre ont une possibilité d’être visées à la
seconde : la masse peut être visée au temps à l’aide d’une balance de Watt
[37, 57], et pour certains l’espoir est — comme pour la vitesse de la lumière
c — d’être capable de fixer le constante de Planck h de cette façon et référer
le kilogramme au constante de Planck. Les connexions entre la fréquence et
des constantes non-fondamentaux sont également possibles. Par exemple, un
lien direct entre la fréquence et la tension est fournie par l’effet Josephson
[35].

Une mesure précise du temps ou la fréquence est donc d’une grande im-
portance pour un grand nombre de mesures scientifiques. Une comparaison
entre deux références différentes peut être utilisée pour déterminer des chan-
gements possibles au fil du temps de la valeur des constantes physiques, ce
qui permet ainsi de vérifier le principe d’équivalence. Le changement au fil
du temps a été examiné pour plusieurs constantes fondamentales, telles que
le constante de la structure fine [48, 47], le rapport de masse entre l’électron
et le proton [8] et le rapport des moments magnétiques nucléaires [41, 26, 11].
Les horloges de précision peut également servir comme outil pour tester les
théories fondamentales telles que l’invariance de Lorentz [67, 62] et la rela-
tivité générale [51, 54], tout en étant cruciale pour la navigation précise, la
télécommunication à haute vitesse et à l’astronomie radio, pour n’en citer
que quelques-uns.

Le temps est mesuré par les horloges. Une horloge se compose d’un os-
cillateur et un compteur. La précision d’une horloge est déterminé à peu
près par le fréquence d’oscillation - une fréquence plus élevée donnant des
intervalles de temps plus petits et donc une meilleure capacité pour décider
quand un certain événement s’est produit - et par la capacité du compteur
de compter tous les périodes. Ainsi, une mesure de la fréquence d’oscillation
peut constituer une horloge. Une des plus simples horloges qu’on peut s’ima-
giner, c’est la Terre qui oscille autour de son propre axe et les humains qui
comptent les révolutions comme des jours et des années, ce qui est le type
d’horloge qui a conduit à la définition de 1960 de la seconde.

La définition de 1967 de la seconde conduit à la nécessité d’impliquer
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les atomes bien contrôlées dans la construction d’une horloge précise. Le
principe de fonctionnement d’une horloge atomique est illustré dans la figure
1. Rayonnement cohérent est créé par un oscillateur local. Le rayonnement

Figure 1 – Un schéma du principe de fonctionnement de l’horloge atomique.

est envoyé sur un échantillon d’atomes, et la probabilité de transition est
détectée. La fraction d’atomes qui est excitée dépend de la fréquence de
l’oscillateur, l’intensité du champ d’interrogation, la durée de l’impulsion et
les propriétés atomiques. On peut déduire de cette probabilité de transition
dans quelle mesure la fréquence de l’oscillateur est décalée de la référence et
une correction est ensuite appliquée pour guider l’oscillateur à la fréquence
correcte.

Les horloges atomiques sont caractérisées par leur exactitude et leur sta-
bilité. L’exactitude d’une horloge indique la proximité de la fréquence me-
surée à la bonne fréquence et est généralement déterminée par le capacité à
évaluer précisément les décalages systématiques de la fréquence de l’horloge.
L’instabilité caractérise les fluctuations temporelles de la fréquence, et est
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généralement quantifié en termes de l’écart type d’Allan qui décrit l’incerti-
tude statistique de la mesure de fréquence. En général, il décrôıt quand le
temps de mesure est augmenté jusqu’aux fluctuations de long terme com-
mencent à dominer la mesure après un temps donné τlt. Les fluctuations
des horloges atomiques sont généralement dominé par un bruit blanc sur le
moyen à long terme (à partir de ∼ 10 s à τlt ∼ 103 − 105 s), et l’écart type
d’Allan acquiert une dépendance 1/

√
τ sur le temps de mesure τ . L’écart

peut être écrit comme [3]

σy(τ) =
ξ

QRS/N

√
Tc
τ
, (1)

où Q est le facteur de qualité expérimentale, Tc est le temps de cycle de la
mesure, RS/N est le rapport signal-à-bruit de la détection de transition ato-
mique atteint au cours d’un cycle et ξ est un facteur de l’ordre de 1, qui est
déterminé par la forme de la résonance. Le facteur de qualité expérimentale Q
est défini comme Q = νatom/δνexp, avec la fréquence de résonance de la tran-
sition d’horloge νatom et la largeur δνexp de la transition expérimentalement
réalisée.

Depuis le début des années 1950, les fréquences de référence à l’état de
l’art étaient construits en utilisant un jet thermique d’atomes de césium qui se
propagent dans une cavité micro-ondes où la résonance atomique est excitée
[25]. Ces horloges sont restées les plus exactes pendant 40 ans, avec leurs
exactitude améliorant un ordre de grandeur par décennie, comme montré
dans la figure 2. Au début, la performance des horloges était limitée par des
bruit techniques, tels que l’efficacité de la détection, la pureté spectrale des
sources disponibles pour l’oscillateur local, etc, ce qui réduit la stabilité des
horloges.

Plus tard, après que la stabilité accrue, l’exactitude obtenue était encore
limitée par les capacités techniques, mais maintenant plutôt en termes de
contrôle des atomes. Surtout le mouvement des atomes était un problème
pour le standard à jet thermique due aux effets Doppler et recul. Même si
l’introduction de l’interrogation de Ramsey [50] éliminait au premier ordre
l’effet Doppler, l’effet Doppler de deuxième ordre restait encore une source
importante d’incertitude.

Les effets liés au mouvement ont été fortement réduits après que l’in-
vention du refroidissement au laser [33] dans les années 1970 avait permis
la construction des fontaines atomiques dans le début des années 1990, où
les atomes sont refroidis par laser à quelques µK avant que l’interrogation
à micro-ondes est effectué. Plus important encore est le fait que cette tech-
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Figure 2 – L’évolution de l’exactitude des horloges atomiques au cours des 60
dernières années.

nique a permis une forte augmentation du facteur de qualité Q, puisque il
est proportionnel au temps passé entre les deux impulsions Ramsey.

En 1999, les horloges à fontaine atomique ont atteint un régime où la
stabilité n’est plus dominée par les bruits techniques, mais plutôt par la
nature quantique de la mesure en termes du bruit de projection quantique à
cause du nombre limité d’atomes N [55]. Dans ce cas, le rapport signal à bruit
dans (1) est donné par RS/N =

√
N , et la meilleure stabilité obtenue à ce jour

par une fontaine atomique est de σy(τ) = 1.6 · 10−14
√
τ [63]. Les fontaines

Cs actuelles ont atteint une incertitude de fréquence de 4 · 10−16 [9, 10, 30],
mais l’exactitude ultime qui peut être obtenue par ce type d’horloge semble
d’être limitée au niveau de 10−16 à cause des effets liés au mouvement des
atomes ainsi que d’autres effets.

Pour réduire les effets liés au mouvement et augmenter le facteur de qua-
lité Q, dans les années 1980 des horloges aux fréquences micro-ondes étaient
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construites avec des ions piégés et refroidis dans un potentiel RF [12, 24]. Les
ions sont capturés en potentiels RF depuis les années 1950 [45] et peuvent
être refroidis à leur état de mouvement fondamental en utilisant la tech-
nique de refroidissment de bande latérale [21, 43, 66], ce qui les ramène au
régime Lamb-Dicke [23]. Cependant, même avec un contrôle des effets liés
au mouvement, la stabilité de ces horloges est intrinsèquement limitée par
la relativement basse fréquence d’horloge dans le domaine des fréquences
micro-ondes, et au milieu des années 1990 les meilleures stabilités au ni-
veau de 6 · 10−14/

√
τ [27, 61] obtenues étaient légèrement moins bonnes que

celles des fontaines atomique à cause du plus petit nombre d’atomes. En re-
gardant l’expression pour l’écart type d’Allan dans (1), nous voyons qu’en
allant aux fréquences optiques (f ∼ 1015 Hz) un facteur de l’ordre de 105 est
acquit dans le facteur de qualité Q et donc dans la stabilité par rapport aux
fréquences micro-ondes, si les autres paramètres sont maintenus constants.
En outre, plusieurs effets systématiques telles que celles associées aux mou-
vements atomiques donnent un déplacement de la fréquence d’horloge qui est
indépendante de la valeur absolue de la fréquence, et le déplacement relatif de
ces effets sur les transitions optiques serait également réduit par un facteur
de 105.

En utilisant la spectroscopie d’absorption saturée [34], les lasers étaient
stabilisés aux transitions optiques dans les molécules depuis la fin des années
1960. Les premières horloges à atomes non liés fonctionnant aux fréquences
optiques utilisaient un faisceau thermique d’atomes d’hydrogène, excitant
les électrons de l’état métastable 2S [7]. Aussi Ca et Mg étaient utilisés
dans une configuration de faisceau atomique [52, 56], et plus tard également
dans une configuration de fontaine [44, 65], mais les effets liés au mouve-
ment qui limitaient la performance des fontaines à micro-ondes étaient en-
core présents ici. Dés le milieu des années 1990, également des horloges à ions
aux fréquences optiques ont commencé à apparâıtre [6, 46, 64, 49], ce qui ont
donné des résultats remarquables. Cependant, les horloges à ions souffrent
de leur signal-à-bruit limité, qui pour un ion piégé est au plus un. De (1)
nous voyons que cela limite la stabilité qui peut être obtenue. Néanmoins, en
raison de la haute contrôle des effets systématiques les horloges à ions ont
produit les mesures de fréquence les plus exacte à ce jour. Une exactitude
de 5.2 · 10−17 était obtenue dans une comparaison entre Al+ et Hg+ [53], et
8.6 · 10−18 entre deux horloges Al+ [18].

Pourtant, il semble que le type d’horloge le plus souhaitable doit avoir
une fréquence d’horloge élevée et en outre combiner le nombre élevé d’atomes
présents dans les fontaines atomiques avec la suppression des effets liés au
mouvement réalisable dans les horloges à ions. En 2001, une proposition a
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été faite pour réaliser ce type d’horloge [36]. L’idée était de piéger un grand
nombre d’atomes neutres dans un piège dipolaire rétro réfléchi. La rétro-
réflexion crée un onde stationnaire dans lequel les atomes sont fortement
confinés et les effets liés au mouvement sont supprimés. La longueur d’onde de
la lumière piège est accordée à la dite longueur d’onde magique, où le décalage
de la lumière du piège sur la transition d’horloge est annulé ; un décalage que
si autrement présent rendrait les mesures de fréquence précise impossible, et
avait limité l’utilisation des pièges dipolaires dans les expériences d’horloges
atomiques, car ce décalage est généralement de l’ordre de kHz, même pour
un piège qui est juste assez profond pour annuler la gravité. Ces horloges
sont connu sous le nom d’horloges à réseau optique parce que le potentiel
optique du piégeage a la structure d’un réseau. La première proposition et
démonstration de faisabilité concernait des atomes de Sr [60, 40, 38], mais le
système peut également fonctionner pour d’autres atomes des alcalines-terres
comme Yb [5], Hg [31], Mg [28], Ca [20], etc.

L’horloge à réseau optique à Sr était prometteuse dés le début. La première
observation de la transition d’horloge est faite à SYRTE en 2003, et la
fréquence d’horloge était mesurée avec une incertitude relative de 5·10−11 [19].
D’autres mesures ont bientôt suivi, et en 2007, les mesures de la fréquence
d’horloge absolue de trois laboratoires différents avec des configurations com-
plètement indépendantes et trois endroits très séparés (Paris, Tokyo et à
Boulder, Colorado) étaient en accord sous la barre d’erreur au niveau de
10−15 [4, 13, 59]. L’horloge à réseau optique à Sr est déjà recommandée en
tant que représentation secondaire de la seconde par BIPM, et il semble
comme un pas naturel et pratique que la seconde devrait être redéfinie en
termes d’une horloge à réseau optique. L’excellent accord mondial sur la
fréquence observée pour l’horloge à réseau optique à Sr et le niveau d’exac-
titude projeté de 10−18 [60] fait que Sr est un candidat approprié pour une
future redéfinition de la seconde.

Les horloges optiques ont vu une augmentation de l’extactitude de six
ordres de grandeur au cours des 20 dernières années, et il sera intéressant
de voir combien de temps ce comportement va se poursuivre. L’augmenta-
tion rapide de l’extactitude a été facilitée par le développement de la peigne
femtoseconde en 2000 [32], qui a permis aux fréquences optiques d’être com-
parées à la fois aux fréquences micro-ondes et d’autres standards optiques
sans recourir à des châınes de multiplication de fréquence complexes et fas-
tidieux.

Le progrès extrêmement rapide des horloges à réseau optique est aidé
par leur stabilité à court terme potentiellement remarquable. Les horloges à
l’état de l’art actuel ont déjà démontré largeurs de raie de quelques Hz (voir
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le chapitre 6 et [15]), donc un facteur de qualité de Q = 1015 ne semble pas
irréaliste d’obtenir dans un proche avenir. Grâce à cela, la limite de bruit
quantique de projection pour N = 104 atomes donne une stabilité de 10−17

à une seconde.

Toutefois, la meilleure stabilité à court terme obtenue à ce jour pour
une horloge à réseau optique (voir le chapitre 4) est encore deux ordres de
grandeur au-dessus de la limite du bruit de projection quantique. Cela est
principalement dû à l’effet Dick [22]. L’effet Dick décrit le crénelage du bruit
du laser à haute fréquence par l’interrogation séquentielle des atomes et l’im-
pact est double. D’un côté entre le bruit de fréquence du laser d’interrogation
où la stabilité de l’horloge est améliorée lorsque le bruit laser est diminué.
De l’autre côté est l’échantillonnage stroboscopique du bruit du laser par les
atomes, et en améliorant la séquence en augmentant la fraction du temp de
cycle consacrée à l’interrogation — le rapport cyclique — la stabilité aug-
mentera également.

Organisation de la thèse

L’expérience de l’horloge à Sr au SYRTE est lancée en 2000. En 2006 la
construction d’une deuxième horloge Sr à réseau optique est lancée. La rai-
son principale pour cela était d’avoir la possibilité de faire des comparaisons
optique-optique entre les deux horloges et ne pas être limité par le la stabi-
lité des fontaines à micro-ondes qui sont par ailleurs disponibles au SYRTE.
J’ai commencé mon travail de thèse sur la première horloge Sr en septembre
2007. Cette thèse est principalement concerné par les différentes façons que
nous avons adoptées pour accrôıtre la stabilité de l’horloge à réseau à Sr ; en
augmentant le rapport cyclique de l’horloge et en réduisant les fluctuations
de fréquence du laser d’horloge. À l’époque où j’ai commencé ma thèse, la
faisabilité des horloges à réseau optique à Sr avait été démontrée et il était
démontré que certains des effets possibles dus au réseau ne poseraient pas un
problème [16]. La meilleure stabilité démontrée à cette époque était compa-
rable à celle des fontaines Cs au niveau des mi-10−14 à une seconde [13, 4],
loin de la stabilité ultime de 10−17/

√
τ . Il restait aussi à démontrer que tous

les décalages liés au piège peuvent être contrôlés à un niveau mieux que 10−16.

Au cours de mon travail de thèse, la stabilité de l’horloge à Sr au SYRTE
a été augmenté de plus d’un ordre de grandeur. Encore plus peut être obtenue
en utilisant une mesure de phase non-destructive, que nous avons développée
pour détecter la probabilité de transition des atomes. Enfin, ma dernière
participation concernait les décalages de fréquence liés au réseau optique,
qui sont évalués avec une exactitude inégalée au niveau de 10−18.
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La thèse est organisée comme décrit dans le suivant. Le premier cha-
pitre décrit la théorie générale derrière les horloges à réseau optique, y com-
pris les décalages systématiques qu’on peut s’attendre. Le chapitre 2 décrit
brièvement le fonctionnement expérimental de notre horloge Sr à réseau avec
le plus grand accent sur les éléments qui ont été mis en œuvre depuis le début
de ma thèse. Le troisième chapitre détaille la conception que nous avons mise
au point pour détecter non-destructivement la probabilité de transition des
atomes. Cette méthode peut augmenter considérablement le rapport cyclique
de l’horloge car les atomes peuvent être recyclés d’un cycle à l’autre, ce qui
augmente la stabilité de l’horloge. Le quatrième chapitre décrit la mise en
œuvre d’une nouvelle cavité ultra-stable pour la stabilisation du laser d’hor-
loge. Les différentes sources de bruit sont évalués et la stabilité résultante
de fréquence démontrée est parmi les meilleurs du monde. Dans le cinquième
chapitre les résultats des deux chapitres précédents sont utilisés pour calculer
la stabilité qu’on peut s’attendre pour l’horloge Sr. La stabilité attendue est
un ordre de grandeur mieux que l’état de l’art actuel. Le dernier chapitre
traite des résultats expérimentaux plus récentes à partir des comparaisons
entre les deux horloges Sr au SYRTE, y compris des résonances ultra-fine, une
réduction de l’effet Dick en synchronisant les deux horloges, et une évaluation
des décalages de fréquence liés au réseau.

Conclusion

Dans ma thèse, j’ai présenté le travail que j’ai fait sur l’expérience de
l’horloge Sr à réseau optique au SYRTE, Observatoire de Paris, à partir de
Septembre 2007 jusqu’à la fin du mois d’août 2010.

Horloges à réseau optique sont une nouvelle génération d’horloges où plu-
sieurs milliers d’atomes neutres sont piégés dans un piège dipolaire. L’idée a
été conçue autour de l’an 2001 [36], avec le point central étant la capacité
d’annuler les décalages lumineux du piège et d’avoir une transition d’hor-
loge J = 0 → J = 0 insensible à la polarisation du piège, ce qui permet en
principe pour l’horloge à parvenir à un niveau d’incertitude de 10−18 [60].

En orientant le réseau verticalement, l’effet tunnel entre les puits est for-
tement interdit, et le régime Lamb-Dicke peut être atteint, même pour des
profondeurs du piège peu profonds [39]. Cependant, il est encore très im-
portant pour l’exactitude de l’horloge d’évaluer les décalages de fréquence
liés au réseau pour la profondeur à laquelle l’horloge fonctionne. Au début
de ma thèse, certains de ces décalages avaient été mesurés, mais pas résolu
[14], certains n’avaient pas encore été observé [58], et enfin, certaines de
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ces évaluations assuraient seulement que les effets du réseau pourrait être
contrôlés au niveau de l’exactitude ultime prévue de 10−18 si la profondeur
du réseau était relativement petit, U0 ≤ 10Er [16]. Au-dessus de U0 = 10Er

l’effet du réseau n’était pas connu.
L’observation résolue et une petite valeur des décalages liés au réseau

est très important pour fournir la preuve que les horloges à réseau optique
peuvent en effet atteindre un niveau de 10−18 aussi pour des profondeurs de
piège élevées — quelque chose qui est avantageux dans plusieurs façons.

Pendant la dernière partie de mon travail de thèse plusieurs de ces décalages
de fréquence liés au réseau ont été évalués avec une exactitude sans précédente
en comparant deux horloges Sr à réseau optique.

Le décalage tensoriel a été observé pour la première fois avec une incer-
titude de 0.0015 mHz/Er, ce qui assure que, même pour des profondeurs de
piège jusqu’à U0 = 200Er, le décalage tensoriel est connu à un niveau miuex
que 10−18 lorsque le réseau fonctionne à la longueur d’onde magique. A ce
niveau d’exactitude, pour U0 = 200Er la fréquence du laser du piège doit
être contrôlée au niveau 100 kHz pour rester à la longueur d’onde magique.

D’une nouvelle mesure de la hyperpolarisabilité, nous avons pu desserrer
les contraintes sur la profondeur du piège de manière significative, montrant
que la contribution à l’incertitude ne sera pas plus qu’au niveau de 10−18 si
le réseau est maintenu à U0 ≤ 50Er.

Enfin, nous avons mesuré pour la première fois le décalage vectoriel du
réseau. Les mesures ont entrâıné à une limite inférieure pour le décalage de
|∆νv| ≥ (13.04± 0.19) mHz (U0/Er). En fonctionnement normal de l’horloge
le champ magnétique utilisé pour le pompage optique est aligné orthogonal
au réseau et la polarisation du réseau est linéaire à un degré élevé, deux
facteurs qui contribuent à réduire considérablement le décalage vectoriel. En
outre, grâce au sondage symétrique des états Zeeman (±mF ) le décalage est
annulé en moyenne et le décalage vectoriel ne doit pas être un facteur limitant
pour la performance ultime des horloges Sr à réseau optique.

L’évaluation précise des décalages liés au réseau est indispensable pour
une détermination sans ambigüıté de la faisabilité d’une horloge à réseau
optique à ultra-haute précision, et les mesures décrites dans cette thèse as-
surent que même pour des grands profondeurs de piège jusqu’à U0 = 50Er,
les décalages liés au réseau peuvent être contrôlé au niveau de 10−18. Un
piège profond peut fournir l’opportunité de tester avec plus de précision
d’autres effets liés à l’accouchement, telles que linepulling des bandes latérales
et des décalages dus aux collisions froides entre les atomes [29]. Il permet
également une vérification des calculs dans [39], ce qui veille que les atomes
sont en effet dans le régime Lamb-Dicke. Enfin, pour la plupart des situa-
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tions expérimentales, ayant un profond piège au cours de la interrogation se
traduira par un plus grand nombre d’atomes et un plus grand signal.

Un des grands avantages des horloges à réseau optique est la possibi-
lité d’obtenir une stabilité à court terme de plusieurs ordres de grandeur
supérieure à celle des horloges à ions. Cependant, ce n’est actuellement
pas encore le cas. La raison principale pour ceci est que l’échantillonnage
périodique du bruit du laser d’horloge par les atomes réduit la stabilité par
l’effet Dick [22]. Deux voies peuvent être prises, qui conduisent toutes les
deux à réduire l’effet Dick. Réduire le bruit du laser est l’un et d’augmenter
le rapport cyclique de l’horloge est l’autre.

L’exactitude élevée des mesures des décalages liés au réseau est rendue
possible par une augmentation de la stabilité de la mise en œuvre d’une
nouvelle cavité ultra-stable pour le laser d’horloge. La cavité est réalisée avec
un spacer ULE et deux miroirs en silice fondue. L’utilisation de la silice
fondue pour le substrat des miroirs au lieu d’ULE assure un petit bruit
thermique. Toutefois, le matériaux des miroirs nécessite également un haut
degré de stabilisation thermique. Cela a été réalisé en entourant la cavité avec
trois écrans thermique dorés et en stabilisant activement la température de
la chambre à vide en utilisant des éléments Peltier. Le plancher de bruit
thermique démontré expérimentalement est au niveau de 6.5 · 10−16. Cela
représente actuellement le meilleur la stabilité obtenue pour une cavité de
cette longueur et longueur d’onde.

Grâce à l’excellente stabilité du laser, une largeur de raie atomique de
3.2 Hz, correspondant à un facteur de qualité de Q = 1.34 ·1014, a été obtenu
en un seul balayage à travers de la résonance de l’horloge Sr au SYRTE. Cela
représente un des plus hauts facteurs de qualité jamais obtenu.

Actuellement, avec la nouvelle cavité mise en œuvre, les stabilités des deux
horloges Sr au SYRTE sont dans les bas 10−15/

√
τ . Pour pousser la stabilité

en-dessous de 10−15/
√
τ , l’effet Dick peut être encore réduit en utilisant la

technique de détection non-destructive que nous avons développée. Ici, un
faisceau sonde de faible intensité acquiert un déphasage proportionnel au
nombre d’atomes dans l’état fondamental. La mesure de phase est réalisée
dans un interféromètre Mach-Zender avec un fort oscillateur local. La mesure
est limitée par le bruit grenaille des photons ce qui donne un rapport signal-
bruit de 100 par mesure. Nous gardons 95% des atomes dans le piège d’un
cycle à l’autre, ce qui nous permet de recycler les atomes, augmenter le
rapport cyclique et diminuer l’effet Dick.

La stabilité de la cavité démontrée peut être utilisée pour estimer ce qui
serait la stabilité limitée par l’effet Dick de l’horloge Sr en utilisant la tech-
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nique de détection non-destructive. Le résultat du calcul pour des paramètres
expérimentaux typiques est au niveau de 2 · 10−16/

√
τ , un ordre de grandeur

meilleure que l’état de l’art actuel.
Une amélioration supplémentaire est possible par une rejection du bruit

du laser en synchronisant l’interrogation des deux horloges, car ils partagent
le même laser d’horloge. Lorsque synchronisées, il était possible de rejeter le
bruit du laser jusqu’à un facteur de deux dans le comparaison entre les deux
horloges, atteignant ainsi un niveau de 10−16 après environ 1000 secondes de
temps d’intégration.

Les perspectives de l’avenir immédiat de l’ensemble d’horloges Sr serait de
complètement déterminer les décalages dus au réseau, telles que le décalage lié
au mouvement atomique proportionnel à

√
U0, comme décrit dans la section

1.4.1 et [58].
Le fait d’avoir deux horloges Sr à réseau optique dans le même laboratoire

offre une occasion unique de tester tous les effets systématiques, et de faire
un budget d’erreur complet pour les horloges est la prochaine étape. Comme
les deux horloges Sr sont gardées dans la même pièce, nous nous attendons
que la différence de fréquence entre les deux horloges est exactement zéro.
Toute déviation de zéro doit être attribuée à un décalage systématique, et
peut être étudiée en gardant une des horloges comme référence et faisant
varier les paramètres de l’autre.

Une autre perspective est une modification de la géométrie de la cavité du
piège, ce qui est actuellement en cours au SYRTE. Dans la nouvelle configu-
ration, la cavité est placée à l’intérieur de la chambre à vide, et le revêtement
est tel qu’il y a une réflectivité élevée à la fois pour le réseau et la lumière
bleue à 461 nm en résonance avec la transition 1S0 − 1P1 . Cette conception
de cavité a plusieurs avantages par rapport à l’actuelle. Tout d’abord, le fait
que les miroirs de la cavité sont à l’intérieur de la chambre à vide les permet
d’être beaucoup plus proche qu’avant, ce qui donne une plus grande finesse
— nous attendons autour de F = 400 — et avec une efficacité de couplage
plus élevée nous nous attendons à des profondeurs du réseau allant jusqu’à
U0 = 20 000Er pour la puissance d’entrée actuelle. Ce n’augmente pas seule-
ment énormément la possibilité de tester tous les décalages liés au piège, en
particulier l’hyperpolarisabilité, mais devrait également se traduire par une
plus grande durée de vie et, partant, un plus grand nombre d’atomes piégés.
La limitation de durée de vie due au bruit de fréquence du laser réseau est
déterminée par le niveau de bruit à deux fois la fréquence d’oscillation dans le
piège. L’augmentation de U0 conduit à une augmentation de cette fréquence
d’oscillation à un régime où le laser devrait être moins bruyant. La structure
plus rigide devrait également augmenter la bande passante de la verrouillage
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de la puissance intra-cavité augmentant ainsi la capacité de compenser les
fluctuations de fréquence du laser réseau. Une autre caractéristique est que la
cavité est linéaire de sorte que la polarisation intra-cavité est le même qu’à
l’extérieur de la cavité, ce qui est utile pour la détermination du décalage
vectoriel.

Deuxièmement, puisque la cavité est également conçu pour avoir une
finesse similaire pour la lumière bleue, nous nous attendons à une augmen-
tation significative du rapport signal à bruit d’un facteur de ∼

√
F = 20 en

utilisant la technique de détection non-destructive. Ceci, ainsi que l’augmen-
tation du nombre d’atomes piégés dans le très profond piège, devrait nous
permettre d’augmenter encore la stabilité de l’horloge à court terme.

Pourtant, il y a un long parcours avant qu’on peut atteindre la limite
quantique de la stabilité projetée à 10−17/

√
τ . Les outils décrits dans cette

thèse peut aider à ce voyage, bien que des idées nouvelles doivent être trouvées
pour atteindre le niveau de 10−17/

√
τ .

Une telle idée est suggérée dans [42] (voir aussi la section 4.5), où une
cavité d’une grande Q pour le laser d’horloge est placée à l’intérieur de
la chambre à vide. Ici, non seulement la stabilité du laser d’horloge serait
bénéfique, un tout nouveau domaine physique pourrait être atteint — le
régime du couplage fort — qui, en plus d’intrication quantique et compres-
sion de spin, pourrait conduire à des observations des effets inconnus, car
ayant à la fois un fort confinement des atomes et un couplage fort à la lumière
avec une largeur de raie très étroite est quelque chose qui n’a pas encore été
atteint.

Comme mentionné dans l’introduction, les horloges atomiques peuvent
également être utilisées pour tester la variation temporelle des constantes
fondamentales. Lorsque l’exactitude et la stabilité de des horloges atomiques
augmentent, les limites de la variation deviennent plus strictes et le temps
qu’il faut pour obtenir ces limites est réduit, conduisant à la possibilité de tes-
ter quelques théories fondamentales de la physique avec une précision sans
précédente. Les fontaines atomiques à l’état de l’art avec Cs et Rb sont
opérées au SYRTE depuis plusieurs années déjà, et avec la construction en
cours d’une horloge à réseau à Hg, il y aura une occasion exceptionnelle de
réaliser ces tests entre quatre espèces atomiques différentes.

La comparaison entre les deux horloges Sr à réseau optique décrite ici a
déjà démontré un écart type d’Allan qui descend en dessous de 10−16 après
environ une heure d’intégration, et avec le contrôle des décalages liés au
réseau démontré dans cette thèse, l’ensemble des horloges Sr au SYRTE est
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maintenant à l’état de l’art, comparable aux meilleures standards d’horloge
à ions. Le budget d’erreur pour l’horloge Sr sera probablement dominé par
la contribution du rayonnement du corps noir, et pour atteindre une incer-
titude inférieure à 10−17, l’horloge devrait probablement être contenue dans
un environnement cryogénique. Dans ce cas, le plus grand obstacle pour at-
teindre l’exactitude obtenue par les meilleures horloges à ions — ou bien,
aller au-delà — est le décalage possible du aux collisions entre les atomes
froids [17, 29]. Si ce décalage semble problématique, il peut vraisemblable-
ment être réduit de manière significative par le passage à une configuration
du réseau en 2D ou 3D.

Le contrôle des décalages liés au réseau et la possibilité d’une imminente
forte augmentation de la stabilité à court terme assure un avenir prometteur
pour les horloges Sr à réseau optique.
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Abstract

This thesis presents the latest achievements regarding the Sr optical lattice clock
experiment at LNE-SYRTE, Observatoire de Paris. After having described the
general principles for optical lattice clocks and the operation of the clock in ques-
tion, the emphasis is put on the features that have been added to the experiment
since 2007. The most important new elements are an ultra-stable reference cavity
for the clock laser, the development of a non-destructive detection technique, and
the construction of a second Sr lattice clock. The ultra-stable cavity is constructed
from a ULE spacer and fused silica mirrors and has shown a thermal noise floor at
6.5 · 10−16, placing it among the best in the world. The non-destructive detection
is effectuated by a phase measurement of a weak probe beam that traverses the
atoms placed in one arm of a Mach-Zender interferometer. The non-destructive
aspect enables a recycling of the atoms from cycle to cycle which consequently in-
creases the duty cycle, allowing for an increase of the stability of the clock. With
these new tools the frequency stability is expected to be 2.2 · 10−16/

√
τ for an op-

timized sequence. The most recent comparisons between the two Sr clocks reach
an accuracy level of 10−16 after about 1000 s, and this way we have been able to
characterize lattice related frequency shifts with an unprecedented accuracy. The
measurements ensure a control of lattice related effects at the 10−18 level even for
trap depths as large as 50Er.

Key words: optical frequency standard, cold atoms, ultra-stable laser, Dick effect,
optical lattice.

Résumé

Ce mémoire présente les dernières avancées de l’horloge à réseau optique à atomes
de strontium du LNE-SYRTE, Observatoire de Paris. Après avoir passé en re-
vue les principes généraux des horloges à réseau optique et le fonctionnement de
l’horloge, l’accent est mis sur les améliorations qui ont été apportées à l’expérience
depuis 2007. Les éléments les plus importants sont une nouvelle cavité ultra-stable
de référence pour le laser d’horloge, le développement d’une technique de détection
non-destructive, et la construction d’une deuxième horloge à réseau optique de Sr.
La cavité ultra-stable est composée d’un spacer ULE et deux miroirs en silice fon-
due et a montré un niveau de bruit thermique à 6.5 ·10−16, ce qui la place parmi les
meilleures du monde. La détection non-destructive est réalisée par une mesure de
phase d’un faisceau sonde de faible intensité qui traverse les atomes placés dans un
bras d’un interféromètre Mach-Zender. L’aspect non-destructif permet de recycler
les atomes d’un cycle à l’autre et augmente par conséquent le rapport cyclique,
ce qui permet d’optimiser la stabilité de l’horloge. Avec ces nouveaux outils la
stabilité de fréquence attendue est à 2.2 · 10−16/

√
τ pour une séquence optimisée.

Les comparaisons les plus récentes entre les deux horloges Sr atteignent un niveau
de stabilité de 10−16 après environ 1000 s, ce qui nous a permis de caractériser
les décalages de fréquence liés au réseau avec une précision sans précédent. Ces
mesures assurent un contrôle des effets liés au réseau au niveau de 10−18, même
pour des profondeurs de piège aussi grandes que 50Er.

Mots clefs: étalon de fréquence optique, atomes froids, laser ultra-stable, effet
Dick, réseau optique.
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