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viii RÉSUMÉ

Résumé

Les fournisseurs d’accès Internet souhaitent avoir une bonne connaissance du trafic traversant
leur réseau, pour de nombreuses opérations contribuant à la bonne gestion du trafic et à la
maintenance du réseau. Une partie essentielle de l’information dont ils ont besoin pour ces tâches
est la matrice de trafic, qui indique les volumes de trafic pour chaque paire origine-destination
du réseau pendant un laps de temps donné, c’est à dire le nombre d’octets ayant transité depuis
chaque nœud d’entrée vers chaque nœud de sortie pendant la période considérée. L’importance des
opérations d’ingénierie du trafic s’appuyant sur la donnée de cette matrice ne cesse d’augmenter,
puisque le trafic à traiter augmente et se diversifie, devenant plus complexe d’année en année.
Mais en pratique, il est très difficile d’obtenir des estimations précises des demandes de trafic
en origine-destination. Contrairement à ce que l’intuition peut laisser croire, les mesures sur les
réseaux sont : (i) souvent indisponibles au niveau de certains routeurs non instrumentés ; (ii)
coûteuses ; (iii) susceptibles d’affecter la qualité de service. Les décision concernant l’emplacement
des mesures à prendre, ainsi que leur taux d’échantillonage constituent donc un enjeu crucial.

Nous abordons le problème de l’optimisation des mesures dans les réseaux par une approche
fondée sur la théorie des plans d’expériences optimaux. Cette théorie étudie comment allouer l’ef-
fort expérimental à un ensemble d’expériences disponibles, quand le but est de maximiser la qualité
de l’estimation d’un paramètre inconnu. Si l’on considère chaque localisation possible du logiciel
de mesure comme une expérience, et la matrice de trafic comme le paramètre inconnu, on obtient
une formulation de type plans d’expériences de notre problème de télécommunications. Cepen-
dant, les algorithmes classiques en conception optimale d’expériences se révèlent inefficaces sur les
grands réseaux. Par ailleurs, la difficulté est augmentée par le fait que chaque mesure peut four-
nir plusieurs observations simultanées des demandes de trafic (conception optimale d’expériences
multiréponses).

Dans la première partie de cette thèse, nous développons une approche fondée sur l’Optimisation
Conique du Second Ordre (SOCP), pour résoudre des problèmes de grande taille en conception
optimale d’expériences multiréponses. Un avantage clé de notre approche est que le solver PCSO
ne gère que des matrices creuses et de tailles modérées, tandis que les algorithmes classiques
ont besoin de gérer de grandes matrices pleines pour résoudre les même instances. De plus, l’ap-
proche par PCSO permet une grande flexibilité dans la définition des contraintes sur les plans
d’expériences. Le cœur de notre méthode est un théorème de réduction du rang en optimisation
semi-définie, qui permet une description géométrique simple des plans d’expériences optimaux.
Certains aspects combinatoires –qui apparaissent typiquement lorsque l’opérateur souhaite choisir
un sous-ensemble de routeurs à instrumenter pour qu’ils puissent prendre des mesures– sont égale-
ment étudiés. Grâce à des inégalités matricielles et à des techniques d’optimisation sous-modulaire,
nous formulons des bornes sur la performance de l’algorithme glouton et de techniques d’arrondis.

L’application à l’inférence des matrices de trafic dans les réseaux de télécommunication fait
l’objet de la seconde partie de ce manuscrit. Lorsque l’on dispose uniquement de mesures partielles
sur le réseau, l’état de l’art est une méthode –dite tomogravitaire– qui comble les données man-
quantes en résolvant des problèmes de minimisation d’entropie. La qualité de l’estimation obtenue
dépend toutefois grandement de la localisation et des taux d’échantillonage des mesures dispo-
nibles. Les expériences numériques présentées en première partie montrent que notre approche
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par PCSO est la plus efficace pour le problème de conception c−optimale, i.e. lorsque l’expéri-
mentateur cherche à estimer une combinaison linéaire seulement des paramètres inconnus (dans
notre cas, les demandes de trafic) ; nous développons donc une méthode –baptisée plans successifs
d’expériences c−optimales– dans laquelle on considère plusieurs combinaisons linéaires (tirées de
façon aléatoire) des demandes de trafic. Notre approche est comparée aux précédentes, et évaluée
sous de nombreux points de vue, par l’intermédiaire de simulations avec des données réelles. En
particulier, nous traitons des instances pour lesquelles les approches précédentes étaient incapable
de fournir une solution. Finalement, nous proposons de nouvelles directions pour les techniques
d’estimation de la matrice de trafic dans un chapitre d’ouverture. Nous mettons en évidence la
structure de petit rang des matrices de trafic, grâce à la théorie des matrices aléatoires et à des dé-
compositions de tenseurs. Enfin, nous présentons l’esquisse préliminaire d’une approche tensorielle
qui semble améliorer la méthode tomogravitaire.
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Summary

Internet Service Providers (ISP) wish to have a good knowledge about the traffic which transit
through their networks, for many traffic engineering and network planning tasks. An essential part
of the required information is the traffic matrix, which contains the volumes of traffic for each
origin-destination pair of the network during a given period of time, i.e. the number of bytes that
has travelled from any entry node to any exit node. The importance of the networking operations
relying on the traffic matrix is increasing as the traffic grows in volume and becomes more complex,
but in practice, obtaining accurate estimations of the demands of traffic is a challenging issue.
Contrarily to what intuition may suggest, network measurements are: (i) often not available
everywhere; (ii) expensive; (iii) likely to affect the quality of service. It is thus a crucial issue to
decide where network measurements should be performed, as well as their sampling rates.

We approach the problem of optimizing the network measurements by using the theory of
optimal experimental designs. This theory studies indeed how to allocate the experimental effort
to a set of available experiments, in order to maximize the quality of estimation of an unknown
parameter. Thinking of each potential location of the measuring software as an experiment, and
the traffic matrix as the unknown parameter, one obtains a nice optimal experimental design
formulation of our telecommunications problem. However, the classic optimal experimental design
algorithms are intractable on large scale networks, because very large matrices are involved. In
addition, the difficulty is increased by the fact that each measurement yields several simultaneous
observations of the unknown volumes of traffic (optimal design of multiresponse experiments).

In the first part of this thesis, we develop an approach relying on Second Order Cone Pro-
gramming (SOCP) to solve large-scale, multiresponse optimal experimental design problems. An
important advantage of our approach is that the SOCP solver handles sparse matrices of moderate
size, while classic algorithms need store large full matrices to solve the same instances. Moreover,
SOCP solvers allow one to define constraints on the experimental design with lots of flexibility. At
the heart of our method is a rank reduction theorem in semidefinite programming, which allows a
simple geometrical characterization of the optimal designs. Some combinatorial problems –which
typically arise when an ISP wants to choose a subset of routers to upgrade, so that they will
support a measuring software– are also studied. Thanks to matrix inequalities and submodular op-
timization techniques, we specify some lower bounds for the performance of greedy and rounding
algorithms.

The application to the inference of the traffic matrix in telecommunication networks is the
object of the second part of this manuscript. When partial measurements are available, the state of
the art is the so-called tomogravity method, in which the lack of information is handled by solving
entropy minimization problems. The quality of the obtained estimation nevertheless depends
grandly of the localization and sampling rates of the available measurements. The numerical
experiments presented in the first part show that our SOCP approach is most efficient for the
c−optimal design problem, i.e. when the experimenter wants to estimate only a linear combination
of the unknown parameters (in our case, the traffic demands); we therefore develop a method –
called successive c−optimal designs– in which several randomly drawn linear combinations of the
traffic demands are considered. This approach is compared to previous ones, and is fully evaluated
by mean of simulations relying on real data. In particular, we handle some instances that were
previously intractable. Finally, new directions for the techniques of estimation of the traffic matrix
are considered in a perspectives chapter. By mean of the theory of random matrices and tensor
decompositions, we evidence the low-rank structure of traffic matrices. The preliminary sketch of
a tensorial approach, which seems to improve on the classic tomogravity method, is presented.
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Chapitre 1

Introduction (en Français)

1.1 Plans d’expériences optimaux et Mesures dans les réseaux

Les fournisseurs d’accès Internet souhaitent avoir une bonne connaissance du trafic tra-
versant leur réseau, pour de nombreuses opérations contribuant à la bonne gestion du trafic
et à la maintenance du réseau. Une partie essentielle de l’information dont ils ont besoin
pour ces opérations est la matrice de trafic, qui indique les volumes de trafic pour chaque
paire origine-destination du réseau pendant un laps de temps donné, c’est à dire le nombre
d’octets ayant transité depuis chaque nœud d’entrée vers chaque nœud de sortie pendant la
période considérée. L’importance des opérations d’ingénierie du trafic reposant sur la donnée
de cette matrice de trafic ne cesse d’augmenter, puisque le trafic à traiter augmente et se
diversifie, devenant plus complexe d’année en année. Mais en pratique, il est très difficile
d’obtenir des estimations précises des demandes de trafic en origine-destination. Contraire-
ment à ce que l’intuition peut laisser croire, les mesures sur les réseaux sont : (i) souvent
indisponibles au niveau de certains routeurs non instrumentés ; (ii) coûteuses ; (iii) suscep-
tibles d’affecter la qualité de service. Les décisions concernant l’emplacement des mesures
à prendre, ainsi que leur taux d’échantillonage constituent donc un enjeu crucial.

Nous abordons le problème de l’optimisation des mesures dans les réseaux par une ap-
proche fondée sur la théorie des plans d’expériences optimaux 1. Cette théorie étudie com-
ment allouer l’effort expérimental à un ensemble d’expériences disponibles, dans le but de
maximiser la qualité de l’estimation d’un paramètre inconnu. Si l’on considère chaque loca-
lisation possible du logiciel de mesure comme une expérience, et la matrice de trafic comme
le paramètre inconnu, on obtient une formulation de type plans d’expériences de notre
problème de télécommunications. Cependant, les algorithmes classiques pour la conception
optimale d’expériences se révèlent inefficaces sur les grands réseaux, principalement parce
que de très grandes matrices entrent en jeu.

Cette observation a été notre motivation principale pour rechercher des algorithmes
qui passent à l’échelle en conception d’expériences optimales. Nous avons développé une

1. ou conception d’expériences optimales

1
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approche reposant sur la Optimisation Conique du Second Ordre (SOCP), une classe de
problèmes d’optimisation généralisant la Programmation Linéaire (LP), et qui peuvent être
résolus par des méthodes de points intérieurs en un temps bien plus court que les Problèmes
d’optimisation Semi-Définie (SDP) de la même taille. Cette approche se révèle particuliè-
rement efficace pour les problèmes où l’on cherche à estimer un petit nombre de fonctions
linéaires des paramètres inconnus.

En fait, notre approche ne s’applique pas directement au le problème de télécommunica-
tions initial. Cela vient du fait que l’opérateur cherche généralement a estimer l’intégralité
de la matrice de trafic (tandis que notre approche par SOCP est la mieux adaptée pour
l’estimation d’une combinaison linéaire des volumes de trafic). Pour résoudre ce problème,
nous avons introduit une méthode pour l’estimation de tous les paramètres du modèle, qui
repose repose sur le calcul de plusieurs plans c−optimaux.

Un autre problème est lié aux aspects combinatoires de l’application industrielle : si un
opérateur souhaite instrumenter un certain nombre de nœuds du réseau afin qu’ils supportent
un logiciel de mesure, la formulation naturelle pour choisir quel nœud du réseau équiper en
priorité est un plan d’expériences optimal en nombre entiers. Ce problème est principalement
traité par des approches heuristiques dans la littérature. Ceci a motivé notre travail sur la
sous-modularité des critères d’information pour les plans optimaux, et a conduit à des
résultats d’approximabilité en temps polynomial de certains problèmes NP-difficiles.

1.2 Organisation et contributions de ce manuscrit

Cette thèse est organisée en deux parties. La première partie est consacrée à des résultats
théoriques et algorithmiques en conception optimale d’expériences, qui reposent sur des
outils de programmation mathématique et d’optimisation sous-modulaire. Ces résultats ont
émergé d’un problème industriel concernant les réseaux de télécommunication, dont l’étude
fera l’objet de la seconde partie de ce manuscrit. Nous détaillons ci-dessous le contenu de
cette thèse, chapitre par chapitre. Nous dresserons ensuite une liste des contributions de ce
manuscrit.

1.2.1 Résumé détaillé

Première Partie : Plans d’expériences optimaux

Dans la première partie, nous présentons des résultats théoriques pour le calcul de plans
d’expériences optimaux. Nous nous focaliserons sur les modèles de régression linéaire où le
nombre d’expériences disponibles est fini, et nous mettrons l’accent sur le cadre multiré-

ponses. Ce dernier correspond à la situation dans laquelle une seule et même expérience
peut fournir plusieurs observations simultanées du paramètre inconnu. Les deux premiers
chapitres de cette partie reprennent essentiellement l’état de l’art sur la théorie des plans
d’expériences optimaux. Les chapitres suivants (4–7) contiennent de nouveaux résultats.
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Chapitre 2 : Une introduction à la théorie des plans d’expériences optimaux La théorie
des plans d’expériences optimaux est une branche importante des statistiques, à l’interface
avec l’optimisation, qui a de nombreux champs d’applications. Son but est de trouver les
valeurs qu’un expérimentateur doit donner aux variables de contrôle des expériences à sa
disposition, avant de les réaliser. Ces variables de contrôle peuvent prendre différentes formes
(nombre de fois qu’on va réaliser une expérience, taux d’échantillonage d’un appareil de
mesure, temps pendant lequel on enregistre des résultats, etc.), et affectent les données
mesurées. L’estimation que l’expérimentateur fait des quantités qu’il souhaite mesurer va
donc dépendre de ces variables.

Dans ce chapitre, nous passons en revue un certain nombre de résultats classiques en
conception optimale d’expériences. Nous nous focalisons sur les modèles de régression li-
néaires, où l’espérance de chaque quantité mesurée est une combinaison linéaire des para-
mètres inconnus. Nous nous plaçons en outre dans le cadre où une seule et même expérience
peut fournir plusieurs mesures simultanées : ce cadre multiréponses intervient naturellement
dans l’étude du problème de télécommunications traité en Partie II. Nous nous concen-
trons sur la théorie des plans approchés, où la variable de conception est un vecteur w

de somme 1, qui indique le pourcentage d’effort expérimental alloué à chaque expérience.
Dans le cas où l’ensemble des expériences disponibles X (l’espace de régression) est infini,
l’expérimentateur doit également choisir le sous-ensemble des expériences x1, . . . ,xs ∈ X
à réaliser.

Ce chapitre débute par une rétrospection historique de la théorie des plans d’expériences
optimaux, avec une présentation succincte des contributions d’Elfving, Kiefer, Fedorov et
Pukelsheim (entre autres). Nous introduirons ensuite la notation standard, et nous mon-
trerons que le théorème de Gauss-Markov donne une borne inférieure pour la matrice de
covariance de tout estimateur linéaire sans biais du vecteur des paramètres inconnus. De
plus, cette borne est atteinte par l’estimateur des moindres carrés. Ceci conduit à la défi-
nition de la matrice d’information d’un plan d’expériences (l’inverse de la meilleure matrice
de covariance possible), et à la formulation standard des problèmes de conception optimale
d’expériences (maximisation d’une fonction scalaire de la matrice d’information). Nous pas-
serons ensuite en revue les critères d’information les plus utilisés dans la littérature, et qui
permettent de définir les concepts de c, A, E, D, T, Φp-optimalité, et de S−optimalité
robuste.

La dernière partie de ce chapitre rappelle quelques résultats fondamentaux en conception
optimale d’expériences :
• Le théorème d’Elfving, qui donne une caractérisation géométrique simple de la

c−optimalité.
• Le théorème de Kiefer-Wolfowitz (1960), qui montre que le problème de conception
D−optimale est équivalent à un problème dual (appelé G−optimal), et donne une
condition nécessaire et suffisante d’optimalité, facile à vérifier en pratique.
• Le théorème d’équivalence général, découvert par Kiefer (1974) et étendu par Pu-

kelsheim (1980), qui généralise le résultat précédent à une large classe de critères
d’information.
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• Plusieurs conséquences du théorème d’équivalence général, comme des bornes pour les
poids en conception D−optimale où une formule explicite du plan A−optimal quand
les vecteurs de régressions forment une famille libre.

Chapitre 3 : Algorithmes classiques pour le calcul de plans optimaux De nombreux algo-
rithmes ont été proposés pour le calcul de plans d’expériences optimaux. Nous en présentons
certains dans ce chapitre. Nous restreignons notre étude au cas où le nombre d’expériences
est fini (où lorsque les expériences optimales sont données), de sorte que seul le vecteur
de poids w entre en jeu dans le problème d’optimisation, ce qui rend le problème convexe.
Ce cadre correspond à celui du problème telecoms étudié dans la seconde partie, puisque le
logiciel de mesures ne peut être activé que sur un ensemble (fini) de points du réseau.

Le premier algorithme que nous étudions est celui de Fedorov and Wynn pour le calcul de
plans D−optimaux. Cet algorithme s’inspire du théorème de Kiefer-Wolfowitz : le principe
consiste à partir d’un plan d’expériences arbitraire, puis de se déplacer à chaque itération
dans une direction donnée par l’évaluation du critère de G−optimalité. Le théorème de
Kiefer-Wolfowitz garantit qu’il s’agit d’une direction de descente. En fait, cet algorithme
appartient à la classe des méthodes de descentes faisables. Nous présentons l’extension de
cet algorithme a d’autres critères d’information et quelques résultats de convergence.

Nous présentons ensuite la classe des algorithmes multiplicatifs introduits par Titte-
rington. Dans ces algorithmes, l’ensemble des poids du plan d’expériences est mis à jour
à chaque itération, en les multipliant chacun par un facteur proportionnel au gradient du
critère d’information qu’on maximise. Nous présentons l’algorithme original de Titterington
et certaines de ses variantes, ainsi que des résultats récents concernant la convergence de
ces méthodes, obtenus par Dette, Pepelyshev et Zhigljavsky (2008) et Yu (2010).

Enfin, nous passons en revue les formulations basées sur l’optimisation semi-définie
(SDP) pour les problèmes de plans d’expériences optimaux. Les méthodes de points in-
térieurs pour résoudre ces problèmes d’optimisation semi-définie sont en général plus lentes
que les algorithmes multiplicatifs, mais l’approche SDP offre une grande flexibilité. En par-
ticulier, l’utilisateur peut ajouter « sans effort » des contraintes sur les plans d’expériences.
Nous donnerons plusieurs exemples des avantage de l’approche SDP.

Chapitre 4 : Un théorème de réduction du rang en Optimisation Semi-définie Ce chapitre
contient les résultats de [Sag09a], et présente un intérêt indépendemment du reste de ce
manuscrit. Le résultat principal affirme qu’une classe de problèmes d’optimisation semi-
définie –qui comprend la plupart des SDP étudiés au Chapitre 3– admet des solutions de
petit rang. En fait, l’intuition de ce résultat nous a été donnée par l’extension du théorème
d’Elfving au cadre multiréponses (Chapitre 5). Nous avons néanmoins choisi d’insérer ce
chapitre à cet endroit du manuscrit, car le théorème principal va s’avérer utile dans plusieurs
preuves du Chapitre 5, et mettre en lumière notre approche basée sur l’optimisation conique
du second ordre.
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La classe des problèmes considérés est celle des programmes de packing semi-définis,
qui sont les analogues SDP des problèmes de packing classiques en programmation linéaire.
Notre résultat montre que si la matrice qui définit la fonction objectif du SDP est de rang r,
alors le programme de packing semi-défini a une solution dont le rang est inférieur à r. Une
conséquence intéressante est le cas dans lequel r = 1, car la variable optimale X du SDP
peut alors se factoriser sous la forme X = xxT , et nous montrons que trouver x revient
à résoudre un problème d’optimisation conique du second ordre (qui est plus simple que le
SDP initial).

La preuve de notre résultat peut en fait s’étendre à une classe de problèmes plus large,
dans laquelle toutes les contraintes ne sont pas de type packing. Nous présentons également
cette version étendue de notre résultat.

Chapitre 5 : L’approche par Optimisation Conique du Second Ordre Ce chapitre reprend
les résultats de [Sag09b]. Nous montrons que de nombreux problèmes en conception optimale
d’expériences peuvent être formulés grâce à l’optimisation coniques du second ordre (SOCP).
Contrairement aux approches SDP vues au Chapitre 3, l’approche par SOCP reste efficace
pour de très grandes instances, et combine ainsi les avantages de flexibilité des SDP avec
la performance des algorithmes multiplicatifs.

Nous commençons par donner une extension du théorème d’Elfving. Ce résultat ca-
ractérise géométriquement les plans c−optimaux dans le cadre multiréponses : les poids
optimaux peuvent être lus à l’intersection d’une droite vectorielle et de la bordure de l’en-
veloppe convexe d’un ensemble d’ellipsoïdes. Nous montrons ensuite que tout problème de
plan A−optimal se ramène à un problème de plan c−optimal, pour des matrices d’obser-
vations augmentées. Notre résultat fournit donc une caractérisation géométrique des plans
A−optimaux.

Nous mentionons toutefois qu’un résultat équivalent a été formulé de façon indépendante
par Dette et Holland-Letz en 2009, dans un cadre différent. Dette et Holland-Letz ont
considéré un modèle hétéroscedastique (c’est à dire un modèle où la moyenne et la variance

des observations sont des fonctions du paramètre inconnu). Ce modèle peut se ramener à
considérer des matrices d’observations de rang k ≥ 2, de façon similaire au modèle des
expériences multiréponses. Nous proposons une preuve et une analyse des conséquences de
ce résultat différentes de celles de Dette et Holland-Letz.

Un corollaire de cette extension du théorème d’Elfving est une formulation SOCP du
problème de plan c− (ou A−) optimal pour des expériences multiréponses. Nous donnons
une seconde preuve de cette réduction basée sur le théorème du Chapitre 4 : Le SDP pour
la c−optimalité a une solution de rang 1, et se ramène à un SOCP. De façon plus générale,
nous verrons que les problèmes de conception A−optimale où le plan d’expériences est sujet
à plusieurs contraintes linéaires admettent une formulation SOCP. Là encore, nous donnons
deux preuves de ce résultat, l’une s’appuyant sur un argument de statistiques et l’autre sur
notre théorème de réduction du rang.
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Nous nous intéressons ensuite à d’autres critères d’optimalité. Nous montrons que le
problème de plan T−optimal pour un sous-système des paramètres inconnus se ramène
lui aussi à un SOCP. Enfin, nous considérons le critère robuste de S−optimalité introduit
par Läuter ; le problème de plan optimal correspondant se ramène à la minimisation d’une
moyenne géométrique sous des contraintes de type SOCP. En suivant une approche similaire
à celle de Dette (1993), nous obtenons alors une formulation SOCP pour le problème de
conception D−optimale. De plus, nous montrons que les conditions d’optimalité de notre
programme géométrique généralisent un théorème de Dette (1993) au cadre multiréponses.

Chapitre 6 : Comparaison numériques des algorithmes Nous évaluons dans ce chapitre
les bénéfices de notre approche par SOCP pour le calcul des plans d’expériences optimaux.
Notre approche se révèle très efficace pour plusieurs critères d’optimalité, surtout lorsque
le nombre r de fonctions linéaires des paramètres que l’on cherche à estimer est petit (en
particulier pour le problème de plan c−optimal).

Nous comparons notre approche avec les algorithmes classiques présentés au Chapitre 3,
à savoir les algorithmes d’échange de type Wynn–Fedorov, les algorithmes multiplicatifs à

la Titterington, et l’approche par optimisation semi-définie.

Plusieurs types d’instances sont considérées. Dans un premier temps, nous étudions
des instances aléatoires, dans le but d’évaluer dans quelle mesure les différents paramètres
(nombre d’expériences, nombre d’inconnues, critère maximisé, nombre de fonctions linéaires
que l’on cherche à estimer,...) affectent le temps de calcul. Nous nous intéressons ensuite à
des problèmes de régressions polynomiales, qui ont été très étudiés dans la littérature sur les
plans d’expériences. Nous présentons enfin quelques résultats numériques sur des instances
provenant de l’application aux réseaux qui fait l’objet de la seconde partie de ce manuscrit.

Chapitre 7 : Problèmes combinatoires en conception optimale d’expériences Ce cha-
pitre présente les résultats de [Sag10]. Certains résultats avaient également été annoncés
dans [BGS08]. Nous nous intéressons aux aspects combinatoires dans les problèmes de plans
d’expériences optimaux. Dans de nombreuses applications, les variables contrôlant les plans
d’expériences sont discrètes, voire binaires. Ce chapitre fournit des résultat d’approximabi-
lité en temps polynomial pour le problème de conception optimale d’expériences en nombres
entiers, qui est NP-difficile.

En particulier, nous établissons une inégalité matricielle qui montre que la fonction ob-
jectif du problème d’optimisation considéré est sous-modulaire. Nous en déduisons que l’ap-
proche gloutonne –qui a souvent été utilisée pour ce problème– fournit toujours un plan
d’expériences qui approche l’optimum par un facteur d’au moins 1− 1/e ≈ 62%. Notre ré-
sultat d’approximabilité peut également s’étendre au cas où les expériences n’ont pas toutes
le même coût.

Nous étudions ensuite les algorithmes consistant à arrondir la solution du problème re-
lâché continu, une approche qui a été appliquée par de nombreux auteurs. Lorsque l’on
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souhaite choisir un sous-ensemble de n parmi s expériences, nous montrons que le plan
D−optimal peut être arrondi aléatoirement, de façon à obtenir un plan d’expérience entier,
pour lequel la dimension du sous-espace observable approche l’optimum par un facteur n

s

avec une grande probabilité. Si ce résultat peut sembler plus faible que le résultat d’ap-
proximation gloutonne précédent, nous montrons néanmoins que le facteur n

s
est (presque)

optimal, car il y a des instances pour lesquelles le ratio d’approximabilité moyen est de n
s−1

Seconde Partie : Contrôle optimal des grands réseaux

Dans la seconde partie de ce manuscrit (page 145), nous étudions une application de
la théorie des plans d’expériences optimaux pour le contrôle optimal des grands réseaux
backbone. Les fournisseurs d’accès à Internet souhaitent surveiller le trafic sur leur réseau
pour plusieurs raisons. Dans cette thèse, nous nous concentrons sur l’une d’entre elles
uniquement : le problème de l’estimation la plus précise possible de la matrice de trafic.
Cette matrice donne le volume de trafic pour chaque paire Origine-Destination du réseau,
et est nécessaire pour de nombreuses opérations contribuant à la bonne gestion du trafic et
à la maintenance du réseau. Nous pensons que notre approche (optimisation des mesures
pour l’estimation de la matrice de trafic) est bien fondée car elle indique comment choisir
les mesures afin de capturer le plus d’information possible sur le trafic dans le réseau.

Les deux premiers chapitres de la seconde partie présentent l’état de l’art sur l’esti-
mation des matrices de trafic dans les réseaux IP (Chapitre 8), avec un accent particulier
sur les approches basées sur la théorie de l’information et les projections entropiques, ainsi
que leur rapport historique avec les problème de matrix balancing (Chapitre 9). Le cha-
pitre 10 contient les principaux résultats de cette partie, et des perspectives sont présentés
au Chapitre 11.

Chapitre 8 : Estimation des matrices de trafic : État de l’art L’estimation des matrices de
trafic dans les réseaux a fait l’objet de recherches intensives pendant la dernière décennie, de
la part des opérateurs Internet et de la communauté académique travaillant sur les réseaux.
Dans ce chapitre, nous passons en revue les différentes méthodes qui ont été proposées pour
faire cette estimation. On peut principalement les séparer en deux catégories : les méthodes
qui n’utilisent que les mesures sur les liens, et celles qui se fondent sur des mesures directes
des volumes de trafic en origine-destination enregistrées par un logiciel de contrôle.

L’inférence de la matrice de trafic à partir des mesures sur les liens est un problème
classique, très pur d’un point de vue mathématique : étant donné un réseau avec son
ensemble de liens, et un ensemble de paires origine-destination (OD) qui empruntent ces
liens (le chemin utilisé pour chaque OD est supposé connu), le problème est de trouver
comment se répartit le volume total de trafic parmi les paires OD, cette répartition devant
être cohérente avec les volumes observés sur chaque lien. Ce problème est typiquement
sous-déterminé, puisque sur un réseau avec n nœuds, le nombre de liens est de l’ordre de n
tandis que le nombre d’inconnues (les volumes de trafic sur chaque OD) est d’ordre n2.
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Pour résoudre ce problème, des méthodes Bayesiennes ou basées sur la théorie de l’in-
formation ont été proposées. Dans l’approche Bayesienne, on suppose que la matrice de
trafic suit une un loi paramétrique, et on maximise la vraisemblance des mesures sur les
liens pour choisir la valeur des paramètres. Cette maximisation peut se faire, par exemple,
avec l’algorithme Espérance-Maximisation. L’approche basée sur la théorie de l’information
se ramène à résoudre des problèmes de maximisation d’entropie, qui seront étudiés en détail
au Chapitre 9.

Les méthodes les plus évoluées se basent sur des mesures directes des volumes de trafic
en OD, enregistrées par un logiciel comme Netflow de Cisco Systems. Pour des raisons que
nous détaillerons dans ce chapitre, l’utilisation intensive de Netflow n’est cependant pas
souhaitable. Là encore, on peut séparer les méthodes d’estimation de la matrice de trafic en
deux catégories : il a été proposé d’une part d’utiliser Netflow de façon intensive pendant
une certaine période seulement, pour construire un modèle précis des demandes de trafic. Ce
modèle est ensuite utilisé pour estimer la matrice de trafic à des temps ultérieurs où Netflow
est désactivé. Le modèle doit être recalibré au bout d’un certain temps, car le trafic n’est
pas stationnaire. Cette classe de méthodes utilisant Netflow pour la calibration d’un modèle
du trafic regroupe, entre autres, la technique du filtre de Kalman, l’analyse en composantes
principales, et la méthode des fanouts. Leur inconvénient commun est la durée des périodes
de recalibration, qui est relativement longue (au moins 24 heures de mesures intensives
sont nécessaires). D’autre part, des méthodes récentes utilisent des mesures partielle de
Netflow, enregistrées de façon régulières, mais au niveau d’un petit nombre de routeurs
seulement. Nous présentons brièvement l’ensemble de ces méthodes et nous les comparons
sous plusieurs critères.

Chapitre 9 : Théorie de l’information et projections entropiques Dans l’approche basée
sur la théorie de l’information, nous normalisons la matrice de trafic de sorte qu’elle somme
à 1. La matrice ainsi obtenue peut s’interpréter comme la distribution de probabilité qu’un
paquet choisi au hasard appartienne à telle ou telle paire OD. En suivant le principe de
maximisation d’entropie, la distribution de probabilité qui représente le mieux l’état de notre
connaissance est, parmi l’ensemble des distributions qui vérifient les équations de mesures
sur les liens, celle avec la plus grande entropie. Cette approche justifie le modèle gravitaire

de la matrice de trafic, qui est la matrice de trafic avec l’entropie maximale lorsque les seules
mesures disponibles sur le réseau sont sur les liens externes (liens d’entrées et de sortie) –
c’est à dire lorsque le comportement interne du réseau est représenté par une boîte noire.

Le modèle gravitaire peut être utilisé comme une bonne estimation a priori de la matrice
de trafic. Toujours en suivant la théorie de l’information, une approche naturelle consiste
à choisir la distribution des volumes de trafic qui satisfait les équations de mesures, et est
la plus difficile à distinguer de l’estimation a priori. Cette approche conduit à formuler des
problèmes de projections entropiques où l’on minimise la divergence de Kullback-Leibler
entre les volumes de trafic et l’estimation gravitaire, sous les contraintes imposées par les
mesures au niveau des liens.
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Nous présentons ensuite quelques résultats sur ce problème d’optimisation, dont une
partie a été obtenue au cours d’un stage de recherche précédent la présente thèse. Nous
montrons que les points stationnaires sont en correspondance avec les racines d’un système
d’équations polynomiales linéaires en chaque variable. Nous donnons des conditions simples
qui garantissent l’existence et l’unicité de la solution de ce système. En particulier, nous
analysons la similarité entre l’algorithme classique “Iterative proportional fitting” (IPF) –qui
a souvent été utilisé pour le problème d’inférence de la matrice de trafic– et les algorithmes
classiques de matrix balancing. Nous montrons que la généralisation directe des algorithmes
de matrix balancing aux projections entropiques dans les réseaux ne fonctionne que si toutes
les paires OD sont de longueurs inférieures ou égales à 2. Dans l’algorithme IPF, les variables
sont mises à jour une à une, de façon cyclique (au lieu d’être modifiée simultanément comme
dans les problèmes de balancing). Cette différence fait de l’IPF un algorithme de projections
cycliques, et on sait en conséquence qu’il a un taux de convergence linéaire.

Chapitre 10 : Optimisation des mesures Netflow Ce chapitre présente plus en détails les
résultats de [SBG10, SGB10]. Nous montrons que le problème consistant à trouver les loca-
lisations optimales de Netflow, ainsi que celui de choisir les meilleurs taux d’échantillonnages,
peuvent se formuler sous la forme de problèmes standards de plans d’expériences optimaux.
Le problème principal est la taille des matrices impliquées dans ce problème, qui sont de
taille n2 × n2 pour un réseau avec n nœuds. Quand n ≥ 17, les approches semi-définies
deviennent alors inefficaces.

Nous proposons une nouvelle procédure, que nous avons appelée “plans c−optimaux
successifs” (PCOS), dans lequel un plan d’expérience est construit en prenant la moyenne
de plusieurs plans c−optimaux. Cette approche a l’avantage de très bien passer à l’échelle. Il
est à souligner que des éléments heuristiques laissent penser que lorsque les vecteurs c sont
tirés selon une loi Gaussienne, la limite théorique du plan construit par l’approche PCOS est
proche du plan A−optimal. Nous montrons des exemples où cette affirmation est vérifiée
en pratique.

De nombreux réseaux ne sont pas (ou seulement partiellement) instrumentés avec Net-
flow. Lorsqu’un opérateur décide d’équiper un nombre additionnel de routeurs avec Netflow,
le problème est de choisir quels routeurs instrumenter en priorité. Nous comparons notre
approche (PCOS) avec l’algorithme glouton pour le problème de déploiement de Netflow.
Toutes nos expériences sont basées sur des données réelles provenant des réseaux Abilene

et Opentransit (ce dernier est le backbone international de France Telecom).

Nous adaptons ensuite notre approche pour prendre en compte les mesures prises à des
instants antérieurs (dans un contexte dynamique, l’opérateur peut ne pas avoir intérêt à
activer Netflow avec des hauts taux d’échantillonage sur la même interface pendant des
périodes successives ; si un point du réseau est bien mesuré à l’instant t, il semble intuitif
de concentrer l’effort de mesure à un autre endroit du réseau à t + 1). Pour ce faire, nous
utilisons un article récent de Singhal and Michailidis. Ces auteurs ont formulé un problème
de plan optimal dans lequel la matrice d’information comprend un terme supplémentaire
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pour les erreurs des mesures passées qui est mis à jour à chaque pas de temps grâce à un
filtre de Kalman. En fait, nous montrons par un exemple sur Abilene qu’en raison de la
grande variabilité du trafic, il est parfois préférable d’ignorer l’effet des mesures passées.

Finalement, nous évaluons notre approche pour le problème d’échantillonage optimal
avec Netflow, pour le cas de contraintes par routeur. Étant donné un nombre maximal de
paquets que Netflow peut analyser au niveau de chaque routeur, le but est de trouver la
répartition optimale des mesures au niveau de chaque routeur, c’est à dire régler au mieux
les taux d’échantillonage sur chaque interface tout en maintenant le nombre de paquets
échantillonnés sous le seuil autorisé. Nous étudions par notre approche PCOS une instance
de ce problème sur le réseau Opentransit, qui comprend 13456 paires OD, 116 routeurs
et 436 interfaces. Nous ne connaissons pas d’autres approches qui pourraient traiter des
instances de cette taille.

Chapitre 11 : Perspetives pour la modélisation spatio-temporelle des matrices de trafic
Nous présentons dans ce chapitre quelques perspectives pour l’estimation des matrices de
trafic. Il s’agit d’un travail préliminaire, basé sur la théorie des matrices aléatoires et des
décompositions de petit rang des tenseurs.

Quand on la considère au cours du temps, la matrice de trafic est en fait un objet
tridimensionnel (origines x destinations x temps), qui a presque toujours été traité comme
un objet à deux dimensions par les auteurs de la communauté réseaux. Pour se ramener
à des matrices, les matrices origine-destination sont vectorisées sous la forme d’un vecteur
colonne à chaque pas de temps. Cependant, cette vectorisation fait perdre une précieuse
information sur les corrélations qui existent entre les origines et les destinations.

Nous avons étudié la distribution empirique des valeurs singulières des matrices de trafic
OD, à partir des données réelles dont nous disposons sur Abilene et Opentransit. Il est
intéressant de remarquer que mise à part quelques grandes valeurs singulières, la distribution
du bas du spectre correspond très bien à la distribution théorique que devrait avoir le
spectre d’une matrice aléatoire, dite de Wishart. Cette remarque laisse penser que chaque
matrice origine-destination peut se décomposer comme la somme d’une matrice de petit
rang (qui supporte la partie déterministe du signal), plus une matrice de bruit aléatoire, dont
la distribution est reliée à la loi de Wishart. Cette étude préliminaire n’est pas encore une
méthode pour filtrer le bruit et estimer les matrices de trafic à partir de mesures incomplètes.
En revanche, il nous semble essentiel de modéliser la structure de petit rang des matrices de
trafic Origine-Destination. C’est chose faite dans la dernière section de ce chapitre, consacrée
à l’étude de décompositions de petit rang du tenseur de trafic tridimensionnel.

Si les approximations de petit rang de matrices sont des problèmes parfaitement compris
de nos jours (grâce aux troncations de la décomposition en valeur singulières), les approxi-
mations de petit rang des tenseurs font en revanche l’objet de recherches actives. Nous
passons en revue quelques résultats et algorithmes sur les décompositions de tenseurs, et
nous montrons le potentiel de ces méthodes en analysant les décompositions de tenseur
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de trafic avec des données réelles (Abilene et Opentransit). Finalement, nous présentons
l’esquisse d’une méthode –basée sur les décompositions tensorielles– pour l’estimation en

ligne des matrices de trafic à partir de mesures incomplètes. Nous montrons par un exemple
sur Opentransit que notre méthode conduit à une amélioration par rapport à la méthode
classique tomogravitaire.

1.2.2 Contributions de cette thèse

Nous listons ci-dessous les contributions principales de cette thèse :

• Théorème 4.1.2, et son extension Théorème 4.2.2. Tout problème de la classe des
programmes de packing semi-définis où la matrice dans la fonction objectif est de
rang r a une solution de rang inférieur ou égal à r. Nous discutons les extensions et
conséquences de ce résultat. Ce théorème sera utilisé plusieurs fois au Chapitre 5.
• Théorème 5.1.1 : Extension du théorème d’Elfving au cadre multiréponses ( Nous avons

présenté ce résultat à la conférence [SBG09]. Il a été découvert de façon indépendante
par Dette et Holland-Letz [DHL09]).
• Théorème 5.2.1 : Formulation SOCP du problème de plan c−optimal. Nous donnons

une interprétation géométrique de ce résultat.
• Extension du résultat précédent au critère de A−optimalité (Théorème 5.2.2), et

au cas où le plan d’expériences est soumis à plusieurs contraintes linéaires (Théo-
rème 5.2.3).
• Théorème 5.2.5 : Formulation SOCP du problème de plan T−optimal pour un sous-

système de paramètres KT θ.
• Théorème 5.3.1 : Formulation sous forme d’un programme géométrique du problème

robuste de Sβ−optimalité. Les conditions d’optimalité de ce problème généralisent un
résultat de Dette [Det93] au cadre multiréponses (Théorème 5.3.2).
• Un corollaire du résultat précédent est un SOCP pour le problème de plan D−optimal

(cf. Equation 5.25).
• Tests numériques et comparaisons avec d’autres algorithmes (Chapitre 6), montrant

l’efficacité de l’approche par SOCP lorsque le nombre r de fonctions linéaires des
paramètres à estimer est petit (en particulier pour les plans c−optimaux où r = 1).
• Théorème 7.2.1 : Réduction du problème combinatoire de plans d’expériences de rang

maximal à MAXCOVERAGE. En conséquence, si l’on admet P 6= NP , il n’existe pas
d’algorithme polynomial qui approche le plan de rang maximal par un facteur plus
grand que 1− e−1.
• Proposition 7.2.4 : Si f ′ est operateur antitone sur R∗

+, alors pour tout triplet
(X, Y, Z) ∈ S+

m

trace f(X + Y + Z) + trace f(Z) ≤ trace f(X + Z) + trace f(Y + Z).

• Corollaire 7.2.6 : Le critère Φp de Kiefer (vu comme une fonction ensembliste) est
sous-modulaire croissant pour p ∈ [0, 1].
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• Théorème 7.2.7 : En conséquence, l’algorithme glouton retourne toujours une solu-
tion approchant par un facteur d’au moins 1 − e−1 l’optimum du problème de plan
Φp−optimal (pour p ∈ [0, 1]). Des extensions possibles de ce théorème sont présen-
tées.
• Proposition 7.3.4 (cf. également Théorème 2.4.7) : Généralisation des bornes supé-

rieures pour les poids D−optimaux au cadre multiréponses (découvert indépendem-
ment par Harman et Trnovská [HT09] pour le cas de l’estimation du vecteur complet
des paramètres θ, i.e. quand K = I).
• Théorème 7.3.7 : Si l’on doit choisir n expériences parmi s, nous donnons deux al-

gorithmes d’arrondi randomisé qui retournent une solution approchant l’optimum du
problème de plan de rang maximal par un facteur n/s (en moyenne).
• Nous montrons des instances pour lesquelles le ratio d’approximation des algorithmes

randomisés précédents est n/(s− 1) (cf. Remarque 7.3.2).
• Proposition 9.5.7 : Pour le problème de projection entropique avec contraintes linéaires

sur un réseau, l’algorithme de point fixe naturel est contractant si et seulement si toutes
les paires OD sont de longueurs inférieures ou égales à 2. (Résultat obtenu pendant
un stage antérieur à cette thèse.)
• Formulation de type plan d’expériences pour le problème du déploiement optimal de

Netflow, et le problème de l’échantillonnage optimal de Netflow (cf. Section 10.2).
• Proposition d’une nouvelle méthode (baptisée Plans c−Optimaux Successifs, PCOS)

basée sur le calcul de plusieurs plans c−optimaux pour traiter les problèmes de grande
taille en conception d’expériences (cf. Section 10.4.1). Ebauche d’une justification
heuristique de notre approche (Sections 10.4.2 et 10.4.3).
• Validation de notre approche par des tests utilisant des données réelles (cf. Sec-

tion 10.5).
• Mise en évidence de la structure de petit rang des matrices de trafic origine-destination.

Proposition d’un modèle signal + bruit, et analyse préliminaire du bruit par des outils
de la théorie des matrices aléatoires (cf. Section 11.1).
• Mise en évidence de la structure de petit rang des tenseurs de trafic tridimensionels

(origines × destinations × temps). Esquisse d’une méthode reposant sur les tenseurs
pour estimer les matrices de trafic en ligne (cf. Section 11.2.3).



Introduction (in English)

This chapter briefly presents our motivation and the scientific path which has led to this
thesis. At the end of this chapter, we draw a detailed outline and list the contributions of
this thesis.

1.3 Optimal design of experiments and Network measurements

Internet Service Providers (ISP) wish to have a good knowledge about the traffic which
transit through their networks, for many traffic engineering and network planning tasks. An
essential part of the required information is the traffic matrix, which contains the volumes of
traffic for each origin-destination pair of the network during a given period of time, i.e. the
number of bytes that has travelled from any entry node to any exit node. The importance
of the networking operations relying on the traffic matrix is increasing as the traffic grows in
volume and becomes more complex, but in practice, obtaining accurate estimations of the
demands of traffic is a challenging issue. Contrarily to what intuition may suggest, network
measurements are: (i) often not available everywhere; (ii) expensive; (iii) likely to affect the
quality of service. It is thus a crucial issue to decide where network measurements should
be performed, as well as their sampling rates.

We approach the problem of optimizing the network measurements by using the theory of
optimal experimental designs 2. This theory studies indeed how to allocate the experimental
effort to a set of available experiments, in order to maximize the quality of estimation of an
unknown parameter. Thinking of each potential location of the measuring software as an
experiment, and the traffic matrix as the unknown parameter, one obtains a nice optimal

experimental design formulation of our telecommunications problem. However, the classic
optimal experimental design algorithms are intractable on large scale networks, because very
large matrices are involved.

This observation motivated us to search for scalable algorithms in optimal experimental
design. We developed an approach relying on Second Order Cone Programming (SOCP), a
class of mathematical optimization problems which generalizes Linear Programs (LP), and
which can be solved by interior-point methods in a much shorter time than Semidefinite

2. or theory of optimal experiments

13
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Programs (SDP) of the same size. This approach turns out to be very efficient for problems
in which a small number of linear functions of the unknown parameter must be inferred.

In fact, our approach can not be directly applied to the initial telecommunications prob-
lem. The reason is that the ISP usually wishes to estimate the whole traffic matrix (while
our SOCP approach is best-suited for the estimation of a linear combination of the volumes
of traffic). To overcome this problem, we have proposed a new method which rely on the
computation of several c−optimal designs, and can be efficiently implemented by solving a
sequence of SOCP.

Another issue arising from the industrial problem is the combinatorial aspect: when
an ISP wishes to upgrade a set of routers of the network, so that they can support the
measuring device, the natural formulation is an integer optimal design problem. This problem
is mainly handled by heuristic approaches in the literature, which motivated our work on
the submodularity of the experimental design information criteria. This approach led to
polynomial-time approximability bounds for some NP-hard optimization problems.

1.4 Organization and contributions of this manuscript

This thesis is organized in two different parts. The first part is devoted to theoretical and
algorithmic results in optimal experimental design, which rely on mathematical programming
and submodular optimization. These results have emerged from an industrial problem in
telecommunication networks, which we study in the second part of this manuscript. We
detail below the content of each chapter. Then, we shall list the contributions of this thesis.

1.4.1 Detailed outline

Part I: Optimal Design of Experiments

In a first part, we present theoretical results for the numerical computation of optimal
experimental designs. The focus is on linear regression models, when the number of available
experiments is finite, with a special interest for the situation in which one single experiment
can produce several observations at the same time (multiresponse framework). The first
two chapters of this part essentially recall the necessary background on the theory of optimal
experimental designs. The following chapters (4–7) contain new results.

Chapter 2: An introduction to the theory of Optimal Experiments The theory of optimal

experimental designs is an important branch of statistics at the interface with Optimization,
which has a very wide spectrum of applications. It aims at finding the optimal value that the
experimenter should give to the control variables of the experiments at his disposal, before

to perform them. These control variables (number of times that we perform a measurement,
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sampling rate of a device, time at which the measurement will be recorded, etc.) affect the
measured data, and so the inference of the quantities of interest depends on those variables.

In this chapter, we review classic results of the theory of optimal experimental design. We
focus on the linear regression models, in which the expected value of the measurements is
linear with respect to the unknown parameters. In addition, a single experiment is allowed to
produce a multidimensional observation: this is the natural setting for the optimal monitoring
problem which will be studied in Part II. We concentrate our attention to approximate

designs, that is, the design variable is a continuous vector w summing to 1 (
∑s

i=1 wi =

1), which indicates the allocation of the experimental effort to the available experiments.
If in addition the set of potential experiments X (the regression region) is infinite, the
experimenter should also find the optimal measurement points x1, . . . ,xs ∈ X where to
perform the experiments.

This chapter starts with a historical review of the theory of optimal experimental design,
with a brief presentation of the contributions of Elfving, Kiefer, Fedorov and Pukelsheim
(among others). We next introduce the standard notation, and we shall see that the Gauss-
Markov theorem gives a lower bound on the covariance matrix for an unbiased estimator of
the parameters, which is attained for the least-square estimator. This yields the definition
of the information matrix of a design (as the inverse of this best variance), and the general
formulation of the optimal design problem, i.e. the maximization of a scalar function of

the information matrix. We next review the popular information criteria from the optimal
experimental design literature, which define the concepts of c, A, E, D, T, Φp, and robust
S−optimality.

The last part of this chapter is devoted to a review of some fundamental results in
optimal experimental design:
• The Elfving theorem (1952), which gives a simple geometric characterization of

c−optimality.
• The Kiefer-Wolfowitz theorem (1960), which shows that the D−optimal problem is

equivalent to a dual problem (called G−optimal) and gives optimality conditions that
one may easily check.
• The general equivalence theorem, discovered by Kiefer (1974) and extended by

Pukelsheim (1980), which generalizes the latter result to a large class of informa-
tion criteria.
• Some consequences of the general equivalence theorem, like bounds on the D−optimal

weights or a close form formula of the A−optimal design on independent regression
vectors.

Chapter 3: Classic algorithms for computing optimal designs Many algorithms have been
proposed to compute optimal experimental designs. We review some of them in this chapter.
We restrict our study to the case in which the number of available experiments is finite (or
the optimal measurement points are given). Thus, the optimization is carried over the vector
of weights w only, and the optimization problem becomes convex. This is also the setting
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of the optimal monitoring problem studied in Part II, where the monitoring devices may be
activated at a finite number of given locations.

The first algorithm that we study is the one of Fedorov and Wynn for the computation of
D−optimal designs, which was inspired by the the Kiefer-Wolfowitz theorem. The idea is to
start from an arbitrary design and to move at each step in a direction which is given by the
evaluation the G−criterion. The Kiefer-Wolfowitz theorem ensures that this is a descent
direction. This algorithm is in fact a feasible descent method. We present the extension of
this algorithm to a wider class of information functions and discuss convergence issues.

We next review the class of multiplicative algorithms, introduced by Titterington. The
principle of this class of algorithms is to update simultaneously all the weights of a design, by
multiplying them by a factor which is proportional to the gradient of the objective function.
We present the original algorithm of Titterington and some of its variants, as well as recent
convergence results from Dette, Pepelyshev and Zhigljavsky (2008) and Yu (2010).

Finally, we review some semidefinite programming (SDP) formulations of optimal exper-
imental design problems. The interior point algorithms for semidefinite programming are
usually slower than the multiplicative update algorithms, but they offer a lot of flexibility,
and the possibility to add “without effort” new constraints in the problem. We give several
examples of the advantages of the SDP approach.

Chapter 4: A Low rank reduction Theorem in Semidefinite Programming This chapter
contains the results of [Sag09a], and is of independent interest. The main result is that a
class of semidefinite programs – which encompass the semidefinite programs of Chapter 3 –
admits solutions of low rank. In fact, we got the intuition of this result from the extension
of Elfving’s theorem to the multiresponse framework (Chapter 5). We have chosen to
insert this chapter at this point of the manuscript though, because our theorem will provide
alternative proofs of the results of Chapter 5, shedding more light on our Second order cone
programming approach.

The class of semidefinite programs considered are semidefinite packing programs, which
are the SDP analogs to the packing problems in linear programming. Our main result states
that if the matrix defining the objective function of this SDP has rank r, then the semidefinite
packing program has a solution that is of rank at most r. An interesting corollary is the case
in which r = 1, because the optimal SDP variable X can be factorized as xxT , and we show
that finding x reduces to a Second-Order Cone Program (SOCP), which is computationally
more tractable than the initial SDP.

The proof of this result actually carries over a wider class of programs, in which not all
variables are subject to packing constraints. We next present this extended version of our
result.

Chapter 5: The Second Order Cone Programming approach This chapter contains the
results of [Sag09b]. We show that several optimal experimental design problems may be
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formulated as second order cone programs. In contrast to the SDP approach of Chapter 3,
the SOCP approach remains tractable and efficient on very large instances, thus combin-
ing the performance of multiplicative update algorithms and the flexibility of semidefinite
programs.

We start by giving an extension of the Elfving theorem. The result is a geometric char-
acterization of the c−optimal designs for multiresponse experiments: the optimal weights
can be read at the intersection of a straight line and the boundary of the convex hull of
ellipsoids. We next point out that the A−optimal design problem can be formulated as a
c−optimal design problem with augmented observation matrices, such that our result also
yields a geometric characterization of A−optimality.

It should be mentioned that an equivalent result was established independently by Dette
and Holland-Letz in 2009, but in a different context. Dette and Holland-Letz considered a
heteroscedastic model (i.e. an experimental model where both the mean and the variance
of the observations depend on the parameter of interest), which led them to study the case
in which the observation matrices are of rank k ≥ 2, just as in the model of multiresponse

experiments. The proof and the analysis of the consequences of the present result presented
in this chapter are different than those of Dette and Holland-Letz.

A consequence of this extended Elfving theorem is that the c− (and A−) optimal design
of multiresponse experiments can be formulated as a second order cone program. We give
an alternative proof of this result, relying on the rank reduction theorem of Chapter 4: the
c−optimality SDP presented in Chapter 3 has a rank-one solution and so it reduces to a
SOCP. More generally, we shall see that the A−optimal design problem with multiple linear
constraints can be formulated as a SOCP. Again, we give two proofs of this result, one
relying on a statistical argument and the other one on our rank reduction theorem.

We next investigate other optimality criteria. We shall see that the T−optimal design
problem for the estimation of a parameter subsystem can also be formulated as a SOCP.
Then, we consider the robust S−optimality criterion introduced by Läuter: the correspond-
ing optimal design problem reduces to the maximization of a geometric mean under SOCP
constraints. As a consequence, we obtain a SOCP for D−optimality, by following the
approach of Dette (1993). Moreover, we show that the optimality condition of our geomet-
ric program generalizes a theorem of Dette (1993) which geometrically characterizes the
S−optimality.

Chapter 6: Numerical comparison of the algorithms In this chapter, we evaluate the
benefits of our SOCP approach for the computation of optimal experimental designs. We
shall see that for several optimization criteria, the second order cone programs presented
in Chapter 5 are very efficient when the number r of linear functions of the parameter to
estimate is small (in particular for c−optimality).

We compare our approach to the algorithms presented in Chapter 3, namely semidefinite
programs, Wynn–Fedorov-type exchange algorithms, and Titterington-type multiplicative
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algorithms.

We consider several kind of instances. At first, we study random instances of optimal
design problems, in order to evaluate to which extent each parameter (number of exper-
iments, number of unknowns, number of linear functions to estimate, design criterion,...)
affects the computation time. Then, we consider classic polynomial regression models that
have been extensively studied in the experimental design literature. Finally we present some
computational results from the network application which will be developed in the second
part of this thesis.

Chapter 7: Combinatorial problems arising in optimal design of experiments This chapter
contains the results presented in [Sag10]. Some of them were already announced in [BGS08].
We investigate combinatorial aspects of the optimal experimental design problems. In a
number of real-world applications, the variables controlling the experimental design are
discrete, or binary. This chapter provides some polynomial-time approximability results for
the discrete optimal experimental design problem, which is NP-hard.

In particular, we establish a matrix inequality which shows that the objective function is
submodular, from which we deduce that the greedy approach, which has often been used
for this problem, always gives a design within 1 − 1/e ≈ 62% of the optimum. Our result
also extends to the budgeted case, in which experiments have different costs.

We next study the design found by rounding the solution of the continuous relaxed
problem, an approach which has been applied by several authors: When the goal is to select
n out of s experiments, we show that the D−optimal design may be rounded to a random
subset of n experiments for which the dimension of the observable subspace is within n

s
of

the optimum with a high probability. This result may look disappointing in the first place,
but we show that the n

s
−factor is (almost) optimal since there are some instances for which

the average ratio of approximation is n
s−1

.

Part II: Optimal monitoring in large Networks

In the second part of this manuscript (page 145), we study an application of the theory
of optimal experimental designs to the monitoring of large backbone networks. Internet
providers want to monitor their networks for several different objectives, but in this thesis
we concentrate on the problem of accurately inferring the traffic matrix only: this matrix
gives the volume of traffic for every origin-destination pair of the network, and is needed
for many networking applications. We believe that this approach is well funded, because
it indicates which part of the network captures the most valuable information about the
traffic.

The first two chapters of part II present the background on the traffic matrix estimation in
IP networks (Chapter 8), with a particular insight into the information theoretic approaches
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relying on entropic projections, and their historic relation with matrix balancing problems
(Chapter 9). Chapter 10 contains the main results of this part, and Chapter 11 presents
some perspectives.

Chapter 8: Inference of the traffic matrix: a review The estimation of traffic matrices in
networks has attracted much interest for the last decade, from both Internet providers and
the network research community. In this chapter, we review the different methods that have
been proposed for this task; they can principally be classified in two types: those relying
on the link counts only, and those which take advantage of direct network measurements
provided by a monitoring software.

The inference of the traffic matrix from link counts is a classic problem, very pure on a
theoretical point of view: given a network with its set of links, and a set of Origin-Destination
(OD) pairs routed on these links (the path for each OD is assumed to be known), the goal
is to find the repartition of the total volume of traffic between the different OD pairs, such
that this allocation is consistent with the volumes observed on the links. This problem is
typically underdetermined, since on a network with n nodes, the number of links is in the
order of n, while the number of unknown OD flows is typically of order n2.

To tackle this issue, Bayesian and information theoretic methods have been proposed. In
the Bayesian approach, a parametric law is assumed for the distribution of the flow volumes
(i.e. the volumes of traffic on the OD pairs), and we select the parameters of this law so
as to maximize the likelihood of the observation on the link counts. Typically, this can be
carried out by the Expectation-Maximization algorithm. The information theoretic approach
leads to entropic projections, which will be studied with more details in Chapter 9.

Some more evolved methods allow the use of direct measurements, which can be col-
lected by a network monitoring tool, like Netflow from Cisco Systems. For technical reasons
which we detail in this chapter, the intensive use of Netflow on the network is not suited.
Here again, we can separate the estimation methods in two types, depending on the mea-
suring scheme: on the one hand, some methods require an intensive use of Netflow during a
certain period, in order to build an accurate model of the traffic. This model is then used for
the inference of the traffic on subsequent time periods, until the model becomes inaccurate
and needs to be updated. This class of methods, relying on Netflow for the calibration of a
temporal model of the flows, includes but is not limited to the Kalman filtering technique,
the principal component analysis, and the method of fanouts. Their common inconvenient
is that the time period required for the calibration is long (at least 24 hours of measurements
are needed). On the other hand, most recent methods use partial measurements of Netflow,
which are collected on a regular basis, but at a limited number of locations in the network.
We briefly present these methods and draw a comparative summary.

Chapter 9: Information theory and entropic projections In the information theoretic ap-
proach, we scale the vector of flow volumes so that it sums to one; the resulting vector thus
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represents the distribution of probability that a packet travelling on the network belongs to
a particular OD pair. Following the principle of maximum entropy, the probability distribu-
tion which best represents the current state of knowledge is, among all those distributions
satisfying the measurement equations, the one with largest entropy. This gives raise to the
gravity estimate of the traffic matrix, which is the flow distribution with maximum entropy
when all we know is the volume of traffic on the external links (ingress and egress) of the
network – that is, when the internal behaviour of the network is a black box.

This gravity estimate can be used as a good prior for the traffic matrix. According to
Information theory, a natural approach is to select the distribution of flows which satisfies
all the measurement equations (internal link counts), and is as hard to discriminate from
the prior as possible (Principle of Minimum Discrimination Information). This leads to
optimization problems, in which the Kullback-Leibler divergence of the flows (with respect
to the gravity prior) must be minimized, subject to the constraints imposed by the linear
measurements.

We next present some unpublished results on the latter optimization problem that the
author obtained during his master studies. We shall see that the stationarity condition of
this problem is equivalent to finding the root of a system of polynomials that is linear in
every variable. We give simple conditions which ensure that a solution of this system exists
and is unique. Then, we review the existing algorithms to solve this optimization problem.
In particular, we analyze the similarity of the popular “Iterative proportional fitting”(IPF)
algorithm with classic algorithms for matrix balancing. We shall see that the direct gen-
eralization of the matrix balancing algorithm to the case of entropic projections works if
and only if all the OD pairs considered in the network are of length at most 2. In the IPF
algorithm, the coordinates of the variable are updated one at a time, in a cyclic manner
(instead of being updated simultaneously). This difference lets the IPF belong to the class
of cyclic projection algorithms, and thus it has a linear rate of convergence.

Chapter 10: Optimization of Netflow measurements This chapter presents in greater
details the results of [SBG10, SGB10]. We show that both the problem of selecting the
optimal locations of Netflow and the problem of selecting the optimal sampling rates can
be formulated as (linear) optimal experimental design problems. The main issue is the size
of the matrices involved in this problem, which are of size n2 × n2 for a network with n

nodes. In particular, SDP approaches become intractable as soon as n ≥ 17.

We propose a new procedure, called Successive c−optimal designs (SCOD), in which
we take the average of several c−optimal designs, where the vectors c are drawn from a
Gaussian distribution. This method can be implemented on very large networks, by solving
a sequence of SOCP. Interestingly, there are some heuristic arguments which let us think
that the theoretical limit of the design returned by the SCOD procedure is closed to the
classic A−optimal design. We show by examples that this fact is verified in practice.

We next compare our SCOD approach to the greedy algorithm for the Netflow deploy-
ment problem: several networks are not (or only partially) instrumented with routers that
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support Netflow. If an Internet provider wishes to equip a number of additional routers with
Netflow, an interesting problem is thus to identify the most meaningful subset of locations
for the monitoring-tool. Our experiments rely on real data from the Abilene and Opentransit

networks (the latter is the international backbone of France Telecom).

Then, we adapt our approach so that it can take into account the past measurements (in
a dynamic context, the Internet provider may not want to apply high sampling rates at the
same location during successive periods of time; if a location is well measured at time t, it
seems intuitive to concentrate the experimental effort to some other locations at t+ 1.) To
do this, we use the ideas of a recent article of Singhal and Michailidis, in which an optimal
experimental problem is stated, with an additional term in the information matrix which
accounts for the errors on the past measurements, and which is computed via a Kalman
filter. In fact, we shall see by an example on the Abilene network that due to the very high
variability of the traffic, it is better to ignore the impact of past measurements.

Finally, we evaluate our approach for the problem of selecting the optimal sampling rates
of Netflow, with per-router constraints. Given a maximal number of packets that may be
sampled at each router location, the goal is to allocate optimal sampling rates to every
incoming interface of each router, while keeping the number of sampled packets under the
threshold. We study an instance on the Opentransit network, which contains 13456 OD
pairs, 116 routers, and 436 interfaces. To the best of our knowledge, there is no other
algorithm which can handle problems of this size.

Chapter 11: Perspectives for a better spatio-temporal modelling of traffic matrices We
present in this chapter some perspectives for the estimation of traffic matrices. This is a
preliminary work, based on the theory of random matrices and low-rank tensor decomposi-
tions.

When observed over time, the traffic matrix is a tridimensional object ( origin x desti-
nation x time), which has almost always been handled as a two-dimensional object by the
authors from the networking community. To this end, the Origin-Destination matrices of
each time period are stacked as a column vector. By performing this vectorization though,
important information on the spatial correlations between the origins and the destinations
in the traffic matrix may be lost.

We have studied the empirical distribution of the singular values of the OD matrices,
with the real data at our disposal from the Abilene and Opentransit backbones. Inter-
estingly, apart from a few large singular values, the lower part of the spectrum of the OD
matrices has a very good fit with the theoretical distribution of the singular values of random
matrices from the so-called Wishart distribution. This remark lets us think that any Origin-
Destination matrix can be decomposed as the sum of a low-rank matrix (which carries the
energy of the signal), plus a noise matrix whose distribution is related to the Wishart’s law.
This preliminary study does not give a method for the estimation of traffic matrices from
partial measurements yet. However, it sheds light on the importance of modelling the low
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rank structure of OD matrices. This is done in the final section of this chapter, where low
rank decompositions of the tridimensional traffic tensor are studied.

While low-rank approximations of matrices is a completely understood problem (through
the singular value decomposition), the low-rank approximation of tensors is an active research
topic. We review a few basic results and algorithms for tensor decompositions, and we
show the potential of these methods by analyzing decompositions of real traffic tensors.
Finally, we present the sketch of a new method –based on tensor decompositions– for
the online estimation of traffic matrices from incomplete measurements. We show by an
example on Opentransit that our method yields an improvement, by comparison to the
classic tomogravity method.

1.4.2 Contributions of this thesis

We next list the main contributions of this thesis:

• Theorem 4.1.2, and its extension Theorem 4.2.2. Any problem from the class of
semidefinite packing programs, where the matrix in the objective function is of rank
r, has a solution of rank at most r. Extensions and consequences of this result are
discussed. This theorem shall be used several times in Chapter 5.
• Theorem 5.1.1: Extension of Elfvinfg’s theorem to the multiresponse case (We pre-

sented this result at the conference [SBG09]. It was discovered independently by Dette
and Holland-Letz [DHL09]).
• Theorem 5.2.1: SOCP formulation of the c−optimal design problem. A geometric

interpretation of this result is given.
• Extension of the latter result to the case of A−optimality (Theorem 5.2.2), and to

the case of problems with several linear inequality constraints (Theorem 5.2.3).
• Theorem 5.2.5: SOCP formulation of the T−optimal design problem for a subsystem

of parameter KT θ.
• Theorem 5.3.1: Geometric programming formulation of the model robust Sβ−optimal

design problem. The optimality conditions of this program generalize a theorem of
Dette [Det93] to the case of multiresponse experiments (Theorem 5.3.2).
• A corollary of the latter result is an SOCP formulation for D−optimality (cf. Equa-

tion 5.25).
• Numerical tests and comparisons to other algorithms (Chapter 6), showing the im-

portance of our SOCP approach when the number of quantities of interest r is small
(typically, for c−optimality where r = 1).
• Theorem 7.2.1: Reduction of the combinatorial maxrank design problem to MAX-

COVERAGE. As a consequence, if P 6= NP , there is no polynomial-time algorithm
which approximates the maxrank design by a factor larger than 1− e−1.
• Proposition 7.2.4: If f ′ is operator antitone on R∗

+, then for all triple (X, Y, Z) ∈ S+
m

trace f(X + Y + Z) + trace f(Z) ≤ trace f(X + Z) + trace f(Y + Z).
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• Corollary 7.2.6: The Kiefer’s Φp−criterion (seen as a set function) is nondecreasing

submodular for p ∈ [0, 1].
• Theorem 7.2.7: A a consequence, the greedy algorithm always return a solution within

1−e−1 of the optimum of the Φp−optimal design problem (p ∈ [0, 1]). Some possible
extensions of this theorem are presented.
• Proposition 7.3.4 (cf. also Theorem 2.4.7): Multiresponse generalization of the

upper bound for D−optimal weights (discovered independently by Harman and
Trnovská [HT09], for the case in which the full vector of parameters θ is of inter-
est, i.e. K = I).
• Theorem 7.3.7: If n experiments are to be selected out of s, we present two randomized

rounding algorithms which return a solution within n/s of the maxrank optimum (in
average).
• We show some cases in which the performance of the latter randomized algorithms is
n/(s− 1) (cf. Remark 7.3.2).
• Proposition 9.5.7: For the entropic projection problem with linear constraints on a

network, the natural fix-point algorithm is nonexpansive if and only if every OD pair
of the network is of length at most 2. (This result was obtained during the master
studies of the author.)
• Optimal experimental design formulation of the Netflow deployment problem, and the

Netflow optimal sampling problem (cf. Section 10.2).
• Proposition of a new method (called Successive c−Optimal Designs, SCOD) funded

on the computation of several c−optimal designs to handle a certain class of large
scale optimal experimental design problems (cf. Section 10.4.1). Sketch of a heuristic
justification of our approach (Sections 10.4.2 and 10.4.3).
• Validation of our approach with experimental tests relying on real data (cf. Sec-

tion 10.5).
• Evidence of the low-rank structure of origin-destination traffic matrices (at a given

point in time). Proposition of a signal + noise model, preliminary analysis of the noise
relying on the theory of random matrices (cf. Section 11.1).
• Evidence of the low rank structure of the three-way traffic tensor (origin × destination
× time). Sketch of a method relying on tensor to estimate traffic matrices in real
time (cf. Section 11.2.3).
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Chapter 2

An introduction to the theory of
Optimal Experiments

In this chapter, we introduce the theory of optimal experimental design, and we review
the fundamental results which will be useful for the rest of this thesis.

2.1 History

The theory of optimal experimental designs has been developed since the 1920’s, after
some work of Gosset [Stu17] (known under the pseudonym “Student”) and Fisher, who
introduced several useful concepts for a theoretical approach to the design of experiments
in his book [Fis35]. We refer the reader to the article of Atkinson and Bailey [AB01] for a
review on the early development of the theory of optimal experiments.

One of the earliest theoretical results was obtained by Elfving in 1952 [Elf52], who
focused on the problem where the experimenter disposes of s experiments, the outcome
of which are linear functions of an unknown parameter (up to a zero-mean noise on the
measurements). Elfving interested himself in the problem of optimally allocating a total
number of n observations to the potential experiments, i.e. to select the numbers ni of
times that a measurement will be performed with experiment i, with

∑s
i=1 ni = n. An idea

of Elfving has been to replace the discrete design variables ni by the real numbers wi = ni

n

which satisfy:

wi ≥ 0,
s∑

i=1

wi = 1, (2.1)

and then to drop the integer constraint on nwi. In other word, Elfving posed the problem of
finding the optimal amount of experimental effort wi to spend on each experiment, where
w is any continuous vector on length s satisfying Condition (2.1). A lot of results have
emerged from this smoothness, starting with Elfving’s Theorem (Theorem 2.4.1, [Elf52])
which characterizes geometrically the optimal design w, when there is a single quantity of
interest (c−optimal design).

27
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This setting was then generalized, to allow the experiments to be selected in a compact
region X , and the the design variable has become a probability measure ξ on X . The
power of this generalization was revealed in the proof of the Kiefer-Wolfowitz Theorem
(Theorem 2.4.2, [KW60]), which establishes the equivalence between the two popular D−
and G− optimality criteria.

This theorem gave birth to a sequential algorithm for the computation of D−optimal
designs, simultaneously discovered by Wynn [Wyn70] and Fedorov [Fed72] (see Section 3.1),
who further generalized the theory of optimal designs to the case of multiresponse experi-

ments, where a single experiment is allowed to produce several uncorrelated observations.

Many of the optimality criteria that have been introduced for the design of experiments
(including the aforementioned c− and D− criteria, as well as the popular E−,A−, and T−
criteria which we will describe in Section 2.3.2) are convex functions of the design variable
w (or ξ), and are encompassed in the class of Φp−criteria introduced by Kiefer [Kie75].
The work of Silvey and Titterington [ST73] and Kiefer [Kie74] showed that the Kiefer-
Wolfowitz theorem could be seen as a consequence of the strong Lagrangian duality theory
for convex optimization problems. Later, this result was generalized by Pukelsheim [Puk80],
who established a duality theorem for a very wide class of criteria which includes the Kiefer’s
Φp− criteria.

For more details on the development of the theory of optimal experimental designs, the
reader is referred to the book of Pukelsheim [Puk93].

2.2 Notation and preliminaries

2.2.1 Some notation

Throughout this thesis, we denote vectors by boldface letters and matrices by capital
letters. We use the standard notation [n] := {1, . . . , n}. The elements of a vector x ∈ Rn

are x1, x2, . . . , xn. The (i, j)-element of a matrix M is denoted Mi,j. The Lp−norm of

the vector x ∈ Rn is ‖x‖p :=
(
∑n

i=1 |xi|p
)1/p

. We shall simply denote the Euclidean norm
‖ · ‖2 by ‖ · ‖. The vector of all zeros is written 0; similarly 1 stands for the vector of all
ones. Vector inequalities should be understood elementwise, e.g. x ≥ 0 indicates that every
component of x is nonnegative. The symbol T denotes the transposition operation.

The identity matrix of size n × n is denoted by In, or simply I when there is no
ambiguity. We denote by Diag(x) the diagonal matrix with the elements of the vector x on
its diagonal, and by diag(M) the vector containing the diagonal entries of M . The range
and nullspace of a matrix M are respectively denoted by Im M := {x : ∃y : My = x}
and Ker M := {x : Mx = 0}. We denote by Sm the space of symmetric m×m matrices.
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This space is equipped with the inner product

〈A,B〉 = trace(ATB) =
∑

i,j

aijbij,

which induces the Frobenius norm ‖A‖F =
√

〈A,A〉 =
√
∑

i,j a
2
ij. We also denote by

S+
m ⊂ Sm the cone of m × m symmetric positive semidefinite matrices, and by S++

m its
interior, which consists of positive definite matrices. The space of symmetric matrices is
equipped with the Löwner ordering, which is defined by

∀B,C ∈ Sm, B � C ⇐⇒ B − C ∈ S+
m. (2.2)

Similarly, the notation B ≻ C indicates that B − C is positive definite.

We denote by M † the Moore-Penrose pseudo-inverse of M , and by M− a generalized

inverse of M , i.e. any matrix G verifying MGM = M . The reader can verify that the matrix
KT

1 M
−K2 does not depend on the choice of the generalized inverse when the columns of

K1 and K2 are included in the range of M .

The convex hull (resp. conic hull) of a set S is denoted by conv(S) (resp. cone(S)).
The orthogonal of a set S is S⊥ := {x : ∀v ∈ S,xT v = 0}.

2.2.2 The linear model

The most common model in optimal experimental design assumes that each experiment
provides a measurement which is a linear combination of the parameters up to the accuracy
of the measurement. In this thesis, we deal with linear models only. 1

Let X denote the set of available experiments. Every experiment x ∈ X provides a
(multidimensional) observation

y(x) = A(x)θ + ǫ(x), E[ǫ(x)] = 0 (2.3)

where θ is the m−dimensional vector of unknown parameters,

A(x) is a (l(x) ×m) observation matrix, and ǫ(x) is a zero-mean noise on the mea-
surements with a known diagonal covariance matrix Σ(x). The number of simultaneous
observations that are collected when a measurement is performed at x is l(x) ≤ l. To
alleviate the notation, we shall eventually write that all the observation matrices A(x) are
of size l ×m. We may always reduce to this case by setting l − l(x) rows of A(x) to 0T .
The mapping X ∋ x 7→ A(x) ∈ Rl×m is supposed to be continuous over X . Note that
this setting includes the common case where X is finite, of cardinality s, equipped with the

1. We point out that there is a theory of optimal experiments for nonlinear models, in which the design criteria
depends on the unknown parameters. The basic idea is thus to search for a locally optimal design, which minimizes
a criterion from the linear theory, for a linearization of the model at a point which is the best guess of the unknown
parameters.
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discrete topology, in which case we associate X with [s] and the observation matrices are
simply denoted by A1, . . . , As.

We will assume without loss of generality that the noises have unit variance: Σ(x) =

E[ǫ(x)ǫ(x)T ] = I. We may always reduce to this case after a left diagonal scaling of the
observation equations (2.3). The errors on the measurements are assumed to be mutually
independent, i.e.

∀x1 6= x2 ∈ X =⇒ E[ǫ(x1)ǫ(x2)T ] = 0.

Uncorrelated experiments are chosen at x1, . . . ,xs from the experimental region X , and the
objective is to determine both the optimal choice of the xi, and the number of experiments
ni to be conducted at xi ; we call such a subset of experiments a design. As mentioned
at the beginning of this chapter, it has been proposed to work with approximate designs,
which is simply done by releasing the integer constraints on the ni. In this setting, a mass
indicates the proportion from the total number of experiments to be conducted for each
available experiment. For example, if the weight for the ith experiment is wi, and that n
experiments are allowed, nwi are chosen at xi, which suggests that each quantity nwi is
integer. However, this continuous relaxation proved to be very useful and we shall only
consider approximate designs until Chapter 7, where we will focus on some combinatorial
problems arising in optimal experimental design.

The design where the percentage of experimental effort at xk is wk is written as

ξ =

(

x1 · · · xs

w1 · · · ws

)

,

or ξ = {xk, wk} for short. The set of points {xi ∈ X : wi > 0} is called the support of ξ
and is denoted by supp(ξ).

When ni = nwi experiments are conducted at xi, we denote by y(xi) the average of
these observations: we have E[y(xi)] = A(xi)θ, and Var(y(xi)) = 1

ni
I. For the design

ξ = {xk, wk}, we denote by y(ξ) the aggregate vector of observations:

E[y(ξ)] = A(ξ) θ, (2.4)

where y(ξ) =







y(x1)
...
y(xs)






, and A(ξ) =







A(x1)
...
A(xs)






.

In addition, the variance of this aggregate observation vector satisfies Var(y(ξ)) = 1
n
∆(w),

where

∆(w) =







1/w1I
. . .

1/wsI






, (2.5)

with (l(xi)× l(xi))−identity blocks on the diagonal. If wi = 0 for some i ∈ [s], we simply
remove the measurement point xi from ξ. For ease of presentation, we get rid of the
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multiplication factor 1/n, since it does not affect the results on optimal designs.

2.2.3 Gauss-Markov Theorem and Information matrices

The linear theory assumes that the experimenter is interested in estimating the vector

ζ = KT θ,

where K is of size m× r and has full column rank. In other words, the experimenter wants
to estimate a collection (ζ1, . . . , ζr) of linear combinations of the parameters. We denote
the columns of K by c1, . . . , cr, so that the quantities of interest are:

∀i ∈ [r], ζi = ci
T θ.

This setting includes the cases K = I, in which the experimenter wants to estimate each
individual parameter θi, and the case r = 1 (known as c−optimality in the literature) in
which there is a single quantity of interest ζ = cT θ.

It can easily be seen that a linear estimator ζ̂ = HT y(ξ) is unbiased if and only if
A(ξ)TH = K. Thus, linear unbiased estimators for ζ exist as long as the columns of K
are in the range of A(ξ)T . In the sequel, we will say that the vector ζ = KT θ is estimable

if there exists a design ξ such that the latter condition is satisfied. Notice that a sufficient
condition which ensures that KT θ is estimable for any m× r matrix K is that the matrices
(

A(x)
)

x∈X
contain m linearly independent vectors among their rows. For an estimable

quantity KT θ, we define the feasibility cone Ξ(K) as the set of designs ξ such that A(ξ)T

span the columns of K, and a design ξ will be said feasible if it lies in the feasibility cone.

We are interested in finding the best unbiased estimator for ζ, in the sense that its
variance should be minimal. The variance of a vector is in fact a positive semidefinite
matrix, and so the comparison between two covariance matrices should be in terms of
Löwner ordering (cf. Page 29). The Gauss-Markov theorem, which is a classical result in
the field of statistics, gives the form of this best estimator. We give below a proof of this
theorem relying on the Schur complement lemma.

Theorem 2.2.1 (Gauss-Markov Theorem). Let KT θ be estimable and ξ = {xk, wk} ∈
Ξ(K) be a feasible design. For any matrix H such that A(ξ)TH = K, ζ̂ = HT y(ξ) is an

unbiased estimator for ζ, and its covariance matrix satisfies

Var(ζ̂) = HT Var(y(ξ))H = HT ∆(w)H � KT
(

A(ξ)T ∆(w)−1A(ξ)
)−
K.

Moreover, this latter bound is attained for the estimator ζ̂∗ = H∗T y(ξ), where

H∗ = ∆(w)−1A(ξ)(A(ξ)T ∆(w)−1A(ξ))†K. (2.6)
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Proof. The fact that the lower bound is attained for ζ̂∗ = H∗T y(ξ) is clear by substituting
H∗ to H in the expression of the variance of ζ̂, and by using the fact that for any matrix
M , we have M †MM † = M †.

Hence, the only thing to prove is the matrix inequality. The matrix
(

A(ξ)T ∆(w)−1A(ξ) K

KT HT ∆(w)H

)

is positive semidefinite, because it can be written as the following product:
(

A(ξ)T ∆(w)−1/2

HT ∆(w)1/2

)
(

∆(w)−1/2A(ξ) ∆(w)1/2H
)

.

The Schur complement lemma indicates that since HT ∆(w)H � 0, the matrix

HT ∆(w)H −KT
(

A(ξ)T ∆(w)−1A(ξ)
)−
K

must be positive semidefinite. This completes the proof.

Remark 2.2.1. An alternative formulation of the Gauss-Markov Theorem states that if Σ is
nonsingular and the columns of K are in the range of the matrix AT , then the optimization
problem

min
H

� HT ΣH

s. t. ATH = K,

where the minimum is taken with respect to the Löwner ordering, attains its solution for
H = Σ−1A(AT Σ−1A)†K, and the value of the minimum is KT (AT Σ−1A)−K.

Gauss Markov theorem gives the form of the best unbiased linear estimator, and shows
that its variance is

Var(ζ̂∗) = KT (A(ξ)T ∆(w)−1A(ξ))−K = KTM(ξ)−K, (2.7)

where M(ξ)− is a generalized inverse of M(ξ) := A(ξ)T ∆(w)−1A(ξ) and the reader can
verify that the latter expression does not depend on the choice of the generalized inverse.
The positive semidefinite matrix M(ξ) is called the information matrix of the design. We
also define the partial information matrices of each experiment M(x) := A(x)TA(x), so
that M(ξ) can be decomposed as a weighted sum of the information matrices of the selected
experiments:

M(ξ) =
s∑

i=1

wiA(xi)
TA(xi) =

s∑

i=1

wiM(xi) (2.8)

Remark 2.2.2. If we further assume that the noise follows a normal distribution N (0, I),
then the estimator ζ̂∗ described in (2.6) is also the maximum likelihood estimator of ζ, and
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the bound given by the Cramer-Rao inequality is attained, i.e. its covariance matrix equals
the inverse of the Fisher information matrix.

We next define the K−information matrix QK(ξ) = (KTM(ξ)−K)−1 as the inverse of
the covariance matrix 2. Note that the inverse is well defined when ξ ∈ Ξ(K). Otherwise, it
is still possible to extend the definition of QK(ξ) per continuity; in fact, the correct definition
of the K−information matrix is given in Chapter 3 of [Puk93]:

QK(ξ) := min
L

� LTM(ξ)L (2.9)

s. t. KTL = Ir,

where the minimum is taken with respect to Löwner ordering. Pukelsheim shows that
the minimum exists indeed (which is not obvious since the Löwner ordering is a partial
ordering), as a consequence of the Gauss-Markov Theorem (cf. Theorem 1.21 in [Puk93]).
In the sequel, the reader needs only remind the simple expression QK(ξ) = (KTM(ξ)−K)−1,
which is valid in the regular case ξ ∈ Ξ(K), and that the matrix QK(ξ) exists and is singular
when the range of M(ξ) does not include the range of K (that is, when ξ /∈ Ξ(K)).

The reader may wonder why we reduce ourselves to the case of designs with a finite
–or even countable– number of support points. It was proposed indeed to work in a more
general framework, by allowing the design to take the form of a probability measure ω over
the regression region X , so that the information matrix becomes

M(ω) =
∫

X
A(x)TA(x)dω(x).

However, this continuous form of the information matrix is still a symmetric matrix from
the closed convex hull of {A(x)TA(x), x ∈ X}. When X is compact, and x 7→ A(x) is
continuous, the set of all information matrices {A(x)TA(x), x ∈ X} is closed, and we know
from Caratheodory’s theorem that M(ω) can be written as barycenter of m(m+ 1)/2 + 1

information matrices (see Fedorov [Fed72]). Therefore, the optimal design can always be
expressed with a discrete measures ω = w1δ(x − x1) + ... + wsδ(x − xs), where s ≤
m(m+1)/2+1, and we will consider only such designs in this work. Moreover, the study of
designs with a discrete support is appropriate for the framework of the industrial application
of the second part of this thesis.

2.3 Optimality criteria

2.3.1 c-optimality

The experimental design approach consists in choosing the design ξ in order to make
the variance of the estimator (2.7) as small as possible. The problem is well posed when

2. Note that If K = I (i.e. when the experimenter wants to estimate the whole parameter θ), then the
K−information matrix QK(ξ) coincides with the information matrix M(ξ).
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r = 1, since in this case the variance is a scalar. This is the framework for the c−optimal
design problem, in which K has a single column c, and the problem is now to find the design
ξ = {xk, wk} minimizing the variance (2.7):

min
ξ={xk,wk}∈Ξ(c)

cTM(ξ)−c (2.10)

s.t. M(ξ) =
s∑

i=1

wiA(xi)
TA(xi)

s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,xi ∈ X .

This problem was first studied by Elfving, in the case of single response experiments,
i.e. when each experiment yields only one observation (∀x ∈ X , l(x) = 1 and A(x) is
a row vector.) In his pioneer work, Elfving discovered a geometrical characterization of
c−optimality [Elf52] which we will detail in Section 2.4.1.

2.3.2 The class of Kiefer’s Φp criteria

When r > 1, the natural problem is to minimize the covariance matrix of the best linear
unbiased estimator (2.7) with respect to the Löwner ordering. A geometrical interpreta-
tion of this problem is the following: with the assumption that the noise ǫ(x) is normally
distributed for all x ∈ X , for every probability level α, the best estimator ζ̂∗ lies in the
confidence ellipsoid centered at ζ and defined by the following inequality:

(ζ − ζ̂∗)TQK(ξ)(ζ − ζ̂∗) ≤ κα, (2.11)

where κα depends on the specified probability level. We would like to make these confidence
ellipsoids as small as possible, in order to reduce the uncertainty on the estimation of ζ. To
this end, we can express the inclusion of ellipsoids in terms of matrix inequalities. One can
readily check that for any value of the probability level α, the confidence ellipsoid (2.11)
corresponding toQK(ξ) is included in the confidence ellipsoid corresponding to QK(ξ′) if and
only if QK(ξ) � QK(ξ′). Hence, we will prefer design ξ to design ξ′ if the latter inequality
is satisfied, and we want to select a design which maximizes QK(ξ) (or equivalently which
minimizes its inverse KTM(ξ)−K) for the Löwner ordering.

Since Löwner ordering is only a partial ordering on Sm (and the inclusion relation is a
partial ordering on the ellipsoids of Rm), the problem consisting in maximizing QK(ξ) is ill-
posed. Hence, we will rather maximize a scalar information function of the K−information
matrix, i.e. a function mapping S+

m onto the real line, and which satisfies natural proper-
ties, as positive homogeneity, monotonicity with respect to Löwner ordering, and concavity.
Kiefer [Kie75] proposed to make use of the class of matrix means Φp. These functions are
defined like the Lp-norm of the vector of eigenvalues of the information matrix, but for
p ∈ [−∞, 1]. For positive definite matrices, M ∈ S++

m with eigenvalues {λ1, . . . , λm}, the
matrix mean Φp is defined by
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Φp(M) =







λmin(M) for p = −∞ ;

( 1
m

trace Mp)
1
p for p ∈ ]−∞, 1], p 6= 0;

(det(M))
1
m for p = 0,

(2.12)

where we have used the extended definition of powers of matrices Mp for arbitrary real
parameters p: trace Mp =

∑m
j=1 λ

p
j . For singular positive semidefinite matrices, Φp is

defined by continuity:

Φp(M) =

{

0 for p ∈ [−∞, 0] ;

( 1
m

trace Mp)
1
p for p ∈ ]0, 1].

(2.13)

The reader is referred to Pukelsheim [Puk93] for a complete analysis of these information
functions. For a real p ∈ [−∞, 1], the problem of Φp−optimality is

max
ξ={xk,wk}∈Ξ(K)

Φp

(

QK(ξ)
)

(2.14)

s.t.
s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,xi ∈ X .

This class of problems was introduced by Kiefer in 1975, and it interpolates several
popular criteria which were used long before. We next review these criteria, which are
obtained for special value of p. A remarkable property of these optimization problems
is that, if KT θ is estimable, and except for the pathological case p = 1, the constraint
ξ ∈ Ξ(K) can be removed without changing the optimum. The extended feasible space

{ξ = {xk, wk}, ∀ i ∈ [s], xi ∈ Xwi ≥ 0;
s∑

i=1

wi = 1} (2.15)

is compact, which guarantees the existence of an optimal solution ξ∗ (because the objective
function is continuous). This fundamental existence result is presented in a unified way
for Kiefer’s Φp−criteria (p < 1) in [Puk93]. Following Pukelsheim’s terminology, we call a
design formally Φ−optimal if it maximizes Φ(QK(ξ)) in the set (2.15). The estimability of
KT θ implies that there is a design ξ such that QK(ξ) is nonsingular. Now, for all p ≤ 0,
the Φp−criterion vanishes for singular matrices. It follows that any formally Φp−optimal
design ξ is such that Φp(QK(ξ)) > 0. Recall that the definition of QK(ξ) can be extended
to the designs that are not feasible, and for which KTM(ξ)K fails to be invertible (see
the discussion following Equation (2.9)). The key point is that QK(ξ) becomes singular
when ξ /∈ Ξ(K). Hence, the optimal design ξ ∈ Ξ(K) and solves Problem (2.14). For all
p ∈]0, 1[, a similar argument holds, by considering the Fenchel conjugate function mΦq of
Φp (here, q is the real number such that 1

p
+ 1

q
= 0, see Section 7.13 in Pukelsheim [Puk93]).
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D-Optimality

The D−criterion is obtained for p = 0, and consists in maximizing the determinant of
the K−information matrix:

max
ξ={xk,wk}

det
(

QK(ξ)
)

(2.16)

s.t.
s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,xi ∈ X .

We have seen above that the maximization of QK(ξ) with respect to the Löwner ordering
was equivalent to the minimization of any ellipsoid of the form (2.11) for the inclusion
relation. In fact, such ellipsoids have their axis aligned with the eigenvectors of QK(ξ),
and the semi-axis in the direction of the eigenvector associated with the eigenvalue λi is of
length proportional to 1√

λi
. This allows a nice geometrical interpretation of this criterion:

The volume of the ellipsoid (2.11) is given by Cmκ
m/2
α det(QK(ξ))−1/2 where Cm > 0 is

a constant depending only on the dimension. Therefore, the D−optimal design minimizes
the volume of the ellipsoids (2.11), which coincide with the confidence ellipsoids of ζ̂∗ in
the Gaussian case (cf. Figure 2.1(a)).

E-Optimality

The E−criterion is obtained for p = −∞. It consists in maximizing the smallest eigen-

value of
(

QK(ξ)
)

.

max
ξ={xk,wk}

λmin

(

QK(ξ)
)

(2.17)

s.t.
s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,xi ∈ X .

As for the D−criterion, we can give a geometrical interpretation to this criterion: the
E−optimal design minimizes the length of the largest semi-axis of the ellipsoids (2.11), as
plotted on Figure 2.1(b).
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A-Optimality

The A−criterion is obtained for p = −1, and aims at maximizing the harmonic average
of the eigenvalues of the K−information matrix, or equivalently at minimizing its inverse:

min
ξ={xk,wk}

1

m
trace QK(ξ)−1 (2.18)

s.t.
s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,xi ∈ X .

If we denote the eigenvalues of QK(ξ)−1 = KTM(ξ)−K by λ1, . . . , λm, this harmonic
average can also be written as

ΦA(ξ) = m
m∑

i=1

1

λi

= m
m∑

i=1

(

1√
λi

)2

.

From this expression, we see that the A−optimal design minimizes the diagonal of the
bounding box of the ellipsoids (2.11), as shown on Figure 2.1(c).

T-Optimality

The T−criterion is obtained for p = 1, and aims at maximizing the trace of the
K−information matrix.

sup
ξ={xk,wk} ∈Ξ(K)

trace QK(ξ) (2.19)

s.t.
s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,xi ∈ X .

This criterion is not much used in practice, because of its pathological behavior. Since
M 7→ Φ1(M) is not strictly concave (it is linear), a formally Φ1−optimal design ξ can fail
to be feasible for problem (2.19), i.e. ξ /∈ Ξ(K). Moreover, we will see in Section 2.4.3 that
every T−optimal design for the full parameter θ is concentrated on the points x such that
‖A(x)‖F is maximal, which is not a good recommendation in practice. We give below an
example where Problem (2.19) has no solution, i.e. where the supremum over ξ ∈ Ξ(K) is
not attained. Consider a simple regression model with only two experiments (X = {1, 2}),
and row observation matrices A1 = [1, 0], A2 = [0, 2]. The information matrix for this
model is

M(ξ) =

(

w1

4w2

)

.

When the full parameter is of interest (K = I), the design w is feasible if and only if M(ξ)

is invertible, i.e. w > 0. We have QI(ξ) = (M(ξ)−1)−1 = M(ξ), which remains true even
for the nonfeasible designs where w1 = 0 or w2 = 0 by continuity of ξ 7→ QI(ξ). The trace
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of the information matrix is maximized over the set {w : w1 + w2 = 1, w ≥ 0} for the
non-feasible design w = [0, 1]T . Furthermore, the optimal value of Problem (2.19) can be
approached from below with arbitrary precision by the feasible designs wǫ = [ε, 1 − ε]T ,

where ǫ→ 0+.

2.3.3 S-optimality: a model robust criterion

The S-criterion was introduced by Läuter [Läu74] in order to tackle the uncertainty of
the experimenter on the true model, by considering a class of r plausible models with means

E[y(x)] = A(i),xθ i ∈ [r],

in which the quantity to estimate is ζi = ci
T θ.

In other words, the measurement y(x) at x is modeled as a linear function of the
parameter θ, which depends on the model, and must be used to estimate a linear function
ζ of the parameter in each model. In practice, the parameters of each of these models
may be different. This can be handled by setting the jth column of A(i),x to 0 whenever
the ith model at x does not depend on θj. Note that we write the index of the model in
parenthesis, in order to avoid ambiguities with the index of the experiment.

Given a nonnegative vector β of size r with sum 1, where βi indicates the importance
that the experimenter attaches to the model i, or the importance of the linear combination
ci

T θ, the Sβ−criterion is:

Sβ(ξ) =
r∑

i=1

βi log(ci
TM(i)(ξ)

−ci),

where

M(i)(ξ) =
s∑

k=1

wkA
T
(i),xk

A(i),xk

is the information matrix in the ith model. A design minimizing this criterion is called
Sβ−optimal. An interesting case occurs when the s models are identical. This is an alter-
native approach to the A−optimality for KT θ, with weightings on each linear combination
ci

T θ to be estimated. Dette studied the difference between these two approaches in Sec-
tion 4 of [Det93].
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Figure 2.1: Geometrical interpretation of D−, E− and A− optimality criteria. The ellip-
soids (2.11) are plotted in two dimensions, for κα = 1 and when the K−information matrix
has a singular value decomposition of the form QK(ξ) = λ1u1u1

T + λ2u2u2
T . The D−criterion

(a) corresponds to the volume, the E−criterion (b) to the largest semi-axis and the A−criterion
(c) to the diagonal of the bounding box of the ellipsoids.
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2.4 Fundamental results

2.4.1 Elfving’s Theorem for c-optimality

Elfving’s result [Elf52] describes the geometry of c−optimal designs. This is one of the
earliest theoretical result in the theory of optimal design of experiments, and its importance
was illustrated in many works [Che99, Det93, DS93, HHS95, Stu71, Stu05]. Elfving studied
the c-optimal design problem in the case of single response experiments 3, i.e. when each
experiment yields only one observation (∀x ∈ X , l(x) = 1 and A(x) is a row vector
which we denote by ax

T ; beware of the transposition, we use a different convention for

the observation matrix in the single response case because we prefer seeing the regression

vectors as column vectors). We will show that a generalization of Elfving’s theorem to the
case of multiresponse experiments is possible in Chapter 5.

We first define the Elfving set as the convex hull of the vectors ±ax:

E = conv
(

{±ax, x ∈ X}
)

, (2.20)

and we denote its boundary by ∂E .

Theorem 2.4.1 (Elfving [Elf52]). A design ξ = {xi, wi} is c−optimal if and only if there

exists scalars ǫi = ±1 and a positive real t such that

tc =
s∑

i=1

wiǫiaxi
∈ ∂E .

Moreover, t−2 = cTM(ξ)−c is the minimal variance.

The generalization to multiresponse experiments that we give in Section 5.1 has a proof
relying on original ideas of Elfving, and so we will only prove this generalization (Theo-
rem 5.1.1)). Elfving’s theorem shows that the c−optimal design is characterized by the
intersection between the vectorial straight line directed by c and the boundary of the Elfv-
ing set E . We also point out that when the vector c is not spanned by the regression vectors
(ax)x∈X , in other words when cT θ is not estimable (i.e. Ξ(c) = ∅), then the only scalar t
such that tc lies in E is 0, and so a c−optimal design does not exist, in accordance with
the discussion in the second paragraph of Section 2.2.3.

We show on Figure 2.2 a representation of Elfving’s theorem in dimension 2. Here,
X = {1, 2, 3, 4} is finite, so that the Elfving set is a polyhedron, and we write ai for axi

.
The vector c is along the θ1−axis, which means that the experimenter wants to estimate
ζ = θ1. The intersection between this axis and the Elfving set indicates the optimal weights
of the c−optimal design: w3 = 3

4
and w4 = 1

4
. Note that since a2 is in the interior of the

Elfving set, the experiment 2 is never selected, whatever is the vector c. This example also
shows that the optimal design w∗ can be computed by linear programming when X is finite
(intersection of a straight line and a polyhedron). We will study this feature in Chapter 3.

3. The more general setting of multiresponse experiments was introduced by Fedorov in 1972 [Fed72]
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a1

a2

−a1

c

−a2

a4

−a3

θ2

t∗c = 3
4a3 + 1

4(−a4)

a3

θ1

−a4

Figure 2.2: Geometrical representation of Elfving’s theorem in dimension two. The grey area
represents the Elfving set, which is a polyhedron because X is finite (here, X = {1, 2, 3, 4}). The
intersection t∗c determines the weights of the c−optimal design: w∗ = [0, 0, 3

4 , 1
4 ]T .

2.4.2 The Kiefer-Wolfowitz Theorem for D-optimality

The Kiefer-Wolfowitz theorem [KW60] was established for single-response experiments
in 1960, and then extended to the multiresponse framework by Fedorov [Fed72]. We give
below both versions of this theorem.

A special case of c−optimality is when the experimenter wants to estimate a quantity
ζ = ax

T θ which can be observed by a single experiment (here, the experiment at x with
regression vector ax). In this case, the variance of the best estimator is ax

TM(ξ)−ax. This
case is highly trivial since the experimenter’s interest is to affect all the experimental effort
to x. However, an interesting case occurs when the experimenter is not interested in the
observation of a single experiment ax

T θ, but in the whole regression surface {ax
T θ, x ∈

X}. A global criterion is needed to measure the performance of a design in this case. The
global criterion (known as G−criterion) is

ΦG(ξ) = max
x∈X

ax
TM(ξ)−ax

and the G−optimal design guards one against the worst case, by minimizing the variance
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of every observation in the regression surface:

min
ξ

max
x∈X

ax
TM(ξ)−ax (2.21)

s.t. M(ξ) =
s∑

i=1

wiA(xi)
TA(xi)

s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,xi ∈ X .

The Kiefer-Wolfowitz theorem establishes the equivalence between the D−optimal de-
sign and the G−optimal design:

Theorem 2.4.2 (Kiefer-Wolfowitz [KW60]). Assume that the regression range (ax)x∈X
contains m linearly independent vectors. Then the following statements are equivalent:

(i) The design ξ is G−optimal;

(ii) The design ξ is D−optimal for the full parameter θ (i.e. with K = I);

(iii) For all x in X , ax
TM(ξ)−ax ≤ m.

Moreover, the bound provided by the inequality in (iii) is attained for the support points of

the optimal design:

xi ∈ supp(ξ) =⇒ axi

TM(ξ)−axi
= m.

Proof. We first show that for all design ξ = {xk, wk}, we have ΦG(ξ) ≥ m. If M(ξ) is
singular, then by assumption there is a regression vector ax which is not in the range of
M(ξ), and so ΦG(ξ) =∞ ≥ m. If M(ξ) is nonsingular, we write:

m = trace I = trace M(ξ)M(ξ)−1 = trace(
s∑

i=1

wiaxi
axi

TM(ξ)−1)

≤
s∑

i=1

wi max
x∈X

(ax
TM(ξ)−1ax)

= ΦG(ξ).

This proves the part (iii) =⇒ (i).

Now, we consider a D−optimal design ξD, and we show that ax
TM(ξD)−ax ≤ m for

every point x ∈ X , with equality when x is in the support of ξD. Note that a D−optimal
design exists indeed, since we are maximizing a continuous function over a compact set.
Moreover the optimal information matrix M(ξD) is nonsingular, since there are m linearly
independent vectors in the regression range (the matrix M(ξD) must contain the columns
of I in its range because we are interested in the whole parameter θ). Let x ∈ X , and
consider the design ξα = (1 − α)ξD + αξ(x), where ξ(x) is the design where all the
experimental effort is concentrated at x. The application f : α → log det(Mα), where
Mα = (1− α)M(ξD) + αaxax

T is the information matrix corresponding to the design ξα,
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is well defined on [0, 1], and its derivative at α = 0 exists and coincides with the directional
derivative of log det at M(ξD) in the direction of axax

T −M(ξD) :

df

dα

∣
∣
∣
∣
∣
α=0

= traceM(ξD)−1(axax
T −M(ξD)) = ax

TM(ξD)−ax −m.

The concavity of the log det criterion and the optimality of the design ξD imply that f is
nonincreasing on [0, 1], and so the latter derivative must be nonpositive. Hence,

∀x ∈ X ,ax
TM(ξD)−ax ≤ m,

and we have proved the part (ii) =⇒ (iii). We further show that the latter inequality
becomes an equality if x is a support point of ξD. We denote by (xi)i∈[s] the support points
of ξD and by w the vector of the associated weights, and we write:

m = trace I = trace M(ξD)M(ξD)−1 = trace(
s∑

i=1

wiaxi
axi

TM(ξD)−1)

=
∑

i|wi>0

wiaxi

TM(ξD)−axi
.

The latter expression is a weighted average of terms all smaller than m and takes the
value m. Hence, wi > 0⇒ axi

TM(ξD)−axi
= m.

Assume conversely that ξ is notD−optimal. IfM(ξ) is singular, then there is a regression
vector ax which is not in the range of M(ξ), and so (iii) does not hold. If M(ξ) has full
rank, then in view of the strict concavity of the log det function over S+

m, and similarly
to the previous discussion, there exists a design ξ′ such that log det(M(ξ)) has a positive
derivative in the direction of M(ξ′)−M(ξ):

traceM(ξ)−1(M(ξ′)−M(ξ)) = traceM(ξ)−1M(ξ′)−m > 0.

Denoting the support points and the weights of ξ′ by xi
′ and w′

i respectively, we obtain:

traceM(ξ)−1M(ξ′) =
∑

i|w′
i>0

w′
iax′

i

TM(ξ)−ax′

i
> m.

This expression is a weighted average strictly larger than m, which implies the existence of
a support point x′ of ξ′ such that ax′

i

TM(ξ)−ax′

i
> m. Hence, (iii) does not hold and we

have proved the part (iii) =⇒ (ii).

The existence of a D−optimal design, for which the ΦG−criterion takes the value m,
in conjunction with the fact that ΦG(ξ) ≥ m for all design ξ shows that a design ξ is
G−optimal if and only if ΦG(ξ) = m. This proves the parts (i) =⇒ (iii) and the proof is
complete.

The previous result was extended to the case of multiresponse experiments by Fe-
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dorov [Fed72]. The G−criterion for multiresponse experiments becomes

ΦG(ξ) = max
x∈X

traceA(x)M(ξ)−A(x)T .

We omit the proof of this extended result, which is analogous to the previous one.

Theorem 2.4.3 (Fedorov [Fed72]). Assume that the regression range (A(x)T z)x∈X , z∈Rl(x)

contains at least m linearly independent vectors. Then the following statements are equiv-

alent:

(i) The design ξ is G−optimal;

(ii) The design ξ is D−optimal for the full parameter θ (i.e. with K = I);

(iii) For all x in X , traceA(x)M(ξ)−A(x)T ≤ m.

Moreover, the bound provided by the inequality in (iii) is attained for the support points of

the optimal design:

xi ∈ supp(ξ) =⇒ traceA(x)M(ξ)−A(x)T = m.

This result was used by Fedorov to construct a sequential algorithm to build D−optimal
designs: at each step, the point x which maximizes traceA(x)M(ξ)−A(x)T is sought,
and the design ξ is replaced by a convex combination of ξ and the design ξ(x) which
concentrates all the experimental effort at x (cf. Section 3.1).

2.4.3 General Equivalence Theorem

In fact, the Kiefer-Wolfowitz theorem appears as a particular case of the General Equiva-
lence Theorem proved by Kiefer in 1974 for some differentiable information criteria [Kie74],
and extended by Pukelsheim in 1980 [Puk80] to any information criterion Φ that is non-
negative, positively homogeneous and concave. The proof of Pukelsheim emphasizes on the
convex duality flavour of the general equivalence theorem (his proof relies on Fenchel duality,
and he proposed another approach based on subgradients with Titterington [PT83]). We
give below a version of this theorem for the class of Kiefer’s Φp criteria. For a proof, the
reader is referred to Pukelsheim [Puk93].

Theorem 2.4.4 (General Equivalence Theorem [Kie74, Puk80]). Consider a real number

p ∈] − ∞, 1] (p finite). The design ξ is Φp−optimal for KT θ if and only if there is a

generalized inverse G of M(ξ) such that

∀x ∈ X , trace A(x)GKQK(ξ)p+1KTGA(x)T ≤ trace QK(ξ)p.

In case of optimality, the latter inequality becomes an equality for any support point xi of ξ.

Specifically, ξ is Φp−optimal for the whole parameter θ if and only if

∀x ∈ X , trace A(x)M(ξ)p−1A(x)T ≤ trace M(ξ)p.
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We point out that there is a simpler version of this theorem when the information
matrix M(ξ) is assumed to be nonsingular at the optimum. The proof of this simplified
version of the theorem is very close to that of the Kiefer-Wolfowitz equivalence theorem
for D−optimality (Theorem 2.4.2). It relies on the directional derivative of Φp(QK(ξ)) in
the direction of the design ξ(x) completely atomized at x, which is well defined if M(ξ) is
invertible:

φ′
p,K(ξ,x) = lim

α→0+

Φp

[

QK

(

(1− α)ξ + αξ(x)
)]

− Φp[QK(ξ)]

α
(2.22)

= trace A(x)M(ξ)−1KQK(ξ)p+1KTM(ξ)−1A(x)T − trace QK(ξ)p.

In the nonsingular case, we can formulate a general equivalence theorem that is very close
to the original formulation of Kiefer and Wolfowitz for D−optimality:

Theorem 2.4.5 (General Equivalence theorem: Nonsigular case [Atw80]). Let p ∈]−∞, 1]

(p finite), and K an r ×m matrix such that KT θ is estimable. Then, the following three

statements are equivalent:

(i) The design ξ∗ is Φp−optimal for KT θ;

(ii) φ′
p,K(ξ∗,x) ≤ 0 for all x ∈ X ;

(iii) ξ∗ minimize maxx∈X φ′
p,K(ξ∗,x) over Ξ(K).

In addition, we have φ′
p,K(ξ∗,x) = 0 for all x ∈ supp ξ∗.

This fundamental theorem, which gives an efficient method to check whether a given
design is optimal, has several interesting consequences, which we next present.

Bound on D-optimal weights

We give below an interesting result of Pukelsheim [Puk80], which states that for single-
response experiments, the weights of the D−optimal design for KT θ are bounded from
above by 1

r
(recall that r is the number of quantities that the experimenter wishes to

estimate, i.e. r is the number of columns of K).

Theorem 2.4.6 (Bounds on D−optimal weights [Puk80]). Every D−optimal design for

KT θ has all its weights bounded from above by 1
r
. As a consequence, if the regression

range (ax)x∈X consists in exactly r independent vectors which span the columns of K, then

the D−optimal design for KT θ is unique and is defined by wi = 1
r

for all i ∈ [r].

Proof. Let ξ be a D−optimal design for KT θ, and let xi and wi denote respectively the
support points of ξ and their weights. By the generalized equivalence theorem 2.4.4 for
p = 0 (D−optimality), there exists a generalized inverse G of M(ξ) such that:

∀i ∈ [s], r = trace QK(ξ)0 = axi

TGKQK(ξ)KTGaxi
= axi

TZaxi
, (2.23)
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where we have set Z = GKQK(ξ)KTG. In the latter expression, we can replace QK(ξ) by
QK(ξ)KTM(ξ)−KQK(ξ), since the optimal K−information matrix must be invertible and
QK(ξ)−1 = KTM(ξ)−K. Besides, notice that since G is a generalized inverse of M(ξ), so
is GM(ξ)G, and we can take this particular choice for M(ξ)−:

r = axi

TGKQK(ξ)KTGM(ξ)GKQK(ξ)KTGaxi
.

We develop M(ξ) as
∑

k∈[s] wkaxk
axk

T in order to obtain:

r =
∑

k∈[s]

wk(axi

TZaxk
)2 ≥ wi(axi

TZaxi
)2 = wir

2,

where we have used the expression of r that is given in (2.23). We finally obtain the desired
upper bound:

wi ≤
r

r2
=

1

r
.

The second part of this theorem is a simple consequence of this upper bound. If X = [r]

and the regression vectors are linearly independent and span the columns of K, then KT θ

is estimable and the D−optimal design for KT θ affects a weight wi no larger than 1
r

to
each of these r regression vectors. We can conclude that wi = 1

r
from the constraint

∑r
i=1 wi = 1.

An extension of this result to the framework of multiresponse experiments is possible.
We made an announcement of the present result to the conference ISCO 2010 [BGS10]
and it was discovered independently for the case K = I by Harman and Trnovská [HT09].
The proof mimics that of Theorem 2.4.6, and relies on an additional argument showing
that when X is a positive semidefinite matrix, the ratio between trace X and trace X2 is
bounded from below by a constant that depends on the rank of X. We will give a proof of
this extension under a slightly different form in Chapter 7.

Theorem 2.4.7. Let ξ = {xk, wk} be a D−optimal design for KT θ. Then, the weight wk

of the experiment at xk is bounded from above:

wk ≤
rank A(xk)

r
.

As a consequence, if (i) the regression region X is finite (of size s), (ii)
∑

k∈[s] rankAk = r,

and (iii) the quantity KT θ is estimable, then the D−optimal design for KT θ is unique and

is defined by

wk =
rank A(xk)

r
, ∀k ∈ [s].

A-Optimal weights on linearly independent regression vectors

Another interesting consequence of the general equivalence theorem was given by
Pukelsheim and Torsney [PT91]. They showed that we can give the A−optimal design
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for KT θ in close form when the regression range X is finite and the vectors (ax)x∈X are
linearly independent. In this section, we associate X with [s], so that the regression vectors
are denoted by a1, . . . ,as. We denote by A the aggregate of all row observation matrices:

A = [a1, . . . ,as]
T .

Note that this independence condition implies that the number s of vectors in X satisfies

r ≤ s ≤ m,

where the fist inequality is necessary because ξ bust be in the feasibility cone Ξ(K), and
the second inequality is enforced by the independence of the vectors ai. Besides, the design
ξ is completely defined by the weight vector w ∈ Rs since X is finite, so that we simply
substitute w to ξ in the subsequent discussion.

The theorem of Pukelsheim and Torsney is actually proved in a more general context
in [PT91], valid for any information criterion Φ that is nonnegative, positively homogeneous
and concave, and establishes a nonlinear equation that the weights of the Φ−optimal design
must satisfy. A powerful corollary from their result is that this nonlinear equation can be
solved in close form for the Kiefer’s criterion Φ−1 (A−optimality). We give below an
elementary proof of this powerful result.

Theorem 2.4.8 (A−optimal weights on independent regression vectors [PT91]). If the

regression vectors a1, . . . ,as are linearly independent and span the columns of K, then the

the A−optimal design for KT θ is given in close form by

∀i ∈ [s], wi =

√
bii

∑s
j=1

√

bjj

,

where b11, . . . , bss are the diagonal elements of the matrix

B = (AAT )−1AKKTAT (AAT )−1,

which reduces to B = (AAT )−1 when the full parameter θ is of interest (K = I).

Proof. Let w be an A−optimal design for KT θ. We first show that the statement of the
theorem is true for all experiments which are in the support of the design w, i.e. for all i
such that wi > 0. Let i denote the index of such an experiment. By the General equivalence
theorem 2.4.4 for p = −1 (A−optimality), there exists a generalized inverse G of M(ξ)

such that:
trace QK(w)−1 = ai

TGKKTGai. (2.24)

The columns of K are in the range of M(w) because w must be in the feasibility cone Ξ(K).
Besides, ai is in the range of M(w) =

∑

i∈[s] wiaiai
T because wi > 0. Therefore, the vector

KTGai is invariant to the choice of the generalized inverse G of M(w). Notice that M(w)

can be decomposed as AT Diag(w)A. The linear independence of the vectors a1, . . . ,as
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implies that the matrix AAT is invertible, and so a particular choice for a generalized inverse
of M(w) is G0 = AT (AAT )−1 Diag(w)†(AAT )−1A. We use this particular choice for G
in (2.24), and we use that ai = AT ei, where ei is the ith vector of the canonical basis
of Rs:

trace QK(w)−1 = ei
T Diag(w)†BDiag(w)†ei.

In fact, the matrix Diag(w)† is the diagonal matrix where the kth diagonal entry is either
1

wk
or 0 according as wk > 0 or wk = 0, so that the right hand side of the latter expression

is equal to biiw
−2
i . We have thus shown that wi is proportional to

√
bii.

It remains to show that the formula holds when wj = 0, i.e. the jth diagonal term of
B is zero if wj = 0. To see this, we assume without loss of generality that w1, . . . ws0 > 0

and ws0+1 = . . . = ws = 0 for an index s0 ≤ s. Then, a1, . . . ,as0
span the range

of M(w) =
∑s0

i=1 wiaiai
T . Moreover, the columns of K are in the range of M(w) by

feasibility of the optimal vector w, from which we deduce that there is a s0 × r matrix H
such that

K = AT

(

H

0

)

.

Finally, for an index j > s0 (i.e. such that wj = 0), we obtain:

bjj = ej
TBej = ej

T (AAT )−1AKKTAT (AAT )−1ej = ej
T

(

HHT 0

0 0

)

ej = 0.

The latter result admits a straightforward generalization to the multiresponse case, which
we do not think has been published elsewhere. The matrix A now stands for the aggregate
observation matrix [AT

1 , . . . , A
T
s ]T .

Theorem 2.4.9 (A−optimal weights on indepedent observation matrices). If the rows of

the observation matrices A1, . . . , As are linearly independent and span the columns of K,

then the the A−optimal design for KT θ is given in close form by

∀i ∈ [s], wi =

√
traceBi

∑s
j=1

√

traceBj

,

where B1, . . . , Bs are the diagonal blocks of size l1 × l1, . . . , ls × ls of the matrix

B = (AAT )−1AKKTAT (AAT )−1.

c-Optimal weights on linearly independent regression vectors

As a corollary from the latter result, we obtain a simple closed-form formula for the
weights of the c−optimal design over independent regression vectors:
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Corollary 2.4.10 (c−optimal weights on independent regression vectors). If the regression

vectors a1, . . . ,as are linearly independent and span the vector c, then the the c−optimal

design is given in close form by

w =
|(AAT )−1Ac|
‖(AAT )−1Ac‖1

.

(In the latter formula, the absolute value of the vector in the numerator is element-wise.) If

in addition the number of regression vectors is s = m, then the matrix A is invertible and

the latter formula simplifies to:

w =
|(AT )−1c|
‖(AT )−1c‖1

.

Proof. We know from Theorem 2.4.8 that the c−optimal design w is proportional to the
square root of the diagonal of

B =
(

(AAT )−1Ac
)(

(AAT )−1Ac
)T
,

that is, w ∝ |(AAT )−1Ac|.

T-Optimal design for the full parameter θ

The next propositions show that the T−optimal design problem for the full parameter
θ is trivial. We start with the single-response case:

Proposition 2.4.11 (T−optimality for θ, single-response). A design is formally T−optimal

if and only if all its support points correspond to regression vectors of maximal length, i.e.

∀i ∈ [s], wi > 0⇒
(

‖axi
‖ = max

x∈X
‖ax‖

)

.

The extension to the multiresponse case is straightforward:

Proposition 2.4.12 (T−optimality for θ, multiresponse). A design is formally T−optimal

if and only if all its support points correspond to observation matrices of maximal Frobenius

norm, i.e.

∀i ∈ [s], wi > 0⇒
(

‖A(xi)‖F = max
x∈X
‖A(x)‖F

)

.

Proof. The (formal) T−optimal design problem for θ can be formulated as:

max
ξ={xk,wk}

trace
s∑

i=1

wiA(xi)A(xi)
T (2.25)

s.t.
s∑

i=1

wi = 1; ∀ i ∈ [s], wi ≥ 0,xi ∈ X .
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We have the following bound on the objective function:

trace
s∑

i=1

wiA(xi)A(xi)
T =

s∑

i=1

wi‖A(xi)‖2
F ≤

s∑

i=1

wi

︸ ︷︷ ︸

1

max
x∈X
‖A(x)‖F ,

and it is clear that this bound is attained if and only if w assigns all its weight to points x

where the observation matrix A(x) is of maximal Frobenius norm.



Chapter 3

Classic algorithms for computing
optimal designs

When the regression region X is finite, or when the support points x1, . . . ,xs are given,
the optimal experimental design problem reduces to find the vector of weights w. This
arises in many practical situations, and in particular for the problem of optimal monitoring
in networks that we present in the second part of this thesis. In the more general case
where X is a compact region, many authors have proposed to solve a discretized version
of the problem, by selecting a large (but finite) number of sample points in the regression
region. A good motivation for this discretization is that the optimization problem is usually
convex with respect to w. Hence, if we ignore the optimization step over the support points,
any local optimum is in fact a global optimum. This remarkable property is at the origin
of several algorithms which converge to the optimal design vector w. In this chapter, we
study the Fedorov-Wynn exchange algorithm, a class of multiplicative algorithms, and the
semidefinite programming (SDP) formulations for E−, A−, D− and T−optimality.

In this chapter and the following ones, we associate the regression region X with [s].
Hence, every variable that was indexed by x ∈ X will now be indexed by i ∈ [s]. Similarly,
every variable depending on the design ξ will now be denoted as a function of w. For
example, the observation from the ith experiment is

yi = Aiθ + εi,

and the information matrix reads

M(w) =
s∑

i=1

wiA
T
i Ai.

3.1 Federov-Wynn first order algorithm

Federov [Fed72] and Wynn [Wyn70] have described independently a method to compute
D−optimal designs, inspired from the Kiefer-Wolfowitz theorem 2.4.2. The idea of this

51
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algorithm is to start from an arbitrary design w(0) and to move at each step in the direction of
the design that is concentrated on the ith experiment, where i is the index which maximizes
traceAiM(w)−AT

i . More precisely, the following operation is performed at the kth step of
the algorithm:

w(k) = (1− αk)w(k−1) + αkei, where i ∈ argmax
i∈[s]

traceAiM(w)−AT
i .

In the latter expression ei is the ith standard unit vector of Rs, and αk is an appropriate
sequence of step sizes. This algorithm was then generalized to a wider class of information
functions Φ that are sufficiently regular by Atwood [Atw76, Atw80]. This includes the class
of Φp−criteria for KT θ, when the optimal design is such that M(w) is non singular, and
we restrict our discussion to this case.

This algorithm is in fact a feasible descent method: At each step, the design w is moved
in the direction w′ −w, where w′ is a feasible design for which the directional derivative
Φ′

p,K(w,w′) is maximal (Φ′
p,K(w,w′) denotes the directional derivative of Φp[QK(w)] at

w, in the direction of w′ −w). By linearity of the derivative, we have:

Φ′
p,K(w,w′) =

∑

i

w′
iφ

′
p,K(w, ei),

where φ′
p,K is the directional derivative in the direction of an atomic design, as defined

in (2.22). Hence, a simple choice for w′ is:

w′ = arg max
v|
∑

i
vi=1

∑

i

viφ
′
p,K(w, ei) = ej , where j = argmax

i∈[s]
φ′

p,K(w, ei).

The general Fedorov-Wynn algorithm follows. Its stopping criterion directly comes from the
general equivalence theorem 2.4.5.

Algorithm 3.1.1 Fedorov-Wynn first order algorithm
Set a precision ǫ > 0
Let w(0) be a design such that M(w(0)) is nonsingular.
k ← 0
repeat

k ← k + 1
Find ik = argmaxi∈[s] φ′

p,K(w(k), ei).

Choose αk ∈ [0, 1] and construct w(k) = (1− αk)w(k−1) + αkeik
.

until φ′
p,K(w(k), ei) ≤ ǫ

Classical stepsizes from literature on the the feasible direction methods can be used.
Fedorov [Fed72] proposed the following rules:

(i) limk→∞ αk = 0,
∑∞

k=1 αk =∞;

(ii) αk = argminα>0 Φp(QK(w(k)
α )), where w(k)

α = (1− α)w(k−1) + αeik
;

(iii) αk =

{

αk−1, if Φp[QK(w(k)
αk−1

)] ≥ Φp[QK(w(k−1))]

αk−1/γ, γ > 1 otherwise.
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The convergence of this algorithm is proved in [WW78] for the rules (i) and (ii). Another
proof for the rule (ii) is presented in [Atw80]. Cook and Fedorov claim [CF95] that the
convergence of the algorithm for the three above rules on the step sizes is standard, without
giving a proof. We also indicate that Richtarik [Ric08] recently proposed a Fedorov-Wynn–
type algorithm with specified steplengths αk, for which it is guaranteed that a δ−approximate
solution is returned after O(1/δ) iterations.

An important property of the Fedorov-Wynn–type algorithms is the following. By rewrit-
ing the update rule of w as:

w(k) = (1− αk)
(

w(k−1) +
αk

1− αk

eik

)

,

we see that the information matrix M(w(k)) can be written as:

M(w(k)) = (1− αk)
(

M(w(k−1)) +
αk

1− αk

Aik
AT

ik

)

.

We usually have li << m, and so the latter formula is a low-rank update of the information
matrix. Therefore, much computational saving can be obtained by using the Sherman-
Morrison formula to update the inverse of M(w), which is often required to evaluate the
φ′

p,K(w(k), ei). In some situations, it can be sufficient to compute low rank updates of the
LU decomposition of M(w).

We point out that for the sequence of step sizes αk = (1 + k)−1 (which satisfies
the rule (i)), the algorithm can be interpreted as a sequential algorithm for constructing
non-normalized designs: At each step of the algorithm, a new measurement is added on
the experiment which maximizes the directional derivative φ′

p,K(w(k), ei). The step sizes
αk = (1 + k)−1 mimics this sequential procedure while keeping the designs normalized (i.e.
∑

i w(k) = 1). This was proposed by Fedorov [Fed72] for the construction of D−optimal
designs. A refinement of this sequential procedure is possible: at each step, the experimenter
has both the possibility to add a “good” measurement point (corresponding to the largest
value of the derivative) and to remove a “bad” one (corresponding to the small value of the
derivative). This procedure is known as the Fedorov Exchange algorithm. One can further
define forward and backward excursions, where n+ new measurement points are added and
n− are deleted, as in Mitchell [Mit74].

3.2 Multiplicative weight updates

Multiplicative algorithms were proposed in 1976 by Titterigton to compute the weights
of the D−optimal design [Tit76] (for the full vector θ). The idea is to multiply, at each
step, every coordinate wi of the current design w(t) by a factor which is proportional to the
derivative

∂ log detM(w)

wi

∣
∣
∣
∣
∣
w=w(t)

= traceAiM(w(t))−1AT
i .
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At each step, the normalization factor is simply

s∑

i=1

w
(t)
i traceAiM(w(t))−1AT

i = trace
(

M(w(t))−M(w(t))
)

= trace I = m,

such that the iterations are:

∀i ∈ [s], w
(t+1)
i = w

(t)
i

traceAiM(w(t))−1AT
i

m
. (3.1)

Titterington proved in [Tit76] that the sequence of determinants detM(w(t)) generated
by this sequence is nondecreasing, and converges to the optimal value of the D−criterion.
He also proposed [Tit78] a variant of the form:

∀i ∈ [s], w
(t+1)
i = w

(t)
i

traceAiM(w(t))−1AT
i − β

m− β , (3.2)

which is faster than the iterations (3.1) in practice, and conjectured the monotonic behaviour
of the sequence of determinants for β = 1. Under a slightly different setting, Dette,
Pepelyshev and Zhigljavsky [DPZ08] proved the monotonicity of detM(w(t)), for iterations
of the form (3.2), with a dynamic parameter β(t) instead of β. The conjecture was finally
resolved in 2010 by Yu [Yu10b].

A general class of multiplicative algorithms was proposed in 1978 by Silvey, Titterington
and Torsney [STT78], for the Φ−optimal design problem:

∀i ∈ [s], w
(t+1)
i = w

(t)
i

di(w
(t))λ

∑

j∈[s] w
(t)
j dj(w

(t))λ
, (3.3)

where di(w
(t)) = ∂Φ[M(w)]

wi

∣
∣
∣
w=w(t)

and λ is a power parameter in ]0, 1]. For the

A−optimal design problem, the monotonicity of the sequence ΦA[M(w(t))] was proved
by Torsney [Tor83] for the power parameter λ = 1/2. Yu proved recently [Yu10a] the con-
vergence of this general class of multiplicative algorithms for the design criteria Φ[M(w)]

such that M 7→ −Φ(M−1) is concave (with respect to Löwner ordering). This includes as
a special case the Φp−optimal design problem for KT θ, when p ∈ [−1, 0] (in particular, for
A− and D−optimality).

The different versions of the multiplicative weight updates are presented in a unified way
in Algorithm 3.2.1, for the Φp-optimal design problem for KT θ. The stopping criterion is
based on the general equivalence theorem 2.4.4, and we have used the fact that for every
design w, we have

∑

i∈[s] w
(t)
i di(w

(t)) = traceQK(w(t))p.

We also point out that for p = −1 (A−optimality), the derivative of the criterion
ΦA[QK

(

M(w)
)

] takes the simple form

di(w
(t)) = ‖AiM(w(t))−K‖2

F .
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In particular, for c−optimality, we obtain:

di(w
(t)) = ‖AiM(w(t))−c‖2.

For the case of E−optimality, the criterion is not differentiable in general, but a subgradient
is given by

di(w
(t)) = ‖AiM(w(t))−Kv‖2,

where v is an eigenvector associated to the largest eigenvalue of KTM(w(t))−K.

Algorithm 3.2.1 Titterington-type multiplicative algorithm
Set a precision ǫ > 0
Choose a power parameter λ
Let w(0) be a design such that M(w(0)) is nonsingular.
t← 0
repeat

t← t + 1
for i ∈ [s] do

d
(t)
i ← trace AiM(w(t))−1KQK(w(t))p+1KT M(w(t))−1AT

i

end for
for i ∈ [s] do

Choose an acceleration parameter β(t).

w
(t+1)
i = w

(t)
i

(
d

(t)
i

)λ
−β(t)

∑

j∈[s]
w

(t)
j

(
d

(t)
j

)λ
−β(t)

end for
until maxi∈[s] d

(t)
i ≤ (1 + ǫ)

∑

i∈[s] w
(t)
i d

(t)
i

3.3 Mathematical programming approaches

In this section, we review the linear programming (LP), semidefinite programming (SDP),
and determinant maximization (MAXDET) formulations that have been proposed to solve
some optimal experimental design problems.

When Pukelsheim have proved the general equivalence theorem 2.4.4 for any infor-
mation function that is nonnegative, positively homogeneous and concave, he incidentally
gave a dual formulation of the E−optimal design which is nothing but a semidefinite pro-
gram [Puk80]. However, this feature does not seem to have been noticed at this period,
probably because the semidefinite programming theory and algorithms were still at a very
early stage of their development. The SDP approach to optimal experimental design was
then “rediscovered” by Vandenberghe, Boyd and Wu in 1999 [VBW98], who were able
to formulate semidefinite programs for the E− and A−optimal design problems, and a
MAXDET problem for the D−optimal design (for the full parameter θ). A review of these
formulations is presented by Fedorov and Lee [FL00]; another one is available in Chapter 7.5
of Boyd and Vandenberghe [BV04].
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Recently, Harman and Jurík [HJ08] showed that the Elfving theorem 2.4.1 yields a linear
programming formulation of the c−optimal design. On the other hand, the c−optimal
design problem also admits a semidefinite programming formulation which was studied by
Qi [Qi09]. In the analysis of his multiplicative-low rank update algorithm, Richtarik [Ric08]
pointed out the equivalence between the latter LP and SDP approaches, and noticed that a
rank 1 solution of the SDP always exist. We will extend this result of existence of low rank
solutions to a wider class of semidefinite programs in Chapter 4.

3.3.1 E-optimality

The E− optimal design for the full parameter θ aims at maximizing the smallest eigen-
value of the information matrix M(w). We will make use of the characterization of the
smallest eigenvalue of a symmetric matrix by Rayleigh-Ritz quotients: M ∈ Sm:

λmin(M) = min
v∈Rm, v 6=0

vTMv

vT v
.

The latter expression implies that for every scalar t ≤ λmin(M) and for all vector v ∈ Rm,

vTMv ≥ t vT v.

This can be rewritten as ∀v, vT (M − tI)v ≥ 0, or equivalently: M � tI. Similarly, if
t > λmin(M), there must exist a vector v0 such that v0

T (M − tI)v0 < 0, and M � tI.
This proves:

∀M ∈ Sm, λmin(M) = max
t∈R

t (3.4)

s.t. M � tI.

Thanks to this SDP formulation of the smallest eigenvalue of a symmetric matrix, and by
associativity of the max operator, we can formulate the E−optimal design problem (2.17)
as:

max
t,w

t (3.5)

s.t. M(w) � tI
s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0.

In fact, the more general E−optimal design problem for the estimation of KT θ can also
be expressed as a semidefinite program, by substituting KKT to I in the right hand side of
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the linear matrix inequality of Problem (3.5):

max
t,w

t (3.6)

s.t. M(w) � tKKT

s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0.

We recall that the optimal design w must lie in the feasibility cone Ξ(K), which means that
the range of K must be included in that of M(w). This, of course, is automatically implied
by the linear matrix inequality M(w) � tKKT of Problem (3.6), in accordance with our
discussion following Equation (2.15).

We show below that the Lagrangian dual of the E−optimality SDP (3.6) already ap-
peared in Pukelsheim [Puk80], as a special case of his duality theorem. For an information
function Φ that is nonnegative on S+

m, positive on S++
m , positively homogeneous and concave,

its polar function is defined as:

Φ∗(X) = inf
Z≻0

〈Z,X〉
Φ(Z)

.

We give below a version of Pukelsheim’s duality theorem for the case in which X is finite:

Theorem 3.3.1 (Duality theorem [Puk80]).

sup Φ(QK(w)) = inf
X�0

1/Φ∗(KTXK)

s. t. w ∈ Ξ(K) s. t. 〈AT
i Ai, X〉 ≤ 1 (∀i ∈ [s]).

Now, for Φ = ΦE = λmin(·), it is easy to see that Φ∗
E(X) = trace X, and the expression

at the right hand side of the equality sign in Theorem 3.3.1 is the inverse of

max
X�0

〈KKT , X〉 (3.7)

s. t. 〈AT
i Ai, X〉 ≤ 1 (∀i ∈ [s]),

which is a semidefinite program. Its dual is:

min
µ≥0

s∑

i=1

µi (3.8)

s.t.
s∑

i=1

µiA
T
i Ai � KKT .

The Slater condition holds for the pair of problems (3.7) and (3.8), because they are both
strictly feasible (under the assumption that KT θ is estimable). This means that strong
duality holds, and these programs share the same optimal value. Finally, we can see that the
inverse of the optimal value of Problem (3.8) coincides with the optimum of Problem (3.6),
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thanks to the normalization t = 1∑

i
µi

, w = tµ.

3.3.2 D-optimality

A D− optimal design for the full parameter θ maximizes the determinant of the infor-
mation matrix M(w). The problem of maximizing a determinant under some linear matrix
inequality (LMI) constraints has been studied by Vandenberghe, Boyd and Wu [VBW98].
They showed that this class of problems can be considered as a generalization of semidef-
inite programs and give an interior point algorithm for their resolution. The MAXDET
formulation of the D−optimal design ( for the full parameter θ) is:

max
w

log detM(w) (3.9)
s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,

where the logarithm in the objective function ensures the convexity of the criterion. The
dual of this problem is of particular interest:

max
W �0

log detW (3.10)

〈AT
i Ai,W 〉 ≤ m, ∀ i ∈ [s], wi ≥ 0.

Under the generic assumption that the full vector θ is estimable, i.e. that there is a design
w such that M(w) has full rank, strong duality holds between Problems (3.9) and (3.10)
(Slater’s condition is fulfilled), and the complementary slackness relation yields:

wi(〈AT
i Ai,W 〉 −m) = 0.

In the single-response case (Ai = ai
T ), the dual problem (3.10) can be interpreted as finding

the minimal-volume ellipsoid centered at the origin which contains the points a1, . . . ,as.
The complementary slackness relation further indicates that the support of the D−optimal
design consists in experiments whose regression vector lies on the surface of this minimal
ellipsoid (cf. Figure 3.1).

3.3.3 A-optimality

An A−optimal design problem for KT θ minimizes

c1
TM(w)−c1 + . . .+ cr

TM(w)−cr,
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Figure 3.1: This figure is extracted from [BV04]. It shows the geometric interpretation of the
D−optimal design for single-response experiments. The origin is marked with a cross and the
regression vectors a1, . . . , as are indicated with circles. The D−optimal design uses the two
measurement vectors indicated with solid circles. Since the corresponding regression vectors are
linearly independent, it follows from Theorem 2.4.6 that the D−optimal design puts equal weights
w1 = w2 = 0.5 on each of them. The ellipse corresponds to the minimal-volume ellipsoid centered
at the origin and that contains all the measurement points.

where c1, . . . , cr denote the columns of K. Each term of this sum can be bounded from
above thanks to a linear matrix inequality, by using the Schur complement lemma:

ti ≥ c1
TM(w)−c1 ⇐⇒

(

M(w) ci

ci
T ti

)

� 0.

This property allows one to formulate the A−optimal design problem (2.18) as a semidefinite
program:

min
w,t

r∑

j=1

tj (3.11)

s. t.

(

M(w) cj

cj
T tj

)

� 0, j ∈ [r],

s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0.

This was first noticed by the authors of [VBW98] in the case where the full parameter θ

is of interest, i.e. K = I, r = m, and ci = ei (the ith standard unit vector of Rm).
An alternative formulation involving an auxiliary matrix variable Y , but only one LMI was
proposed by Fedorov and Lee [FL00]. We extend their formulation to the case in which
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KT θ is of interest:

min
w, Y ∈Sr

trace Y (3.12)

s. t.

(

M(w) K

KT Y

)

� 0,

s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0.

We point out that the formulation proposed by the authors of [AS08] turns out to be
valid only if every information matrix Mi = AT

i Ai is diagonal: their SDP is analogous
to Problem (3.12), but Y is forced to be a diagonal matrix (Y = Diag(y)). Contrarily
to what they claim, this does not yield A−optimal designs: the positivity of the Schur
complement Diag(y) � KTM(w)−K implies trace(Diag(y)) ≥ traceKTM(w)−K, but
there are simple examples where this inequality is strict at the optimum.

3.3.4 c-optimality

Single-response case: LP approaches

In presence of scalar observations (Ai = ai
T ), Elfving’s geometric characterization of

c−optimality (Theorem 2.4.1) yields a linear program. Finding the optimum indeed reduces
to computing the intersection of the vectorial straight line directed by c and the boundary
of the polyhedron with vertices ±ai (see Figure 2.2):

max
λ,t

t (3.13)

s. t. tc =
∑

k

aiλi

∑

k

|λk|
︸︷︷︸

wk

≤ 1.

Elfving’s Theorem further indicates that the optimal value of the criterion cTM(w)−c

is t−2. After the change of variable τ = 1
t
, µ = τλ, the dual of this problem is:

max
x∈Rm

cT x (3.14)

s. t. |ai
T x| ≤ 1, i ∈ [s].

General case: SDP approaches

A c-optimal design is a particular case of a E− (or A−) optimal design, for r = 1.
Hence, we obtain the following formulations for the c−optimal design problem: from the
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E−optimality SDP (3.6) we get

max
t,w

t (3.15)

s.t. M(w) � tccT

s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0.

We also obtain its dual in the form of Problem (3.7):

max
X�0

cTXc (3.16)

s. t. 〈AT
i Ai, X〉 ≤ 1 (∀i ∈ [s]).

The A−optimality SDP (3.11) yields an alternative formulation:

min
w, τ∈R

τ (3.17)

s. t.

(

M(w) c

c τ

)

� 0,

s∑

i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,

which reduces to Problem (3.15) after the change of variable t = 1
τ

and the reformulation
of the LMI by the Schur complement lemma.

Richtarik [Ric08] and Qi [Qi09] noticed independently that the Elfving theorem (in the
single-response setting) implies that a solution of rank one of Problem (3.16) always ex-
ists. The search for a solution of the form X = xxT indeed reduces to Problem (3.14)
(up to a square in the objective function which can be removed, since, if x is a solution
of Problem (3.14), so is −x). We will see in Chapter 5 that this property is also valid
in the general multiresponse case. An important consequence is that the semidefinite pro-
gram (3.16) reduces to a Second order cone program (SOCP), which we study in Chapter 5.
This contradicts Qi’s claim [Qi09], according to which computing the best rank-one solution
of Problem (3.16) is a nonconvex problem which is extremely difficult to solve.

3.3.5 Flexibility of mathematical programming approaches

In general, the mathematical programming approaches studied in this section are slower
than the specialized algorithms of Section 3.2 (a comparative study of the algorithms is done
in Chapter 6). However, we point out that the SOCP approaches, which will be studied in
Chapter 5, are competitive with the specialized algorithms in many situations. But the great
advantage of mathematical programming formulations resides mostly in their flexibility, and
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the possibility to add “without effort” new constraints in the problem. We now give a few
examples of these possibilities.

Multiple resource constraints

Elfving studied the case in which the available experiments have different costs [Elf52].
If the cost of the ith experiment is pi, and the experimenter disposes of a budget b, the
constraint becomes:

s∑

i=1

wipi ≤ b.

Now, wi can not be interpreted as the percentage of experimental effort to spend on the ith

experiment anymore. Instead, the quantity wi
pi

b
should be seen as the percentage of budget

to allocate to the experiment i. Elfving noticed that the change of variable w′
i = wi

pi

b
brings

the problem back to the previous situation, and is equivalent to a scaling of the observation
equations (2.3).

Consider now the more general case in which w is a control variable for the experiments,
such that the information matrix takes the standard form M(w) =

∑s
i=1 wiA

T
i Ai for some

observation matrices Ai. We assume that w is constrained by several linear inequalities

Rw ≤ b, (3.18)

where b ∈ Rn, R is a n × s matrix and the inequality is elementwise. Contrarily to the
previous situation with a single budget constraint, there is no simple change of variable which
brings the problem back to the standard case (

∑

i wi = 1), because we do not know which
inequalities will be saturated in (3.18) at optimality. This constrained problem has been
studied by Cook and Fedorov [CF95], who proposed an extension of the Fedorov exchange
algorithm (cf. Section 3.1). However, this algorithm exhibits a very slow convergence in
practice.

This constrained framework arises in the problem of optimally setting the sampling rates
of a measuring device on a network (see Part II): here, w is the vector of the sampling rates
of the monitoring tool at different locations of the network, and the constraint Rw ≤ b

reflects the fact that only a certain number of packets should be sampled at each router.
This multiple resource constraint can be added in any of the previous SDPs without any
reformulation effort. For example, Singhal and Michailidis [SM08] considered the following
resource constrained SDP for A−optimality:

min
w,t

r∑

j=1

tj (3.19)

s. t.

(

M(w) cj

cj
T tj

)

� 0, j ∈ [r],

Rw ≤ b, ∀ i ∈ [s], wi ≥ 0.



3.3. MATHEMATICAL PROGRAMMING APPROACHES 63

Bounding the eigenvalues

Harman, Jurík and Trnovská [HJT07] have proposed to add a lower bound on the
minimum eigenvalue of the information matrix (λmin(QK(w)) ≥ λ0). Geometrically, this is
equivalent to impose an upper bound on the diameter of the confidence ellipsoids (2.11),
or to guarantee that the E−criterion is at least λ0. This constraint guards us against the
case in which one of the quantities ζi = ci

T is badly estimated. It is of particular interest
for the D−optimal design problem, where the confidence ellipsoids are of minimal volume
at the optimum, but can theoretically have an arbitrarily large diameter. In practice, a way
to introduce this constraint is to impose the LMI

M(w) � λ0KK
T

on the design (see Section 3.3.1).

Avoiding “concentrated designs”

Vandenberghe, Boyd and Wu [VBW98] have described another useful constraint that can
be imposed on the model: The goal is to avoid a large fraction of the experimental effort,
say 90%, of being concentrated on a small number of experiments, say 10% of the possible
observations. This “90-10” constraint has the effect to spread out the measurements over
the possible experiments:

⌊s/10⌋
∑

i=1

w[i] ≤ 0.9,

where w[i] is the ith largest component of w. The authors of [VBW98] show that this
constraint is satisfied if and only if there exists a vector x ∈ Rs and a scalar t such that:

⌊
s

10

⌋

t+
s∑

i=1

xi ≤ 0.9,

t+ xi ≥ wi, i ∈ [s],

x ≥ 0.

This constraint can be added in the E−,A−,D− or c−optimal design problem formulations
studied in this section .



64 CHAPTER 3. CLASSIC ALGORITHMS FOR COMPUTING OPTIMAL DESIGNS



Chapter 4

A Low rank reduction Theorem in
Semidefinite Programming

In this chapter –which essentially recalls the work of [Sag09a]– we study the class of
semidefinite packing problems, which encompasses as special cases some SDPs encountered
in Section 3.3. The main result of this chapter is that these semidefinite packing problems
admit a solution which is of low rank. A a consequence, we will see in Chapter 5 that the c−
and A−optimal design problems reduce to a Second Order Cone Program (SOCP) which is
computationally more tractable than the initial SDP; that the E− optimal design problem
for KT θ can be solved efficiently by a low-rank SDP solver when r is small (r is the number
of columns of K, i.e. the number of linear functions of θ to be estimated); and that the
D−optimal design problem for the full parameter θ (K = I) reduces to the maximization
of a geometric mean subject to SOCP constraints, which is computationally more tractable
than the initial MAXDET problem.

Semidefinite packing problems were introduced by Iyengar, Phillips and Stein [IPS05].
They showed that these arise in many applications such as relaxations of combinatorial
optimization problems or maximum variance unfolding, and gave an algorithm to compute
approximate solutions, which is faster than the commonly used interior point methods.
The problems of this class, which are the SDP analogs to the packing problems in linear
programming, can be written as:

max 〈C,X〉 (PPCK)

s.t. 〈Mi, X〉 ≤ bi, i ∈ [s],

X ∈ S+
m,

where C � 0, and Mi � 0, i ∈ [s]. Our result states that when the matrix C is of rank r,
Problem (PPCK) has a solution that is of rank at most r (Theorem 4.1.2). In particular, when
r = 1, the optimal SDP variable X can be factorized as xxT , and we show that finding
x reduces to a Second-Order Cone Program (SOCP). In this chapter, we will discuss the
significance of our rank reduction theorem for the relaxations of combinatorial optimization

65
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problems that are presented in [IPS05] (the hypothesis on the rank of the matrix C appears
to be very restrictive). The consequences for the computation of optimal experimental
design are the object of Chapter 5. In Section 4.2, we will extend our result to a wider class
of semidefinite programs (Theorem 4.2.2), in which not all the constraints are of packing

type. The proofs of the theorems of this chapter are given in Section 4.3.

Related work Solutions of small rank of semidefinite programs have been extensively stud-
ied over the past years. Barvinok [Bar95] and Pataki [Pat98] discovered independently that
any SDP with s constraints has a solution X∗ whose rank is at most

r∗ =

⌊√
8s+ 1− 1

2

⌋

,

where ⌊·⌋ denotes the integer part. This was one of the motivations of Burer and Monteiro
for developing the SDPLR solver [BM03], which searches a solution of the SDP in the form
X = RRT , where R is a n × r∗ matrix. The resulting problem is non-convex, and so the
augmented Lagrangian algorithm proposed in [BM03] is not guaranteed to converge to a
global optimum. However, it performs remarkably well in practice, and some conditions
which ensure that the returned solution is an optimum of the SDP are provided in [BM05].
Our result shows that for a semidefinite packing problem in which the matrix C has rank
r, one can force the matrix R to be of size n × r (rather than n × r∗), which can lead to
considerable gains in computation time when r is small.

We point out that the ratio between the optimal value of Problem (PPCK) and the value
of its best solution of rank one has been studied by Nemirovski, Roos, and Terlaky [NRT99].
They show that the value v∗ of the SDP and the value v∗

1 of its best rank-one solution satisfy:

v∗ ≥ v∗
1 ≥

1

2 ln(2sµ)
v∗, where µ = min(s,max

i∈[s]
rank Mi). (4.1)

This ratio can be considerably reduced in particular configurations, but to the best of our
knowledge, the fact that the gap in (4.1) vanishes when the matrix C in the objective
function is of rank 1 is new, except in the particular case in which every Mi is of rank 1,
too [Ric08].

4.1 A rank reduction theorem

4.1.1 Main result

We start with an algebraic characterization of the semidefinite packing problems that
are feasible and bounded.
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Theorem 4.1.1. Problem (PPCK) is feasible if and only if every bi is nonnegative. Moreover

if Problem (PPCK) is feasible, then this problem is bounded if and only if the range of C is

included in the range of
∑

i Mi.

The reader should note that the range inclusion condition in Theorem 4.1.1 is in fact
equivalent to the feasibility of the Lagrangian dual of Problem (PPCK):

min
µ≥0

µT b (DPCK)

s.t.
∑

i

µiMi � C.

The main result of this chapter follows:

Theorem 4.1.2. We assume that the conditions of Theorem 4.1.1 are fulfilled, so that

Problem (PPCK) is feasible and bounded. If rankC = r, then the semidefinite packing

problem (PPCK) has a solution which is a matrix of rank at most r.

Under a few additional conditions, we can also bound the rank of every solution. For a
proof of the next statement, we refer to the last page of this chapter (proof of the second
part of Theorem 4.2.2, for the case Ri = 0 and hi = 0 (i ∈ {0, . . . , s}); note that in this
case the condition

∑s
i=1 Mi ≻ 0 is equivalent to the strict dual feasibility).

Theorem 4.1.3. We assume that Problem (PPCK) is feasible, C 6= 0 and
∑s

i=1 Mi ≻ 0.

Then, every solution X of Problem (PPCK) must be of rank at most n − r + r, where

r := min
i∈[s]

rank Mi.

A consequence of Theorem 4.1.2 is that when the matrix in the objective function is
of rank 1 (C = ccT ), the computation of a solution X of Problem (PPCK) reduces to the
computation of a vector x such that X = xxT . The next result shows that this can be
done very efficiently by a Second Order Cone Program (SOCP).

Corollary 4.1.4. We assume that the conditions of Theorem 4.1.1 are fulfilled, and that

C = ccT for a vector c ∈ Rm (i.e. rank C = 1). Then, Problem (PPCK) reduces to the

SOCP:

max
x∈Rm

cT x (4.2)

s.t. ‖Aix‖2 ≤
√

bi, i = 1 ∈ [s],

where the matrices Ai are such that Mi = AT
i Ai. Moreover, if x is any optimal solution of

Problem (4.2), then X = xxT is an optimal solution of Problem (PPCK), and the optimal

value of (PPCK) is (cT x)2.

Proof. The SOCP (4.2) is simply obtained from (PPCK) by substituting xxT from X and
AT

i Ai from Mi. The objective function 〈C,X〉 becomes (cT x)2, and we can remove the
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square by noticing that cT x ≥ 0 without loss of generality, since if x is optimal, so is
−x.

In fact, the proof of Theorem 4.1.2 relies on the projection of Problem (PPCK) on an ap-
propriate subspace, which lets the reduced semidefinite packing problem be strictly feasible,
as well as its dual. This reduction is not only of theoretical interest, since in some cases it
may yield some important computational savings. Therefore, we next state this result as a
proposition.

Let I0 := {i ∈ [s] : bi = 0} and I := [s] \ I0. Let the columns of the m×m0 matrix U
form an orthonormal basis of Im(

∑

i∈[s] Mi), and the columns of the m0×m′ matrix V form
an orthonormal basis of Ker(UT ∑

i∈I0
MiU). We further define C ′ := (UV )TC(UV ) ∈ S+

m′

and M ′
i := (UV )TMi(UV ) ∈ S+

m′ (for i ∈ I), and we consider the reduced problem

max
Z∈S

+
m′

〈C ′, Z〉 (P ′
PCK)

s.t. 〈M ′
i , Z〉 ≤ bi, i ∈ I.

Proposition 4.1.5. We assume that the conditions of Theorem 4.1.1 are fulfilled, so that

Problem (PPCK) is feasible and bounded. Then, the following properties hold:

(i) Problem (P ′
PCK) is strictly feasible, i.e. ∃Z ≻ 0 : ∀i ∈ I, 〈M ′

i , Z〉 < bi;

(ii) The Lagrangian dual of (P ′
PCK) is strictly feasible, i.e. ∃µ > 0 :

∑

i∈I µiM
′
i ≻ C ′;

(iii) If Z is a solution of Problem (P ′
PCK), then X := (UV )Z(UV )T is an optimal solution of

Problem(PPCK) (which of course satisfies rank X ≤ rank Z and 〈C,X〉 = 〈C ′, Z〉).

4.1.2 Relation with combinatorial optimization

SDP relaxations of combinatorial optimization problems have motivated the authors
of [IPS05] to study semidefinite packing problems. Hence, we discuss the significance of
our result for this class of problems in this section.

Semidefinite programs have been used extensively to formulate relaxations of NP-hard
combinatorial optimization problems after the work of Goemans and Williamson on the
approximability of MAXCUT [GW95]. These SDP relaxations often lead to optimal solutions
of the related combinatorial optimization problems whenever the solution of the SDP is of
small rank. As shown by Iyengar et. al. [IPS05], SDP relaxations of many combinatorial
optimization problems can be cast as semidefinite packing programs. Our result therefore
identifies a subclass of combinatorial optimization problems which are solvable in polynomial
time. Unfortunately, this promising statement only helped us to identify trivial instances
so far. For example, the MAXCUT semidefinite packing problem [IPS05] yields an exact
solution of the combinatorial problem whenever it has a rank 1 solution. The matrix C in
the objective function of this SDP is the Laplacian of the graph, and so it is known that

rank C = N − κ,



4.2. EXTENSION TO “COMBINED” PROBLEMS 69

where N is the number of vertices and κ is the number of connected components in the
graph. Our result therefore states that if a graph of N vertices has N − 1 connected
components, then it defines a MAXCUT instance that is solvable in polynomial time. Such
graphs actually consist in a pair of connected vertices, plus N − 2 isolated vertices, and the
related MAXCUT instance is trivial.

Another limitation for the application of our theorem in this field is that most semidefi-
nite packing problems arising in combinatorial optimization (including but not limited to the
Lovász ϑ function SDP [Lov79] and the related Szegedy number SDP [Sze94], the vector
colouring SDP [KMS98], the sparsest cut SDP [ARV09] and the sparse principal compo-
nents analysis SDP [dAEJL07]) can be written in the form of (PPCK), with an additional
trace equality constraint trace(X) = 1. In fact, we can show that if such an “equality
constrained semidefinite packing problem” is strictly feasible, then it is equivalent to the
following “classical” semidefinite packing problem:

max 〈C + λI, X〉 − λ (4.3)

s.t. 〈Mi, X〉 ≤ bi, i ∈ [s],

traceX ≤ 1,

X � 0,

where λ is any scalar larger than |λ∗|, where λ∗ is the optimal Lagrange multiplier associated
to the constraint trace(X) = 1 (we omit the proof of this statement which is of secondary
importance). Since C + λI is a full rank matrix, our result does not seem to yield any
valuable information for this class of problems.

4.2 Extension to “combined” problems

The proof of our main result also applies to a wider class of semidefinite programs, which
can be written as:

sup
X,Y,λ

〈C,X〉+ 〈R0, Y 〉+ h0
T λ (PCMB)

s.t. 〈Mi, X〉 ≤ bi + 〈Ri, Y 〉+ hi
T λ, i ∈ [s],

X ∈ S+
m, Y ∈ S+

p , λ ∈ Rq,

where every matrix Mi and C are positive semidefinite, while the Ri are arbitrary

symmetric matrices. The vectors hi are in Rq. We denote by H the q× s matrix formed
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by the columns h1, . . . ,hs. The Lagrangian dual of Problem (PCMB) is:

inf
µ≥0

bT µ (DCMB)

s.t.
s∑

i=1

µiMi � C,

R0 +
s∑

i=1

µiRi � 0.

h0 +Hµ = 0.

We have seen in Section 4.1.1 that the feasibility of both the primal (PPCK) and the
dual (DPCK) is sufficient to guarantee that Problem (PPCK) has a solution of rank at
most r := rank C. For combined problems however, the feasibility of the couple of pro-
grams (PCMB)–(DCMB) is not sufficient to guarantee the existence of a solution (X, Y,λ) of
Problem (PCMB) in which rank X ≤ r. We give indeed an example (Example 4.2.3) where
the optimum in Problem (PCMB) is not even attained. However, we show in the next theorem
that an asymptotic result subsists. Moreover, we shall see in Theorem 4.2.2 that a solution
in which X is of rank at most r exists as soon as an additional condition holds (strict dual
feasibility). The proof of Theorem 4.2.2 essentially mimics that of Theorem 4.1.2 and is
presented in Section 4.3.2. Theorem 4.2.1 turns out to be a consequence of Theorem 4.2.2
and is proved in Section 4.3.3.

Theorem 4.2.1. We assume that Problems (PCMB) and (DCMB) are feasible. If rank C = r,

then there exists a sequence of feasible primal variables (Xk, Yk,λk)k∈N such that rank Xk ≤
r for all k ∈ N and 〈C,Xk〉+〈R0, Yk〉+h0

T λk converges to the optimum of Problem (PCMB)
as k →∞.

Theorem 4.2.2. We assume that Problem (PCMB) is feasible, and a refined Slater condition

holds for Problem (DCMB), i.e. there is a feasible dual variable which strictly satisfies the

non-affine constraints:

∃µ ≥ 0 :
∑

i

µiMi ≻ C, R0 +
∑

i

µiRi ≺ 0, h0 +Hµ = 0.

If rank C = r, then Problem (PCMB) has a solution (X, Y,λ) in which rank X ≤ r.

Moreover, if C 6= 0, then every solution (X, Y,λ) of Problem (PCMB) is such that rank X ≤
n− r + r, where r := min

i∈[s]
rank Mi.
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As in the previous section, we have a result of reduction to a SOCP, which holds when
C is of rank 1, every Ri = 0 and h0 = 0. Recall that H denotes the matrix formed by the
columns h1, . . . ,hs.

Corollary 4.2.4. Consider the following “combined” semidefinite packing problem:

sup
X∈Sm, λ∈Rq

〈C,X〉 (4.5)

s.t. 〈Mi, X〉 ≤ hi
T λ + bi, i ∈ [s],

X � 0.

Assume that C = ccT has rank 1. If Problem (4.5) and its Lagrangian dual are feasible,

i.e.

(i) ∃λ ∈ Rq : HT λ + b ≥ 0;

(ii) ∃µ ≥ 0 :
∑

i µiMi � C, h0 +Hµ = 0,

then, Problem (4.5) is bounded, and its optimal value is the square of the optimal value of

the following SOCP:

sup
x∈Rm, λ∈Rq

cT x (4.6)

s.t.

∥
∥
∥
∥
∥

[

2Aix

hi
T λ + bi − 1

]∥
∥
∥
∥
∥

2

≤ hi
T λ + bi + 1, i ∈ [s],

where the matrices Ai are such that Mi = AT
i Ai. Moreover, if (x,λ) is a solution of

Problem (4.6), then (xxT ,λ) is a solution of Problem (4.5), and the optimal value of (4.5)
is (cT x)2.

Proof. Theorem 4.2.1 guarantees the existence of a sequence of feasible variables
(Xk,λk)k∈N in which Xk has rank 1, i.e. Xk = xkxk

T , and 〈C,Xk〉 = (cT xk)2 converges
to the optimum of Problem (4.5). This optimal value is therefore equal to the supremum

Example 4.2.3. Consider the following combined semidefinite packing problem:

sup
X∈S

+
2

, λ∈R2

3

100

〈(
81 9
9 1

)

, X

〉

− λ1 − 3λ2 (4.4)

s.t. 0 ≤ 1 + λ1

X1,1 ≤ 1 + λ2

X2,2 ≤ 1 + 3λ1 + λ2.

This problem is in the form of (PCMB) indeed, with C = ccT , c =
√

3
10

[ 9 1]T , h0 = [ –1 –3]T ,

M1 = 0, M2 =

(
1 0
0 0

)

, M3 =

(
0 0
0 1

)

and H =

(
1 0 3
0 1 1

)

.

Problem (4.4) is clearly feasible (e.g. for X = 0, λ = 0), and the reader can verify that µ = 1
10

[ 1 27 3]T is
dual feasible (in fact, this is the only dual feasible vector, and hence the dual problem does not satisfy the Slater
constraints qualification). The value of the optimum is 31

10
, and can be approached arbitrarily closely for the

sequence of feasible variables (xkxT
k , λk)k∈N, where for all k ≥ 0, xk = [

√
3 + k

√
k]T , λk = [ –1 k +2]T ,

while this optimum is not attained by any couple (X, λ) of (bounded) feasible variables.
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of (cT x)2, over all the pairs of vectors (x,λ) ∈ Rm × Rq such that (xxT ,λ) is feasible
for Problem (4.5). As in the proof of Corollary 4.1.4, we notice that if (xxT ,λ) is feasible
for Problem (4.5), so is ((−x)(−x)T ,λ), hence we can remove the square in the objective
function.

The SOCP (4.6) is simply obtained from (4.5) by substituting xxT from X and AT
i Ai

from Mi. We also used the fact that for any vector z and for any scalar α, the hyperbolic
constraint

‖z‖2
2 ≤ α

is equivalent to the second order cone constraint
∥
∥
∥
∥
∥

[

2z

α− 1

]∥
∥
∥
∥
∥

2

≤ α+ 1.

4.3 Proofs of the theorems

4.3.1 Results of Section 4.1.1

Proof of Theorem 4.1.1. The fact that Problem (PPCK) is feasible if and only if every bi is
nonnegative is clear, since X = 0 is always feasible in this case and Mi � 0, X � 0, implies
〈Mi, X〉 ≥ 0.

Now, we assume that each bi is nonnegative, and we show that Problem (PPCK) is
bounded if and only if ImC ⊂ Im

∑

i Mi. The positive semidefiniteness of the ma-
trices Mi implies that there exists matrices Ai (i ∈ [s]) such that AT

i Ai = Mi, and
[AT

1 , · · · , AT
s ][AT

1 , · · · , AT
s ]T =

∑

i Mi. We also consider a decomposition C =
∑r

k=1 ckck
T .

For any factorization M = ATA of a positive semidefinite matrix M , it is known that
ImM = ImA, and so the following equivalence relations hold:

ImC ⊂ Im
∑

i

Mi ⇐⇒ ∀k ∈ [r], ck ∈ Im(
∑

i

Mi) = Im([AT
1 , · · · , AT

s ])

⇐⇒ ∀k ∈ [r], ck ∈
(

s⋂

i=1

Ker(Ai)

)⊥
. (4.7)

We first assume that the range inclusion condition does not hold. Relation (4.7) shows
that

∃k ∈ [r],∃h ∈ Rm : ∀i ∈ [s], Aih = 0, ck
T h 6= 0.

Now, notice that X = αhhT is feasible for all α > 0, since α〈AT
i Ai,hhT 〉 = 0 ≤ bi. This

contradicts the fact that Problem (PPCK) is bounded, because 〈C,X〉 ≥ α(ck
T h)2, and α

can be chosen arbitrarily large.
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Conversely, if the range inclusion holds, we consider the Lagrangian dual (DPCK) of
Problem (PPCK): The range inclusion condition indicates that this problem is feasible, be-
cause it implies the existence of a scalar λ > 0 such that λ

∑

i Mi � C (we point out
that a convenient value for λ is

∑r
k=1 ck

T (
∑

i Mi)
†ck; this can be seen with the help of the

Schur complement lemma). This means that Problem (DPCK) has a finite optimal value
OPT ≤ λ

∑

i bi, and by weak duality, Problem (PPCK) is bounded (its optimal value cannot
exceed OPT ).

Before proving Theorem 4.1.2, we need to show that we can project Problem (PPCK)
on a subspace such that the projected problem (P ′

PCK) and its Lagrangian dual are strictly
feasible (Proposition 4.1.5).

Proof of Proposition 4.1.5. Let I0, I, U and V be defined as in the paragraph preceding the
statement of the proposition (page 68). Note that every matrix Mi can be decomposed as
Mi = UM̃iU

T for a given matrix M̃i, because its range is included in the range of
∑

i Mi (we
have M̃i = UTMiU). The same observation holds for C, which can be decomposed as C =

UC̃UT (we have assumed the range inclusion ImC ⊂ Im
∑

i Mi). Hence, Problem (PPCK)
is equivalent to:

max
X�0

〈C̃, UTXU〉

s.t. 〈M̃i, U
TXU〉 ≤ bi, i ∈ [s].

After the change of variable Z0 = UTXU (Z0 is a positive semidefinite matrix if X is), we
obtain a reduced semidefinite packing problem

max
Z0�0

〈C̃, Z0〉 (4.8)

s.t. 〈M̃i, Z0〉 ≤ bi, i ∈ [s].

By construction, if Z0 is a solution of (4.8), then X := UZ0U
T is a solution of (PPCK).

Note that the projected matrices in the constraints now satisfy
∑

i M̃i = UT (
∑

i Mi)U ≻ 0.

We shall now consider a second projection, in order to get rid of the constraints in
which bi = 0. Note that each constraint indexed by i ∈ I0 is equivalent to imposing that
Z0 belongs to the nullspace of the matrix M̃i. Since the columns of V form a basis of
∩i∈I0 Ker M̃i, any semidefinite matrix Z0 which is feasible for Problem (4.8) must be of the
form V ZV T for some positive semidefinite matrix Z. Hence, Problem (4.8) reduces to:

max
Z�0

〈V T C̃V, Z〉 (4.9)

s.t. 〈V TM̃iV, Z〉 ≤ bi, i ∈ I.

which is nothing but Problem (P ′
PCK), because V TM̃iV = V TUTMiUV = M ′

i and
V T C̃V = C ′. By construction, If Z is a solution of (4.9)≡(P ′

PCK), then V ZV T is a
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solution of (4.8), and (UV )Z(UV )T is a solution of the original problem (PPCK). This
proves the point (iii) of the proposition.

We have pointed out above that
∑

i M̃i ≻ 0. Therefore, there exists a real λ > 0

such that λ
∑

i M̃i ≻ C̃, and λ
∑

i M
′
i = V T

(

λ
∑

i M̃i

)

V ≻ V T C̃V = C ′. This proves
the strict dual feasibility of Problem (P ′

PCK) (point (ii) of the proposition). Finally, since
every bi is positive for i ∈ I, it is clear that the matrix Z = εI ≻ 0 is strictly feasible for
Problem (P ′

PCK) as soon as ε > 0 is sufficiently small. This establishes the point (i), and
the proposition is proved.

We can now prove the main result of this chapter. In fact, Theorem 4.1.2 can be derived
from the extension to combined problems (Theorem 4.2.2), but this would somehow hide
the fact that the proof is much simpler in the “non-combined case”. Therefore we provide
the proofs of these two similar results separately.

We will first show that the result holds when every Mi is positive definite, thanks to the
complementary slackness relation. Then, the general result is obtained by continuity. We
point out at the end of this section the sketch of an alternative proof of Theorem 4.1.2 for
the case in which r = 1, based on the bidual of Problem (PPCK) and Schur complements,
that shows directly that Problem (PPCK) reduces to the SOCP (4.2).

Proof of Theorem 4.1.2. We will show that the result of the theorem holds for any semidef-
inite packing problem which is strictly feasible, and whose dual is strictly feasible. Then,
by Proposition 4.1.5, we can say that Problem (P ′

PCK) has a solution Z of rank at most
r′ := rank C ′, and X := (UV )TZ(UV ) is a solution of the original problem which is of
rank at most r′ ≤ r.

So let us assume without loss of generality that (PPCK) and (DPCK) are strictly feasible:

∀i ∈ [s], bi > 0 and ∃λ > 0 : λ
∑

i

Mi ≻ C.

The Slater condition is fulfilled for this pair of programs, and so strong duality holds (the
optimal value of (PPCK) equals the optimal value of (DPCK)), and the dual problem attains
its optimum. In addition, the strict dual feasibility implies that (PPCK) also attains its
optimum. The pairs of primal and dual solutions (X∗,µ∗) are characterized by the Karush-
Kuhn-Tucker (KKT) conditions:

Primal Feasibility: ∀i ∈ [s], 〈Mi, X
∗〉 ≤ bi;

X∗ � 0;

Dual Feasibility: µ∗ ≥ 0,
s∑

i=1

µ∗
iMi � C;

Complementary Slackness: (
s∑

i=1

µ∗
iMi − C) X∗ = 0,

∀i ∈ [s], µ∗
i (bi − 〈Mi, X

∗〉) = 0.
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Now, we consider the case in which Mi ≻ 0 for all i, and we choose an arbitrary pair
of primal and dual optimal solutions (X∗,µ∗). The dual feasibility relation implies µ∗ 6= 0,
and so

∑

i µ
∗
iMi is a positive definite matrix (we exclude the trivial case C = 0). Since C

is of rank r, we deduce that

rank(
∑

i

µ∗
iMi − C) ≥ n− r.

Finally, the complementary slackness relation indicates that the columns of X∗ belong to the
nullspace of (

∑

i µ
∗
iMi−C), which is a vector space of dimension at most n− (n− r) = r,

and so we conclude that rankX∗ ≤ r.

We now turn to the study of the general case in which Mi � 0. To this end, we consider
the perturbed problems

max 〈C,X〉
s.t. 〈Mi + εI, X〉 ≤ bi (Pε)

X � 0,

and

min
µ≥0

s∑

i=1

µibi, (Dε)

s.t.
s∑

i=1

µi(Mi + εI) � C.

where ε ≥ 0. Note that the strict feasibility of the unperturbed problems (PPCK) and (DPCK)
implies that of (Pε) and (Dε) on a neighborhood ε ∈ [0, ε0], ε0 > 0. We denote by (Xε,µε)

a pair of primal and dual solutions of (Pε)–(Dε).

If ε > 0, Mi + εI ≻ 0 and it follows from the previous discussion that Xε is of rank at
most r. We show below that we can choose the optimal variables (Xε,µε)ε∈]0,ε0] within a
bounded region, so that we can construct a converging subsequence (Xεk ,µεk)k∈N, εk → 0

from these variables. To conclude, we will see that the limit (X0,µ0) satisfies the KKT
conditions for Problems (PPCK)–(DPCK), and that X0 is of rank at most r.

Let us denote the optimal value of Problems (Pε)–(Dε) by OPT (ε). Since the constraints
of the primal problem becomes tighter when ε grows, it is clear that OPT (ε) is nonincreasing
with respect to ε, so that

∀ε ∈ [0, ε0], OPT (ε0) ≤ OPT (ε) ≤ OPT (0).

We have:
λ(
∑

i

Mi + εI)− C ≻ λ(
∑

i

Mi)− C,
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and so we can write

〈λ
∑

i

Mi − C,Xε
〉

≤ 〈λ
∑

i

(Mi + εI)− C,Xε
〉

= λ〈
∑

i

(Mi + εI), Xε
〉

−OPT (ε)

≤ λ
∑

i

bi −OPT (ε0)

where the equality comes from the expression of OPT (ε) and the latter inequality follows
from the constraints of the Problem (Pε). The matrix λ

∑

i Mi − C is positive definite by
assumption and its smallest eigenvalue λ′ is therefore positive. Hence,

λ′ trace Xε ≤ 〈λ
∑

i

Mi − C,Xε
〉

≤ µT b−OPT (ε) ≤ λ
∑

i

bi −OPT (ε0).

This shows that the positive semidefinite matrix Xε has its trace bounded, and therefore all
its entries are bounded.

It remains to show that the dual optimal variable µε ≥ 0 is bounded. This is simply
done by writing:

∀i ∈ [s], biµ
ε
i ≤ bT µε = OPT (ε) ≤ OPT (0).

By assumption, bi > 0, and the entries of the vector µε ≥ 0 are bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions
(Xε,µεk)k∈N that converges, with εk −→

k→∞
0, εk > 0. The limit X0 of this sequence is of

rank at most r, because the rank is a lower semicontinuous function and rank Xεk ≤ r for
all k ∈ N. It remains to show that X0 is a solution of Problem (PPCK). The ε−perturbed
KKT conditions must hold for all k ∈ N, and so they hold for the pair (X0,µ

0) by taking the
limit (the limit of any sequence of positive semidefinite matrices is a positive semidefinite
matrix because S+

m is closed). This concludes the proof.

Sketch of an alternative proof of Theorem 4.1.2 when r = 1

Proof. By Proposition 4.1.5, we only need to show that the result holds for the reduced
problem (P ′

PCK), and so we assume without loss of generality that strong duality holds for
all the optimization problems considered below.

When r = 1, there is a vector c such that C = ccT and the dual problem of (PPCK)
takes the form:

min
µ≥0

µT b (4.10)

s.t. ccT �
∑

i

µiMi.
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Now, setting t = µT b, and w = µ

t
, so that the new variable w satisfies wT b = 1,

the constraint of the previous problem becomes cct

t
� ∑

i wiMi. This matrix inequality,
together with the fact that the optimal t is positive, can be reformulated thanks to the
Schur complement lemma, and (4.10) is equivalent to:

min
t∈R,w≥0

t (4.11)

s.t.

( ∑

i wiMi c

cT t

)

� 0.

wT b = 1.

We dualize this SDP once again to obtain the bidual of Program (PPCK) (strong duality
holds):

max
β∈R,Z∈S

+
m+1

− β − 2vT c (4.12)

s.t. 〈W,Mi〉 ≤ βbi, i ∈ [s]

Z =

(

W v

vT 1

)

� 0.

We notice that the last matrix inequality is equivalent to W � vvT , using a Schur comple-
ment. Since Mi � 0, we can assume that W = vvT without loss of generality, and (4.12)
becomes:

max
β∈R,v∈Rm

− β − 2vT c (4.13)

s.t. ‖Aiv‖2 ≤ βbi, i ∈ [s],

where Ai is a matrix such that AT
i Ai = Mi.

We now define the new variables α =
√
β, and x = v

α
, so that (4.13) becomes:

max
x∈Rm

(

max
α
−α2 − 2αxT c

)

(4.14)

s.t. ‖Aix‖ ≤
√

bi, i = 1 ∈ [s].

The reader can finally verify that the value of the max within parenthesis is (cT x)2, and we
have proved that the SDP (PPCK) reduces to the SOCP (4.2). By the way, this guarantees
that the SDP (PPCK) has a rank-one solution.

4.3.2 Proof of Theorem 4.2.2

Before we give the proof of Theorem 4.2.2, we need one additional technical lemma,
which shows that one can assume without loss of generality that the primal problem is
strictly feasible, and that the vector space spanned by the vectors h0,h1, . . . ,hs coincides
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with the cone generated by the same vectors. One can consider this lemma as the analog
of Proposition 4.1.5 for combined problems.

Lemma 4.3.1. We assume that the conditions of Theorem 4.2.2 are fulfilled. Then, there

exists a subset I ⊂ [s], as well as matrices C ′ � 0 and M ′
i � 0 (i ∈ I), so that the reduced

“combined” semidefinite packing problem

max
Z�0, Y �0, λ

〈C ′, Z〉+ 〈R0, Y 〉+ h0
T λ s.t. ∀i ∈ I, 〈M ′

i , Z〉 ≤ bi + 〈Ri, Y 〉+ hi
T λ

has the same optimal value as (PCMB) and satisfies the following properties:

(i) ∃(Z ′ ≻ 0, Y ′ ≻ 0,λ′) : ∀i ∈ I, 〈Mi, Z
′〉 < bi + 〈Ri, Y

′〉+ hi
T λ′;

(ii) The cone K generated by the vectors (hi)i∈{0}∪I is a vector space.

(iii) rank C ′ ≤ rank C;

(iv) There is a matrix U with orthonormal columns such that if (Z, Y,λ) is a solution

of the reduced problem, then (X := UZUT , Y,λ) is a solution of Problem (PCMB)
(which of course satisfies rank X ≤ rank Z).

Proof. In this lemma, (i) and (ii) are the properties that we will need to prove Theo-
rem 4.2.2. Properties (iii) and (iv) ensure that if the theorem holds for the reduced
problem, then the result also holds for the initial problem (PCMB). We handle separately the
cases in which the initial problem does not satisfy the property (i) or (ii). If both cases arise
simultaneously, we obtain the result of this lemma by applying successively the following
two reductions.

Let (X∗, Y ∗,λ∗) be an optimal solution of Problem (PCMB) ; the existence of a solution
is guaranteed by the (refined) Slater condition satisfied by the dual problem indeed (see e.g.
[Roc70, Ber95]). We denote by I0 ⊂ [s] the subset of indices for which bi + 〈Ri, Y

∗〉 +

hi
T λ∗ = 0 (note that we have bi + 〈Ri, Y

∗〉+ hi
T λ∗ ≥ 0 for all i because Mi � 0 implies

〈Mi, X
∗〉 ≥ 0). We define I := [s] \ I0. In Problem (PCMB), we can replace the constraint

〈Mi, X〉 ≤ bi + 〈Ri, Y 〉+ hi
T λ by 〈Mi, X〉 = 0 for all i ∈ I0 , since (X∗, Y ∗,λ∗) satisfies

this stronger set of constraints. For a feasible positive semidefinite matrix X, this implies
〈∑i∈I0

Mi, X〉 = 0, and even
∑

i∈I0
MiX = 0. Therefore, X is of the form UZUT for

some positive semidefinite matrix Z, where the columns of U form an orthonormal basis of
the nullspace of M0 :=

∑

i∈I0
Mi (U is obtained by taking the eigenvectors corresponding

to the vanishing eigenvalues of M0). Hence, Problem (PCMB) is equivalent to:

max 〈UTCU,Z〉+ 〈R0, Y 〉+ h0
T λ (4.15)

s.t. 〈UTMiU,Z〉 ≤ bi + 〈Ri, Y 〉+ hi
T λ, i ∈ I,

Z � 0, Y � 0.

We have thus reduced the problem to one for which bi + 〈Ri, Y
∗〉 + hi

T λ∗ > 0 for all
i, and strict feasibility follows (i.e. property (i) holds, consider λ′ = λ∗, Y ′ = Y ∗ + η1I,
and Z ′ = η2I for sufficiently small reals η1 > 0 and η2 > 0). Moreover, the projected
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matrix C ′ := UTCU in the objective function has a smaller rank than C (i.e. (iii) holds).
Finally, (iv) holds for the reduced problem by construction: if (Z, Y,λ) is a solution of
Problem (4.15), then (X := UZUT , Y,λ) is a solution of Problem (PCMB), both problems
have the same optimal value, and of course rank X ≤ rank Z.

We now handle the second case, in which Property (ii) does not hold for Problem (PCMB).
The set K = { [h0, H]v, v ∈ Rs+1,v ≥ 0} is a closed convex cone. Hence, it is known
that it can be decomposed as K = L + Q, where L is a vector space and Q ⊂ L⊥ is a
closed convex pointed cone (L = K ∩ (−K) is the lineality space of K). The interior of
the dual cone Q∗ is therefore nonempty, i.e. ∃λ : ∀q ∈ Q \ {0},λT q > 0. Let λ0 be the
orthogonal projection of λ on L⊥, so that λ0

T q = λT q > 0 for all q ∈ Q \ {0}, and
λ0

T x = 0 for all x ∈ L. Now, we define the set of indices I = {i ∈ [s] : hi ∈ L}, and its
complement I0 = [s] \ I. For all i ∈ I0, hi = xi + qi for a vector xi ∈ L and a vector
qi ∈ Q \ {0}, so that λ0

T hi = λ0
T xi + λ0

T qi = λ0
T qi > 0. For the indices i ∈ I, it is

clear that λ0
T hi = 0. Finally, since h0 +Hµ = 0, we have −h0 ∈ K, so that h0 ∈ L and

h0
T λ = 0. To sum up, we have proved the existence of a vector λ0 for which

∀i ∈ {0} ∪ I, λ0
T hi = 0 and ∀i ∈ I0,λ0

T hi > 0.

Let (X∗, Y ∗,λ∗) be an optimal solution of Problem (PCMB). For all positive real t,
(X∗, Y ∗,λ∗ + tλ0) is also a solution, because it is feasible and has the same objective
value. Letting t → ∞, we see that the constraints of the problem that are indexed by
i ∈ I0 may be removed without changing the optimum. We have thus reduced the problem
to one for which (ii) holds.

We can now prove Theorem 4.2.2. The proof mimics that of Theorem 4.1.2, i.e. we
first show that the result holds when each Mi is positive definite, and the general result is
obtained by continuity. The only difference is how we show that we can choose optimal
variables (Xε, Y ε,λε,µε)ε∈]0,ε0] for a perturbed problem within a bounded region.

Proof of Theorem 4.2.2. By Lemma 4.3.1, we may assume without loss of generality that
K = cone{h0, . . . ,hs} ⊃ −K and that the primal problem is strictly feasible. The strict
feasibility of the primal problem ensures that strong duality holds, i.e. the optimal value
of (PCMB) equals the optimal value of (DCMB), and the optimum is attained in the dual
problem. Moreover, the (refined) Slater constraints qualification for the dual problem guar-
antees the existence of primal optimal variables as well (see e.g. Theorem 28.2 in [Roc70]).
The pairs of primal and dual solutions

(

(X∗, Y ∗,λ∗),µ∗
)

are characterized by the Karush-
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Kuhn-Tucker (KKT) conditions:

Primal Feasibility: ∀i ∈ [s], 〈Mi, X
∗〉 ≤ bi + 〈Ri, Y

∗〉+ hi
T λ∗,

X∗ � 0, Y ∗ � 0;

Dual Feasibility: µ∗ ≥ 0,
s∑

i=1

µ∗
iMi � C,

R0 +
s∑

i=1

µ∗
iRi � 0, h0 +Hµ∗ = 0;

Complementary Slackness: (
s∑

i=1

µ∗
iMi − C) X∗ = 0, (R0 +

s∑

i=1

µ∗
iRi) Y

∗ = 0,

∀i ∈ [s], µ∗
i (bi + 〈Ri, Y

∗〉+ hi
T λ∗ − 〈Mi, X

∗〉) = 0.

Now, we consider the case in which Mi ≻ 0 for all i, and we choose an arbitrary pair of
primal and dual optimal solutions

(

(X∗, Y ∗,λ∗),µ∗
)

. The dual feasibility relation implies
µ∗ 6= 0, and so

∑

i µ
∗
iMi is a positive definite matrix (we exclude the trivial case C = 0).

Since C is of rank r, we deduce that

rank(
∑

i

µ∗
iMi − C) ≥ n− r.

Finally, the complementary slackness relation indicates that the columns of X∗ belong to the
nullspace of (

∑

i µ
∗
iMi−C), which is a vector space of dimension at most n− (n− r) = r,

and so we conclude that rankX∗ ≤ r.

We now turn to the study of the general case in which Mi � 0. To this end, we consider
the perturbed problems

max 〈C,X〉+ 〈R0, Y 〉+ h0
T λ

s.t. 〈Mi + εI, X〉 ≤ bi + 〈Ri, Y 〉+ hi
T λ i ∈ [s], (P ε

CMB)

X � 0, Y � 0,

and

min
µ≥0

s∑

i=1

µibi,

s.t.
s∑

i=1

µi(Mi + εI) � C, (Dε
CMB)

R0 +
s∑

i=1

µiRi � 0,

h0 +Hµ = 0.

where ε ≥ 0. Note that the refined Slater constraints qualification for the unperturbed
problems (PCMB) and (DCMB) (i.e. simultaneous feasibility (resp. strict feasibility) of all
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the affine constraints (resp. non-affine constraints)) implies the qualification of the con-
straints for (P ε

CMB) and (Dε
CMB) on a neighborhood ε ∈ [0, ε0], ε0 > 0. We denote by

(

(Xε, Y ε,λε),µε
)

a pair of primal and dual solutions of (P ε
CMB)–(Dε

CMB). If ε > 0, Mi +

εI ≻ 0 and it follows from the previous discussion that Xε is of rank at most r. We show
below that we can choose the optimal variables (Xε, Y ε,λε,µε)ε∈]0,ε0] within a bounded
region, so that we can construct a converging subsequence (Xεk , Y εk ,λεk ,µεk)k∈N, εk → 0

from these variables. To conclude, we will see that the limit (X0, Y 0,λ0,µ0) satisfies the
KKT conditions for Problems (PCMB)–(DCMB), and that X0 is of rank at most r.

Let us denote the optimal value of Problems (P ε
CMB)–(Dε

CMB) by OPT (ε). Since the
constraints of the primal problem becomes tighter when ε grows, it is clear that OPT (ε) is
nonincreasing with respect to ε, so that

∀ε ∈ [0, ε0], OPT (ε0) ≤ OPT (ε) ≤ OPT (0).

Now let ε ∈]0, ε0]. By assumption, there exists a vector µ ≥ 0 such that

∑

i

µi(Mi + εI) �
∑

i

µiMi ≻ C, and R0 +
∑

i

µiR0 ≺ 0. (4.16)

Therefore, we have

OPT (ε) = 〈C,Xε〉+ 〈R0, Y
ε〉+ h0

T λε

≤
〈∑

i

µi(Mi + εI), Xε
〉

+ 〈R0, Y
ε〉+ h0

T λε

≤
∑

i

µi

(

bi + 〈Ri, Y
ε〉+ hi

T λε
)

+ 〈R0, Y
ε〉+ h0

T λε

= µT b + 〈
∑

i

µiRi +R0, Y
ε〉+ (h0 +Hµ

︸ ︷︷ ︸

=0

)T λε,

where the first inequality follows from (4.16), and the second one from the feasibility con-
dition 〈Mi + εI, Xε〉 ≤ bi + 〈Ri, Y

ε〉 + hi
T λε. The assumption (4.16) moreover implies

that −(
∑

i µiRi +R0) is positive definite, so that its smallest eigenvalue λ′ is positive, and

λ′ trace Y ε ≤
〈

− (
∑

i

µiRi +R0), Y
ε
〉

≤ µT b−OPT (ε) ≤ µT b−OPT (ε0).

This shows that the trace of Y ε is bounded, and so Y ε � 0 is bounded.
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Similarly, to bound Xε, we write:

〈
∑

i

µiMi − C,Xε
〉

≤ 〈
∑

i

µi(Mi + εI)− C,Xε
〉

= 〈
∑

i

µi(Mi + εI), Xε
〉

−OPT (ε) + 〈R0, Y
ε〉+ h0

T λε

≤
∑

i

µi

(

bi + 〈Ri, Y
ε〉+ hi

T λε
)

−OPT (ε) + 〈R0, Y
ε〉+ h0

T λε

= µT b−OPT (ε) + 〈
∑

i

µiRi +R0, Y
ε〉

︸ ︷︷ ︸

≤0

+(h0 +Hµ
︸ ︷︷ ︸

=0

)T λε,

where the first equality comes from the expression of OPT (ε). The matrix
∑

i µiMi−C is
positive definite and its smallest eigenvalue λ′′ is therefore positive. Hence,

λ′′ trace Xε ≤ µT b−OPT (ε) ≤ µT b−OPT (ε0),

and this shows that the matrix Xε � 0 is bounded.

Now, note that the feasibility of λε implies that the quantity bi + 〈Ri, Y
ε〉 + hi

T λε is
nonnegative for all i ∈ [s]. Since Y ε is bounded, we deduce the existence of a lower bound
mi ∈ R such that hi

T λε ≥ mi (∀i ∈ [s]). Similarly, since h0
T λε ≥ OPT (ε0)− 〈C,Xε〉 −

〈R0, Y
ε〉, there is a scalar m0 such that h0

T λε ≥ m0. We now use the fact that every
vector (−hi) may be written as a positive combination of the hk, (k ∈ {0} ∪ [s]), and we
obtain that the quantities hi

T λε are also bounded from above. Let us denote by H0 the
matrix [h0, H]; we have just proved that the vector HT

0 λε is bounded:

∃m ∈ R : ‖HT
0 λε‖2 ≤ m

(the latter bound does not depend on ε). Note that one may assume without loss of
generality that λε ∈ ImH0 (otherwise we consider the projection λε

P of λε on ImH0

which is also a solution since HT
0 λε = HT

0 λε
P . We know from the Courant-Fisher theorem

that the smallest positive eigenvalue of H0H
T
0 satisfies:

λ>
min(H0H

T
0 ) = min

v∈Im H0\{0}

vTH0H
T
0 v

vT v
.

Therefore, since we have assumed λε ∈ ImH0:

‖λε‖2 ≤ ‖HT
0 λε‖2

λ>
min(H0HT

0 )
≤ m2

λ>
min(H0HT

0 )
.

It remains to show that the dual optimal variable µε is bounded. Our strict primal
feasibility assumption (which does not entail generality thanks to Lemma 4.3.1) ensures the
existence of a matrix Y ≻ 0 and a vector λ such that

∀i ∈ [s], 〈Ri, Y 〉+ bi + hi
T λ = ηi > 0.
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By dual feasibility, R0 +
∑

i µ
ε
iRi is a negative semidefinite matrix, and we have:

0 ≥ 〈R0, Y 〉+
s∑

i=1

µε
i 〈Ri, Y 〉 = 〈R0, Y 〉+

s∑

i=1

µε
i (ηi − bi − hi

T λ).

Hence, we have the following inequalities:

∀k ∈ [s], ηkµ
ε
k ≤

s∑

i=1

ηiµ
ε
i ≤ bT µε + λ

T
Hµε − 〈R0, Y 〉

= OPT (ε)− λ
T
h0 − 〈R0, Y 〉

≤ OPT (0)− λ
T
h0 − 〈R0, Y 〉,

and we have shown that µε ≥ 0 is bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions
(Xεk , Y εk ,λεk ,µεk)k∈N that converges, with εk −→

k→∞
0, εk > 0. In this sequence, the

limit X0 of Xεk is of rank at most r, because the rank is a lower semicontinuous function
and rank Xεk ≤ r for all k ∈ N. It remains to show that (X0, Y 0,λ0) is a solution of
Problem (PCMB). The ε−perturbed KKT conditions must hold for all k ∈ N, and so they
hold for the pair

(

(X0, Y 0,λ0),µ0
)

by taking the limit (this works because S+
m is closed).

This concludes the proof of the existence of a solution in which rank X ≤ r.

It remains to show the second statement of this theorem, namely that if C 6= 0 and
r := min

i∈[s]
rank Mi, then the rank of X is bounded by n− r+ r for any solution (X, Y,λ)

of (PCMB).

Let (X∗, Y ∗,λ∗) be a solution of Problem (PCMB). If the primal problem is strictly
feasible, then there exists a Lagrange multiplier µ∗ ≥ 0 such that the KKT conditions
described at the beginning of this proof are satisfied. Since C 6= 0, we have µ∗ 6= 0, and
we can write:

rank (
∑

i∈[s]

µ∗
iMi − C) ≥ r − r.

Hence, since by complementary slackness, X∗ belongs to the nullspace of (
∑

i∈[s] µ
∗
iMi−C),

we find rank X∗ ≤ n− r + r.

If the primal problem is not strictly feasible, there must be an index i ∈ [s] such that
〈Mi, X

∗〉 = 0 (otherwise, (η1I, Y
∗ +η2I,λ

∗) would be strictly feasible for sufficiently small
positive reals η1 and η2). Therefore, X∗ is in the nullspace of a matrix of rank larger than
r, and rank X∗ ≤ n− r ≤ n− r + r.
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4.3.3 Proof of Theorem 4.2.1

We assume that Problems (PCMB) and (DCMB) are feasible, and for η ≥ 0 we consider
the following pair of primal and dual perturbed problems.

sup 〈C,X〉+ 〈R0, Y 〉+ h0
T λ

s.t. 〈Mi, X〉 ≤ bi + 〈Ri, Y 〉+ hi
T λ i ∈ [s], (Pη)

η (trace X + trace Y ) ≤ 1,

X � 0, Y � 0,

and

inf
µ≥0, σ≥0

s∑

i=1

µibi + σ,

s.t.
s∑

i=1

µiMi + σηI � C, (Dη)

R0 +
s∑

i=1

µiRi − σηI � 0,

h0 +Hµ = 0.

It is clear that the feasibility of Problem (PCMB) implies that of (Pη) if η > 0 is sufficiently
small. Let µ be a dual feasible variable for Problem (DCMB), and σ > 0 be sufficiently
large so that

∑s
i=1 µiMi + σηI ≻ C and R0 +

∑s
i=1 µiRi − σηI ≺ 0: the refined Slater

condition holds for the perturbed problem (Dη). Hence, by Theorem 4.2.2, there exists
a solution (Xη, Y η,λη) of Problem (Pη) in which rank Xη ≤ r. We next show that
〈C,Xη〉 + 〈R0, Y

η〉 + h0
T λη converges to the value of the supremum in Problem (PCMB)

as η → 0+, which will complete this proof.

Let ηk be a positive sequence decreasing to 0, and define γk := 〈C,Xηk〉+ 〈R0, Y
ηk〉+

h0
T ληk . It is clear that γk is a nondecreasing sequence, because the constraints in Prob-

lem (Pη) become looser as η gets smaller, and γk is bounded from above by the value of the
supremum γ∗ in Problem (PCMB). Therefore, (γk)k∈N converges. Assume (ad absurdum)
that the limit of this sequence is γ∞ < γ∗. Then, there are some variables (X0, Y0,λ0)

that are feasible for (PCMB), and such that 〈C,X0〉 + 〈R0, Y0〉 + h0
T λ0 > γ∞. But then,

(X0, Y0,λ0) is also feasible for Problem (Pη), when η ≤ η0 := (trace X0 + trace Y0)
−1.

For any k ∈ N such that ηk ≤ η0, this contradicts the optimality of (Xηk , Y ηk ,ληk) for
Problem (Pηk

). Hence, γ∞ = γ∗ and the proof is complete.



Chapter 5

The Second Order Cone Programming
approach

This chapter essentially recalls the results of [Sag09b]. We shall see that many optimal
experimental design problems can be formulated as Second order cone programs (SOCP).
Unlike the SDP formulations of Chapter 3, the SOCP arising in optimal experimental design
remain tractable on very large instances. In addition, the second order cone programming
is a convenient framework which offers both modelling flexibility and theoretical safeguards.

The proposed second order cone programming approach arises naturally from a geo-
metrical characterization of c−optimality for multiresponse experiments. However, this
geometric point of view leaves unexplained the equivalence between the formerly known
SDPs (cf. Section 3.3) and the new SOCPs. In fact, most results from this chapter admit
an alternative proof relying on the rank reduction theorem of Chapter 4.

5.1 An Elfving Theorem for multiresponse experiments

In this section, we extend the result of Elfving (Theorem 2.4.1) to the case of multidi-
mensional observations. For the sake of generality, we turn temporarily back to the general
case in which the regression region X is a (possibly infinite) compact set. Throughout this
section, we will also make the assumption that every observation is of dimension l (i.e.
l(x) = l for all x ∈ X ). We point out that this assumption is made with the only goal to
simplify the notation, and does not entail the generality (we handle the case in which the
experiment at x only gives k < l measurements by setting l − k rows of the matrix A(x)

to zero).

Some results of this chapter, including Theorem 5.1.1, were presented at the confer-
ence [SBG09], and the technical result justifying the reduction to a SOCP was posted on
arXiv [Sag09a]. Shortly before the time of submission, Dette and Holland-Letz published
an article in Annals of Statistics, in which Theorem 5.1.1 was established independently

85
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(Theorem 3.3 in [DHL09]). They considered a heteroscedastic model (i.e. an experimental
model where both the mean and the variance of the observations depend on the parameter
of interest), which led them to study the case in which the observation matrices are of rank
k ≥ 2, just as in the model of multiresponse experiments. They used their geometrical
characterization of the c−optimal design for heteroscedastic models in an application to
toxicokinetics and pharmacokinetics. It should also be mentioned that the proof of Dette
and Holland-Letz relies on an equivalence theorem (Theorem 3.1 in [DHL09]), while ours is
closer to Elfving’s original approach, as done previously by Studden [Stu05] for other results
in optimal design of experiments. The main result of our article (reduction to a SOCP, The-
orem 5.2.1), provides a new insight on the relations between these two approaches : they are
actually dual from each other (in the Lagrangian sense). Indeed, the approach of Dette and
Holland-Letz corresponds to the optimality conditions of the primal SOCP (5.3), while our
direct geometrical characterization corresponds to the dual SOCP (5.4), and strong duality
holds between these two optimization problems.

5.1.1 c-optimality

To state our result, we will need the following generalization of the Elfving set 2.20 for
multiresponse experiments:

E = conv
(

{A(x)T ǫ, x ∈ X , ǫ ∈ Rl, ‖ǫ‖2 ≤ 1}
)

.

Note that E is a generalization of the classical Elfving set (the factor ±1 has been substituted
by a vector ǫ in the unit ball of Rl).

Theorem 5.1.1 (Extension of Elfving’s theorem to the case of multiresponse experiments).
A design ξ = {xi, wi} is c−optimal if and only if there exists a positive scalar t and vectors

ǫi in the unit ball of Rl (i.e. ‖ǫi‖2 ≤ 1), such that

tc =
∑

i

wiA(xi)
T ǫi ∈ ∂E .

Moreover, t−2 = cTM(ξ)−c is the minimal variance.

Proof. We consider an unbiased linear estimator for ζ = cT θ :

ζ̂ = hT y(ξ), with h = [h1
T , ...,hs

T ]T ∈ Rsl, hi ∈ Rl.

The unbiasedness property forces the following equality to hold :

A(ξ)T h =
s∑

i=1

A(xi)
T hi = c.
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Now, the Cauchy-Schwarz inequality gives the following lower bound for the variance of ζ̂ :

Var(ζ̂) = hT ∆(w)h =
s∑

k=1

‖hk‖2

wk

≥
( s∑

k=1

‖hk‖
)2
, (5.1)

where ‖ · ‖ denotes the L2 norm and ∆(w) was defined in Equation (2.5). We recall that
we assume w > 0 without loss of generality, since an experiment with a zero weight can be
removed from the design ξ.

We show that c∑

k
‖hk‖ ∈ E , by writing:

c
∑

k ‖hk‖
=

A(ξ)T h
∑

k ‖hk‖
=
∑

i

A(xi)
T hi
∑

k ‖hk‖
=

∑

{i:‖hi‖>0}
µiA(xi)

T ǫi,

where µi = ‖hi‖∑

k
‖hk‖ and ǫi = hi

‖hi‖ , so that ‖ǫi‖ = 1, µi ≥ 0 and
∑

i µi = 1.

Let t be a positive scalar such that tc ∈ ∂E . The fact that c∑

k
‖hk‖ ∈ E implies

1
∑

k ‖hk‖
≤ t =⇒

( s∑

k=1

‖hk‖
)2 ≥ t−2. (5.2)

Combining (5.1) and (5.2) leads to the lower bound t−2 for the variance of any linear
unbiased estimator of ζ.

We will show that this lower bound is attained if and only if the design ξ satisfies the
condition of the theorem. To do this, notice that for a design ξ and an estimator hT y(ξ) to
be optimal, it is necessary and sufficient that the inequalities (5.1) and (5.2) are equalities.
The Cauchy-Schwarz inequality (5.1) is an equality if and only if w is proportional to the
vector [‖h1‖, ..., ‖hs‖]T , i.e.

wi =
‖hi‖

∑

k ‖hk‖
.

The second inequality (5.2) is an equality whenever c∑

k
‖hk‖ ∈ ∂E , i.e. 1∑

k
‖hk‖ = t, where

t is the largest real such that tc ∈ E . We can write

∂E ∋ tc = t
∑

i

A(xi)
T hi =

∑

{i:‖hi‖>0}
µiA(xi)

T ǫi,

with µi = t‖hi‖ and ǫi = hi

‖hi‖ . We have ‖ǫi‖ = 1, and the equality conditions are satisfied
if and only if µi = wi.

As a consequence of this theorem, we will see In Section 5.2.1 that the c−optimal
design of finitely many multiresponse experiments can be formulated as a second order cone
program (SOCP).
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5.1.2 The case of A-optimality

When there are several quantities of interest, i.e. when ζ consists in a collection of r
linear combinations of the parameters (ζ = KT θ, where K = [c1, . . . , cr] is m × r), the
A−optimal problem is to find the design ξ that minimizes trace (KT (M(ξ))−K). We recall
that an interesting case occurs when K = I, i.e. when the experimenter wants to estimate
the whole vector of parameters (cf. Section 2.3.2).

We show in this section that computing the A−optimal design for KT θ can be written
as a c−optimal design problem with multidimensional observations. Up to the factor 1

m
,

the objective function of (2.18) can indeed be written as

trace (KTM(ξ)−K) =
r∑

k=1

ck
TM(ξ)−ck.

We now define the vector c̃ as the vertical concatenation of the columns ci, i.e. c̃ =

[c1
T , ..., cr

T ]T . Now , we have: trace(KTM(ξ)−K) = c̃TM̃(ξ)−c̃, where:

M̃(ξ) =







M(ξ)
. . .

M(ξ)







=
s∑

i=1

wi







A(xi)
TA(xi)

. . .
A(xi)

TA(xi)







=
s∑

i=1

wi







A(xi)
. . .

A(xi)







T

Ã(xi)
︷ ︸︸ ︷






A(xi)
. . .

A(xi)







=
s∑

i=1

wiÃ(xi)
T Ã(xi).

In the latter equation, Ã(xi) contains r blocks and is of dimension rl × rm. We can
now rewrite Problem (2.18) in the following form:

min
ξ

trace (c̃TM̃(ξ)−c̃)

s. t.
s∑

i=1

wi = 1

M̃(ξ) =
s∑

i=1

wiÃ(xi)
T Ã(xi)

∀ i ∈ [s], wi ≥ 0,xi ∈ X .

We have thus shown that the problem of finding the A−optimal design is nothing but a
c̃−optimal design problem, with augmented observation matrices Ã(xi). As a consequence,
our result of reduction of the c−optimal design problem (Section 5.2.1) also applies for the
more general class of A−optimal design problem for a subsystem KT θ of the parameters
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(cf. Section 5.2.2).

We now show that the geometrical characterization in Theorem 5.1.1 generalizes the
result of Studden [Stu71], who established an Elfving type result for the characterization
of A−optimal designs in the case of scalar observations (l = 1 and A(x) = ax

T is a row
vector). This characterization is based on the following extension of the Elfving set when
the matrix K is m× r:

ES = conv
(

{axǫT |x ∈ X , ǫ ∈ Rr, ‖ǫ‖ ≤ 1}
)

⊂ Rm×r

Theorem 5.1.2 (Studden,1971). A design ξ = {xi, wi} is A−optimal for KT θ if and only

if there exists a scalar t > 0 and vectors ǫi in the unit ball of Rr such that

tK =
∑

i

wiaxi
ǫi

T ∈ ∂ES.

Moreover, t−2 = trace(KTM(ξ)−K) is the optimal value of the A−criterion.

One can easily verify that this theorem is a particular case of Theorem 5.1.1. Using the
previously introduced notation indeed, Theorem 5.1.1 says that ξ = {xi, wi} is A−optimal
for KT θ if and only if there exists a scalar t > 0 and vectors ǫi in the unit ball of Rrl such
that

tc̃ =
∑

i

wiÃ(xi)
T ǫi ∈ ∂E ,

and we notice that c̃ is the vectorized version of K, and when l = 1, E is the vectorized
version of ES and Ã(xi)

T ǫi = [ǫi1axi

T , . . . , ǫisaxi

T ]T is the vectorized version of axi
ǫi

T .

5.2 The Second order cone programming approach

In this section, we will see that many optimal design problems can be formulated as
Second Order Cone Programs when the regression region is finite, i.e. X = [s]. We come
back to the initial notation, where li denotes the first dimension of the observation matrix
Ai (we do not assume li = l for all i anymore).

5.2.1 c-optimality

We show in this section that the c−optimal design problem reduces to a Second Order
Cone Program (SOCP). We will give two proofs of this result : the first one is a conse-
quence of our generalization of the Elfving theorem to the case of multiresponse experiments
(Theorem 5.1.1). The second proof uses the rank reduction theorem of Chapter 4.

Theorem 5.2.1 (Computation of the c−optimal design by SOCP). Let u∗, (µ∗,h∗
i ) be a

pair of primal and dual solutions of the second order cone programs:
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(P-SOCP) : max
u∈Rm

cT u (5.3)

∀i ∈ [s], ‖Aiu‖ ≤ 1

(D-SOCP) : min
µ∈Rs, hi∈Rli

∑

i

µi (5.4)

c =
∑

i

AT
i hi

∀i ∈ [s], ‖hi‖ ≤ µi.

We define

w := tµ∗, where t = (
s∑

k=1

µ∗
k)−1.

Then w is a c−optimal design. Moreover, ζ̂ =
∑

h∗
i

T yi is the best linear estimator of cT θ,

and the optimal variance is var(ζ̂) = t−2 = (
∑

i µ
∗
i )

2 = (cT u∗)2.

Proof relying on the extended Elfving theorem

Proof. This result is actually a corollary of Theorem 5.1.1. As in the proof of the latter
theorem, define t as the largest scalar such that tc ∈ E , i.e. such that there exists wi

summing to 1 and vectors ǫi in the unit ball of Rl satisfying

tc =
s∑

i=1

wiA
T
i ǫi.

This decomposition gives the optimal weights wi and the best estimator of ζ:

ζ̂ =
s∑

i=1

hi
T yi, (5.5)

where hi = wi

t
ǫi. According to the proof of Theorem 5.1.1 indeed, an unbiased estimator

of the form (5.5) is optimal if and only if every hi is proportional to ǫi and has norm wi

t
.

Setting zi = wiǫi, one obtains t as the value of the following SOCP:

max
t,z,w

t (5.6)

s.t. tc =
s∑

i=1

AT
i zi,

∀i ∈ [s], ‖zi‖ ≤ wi,
∑

i

wi = 1, w ≥ 0.

In order to get an SOCP in the standard form, we write wi = tµi, where t = 1∑

i
µi

is an

arbitrary nonnegative scalar. Then, we set hi = t−1zi, and we obtain a problem in the form



5.2. THE SECOND ORDER CONE PROGRAMMING APPROACH 91

of (5.4). Finally, the value of (P − SOCP ) and (D − SOCP ) are equal, since the Slater
condition holds for this pair of programs (the dual (D− SOCP ) is strictly feasible and the
primal (P − SOCP ) is feasible). A proof of the strong duality theorem for SOCP can be
found e.g. in [NN94], Section 4.2. See [LVBL98] for more background on SOCP duality
theory.

Remark 5.2.1. This SOCP has a simple geometric interpretation. In the scalar case, we
have seen that the c−optimal design could be found at the intersection of a polyhedron
and a straight line directed by c (see Figure 2.2). In the multiresponse case, the generalized
Elfving set is no longer a polyhedron: instead, we compute the intersection between the
straight line directed by c and the set

E = conv
(

{AT
i ǫi, i ∈ [s], ǫi ∈ Rli , ‖ǫi‖2 ≤ 1}

)

,

= conv
{

Ei, i ∈ [s]
}

,

where Ei is the ellipsoid with semi-axis
√

λ
(i)
k u

(i)
k (k ∈ [m]), where {λ(i)

1 , . . . , λ
(i)
m } are

the eigenvalues of AT
i Ai and {u(i)

1 , . . . ,u(i)
m } are the corresponding eigenvectors. In the

common case, we have li < m, such that some eigenvalues of AT
i Ai vanish and the ellipsoid

Ei is not full-dimensional (i.e. its volume is zero). We illustrate this geometric interpretation
in Figure 5.1.

We next present another proof of this result, based on the rank reduction theorem of
Chapter 4.

A rank reduction argument

Proof. We have seen in Chapter 3 that the c−optimal design problem can be formulated as
a SDP. The dual SDP (3.16) is in fact a semidefinite packing problem, in which the matrix
defining the objective function is C = ccT and has rank one. Under the generic assumption
that cT θ is estimable, c is in the range of

∑s
i=1 A

T
i Ai and the conditions of Corollary 4.1.4

are fulfilled: the SDP (3.16) reduces to the SOCP (5.3).

We have seen that strong duality holds between Problems (5.3) and (5.4). This implies
that any pair of primal and dual solutions

(

u∗, (µ∗, z∗
i )
)

must satisfy the complementary
slackness relation

∀i ∈ [s], µ∗
iAiu

∗ = z∗
i .

Now, the dual feasibility implies that

∑

i

Aiz
∗
i =

∑

i

µiA
T
i Aiu

∗ = c.

Setting w = tµ∗ where t−1 =
∑

i µ
∗
i = cT u∗, we find that t−1M(w)u∗ = c, and we have

the equality
cTM(w)†c = t−1cT u∗ = (cT u∗)2.
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a11

a12

a21

a31

a22

a32

a33

a41

E3

E2

E1

E4

t∗c

c

x1x3

Figure 5.1: In the multiresponse case, the generalized Elfving set E is the convex hull of the
ellipsoids Ei. On this picture, we have plotted the rows of the observation matrices: aT

ij is the jth

row of Ai. In the (common) case where li ≤ m, the vectors (aij)j∈[li] are on the boundary of
the ellipsoid Ei (here, this is the case for E1, E2, and E4, but not for E3 since l3 = 3 > 2). Note
that when li < m, the ellipsoid Ei is not full dimensional (on the picture, we have l4 = 1 < 2, so
that E4 is a segment). The intersection of the line directed by c and the generalized Elfving set
(denoted by a brown circle on the figure) indicates the weights of the c−optimal design. Here,
t∗c is at equal distance of the two extremal point x1 ∈ E1 and x3 ∈ E3, such that the c−optimal
design is w = [0.5, 0, 0.5, 0]T .

By Corollary (4.1.4), the latter expression is the optimal value of the SDP (3.16), which
means that w is a c−optimal design.

Theorem 5.2.1 shows that one can compute the c−optimal design on a finite regression
range by solving a SOCP. This can be done very efficiently with the help of interior points
codes such as SeDuMi [Stu99]. Solving the SOCP (5.3) is a much easier task than solving the
SDP (3.16), because the number of variables is in the order of m (instead of m2); because
we have get rid off the positive semidefiniteness constraint of the SDP; and because the
SOCP solver is able to exploit the sparse structure of the observation matrices Ai (while
the partial information matrices Mi = AT

i Ai are not very sparse in general. Moreover,
we will see in Section 5.2.3 that the SOCP approach adapts to the case of multiple linear
constraints. A numerical comparison of the different algorithms that can be used to compute
optimal experimental designs will be carried out in Chapter 6.
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5.2.2 A-optimality

We have seen in Section 5.1.2 that any A−optimal design problem could be expressed as
a c−optimal design problem with augmented observation matrices. Thus, by Theorem 5.2.1,
the A−optimal design problem for KT θ has a SOCP formulation:

Theorem 5.2.2 (Computation of the A−optimal design by SOCP). Let
(

U∗, (µ∗, (Z∗
i )i∈[s])

)

be a pair of primal and dual solutions of the second order cone

programs:

max
U∈Rm×r

trace KTU (5.7)

∀i ∈ [s], ‖AiU‖F ≤ 1

min
µ∈Rs, Zi∈Rli×r

∑

i

µi (5.8)

K =
∑

i

AT
i Zi

∀i ∈ [s], ‖Zi‖F ≤ µi.

We define

w := tµ∗, where t = (
s∑

k=1

µ∗
k)−1.

Then w is A−optimal for KT θ. Moreover, ζ̂ =
∑

i(Z
∗
i )T yi is the best linear estimator of

KT θ, and the optimal A−criterion is

ΦA(w) =
r∑

i=1

ci
TM(w∗)−ci = t−2 = (

∑

i

µ∗
i )

2

Proof. We combine the result of Section 5.1.2 and Theorem 5.2.1.

5.2.3 c- (and A-) optimality with multiple resource constraints

In this section, we consider the generalized version of the c−optimal design problem
with multiple resource constraints, that we already studied in Section 3.3.5:

min cTM(w)−c (5.9)

s. t. M(w) = AT
0A0 +

s∑

i=1

wiA
T
i Ai,

Rw ≤ d, w ≥ 0.
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Note that we have added a constant AT
0A0 in the information matrix M(w). This

can be useful to model a free-of-charge experiment, that the experimenter will conduct in
any case, or to model an intrinsic relationship between the parameters, such as Kirchhoff’s
circuit law. The constant AT

0A0 appears in M(w) when we assume that the observation
matrix A0 has been normalized, in such a way that the additional observation vector y0 has
a unit variance:

y0 = A0θ + ε0, E[ε0] = 0, E[ε0ε0
T ] = I. (5.10)

Another case where it can be useful to introduce a constant term AT
0A0 in the information

matrix is when a prior distribution for the parameter is given:

E(θ) = µ, and Var(θ) = R. (5.11)

It is known (see e.g. [Puk93]) that when the prior covariance matrix R is positive definite,
the expected covariance matrix is minimized (with respect to Löwner ordering) among all
unbiased affine estimators, conditionally to the prior distribution of θ for:

θ̂|R,µ =
(

R−1 +
s∑

i=1

wiA
T
i Ai

)−1(

R−1µ +
s∑

i=1

AT
i yi

)

.

This Bayesian estimator has a variance which does not depend on the prior expected value
of θ:

Var(θ̂|R,µ) =
(

R−1 + A(w)TA(w)
)−1

. (5.12)

In fact, the above discussion shows that prior information can be equivalently handled as
an additional observation equation µ = θ + ε, E[ε] = 0, E[εεT ] = R, which we
normalize by setting y0 = R−1/2µ, A0 = R−1/2, ǫ0 = R−1/2ε, so that (5.10) holds. In
conclusion, prior information (5.11) can be handled by adding the constant R−1 = AT

0A0

in the information matrix.

The main result of this section is that Problem (5.9) can be formulated as a SOCP.
As in Section 5.2.1, we shall give two proofs of this result. Each proof yields a different
SOCP, formulated respectively in Theorem 5.2.3 and Theorem 5.2.4. Both SOCPs are
of course equivalent. We point out that a related result was obtained by Ben-Tal and
Nemirovskii [BTN92], for an application to truss topology design (see also [NN94, LVBL98]).
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A Statistical argument

Theorem 5.2.3. The following SOCP is feasible if and only if cT θ is estimable for a feasible

design ( ∃w ≥ 0 : Rw ≤ d and c ∈ ImM(w)):

min
w, µ, (hi)i=0,...,s

s∑

i=0

µi (5.13)

AT
0 h0 +

s∑

i=1

AT
i hi = c

Rw ≤ d, w ≥ 0
∥
∥
∥
∥
∥

[

2h0

1− µ0

]∥
∥
∥
∥
∥
≤ 1 + µ0

∥
∥
∥
∥
∥

[

2hi

wi − µi

]∥
∥
∥
∥
∥
≤ wi + µi, (i = 1, . . . , s).

If moreover (w,µ, (hi)i=0,...,s) is a solution of Problem (5.13), then w is c−optimal (in

the sense of the general problem (5.9)), the best unbiased linear estimator of ζ = cT θ is

ζ̂ =
∑

i hi
T yi, and the optimal variance is var(ζ̂) = cTM(w)−c =

∑s
i=0 µi.

Proof. The Gauss Markov Theorem 2.2.1 allows us to rewrite the objective criterion of
Problem (5.9) as:

cTM(w)−c = min
h∈R

∑

i
li

hT ∆(w)h (5.14)

s. t. [AT
0 , A

T
1 , . . . , A

T
s ]h = c, (5.15)

where ∆(w) is defined as in Equation (2.5), with an additional block corresponding to the
prior observation (w0 = 1):

∆(w) =










I

w−1
1 I

. . .
w−1

s I










.

Decomposing h as [h0
T ,h1

T , . . . ,hs
T ]T , hi ∈ Rli , the expression hT ∆(w)h can be rewrit-

ten as

‖h0‖2 +
s∑

i=1

w−1
i ‖hi‖2. (5.16)

Recall that when an experiment is unobserved (wi = 0), it could simply be removed from
the support of the experimental design. In other words, the sum (5.16) is taken on the
indices such that wi > 0 only. We can now rewrite Problem (5.9) in a form that involves
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the vector of coefficients h of the estimator ζ̂:

min
w, (hi∈Rli )i=0,...,s

‖h0‖2 +
∑

{i:wi>0}

‖hi‖2

wi

(5.17)

s. t.
s∑

i=0

AT
i hi = c,

Rw ≤ d, w ≥ 0.

Clearly, this is equivalent to:

min
w, µ, (hi∈Rli )i=0,...,s

µ0 +
s∑

i=1

µi (5.18)

s. t.
s∑

i=0

AT
i hi = c,

Rw ≤ d, w ≥ 0,

‖h0‖2 ≤ µ0

‖hi‖2 ≤ µiwi,

since we can assume without loss of generality that wi = 0⇒ ‖hi‖ = µi = 0. Finally, the
SOCP (5.13) is obtained by reformulating the hyperbolic constraints ‖z‖2 ≤ αβ as

∥
∥
∥
∥
∥

[

2z

α− β

]∥
∥
∥
∥
∥
≤ α+ β.

A rank reduction argument

We provide another proof of the reduction of the c−optimal design problem to a SOCP,
which relies on the rank reduction theorem for “combined” semidefinite packing prob-
lems 4.2.2. Interestingly, we obtain a SOCP which is equivalent to (5.13) but has a different
form.

Theorem 5.2.4. The following pair of primal and dual SOCP is feasible if and only if

cT θ is estimable for a feasible design ( ∃w ≥ 0 : Rw ≤ d and c ∈ ImM(w)):
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max
x, λ

cT x

∥
∥
∥
∥
∥

[

2A0x

dT λ

]∥
∥
∥
∥
∥

2

≤ 2− dT λ,

∀i ∈ [s],

∥
∥
∥
∥
∥

[

2Aix

ri
T λ− 1

]∥
∥
∥
∥
∥

2

≤ ri
T λ + 1

λ ≥ 0.

min
µ≥0,t≥0,(hi)i=0,...,s

α≥0,β≥0

s∑

i=1

αi + t+ β

AT
0 h0 +

s∑

i=1

AT
i hi = c,

Rµ ≤ td,

∀i ∈ [s],

∥
∥
∥
∥
∥

[

hi

αi − µi

]∥
∥
∥
∥
∥

2

≤ αi + µi,

∥
∥
∥
∥
∥

[

h0

β − t

]∥
∥
∥
∥
∥

2

≤ β + t.

If moreover (µ, t, (hi)i∈{0,...,s},α, β) is a solution of the dual problem, then the optimal

design variable is w = t−1µ, the best unbiased linear estimator of ζ = cT θ is ζ̂ =
∑

i hi
T yi,

and the optimal variance is var(ζ̂) = cTM(w)−c = (cT x)2 = (
∑s

i=1 αi + t+ β)2.

Proof. We assume that the optimal design problem (5.9) is feasible, i.e. there exists a
vector ŵ ≥ 0 such that Rŵ ≤ d and c is in the range of M(ŵ). Note that we can assume
without loss of generality that ŵ > 0. Otherwise, this would mean that the constraints
Rw ≤ d, w ≥ 0 force the equality wi = 0 to hold for some coordinate i ∈ [s], and in this
case we could simply remove the experiment i from the set of available experiments.

We can now express Problem (5.9) as an SDP thanks to the Schur complement lemma:

min
t∈R, w≥0

t (5.19)

s.t.

(

M(w) c

cT t

)

� 0.

Rw ≤ d.

Since the optimal t is positive (we exclude the trivial case c = 0), the latter matrix inequality
may be rewritten as

M(w) � ccT

t
,

by using the Schur complement lemma again. Finally, we make the change of variables
µ = tw and Problem (5.19) is equivalent to

min
µ≥0,t≥0

t (5.20)

s.t. tAT
0A0 +

s∑

i=1

µiA
T
i Ai � ccT

Rµ ≤ td.

This problem belongs to the class of “combined” semidefinite packing problems studied in
Section 4.2. We can see indeed that Problem (5.20) has the same form as Problem (DCMB)
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(cf. page 70), by setting C = ccT , µs+1 = t, b = [0, . . . , 0, 1]T ∈ Rs+1, Ms+1 =

AT
0A0, h0 = 0, H = [R,−d], and for all i ∈ 0, . . . , s + 1, Ri = 0 (we also need to

introduce a nonnegative slack variable to handle the inequalities as equalities).

Let λ := cT (
∑s

i=0 Mi)
†cT , so that λ(

∑s
i=0 Mi) � ccT . We set t = maxi∈[s](λ/ŵi, λ)

(t is well defined because ŵ > 0). We define µ := tŵ, and we see that Problem (5.20)
is feasible, because Rµ ≤ td, and tM0 +

∑s
i=1 µiMi �

∑s
i=0 λMi � ccT . In addition, the

corresponding primal problem is clearly feasible (for λ = 0, since b ≥ 0), and thus we can
use Corollary 4.2.4: the c−optimal design problem with resource constraints (5.9) reduces
to the SOCP (4.6). With the parameters b,Ms+1, H and the slacks defined as above, this
corresponds exactly to the primal SOCP in Theorem 5.2.4.

By construction, the optimal design variable w is related to the dual optimal variables µ

and t by the relation w = t−1µ (according to the previous change of variable). Moreover, the
dual problem satisfies the (refined) Slater condition, because c ∈ Im(

∑

i Mi) =
∑

i Im(AT
i ),

so that ∃h0, . . . ,hs :
∑s

i=0 A
T
i hi = c, Pµ ≤ td and for α > 0, β > 0 large enough,

the non-affine cone constraints are satisfied with a strict inequality. Hence, strong duality
holds and the values of these two problems are equal. Finally, Corollary 4.2.4 shows that
the optimal value of Problem (5.9) is the square of the optimal value of these SOCPs.

5.2.4 T-optimality for KT θ

We show in this section that it is possible to compute a formally T−optimal design
for KT θ with a SOCP. We recall that contrarily to the other criteria of the class Φp ,
p < 1, a design w that maximizes Φ1(w) = traceQK(w) can fail to be feasible, i.e.
ImK * ImM(w) (see Section 2.3.2). A formally T−optimal design w is T−optimal if
and only if the latter range inclusion holds.

We have seen in Section 2.4.3 that the T−optimal design problem for the full parameter
θ is trivial: A design is formally T−optimal for θ if and only if it allocates all the weight to the
experiments i such that ‖Ai‖F is maximal (Theorem 2.4.12). However, when the quantity
of interest is a parameter subsystem ζ = KT θ, the problem becomes computationally
challenging. The present reduction gives another argument for saying that second order
cone programming is a natural framework for optimal experimental design problems.

Theorem 5.2.5 (T-optimality SOCP). Let
(

(t, U), (Zi,w,γ)
)

be a pair of primal and dual
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solutions of the second order cone programs:

min
t∈R, U∈Rm×r

t (5.21)

KTU = I

∀i ∈ [s], ‖AiU‖2
F ≤ t

max
Z0∈Rr×r,Zi∈Rli×r,w≥0,γ≥0

− (trace Z0 +
s∑

i=1

γi) (5.22)

KZ0 =
s∑

i=1

AT
i Zi,

s∑

i=1

wi = 1,

∀i ∈ [s], ‖Zi‖2
F ≤ 4wiγi.

Note that these are Second order cone programs indeed (we have let the hyperbolic con-

straints to simplify the notation; otherwise, the matrices AiU and Zi need be vectorized).

Then, w is formally T−optimal for KT θ, and the value of the supremum in Problem (2.19)
is t = −(trace(M) +

∑

i γi). If moreover w ∈ Ξ(K), then w is T−optimal.

Proof. We use the general definition (2.9) of QK(w), which remains valid when w /∈ Ξ(K):

QK(w) := min
U

� UTM(w)U

s. t. KTU = Ir,

where the minimum is taken with respect to the Löwner ordering. Since the trace of a matrix
preserves the Löwner ordering, we can express the (formal) T−optimal design problem as:

max
w≥0,

∑

i
wi=1

min
U : KT U=Ir

traceUTM(w)U

= max
w≥0,

∑

i
wi=1

min
U : KT U=Ir

s∑

i=1

wi‖AiU‖2
F

= min
U : KT U=Ir

(

max
i∈[s]

‖AiU‖2
F

)

.

The exchange of the max and the min above is a consequence of Sion’s minimax theorem
((w, U) 7→ ∑s

i=1 wi‖AiU‖2
F is continuous, concave in w and convex in U). We next

introduce a variable t which must be larger than all the quantities ‖AiU‖2
F , and we have

shown that the (formal) T−optimal design problem for KT θ is equivalent to Problem (5.21).
The (formal) T-optimal design w is the optimal dual variable corresponding to the hyperbolic
constraints in Problem (5.21). It follows that w can be computed by solving the dual
optimization problem (5.22). Finally, the value of these optimization problems is the same
by Strong duality (Slater condition holds), and is equal to the optimum of the T−optimal
problem (2.19).
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5.2.5 A low rank SDP for E-optimality

Our rank reduction approach does not yield a SOCP for the computation of E−optimal
designs. However, note that the E−optimality SDP (3.6) takes exactly the form of Prob-
lem (DPCK) (cf. page 67), with bi = 1 for all i ∈ [s], and C = KKT . Here, the matrix C
has rank r, and so Theorem 4.1.2 indicates that the E−optimal design SDP has a solution
which is a matrix of rank at most r. This suggests the use of specialized low rank solvers
for this SDP when r is small (cf. the paragraph “Related work”, page 66), which can lead
to a considerable improvement in terms of computation time.

5.3 A model robust criterion

In this section, we consider the S−optimality criterion presented in Section 2.3.3. We
are next going to show that the Sβ−optimal design of multiresponse experiments reduces
to the problem of maximizing a weighted geometric mean under norm constraints. This
is of great interest for the computation of Sβ−optimal designs. Indeed, this optimization
problem is a geometric program, and so it can be reformulated in a form for which a self-
concordant barrier function is known, and it can be solved efficiently to the desired precision
by interior point techniques (see e.g. [BV04]).

Dette extended Elfving’s result to the case of S−optimality for single-response experi-
ments [Det93] . We will see that our result yields a generalization of the Dette’s theorem
for S−optimality to the case of multiresponse experiments. In particular, we obtain a SOCP
for D−optimality.

5.3.1 S-optimality

We recall that the Sβ−optimal design problem for the quantities c1
T θ, . . . , cr

T θ is:

min Sβ(w) :=
r∑

k=1

βk log(ck
TM(k)(w)−ck) (5.23)

s. t. ∀k ∈ [r], M(k)(w) =
s∑

i=1

wiA
T
(k),iA

T
(k),i

w ≥ 0,
s∑

i=1

wi ≤ 1.

The next theorem gives a geometric programming (GP) formulation of the S−optimal
design problem.

Theorem 5.3.1. Let (t, (vik),w) be a solution of the following optimization problem.

Then, w also minimizes the Sβ−criterion. Moreover, the value of this program coincides
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with the value of its dual, which we give below.

min
w≥0,

∑

i
wi=1

Sβ(w) = 2 min
t,(vik),w

r∑

k=1

−βk log(tk)

tkck =
s∑

i=1

AT
(k),ivik, ∀k ∈ [r], (Pβ)

∥
∥
∥
∥
∥
∥
∥
∥

√
β1vi1

...√
βrvir

∥
∥
∥
∥
∥
∥
∥
∥

≤ wi ∀i ∈ [s],

s∑

i=1

wi ≤ 1.

= 2 max
h1,...,hr

r∑

k=1

βk log
ck

T hk

βk

(Dβ)

∥
∥
∥
∥
∥
∥
∥
∥

A(1),ih1/
√
β1

...

A(r),ihr/
√
βr

∥
∥
∥
∥
∥
∥
∥
∥

≤ 1 ∀i ∈ [s].

The variables of the primal optimization problem are w ∈ Rm (the design), t ∈ Rr and the

vectors vik ∈ Rlk , for i ∈ [s] and k ∈ [r]. The variables of the dual problem are the vectors

h1, . . . ,hr ∈ Rm.

The proof of this theorem relies on a series of reformulations of Problem (5.23) thanks to
Lagrange duality techniques and Theorem 4.1.2. We will prove this result in Section 5.3.3.
Then, we will show that the optimality conditions of our convex optimization problem can
be interpreted as geometrical conditions, which yields a generalization of the theorem of
Dette [Det93] for S−optimality to the case of multiresponse experiments. This geometrical
characterization relies on the following generalization of the Elfving set:

Dβ = conv







{







ǫ1
TA(1),x

...
ǫr

TA(r),x






, x ∈ X , ǫk ∈ Rl,

r∑

k=1

βk‖ǫk‖2 ≤ 1
}






⊂ Rr×m. (5.24)

Theorem 5.3.2 (Geometrical characterization of multiresponse Sβ−optimality). The de-

sign w is Sβ−optimal (and solution of Program (Pβ)) if and only if there exists a vector

t ∈ Rr and vectors ǫik ∈ Rli (i ∈ [s], k ∈ [r]), such that

(i) ∀i ∈ [s],
∑r

k=1 βk‖ǫik‖2 ≤ 1

(ii) Diag(t)C =







t1c1
T

...

trcr
T







=
∑s

i=1 wi







ǫi1
TA(1),i

...

ǫir
TA(r),i
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(iii) Diag(t)C lies on the boundary of Dβ, with a supporting hyperplane whose normal
direction is given by the matrix H = [h1, . . . ,hr]T , with hk ∈ Rm . In other words,

D ∈ Dβ =⇒ 〈H,D〉 ≤ 1

(iv) H satisfies the equalities

tkhk
T ck = βk, ∀k ∈ [r].

In this case, the optimal variables of Problems (Dβ) and (Pβ) are t, vik := wiǫik (∀i ∈
[s], ∀k ∈ [r]), and (hk)k∈[r], so that the optimal Sβ−criterion is −2

∑r
k=1 βk log(tk).

Theorem 5.3.2 is established in the next section.

Remark 5.3.1. As in the case of single response experiments [Det93], the geometrical char-
acterization remains true when the regression range X is infinite. It can also be shown
with semi-infinite programming techniques that the following convex semi-infinite program
is valid for the general Sβ−optimal design Problem:

min
wi≥0,

∑s

i=1
wi=1,

x∈X

Sβ(ξ) = 2 max
h1,...,hr

r∑

k=1

βk log
ck

T hk

βk

∀x ∈ X ,

∥
∥
∥
∥
∥
∥
∥
∥

A(1),xh1/
√
β1

...
A(r),xhr/

√
βr

∥
∥
∥
∥
∥
∥
∥
∥

≤ 1.

5.3.2 D-optimality

Dette showed in [Det93] that D−optimality for the full parameter θ is a particular case
of S−optimality. As a consequence, we can formulate the D−optimal design problem as a
convex optimization problem in the form of (Pβ). To see this, Dette considered the virtual
nested models, where the parameter of interest in the kth model is θk, and the observations
only depend on the first k parameters: A(k),i is the matrix Ai restricted to its first k columns,
so that M(k)(w) is the upper left k×k submatrix of M(w), and ck = [0, ..., 0, 1] is a vector
of length k. Using the relation

ck
TM(k)(w)−ck =

(

M(k)(w)−1
)

kk
=

detM(k−1)(w)

detM(k)(w)
,

it can be seen that
S[1/m,...,1/m](w) = − 1

m
log detM(w),
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which is exactly the D−optimality criterion.
Theorem 5.3.1 can now be used to formulate the D−optimal design problem as:

max
w≥0

1

m
log detM(w) = 2 max

t,vik,w
log

((∏

ti
)1/m

)

tkck =
∑

i

AT
(k),ivik, ∀k ∈ [m],

∥
∥
∥
∥
∥
∥
∥
∥

vi1
...

vim

∥
∥
∥
∥
∥
∥
∥
∥

≤ √m wi ∀i ∈ [s],

s∑

i=1

wi ≤ 1.

(5.25)

5.3.3 Proof of Theorems 5.3.1 and 5.3.2

We start with the following lemma, where we show that the Sβ−optimal design problem
can be formulated as a convex optimization problem with SDP constraints:

Lemma 5.3.3. The optimal variable w∗ of the following convex optimization problem also

minimizes the Sβ−criterion. The value of this program coincides with the value of its dual,

which we give below:

min
w≥0,

∑

i
wi=1

Sβ(w) = min
τ∈Rr, w≥0

−
r∑

k=1

βk log τk (Pβ − SDP )

M(k)(w) � τkckck
T , ∀k ∈ [r],

s∑

i=1

wi = 1.

= max
Z1,...,Zr�0

r∑

k=1

βk log
ck

TZkck

βk

(Dβ − SDP )

r∑

k=1

trace(A(k),i Zk A
T
(k),i) ≤ 1, ∀i ∈ [s].

Proof. As in the derivation of the SDP for A−optimality (cf. page 59), we reexpress the
variance of the kth quantity of interest ck

TM(k)(w)−ck with the help of a generalized Schur
complement (for an arbitrary design w):

(

ck
TM(k)(w)−ck

)−1
= max τk = max τk

(

M(k)(w) ck

ck
T 1/τk

)

� 0. M(k)(w) � τkckck
T .
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Since the optimal τk is positive, the latter expression is well defined. Now, by monotonicity
of the log function, we can write:

min
w≥0,

∑

i
wi=1

Sβ(w) =− max
w≥0,

∑

i
wi=1

r∑

k=1

βk log
(

ck
TM(k)(w)−ck

)−1

=− max
w≥0,

∑

i
wi=1, τ∈Rr

r∑

k=1

βk log τk

M(k)(w) � τkckck
T , ∀k ∈ [r],

which is exactly Problem (Pβ−SDP ). It is clear that Problem (Dβ−SDP ) is convex and
strictly feasible, so that the Slater condition is fulfilled, and strong duality holds. It remains
to show that Problem (Dβ − SDP ) is indeed the dual of (Pβ − SDP ). To this end, let us
form the Lagrangian of Problem (Pβ − SDP ):

L
(

(τ ,w), (Z, λ)
)

= −
r∑

k=1

βk log τk +
r∑

k=1

〈Zk, τkckck
T −M(k)(w)〉+ λ(

s∑

i=1

wi − 1).

The Lagrange dual function is given by

g(Z, λ) := min
τ>0, w≥0

L
(

(τ ,w), (Z, λ)
)

= −λ+
∑

k

min
τk>0

(τkck
TZkck − βk log τk) +

∑

i

min
w≥0

wi(λ−
∑

k

〈AT
(k),i A(k),i, Zk〉).

=







−λ+
∑

k βk(1− log βk

ck
T Zkck

) if

{

∀i ∈ [s],
∑r

k=1〈AT
(k),i A(k),i, Zk〉 ≤ λ

∀k ∈ [r], ck
TZkck > 0

−∞ otherwise.

Note that in the above expression, the minimum over τk is attained for τk = βk

ck
T Zkck

, and
this equation must be satisfied by the optimal variables τ ∗

k and Z∗
k . Since we observed that

strong duality holds, the value of the dual optimization problem must be equal to the value
of the primal, and so the optimal variables (denoted with stars in superscript) satisfy:

−
r∑

k=1

βk log τ ∗
k = −λ∗ +

∑

k

βk(1− log
βk

ck
TZ∗

kck

) =⇒ λ∗ =
r∑

k=1

βk = 1.

We can now make the dual problem explicit:

max
Z,λ

g(Z, λ) = max
Z1,...,Zr�0

g(Z, 1) = max
Z1,...Zs�0

r∑

k=1

βk log
ck

TZkck

βk

r∑

k=1

trace(A(k),i Zk A
T
(k),i) ≤ 1, ∀i ∈ [s].

This completes the proof of the lemma.

Now, we show that there is a solution of Problem (Dβ − SDP ) for which every Zk has
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rank one, thanks to the theoretical result of Chapter 4

Proof of Theorem 5.3.1. We first write the program (Dβ − SDP ) in the form of a sepa-
rable optimization problem, by introducing some vectors αi (i ∈ [s]) of size r, satisfying
∑r

k=1 αik ≤ 1:

min
w≥0,

∑

i
wi=1

Sβ(w) = max
α1,...αs∈Rr

(
r∑

k=1

fk(α1k, . . . , αsk)

)

∀i ∈ [s],
r∑

k=1

αik ≤ 1,

where we have set

∀k ∈ [r], fk(y) = max
Zk�0

βk log
ck

TZkck

βk

trace(A(k),i Zk A
T
(k),i) ≤ yi, ∀i ∈ [s].

By use of Theorem (4.1.2) (and monotonicity of the log function), the minimization
problem over Zk in fk(·) has a rank-one solution (Zk = hkhk

T ), and we obtain:

fk(α1k, . . . , αsk) = max
hk∈Rm

βk log
(ck

T hk)2

βk

‖A(k),i hk‖ ≤
√
αik, ∀i ∈ [s].

Now, we use the associativity of the maximum to reformulate the Sβ−optimum design
problem:

min
w≥0,

∑

i
wi=1

Sβ(w) = max
h1,...,hs

r∑

k=1

βk log
(ck

T hk)2

βk

r∑

k=1

‖A(k),i hk‖2 ≤ 1, ∀i ∈ [s].

Finally, we make the change of variable hk
′ = hk

√
βk in order to obtain the desired

optimization problem, that is (Dβ). It remains to show that Problem (Pβ) is the dual
of (Dβ). The convex problem (Pβ) is strictly feasible, so that Slater condition is fulfilled,
and strong duality holds.
We will now dualize Problem (Pβ). This part of the proof is very similar to the dualization
of Problem (Dβ − SDP ) of the previous lemma. We include it here, though, for the
reader’s convenience. In the sequel, we denote by vi the concatenation of the vectors
vik: vi = [vi1

T , . . . ,vir
T ]T ∈ Rrl, and by β̃ the vector containing βk entries arranged in

blocks of length l: β̃ = [β1, . . . , β1, . . . , . . . , βr, . . . , βr]
T ∈ Rrl. We also use the symbol ⊙
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to denote the Hadamard product (elementwise product). With this notation, we can write:







√
β1vi1

...√
βrvir







= β̃
1/2 ⊙ vi.

We denote by V the family of vectors (vik)i∈[s], k∈[r] and by H the family of vectors (hk)i∈[s].
Now, let us form the Lagrangian

L
(

(t, V,w), (H,µ, λ)
)

=
r∑

k=1

−βk log tk +
r∑

k=1

hk
T (tkck −

s∑

i=1

AT
(k),ivik) (5.26)

+
s∑

i=1

µi(‖β̃
1/2 ⊙ vi‖ − wi) + λ(

s∑

i=1

wi − 1)

The Lagrange dual function is given by

g(H,µ, λ) := min
t,V, w

L
(

(t, V,w), (H,µ, λ)
)

= −λ+
r∑

k=1

min
tk

(tkhk
T ck − βk log tk) +

s∑

i=1

min
wi

wi(λ− µi)

+
s∑

i=1

min
vi

(µi‖β̃
1/2 ⊙ vi‖ − zi

T vi),

where we have defined the vectors zi
T := [h1

TAT
(1),i, ...,hr

TAT
(r),i] ∈ Rrl. In the latter

equation, the minimum over tk is finite if and only if ck
T hk > 0, and is attained for

tk = βk

ck
T hk

; the expression in wi is bounded from below (by 0) if and only if µi = λ.
The reader can also verify that the minimization with respect to vi is unbounded whenever

‖β̃−1/2 ⊙ zi‖ > µi, and takes the value 0 otherwise. The Cauchy Schwarz inequality

between the vectors β̃
−1/2 ⊙ zi and β̃

1/2 ⊙ vi shows indeed that the minimum is attained

for a vector such that vi is proportional to β̃
−1 ⊙ zi if ‖β̃−1/2 ⊙ zi‖ = µi, and for vi = 0

if ‖β̃−1/2 ⊙ zi‖ < µi. To summarize,

g(H,µ, λ) =







−λ+
∑r

k=1 βk(1− log βk

ck
T hk

) if ∀i ∈ [s], µi = λ and ‖β̃−1/2 ⊙ zi‖ ≤ µi;

−∞ otherwise.

Now, since the primal and the dual share the same optimal value (we observed that strong
duality holds), it follows that the optimal variables (denoted with stars in superscript) satisfy

g(H∗,µ∗, λ∗) = −λ∗ +
r∑

k=1

βk(1− log
βk

ck
T hk

∗ ) =
r∑

k=1

−βk log t∗k.
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Combining this equality with the stationarity equations t∗k = βk

ck
T hk

∗ and µ∗
i = λ∗, we obtain:

λ∗ = µ∗
i =

r∑

k=1

βk = 1, ∀i ∈ [s].

We can now make the dual of (Pβ) explicit:

min
w≥0,

∑
wi=1

Sβ(w) = 2 max
H

r∑

k=1

βk log
ck

T hk

βk

zi =







A(1),ih1
...

A(r),ihr






, ∀i ∈ [s],

‖β̃−1/2 ⊙ zi‖ ≤ 1, ∀i ∈ [s].

This program is the same as (Dβ), and it completes the proof of Theorem 5.3.1.

Now, we can write that a design is optimal if and only if Karush Kuhn Tucker (KKT)
optimality conditions hold for problem (Pβ). In fact, we show in Theorem 5.3.2 that these
KKT conditions are equivalent to a geometrical characterization of Sβ−optimality, which
generalizes the theorem of Dette [Det93] to the case of multiresponse experiments.

Proof of Theorem 5.3.2. Since strong duality holds between Problems (Pβ) and (Dβ), the
Karush Kuhn Tucker (KKT) conditions characterize the optimal variables. We sum up the
KKT conditions here, which stem from the dualization step of the proof of Theorem 5.3.1:

(Feasibility) tkck =
s∑

i=1

AT
(k),i vik (5.27)

s∑

i=1

wi = 1 (5.28)

(Comp. Slackness) µi(‖β̃
1/2 ⊙ vi‖ − wi) = 0

(since µi=1)
=⇒ wi = ‖β̃1/2 ⊙ vi‖ (5.29)

(Stationarity) βk = tkhk
T ck (5.30)







‖β̃−1/2 ⊙ zi‖ ≤ 1 and vi = 0 if wi = 0

‖β̃−1/2 ⊙ zi‖ = 1 and vi = wi β̃
−1 ⊙ zi otherwise.

(5.31)

In the above equations, the vector zi is used to denote the vector
[h1

TAT
(1),i, ...,hr

TAT
(r),i]

T ∈ Rrl. Now, let (t, V,w) and H = [h1, ...,hr]T be a
pair of primal and dual solutions of Problem (Pβ)–(Dβ): they satisfy KKT equations(5.27)-
(5.31). We set ǫi = 1

wi
vi whenever wi 6= 0 and ǫi = 0 ∈ Rrl otherwise, so that (5.29)

implies

∀i ∈ [s],
r∑

k=1

βk‖ǫik‖2 = wi ≤ 1
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and (5.27) implies

∀k ∈ [r], tkck =
s∑

i=1

AT
(k),ivik =

s∑

i=1

wiA
T
(k),iǫik.

These relations are nothing but conditions (i) and (ii) of Theorem (5.3.2). Clearly, the
stationarity equation (5.30) is the same as condition (iv) of Theorem (5.3.2). It remains
to show that (iii) holds. Let D be an arbitrary matrix from the generalized Elfving set
Dβ (cf. Equation (5.24)). When the regression region is X = [s], there exists a vector α

in the unit simplex of Rs as well as vectors (δi := [δi1
T , . . . , δir

T ]T ∈ Rrl)i∈[s] satisfying

‖β̃1/2 ⊙ δi‖ ≤ 1 such that

D =
s∑

i=1

αi







δi1
TA(1),i

...
δir

TA(r),i






.

We now prove that H = [h1, ...,hr]T is the direction of the supporting hyperplane of Dβ:

〈D,H〉 =
∑

i,k

αiδik
TA(k),ihk

=
s∑

i=1

αiδi
T zi

=
s∑

i=1

αi(β̃
1/2 ⊙ δi)

T (β̃
−1/2 ⊙ zi)

≤
s∑

i=1

αi ≤ 1,

where the inequality is Cauchy-Schwarz, and we have used the stationarity condition (5.31).
Finally, (iii) holds since Diag(t)C lies on the boundary of Dβ:

〈Diag(t)C,H〉 =
r∑

k=1

tkck
T hk =

∑

k

βk = 1.

Conversely, assume that conditions (i) − (iv) hold. We set vi = wiǫi, and we show that
(t, V,w) and H satisfy the KKT equations(5.27)-(5.31). As in the direct part of this proof,
it is straightforward to show that the stationarity equation (5.30) holds, as well as the
feasibility condition (5.27).
Let us now define the vector zi as in (Dβ):

zi =







A(1),ih1
...

A(r),ihr






.

Condition (iii) states that for all vector α in the unit simplex of Rs, and for all vectors
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(δi ∈ Rsl)i∈[s] satisfying ‖β̃1/2 ⊙ δi‖ ≤ 1, we have

∑

ik

αiδik
TA(k),ihk ≤ 1.

In particular, if α = ei is the ith unit vector of the canonical basis of Rs, and δi = β̃
−1⊙zi

‖β̃
−1/2⊙zi‖

,

we obtain:

∑

ik

αiδik
TA(k),ihk = δi

T zi =
1

‖β̃−1/2 ⊙ zi‖
(β̃

−1/2⊙zi)
T (β̃

−1/2⊙zi) = ‖β̃−1/2⊙zi‖ ≤ 1,

and we have shown the inequality of (5.31).
The fact that vi = 0 when wi = 0 is clear from the way we have defined vi, and the
complementarity slackness equation (5.29) also holds in this case.
It remains to show that w is feasible (5.28) and that (5.31) holds for wi > 0. Note
that (5.31) in turn implies the complementarity slackness equation (5.29).

To this end, we write:

1 =
r∑

k=1

βk =
r∑

k=1

tkck
T hk =

∑

ik

wiǫik
TA(k),ihk

=
s∑

i=1

wiǫi
T zi

=
s∑

i=1

wi(β̃
1/2 ⊙ ǫi)

T (β̃
−1/2 ⊙ zi)

≤
s∑

i=1

wi‖β̃
1/2 ⊙ ǫi‖ ‖β̃

−1/2 ⊙ zi‖.

The latter inequality is Cauchy-Schwarz, and it provides an upper bound which is the
(weighted) mean of terms all smaller than 1. We can therefore write

s∑

i=1

wi‖β̃
1/2 ⊙ ǫi‖ ‖β̃

−1/2 ⊙ zi‖ = 1, (5.32)

and the Cauchy-Schwarz inequality must be an equality whenever wi 6= 0, which occurs if

and only if β̃
1/2 ⊙ ǫi is proportional to β̃

−1/2 ⊙ zi. Finally, we must have
∑

i wi = 1, so
that w is feasible (5.28), and each positively weighted term in the sum (5.32) must be 1:

wi 6= 0 =⇒ ‖β̃1/2 ⊙ ǫi‖ ‖β̃
−1/2 ⊙ zi‖ = 1 =⇒







‖β̃1/2 ⊙ ǫi‖ = 1

‖β̃−1/2 ⊙ zi‖ = 1
.

These two norm constraints further force the coefficient of proportionality between β̃
1/2⊙ǫi

and β̃
−1/2⊙ zi to be 1, so that ǫi = β̃

−1⊙ zi, and vi = wiβ̃
−1⊙ zi, which completes the

proof.
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Chapter 6

Numerical comparison of the
algorithms

In this chapter, we compare the numerical performance of the different algorithms dis-
cussed in the previous chapters. We will see that the second order cone programs presented
in this chapter are very efficient when the number r of quantities to estimate is small (in
particular for c−optimality).

We will compare our approach to the classic algorithms presented in Chapter 3. In
particular, we concentrate on the semidefinite programming/MAXDET approach [VBW98],
Wynn–Fedorov-type exchange algorithms [Wyn70, Fed72], and Titterington-type multiplica-
tive algorithms [Tit76]. Several versions and refinements of these procedures were proposed.
For the class of exchange algorithms, we will use the IncDec procedure of Richtarik [Ric08],
which specifies step lengths for which the precision δ is achieved in O(1/δ) iterations; for
the multiplicative algorithms, we will use the general class of iterations introduced by Silvey,
Titterington and Torsney [STT78], which is defined by a power parameter λ (cf. Equa-
tion (3.3)) and is known to converge to an optimal design under certain conditions [Yu10a].
We will also consider a variant of the latter algorithm which uses an acceleration parameter
γ, for which Dette, Pepelyshev and Zhigljavsky [DPZ08] have established a convergence
result in the case of D−optimality, and conjectured the convergence for other criteria. We
found that the values λ = 0.9 and γ = 0.9 gave the best results for A−optimality in our
experiments, and so those values will be used throughout this chapter. For D−optimality,
we have used the acceleration parameter γ = 0.5.

We will first consider random instances of optimal design problems, in order to evaluate
to which extent each parameter affects the computation time. Then, we will consider a
simple polynomial regression model, for which we shall see that our approach is well-suited
when the number of support points is large. Finally we will present some results from the
network application which we be detailed in Chapter 10, where the sampling rates of a
monitoring tool should be optimized subject to multiple constraints.
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m
SOCP (5.7) SDP IncDec Accelerated Mult. algo Mult. algo with Exponent
[this paper] [VBW98] Exchange [Ric08] (γ = 0.9) [DPZ08] λ = 0.9 [Yu10a]

2 0.082 2.897 10.039 3.026 2.979
22 0.120 3.017 99.510 9.598 9.240
23 0.166 4.798 13.112 5.883 6.040
24 0.175 6.828 24.431 12.574 12.204
25 0.352 15.820 29.454 11.258 11.123
26 0.816 66.281 54.379 13.407 13.419
27 2.636 338.669 92.537 37.935 36.679
28 10.496 failed 202.509 96.594 99.751
29 44.689 failed 412.890 585.619 597.442
210 154.187 failed 498.616 551.634 539.130

Table 6.1: CPU time (s) of the different algorithms, for typical random instances of the A−optimal
design problem with s = 210, l = 1, r = 3, and different values of m.

Figure 6.1: Comparison of two algorithms (SOCP vs. multiplicative algorithm with the acceleration
parameter γ = 0.9 [DPZ08]) on random instances (A−optimality) with m = 120, l = 30, r = 1,
and varying s. The box plots represent the distribution of the computing times for 10 random
instances.

6.1 Random instances

In this section, we consider random instances of optimal experimental design problems,
in which the entries of the l × m matrices (Ai)i∈[s] are independently and identically dis-
tributed (iid) with a normal distribution, as well as the entries of the m× r matrix K. For
every considered instance, we use SeDuMi to solve the SOCP (5.7) and the A−optimality
SDP (3.11); we have implemented the other procedures in Matlab. In all our experiments,
the stopping criterion is based on the general equivalence theorem of Kiefer [Kie74]: the
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Figure 6.2: Comparison of four algorithms on
typical random instances (A−optimality) with
m = 75, s = 150, l = 1 and varying r.

Figure 6.3: Comparison of four algorithms on
typical random instances of the minimum cov-
ering ellipsoid (D−optimality for θ, m = 3)
and varying s.

computation stops as soon as the ratio between the largest entry of the gradient and the
value of the criterion is below 1.001 (as in [DPZ08]).

We start by evaluating the effect of r, which turns out to be the determining factor for
the performance of our SOCP approach. To this end, we set m = 75, s = 150, l = 1

(single-response experiments), and we let r vary between 1 and 75. The computing time of
the different algorithms is plotted against r in Figure 6.2. We notice that our algorithm is the
fastest for small values (r ≤ 7), but performs badly when r is large, while the multiplicative
update algorithms are insensitive to the value of r. For this reason, we will chose small values
of r in further experiments, since our algorithm might not be well adapted for large r.

We next study the effect of s (the number of available experiments) for the case of
c−optimality (r = 1). For these experiments, we set m = 120, l = 30, and we take s in the
set {2k, k = 2, . . . , 11}. The performance (in terms of CPU time) of the SOCP is compared
to that of the multiplicative algorithm with an acceleration parameter γ = 0.9 [DPZ08] on
the log-log plot of Figure 6.1. The boxes represent the distribution of the CPU time, on 10

randomly generated instances. We see here that our approach is in average ten times faster
as soon as s ≥ 32.

To evaluate the effect of m, we set s = 210, l = 1, r = 3, and choose m in the set
{2k, k = 1, . . . , 10}. (Note that since K and the Ai have random iid Gaussian entries,
the instance is almost surely feasible if s ≥ m; otherwise, the instance is almost surely
infeasible.) The results of each algorithm are displayed in Table 6.1. It is striking that the
SOCP approach is the best one, while the SDP is the worst when m becomes large, which
demonstrates the importance of the rank reduction discussed in Chapter 4. For m ≤ 29, the
SOCP is 10 times faster than all other algorithms. In the last row of the table however, this
ratio is lower. This might be because s = m = 210 in this case, such that all experiments
are support points of the optimal design, and classic algorithms certainly take advantage of
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this situation (while it does not make a difference for interior point codes).

Pronzato [Pro03] has shown that we can improve the multiplicative algorithms thanks
to a simple test which allows to remove on the fly experiments which do not belong to
the support of the D−optimal design (i.e. experiments with a zero weight), and which was
refined by Harman and Pronzato [HP07]. This can considerably improve the performance
of the multiplicative algorithms when there are a lot of points with a zero weight. As
in [HP07], we have studied random instances of the minimum covering ellipse, but in R3:
m = 3, K = I3, and we draw s independent random regression vectors (l = 1) from a
normal distribution ai ∼ N (0, I3), with s increasing from 50 to 500. The D−optimal
design problem is equivalent to finding the minimum volume ellipsoid which contains the
s vectors ai, and the D−optimal design is supported by points lying on the boundary of
this minimal ellipsoid (Figure 3.1). In accordance with intuition, the number of support
points of the D−optimal design is small, and therefore the test of Pronzato and Harman
improves dramatically the computing time (cf. Figure 6.3). Note however that our SOCP
for D−optimality (5.25) remains competitive with the latter approach.

6.2 Polynomial Regression

We have computed the A− and D-optimal designs (for the full parameter θ), for a
polynomial regression model of degree 5:

A(x) = [1,x,x2,x3,x4,x5]

on the regression region X = [0, 3]. The optimal designs are represented on Figure 6.4. In
this problem, we have r = m = 6, which is small. Therefore, we can hope that our SOCP
approach will perform well. The computation times are plotted on Figures 6.5 and 6.6,
as a function of the number of points considered for the discretization of the regression
interval X = [0, 3]. For the A−optimal design, the experimental setting was the same that
the one of previous section. For the D−optimal design problem, we solved the geometric
program (5.4) with SeDuMi. We have also implemented the classic multiplicative algorithm,
the accelerated algorithm with γ = 0.5, and the MAXDET program (3.9). Contrarily to the
multiplicative algorithms, the SOCP and the MAXDET approaches seem to be insensitive to
the size of the discretization grid. For these instances, our SOCP is roughly two times faster
than the MAXDET program. Also note that the effect of the acceleration parameter γ is
clearly visible (red curve vs. green curve). We point out that for these polynomial regression
problems, the tests of Pronzato and Harman [Pro03, HP07] to remove points that do not
belong to the support of the D−optimal design did not yield any improvement.
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Figure 6.4: A- and D-optimal designs for the polynomial regression model of degree 5 on X = [0, 3].

Figure 6.5: A-optimal design for the polyno-
mial regression model: evolution of the com-
putation time with the number of points for
the discretization of [0, 3].

Figure 6.6: D-optimal design for the poly-
nomial regression model: evolution of the
computation time with the number of
points for the discretization of [0, 3].

6.3 Optimal Sampling in IP networks

We finally show some results for an application to the optimal monitoring of large IP
networks. Assume that an Internet provider wants to estimate the traffic matrix of her
network, that is, the volume of traffic between each pair of origin and destination during a
given time period. To this end, she disposes of a monitoring tool, which can be activated
at different sampling rates in different location of the network, and is able to find the
destination of the sampled packets. For networking issues, the intensive use of this tool is
not suitable, because it creates an overload both in terms of CPU utilization of the router
and bandwidth consumption. The sampling rates should therefore be tuned cautiously on
each interface, in such a way that the number of sampled packets remains under a target
threshold.
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This situation can be represented by an optimal design model with multiresponse experi-
ments: the set of available experiments X coincides with the interfaces of the network where
the monitoring-tool can be activated: when the software is installed on a given interface,
we obtain an estimation of the sum of the flows that traverse this interface, and that have
destination D, for every destination D reachable from this interface. In Chapter 10, we shall
see that if the sampling rates are small, then the Fisher information matrix of the sampling
design has the standard form (2.8) (after an appropriate normalization of the observation
matrices relying on a prior estimate of the unknown OD traffic matrix). The optimal mon-
itoring problem can thus be formulated as an optimal experimental design problem with
multiple resource constraints.

We first study some c−optimal sampling problem with the simple constraint
∑s

i=1 wi =

1, such that we can compare our approach to classic algorithms. Table 6.2 summarizes
the results (in terms of CPU time) for several problems: each instance is defined by a
network and the type of interfaces considered. We used the topology of three networks:
Abilene, which consists in 11 nodes, m = 121 OD pairs and 50 links; the Opentransit
backbone of France Telecom, with 116 nodes, m = 13456 OD pairs and 436 links; and a
clustered version of the latter network, thus reduced to 31 nodes, m = 961 OD pairs and
133 links. The natural problem is to activate the monitoring tool independently on each
link (interfaces=“links”). We also considered the problem of imposing the same sampling
rates on all incoming links of each router, which is equivalent to consider each router as
a big interface (interfaces=“Nodes”). This setting is consistent with older versions of the
monitoring software Netflow, still present on many routers in practice, and which do not
allow to set different sampling rates on different incoming interfaces. For all these instances
the vector c was drawn from a normal distribution. The threshold for the stopping criterion
was lowered to 1.01 for this network application, since this value suffices to obtain good
designs in practice.

Network
Abilene Abilene OTClusters OTClusters Opentransit Opentransit

(m = 121) (m = 121) (m = 961) (m = 961) (m = 13456) (m = 13456)

Interfaces
Nodes Links Nodes Links Nodes Links

(s = 11) (s = 50) (s = 31) (s = 133) (s = 116) (s = 436)
SOCP 0.021 0.036 0.078 0.094 5.52 33.03
SDP 1.095 1.178 692.37 734.25 failed failed

IncDec Exchange 0.518 0.823 4.57 19.69 failed failed
Mult. algo (γ = 0.9) 0.009 0.043 0.018 1.893 failed failed
Mult. algo (λ = 0.9) 0.008 0.038 0.018 1.468 failed failed

Table 6.2: CPU time (s) for different instances of c−optimal design arising from an optimal
monitoring problem in IP networks (with the standard constraint

∑

i wi = 1)

We can see in the table that the multiplicative algorithms perform better than the
SOCP approach on the instances where s is small (1st and 3rd columns in Table 6.2). On
the other instances however, the SOCP performs well, and it is the only method which
returned a solution for the Opentransit network. The SDP and the multiplicative methods
failed because of memory issues (in the multiplicative algorithm, a full rank update of the



6.3. OPTIMAL SAMPLING IN IP NETWORKS 117

13456 × 13456 information matrix should be carried out at each time step). The IncDec
Exchange algorithm did not crash, but it had not converged after 2 hours of computation.

We next turn to the case of general constraints of the form Rw ≤ d. Since we do not
know any other algorithm which can handle optimal design problems with multiple resource
constraints, we compare the SOCP and the semi-definite programming approaches only.
Table 6.3 summarize the results (in terms of CPU time) for several problems, specified as
previously by the network and the type of interfaces considered, and also by the type of the
constraint matrix R. In the optimal sampling problem, the matrix R usually depends on
the volume of traffic observed at each router (cf. [SGB10]). We simulated this data from a
uniform distribution, a lognormal distribution, or we used real traffic loads. To see the effect
of the number of constraints, we also generated arbitrary constraints matrices of different
sizes.

In comparison to the SDP, the computation time can be reduced by a factor in the order
of 1000 on the instances from the clustered network. Moreover, the SOCP approach is able
to handle huge instances arising from the Opentransit network (in which m = 13456).

Network
Abilene Abilene Abilene Abilene Abilene

(m = 121) (m = 121) (m = 121) (m = 121) (m = 121)
Interfaces Links (s = 50) Links (s = 50) Links (s = 50) Nodes (s = 11) Nodes (s = 11)

Constraints
R: 11× 50 R: 11× 50 R: 11× 50 R: 4× 11 R: 10× 11

(uniform traffic) (lognormal traffic) (real traffic) (arbitrary) (arbitrary)
SOCP 0.043 0.056 0.061 0.051 0.053
SDP 0.714 0.842 0.944 0.827 0.876

Network
OTClusters OTClusters OTClusters Opentransit Opentransit
(m = 961) (m = 961) (m = 961) (m = 13456) (m = 13456)

Interfaces Nodes (s = 31) Links (s = 133) Links (s = 133) Links (s = 436) Links (s = 436)

Constraints
R: 4× 31 R: 31× 133 R: 130× 133 R: 12× 436 R: 116× 436
(arbitrary) (uniform traffic) (arbitrary) (arbitrary) (real traffic)

SOCP 0.141 0.462 1.135 23.32 187.59
SDP 350.63 451.69 430.71 failed failed

Table 6.3: Computation time (s) for different instances of c−optimal design arising from an
optimal monitoring problem in IP networks (with multiple constraints Rw ≤ b).
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Chapter 7

Combinatorial problems arising in
optimal design of experiments

In this chapter, we study some combinatorial aspects of optimal experimental design
problems. The results of this chapter are presented in [Sag10]. Some of them were already
announced in [BGS08].

In a number of real-world applications, the design variables are discrete, since the ex-
perimenter can only choose the experiments to conduce from a finite set, and perhaps how
many times to perform them. An exhaustive list of these applications is not possible, but
we wish to give the reader a few examples from these problems:

Uciński and Patan [UP07] interested themselves in the estimation of parameters of
systems governed by partial differential equations. They propose to solve a D-optimal
problem in order to find an optimal subset of spatial locations of sensors on a finite grid.
Their approach is based on a Branch and Bound algorithm, where a multiplicative algorithm
is used to solve a continuous relaxation of the problem and provides some upper bounds.

Song, Qiu and Zhang [SQZ06] proposed an application of the optimal experimental
design for the estimation of performance in a large scale network. In their approach, a
discrete A- (or D-)optimal design is approximated by a greedy algorithm in order to select
some measurements of the network performance. This greedy algorithm entails smart rank-
one matrix updates, as first suggested by Fedorov [Fed72].

Branderhorst, Walmsley, Kosut and Rabitz [BWKR08] used the optimal design framework
to maximize the accuracy of the estimation of quantum states, by selecting the number
of experiments to be performed in each particular system configuration. A continuous
relaxation of the problem is solved, and they rounded to obtain an integer solution.

Finally, the present developments were motivated by a joint work with Bouhtou and
Gaubert [BGS08, SGB10] (see also Chapter 10) on the application of optimal experiment
design methods to the identification of the traffic on an Internet backbone. The approach
developed there consists in solving the continuous relaxation of an optimal experimental
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design problem, which is rounded with a simple heuristic in order to obtain a discrete design.

The rest of this chapter is organized as follows: in Section 7.1 we introduce the notation
and we state the combinatorial optimization problem which we shall study; particular care will
be given to the under-instrumented situation, where no discrete design lets the information
matrix be of full rank, and which may occur in monitoring problems on large size networks.
To the best of our knowledge, this combinatorial optimization problem has always been
handled by heuristic approaches. This chapter provides approximability bounds for this
NP-hard problem.

In Section 7.2, we show that this combinatorial optimization problem is NP-hard indeed,
and we establish a matrix inequality (Proposition 7.2.4) which shows that a class of spec-
tral functions is submodular (Corollary 7.2.5). As a particular case of the latter result, the
objective function of the experimental design problem is submodular. Due to a celebrated
result of Nemhauser, Wolsey and Fisher [NWF78], this implies that the greedy approach,
which has often been used for this problem, always gives a design within 1 − e−1 of the
optimum (Theorem 7.2.7). We point out that the submodularity of the D-criterion was
noticed earlier: Robertazzi and Schwartz used it to write an accelerated Wynn-Fedorov–
type algorithm for the construction of approximate designs [RS89] (i.e. with the constraint
∑

i wi = 1,0 ≤ w ≤ 1), which is based on the accelerated greedy algorithm of Mi-
noux [Min78]. The originality of this chapter is to show that a whole class of criteria satisfies
the submodularity property, and to study the consequences in terms of approximability of a
combinatorial optimization problem.

In Section 7.3, we study some rounding algorithms for the optimal experimental design.
Rounding a continuous solution to obtain a discrete one is a natural option [BWKR08,
BGS08] since we dispose of a continuous relaxation of the problem, which is convex and
has been extensively studied. Moreover, we may exploit the work of Calinescu, Chekuri,
Pál and Vondrák [CCPa07, Von08], who showed how to use the pipage rounding algorithm
of Ageev and Sviridenko [AS04] to approximate the maximization of submodular functions.
Thanks to their ideas indeed, we show in Theorem 7.3.7 that when the goal is to select
n out of s experiments, the D−optimal design may be rounded to a design for which the
dimension of the observable subspace is within n

s
of the optimum. While this result might

look weaker than the greedy (1 − e−1)−approximation factor, we show that one can not
hope for a better result with rounding algorithms. The proof is based on a generalization of a
result from Atwood [Atw73], who showed that the coordinates of the D−optimal design for
experiments with scalar response are bounded by 1

m
, where m is the number of parameters

to estimate. For multiresponse experiments, we generalized his result in Proposition 7.3.4,
with inequalities involving the ranks of the observation matrices.
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7.1 Notation and statement of the problem

7.1.1 A combinatorial optimization problem

We consider the same model as the one described in Chapter 2 (Each experiment provides
linear multidimensional observations of the parameter (cf. Equation with a unit, centered
noise (2.3).) In addition, we dispose of a prior observation

y0 = A0θ + ǫ0.

We use the index 0 to denote this prior information. This can be useful to model a free-of-

charge experiment, that the experimenter will conduct in any case, or to model an intrinsic
relationship between the parameters, such as Kirchhoff’s circuit law (cf. Section 5.2.3).

In this chapter, we assume that the experimenter wants to choose a well suited subset
I ⊆ [s] of experiments that she will conduct in order to estimate the parameters. We
therefore define the design variable w as the 0/1 vector of size s, where wk takes the
value 1 if and only if k ∈ I. We denote by I = {i1, . . . , in} the subset of the selected
experiments, such that the vector of observation reads :

y = A(w) θ + ǫ, (7.1)

where y =










y0

yi1

...
yin










, A(w) =










A0

Ai1

...
Ain










, and E[ǫ] = 0, E(ǫǫT ) = I.

If we have enough measurements, such that A(w) is of full rank, then M(w) =

A(w)TA(w) =
∑s

i=1 wiA
T
i Ai is the inverse of the covariance matrix for the best linear

unbiased estimator of θ (cf. Chapter 2). We can thus formulate the Φp−optimization prob-
lem in the same form as the one presented in Section 2.3.2, except that the design variable
w is now integer, and subject to a cardinality constraint:

max
w ∈{0,1}s

Φp

(

M(w)
)

(7.2)

s.t.
s∑

i=1

wi ≤ n

Assume more generally that the cost of experiment i is ri. If the experimenter has a
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limited budget b, the (combinatorial) Φp-optimal design problem is:

max
w ∈{0,1}s

Φp

(

M(w)
)

(7.3)

s.t.
s∑

i=1

wiri ≤ b

Problem (7.2) is a particular case of Problem (7.3), when all the experiments have the
same cost r, and n = ⌊ b

r
⌋. Therefore, we refer to the constraints of Problem (7.2) as the

unit-cost case.

7.1.2 The under-instrumented situation

We note that the problem of maximizing M(w) with respect to the Löwner ordering
remains meaningful even when M(w) is not of full rank. This case does arise in under-
instrumented situations, in which some constraints may not allow one to conduct a number
of experiments which is sufficient to infer all the parameters. In this case however, the
natural interpretation of M(w) as the inverse of the covariance matrix of the best linear

unbiased estimator vanishes, because an unbiased estimator for the vector of parameters
does not exist. In a number of applications though, the parameters can still be estimated,
using a small number of measurements and prior information on θ. Therefore, a measure
of the quality of the under-instrumented designs is required.

An interesting and natural idea to find an optimal under-instrumented design is to choose
the design which maximizes the rank of the observation matrix A(w), or equivalently of
M(w) = A(w)TA(w). The rank maximization is a nice combinatorial problem, where we
are looking for a subset of matrices whose sum is of maximal rank:

max
w∈{0;1}s

rank
(

AT
0A0 +

∑

i

wiA
T
i Ai

)

− rank(AT
0A0) (P0)

s.t.
∑

i

wiri ≤ b.

In the above optimization problem, the term rank(AT
0A0) has been subtracted so that the

objective criterion takes the value 0 for w = 0. In combinatorics, approximation factors are
generally given with respect to objective functions which satisfy the latter property.

More generally, we show below that the problem of maximizing M(w) with respect to
the Löwner ordering still has some statistical interest in the under-instrumented situation.
Moreover, we will see that the Φp−maximization of M(w) may be thought as a regular-
ization of the rank optimization problem (P0), and Φp can be seen as a deformation of
the rank criterion for p ∈]0, 1]. First, we show that M(w) still has a statistical meaning,
since its Moore-Penrose generalized inverse is the variance of the estimator θ̂

LS
given by

least square theory. More precisely, a linear estimator θ̂ = LT y for θ is unbiased if and



7.1. NOTATION AND STATEMENT OF THE PROBLEM 123

only if LT is a left inverse of A(w) (i.e. LTA(w) = I). In the under-observed case, no
such left inverse exists, but we know from least square theory that the trace of the co-
variance matrix Var(θ̂) = LTL is minimized in the class of the least biased estimators for
L∗ = (A(w)T )†, where M † denotes the Moore-Penrose generalized inverse of M (i.e. L∗

minimizes ‖L‖F := traceLTL in the class of matrices L such that ‖(LTA(w) − I)‖F is
minimized). The resulting least square estimator θ̂

LS
= A(w)†y has variance

Var(θ̂
LS

) = A(w)†(A(w)†)T =
(

A(w)TA(w)
)†

= M(w)†.

Similarly to the full rank case (cf. Equation 2.11), we can see that for all α ∈ [0, 1], θ̂
LS

lies in a cylinder of the form

(θ − θ̂
LS

)TM(w)(θ − θ̂
LS

) ≤ κα

with probability α, and these cylinders are minimized (for the inclusion relation) when
M(w) is maximized (for the Löwner ordering).

Another argument for the use of this criterion is given by Bayesian optimal design, where
a prior distribution for the parameter is given:

E(θ) = µ, and Var(θ) = R.

It is known (see e.g. [Puk93]) that when the prior covariance matrix R is positive definite, the
expected covariance matrix is minimized among all unbiased affine estimators, conditionally
to the prior distribution of θ for:

θ̂|R,µ =
(

R−1 + A(w)TA(w)
)−1(

R−1µ + A(w)T y
)

.

This Bayesian estimator has a variance which does not depend on the prior expected value
of θ:

Var(θ̂|R,µ) =
(

R−1 + A(w)TA(w)
)−1

. (7.4)

In practice, prior information on the variance of the parameter is rarely known, and
the prior can be modeled instead by setting R−1 = ǫI for an arbitrarily small ǫ (see
e.g. [SQZ06]). The regularization parameter ǫ lets the inverse in (7.4) exist, and we recover
the Moore-Penrose inverse of M(w) by letting ǫ→ 0.

When every feasible information matrix is singular, Equation (2.13) indicates that the
maximization of Φp(M(w)) can be considered only for nonnegative values of p. The next
proposition shows that Φp can be seen as a deformation of the rank criterion for p ∈]0, 1].
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First notice that when p > 0, the maximization of Φp(M(w)) is equivalent to:

max
w∈{0,1}s

ϕp(w) := trace
(

AT
0A0 +

∑

k

wkA
T
kAk

)p

− trace
(

AT
0A0

)p

(Pp)

s.t.
∑

k

wkck ≤ b,

where we have subtracted the term trace(AT
0A0)

p from the objective function, as in Prob-
lem (P0), in order to have the property ϕp(0) = 0.

Proposition 7.1.1. For all positive semidefinite matrix M ∈ S+
m,

lim
p→0+

trace Mp = rank M. (7.5)

Proof. Let λ1, . . . , λr denote the positive eigenvalues of M , counted with multiplicities,
such that r is the rank of M . We have the first order expansion as p→ 0+:

trace Mp =
r∑

k=1

λp
k = r + p log(

r∏

k=1

λk) +O(p2) (7.6)

Consequently, trace M0 will stand for rank(M) in the sequel and the rank maximization
problem (P0) is the limit of problem (Pp) as p→ 0+.

Corollary 7.1.2. If p > 0 is small enough, then every design w∗ which is a solution of

Problem (Pp) maximizes the rank of M(w). Moreover, among the designs which maximize

this rank, w∗ maximizes the product of nonzero eigenvalues of M(w).

Proof. Since there is only a finite number of designs, it follows from (7.6) that for p > 0

small enough, every design which maximizes ϕp must maximize in the lexicographical order
first the rank of M(w), and then the product

∏

λk>0 λk.

7.2 Submodularity and Greedy approach

In this section, we study the greedy algorithm for solving Problem (Pp) through the
submodularity of ϕp. We will first prove that the rank optimization problem is NP-hard by
reduction of MAX-k-Coverage. Next, we show that the objective function of Problem (Pp)
is nondecreasing submodular. The maximization of submodular functions over a matroid
has been extensively studied [NWF78, CCPa07, Von08, KST09], and we shall use known
approximability results.

In combinatorics, approximability results are usually given for optimization problems
whose objective function takes the value 0 for the empty set. For this reason, all results will
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be given with respect to the maximization of the function ϕp (Problem (Pp)). This problem
is equivalent to the Φp−optimal problem (7.3) for positive values of p, and to the rank

optimization problem (P0) for p = 0. In addition, note that there is no point to consider
multiplicative approximation factors for the Φp−optimal problem when p ≤ 0, since the
criterion is identically 0 as long as the the information matrix is singular. For p ≤ 0 indeed,
the instances of the Φp-optimal problem where no feasible design lets M(w) be of full rank
have an optimal value of 0. For all the other instances, any polynomial-time algorithm with
a positive approximation factor would necessarily return a design of full rank. Provided
that P 6= NP , this would contradict the NP-hardness of the rank optimization problem
(Theorem 7.2.1). So, we investigate approximation algorithms only in the case p ≥ 0.

7.2.1 Hardness of Rank optimization

Theorem 7.2.1. Problem (P0) is NP-Hard. For all positive ε, there is no polynomial-time

algorithm which approximates (P0) by a factor of 1− 1
e

+ ε unless P = NP .

Proof. We will show that the problem MAX-k-coverage, for which the statement of the
theorem is true [Fei98], reduces to the rank optimization (P0) in polynomial time.

The problem MAX-k-Coverage is defined as follows : We are given a collection of subsets
S = {S1, S2, . . . , Ss} of [m], as well as an integer k, and the goal is to pick at most k
sets of S such that the size of their union is maximized. Let ei be the ith vector of the
canonical basis of Rm. If the set Si contains the elements {i1, i2, . . . , il(i)}, we define the ith

observation matrix as: Ai = [ei1
, . . . , eil(i)

]T , such that AT
i Ai is the diagonal matrix whose

indexes of nonzero entries are the elements of Si. Finally, let A0 be the all-zero row vector
of size m. Since all the matrices AT

i Ai have only diagonal entries, it is straightforward to
see that the rank of AT

0A0 +
∑

k wkA
T
kAk is equal to the number of nonzero elements on

its diagonal, i.e. the cardinal of ∪{i|wi=1}Si, which is exactly the objective function of the
MAX-k-Coverage problem.

This is a negative result on the approximability of Problem (Pp). Nevertheless, we show
that the bound provided by Theorem 7.2.1 is the worst possible ever, and that the greedy
algorithm always attains it in the unit-cost case.

7.2.2 A class of submodular spectral functions

We recall that a real valued function F : 2E → R, defined on every subset of E is called
nondecreasing if for all subsets I and J of E, I ⊆ J implies F (I) ≤ F (J). We also give
the definition of a submodular function:

Definition 7.2.2 (Submodularity). A real valued set function F : 2E −→ R is submodular

if it satisfies the following conditions :
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(i) F (∅) = 0;

(ii) F (I) + F (J) ≥ F (I ∪ J) + F (I ∩ J) for all I, J ⊆ E.

We next recall the definition of operator monotone functions. The latter are real valued
functions applied to Hermitian matrices: if A = U Diag(λ1, . . . , λm)U∗ is am×m Hermitian
matrix (where U is unitary and U∗ is the conjugate of U), the matrix f(A) is defined as
U Diag(f(λ1), . . . , f(λm))U∗.

Definition 7.2.3 (Operator monotonicity). A real valued function f is operator monotone

on R+ (resp. R∗
+) if for every pair of positive semidefinite (resp. positive definite) matrices

A and B
A � B =⇒ f(A) � f(B).

We say that f is operator antitone if −f is operator monotone.

The next proposition is a matrix inequality of independent interest; it will be useful to
show that ϕp is submodular. Interestingly, it can be seen as an extension of the Ando-Zhan
Theorem [AZ99], which reads as follows: Let A, B be positive semidefinite matrices. For

any unitarily invariant norm ||| · |||, and for every nonnegative operator monotone function f

on [0,∞),

|||f(A+B)||| ≤ |||f(A) + f(B)|||.
Kosem [Kos06] asked whether it is possible to extend this inequality as follows:

|||f(A+B + C)||| ≤ |||f(A+B) + f(B + C)− f(C)|||,

and gave a counter example involving the trace norm and the function f(x) = x
x+1

. However,
we show in next proposition that the previous inequality holds for the trace norm and every
primitive f of an operator antitone function (in particular, for f(x) = xp, p ∈]0, 1]). Note
that the previous inequality is not true for any unitarily invariant norm and f(x) = xp

neither. It is easy to find counter examples with the spectral radius norm.

Proposition 7.2.4. Let f be a real function defined on R+ and differentiable on R∗
+. If

f ′ is operator antitone on R∗
+, then for all triple (X, Y, Z) of m ×m positive semidefinite

matrices,

trace f(X + Y + Z) + trace f(Z) ≤ trace f(X + Z) + trace f(Y + Z). (7.7)

Proof. Since the eigenvalues of a matrix are continuous functions of its entries, and since
S++

m is dense in S+
m, it suffices to establish the inequality when X,Y , and Z are positive

definite. Let X be an arbitrary positive definite. We consider the map:

ψ : S+
m −→ R

T 7−→ trace f(X + T )− trace f(T ).
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The inequality to be proved can be rewritten as

ψ(Y + Z) ≤ ψ(Z).

We will prove this by showing that ψ is nonincreasing with respect to the Löwner ordering
in the direction generated by any positive semidefinite matrix. To this end, we compute the
Frechet derivative of ψ at T ∈ S++

m in the direction of an arbitrary matrix H ∈ S+
m. By

definition,

Dψ(T )[H] = lim
ǫ→0

1

ǫ

(

ψ(T + ǫH)− ψ(T )
)

.

When f is an analytic function, X 7−→ trace f(X) is Frechet-differentiable, and an explicit
form of the derivative is known (see [HP95, JB06]): D

(

trace f(A)
)

[B] = trace
(

f ′(A)B
)

.
Since f ′ is operator antitone on R∗

+, a famous result of Löwner [Löw34] tells us (in particular)
that f ′ is analytic at all point of the positive real axis, and the same holds for f . Provided
that the matrix T is positive definite (and hence X + T ≻ 0), we have

Dψ(T )[H] = trace
( (

f ′(X + T )− f ′(T )
)

H
)

.

By antitonicity of f ′ we know that the matrix W = f ′(X +T )− f ′(T ) is negative semidef-
inite. For a matrix H � 0, we have therefore:

Dψ(T )[H] = trace (WH) ≤ 0.

Consider now h(s) := ψ(sY + Z). For all s ∈ [0, 1], we have

h′(s) = Dψ(sY + Z)[Y ] ≤ 0,

and so, h(1) = ψ(Y + Z) ≤ h(0) = ψ(Z), from which the desired inequality follows.

Corollary 7.2.5. Let M0,M1, . . . ,Ms be m×m positive semidefinite matrices. If f satisfies

the assumptions of Proposition 7.2.4, then the set function F : 2[s] → R defined by

∀I ⊂ [s], F (I) = trace f(M0 +
∑

i∈I

Mi)− trace f(M0),

is submodular

Proof. The relation F (∅) = 0 follows from the definition of F .

Let I, J ⊆ 2[s]. We define

X =
∑

i∈I\J

Mi, Y =
∑

i∈J\I

Mi, Z = AT
0A0 +

∑

i∈I∩J

Mi.
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It is easy to check that

F (I) = trace f(X + Z)− trace f(M0),

F (J) = trace f(Y + Z)− trace f(M0),

F (I ∩ J) = trace f(Z)− trace f(M0),

F (I ∪ J) = trace f(X + Y + Z)− trace f(M0).

Hence, Proposition 7.2.4 proves the submodularity of F .

We next point out some submodular set functions which can be found thanks to Corol-
lary 7.2.5.

Corollary 7.2.6. Let M0,M1, ...,Ms be m×m positive semidefinite matrices.

(i) ∀p ∈]0, 1], I 7→ trace(M0 +
∑

i∈I Mi)
p − trace Mp

0 is submodular.

(ii) I 7→ rank(M0 +
∑

i∈I Mi)− rank M0 is submodular.

If moreover M0 is positive definite, or if every Mi is positive definite, then:

(iii) I 7→ log det(M0 +
∑

i∈I Mi)− log det M0 is submodular.

Proof. It is known that x 7→ xq is operator antitone on R∗
+ for all q ∈ [−1, 0[. Therefore,

the derivative of the function x 7→ xp (which is pxp−1), is operator antitone on R∗
+ for all

p ∈]0, 1[. This proves the point (i) for p 6= 1. The case p = 1 is trivial, by linearity of the
trace.

The submodularity of the rank (ii) and of log det (iii) are classic. Interestingly, they
are obtained as the limit case of (i) as p→ 0+. (For log det, we must consider the second
term in the asymptotic development of X 7→ trace Xp as p tends to 0+ (7.6)).

7.2.3 Greedy approximation

The next results show that for all p ∈ [0; 1], Problem (Pp) is 1 − 1
e
−approximable in

polynomial time. This can be attained with the help of the greedy algorithm, whose principle
is to start from G0 = ∅ and to construct sequentially the sets

Gk+1 := Gk ∪ argmaxi∈[s]

ϕp(Gk ∪ {i})
ri

,

until the budget constraint is violated.

Theorem 7.2.7 (Approximability of ϕp−Optimal Design: Unit-cost case). Let p ∈ [0; 1].

The greedy algorithm for problem (Pp) yields a 1− 1
e

approximation factor in the unit-cost

case.
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Proof. We know from Corollary 7.2.6 that for all p ∈ [0, 1], ϕp is submodular (p = 0 corre-
sponding to the rank maximization problem). In addition, the function ϕp is nondecreasing,
because X −→ Xp is a matrix monotone function for p ∈ [0, 1] (see e.g. [Zha02]).

Nemhauser, Wolsey and Fisher [NWF78] proved the result of this theorem for any non-
decreasing submodular function over a uniform matroid. Moreover when the maximal num-
ber of interfaces which can be selected is n, this approximation ratio can be improved to
1−

(

1− 1/n
)n
.

Remark 7.2.1. As mentionned in the introduction of this chapter, the submodularity of the
D−criterion was already used by Robertazzi and Schwartz [RS89]. The problem studied
in the latter article is of a different nature, since the authors used a greedy algorithm to
solve Problem (7.2) (for p = 0) when n → ∞, and they normalize the result to obtain an
optimal approximate design. The submodularity of Φ0 allowed them to use the accelerated
greedy algorithm of Minoux [Min78]. This yields great computational savings, because at
each stage, the increment of the objective function need only be computed for a subset of
[s]. Note that this accelerated greedy algorithm can also be used in our case, in order to
construct a 1− 1/e−approximation of the ϕp−optimum.

One can obtain a better bound by considering the total curvature of a given instance,
which is defined by:

c = max
i∈[s]

1−
ϕp

(

[s]
)

− ϕp

(

[s] \ {i}
)

ϕp

(

{i}
) ∈ [0, 1].

Corollary 7.2.8 (Approximability of ϕp−Optimal Design in function of the curvature). Let

p ∈ [0; 1], and c be the total curvature of a given instance of the Problem (Pp) in the

unit-cost case, where the maximum number of experiments to be selected is n. The greedy

algorithm for problem (Pp) yields a 1
c

(

1− (1− c
n
)n
)

approximation factor.

Proof. This result follows from Conforti and Cornuejols [CC84], who proved it for the max-
imization of an arbitrary nondecreasing submodular function with total curvature c.

For the value p = 1, ϕp is additive and it follows that the total curvature is c = 0,
yielding an approximation factor of 1, since

lim
c→0+

1

c

(

1− (1− c

n
)n
)

= 1.

As a consequence, the greedy algorithm always give the optimal solution of the problem.
Note that Problem (P1) is nothing but a knapsack problem, for which it is well known that
the greedy algorithm is optimal in the unit-cost case. However, it is not possible to give a
lower bound on the total curvature c for other values of p ∈ [0, 1[, and c has to be computed
for each instance. We now give a result for the budgeted problem:
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Corollary 7.2.9 (Approximability of ϕp−Optimal Design). Problem (Pp) is still 1 −
1
e
−approximable in polynomial time in the budgeted case, but the greedy algorithm for

problem (Pp) yields a constant approximation factor of only 1
2

(

1− 1
e

)

.

Proof. This was proved for an arbitrary nondecreasing submodular function in [Svi04]. In
order to attain the 1−1/e−approximation guarantee, one can associate the greedy algorithm
with the partial enumeration of all triples of experiments.

Remark 7.2.2. The results of this section hold in particular for p = 0, and hence for the
rank maximization problem (P0).

7.3 Approximation by randomized rounding algorithms

The optimal design problem has a natural continuous convex relaxation which is simply
obtained by removing the 0/1−constraint on the design variable w, and has been extensively
studied (cf. Chapter 3). As mentioned in the introduction of this chapter, several authors
proposed to solve this convex relaxation and to round the solution to obtain a near-optimal
discrete design. We next investigate the legitimacy of this technique. We show in Theo-
rem 7.3.7 that the D-optimal design may be rounded to a random discrete design which
approximates the optimum of the rank optimization problem (P0) by an average factor of
n
s
. While this result may look rather worse than the greedy approximation factor presented

in Section 7.2, it is (almost) optimal since there are some instances for which the average
ratio of approximation is n

s−1
(cf. Remark 7.3.2).

Another motivation for this section arises from the recent results from Calinescu, Chekuri,
Pál and Vondrák [CCPa07, Von08], who showed that the problem of maximizing a nonde-
creasing submodular function over an arbitrary matroid is (1 − e−1)-approximable, by first
approaching the maximum of a continuous extension of the submodular function, and then
using the pipage rounding of Ageev and Sviridenko [AS04] to return a discrete solution
which achieves the (1− e−1)−approximation factor. For our problem, the greedy algorithm
of Section 7.2 is preferable to obtain a (1 − e−1)-approximation factor, but the ideas of
Calinescu and his coauthors are useful to establish the approximability factor of the rank
optimization problem (P0) by rounding algorithms.

We also want to underline that the greedy algorithm may rise some computational issue
when the number of parameters to estimate m is large. Fedorov [Fed72] suggested to make
use of the Sherman-Morrison formula to speed up the computation. For p = −1 (resp.
p = 0) indeed, i.e. for the A- (resp. D-) optimal design problem, one has to compute
Φp(Gk ∪ {i}) for each experiment i which is not yet in Gk at the kth stage of the greedy
process. This requires the computation of the inverse (resp. the determinant) of a m×m−
matrix, which is a very time-consuming task. Instead, the Sherman-Morrison formula allows
one to compute the value of the increment thanks to a small-rank update. However, when
working with arbitrary values of p, we cannot use these smart updates anymore. So at
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the kth stage of the greedy algorithm, one has to compute the m eigenvalues of (s − k)

information matrices, which is not practicable when m (the dimension of the parameter θ)
is large (typically larger than 10000 in network applications).

In the sequel, we focus on the case in which p = 0, and we consider the unit-cost case,
where the number of experiments to select is n. We further assume without loss of generality
that there is no prior measurement on the parameter (A0 = 0). Note that we may always
reduce to this case by defining the augmented observation matrices Ãi := [AT

0 /
√
n,AT

i ]T ,
so that we have

s∑

i=1

wiÃi
T
Ãi = AT

0A0 +
s∑

i=1

wiA
T
i Ai.

7.3.1 A continuous relaxation

The continuous relaxation of the D−optimal problem is obtained by removing the integer
constraint w ∈ {0, 1}s :

max
w ≥0∑

k
wk≤n

det
(
∑

k

wkA
T
kAk

)

. (7.8)

We assume without loss of generality that the matrix M(1) =
∑s

k=1 A
T
kAk is of full rank

(where 1 denotes the vector of all ones), such that the optimal value of Problem (7.8) is
positive. If this is not the case (r∗ := rank(M(1)) < m), we define instead a projected
version of Problem (7.8): Let UΣUT be a singular value decomposition of M(1). We
denote by Ur∗ the matrix formed with the r∗ leading singular vectors of M(1), i.e. the r∗

first columns of U . The D−optimal design problem is projected onto the observable space
by mean of the projected observation matrices Āk := AkUr∗ (see Paragraph 7.3 in [Puk93]):

max
w ≥0∑

k
wk≤n

det
( s∑

k=1

wkĀk
T
Āk

)

. (7.8’)

The function log(det(·)) is strictly concave on the interior of S+
m, and Problem (7.8) can

be solved by interior point techniques or multiplicative algorithms [Atw73, DPZ08, Yu10a,
Sag09b]. The strict concavity of the logdet function indicates in addition that Problem (7.8)
admits a unique solution if and only if

w1M1 +w2M2 + . . .+wsMs = y1M1 + y2M2 + . . .+ ysMs ⇒ (w1, . . . , ws) = (y1, . . . , ys),

that is to say whenever the matrices Mi = AT
i Ai are linearly independent. In this chapter,

we focus on the rounding techniques only, and we assume that an optimal solution w∗ of the
D-optimal design problem (7.8) is readily known. In the sequel, we also denote a discrete
solution of Problem (P0) by S∗. Since M(w∗) is of maximal rank r∗, we have:

r∗ := rank(M(1)) = rank(M(w∗)) = ϕ0(w
∗) ≥ ϕ0(S

∗). (7.9)
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The aim of this section is to propose some randomized rounding techniques which as-
certain some approximation bounds. We clarify this statement in the following definition:

Definition 7.3.1. We say that an algorithm approximates the optimal solution of the rank
optimization problem (P0) by a factor α if for all possible instances, it returns a feasible
random subset Ŝ such that:

E(ϕ0(Ŝ)) ≥ αϕ0(S
∗).

Notice that, due to inequality (7.9), it is sufficient to show that E(ϕ0(Ŝ)) ≥ αϕ0(w
∗) =

αr∗ to prove that some rounding approximates the optimal solution by a factor α.

7.3.2 Roundings of the optimal solution

We now present two ingredients which will be useful in the sequel : the pipage rounding
algorithm of Ageev and Sviridenko [AS04] and its relation with the extension by expectation
of a submodular function, brought to light by Calinescu et. al. [CCPa07].

Extension by expectation and Pipage Rounding

We will make use of the extension by expectation [CCPa07] of a submodular set function
ϕ, which is defined by

Fϕ(y) = E[ϕ(Ŝ)], (7.10)

where Ŝ is a random set of [s] which contains {i} independently with probability yi. In
other words,

Fϕ(y) =
∑

S⊂{1,..,s}
ϕ(S)

∏

i∈S

yi

∏

i/∈S

(1− yi). (7.11)

In our setting, we will denote by F0 the extension by expectation of the rank function
ϕ0. Note that this extension can be defined only if all coordinates of y are smaller than
1. If yi > 1 for some experiment i, we have to use another rounding technique, like the
proportional rounding which we next present. Also note that if y is the 0/1-vector associated
to S, we have Fϕ(y) = ϕ(S), which tells us that Fϕ is an extension of ϕ indeed.

The idea of Calinescu et. al. (as reduced to the simple case of uniform matroids) is to
find a vector y∗ such that Fϕ(y∗) ≥ (1− 1/e) OPT, where OPT is the optimal value of
the problem max|S|≤n ϕ(S). Then, they round y∗ to a feasible discrete solution S with
the pipage rounding algorithm of Ageev and Sviridenko [AS04], which satisfies with a high
probability ϕ(S) ≥ Fϕ(y∗). Similarly, we will ask ourselves whether one can guarantee that
F0(w

∗) ≥ αϕ0(S
∗) for some α, in which case we could apply the pipage rounding technique

to return a feasible subset S satisfying (with a high probability)

ϕ0(S) = F0(S) ≥ F0(w
∗) ≥ αϕ0(S

∗).
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For the reader’s convenience, we now present the randomized version of the pipage
rounding algorithm for the simple case of uniform matroids, and the ideas of the proof
of Calinescu and his coauthors on the efficiency of this rounding (E[ϕ(S)] ≥ Fϕ(w∗)).
Assume that we are given a nonnegative vector y ∈ [0, 1]s such that

∑

i yi = n, and two
indexes i and j for which y is fractional. The idea of this rounding technique is based on
the fact that, for any submodular function ϕ, the function F y

ij : t 7→ Fϕ

(

y + t(ei − ej)
)

is
convex [CCPa07], such that Fϕ is increasing when we move in one of the directions (ei−ej)

or (ej−ei). Therefore, we can increase one of the two variables (yi or yj) and decrease the
other one until yi or yj becomes a 0 or a 1. Moreover, the sum of the vector is preserved
along this transformation, which guarantees that the set obtained with this rounding will
satisfy the desired property (|S| = n). In the randomized version (Algorithm 7.3.1), we
choose between the two admissible directions with probabilities which ensure that we do not
loose in expectation. This avoids costly evaluations of Fϕ(y).

Lemma 7.3.2 (Calinescu et al [CCPa07]). Given a vector y ∈ [0, 1]s such that
∑

i yi = n,

PipageRound(y) returns in s iterations a random set S of cardinality n, of expected value

E[ϕ(S)] ≥ Fϕ(y).

Proportional Rounding

We now present another rounding scheme, which can be used even if some coordinates
of y are larger than 1. The principle of this rounding is to start with S0 = ∅, and, for
k = 1, ..., n, we construct Sk from Sk−1 by adding in it exactly one new element, namely
i ∈ [s] \ Sk−1 with probability yi∑

j /∈Sk−1
yj

. If at some point, all the remaining coordinates

(yj)j /∈Sk−1
are equal to 0, uniform probabilities are used. An alternative way to define

this rounding is to generate a random vector X, the ith coordinate of which is following
an independent exponential distribution of expected value 1/yi : Xi ∼ exp(1/yi). As a
consequence of the memoryless property of the exponential distribution, the set Sn can be

Algorithm 7.3.1 PipageRound(y)

Input: y ∈ [0, 1]s such that
∑

i yi = n
while y is not integral do

Pick i, j such that yi and yj are not in {0, 1}.
ε← {yj ,−yi, 1− yi, yj − 1}
ε+ ← min{εi|εi > 0}
ε− ← max{εi|εi < 0}
p← ǫ+

ǫ+−ǫ−

with probability p
yi ← yi + ǫ−, yj ← yj − ǫ−

else
yi ← yi + ǫ+, yj ← yj − ǫ+

end while
Output: y.
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generated by selecting the indexes of the n smallest elements in the vector X (we use the
convention 1/0 = ∞, and if y has no more than n positive components we choose with
uniform probabilities between the indices of X such that Xi =∞).

We denote by Sn(y) the random set of cardinality n obtained by this procedure, which
we call proportional rounding of vector y.

7.3.3 Characterization of D−optimality

We now give a characterization of the D−optimal design. This proposition is known
as the General Equivalence Theorem in the full rank case, and was first stated by Fe-
dorov [Fed72] for multiresponse experiments (cf. Chapter 2). We show here that it can
also be stated in the degenerate case (where rank(M(1) = r∗ < m)) with the help of
generalized Moore-Penrose inverses.

Proposition 7.3.3 (General Equivalence Theorem). The design w∗ is D-optimal (i.e. w∗

is a solution of Problem (7.8’), which reduces to (7.8) in the full rank case r∗ = m) if and

only if for all i ∈ [s], we have either:
• w∗

i = 0

• or w∗
i > 0, and trace AiM(w∗)†AT

i = ϕ0(w∗)
n

= r∗

n
.

Proof. This proposition is known as the General Equivalence Theorem in the full rank case
(where r∗ = m, and the Moore-Penrose inverse is a regular inverse). For a proof, see
Fedorov [Fed72], who deals with the normalized constraint (n = 1). The generalization to
an arbitrary value of n is straightforward.

We now study the degenerate case, where r∗ < m, and the D−optimal design is the
solution of Problem (7.8’). The projected observation matrices Āk satisfy the full rank

property by definition ( M(1) :=
∑

k Āk
T
Āk is of size r∗ × r∗ and has rank r∗). This

allows us to apply the full rank general equivalence theorem to characterize w∗: the design
w∗ is D−optimal if and only if for all i ∈ [s], we have either w∗

i = 0, or

trace ĀiM(w∗)
−1

Āi
T

=
r∗

n
, (7.12)

where M(w∗) :=
∑

k wkĀk
T
Āk = UT

r∗M(w∗)Ur∗ . Since the range of M(w∗) is included
in the one of M(1), we have:

M(w∗) = U

(

M(w∗) 0

0 0

)

UT ,

where the diagonal blocks are of size r∗ × r∗ and (m− r∗) × (m− r∗) respectively. We
can now express the Moore-Penrose inverse of M(w∗):

M(w∗)† = U




M(w∗)

−1

0

0 0



UT = Ur∗M(w∗)
−1

UT
r∗ .
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Finally, we re-express the left hand side of (7.12), which will conclude the proof:

trace ĀiM(w∗)
−1

Āi
T

= trace AiUr∗M(w∗)
−1

UT
r∗AT

i = trace AiM(w∗)†AT
i .

We next give a proposition which shows how we can bound the components w∗
i of the

D−optimal design. This was proved in a simpler case by Atwood [Atw73], who obtained
w∗

i

n
≤ 1

m
when the observations are scalar (single response experiments), i.e. when the

observation matrices are row vectors. The first part of the next result was discovered
independently (in the regular case r∗ = m) by Harman and Trnovská [HT09] (the latter
article was published shortly after we had submitted an announcement of the present results
to the conference ISCO 2010 [BGS10]). The proof of our result also adapts to the case
in which the experimenter wants to estimate a subsystem KT θ of the parameters (cf.
Theorem 2.4.7).

Proposition 7.3.4. Let w∗ be a D−optimal design. For all i ∈ [s], we have the following

bound on the optimal coordinate w∗
i :

w∗
i

n
≤ rankMi

rank(
∑n

i=1 Mi)
, (7.13)

where Mi := AT
i Ai. More generally, for an arbitrary subset S of [s],

∑

i∈S w
∗
i

n
≤ rank(

∑

i∈S Mi)

rank(
∑n

i=1 Mi)
=

ϕ0(S)

ϕ0(w
∗)
. (7.14)

Proof. The first inequality is trivial when w∗
i = 0. For any other value of w∗

i > 0, we make
use of the characterization of optimality from the general equivalence theorem:

trace AiM(w∗)†AT
i =

r∗

n
.

Now, we replace M(w∗)† by M(w∗)†M(w∗)M(w∗)† in the right hand side of this expres-
sion, and we obtain:

r∗

n
= traceAiM(w∗)†

(
∑

k

w∗
kA

T
kAk

)

M(w∗)†AT
i

=
∑

k

w∗
k traceAiM(w∗)†AT

k
︸ ︷︷ ︸

X(i,k)

AkM(w∗)†AT
i

=
∑

k

w∗
k traceX(i, k)X(i, k)T

≥ w∗
i traceX(i, i)X(i, i)T , (7.15)

where the inequality follows from the fact that the trace of any semidefinite matrix is
nonnegative.
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Let ri denote the the rank of Mi, such that there exists a ri × m matrix Hi such that
Mi = HT

i Hi. We have:

traceX(i, i)X(i, i)T = trace AiM(w∗)†AT
i AiM(w∗)†AT

i

= trace HiM(w∗)†HT
i

︸ ︷︷ ︸

X̃i

HiM(w∗)†HT
i .

Now, notice that X̃i is a ri× ri symmetric matrix which has trace r∗. This allows us to
write:

trace(X̃iX̃i
T
) =

∑

j,k

X̃2
i(j,k)
≥

ri∑

j=1

X̃2
i(j,j)

.

This latter expression is the sum of squares of elements which sum to r∗, and is minimized
when all these elements are equal, i.e. whenever X̃i(j,j)

= r∗/ri. Finally,

trace(X̃iX̃i
T
) ≥

ri∑

j=1

(
r∗

ri

)2

=
r∗2

ri

.

Inserting this lower bound in (7.15), we finally obtain r∗ ≥ w∗
i

r∗2

ri
, or equivalently

w∗
i ≤

ri

r∗ =
ri

ϕ0(w
∗)
,

and the first inequality is proved. In order to generalize this result, let S be a subset of
[s]. We exclude the trivial case

∑

i∈S w
∗
i = 0, and we define MS =

∑

i∈S
w∗

i∑

j∈S
w∗

j
Mi. We

consider the problem

max
vS ,(vk)k /∈S

det
(

vSMS +
∑

k /∈S

vkMk

)

(7.16)

s.t. vS +
∑

k /∈S

vk ≤ n

vS ≥ 0, ∀k /∈ S, vk ≥ 0.

(Eventually, we may instead consider the projected problem with M̄i = UT
r∗MiUr∗ if we are

in the degenerate case r∗ < m). It is clear that this problem has solution v∗
k = w∗

k for
k /∈ S, and v∗

S =
∑

j∈S w
∗
j , since any better value would contradict the D−optimality of

w∗. Applying the first inequality, we find:
∑

j∈S w
∗
j

n
=
v∗

S

n
≤ rank MS

r∗ ≤ rank (
∑

i∈S Mi)

r∗ .
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7.3.4 Rounding approximation factor for rank-optimality

Before we give the approximation factor that one can guarantee by using our rounding
procedures, we need the two following technical lemmas.

Lemma 7.3.5. Let α∆s denote the simplex {x ∈ (R+)s |∑i xi = α}. We define the

random variable Wn(w) =
∑

i∈Sn(w) wi, where Sn(w) is the random subset of [s] obtained

by proportional rounding. Then, we have

∀w ∈ α∆s, E[Wn(w)] ≥ E[Wn(
α

s
, ...,

α

s
)] = n

α

s
.

Proof. First notice that we can give the expression of E[Wn(w)] in close form by summing
over all permutation of n elements in [s]:

E[Wn(w)] =
∑

σ∈π(n,s)

wσ1
∑

i wi

· wσ2
∑

i6=σ1
wi

· · · wσn
∑

i/∈{σ1,...,σn−1} wi

· (wσ1 + . . .+ wσn).

Although this expression looks particularly awful, the reader can verify that it can be obtained
by the following induction procedure:







E[W1(w)] =
∑

i
w2

i∑

i
wi

E[Wk+1(w)] = 1∑

j
wj

∑s
i=1 wi(wi + E[Wk(w\{i})])

,

where w\{i} is the vector of length s − 1 with entries (w1, . . . , wi−1, wi+1, . . . , ws). The
latter formula is easily obtained by considering the expansion of a probability tree, and will
allow us to make a proof by induction. We are going to show that ∀k ≤ s, E[Wk(w)] attains
its minimum value kα

s
on α∆s for the uniform vector. For k = 1, E[W1(w)] = 1

α

∑

i w
2
i

on the α− simplex, which is a convex and symmetric function, the minimum of which is
attained for the uniform vector:

E[W1(
α

s
, . . . ,

α

s
)] =

s
(

α
s

)2

s
(

α
s

) =
α

s
.

Now, we assume that the statement is true for a given k ∈ {1, . . . , s− 1} :

∀w ∈ α∆s, ,E[Wk(w)] ≥ E[Wk(
α

s
, . . . ,

α

s
)] = k

α

s
.

Let w ∈ α∆s. For all i ∈ [s], the vector w\{i} is in the simplex (α − wi)∆s−1. So, using
our induction hypothesis, we find :

E[Wk(w\{i})] ≥ k
α− wi

s− 1
,
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and using the inductive construction of E[Wk+1(w)],

E[Wk+1(w)] ≥ 1

α

s∑

i=1

wi(wi + k
α− wi

s− 1
)

︸ ︷︷ ︸

gk(w)

.

It is clear that gk is symmetric. Moreover, we can see that gk is convex since it is a separable
function and for k < s,

∂2g(w)

∂w2
i

=
2

α
(1− k

s− 1
) ≥ 0.

This shows that, for k < s the minimum of gk is attained on the α−simplex for the uniform
vector (α

s
, . . . , α

s
). This gives the following lower bound on E[Wk+1(w)]:

∀w ∈ α∆s, E[Wk+1(w)] ≥ g(
α

s
, . . . ,

α

s
) = (k + 1)

α

s
.

Moreover, this bound is attained for the uniform vector, since it leads to consider an expected
value on a uniform probability tree with (k + 1)α

s
on each extremal leaf.

By induction, we conclude that our induction hypothesis holds for all k ≤ s, and in particular
for k = n.

Lemma 7.3.6. For all vector w ∈ [0, 1]s, the following equality holds:

∑

S⊂{1,..,s}

(
∑

i∈S

wi

)
∏

i∈S

wi

∏

i/∈S

(1− wi) =
s∑

i=1

w2
i

Proof. We proceed by induction on s: for s = 1, the equality is trivial, since the summation
reduces to S = ∅ and S = {1}, and has only one nonzero term: w2

1.
Now, we assume that the equality from this lemma is true for a given s, and we write (by
separating between the sets which contains {s+ 1} and those which do not).

∑

S⊂{1,..,s+1}

(
∑

i∈S

wi

)
∏

i∈S

wi

∏

i/∈S

(1− wi)

= ws+1



ws+1 +
∑

S⊂{1,..,s}

(
∑

i∈S

wi

)
∏

i∈S

wi

∏

i/∈S

(1− wi)





+ (1− ws+1)




∑

S⊂{1,..,s}

(
∑

i∈S

wi

)
∏

i∈S

wi

∏

i/∈S

(1− wi)





=
s∑

i=1

w2
i ((1− ws+1) + ws+1) + w2

s+1

=
s+1∑

i=1

w2
i ,

where the induction hypothesis has been used to replace the summation over S ⊂ [s] by
∑s

i=1 w
2
i .
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We can now formulate the main result of this section:

Theorem 7.3.7 (Rounding Approximability Factor). Let w∗ be a D−optimal design. The

proportional rounding of the vector w∗ approximates the optimal solution of the rank max-

imization problem (P0) by n
s
. Moreover, if all coordinates of w∗ are smaller than 1, then

the pipage rounding algorithm gives the same approximation factor of n
s
.

Proof. We first point out that if w∗ has no more than n positive entries, Sn(w∗) always
contains the indices of these entries, such that the rounded design Sn(w∗) is of maximal
rank: ϕ0(Sn(w∗)) = r∗, and the approximation ratio is 1. Otherwise, we bound the
approximation ratio E[ϕ0(Sn(w∗))]

ϕ0(w∗)
thanks to the result of Proposition 7.3.4 :

E[ϕ0(Sn(w∗))]

ϕ0(w
∗)

=
∑

σ∈π(n,s)

w∗
σ1

∑

i w
∗
i

· w∗
σ2

∑

i6=σ1
w∗

i

· · · w∗
σn

∑

i/∈{σ1,...,σn−1} w
∗
i

· ϕ0(σ)

ϕ0(w
∗)
.

≥
∑

σ∈π(n,s)

w∗
σ1

∑

i w
∗
i

· w∗
σ2

∑

i6=σ1
w∗

i

· · · w∗
σn

∑

i/∈{σ1,...,σn−1} w
∗
i

· (w∗
σ1

+ . . .+ w∗
σn

)

n

=
1

n
E[Wn(w∗)].

In the above, the summation is taken over the s!
(s−n)!

permutations σ of n elements in [s],
and Wn(w∗) is the random variable which has been defined in Lemma 7.3.5. Since w∗ is
in the n−simplex, we obtain the desired approximation factor from Lemma 7.3.5:

E[ϕ0(Sn(w∗))]

ϕ0(w
∗)

≥ 1

n

n2

s
=
n

s
.

Similarly, if all coordinates of w∗ are smaller than 1, then the extension by expectation F0

is well defined at w∗, and by Lemma 7.3.6:

F0(w
∗)

ϕ0(w
∗)

=
∑

S⊂{1,..,s}

ϕ0(S)

ϕ0(w
∗)

∏

i∈S

w∗
i

∏

i/∈S

(1− w∗
i )

≥
∑

S⊂{1,..,s}

∑

i∈S w
∗
i

n

∏

i∈S

w∗
i

∏

i/∈S

(1− w∗
i )

=
1

n

s∑

i=1

w∗2
i

≥ s

n

(n

s

)2
=
n

s
,

where the latter inequality is once again the minimality of x 7→ ∑s
i=1 x

2
i over n∆s for

w = (n
s
, ..., n

s
). Hence, the pipage rounding approximates the optimal solution within a

factor of n
s
, thanks to Lemma 7.3.2.

Remark 7.3.1. The inequalities E[ϕ0(Sn(w∗))] ≥ n
s
ϕ0(w

∗) and F0(w
∗) ≥ n

s
ϕ0(w

∗) are
optimal. The reader can verify indeed that they are attained for the following s × s−
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observation matrices:

M1 =








1

0

. . .

0








, M2 =








0

1

. . .

0








, . . . , Ms =








0

0

. . .

1








.

In the last theorem we give an approximation factor by comparing the expected value of
ϕ0 for the rounded set to ϕ0(w

∗). The reader may ask himself if these bounds are accurate,
since the approximation factor of a rounding algorithm is actually defined with respect to
the discrete optimal value ϕ0(S

∗). We answer partially with these two remarks:
Remark 7.3.2. For s > n + 1, we can find observation matrices for which the ratios
E[ϕ0(Sn(w∗))]

ϕ0(S∗)
and F (w∗)

ϕ0(S∗)
take the value n

s−1
. This indicates that the optimal approxima-

tion factor is somewhere between n
s

and n
s−1

. Consider the following (s − 1) × (s − 1)−
observation matrices indeed:

M1 =

(
0 0

0 εI

)

, M2 =








1

0

. . .

0








, M3 =








0

1

. . .

0








, . . . , Ms =








0

0

. . .

1








,

where the nonzero block in M1 is of size (s− n) × (s− n). The reader can easily verify
that for ε < 1

s−n
, w∗

1 = 0, and w∗
2 = . . . = w∗

s = n
s−1

, while the discrete solution S∗ of
Problem (7.8) is clearly {1, . . . , n}, which is the only subset of n matrices that sums to a full
rank matrix. Hence, this example yields an approximation factor of n

rank(M1+...+Mn)
= n

s−1

for both the proportional and the pipage rounding.

Remark 7.3.3. for n = 1 and s > 2, we can show that n
s−1

is the optimal approximation
factor for the proportional rounding algorithm. Since n = 1, the discrete optimum S∗ of
Problem (7.8) is a singleton, which we can consider to be {1} without loss of generality.
Now, we bound the the approximation ratio:

E[ϕ0(S1(w
∗))]

ϕ0({1})
=

s∑

i=1

w∗
i

ϕ0({i})
ϕ0({1})

≥ w∗
1 +

s∑

i=2

w∗
i

ϕ0({i})
ϕ0(w

∗)

≥ w∗
1 +

s∑

i=2

(w∗
i )2,

where the first inequality follows from ϕ0({1}) ≤ ϕ0(w
∗), and the second one from Propo-

sition 7.3.4. Now, using the fact that
∑s

i=2(w
∗
i )2 is minimized on the (1−w∗

1)−simplex for
the uniform vector (w∗

2 = . . . = w∗
s =

1−w∗
1

s−1
), we have:

E[ϕ0(S1(w
∗))]

ϕ0({1})
≥ w∗

1 +
(1− w∗

1)2

s− 1
.
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The left hand side of this equation is an increasing function of w∗ on [0, 1], such that we
obtain the lower bound for w∗

1 = 0:

E[ϕ0(S1(w
∗))]

ϕ0({1})
≥ 1

s− 1
.

In the above discussion, we characterized the rounding approximation factor for Prob-
lem (Pp) when p→ 0. Our proof does not seem to adapt for other values of p ∈]0, 1], but
we think that Proposition 7.3.4 might adapt to other values of p in the following way:
Let p ∈ [0, 1] and let w∗ be optimal for the continuous relaxation of Problem (Pp). Is it

true that for an arbitrary subset S of [s],

∑

i∈S w
∗(1−p)
i

n
≤ ϕp(S)

ϕp(w∗)
?

We leave it here as an open question, but we underline that, following the same reasoning as

above, this would provide an approximation factor of
(

n
s

)1−p
for Problem (Pp), p ∈ [0, 1].

Interestingly, this bound is attained for diagonal observation matrices with disjoint support.
Note that this formula would show that there is a continuously increasing difficulty from the
easy case (p = 1) to the most degenerate problem (p = 0).

7.4 Conclusion

This chapter gives bounds on the behavior of some classical heuristics used for combi-
natorial problems arising in optimal experimental design. Our results can either justify or
discard the use of such heuristics, depending on the settings of the instances considered.
Moreover, our results confirm some facts that had been observed in the literature, namely
that rounding algorithms perform better if the density of measurements is high, and that
the greedy algorithm always gives a quite good solution. We illustrate these observations
with two examples:

In a sensor location problem, Uciński and Patan [UP07] noticed that the trimming of a
Branch and Bound algorithm was better if they activated more sensors, although this led to
a much larger research space. The authors claims that this surprising result can be explained
by the fact that a higher density of sensors leads to a better continuous relaxation. This
is confirmed by our result of approximability, which shows that the larger is the number of
selected experiments, the better is the quality of the rounding.

It is also known that the greedy algorithm generally gives very good results for the
optimal design of experiments (see e.g. [SQZ06], where the authors explicitly chose not to
implement a local search from the design greedily chosen, since the greedy algorithm already
performs very well). Our (1 − 1/e)−approximability result guarantees that this algorithm
always well behaves indeed.
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Chapter 8

Inference of the traffic matrix: a
review

The traffic matrix (TM) of a network gives the volume of traffic between all pairs of origin
and destination nodes of a network. This matrix is a crucial input for many network planning
operations, and its estimation is therefore an essential problem. For example, the routing
table, which specifies the path between every pair of origin and destination, should clearly
be decided with an accurate prevision of the demand in order to avoid congestion. Similarly,
the traffic matrix is a deciding piece of information when an Internet Service Provider (ISP)
decides to upgrade the capacity of a link on its network. Other important applications of
the traffic matrix include anomaly detection, billing and development of failover strategies.

However, the inference of traffic matrices turns out to be a difficult problem. The
estimation of traffic matrices in networks has therefore attracted much interest for the
last decade, from both Internet providers and the network research community. In this
chapter, we shall review the different methods that have been proposed for this task; they
can principally be classified in two types: those relying on the link counts only, and those
which take advantage of direct network measurements provided by a monitoring software.
We also indicate the reviews of Benameur and Roberts [BR04], and Vaton, Bedo and
Gravey [VBG05], which cover some of the techniques presented in this chapter.

8.1 Notation and definitions

We refer as traffic matrix the set of volumes of traffic on each Origin-Destination (OD)
pair of a network, during a given time interval whose typical length varies from five minutes
to one hour. On a network with n nodes (routers), this data can indeed be represented by
a n×n matrix, the (o, d)−entry of which corresponds to the volume of traffic from Node o
to Node d (during the given time interval). In the practice, we often rearrange this matrix
as a vector x of length m = n2 to facilitate the notation, but we still refer this vector as the
traffic matrix, and we shall sometimes continue to use the double indexing notation xo,d.
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This vector notation also allows one to handle the case in which m < n2 OD pairs are of
interest (and we use a vector x of length m).

The traffic matrix is a dynamic object, since traffic volumes are evolving over time. When
working over a global observation period which is divided in T time intervals, the unknown
thus consists in the m × T−matrix X, the columns of which are the vectors x1, . . . ,xT ,
where xt represents the traffic matrix during the tth time interval (xt is a snapshot of the
traffic matrix at time t). We shall still refer to X as the traffic matrix, or sometimes as the
dynamic traffic matrix. The elements of xt are denoted by x(t)

o,d and will be referred as the
flow volumes (at time t) – these, however, should not be confused with the classic 5−tupple
flows from the networking literature, which refer to packets sharing the same source address,
destination address, source port, destination port, and IP protocol.

8.2 Traffic matrix estimation from link counts

In the classic problem, we consider a network with n nodes and l links. Link measure-
ments are provided by the Simple Network Management Protocol (SNMP), which gives
some statistics on the links (for instance, the number of bytes seen on each link in a time
window). An analogy with road traffic can be useful: in this case the link counts corre-
spond to the number of vehicles seen on each road segment (during a time interval), and
can be gathered thanks to pneumatic tubes or magnetic loops. We will denote the vec-
tor of SNMP link counts by ySNMP = (y1, . . . , yl)

T . Again, when the observation period
is divided in T time intervals, we concatenate the measurements into a l × T−matrix:
Y SNMP = [ySNMP

1 , . . . ,ySNMP
T ], where ySNMP

t is the vector of link counts at time t (i.e.
during the tth time interval).

We are also given the set of m OD pairs of interest (usually, m = n2), and for each
pair, the set of links that a byte need traverse to go from Origin o to Destination d. The
information about the routing is assumed to be known, and is classically gathered in the
l ×m incidence matrix A: this is a 0/1−matrix whose (i, r)-entry takes the value 1 if and
only if the OD pair r traverses link i. More generally, the Internet provider routing policies
may lead us to consider matrices in which Ai,r is a real number representing the fraction of
the traffic from OD pair r that traverses link i.

8.2.1 An ill-posed problem

The problem of estimating the traffic matrix x from the link counts ySNMP (or, in a
dynamic framework, estimating X from Y SNMP), has been studied since the late 1970’s in
the framework of road traffic (see e.g. Van Zuylan and Willumsen [ZW80]) or telephone
networks (e.g. Krupp [Kru79]). This work was a valuable source of inspiration for the
information theoretic approach which we present below.
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If we assume that the measurements are perfect, the following relation is easily seen to
hold:

ySNMP = Ax. (8.1)

In typical networks, l is in the order of n, while m is in the order of n2, such that the routing
matrix A has more columns than rows, and the estimation of the traffic matrix x is an
ill-posed problem (cf. Example 8.2.1). For the dynamic problem, the relation Y SNMP = AX

is true if the routing matrix A remains the same during the whole observation period. If
this is not the case, we have instead ySNMP

t = Atxt for all t ∈ [T ], where At is the routing
matrix during the tth time interval.

8.2.2 The information theoretic approach

After an appropriate normalization, the vector of OD flows x can be handled as a
probability distribution defined on the OD pairs. This suggests to use the principle of
minimum entropy to complete the partial information on x which is given by Equation (8.1).
This approach is detailed in Chapter 9: in absence of any other information, the traffic matrix

of minimal entropy which respects the ingress/egress measurements is known as the gravity
model xG, in which the traffic from o to d is proportional to the product of the incoming

Example 8.2.1. Here is a small toy example, to illustrate how we obtain the measurement equations:

The incidence table between the ODs and the links of this network is:

OD 1 → 2 OD 2 → 3 OD 1 → 3

link a 1 0 1

link b 0 1 1

and one can easily verify that the vector of link counts y = [ya, yb]T must satisfy

y =

(
1 0 1
0 1 1

)

︸ ︷︷ ︸

A

x, where x =

[
x1,2

x2,3

x1,3

]

.

In absence of any additional information on the vector of OD flows, we can only say that x belongs to the
space of the nonnegative solutions of the latter equation:

x =

[
ya − u
yb − u

u

]

for a scalar u ∈ [0, min(ya, yb)].
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traffic in o and the outgoing traffic at d:

xG
o,d =

xIn(o)xOut(d)
∑n

i=1 x
In(i)

,

where xIn(i) (resp. xOut(i)) denotes the total traffic entering the network (resp. exiting
the network) at node i. Thinking about xo,d as the joint probability that a packet has the
origin o and the destination d, it means that the source of a packet and its destination are
independent. In practice, this model happens to be a good prior estimate for the real traffic
matrix x.

Zhang, Roughan, Lund and Donoho [ZRLD05] further proposed an extension of the
gravity model, in which the ingress and egress links are separated in two classes: the class
C of links serving customers, and the class P of those linked to peers. If we know for each
ingress/egress link to which class it belongs, Zhang and his coauthors proposed a model
in which the source and the destination of a packet are independent, conditionally to the

class of the source and the class of the destination. Using the fact that there is no traffic
transiting the network from one peer to another, they obtained the generalized gravity prior
xGG:

xGG
o,d =







0 if o ∈ P, d ∈ P;

xIn(o)xOut(d) 1∑

c∈C xOut(c)
if o ∈ P, d ∈ C;

xIn(o)xOut(d) 1∑

c∈C xIn(c)
if o ∈ C, d ∈ P;

xIn(o)xOut(d)

∑

c∈C xIn(c)−
∑

p∈P xOut(p)
∑

c∈CxIn(c)

∑

c∈CxOut(c)

if o ∈ C, d ∈ C.

(8.2)

In a dynamic context, if we assume that the time intervals are short enough so that no
big change occurs between two successive time steps, a natural prior for xt is given by the
estimation of the traffic at time t − 1. This prior can then be projected (in the sense of
entropy) on the feasible subspace ySNMP

t = Axt, see Chapter 9. The resulting estimate
is usually referred as the tomogravity estimate of the traffic matrix. We summarize this
scheme of estimation of the traffic matrix in Algorithm 8.2.1, in which a parameter α is
used to make a convex combination of the gravity prior and the previous estimate.

Algorithm 8.2.1 Dynamic estimation of the traffic matrix via entropic projections
Input: parameter α ∈ [0, 1]
for t = 1, . . . , T do

Build the gravity estimate xG (or generalized gravity xGG), with the SNMP data of time t;
if t=1 then

xprior ← xG (or xGG);
else

xprior ← αx̂t−1 + (1− α)xG (or αx̂t−1 + (1− α)xGG);
end if
Compute the estimation of the traffic x̂t by projecting xprior onto the space
{x : ySNMP

t = Ax} (in the sense of entropy, see Chapter 9 for algorithms).
end for
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8.2.3 The Bayesian approach

In the Bayesian approach, a simple parametric model for the flows is assumed, and we
search the parameters which maximize the likelihood of the observations. Two class of
models have been proposed: the Poisson model of Vardi [Var96], and the Gaussian model
with a mean-variance relation of Cao et. al. [CDVY00]. Since both methods are similar,
and Poisson distribution are approximated by Gaussian distribution in [Var96], we will only
review the latter one.

Cao and his coauthors proposed a moving iid model on a sliding window of width h: for
the estimation at time t, we assume that the vectors xt−h, . . . ,xt, . . . ,xt+h are independent
and identically distributed (iid) with a normal distribution N (λt, φt Diag(λt)

c), where the
exponent c is supposed to be known (the authors of [CDVY00] claim that a typical value
for c is 2). Under these assumptions, the observations yt−h, . . . ,yt, . . . ,yt+h are iid with
distribution N (Aλt, AΣtA

T ), where Σt := φt Diag(λt)
c, and the log-likelihood of these

measurements is:

ℓ
(

(φt,λt)|y
)

=− 2h+ 1

2
log det(AΣtA

T )

− 1

2

t+h∑

τ=t−h

(yτ − Aλt)
T (AΣtA

T )−1(yτ − Aλt).

The maximization of the latter expression with respect to λt and φt has no analytic
solution and is a complicated problem. Instead, Cao et. al. [CDVY00] suggested to use the
Expectation-Maximization (EM) algorithm [DLR77], for which convergence results toward a
local maximum are known [Wu83]. The principle of this algorithm is to iteratively conduce
an Expectation (E) step, in which the expectation of the log-likelihood ℓ

(

(φt,λt)|x
)

is
computed, conditionally to the observations yt−h, . . . ,yt+h and the current estimate of the
parameters (φ

(k)
t ,λ

(k)
t ):

Q
(

(φt,λt)|(φ(k)
t ,λ

(k)
t )

)

= Ex

[

ℓ
(

(φt,λt)|x
)

|y, φ(k)
t ,λ

(k)
t

]

.

Then, a Maximization (M) step is applied in order to update the value of the current
parameter:

(φ
(k+1)
t ,λ

(k+1)
t )← argmax

φt,λt

Q
(

(φt,λt)|(φ(k)
t ,λ

(k)
t )

)

.

In fact, Cao et. al. showed that the E-step is analytic. The log-likelihood with respect to x

takes indeed the form

ℓ
(

(φt,λt)|x
)

= −2h+ 1

2
log det(Σt)−

1

2

t+h∑

τ=t−h

(xτ − λt)
T Σ−1

t (xτ − λt),

and for all τ ∈ {t − h, . . . , t + h}, the conditional distribution of xτ with respect to the
observation yτ and the current estimate of the parameters (φ

(k)
t ,λ

(k)
t ) is Gaussian, with
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mean and variance

m
(k)
t,τ = λ

(k)
t + Σ

(k)
t AT (AΣ

(k)
t AT )−1(yτ − Aλ

(k)
t );

R
(k)
t = Σ

(k)
t − Σ

(k)
t AT (AΣ

(k)
t AT )−1AΣ

(k)
t .

Hence, we can give the function Q in close form:

Q
(

(φt,λt)|(φ(k)
t ,λ

(k)
t )

)

=− 2h+ 1

2
log det(Σt)

− 1

2

t+h∑

τ=t−h

Exτ

[

(xτ − λt)
T Σ−1

t (xτ − λt)|yτ , φ
(k)
t ,λ

(k)
t

]

=− 2h+ 1

2
log det(Σt)

− 1

2

t+h∑

τ=t−h

trace
(

Σ−1
t E[xτ xτ

T |yτ , φ
(k)
t ,λ

(k)
t ]

︸ ︷︷ ︸

R
(k)
t +m

(k)
t,τ m

(k)
t,τ

T

)

− 1

2

t+h∑

τ=t−h

(

− 2λt
T Σ−1

t E[xτ |yτ , φ
(k)
t ,λ

(k)
t ]

︸ ︷︷ ︸

m
(k)
t,τ

+λt
T Σ−1

t λt

)

=− 2h+ 1

2

(

log det(Σt) + trace Σ−1
t R

(k)
t

)

− 1

2

t+h∑

τ=t−h

(m
(k)
t,τ − λt)

T Σ−1
t (m

(k)
t,τ − λt)

The M-step is equivalent to solving a system of m+1 non-linear equations, which can be
done numerically thanks to the Newton-Raphson algorithm. However, the convergence of
the EM algorithm is slow in practice, so Cao et. al. use the EM iterations until the increase
of the likelihood function ℓ

(

(φ
(k)
t ,λ

(k)
t )|y

)

becomes small, and apply a second order method
to achieve convergence [CDVY00]. This method is very heavy though, since a complicated
maximization must be carried out on each time window.

8.2.4 The method of routing changes

Consider the problem of estimating the mean x0 of the sequence of traffic matrices
x1, . . . ,xT . We first assume that the routing matrix is A during the whole period of
observation. When the link counts y1, . . . ,yT are given, a natural approach is to take the
least square estimate

argmin
x

T∑

t=1

‖yt − Ax‖2 = argmin
x

∥
∥
∥
∥
∥
∥
∥
∥







y1
...

yT






−







A
...
A







x

∥
∥
∥
∥
∥
∥
∥
∥

2

.
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Intuitively, when the number of observations T becomes large, this problem should provide
more and more accurate estimations of the mean x0 of the time series of traffic matrices.
However, the matrix [AT , . . . , AT ]T involved in the latter problem is rank deficient, because

rank[AT , . . . , AT ]T = rankA = rankATA ≤ l << m,

and the problem has an infinity of solutions, which coincide with the solutions of

ATAx = AT

(∑T
t=1 yt

T

)

.

Hence, the problem of estimating the mean x0 is as ill-posed as the problem of estimating
the whole traffic matrix X = [x1, . . . ,xt].

If however the routing matrix is different during each observation period, it is likely that
the matrix

A =










A1

A2
...
AT










becomes of full column rank (i.e. rankA = m). In fact, Soule et. al. [SNC+07] have
demonstrated that if the topology of the network is bidirectional biconnected, then there
always exists an integer T and routing matrices A1, . . . , AT such that A has full column
rank and each routing matrix At corresponds to the shortest paths for a set of weights
on the links of the network. Soule and his coauthors therefore assumed that the network
provider could change the link weights on purpose, so that the aggregated routing matrix
A on the global observation period becomes of full rank, and the least square estimation
of x0 becomes possible. They further propose a scheme for estimating the variance S of
y = [y1

T , . . . ,yt
T ]T from the sample covariance of the link counts, and suggest to use the

Gauss Markov estimator x̂ of x0 (cf. Section 2.2.3):

x̂0 = (ATS−1A)−1ATS−1y.

In fact, the number of routing changes required to let A be of full rank can be very high.
Instead, based on the observation that a small number of flows supports most of the traffic
(elephant and mice behaviour, 30% of the flows carry 95% of the traffic), and that elephant

flows have the largest variance, Soule et. al. [SNC+07] have proposed to simply ignore the
flows corresponding to the small diagonal terms in the estimated covariance matrix S (by
setting them to 0). The number of flows to be estimated is now approximately of m/3,
and the aggregated routing matrix A is restricted to the corresponding columns, which can
dramatically lower the number of required routing changes.

The same method can be used to estimate a smooth approximation of the traffic: Based
on the fact that the traffic is cyclo-stationary with a period of 24 hours, a natural model
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for the traffic is:
xt = x0(t) + wt

where x0(t) is a deterministic, smooth periodic function (of period 24 hours), and wt is a
centered, stationary random noise process. The authors of [SNC+07] show that the same
approach as before can be used to estimate the first Fourier coefficients of x0(t). To this
end, let us approximate x0(t) by the Fourier expansion

x0(t) = φ0(t)θ0 + . . .+ φ2k(t)θ2k,

where the φi are the basis cos and sine functions

φ0(t) = 1

∀i ∈ [k], φi(t) = cos
(

2πi
t

24

)

φk+i(t) = sin
(

2πi
t

24

)

,

where the time t is indicated in hours.

The problem is now to estimate the vector of (2k+1)m coefficients θ = [θ0
T , . . . ,θ2k

T ]T

from the observations

yt = Atxt = [φ0(t)At, . . . , φ2k(t)At]
︸ ︷︷ ︸

A′
t

θ + vt,

where vt = Atwt is a zero-mean stationary random process, whose covariance matrix is
AtΣA

T
t , where Σ can be estimated from the link counts [SNC+07]. So we can use the

Gauss-Markov estimator
θ̂ = (A′T Σ′−1A′)−1A′T Σ′−1y,

where

A′ =







A′
1

...
A′

T







and Σ′ =







A1ΣA
T
1

. . .
AT ΣAT

T






.

8.2.5 Spline-based maximum-likelihood estimation

In the previous approach, the number of unknowns (mT ) was reduced by considering a
temporal basis for the OD flows, which let the vector of parameters of the model (θ) be
identifiable. Instead, Casas, Vaton, Fillatre and Chonavel have propose a model [CVFC09]
in which a spatial basis is assumed: they empirically noticed that when the number of OD
flows is large, the sorted components of the vector xt form a smooth, nondecreasing curve,
and that the order of a flow (with respect to the sorted vector of flow volumes) remains
stable during long period of times.
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Casas et. al. [CVFC09] thus proposed to use a basis s′
1, . . . , s

′
q of cubic spline functions

(discretized as vectors with m coordinates) to approximate the smooth curve of the sorted
flows, the number of splines q being several order of magnitudes smaller than m. This
basis is then rearranged with respect to the order of the flow volumes within a tomogravity
estimate xG of the traffic matrix: the new basis S = [s1, . . . , sq] is such that if i is the
index of the kth largest component of xG, then the ith coordinates of s1, . . . , sq are set to
the kth coordinate of s′

1, . . . , s
′
q, respectively.

Now, since the order of the flows is stable over time, a natural model is

xt = Sµt + wt,

where wt is a white Gaussian noise of covariance Σ, and µt is a vector of q coefficients which
indicates the importance of each spline basis function at time t. Casas and his coauthors
suggest to estimate Σ by using the SNMP data over a short training period and evaluating
the sample variances of the tomogravity estimates. The measurement equations can thus
be modelled as:

yt = Axt = ASµt + vt,

where vt ∼ N (0, AΣAT ). Since q is small (typically between 5 and 10), the matrix AS is
very likely to have the full column rank property, and the Gauss-Markov estimator of µt is:

µ̂t =
(

STAT (AΣAT )−1AS
)−1

AS(AΣAT )−1yt,

from which we deduce the spline-based estimator x̂t = Sµ̂t. Casas et. al. call this estimator
the Spline-based Maximum Likelihood (SML) estimator of xt, because under the Gaus-
sian assumption, the Gauss-Markov estimator above coincides with the maximum-likelihood
estimator.

8.3 Estimation based on a few direct measurements

The approaches presented in the previous section (which rely only on the link counts)
typically yield an average error of estimation in the order of 20%. Moreover, the error is
often huge on certain OD pairs. To overcome this problem, Feldmann et. al. [FGL+01] have
proposed a method relying on the network-monitoring tool Netflow which allows to perform
direct measurements on the OD flows.

8.3.1 Netflow

Netflow is a network-monitoring tool developed by Cisco [CISb], which collects infor-
mation for each packet it analyzes. In practice, Netflow aggregates the data to the level
of a flow, where a flow is defined as a sequence of packets sharing the same source and
destination IP address, source and destination port number, IP protocol, interface index
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Figure 8.1: Netflow records and exports (Image extracted from Netflow white papers [CISb])

and type of service. The information written on the Netflow records contains, among other
things, the source and destination IP address, port numbers, and Autonomous System (AS)
numbers, the number of bytes in the flow, a time stamp, and routing information as the IP
address of the immediate next-hop. When some information about 20 to 50 flows has been
collected, the Netflow record is sent to a global collector (cf. Figure 8.1).

In our problem, we want to use the Netflow records to find the ingress and egress points
of the packets in a backbone network. This is not an obvious task, because the IP source
and destination are typically connected to several potential ingress and egress routers of the
network of interest (cf. Figure 8.2). The solution proposed by Feldmann et. al. [FGL+01] is
to activate Netflow directly on all ingress links of the network. In this way, the we can directly
infer the ingress node of the packet (it is the place where the packet is being analyzed),
and if we dispose of the routing tables, the egress node can be computed by simulating the
trajectory of the packet to reach its final IP destination.

However, the limitations of this method were pointed out by Feldmann and his coauthors
themselves: in order to measure a complete traffic matrix, one would require to activate
Netflow on every ingress link of a network, which may not be practical for several reasons.
The quantity of data collected at each router can be huge, which generates storage issues,
creates a computational overhead for the router’s CPU, and produces heavy records that
must be sent through the network to a global collector. Moreover, it is likely that Netflow
measurements are not available on each ingress link.

The idea of using Netflow for the estimation of traffic matrices has quickly become obvi-
ous after the publication of the latter article. Many authors have proposed some techniques
to avoid creating too much overhead with Netflow measurements. This is e.g. the case of
Papagiannaki, Taft and Lakhina [PTL04], who formulated recommendations to the devel-
opers of Netflow, so that its use could be completely distributed on the Network (so as to
reduce the communication overhead). It has also been proposed to use a sampled version of
Netflow [FGL+01], which significantly reduce the quantity of data to be analyzed. Choi and
Bhattacharyya [CB05] noticed indeed that the overhead involved by Netflow measurements
was roughly proportional to the sampling rates.
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Figure 8.2: There are several possible ingress and egress nodes

For the reasons mentioned above, the intensive use of Netflow (so as to measure each
of the m OD flows, and at every time step) is not suitable. Therefore, many authors have
proposed to activate Netflow only during a 24 hours-period (so as to calibrate a model), or
to measure only a small subset from the m ODs. We next review these methods. We will
present a new method to optimize both the deployment of Netflow and the sampling rates
in Chapter 10.

8.3.2 Method of fanouts

The method of fanouts was proposed by Papagiannaki, Taft and Lakhina [PTL04]. The
key observation at the origin of this method is that, if we consider all the traffic which enters
the network at o, the fraction from this traffic that leaves the network at d is very stable
over time and exhibits a strong diurnal pattern. More precisely, we define the fanouts

f
(t)
o,d =

x
(t)
o,d

∑n
d′=1 x

(t)
o,d′

=
x

(t)
o,d

x(t),In(o)
.

The authors of [PTL04] have studied the evolution of f (t)
o,d over time, and noticed that for

almost every OD pair (o, d), t 7→ f
(t)
o,d was very stable and periodic (of period 24 hours), e.g.

the fanout f (Day1, 3pm)
o,d can be used as an accurate estimate for f (Day2, 3pm)

o,d , f
(Day3, 3pm)
o,d , . . .

Note moreover that since the total volume x(t),In(o) of the incoming traffic in o at time t can
be measured by the SNMP data, an estimation of the fanouts directly yields an estimation
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of the traffic matrix.

The method proposed by the Papagiannaki et. al [PTL04] is thus the following: 24 hours
of Netflow measurements are used to compute a baseline of fanouts

(

f
(t)
o,d

)

o∈[n],d∈[n],t∈[24]

(we use time intervals of one hour). The estimation of the traffic matrix at subsequent
times is simply carried out by the formula:

x̂
(t)
o,d = f

(t mod 24)
o,d x(t),In(o).

After a few days, the model needs to be recalibrated, because the fanout baseline is out-
of-date. The authors of [PTL04] have proposed a scheme to identify when a recalibration
is needed. The results presented in the latter article suggest that 24 hours of Netflow
measurements every 4th day allow one to estimate 80% of the traffic matrix with a relative
error of estimation below 25%.

A great benefit of this method is that it can be distributed over the network, meaning the
estimation of the OD flows can be carried out by the router from which it originates. The
number of reports sent through the network to a global collector is thus much smaller and
the communication overhead is reduced. Moreover, the recalibration step can be performed
independently by each router, thus spreading the measurement effort over space and time.

8.3.3 Principal component analysis

A principal components analysis (PCA) of the (dynamic) traffic matrix X reveals that
it may be written as the sum of only a few characteristic eigenflows. To see this, Lakhina
et. al. [LPC+04] have analyzed the singular value decomposition (SVD) of sample traffic
matrices (computed with 3 weeks of Netflow measurements on the European Sprint back-
bone, or one week of measurement on Abilene). They noticed that the eigenflows could be
classified in three categories, namely deterministic flows (accounting for the pseudo-periodic
behaviour of the OD flows), spike flows, and noise flows. There is a small number of de-
terministic flows, which correspond to the largest singular values in the spectrum; the next
singular values correspond to spike flows, which describe a sudden and temporary change in
the traffic matrix; finally, the lower part of the spectrum mostly contains noise flows (and
a few spike flows). Interestingly, Lakhina and his coauthors found that deterministic flows
and spike flows capture most energy from the ODs of large volume, while the small flows
are dominated by noise. These remarks show that if we can recover the eigenflows corre-
sponding to the upper part of the spectrum, then we shall be able to estimate the largest
flows accurately. This led to the PCA approach of Soule et. al. [SLT+05] for the estimation
of traffic matrices.
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Recall that the rows of X represent the OD flows, while the columns of X are snapshots

of the traffic matrix during a particular time interval. We consider a a sample traffic matrix
X0 measured with Netflow over a period of T0 time steps (typically 24 hours), and we let
the SVD of XT

0 be
XT

0 = USV T .

In the latter expression, U is a matrix with the same dimension as XT
0 (T0×m), the columns

of which are the eigenflows of X; S is a m×m diagonal matrix and contains the singular
values of X, i.e. the ith diagonal element of S indicates the importance of the ith eigenflow
in this decomposition. The m×m square matrix V contains in its ith row the weights that
the ith OD assigns to the different eigenflows. Following the structural analysis performed
in [LPC+04], the value of X0 should not change much if we truncate the factor matrices U ,
S and V to restrict the summations to r eigenflows (with a reasonable value of r), meaning
that X0 may be well approximated by a matrix of rank r:

XT
0 ≈ U ′S ′V ′T ,

where U ′ is the matrix U restrained to the r principal eigenflows, the matrix S ′ is the r× r
upper diagonal matrix of S, and V ′ is formed with the r first columns of V .

By considering a particular snapshot xt of the traffic matrix (i.e. a row of XT
0 ), we

obtain:
∀t ∈ [T0], xt ≈ V ′S ′u′

t, and yt = Axt ≈ AV ′S ′u′
t,

where u′
t denotes the column of U ′T which corresponds to time t. The study of Lakhina et.

al. [LPC+04] suggests that the coefficients of S and V are relatively stable over short periods,
such that at subsequent times t > T0, the traffic matrix may still be decomposable in this
basis, and the coefficients u′

t of the principal largest eigenflows may be well approximated by
solving the equation yt = AV ′S ′u′

t. For small values of r (r ≤ l), this system of equation
is over-determined, and we obtain the least square solution by a pseudo-inverse. Finally, we
obtain the following estimate for the traffic matrix at time t > T0:

x̂t = V ′S ′(AV ′S ′)†yt.

In order to avoid negative entries of x̂t, the authors of [SLT+05] next set to 0 the negative
entries of x̂t, and finally use the IPF algorithm (cf. Chapter 9) so that the estimate matches
the measurement equations.

Of course, the model needs to be recalibrated after some time, which requires a 24h-
period of Netflow measurements. In [SLT+05], the authors propose a test based on the link
counts to decide whether a new period of calibration is needed.

8.3.4 Kalman Filter

The idea of using a Kalman Filter for the estimation of traffic matrices was first proposed
by Soule et. al. [SLT+05], and further detailed in [SSNT05]. This method assumes the
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following linear state-space model:

∀t ∈ [T ],

{

xt+1 = Cxt + wt+1

yt = Atxt + vt

, (8.3)

where the matrix C describes the dynamic of the system; the state-noise process wt and the
measurement-noise process vt are assumed to be iid Gaussian, centered, and of covariance
matrices Q and R, respectively. The problem of finding the minimum variance estimator
of the current state x̂t, given a the set of measurements {y1, . . . ,yt} is classic and can be
resolved by a Kalman Filter. We next recall the equations involved by this filter. In what
follows, x̂t|t0

represents the estimation of xt when we use the measurements y1, . . . ,yt0
.

The Kalman filter consists in a prediction step and a correction step, which are applied
iteratively. We use the notation Pt|t−1 = Var(xt − x̂t|t−1) (resp. Pt|t = Var(xt − x̂t|t)) for
the apriori (resp. aposteriori) covariance matrix of xt at time t.

Prediction Step: Estimation of the new state estimate xt+1 based on the information
available up to time t.

x̂t+1|t = Cx̂t|t

Pt+1|t = CPt|tC
T +Q

Correction Step: Correction of the estimate based on the new measurement yt+1.

Kt+1 = Pt+1|tA
T
t+1(At+1Pt+1|tA

T
t+1 +R)−1

x̂t+1|t+1 = x̂t+1|t +Kt+1(yt+1 − At+1x̂t+1|t)

Pt+1|t+1 = (I −Kt+1At+1)Pt+1|t

In order to apply the above Kalman filter for the estimation of the traffic matrix, we
need to know the value of the transition matrix C and of the covariance matrices R

and Q; we have assumed that the routing matrices (At)t∈[T ] are available. The authors
of [SSNT05] proposed to use 24 hours of Netflow measurements to calibrate the model.
The maximum likelihood estimation of C,R and Q can be done with the EM algorithm
(see Section 8.2.3). A method to detect when a recalibration of the model is included
in [SSNT05].

In a recent paper [CVFC09], Casas, Vaton, Fillatre and Chonavel have proposed an
improvement of the latter method. They pointed out that taking the expectation in the
first equation of the underlying model (8.3), we obtain (I−C)mx = 0, where mx = E[xt]

is the average traffic matrix. Therefore, the matrix C must be calibrated in such a way that
mx is in the nullspace of I − C, which is certainly not a good model.
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To correct this problem, Casas et. al. [CVFC09] assumed that the process has a dynamic
mean mx(t) following the dynamic

mx(t+ 1) = mx(t) + ζt,

where ζt is a zero-mean Gaussian process of covariance Qζ . They replaced the transi-
tion equation xt+1 = Cxt by a transition equation for the variation of the traffic ma-
trix around its mean. To do this, they have defined the new centered augmented state

ut =

[

xt −mx(t)

mx(t)

]

, which must follow the dynamic:

∀t ∈ [T ],







ut+1 =

(

C

I

)

ut +

[

wt+1

ζt+1

]

yt = [At At]ut + vt

, (8.4)

The matrices C,Q and Qζ are assumed to be diagonal and are estimated from a training
set of Netflow direct measurements. The measurement equations are assumed exact (R =

0). The experiments done by Casas et. al. [CVFC09] show that the Kalman filter based on
this centered model with a dynamic mean outperforms that of [SSNT05], and needs less
recalibration steps.

8.3.5 Method of Partial Measurements

Contrarily to the previous methods, the approach proposed by Liang, Taft and
Yu [LTY06] –which they called PAMTRAM for PArtial Measurements of TRAffic Matrices–
does not need a 24 hours-period of intensive measurements. Instead, the proposed scheme
is to measure a different subset of OD-pairs during each time interval. Typically, Netflow is
activated on only one router during each time interval. Their method can be summarized
as follows: during the tth time interval,
• Read both the SNMP data and the direct Netflow measurements from the router that

was selected at t− 1:

yt = A′
txt, where A′

t =










At

eN(t),1
T

...
eN(t),n

T










,

N(t) is the index of the router where Netflow was activated during the tth time interval
(as selected at time t− 1), and eo,d is the canonical vector of the basis of Rm which
has a 1 on the coordinate indexed by the OD pair (o, d). (We recall that we use double
indices to facilitate the notation, although the traffic matrices xt are in vector form.)
• Compute the estimate of the traffic matrix x̂t with the IPF algorithm, which performs

the entropic projection of x̂t−1 onto the space {x : A′
tx = yt}, see Section 9.5.3.
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• Choose the Router N(t+ 1) where Netflow will be activated next. (Several schemes
for choosing N(t + 1) are presented in [LTY06], some relying on game theoretic
arguments.)

Liang, Taft and Yu justify the use of the IPF algorithm (and thus of entropic projec-
tions) by the following statistical argument. If we consider the statistical model of Cao et.
al. [CDVY00] for c = 1 (see Section 8.2.3):

xt ∼ N (λ,Σ),

where Σ = φDiag(λ), then the maximum likelihood estimate of xt given yt = Axt is

E [xt|yt,λ, φ] = λ + ΣAT (AΣAT )−1(yt − Aλ). (8.5)

The latter expression does not depend on φ and corresponds to the solution of the opti-
mization problem

min
x

m∑

k=1

(

xk − λk√
λk

)2

(8.6)

s. t. Ax = yt.

Now, let us consider the optimization problem solved by the IPF algorithm (we refer the
reader to Section 9.5.3 for a detailed analysis of this algorithm):

min
x

m∑

k=1

xk log
(
xk

λk

)

s. t. Ax = yt.

If the optimum is not too far from λ, we may use a first order approximation of the
cross-entropy criterion:

m∑

k=1

xk log
(
xk

λk

)

≈
m∑

k=1

xk

(
xk

λk

− 1
)

.

Assuming further that the vector λ is nonnegative, and
∑m

k=1(λk − xk) ≈ 0, we obtain:

m∑

k=1

xk log
(
xk

λk

)

≈
m∑

k=1

x2
k

λk

− xk +
m∑

k=1

(λk − xk) =
m∑

k=1

(

xk − λk√
λk

)2

,

which is the objective function of Problem (8.6).

In practice, λ is unknown, but the authors of [LTY06] argue that it can be approximated
by the previous estimate of the traffic x̂t−1. Therefore, they claim that the entropic pro-
jection of x̂t−1 onto the space {x : A′

tx = yt} should be a good approximation of the
estimator (8.5). The benefit of using the IPF algorithm instead of Formula (8.5) is twofold:
the IPF algorithm runs very fast and avoids heavy matrices inversions (as required in (8.5));
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the solution returned by the IPF is guaranteed to be positive, which is a desirable feature
for any decent estimate of the traffic matrix.

8.4 Brief comparison of the approaches presented in this chapter

We conclude this chapter with a summary of the different approaches to estimate the
traffic matrices. Several comparison were done [MTS+02, SLT+05, LTY06, CVFC09] and
we try to present them in a unified way (Table 8.1). This table summarizes several properties
of the estimates from each method:
• Average temporal L2 error : The temporal L2 error of an estimate x̂t of the flows at

time t is defined as
‖xt − x̂t‖2

‖xt‖2

.

The first column of the table gives the average of this error over the global observation
period divided in T time intervals.
• Average spatial L2 error : The spatial L2 error of an estimate x̂o,d = [x̂

(1)
o,d, . . . , x̂

(T )
o,d ]T

of the time series of the flow volumes from O to D is defined as

‖xo,d − x̂o,d‖2

‖xo,d‖2

.

The second column of the table gives the average of this error over the m considered
OD flows.
• OD flows with an error < 20%: fraction from the m OD flows which have a spatial

L2 error lower than 20%.
• fraction of traffic with an error <10%: Same as previous column, but the ratio is

computed with respect to volume of traffic correctly estimated (instead of the number
of flows). This indicator thus gives more weight to heavy flows (by comparison to
that of previous column).
• Netflow measurements: Do we need Netflow data, and at which frequency ?
• Adaptivity : Does the estimate quickly adapt when a sudden change in the traffic

matrix occurs ? This feature was analyzed by Soule et. al. [SLT+05]. We think that
the adaptivity of the methods of EM, routing changes, and splines must be very bad,
because these methods rely on strong assumptions which become wrong when there is
a change in the traffic matrix. By contrast, the adaptivity of the PAMTRAM method
should be very good, because the inference relies on the tomogravity method, which
has an excellent adaptivity.
• Bias: Does the mean of the estimate coincide with the mean of the real traffic ?
The entries in the table which are preceded from the sign ≈ may not be very accurate,

because they were inferred from a (small) graph in [SLT+05].

The data from this table comes from heterogeneous sources (see the superscripts and
the notes below the table), and two entries should not be compared on an absolute basis
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when they have different superscripts. For example, the upper left entry of the table (25%
or 11%) shows that the experimental conditions of [CVFC09] (natural symbol ♮), might be
easier than in [SLT+05] (dagger symbol †). This indicates that one should not conclude
with certainty that the spline method is better than the fanouts method, by comparing the
8% entry and the 15% entry in the first column of the table.

However, the numbers in the table show the order of magnitude of the errors for each
method. For example, we see clearly that the methods relying on Netflow produce better
results. We see that the tomogravity estimate, which is very simple to compute and does
not require any direct measurement, has the best adaptability. This estimate can thus be
used to track changes in the flow volumes [SLT+05]. Among the methods relying on link
counts only, the method based on splines seems to give the best results; among those relying
on Netflow, the PAMTRAM approach is probably the most practical (no intensive period of
calibration), and gives the best results.



8.4.
B

R
IE

F
C

O
M

PA
R

ISO
N

O
F

T
H

E
A

P
P

R
O

A
C

H
E

S
P

R
E

SE
N

T
E

D
IN

T
H

IS
C

H
A

P
T

E
R

163

Method
Avg temporal Avg spatial OD flows with fraction of traffic Netflow

Adaptivity Bias
L2 error L2 error error <20% with an error < 10% measurements

Tomogravity 25%†
≈27%† 25%† 40%♮ None Excellent† Strong†

[ZRDG03] or 11%♮ (+ or −)
EM algorithm

22%♭ 52%♭ None Very Bad ?
[CDVY00]
Routing Changes

45%† ≈43%† 4%† No, but several
Very Bad ?

[SNC+07] routing changes
Splines ML

8%♮ 75%♮ No, calibration with
Very Bad ?

[CVFC09] 1h of SNMP data
Fanouts

15%† ≈18%† 63%† 24 hours
Bad† No bias†

[PTL04] every ≈4th day
PCA

12%† ≈16%† 47%† 24 hours
Bad† Negative

[SLT+05] every ≈4th day bias†

Kalman
10%† ≈16%†

33%† 65%‡ 24 hours
Bad† Negative

[SSNT05] or 21%‡ every ≈4th day bias†

centered Kalman
4.5%♮ 65%♮ 24 hours

Bad ? No bias♮

[CVFC09] every ≈10th day
PAMTRAM

16.5%‡ 92%‡ Continuous, on
very good ?

[LTY06] only one router

References:
♭:Comparison of the Bayesian approaches with a LP approach [MTS+02]. Synthetic data on a 14-nodes topology.
†: Comparative study of [SLT+05]. Data from the Sprint Network, aggregated to the level of 13 PoPs. Only the largest flows, representing 95% of
the total traffic, are taken into account.
‡: Comparison between the PAMTRAM and the Kalman approach [LTY06]. Data from the Sprint Network, aggregated to the level of 12 PoPs.
Only the largest flows, representing 90% of the total traffic, are taken into account.
♮: Article [CVFC09]. Data Of Abilene (12 nodes) available at [Abi].
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Chapter 9

Information theory and entropic
projections

In this chapter, we review the information theoretic approach to the problem of inferring
the traffic matrix from link counts, which leads to entropy minimization problems with linear
constraints. We shall study the latter optimization problem in detail, and in particular the
similarities with the classic problem of matrix balancing.

9.1 The gravity model

Let us consider a network with a set of n sources and n′ sinks. An Internet provider
wishes to infer the traffic matrix (with m = nn′ unknowns), but the only piece of information
at her disposal is the volume of traffic (tIn

1 , . . . , t
In
n ) on the n ingress links and the traffic

(tOut
1 , . . . , tOut

n′ ) on the n′ egress links. This problem is actually equivalent to the problem
of inferring the traffic matrix from link counts (cf. Chapter 8), for the star-shaped network
depicted on Figure 9.1, in which the small square in the middle is a black box accounting
for all the unknown internal behaviour of the network.

We can normalize the vector of traffic x so that it sums to 1: pi := xi∑

j
xj

represents the

probability that a packet travelling on the network belongs to the ith OD pair. Following the
principle of maximum entropy, the probability distribution which best represents the current
state of knowledge is, among all those distributions satisfying the measurement equations,
the one with largest entropy. We illustrate this postulate with a classic combinatorial argu-
ment. Assume that the total number of packets that have travelled on the network during
the considered period is N =

∑n
i=1 t

In
i =

∑m
i=1 xi. We can count the number of allocations

of these N packets to the m = nn′ OD pairs for which the traffic is x = (x1, . . . , xm)T .
This number is given by the multinomial coefficient

W (x) =
N !

x1! · · ·xm!
.

165
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Figure 9.1: The star-shaped Network

In absence of additional information, we are going to assume that every one of these alloca-
tions has an equal probability of outcome, and we are going to select the allocation x which
is the most likely to be observed. In other words, our estimate of x must maximize W (x),
subject to the observations tIn and tOut on the access links of the network. Now, W (x)

has a complex expression, which is defined only for integer values of x. We remedy this
problem by maximizing 1

N
logW (x) instead, and by taking the limit as N grows to infinity:

1

N
logW (x) =

1

N
(logN !−

m∑

i=1

log(Npi)!),

where we have set pi = xi

N
. We assume that pi > 0 for every i (which is almost sure when

we let N →∞), and the Stirling approximation yields

lim
N→∞

1

N
logW (x) =

1

N
(N logN −

∑

i

(Npi) logNpi)

= logN −
∑

i

pi logN −
∑

i

pi log pi

= −
∑

i

pi log pi.

In conclusion, we are going to select the distribution of the traffic which maximizes the
entropy H(x) = −∑m

i=1
xi

N
log xi

N
. We now use double indices, such that xod represents the

traffic from o to d in order to simplify the notation. Our estimate will be the solution of



9.2. ENTROPIC PROJECTIONS 167

the following optimization problem:

min
x≥0

n∑

o=1

n′
∑

d=1

xod

N
log

xod

N
(9.1)

s. t.
n′
∑

d=1

xod = tIn
o (∀o ∈ [n])

n∑

o=1

xod = tOut
d (∀d ∈ [n′])

Interestingly, this optimization problem has a closed-form solution which we derive below.
Let us form the Lagrangian

L(x,λIn,λOut) =
n∑

o=1

n′
∑

d=1

xod

N
log

xod

N
+

n∑

o=1

λIn
o (tIn

o −
n′
∑

d=1

xod) +
n′
∑

d=1

λOut
d (tOut

d −
n∑

o=1

xod).

Let x be a solution of Problem (9.1). Since the objective function of this problem is
convex, and the constraints are affine, there must exist a Lagrange multiplier λ such that
(vecx,λ) is a saddle point of the Lagrangian:

∀o ∈ [n], ∀d ∈ [n′],
1

N
(log

xod

N
+ 1) = λIn

o + λOut
d .

Setting u = exp(NλIn) and v = N exp(NλOut − 1), where the exponential is taken
component-wise, we see that xod is of the form uovd for some vectors u and v. Substituting
this expression to x in the constraints of Problem (9.1), we see that u must be proportional
to tIn and v to tOut. Since the total traffic must sum to N , we finally obtain:

∀o ∈ [n], ∀d ∈ [n′], xod =
tIn
o t

Out
d

N
. (9.2)

This estimate of the traffic matrix, in which the traffic from o to d is proportional to the
incoming traffic at o, multiplied by the outgoing traffic at d is traditionally referred as the
gravity estimate, because of the similarity to Newton’s gravity law. Also note that this is a
rank-one approximation of the traffic matrix.

9.2 Entropic projections

The previous section justifies the use of the gravity model as a prior for the traffic
matrix. According to the information theory, a natural approach is to take as an estimate
the distribution of flows which satisfies all the measurement equations (access &internal
link counts), and is as hard to discriminate from the prior as possible (Principle of Minimum
Discrimination Information). We thus want to choose, among the vector of flows satisfying
the measurements, the one which is the closest to the prior, in terms of Kullback-Leibler
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divergence, (a.k.a. cross entropy). Here again, a combinatorial argument similar to the one
given in previous section can justify this approach. If we assume that every one of the N
packets is allocated to an OD with respect to the prior probability, then the vector x which
minimize the Kullback Leibler divergence (with respect to the prior) corresponds to the most
likely allocation of the packets to the OD pairs. This method has often been used in (road)
transportation planning, see e.g. Levinson and Kumar [LK94] and in telecommunication
networks [CDVY00, ZRDG03, LTY06], where the entropic projection of the gravity prior
onto the space of flows which satisfy the measurement equations is called tomogravity

estimate.

In the remaining of this chapter, we denote the prior estimate of the flows by c =

(c1, . . . , cm)T . This prior can be e.g. the gravity estimate, or an estimation of the flows at
a previous point in time, or a combination of both. The entropy projection problem follows:

min
x≥0

∑

i∈[m]:ci>0

xi(log
(
xi

ci

)

− 1) (9.3)

s. t. Ax = y

x ≥ 0

ci = 0 =⇒ xi = 0 .

We will assume that all the ci are positive in further discussion, because we only need solve
the problem (9.3) for the indices i such that ci 6= 0. The constraint Ax = y represents the
measurement equations (7.1), which comprise the SNMP data and Netflow measurements
(if any). In fact, we have subtracted

∑

i xi from the expression of cross-entropy to simplify
subsequent calculations (the resulting expression D(x‖c) =

∑m
i=1 xi(log

(
xi

ci

)

− 1) is still
referred as the Kullback Leibler divergence). This does not change the value of the minimizer
x, since the total traffic

∑

i xi is constrained by the observation equations Ax = y:

Assumption (A.1) Ax = y implies
m∑

i=1

xi = N.

In a variety of problems, the q × m matrix A only has 0/1 entries (when the traffic
of an OD pair is never split among different routes). In this case, we will often use the
following notation and terminology, which suggest that only SNMP measurements (link
counts) are available, and that A is the (0/1)-routing matrix of the network: we shall use
the index e (as edge) to denote a particular measurement, and the index p (as pair) to
denote a particular OD pair. We use the notation e ∈ p := {e ∈ [q] : Aep = 1} and
p ∋ e := {p ∈ [m] : Aep = 1}. This notation is better understood in the context of link
measurements, where e ∈ p is the set of all links that belong to the path of the pair p, while
p ∋ e represents the set of all the OD pairs p that traverse the link e. With this notation,
the measurement equation Ax = y becomes:

∀e ∈ [q], ye =
∑

p∋e

xp.
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9.2.1 The dual problem

Let us denote the Lagrange multiplier associated with the constraints of Problem (9.3)
as λ. We can form the Lagrangian:

L(x,λ) =
∑

i∈[m]

(xi log(
xi

ci

)− xi) + λT (y − Ax) (9.4)

The objective function of Problem (9.3) is strictly convex, and the constraints are affine
functions. Therefore, strong duality holds and finding a solution x to Problem (9.3) is
equivalent to finding some Lagrange multiplier λ such that (x,λ) is a saddle point.

∀i ∈ [m],
∂

xi

(L(x,λ)) = 0

⇐⇒ log(
xi

ci

) = (AT λ)i

We summarize the latter necessary condition in vector notation:

x = c⊙ exp(AT λ), (9.5)

where the multiplication ⊙ is elementwise, as well as the exponential. The latter expression
makes it possible to give the Lagrange dual function g(λ) = minx∈Rm L(x,λ) in closed
form, and the dual of Problem (9.3) is the unconstrained maximization problem:

sup
λ∈Rq

g(λ) := yT λ− cT exp(AT λ) (9.6)

The first order optimality condition of this problem ∇g(λ) = 0 is:

y = A
(

c⊙ exp(AT λ)
)

︸ ︷︷ ︸

S(λ)

. (9.7)

We now make the following (weak) assumption, which makes possible to express the
latter optimality condition as a system of polynomial equations:

Assumption (A.2) A has only rational entries, i.e.

∃β ∈ N, ∃[αi,p] ∈ Zq×m : ∀i, j, Ai,p =
αi,p

β

Under this assumption, the components of S(λ) can be rewritten as:

∀i ∈ [q], Si(λ) =
m∑

p=1

Ai,pcp exp(β−1
q
∑

j=1

αj,pλj).
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We define u = exp(β−1λ), so that the latter expression is polynomial in u:

∀e ∈ [q], Si(λ) = Pi(u) =
m∑

p=1

Ai,pcp

q
∏

j=1

u
αj,p

j .

The polynomial application P maps (R+)q onto itself, and the optimality condition of
Problem (9.3) are:

P (u) = P (exp(β−1λ)) = S(λ) = y. (9.8)

We point out that if A has only 0/1 entries, then the polynomial P takes a simple form
which is linear in each variable (cf. Example 9.2.1).

Proposition 9.2.2. If the equation P (u) = y has a positive solution u, or equivalently

if Equation (9.7) has a solution λ, we obtain the unique solution x of Problem (9.3) by

setting x = c⊙ exp(AT λ).

Proof. The Lagrangian of this problem is non-differentiable for vectors x lying on the bound-
ary of the positive cone ∂(R+)m. So let us assume that the solution of Problem (9.3) is
positive. In this case, as the affine constraints are automatically qualified, the duality
gap vanishes and the problem of finding a optimal Lagrange multiplier λ becomes equiv-
alent to solving (9.3). Conversely, if the optimal multiplier is λ, then the primal solution
x = c⊙ exp(AT λ) is positive.

9.3 Existence and uniqueness results

In this section, we will explicit necessary and sufficient conditions so that the dual prob-
lem (9.6) has a solution and is unique.

We denote by J the Kullback Leibler divergence appearing in the objective function of
Problem (9.3) :

J(x) =
m∑

i=1

xi(log(
xi

ci

)− 1). (9.9)

Proposition 9.3.1. The supremum in Problem (9.6) is attained by a vector λ∗ ∈ Rq if

and only if the equation Ax = y has a solution x0 > 0.

Example 9.2.1. When the matrix A has only 0/1, we can simplify the form of the polynomial equations (9.8),
by using the previously introduced notation:

Pe(u) =
∑

p∋e

cp

∏

e′∈p

ue′ = ye.

Let us consider the toy network of Example 8.2.1. If the prior estimate is c = (c1,2, c2,3, c1,3)T and the vector
of link counts is y = (ya, yb)T , the system of polynomials associated to Problem (9.3) reads:

c1,2ua + c1,3uaub = ya

c2,3ub + c1,3uaub = yb.
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Proof. We assume that there exists a vector x0 > 0 such that y = Ax0. Let F denote the
feasible set {x ≥ 0 : Ax = y}. This set is nonempty (it contains x0), closed, and bounded
by Assumption (A.1). Therefore, the strictly convex function J admits a unique minimizer
x∗ on F . We shall now see that x∗ is not on the boundary ∂(R+)q of the positive cone,
i.e. x∗ > 0.

Let I be the set of all indices i such that x∗
i = 0. If I is not empty, then x∗ 6= x0. Let

t be in [0; 1]; we define xt = (1− t)x∗ + tx0. Clearly, xt ∈ F . Now, let Φ be the function:

Φ(t) = J(xt) =
∑

i∈I
tx0

i log

(

tx0
i

ci

)

+
∑

j /∈I
((1− t)x∗

j + tx0
j) log

(

(1− t)x∗
j + tx0

j

cj

)

−
m∑

k=1

xt
k

︸ ︷︷ ︸

N

.

We have Φ(0) = J(x∗), and for all t > 0,

Φ′(t) =
∑

i∈I
x0

i (log

(

tx0
i

ci

)

+ 1) +
∑

j /∈I
(x0

j − x∗
r)(log

(

(1− t)x∗
j + tx0

j

cj

)

+ 1).

One can easily verify that
I 6= ∅ =⇒ lim

t→0+
Φ′(t) = −∞.

Hence, if t > 0 is small enough,

Φ(t)−Φ(0)
t

< 0

⇐⇒ Φ(t)− Φ(0) < 0

⇐⇒ J(xt) < J(x∗).

This is in contradiction with x∗ being the minimum of J over F . So, I = ∅ and x∗ > 0.
Hence, the Lagrangian is differentiable at x∗ and since the primal problem (9.3) is strictly
feasible, we know from the strong duality theorem that the dual problem (9.6) attains its
solution. In other words, there exists an optimal Lagrange multiplier λ∗ such that

S(λ∗) = y.

Conversely, if there is a vector λ∗ ∈ Rq such that S(λ∗) = y, it is clear that the vector
x∗ = c⊙ exp(AT λ∗) > 0 is a solution of the measurement equation y = Ax.

Remark 9.3.1. If there is no noise in the measurements, then the real traffic x is a solution
of the equation Ax = y. If x > 0, i.e. there is some traffic on all the OD pairs, then the
condition of Proposition 9.3.1 is fulfilled and the dual problem has a solution.

We next present a necessary and sufficient condition which ensures that the solution of
Problem (9.6) is unique.

Proposition 9.3.2. Let g be the dual function defined as in (9.6).

1. ∀λ ∈ Rq,∇2g(λ) is a positive semidefinite symmetric matrix (and hence g is convex).
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2. Furthermore, this Hessian is positive definite if and only if A has full row-rank (i.e.

the rows of A are linearly independent). In that case, g is strictly convex and the

minimizer (if it exists) is unique.

Proof. The Hessian ∇2g(λ) is the matrix whose entry (i, j) equals ∂2g(λ)
∂λi∂λi

= ∂Si(λ)
∂λj

:

(

∇2g(λ)
)

i,j
=

m∑

p=1

Ai,p Aj,p cp exp(AT λ)p.

Using a matrix notation, one may easily verify that ∇2g(λ) = ADAT , where D is the
diagonal matrix Diag

(

c⊙ exp(AT λ)
)

≻ 0. Hence, it is elementary that ∇2g(λ) is positive
semidefinite, and positive definite if and only if A has full row-rank.

In fact, if the rows of A are not linearly independent, then it means that there is some
redundancy in the measurement equations. Hence, in the case of noiseless measurements,
we do not loose any information by removing those rows in A that are linear combinations
of the others. For the remaining of this chapter, we thus make the following assumption:

Assumption (A.3) The rows of A are linearly independent

Corollary 9.3.3. The application P is a C1−diffeomorphism which maps (R∗
+)q onto the

cone K := {y ∈ Rq : ∃x > 0 : Ax = y}. In particular, P−1 exists on K, and is one to

one.

Proof. Let y ∈ K. By Proposition 9.3.1, the dual problem (9.6) has a solution λ∗ ∈ Rq.
which is unique by strict convexity of g (Proposition (9.3.2) and Assumption (A.3)). Hence,
u∗ = exp(β−1λ∗) is the unique solution of the polynomial system P (u) = y. This shows
already that P−1 exists and is one-to-one.

Moreover, we have from the chain rule:

∇2g(λ) =
∂S(λ)

∂(λ1, . . . , λq)
=
∂P (exp(β−1λ))

∂(λ1, . . . , λq)
Diag

(

β−1 exp(β−1λ)
)

,

where ∂
∂(λ1,...,λq)

denotes the Jacobian matrix. After the change of variable u = exp(β−1λ),
we obtain:

∀u > 0,
∂P (u)

∂(λ1, . . . , λq)
= β ∇2g(λ) Diag(u)−1.

By Proposition (9.3.2) and Assumption (A.3), the Hessian matrix∇2g(λ) is positive definite,
such that the Jacobian determinant

∣
∣
∣
∣
∣

∂P (u)

∂(λ1, . . . , λq)

∣
∣
∣
∣
∣



9.4. HISTORIC RELATION WITH MATRIX BALANCING 173

is positive for all u > 0. Finally, P : (R∗
+)q −→ K is C1, injective, and its Jacobian

determinant never vanishes. Hence, the statement of the corollary follows from the global
inverse mapping theorem.

9.4 Historic relation with Matrix balancing

The problem of Matrix Balancing has been widely studied in the 60’s and 70’s by several
authors [Bru68, Men67, MS69, Bre67a, Bre67b]. The problem (9.3) of minimizing an
entropy under affine constraints can actually be considered as a generalization of a Matrix

Balancing. For this reason, most of the algorithms to solve (9.3) are generalizations of
algorithms that have been used to solve the Matrix Balancing problem. In this section, we
give a brief review on this problem and the algorithms to solve it.

9.4.1 The Matrix Balancing problem

Given a matrix H of size n× n′ with nonnegative entries, a row vector c of size n′ and
a column vector r of size n, the problem of matrix balancing is that of finding the matrix
X the closest to H (in terms of Kullback-Leibler distance), whose row sums are given by r

and whose column sums are given by c:

min
X∈Rn×n′

∑

i∈[n]
j∈[n′]

Xi,j log

(

Xi,j

Hi,j

)

s. t. ∀i ∈ [n],
∑

j∈[n′]

Xij = ri (9.10)

∀j ∈ [n′],
∑

i∈[n]

Xij = cj

Xi,j ≥ 0.

In fact, this problem is strictly equivalent to Problem (9.3), when the graph is the
star-shaped network introduced in Section 9.1 (cf. Figure 9.1), with r = tIn and c = tOut.

9.4.2 Algorithms for Matrix balancing

The first algorithm to solve Problem (9.10) was attributed to Sheleikhovskii (1930’s)
by Bregman [Bre67a], who further proved the convergence of this method. This Algorithm
has been called matrix scaling, because each iteration of the algorithm consists either in a
normalization of the rows or of the columns of X (see Algorithm 9.4.1).
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Algorithm 9.4.1 Matrix scaling algorithm of Bregman

X(0) ← H
for t = 0, 1, 2, . . . , do

∀(i, j) X
(t+)
ij ← X

(t)
ij

ri∑

j′ X
(t)

ij′

∀(i, j) X
(t+1)
ij ← X

(t+)
ij

cj
∑

i′ X
(t+)

i′j

end for

Interestingly, with the help of Hilbert’s projective metric and Perron Frobenius the-
ory [FL89] (see also [BR97]), it was shown that this algorithm has a linear rate of conver-
gence (for the Hilbert metric), and that the rate of convergence is bounded by tanh∆(H)

4
,

where ∆(H) is the diameter of the image of (R+)n under the operator H:

∆(H) = log max
i,j,k,l

HikHjl

HilHjk

.

Taking into account the fact that the optimal solution X∗ can be obtained only by rows and
columns scalings, Brualdi [Bru68] looked for a solution of the form X∗ = U∗HV ∗, where U∗

and V ∗ are diagonal matrices. He proved that such a diagonal scaling was possible when H
is fully indecomposable under an simple condition on its zero pattern. He further proposed
the update rules of Algorithm 9.4.2 to compute U∗ = Diag(u∗) and V ∗ = Diag(v∗).

Algorithm 9.4.2 Dual matrix scaling algorithm

u(0) ← 1 ∈ Rn

v(0) ← 1 ∈ Rn′

for t = 0, 1, 2, . . . , do
∀i ∈ [n], u

(t+1)
i ← ri∑

j
Hij v

(t)
j

∀j ∈ [n′], v
(t+1)
j ← cj

∑

i
Hij u

(t)
i

X(t+1) ← Diag(u(t+1)) H Diag(v(t+1))
end for

Algorithm 9.4.2 is basically a dual approach to solve problem (9.10), and the sequence
of matrices (X(t))t∈N that it generates is exactly the same as the one generated by Algo-
rithm 9.4.1. Menon and Schneider [Men67, MS69] studied the spectrum of the operator T
that associates v(t) to v(t+1), and showed that it has a single eigenvalue, namely 1 in the
natural case where

∑

i ri =
∑

j cj: v∗ is therefore a fixed-point of T . This dual approach
allows to store much less variables than the primal one.

9.5 Algorithms for the problem of entropic projection

In this section, we shall review the algorithms to solve Problem (9.3), with a particular
focus on the relations with algorithms for matrix balancing. We show that the direct
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generalization of Algorithm 9.4.2 works if and only if all the OD pairs considered in the
network are of length at most 2. We next present a variant of the latter algorithm, in
which the coordinates of the variable are updated one at a time, in a cyclic manner (instead
of being updated simultaneously). This algorithm is called Iterative Proportional Fitting

(IPF) in the traffic matrix literature [CDVY00, LTY06], and belongs to the class of cyclic
projection algorithms. Therefore it has a linear rate of convergence.

9.5.1 A fixed point algorithm

We have seen in the previous section that the matrix balancing algorithm was well
suited to solve Problem (9.3) on the star-shaped network (Figure 9.1). Assume that the
prior estimation of the OD traffic is c = (ci,j)i∈[n],j∈[n′]. On this network, the polynomial
equation P (u) = y (9.8) takes the following form







∀i ∈ [n],
∑

j∈[n′]

ci,j u
In
i uOut

j = tIn
i ;

∀j ∈ [n′],
∑

i∈[n]

ci,j u
In
i uOut

j = tOut
j ,

where we have split the variable u in two vectors uIn and uOut, as corresponding to the
constraints on the incoming traffic tIn and the outgoing traffic tOut, respectively. The
solution of this system is a fixed point of the operator T : (uIn,uOut) −→ (vIn,vOut),
where

∀i ∈ [n], vIn
i :=

tIn
i

∑

j ci,j uOut
j

and ∀j ∈ [n′], vOut
j :=

tOut
j

∑

i ci,j uIn
i

.

The reader can easily verify that the fixed point iterations of the operator T correspond
exactly to the iterations of the dual matrix scaling (Algorithm 9.4.2), when the prior matrix
is H := [ci,j], the row sums are given by r := tIn and the column sums by c := tOut. The
variables u and v of the Brualdi iterations correspond respectively to uIn and uOut.

In fact, a straightforward generalization of this algorithm to an arbitrary network is
possible when A has only 0/1 entries. The polynomial equations P (u) = y (9.8) take in
that case the form (cf. Example 9.2.1):

∀e ∈ [q],
∑

p∋e

cp

∏

e′∈p

ue′ = ye. (9.11)

For all e, and for every OD pair p which is measured on link e (p ∋ e), the product
∏

e′∈p ue′

contains the factor ue. As done previously for the star-shaped network, we can thus write
the solution of the polynomial system (9.11) as a fixed-point of the operator T which maps
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(R∗
+)q onto itself, and is defined by:

∀e ∈ [q], Te(u) =
ye

∑

p∋e

cp

∏

e′∈p
e′ 6=e

ue′
. (9.12)

The polynomial equations (9.11) are equivalent to the fixed point equations : u = T (u).
In what follows, we also denote by Q the denominator of T :

Qe(u) :=
∑

p∋e

cp

∏

e′∈p
e′ 6=e

ue′ . (9.13)

If T is nonexpansive, algorithms such as

un+1 = T (un)

are likely to converge. But the following proposition makes it difficult for T to be nonex-
pansive. First of all, let us introduce the partial Thomson metric as well as some other
definitions [AGLN06]:

Definition 9.5.1. The partial Thomson metric dT is defined on (R∗
+)q as :

dT (x,y) = log(max
i∈[q]

(
xi

yi

,
yi

xi

)).

Definition 9.5.2. An application f which maps (R∗
+)q onto itself is said to be

dT−nonexpansive when

∀x,y ∈ (R∗
+)q, dT (f(x), f(y)) ≤ dT (x,y).

Definition 9.5.3. An application f : (R+)q −→ (R+)q is said to be decreasingly subhomo-

geneous when
∀λ ≥ 1,∀x ∈ (R+)q, f(λx) ≥ λ−1f(x),

where the latter inequality is component-wise.

Definition 9.5.4. An application f : (R+)q −→ (R+)q is said to be increasing (resp.
decreasing) when

(x ≤ y) =⇒ (f(x) ≤ f(y)) (resp. f(x) ≥ f(y)),

where the inequalities are component-wise.

We still need a few lemmas to prove the next proposition :

Lemma 9.5.5. Assume that f : (R∗
+)q −→ (R∗

+)q is decreasing. Then,f is decreasingly

subhomogeneous if and only if f is dT -nonexpansive.
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Proof. Let f : (R∗
+)q −→ (R∗

+)q be a decreasing application.

We first assume that f is decreasingly subhomogeneous (DSH). let x and y be two
vectors in (R∗

+)q, and λ be a real with λ ≥ maxi(
xi

yi
, yi

xi
), so that log(λ) ≥ dT (x,y).

We have : {

y ≤ λx

x ≤ λy.

Hence, y ≤ λ2y and λ ≥ 1. Thus, we can use the DSH assumption for f :
{

f(y) ≥ f(λx) ≥ λ−1f(x)

f(x) ≥ f(λy) ≥ λ−1f(y)

=⇒







∀i, fi(x)
fi(y)
≤ λ

∀i, fi(y)
fi(x)
≤ λ

=⇒ max
i

(

fi(x)

fi(y)
,
fi(y)

fi(x)

)

≤ λ

=⇒ log(λ) ≥ dT (f(x), f(y))

When log(λ) −→ dT (x,y), we obtain : dT (f(x), f(y)) ≤ dT (x,y)

Conversely, assume that f is dT−nonexpansive. Let x ∈ (R+)q and λ ≥ 1. Let y = λx,
such that dT (x,y) = log(λ). We have y ≥ x, thus f(y) ≤ f(x) (f is decreasing). We
now use the dT−nonexpansiveness of f :

log(λ) = dT (x,y) ≥ dT (f(x), f(y)) = log

(

max
i

fi(X)

fi(Y )

)

,

from which we deduce:

∀i ∈ [q], λ ≥ fi(x)

fi(y)

=⇒ λf(y) ≥ f(x)

=⇒ f(λx) ≥ λ−1f(x).

Lemma 9.5.6. T is decreasing. Moreover, T is decreasingly subhomogeneous if and only

if its denominator Q is subhomogeneous, i.e.

∀λ ≥ 1,∀u ∈ (R∗
+)q, Q(λu) ≤ λQ(u).

Proof. This is trivial from the definition of T (9.12).

Proposition 9.5.7. T is dT−nonexpansive if and only if every OD pair p ∈ [m] is of length

at most 2.
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Proof. Thanks to the previous lemmas, we only need to show that

(∀p ∈ [m], length(p) < 2)⇐⇒ (Q is subhomogeneous).

If every OD is of length 2 or less, then we can rewrite Q (see Expression (9.13)) as

∀e ∈ [q], Qe(u) = c(e) +
∑

p={e,e′}
cpue′

where c(e) is the prior traffic on the OD which traverses only the edge e, (we set c(e) to 0 if
no such OD exists), and p = {e, e′} represents the OD pair comprising the two links e and
e′. Thus, for λ ≥ 1, we have

λQe(u)−Qe(λu) = λc(e) − c(e) ≥ 0.

Therefore, Q is subhomogeneous. Conversely, assume that there are some ODs of length
larger than 2. Let n(e) be the length of the longest road that traverses e, and Pk

e be the
set of all pairs of length k which traverse e. We can rewrite Q as:

Qe(u) =
n(e)
∑

k=1

∑

p={e,e′
1,...,e′

k−1}
p∈Rk

e

cpue′
1
· · ·ue′

k−1
.

Thus, for λ ≥ 1 and n(e) > 2, we have

λQe(u)−Qe(λu) =
n(e)
∑

k=1

(λ− λk−1)
∑

p={e,e′
1,...,e′

k−1}
p∈Pk

e

cpue′
1
· · ·ue′

k−1
= Oλ→∞(−λn(e)−1)

Hence, if λ is large enough, λQ(u) < Q(λu), and Q is not subhomogeneous.

Note that in the star-shaped Network, every OD has length 2, which explains why Brualdi
iterations converge. For arbitrary networks however, the condition on the length of the OD
is very restrictive. Hence, we should rather use other kind of generalizations of the matrix
balancing algorithm, which we next present.

9.5.2 Bregman’s Balancing Method

A large class of Algorithms to solve unconstrained minimization problems is called the
coordinate-descent: At each step of the computation, the objective function is minimized
along one coordinate only, and this is repeated cyclically for each coordinates of the variable.
In our case, when strict convexity of g is achieved (Assumption (A.3)), minimizing the
objective function g(λ) for the coordinate λi is equivalent to solving in λi the equation
∂g
∂λi

(λ) = Si(λ) − yi = 0, when every other λj (j 6= i) is considered as constant. This
method (Algorithm 9.5.1) was attributed to Bregman for its similarity with the dual form of
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matrix balancing [Bre67a] (and this of the fixed-point algorithm studied in previous section,
cf. Remark 9.5.1).

Algorithm 9.5.1 Bregman’s Balancing Method

Choose λ(0) ∈ Rq and ǫ > 0 sufficiently small
t← 0
repeat

i← (t mod q) + 1
Find the unique solution µ of the following equation:

S
(
λ

(t)
1 , . . . , λ

(t)
i−1, µ, λ

(t)
i+1, . . . , λ(t)

q

)
= yi.

λ(t+1) ← λ(t)

λ
(t+1)
i ← µ

t← t + 1
until ‖∇g(λ(t))‖ < ǫ
Stop with the ǫ−optimal Lagrange multiplier λ∗ = λ(t) and obtain the primal solution x∗

according to Equation (9.5).

convergence It is shown in [AO82] that descent coordinates methods have a linear rate
of convergence as soon as the objective function is strictly convex. This is guaranteed by
Assumption (A.3).

Remark 9.5.1. When the matrix A has only 0/1 elements, we can give the solution of the
equation in Algorithm 9.5.1 in closed-form: the equation becomes

∑

p∋e

cp exp(
∑

e′∈p

λ
(t)
e′ ) = ye,

where the unknown is λ(t)
e , and we have:

λ(t)
e = log








ye
∑

p∋e

cp exp(
∑

e′∈p, e′ 6=e

λ
(t)
e′ )








If we use the notation u = exp(λ), this gives the update rule:

u(t+1)
e =

ye
∑

p∋e

cp

∏

e′∈r
e′ 6=e

u
(t)
e′

The similarity with the fixed-point iterations of the operator T studied in Section 9.5.1 is
striking. The only change is the update pattern : unlike fixed points iterations, where every
coordinate of u were updated as the same time, Bregman’s iteration consist in a Gauss-Siedl

pattern with the same operator T , that is to say that the coordinates are updated one at a
time.
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9.5.3 Iterative proportional Fitting

Unlike the previous method, the Iterative Proportional Fitting (IPF) makes no use of the
dual form of the problem, and is probably the one that has been the most used in the area
of traffic matrices estimation [CDVY00, LTY06, ZRDG03].

We denote by Li the (truncated) hyperplane of all vectors x ≥ 0 verifying the ith row
of the system y = Ax, that is to say

Li = {x ≥ 0 : ai
T x = yi},

where ai
T is the ith row of the matrix A, and by V the intersection of those hyperplanes:

V =
⋂

i∈[q]

Li. The problem (9.3) becomes

min D(x‖c)

s. t. x ∈ V =
⋂

i∈[q]

Li

There’s a wide literature [Bre67b, BBL95, BB96, DH94] about methods called cyclic
projections, used to compute the (Kullback-Leibler) projection of a vector onto the
intersection of several hyperplanes. In these methods, we compute at each iteration
projection x(t+1) of the current variable x(t) onto the hyperplane Li, where i is an index
that goes cyclically through [q]

To find the projection x̂ of x onto Li, the reader can verify that there must exist a
scalar Lagrange multiplier λ such that

∀p ∈ [m], x̂p = cp exp(λAi,p),

and λ can be computed by substituting the latter expression in ai
T x = yi. :

∑

p∈[m]

Ai,pcp exp(λAi,p) = yi (9.14)

If the matrix A has only 0/1−elements, the reader can verify that the Kullback Leibler
projection x̂ of x on Le is given by :

∀p ∈ [m], x̂p =

{

xp
ye

Aex
if p ∋ e;

xp otherwise.
(9.15)

There is a variant of this algorithm, called MART (Multiplicative Algebraic Reconstruc-
tion Technique) which generalizes the update given above for observation matrices whose



9.5. ALGORITHMS FOR THE PROBLEM OF ENTROPIC PROJECTION 181

all elements are in the interval [0, 1]. This method was introduced by Gordon, Bender and
Herman [GBH70] for an application to image reconstruction. The idea is to take a first-order
approximation of Equation (9.14), from which we obtain:

x̂p = xp

(
yi

Aix

)Ai,p

Algorithm 9.5.2 Iterative Proportional Fitting (or MART)
Choose ǫ > 0 sufficiently small
t←− 0
x(0) ←− c

repeat
i←− (t mod q) + 1
for p ∈ [m] do

x
(t+1)
p ←− x

(t)
p

(
yi

Aix
(t)

)Ai,p

end for
t←− t + 1

until ‖(Ax(t) − y)‖ < ǫ
Stop and set x∗ = x(t).

rate of convergence It was shown [BBL95] that cyclic projection methods (for Euclidean
projections) do converge at a linear convergence rate given by the “angle” between the
hyperplanes. Similarly, Iusem [Ius91] worked on the convergence of cyclic projections with
the Kullback-Leibler divergence and proved a linear convergence. This time, the rate depends
on a geometric parameter θ given by

θ = inf
x/∈V

max
i∈[q]

dQ(x, Li)

dQ(x,V)
(9.16)

In this expression, dQ(·, ·) is the distance associated to the scalar product 〈x,y〉 :=

xTQy, where Q is the hessian of the cross-entropy, calculated at the optimal point x∗ of
Problem (9.3), i.e. Q = Diag(1/x∗

1, ..., 1/x
∗
m). Iusem showed [Ius91] that θ ∈ [0, 1] and the

sequence (x(t))t∈N generated by the cyclic projection algorithm (i.e. Algorithm 9.5.2 when
A is 0/1) converges with a rate no worse than ρ = q

q+θ2 (for the norm dQ). Elfving [Elf80]
proved that the convergence of the MART algorithm is also linear for observation matrices
A with fractional components.

Remark 9.5.2. When the matrix A has only 0/1 entries, the algorithms 9.5.1 and 9.5.2
generate the same sequence of variable x(t). The connection between these algorithms was
established by Censor et. al. [CDPE+90] (see also [FRT97]). In fact, Bregman’s balancing
method 9.5.1 is to the IPF algorithm 9.5.2 as the dual method for matrix balancing 9.4.2 is
to the primal 9.4.1. The main difference between the former (matrix balancing algorithms)
and the latter algorithms (entropy projections) is the order in which we update the variables
(simultaneously or cyclically).
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9.6 Second order methods

In order to achieve a better performance, we could use Newton iterations to solve the
unconstrained optimization problem (9.6). It is well known that Newton algorithm exhibits
a local quadratic convergence, but the global convergence is not always achieved. We faced
a lot of issues, even on small examples, when the initial guess λ(0) is far away from the
optimal solution λ∗ and the Newton sequence diverges.

Algorithm 9.6.1 Curved-Search Descent
t← 0

λ0 = 0 ∈ Rq

repeat
Choose some parameters α(t) and β(t)

h(t) ← ∇g(λ(t))

H(t) ← ∇2g(λ(t))

d(t) ← −β(t) ‖h(t)‖2[H(t)]−1

(h(t))T [H(t)]−1 h(t) h(t)

z(t) ← −α(t)‖h(t)‖h(t)

Set λ(t+1) as the minimizer of g along the quadratic curve u 7→ λ(t) + ud(t) + u2

2 z(t)

t← t + 1

until ‖h(t)‖ < ǫ

Stop with the ǫ−optimal Lagrange multiplier λ∗ = λ(t) and obtain the primal solution X∗

according to Equation (9.5).

For this reason,as proposed in [FRT97], we can use a curved-search algorithm, which is
a mix between Newton’s method and the gradient descent method. Curved-Search algo-
rithms have been introduced by Ben-Tal, Melman and Zowe [BTMZ90] in order to solve
unconstrained convex minimization programs with a quadratic rate of convergence. In fact,
as explained in [FRT97] this algorithm turns out to be a nonlinear combination of the signed

Newton’s method and the steepest descent direction: At each step of Algorithm 9.6.1, d(t)

is a Newton’s direction, and z(t) is a steepest gradient direction. The difficulty in this
algorithm is to determine appropriate values for the nonnegative parameters α(t) and β(t).
One should notice that when α(t) = 0, the iteration described in Algorithm 9.6.1 is simply
a gradient step, and when β(t) = 0, this is a Newton step. In [BTMZ90], the authors study
a version of the latter algorithm which converges to the unique minimum of the strictly
convex function g at a quadratic rate.



Chapter 10

Optimization of Netflow
measurements

We address in this chapter the problem of optimizing the use of Network monitoring tools,
such as Netflow (Cisco Systems), on a large IP network, and we present in greater details the
results of [SBG10, SGB10]. Some results of this chapter, including our experimental design

formulation of the optimal monitoring problem, were presented at the conference [BGS08].

We shall see that the theory of optimal experimental design, studied in Part I of this
manuscript, is a natural framework for both the combinatorial problem of selecting the “best”
subset of interfaces on which Netflow should be activated, and the problem of finding the
optimal sampling rates of the network-monitoring tool on these interfaces. The main issue
is the size of the matrices involved in this problem, which are of size n2 × n2 on a network
with n nodes. Both SDP and multiplicative algorithms approaches fail to be efficient, as
seen in Chapter 6.

We develop a new method, which reduces to solving a stochastic sequence of Second
Order Cone Programs. From a theoretical point of view, our approach is actually equivalent
to compute an experimental design for a new design criterion, which is defined as the
expected value of the c−optimal designs, when the vector c is drawn from a Gaussian
distribution. We approximate this design by taking the mean of several c−optimal designs,
a scheme which we have called “Successive c−optimal designs” (SCOD). The motivation
for this new method resides mainly in the size of the problems which it can handle: we
have seen in Chapter 6 that it is possible to solve very large instances of c−optimal design
problems by SOCP. Interestingly, there are also some heuristic arguments which let us think
that the SCOD approximates the classic A−optimal design. We will show by examples that
this fact is verified in practice, and we will derive some bounds between the SCOD and the
A−optimal design in simple cases.

We next give experimental results relying on real data from both Abilene and the Open-
transit network of France Telecom, which show that our approach can be used for instances
that were previously intractable, and we compare our method to previously proposed ones:

183
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• Several networks are not (or only partially) instrumented with routers that support
Netflow. If an Internet provider wishes to equip a number of additional routers with
Netflow, an interesting problem is thus to identify the most meaningful subset of
locations for the monitoring-tool. We shall compare our SCOD approach to the
greedy algorithm [SQZ06] for this problem.
• We next evaluate our approach for the problem of selecting the optimal sampling rates

of Netflow. The Internet provider typically sets a threshold the number of packets
that may be sampled at each router location during a given period of time. The goal
is thus to allocate optimal sampling rates to the incoming interfaces of each router,
while keeping the number of sampled packets under the threshold. For the Opentransit
network (with m = 13456 OD pairs), we do not know any other algorithm which can
handle this optimization problem.
• In a dynamic context, sampling rates should be optimized by taking into accounts

the errors on the past measurements. To this end, Singhal and Michailidis [SM08]
proposed to introduce in the information matrix of every design an additional term
which accounts for the covariance on the past measurements, and is computed via a
Kalman filter. We will show how to adapt this method to larger networks, thanks to
our SCOD method. In fact, we shall see by an example on the Abilene network that in
situations where the traffic has a very high variability, it is better to ignore the impact
of past measurements.

10.1 Background

10.1.1 Netflow measurements

We have seen in Chapter 8 that the problem of estimating the traffic matrix from link
counts is ill-posed, and we require additional information to solve this problem. A way
to introduce new constraints is to use a network-monitoring tool such as Netflow (Cisco
Systems), cf. Section 8.3.1. Of course, activating Netflow everywhere on the network yields
an extensive knowledge of the OD flows. According to [CIS07] however, activating Netflow
on an interface of a router causes its CPU load to increase by 10 to 50%. It is now possible
to use a sampled version of Netflow, which substantially decreases both the CPU utilization
and the bandwidth consumption caused by Netflow. It was shown indeed [CB05] that the
overhead involved by Netflow is roughly proportional to the sampling rates. The counterpart
of the sampling is of course that sampled measurements yield less accurate estimations of
the traffic. It is thus of great interest to optimize the use of this tool. The problem is both
to decide where to activate Netflow, and at which sampling rate.

Most operators collect Netflow information for multiple purposes, such as security or
billing, not only for estimating the traffic. However, we believe that the present approach,
which addresses the latter goal, might also be of some interest for other purposes, since
it indicates which routers or interfaces captures the most valuable information about the
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traffic. Moreover, we will see that this approach leads to a nice mathematical formulation
and to scalable algorithms.

Recall that when Netflow is activated on an interface of the network, it analyzes the
headers of the packets traversing this interface and collects some statistics, such as the
source and destination IP addresses of these packets (cf. Section 8.3.1). However, we are
not trying to infer the global path of the packets from IP source to IP destination, but
only the part of their path which is inside the network of interest, like the backbone of an
autonomous system (AS). In the sequel, we will use the terms internal source and internal

destination to refer to the ingress and egress routers of a packet within the backbone of
interest.

Practically, we will assume throughout this paper that when Netflow performs a mea-
surement on the kth interface, we are able to break out the flows traversing this interface
according to their internal destination. This results in a multidimensional observation yk,
whose entry d is the sum of all the flows traversing k and having the destination d. The
model is linear (cf. Example 10.1.1):

yk = Akx . (10.1)

Note that this assumption is more general and more realistic than the one made

Example 10.1.1. We observe Netflow records on the link Houston → LA of the Abilene backbone. This link
is used by the flows Kansas City→LA, Houston→Seattle, and by all the flows from any one of Houston,
Atlanta, or Washington to either LA or Sunnyvale.

Since Netflow “breaks” the flows with respect to their destination, we obtain three partial sums of the flows
listed above (in which the ODs are grouped with respect to their internal destination):

yHouston
→LA =






θHouston
→LA +θAtlanta

→LA +θWashington

→LA +θKansas
→LA

θHouston
→Sunnyvale +θAtlanta

→Sunnyvale +θWashington

→Sunnyvale

θHouston
→Seattle




 .

These three partial sums obviously carry more information on the traffic matrix than the SNMP data corre-
sponding to the same link (which consists in the sum of all the flows). For example, Netflow measurements
yield a direct estimation of the traffic from Houston to Seattle (third entry of yHouston

→LA ).
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in [SM08], where the authors assume that when the monitoring tool analyzes a packet,
it is able to find both its internal source and destination. In practice, one can find the
internal destination of a packet by simulating the path toward its ultimate destination with
the forwarding tables of the routers, but finding the internal source of a packet is a chal-
lenging issue. The main difference with the simplified model considered in [SM08] is that
the information matrices AT

kAk are not diagonal anymore, which makes the problem much
harder computationally.

A precise description of the classical methodology used to infer the origin-destination
traffic from Netflow measurements is made in [FGL+01]. It is common to activate Netflow
only on ingress links of a backbone in order to cope with the uncertainty on the internal
source of the packets. In this paper, we show that other deployment strategies can be useful.

10.1.2 Related work

Many authors from the network research community investigated the placement of Net-
flow. We briefly review their contributions:

Zang and Nucci [ZN05] posed the Netflow placement problem as an Integer program
whose objective is to minimize the cost of deployment of the monitoring tool on the network,
taking into account the costs required to upgrade the routers so that they support Netflow.
In this approach, the constraint imposes that Netflow monitors at least a fraction α of all
the traffic. They proposed two greedy heuristics in order to find a near-optimal solution to
this NP-Hard integer program.

Bouhtou and Klopfenstein [BK07] pursued this approach by taking into account the
variations of the traffic in time. In most networks, the routing table is not static indeed, and
the placement of Netflow must be robust to possible routing modifications. To tackle this
issue, the authors formulated an optimization problem with probability constraints which
can be approximated by a sequence of integer linear programs.

Cantieni, Iannaccone, Barakat, Diot and Thiran [CIB+06] interested themselves in the
optimal rates at which Netflow should be sampled on each router. They formulated a convex
optimization problem, in which the probability that a packet is intercepted by Netflow is
maximized. They solve this problem by a projected gradient algorithm.

Bermolen, Vaton and Juva [BVJ06] were the first to investigate the optimal placement
of Netflow in light of the experimental design background. Based on the model proposed by
Cao et al. [CDVY00], they suggested that the observation vector y has a normal distribution,
whose expected value and covariance matrix depends on the expected value x of the OD
flows, and derived the Fisher information matrix for any placement of the measures. The
authors of [BVJ06] give a scheme for selecting a few interfaces on which Netflow should be
activated in priority.

Song, Qiu and Zhang [SQZ06] used classical criteria from the theory of experimental
design to choose a subset of interfaces where Netflow should be activated, and developed
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an efficient greedy algorithm to find a near optimal solution to this combinatorial problem.
In Chapter 7, we have shown indeed that the greedy algorithm always finds a solution within
1− 1/e ≈ 62% of the optimum.

Singhal and Michailidis [SM08] considered a state-space model representing the evolution
of the traffic matrix over time, in which the estimation of the traffic can be done by a Kalman
filter. They successfully applied the experimental design theory to formulate the problem
of finding the sampling rates that minimize the covariance matrix of the Kalman filter as
a Semidefinite Program (SDP). Since the covariance matrix is computed recursively in the
filtering process, it contains information on the past measurements, and computing new
sampling rates at each time step makes the estimation more and more accurate.

10.2 Experimental design formulation of the problem

10.2.1 Netflow optimal deployment

Let I = {1, . . . , s} be the set of all interfaces on which Netflow can be activated. We
start with the discrete problem, in which the operator wants to choose a subset of these
interfaces for the Netflow measurements. Note that this problem is also meaningful when
a network is not yet or is only partially instrumented with routers supporting Netflow, and
when the Internet provider wants to equip a number of additional routers with a network-
monitoring tool.

We denote by Ia the set of interfaces on which Netflow is activated. The measurement
vector y is now the concatenation of the SNMP data ySNMP with all the Netflow measure-
ments (yk)k∈Ia . We define the design variable w as the 0/1 vector of size s, where wk

equals 1 if and only if k ∈ Ia. The measurements are never exact in practice, and so we have
to deal with a noise ǫ, which is a result, among other things, of lost packets, misalignment
of SNMP polling intervals, and Netflow sampling. This can be modeled as follows:

y = Aw x + ǫ, (10.2)

where y =










y0

yk1

...
ykn










and Aw :=










A0

Ak1

...
Akn










.

In the latter observation equation, we have used the index 0 to refer to the SNMP
measurements, which are available in any case (y0 = ySNMP and A0 = A). We assume
here that the noises on the observations are mutually independent, that is to say that the
covariance matrix Σ = E[ǫǫT ] is known and has only diagonal entries. To simplify the
notation, we will assume that Σ = I (one may always reduce to this case with a left scaling
(by Σ−1/2) of y, Aw and ǫ). Note that the vector of flow volumes x is the unknown in this
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problem, and plays the role of the parameter θ in the classic experimental design problems
studied in the first part of this thesis.

This observation model is clearly of the same kind of that studied in Chapter 7 (cf.
Equation (7.1)). Therefore, the experimental design approach consists in choosing the
design vector w so as to maximize the information matrix of the design:

M(w) = (Var x̂)−1 = AT
wAw

= AT
0A0 +

s∑

k=1

wkA
T
kAk, (10.3)

where x̂ is the best linear unbiased estimator of x:

x̂ =
(

AT
wAw

)−1
AT

wy. (10.4)

We can now give a mathematical formulation to the problem of optimally deploying
Netflow on no more than n interfaces:

max
w ∈{0,1}s

Φ
(

M(w)
)

s.t.
∑

i

wi ≤ n, (10.5)

where Φ is any design criterion from the experimental design literature.

10.2.2 Optimal sampling rates

We now show that the optimal sampling problem can be formulated in the form of Prob-
lem (10.5), too. Following [SM08], we assume that Netflow performs a random sampling
with rate wk on the interface k (this is one of the possibilities to configure the sampling of
Netflow, and considered as the best one in the Netflow services solutions guide [CISa]). As
explained in Section 10.1.1, Netflow can be used to sort the packets with respect to their
internal destination. Let Nkd be a counter that records the number of sampled packets
from interface k which have the internal destination d. This number follows a binomial
distribution with (yk)d = Akdx trials and probability of success wk, where Akd is the row
corresponding to the destination d in the matrix Ak. The best unbiased linear estimator of
yk is given by (ŷk)d = w−1

k Nkd, and we have:

Var(ŷk)d,d = w−2
k var(Nkd) = w−2

k wk(1− wk) ykd

≈ w−1
k (Akx)d, (10.6)

where the latter approximation is valid in the (expected) case where the sampling rates
are small. The aggregate observation matrix is now Ã := [AT , AT

1 , . . . , A
T
s ]T and does

not depend on the design w anymore (we assume that measurements are performed on
all interfaces: y = Ãx + ǫ). Instead, the vector of sampling rates w is involved in the
covariance matrix of the noise ǫ. We model the variance of the noise on the SNMP data
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as σ2I for a small parameter σ, while the variance of Netflow measurements follows from
Equation (10.6):

E[ǫǫT ] = Σ(w) =










σ2I
Diag(A1x)

w1

. . .
Diag(Asx)

ws










.

As in the discrete case, we can make explicit the best unbiased linear estimate of the flows
(which is given by the Gauss-Markov theorem 2.2.1), as well as the information matrix of
the sampling design w:

x̂ =
(

ÃΣ(w)−1Ã
)−1

ÃT Σ(w)−1y. (10.7)

M(w) =ÃT Σ(w)−1Ã.

Finally, we define the normalized observation matrices A0 = σ−1A0 and Ai =

Diag(Aix)−1/2Ai, so that the information matrix can be written as

M(w) = A0
T
A0 +

s∑

k=1

wkAk
T
Ak . (10.8)

Hence, the Φ−maximization of M(w) takes a similar form as Problem (10.5), with a
continuous variable w that is subject to linear constraints which we shall described in
Section 10.2.3.

It remains to cope with the fact that the normalized observation matrices Ai explicitly
depend on the unknown x. Similarly to what is done in [SM08], we use a prior estimate
of x to compute an approximate version of the Ai. In the numerical studies presented
in Section 10.5, we track the OD flows over time in a network, and we use the previous
estimate x̂t−1 in place of xt. At t = 1, we can use a tomogravity estimate of x, which is a
classical prior in the traffic matrix estimation literature (cf. Chapter 9).

10.2.3 Constraints on the sampling rates

Since the version 9 of Netflow, it is possible to set different sampling rates for each
interface of a router where Netflow is activated. The Internet provider typically sets a
threshold on the volume of packets to be analyzed with Netflow at each router location, so
as to limit the overhead. For a specific router R, the number of sampled packets can be
approximated by

∑

k∈IR

wkfk,

where the sum is carried out over the incoming interfaces IR of router R, and fk is the total
number of packets traversing interface k (cf. Figure 10.1). In practice, fk can be estimated
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Figure 10.1: Per-router constraints. A target number of packets to be analyzed by Netflow is set
by the ISP.

from previous values of the SNMP data. The constraints can thus be summarized as a set
of linear inequalities of the form Rw ≤ d, where the entries of R depends on ySNMP and d

is a target set by the Internet provider. This is an alternative approach to that of Singhal
and Michailidis [SM08], who use a matrix R depending only on the topology of the network.

10.3 Resolution of the problem: previous approaches

In this section, we review the previous methods that have been proposed to solve the
discrete Netflow optimal deployment problem, as well as its continuous relaxation (Netflow

optimal sampling). For simplicity of notation, we assume that the observation matrices have
already been normalized by the left diagonal scaling mentioned in Section 10.2.1, so that
M(w) takes the form (10.3). This allows us to handle both problems in a unified framework.
Note that any method which solves the continuous problem can be applied to obtain an
approximate solution to the discrete problem, by applying simple rounding heuristics.

10.3.1 Greedy Algorithm

In the discrete case, and when there is a single constraint of the form
∑

i wi ≤ n, we
can make use of a greedy algorithm, which is suggested by the results of [BGS08]. The
principle is to start from G0 = ∅ and to construct sequentially the sets Gk := Gk−1 ∪
argmaxi∈[s] ϕp(Gk−1 ∪ i), for k = 1, ..., n.

On a network with m = 104 OD pairs, the computation of the objective function Φp(w)

requires about 5 minutes on a PC at 4GHz, since it involves the diagonalization of a m×m
matrix. Consequently, selecting only one out of one hundred interfaces already requires
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more than 3 hours. The authors of [SQZ06] proposed to use the special values p = 0 or
p = −1 (D− and A−optimal design), for which we can implement the Fedorov sequential
design algorithm [Fed72], which computes efficiently the increment of the criterion thanks
to Sherman-Morrison like formulae:

(

M + AT
kAk

)−1
= M−1 −M−1AT

k

(

I + AkM
−1Ak

)−1
AkM

−1,

det
(

M + AT
kAk

)

= det(M) det
(

I + AkM
−1AT

k

)

.

At the beginning of the algorithm, the initial information matrix M0 = AT
0A0 is not

invertible. The authors of [SQZ06] remedy this problem by regularizing the initial observation
matrix: they set M0 = AT

0A0 + εI, with ε = 0.001. Although this trick may look arbitrary,
it leads to very good results.

If we leave aside the information from the SNMP measurements (M0 = εI), this algo-
rithm performs astonishingly well, and the set of interfaces of a very large network can be
ordered very quickly (it took 15 minutes on a PC at 4GHz to order in a greedy fashion the
116 routers of the Opentransit network with 13456 OD pairs). However, if we want to take
into account the SNMP measurement (so as to avoid redundancy), M0 is not sparse any-
more, and small-rank updates become computationally expansive. The authors of [SQZ06]
work on a similar experimental design problem, and store a sparse LU decomposition of Mk

in place of the full matrix M−1
k , which still allows one to compute M−1AT

k . In our case
though, the LU decomposition is full and the greedy updates are intractable.

10.3.2 Semidefinite Programming

We have seen in Section 3.3 that the E−, A− and D− optimal design problems can be
formulated as semidefinite programs (or as a MAXDET program). The great advantage of
SDP approaches resides in the possibility to handle the resource constraints Rw ≤ d. This
was noticed by Singhal and Michailidis [SM08], who have formulated the Netflow optimal
sampling problem under per-router constraints as:

min
q

m∑

j=1

qj (10.9)

s.t.

(

M(w) ej

ej
T qj

)

� 0, j = 1, ...,m

Rw ≤ d, w ≥ 0,

where ej denotes the jth vector of the canonical basis of Rm (the latter problem is for
A−optimality). Singhal and Michailidis further proposed to add in M(w) a constant term
which accounts for the covariance matrix of the errors of the past measurements, and which
is updated at each iteration by a Kalman filter.
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However, this SDP is intractable by state-of-the-art solvers for networks with more than
m ≈ 300 OD pairs, as corresponding to n = 17 nodes. Therefore, we need a new, scalable
method to solve the optimal sampling problem on large networks. We next present a new
design criterion which can be approximated by a sequence of second order cone programs,
even is the network is very large.

10.4 Successive c−Optimal Designs

The hardness of the optimal experimental design is linked to the large dimension of the
parameter that we want to estimate, which leads to large size covariance matrices. Rather
than estimating the full parameter x, a natural idea is to estimate a linear combination
z = cT x of the flows. This problem is called c−optimal design (cf. Section 2.3.1), and
consists in minimizing the (scalar) variance of the best linear unbiased estimator ẑ:

var(ẑ) = cTM(w)†c,

where M † denotes the Moore-Penrose inverse of M . Although scalar, the latter quantity still
depends (non-linearly) on a m×m matrix. Hence, the semidefinite programming approach
to solve this problem is intractable on large networks (cf. Chapter 6).

We have seen in Chapter 5 that the c−optimal design problem actually reduces to a
second order cone program (Theorem 5.2.3), which remains tractable on very large instances
of the problem (cf. Chapter 6). Let us recall this result: The c−optimal design problem
(minimizing cTM(w)†c under the constraints Rw ≤ d) is equivalent to the following
SOCP:

min
w, µ, (hi)i=0,...,s

s∑

i=0

µi (10.10)

AT
0 h0 +

s∑

i=1

AT
i hi = c

Rw ≤ d, w ≥ 0
∥
∥
∥
∥
∥

[

2h0

1− µ0

]∥
∥
∥
∥
∥
≤ 1 + µ0

∥
∥
∥
∥
∥

[

2hi

wi − µi

]∥
∥
∥
∥
∥
≤ wi + µi, (i = 1, . . . , s).

This theorem shows how to compute the optimal sampling rates w∗ of the measurements
(for the c−combination of the flows) by SOCP. This can be done very efficiently with interior
points codes such as SeDuMi [Stu99]. Moreover, this method takes advantage of the sparsity
of the matrices Ai, while both the SDP approach and the multiplicative algorithms involve
the information matrices AT

i Ai, which are not very sparse in general.
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In fact, Internet providers usually take advantage of Netflow measurements to estimate
several OD flows (not only a linear combination of them). The approach which we present is
a heuristic based on the computation of several c−optimal designs (for example, for several
vectors ci drawn from a normal distribution). The motivation for this approach comes from
this intuitive statement: if a design is good for the estimation of the linear combination of
the flows uT x for every randomly generated vector u (from a normal distribution), then it
should also be good for the estimation of x. We describe our method in more details in the
next section, and we give a heuristic argument for our approach in Section 10.4.2.

10.4.1 SCOD: a flexible scheme to select a design

Our method can be described by a parameter N , which indicates the number of
c−optimal designs to compute. Some vectors c1, . . . , cN ∈ Rm are selected by the ex-
perimenter. Then, a ci−optimal design wci

is found by solving the SOCP (10.10) for each
i ∈ [N ]. Finally, we combine the resulting designs by taking the mean.

The parameter N can be adjusted by the experimenter: it should be large enough, so
that the (generalized) Elfving set is measured in several directions (cf. Figure 5.1, page 92),
and so that the average blur the particularities of each individual ci−optimal design, but it
should remain small enough so as to keep the computation time reasonable.

An interesting feature of this method is the flexibility brought by the choice of the
vectors ci: if the Internet provider attaches equal importance to each OD pair, a natural
choice is to draw the vectors c from a normal distribution N (0, Im) (we call this scheme
“uniform SCOD”). If only a subset of all the OD flows is of interest (e.g. the ODs #1, #19,
and #31), then a possibility is to draw vectors ci which have nonzero components only on
the corresponding coordinates (e.g. c = Ku, for K = [e1, e19, e31] and u ∼ N (0, I3)).

Another possibility is to weight the importance of the different flows. For example,
if σi reflects the importance that the Internet provider attaches to the accuracy of the
estimation of the traffic on the ith OD pair, then we can draw the vectors ci with respect to
N (0,Diag(σ2)). In practice, the quality of an estimator x̂ for the traffic matrix is measured
by the L2 error of the flows:

Rel2(x̂) =
‖x̂− x‖2

‖x‖2

, (10.11)

which gives more weight to the accuracy of heavy flows. In Section 10.5.4, we therefore
study the impact of generating the vectors ci with respect to the law N (0,Diag(x̃)), where
x̃ is a prior estimate of the flow volumes.

10.4.2 A Heuristic argument for the use of SCOD

In many cases, the c−optimal design wc is unique for every vector c ∈ Rm. In the
case of the standard constraints

∑

i wi ≤ 1, the extended version of Elfving’s theorem
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for multiresponse experiments (cf. Figure 5.1, page 92) indicates that non-unicity of a
c−optimal design can only occur if there is a kind of parallelism between the ellipsoids Ei

which are generated by the matrices AT
i Ai –More precisely, when a face of the generalized

Elfving set is of dimension d and contains points from at least d+ 2 experiments. Although
we have not proved this yet, we do not expect this to occur in the present application to
telecommunications, especially when the observation matrices Ai are obtained after a left
diagonal scaling which depend from previous observations of the traffic (cf. Section 10.2.2).

When the technical condition described above is fulfilled, wc is well defined for all
c ∈ Rm, and the (uniform) SCOD method is in fact a Monte Carlo approximation of the
vector

w∗ = Ec∼N (0,Im)[wc] =
∫

c∈Rm

1

(2π)m/2
w

c
exp(−1

2
cT c).

In the remaining of this section, we say that w∗ is the ESCOD for the experimental design
problem (for Expected value of the Successive c−Optimal Designs).

We now sketch a heuristic argument which establishes a relation between the ESCOD
and the A−optimal design. The A−optimal design wA minimizes traceM(w)−1 over the
set w ∈ W := {w ≥ 0 : Rw ≤ d}. For a random vector c following a normal distribution
N (0, Im), we can write:

wA = argmin
w∈W

traceM(w)−1E
c
[ccT ]

= argmin
w∈W

E
c
[cTM(w)−c].

Remarkably, if we exchange the order of the expectation and the minimization in the
latter expression, we obtain the definition of the ESCOD vector w∗. This, of course, does not
account for a proof that the presented stochastic SCOD converges to an A−optimal design,
since E[·] and argmin(·) do not commute in general. However, we observed numerically on a
large number of examples that the design obtained by averaging several c−optimal designs
(for vectors ci sampled from a normal distribution) was very close to the A−optimal design
indeed. This nice property of the SCOD will be illustrated in Sections 10.4.3 and 10.5.2.

We next compare the A−optimal design and the ESCOD in a very simple case.

10.4.3 Comparison of the ESCOD and the A-optimal design in a simple case

In this section, we shall compute in closed form the ESCOD and compare it to the
A−optimal designs for the case in which there are two regression vectors in R2:

a1 = [r1 cos(α1), r1 sin(α1)]
T , a2 = [r2 cos(α2), r2 sin(α2)]

T .

If the vectors a1 and a2 are linearly independent, we know from Theorem 2.4.8 that the
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weights of the A−optimal design are proportional to the square root of the diagonal of the
matrix

B :=

([

a1
T

a2
T

]

[a1,a2]

)−1

=

(

r2
1 ∗
∗ r2

2

)−1

=
1

∗

(

r2
2 ∗
∗ r2

1

)

.

The A−optimal design is thus independent from the angles α1 and α2:

wA =

[
r2

r1+r2
r1

r1+r2

]

.

We now turn to the computation of the ESCOD w∗. This design is clearly invariant to a
rotation or to a scaling of the Elfving set, such that we can assume without loss of generality
that α1 = 0 and r1 = 1. In the following, we simply write r for r2 and α for α2 to simplify
the notation. Let c = [ρ cos θ, ρ sin θ]T . The weights of the c−optimal design are given by
Theorem 2.4.10:

wc ∝
∣
∣
∣
∣
∣
∣

([

a1
T

a2
T

]

[a1,a2]

)−1 [
a1

T

a2
T

]

c

∣
∣
∣
∣
∣
∣

∝
[

r| sin(α− θ)|
| sin θ|

]

.

After normalization, we find

wc =





r| sin(α−θ)|
r| sin(α−θ)|+| sin θ|

| sin θ|
r| sin(α−θ)|+| sin θ|



 .

Note that the c-optimal design is unique for every vector c ∈ Rm, so that we can take their
mean (with respect to a Gaussian distribution) without ambiguity. Since the expression of
wc does not depend on ρ, the expected value Ec∼N (0,I2)[wc] reduces to the mean of wc on
the circle of radius ρ = 1:

w∗ =
1

2π

∫ 2π

θ=0





r| sin(α−θ)|
r| sin(α−θ)|+| sin θ|

| sin θ|
r| sin(α−θ)|+| sin θ|



 dθ.

After some (tedious !) work, we obtain w∗ =

[

u

1− u

]

, where

u =
r
(

cosα(π − 2α)(1− r2) + (πr − 2 sinα ln r)(1 + r2)− 2πr cos2 α
)

π
(

(1 + r2)2 − 4r2 cos2 α
) . (10.12)

We have plotted on Figure 10.2 the difference between the first coordinates of w∗ and
wA, u − r

1+r
, where u is the expression defined in Equation (10.12), as well as the ratio

between φA(wA) and φA(w∗), for different values of r and α. Note that we study the
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Figure 10.2: Optimal design problem for the regression vectors a1 = [1, 0]T and a2 =
[r cos(α), r sin(α)]T . Left: Difference between the first coordinates of the ESCOD and the
A−optimal design: 1

2‖w∗ −wA‖1 Right: A−Efficiency of the ESCOD: φA(w∗)/φA(wA)

effect of r in the interval [0, 1] only, because we can assume without loss of generality that
‖a1‖ ≥ ‖a2‖. On the first graph, we see that w∗ is always close to the A−optimum
wA. The worst case occurs for α = π/2, r ≈ 0.17, where the difference is of 0.069. The
results are even better in terms of the A−efficiency achieved by the ESCOD w∗: we see
here that the ESCOD is always a 1.031−approximation of the A−optimal design, the worst
case being attained for α = π/2 and r ≈ 0.09. Remarkably, we also see on these graphs
that w∗ = wA when r = 1, i.e. when the two regression vectors a1 and a2 have the same
length.

We noticed on this 2D-example that the situation in which the ESCOD is the furthest
from the A−optimum is when the regression vectors are orthogonal. So we shall now study
the case in which there are s orthogonal regression vectors in Rs:

∀i ∈ [s], ai = riei,

where ei is the ith vector from the canonical basis of Rs. We denote by r the vector of the
lengths of the regression vectors: r = [r1, . . . , rs]

T ≥ 0. Similarly as in the 2D-case, we
have:

wA ∝ diag1/2
(

Diag(r) Diag(r)T
)−1

= r−1,

where r−1 is the elementwise inverse of r. After normalization, we find

wA =
r−1

‖r−1‖1

.
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The c−optimal design is obtained in the same way:

wc =
|Diag(r)−1c|
‖Diag(r)−1c‖1

,

and the ESCOD w∗ is given by an integration on the unit sphere Ss−1 = {u ∈ Rs : ‖u‖2 =

1}
w∗ =

∫

c∈Ss−1

|Diag(r)−1c|
‖Diag(r)−1c‖1

dµ, (10.13)

where µ is the Lebesgue measure on Ss−1. We have computed some approximations of w∗

for several random radius vectors r of various dimensions s ∈ [100] thanks to Monte-Carlo
simulations, in which we averaged the integrand in (10.13) for 105 vectors ci drawn from
a uniform distribution on Ss−1. In our experiments, the efficiency ratio φA(w∗)

φA(wA)
was always

smaller than 1.048, and the L1 error ‖w∗ − wA‖1 was always smaller than 20%. This
suggests that the ESCOD is a good candidate for the A−optimal design problem, for the
case of s indepenent regression vectors in Rs.

We point out that the previously studied experimental design problems (s independent
regression vectors in Rs) are somehow special, in the sense that one must select every
experiment in order to obtain a full rank information matrix (M(w) ≻ 0 ⇔ w > 0). We
think that this situation, which we may call low instrumented, is close to what happens in
the present industrial application, where Netflow must be activated at a significant number
of locations so that M(w) becomes invertible. In the over-instrumented situation however,
the ESCOD may be irrelevant. In the quadratic regression model with 101 support points
on the range [−1, 1] for example, the ESCOD is quite different from the A−optimal design,
and has a A−efficiency of approximately 1.175. We will investigate this feature from a
theoretical point of view in future research.

10.5 Experimental results

In this section we evaluate the performance of our SCOD approach. To this end, we
investigate several issues: in a first part, we compare our SCOD to the (exact) A−optimal
design for a special instance of the problem. Then, we examine the quality of the estimation
of the traffic matrix in different situations, in order to compare the performance of our
method with previously proposed ones. We study separately the discrete problem of finding
a subset of interfaces for Netflow, and the optimal sampling problem.

10.5.1 Data used

The data we used for those experiments comes from two networks. On the one hand,
from the Abilene Internet2 backbone, which is a major academic network in the USA, and
consists in n = 11 nodes m = n2 = 121 OD pairs and l = 50 links (14× 2 bidirectional links,
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Figure 10.3: lognormal distribution of the measured flows (commercial network)

11 ingress, and 11 egress links). The topology of this network is depicted in Example 10.1.1.
Real traffic matrices from this network are available through the Internet2 Observatory
project. We used the measurements of the second week of April 2004, as collected by
Zhang [Abi]. The data has a resolution of 10 minutes, resulting in 1008 time steps over the
week.

On the other hand, we use measurements from a much larger commercial network,
the international “Opentransit” network of France Telecom, which consists in n = 116

nodes, m = n2 = 13456 OD-pairs, and l = 436 links. Since this network is only partially
instrumented with Netflow (we dispose of Netflow measurements on 34 out of 116 routers),
we simulated the missing data for the sake of experiments, by following the instructions
of [NST05]. Namely, we noticed that the fit of the partially available data with a lognormal
distribution was very good (see Figure 10.3), so we simulated the missing flows with respect
to this distribution. Then, we assigned them to the non-measured OD pairs of the network
thanks to a heuristic procedure based on the topology of the network [NST05]. The data
has a resolution of 2 hours and was collected during 40 hours, so we track the flow volumes
over 20 time steps.

The SNMP and Netflow measurements were simulated from the traffic matrices. The
SNMP data was supposed to be almost perfect (σ = 1), and the Netflow sampling was
simulated with a binomial distribution, as seen in Section 10.2.2.

10.5.2 SCOD Vs A−optimal designs on Abilene

We study an experimental design problem on Abilene, where the objective is to find the
optimal amount of experimental effort to spend on each router (we handle the data collected
on all incoming interfaces of a given router as a single experiment). Note that this setting
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Design SCOD SCOD
A-optimal

(×10−1) (N = 10) (N = 50)
CPU (sec.) 3.72 18.7 492.6

w1 (Atlanta) 0.559 0.779 0.749
w2 (Chicago) 0.883 0.854 0.898
w3 (Denver) 1.721 1.592 1.510
w4 (Houston) 0.692 0.772 0.720
w5 (Indiana) 1.458 1.291 1.361
w6 (Kansas) 1.252 1.262 1.171
w7 (Los Angeles) 0.556 0.572 0.657
w8 (New York) 1.329 1.134 1.121
w9 (Sunnyvale) 1.076 1.184 1.201
w10 (Seattle) 0.000 0.002 0.000
w11 (Washington) 0.433 0.557 0.613

Table 10.1: Abilene: comparison of the A-optimal design and SCOD.

is consistent with versions of Netflow that are earlier than the v9 [CISb], in which setting
different sampling rates on each interface of a router was not possible. In Table 10.1, we
compare the A−optimal sampling rates found by solving the SDP (10.9), and the design
obtained by the successive c−optimal design approach described in Section 10.4.1. The
constraint considered here was the unit cost case:

∑

i wi ≤ 1. The c−optimal designs
are computed by Program (10.10). The designs indicated in the tables were obtained by
averaging N = 10 and N = 50 c−optimal designs. To see the convergence of the SCOD,
we have plotted in Figure 10.4 the evolution of each coordinate of the design with N .

It is striking that the designs found by these two approaches are very close and that the
computation is much shorter for the SCOD. Namely, solving one instance of the c−optimal
problem requires only 345ms on average for this network, which is 3 orders of magnitude
faster than the 514s required to solve the SDP (10.9). Furthermore, the SDP approach is
intractable on large networks with more than 17 nodes.

10.5.3 Estimation methodology and Error metrics

Before studying the quality of the estimation of the traffic matrix, we describe the
methodology used for the inference. For the optimal deployment problem (Section 10.2.1),
we use the entropic projection approach [LTY06] (cf. Chapter 8 and 9) to track the flow
volumes over time. Namely, we choose at each time step the vector of flows which is the
closest to a prior (in terms of Kullback-Leibler divergence), among all the flows satisfying the
measurement equation (10.2). At time t = 1, the prior is taken equal to the tomogravity
estimate [ZRDG03] of the flows. Then, we choose as prior the previous estimate x̂t−1.
The entropic projection is carried out by the Iterated Proportional Fitting (IPF) algorithm
(Algorithm 9.5.2, cf. also [LTY06]).

For the optimal sampling problem (Section 10.2.2), the observation matrix Ã usually
has full column rank (because Netflow is activated everywhere), such that we can use the
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Figure 10.4: Convergence of the SCOD method. Each curve represents the evolution of a coordi-
nate of w with the number of averaged designs.

inversion formula (10.7) to compute the best linear unbiased estimate x̂ of the flows, where
Σ(w) is estimated thanks to a prior estimate of the flows. To avoid eventual negative
values, we next apply the IPF procedure, as in [CDVY00, ZRDG03].

To measure the quality of an estimator of the flows x̂t at a time step t, we use the
classic relative L2−error, defined as:

Rel2(x̂t) =
‖x̂t − xt‖2

‖xt‖2

. (10.14)

Similarly, the spatial distribution of the errors can be measured by the spatial relative
L2−error, which is defined for each OD flow time series xOD:

Rel2(x̂OD) =
‖x̂OD − xOD‖2

‖xOD‖2

. (10.15)

10.5.4 Netflow Optimal Deployment

We now study the case of the discrete problem presented in Section 10.2.1, where the
objective is to activate Netflow only on a subset of interfaces of the network. We assume
throughout this section that when Netflow is activated on an interface, it samples packets
at a rate of 10−3. This problem may look very academic, since routing changes occur
quite often in practice, and the deployment of Netflow should not be decided in a special
routing configuration. However, we show in this section that our SCOD improves on the
greedy design, and we want to develop for future work a more robust version of our model.
For example, if we are given several potential routing matrices – and the corresponding
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Figure 10.5: Relative L2−error on Opentransit, for Netflow activated on 16 routers (left)
and 30 routers (right), as selected by the SCOD (blue), weighted SCOD (green), and greedy
“Netquest” [SQZ06] (red).

information matrices M (i)(w)– we could with little change write a version of our SOCP
which minimizes the worst variance maxi cTM (i)(w)†c. A more sophisticated idea would
require the use of the model robust S−optimality criterion (cf. Sections 2.3.3 and 5.3.1).

We have plotted in Figure 10.5 the relative L2−error of the estimate x̂t for the flow
volumes over time, in two situations on Opentransit: Netflow was activated on a subset of
16 or 30 nodes, either selected by the greedy algorithm or by the SCOD procedure. We have
also computed a design with a weighted SCOD procedure, in which the vectors defining the
linear combinations follow c ∼ N (0,Diag(x̂)), where x̂ is the tomogravity estimate of the
flows at time t = 1 (cf. Section 10.4.1 for more details on this weighting). The number
of averaged optimal designs was set to N = 20, so as to keep the time of computation
reasonable, and because we felt that the process had almost converged.

Amazingly enough, the error of estimation is lower when the vectors ci drawn by the
SCOD procedure give more weight to large flows. While the uniform SCOD and the greedy
design give results of a similar quality, the weighted SCOD substantially improves the relative
L2−error.

In order to illustrate the spatial distribution of the errors, we have plotted on Figure 10.6
the weighted quantile function of the spatial L2−relative error: the graph indicates the
fraction of traffic (on the x-axis) which is estimated with a relative L2−error below the
value on the y-axis. We see that the weighted SCOD outperforms the uniform SCOD and
the greedy design for the estimation. For example, about 87% of the traffic is estimated
with a relative L2−error below 5% (for the Netflow deployment found by weighted SCOD),
while this proportion falls to respectively 62% and 53% with the uniform SCOD and the
greedy design. In fact, some small flows, which account for less than 1% of the total traffic,
are best estimated with a uniform scheme. We have also plotted in Figure 10.7 the evolution
of the L2−relative error in function of the number of routers where Netflow is activated,
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Figure 10.6: Quantile function of the spatial errors on Opentransit, for Netflow activated on 16
nodes. These nodes are selected by [SCOD (blue), weighted SCOD (green), and greedy (red)].

Figure 10.7: Temporal L2−error on Opentransit, when Netflow is activated on 5, 16, and 30 nodes
(selected by weighted SCOD).

to evidence the fact that a small number of Netflow measurements can yield an accurate
estimation of the traffic matrix.

We show on Figure 10.9 the location of the routers found by SCOD (a), weighted
SCOD (b), and the greedy algorithm (c). We notice here that the weighted SCOD procedure
yields a design which is more concentrated at the “center" of the network, where the flows are
probably more important. Interestingly, our problem looks somehow related to the problem
of centrality, where the goal is to find a subset of nodes intersecting the largest possible
number of shortest path in the graph. We would like to investigate this feature in a future
work. We have also computed a SCOD with different weights on each link. Figure 10.8
indicates the location of the 15 links with the largest weights.
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Figure 10.8: Opentransit network: Location of the 15 links with the largest weights (computed by
SCOD).
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(a)

(b)

(c)

Figure 10.9: Opentransit network: Location of the routers found by SCOD (a), weighted SCOD
(b), and greedy “Netquest" [SQZ06] (c). The routers in blue, purple, and red correspond to the
subsets of 5, 16, and 30 routers activated in our experiments.
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10.5.5 Optimal Sampling Problem

We now turn to the study of the optimization of the sampling rates for Netflow. As
for the discrete problem, the SCOD are computed by averaging 20 c−optimal designs, with
c ∼ N (0,Diag(x̂)). New sampling rates are evaluated at each time step, with the prior x̂

taken as the previous estimate of the flows. In a more realistic setup, we could recompute
sampling rates each time a routing change occurs. In order to avoid numerical issues, we
imposed a minimal sampling rate of 10−6 on each interface. Note that this lower bound
is consistent with Cisco’s Netflow manual [CISb], which specifies that the sampling rates
should be set as 1/f , where f is a parameter in the range {1, ..., 65535}.

Comparison with the Kalman filtering approach [SM08]

To illustrate that one can recover the flow volumes without any Netflow measurements
on the ingress interfaces of the network (as the standard methodology suggests [FGL+01]),
we have studied the case where we activate Netflow only on the 28 internal links of Abilene.

We have compared our method to the A−optimal design approach in a Kalman filtering
context, as proposed in [SM08]. To do so, we computed sampling rates on a period of 144
time steps with this technique, using the same settings that the authors described for the
case of a noisy initialization. For the sake of comparison, we have assumed the unit-cost

case
∑
wi ≤ 10−3 as in [SM08], and c−optimal designs are computed by Program (10.10)

with R = 1T (the row vector of all ones) and d = 10−3. Each SOCP was solved within
roughly 0.3s with SeDuMi on a PC at 4GHz.

Figure 10.10 shows the evolution of the sampling rates on 2 interfaces of Abilene, as well
as the value of the naive sampling rate (wnaive = 10−3/s on every interface). Interestingly,
it seems that the design computed in a Kalman filtering process converges to our design.
This could highlight that, due to the high variability of the traffic, the prediction step
xt|t−1 = Cx̂t−1 (with C = Im as in [SM08]) of the Kalman filter is of poor quality compared
to the correction step which uses the Netflow measurements. Moreover, the flows computed
by our approach have a relative L2 error in the order of 10−3, while the error attains 20%

with the Kalman filter: Of course, the huge difference between these results does not come
from the sampling rates, which are quite similar, but only from the estimation methodology:
Simply inverting the sampling measurements (as we do) yields better results than processing
them in a Kalman filter, since the state transition equation from one time step to the next
one may be inaccurate.

We still want to evaluate the benefits of considering the past measurements for the
computation of the sampling rates. So we built a new estimate of the flows, where the
Kalman filter is used only to update the constant term of the covariance matrix which
accounts for the past measurements. Then, the sampling rates are selected so as to minimize

this covariance matrix. To speed up the computation –which is very expensive because the
matrix accounting for the information on the past measurements is typically full– we used
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Figure 10.10: Evolution of the sampling rates on 2 interfaces of Abilene.

Figure 10.11: Relative L2 error for different sampling rates of Netflow, on Abilene.

our SCOD scheme in place of the A−optimality SDP (2.18). Finally, the estimation is
carried out by the inversion Formula (10.7) and the IPF. We compare in Figure 10.11 the
relative L2 error of this new estimate (called “Hybrid Kalman-SCOD”) with the estimations
of the flows based on the naive sampling rates and the SCOD. Our sampling rates perform
much better than the naive ones. Note that the estimation of the flows is very accurate
with our sampling rates, although no Netflow measurement was performed on the ingress
links.

It is also clear that taking into account the past measurements does not yield any
improvement on this example. In a Kalman filtering context, a given interface might not
have a high rate during two successive time steps, since some information on the flow at time
t − 1 is used for the estimation at time t, through the transition equation Xt|t−1 = CXt.
However, the lack of accuracy of this model makes it useless to take into account this
prior information, and it is better to keep high sampling rates at all time on valuable
measurements.
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Figure 10.12: Temporal evolution and Spatial distribution of the spatial relative L2 error for the
optimal sampling problem with per-router constraints on Abilene. In blue: SCOD sampling rates.
In green : Naive (equal rates on every incoming interfaces of each router).

Per-router optimization

Let us now turn to the case of the more realistic, per-router constraints described in
Section 10.2.3. The problem is to select the sampling rates on each incoming interface
of every router, when a target overhead is given (the maximal number of packets to be
analyzed by Netflow at each router location). For this experiment, we have set a target of
106 packets to be analyzed by each router during an observation period of one hour. With
this setting, the sampling rates returned by the SCOD procedure were typically in the range
[10−6, 10−4]. We have also built the following naive sampling rates in order to evaluate the
benefits of our method: the values are selected so that the sampling rates are the same on
each incoming interface of a given router. Assume for example that the router R receives
some data from its set of incoming interfaces IR, and the volume of traffic on the link
i ∈ IR is fi. With the model described in Section 10.2.3, the row corresponding to router
R in the constraint equation Rw ≤ d is thus

k∑

i∈IR

fiwi ≤ 106,

and we set the naive rates ∀i ∈ IR, wi = 106/
∑

j∈IR fj. We have plotted in Figure 10.12
the temporal evolution and the spatial distribution of the errors of estimation with these
sampling rates. During every observation period, the estimation error is roughly two times
smaller with the optimized sampling rates. Concerning the spatial distribution of the errors,
we see e.g. that roughly 65% of the traffic is estimated with a relative L2−error below 1%
with the optimized sampling rates, while this number falls to 45% with the naive rates.
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Figure 10.13: Relative L2−error Vs time, for the per-router sampling problem on Opentransit.

We have also performed the same experiment on Opentransit. The computational effort
becomes an issue at this scale, since 3 minutes were required to compute a single c−optimal
design (see also Table 6.3 at page 117). In consequence, if we want to take an average of
20 such optimal designs, one hour of computation is required. Note however that this task
is highly parallelizable (if one disposes of N processors, then N c−optimal designs can be
computed simultaneously). The relative L2−error of the flows is plotted on Figure 10.13,
for the flows estimated from measurements with naive and SCOD sampling rates.



Chapter 11

Perspectives for a better
spatio-temporal modelling of traffic
matrices

Many methods presented in Chapter 8 for the estimation of traffic matrices rely on
a temporal model for the dynamic of the TM (Kalman with a diagonal transition matrix
C [CVFC09], PAMTRAM [LTY06]), or a spatial model of the TM (EM algorithm [CDVY00],
fanouts [PTL04], splines [CVFC09]), or both (Kalman with an arbitrary transition matrix
C [SSNT05], PCA [SLT+05]). Apart from the fanouts method, the spatial modelling carried
out in the latter approaches concerns the vectorized traffic matrix x and assumes the mutual
independence of the OD flows.

However, this simple independence model is not fully satisfactory on a practical point
of view. For example, assume that some long awaited content becomes available on the
Internet, close to an access point d. It is likely that users from many places will request
to access this content, thus inducing a peak of traffic from many nodes in the network to
d. This example shows that two OD pairs sharing a common destination are likely to be
correlated. We shall evidence this fact in Section 11.1, by studying the low rank structure
of real traffic matrices.

We will next try to handle the spatial and temporal correlations simultaneously, thanks
to the theory of low rank tensor decompositions (Section 11.2). We shall present this
framework, and study the potential of tensor methods by decomposing real traffic matrices.
Finally, we shall present some suggestions for future estimation techniques relying on tensors.

11.1 Low rank structure of traffic matrices

In this section, we study the spectrum of real traffic matrices, and we propose a spectral
model. This is a preliminary work which has not given birth to a practical method for the

209
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Figure 11.1: Sample snapshot of an Abilene TM

Figure 11.2: Sample snapshot of an Abilene TM

estimation of traffic matrices yet, and thus we present it in the perspectives chapter. We
think that the low rank structure of traffic matrices is a very important property, and it
justifies the tensor approach of the next section.
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Figure 11.3: Spectrum of an Abilene TM

11.1.1 Spatial correlations

In this chapter, we do not vectorize traffic matrices anymore. Therefore, each snapshot
of a TM on a network with n nodes is arranged as an n × n matrix, the (o, d)−entry of
which indicates the volume of traffic from o to d (during the considered time interval). We
have plotted on Figure 11.1 (resp. Figure 11.2) a sample snapshot Xt of a traffic matrix
from Abilene (resp. Opentransit). Both plots show a strong correlation between sources and
destinations. In particular, the rows of the the Abilene TM seem to be roughly mutually
proportional, and the same observation holds for its columns. This indicates that the traffic
matrix Xt can be well approximated by a rank-one matrix Xt = uvT , which is consistent
with the popular use of the gravity prior (cf. Chapter 9).

To verify this statement, we have plotted the spectrum of these Abilene and Opentransit
TMs on Figures 11.3 and 11.4, respectively. The singular values decrease quickly in both
graphs, showing that most of the energy from these traffic matrices can be captured by a
low rank approximation (especially for Opentransit). Recall that the traffic is lognormally
distributed among the OD pairs (as noticed by Nucci, Sridharan and Taft [NST05], cf.
Section 10.5.1), such that the traffic matrices are approximately sparse. However, matrices
with log-normally distributed entries are not necessary of low rank. In Figures 11.3 and 11.4,
we have also plotted the spectrum of a matrix with the same entries as the original TM,
but permuted in a random way; we see in both cases that the real traffic matrix has a much
lower dimensionality than the permuted one. In consequence, the (approximate) low rank
structure is not an artefact due to the pseudo-sparsity of the TM, and reflects the spatial
correlations between sources and destinations.
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Figure 11.4: Spectrum of an Opentransit TM

11.1.2 A statistical model for the error matrix

A possible starting point to build a spatial model for the traffic matrices is to study the
empiric distribution of their spectrum. To do this, we have computed the SVD of 8064
Abilene traffic matrices, as corresponding to four complete weeks of Netflow measurements
with a resolution of 5 minutes. The histogram of Figure 11.5(a) shows, on a logarith-
mic scale, the distribution of the singular values of these traffic matrices, by detailing the
contribution of each ordered singular value to the whole distribution. On the same figure,
Graph (b) separates the singular values distribution in three parts, corresponding to the
lower, middle, and upper part of the spectrum. It is striking that this distribution exhibits
two distinct humps, one accounting for the leading singular value σmax and the other one
for the remaining singular values.

This superposition of spectrums let us think that any traffic matrix Xt can be decom-
posed as the sum of a deterministic, low rank matrix XR (with singular values in the upper
part of the distribution), plus a noise matrix E with smaller singular values. Finding the
number of eigenvalues which constitute the deterministic and the noisy part of the traffic
matrix is a subtle task. For the Abilene Network, four eigenvalues for the deterministic part,
and seven for the noise might be a good trade-off. We have computed the best rank-R
approximation (by truncating the SVD) of one week of Abilene traffic matrices Xt with a
resolution of one hour (168 traffic matrices). We have sorted the m = 121 OD flows in
three categories: 36 large flows (75% of the traffic), 44 medium flows (20% of the traffic),
and 41 small flows (the remaining 5%). The value R = 4 is the smallest for which the
average of the spatial relative L2−error (defined in Equation 10.15) of the large flows is
less than 10% (this average error rises to 28% for the medium flows, and to 105% for the
small ones). We have plotted on Figure 11.6 the evolution of the flow volumes of three OD
pairs (one small, one medium and one large), as well as the approximation by the truncated
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Figure 11.5: Distribution of the singular values of 8064 Abilene TMs

SVD (with R = 4) and the error. While the estimation is excellent for the large flow, and
quite good for the medium one, we see that the the best rank-4 approximation still misses
a significant part of the information on the small flow (on the right of the figure), which
has a mean volume 20 times smaller than the large flow, since the error is periodic.

Another reason for the choice of R = 4 comes from the theory of random matrices. If
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Figure 11.6: In blue: temporal evolution of a large flow (right), a medium flow (middle) and a
small flow (right). In green: evolution of the flow volumes estimated by rank-4 approximations of
the TMs. In red: error of estimation.

the vectors z1, . . . ,zp ∈ Rn are iid distributed with N (0,Σ), we say that the n× n matrix
Z =

∑p
i=1 zizi

T follows a Wishart distribution with p degrees of freedom and covariance Σ,
and we note

Z ∼ Wn(p,Σ).

For small values of R, the shape of the distribution of the 11 − R smallest singular
values of the traffic matrix (see e.g. the blue curve in Figure 11.5(b)) looks similar to the
distribution of the eigenvalues of a Wishart matrix. So we tried to fit this curve to the
theoretical p.d.f. of the spectrum of Wn(p, σ2I) for several values of R, p, and σ. The best
fit was obtained for R = 4, p = 7, and σ2 ≈ 6 · 105. In Figure 11.7, we have plotted
both the histogram of the 7 smallest singular values of the TM, as well as the p.d.f. of the
eigenvalues of W11(7, σ

2I), and three sample spectrums of traffic matrices. The rays out
of the Wishart theoretical distribution represent the part of the traffic matrix which carries
information.

A plausible model for E is one in which the law of the singular values is the same as
if they were generated from a Wishart distribution. If we expect the error matrix to be
invariant under orthogonal transformations, we can think of modelling the rank n−R error
matrix E as follows:

E = U Diag(λ)V T ,

where λ, U and V are independent, λ is a random vector which follow the joint distribution
of the unordered eigenvalues of Wn(n−R, σ2I), and U and V are n× n Haar distributed
matrices (see the definition below). The distribution of the n − R nonzero entries of λ is
the same as the joint distribution of the eigenvalues of a matrix from Wn−R(n, σ2I), which
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is known (see e.g. [Jam64, Ede89, ER05]). The joint p.d.f of λ is:

f(λ) = κ
n−R∏

i=1

(

λi

σ2

)R−1
2

exp
(

−
n−R∑

k=1

λk/(2σ
2)
) ∏

1≤i<j≤n−R

|λi − λj|
σ2

,

where the normalizing constant

κ = 2−n(n−R)/2
n−R∏

j=1

Γ(3/2)

Γ(1 + j/2)Γ(R/2 + j/2)
.

We say that a matrix U is Haar distributed if U is drawn from a uniform distribution in
the Stiefeld manifold {V ∈ Rn×n : V TV = I}. Note that a simple way to generate a
Haar matrix is to compute the QR factorization of a random n × n matrix with Gaussian
iid entries. If Q is normalized such that the diagonal elements of R are positive, then Q is
a Haar matrix [Ste80].
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Figure 11.7: Histogram of the 7 smallest singular values of 8064 real Abilene TM, together with
the theoretical distribution of the singular values of a Wishart matrix with 7 degrees of freedom.
We have also plotted three sample spectrums. We think that the singular values in the hump of
the distribution correspond to noise, while the outermost bars represent the deterministic part of
the TM.

This proposition of model is far from providing a method for the estimation of the TM
from partial measurements. However, we think that modelling the low rank structure of TMs
is essential. The fit of the lower part of the spectrum of the TMs with that of a Wishart
distribution indicates that it can be considered as noise indeed. The relevant information
in the traffic matrices is mainly carried by a few eigenvectors. A related study on financial
correlations was done by Laloux, Cizeau, Bouchaud and Potters [LCPB00].
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The work of Zhang, Roughan, Willinger and Qiu [ZRWQ09] showed the usefulness of
low rank models for the m×T− dynamic traffic matrix X (i.e. spatio-temporal correlations
are considered, but no origin-destination correlations). They proposed indeed to search a
low rank traffic matrix satisfying the observation equations, and noticed that this model
yields a clear improvement with respect to the raw tomogravity estimate, when a small
number of Netflow measurement are allowed. Our work suggests that it might be useful to
consider origin-destination correlations as well. The mathematical objects which are best
suited to handle muti-mode correlations are the tensors. We study the potential of tensor
decompositions in the next section.

11.2 Low rank decompositions of real traffic tensors

When seen over time, the traffic matrix is in fact a tri-dimensional object: origine ×
destination × time. We shall denote by X this tri-dimensional array with triple indexed
components xo,d,t. In what follows, we shall abusively refer to such multi-dimensional arrays
as tensors. In fact, the correct definition of a (covariant) tensor of order 3 is a multi-linear
application:

T : Rd1 × Rd2 × Rd3 7→ R.

This application can be represented as a three-way array
(

ti,j,k

)

i∈[d1], j∈[d2], k∈[d3]
which

describes the action of T on the canonical basis of Rd1 , Rd2 and Rd3 . Note however that
we would obtain a different array (t′i,j,k) if we choose some other basis for Rd1 , Rd2 and
Rd3 .

While low rank approximations of matrices is a completely understood problem (through
the singular value decomposition), the low rank approximation of tensors is an active research
topic. For more than 40 years, many theoretical and computational work has been done to
build an analog of the singular value decompositon to tensors. The idea is to decompose
a tensor as the sum of a few low rank tensors, capturing as much energy as possible from
the original tensor.

11.2.1 Tensor decompositions

In this section, we introduce the relevant notation for tensors, and we briefly summarize
some results and algorithms for tensor decompositions. For simplicity, we limit ourselves to
third order tensors, but the results below can of course be generalized to higher orders. We
refer the reader to the recent review of Kolda and Bader [KB09] for more details.

Some notation

In the sequel, we use calligraphic letters for third-order tensors (A,B, . . .). The element
(i, j, k) of X is denoted by xi,j,k; the kth column of a matrix U is denoted by uk. The
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Figure 11.8: Rank-r approximation of X . Parts from this figure are from [KB09].

Frobenius norm of a tensor X ∈ Rd1×d2×d3 is

‖X‖F :=
√ ∑

i∈[d1]

∑

j∈[d2]

∑

k∈[d3]

x2
i,j,k.

We denote by ◦ the vector outer product. A tensor X ∈ Rd1×d2×d3 is said to be of rank one

if it can be written as X = a ◦ b ◦ c for some vectors a ∈ Rd1 , b ∈ Rd2 , and c ∈ Rd3 , such
that its element xi,j,k = aibjck. By analogy to matrices, the rank of a tensor A is defined as
the smallest number r such that A may be decomposed as the sum of r rank-one tensors.

CP decomposition

The problem of finding the matrix of rank r which best approximates a given matrix is
known to have a simple solution provided by the truncated SVD. Let UΣV T be the singular
value decomposition of a d1 × d2−matrix X of rank R: U and V are matrices with R

orthonormal columns of respective dimension d1 and d2, and Σ is diagonal with nonzero
entries σ1 ≥ σ2 ≥ . . . ≥ σR. We can write X =

∑R
k=1 σk ukvk

T , or with the outer product
notation: X =

∑R
k=1 σk uk ◦ vk. Then, the matrix Xr of rank r which best approximates

X (for the Frobenius norm) is given by

Xr =
r∑

k=1

σk uk ◦ vk.

Several problems occur when trying to generalize the SVD to tensors. The natural idea
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would be to decompose rank-R tensors under a form

X =
R∑

k=1

σk uk ◦ vk ◦wk, (11.1)

such that the columns of U, V, and W are orthonormal. However, the decomposition of a
rank-R tensor as the sum of R rank-one tensors is often unique (up to a permutation of the
rank-one terms), which prevents one from imposing the orthonormality of the uk, vk and
wk. A consequence is that the truncation of Decomposition (11.1) to the r dominant terms
does not coincide with the best approximation of rank r. Worse than that, the r terms in the
best rank-r approximation of X may be completely different from the r dominant terms in
the best rank-(r+1) approximation. In consequence, a sequential scheme in which, at stage
j, one adds the best possible rank-one tensor to the previously computed best rank-(j − 1)

tensor is suboptimal.

The problem is thus to find simultaneously the r terms of the best rank-r approximation
(cf. Figure 11.8):

min
σ,U,V,W

‖X − X̂‖F (11.2)

s.t. X̂ =
r∑

k=1

σk uk ◦ vk ◦wk.

∀k ∈ [r], ‖uk‖ = ‖vk‖ = ‖wk‖ = 1.

The variables in this problem are σ ∈ Rr and the matrices U, V , and W of respective
size d1 × r, d2 × r and d3 × r. We can also use the standard double brackets notation for
the rank-r decomposition of X̂ in Problem (11.2):

X̂ = Jσ;U, V,W K :=
r∑

k=1

σk uk ◦ vk ◦wk.

This approximation is usually called CANDECOMP/PARAFAC, or CP for short, after
the canonical decomposition of Harshman [Har70] and the parallel factors of Carroll and
Chang [CC70].

The optimization problem (11.2) is nonconvex. Harshman [Har70] and Carroll and
Chang [CC70] have proposed independently an alternating least square (ALS) procedure to
approximate its solution, which can be seen as a generalization of the power method to
tensors. The principle is to solve iteratively Problem (11.2) for U (with fixed V and W ),
then for V (with fixed fixed U and W ), etc. The ALS procedure has been summarized in
Algorithm 11.2.1, where the following notation have been used: X(i) is the di×

∏

j∈[3], j 6=i

dj−matrix

representing the tensor X , unfolded along the ith dimension. The d1d2 × k−matrix A⊛B

is the Khatri-Rao product of A = [a1, . . . ,ar] ∈ Rd1×r and B = [b1, . . . , br] ∈ Rd2×r,
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Algorithm 11.2.1 CP: Alternating least squares (ALS)
Input: X , r, ǫ.
Initialize σ ∈ Rr, U ∈ Rd1×r, V ∈ Rd2×r, and W ∈ Rd3×r in some way.
repeat

Fix (σ, V, W ), and solve Problem (11.2) in U :
U ← X(1)(W ⊛ V )(WW T ⊙ V V T )†;

Normalize the columns of U :
µ← diag(UT U); σ ← σ ⊙ µ; U ← Diag(µ)−1U ;

Fix (σ, U, W ), and solve Problem (11.2) in V :
V ← X(2)(W ⊛ U)(WW T ⊙ UUT )†;

Normalize the columns of V :
µ← diag(V T V ); σ ← σ ⊙ µ; V ← Diag(µ)−1V ;

Fix (σ, U, V ), and solve Problem (11.2) in W :
W ← X(3)(V ⊛ U)(V V T ⊙ UUT )†;

Normalize the columns of W :
µ← diag(W T W ); σ ← σ ⊙ µ; W ← Diag(µ)−1W ;

ˆ̂X ← X̂ ;
X̂ ← Jσ; U, V, W K;

until ‖X − ˆ̂X‖F − ‖X − X̂‖F < ǫ
Return X̂ .

defined by
A⊛B = [a1 ⊗ b1, . . . ,ar ⊗ br],

where ⊗ is the usual Kronecker product. An alternative description using the vectorization
operator vec is:

A⊛B = [vec(b1a1
T ), . . . , vec(brar

T )].

Finally, A⊙B is the Hadamard (elementwise) product of A and B.

The ALS method is the most commonly used algorithm to compute rank-k approxima-
tions of tensors. The convergence of this algorithm can be slow in practice, and the fixed
point found by the algorithm can be a nonglobal minimum or even a non-extremal stationary
point of Problem (11.2).

Case of the best rank-one approximation

Even the case of the best rank-one approximation is hard. It is easy to verify that the
optimization problem

min
λ,u∈Rd1 ,v∈Rd2 ,w∈Rd3

‖X − σ u ◦ v ◦w‖F s.t. ‖u‖ = ‖v‖ = ‖w‖ = 1
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is equivalent to

max
u∈Rd1 ,v∈Rd2 ,w∈Rd3

∑

i∈[d1],j∈[d2],k∈[d3]

xi,j,kuivjwk s.t. ‖u‖ = ‖v‖ = ‖w‖ = 1 (11.3)

and the optimal value of σ is
∑

i,j,k xi,j,kuivjwk (cf. Zhang and Golub [ZG01]).

Recall that X defines a multilinear application mapping Rd1 × Rd2 × Rd3 to R. Let
us denote by Sd−1

p = {u ∈ Rd : ‖u‖p = 1} the unit sphere of Rd in the ℓp norm. We
see from the equivalent formulation (11.3) that the vectors u,v and w of the best rank-
one approximation λ u ◦ v ◦ w are critical points of the multilinear form X restricted to
Sd1−1

2 ×Sd2−1
2 ×Sd3−1

2 . We show in Example 11.2.1 and Figure 11.9 that many such critical
points can exist, and that the ALS procedure is likely to converge to a sub-optimal point.

In fact, Friedland, Gaubert and Han [FGH10] have proved an analog of Perron-Frobenius
theorem for tensors, which can be stated as: if X has only nonnegative entries and is

indecomposable, and if p1, p2 and p3 are larger than or equal to 3, then the multilinear

form X restricted to Sd1−1
p1
× Sd2−1

p2
× Sd3−1

p3
has only one critical point, which is necessary

positive. The tensor considered in Example 11.2.1 was inspired by an example of [FGH10],
which illustrates that the latter results does not hold for p1 = p2 = p3 = 2. This theorem
somehow shows that the natural geometry of third-order tensors lies in ℓ3, which explains
the difficulty of minimizing the Frobenius norm.

Tucker decomposition

Another kind of decomposition was proposed by Tucker [Tuc66], in which more inter-
action between the different factors is allowed. The idea is to multiply a core tensor of
dimension r1 × r2 × r3 by a different matrix in each mode to form a rank-(r1, r2, r3) ap-

proximation of X :

X ≈ JC; U, V,W K :=
∑

k1∈[r1]
k2∈[r2]
k3∈[r3]

ck1,k2,k3 uk1
◦ vk2

◦wk3
. (11.4)

Contrarily to the CP decomposition, is is easy to find the number of required columns
R1, R2, and R3 of U, V, and W , so that the decomposition (11.4) is exact: if Ri is the rank

Example 11.2.1. Consider the 2 × 2 × 2 supersymmetric tensor X whose frontal slices are:

X1 =

(
1.2 0.2
0.2 0.1

)

and X2 =

(
0.2 0.1
0.1 1.2

)

.

The best rank-1 approximation problem for this tensor has two stationary points: X1 = σ1v1 ◦ v1 ◦ v1, where
σ1 ≈ 1.2211 and v1 ≈ [0.1518, 0.9884]T (global minimum), and X2 = σ2v2 ◦ v2 ◦ v2, where σ2 ≈ 1.2669
and v2 ≈ [0.9707, 0.2402]T (local optimum). We noticed that the ALS procedure with a random initialization
converged 37% of the time to the global optimum, and 63% of the time to the other local minimum. The
(squared) objective function ‖X −X̂ ‖2

F , as restrained to supersymmetric rank-one approximations X̂ = v◦v◦v,
is plotted on Figure 11.9.
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Other stationary
               point

Global minimum

Figure 11.9: Squared objective function ‖X − X̂‖2F of Problem (11.2), for the tensor X of Ex-
ample 11.2.1, and supersymmetric rank-one approximations X̂ = v ◦ v ◦ v, where v = [x, y]T .

of X(i), and Ui contains the Ri leading left singular vectors of the ith−mode unfolding X(i)

(for i = 1, 2, 3), then

X =
r

JX ; UT
1 , U

T
2 , U

T
3 K

︸ ︷︷ ︸

C

; U1, U2, U3

z
,

is an exact rank-(R1, R2, R3) decomposition of X . Moreover, any approximation in the form
of Equation (11.4) with ri < Ri for at least one index i ∈ [3] is necessary inexact [Tuc66].

Truncating the latter exact decomposition to the first ri columns of Ui (for i = 1, 2, 3)
does not yield the best rank-(r1, r2, r3) approximation of X . However, this truncation –
which is now called the Higher Order SVD (HOSVD) of X after the work of De Lathauwer,
De Moor and Vandewalle [LMV00]– can be used as a starting point for an ALS algorithm.

Another advantage of decompositions in the form of Equation (11.4) is that the columns
of U , V and W , can be chosen orthonormal, which makes the interpretation easier. Let
U = QURU , V = QVRV and W = QWRW be the QR decompositions of U, V and W .
The reader can verify that

JC; U, V,W K =
r
JC; RU , RV , RW K; QU , QV , QW

z
,

and the columns of the matrices QU , QV and QW in the latter decomposition are orthogonal.

Finally, we point out that alternative approaches have been recently proposed to gen-
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eralize the spectral theory of matrices to higher order tensors. In [WvB10], Weiland and
Van Belzen have defined a singular value decomposition for tensors which generalizes the
Courant-Fisher min-max characterization of the eigenvalues of a matrix. Contrarily to most
previous approaches, the tensor is seen as a multilinear form, and the proposed SVD does
not depend on the set of basis for Rd1 , Rd2 and Rd3 in which it is represented. In [GER10],
Gnang, Elgammal and Retakh have handled the problem by mean of a ternary operator
generalizing the matrix multiplication. They proved a spectral theorem which shows that
every supersymmetric tensor can be decomposed as a ternary product involving a diagonal
and an orthogonal tensor.

Nonnegative tensor factorization

In many applications, the multi-dimensional data contained in X is nonnegative. It has
therefore been proposed to search for decompositions in which the different components are
nonnegative. One reason is that often, such nonnegative factorizations may have a physical
interpretation. In our Internet traffic problem for instance, a nonnegative decomposition
of the traffic tensor would maybe reveal that the traffic is the sum of several components,
accounting for different type of usage of the network. A recent book of Cichocki, Zdunek,
Phan and Amari [CZPA09] review many algorithms for nonnegative matrix and tensor fac-
torizations, as well as some applications.

The workhorse algorithm for tensor decomposition problems with nonnegativity con-
straints on the factors U, V, and W is in fact a slight modification of the ALS proce-
dure 11.2.1 in which, after each step, the negative components are rounded to 0. This
heuristic algorithm has the nice property of returning sparse decompositions, which is de-
sired in many applications. Another approach presented in [CZPA09] aims at minimizing
the α−divergence Dα(X‖X̂ ), where X̂ is a rank-r tensor with nonnegative factors U ,V and
W . The α−divergence between two vectors p and q is defined as:

Dα(p‖q) :=
1

α(α− 1)

∑

i

(pα
i q

1−α
i − αi + (α− 1)qi).

As a limiting case when α→ 1, one obtains the (generalized) Kullback-Leibler divergence:

lim
α→1

Dα(p‖q) = DKL(p‖q) =
∑

i

(pi ln
pi

qi

− pi + qi),

while the dual Kullback Leibler divergence DKL(q‖p) is obtained as p→ 0. The class of α
divergences can thus be seen as smooth deformations from the Kullback Leibler divergence
DKL(p‖q) to its dual DKL(q‖p).

One advantage to work with Kullback-Leibler (or α−) divergences is that algorithms
relying on this metric preserve the nonnegativity of the factors U, V, and W . Moreover,
we have seen in Chapter 9 that entropy minimization problems are well-suited for traffic
matrices, in particular for their information theoretic foundations. Cichocki et. al. [CZPA09]
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proposed some multiplicative rules to update cyclically U, V, and W , in order to approximate
the best rank-r tensor decomposition of X (for Dα−divergences). The latter algorithm is
in fact an exponentiated gradient descent.

11.2.2 Decomposition of traffic tensors

We will now study some decomposition of real three-way data. We will use the data
that was already presented in Section 10.5.1, namely real traffic matrices from the Abilene
network [Abi], as well as traffic matrices from the Opentransit network. We only dispose of
partial measurements on Opentransit; missing values were therefore simulated by following
the recommendations of Nucci, Sridharan and Taft [NST05]. Moreover, our Opentransit
data consists in 40 hours of measurements only. We have extended the data to one week
(168 hours) by considering the 4 leading terms of the Fourier expansion of the flows, and
adding a noise. The traffic tensors X which we consider are thus of dimension 11×11×168

for Abilene, and 116× 116× 168 for Opentransit.

We have computed several decompositions of the traffic tensor of Abilene and Open-
transit. The results are indicated in Table 11.1: for each network, we have indicated the
relative L2−error that can be obtained with different low rank tensor approximations, as
well as the compression rates. Consider for example the Tucker(6, 6, 4)− approximation of
X , on Abilene. This decomposition comprises a 11 × 6 matrix U , a 11 × 6 matrix V , a
168 × 4 matrix W , and a 6 × 6 × 4−core tensor C. The number of entries required to
define the tensor X̂ is thus 11 · 6 + 11 · 6 + 168 · 4 + 6 · 6 · 4 = 948, whereas the original
tensor has 11 ·11 ·168 = 20328 entries. The compression rate is thus 948/20328 = 4, 66%.
This example shows that reducing the number of unknowns by a factor 20 can still yield an
approximation for which the relative L2−error ‖X −X̂ ‖F

‖X ‖F
is in the order of 10%. The potential

of low rank tensor approximations is even more striking on Opentransit, where a relative
error of only 1% can be achieved by reducing the number of variables by 100 (with the
Tucker(20, 20, 30)-decomposition.

A general observation is that Tucker decompositions seem to yield more accurate es-
timations than CP decompositions for the same compression rate, in particular when the
modal rank corresponding to time is small. (For a compression rate of 4.66%, we obtain a
relative error of 16.5% for the CP decomposition of rank 5, vs. an error of only 12.8% for
a Tucker decomposition of rank (6,6,4). Low rank decompositions based on the Kullback-
Leibler divergence yield less accurate estimates (which is natural since we use a different
metric than the one which is minimized, and factors are constrained to be positive), and
numerical problems occurred on large tensors.

Now, we may wonder how to interpret those low rank decompositions. What is the
significance of a CP (resp. Tucker) decomposition for a snapshot Xt of the traffic matrix ?
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Network Abilene Opentransit
Dimension of X 11× 11× 168 116× 116× 168

Decomposition Fit Compression Fit Compression
CP, r = 1 0.7134 0.93% 0.1562 0.17‰
CP, r = 3 0.2540 2.80% 0.0792 0.53‰
CP, r = 5 0.1651 4.67% 0.0629 0.88‰
CP, r = 8 0.1245 7.74% 0.0421 1.41‰
CP, r = 11 0.1053 10.28% 0.0363 1.94‰
CP, r = 15 0.0865 14.02% 0.0292 2.65‰
CP, r = 30 0.0544 28.04% 0.0203 5.30‰
CP, r = 60 0.0290 56.08% 0.0128 1.06%
KL, r = 1 0.7300 0.93% 0.4493 0.17‰
KL, r = 3 0.3521 2.80% 0.3221 0.53‰
KL, r = 5 0.2027 4.67% Numerical issues
KL, r = 10 0.1271 9.34% Numerical issues
Tucker, (r1, r2, r3) = (3, 3, 3) 0.2514 2.93% 0.0729 0.54‰
Tucker, (r1, r2, r3) = (3, 3, 5) 0.2456 4.67% 0.0665 0.69‰
Tucker, (r1, r2, r3) = (5, 5, 3) 0.1553 3.38% 0.0620 0.76‰
Tucker, (r1, r2, r3) = (5, 5, 5) 0.1376 5.28% 0.0482 0.94‰
Tucker, (r1, r2, r3) = (5, 5, 8) 0.1276 8.13% 0.0429 1.19‰
Tucker, (r1, r2, r3) = (6, 6, 4) 0.1289 4.66% 0.0515 0.97‰
Tucker, (r1, r2, r3) = (6, 6, 10) 0.1034 10.68% 0.0352 1.51‰
Tucker, (r1, r2, r3) = (8, 8, 5) 0.1092 6.57% 0.0409 1.33‰
Tucker, (r1, r2, r3) = (8, 8, 12) 0.0752 14.56% 0.0291 2.05‰
Tucker, (r1, r2, r3) = (9, 9, 6) 0.0993 8.32% 0.0359 1.58‰
Tucker, (r1, r2, r3) = (9, 9, 9) 0.0789 11.99% 0.0305 1.91‰
Tucker, (r1, r2, r3) = (15, 15, 5) - 0.0375 2.40‰
Tucker, (r1, r2, r3) = (15, 15, 15) - 0.0207 4.14‰
Tucker, (r1, r2, r3) = (20, 20, 15) - 0.0191 5.82‰
Tucker, (r1, r2, r3) = (20, 20, 30) - 0.0135 9.59‰
Tucker, (r1, r2, r3) = (30, 30, 20) - 0.0147 1.25%

Table 11.1: Fit (L2 relative error ‖X −X̂ ‖F

‖X ‖F
) and Compression rates for several decompositions X̂

of the traffic tensor X .

For a CP decomposition X̂ = JU, V,W K of rank r, the elements of a slice of X̂ are

(X̂t)o,d = x̂o,d,t =
r∑

k=1

Uo,kVd,kWt,k =
r∑

k=1

Wt,k(ukvk
T )o,d.

Thus, each snapshot of the TM is approximated by a linear combination of the rank-one
matrices ukvk

T (for k ∈ [r]). For a Tucker decomposition X̂ = JC;U, V,W K of rank
(r1, r2, r3),

(X̂t)o,d = x̂o,d,t =
r1∑

k1=1

r2∑

k2=1

r3∑

k1=1

ck1,k2,k3 Uo,k1Vd,k2Wt,k3 =
r3∑

k3=1

Wt,k3(UC(k3)V T )o,d,
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Figure 11.10: Four principal components for the temporal slices (snapshots) of the Abilene traffic
tensor.

where C(k3) is the slice of C with k3 fixed in the third mode: C(k3)
k1,k2

= ck1,k2,k3 . This means

that the snapshots of X̂ are linear combinations of the matrices UC(k3)V T (for k3 ∈ [r3]).
We have plotted the entries of the matrices UC(1)V T , . . . , UC(4)V T , for the Tucker(6,6,4)
approximation of the Abilene traffic tensor on Figure 11.10. For the observation period
considered, each TM can be decomposed as a linear combination of these 4 matrices with
a relative L2−error below 10%.

11.2.3 Using tensor decompositions for the estimation of Traffic matrices

We propose in this section the preliminary sketch of a method relying on tensor to
estimate traffic matrices. Based on the observations from the previous section, we propose
to compute, at time step t, the tensor decomposition (CP or Tucker) of the estimate traffic
tensor X̂t−δ:t−1 on the sliding window from time t−δ to t−1, and to use this decomposition
to produce basis matrices B1, . . . , Br (we take Bi = uivi

T for CP decomposition X̂t−δ:t−1 =

JU, V,W K or Bi = UC(i)V T for a Tucker decomposition X̂t−δ:t−1 = JC;U, V,W K). Then, we
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estimate the snapshot of the traffic matrix at time t by searching the weights w(t)
1 , . . . , w(t)

r

which minimize the L2−error on the measurement equation:
∥
∥
∥
∥
∥
A vec

(
r∑

k=1

w
(t)
k Bk

)

− yt

∥
∥
∥
∥
∥
.

Finally, we apply the IPF algorithm. We have written the pseudo code of this technique for
Tucker decompositions, called T4: Tucker Traffic Tensor Tomography, in Algorithm 11.2.2.
Note that this method can be used online.

Algorithm 11.2.2 Tucker Traffic Tensor Tomography (T4)

Input: Rank (r1, r2, r3) of the Tucker decompositions
Input: width δ of the sliding window
for t = 1, . . . , δ do

Read the measurement yt, and compute the tomogravity estimate X̂t of the TM at time t;
end for
for t = δ + 1, . . . , T do

Form the tensor X̂t−δ:t−1 whose slices are the δ previously estimated snapshots

X̂t−δ, . . . , X̂t−1;

Compute a Tucker approximation JC; U, V, W K of X̂t−δ:t−1;
Read the measurement yt, and compute the weights w(t) of the new estimate:

w(t) ←
(

A(V ⊗ U)CT
(3)

)†
yt;

Compute the prior estimate X̃t =
∑r3

k=1 w
(t)
k UC(k)V T ;

Compute the estimate X̂t with the IPF algorithm, by using the prior X̃t ;
end for

We have used our T4 algorithm to compute an estimate of the Opentransit traffic tensor.
We have used rank-(30, 30, 20) Tucker decompositions, and a time window of length δ = 24.
We rely on SNMP measurements only. The temporal L2−error is plotted on Figure 11.11,
and compared with the error of the raw gravity estimate and the tomogravity estimate. The
tomogravity estimate is the same as our T4 estimate during the first 24 hours. Then, when
we start to use tensor decompositions, the L2−error jumps from roughly 30% to 20%. This
looks very promising, since the use of tensors yields an improvement which is comparable to
the improvement observed when entropic projections (IPF) of the raw gravity model are done
(the error jumps from roughly 40 to 30%). We must nevertheless express some reservations
about the data used for this experiment: recall that some parts of our Opentransit data was
synthetically generated. There is a risk that our results might not be reproducible with real
data. For future work, we would like to evaluate our T4 approach in presence of Netflow
measurements, and validate it with real data from a large network.
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Figure 11.11: Temporal error on Opentransit, for three estimates of the flows based on link counts
only (gravity, tomogravity, and T4).
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INSTITUT DES SCIENCES ET TECHNOLOGIES

Plans d’expériences optimaux et application à l’estimation des matrices de
trafic dans les grands réseaux. Programmtion conique du second ordre et

sous-modularité.

Résumé : Nous abordons le problème de l’optimisation des mesures dans les grands réseaux
Internet par la théorie des plans d’expériences optimaux. Cette approche donne lieu d’étudier
des problèmes de grande taille en conception optimale d’expériences, pour lesquels nous
développons une méthode de résolution fondée sur l’ Optimisation Conique du Second Ordre.
Le coeur de notre méthode est un théorème de réduction du rang en optimisation semi-
définie. Certains aspects combinatoires sont également étudiés.
L’application à l’inférence des matrices de trafic dans les réseaux IP fait l’objet de la seconde
partie de ce manuscrit. Nous développons une méthode où l’on optimise l’estimation de
plusieurs combinaisons linéaires (tirées de façon aléatoire) des demandes de trafic. Nous
comparons notre approche aux précédentes au travers de simulations sur des données réelles.
En particulier, nous traitons des instances pour lesquelles les approches précédentes étaient
incapables de fournir une solution.

Mots clés : Plans d’expériences optimaux ; Estimation de la matrice de trafic dans les réseaux IP ;
Programmtion semi-définie ; Programmation conique du second ordre ; Optimisation sous-modulaire.

Optimal design of experiments with application to the inference of traffic
matrices in large networks. Second Order Cone Programming and Submodularity.

Abstract: We approach the problem of optimizing the measurements in large IP networks,
by using the theory of optimal experimental designs. This method gives raise to large
scale optimization problems, for which we develop a resolution technique relying on Second
Order Cone Programming (SOCP). The heart of our method is a rank reduction theorem
in semidefinite programming. Some combinatorial problems –which arise when the goal is
to find an optimal subset of the available experiments– are also studied.
The application to the inference of the traffic matrix in telecommunication networks is the
object of the second part of this manuscript. We develop a method in which we optimize
the estimation of several (randomly drawn) linear combinations of the traffic demands. This
approach is compared to previous ones, and is fully evaluated by mean of simulations relying
on real data. In particular, we handle some instances that were previously intractable.

Keywords: Optimal Experimental Design; Estimation of the traffic matrix in IP networks; Semidef-
inite programming; Second order cone programming; Submodular optimization.
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