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Spécialité : Signal et Images

Daniele CERRA

Sujet :

PATTERN-ORIENTED ALGORITHMIC COMPLEXITY:
TOWARDS COMPRESSION-BASED INFORMATION RETRIEVAL

SOUTENUE LE 25 MAI 2010 DEVANT LE JURY COMPOSÉ DE:
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Résumé

L’idée de assimilation du contenu informatif à la complexité de calcul a plus de 50 ans,
mais une manière d’exploiter pratiquement cette idée est venue plus récemment, avec la
définition de mesures de similarité basées sur la compression des données, qui permet-
tent d’estimer la quantité d’information partagée entre deux objets.

Ces techniques sont effectivement utilisées dans des applications sur divers types de
données avec une approche universelle et pratiquement sans paramètres. Toutefois, les
difficultés de les appliquer à des grands ensembles de données ont été rarement abordées.
Cette thèse propose une nouvelle mesure de similarité basée sur la compression des dic-
tionnaires qui est plus rapide comparativement aux solutions connues, sans perte de per-
formance. Cela augmente l’applicabilité de ces notions, ce qui permet de les tester sur
des ensembles de données de taille jusqu’à 100 fois plus grande que ceux précédemment
analysés dans la littérature.

Ces résultats ont été obtenus par l’étude des relations entre la théorie du codage clas-
sique, la compression des données et la notion de complexité par Kolmogorov. Les objets
sont décomposés dans un dictionnaire, qui est considéré comme un ensemble de règles
pour générer un code ayant une signification sémantique de la structure de l’image: les
dictionnaires extraits décrivent les régularités des données, et sont comparés pour es-
timer l’information partagée entre deux objets.

Cela permet de définir un système de recherche des images qui nécessite une super-
vision minimale par l’utilisateur, car il saute les étapes d’extraction de caractéristiques
typiques, souvent dépendantes de paramètres. Ainsi, les hypothèses subjectives qui peu-
vent fausser l’analyse sont enlevées, et a leur place une approche guidée par les données
est adoptée.

Diverses applications sont présentées, et ces méthodes sont employées sans aucun
changement des paramètres à différents types de données: photographies numériques,
images radar, textes, génomes d’ADN, et signaux sismiques.



8 RÉSUMÉ
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Abstract

The assimilation of informational content to computational complexity is more than 50
years old, but a way of exploiting practically this idea came only recently with the def-
inition of compression-based similarity measures, which estimate the amount of shared
information between any two objects.

These techniques are effectively employed in applications on diverse data types with
a universal and basically parameter-free approach; nevertheless, the difficulties in apply-
ing them to large datasets have been seldom addressed. This thesis proposes a novel
similarity measure based on compression with dictionaries which is faster compared to
known solutions, with no degradations in performance; this increases the applicability
of these notions, allowing testing them on datasets with size up to 100 times larger than
the ones previously analyzed in literature.

These results have been achieved by studying how the classical coding theory in re-
lation with data compression and the Kolmogorov notion of complexity allows decom-
posing the objects in an elementary source alphabet captured in a dictionary, regarded as
a set of rules to generate a code having semantic meaning for the image structures: the
extracted dictionaries describe the data regularities, and are compared to estimate the
shared information between any two objects.

This allows defining a content-based image retrieval system which requires mini-
mum supervision on the user’s side, since it skips typical feature extraction steps, often
parameter-dependant; this avoids relying on subjective assumptions which may bias the
analysis, adopting instead a data-driven, parameter-free approach.

Applications are presented where these methods are employed with no changes in
settings to different kinds of images, from digital photographs to infrared and Earth Ob-
servation (EO) images, and to other data types, from texts and DNA genomes to seismic
signals.
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Bref Rapport

Capturer la signification sémantique des images est un problème important qui soulève
de nombreux problèmes théoriques et pratiques. Ce travail se propose d’étudier com-
ment la théorie classique de Shannon en relation avec la compression de données et
la notion de complexité de Kolmogorov permet la décomposition des images dans un
alphabet élémentaire capturé dans un dictionnaire, considéré comme un ensemble de
règles pour générer un nouveau code de sens sémantique pour les structures de l’image.
Les dictionnaires extraits décrivent les régularités et les données sont comparées pour
estimer l’information partagée entre deux objets. Cela permet de définir un système de
recherche d’images sans paramètre basé sur le contenu des images.

Le premier problème examiné est la quantification de l’information contenue dans un
objet. D’une part l’approche des informations théoriques de Shannon est liée à l’incertitude
des résultats de chaque symbole dans l’objet. D’autre part le point de vue algorithmique
de Kolmogorov considère la complexité intrinsèque d’une chaı̂ne de caractères binaires,
indépendamment de toute description formelle.

L’idée principale pratique découlant de la théorie algorithmique de l’information
est la définition de mesures de similarité basées sur la compression de données. Ces
métriques de similarité universelles emploient des approximations de la complexité de
Kolmogorov incalculable, et ils estiment la quantité d’information partagée par deux ob-
jets. Ces approximations peuvent être obtenues grâce à des facteurs de compression, en
utilisant n’importe quel compresseur réel. Ces techniques sont effectivement employées
dans diverses applications avec une approche essentiellement sans paramètre, ce qui
élimine en diminuant les inconvénients de travailler avec des algorithmes dépendant de
paramètres. En outre, la caractéristique de l’approche guidée par les données de ces no-
tions permet de les appliquer à différents types de données, et dans plusieurs domaines
tels que le clustering non supervisé, la classification et la détection d’anomalies.

En dépit des nombreux avantages des mesures de similarité de compression à base,
il y a des limites dans leurs applications à des ensembles à moyen et à grand nombre de
données qui ont été rarement correctement traités. L’approche pilotée par les données
typiques de ces méthodes nécessite souvent le traitement itéré des données complètes:
donc, en général, toutes les expériences présentées jusqu’ici qui utilisient ces techniques
ont été réalisées sur des données limitées ne contenant que jusqu’à 100 objets à chaque
fois que le calcul d’une distance totale de matrice était impliqué. La plus connue de ces
notions est la Normalized Compression Distance (NCD) ((Li et al., 2004)): dans (Keogh
et al., 2004), les auteurs estiment que le temps d’exécution d’une variante du MNT est de
”moins de dix secondes (sur un 2,65 GHz machine) pour traiter un million de points de
données ”. Cela représente un inconvénient majeur pour l’analyse à base de compression
concernant les demandes de la vie réelle, qui impliquent généralement des ensembles de
données contenant des points de données dans l’ordre de plusieurs milliards.
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Afin de trouver des techniques plus adéquates, fondées sur la compression de données,
il est important de bien comprendre le cadre théorique sous-jacent. Les premières con-
tributions contenues dans cet ouvrage sont dans le domaine de la théorie algorithmique
de l’information: nous élargissons les correspondances existantes Shannon-Kolmogorov
en définissant de nouvelles notions dans le cadre algorithmique, qui sont la contrepartie
des concepts bien connus en théorie de l’information classique.

Par la suite, nous nous concentrons sur des dictionnaires directement extraits des
données, qui sont disponibles pour compresser n’importe quelle chaı̂ne de caractères et
peuvent être considérés comme des modèles pour les données. Considérant séparément
la complexité du dictionnaire et les données d’un dictionnaire, nous ramenons à la cor-
respondance entre les deux parties de la représentation Minimum Description Length,
la complexité de Kolmogorov et la compression. Cela permet de définir une mesure de
similarité basée sur la plus petite Grammaire non Contextuelle (Context-free Grammar),
qui est plus précise mais plus complexe que ses prédécesseurs basées sur la compression
de données.

Pour combiner la précision d’analyse avec la vitesse d’exécution, nous définissons
une nouvelle mesure de similarité basée sur la compression de données, la Fast Compres-
sion Distance (FCD), après avoir réduit la complexité des calculs à l’égard des techniques
connues. Cela permet d’appliquer des méthodes basées sur la compression de données
sur des ensembles de données jusqu’à 100 fois plus grandes que ceux testés dans les prin-
cipaux ouvrages sur le sujet. Les expériences suggèrent que les performances FCD sont
comparables à l’état de l’art et surpasse d’autres méthodes similaires.

La FCD permet de définir un système de recherche d’images par le contenu de la
manière suivante. Dans un premier temps, les images sont quantifiés en l’espace de Hue
Saturation Value (HSV), puis converties en chaı̂nes de caractères, après avoir été mod-
ifiées pour préserver des informations de texture verticale dans le processus. Par la suite,
des dictionnaires représentatifs sont extraits de chaque objet, chaque couple de diction-
naires est calculé et les similitudes entre les images individuelles sont ainsi quantifiées.
Enfin, l’utilisateur peut interroger le système avec une image de test et rechercher des im-
ages avec un contenu similaire. Cette solution a l’avantage d’être quasi-non supervisée et
sans hypothèse subjective, car elle ignore l’extraction de paramétres et les étapes typiques
de clustering de ces systèmes, et est donc facilement réalisable et utilisable, également par
un non-spécialiste.

Ces notions sont ensuite appliquées à des images satellitaires, provenant de deux cap-
teurs passifs et actifs. Pour ces données, le degré réel d’automatisme dans les étapes de
traitement est très faible, de sorte qu’aujourd’hui la plupart des traitements se fait encore
à la main et environ 5% seulement des scènes acquises sont utilisées dans des applications
pratiques. Des exemples sont donnés pour la classification et le clustering hiérarchique
non supervisées, et nous présentons un prototype de compresseur sémantique qui ef-
fectue une première annotation du contenu sémantique de l’image directement dans
l’étape de compression, et permet un accès aléatoire aux données compressées en sautant
l’étape de décompression. Enfin, deux projets dans le domaine de l’environnement sont
présentés où ces notions sont appliquées: la volcanologie et la protection des animaux
sauvages. De plus, l’universalité et la petite complexité de la distance proposée peu-
vent être exploitées pour estimer la complexité des ensembles de données annotées d’une
manière unique. Un résumé graphique des contributions rassemblées dans ce travail est
présenté en figure 1.

Le travail est structuré comme suit: la section actuelle contient un résumé de la thèse
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Figure 1: Synthèse des contributions contenues dans ce travail. Tout d’abord, les
relations entre théorie de l’information classique et algorithmique et le filtrage sont
considérés, en mettant l’accent sur leurs relations communes avec la compression de
données. Par la suite, les relations entre ces domaines sont élargis. Cela conduit à la
définition de nouvelles mesures de similarité basées sur la compression de données, qui
sont plus rapides et plus précises que leurs prédécesseurs, et peuvent être utilisées dans
différentes applications. Pour la première fois ce genre de techniques peut être testé sur
des données moyennes et grandes, et peut donc être validé de manière plus approfondie.
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en français. Dans le chapitre 1, nous discutons le flux de travail typique d’un système
de recherche d’images par le contenu, et le point des travaux antérieurs dans lesquels les
concepts de compression et d’analyse de l’information contenue se croisent. Le chapitre 2
analyse les correspondances entre les théories de Shannon et les théories de Kolmogorov,
donne un aperçu sur les algorithmes de compression et introduit des mesures de sim-
ilarité basées sur la compression de données. La deuxième partie de la thèse contient
nos contributions. Le chapitre 3 développe les correspondances Shannon-Kolmogorov
en définissant la version algorithmique de divergence de Kullback-Leibler, et il se rap-
proche des facteurs de compression pour dériver une nouvelle mesure de similarité; nous
définissons la Fast Compression Distance dans le chapitre 4, dans lequel un large éventail
d’applications est présenté. Elles vont de la recherche d’images basé sur le contenu, à la
classification non supervisée, principalement pour les photographies numériques et des
images acquises par les satellites, mais aussi pour d’autres types de données. Nous con-
cluons et discutons des perspectives futures dans le chapitre 5.

Préliminaires

La mesure de compression la plus largement connue et utilisée basée sur la similitude
des données générales est la Normalized Compression Distance (NCD), proposé par Li
et al (Li et al., 2004). Le NCD découle de l’idée de la complexité de Kolmogorov. La
complexité de Kolmogorov K(x) d’une chaı̂ne de caractères binaires x est la taille en bits
(chiffres binaires) de la plus courte programme q utilisée comme entrée par une machine
de Turing universelle pour calculer le programme x et arrêter:

K(x) = min
q∈Qx

|q| (1)

où Qx est l’ensemble des codes qui génèrent x. Le terme K(x), qui quantifie combien
il est difficile de calculer ou de décrire x, n’est pas calculable, mais peut être approché par
des algorithmes de compression, et la NCD est définie pour deux objets x et y comme:

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)}
(2)

où C(x) représente la taille de la version compressée sans perte de x et C(x, y) est
la version compressée de x annexée à y. Si x et y contiennent des informations com-
munes, ils se compriment mieux ensemble que séparément, car le compresseur utilise les
modèles récurrents dans l’un d’eux pour comprimer l’autre d’une manière plus efficace.
La distance varie de 0 à 1 et peut être explicitement calculée entre deux chaı̂nes de car-
actères ou fichiers x et y, et cette quantité peut être utilisée dans des applications à divers
types de données avec une approche essentiellement sans paramètre (Cilibrasi & Vitányi,
2005; Keogh et al., 2004).

En général, il y a un aspect des méthodes basées sur la compression de données
qui a été rarement correctement abordé: la difficulté d’appliquer ces techniques à des
grands ensembles de données. Habituellement, l’approche guidée par les données de ces
méthodes nécessite le traitement itéré des données, et ne permet pas une représentation
compacte des données explicite dans n’importe quel espace paramètré: par conséquent,
dans toutes les expériences présentées jusqu’ici employant ces techniques ont été ef-
fectuées, chaque fois que le calcul d’une distance matrice complète était nécessaire, sur
des données limitées contenant rarement plus de 100 objets (Cilibrasi & Vitányi, 2005).
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Nous sommes intéressés à utiliser une autre technique basée sur la compression de
données pour atteindre ces objectifs: la Pattern Representation based on Data Compres-
sion (PRDC), une méthode de classification mise en place par Watanabe et al. (Watanabe
et al., 2002) indépendamment de la NCD. L’idée de base de la PRDC est d’extraire les
dictionnaires typiques, obtenus avec un compresseur appartenant à la famille LZ (Ziv
& Lempel, 1978), directement à partir des données précédemment codées en chaı̂nes de
carácteres. Ces dictionnaires sont ensuite utilisés pour compresser des fichiers différents
pour découvrir des similitudes avec un objet spécifique sur la base de la puissance de
compression des dictionnaires. Pour deux chaı̂nes x et y, la PRDC est généralement plus
rapide que la distance, puisque la compression conjointe de x et y qui est l’étape la plus
coûteuse, du point de vue du calcul, est évitée: s’elle y est comparée à plusieurs objets, sa
compression, implicitement effectuée par extraction du dictionnaire D(y), doit être cal-
culée une seule fois. Au contraire, la NCD recommence toujours à partir de zéro x et y
dans le calcul de la compression deC(x, y). De l’autre côté, les résultats obtenus par NCD
sont plus précis que ceux obtenus par PRDC: le premier est plus fiable, étant une relation
entre facteurs de compression, tandis que le second est essentiellement défini comme un
facteur de compression en lui-même, et omet de normaliser selon la complexité unique
de chaque ensemble de données les indices de similarité obtenus.

Fast Compression Distance

Pour deux chaı̂nes de caractères finies x et y de longueur comparable, si le dictionnaire
est extrait hors ligne le temps nécessaire pour calculer la PRDC(x, y) est remarquable-
ment inférieur à celui de calculer la NCD(x, y), puisque la compression conjointe de x et
y qui est l’étape la plus coûteuse est évitée. De plus, si y est comparé à plusieurs objets,
la compression de y, implicitement effectuée par l’extraction du dictionnaire D(y), doit
être calculée une seule fois, tandis que la NCD analyse toujours à partir de zéro x et y
dans le calcul de chaque distance. D’autre part, les résultats obtenus par la PRDC ne
sont pas aussi précis que ceux obtenus en appliquant la NCD. En outre, cette dernière
peut être appliquée directement aux données, et pour la premiere, une étape supplé-
mentaire d’encodage des données dans des chaı̂nes est nécessaire, ce qui apporte une
charge supplémentaire pour le calcul quand il n’est pas simple. A partir de ces con-
sidérations, nous voulons avoir la vitesse de la PRDC sans sauter l’étape de compression
commune qui permet de meilleures performances avec la NCD.

L’idée est la suivante: un dictionnaireD(x) est extrait en temps linéaire avec l’algorithme
LZW (réf. 2.3.1.1) de chaque objet représenté par une chaı̂ne de caractères x, et trié en or-
dre croissant: le tri est effectué pour permettre la recherche binaire de chaque motif dans
D(x) en temps O(logN), où N est le nombre de motifs dans D(x). Le dictionnaire est
alors stocké pour une utilisation future: cette procédure peut être effectuée hors ligne et
doit être effectuée une seule fois pour chaque instance de données. Chaque fois qu’un
string x est ensuite comparé à une base de données contenant n dictionnaires et D(x) est
extraite à partir de x, alors que D(x) est comparé à chacun des n dictionnaires. Nous
définissons la Fast Compression Distance (FCD) entre dos objets x et y représentées par
D(x) et D(y) comme suit:

FCD(x, y) =
|D(x)| − ∩(D(x), D(y))

|D(x)|
, (3)
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Figure 2: Représentation graphique de l’intersection entre deux dictionnaires D(x)
et D(y), respectivement extraits de deux objets x et y grâce à la compression avec
l’algorithme LZW.

où |D(x)| et |D(y)| sont les dimensions de dictionnaires respectifes, considérées comme
le nombre de motifs qu’ils contiennent, et

⋂
((D(x), D(y)) est le nombre de motifs qui se

trouvent dans les deux dictionnaires. Une représentation graphique des jeux mentionnés
est indiqué en Fig. 2. La FCD (x, y) varie pour tous x et y de 0 à 1, qui représente respec-
tivement les distances minimale et maximale, et si x = y, alors FCD(x, y) = 0. Chaque
motif qui est comparé chiffres comme 1 quelle que soit sa longueur: la différence de taille
entre le dictionnaire des motifs qui sont appariés est équilibrée par la propriété de prefix-
closure typique de LZW qui s’applique aux motifs figurant dans le dictionnaire: ainsi,
une modèl long p commune à D(x) et D(y) sera naturellement compté |p| − 1 fois, où |p|
est la taille de p. L’intersection entre les dictionnaires dans la FCD représente les étape de
compression conjointes effectuées dans la NCD, puisque les modèles dans les deux objets
sont pris en compte. La FCD a été initialement proposée dans (Cerra & Datcu, 2010d).

Comparaison de vitesse avec la NCD

Nous pouvons comparer le nombre d’opérations nécessaires par la NCD et la FCD pour
effectuer l’étape de compression conjointe, qui est la plus discriminante. Le nombre des
opérations nécessaires à cette étape pour deux chaı̂nes x et y sont équivalents à la com-
pression du fichier joint C(x, y) pour la NCD, et le calcul de l’intersection des deux dic-
tionnaires D(x) et D(y) pour la FCD.

FCD(x, y)→
⋂

(D(x), D(y)) = mx logmy (4)

NCD(x, y)→ C(x, y) = (nx + ny) log(mx +my) (5)

où nx est le nombre d’éléments de x et mx le nombre de motifs extraits de x. Dans le
pire des cas, la FCD est 4 fois plus rapide que la NCD, si x et y ont une complexité com-
parable et sont totalement aléatoires. Comme la régularité dans un objet x augmente, mx

diminue par rapport à nx, puisque moins de motifs plus long sont extraits, et le nombre
d’opérations nécessaires par la FCD est encore plus réduit.
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L’étape d’extraction de dictionnaire peut être effectuée hors ligne pour la FCD, par
conséquent, chaque dictionnaire doit être calculé une seule fois pour chaque objet et peut
être réutilisé.

Dans le cas moyen, les expériences montrent que la complexité diminue d’un ordre
de grandeur, même si nous ignorons toute restriction sur la taille de la mémoire tam-
pon imposée par les compresseurs réels; d’autre part, nous limitons la généralité de la
NCD, qui est directement applicable à des données générales, sans une étape précédente
d’encodage en chaı̂nes.

Système CBIR

L’organisation d’un système de recherche d’images est généralement du type décrit dans
la figure 3. Dans le chapitre 1, nous rappellons combien de représentations différentes
existent pour décrire le contenu informationnel des images: dans la conception d’un
système de CBIR, on peut utiliser plusieurs espaces de couleur pour représenter l’informa-
tion spectrale; divers modèles de texture, où chacun de ces besoins est une étape distincte
de l’établissement et du réglage des paramètres; différents paramètres géométriques, à
leur tour généralement baséd sur l’extraction des bords et sur les processus de segmen-
tation, qui est difficile a réaliser efficacement d’une manière non supervisée; en outre, il
existe plusieurs façons pour mapper ces différents éléments dans un espace explicite des
caractéristiques et des décisions doivent être prises dans le processus de recherche afin
de retourner un ensemble d’images pertinents à l’utilisateur.

Chaque étape de cette chaı̂ne de traitement représente un danger, car elle est forte-
ment dépendante des choix liés à l’extraction et la manipulation des différents paramètres.
Dans certains cas, il est très difficile d’estimer quels sont les meilleurs descripteurs d’une
image, quel niveau de détails devrait avoirs chaque descripteur, comment regrouper des
données et réduire leur dimensionalité, sur quel principe devrait être fondée la distance
utilisée dans le système, qui els seuils devraient être fixés dans le processus et comment,
et ainsi de suite. En effet, tous ces choix sont généralement liés à un ensemble d’images
utilisé comme exemple, et peut considérablement varier en fonction de sa sélection.

L’utilisation de techniques basées sur la compression de données pour la recherche
d’images constitue une alternative intéressante pour ces méthodes classiques, car elles
permettent de réduire considérablement le rôle de la création subjective et le réglage des
paramètres.

La définition de la FCD dans le paragraphe précédent permet de définir un système
avec des caractéristiques basées sur la compression de données (Fig. 4).

Avant d’extraire les dictionnaires et le calcul de la distance entre les images, il est
nécessaire d’attribuer une valeur unique à chaque pixel et convertir l’image à deux di-
mensions dans une chaı̂ne de caractères à une seule dimension.

Comme les canaux RGB sont corrélés, la Hue Saturation Vaue (HSV) est choisie comme
espace de couleur, afin d’avoir une représentation plus significative et moins redondante
du contenu des images.

Une quantification uniforme de l’espace colorimétrique est alors effectuée pour éviter
une représentation intégrale des données (Gersho & Gray, 1992). Dans l’espace de couleurs
HSV, il est recommandé d’utiliser une quantification plus fine de la valeur de la teinte,
plutôt que des valeurs de saturation ou de l’intensité, puisque la perception visuelle
humaine est plus sensible aux variations de teinte (Androutsos et al., 1999): dans nos
expérimentations, nous avons utilisé 16 niveaux de quantification pour la teinte, et 4
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Figure 3: Eléments de base d’un système Query By Example typique pour la récupération
des images, illustrés dans un système de flux de données. Les caractéristiques sont ex-
traites, généralement liées à la couleur, la texture et la forme des images; par la suite,
elles sont regroupées en fonction de certains critères, et la ressemblance avec une im-
age de requête donnée est quantifiée selon une certaine distance. Ensuite, les données
récupérées peuvent être analysées et évaluées par l’utilisateur.
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Figure 4: Flux de travail désiré pour le système qui sera défini dans cette thése. Les
ètapes subjectives d’extraction et de réglage des paramètres sont idéalement evitées:
un tel système pourrait ensuite être facilement implémenté et utilisé par des non-
spécialistes. Afin de se concentrer sur des paramètres objectifs, la boucle d’interaction
avec l’utilisateur sera momentanément mise de côté.

pour les composantes de saturation et d’intensité. Par conséquent, l’espace de couleurs
HSV est quantifié sur 8 bits, qui permettent une représentation avec 256 valeurs.

Les images vont être convertis en chaı̂nes avant d’être comprimées. Si nous par-
courons l’image ligne par ligne de gauche à droite, on peut perdre totalement l’information
contenue dans les interactions verticales entre les pixels. C’est pourquoi nous avons
choisi de représenter un pixel avec 9 bits. Nous ajoutons un bit de plus pour l’information
de base verticale, et nous attribuons une valeur de 0 ou 1, respectivement pour transitions
lisses et rugueuses d’un pixel avec ses voisin adjacent vertical: cette information peut être
considérée comme une information de texture de base, et n’est nécessaire que pour le sens
vertical, car il est déjà implicite dans l’horizontale (voir Fig. 5).

Pour un pixel pi,j à une ligne i et colonne j, la valeur du bit lié à l’information verticale
est donnée par l’équation suivante:

v(pi,j) =

{
1, si(d(pi,j , pi+1,j > t)||(d(pi,j , pi−1,j > t)
0, autrement

(6)

où
d(p1, p2) =

√
||hp1 − hp2||2 + ||sp1 − sp2||2 + ||ip1 − ip2||2, (7)

t est un seuil compris entre 0 et 1, et hp, sp et ip sont respectivement les valeurs de la
teinte, de la saturation et del’intensité de p. En d’autres termes, nous vérifions si la norme
L2 des différences dans l’espace HSV entre un pixel et ses voisins dans la même colonne
et dans les deux rangées adjacentes est supérieure à un seuil donné.

Si nous voulons récupérer des images dans la base de données qui sont similaires à
une image de requête q, on peut appliquer un simple seuil à la FCD entre q et n’importe
quel objet dans l’ensemble de données et récupérer toutes les images au sein de la gamme
choisie de similitude.
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Figure 5: Pixels considérés pour incorporer l’information de base sur les interactions
verticales pour un pixel pi,j à une ligne i et colonne j. Une valeur de 0 ou 1 est assignée à
pi,j si la texture verticale est respectivement lisse ou rugueuse. Texture horizontale n’est
pas considérée, car elle est implicite dans l’étape de compression: l’image est traversée
ligne par ligne de gauche à droite et convertie en une chaı̂ne de caractères.

Expériences

Dans les expériences présentées dans cette section nous avons utilisé les bases de données
suivantes:

1. Un sous-ensemble du jeu de données COREL (Li et al., 2000), pour un total de 1500
images réparties en 15 classes.

2. Le jeu de données Nister-Stewenius (NS) (Nister & Stewenius, 2006), contenant
10.200 images.

3. L’ensemble de données Lola (Sivic & Zisserman, 2003), composé de 164 images
vidéo extraites à 19 endroits dans le film ”Run, Lola, Run ”.

4. Le jeu de données ”Fawns and Meadows” (Israel, n.d.), contenant 144 images illus-
trant des prairies.

5. Différents ensembles de données d’images satellitaires et optiques, acquises par le
capteur SPOT5.

6. Un ensemble de 24 sous-ensembles d’une scène SAR acquises par le satellite TerraSAR-
X, de taille 128x128.

7. L’ensemble de données Liber Liber (Onlus, 2003), un recueil de 90 textes de 11 au-
teurs italiens. C’est le seule base de données qui ne contient pas d’images.

Nous avons utilisé comme indice de qualité le Precision-Recall, où Precision est le
nombre de documents pertinents retrouvés par une recherche, divisé par le nombre to-
tal de documents trouvés, et Recall est le nombre de documents pertinents récupérés,
divisé par le nombre total de documents pertinents (Ricardo Baeza-yates and Berthier
Ribeiro-Neto, 1999). Dans certaines expériences nous avons aussi utilisé l’exactitude de
classification générale, et scores ad hoc pour les ensembles de données NS et Lola. La
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Afr.BeachArc.Bus.Din.El.Fl.Hor.Moun.FoodCavePost.Sun.Tig.Wom.
Africans 90 0 0 0 1 0 0 0 0 1 0 0 0 8 0

Beach 12 43 8 14 0 1 0 0 1 3 0 0 0 18 0
Architecture 7 0 72 3 0 0 0 0 0 1 0 0 1 16 0

Buses 6 0 0 93 0 0 0 0 0 1 0 0 0 0 0
Dinosaurs 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
Elephants 16 0 2 2 0 46 0 4 0 3 0 1 0 26 0
Flowers 6 0 3 1 0 0 83 1 0 3 0 0 0 3 0
Horses 0 0 0 0 0 0 0 97 0 0 0 0 0 3 0

Mountains 7 1 11 23 0 2 0 0 39 0 0 0 0 17 0
Food 6 0 0 1 0 0 0 0 0 92 0 0 0 1 0
Caves 17 0 9 1 0 1 0 0 0 5 60 0 0 7 0

Postcards 0 0 0 0 1 0 0 0 0 1 0 98 0 0 0
Sunsets 18 0 1 6 0 0 2 0 0 16 3 1 39 14 0
Tigers 1 0 0 1 0 0 0 5 0 0 0 0 0 93 0

Women 35 0 0 6 2 0 0 0 0 20 4 0 0 5 28
Avg. Accuracy 71

Table 1: Corel ensemble de données. Matrice de confusion pour la classification sur la
base du plus proche voisin.

variété des indices de qualité utilisés est a pour fin de pouvoir comparer des méthodes
distinctes adoptées dans les travaux précédents qui ont effectué des expériences sur ces
ensembles de données. Toutes les expérimentations ont été effectuées sur une machine
avec un double processeur 2 GHz et 2GB de RAM.

L’ensemble de données COREL

Nous comparons le FCD à Minimum Distortion Image Retrieval (MDIR) par Jeong et
Gray et Jointly Trained Codebooks (JTC) par Daptardar et Storer, sur la base de courbes
de Precision-Recall, et avec des expérimentations sur le même ensemble des 210 images
utilisées comme requêtes par ces méthodes précédentes. Fig. 6 montre la comparaison:
pour des valeurs de Recall supérieur à 0,2, le FCD surpasse les techniques précédentes.

Une simple expérimentation de classification a été ensuite réalisée sur le même en-
semble, où chaque image q a été utilisée comme de requête pour toutes les autres. Pour
chaque image de requête q, q a été attribué à la classe en minimisant la distance moyenne:
les résultats obtenus, présentés dans le tableau I, montrent une précision de 71,3%. La
précision augmente jusqu’à 76% si les images sont classées en fonction de l’objet qui
est récupéré en tête par la requête. Il faut remarquer que la variabilité de l’ensemble de
données COREL entre les objets de la même classe peut être élevé: par exemple la plupart
des 10 images pas reconnues pour la classe ”African” peuvent être en effet considérées
comme des valeurs extrêmes puisque, juste dans ces paysages aucun homme sont con-
tenues (voir Fig. 7). Ceci montre l’existence des limites imposées par des choix subjectifs
des ensembles de données.

Le temps d’exécution total était d’environ 15 minutes, alors qu’il était de plus que 150
avec NCD.
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Figure 6: Precision vs Recall comparaison de la méthode proposée avec les précédentes
techniques MDIR et JTC, basées sur la quantification vectorielle. La Fast Compression
Distance (FCD) est utilisé sur les images converties en chaı̂nes de caractères: dans la
méthode proposée, HSV est utilisé comme espace de couleurs, un bit de plus est ajouté à
chaque pixel afin de capturer la texture essentielle vertical, et une quantification scalaire
est effectuée.

Afr.Bea.Arc.Bus.Din.El.Fl.Ho.Mou.Fo.Cav.Pos.Sun.Tig.Wo.
Africans 91 0 0 0 0 0 0 0 0 1 1 0 0 7 0

Beach 8 31 9 6 0 8 0 0 15 0 5 1 0 16 1
Architecture 3 1 59 0 0 1 1 0 3 1 10 0 0 21 0

Buses 3 1 3 86 0 0 0 0 2 3 0 0 0 2 0
Dinosaurs 1 0 0 0 98 0 0 0 1 0 0 0 0 0 0
Elephants 0 0 1 0 0 89 0 2 0 1 1 0 0 6 0
Flowers 0 0 0 0 0 0 96 0 0 0 0 1 0 2 1
Horses 0 0 0 0 0 0 0 95 0 0 0 0 0 5 0

Mountains 2 11 7 9 1 9 0 0 52 1 3 0 2 3 0
Food 4 0 1 1 0 1 0 0 0 91 0 2 0 0 0
Caves 3 0 6 1 0 3 0 1 0 0 82 0 1 3 0

Postcards 4 0 0 0 1 0 0 0 0 10 0 82 0 3 0
Sunsets 3 0 1 3 0 2 3 0 0 3 9 0 67 9 0
Tigers 1 1 1 0 0 1 0 1 0 0 0 0 0 95 0

Women 25 0 0 1 1 4 3 0 4 8 13 0 0 10 31
Average Accuracy 76

Table 2: Corel ensemble de données. Matrice de confusion pour la classification sur la
base de le premier objet récupéré.
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Figure 7: Images typiques de le classe ”Africans” (rangée supérieure) et toutes les images
mal classés (rangée inférieure), ref. Table 4.2. Les fausses alarmes peuvent être con-
sidérées comme des valeurs extrêmes, et le confusion avec le classe ”Tigers” est justifiée
par les paysages dominent les images sans présence humaine, à l’exception de la sixième
dans le rangée inférieure (à tort attribué à le classe ”Food”).

FCD S. et Z.
0.093 0.013

Table 3: Résultats de l’ANR pour FCD sur l’ensemble de données Lola, par rapport aux
meilleurs résultats obtenus jusqu’à présent sur le même ensemble. Même si ses perfor-
mances sont bonnes, la FCD est nettement inférieure. Au même temps il faut considérer
que l’on a pas considéré l’extraction des caractéristiques et des paramètres.

L’ensemble de données ”Lola”

Un échantillon de l’ensemble de données est rapporté dans la Fig. 4.10. Le rendement
de récupération, mesuré à l’aide de l’Average Normalized Rank (ANR) des images per-
tinentes, est donné par:

ANR =
1

NNr

Nr∑
i=1

Ri −
Nr(Nr + 1)

2
, (8)

où Nr est le nombre d’images pertinentes pour une requête donnée, N est la taille de
l’ensemble des images, et Ri est le rang de l’image pertinente en position i. La ANR va
de 0 à 1, avec 0 qui signifie que toutes les images Nr sont renvoyées en premier, et avec
0,5 correspondant à la récupération aléatoire.

Dans ce cas, les résultats, rapporté à la Tableau 3, sont bien pires que le meilleurs
obtenus par Sivic et Zissermann dans (2003). Néanmoins, elles sont acceptables, si l’on
considère qu’aucune des caractéristiques ont été extraites de la scène et il n’était pas
nécessaire de définir et ajuster paramètres. En outre, ces résultats sont cohérents avec
le courbe Precision-Recall au Fig. 4.16.

Une application à un plus grand ensemble de données: Stewenius-Nister

L’ensemble des données N-S est composé de 2.550 objets, dont chacun est représenté à
partir de quatre points de vue différents, pour un total de 10.200 images. Un échantillon
de l’ensemble de données est représenté dans la figure. 10. La mesure de performance
définie par les auteurs est de compter le nombre des 4 images pertinentes qui font partie
des quatre premiers objets récupérés quand une image q est utilisée comme requête par
rapport à l’ensemble de données complet ou partiel.

Même si il y aurait des méthodes de requête plus rapides, pour maintenir inchangé
le flux de travail utilisé jusqu’ici, nous avons extrait tous les dictionnaires à partir des
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Figure 8: Score sur l’ensemble des données Stewenius-Nister, délimité par 4. L’axe
x montre la taille du sous-ensemble des données considérées. Le score de FCD est de
2,94, ce qui signifie que, moyennement, près de 3 images sur 4 (représentant le même
objet) sont parmi les quatre premières récupérées pour une image de requête représentant
le même objet. Les résultats sont inférieurs à l’état de l’art : dans ce cas on il faut se
rapporter aux méthodes basées sur des caractéristiques SIFT; néanmoins, la FCD n’a pas
besoin d’entraı̂nement et est indépendante des paramètres et dépasse les mesures basées
sur SIFT pour les réglages des paramètres différents (leaves-score dans le diagramme).

images et calculé à plein 10200x10200 une matrice de distance utilisant la FCD comme
mesure de distance. Ensuite, nous avons vérifié les 4 objets les plus proches pour chaque
image. Au meilleur de notre connaissance, c’est la première fois qu’une matrice de
distances intégral est calculée sur un ensemble de données de cette taille utilisant des
mesures de similarité basée sur la compression des données. Cela a été possible pour la
FCD dans environ 20 heures, mais la NCD aurait nécessité environ 10 fois plus. Nous
avons donc construit avec la NCD, en trois heures, une matrice de distances de taille
1000x1000 relatives à un ensemble de données partielles, afin de comparer les perfor-
mances.

Les résultats présentés dans la figure 4.12 montrent que la FCD obtient des résultats
aussi bons que la NCD sur l’ensemble de données partielles, mais clairement pas aussi
bon que le meilleur obtenu par Stewenius et Nister ; néanmoins, il y a quelques aspects
qui doivent être pris en considération. Tout d’abord, la FCD n’adopte pas une procédure
ad hoc pour l’ensemble de données, mais elle est appliquée sans aucune variation en
ce qui concerne les expériences contenues dans la présente section. En outre, plus que
quatre millions de caractéristiques sont extraits dans (Nister & Stewenius, 2006), alors
que cette étape est sautée par la FCD. Enfin, différentes combinaisons de paramètres et
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Figure 9: Échantillon de données. Dans la rangée supérieure images contenant un faon,
dans la rangée inférieure images ne contenant pas de fauve. L’ensemble de données se
compose de 144 images, dont 41 contiennent un faon qui se cache dans laherbe. La taille
de chaque image est 160 x 120.

Figure 10: Les trois faons pas détectés par la FCD (réf. Tableau 4.11). Les images sont
semblables à des prairies qui présentent des zones sans herbe.

ensembles d’apprentissage donnent des résultats très différents dans les expériences de
Stewenius et Nister, dont seulement certains sont meilleurs que la performance donnée
par la FCD : par exemple, si les auteurs calculent la score à un seul niveau, dans ce cas
au niveau de feuilles de l’arbre hiérarchique du vocabulaire adopté, les résultats sont
légèrement moins bons que ceux obtenus par la FCD. Cela confirme les inconvénients
de travailler avec des algorithmes dans lesquel la définition et la fixation des paramètres
joue un rôle central.

Détection des animaux sauvages

La détection peut être considérée comme un sous-ensemble de la tâche de classification
; dans cette expérimentation nous avons essayé de détecter des animaux qui se cachent
dans l’herbe.

Après l’extraction des dictionnaires, comme pour le Flux de travail dans la Fig. 4.2,
les images ont été classées sur la base de leur distance moyenne à partir d’un classe
(faon/prairies), avec une précision de 97,9%, avec 3 détections manquées et 0 faux posi-
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Méthode Faon Prairie Précision Temps

FCD
Faon 38 3

97.9% 58 sec
Prairie 0 103

NCD
Faon 29 12

77.8% 14 min
Prairie 20 83

Table 4: Matrices de confusion pour l’ensemble de données ”Fawns and Meadows”.

Auteur Textes Succès
Dante Alighieri 8 8

D’Annunzio 4 4
Deledda 15 15

Fogazzaro 5 5
Guicciardini 6 6
Machiavelli 12 10

Manzoni 4 4
Pirandello 11 11

Salgari 11 11
Svevo 5 5
Verga 9 9

TOTAL 90 88

Table 5: Attribution de auteur. La précision globale est de 97,8%. Les noms des auteurs:
Dante Alighieri, Gabriele D’Annunzio, Grazia Deledda, Antonio Fogazzaro, Francesco
Guicciardini, Niccoló Machiavelli, Alessandro Manzoni, Luigi Pirandello, Emilio Salgari,
Italo Svevo, Giovanni Verga.

tifs, surpassant nettement la NCD exécutés avec paramètres par défaut, à la fois en temps
d’exécution et précision (voir fig. 9 et 10 et le tableau 4. Les images contenant des faons
sont reconnues, même lorsque les animaux sont presque totalement recouverts par la
végétation.

Attribution d’auteur

La FCD peut aussi être appliquée à des données générales à une dimension, en ex-
trayant les dictionnaires directement à partir des chaı̂nes qui représentent les instances
de données. Nous rapportons une comparaison sur Attribution de auteur de la FCD avec
différentes mesures de similarité basées sur la compression des données. Les résultats,
présentés dans le tableau 5, montrent que l’auteur correct a été trouvé correctement dans
97,8% des cas.

Une comparaison sur les temps d’exécution est rapportée en Fig.12.

Applications à la télédétection

Images optiques et radar, qui varient grandement en contenu et résolution, et acquises
par différents capteurs, peuvent être analysées par les mêmes outils basés sur la com-
pression de données, permettant de découvrir les modèles et les similitudes dans les
données. En outre, les mêmes méthodes peuvent être appliquées pour définir un com-
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Figure 11: Précision de classification pour l’ensemble des données liberliber. En dépit de
sa complexité de calcul inférieure, parmi toutes les méthodes basées sur la compression
adoptées, les FCD obtient les meilleurs résultats.

Figure 12: Comparaison de temps d’exécution pour certaines des méthodes rapportées.
Le FCD est six fois plus vite que les NCD et quatorze fois plus rapide que les distance de
Kullback-Leibler algorithmique.
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Nuages Mer Désert Ville Forêt Champs
Nuages 90.9 0 1.5 0 7.6

Mer 0 92.6 0 0 7.4 0
Désert 0 1.5 88 0 9 1.5
Ville 0 0 0 100 0 0
Forêt 0 1.5 1.5 0 97 0

Champs 1.5 0 6 0 1.5 91
Average 93.3

Table 6: Classification de 400 images optiques sur la base de la distance NCD. JPEG2000
a été utilisé comme compresseur. Matrice de confusion pour la classification du plus
proche voisin.

presseur sémantique, qui fait une première définition d’un contenu de l’image directe-
ment dans l’étape de compression: ces solutions peut avoir une valeur ajoutée dans les
domaine de l’extraction d’informations sur l’image, où le degré d’automatisme en un
outil est une question cruciale. Fig. 13 à 17 montrent quelques exemples d’application.

Applications à la Volcanologie

Cette section présente deux expériences de classification non supervisée de signaux sis-
miques appliquées à deux ensembles de données associés à l’activité explosive du volcan
Stromboli (mer Tyrrhénienne). Dans le premier ensemble de données le but est de séparer
les événements liés aux glissements de terrain de celles liées à des explosions. Une clas-
sification hiérarchique basée sur les distances FCD entre 24 signaux appartenant à ces
événements, sépare parfaitement les données en deux groupes (Fig. 18).

Le deuxième ensemble de données est composé de 147 événements d’une période de
10 jours en Novembre et Décembre 2005. Les signaux ont été classés selon les bouches
éruptives qui ont produit les explosions. Dans l’étiquetage des évents actifs N représente
le Nord et le S le Sud, selon la position géographique (Fig. 19).

Résumé

Une courbe de Precision-Recall pour certains des ensembles de données utilisées dans
ce travail est représentée dans la figure 20. Le seul but de comparer ces courbes est
une estimation objective de la complexité de chaque ensemble de données, il n’a pas
d’importance si composée de textes, d’images ou d’autres types de données, car le flux
de travail pour FCD ne varie pas en fonction de l’ensemble des données analysées. En
général, une courbe inférieure est prévue pour les ensembles de données qui présentent
une plus grande complexité. La complexité intrinsèque de chaque ensemble de données
peut être estimée quantitativement par le Mean Average Precision (MAP), considérée
comme la taille de la zone délimitée par la courbe de Precision-Recall. La MAP peut aller
de 0 à 1 (voir le tableau ).

Nombreux facteurs peuvent contribuer à le variabilité d’un ensemble de données,
tels comme le nombre total de classes et la diversité des contenus, proportionnelle à la
confusion entre les classes. Par exemple, l’ensemble de données Corel à laquelle la pires
courbe de la fig. 20 est relatives souffre le problème d’un choix subjectif d’images pour
chaque classe, comme illustré par la fig. 7.



BREF RAPPORT 35

Figure 13: Classification hiérarchique (à gauche) sur une distance de matrice qui contient
les valeurs FCD appliquées à 60 images de l’ensemble des données, dont un échantillon
est indiqué à droite. Les classes sont bien séparés. La seule alarme fausse est un sous-
ensemble de mer confondre avec nuages.
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Figure 14: Description visuelle des classes utilisées (à gauche) et classification
hiérarchique des valeurs FCD (à droite), appliquée à 44 images de TerraSAR-X de taille
64× 64 avec Equivalent Number of Looks (ENL) égal à 4. Les classes sont bien séparées.

Contributions à la théorie algorithmique de l’information

Le chapitre 3 contient nouvelles idées et solutions qui complètent le cadre théorique
présenté dans le chapitre 2. Ces concepts peuvent augmenter le nombre d’applications
pratiques liées à la théorie algorithmique de l’information.

La principale contribution à le théorie présentée dans ce chapitre est l’expansion du
parallèle entre la théorie de l’information classique et algorithmique, réalisé par l’introduction
de la contrepartie algorithmique à l’entropie relative (ou divergence de Kullback-Leibler)
dans le cadre de Shannon : la notion de complexité algorithmique relative. Il est défini
entre deux chaı̂nes de caractères x et y comme la puissance de compression qui est per-
due en représentant x seulement en termes de y, au lieu de partir de sa représentation
plus compacte, qui a une longueur égale à sa Complexité de Kolmogorov K(x). Un algo-
rithme de compression à base est utilisé pour dériver une approximation calculable. Cela
permet l’application de cette divergence à des données réelles. Un exemple est rapporté
dans le tableau 7.

Considérant ensuite une compression des dictionnaires qui capturent motifs typiques
permet de définir une nouvelle mesure de similarité dans lequel la complexité de Kol-
mogorov est assimilée à le taille de la plus petite grammaire non contextuelle qui génère
un objet. Ce rapprochement Cg(x) est définie ainsi:

Cg(x) =

{
N , si N ≤ 1

Cx +
(

1− log2N
log2Cx+|G(x)|

)
, o.w.

(9)

où Cx est le nombre d’éléments de l’objet x initialement composé de N éléments,
après avoir été compressé avec G(x). La dernier, de taille |G(x)|, contient un ensemble
de règles de production R qui peut être considéré comme le plus petit dictionnaire de x.
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Figure 15: Classes utilisées (à droite) avec décomposition hiérarchique pour struc-
tures sportives et tour Eiffel (sous-ensembles de l’échantillon, en bas) et dendrogramme
(à gauche) représentant le résultat d’une classification non supervisée hiérarchique ap-
pliquée aux images choisis à la main, de taille 128×128, appartenant aux classes d’intérêt.
La classe portant la mention ”structures sportives” présente différentes zones bâties ap-
partenant au complexe sportif même. Une bonne séparation entre les classes et entre les
différentes structures appartenant à la même classe, est atteinte. La seule alarme fausse
est marqué.
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Figure 16: Schéma de compression sémantique. Chaque image est simultanément com-
primée par un dictionnaire et annotée sur la base du dictionnaire sélectionné. Par la
suite, chaque partie de l’image peut être directement accessible en les flux de données
compressées sans décompression de l’image.

Figure 17: Vue d’ensemble pour l’annotation de l’image SPOT comprimée. Violet
représente les nuages, gris la zone urbaine. Les forêts et les champs sont représentés
en rouge. Les données utilisées pour entraı̂nement ne font pas partie de l’image analysée
et le même ensemble peut être utilisé pour le même capteur et la même classe d’intérêt.
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Figure 18: Clustering hiérarchique de la similitude des indices obtenus avec la FCD sur
vingt-quatre signaux sismiques liés à événements générés par le volcan Stromboli. Les
groupes d’événements liés à des explosions et glissements de terrain sont parfaitement
séparés en deux groupes.
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Figure 19: Clustering hiérarchique de 28 signaux sismiques liés à explosions produites
par différents évents du volcan Stromboli. Les événements générés par les bouches
éruptives du Nord (N) et du Sud (S) sont correctement séparés en deux groupes, sauf
une exception.

A Dict(A) A (A⊕B) B Dict(B) B (B ⊕A)

a a
b ab =< 256 > a a b ab =< 256 > a a
c bc =< 257 > b b a ba =< 257 > b b
a ca =< 258 > c c b
b a aba =< 258 > < 256 > < 256 >
c abc =< 259 > < 256 > < 256 > b
a c a < 256 >
b cab =< 260 > < 258 > b abab =< 259 > < 258 >
c < 256 > a < 256 >
a bca =< 261 > < 257 > c b bab =< 260 > < 257 >
b a < 256 >
c < 256 > b

< 259 > c < 260 > < 256 >

Table 7: Un exemple de cross-compression, utilisé pour dériver une approximation de la
complexité relative. Dictionnaires extrait de A et B, versions compressées de A et B, et
cross- compression entre A et B, calculé avec l’algorithme de la Fig. 3.2
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Figure 20: Courbes de Precision-Recall pour la plupart des ensembles de données
analysées en cette section. Basse courbes correspondent à des ensembles de données
avec un plus grand nombre de classes et d’une variation significative intra-classe, ce qui
rend difficile les tâches de classification. Depuis la FCD peut être appliquée à tout type
de données avec essentiellement le même flux de travail, ces courbes peuvent aider à
évaluer la performance d’une technique sur un ensemble de données.
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Conclusions

Ce travail commence à partir des relations entre la théorie de l’information classique de
Shannon, et comment elle permet de quantifier le contenu informationnel d’une chaı̂ne
de caractères, et l’approche algorithmique de Kolmogorov, qui considère la complexité
intrinsèque des éléments et motifs qui composent la chaı̂ne.

Nous décrivons une extension de la correspondance Shannon-Kolmogorov qui per-
met d’exploiter les liens existant entre codage sans perte et sélection du modèle.

Cette thèse introduit alors une mesure de similarité basée sur la compression des
dictionnaires directement extraite des données, la Fast Compression Distance (FCD), qui
a une complexité réduite de calcul par rapport à la distance plus populaire basé sur la
compression de données, la NCD.

Dans le même temps, l’approche guidée par les données typiques de mesures fondées
sur la compression de données est maintenue. Ces techniques peuvent alors être testées
pour la première fois sur des ensembles de données de taille moyenne, et leur comporte-
ment estimé d’une manière plus statistiquement significative: en effet, alors que dans le
passé, ces méthodes ont toujours été appliquées à des ensembles limités composé d’un
maximum de 100 objets, les expériences présentées dans cette thèse ont été menées sur
de plus grands ensembles, dans un cas dépassant les 10000 objets.

Les expériences suggèrent que la FCD donne souvent les meilleures performances, en
comparaison aux autres méthodes basées sur la compression de données. Nous justifions
ceci avec deux remarques: premièrement, la FCD devrait être plus robuste, car elle se con-
centre exclusivement sur les motifs significatifs, qui captent la plupart des informations
contenues dans les objets. Deuxièmement, l’utilisation d’un dictionnaire complet permet
le rejet de toute limitation sur la taille des tampons utilisés par les compresseurs réel,
puisque la taille des dictionnaires est limitée seulement par le nombre de motifs perti-
nents contenus dans les objets.

Sur la base des applications présentées, la FCD peut aider à résoudre les problèmes
pratiques qui se posent lorsque des techniques basées sur la compression de données
doivent être appliquées aux grands ensembles de données, et pourrait aider ces concepts
à trouver leur chemin dans les applications de data mining. Le temps nécessaire pour une
requête sur un ensemble de données comprenant plus de 10000 images serait huit secon-
des sur une machine standard, ce qui est acceptable pour les systèmes réels et pourrait
permettre pour la première fois une exploitation quasi-sans paramètres de données: cela
aurait une grand valeur car tous les systèmes de recherche sont fortement dépendants des
étapes d’estimation et d’extraction des paramètres. Un système de recherche sémantique
des images pouvaient être défini à partir de ces notions, dans un processus évolutif qui
procède de la modélisation de l’aspect visuel, à l’apprentissage des modèles sémantiques,
à faire des inférences avec des espaces sémantiques. Un tel système aurait pour but de
simultanément annoter et récupérer les images avec un minimum de supervision du côté
de l’utilisateur.
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Introduction

Adding meaning to images is an important and practical problem which raises many
theoretical challenges. This work proposes to study how the classical coding theory in
relation with data compression and the Kolmogorov notion of complexity enables the
decomposition of images in an elementary source alphabet captured in a dictionary, re-
garded as a set of rules to generate a new code with semantic meaning for the image
structures. The extracted dictionaries describe the data regularities, from the perspective
of a complexity tradeoff, and are compared to estimate the shared information between
any two objects. This allows defining in a parameter-free way a content-based image
retrieval system.

The first problem taken into consideration is how to quantify the informational con-
tent of an object: while Shannon’s classical information theory approach is linked to the
uncertainty of the outcomes of each symbol in the object, Kolmogorov’s more recent algo-
rithmic point of view considers the intrinsic complexity of a binary string, independently
from every description formalism.

The most important practical idea deriving from algorithmic information theory is
the definition of compression-based similarity measures: these universal similarity met-
rics approximate uncomputable Kolmogorov complexity terms by compression factors,
obtained through any off-the-shelf compressor, to estimate the amount of information
shared by any two objects. Such techniques are effectively employed in diverse applica-
tions with a basically parameter-free approach, decreasing the disadvantages of working
with parameter-dependent algorithms. In addition, the data-driven approach character-
istic of these notions permits to apply them to different kinds of data, and in several
domains such as unsupervised clustering, classification and anomaly detection.

In spite of the many advantages that compression-based similarity measures have,
there are limitations in their applications to medium-to-large datasets which have been
seldom properly addressed. The data-driven approach typical of these methods usually
requires iterated processing of the full data, since no compact representation of the ob-
jects in any explicit parameter space is allowed: therefore, in general, all experiments
presented so far which used these techniques have been performed on restricted datasets
containing up to 100 objects, whenever the computation of a full distance matrix was in-
volved. The most well-known of such notions is the Normalized Compression Distance
(NCD) by Li et al. (2004): in (Keogh et al., 2004) the authors estimate the running time of
a variant of NCD as ”less than ten seconds (on a 2.65 GHz machine) to process a million
data points”. This represents a major drawback for compression-based analysis concern-
ing real-life applications, which usually involve datasets containing data points in the
order of billions.

In order to find novel, more suitable compression-based techniques, it is important to
fully understand the underlying theoretical frame. The first contributions contained in
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this work are within the domain of algorithmic information theory: we expand the exist-
ing Shannon-Kolmogorov correspondences by defining new notions in the algorithmic
frame, which are counterparts of well-known concepts in classical information theory.
In the process, we bring into Kolmogorov’s frame previous compression-based methods
to cluster and classify data, which were independently defined and can be now better
understood when considered within a solid theoretical frame.

Subsequently we focus on dictionaries directly extracted from the data, which are
available to compress any string and may be regarded as models for the data. Consider-
ing separately the complexity of the dictionary and the data for a given dictionary, takes
us back to the correspondences between the two-part Minimum Description Length rep-
resentation, Kolmogorov complexity and compression, and results in the definition of a
similarity measure based on smallest Context-free Grammars (CFG), which is more ac-
curate but more complex than its compression-based predecessors.

To combine analysis accuracy with execution speed, we continue by establishing
a link between NCD and Pattern Representation using Data Compression (PRDC) by
Watanabe et al. (2002), a dictionary-based technique which is faster but less effective
compared to NCD. Finally, this brings to the definition of a new similarity measure based
on data compression, the Fast Compression Distance (FCD), combining the accuracy of
the former technique with the reduced complexity of the latter. This allows applying
the power of compression-based methods for the first time on large datasets, with an
increase of up to 100 times in size with respect to the ones tested in the main works on
the topic. Experiments suggest that FCD’s performance is comparable to the state of the
art, and outperforms other compression-based methods, since it focuses on the relevant
information contained in the objects, implicitly captured in the dictionary extraction step.
Another advantage is that restrictions regarding buffer and lookup table sizes, needed by
real compressors for efficient compression, do not apply to the FCD, and the full data can
be exploited in the matching step.

The FCD allows defining a content-based image retrieval system, as following. In
a first offline step, the images are quantized in the Hue Saturation Value (HSV) space
and converted into strings, after being modified to preserve some vertical textural infor-
mation in the process; subsequently, representative dictionaries are extracted from each
object and the similarities between individual images are computed by comparing each
couple of dictionaries; finally, the user can query the system with a test image and re-
trieve images with similar content. Such solution has the advantages of being quasi-
unsupervised and free from subjective assumptions,since it skips the feature extraction
and clustering steps typical of these systems, and is therefore easily implementable and
usable also by a non-specialist.

These notions are then applied to Earth Observation (EO) data, coming from both pas-
sive and active sensors, for which a large gap divides the desired from the actual degree
of automatism in the processing steps, so that nowadays most of the processing is still
done by hand and approximately only 5% of the acquired satellite scenes are actually em-
ployed in practical applications. Examples are shown for classification and unsupervised
hierarchical clustering of optical and Synthetic Aperture Radar (SAR) images; a method
to automatically select the best number of looks when pre-processing a SAR scene is de-
fined; to conclude, we present a prototype for a semantic compressor performing a first
annotation of the semantic image content directly in the compression step, and allowing
random access to the compressed data skipping the decompression step. Finally, two en-
vironmental projects are presented where these notions are applied to vulcanology and
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Figure 21: Summary of the contributions contained in this work. Firstly, the relations
between classical and algorithmic information theory and pattern matching are consid-
ered, with an emphasis on their common relations with data compression. Subsequently,
the relations between these domains are expanded by defining new concepts and estab-
lishing direct relations between concepts which were previously independently defined.
This leads to the definition of new compression-based similarity measures, which are
faster and more accurate than their predecessors, and can be employed in different ap-
plications. For the first time this kind of techniques can be tested on medium-to-large
datasets and be more thoroughly validated, thanks to the reduced complexity of the pro-
posed ideas.

wild animals protection. As an added value, the universality and decreased complex-
ity of the proposed distance can be exploited to estimate the complexities of annotated
datasets in an unique way. A graphical summary of the contributions collected in this
work is presented in Fig. 21.

The work is structured as follows. In chapter 1 we discuss the typical workflow of
a Content-based Image Retrieval System, and point out previous works in which the
concepts of compression and information content analysis intersect. Chapter 2 ana-
lyzes the existing parallel between Shannon and Kolmogorov theories, and introduces
compression-based similarity measures after an overview on basic compression algo-
rithms. The second part of the thesis contains our contributions. Chapter 3 expands the
Shannon-Kolmogorov correspondences by defining the algorithmic version of Kullback-
Leibler divergence, and approximates it with compression factors to derive a new sim-
ilarity measure; furthermore, independent concepts defined in the areas of information
theory and pattern matching are linked to algorithmic information theory, paving the
way for our definition of the dictionary-based Fast Compression Distance, defined in
chapter 4, in which a wide array of applications is also to be found: these range from
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content-based image retrieval, to unsupervised clustering, to classification, mainly for
digital photographs and satellite images but also for other data types. We conclude and
discuss future perspectives in chapter 5.
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Chapter 1

Image Retrieval Systems

In the digital era existing database technology, usually dependent on structured texts and
metadata, faces difficult challenges when handling multimedia data: the lack of natural
language descriptors for images, video and audio datasets has generated a great inter-
est in alternative solutions in information retrieval. In the case of natural and synthetic
images and scientific data such as Earth Observation imagery, Content-based Image Re-
trieval (CIBR) systems enabling queries based on the actual images content have been
described: usually, they focus on a lower level of descriptors, in the form of parameters
representing the direct data content (typically color histograms, layouts, or shapes). In
a classical query by example system, the user is able to present to the system a query
image, and retrieve images which are similar, according to given criteria: this chapter in-
troduces the general concepts on which these systems are based. Emphasis is here given
to existing works which take advantage of data compression properties for image index-
ing and retrieval, and to concepts and methods related to classic image retrieval systems
which are to be employed along the work.

1.1 Content-based Image Retrieval Systems

There are many ways to obtain image signatures from extracted parameters and evaluate
their similarity. The Query By Example (QBE) architecture (Zloof, 1977) of a classical
image retrieval system is reported in Fig. 1.1: in an offline step pre-determined features
are extracted from the set of images of interest, and then grouped according to some
criteria, adopting some distance measure in the process. Subsequently, the same features
are extracted from a query image selected by the user, a comparison is made in the feature
space and the system presents to the user the most similar images to the query, enabling
actions on the user side to refine the search or annotate the images (Smeulders et al.,
2000).

A detailed review of CBIR systems would be very broad, so the interested reader is in-
vited to consult other works containing comprehensive reviews on the topic (Smeulders
et al., 2000; Lew et al., 2006; Datta et al., 2008; Eakins & Graham, 1999).

Early CBIR solutions, which are approximately 20 years old, relied on very simple
image-processing techniques, such as matching histograms of image colors: among these
pioneering works we recall IBM’s Query By Image Content system (QBIC) by Flickner et
al. (1995), and Excalibur’s RetrievalWare (Dowe, 1993). Subsequently, systems such as
MIT’s Photobook (Pentland et al., 1996) and FourEyes (Minka & Picard, 1997) adopted a
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Figure 1.1: Basic algorithmic components of a typical Query By Example image retrieval
system, captured in a data flow scheme. Given features, usually related to color, texture
and shape, are extracted from the images; subsequently, they are clustered together ac-
cording to some criteria, and the similarity to a given query image is quantified according
to some distance. Then, the retrieved data may be analyzed and evaluated by the user, in
a loop to interactively refine the results of the query.
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hierarchical representation of information, relying on principal components analysis to
discover latent features, and providing a first user-guided selection process by positive
and negative examples. More recent systems integrated a relevance feedback loop, al-
lowing full interaction on the user’s side and the creation of user-defined labels: the first
example of such systems is PicHunter (Cox et al., 2000).

The problem of filling the semantic gap between man and machine has been in recent
years at the center of significant interest in the field of image retrieval, and semantic re-
trieval systems appeared (Vasconcelos, 2007). A semantic retrieval system is based on the
automatic annotation of images: the starting point for such systems is a training database
of images, each annotated with a natural language caption. From this database, the sys-
tem learns to create a mapping between words and visual features, and subsequently
allows the user to perform queries also with the aid of keywords. In this work we do
not enter this broad and complex field: instead, we focus on lower-level descriptors for
the images. In fact, the descriptors adopted will be at an extreme low level, since we will
use the full image data, going yet a step down in the choice of image descriptors. This is
done to avoid the tricky steps of parameters setting and modeling which may hinder the
analysis.

1.1.1 Feature Extraction

A large number of features has been considered in CBIR, with ”classical” systems relying
on information related to the images’ color, texture, and shape: we will introduce briefly
these concepts to show that the selection and extraction of features in CBIR is a variegate
landscape, with a very broad choice of parameters to represent the relevant information
contained in the images. We will discuss more in detail the concepts that will help in
understanding the techniques and experiments presented in the rest of the work.

1.1.1.1 Color

One of the first approaches relying on color information was the use of color histograms
(Swain & Ballard, 1991) or their combination with low-order color models, such as mean
and variance (Stricker & Orengo, 1995). Such features lack any information on the spa-
tial distribution of the pixels. To overcome this problem, color coherence vectors (Pass et
al., 1997) consider separately pixels belonging to large uniform areas, integrating some
spatial information. This work inspired Huang et al. (1997) who use as features color
correlograms, analyzing the spatial correlations between pairs of colors with a set of dis-
tances. It was shown that in image retrieval the latter method captures more information
with respect to color histograms and color coherence vectors (Ma & Zhang, 1998). Later
on color invariant features for retrieval and indexing have been proposed in (Gevers &
Smeulders, 2000). Color histograms have been widely used for so many years for their
reduced computational complexity and their invariance to translation and rotation; any-
way, modern systems rely on more sophisticated representations of the color information
(Vasconcelos, 2007).

A widely used color space is RGB, in which red, green, and blue light components are
added together. RGB is then an additive color model, having as its counterpart subtrac-
tive color models such as CYMK (Cyan, Yellow, Magenta and Key Black), not commonly
used in electronic formats and image retrieval experiments, due to the representation of
a color with four values/channels with no added information with respect to RGB. Even
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Figure 1.2: Graphical representation of the HSV color space. A color is represented by
the combination of its Hue as an angle on the cylinder, its Saturation as the horizontal
distance from the center of the cylinder, which represents the intensity of the color, and
its Value as the brightness quantified by the vertical distance from the bottom.

though the use of an RGB representation results natural, it may hinder the analysis in
some cases, being the RGB channels correlated; other color spaces have been then used
to aid in the selection, comparison and extraction of information within images. Of par-
ticular interest for the scope of this thesis is the Hue Saturation Value (HSV) color space,
also known as Hue Saturation Intensity, which organizes a color into a cylindrical geom-
etry which roughly corresponds to human perception. This maximizes the informational
content of each channel and has interesting side-effects, such as decoupling chromatic in-
formation from eventual shadows (Fig. 1.2); furthermore, the hue is invariant under the
orientation of the object with respect to the illumination and camera direction and hence
more suited for object retrieval. An information extraction method based on quantiza-
tion of the HSV color space is presented in (Mojsilovic et al., 2002), having the advantage
of a less complex computation with no loss in the spectral information, without anyway
integrating the inter-pixel spatial relations.

Park et al. (2000) propose an image retrieval system using another important family
of color spaces, YCbCr. YCbCr is widely used in video and digital photography systems,
and embedded in MPEG and JPEG coders. In this color space, the Y component carries
the luminance information, while Cb and Cr are the blue-difference and red-difference
chroma components. YCbCr is a way of encoding RGB information, with the transfor-
mation between RGB and YCbCr color spaces being irreversible: JPEG2000 allows also
employing a Reversible Color Transform (RCT), using a modified YCbCr space which
introduces no quantization errors in the conversion from RGB, and so is fully reversible.

1.1.1.2 Texture

Texture parameters identify spatial visual patterns within the images: they are not lim-
ited then to single pixel values or certain color correlations, but are driven by the spatial
relationships of a pixel in a more or less extended neighborhood.

The estimation of texture in image analysis often complements color-based analysis,
since considering texture may overcome the limits of simple histogram matching and
related techniques in discriminating individual image structures, and these two kinds of
information are basically orthogonal.
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Texture is primarily modeled as a two-dimensional gray level variation, and interest-
ing areas within the image are the ones which appear visually homogeneous and produce
texture parameters with similar values. Features calculated from second order statistics
were first proposed by Haralick et al. (1973), who use fourteen parameters given by a co-
occurence matrix of the pixels. More defined representation of the relative brightness for
a pair of pixels is computed in (Tamura et al., 1978), enabling the estimation of the degree
of contrast, regularity, coarseness and directionality. A study by Buf et al. (1990), shows
that the contrast often constitutes the most discriminative feature. Other methods use
wavelet (Daubechies, 1990) or contourlet (Do & Vetterli, 2003) coefficients to characterize
texture, since these describe their frequency and orientation components; Manjunath and
Ma (1996) use two-dimensional Gabor filters to extract textural information.

A parallel approach for modeling the spatial relations within the pixels is given by
Gibbs-Markov Random Fields (GMRF) (Dubes & Jain, 1989). Such models specify that
a pixel depends only on a given neighborhood, and the statistics dependencies within
this neighborhood constitute the primitive texture features. An example of texture anal-
ysis achieved through GMRF is briefly sketched in section 4.3, as an example of typical
satellite images analysis.

1.1.1.3 Shape

As one of the first retrieval systems, QBIC integrated shape descriptors to query images
by their content, combining geometric measures such as area and eccentricity with alge-
braic moment invariants. Subsequently, shapes extraction and parametrization has been
a topic that attracted considerable attention from the CBIR community, especially dur-
ing the last decade of the XXth century (Veltkamp & Hagedoorn, 2001). However, char-
acterizing image content by shape has proved to be rather difficult in image analysis,
as pointed out already in (Mumford, 1987), and acceptable results have been obtained
mostly in narrow fields with specialized techniques: shapes will often be determined
by applying first segmentation on the image, and this is a weak point of these features,
since usually accurate segmentation is very difficult to automate completely and often
requires human intervention (Lucchese & Mitra, 2001). Segmentation can be either pixel-
based or region-based: while the former approach uses essentially color information to
distinguish zones with a homogeneous color, the latter is more efficient since it takes
into account textural information and/or edges extracted from the image in a prelimi-
nary step: an example is a popular algorithm treating image segmentation as a graph
partitioning problem (Shi & Malik, 2000). An evaluation of the most important image
segmentation algorithms is contained in (Unnikrishnan et al., 2007).

Once the segmentation is obtained, shape features are extracted: a detailed analysis
on the topic is given by Veltkamp and Hagedoorn (2001). To take into consideration the
inter-regions spatial relations two similarity measures are commonly used: Integrated
Region Matching (Li et al., 2000) that allows establishing a relation between all regions
in an image, and transportation (Monge/Kantorovich) distance (Villani, 2003, 2009) that
computes a ”cost” to transform a set of regions into a second one.

1.1.1.4 Recent Feature Extraction Methods

Standard methods extract features from the images which are either global, region-based
or pixel-based. In all of these cases, the parameters are computed using the full set of
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pixels composing the images, with the difference residing in the amount of data which is
considered for the estimation of each parameter.

Recent approaches have been defined which operate in a different way, by extracting
”interesting” points from the image, making local decisions at every image point whether
there is a feature of a given type at that point or not. The resulting features will be subsets
of the image domain, often in the form of isolated points, continuous curves or connected
regions; the remaining points are discarded.

The most representative of these approaches, quite popular during the last decade
and not treated here extensively, is the Scale Invariant Feature Transform (SIFT), which
extracting diverse parameters related to salient points to provide a feature description
of the image (Lowe, 1999). SIFT descriptors are invariant to scale, rotation and affine
distortion, and partially invariant to illumination conditions.

Other recent methods are GLOH (Gradient Location and Orientation Histogram) (Miko-
lajczyk & Schmid, 2005), a SIFT-like descriptor that considers more spatial regions for the
histograms, reducing the higher dimensionality of the descriptor through principal com-
ponents analysis (PCA), and SURF (Speeded Up Robust Features) (Bay et al., 2006), a
robust image detector and descriptor inspired by SIFT and based on sums of 2D wavelet
coefficients; recently, the region-based LESH (Local Energy based Shape Histogram) has
been defined, which encodes the salient shapes in the image by accumulating local en-
ergy along several filter orientations (Sarfraz & Hellwich, 2008).

1.1.2 Clustering

Extracting the parameters which describe the image content, as presented so far, gener-
ate additional data related to each image, making very hard to handle the full set of fea-
tures in practice for each image element, especially if different kinds of primitives (color,
texture, shape) are aggregated. To solve this problem, systems often adopt methods to
reduce or compactly represent the feature space, which can be attributed to the general
concept of clustering.

Clustering is a method of unsupervised learning, in which data points which are simi-
lar according to some criteria are grouped together. Instead of storing the full information
about the data instances, therefore, only this compact information is taken into consider-
ation to enable fast queries on the image content.

Clustering algorithms are many and can be classified in different groups. Algorithms
which split the data recursively until a stopping criterion is met are divisive, while algo-
rithms which initialize each cluster with a single pattern and successively merge clusters
together are agglomerative. Clustering can be monothetic or polythetic if the features are
considered sequentially or simultaneously, and hard or fuzzy if the elements are assigned
to each cluster in a definitive way or with a certain degree of membership, respectively.
They can be deterministic or stochastic, and incremental or not depending on computing
resources constraints (Jain et al., 1999).

A popular clustering algorithm is k-means (Steinhaus, 1956), which assigns each data
point to the cluster whose center is nearest, where the center is the average of all the
data values in the cluster. With this algorithm the number of classes must be specified
in advance, and since the clusters centers are randomly generated and then updated
iteratively, k-means is not guaranteed to produce the same output if run twice on the
same data. A well-known variation of k-means is the ISODATA algorithm (Ball & Hall,
1965), based on repetitive merging and splitting of the clusters.
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Figure 1.3: Graphic description of how hierarchical clustering works. In each level of the
dendrogram (left) the objects are split in two groups, until each element is separated in a
leaf. Considering clusters up to a desired hierarchical level produces a clustering related
to that level. In this example, the clusters formed after the second bifurcation are three
(right).

A different clustering method is given by recursively splitting the data in two groups
until each object occupies a leaf on a binary tree or until a stopping criterion is met: it is
known as hierarchical clustering (Johnson, 1967) since objects may be grouped in classes
by cutting the tree at the desired level, with the classes becoming less and less generic as
the depth increases (Fig. 1.3). A hierarchical algorithm yields a dendrogram representing
the nested grouping of patterns and similarity levels at which groupings change. This
method does not need a number of classes to be specified in advance, and may be used
to investigate with minimum supervision the possible number of classes in which the
data can be split, taking as starting point a distance matrix.

Among the many clustering algorithms there are also solutions specific to some objec-
tive or datatype. For example, clustering methods employed in genetics, such as Genetic
Algorithms (Holland, 1975), take an evolutionary approach to compute the globally op-
timum partition of the data. Stochastic search techniques like Simulated Annealing (SA)
are also employed for clustering.

Clustering of local feature vectors is a widely used method to segment images, where
segmentation is the process to divide the image into regions which are homogeneous up
to some degree. Often images are segmented and the values in parameters space are
substituted by the values of the cluster center to which the data element belongs. The
application of local feature clustering to segment gray-scale images was documented in
Schachter et al. (1979). A clustering-based segmentation algorithm, still popular today,
is the mean shift procedure (Fukunaga & Hostetler, 1975), which iteratively locates the
maxima of a density function given discrete data sampled from that function, estimating
the best separation for the classes. An attractive feature of mean shift clustering is that it
does not require a-priori knowledge of the number of clusters, as k-means does.

1.1.3 Computation of Similarity

Similarity measures can be considered as the core of retrieval systems. These measures
are usually used in the unsupervised clustering step, by quantifying the resemblance that
the object have with each other to group the data. They can also be applied to directly
compare features related to two objects to take a decision in the retrieval process.
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A similarity measure d(x, y) between two objects x and y is especially valued in re-
trieval systems if it is a metric, since it has the following properties, ∀x, y:

1. d(x, y) = d(y, x) (symmetry)

2. d(x, y) = 0⇔ x = y (separation)

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

If the symmetry is verified, then two objects may be compared in a retrieval system in-
dependently of their order; separation implies that the distance between any two objects
may be quantified and is greater than zero; finally, the triangle inequality allows sav-
ing computational time by directly measuring the distance only between some objects,
deriving it for other ones.

The most commonly used distance measure in a k-dimensions vectorial space <k,
where k corresponds to the number of extracted parameters, is the square of the eu-
clidean distance. Indeed, this is a natural distance to be associated to a vectorial space,
since it is measured intuitively as the actual distance between two data points or vectors,
easy to represent in one’s head if k ≤ 3. A similar distance which avoids distortion due
to linear correlation among features is the squared Mahalanobis distance (Mahalanobis,
1936). Another alternative to Euclidean distance is the Manhattan distance, computed
between two points as the sum of the absolute differences of their coordinates.

Other distances take into account the effect of surrounding or neighboring points: it is
the case of Mutual Neighbor Distance (MND), proposed by Gowda and Krishna (1978).

Some other distances are related to statistical distributions, with the most important
being the Kullback-Leibler divergence (Kullback & Leibler, 1951) which will be intro-
duced in next chapter, being strongly related to the concept of Shannon’s entropy.

Finally, during last years compression-based distances have emerged which are based
uniquely on code lengths. Li et al. (2004) propose a distance based on the shared infor-
mation between any two objects, the Normalized Compression Distance (NCD): with
this approach, the objects may be compared directly, skipping the phase of information
extraction. A global overview on compression-based distances is given by Sculley and
Brodley (2006).

1.1.4 Conclusions

An interaction step often wraps-up and improves the architecture of a retrieval system.
In the case of image retrieval, user supervision is usually fundamental to fill the gap be-
tween extracted features and semantics related to an object. A common way for the user
to interact with the system is presenting a query image, retrieving the most similar im-
ages chosen by the system according to some criteria and distance measure, and refine
the results by selecting which objects were relevant to the given query. Other retrieval
systems adopt image annotations and categories as metadata: this implies anyway a
stronger subjectivity of the interaction loop, which may affect the performance and make
its evaluation difficult (Daschiel, 2004). Nevertheless, recent works (Vasconcelos, 2007)
show that the enhancement in retrieval performance did not improve dramatically from
the QBIC era to our days, in terms of an evaluation based on Precision/Recall scores
(Ricardo Baeza-yates and Berthier Ribeiro-Neto, 1999).
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1.2 Image Indexing and Retrieval and Data Compression

The domain of image compression is in constant development in the internet era, in or-
der to overcome the problem posed by bandwidth and storage limitations. In parallel
to the studies on the extraction of the right parameters from the data, many efforts have
been made to represent the data in a compact form, and sometimes the fields of image
compression and image parametrization for indexing and retrieval intersect. The merg-
ing of compressed data representation and feature extraction has come in the years with
different motivations and from different ideas, which we can categorize in two trends.

The first one comes from the idea of reducing computation time in retrieval systems
by accessing directly the compressed content, skipping the decompression step. This is
achieved either by using compression coefficients as features, either by using parameters,
previously extracted to enable a compact encoding of the images, as features which can
be randomly accessed to characterize the informational content of the objects.

The second, more recent trend, enables the direct comparisons of two images or gen-
eral objects. In this approach the compression is not thought as a way to save storage
space and/or transmission time, but as a way to quantify the information shared by the
objects, estimated through data compression solutions via an implicit pattern matching
process. Recently systems have been defined that couple these two aspects of compres-
sion to jointly compress and index scientific datasets.

While a general introduction to compression techniques and compression-based clas-
sification methods is contained in the next chapter, we briefly analyze here some interest-
ing works on these topics.

1.2.1 Indexing in Compressed Content

It is very unlikely nowadays to transmit and store data in uncompressed format, and ev-
ery algorithm accessing the content of an image must first uncompress the data, consum-
ing time and resources. Therefore, the idea came of indexing directly in the compressed
content, to enable fast queries on the objects content, skipping the decompression step.

Methods to retrieve patterns within compressed text files have been proposed by
Farach and Toroup (1998) and by Grossi and Vitter (2000), while a recent variant of the
LZ-77 compressor (ref. 2.3.1.1) enabling random access to the compressed content is de-
fined by Kreft and Navarro (2010).

At the same time, compression features have been considered for direct image in-
dexing, even though in recent years the interest in this research area has dropped, with
the last comprehensive overviews on image indexing in the compressed domain being
(Mandal et al., 1999) and (Wang et al., 2003). Zhang et al. (1995) propose to extract infor-
mation from fractal codes (Jacquin, 1993), exploiting the similarities between regions of
the image at different resolutions. Zhu et al. (2002) use as images features the codebooks
computed by compressing the image using Vector Quantization (ref. 2.3.2.1); a similar
approach is used with the wavelet coefficients (Idris & Panchanathan, 1995) and the Dis-
crete Cosine Transform (DCT) coefficients employed by JPEG (ref. 2.3.2.2) (Podilchuk &
Zhang, 1998). In a similar way, Tabesh et al. (2005) use as image features the code lengths
of each band of the wavelet transform used by JPEG2000 (ref. 2.3.2.2). Features related
to shapes are considered by Swanson et al. (1996), who embed geometrical information
within the compressed file by first segmenting the image and then separately coding each
region with a codebook of DCT coefficients, storing the region’s position; in this way a
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single segment is described by its DCT coefficients, and may be directly accessed without
decompression.

It has to be remarked that the considered compression features characterize mainly
the textural information.

1.2.2 Compressing through Prediction

A specular idea with respect to the latter works comes from considering generative mod-
els for the data. While all of the methods presented in last section relied on lossy com-
pression, Jiang et al. (2003) employ a predictor-based lossless compressor, by extracting
features in the images through compression with JPEG-LS (Weinberger et al., 2000).

Predictor-based coding systems represent the data in a compact way by transmitting
over a channel some parameters estimated from the data, plus the error to be added to
the reconstructed signal on the decoder side, which is equipped with the same predic-
tor used on the encoder side. If X is a random variable, its outcomes are modeled by a
probability distribution P (x|θ) where θ are the parameters of X . These parameters are
used both as features and as a way to characterize the outcomes of X , and the informa-
tion extraction is carried out by estimating the parameters which constitute their best
descriptors. A predictor g(θ) estimates in a second step the outcomes of x by only tak-
ing into consideration the extracted parameters, and the residual error e = x − g(θ) is
considered as the outcome of a variable E with associated a probability distribution p(E)
which is usually known a priori. This process is usually implemented using a Differential
Pulse Code Modulation (DPCM) coder, based on the encoding of the residual error after
a prediction step (O’Neal, 1976). A typical DPCM encoder is in sketched in Fig. 1.4: if the
predictor and the probability p(e) are well chosen, this coding achieves compression by
splitting the data representation in two parts and minimizing the overall code length, as
in the Minimum Description Length (MDL) principle (ref. 2.1.5.2); the extracted param-
eters contain the main information, while the error carries high-frequency information
and noise.

Therefore, the estimated parameters may be exploited as relevant features from the
data which can be directly accessed and queried without any need to reconstruct totally
the original object.

This approach is also used in texture analysis using GMRF (Bader et al., 1995; Zalesny
et al., 2005). Starting from the parameters, it is possible to predict textures that visually
resemble each other. Summarizing, modeling by generative models corresponds to creat-
ing an information encoder, which can be lossy or lossless if the error in the reconstruction
is ignored or transmitted separately, respectively.

1.2.3 Compression-based Retrieval Systems

Other works use compression-based techniques to characterize the informational content
of an object with a parameter-free approach: while ideas described so far take advantage
of existing steps in the data processing chain of some systems to exploit them in a new
way, these techniques do not aim at saving processing time by enabling queries on the
compressed content. Instead, they try to understand and exploit the special relations
that a compressed file has with its related uncompressed object. And while in previous
section compression is regarded as a kind of different representation space for the data,
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Figure 1.4: Differential Pulse Code Modulation compressor. The coder is based on a sta-
tistical prediction of the signal x, made by a predictor g based on some estimation θ̂(x)
of x; subsequently, only the error e in the prediction is coded and sent to the decoder
together with the relevant parameters extracted from the signal. The probability distri-
bution p(e) of the error is used to encode e, and it is known a priori on the decoder side.

more or less hard to access, it is more interesting for us to exploit compression properties
with the sole intent of estimating the shared information between two objects.

In recent years, new image retrieval techniques employing Vector Quantization (ref.
2.3.2.1) have been defined. The Minimum Distortion Image Retrieval (MDIR) (Jeong et
al., 2004; Jeong & Gray, 2005), is a VQ-based variation of the Gaussian Mixture Models
(GMM) based representation by Vasconcelos (2001). In the latter approach similarities are
computed with an approximation of the Kullback-Leibler distance, the Asymptotic Like-
lihood Approximation (ALA), and maximum-likelihood (ML) classifiers are then used
for retrieval; the top-retrieved image is the one that maximizes the posterior probability
of the database images given the query example.

Instead of comparing image densities, MDIR fits to the training data a GMM later
used to encode the query features and to compute the overall distortion, on the basis of
which the database images are ranked, outperforming ALA.

Daptardar and Storer introduced a similar approach using VQ codebooks and mean
squared error (MSE) distortion: images are ranked based on the MSE when query fea-
tures are encoded with database image codebooks, in a prototype nearest-neighbour rule
in an unsupervised learning setting where each query vector has a MSE score assigned
instead of a label. This method has reduced complexity and produces similar results
compared to MDIR (Daptardar & Storer, 2006).

This method was refined later by the same authors by decoupling to some degree
spectral and spatial information, training separate codebooks for color and position fea-
tures in different regions of the images, where each region is encoded with codebooks of
different size, inversely proportional to the smoothness of the region. A global similarity
is defined as the sum of the similarities for each region, outperforming in turn previous
techniques: we refer to their methodology as Jointly Trained Codebooks, or JTC (Dap-
tardar & Storer, 2008). It is to be remarked that training features based on position is
done to expense of robustness in translation and rotation, and it works as long as the an-
alyzed images present similar structures; in the case of natural photos, often the object of
interest is centered in the picture and certain objects are to be found often in a particular
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Figure 1.5: Workflow to build a compressed indexed database. Dictionaries (represented
in grey), containing the objects relevant information, are extracted from the data and used
to optimally compress the database.

region (for example, the sky is often in the upper portion of the image); other data such
as satellite imagery would negatively be affected by giving importance on the position of
the objects within the image.

Watanabe et al. (2002) define a classification and retrieval system based on direct
matching of each couple of objects through a compression-based similarity measure. This
is achieved by retrieving as closest object to a query simply the one that, encoded with a
dictionary extracted from the query object itself, is compressed in the most efficient way.
A specific compression-based retrieval system is proposed by Delalandre et al. (2008)
for the specific case of ornamental letter retrieval. The method is based on Run Length
Encoding (ref. 2.3.1.1) even though the authors do not refer to any existing compression-
based distance. Recently, Campana and Keogh (2010) perform retrieval experiments on
images and videos based on a compression-based distance measuring texture similarity,
enabling applications to real-valued data rather than discrete; finally, a VQ-based method
for shape recognition has been defined by Di Lillo and Storer (2010).

1.2.3.1 Joint Compression and Indexing

Recent systems have been described pursuing at the same time the two objectives of
annotating the data and compressing them.

Pajarola and Widmayer (2000) use for the first time lossless compression to extract in-
formation and compress satellite imagery. Gueguen and Datcu (2008) propose a method
to build an index of the content of a compressed Satellite Image Time Series (SITS) database.
The approach is illustrated in Fig. 1.5. First, a set of dictionaries is independently ex-
tracted from the database; then, the best ones are selected using a compression-based
similarity measure to take into account the inter-objects correlations; finally, the selected
dictionaries are used to code efficiently each object, which is thus defined by a two-part
representation. The dictionary is a lossy representation of the database, containing the
minimal sufficient information to discriminate the objects, and it is the only information
analyzed when the database is queried.

The compression of SITS databases with this method achieves two goals: it com-
presses in a lossless way the images with a ratio of approx 1:3, and it enables queries
on the compressed database content with an acceptable Precision-Recall score.

Finally, Mäkinen and Navarro (2008) proposed a block-organized wavelet tree en-
abling random access to pixel values, and achieving at the same time both lossless and
lossy compression, in addition to a kind of self-indexing for the images.
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1.3 Proposed Concepts

The organization of an image retrieval system is usually of the kind described in Fig. 1.1.
We pointed out how many different representations exist to represent the informational
content of the images: in the design of a CBIR system, one may employ several color
spaces to represent the spectral information; diverse textural models, with each of those
needing a separate step of parameter setting and tuning; different geometrical parame-
ters, in turn usually based on edge extraction and segmentation processes, difficult to be
carried out effectively in an unsupervised way; furthermore, there are several ways to
map these different features in an explicit feature space, and decisions have to be made
in the retrieval process in order to return a set of relevant images to the user.

Every step in this processing chain represents a peril, being heavily dependant on the
choices related to the various parameters’ extraction and manipulation. In specific cases,
it is very hard to estimate which are the best descriptors for an image, how much detail
should every descriptor have, how to group data and reduce its dimensionality, on which
principle the distance employed in the system should be based, which thresholds should
be set and how in the process, and so on. Indeed, all of these choices are usually tuned
using a training set of images, and may drastically vary according to its selection.

The use of compression-based techniques in the image retrieval area constitutes an
interesting alternative to these classical methods, with the role of subjective setting and
tuning of the many parameters greatly reduced.

This work tries to investigate then these more recent techniques, capable of yield-
ing comparable performance independently from the parameters extraction and tuning
steps: such unsupervised approach would consider information related to color, texture
and shapes only implicitly, with a double advantage. Firstly, skipping subjective infor-
mation extraction methods means that the imposition of our subjective choices will not
bias the process, avoiding risks such as failure at finding meaningful patterns because
of poorly chosen parameter settings, incorrect discovery of patterns which do not ex-
ist (Domingos, 1998), or overestimation of the importance of a parameter (Keogh & Lin,
2005). Secondly, this enables building a CBIR system with a minimalist approach, which
makes the system look like a black box for the non-expert user, greatly simplifying its
implementation and usage. An idea of how such a desired system should look like to the
user is given in Fig. 1.6.

To achieve this, we go a further step down in selecting the right descriptors for an
image with respect to standard CBIR systems, choosing somehow the full image data: the
similarities between individual images are computed solely through data-compression
by considering the information shared by each couple of objects.

We start by analyzing existing compression-based similarity measures, expanding the
theoretical frame in which they are defined, and then we find the way to speed them up
in order to be able to apply them to medium-to-large datasets. In this way complexity
limitations imposed by such data-driven methods, which do not represent the data in an
explicit feature space and therefore do not allow drastic data reduction solutions, can be
partially overcome, while the parameter-free approach distinguishing these measures is
preserved.
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Figure 1.6: Desired workflow for the system that will be defined in this work. Subjec-
tive steps of parameters extraction and settings are ideally skipped: such system could
be then easily implemented and used by non-specialists. In order to focus on objective
parameters the user interaction loop will be momentarily put aside.
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Chapter 2

From Shannon to Kolmogorov and
Compression

This chapter introduces the concepts of Algorithmic Information Theory and Kolmogorov
complexity, illustrating their relations with other areas. Compression is applied to make
algorithmic information theory entities come to reality, resulting in the definition of uni-
versal compression-based similarity measures.

The recurring idea which is the glue that ties the chapter together is the one of com-
pression, regarded in its more general meaning. The notions that will be presented are
directly or undirectly related to it: the Kolmogorov complexity of a string can be seen as
the length of its ultimately compressed version and can be approximated by compression
factors; Shannon’s entropy establishes fundamental limits for the shortest representation
of the outcomes of a source; the similarity measures that will be introduced exploit the
intrinsic power of compression to capture and reuse recurring patterns to compute dis-
tances between objects; finally, we will describe model selection methods minimizing the
joint description of a model plus the data given the model, thus maximizing compression.

2.1 Information and Complexity

Everyone is familiar with the concepts of information and complexity; another matter
is how these can be defined rigorously and above all quantified. Claude Shannon, with
his definition in 1948 of the idea of entropy as a global measure of information, put the
basis for the area of applied mathematics now known as information theory. ”Classical”
information theory involves the quantification of information and the establishment of
fundamental limits on compression capabilities and reliable data storage and communi-
cation.

Approximately to twenty years later dates a different way of looking at information
content and complexity, by relating them to the intrinsic information carried by an iso-
lated object: Algorithmic Information Theory (or AIT) was born (Cover & Thomas, 2006).
According to Gregory J. Chaitin, one of the founding fathers of AIT, this theory is ”the
result of putting Shannon’s information theory and Turing’s computability theory into a
cocktail shaker and shaking vigorously” (Chaitin, 1977).

This section introduces the fundamental concepts of these theories, and illustrates the
main relations between them, sketching a parallel that will be expanded in section 3.1.
The main relations between the concepts presented are summarized in Fig.2.1.
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Figure 2.1: Maps of the content of this chapter, showing the relations between algorithmic
information theory and other areas. The map is color-coded: boxes in orange are mainly
related to Algorithmic Information Theory, blue to classical information theory, and green
to compression. Within the rectangles, H(X) represents Shannon entropy, K(x) stands
for Kolmogorov complexity, NID for Normalized Information Distance, NCD for Nor-
malized Compression Distance, and MDL for Minimum Description Length.

2.1.1 Shannon Entropy

Shannon entropy in classical information theory (Shannon, 1948) is a measure of the un-
certainty about the outcomes of a discrete random variable X with a given a priori prob-
ability distribution p(x) = P (X = x)

H(X) = −
∑
x

p(x) log2 p(x) (2.1)

This definition can be interpreted as the average length in bits needed to encode the out-
comes of X : for example, a random process composed of independent fair coin flips
has an entropy of 1 bit per flip (see Fig.2.2): in general, the outcome of a stochastic pro-
cess composed of N random variables AN has an entropy H(AN ) = log2 v, where v is
the number of possible outcomes of AN . If we consider a as a string output by AN , to
facilitate future comparisons with algorithmic complexity, for a random (uniform) dis-
tribution the entropy of A increases with the size of its alphabet: this implies that the
uncertainty of each symbol in a grows, and so does its informational content. On the
contrary, a maximally redundant source B, take as example one that always generates
a string b composed of a long sequence of 1’s, independently from the number of its
possible outcomes, has an entropy H(B) = 0, and every isolated symbol in b carries no
information.

2.1.1.1 Shannon-Fano Code

In this work we are mainly interested in the relations that the notions have with data com-
pression: Shannon’s noiseless coding theorem (Shannon, 1948) gives a precise coding-
theoretic interpretation of it. The theorem shows that the entropy H(X) is essentially
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Figure 2.2: Entropy of a process representing the iid outcomes of the tosses of a biased
coin. The entropy is assimilated to uncertainty in Shannon’s frame. If the coin is unbi-
ased, then the outcome X = 1 has probability 0.5 and the entropy assumes its maximum
value.

equal to the average code length when encoding an outcome of X , if outcomes are en-
coded optimally, and the quantity I(x) = − log2 P (x) is interpreted as the amount of
information contained in one occurrence of symbol x.

A practical implementation has been described by Fano in a technical report (Fano,
1961), by encoding each symbol x with a number of bits as close as possible to its infor-
mational content I(x).

To avoid to go too much in detail, let us show the basic idea of this implementation
with the example reported in Fig. 2.3. Assume to have a random process composed byN
independent identically distributed (iid) random variablesXN , with 5 possible outcomes
and a fixed probability distribution; if we had to encode each symbol with no restriction
on efficiency, we would need 3 bits per symbol; by applying the Shannon-Fano code,
instead, shorter codes are assigned to the most recurring symbols, therefore the average
bits nb used per symbol are: nb = 2(2

5 + 1
5 + 1

5) + 3( 1
10 + 1

10) = 2.2bits, and compression
is achieved.

2.1.1.2 Kullback-Leibler Divergence

For two probability distributions p(x) and q(x) related to the same random variable X
the KL divergence, or relative entropy (Kullback & Leibler, 1951), is given by:

DKL(p, q) =
∑
x

p(x) log
p(x)

q(x)
. (2.2)

The KL-divergence is positively defined:

DKL(p, q) ≥ 0, ∀p, q, (2.3)
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Figure 2.3: Shannon-Fano coding example. The symbols are sorted according to their
outcome probability, and short codes are assigned to most recurring symbols.

a result known as Gibbs’ inequality, with DKL(p||q) = 0 if and only if P = Q, and not
symmetric:

DKL(p||q) 6= DKL(q, p). (2.4)

If we refer to the Shannon-Fano code, where the term − log p(x) is related to the number
of bits needed to encode an outcome x of a random variable X , then this divergence can
be interpreted as the average ”waste” of bits when encoding the outcome x of X with an
arbitrary probability distribution q(x), rather than with the true distribution p(x) (Cover
& Thomas, 2006).

2.1.2 Kolmogorov Complexity

Things change considerably if we consider the informational content of a string as the
quantification of how difficult it is to construct or describe that string, without Shannon’s
probabilistic assumptions on the outcome of each separate symbol. This section gives a
perspective on this different approach, summarized in the concept of Kolmogorov com-
plexity.

2.1.2.1 Shannon’s Lacuna

Shannon’s approach related to probabilistic assumptions does not provide the informa-
tional content of individual objects and their possible regularity.

Imagine having a string s = {I carry important information!}, and that nothing is known
about the source S which generated s. Since the concept of entropy H(S) would be re-
lated to the probability density function of S, nothing can be concluded about the amount
of information contained in an isolated object: AIT comes to the rescue, with the defini-
tion of an algorithmic complexity independent from any a priori assumption or proba-
bility distribution.

2.1.2.2 Definition of Algorithmic Complexity

While Shannon’s entropy is an an ensemble concept applicable only when the probability
distribution of a source is known (or estimated), the Kolmogorov complexity K(x) eval-
uates an intrinsic complexity for any isolated string x, independently of any description
formalism.

In this work we consider the ”prefix” Kolmogorov complexity of a binary string x of
length not known a priori, which is the size in bits (binary digits) of the shortest self-
delimiting program q used as input by a universal Turing machine to compute x and
halt:

K(x) = min
q∈Qx

|q| (2.5)

withQx being the set of instantaneous codes that generate x. Since programs can be writ-
ten in different programming languages,K(x) is measured up to an additive constant not



2.1. INFORMATION AND COMPLEXITY 65

depending on the objects but on the Turing machine employed (Cover & Thomas, 2006).
One interpretation of (2.5) is as the quantity of information needed to recover x from
scratch: strings presenting recurring patterns have low complexity, whereas the com-
plexity of random strings is high and almost equals their own length. For example, a
string with low complexity s1 = {001001001001001001} could be represented in a com-
pact way by: {001}6, while a string with high complexity s2 = {010011011110010011}
would not allow any short representation of it, and we assume that K(s2) > K(s1).

The verb ”assume” has been used rather than ”know”, because it is important to
remark that the main property of K(x) is its incomputability.

This concept was originally formulated by A. N. Kolmogorov (Kolmogorov, 1968),
but it is also known as algorithmic complexity, Solomonoff complexity, or Kolmogorov-
Chaitin complexity, since by an extraordinary coincidence G. Chaitin and R. J. Solomonoff
had in the same period very similar ideas. While Chaitin’s definition (Chaitin, 1966) is in a
spirit close to Kolmogorov’s, both of them being mathematicians, Solomonoff’s definition
(Solomonoff, 1964) has a different flavor.

Indeed, independently from Kolmogorov and with one year of anticipation, R. J.
Solomonoff (passed away in December 2009) defined his own concept of algorithmic
complexity under the probabilistic point of view. Rather than focusing on the shortest
program which generates a string, Solomonoff considers the probability that a universal
computer outputs some string x when fed with a program chosen at random. He defines
a probability for x as:

PS(x) =
∑
Qx

2−|q|, (2.6)

Where Qx is the set of q codes that give in output a string with prefix x. If the above term
is approximated to the length of the shortest program which outputs x we have:

PS(x) = 2−K(x). (2.7)

This Algorithmic ”Solomonoff” Probability enabled addressing the old philosophical
problem of induction in a formal way (Solomonoff, 1964; Hutter et al., 2007).

In spite of its incomputability, the concept of Kolmogorov complexity was employed
in many fields and helped in solving problems which had been open for a long time,
mainly theoretical but also practical. Algorithmic complexity enabled the rigorous defi-
nition under a new perspective of randomness of individual strings independent from
restrictions about nondeterminism or likelihood: simply put, a string r is random if
K(r) = |r|, where |r| is the size of r; it paved the way for the definition of MDL (Rissanen,
1978), which can be regarded as a downscaled practical version of Kolmogorov complex-
ity; it quantifies the concepts of simplicity and complexity in an essentially unique way:
an example is the celebrated principle known as Occam’s razor, which can be reinter-
preted in a formal way in terms of algorithmic complexity (Standish, 2004); it has been
used instead of the Euclidean action for quantum gravity, where the indefiniteness of
the gravitational action is a serious problem (Woo, 1986; Dzhunushaliev, 1998); finally, it
gave new solutions to classical problems like the Maxwell’s demon (Leff & Rex, 1990).
The standard reference book for Kolmogorov complexity is (Li & Vitányi, 2008).

2.1.3 Relations Shannon/Kolmogorov

The concept of Kolmogorov complexity is the main entity of the area of study known as
Algorithmic Information Theory (AIT), as the entropy is the idea to the center of Shan-
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non’s (or classical) information theory. Kolmogorov himself made fundamental contribu-
tions to the early development of information theory as well, and the intimate connection
between the two dates to him (Cover et al., 1989).

This section gives an overview on the relations between Shannon’s and Kolmogorov’s
frames, which are indeed tight and numerous.

A formal link between entropy and algorithmic complexity has been established in
the following theorem (Gruenwald & Vitányi, 2008).

Theorem 1. The sum of the expected Kolmogorov complexities of all the code words x
which are output of a random source X , weighted by their probabilities p(x), equals the
statistical Shannon entropy H(X) of X , up to an additive constant:

H(X) ≤
∑
x

p(x)K(x) ≤ H(X) +K(p) +O(1)H(X) =
∑
x

p(x)K(x|p) +O(1), (2.8)

where K(p) is the complexity of the probability function p(X), and K(x|p) is the com-
plexity of x knowing p(X); thus, for low complexity distributions lowering the impact of
K(p), the expected complexity is close to the entropy.

This means that, for every probabilistic distribution, a code whose length is the con-
ditional Kolmogorov complexity compresses as much as the Shannon-Fano code defined
above. Conversely, the conditional complexity K(x|p) is approximated by − log p(x) by
matching the terms of equations (2.8) and (2.1).

In spite of the elegance and importance of Theorem 1, the deepest resemblance be-
tween the two concepts remains informal, and it is the already expressed idea that both
aim at measuring the information content of a message in bits, globally for Shannon’s
entropy, and locally for Kolmogorov complexity.

An important issue of the informational content analysis is the estimation of the
amount of information shared by two objects. The correspondences between Shannon’s
entropy and Kolmogorov complexity hold for the conditional and joint versions of these
notions, allowing a representation of the shared information in both frames, with many
properties in common (Li & Vitányi, 2008, chapter 2).

From Shannon’s probabilistic point of view, this estimation is done via the mutual in-
formation I(X,Y ) between two random variables X and Y , which measures the amount
of information that can be obtained about one random variable by observing another,
and is defined as:

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
, (2.9)

More important for our purposes is the definition of mutual information in terms of en-
tropy; this allows a better resemblance with the concepts in Kolmogorov’s frame, and
will be the starting point for our expansion of the Shannon-Kolmogorov correspondences
presented in the next chapter:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ), (2.10)

where H(X|Y ) is the conditional entropy of X given Y . This quantifies the entropy of X
if Y is known, and is defined as:

H(X|Y ) = −
∑
x,y

p(x, y) log
p(x, y)

p(y)
, (2.11)



2.1. INFORMATION AND COMPLEXITY 67

and H(X,Y ) is the joint entropy of X and Y :

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y). (2.12)

The (symmetric) relation between conditional and joint entropy is:

H(X|Y ) = H(X,Y )−H(Y ). (2.13)

The mutual information can be considered as the average number of bits ”saved” in en-
coding X , when an outcome of Y is given. It is a symmetric quantity I(X;Y ) ≥ 0, with
equality if and only if X and Y are independent, i.e. X provides no information about Y .

Is it possible to obtain laws and entities similar to Shannon’s ideas in AIT’s frame?
Using Kolmogorov complexity would allow considering the mutual information of two
sequences x and y independently from any probability distribution. The algorithmic
mutual information between two strings x and y exists but it is also incomputable, and is
given by:

Iw(x : y) = K(x)−K(x|y) = K(y)−K(y|x) = K(x) +K(y)−K(x, y), (2.14)

with the equalities valid up to an additive constant.
In equation (2.14), the conditional complexity K(x|y) of x related to y quantifies the

length of the shortest program needed to recover x if y is given ”for free” as an auxiliary
input to the computation, while the joint complexity K(x, y) is the length of the shortest
program which outputs x followed by y.

Note that if y carries information which is shared with x, K(x|y) will be smaller than
K(x). Therefore for these definitions the desirable properties of analogous quantities in
classical information theory hold; for example, the relation between conditional complex-
ity and joint complexity resembles equation (2.13):

K(x|y) = K(x, y)−K(y). (2.15)

If the algorithmic mutual information is zero, then x and y are for definition algorithmi-
cally independent:

Iw(x : y) = 0 =⇒ K(x, y) = K(x) +K(y), (2.16)

as for Shannon’s mutual information. The symmetry property also holds, up to an addi-
tive constant.

Another Shannon-Kolmogorov parallel is found for the rate-distortion theory (Cover
& Thomas, 2006), which has as its counterpart in the algorithmic frame the Kolmogorov
structure functions (Vereshchagin & Vitányi, 2004), which aim at separating the meaning-
ful (structural) information contained in an object from its random part (its randomness
deficiency), characterized by less meaningful details and noise.

2.1.4 Normalized Information Distance

The probably greatest success of Algorithmic Information Theory notions is the ultimate
estimation of shared information between two objects: the Normalized Information Dis-
tance, or NID (Li et al., 2004). The NID is a similarity metric which minimizes any admis-
sible metric, proportional to the length of the shortest program that computes x given y,
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as well as computing y given x. The distance computed on the basis of these considera-
tions is, after normalization,

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
=
K(x, y)−min{K(x),K(y)}

max{K(x),K(y)}
(2.17)

where in the right term of the equation the relation between conditional and joint com-
plexities K(x|y) = K(x, y) − K(y) is used to substitute the terms in the dividend. The
NID is a metric, so its result is a positive quantity r in the domain 0 ≤ r ≤ 1, with r = 0
iff the objects are identical and r = 1 representing maximum distance between them.

The value of this similarity measure between two strings x and y is directly related
to the algorithmic mutual information. Assume the case K(x) ≤ K(y), with the other
case being symmetric: it is easy to notice that the quantity (2.14), normalized by the
complexity K(y), added to the quantity (2.17) is equal to 1.

2.1.5 Relations of AIT with other Areas

There are many concepts that can be seen under the point of view of AIT. We recall briefly
the main ones in this section, since some among these will be used in the next chapter for
the expansion of the algorithmic information theory frame in relation with other notions.

2.1.5.1 Minimum Message Length

The Minimum Message Length (MML) was invented by Chris Wallace (Wallace & Boul-
ton, 1968). The MML states that, in a list of possible models or hypothesis, the hypothesis
generating the shortest overall message is more likely to be correct, where the message
consists of a statement of the model followed by a statement of the data encoded concisely
using that model. This holds even if models are not equal in goodness of fit accuracy to
the observed data.

The MML is intended not just as a theoretical construct, but as a technique that may
be employed in practice. It differs from the related concept of Kolmogorov complexity
in that it does not require the use of a universal Turing machine to model the data, but
restricts the set of machines in the interest of computation feasibility.

Specifically, the MML relies on a kind of prior probability assigned to a given hy-
pothesis, trying to adapt the machine to the knowledge that an agent would have if he
knew the circumstances under which the data were obtained. In this sense, it is closer
to Solomonoff’s probabilistic approach to algorithmic complexity (2.7) (Wallace & Dowe,
1999).

2.1.5.2 Minimum Description Length

The Minimum Description Length (MDL), defined by J. Rissanen in 1978 and inspired by
the mentioned works of Solomonoff, Kolmogorov and Chaitin, is a non-bayesian alterna-
tive to the 10-years-older MML, and it is closer to Kolmogorov’s and Chaitin’s definitions
of algorithmic complexity rather than Solomonoff’s. It is used in a variety of domains
such as coding, prediction, estimation and information (Gruenwald, 2000), where the
model selection is crucial.

According to the MDL, the best model for a given data instance is the one that leads to
the best compression for the data. To evaluate this, the MDL splits the data representation
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in two parts: the information contained in the model, and the information contained in
an object represented using that model, and tries to minimize the sum of the two.

MDL(D,Mn) = min
i
{L(D|Mi) + L(Mi)}, (2.18)

for a data instance D and n possible models Mi. In practice, this principle penalizes
complex models in order to avoid data overfitting, as well as models which, being too
simple, are not able to represent efficiently the data.

In this section, we present the MDL in the context of AIT. Let x be a data instance and
M be some model for x. The best model is the one that brings equation (2.19) closest to
the equality:

K(x) ≤ K(x|M) +K(M) (2.19)

Kolmogorov interprets this two part representation as the sum of randomness and rele-
vant information which coexist in an object or a signal (Vitányi et al., 1998). Therefore the
Kolmogorov complexity is an implicit MDL and represents its lower bound: the model
and the data given the model are in this case indissolubly joint and not visible. If an
equality is reached in (2.19), then the two-part representation does not contain additional,
unnecessary data to represent the object x.

All the terms in equation (2.19) being incomputable, the concept of Kolmogorov com-
plexity does not provide a practical way of doing inference. Furthermore, its dependance
on the computer language used to describe the programs influences the complexity up to
an additive term: even if this term is often disregarded in theoretical works, it becomes
important for practical applications where a small variation may influence the results.

The MDL responds to these inconveniences by restricting the set of allowed codes
and models. in practice, the MDL selects a code that is reasonably efficient whatever the
data at hand.

We can find other relations between MDL and the other concepts introduced so far.
Switching back to Shannon’s world, we can consider the Shannon-Fano code as a rough
MDL which minimizes (suboptimally) the coding schema length and the coded message
length.

Going back to Kolmogorov, in the spirit of MDL an explicit two-part representation of
the complexity-based similarity measure (2.17) is defined by Gueguen and Datcu (2007)
for the case of K(x) < K(y), with the other being symmetrical:

d(x, y) = α
K(x, y|Mx,y)−K(x|Mx)

K(y|My)
+ (1− α)

K(Mx,y)−K(Mx)

K(My)
, (2.20)

where α is

α =
K(y|My)

K(y)
. (2.21)

The second term quantifies the similarity between the objects expressed in their respec-
tive models, while the first one measures the similarity between the models. The param-
eter α can be tuned in order to focus on the data models, which may be regarded as the
relevant information within the objects, or on the data given the models, which contain
the objects’ details and the noise, in a representation similar to Kolmogorov’s structure
functions (Vereshchagin & Vitányi, 2004).
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2.1.5.3 Bayesian Model Comparison

The Bayesian model comparison is a method of model selection based on Bayes factor.The
posterior probability of a model given data, Pr(M |D), is given by Bayes’ theorem:

P (M |D) =
P (D|M)P (M)

P (D)
. (2.22)

The term P (M) represents the prior probability for the model and P (D|M) is a data-
dependent likelihood, which is sometimes called the evidence for model or hypothesis,
M .

Given a model selection problem in which we have to choose between two differ-
ent models, on the basis of observed data D, the plausibility of the models M1 and M2,
parametrised by the model parameter vectors θ1 and θ2, is assessed by the Bayes factor
K given by:

K =
P (D|M1)

P (D|M2)
=

∫
P (θ1|M1)P (D|θ1,M1) dθ1∫
P (θ2|M2)P (D|θ2,M2) dθ2

. (2.23)

where P (D|Mi) is called the marginal likelihood for model i. A value of K > 1 means
that the data indicate thatM1 is more strongly supported by the data under consideration
than M2. Thus, the Bayesian model comparison does not depend on the parameters used
by each model; instead, it considers the probability of the model considering all possible
parameter values.

The MML can be regarded as an invariant Bayesian method of model selection, while
for MDL code length of the model and code length of the data given the model corre-
spond to prior probability and likelihood respectively in the Bayesian framework (Gru-
enwald, 2007). Therefore, the Bayesian factor may be regarded as another way of ex-
plicitly computing the differences in complexity between two data instances, with the
complexity estimations being implicit.

2.1.5.4 Occam’s Razor

The principle of Occam’s razor as formulated in 14th century by the English friar William
of Ockham can be stated as:

”Entities should not be multiplied unnecessarily”.

Or, informally, simple explanations tend to be the best ones (MacKay, 2003, chapter2).
Occam’s razor is directly linked to Bayesian model comparison: the Bayesian factor,

indeed, naturally penalizes models which have more parameters, since instead of maxi-
mizing the likelihood, it averages it over all the parameters, and the Minimum message
length (MML) is a formal information theory restatement of Occam’s Razor.

If we consider Occam’s razor as the choice of the model which maximizes the com-
pression of the data, we can consider MDL as a formal non-bayesian approximation of
this principle, since it chooses the best hypothesis which fits (explains) well the data and
at the same time has a reduced number of parameters.

Anyway with the advent of AIT it has been possible to redefine this concept in a
rigorous way, since for the first time Kolmogorov complexity allowed defining formally
concepts which were at best abstract before, such as simplicity and complexity (Soklakov,
2002; Standish, 2004).

Maybe today William of Ockham would say:
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”The correct explanation for a given phenomenon x is a program with
Kolmogorov Complexity K(x)”,

or:

”If two explanations exist for a given phenomenon, pick the one with the
smallest Kolmogorov Complexity”.

2.1.5.5 An example: the Copernican vs. the Ptolemaic Model

The connections presented so far suggest that a given problem could be treated by AIT as
well as other notions, depending on the point of view. For example, consider two solar
systems: the Copernican model (MC), where the planets revolve around the sun, and the
Ptolemaic model(MP ), in which everything revolves around the Earth. The model MC

is simpler with respect to MP : the two models have to take into account the apparent
motion of Mercury relative to Venus, and while this is accounted naturally by the former,
with no further explanations needed, the latter introduces the existence of epicycles in
the orbits of the planets to justify it (ref. Fig. 2.4).

We all know the end of the story: the model MC was finally acknowledged as cor-
rect. But if we had to decide today which model we should prefer, on the basis of the
considerations done so far, we could assume the following:

? ConsiderK(Mc),K(Mp) andK(Mss) as the Kolmogorov complexities of the Coper-
nican model, the Ptolemaic model and the real solar system model.

The complexity of the Copernican model should be smaller than the Ptolemaic’s:
K(Mc) < K(Mp), even though there is no certainty given the incomputability of
the two terms. We could also assume the real complexity K(Mss) to be closer to
K(Mc) than to K(Mp).

In an informal way, Copernicus’ model can be generated by a shorter program than
Ptolemy’s, and according to Occam’s razor, is to be preferred to the latter.

? If we apply the MDL to the planet’s movements data D and the model set Mn =
{MC ,MP }, then MDL(D,Mn) would choose MC as preferred model (it has both
the most compact model and the shortest representation of the data given the model).

? If we consider the Bayesian factor between the two models, then Bf(MC ,MB) > 1

All the described concepts would agree in preferring the Copernican model to the
Ptolemaic one, by looking at the problem under different points of view.

2.1.6 Conclusions

At this point it would be interesting to quantify in an informal way the attention given in
modern research to the existing relations between Kolmogorov complexity and the other
areas discussed above. Therefore, we computed the approximate number of documents
containing the string ”Kolmogorov complexity” in combination with other keywords be-
longing to the related notions by querying a web search engine. The queries are reported
and ranked according to the highest number of documents retrieved in Table 2.1.
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Figure 2.4: Ptolemaic (left) and Copernican (right) models for the solar system. In the
ptolemaic model the apparent motions of the planets is accounted for the in a very direct
way, by assuming that each planet moved on an additional small circle called ”epicycle”,
while in the Copernican model this is superfluous.

Query N. of Documents Retrieved
”Kolmogorov complexity” ≈ 69, 000
”Kolmogorov complexity” AND Entropy ≈ 19, 400
”Kolmogorov complexity” AND Compression ≈ 18, 500
”Kolmogorov complexity” AND Bayes ≈ 7, 000
”Kolmogorov complexity” AND MDL ≈ 5, 500
”Kolmogorov complexity” AND ”Occam’s Razor” ≈ 4, 000

Table 2.1: Number of documents retrieved on the web dealing with the correspondences
between Kolmogorov complexity and other fields, February 2010.

The most popular and solid correspondence is the one between Kolmogorov com-
plexity and Shannon entropy, immediately followed by the relations bewtween complex-
ity and compression. While this section concentrated on the former and put the basis for
the theoretical contributions presented in chapter 3, the next focuses on the latter, open-
ing the way for the practical methods and applications that will be described in chapter
4.

2.2 Normalized Compression Distance

This section introduces compression-based similarity measures, which are the basis of all
the contributions and experiments contained in this work.

2.2.1 Approximating AIT by Compression

We saw in the last section that the major drawback of K(x) is its incomputability. A
first solution to this problem was brought in 1973 by time-bounded ”Levin” complexity,
which penalizes a slow program by adding the logarithm of its running time to its length,
resulting in the definition of computable variants of K(x), and of the Universal ”Levin”
Search (US) that solves all inversion problems in optimal time, apart from a huge mul-
tiplicative time constant (Levin, 1973). But many years passed by until the pragmatic,
”cheap” approximation that opened the doors for many practical applications was pro-
posed with a totally different spirit in (Li et al., 2004).
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Figure 2.5: Schema illustrating how to compute a distance between two general objects x
and y with a lossless compressor C. A distance is computed through equation (2.24) by
comparing the lengths of the compressed objects C(x) and C(y) with the length C(x, y),
obtained by compressing the concatenation of x and y. The basic idea is that if x and y
compress better together than separately, then they share some amount of information,
which can be quantified through the computation of the NCD.

Their approximation of Kolmogorov complexity is based on the consideration that
K(x) is the size of the ultimate compressed version of x, and a lower bound for what a
real compressor can achieve. This allows approximating K(x) with C(x) = K(x) + k,
i.e. the length of the compressed version of x obtained with any off-the-shelf lossless
compressor C, plus an unknown constant k: the presence of k is required by the fact
that it is not possible to estimate how close to the lower bound represented by K(x) this
approximation is. To clarify this consider two strings b and p having the same length n,
where the former is the random output of a Bernoulli process, and the latter represents
the first n digits of the number π. The quantity K(p) will be much smaller than K(b),
since exists a program in a natural language of length K(p)� n that outputs the number
π, while a program that outputs a random sequence of bits will have a length close to
n, so K(p) � K(b). Nevertheless, a standard compressor will not be effective in rep-
resenting neither b nor p in a compact way, so C(p) ∼= C(b) ∼= n. This example shows
how the constant k ranges from a negligible value to a strong bias for the complexity
estimation. There are ways to estimate also the conditional complexity K(x|y) through
compression (Chen et al., 2004), while the joint complexity K(x, y) is approximated by
simply compressing the concatenation of x and y.

2.2.2 Definition of Normalized Compression Distance

The equation (2.17) can then be estimated by the computable Normalized Compression
Distance (NCD) as follows:

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)}
(2.24)

where C(x, y) represents the size of the file obtained by compressing the concatena-
tion of x and y (Fig. 2.5). The NCD can be explicitly computed between any two strings
or files x and y and it represents how different they are, facilitating the use of this quan-
tity in applications to diverse data types with a basically parameter-free approach. The
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conditions for NCD to be a metric hold under the assumption of C being a normal com-
pressor, considering among the other propertiesC(x, x) = C(x), which it is obviously not
true in the case of a real compressor, and in practice the NCD is a non-negative number
0 ≤ NCD ≤ 1+e, with the e in the upper bound due to imperfections in the compression
algorithms, unlikely to be above 0.1 for most standard compressors (Cilibrasi & Vitányi,
2005).

The definition of the NCD generated significant interest in the areas of information
theory, pattern matching and data mining for its data-driven and parameter-free ap-
proach. Experiments have been carried out with NCD-like measures and other indices
to compute similarities within diverse data, such as simple text files (Cilibrasi & Vitányi,
2005), music samples (Cilibrasi et al., 2004), dictionaries from different languages (Cili-
brasi & Vitányi, 2005), and tables (Apostolico et al., 2008). There are many applications in
the field of bioinformatics, with DNA sequences classified, among other works, in (Cili-
brasi & Vitányi, 2005; Li et al., 2001; Hagenauer et al., 2004; Keogh et al., 2004; Hanus
et al., 2009). An extensive test of the power and adaptability of these techniques is pre-
sented by Keogh et al. (2004; 2007), with clustering, anomaly detection and classification
experiments, carried out on different data types, and backed by comparisons with fifty-
one other measures. Cohen et al. (2008) use a similar approach, also entering in the field
of Kolmogorov’s algorithmic structure functions (Vereshchagin & Vitányi, 2004), to sum-
marize changes in biological image sequences. Compression-based image registration is
proposed in (Bardera et al., 2006), and compression-based pattern discovery in graphs in
(Ketkar et al., 2005). Among the most unusual applications we recall a program to detect
plagiarism (Chen et al., 2004), a study on the evolution of chain letters (Bennett et al.,
2003), spam filtering (Bratko et al., 2006; Richard & Doncescu, 2008) and detection of ma-
licious users in computer networks (Evans et al., 2007). A method based on an NCD-like
measure to detect artifacts in satellite images, which decrease the images quality and can
lead to analysis and interpretation problems, is presented in (Cerra et al., 2010). The most
recent work on the topic as we are aware of is the compression-based distance measure
for texture and video (Campana & Keogh, 2010).

2.2.3 Computational Complexity of NCD

Apart from the choice of the compressor that will be introduced in next section, which
may alter the analysis up to some degree, compression-based tehcniques have a draw-
back which has been seldom properly addressed: the difficulties in applying them to
large datasets. Usually the data-driven approach typical of these methods requires in-
deed iterated processing of the full data, since no compact representation of the objects in
any explicit parameter space is allowed. Therefore, in general all experiments presented
so far using these notions have been performed on restricted datasets containing up to
100 objects whenever the computation of a full distance matrix was involved (see for ex-
ample (Cilibrasi & Vitányi, 2005; Cilibrasi et al., 2004; Li et al., 2001; Keogh et al., 2004)).
In (Keogh et al., 2004) the authors estimate the running time of a variant of the NCD as
”less than ten seconds (on a 2.65 GHz machine) to process a million data points”. In the
case of images datasets, this means that almost ten seconds are needed to process five
RGB image of size 256x256: this represents a major drawback for what regards real-life
applications, which usually involve medium-to-large datasets.

In order to speed up the computation and apply the NCD to larger datasets, it is pro-
posed in (Cilibrasi, 2007) to choose n objects as anchors to represent a set of classes in
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order to avoid the computation of a full distance matrix, thus considering only n dis-
tances from a test object; afterwards the distance values are used to build a feature vector
of n dimensions that can be used as an input for a Support Vector Machine (Joachims,
1999) to perform classification. Nevertheless, this solution introduces undesired subjec-
tive choices, such as choosing the right anchors, and its results would then be based on
a partial analysis of the dataset: this would be a drawback especially for the problem of
image retrieval in large databases, where a decision has to be taken for each object in the
set. Furthermore, such approach would require a rigid definition of the classes of interest
in advance.

2.2.4 Other Compression-based Similarity Measures

Other compression-based techniques had been described before and after the definition
of the NCD and successfully employed to define unsupervised clustering and classifi-
cation methods. The first experiments on text categorization and authorship attribu-
tion through data compression are collected in (Marton et al., 2005) and date back to
2000, with contributions by Frank et al. and Khmelev; however, the rise of interest in
these methods came after some time and is due to (Benedetto et al., 2002a): in this work
Benedetto et al. rely on information theory concepts to define an intuitive compression-
based relative entropy distance between two isolated strings, successfully performing
clustering and classification of documents. The link between this notion and algorith-
mic information theory is established in this work in section 3.1. A few months later,
Watanabe et al. (2002) used a different approach based on the direct extraction of dictio-
naries from representative objects, the Pattern Representation using Data Compression
(PRDC). These dictionaries are used in a second step to compress general data, previ-
ously encoded into strings, and estimate the amount of information shared with the cho-
sen objects. In the latter work the link to Kolmogorov complexity and information theory
is not considered.

Among the many variants of NCD we mention the Compression-based Dissimilarity
Measure (CDM ) by Keogh et al. (Keogh et al., 2004), successfully employed in applica-
tions on texts, images, videos, and heterogeneous data, and defined between two objects
x and y asCDM(x, y) = C(x,y)

C(x)+C(y) , ranging from 0.5, in the case of x and y being identical,
to 1, representing maximum dissimilarity. Other similar measures are the Compression-
based Cosine, defined as CosS(x, y) = 1− C(x)+C(y)−C(xy)√

C(x)C(y)
(Sculley & Brodley, 2006) and

the metric presented in (Chen et al., 2004): CLM(x, y) = 1−C(x)−C(x|y)
C(xy) . Sculley and Brod-

ley (2006) show how the above mentioned similarity measures are basically equivalent to
the NCD and differ only in the normalization terms used. It is also suggested in this work
that these quantities, used as approximations of the NID, are a way to map strings into
implicit feature spaces where a distance measure can be applied, bringing these concepts
close to feature vector models used in classical machine learning algorithms.

These equivalences will be our starting point in next chapter to build a bridge between
PRDC and NCD.

2.3 Basics of Compression

In computer science and information theory, data compression or source coding is the
process of compactly encoding information using as few bits as possible, in order to
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minimize transmission rates and storage space. In this section we give a brief overview
on the main compression methods, focussing on the ones that will be used to perform
compression-based data analysis in the next chapters.

2.3.1 Lossless Compression

Lossless compressors allow reconstructing exactly the original data from the compressed
data. These compressors are also known as general compressors, since they can be ap-
plied to any kind of data, including cases where it is important that the original and the
decompressed data are identical, or where a small distortion in the data could lead to in-
terpretation problems: text compression is for example exclusively lossless, while image
compression could be lossy or lossless depending on the requirements.

In this work we concentrate on lossless compressors, in order to keep the universality
of NCD, in which the compression factors are computed with such family of compressors.

2.3.1.1 Dictionary Coders

A broad array of compressors use substitution of recurring substrings to compactly en-
code a string. The most straight-forward of such compression schemes is Run Length En-
coding (RLE). In RLE sequences in which the same data value is consecutively repeated
are stored in the form ”data value and count”. This is useful on data that contains many
of such runs: for example, relatively simple graphic images such as icons, line drawings,
and animations. It is not useful on other kinds of files, since it could potentially double
their size. As an example, the string

”wwwwwbbbbwwwwwwwwwwwwbbbwwwwwwwwww”
can be represented by ”5w4b12w3b10w”.
A step forward with respect to RLE is taken by dictionary coders, which search for

matches between the text to be compressed and a set of strings contained in a data struc-
ture, which may be regarded as a dictionary, maintained by the encoder. When the en-
coder finds such a match, it substitutes a reference to the string’s position in the data
structure. The most common approach is adopting a dynamic dictionary, which is con-
tinuously updated as the file is encoded. These compressors are also known as LZ-family
compressors, since the first and celebre compressors of this kind are the LZ77 and LZ78,
from the initials of their inventors Lempel and Ziv, and the year in which they were de-
fined (Ziv & Lempel, 1977, 1978). While LZ77 compresses by substituting sequences in
the object with a pointer to a position in the encoded file which contains the same se-
quence, LZ78 adopts a more explicit dictionary which contains sequences of patterns,
each identified by some code, and substitutes in the encoding the longest pattern avail-
able with the relative code.

Of particular interest is the Lempel-Ziv-Welch (LZW) algorithm, which is an improve-
ment over the LZ78 (Welch, 1984). We report in detail how this algorithm works, focusing
on the encoder side, since it will be used extensively throughout this work to extract rel-
evant dictionaries from the analyzed objects.

The algorithm initializes the dictionary with all the single-character strings contained
in the alphabet of possible input characters. Then the string is scanned for successively
longer substrings in the dictionary until a mismatch takes place; at this point the code for
the longest pattern p in the dictionary is sent to output, and the new string (p + the last
character which caused a mismatch) is added to the dictionary. The last input character
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Current Char Next Char Output Added to Dictionary
Null T

T O T TO=< 27 >
O B O OB=< 28 >
B E B BE=< 29 >
E O E EO=< 30 >
O R O OR=< 31 >
R N R RN=< 32 >
N O N NO=< 33 >
O T O OT=< 34 >
T T T TT=< 35 >

TO B < 27 > TOB=< 36 >
BE O < 29 > BEO=< 37 >
OR T < 31 > ORT=< 38 >

TOB E < 36 > TOBE=< 39 >
EO R < 30 > EOR=< 40 >
RN O < 32 > RNO=< 41 >
OT ! < 34 >

!

Table 2.2: LZW encoding of the string ”TOBEORNOTTOBEORTOBEORNOT!”. Starting
from the pattern encoded by < 32 >, patterns are to be encoded with 6 bits.

is then used as the next starting point to scan for substrings: in this way, successively
longer strings are registered in the dictionary and made available for subsequent encod-
ing as single output values. Consider the string ”TOBEORNOTTOBEORTOBEORNOT!”,
where the alphabet contains 26 symbols, one for the end of file ”!” and 25 for every letter
in the alphabet. The pattern codes will then start with the number 27, and an example
of compression for the string is reported in Table 2.2. Note that as patterns are added to
the dictionary the alphabet grows, and more bits are necessary to represent a symbol, but
compression is achieved anyway: in this example the original message has a length of
25 ∗ 5 = 125 bits, while the encoded form has a length of 6 ∗ 5 + 11 ∗ 6 = 96 bits.

The algorithm works best on data with repeated patterns, so compression of the initial
parts of a message is not effective. As the message grows, however, the compression ratio
tends asymptotically to the maximum. For this reason all the objects analyzed in Chapter
4 have a minimum size of approximately 1000 symbols, which allows the algorithm to
learn the model of the object and to be effective in its compression.

2.3.1.2 Compression with Grammars

Grammar-based codes build a Context-Free Grammar (CFG) G(x) for a string x to be
compressed, and then uses an arithmetic coding algorithm to compress the grammar
G(x) (Kieffer & Yang, 2000). These compressors may be also regarded as dictionary-
based, since a CFG corresponds to a dictionary with a set of rules RG(x), which can be
considered as recursive entries in a dictionary. Every rule within RG(x) is of the kind
A→ p, where p is a pattern composed of the concatenation of two or more symbols, and
A is a symbol assigned to pwhich is not comprised in the alphabet of x. An example is the
string z =”aaabaaacaaadaaaf” which generates, according to some criteria, the following
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grammar G(z):

A→ aaa

S → AbAcAdAe,

where S is the starting symbol to substitute to retrieve z. G(z) is a compact repre-
sentation of z which may be regarded as its generative model, containing the relevant
patterns to be found within z.

2.3.1.3 Entropy Encoders

Dictionary encoders are part of the broad family of lossless compressors, which allow
the exact original data to be reconstructed from the compressed data. Other such com-
pressors exist, which are based on the introduced concept of entropy, and are therefore
known as entropy encoders. Apart from the already mentioned Shannon-Fano code (ref.
2.1.1.1), we recall Huffman coding (Huffman, 2006), which assigns a variable-length code
to each symbol based on its estimated probability of occurrence; an improvement over
static Huffman coding is represented by arithmetic encoding which predicts and dynam-
ically updates the length of the coded symbols depending on their frequencies: among
the predictor-based compressors we recall Prediction by Partial Matching or PPM (Cleary
& Witten, 1984), which uses a set of previous symbols in a string to model the stream
and predict the next symbol. Another general predictor-based algorithm which offers
both theoretical guarantees and good practical performance is the context-tree weighting
method (Willems et al., 1995).

2.3.1.4 Delta Compression

Delta encoding (or differential encoding) must be mentioned apart since it will be linked
in next chapter to the concept of conditional compression. Delta compression is a way
of storing or transmitting data in the form of differences between sequential data rather
than complete files: a target file x is represented with respect to a source file y, with the
latter being available to both the encoder and the decoder. Usually this is achieved by
finding common strings between the two files and replacing these substrings by a copy
reference: the resulting object is a delta file that can be used to recover x if y is available
(Shapira & Storer, 2005).

2.3.1.5 Specific Compressors

Apart from these general algorithms which can be applied mostly to any binary string,
specific compressors are usually preferred for data types such as images, multimedia,
and DNA samples.

For the compression of images, a popular compressor in the scientific community
due to its lossless nature and the possibility to carry embedded information such as ge-
ographical coordinates is the Tagged Image File Format, or simply TIFF. Other lossless
compressors such as GIF, based on LZW, are effective at compressing only if the images
present mainly homogeneous areas. Finally, the already mentioned JPEG-LS (Weinberger
et al., 2000) compresses the data with two independent and distinct steps of modeling and
encoding.
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Vaisey and Gersho (1992) exploited segmentation to propose an object-based image
compression, where to each region is assigned a class and a distinct coding procedure.

To encode DNA we recall GenCOMPRESS, which is capable of considerably improv-
ing the performance of NCD on a set of genomes in (Cilibrasi & Vitányi, 2005).

2.3.2 Lossy Compression

A lossy compressor trades generally better compression rates with respect to a lossless
one, at the price of inserting some distortion in the decoded data. Lossy compression is
most commonly used to compress multimedia data (audio, video, still images), especially
in applications such as streaming media and internet telephony, where the informational
content of an object is still intelligible after this being more or less distorted, with lesser
distortions being often not noticeable by the human senses. Fundamental bounds on this
kind of compression are provided once again by Shannon, by defining the rate-distortion
theory.

We give a brief overview only on specific lossy compressors that may be employed
on images, being texts and general strings encoded generally in a lossless way, and being
encoders for audio, video and speech outside the scope of this work.

2.3.2.1 Quantization

Quantization is a lossy compression technique achieved by assigning to a range of values
a single one.

The simplest quantization method is the Uniform Quantization (UQ), a kind of scalar
quantization in which (for the case of images) the RGB values are divided in levels having
the same space.

Vector quantization, also called ”block quantization” or ”pattern matching quantiza-
tion”, is a classical quantization technique (Gersho & Gray, 1992). It works by converting
values from analogue data or from higher rate digital data in a multidimensional vector
space into a finite set of values from a subspace of lower dimension.

Quantization is usually done by using a codebook, containing a lookup table for en-
coding and decoding.

2.3.2.2 JPEG, JPEG2000 and JPEG-XR

The most popular compressor of the internet era is JPEG (Wallace, 1992), named after the
initials of the committee that created it, the Joint Photographic Experts Group. It works by
dividing the image into 8x8 blocks, converting each block in the frequency domain using
Discrete Cosine Transform (DCT), and finally quantizing the DCT values allocating more
bits to the low-frequency components than to the high-frequency ones. JPEG works in
the YCbCr color space.

A separate discussion has to be done for JPEG2000, which allows both lossy and loss-
less image compression, depending on the desired compression rate (Taubman et al.,
2002). This wavelet-based compressor has a modest increase in performance compared
to JPEG, but has the great advantage of being able to encode data in a lossless way. Fur-
thermore, it produces a highly flexible codestream, which can be truncated at any point
producing an image at a lower resolution, and in which Region Of Interest (ROI) can be
compressed at higher rate. JPEG2000 uses as color spaces YCbCr, or a modified version
of YCbCr to enable a reversible, lossless transformation from the RGB space.
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Similar to JPEG for the division of the images in blocks employed in its algorithm,
and to JPEG2000 for its lossless compression capability, is the recent JPEG-XR, formerly
HD-Photo (Srinivasan et al., 2007). JPEG-XR performs better than JPG while at the same
time avoiding the distortion introduced by approximating the DCT coefficients.

2.3.3 Impact of Compressor’s Choice in NCD

Since so many compressors exist, one may wonder how much the compressor’s choice
may affect the performance of the NCD, and if different compressors should be chosen
given the data at hand. In the next chapters the experiments will mainly deal with RGB
and satellite images, therefore it is worth mentioning the interesting aspects of applying
compression-based methods to this specific kind of data.

Recent experiments show that the NCD is independent to some degree from rotation
and scale (Tran, 2007), and that is encouraging, especially in the case of satellite and aerial
images, where these advantages are vital since the scenes are acquired with diverse scales
and rotation angles. Furthermore, it has been proven resistant to noise (Cebrian et al.,
2007). A problem which has to be dealt with is instead the spatial information that could
be lost in the compression steps.

An image consists of a number of independent observations, with each of those repre-
sented by a pixel value in the image grid. These measures constitute a stochastic process
characterized by spatial relation inter pixels, since the value of each pixel is dependant
not only on the previous and following ones but also on the values of its other neigh-
bours, i. e. the vertical and diagonal ones.

Therefore, a general lossless compressor, such as one belonging to the LZ family (ref.
2.3.1.1), is limited since it linearly scans the data and thus may fail at capturing the full
information about the spatial distribution of the pixels.

To take the considerations made into account, in this work we will experiment two
methods. First, we will test the injection of compression algorithms suited for images into
the similarity measure: this will help in keeping the vertical spatial information contained
within the images, exploiting it intrinsically within the computation of the information
distance. Another solution, less precise but far less complex and time-consuming, will
be the inclusion of basic texture information within the value of each pixel; while these
processing steps will be widely discussed later, we would like to focus in this section on
the impact of the compressor’s choice when applying the NCD.

As in the case of images, also in general the approximation of K(x) with C(x) is
data dependant: since current compressors are built based on different hypothesis, some
are more efficient than others on certain data types. Therefore, the dependence on the
choice of the compressor is not a free parameter in itself, and for each dataset a com-
pression algorithm able to fully exploit the redundancies in that kind of data should be
adopted (Keogh et al., 2004): better compression, in fact, means better approximation
of the Kolmogorov complexity. Performance comparisons for general compression algo-
rithms have shown that this dependence is generally loose (Granados et al., 2008), but
increases when compressors for specific data types are adopted.

Other specialized compressors have been used in literature, such as ad hoc compres-
sion algorithms for sequences of DeoxyriboNucleic Acid (DNA) and RiboNucleic Acid
(RNA), which yield better results for unsupervised clustering of genomes belonging to
different species (Li et al., 2001) or for the estimation of the information content in the
sequences (Liu et al., 2008). A special case is given when a web based search engine such
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as Google is used as a lossy compressor, capable of retrieving documents among several
billions on the base of the terms they contain. This allows discovering and quantifying
semantic relations between words (Cilibrasi & Vitányi, 2007).

2.4 Summary

The assimilation of information content to computational complexity is generating an in-
terest which is not confined within the information theory community, as shows a recent
book by Chaitin, one of the founding fathers of Algorithmic Information Theory (AIT),
aimed at an audience outside of the field (Chaitin, 2006).

The Normalized Information Distance (NID), based on the concept of Kolmogorov
complexity and algorithmic mutual information, is the best measure to quantify the in-
formation shared between any two strings, since it minimizes every other admissible
metric. Unfortunately, it is uncomputable: it may be anyway approximated through
compression factors, opening the way to many practical concepts and applications.

For our purposes the most interesting one is the Normalized Compression Distance
(NCD), a general compression-based similarity measure which has as its main advantage
a powerful parameter-free approach and as main drawback its computational complex-
ity, which puts undesired restrictions in its use in real applications.

This happens because the parameters modeling the data are implicitly computed
within the compression step, and therefore not extractable and reusable: they need to
be computed every time that this distance measure is applied.

If it is possible to find a way to keep the parameter-free approach typical of these
measures, and at the same time to make the data models explicit, we could be able to
process them separately and employ them to recognize patterns.

In the next chapters we will then find our way through the introduced relations be-
tween AIT, classical information theory, and pattern matching, to define new compression-
based similarity measures. We will finally solve part of these techniques’ drawbacks by
defining the Fast Compression Distance (FCD), which shares most of the advantages of
NCD, while greatly reducing its disadvantages.
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Chapter 3

Contributions to Algorithmic
Information Theory: Beyond NCD

This chapter contains new ideas and solutions completing the theoretical frame presented
in chapter 2 and expanding the spectrum of practical applications related to algorithmic
information theory: firstly, the existing correspondence between the latter and classical
information theory is expanded through the definition of the concept of algorithmic rel-
ative complexity; other notions and methodologies described independently from these
concepts are shown to be directly related to the algorithmic information theory frame and
repositioned accordingly; different ideas rather than basic compression are proposed to
approximate Kolmogorov complexity: compression with dictionaries directly extracted
from the data, and grammars and syntaxes regarded as generative models for a string
are considered; finally, novel compression-based similarity measures are introduced by
putting together these newly introduced entities, leading to practical solutions that will
allow defining the Fast Compression Distance contained in the next chapter.

The main contribution to the theory contained in this chapter is the expansion of
the parallel between classical and algorithmic information theory by introducing the al-
gorithmic counterpart to relative entropy (or Kullback-Leibler divergence) in Shannon’s
frame: the concept of algorithmic relative complexity. This is defined between any two
strings x and y as the compression power which is lost by representing x only in terms
of y, instead of using its most compact representation, which has length equal to its Kol-
mogorov complexity K(x). As a byproduct of algorithmic relative complexity and as
help in its definition, the concept of algorithmic cross-complexity is also defined. A
compression-based algorithm is applied to derive a computable approximation, enabling
applications to real data; in the past, a similar approach was used in (Benedetto et al.,
2002a): here the relative entropy between two strings was intuitively defined and suc-
cessfully applied through data compression to cluster and classify texts, and that work
can now be better understood, and its results improved, with the introduction of the
relative complexity and its compression-based approximation, which can be used as a
similarity measure.

The relation between algorithmic complexity and compression is then further ex-
plored: considering compression with dictionaries capturing typical patterns within the
objects brings the Pattern Representation using Data Compression (PRDC) classification
methodology, independently proposed by Watanabe et al. (2002), in the more general
frame of information content estimation under Kolmogorov’s point of view.
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The dictionary containing the relevant information of an object, or class of objects,
may be in turn regarded as a model for that object: the sum of these reflections finally
results in the definition of a new similarity measure in which the Kolmogorov complexity
is assimilated to the size of the smallest context-free grammar which generates an object.

3.1 Algorithmic Relative Complexity

This section expands the Shannon-Kolmogorov correspondences by introducing the con-
cept of relative complexity, and proposes a computable approximation based on data
compression,which result in defining a compression-based (dis)similarity measure, orig-
inally published in (Cerra et al., 2009).

A correspondence between relative entropy and compression-based similarity mea-
sures is considered by Cilibrasi (Cilibrasi, 2007) for the case of static encoders only which,
being directly related to the probabilistic distributions of random variables, are apt to be
analyzed in relation with relative entropy.

Empiric methods to compute the relative entropy between any two objects, based on
the encoding of a string with the a priori ”knowledge” given by the analysis of another
one, have been proposed by Ziv and Merham (1993), Benedetto et al. (2002a) and Puglisi
et al. (2003). All of these methods present limitations which can be discarded when con-
sidering the definition of algorithmic relative complexity, as we will see more in detail.
Among these, the work that had the most impact was the definition of relative entropy
by Benedetto et al., which exploited the properties of data compression by defining in-
tuitively the relative entropy between two strings, and successfully applied it to cluster
and classify texts; that work was carried out in a different theoretical frame, and can
now be better understood, and its results improved, with the introduction of the relative
complexity and its compression-based approximation.

The notions and correspondences on which this section and the next are built are
depicted for sake of clarity in Fig. 3.1.

3.1.1 Cross-entropy and Cross-complexity

Before being able to introduce the more important concept of relative complexity, we
need to define as a byproduct the idea of cross-complexity, which can be seen as the
equivalent for Shannon’s cross-entropy in the algorithmic frame. Let us start by recalling
the definition of cross-entropy in Shannon’s frame:

H(X ⊕ Y ) = −
∑
i

pX(i) log(pY (i)) (3.1)

with pX(i) = p(X = i), pY (i) = p(Y = i) and assuming that pX is absolutely con-
tinuous with respect to pY . The cross-entropy may be regarded as the average number
of bits needed to specify an object i generated by a variable X when using as a priori
knowledge to encode it the probability distribution of another variable Y . This notion
can be brought in the algorithmic frame to determine how to measure the computational
resources needed to specify an object x in terms of another one y. Therefore we intro-
duce the cross-complexity of x given y K(x ⊕ y), keeping in mind the cross-entropy,
as the shortest program which outputs x only by reusing instructions from the shortest
program generating y, and regard this solution as a way of ”forcing” the encoding of x
according to the description of y.
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Figure 3.1: Map of the contents of this chapter. Classic and algorithmic information the-
ory are represented by the equations of their most significant concept: Shannon entropy
-H(X)- for the former and Kolmogorov complexity -K(x)- for the latter. The contri-
butions are circled in red: the correspondence between Shannon and Kolmogorov are
expanded by the definition of the algorithmic relative complexity K(x||y) and cross-
complexityK(x⊕y) between any two strings x and y. The former is estimated with solu-
tions based on data compression and results in a similarity measure, which allows repo-
sitioning within the general picture the concept of relative entropy defined by Benedetto
et al.
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To define the algorithmic cross-complexity we rely on a class of Turing machines sim-
ilar to the one described by Chaitin in his definition of algorithmic complexity (Chaitin,
1977). This is done without loss of generality, since Solomonoff showed that every Turing
Machine may be programmed to behave like any other one by adding a constant needed
to pass from a representation to another (Solomonoff, 1964).

We introduce the cross-complexityK(x⊕y) of x given y as the shortest program which
outputs x by reusing instructions from the shortest program generating y, as follows.

We are given two binary strings x and y. The shortest binary program for y is y∗ such
that |y∗| = K(y). Let S be the set of binary segments of y∗, with |S| = (|y∗| + 1)|y∗|/2
binary segments of y∗. We use an oracle to determine which elements of S are self-
delimiting programs which halt when fed to a reference universal prefix Turing Machine
U , so thatU halts with such a segment of as input. Let the set of these halting programs be
Y , and let the set of outputs of elements of Y be Z. This way, Z = {U(u) : u ∈ Y }. If two
different segments u1 and u2 give as output the same element of Z, i.e. U(u1) = U(u2)
and |u1| < |u2|, then U−1(U(u2)) = U−1(U(u1)) = u1. Finally, determine n,m(m ≤ n)
and the way to divide x = x1x2...xi...xn such that xi,j ∈ Z for some values of i and
1 ≤ j ≤ m, and

n+ c+
m∑
j=1

|U−1xi,j |+
∑

h:1≤h≤n,h6=ij

|sd(xh)| (3.2)

is minimal. This way we can write x as a binary string with first a self-delimiting
program of c bits to tell U how to interpret the following, followed by 1U−1(xi) for the
i-th segment xi of x = x1...xn if this segment is replaced by U−1(xi) ∈ Y and 0sd(xi) if
this segment xi is replaced by its plain self-delimiting version sd(xi) with |sd(xi)| = |xi|+
O(log |xi|). This way, x is coded into some concatenation of subsegments of y∗ expanding
into segments of x, prefixed with 1, and the remaining segments of x in self delimiting
form prefixed with 0, and prefixing the total by a c-bit program (self-delimiting) that tells
U how to interpret this code. Together this forms the code xcrossy with |x⊕y| = K(x⊕y).

The reference universal Turing Machine U on input sd(x)y∗, prefixed by an appropri-
ate program, computes x ⊕ y and halts. Moreover, U with x ⊕ y as input computes as
output x and halts, as both sd(x) and y∗ are self-delimiting. Note that by definition of
cross-complexity:

K(x⊕ y) ≤ |x|+O(log |x|) (3.3)

K(x) ≤ K(x⊕ y) +O(1) (3.4)

K(x⊕ x) = K(x) +O(1) (3.5)

The cross-complexityK(x⊕y) is different from the conditional complexityK(x|y) : in
the former x is expressed in terms of a description tailored for y, whereas in the latter the
object y is an auxiliary input that is given ”for free” and does not count in the estimation
of the computational resources needed to specify x. Key cross-entropy’s properties hold
for this definition of algorithmic cross-complexity:

? The cross-entropy H(X ⊕ Y ) is lower bounded by the entropy H(X), as the cross-
complexity in 3.4.
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? The identity H(X ⊕ Y ) = H(X), ifX = Y also holds (again 3.4), so K(x ⊕ y) =
K(x), ifx = y. Note that the strongest condition iffx = y does not hold in the
algorithmic frame. Consider the case when x is a substring of y: nothing prevents
the shortest code which outputs y from containing the shortest code to output x.
This would cause K(x⊕ y) to be equal to K(x), with x 6= y.

? The cross-entropy H(X ⊕ Y ) of X given Y and the entropy H(X) of X share the
same upper bound log(N), where N is the number of possible outcomes of X , as
algorithmic complexity and algorithmic cross-complexity. This property follows
from the definition of algorithmic complexity and 3.3.

3.1.2 Relative Entropy and Relative Complexity

The definition of algorithmic relative complexity derives from the concept of relative
entropy (or Kullback-Leibler divergence) related to two probabilistic distributionsX and
Y . This represents the expected difference in the number of bits required to code an
outcome i of X when using an encoding based on Y , instead of X , and may be regarded
as a distance between X and Y (Kullback & Leibler, 1951):

DKL(X||Y ) =
∑
i

PX(i) log
PX(i)

PY (i)
(3.6)

We recall the most important properties of this distance: D(X||Y ) ≥ 0, satisfying Gibb’s
inequality or divergence inequality, with equality iffX = Y , and D(X||Y ) 6= D(Y ||X),
for some X and Y . D(X||Y ) is not a metric, as it is not symmetric and the triangle
inequality does not hold. What is more of interest for our purposes is the definition of
the relative entropy expressed in terms of difference between cross-entropy and entropy:

D(X||Y ) = H(X ⊕ Y )−H(X) (3.7)

From this definition we define the equation for the algorithmic relative complexity from
its previously defined components, by replacing entropies with complexities.

For two binary strings x and y the algorithmic relative complexity K(x||y) of x to-
wards y is equal to the difference between the cross-complexity K(x ⊕ y) and the Kol-
mogorov complexity K(x):

K(x||y) = K(x⊕ y)−K(x) (3.8)

The relative complexity between x and y represents the compression power lost when
compressing x by describing it only in terms of y, instead of using its most compact
representation. We may also regard K(x||y), as for its counterpart in Shannon frame, as
a quantification of the distance between x and y. It is desirable that the main properties
of (3.6) hold also for (3.8).

As in 3.6, the algorithmic relative complexity K(x||y) of x given y is positively de-
fined: 0 ≤ K(x||y) ≤ |x|+O(log(|x|), ∀x, y, as a consequence of 3.3 and 3.5. Furthermore
the relative complexity is not symmetric, and the relation between entropy and relative
entropy are maintained in the algorithmic framework, as proven by the following lem-
mas.

Lemma 4.1.The algorithmic relative complexity K(x||y) of a string x with respect to
another string y is not symmetric.
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Proof. Let A and B be two algorithmically independent sequences ∈ {0, 1}∗ of the
same length, chosen so that the shortest code y∗ that generates a string y = {AB} contains
all the parts that form the shortest code x∗ that generates a string x = {A} . Let B be a
simple sequence with respect toA such that up to an additive term inO(log |B|), recalling
that, for a string s, K(s) ≥ log(|s|) +O(1), it suffices to show that:

K(x⊕ y) 6= K(y⊕ x) =⇒ K(x⊕ y)−K(x) 6= K(y⊕ x)−K(y) =⇒ K(x⊕ y) 6= K(y⊕ x).
(3.9)

The string x may be totally reconstructed by the shortest code y∗ which contains x∗.
As A and B are algorithmically independent, the contrary is not true. Hence, up to an
additive constant O(log |B|), K(x⊕ y) = K(x) < K(y ⊕ x) , and K(x||y) < K(y||x) .

Lemma 4.2. The relation between entropy and relative entropy in Shannon H(X) =
logN −D(X||U), where N is the number of values that a discrete random variable X can
assume, and U is the uniform distribution over N , holds in the algorithmic framework.

Proof. For a uniform distributionU over a given domainDwe haveH(U) ≥ H(X), ∀X
in D. The source U is ideally close in Kolmogorov to an incompressible random string
r, as K(r) ≥ K(s),∀s ∈ {0, 1}∗ with |s| ≤ |r| . Replacing entropies and relative upper
bounds with complexities, and replacing U with r, up to an additive term inO(log |x|) we
have: K(x) = |x| −K(x||r) = |x| −K(x⊕ r) +K(x). As the string r is incompressible, no
code from r∗ can be used to compress x, so |x|−K(x⊕r)+K(x) = |x|−|x|+K(x) = K(x),
which proves the identity.

3.1.3 Compression-based Computable Approximations

The incomputability of the algorithmic relative complexity is a direct consequence of the
incomputability of its Kolmogorov complexity components: in this section we derive
computable approximations for this notion, enabling its use in practical applications.

3.1.3.1 Computable Algorithmic Cross-complexity

We rely once again on data compression-based techniques to derive an approximation
C(x ⊕ y) for the cross-complexity K(x ⊕ y). Consider two strings x and y and suppose
we have available a dictionary Dic(y, i) extracted scanning y from the beginning until
position i with the LZW algorithm (ref. 2.3.1.1) for each i, using an unbounded buffer. A
representation C(x⊕ y)∗ of x, which has initial length |x|, is computed as in the pseudo-
code in Fig. 3.2.

The output of this computation has length C(x⊕ y), which is then the size of x com-
pressed by the dictionary generated from y, if a parallel processing of x and y is sim-
ulated. It is possible to create a unique dictionary before-hand for a string y as a hash
table containing couples (key, value), where key is the position in which the pattern oc-
curs the first time, while value contains the full pattern. Then C(x⊕ y)∗ can be computed
by matching the patterns in x with the portions of the dictionary of y with key <actual
position inx. Note that C(x⊕ y) is a cheap approximation of K(x⊕ y) that constitutes its
lower bound: it is not possible to know how much this lower bound is approached.

We report in Tables 3.1 and 3.2 a simple practical example. Consider two ASCII-coded
strings A = {abcabcabcabc} and B = {abababababab}. By applying the LZW algorithm,
we extract and use two dictionaries Dict(A) and Dict(B) to compress A and B into two
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Figure 3.2: Pseudo-code to generate an approximation C(x ⊕ y) of the cross-complexity
K(x⊕ y) between two strings x and y.

A Dict(A) A (A⊕B) B Dict(B) B (B ⊕A)

a a
b ab =< 256 > a a b ab =< 256 > a a
c bc =< 257 > b b a ba =< 257 > b b
a ca =< 258 > c c b
b a aba =< 258 > < 256 > < 256 >
c abc =< 259 > < 256 > < 256 > b
a c a < 256 >
b cab =< 260 > < 258 > b abab =< 259 > < 258 >
c < 256 > a < 256 >
a bca =< 261 > < 257 > c b bab =< 260 > < 257 >
b a < 256 >
c < 256 > b

< 259 > c < 260 > < 256 >

Table 3.1: An example of cross-compression. Extracted dictionaries and compressed ver-
sions of A and B, plus cross-compressions between A and B, computed with the algorithm
reported in Fig. 3.2

Symbols Bits per Symbol Size in bits
A 12 8 96
B 12 8 96
A 7 9 63
B 6 9 54

(A⊕B) 9 9 81
(B ⊕A) 7 9 63

Table 3.2: Estimated complexities and cross-complexities for the sample strings A and B
of Table 3.1. Since A and B share common patterns, compression is achieved, and it is
more effective when B is expressed in terms of A due to the fact that A contains all the
relevant patterns within B.
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strings A and B∗ of length C(A) and C(B), respectively. By applying the pseudo-code in
in Fig. 3.2 we compute (A⊕B) and (B ⊕A) , of lengths C(A⊕B) and C(B ⊕A).

3.1.3.2 Computable Algorithmic Relative Complexity

We define an approximation of the relative complexity between two strings x and y as:

C(x||y) = C(x⊕ y)− C(x) (3.10)

with C(x ⊕ y) computed as described above and C(x) representing the length of x af-
ter being compressed with the LZW algorithm. Finally, we introduce an approximated
normalized relative complexity as following:

C(x||y) =
C(x⊕ y)− C(x)

|x| − C(x)
(3.11)

The distance (3.11) ranges from 0 to 1, representing respectively maximum and minimum
similarity between x and y.

3.1.3.3 Relative Entropy, Revised

In the work that paved the way for practical applications of compression-based similarity
measures, Benedetto et al. defined the relative entropy of a string x related to a string y,
with ∆y representing a small fraction of y , as:

Hr(x||y) =
C(x+ ∆y)− C(x)− (C(y + ∆y)− C(y))

|∆y|
(3.12)

Their intuition was correct, arose great interest within the community along with some
controversies (Goodman, 2002; Benedetto et al., 2002b), and showed the power and adapt-
ability of compression at discovering similarities in general data with a parameter-free
approach. Nevertheless, eventual relations with Kolmogorov complexity were only hinted
throughout the paper. Subsequent works took a step forward by choosing the optimal
length for ∆y in each case (Puglisi et al., 2003). The concept of relative complexity pro-
posed here allows a better understanding of this pioneering work. To establish an in-
formal correspondence between (3.11) and (3.12), in order for the equations to resemble
more each other, consider (3.11) with ∆y and x as its arguments:

C(∆y||x) =
C(∆y ⊕ x)− C(∆y)

|∆y| − C(∆y)
(3.13)

We can now highlight the differences between these two distance measures:

1. The term C(x+ ∆y)−C(x) in (3.12) is intuitively close to C(∆y⊕x) in (3.13), since
both aim at expressing a small fraction of y only in terms of x. Nevertheless, note
that in (3.12) also a small dictionary extracted from ∆y itself is used in the compres-
sion step: this means that this term presents interferences with the conditional com-
pression C(∆y|x) , resulting in an underestimation of the cross-complexity. This is
undesired since, in the case of ∆y being algorithmically independent from x and
characterized by low complexity, ∆y would be compressed by its own dictionary
rather than by the model learned from x. Furthermore, the dictionary extracted
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from x would grow indefinitely according to the length of x: this could generate
confusion, as patterns which are not relevant would be taken into account and used
to compress ∆y. Finally, if x is longer than y, ∆y could be better compressed by x
than by y itself, yielding a negative result for (3.12). In (Puglisi et al., 2003) a detailed
study is done on the size limits that ∆y must have in order to depend prevalently
on the dictionary learned from x, before this is adapted to y, but the described lim-
itations remain.

2. The term C(y+∆y)−C(y)in (3.12) is intuitively close to C(∆y) in (3.13). In the first
case a representative dictionary extracted from y is used to code the fraction ∆y,
while the definition (3.11) allows us to discard any limitation regarding the size of
the analyzed objects and to consider the full string y, solving at the same time the
problem which motivates the search for the optimal size of ∆y in Puglisi’s work.

3. The normalization term in the two equations is different: the equation (3.12) is
not upper bounded by 1 in the case of x and y being algorithmically independent,
which is desired, but by a smaller quantity; in fact, |∆y| > max{C(x+∆y)−C(x)−
(C(y+ ∆y)−C(y)}, since |∆y| > |∆y| −min{C(y+ ∆y)−C(y)}, due to the mono-
tonicity property of C, which ensures that the quantity C(y + ∆y)−C(y) is strictly
positive,∀y. Therefore, the maximum distance in (3.12) also depends on the com-
plexity of ∆y , while it should in principle be independent.

4. The distance (3.12) is based on ∆y, a small fraction of y. This could not be enough to
consider all the relevant information contained in the string. On the contrary, (3.11)
allows using strings of unbounded length, even though it truncates one of them to
have them of the same size, due to the scanning of the two performed in parallel.

3.1.3.4 Symmetric Relative Complexity

Kullback and Leibler themselves define their distance in a symmetric way:

DsymKL(X,Y ) = DKL(X,Y ) +DKL(Y,X) (3.14)

. We define a symmetric version of (3.11) as:

Cs(x||y) =
1

2
C(x||y) +

1

2
C(y||x) (3.15)

In our normalized equation we divide both terms by 2 to keep the values between 0 and
1. For the strings A and B considered in the simple example in Tables 3.1 and 3.2, we
obtain the following estimations C(A||B) = 0.54, C(B||A) = 0.21, Cs(A||B) = 0.38. This
means thatB can be better expressed in terms ofA than vice versa, but overall the strings
are quite similar.

3.1.4 Applications

Even though our main concern is not the performance of the introduced distance mea-
sures, we report some practical application examples in order to show the consistency of
the introduced divergence, and to compare them with their predecessor (3.12).



92 3. CONTRIBUTIONS TO ALGORITHMIC INFORMATION THEORY: BEYOND NCD

Author Texts Success
Dante Alighieri 8 8

D’Annunzio 4 4
Deledda 15 15

Fogazzaro 5 3
Guicciardini 6 6
Machiavelli 12 12

Manzoni 4 4
Pirandello 11 11

Salgari 11 11
Svevo 5 5
Verga 9 9

TOTAL 90 88

Table 3.3: Authorship attribution. Each text from the 11 authors is used to query
the database, and it is considered written by the author of the most similar retrieved
work. Overall accuracy is 97.8%. The authors’ names: Dante Alighieri, Gabriele
D’Annunzio, Grazia Deledda, Antonio Fogazzaro, Francesco Guicciardini, Niccoló
Machiavelli, Alessandro Manzoni, Luigi Pirandello, Emilio Salgari, Italo Svevo, Giovanni
Verga.

3.1.4.1 Authorship Attribution

The problem of automatically recognizing the author of a given text is given. In the fol-
lowing experiment the same procedure as Benedetto’s, and a dataset as close as possible,
have been adopted: in this case Cs(x||y) has been used as a distance measure instead of
(3.12). A collection of 90 texts of 11 known Italian authors spanning the centuries XIII-XX
has been considered (Onlus, 2003). Each text Ti was used as an unknown text against the
rest of the database, its closest object Tk minimizing Cs(Ti||Tk) was retrieved, and was
then assigned to the author of Tk.

The results, reported in Table 3.3, show that the correct author has been found cor-
rectly in 97.8%, of the cases, while Benedetto et al. reached an accuracy of 93.3%. Ex-
periments on a similar dataset by using the Ziv-Merhav method to estimate the relative
entropy between two strings were also proposed in (Pereira Coutinho & Figueiredo, n.d.),
reaching an accuracy of 95.4%. This confirms that the proposed computable measure is a
better approximation of the ”relative entropy” than the one described by Benedetto and
Coutinho, for its tighter bounds with algorithmic complexity, which is a concept natu-
rally closer to the information content of single objects.

3.1.4.2 Satellite Images Classification

In a second experiment we classified a labelled satellite images dataset, containing 600
optical single band image subsets acquired by the SPOT 5 satellite, of size 64x64, with a
spatial resolution of 5 meters. The dataset was divided in 6 classes (clouds, sea, desert,
city, forest and fields) and split in 200 training images and a test set composed of the
remaining 400. As a first step, the images were encoded into strings by simply traversing
them line by line; then a distance matrix was built by applying (3.15) between each pair
of training and test images; finally, each subset was simply assigned to the class from
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Class Accuracy(%)
Clouds 97

Sea 89.5
Desert 85
City 97

Forest 100
Fields 44.5

Average 88.5

Table 3.4: Satellite images classification. Accuracy for satellite images classification (%)
using the relative complexity as distance measure. A good performance is reached for all
classes except for the class fields, confused with city and desert.

which the average distance was minimal.
Results reported in Table 3.4 show an overall satisfactory performance, achieved con-

sidering only the horizontal information within the image subsets. It has to be remarked
that in the process both the feature extraction and the parameter tuning steps have been
skipped, which may hinder the analysis and are often required by conventional classi-
fication methodologies for this kind of data (Keogh et al., 2004). Better results may be
obtained on the same dataset if the vertical information within the images is exploited,
choosing Jpg2000 as compressor (93.5% accuracy), as we will show in the next Chapter.

3.1.5 Conclusion

The new concepts of relative complexity in the algorithmic information theory frame has
been introduced, defined between any two strings. It is remarkable that the main proper-
ties of the corresponding classical information theory concept, the relative entropy, hold
for our definition. We derived suitable approximations based on data compression for
these uncomputable notions. Finally, we tested them on real data in order to have a
comparison with the relative entropy measure, one of the first techniques to exploit the
intrinsic power of data compression for applications on clustering and classification of
general data (Benedetto et al., 2002a). The great interest generated by that work finds an-
other justification by repositioning the relative entropy into the frame of complexity and
algorithmic information theory; at the same time, this solves some controversies on that
paper (Goodman, 2002; Benedetto et al., 2002b), since it clarifies that that work was not
just a heuristic discovery, but a natural appendix of a consistent theoretical background
linking compression to complexity theory, which was yet to come and would have been
defined later, mainly in the works of Li and Vitányi. The novel idea of relative complexity
introduced in this work can be also considered as an expansion of the relation illustrated
in (Cilibrasi, 2007) between relative entropy and static encoders, extended to dynamic
encoding for the general case of two isolated objects, and can be regarded as a data com-
pression based similarity measure. On the other hand, our approximation requires more
computational resources and cannot be computed by simply compressing a file. Finally, it
has to be remarked that, in order to use any of the above mentioned methods, it is needed
to encode first the data into strings, while distance measures as the NCD may be applied
directly by using any compressor: anyway, these computable methods are not conceived
to outperform existing methods in the field, since the main aim of these definitions is to
give a contribution in expanding the relations between classical and algorithmic infor-
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Figure 3.3: PRDC Workflow to compute the distance PRDC(SI , C) between a general
input file I and a class C, encoding first the files into strings using an alphabet A, which
differs according to the kind of data we are encoding. Each distance becomes an element
of the compression ratio vector CV for the input file I .

mation theory.

3.2 Relation PRDC - NCD

The Pattern Representation based on Data Compression (PRDC) is a classification method-
ology applicable to general data relying on data compression, introduced by Watanabe
et al. (2002) before the definition of the NCD and independently from all the concepts
described so far; indeed, the ideas of algorithmic information theory are mentioned in
this work, but not considered directly connected. This section was partially published in
(Cerra & Datcu, 2008a).

3.2.1 Definition of PRDC

The idea to the basis of PRDC is to extract typical dictionaries, obtained with a compres-
sor belonging to the LZ family (ref. 2.3.1.1), directly from the data previously encoded
into strings; these dictionaries are later used to compress other files in order to discover
similarities with them. Also in this case, the kinds of data on which this methodology
can be applied are diverse, with experiments carried out on texts, airborne images, hand-
drawn sketches, music samples, and proteins (Watanabe et al., 2002; Sugawara & Watan-
abe, 2002). The distance of a string s from a class Z represented by a dictionary DZ is:

PRDC(s, Z) =
|(s|DZ)|
|s|

(3.16)

where |(s|DZ)| represents the length of the file s, of original length s, encoded into a
string in a first step and then compressed by DZ .

The workflow of PRDC is reported in Fig. 3.3.
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3.2.2 Link with NCD

At first sight the equation (3.16) differs considerably from the NCD as defined in equation
(2.24), but it will be possible to rewrite these definitions in order for them to resemble
more each other, after some considerations.

Consider the relation between the size |Dx| of a dictionary Dx extracted from a string
x and its compression power, where |Dx| is intended as the number of entries in Dx, with
each one representing an association between a pattern and a symbol. If we use an LZW-
like compressor to extract Dx, as in PRDC, the prefix-closure property of LZW ensures
that an object composed of recurring patterns will generate fewer, longer entries in the
dictionary with respect to a less regular one, since reoccurring patterns are exploited
by the dictionary to substitute long sequences in the string, maximizing compression.
Therefore a string x generating a small dictionary Dx will be simpler than a string y
generating a larger one Dy, and easier to compress:

|Dx| < |Dy| ⇒ C(x) < C(y) (3.17)

The plausibility of the correlation between dictionary size and complexity is also sug-
gested by an approximation for the Kolmogorov complexity K(x) of a string x proposed
in (Kaspar & Schuster, 1987): this is linked in this work to the quantity 1

|x|c log2 |x|, where
c is the number of times a new sequence of characters is inserted in the construction of
x, and is then exactly equal to the size |Dx| of the dictionary Dx extracted from x, since
an entry in Dx is created whenever a new sequence is found recurring x, and the rule of
thumb in (3.17) comes naturally from considering two strings x and y having the same
length.

Now let us focus on the preconditions required by PRDC to choose a set of dictionar-
ies DZi for i classes Zi. In (Watanabe et al., 2002) the authors claim that the selection of
an appropriate number of elements for the extraction of dictionaries

[. . .] ”should be the smallest representative of the information source being analyzed [. . .] also
to reduce the dictionary dependency of PRDC.”

If we consider then to minimize the total size of the training dictionaries, when i
dictionaries Di of size |Di| are extracted from i objects of the same size belonging to
the class Zx, the best representative dictionary DZx can be chosen in order to satisfy the
following condition:

|DZx | ≤ |Di|, ∀i ∈ Zx. (3.18)

We then choose as a representative string of each class the ones with lowest complexities
which generate the shortest dictionaries. In this way we also make sure that the dictio-
naries will contain the most meaningful and recurring patterns. If we consider the dictio-
nary as a data model, this is also congruous with Occam’s razor principle which favours
simpler models as best representations of the data (ref. 2.1.5.4), and with Solomonoff’s
universal distribution for the a priori probability of a model, which is m(x) = 2−K(x)

(Solomonoff, 2003), if K(x) is approximated by C(x), as discussed in the previous chap-
ter. Thus keeping in mind that in (3.16) we ought to have |DZ | ≤ |Ds|, and so C(Z) ≤
C(s) we may now rewrite equation (2.24) for any two files x and y with C(x) < C(y),
making advantage of the propertyC(x, y) = C(x|y)+C(y)+O(1) = C(y|x)+C(x)+O(1)
(Li et al., 2004), as:

NCD(x, y) =
C(x, y)− C(x)

C(y)
=
C(y|x)

C(y)
+O(1) (3.19)
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The dividend in equation (3.16) is the size of s compressed by the dictionary DZ , and
it can be regarded as a compression of s with an auxiliary input, which is a dictionary
extracted from a reference file of complexity generally lower than the complexity of s.
This term can be assimilated to the conditional compression C(y|x) in (3.19), where y
represents the string to be compressed and x an auxiliary input to the computation. We
may then express (3.16) as:

PRDC(x, y) =
y|Mx

y
(3.20)

where (y|Mx) represents the dataset y compressed with the dictionary Dx of x, regarded
as the model Mx of x.

The definitions (3.19) and (3.20) are similar and differ only for the normalization fac-
tor: the PRDC may now be inserted in the list of compression-based similarity measures,
compiled by Scully and Brodley (2006), which can be brought in a canonical form and
differ from the NCD only for the normalization factor. The difference is that in this case
the similarity measure put in relation with the NCD was defined independently from it
and from all the concepts of algorithmic information theory, on top of which the other
similarity measures were built.

About the different normalization factor in (3.19) and (3.20), it is easy to notice that the
NCD is a relation between compression factors, while the PRDC is basically a compres-
sion factor in itself. We expect then the NCD to be more reliable than the PRDC since the
latter fails at normalizing according to the single complexity of each dataset the similarity
indices obtained. This is conformed by the experiment in Fig. 3.6, that will be illustrated
in the next subsection.

3.2.3 Normalizing PRDC

Performing such normalization of PRDC results in the definition of a slightly different
similarity measure, the Model-conditioned Data Compression-based Similarity Measure
(McDCSM ), which is symmetric and yields a distance:

McDCSM(x, y) =
|(xy|Dxy)| −min{|(x|Dx)|, |(y|Dy)|}

max{|(x|Dx)|, |(y|Dy)|}
(3.21)

where Dxy is the dictionary extracted via the LZW algorithm from x and y merged.
The workflow of McDCSM is reported in Fig. 3.4.
In the general case, if the function ”Max Complexity” MaxC(x, y) is introduced, de-

fined as

MaxC(x, y) =
{ x, if |D(x)| ≥ |D(y)|

y, otherwise
(3.22)

then a general definition for McDCSM(x,y) is:

McDCSM(x, y) =
|(MaxC(x, y)|Mxy)|

|(MaxC(x, y)|MMaxC(x,y))|
. (3.23)

The McDCSM has the following properties in common with NCD:

1. McDCSM(x, y) = 1 (maximum distance) iff x and y are random relative to one
another. This is easily proved by the fact that, in the case of MaxC(x, y) = y (the
case is symmetrical), if no pattern of y is to be found in x then |(y|Mx)| = |y|, and
|(y|Mxy)| = |(y|My)|.



3.2. RELATION PRDC - NCD 97

Figure 3.4: McDCSM workflow to compute the distance McDCSM(SI , C) from a gen-
eral input file I and a class C. An important difference from the workflow in Fig.3.3 is
that now the distance is computed as the ratio between two compressed files, one com-
pressed with the file´s own dictionary and the other with the joint dictionary . Another
difference is that here the best representative file converted to string for a class C is ex-
plicitly considered to be the one with minimum complexity C(SC).

2. McDCSM is clearly symmetrical:McDCSM(x, y) = McDCSM(y, x) in the gen-
eral definition.

3. McDCSM(x, y) > 0 because the length of the strings is always positive, as when a
real compressor is used in NCD.

So, The McDCSM is a value between 0 and 1 estimating how much the compression
factor for an object x increases if the dictionary extracted from another object y is also
available, depending on the similarity between the two.

After this normalization, results obtained with compression with dictionaries are al-
most identical, in absolute value, to the ones obtained with NCD when the compression
algorithm used for the latter is LZW : an example reporting both distances for a test set
of 20 one-band 64x64 satellite image subsets from a reference one is shown in Fig. 3.5. As
an additional test we computed two distance matrices using both distances on the set of
20 images, and built a vector v with the absolute differences of each couple of elements
in the two: the variance of v was just σ(v) = 2.45× 10−4.

Another confirmation comes from an unsupervised clustering test on a satellite im-
agery dataset reported in Fig. 3.6. The images have been first encoded into strings
by traversing the image line by line, to compute for each separate pair the PRDC and
McDCSM indices, using the LZW algorithm with an unbounded buffer to build the
dictionaries. The NCD has been calculated for each pair of objects directly from the im-
age files. As a result, three distance matrixes related to the three similarity measures
have been generated. To compare the overall distances the tool maketree, which is part
of the tools provided by the open-source utilities suite Complearn (Cilibrasi et al., 2002),
has been used to cluster the results generating the best-fitting binary trees related to the
distance matrixes. Results obtained are similar with all the distance measures used, and
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Figure 3.5: NCD and McDCSM distances for a sample dataset of 20 strings from a refer-
ence one. The values obtained by the two methods have similar values.

Figure 3.6: Visual description and hierarchical clustering of NCD, PRDC and McDCSM
distances of 60 64x64 satellite images belonging to 6 classes. The classes result well sepa-
rated with the exception of a sea image, generally closer to the classes clouds and desert.
In PRDC an additional false alarm of a forest image within the class sea is removed pass-
ing to the McDCSM indices. Misplacementes are circled.
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all present the same misplacement of an image belonging to the class sea. When switch-
ing from PRDC to its normalized version McDCSM a misplacement of a forest image in
the cluster of images belonging to the class sea is avoided. It is also to be remarked that
the divergence as computed by PRDC is computed in a very similar way to the empiric
relative entropy by Ziv and Merhav (1993).

This correspondences between information theory, compression with dictionaries and
traditional compression-based similarity measure can be inserted in the frame of the cor-
respondences between information theory and pattern matching (Wyner et al., 1998), and
will enable in the next chapter to define a faster compression distance, reducing the com-
putational complexity of traditional compression-based methods.

Moreover, we witnessed how typical dictionaries directly learned from the data and
used to compress other datasets behave in a way which is very similar to a standard
compressor’s, and this is the starting point that will lead to the complexity approximation
based on representation with approximations of smallest grammars proposed in the next
section.

3.2.4 Delta Encoding as Conditional Compression

The conditional compression C(x|y), approximating the conditional complexity K(x|y),
is assimilated to the compression of a string x by means of an external output y from
which a dictionary is extracted. Other works in literature have been mentioned propos-
ing methods to compute a conditional compression; yet, a concept is given in literature
which represents per se a computable way of estimating the conditional complexity of a
string given another, even though it has never been considered in that way: the differen-
tial file compression, or delta encoding (Shapira & Storer, 2005). After having introduced
the conditional Kolmogorov complexity and some of its approximations, it is straightfor-
ward to notice how this encoding is a natural form of conditional compression, resulting
in an object of length C∆(x|y), which is as compact as possible and contains the informa-
tion to fully recover x if y is available. Delta compression is then another of the concepts
and methods which can be directly or indirectly related to algorithmic complexity.

3.3 Beyond NCD: Compression with Grammars

Considering compression with dictionaries for the estimation of algorithmic complexity
in the previous section brings in the idea of taking into account in the process not only the
size of the compressed file C(x), but also the complexity of the dictionary D(x) used to
compress x. Since D(x) may be regarded as a model for the data, this two-part represen-
tation of complexity would have a formalism similar to Rissanen’s concept of Minimum
Description Length. Relations between MDL and algorithmic complexity have been al-
ready considered in (ref. 2.1.5.2). Connecting these topics to compression-based similar-
ity measures is the MDL-Compress algorithm, applied to network security in (Evans et
al., 2007). This section has been published in (Cerra & Datcu, 2010b).

3.3.1 Complexity Approximation with Grammars

Considering a dictionary D(x) as a data model for x, and keeping in mind the formalism
of MDL, we could then assimilate the complexity of x to the following two-part repre-
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Figure 3.7: Pseudo-code to generate the set of rules R constituting an approximation of
the smallest Context-Free Grammar G(x) related to a string x.

sentation:
K(x) ≈ C(x) +D(x). (3.24)

Nevertheless, it is hard to estimateD(x) if we consider the technique described in (Watan-
abe et al., 2002), since dictionaries used by this methodology are extracted with a vari-
ant of the LZW algorithm, and contain redundancies (since they have the prefix-closure
property) and elements which are not relevant, since they are later never used in the
compression step. In a completely random string r, with a large enough alphabet, in
which a pattern is never repeated twice, we would extract a dictionary D(r), with a size
D(r) ≥ 0 and a certain complexity, that in the compression process would not be able
to compress at all r, from which it was extracted. K(r) would then become greater than
the size of r itself, if we attain ourselves to (3.24), and this would clearly introduce an
overestimation in the approximation. We are interested then in computing the smallest
dictionary min{D(x)} useful to compress x, which as a consequence is empty if x can-
not be compressed, and in estimating its complexity. The solution to the problem stated
above is to consider an approximation of the smallest grammar Gmin(x) which contains
all the relevant patterns within x.

This idea derives from considering another important correspondence existing in lit-
erature: the one between Kolmogorov complexity and the smallest Context-Free Gram-
mar generating a string. Both of them are not computable and represent the most com-
pact representation of the object that can be achieved: the problem of finding the smallest
grammar which generates a string is NP-hard, and this problem is assimilated to the com-
putation of the Kolmogorov complexity of the string itself (Charikar et al., 2002; Lehman
& Shelat, 2002). Assuming to have an oracle which tells us which program halts and
which not, the Kolmogorov complexity for a string x can be reduced to an NP-hard prob-
lem, if one tries every possible string as input for a Turing machine, starting from the
shortest available, and stops when a string s(x) which produces x as output is found.
Then K(x) = |s(x)|, and |s(x) ≤ |x|+O(log x).

The CFG generating a string x can be regarded as a generative model for x, and rep-
resents a compact representation of the regularities within the data, with its set of rules
which may be regarded as a list of entries in a dictionary. We adopt in this thesis an ap-
proximation for smallest context-free grammars introduced in (Larsson & Moffat, 2000).
This approximation G(x), containing a set of production rules R that generate the pat-
terns contained in an object x, is extracted using a simple algorithm described by the
pseudo-code in Fig. 3.7.

Finally, we can introduce our complexity approximation based on compression with
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smallest grammars Cg(x) , defined as follows:

Cg(x) =

{
N , if N ≤ 1

Cx +
(

1− log2N
log2Cx+|G(x)|

)
, o.w.

(3.25)

where Cx is the number of elements of the object x, initially composed of N elements,
after being compressed with G(x). The latter, of size |G(x)|, contains a set of production
rules R which may be regarded as the smallest dictionary of x. It is important to notice
that the complexity estimation for G(x) in the second term of the equation decreases as
the compression power of its production rules grows. Thus, the complexity overestima-
tion due to the limits that a real compressor has is accounted for and decreased, when
the possibility of compactly representing x is found. This approximation for complexity
gives by definition Cg(x) = 0 if x is the empty string, and has the following characteris-
tics.

Lemma 4.3. The second term of the sum, representing the complexity of the data
model, is bounded between 0 and |G(x)| - This corrects the overestimated size ofG(x) for
a very simple object x, which could be described in a more compact form than its com-
pression with an approximated smallest grammar: in other words, this term accounts
for complexity overestimations due to the limits that a real compressor has. At the same
time, when the grammar grows in size and complexity and is not very effective at com-
pressing x, the second term approaches its limit |G(x)|.

Proof - It has to be shown that the factor in parentheses lies in the interval [0, 1). To
state that it is upper bounded by 1 it is sufficient to notice that all the values in the term

log2N
log2Cx+|G(x)| are positive, and when this term goes to 0 the upper bound is approached,
but never reached since log2N is always strictly positive (note that we are in the case
N > 1). Showing that the lower bound is 0 is equivalent to state that the following holds:

log2N ≤ log2Cx + |G(x)|. (3.26)

In the limit case of |G(x)| = 0, we have that Cx = N , the equation above is true and
the lower bound of 0 is reached. If we add any production rule to the grammar, the
term to the right in (3.26) does not decrease; consider that the best compression that
we can achieve, after the introduction of a single new rule in R, is reducing x to a size
Cx/2, in the limit case of a pattern composed of two symbols repeated for the whole
length of the string, i.e. N

2 times: thus, after adding such rule to the grammar, the term
to the right of the equation doesn’t change, since log2Cx decreases by 1, while |G(x)|
increases by 1. If instead we add a rule which is not optimally compressing x, log2Cx

decreases by a quantity ∆ < 1, while |G(x)| still increases by 1. So the term to the right
in (3.26) is lower bounded by log2N . Note that, as |G(x)| grows with rules that are not
optimal in compressing x, the term in parenthesis in (3.25) approaches 1, avoiding to give
a strong ”discount” to the complexity of the grammar adopted. The complexity of the
data model does not derive directly from the space needed to store the set of production
rules contained in G(x): in fact, it is always smaller. The fact that a single rule which
compresses x to a size of N

2 does not increase our complexity estimation is justified by
another consideration: we could have reduced to N

2 the size of x by modifying our coding
of the source, generating a string which would be as complex as x.

Lemma 4.4. Cg(x) is upper bounded by the size N of x - The size N of x is the same
quantity bounding the Kolmogorov complexity K(x) for a maximally random string.
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Proof - Consider the limit case of x being maximally random and not compressible at
all: it will produce an empty grammar, erasing the second term of the sum in (3.25), i. e.
Cx = N and |G(x)| = 0. If on the contrary x can be compressed, each rule added to the
grammar will decrease Cx of at least two, and increase the second term of the equation
of at most one. In any case, the sum will never exceed N .

Lemma 4.5. Cg(x) is not a monotone function of x - It does not hold the property
Cg(xy) ≥ Cg(x), ∀x, y.

Proof - It is enough to provide a counterexample for which Cg(xy) ≥ Cg(x) is not true.
Suppose to have a binary string s = {000}. No pattern of two symbols is repeated twice,
so the string is not compressed, and we have |G(s)| = 0, |Cs| = 3 , and a complexity
of Cg(s) = 3. Now consider a string s′ = {0}, and the complexity of the concatenation
ss′ = {0000}, for which |G(ss′)| = 1 and |Css

′| = 2: this means that Cg(ss′) = 2. So
the complexity decreases: this is because the size of is now a power of 2, allowing bet-
ter compressibility; details will be illustrated in Lemma 4.6. Even if the monotonicity
property is not respected, it may be argued that a very simple binary string with a size
which is a power of 2 would be more easily built by a program running in a universal
Turing machine. Also, this property could be satisfied by changing the way in which the
grammar is built, allowing for a dynamic representation of patterns of different sizes, or
different encodings for long runs of the same symbols-sequences, but this would require
a more complex approximation of the smallest grammar that is outside the scope of this
work. This example also indicates that our complexity approximation works better on
long strings, since on the long run these differences become negligible.

Lemma 4.6. Complexity of a maximally redundant object x does not increase with its
size N , if {∃p|2p = N} - When x is maximally redundant, Cg(x) is constant if its size N is
a power of two.

Proof - Consider, without loss of generality, a string with initial complexity Cg(x) = 2.
If we concatenate x with a copy of itself, we obtain x2 = {01}2 which will generate a
rule in the grammar G(x) of the kind A → 01; after compressing x2 with G(x) we still
have Cg(x2) = 2. Doubling the compressed string again will result in a new rule in G(x)
of the kind B → AA , which again will yield Cg(x3) = 2. This process can be repeated
over and over. It has to be noticed that, if the size N of x doesn’t satisfy {∃p|2p = N},
Cg(x) increases by a small quantity; this could be regarded as a defect in accuracy in
the complexity estimation, but, as in lemma 4.5, it should also be taken into account
the simpler algorithm that is required in a low-level language to output a regular string
which size is a power of 2.

Lemma 4.7. The estimated complexity Cg(x) of an object x almost equals the complex-
ity Cg(xx) of the concatenation of x with itself - the complexity of the concatenation of
an object x with itself, or with an identical object y, is very close to the complexity of x
considered separately.

Proof - Merging two identical objects x and y will create a repeated sequence: so, after
substitution of the most recurring patterns, each subset of x and y will have a counter-
part in the other object and will be considered as a pattern by the algorithm computing
the smallest grammar. Substitution of each of these sequences, which occur only twice
in the whole xy, will make in (3.25) decrease the first term of the sum by one for each
substitution, and bring the second term close to |G(xy)|, at the same time increasing it
by 1 for each rule, balancing the decrement of the first term. An important consequence
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Figure 3.8: Hierarchical clustering of dataset used in the experiments in Fig. 3.6 applied
on a distance matrix of NCDG distances. The classes are as in Fig. 3.6 and the image mis-
placement is circled. Still some confusion remains regarding the same sea image (circled),
which is nevertheless closer to its correct class.

of this property is that Cg(xy) ∼= Cg(x) ∼= Cg(y), if x = y. Verification - To confirm em-
pirically the validity of this property we carried out some experiments on 200 different
strings, considering their complexity after concatenation of the objects with themselves:
the average absolute difference between Cg(x) and Cg(xx) was less than 0.1% , which
confirmed our hypothesis.

We define a new similarity measure by using a modified version of equation (2.24),
where C(x) is substituted by G(x) as defined in (3.25), the Normalized Compression
Distance using Grammars (NCDG):

NCDG(x, y) =
Cg(xy)−min{Cg(x), Cg(y)}

max{Cg(x), Cg(y)}
(3.27)

From lemmas 4.7 and 4.5, it derives that NCDG(x, y) ∼= 0ifx = y but, nevertheless,
the conditions for NCDG to be a metric described in (Li et al., 2004) do not hold, since
our complexity approximation is not monotonic. To test the validity of our complexity
approximation, we rely on a dataset similar to the one used for the comparison in Fig.
3.6: a collection of 200 single band SPOT 5 images, all of them of size 64x64 and in byte
format, divided in the classes clouds, sea, desert, city, forest and fields. The images are
linearly scanned outputting sequences which are used in a subsequent step to compute
the NCDG distance (3.27) between each pair of objects.

Table 3.5 reports the average interclass and intraclass distances obtained with NCD
and NCDG along with a ”discrimination factor” which quantifies the separability be-
tween the classes as the difference between interclass and intraclass distances: the latter
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Intraclass distance Interclass distance Discrimination
NCD 1.017 1.110 0.093

NCDG 0.828 0.961 0.133

Table 3.5: Average NCD and NCDG distances on a 200 image subsets dataset. The dis-
tances computed are 40000, 10000 intraclass and 30000 interclass.

is some 40% higher for NCDG. The NCD distances were computed with Complearn us-
ing default parameters (Cilibrasi et al., 2002).

In Fig. 3.8 we used instead the same dataset of 60 objects as the one adopted for the
experiments in Fig. 3.6: the result of the clustering still presents the same confusion in
the separation of a sea image, but in this case the latter is brought closer to its class, with
respect to the clustering obtained on the basis of the previous methods. In our second ex-
periment we have tested the power of the described method on mitochondrial genomes
from the database GenBank (NCBI, 1992), freely available on the web. Since a genome
is a long sequence of just four elements (adenine, cytosine, guanine and thymine), each of
them has been encoded in a first step with an alphabet of 16 symbols, with each symbol
representing the combination of any pair of basic components: so, each of them is rep-
resented by a string with half the size of the original one. The DNA genomes used are
the ones of 20 animal species divided in three categories: rodents, ferungulates, and pri-
mates, in a similar experiment to one contained in Cilibrasi & Vitányi (2005). More specif-
ically, the list of species used is as follows. Rodents: rat (Rattus norvegicus), house mouse
(Mus musculus), opossum (Didelphis virginiana), wallaroo (Macropus robustus), and platy-
pus (Ornithorhynchus anatinus); ferungulates: grey seal (Halichoerus grypus), harbor seal
(Phoca vitulina), brown bear (Ursus arctus), polar bear (Ursus thibetanus), white rhino (Cer-
atotherium simum), horse (Equus caballus), finback whale (Balaenoptera physalus), and blue
whale (Balaenoptera musculus); primates: gibbon (Hylobates lar), gorilla (Gorilla gorilla),
human (Homo sapiens), chimpanzee (Pan troglodytes), pygmy chimpanzee (Pan paniscus),
orangutan (Pongo pygmaeus), and Sumatran orangutan (Pongo pygmaeus abelii).

We generated the best fits of a binary tree to each distance matrix obtained applying
the similarity measures NCD and NCDG, as in the case of satellite imagery. Figs. 3.9
and 3.10 report the results of hierarchical clustering obtained with the two measures. In
both cases the hierarchical clustering obtained looks accurate, since primates are correctly
located in an independent branch of the tree, and the two species of seals are correctly
considered close to each other. With NCDG, anyway, results improve: the genome re-
lated to the brown bear is correctly considered the closest to the one belonging to the
polar bear, which is not the case for NCD; furthermore, for NCDG the class of rodents
lies completely in a separated branch of the binary tree, while it is dislocated in two
branches with the other method. It has to be remarked that the pertinence of the platy-
pus to the family of rodents is discussed (Kirsch & Mayer, 1998). It has to be noticed that,
in (Cilibrasi & Vitányi, 2005), the authors obtain different results from the ones presented
here, but in that case the already mentioned ad hoc compressor for DNA sequences was
used, resulting in a better approximation of Kolmogorov complexity and better results;
in our case we have instead computed the NCD with the tool Complearn using default
parameters and a standard compressor. The tree score reached (Cilibrasi, 2007) is also
higher for the NCDG distance matrix (Ts ∼= 0.97) than for NCD (Ts ∼= 0.93 ). The pre-
liminary results presented in this section suggest that the proposed two-part complexity
estimation may improve result obtained in data compression based similarity measures
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Figure 3.9: Hierarchical clustering on DNA mitochondrial genomes using NCD. Polar
Bear and Brown Bear genomes are not considered to be similar at all, with the former
being placed among a group of genomes belonging to rodents.
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Figure 3.10: Hierarchical clustering on DNA mitochondrial genomes using NCDG. With
respect to Fig. 3.9 the genomes belonging to bears are correctly found more similar to
each other, and the group of rodents (Wallaroo, Opossum, Platypus, Rat, Mouse) is well
separated in a cluster.
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by means of a standard compressor. This approximation may be tuned in order to focus
on the properties of the data structure rather than on the data giving the model, and may
be used to separate meaningful information inside the data from the noise by adopting
another selection of the rules constituting the grammar. On the other hand, the compu-
tation of a smallest grammar is a computationally intensive procedure with respect to
standard compression algorithms.

3.3.2 Summary

This section, without the assumption of being in any way exhaustive, made a journey
into the variegate landscape composed of both the theoretical notions and the practical
applications linked to Kolmogorov complexity: it gives its contribution in bringing the
concepts linked to Kolmogorov complexity further outside of their domain by expanding
their relations with other areas; at the same time, it takes advantage of this frame to
collect and give an order to ideas which gravitate, in some occasions unaware, around
this alternative approach to information content estimation. The link between classical
and algorithmic information theory is consolidated through the definition of algorithmic
relative complexity, allowing to establish a link between one of the first compression-
based classification methods and algorithmic information theory.

Subsequently, the relations between pattern matching and complexity are introduced
to bring in the frame of compression-based similarity measures (and implicitly of algo-
rithmic information theory) previously unrelated concepts such as PRDC, through the
definition of its normalized version, McDCSM. From pattern matching we moved to
context-free grammars, passing through the concept of MDL and illustrating the relations
that these ideas have with Kolmogorov complexity. The smallest context-free grammar is
assimilated to the smallest dictionary useful in compressing an object: since dictionaries
capture the relevant patterns within the data, their use in the compression step allows
considering separately their complexity, tuning the complexity estimation. Considering
this two-part representation of complexity results in the definition of a new similarity
measure, the NCDG. The novelty of this approach lies in the fact that the impact of com-
plexity overestimations, due to the limits that a real compressor has, is accounted for and
decreased.

The compression-based similarity measures taken into account in this section are sim-
ilar in their conception, but different in running time and discrimination power. For two
strings x and y PRDC is usually the fastest procedure: if the dictionary extraction step
is carried out offline the time needed to compute PRDC(x, y) has been found in exper-
iments to be approximately 10 times faster than the one to compute NCD(x, y), since
the joint compression of x and y which is the most computationally intensive step is
avoided. On the other side, the results obtained by PRDC are not so accurate as the ones
obtained by applying NCD; furthermore, the latter can be applied directly to the data
while for the former it is necessary an additional step of encoding the data into strings,
which brings an additional overhead to the computation when not straightforward. The
normalized version of PRDC, McDCSM, yields results very close to the ones obtained by
NCD but is more computationally intensive, since all the additional steps of PRDC have
to be performed and the joint compression step is not skipped. Finally, the NCDG is com-
putationally intensive and not apt to be used in practical applications, even though it is
tunable and shows better discrimination power than NCD. It can then be guessed that
an application aiming at performing on large datasets should go more in the direction of
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PRDC to minimize online processing: this is the starting point for the definition of the
Fast Compression Distance in the next section.
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Chapter 4

New Compression-based Methods
and Applications

We pointed out that the main drawback of compression-based applications is their com-
putational complexity, which makes difficult to apply these concepts to large datasets.

While the most popular compression-based similarity measure is the NCD, we in-
troduced in the previous chapter PRDC, another technique which seems more apt to be
exploited for these means for its reduced complexity, achieved by paying the price of a
decrease in performance; we then established a direct link between these two measures.

This chapter defines a new compression-based similarity measure, the Fast Compres-
sion Distance (FCD), which combines the speed of PRDC with the robustness of NCD.

The FCD allows applying the power of compression-based methods for the first time
on large datasets, with an increase of up to 100 times in size with respect to the ones
tested in the main works on the topic.

4.1 Fast Compression Distance

For two finite strings x and y of comparable length, if the dictionary extraction step is
carried out offline, the time needed to compute PRDC(x, y) is remarkably less than the
one to compute NCD(x, y), since the joint compression of x and y which is the most
computationally intensive step is avoided. Furthermore, if y is compared to multiple ob-
jects, the compression of y, implicitly carried out by extracting the dictionary D(y), has
to be computed only once, while NCD always processes from scratch the full x and y
in the computation of each distance. On the other hand, the results obtained by PRDC
are not as accurate as the ones obtained by applying NCD; in addition, the latter can
be applied directly to the data while for the former it is necessary an additional step of
encoding the data into strings, which brings an additional overhead to the computation
when not straightforward. The normalized version of PRDC, McDCSM, yields results
very close to the ones obtained by NCD but is computationally more complex, since all
the data preparation steps of PRDC have to be performed and the joint compression step
is not skipped. Starting from these considerations, a step forward is taken by combining
the speed of PRDC without skipping the joint compression step which yields better per-
formance with NCD. The idea, inspired by the experiments of Cucu-Dumitrescu (2009),
is the following: a dictionary D(x) is extracted in linear time with the LZW algorithm
(ref. 2.3.1.1) from each object represented by a string x, and sorted in ascending order:
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Figure 4.1: Graphical representation of the intersection between two dictionaries D(x)
and D(y), respectively extracted from two objects x and y through compression with the
LZW algorithm.

the sorting is performed to enable the binary search of each pattern within D(x) in time
O(logN), where N is the number of entries in D(x). The dictionary is then stored for fu-
ture use: this procedure may be carried out offline and has to be performed only once for
each data instance. Whenever a string x is then checked against a database containing n
dictionaries and D(x) is extracted from x, then only D(x) is matched against each of the
n dictionaries. We define the Fast Compression Distance (FCD) between x and an object
y represented by D(y) as:

FCD(x, y) =
|D(x)| − ∩(D(x), D(y))

|D(x)|
, (4.1)

where |D(x)| and |D(y)| are the sizes of the relative dictionaries, regarded as the num-
ber of entries they contain, and

⋂
((D(x), D(y)) is the number of patterns which are found

in both dictionaries. A graphical representation of the mentioned sets is reported in Fig.
4.1. The FCD(x, y) ranges for every x and y from 0 to 1, representing minimum and max-
imum distance, respectively, and if x = y, then FCD(x, y) = 0. Every matched pattern
counts as 1 regardless of its length: the difference in size between the matched dictionary
entries is balanced by LZW’s prefix-closure property which applies to the patterns con-
tained in the dictionary: so, a long pattern p common to D(x) and D(y) will naturally be
counted |p| − 1 times, where |p| is the size of p. The intersection between dictionaries in
FCD represents the joint compression step performed in NCD, since the patterns in both
the objects are taken into account. A symmetric distance can be computed as:

FCD(x, y) =
max(|D(x)|, |D(y)|)− ∩(D(x), D(y))

max(|D(x)|, |D(y)|)
. (4.2)

The FCD was originally proposed in (Cerra & Datcu, 2010d).

4.2 Content-based Image Retrieval System

The FCD is applied in this section to build a CBIR System, with the following workflow
(Fig. 4.2). In a first offline step, RGB images are quantized in the Hue Saturation Value



4.2. CONTENT-BASED IMAGE RETRIEVAL SYSTEM 111

Figure 4.2: Workflow for the dictionary-based retrieval system. After preprocessing, a
query image Q is quantized in the HSV color space and converted into string after em-
bedding in each pixel some textural information. Then a dictionary D(Q) is extracted
from Q, which is then compared through the FCD similarity measure to the dictionaries
previously extracted from all other data instances. Relevant images are then retrieved
and presented to the user by applying a threshold on the results.

(HSV) space and converted into strings, after being modified to preserve some vertical
information in the process; subsequently, representative dictionaries are extracted from
each object and the similarities between individual images are computed by comparing
each couple of dictionaries.

4.2.1 1 Dimensional Encoding

Before extracting the dictionaries and computing the distance between the images, it is
needed to assign a single value to each pixel and convert the 2D image in a 1D string. An
UQ of the color space is performed to avoid a full representation of the RGB color space,
since 256 values are available for each color channel and the size of the alphabet would
have a size of 2563, clearly not practical for our purposes.

Since the RGB channels are correlated, it is chosen as color space the Hue Saturation
Value (HSV), in order to have a more meaningful and less redundant representation. In
the HSV color space a finer quantization of hue is recommended with respect to satu-
ration and intensity, since the human visual perception is more sensitive to changes in
the former (Androutsos et al., 1999): in our experiment we used 16 levels of quantization
for hue, and 4 for both the saturation and value components, as in (Jeong & Gray, 2005).
Therefore, the HSV color space is quantized in 8 bits, which allow a representation with
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Figure 4.3: Pixels considered to embed the basic vertical interactions information for pixel
pi,j at a row i and column j. A value of 0 and 1 is assigned to pi,j if the vertical texture is
smooth or rough, respectively. Horizontal texture is not considered, as it is implicit in the
compression step since the image is converted into string by traversing it in raster order.

16× 4× 4 = 256 values.
The images are going to be converted into strings before being compressed, and

traversing the image in raster order would mean a total loss of its vertical information
content. We choose then to represent an image with 9 bits, adding an extra bit for the ba-
sic vertical information, assigning 0 to smooth and 1 to rough transitions of a pixel with
respect to its vertical neighbours: this information may be regarded as a basic texture
information, and is needed only for the vertical direction, being implicit in the horizontal
one (see Fig. 4.3).

For a pixel p at row i and column j, the value of the bit related to the vertical infor-
mation vi,j is given by the following equation:

v(pi,j) =

{
1, if(d(pi,j , pi+1,j > t)||(d(pi,j , pi−1,j > t)
0, otherwise

(4.3)

where

d(p1, p2) =
√
||hp1 − hp2||2 + ||sp1 − sp2||2 + ||ip1 − ip2||2, (4.4)

t is a threshold comprised between 0 and 1, and hp, sp and ip are respectively the hue,
saturation and intensity values of p. In other words, it is simply checked whether the L2-
norm of the differences in the HSV space between a pixel and its neighbors in the same
column and in the two adjacent rows is above a given threshold. For an image with n
rows, all pixels on rows 0 and n are considered smooth.

In the experiments in this chapter a threshold of 0.4, which in all the cases splits the
data in two sets of comparable cardinality, has been manually chosen. Each image x
goes through the above steps of data preparation, and is then converted into a string by
recurring the image in raster order. If it is desired to retrieve images in the database which
are similar to a query image q, one may apply a simple threshold to the FCD between q
and any object i in the dataset and retrieve all the images within the chosen degree of
similarity. A sketch of the workflow is depicted in Fig. 4.2.
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4.2.1.1 Speed Comparison with NCD

We can compare the numbers of operations needed by NCD and FCD to perform the
joint compression step, which is the most discriminative one. The numbers of operations
needed for this step for two strings x and y, using LZW-based compression for NCD for
sake of comparison, are equivalent to compressing the joint file C(x, y) for NCD, and
computing the intersection of the two dictionaries D(x) and D(y) for FCD.

FCD(x, y)→
⋂

(D(x), D(y)) = mx logmy (4.5)

NCD(x, y)→ C(x, y) = (nx + ny) log(mx +my) (4.6)

where nx is the number of elements in x andmx the number of patterns extracted from x.
In the worst case FCD is 4 times faster than NCD, if x and y have comparable complexity
and are totally random. As regularity within an object x increases, mx decreases with
respect to nx, since fewer longer patterns are extracted, and the number of operations
needed by FCD is ulteriorly reduced.

Other ideas can be used to further speed-up the computation. If in the search within
D(y) a pattern px inD(x) gives a mismatch, all patterns with px as a prefix may be directly
skipped: LZW’s prefix-closure property ensures that they will not be found in D(y). Fur-
thermore, short patterns composed of two values may be regarded as noise and ignored
if the dictionaries are large enough, greatly reducing computation time.

The dictionaries extraction step may be carried out offline for FCD, therefore each
dictionary needs to be computed only once for each object and can be then reused.

In the average case, the experiments contained in this section will show that the com-
plexity decreases by one order of magnitude even if we are ignoring every restriction
about buffer size and lookup tables imposed by real compressors; this is done to expense
of the generality of NCD, which is directly applicable to general data without a previous
step of encoding into strings.

4.2.2 Image Retrieval and Classification

In all the experiments contained in this section, the running time indicated is related to a
machine with a double 2 GHz processor and 2GB of RAM.

4.2.2.1 The COREL Dataset

We used a subset of the COREL dataset (March & Pun, 2002) of 1500 images divided in 15
classes (see Fig. 4.4) for sake of comparison with the previous works (Jeong & Gray, 2005)
and (Daptardar & Storer, 2008), with the same set of 210 query images used by the other
authors used to compute the Precision vs. Recall curves: the Precision related to a query
is defined as the number of relevant documents retrieved divided by the total number
of documents retrieved, while Recall is defined as the number of relevant documents
retrieved divided by the total number of existing relevant documents (Ricardo Baeza-
yates and Berthier Ribeiro-Neto, 1999). All images of original size 256x256 have been
resampled to different resolutions, from 128x128 to 32x32: this has been done considering
works like (Torralba, 2009), where it is empirically shown that for a typical 256x256 image
representing a full scene (so of the same size of the data contained in the COREL dataset)
is usually enough for a human to analyze its 32x32 subsampled version to understand
the images semantics and distinguish almost every object within; also in (Zhang & Wu,
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Figure 4.4: Dataset sample of each of the 15 classes in raster order (2 images per class)
Africans, Beach, Architecture, Elephants, Flowers, Horses, Caves, Postcards, Sunsets,
Buses, Dinosaurs, Tigers, Mountains, Foods, and Women.

2008) is hinted that an image at lower resolution does not lose information as much as
one would expect.

In our experiments we then compared the results for the same images with sizes of
128x128, 64x64 and 32x32 pixels. The best results have been obtained with the 64x64
images, with Fig. 4.5 showing the difference in performance when adopting a different
image size.

Fig. 4.6 reports a comparison of the FCD with the previous VQ-based methodsGMM−
MDIR and JTC: it can be noticed that, for values of recall bigger than 0.2, the FCD out-
performs the previous techniques. Precision vs. Recall for scalar quantization and vector
quantization. As in the case of JTC, where a codebook taking into account positions
within the images is adopted, also for FCD the inclusion of vertical spatial information
(where the horizontal is implicit) improves the results obtained. The difference in perfor-
mance when the vertical information is considered is reported in Fig. 4.7: the improve-
ment is not dramatic but constant, and the computational simplicity of the algorithm
employed justifies the use of this extra information. In addition to the simple UQ, more
refined VQ has been also tested: the training vectors have been computed on the basis of
24 training images, but this representation did not improve the results (see Fig. 4.8). In
addition, adopting a non uniform quantization would require a new computation of the
vector quantizer whenever new semantic classes are added to the dataset.

4.2.2.2 The LOLA Dataset

The LOLA dataset (Sivic & Zisserman, 2003) is composed of 164 video frames extracted
at 19 different locations in the movie Run, Lola, run.A sample of the dataset is reported
in Fig. 4.10. The retrieval performance is measured using the Average Normalized Rank
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Figure 4.5: Precision vs. Recall for different sizes of the images. A slightly better perfor-
mance is given for an image size of 64x64 pixels.

Figure 4.6: Precision vs. Recall comparing the VQ-based methods MDIR and JTC with
the proposed method, where the Fast Compression Distance FCD is used on the images
converted into strings: in the proposed method HSV is used as color space, an extra bit
is added to each pixel to capture the essential vertical texture information, and scalar
quantization is performed.
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Figure 4.7: Precision vs. Recall with and without addition of the bit representing vertical
information. Results are improved in spite of the fact that the representation space for
the pixels results doubled.

Figure 4.8: Comparison of performances for Uniform Quantization and more refined
Vector Quantization. The performance is stable and justifies the use of UQ, since it is
simpler and independent from the data at hand.
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Figure 4.9: Lola dataset ANR score for each object in the dataset. The overall perfor-
mance is good: when all frames for the same scenes are retrieved first when the system is
queried with an image, the score for that image is 0. On the contrary, a random retrieval
yields a ANR score of 0.5 for a movie frame.

ANR of relevant images (March & Pun, 2002) given by:

ANR =
1

NNr

Nr∑
i=1

Ri −
Nr(Nr + 1)

2
, (4.7)

where Nr is the number of relevant images for a given query image, N is the size of the
image set, and Ri is the rank of the ith relevant image. The ANR ranges from 0 to 1, with
the former meaning that all Nr images are returned first, and with 0.5 corresponding to
random retrieval.

In this case the results, reported in Fig. 4.9 and Table 4.1, are much worse than the
best obtained by Sivic and Zissermann in (2003). Nevertheless, they are acceptable, if we
consider that no features were extracted from the scenes and no parameters had to be set

FCD S. and Z.
0.093 0.013

Table 4.1: ANR scores of FCD for the Lola dataset, compared to state of the art. The FCD
is clearly inferior, even if its performance is good and, as usual, feature extraction and
parameter settings steps are skipped.
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Figure 4.10: Sample of Lola dataset, composed of 164 still movie frames, extracted from
19 scenes in the movie Run, Lola, Run. Each of the 5 rows contains images from the same
class/scene.
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Figure 4.11: Sample of Nister-Stewenius dataset. Each of the 2550 objects appears 4 times,
for a total of 10200 images, and is photographed under different angles and illumination
conditions.

or adjusted, and consistent with the Precision vs. Recall curve in the information retrieval
experiment in Fig. 4.16.

4.2.2.3 An Application to a Large Dataset: Stewenius-Nister

The N-S data set is composed of 2,550 objects, each of which is imaged from four different
viewpoints, for a total of 10,200 images (Nister & Stewenius, 2006). A sample of the
dataset is depicted in Fig. 4.11.

The standard paradigm for content-based image retrieval is query by visual example,
which retrieves images using strict visual matching, ranking database images by similar-
ity to a user-provided query image. In this spirit, the measure of performance defined
by the authors is counting how many of the 4 relevant images are ranked in the top-4
retrieved objects when an image q is used as query against the full or partial dataset.
Even though there would be faster query methods, to keep unaltered the workflow used
so far we extracted all the dictionaries from the images and computed a full 10200x10200
distance matrix using the FCD as distance measure; afterwards, we checked the 4 closest
objects for each image. To the best of our knowledge, this is the first time that a full dis-
tance matrix using compression-based similarity measure has been computed on a large
dataset. While this has been possible for the FCD in approximately 20 hours, the NCD
would have required about 10 times more, so we built with the latter in 3 hours a partial
distance matrix related to 1000 images.

Results reported in Fig. 4.12 show that the FCD yields results as good as the NCD
on the partial dataset, but clearly not as good as the best obtained by Stewenius and
Nister; nevertheless, there are a couple of aspects that need to be considered. Firstly,
the FCD does not adopt any ad hoc procedure for the dataset, but it is applied with no
variations with respect to the other experiments contained in this section. Furthermore,
more than 4 millions features are extracted in (Nister & Stewenius, 2006), while this step is
skipped by the FCD. Finally, different combination of parameters and training sets yield
very different results in the experiments of Stewenius and Nister, of which only some
are better than the performance given by the FCD: for example, if the authors compute
the score at one level only, namely on the leaves level of the hierarchical vocabulary tree
adopted, results are slightly worse than the ones obtained by the FCD. This confirms the
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Figure 4.12: Stewenius-Nister dataset score, upper-bounded by 4. The x axis shows the
size of the dataset subset considered. The FCD scores 2.94, meaning that in average al-
most 3 out of 4 images representing an object are among the top-4 retrieved for a query
image representing the same object. Results are inferior to state of the art, in this case
methods based on SIFT features; nevertheless, the FCD does not need any training and is
independent from parameter settings, and outperforms SIFT-based measures for differ-
ent parameter settings (leaves-score in the diagram).
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Afr.BeachArc.Bus.Din.El.Fl.Hor.Moun.FoodCavePost.Sun.Tig.Wom.
Africans 90 0 0 0 1 0 0 0 0 1 0 0 0 8 0

Beach 12 43 8 14 0 1 0 0 1 3 0 0 0 18 0
Architecture 7 0 72 3 0 0 0 0 0 1 0 0 1 16 0

Buses 6 0 0 93 0 0 0 0 0 1 0 0 0 0 0
Dinosaurs 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
Elephants 16 0 2 2 0 46 0 4 0 3 0 1 0 26 0
Flowers 6 0 3 1 0 0 83 1 0 3 0 0 0 3 0
Horses 0 0 0 0 0 0 0 97 0 0 0 0 0 3 0

Mountains 7 1 11 23 0 2 0 0 39 0 0 0 0 17 0
Food 6 0 0 1 0 0 0 0 0 92 0 0 0 1 0
Caves 17 0 9 1 0 1 0 0 0 5 60 0 0 7 0

Postcards 0 0 0 0 1 0 0 0 0 1 0 98 0 0 0
Sunsets 18 0 1 6 0 0 2 0 0 16 3 1 39 14 0
Tigers 1 0 0 1 0 0 0 5 0 0 0 0 0 93 0

Women 35 0 0 6 2 0 0 0 0 20 4 0 0 5 28
Avg. Accuracy 71

Table 4.2: Corel dataset. Confusion matrix for nearest neighbor classification.

drawbacks of working with algorithms in which the definition and setting of parameters
plays a central role.

4.2.2.4 Image Classification

Two simple classification experiments have been performed, where each image q has
been used as query against all the others. In the first experiment, q has been assigned to
the class minimizing the average distance; in the second, to the class of the top-ranked
object retrieved, that is the most similar to q. Results obtained are reported in Tables 4.2
and 4.3, and show an accuracy of 71.3% for the former method and 76.3% for the lat-
ter; better results could be obtained by performing a classification using Support Vector
Machines. It has to be remarked that intraclass variability in the COREL dataset is some-
times very high: for example most of the 10 images not recognized for the African class
reported in Table 4.2 may be in fact considered as outliers since just landscapes with no
human presence are contained within (see Fig. 4.13); this shows the existence of limits
imposed by the subjective choice of the training datasets.

On a laptop computer the total running time for extracting the dictionaries and com-
pute the distance matrix for the 1500 64x64 images was around 20 minutes, while it takes
more than 150 with NCD: considering that the java code used is not yet optimized for
speed, this makes the FCD a good candidate for applications to larger databasets and im-
age information mining, and a good compromise between execution speed and quality
of the results obtained.

4.2.3 Authorship Attribution

The FCD can also be applied to general one-dimensional data, by extracting the dictio-
nary directly from the strings representing the data instances. In this section we consider
the problem of automatically recognizing the author of a given text, using the same pro-
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Afr.Bea.Arc.Bus.Din.El.Fl.Ho.Mou.Fo.Cav.Pos.Sun.Tig.Wo.
Africans 91 0 0 0 0 0 0 0 0 1 1 0 0 7 0

Beach 8 31 9 6 0 8 0 0 15 0 5 1 0 16 1
Architecture 3 1 59 0 0 1 1 0 3 1 10 0 0 21 0

Buses 3 1 3 86 0 0 0 0 2 3 0 0 0 2 0
Dinosaurs 1 0 0 0 98 0 0 0 1 0 0 0 0 0 0
Elephants 0 0 1 0 0 89 0 2 0 1 1 0 0 6 0
Flowers 0 0 0 0 0 0 96 0 0 0 0 1 0 2 1
Horses 0 0 0 0 0 0 0 95 0 0 0 0 0 5 0

Mountains 2 11 7 9 1 9 0 0 52 1 3 0 2 3 0
Food 4 0 1 1 0 1 0 0 0 91 0 2 0 0 0
Caves 3 0 6 1 0 3 0 1 0 0 82 0 1 3 0

Postcards 4 0 0 0 1 0 0 0 0 10 0 82 0 3 0
Sunsets 3 0 1 3 0 2 3 0 0 3 9 0 67 9 0
Tigers 1 1 1 0 0 1 0 1 0 0 0 0 0 95 0

Women 25 0 0 1 1 4 3 0 4 8 13 0 0 10 31
Average Accuracy 76

Table 4.3: Corel dataset. Confusion matrix classification according to the top-retrieved
object.

Figure 4.13: Typical images for the class Africans (top row) and all misclassified images
(bottom row), ref. Table 4.2. The false alarms may be considered as outliers, and the
confusion with the class tigers is justified by the landscapes dominating the images with
no human presence, with the exception of the 6th one in the bottom row (incorrectly
assigned to the class food).
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Author Texts Success
Dante Alighieri 8 8

D’Annunzio 4 4
Deledda 15 15

Fogazzaro 5 5
Guicciardini 6 6
Machiavelli 12 10

Manzoni 4 4
Pirandello 11 11

Salgari 11 11
Svevo 5 5
Verga 9 9

TOTAL 90 88

Table 4.4: Each text from the 11 authors is used to query the database, and it is consid-
ered written by the author of the most similar retrieved work. Overall accuracy is 97.8%.
The authors’ names: Dante Alighieri, Gabriele D’Annunzio, Grazia Deledda, Antonio
Fogazzaro, Francesco Guicciardini, Niccoló Machiavelli, Alessandro Manzoni, Luigi Pi-
randello, Emilio Salgari, Italo Svevo, Giovanni Verga.

Figure 4.14: Classification accuracy for the liberliber dataset. In spite of its lower com-
putational complexity, of all the compression-based methods adopted the FCD achieves
the best results.

cedure and dataset as in 3.1.4.1: in this section we compare mainly the performance of
different compression-based similarity measures with FCD’s. The results, reported in
Table 4.4, show that the correct author has been found correctly in 97.8% of the cases.

Only two texts, L’Asino and Discorsi sopra la prima deca di Tito Livio both by Niccolò
Machiavelli, are incorrectly assigned respectively to Dante and Guicciardini, but these er-
rors may be justified: the former is a poem strongly influenced by Dante (Caesar, 1989),
while the latter was found similar to a collection of critical notes on the very Discorsi
compiled by Guicciardini, who was Machiavelli’s friend (Machiavelli et al., 2002). As a
comparison, the algorithmic Kullback-Leibler divergence obtained the same results in a
considerably higher running time. Accuracy for the NCD method using an array of lin-
ear compressors ranged from the 93.3% obtained using the bzip2 compressor to the 96.6%
obtained with the blocksort compressor (Fig. 4.14). Even though the accuracy is compa-
rable and the dataset may be small to be statistically meaningful, the main advantage of
FCD over NCD is the decrease in computational complexity. While for NCD it took 202
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Figure 4.15: Comparison of running times for some of the reported methods. The FCD
is 6 times faster than the NCD and 14 times faster than the algorithmic Kullback-Leibler
distance.

Dataset Classes Objects MAP Score Content Diversity
Fawns and Meadows 2 144 0.872 Average

Lola 19 164 0.661 Average
COREL 15 1500 0.433 High

Liber Liber 11 90 0.81 Low

Table 4.5: Complexity of the analyzed datasets.

seconds to build a distance matrix for the 90 pre-formatted texts using the zlib compres-
sor (with no appreciable variation when using other compressors), just 35 seconds were
needed on the same machine for the FCD, of which 10 to extract the dictionaries and 25
to build the full distance matrix (Fig. 4.15).

4.2.4 Summary

A Precision vs. Recall curve for most of the datasets used in this section is reported in
Fig. 4.16 (it is also included the Fawns and Meadows dataset, ref. 4.4.1 ). While con-
ventional classification methods can be sometimes strongly dependant on the nature of
the attributes, which often must be very precisely defined, weighted and combined, the
FCD is universal being fully data-driven, does not give any preference in weighting the
data structures, and yet yields results of comparable quality to state of the art techniques.
These Precision vs. Recall curves can be also exploited to informally estimate the com-
plexity of an annotated dataset, since the workflow does not change according to the
dataset, and we expect to have a lower curve for datasets which present a higher com-
plexity (see Table 4.5). Many factors may contribute to the variability of a dataset, such
as the total number of classes and the content diversity, proportional to the confusion
between classes.

The differences in performance for the datasets in Fig. 4.16 are coherent with the
intrinsic diversity and variability of each dataset. The content diversity, related to the
intraclass variability, has been subjectively evaluated by the authors.

For example, the Corel dataset to which the worst curve in Fig. 4.16 is related suffers
the problem of a subjective choice of the images for each class, as illustrated by Fig. 4.13.
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Figure 4.16: Precision-Recall curves for most of the datasets analyzed in this section.
Lower curves correspond to datasets with a higher number of classes and a significant
intra-class variation, which make classification and recognition tasks difficult. Since the
FCD may be applied to any data type with basically the same workflow, these curves
may help at evaluating the performance of any technique on a given dataset.
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4.2.5 Conclusions

A new approach to image retrieval based on data compression has been presented. The
main idea is to extract directly from the data typical dictionaries representing the recur-
ring patterns, trying to keep as much information as possible by employing quantization
and by addition of the essential vertical information; in a subsequent step, similarities
between two objects are computed on the basis of the size of the intersection set between
the relative dictionaries. The precision-recall curves show that the proposed method per-
forms better than previous similar techniques; furthermore, it avoids the long processing
times usually required by compression-based techniques, which generally process redun-
dantly the full data, and the scalar quantization adopted facilitates the addition of new
images to the database, since no parameters need to be recomputed afterwards.

If a query image is presented to the complete Stewenius-Nister dataset, composed of
10.200 images, assuming that the dictionaries for each image are already available, the
query time to assign a similarity score to each image and retrieve the most similar one is
approximately 8 seconds on a machine with a double 2 GHz processor and 2GB of RAM,
which is acceptable.

To further reduce the processing time, a DataBase System could be employed, repre-
senting each dictionary with a table in the database, thus enabling quick queries on the
joint table sets.

4.3 Applications to Remote Sensing

Traditional satellite image analysis methodologies often require strong a priori knowl-
edge of the data, which may be in some cases available, but often put undesired limita-
tions in applications to EO images databases: in fact, the large and steadily growing vol-
ume of data provided by satellites, along with the great diversity of the observed scenes,
make hard to establish enough general statistical description models for these datasets.

This drawback in several typical image understanding problems like segmentation,
classification or clustering is especially affecting image information mining applications,
which usually process large volumes of data, often not restricted to homogeneous datasets.

Therefore, due to their dependance on numerous parameters to set and tune, such
methods are seldom usable by a non-specialist, and experiments to evaluate their perfor-
mance are difficult to reproduce in an exact way, as diversity in the data is enlarging as
their volume grows.

Another challenge is represented by the growth of the informational content of im-
ages, due to the major increase in sensors resolution. This causes traditional satellite
images analysis to fail (Gong et al., 1992) and requires new approaches in the field of
automatic or semi-automatic techniques to extract information from EO data.

The images in Fig. 4.17 show the differences between the aspect of an urban area at
10 m resolution (artificially degraded) and a detail of the same area at 1 m resolution:
a texture more or less uniform becomes an agglomerate of different objects (buildings,
roads, trees, etc.) as resolution increases, and it results clear how observable texture and
geometrical features get much more complex, rich of information and at the same time
difficult to analyze due to the loss of homogeneity.

As an example of parameter-dependant algorithm, we consider a typical satellite im-
age analysis method, focused on Gibbs-Markov Random Fields texture modeling and
described in (Cerra & Datcu, 2010a). The workflow, sketched in Fig. 4.18, contains many
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Figure 4.17: Urban area which may be seen as a texture at 10 m resolution or a collection
of objects at 1 m resolution.

Figure 4.18: An example of parameter-laden analysis: processing chain for classification
based on multiresolution texture parameters extraction. In the workflow n×n represents
the original image size, and w is the size of the analyzing window used at original resolu-
tion. From the image p texture parameters are extracted at each scale, with p depending
on the model order adopted for the GMRF.
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steps in which each choice may lead to different results. In the specific, and restricting
ourselves to the most important parameters, these characteristics have to be set:

1. Low-pass filter choice and settings

2. Interpolation technique

3. Model order for Gibbs-Markov Random Field and definition of related energy func-
tion

4. Choice of estimator

5. Analyzing window settings (size and stride)

6. Training data selection

7. Distance measure adopted

8. Clustering algorithm

These disadvantages can be avoided by adopting compression-based similarity mea-
sures, which could help at discovering similarities within EO data with their total data-
driven, model-free approach.

This section presents clustering and classification experiments on optical and Syn-
thetic Aperture Radar, acquired by different sensors and at different resolutions, plus
two novel ideas: a method to automatically assess the optimal number of looks in a radar
scene, and a semantic compressor which performs a first annotation of the images di-
rectly in the compression step. Parts of this section have been published in (Cerra et al.,
2010; Cerra & Datcu, 2010c, 2008b).

4.3.1 Hierarchical Clustering - Optical Data

The first experiment has been carried out on 60 image subsets equally divided in 6 classes
from a labeled dataset containing 600 SPOT5 single band subsets. The FCD has been com-
puted between each pair of objects, generating a distance matrix. The utility Complearn
is then used to perform an unsupervised clustering, generating a dendrogram which fits
(suboptimally) the distance matrix. Results in Fig. 4.19 show that all classes are well
separated with only one ”false alarm”. The classes fields, city and desert are considered
closer to each other, while clouds and sea behave in a similar way and yield the only false
alarm, since both of them have a simple structure and relevant portions with the same
brightness.

4.3.2 Hierarchical Clustering - SAR Data

In the case of high resolution SAR images such as the data acquired by TerraSAR-X, im-
ages can be acquired in three different acquisition modes at different resolutions, with the
most interesting one being the sliding spotlight mode which yields the highest resolution
products available, and the ever-present speckle noise and differences in conditions of
acquisition make hard to adopt a single model for these datasets (Buckreuss et al., 2008).
This increase in spatial resolution on the one hand makes the observed scenes diverse
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Figure 4.19: Hierarchical clustering (left) on a distance matrix containing FCD values
applied to 60 images from the dataset of which a sample is reported (right). The classes
result well separated. The only false alarm is a sea subset confused with clouds.
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and irregular; on the other hand, it is not yet significant enough to enable target recog-
nition tasks. For applications on such data, parameter-laden algorithms have yet higher
risks of underfitting the data, failing to capture relevant information, or overfitting them,
introducing nuisance.

We apply then the introduced techniques to perform a parameter-free, unsupervised
clustering of two datasets. The first one is comprised of 44 Synthetic Aperture Radar
(SAR) TerraSAR-X subsets taken over Egypt, with a spatial resolution of 2 meters and
Equivalent Number of Looks ENL = 4, divided in 4 classes. The second one is a collec-
tion of different urban structures within a TerraSAR-X scene acquired over the city of
Paris, where 35 tiles of size 128x128 presenting different kinds of built structures have
been manually chosen. For both datasets a distance matrix containing the compression
distances between every pair of tiles has been created. Finally, an unsupervised hierar-
chical clustering of the image subsets has been performed.

The first experiment shows a perfect separation between the classes forest, desert,
urban area and fields (Fig. 4.20).

For the second experiment, the interesting aspect of the classes of interest is that it
is possible to consider some sub-classes within them: namely, for the tiles belonging to
the sport structures area different structures such as tennis courts, a stadium and a sport
palace can be considered separately, while for the Eiffel tower it is possible to distinguish
between tower base, main structure (up to the second floor), upper part and antenna,
thanks to the 3 dimensional effect in the scene due to the tower displacement for posi-
tioning ambiguities caused by its height.

Results show that it is possible to separate not only different kinds of built areas, but
also different structures within each built area, if these are not homogeneous as in the
case of city centre and residential area subsets.

Even though a quantitative evaluation of the dendrogram is hard to obtain, being its
evaluation subjective, it is possible to remark a couple of aspects. The first bifurcation
of the tree divides the data into two different groups of built-up zones, with green areas
(residential areas and sport structures) and without green areas (city centre and Eiffel
tower): the probability of this happening by chance is only 1 in 6.8 x 109 (Keogh et al.,
2004). After two further biforcations, all objects in the 4 classes are separated in a branch
of the tree, with the exception of the tile related to the Eiffel tower antenna. Further on
along the dendrogram, the sub-classes within the sport structures and the Eiffel tower
are correctly separated within each class.

4.3.2.1 Estimation of the Optimal Equivalent Number of Looks

Another aspect of the previously introduced techniques is their reliability in applications
to noisy data. In fact, the NCD has been found to be resistant to noise (Cebrian et al.,
2007), and this aspect can be exploited and applied to multilooked images to estimate
their information content, assess the quality of the multilooking procedure and evaluate
the number of looks L which gives the best compromise between spatial resolution and
attenuation of speckle noise. An informal experiment has been carried out by analyzing
the result of the unsupervised hierarchical clustering of 40 image subsets acquired in
Gyza, Egypt and belonging to four classes: desert, forest, city, and fields. The clustering
has been carried out on image subsets containing the same area on ground and with a
value L for the ENL ranging from 1.2 to 4.0; then, for each result four branches have been
cut off the tree, with each one containing the subsets of a single class. A false alarm is
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Figure 4.20: Visual description of the classes used (left) and hierarchical clustering of FCD
values (right) applied to 44 TerraSAR-X images of size 64 × 64 with Equivalent Number
of Looks (ENL) equal to 4. The classes result well separated.

ENL False Alarms Further Separability Confusion
1.2 4 3
2 0 1
3 0 0
4 0 2

Table 4.6: Summary of false alarms and confusion for different values of ENL. These
preliminary results show that too much noise may hinder the analysis, but confirm that
compression-based measures are noise-resistant, and a good separation is achieved with
no false alarms are raised when ENL is at least 2.

considered for each image subset lying in a branch related to another class.
If with L=1.2 the speckle noise is still negatively affecting the clusters separation in-

troducing around 10% of false alarms (Fig. 4.22), the false alarms drop to 0 when L ranges
from 2.0 to 4.0 (Figs. 4.23, 4.24, and 4.25), suggesting that choosing L within this range
provides to the users an image with a better characterization of the scene contents (Table
4.6). Further experiments could help in fixing a tool which automatically chooses the
optimum value for L in a given scene.

4.3.3 Satellite Images Classification

Compression-based similarity measures yield a good performance also in classification
tasks. In the following experiment we have split our dataset of 600 images in 200 ran-
domly chosen training images, picked in equal amount among all the classes and used
the remaining 400 as test set. After building a distance vector using the NCD, we have
performed classification on a simple nearest neighbour basis in a 6 dimensional space,
where each dimension represents the average distance from a class. We applied the NCD
with the LZW algorithm, with and without a first step of data encoding with a space-
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Figure 4.21: Classes used (right) with hierarchical decomposition for sport structures and
Eiffel tower (sample subsets, bottom) and dendrogram (left) representing the result of an
unsupervised hierarchical clustering applied to manually chosen 128x128 tiles belonging
to the classes of interest. The class ”sport structures” presents different built areas belong-
ing to the same sport complex. A good separation between classes, and between different
structures belonging to the same class, is achieved. The only false alarm is marked.
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Figure 4.22: NCD clustering with ENL 1.2. In this case the image size and the amount of
noise assume their highest value. There are several false alarms due to the very strong
noise, and the clustering presents a general confusion in separation.

Figure 4.23: NCD clustering with ENL 2. False alarms already disappear after removing
some noise, with only one subset not perfectly separated.
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Figure 4.24: NCD clustering with ENL 3. This looks like the best compromise between
noise removal and loss in spatial resolution, since no false alarms is raised and there is
no confusion in separation.

Figure 4.25: NCD clustering with ENL 4. Here we have the lowest amount of noise
and the smoothest image, but the spatial resolution is considerably lower, therefore some
confusion reappears.
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Compressor Accuracy
LZW 90.3

LZW+Peano Scan 90.5
JPEG2000 93.3

Table 4.7: Average classification accuracy using different compressors.

Clouds Sea Desert City Forest Fields
Clouds 90.9 0 1.5 0 7.6

Sea 0 92.6 0 0 7.4 0
Desert 0 1.5 88 0 9 1.5
City 0 0 0 100 0 0

Forest 0 1.5 1.5 0 97 0
Fields 1.5 0 6 0 1.5 91

Average 93.3

Table 4.8: NCD+JPEG2000. Confusion matrix for nearest neighbor classification.

filling Hilbert-Peano curve (Peano, 1890), and with lossless JPEG2000 compression. The
average accuracies reported in Table 4.7 show that the latter yields the best results: this
is justified by the fact that JPEG2000 compression allows keeping the vertical spatial in-
formation contained within the images, exploiting it intrinsically within the computation
of the information distance, to expenses of the computational complexity, which is con-
siderably higher also because for the joint compression step an image containing the two
images of interest side by side has to be constructed.

Table 4.8 shows the confusion matrix for the NCD+JPEG2000 method, while Table 4.9
shows what happens when, instead of the average distance from a class, we just con-
sider the class of the top-ranked retrieved object (i.e. the closest to the query image): the
accuracy reaches 95.7%, and an object of the correct class is retrieved within the two top-
ranked for 98.5% of the test set. Anyway, such decision rule would make the classification
method sensitive to potential outliers, as in the case of the class fields, which may present
saturated areas or brightness similar to a desert zone, so an image representing a cloudy
or desertic area could be retrieved as best match. As a comparison we have tried a totally
different approach with Support Vector Machine (Joachims, 1999), using as input param-
eters the mean value and the variance of each image subset and performing a multiclass
classification: resulting average accuracy was just 35.2%, and only the classes clouds and
sea were recognized in a satisfactory way. Better results may be anyway obtained with
the same parameters by using Latent Dirichlet Allocation (Lienou et al., 2010).

The compression with grammars introduced in the previous chapter has not been
tested in this case since it is a computationally intensive procedure to be carried out of-
fline, requiring approximately 5 seconds on a laptop computer to output a distance be-
tween two 64x64 tiles, so less suitable for applications on large datasets. Nevertheless,

Clouds Sea Desert City Forest Fields Average
90.9 100 98.5 100 98.5 86.5 95.7

Table 4.9: NCD+JPEG2000. Confusion matrix for classification according to the top-
ranked object.
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Compressor Intraclass Interclass Discrimination
NCD(LZW) 1.03 1.1 0.07

NCDG 0.86 0.98 0.12
NCD(JPEG2000) 0.70 0.90 0.20

Table 4.10: Average distance using different compressors.

an empirical test carried out on a restricted test set of 100 images from the same dataset
suggests that NCDG has better discrimination power with respect to NCD (when a stan-
dard LZW-based compressor is used), and injection of JPEG2000 compression in NCD
once again outperforms both (Table 4.10).

4.3.4 Semantic Compressor

The FCD can be employed to define an ad hoc compressor for satellite images, which has
the added value of performing a first annotation of the image’s semantic content. The
semantic compressor works as following: first, a set of dictionaries has to be available for
each class of interest for a specific sensor. This can be defined by the user and has to be
set only once for each class related to each sensor, since the dictionaries do not have to be
extracted directly from the image which is going to be compressed.

Then the input image is divided into tiles and each tile is compressed with the avail-
able dictionaries, and only the compressed tile with minimum size is kept. Subsequently,
a code is output for each tile, containing a code related to the employed dictionary / class
plus the tile compressed with that dictionary.

On the encoder side n dictionaries may be available to assign a tile to a class of in-
terest, and a tile may be assigned to the class minimizing the average length of the com-
pressed code: a tile t is then assigned to a class Ci in Ck available classes according to the
following equation:

Class(t, Ck) = arg min
i

{
1

ni

∑
ni

C(t|Ci)

}
, (4.8)

where ni is the number of dictionaries available for class Ci.
Subsequently, the tile t is compressed by a chosen dictionary within the class Ci,

which we call master dictionary. On the decoder side only master dictionaries have to be
available (or sent together with the compressed image if not) to decompress the image,
and each tile can be accessed directly without having to decompress the full image. The
semantic compressor’s workflow is reported in Fig. 4.26 and an example of the classifi-
cation results are reported in Figs. 4.27, 4.28, 4.29 and 4.30.

The compression factor for this compressor is not competitive, since the image pre-
sented in these examples, of original size of 9 Megabytes, has been compressed to 7
Megabytes (considering the size of the dictionaries ; anyway, these are only prelimi-
nary experiments and additional steps can be employed to remove further redundancies
within the compressed files.

4.3.5 Conclusions

Optical and SAR images varying greatly in content, resolution, and also acquired by
different sensors, may be analyzed by the same compression-based tools, allowing dis-
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Figure 4.26: Semantic compression scheme. Each tile is simultaneously compressed by a
dictionary and annotated on the basis of the selected dictionary. Subsequently, each tile
can be directly accessed in the compressed data stream without decompressing the full
image.

Figure 4.27: A SPOT scene acquired over the city of Paris, with the compressed tiles
annotated as ”clouds” marked in green. The semantic compressor represents a tool to
automatically estimate the percentage of cloud coverage within an image.
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Figure 4.28: A SPOT scene acquired over the city of Paris, with the compressed tiles
annotated as ”forests” marked in red. Note that there is some confusion also with water
bodies and shadows from the clouds.

Figure 4.29: A SPOT scene acquired over the city of Paris, with the compressed tiles
annotated as ”urban area” marked in yellow. A potential application of this technique
would be a semi-automatic urban sprawl monitoring.
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Figure 4.30: Overall picture for the annotation of the compressed SPOT image. Violet
represents clouds, grey urban area, and red forests and fields. The training data does not
belong to the analyzed image and the same training set may be used for a given sensor
and class of interest.
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covering patterns and similarities within the data. Furthermore, the same methods can
be applied to automatically estimate the number of looks representing the best compro-
mise between preserved spatial resolution and removed speckle noise in a scene, and to
define a semantic compressor performing a fist definition of a scene content directly in
the compression step: these solutions would have an added value into the field of image
information mining, where the degree of automatism in a tool is a crucial issue.

4.4 Applications to Environmental Projects

The FCD has a high versatility, which always featured by compression-based methods:
this allows building a wide range of applications with this similarity measure at their
core. In this chapter we discuss two ongoing research projects where the FCD satisfac-
torily respects the projects’s constraints, which must work in quasi-real time. The two
projects are related to wildlife protection and vulcanology, and adopt respectively in-
frared images and seismic signals.

4.4.1 Wild Animals Protection

About 500000 wild animals are killed by mowing machines every year in Germany. In
particular, during the first cutting of grass in May or June, many young fawns are killed
in their first days of life. Within the research project ”Game Guard”, a sensor system is
being developed for agricultural mowing machines to detect fawns hidden in meadows
under mowing: when an alarm is raised appropriate rescue procedures will save the
fawns from being injured or killed by the mower. Beside infrared detectors (Haschberger
et al., 1996) a microwave radar system (Patrovsky & Biebl, 2005) and cameras (thermal
infrared and optical) are scanning the meadows.

In this section we apply the FCD to detect fawns hiding in the grass within these
images.

Due to the fact that until now no mowing machine mounted fawn detector exists,
the pictures were taken manually by a handheld infrared camera (E45 by FLIR) mounted
on a stand with a height of 1,20m and a water-level to verify that the viewing direction
of the camera has constantly a nadir angle of 25 degree. The used E45 has an uncooled
microbolometer focal plane array consisting of 160 x120 pixels and a lens with 25 deg.
field-of-view. The raw data was extracted from the radiometric JPEG for this dataset.

4.4.1.1 Fawns Detection with FCD

Detection may be regarded as a subset of the classification task; about detection in im-
ages, in general the interest lies in knowing which images contain a certain object, or
where the object is to be found within the images. We tested the FCD in a fawn detection
experiment. A first experiment on the same dataset using NCD is to be found in (Cerra
& Datcu, 2009).

The ”Fawns and Meadows” dataset contains 144 images, 41 of which contain a fawn
hiding in the grass. This dataset has been created in the frame of the project ”Game
Guard”, which aims at preventing the killing of fawns by mowing machines by raising
an alarm anytime that an animal is spotted in the grass that is going to be mowed. After
the extraction of the dictionaries, as in the workflow in Fig. 4.2, the images have been
classified on the base of their average distance from a class (fawn/meadows), with an
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Figure 4.31: Dataset sample. Upper row: images containing a fawn; lower row: images
not containing any fawn. The dataset consists of 144 pictures, 41 of which contain a fawn
hiding in the grass; the image size is 160 x 120.

Figure 4.32: The 3 fawns not detected by FCD, raising false alarms (ref. Table 4.11). The
images are visually similar to meadows presenting zones without grass (see Fig. 4.31).

Method Fawn Meadow Accuracy Time

FCD
Fawn 38 3

97.9% 58 sec
Meadow 0 103

NCD
Fawn 29 12

77.8% 14 min
Meadow 20 83

Table 4.11: Confusion matrices for the fawns dataset.
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Figure 4.33: Hierarchical clustering of the similarity indices obtained with the NCD sim-
ilarity measure on a dataset of 103 infrared images of size 128 × 128. Images lying in
a separate branch of the tree can be regarded as a separate cluster. A line is drawn to
separate the cluster of images containing a fawn. Two false alarms are circled in red.
Fawns hidden behind the grass (circled in green), of which two samples are included, all
lie inside the fawns cluster.

accuracy of 97.9%, with 3 missed detections and 0 false positives, clearly outperforming
NCD running with default parameters in both running time and accuracy (see Figs. 4.31
and 4.32 and Table 4.11). The patches containing fawns are recognized even when the
animals are almost totally covered by vegetation. These results also fit well the project
requirements, which are more tolerant to missed detections than to false positives.

For an example of totally unsupervised approach, we report also a hierarchical clus-
tering performed with NCD in Fig. 4.33, computed on a reduced dataset of 103 images,
of which roughly one third contains a fawn, for a clear visualization of the results.

The processing of the full dataset (dictionaries extraction, distance matrix computa-
tion and decision process) took less than one minute for FCD, and the VQ step was not
necessary, since the images have one band only. A Precision vs. Recall curve is reported
in Fig. 4.16.

4.4.2 Vulcanology

The automatic analysis of seismic signals is of fundamental importance for volcanic mon-
itoring in order to get as much significant information as possible in near real time. This
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Figure 4.34: Hierarchical clustering of the similarity indices obtained with the FCD sim-
ilarity measure on a dataset of 24 VLP seismic signals related to events generated by the
Stromboli volcano. The groups of events related to explosions and landslides are per-
fectly separated in two groups.

section presents two experiments of unsupervised clustering analysis of seismic signals
applied to two datasets of Very Long Period (VLP) signals associated with the explosive
activity of Stromboli volcano (Tyrrhenian Sea). Every VLP signal was recorded at a sam-
pling rate of 50 samples/s and band-pass filtered for the VLP-frequency band (0.05-0.5
Hz). The filtered signal was then resampled at 2 samples/s, cut in windows of 40 s (80
samples), aligned on the principal pulse, with 15s of pre-event, and normalized to its
amplitude root mean square.

In the first dataset we are interested in separating events related to landslides from the
ones related to explosions. A hierarchical clustering based on the FCD distances between
24 VLP belonging to these events perfectly separates the data in two groups (Fig. 4.34).

The second dataset is composed of 147 VLP events from a 10-day period in November
and December 2005. The VLPs have been classified according to the eruptive vents that
produced the explosions, obtaining six vent classes. In the labeling of the active vents N
stands for North and S for South, according to the geographic position.
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Figure 4.35: Hierarchical clustering of 28 VLP seismic signals related to explosions gener-
ated by different vents of the Stromboli volcano. Events generated by the North (N) and
South (S) vents are correctly separated in two clusters, with one exception.
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4.5 Conclusions

This section presented a wide range of applications employing the introduced Fast Com-
pression Distance FCD: experiments range from RGB image retrieval and classification,
to remote sensing applications, to wild animals detection, to applications to texts (au-
thorship attribution) and seismic signals. All of these experiments needed little to no
modification of the general workflow for the computation of each distance matrix, and
yield in all cases satisfactory results.

The fact that the FCD may be used by a non-specialist, due to the lack of parameters to
set and needed supervision, constitutes an added value for systems based on this distance
measure.

On March the 5th 2010 we found out that a dictionary-based compression distance
has been already independently defined by Macedonas et al. (2008), with validation ex-
periments carried out on a subset of the COREL dataset comprised of 1000 images. The
latter work and the FCD share the same basic ideas, and furthermore Macedonas et al. il-
lustrate interesting properties of the dictionary-based distance (in their work Normalized
Dictionary Distance, or NDD), such as as the triangle inequality.

The NDD, nevertheless, converts the images to one-dimensional strings in a differ-
ent way. The images are not transformed from the RGB color space in other spaces to
decrease the inter-band correlation. Furthermore, the NDD does not take into account
the loss of information in the vertical inter-pixels dependencies, which takes place in the
one-dimensional conversion.

These two works complement then each other: the NDD has the merit of clarifying
further important properties of dictionary-based distance, while this thesis analyzes the
computational resources needed by these techniques, provides for them an extended val-
idation, and presents an improved conversion of the images to strings which embeds the
images’ basic vertical texture.
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Chapter 5

Conclusions and Discussion

This work starts by considering the relations between Shannon’s classical information
theory as a way to quantify the informational content of a string, and Kolmogorov’s al-
gorithmic approach which considers the intrinsic complexity of the elements and patterns
composing the string.

We describe an expansion of the Shannon-Kolmogorov correspondences which al-
lows exploiting the existing links between lossless coding and model selection, by bring-
ing into Kolmogorov’s frame concepts which were previously independently defined.

These considerations lead to the derivation of a similarity measure based on compres-
sion with dictionaries directly extracted from the data, the Fast Compression Distance
(FCD), from establishing a link between the most popular compression-based similarity
measure, the Normalized Compression Distance (NCD), and the Pattern Representation
based on Data Compression (PRDC), two techniques originally defined in the informa-
tion theory and in the pattern analysis areas, respectively.

Several novel compression-based applications are then presented, including a parameter-
free image retrieval system and a universal methodology to evaluate the complexity of
an annotated dataset. The main advantage of the FCD is its reduced computational com-
plexity with respect to the NCD: while the latter, due to its data-driven approach, pro-
cesses iteratively the full data in order to discover similarities between the objects, the
dictionary-based approach extracts a dictionary once for each object, in a step which may
be carried out offline, and reuses it within the computation of the similarity measures
in combination with an effective binary search. At the same time, the data-driven ap-
proach typical of compression-based similarity measure is maintained, allowing to keep
an objective, parameter-free workflow for all the problems considered in the applications
section.

These techniques are then tested for the first time on large datasets, thus estimat-
ing their behaviour in a more statistically meaningful way: indeed, while in the past
compression-based methods have been always applied to restricted sets comprised of up
to 100 objects, the experiments presented in this paper have been carried out on larger
datasets, exceeding in one case 10,000 objects.

With respect to traditional methods, compression-based techniques may be applied
to diverse datasets exactly in the same way, in spite of the differences between them. Also
the datasets tested in this work present important differences: while in the COREL dataset
the subject of the picture is different in every photograph, in the Lola and N-S datasets
every class contains pictures of the same objects, moving in the former and still in the
latter, and presents variations in the conditions of acquisition; optical and SAR remote
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sensing images are also taken into consideration and analyzed with success; finally, the
Fawns and Meadows dataset enables a detection task, and the Liber Liber dataset is totally
different as it is a collection of texts.

Even though results are satisfying for all the experiments, in some occasions these are
inferior to the state of the art; this suggests that compression-based techniques are not
magic wands which yield in most cases the best results with minimum human interven-
tion and therefore effort, as experiments on restricted datasets may have hinted in the
past. On the other hand, the overall highly satisfactory performance of these techniques,
along with their universality, the simplicity in their implementation, and the fact that
they require basically neither setting of parameters nor any supervision from an expert,
justifies the use of these notions in practical applications. As an added value, keeping the
same workflow for different data-types enables an estimation of the intrinsic complexity
of an annotated dataset.

With respect to other compression- based methods, all experiments so far suggest
that the FCD yields often the best performances, and we justify this with two remarks:
firstly, the FCD should be more robust since it focuses exclusively on meaningful pat-
terns, which capture most of the information contained in the objects; secondly, the use
of a full dictionary allows discarding any limitation that real compressors have concern-
ing the size of buffers and lookup tables employed, being the size of the dictionaries
bounded only by the number of relevant patterns contained in the objects. Finally, this
work introduces a new approach to image retrieval based on the FCD. The idea is to keep
as much information as possible in the dictionary extraction step by employing quanti-
zation and by embedding the essential textural information within each pixel’s value;
subsequently, similarities between two objects are computed on the basis of the size of
the intersection set between the relative dictionaries.

In this work, emphasis has been given to lossless compression, in order not to lose the
universality of compression-based similarity measures. Nevertheless, in the case of ap-
plications to images, the performance of lossy compression should be extensively tested.
Lossy compression is the dominant form in multimedia and image compression, and has
a natural connection with classification and retrieval: the dictionaries or the codebooks
extracted from the images could be compared through distortion measures to find the
minimum distortion match to an observed signal. This could help in better capturing the
relevant information within a given image, and furthermore would enable more complex
matchings also taking into account the frequency domain.

On the basis of the applications presented, the FCD may help in clarifying how to
tackle the practical problems arising when compression-based techniques have to be ap-
plied to large datasets, and could help these concepts in finding their way in data mining
applications. The query time for a dataset comprising more than 10,000 images would
be 8 seconds on a standard machine, which is acceptable for real systems and could en-
able for the first time a quasi-parameter-free data mining: this would have a great value
since all query systems in data mining applications are heavily dependant on the steps
of parameters estimation and extraction. A semantic image retrieval system could be
defined on top of these notions, in an evolutionary process that proceeds from model-
ing visual appearance, to learning semantic models, to making inferences using semantic
spaces. Such system would aim at simultaneously annotate and retrieve images with a
minimum supervision on the user’s side.
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List of Abbreviations

AIT: Algorithmic Information Theory
ALA: Asymptotic Likelihood Approximation
ANR: Average Normalized Rank
CBIR: Content-based Image Retrieval
CFG: Context-free Grammar
DNA: Deoxyribonucleic Acid
EO: Earth Observation
FCD: Fast Compression Distance
GMM: Gaussian Mixture Model
GMRF: Gibbs-Markov Random Field
HSV: Hue Saturation Value
Iid: independent identically distributed
JTC: Jointly Trained Codebook
JPEG: Joint Picture Experts Group
KL: Kullback-Leibler
LZW: Lempel-Ziv-Welch
McDCSM: Model-conditioned Data Compression-based Similarity Measure
MDIR: Minimum Distortion Information Retrieval
MDL: Minimum Description Length
MIT: Massachusetts Institute of Technology
MML: Minimum Message Length
MSE: Mean Squared Error
NCD: Normalized Compression Distance
NCDG: Normalized Compression Distance using Grammars
NDD: Normalized Dictionary Distance
NID: Normalized Information Distance
PRDC: Pattern Representation using Data Compression
QBE: Query By Example
QBIC: Query By Image Content
RGB: Red Green Blue
SAR: Synthetic Aperture Radar
SIFT: Scale-Invariant Feature Transform
SITS: Satellite Images Time Series
VQ: Vector Quantization
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Cilibrasi, R., Vitányi, P. & de Wolf, R. (2004). Algorithmic clustering of music based on
string compression, Computer Music Journal 28(4): 49+.

Cleary, J. & Witten, I. (1984). Data compression using adaptive coding and partial string
matching, IEEE Transactions on Communications 32(4): 396–402.

Cohen, A., Bjornsson, C., Temple, S., Banker, G. & Roysam, B. (2008). Automatic sum-
marization of changes in biological image sequences using algorithmic information
theory, IEEE transactions on pattern analysis and machine intelligence 31(8): 1386–1403.

Cover, T. & Thomas, J. (2006). Elements of information theory, John Wiley and sons.

Cover, T., Gacs, P. & Gray, R. (1989). Kolmogorov’s Contributions to Information Theory
and Algorithmic Complexity, Annals of Probability 17: 840–865.

Cox, I., Miller, M., Minka, T., Papathomas, T. & Yianilos, P. (2000). The Bayesian image
retrieval system, PicHunter: theory, implementation, and psychophysical experi-
ments, IEEE transactions on image processing 9(1): 20–37.

Cucu-Dumitrescu, C., Datcu, M., Serban, F. & Buican, M. (2009). Data Mining in Satellite
Images using the PRDC Technique, Romanian Astronomy Journal 19(1): 63–79.

Daptardar, A. & Storer, J. (2006). Reduced complexity content-based image retrieval us-
ing vector quantization, Data Compression Conference, 2006. DCC 2006. Proceedings,
pp. 342–351.

Daptardar, A. & Storer, J. (2008). VQ Based Image Retrieval Using Color and Position
Features, Data Compression Conference, IEEE, pp. 432–441.

Daschiel, H. (2004). Advanced Methods for Image Information Mining System: Evaluation and
Enhancement of User Relevance, PhD thesis.

Datta, R., Joshi, D., Li, J. & Wang, J. (2008). Image retrieval: Ideas, influences, and trends
of the new age, ACM Computing Surveys (CSUR) 40(2): 1–60.

Daubechies, I. (1990). The wavelet transform, time-frequency localization and signalanal-
ysis, IEEE transactions on information theory 36(5): 961–1005.

Delalandre, M., Ogier, J. & Lladós, J. (2008). A fast cbir system of old ornamental letter,
Graphics Recognitio pp. 135–144.

Di Lillo, A., Motta, G. & Storer, J. (2010). Shape Recognition Using Vector Quantization,
Data Compression Conference, IEEE, pp. 484–493.

Do, M. & Vetterli, M. (2003). Contourlets, Studies in Computational Mathematics pp. 83–105.

http://www.complearn.org


154 BIBLIOGRAPHY

Domingos, P. (1998). A process-oriented heuristic for model selection, Machine Learning
Proceedings of the Fifteenth International Conference, pp. 127–135.

Dowe, J. (1993). Content-based retrieval in multimedia imaging, Proceedings of SPIE, Vol.
164, p. 1993.

Du Buf, J., Kardan, M. & Spann, M. (1990). Texture feature performance for image seg-
mentation, Pattern Recognition 23(3-4): 291–309.

Dubes, R. & Jain, A. (1989). Random field models in image analysis, Journal of Applied
Statistics 16(2): 131–164.

Dzhunushaliev, V. (1998). Kolmogorov’s algorithmic complexity and its probability in-
terpretation in quantum gravity, Classical and Quantum Gravity 15: 603–612.

Eakins, J. & Graham, M. (1999). Content-based image retrieval, Library and Information
Briefings 85: 1–15.

Evans, S., Eiland, E., Markham, S., Impson, J. & Laczo, A. (2007). MDLcompress for
intrusion detection: Signature inference and masquerade attack, IEEE Military Com-
munications Conference, 2007. MILCOM 2007, pp. 1–7.

Fano, R. (1961). Transmission of information, MIT press Cambridge.

Farach, M. & Thorup, M. (1998). String Matching in Lempel Ziv Compressed Strings,
Algorithmica 20(4): 388–404.

Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M.,
Hafner, J., Lee, D., Petkovic, D. et al. (1995). Query by image and video content: The
QBIC system, Computer 28(9): 23–32.

Fukunaga, K. & Hostetler, L. (1975). The estimation of the gradient of a density func-
tion, with applications in pattern recognition, IEEE Transactions on Information Theory
21(1): 32–40.

Gersho, A. & Gray, R. (1992). Vector quantization and signal compression, Kluwer Academic
Pub.

Gevers, T. & Smeulders, A. (2000). PicToSeek: combining color and shape invariant fea-
tures for imageretrieval, IEEE transactions on Image Processing 9(1): 102–119.

Gong, P., Marceau, D. & Howarth, P. (1992). A comparison of spatial feature extraction
algorithms for land-use classification with SPOT HRV data, Remote Sensing of Envi-
ronment 40(2): 137–151.

Goodman, J. (2002). Extended comment on language trees and zipping, Arxiv preprint
cond-mat/0202383.

Gowda, K. & Krishna, G. (1978). Agglomerative clustering using the concept of mutual
nearest neighbourhood, Pattern Recognition 10(2): 105–112.

Granados, A., Cebrian, M., Camacho, D. & Rodriguez, F. (2008). Evaluating the impact
of information distortion on normalized compression distance, Coding Theory and
Applications 5228: 69–79.



BIBLIOGRAPHY 155

Grossi, R. & Vitter, J. (2000). Compressed suffix arrays and suffix trees with applications
to text indexing and string matching, Proceedings of the thirty-second annual ACM sym-
posium on Theory of computing, ACM, pp. 397–406.

Gruenwald, P. (2000). Model selection based on minimum description length, Journal of
Mathematical Psychology 44(1): 133–152.

Gruenwald, P. (2007). The minimum description length principle, The MIT Press.
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