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Introduction

Stationarity and Generalized Spectral Density

def . .
°o X = {Xk}kez: real-valued process, not necessarily stationary.

o Define [AX], % X, — X,_1 and AK = Ao AKX~ for K > 1.

Definition 1

X is K-th order difference stationary if AKX covariance stationary.

@ f a non-negative 2m-periodic symmetric function.

Definition 2

X admits generalized spectral density f if AKX weakly stationary
with spectral density function

fic(\) = [1 — e P 2KF(N) . (1)

N
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Wavelets setting.
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Wavelet decomposition

Let ¢ a scale function and ¢ a wavelet. Associate to {xx, k € Z}
the function :

x(t) €Y xeo(t— k), teR.

keZ

The wavelet coefficient W at scale j > 0 and location k € Z is :

Wisc [ x(episata.

It only depends on xi,...,x, for all (j,k): j > 0,0 < k < nj with
nj=27n+ O(1).



Wavelets setting.
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Computation

For all j > 0, (W, k)« can be expressed as a linear filtering of (xx)
followed by 27/-downsampling :

Wik = > %1 hjai—r;
1€Z

where, the impulse response h;. has length O(2).
Standard assumptions on (¢, ) imply that

hj. = (1 — B)M(hj,),

where (hj «)« is a finite sequence, B the lag operator and M is
called the number of vanishing moments of the wavelet.



Wavelets setting.
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The between-scale process

If M>K

o {W, «}kez j > 0 is stationary but the two—dimensional
process {[W; «, l/\/j/7k]T}k€Z with j # j/, is not stationary.

o Consider instead the between-scale process

{[VVJ'JO Wj,k(j —j/)]T}keZ , forj >j/ = j — u, where

def
W, i (u) = [Wi_youk, Wiy g, ---,Wj—u,zuk+2u—1]T-

are non overlapping blocks of wavelet coefficients at the finer
scale j'.



Change-points detection in the wavelet domain.

ge-points detection in the wavelet domain : AR(1)-ARMA(1,1)
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Change-points detection in the wavelet domain.
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Test hypotheses

Let X1,..., Xy, n observations of a process and W; y the
associated wavelet coefficients. Define ofk = Var(Wj,k)

S22 ;
Ho.aj,l—---—aj,nj, forall je{h,...,h}
S22 2 _ 2
Hi:o5y = —aj’kj#aﬁkﬁl—...—aj?nj for at least one
jE{Jl,...,JQ}

where Jp is the finest scale and Js is the coarsest scale.

Under Hg, we suppose that X is a Gaussian process with
generalized spectral density given by f(\) + assumptions on f and
on the wavelet (e.g: M > K).



Change-points detection in the wavelet domain.
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Functional CLT

[t ]
Define the partial sums: S, (t) = \/iT > szl-
2 =1 ’

J=d,0d2

Theorem 1 (Under Hop)

(Snn(t) =~ E[Sup(0)]) -5 T2, (By(1), ..., Bu(t)T,

in D2=1+1[0, 1], where {B;(t)};=,...J, are independent Brownian
motions and I j, 4, is a covariance matrix depending on f, ¢, v, Ji,
b.

v




Change-points detection in the wavelet domain.
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Bartlett estimator of the covariance

Consider the following process

2Jh—i_1 oh—Ji _q

_ 2
YJ1,J2,k = WJQ,k’ s E 212—Jk+/7 e E , 2J2—J1k+/

The Bartlett estimator of the covariance matrix of the square
wavelet's coefficients between scales Ji, ..., ) is the
(Jr —h +1) x (S — J1 + 1) symmetric definite positive matrix
[, where :

nJ2 |€|

A -1 v Y T
Y, (l) = n), Z (Ynbk = Ynn) (Ynskre = Ynn)'

q(ny,)

ﬁJ1,J2 = Z we[g(ns,)15n,5(0)

ZZ*q(an)



Change-points detection in the wavelet domain.
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Consistency of the Bartlett estimator.

and wy(q(nj)) = 1+|q£n) are the Bartlett weights.

Theorem 2 (Under Hop)

)

Assume that q(n,) — oo and q(n% — 0 as ny, — oo, then
2

A P
rJ1,J2 rleJz )

where T, 1,(i,j) = > Cov(Yjo, Yir) with
TEZL
1<i<j<h-h+1
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Change-points detection in the wavelet domain.
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Test statistic (1)

def
TJ1,J2(t) = (5J1,J2(t) - tSJl,Jz(l)) J1 J2 (SJl,Jz( ) - tSJl,Jz(l))
(2)
converges in weakly in the Skorokhod space D([0, 1])
P bh—S+1 )
TJ1,J2(t) - Z [Bg(t)]
(=1

where t — (BY(t), .. BO _ s 41(t)) is a vector of o — Jy + 1
independent Brownlan bndges
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Change-points detection in the wavelet domain.
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Test statistic (2)

1
CVM( A, ) % / Thn(t)dt |
0

1 —h+1 )
which converges to / Z [Bg(t)] dt .
0 _

It is also possible to use the max. functional leading to an
analogue of the Kolmogorov-Smirnov statistics,

def
KSM(JLJZ) = sup TleJz(t)
0<t<1

Jo—+1

which converges to  sup Z [B?(t)f.
0<t<1 =1
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Change-points detection in the wavelet domain.
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Asymptotic estimator of the Covariance matrix

Suppose that f(\) = |1 — e} 729F*()\),
@ d € R : memory parameter
e f*(0) >0, f* € C2
From Theorem 1 in [Moulines et al 2008], for two scales i < j
o?(d, f*) ~ f*(0) K2%? and
X X * d d
Cov (W( ) WJ(-yk,)(u)) ~ *(0)Cov (mgfk), WJ(.yk),(u)) ,

j7k ’

where K depends on % and d and {Wj(j)}k are the wavelet

coefficients at scale j of the Generalized Fractionary Brownian
Motion (GFBM) with Hurst index H = d +1/2.
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Change-points detection in the wavelet domain.
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In this case, as J; — oo, with J — J; = L,
[0 — A°M((d),

where M (d) is the covariance matrix of the square of the GFBM
wavelet's coefficients between Ji,..., ).

A and d can be estimated using the Abry and Veitch
log-regression estimator in the wavelet domain which relies on the
approximation

log(a7) ~ log(A) + 2d(j — 1) log 2. (3)

For each J, af is estimated with the scalogram

7= ()

i=1
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Experiments
°

Level of the test based on Bartlett estimator of the

Covariance Matrix.

n = 8192 WN MA(1) AR(1) ARFIMA(1,d,1)
d=02 d=03
J=3 KSM 002 002 0062 0089 01
bh=3 CVM 0027 0012 0041 0076  0.082
=4 KSM 004 004 018 02 0.29
bh=4 CVM 0021 0032 0091 0116  0.192
5 =5 KSM 0014 0017 031 0302 0.341
bh=5 CVM 002 0024 017 0159 0.256

Table: Empirical level of KSM — CVM on 8192 observations of four different
classes of Gaussian processes using the Bartlett estimator when the
asymptotic level is set to 0.05 and the finest scale to J; = 1.
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Experiments
.

Level of the test based on the Asymptotic Covariance

Matrix.

n = 8192 WN MA(1) AR(1) ARFIMA(1,d,1)
d=02 d=03
J=7 KSM 0052 0042 0082 0109 021
bh=7 CVM 0029 0025 0035 008  0.092
5, =8 KSM 0071 0070 008 0074 011
bh=8 CVM 0032 0036 0041 0046  0.09
=9 KSM 0074 007 01 0151 0.181
bh=9 CVM 0041 004 0096 0129 0.159

Table: Empirical level of KSM — CVM on 8192 observations of four different
classes of Gaussian processes using the asymptotic estimator when the
asymptotic level is set to 0.05 and the finest scale J; = 5.
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Experiments
[ 1o}

Change point detection on real data

Daily runoffs of Boden-werder (01/1857-04/2002)

year gf }m‘;‘*
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Experiments
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Change points on Weser

Boden-werder Vlotho

pvaluebartlett 26_9 36_11
pvalueasymptotic le™® le 10
year of change 1909 1887

Table: Change-point in the river Weser
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Conclusion

Conclusion

@ These tests are able to detect the presence of non-stationarity
for both long-range and short-range processes.

@ The theorical results are rigously justified.

@ The estimation of the Asymptotic Covariance matrix though
the long memory parameter yields better results than the
Bartlett estimator.
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