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Stationarity and Generalized Spectral Density

X
def
= {Xk}k∈Z: real-valued process, not necessarily stationary.

Define [∆X ]n
def
= Xn − Xn−1 and ∆K = ∆ ◦∆K−1 for K ≥ 1.

Definition 1

X is K -th order difference stationary if ∆KX covariance stationary.

f a non-negative 2π-periodic symmetric function.

Definition 2

X admits generalized spectral density f if ∆KX weakly stationary
with spectral density function

fK (λ) = |1− e−iλ|2K f (λ) . (1)
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Wavelet decomposition

Let φ a scale function and ψ a wavelet. Associate to {xk , k ∈ Z}
the function :

x(t)
def
=
∑
k∈Z

xk φ(t − k), t ∈ R .

The wavelet coefficient Wj ,k at scale j ≥ 0 and location k ∈ Z is :

Wj ,k
def
=

∫ ∞
−∞

x(t)ψj ,k(t) dt .

It only depends on x1, . . . , xn for all (j , k) : j ≥ 0, 0 ≤ k < nj with
nj = 2−jn + O(1).
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Computation

For all j ≥ 0, (Wj ,k)k can be expressed as a linear filtering of (xk)k

followed by 2−j -downsampling :

Wj ,k =
∑
l∈Z

xl hj ,2jk−l ,

where, the impulse response hj ,· has length O(2j).
Standard assumptions on (φ, ψ) imply that

hj ,· = (1− B)M(h̃j ,·),

where (h̃j ,k)k is a finite sequence, B the lag operator and M is
called the number of vanishing moments of the wavelet.
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The between-scale process

If M ≥ K

{Wj ,k}k∈Z j ≥ 0 is stationary but the two–dimensional
process {[Wj ,k , Wj ′,k ]T}k∈Z with j 6= j ′, is not stationary.

Consider instead the between-scale process

{[Wj ,k , Wj ,k(j − j ′)]T}k∈Z , for j > j ′ = j − u, where

Wj ,k(u)
def
= [Wj−u,2uk , Wj−u,2uk+1, . . . ,Wj−u,2uk+2u−1]T .

are non overlapping blocks of wavelet coefficients at the finer
scale j ′.
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Change-points detection in the wavelet domain : AR(1)-ARMA(1,1)
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Figure: 1- AR(1) followed by ARMA(1,1).
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Test hypotheses

Let X1, . . . ,Xn, n observations of a process and Wj ,k the
associated wavelet coefficients. Define σ2

j ,k = Var
(
Wj ,k

)

H0 : σ2

j ,1 = · · · = σ2
j ,nj
, for all j ∈ {J1, . . . , J2}

H1 : σ2
j ,1 = · · · = σ2

j ,kj
6= σ2

j ,kj +1 = . . . = σ2
j ,nj

for at least one

j ∈ {J1, . . . , J2}

where J1 is the finest scale and J2 is the coarsest scale.
Under H0, we suppose that X is a Gaussian process with
generalized spectral density given by f (λ) + assumptions on f and
on the wavelet (e.g: M ≥ K ).
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Functional CLT

Define the partial sums: SJ1,J2(t) = 1√
nJ2

bnj tc∑
i=1

W 2
j ,i


j=J1,...,J2

Theorem 1 (Under H0)

(SJ1,J2(t)− E [SJ1,J2(t)])
L−→ Γ

1/2
J1,J2

(BJ1(t), . . . ,BJ2(t))T ,

in DJ2−J1+1[0, 1], where {Bj(t)}j=J1,...,J2 are independent Brownian
motions and ΓJ1,J2 is a covariance matrix depending on f , φ, ψ, J1,
J2.

8 / 19



Introduction Wavelets setting. Change-points detection in the wavelet domain. Experiments Conclusion

Bartlett estimator of the covariance

Consider the following process

YJ1,J2,k =

W 2
J2,k , . . . ,

2J2−j−1∑
l=0

W 2
j ,2J2−jk+l

, · · ·
2J2−J1−1∑

l=0

W 2
J1,2J2−J1k+l

 .

The Bartlett estimator of the covariance matrix of the square
wavelet’s coefficients between scales J1, . . . , J2 is the
(J2 − J1 + 1)× (J2 − J1 + 1) symmetric definite positive matrix
Γ̂J1,J2 where :

γ̂J1,J2(`) = n−1
J2

nJ2
−|`|∑

k=1

(
YJ1,J2,k − ȲJ1,J2

) (
YJ1,J2,k+` − ȲJ1,J2

)T
,

Γ̂J1,J2 =

q(nJ2
)∑

`=−q(nj2
)

w`[q(nJ2)]γ̂J1,J2(`) ,
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Consistency of the Bartlett estimator.

and wl(q(nj)) = 1− |l |
1+q(nj )

are the Bartlett weights.

Theorem 2 (Under H0)

Assume that q(nJ2)→∞ and
q(nJ2

)

nJ2
→ 0 as nJ2 →∞, then

Γ̂J1,J2

P−→ ΓJ1,J2 ,

where ΓJ1,J2(i , j) =
∑
τ∈Z

Cov(Yj ,0,Yi ,τ ) with

1 ≤ i ≤ j ≤ J2 − J1 + 1.
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Test statistic (1)

TJ1,J2(t)
def
= (SJ1,J2(t)− tSJ1,J2(1))T Γ̂−1

J1,J2
(SJ1,J2(t)− tSJ1,J2(1))

(2)
converges in weakly in the Skorokhod space D([0, 1])

TJ1,J2(t)
L−→

J2−J1+1∑
`=1

[
B0
` (t)

]2
where t 7→ (B0

1 (t), . . . ,B0
J2−J1+1(t)) is a vector of J2 − J1 + 1

independent Brownian bridges.
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Test statistic (2)

CVM(J1, J2)
def
=

∫ 1

0
TJ1,J2(t)dt ,

which converges to

∫ 1

0

J2−J1+1∑
`=1

[
B0
` (t)

]2 dt .

It is also possible to use the max. functional leading to an
analogue of the Kolmogorov-Smirnov statistics,

KSM(J1, J2)
def
= sup

0≤t≤1
TJ1,J2(t)

which converges to sup
0≤t≤1

J2−J1+1∑
`=1

[
B0
` (t)

]2
.
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Asymptotic estimator of the Covariance matrix

Suppose that f (λ) = |1− eiλ|−2d f ∗(λ),

d ∈ R : memory parameter

f ∗(0) > 0, f ∗ ∈ C 2.

From Theorem 1 in [Moulines et al 2008], for two scales i ≤ j

σ2
j (d , f ∗) ≈ f ∗(0) K 22jd and

Cov
(
W

(X )
j ,k , W

(X )
j ,k ′ (u)

)
≈ f ∗(0)Cov

(
W

(d)
j ,k , W

(d)
j ,k ′(u)

)
,

where K depends on ψ and d and
{

W
(d)
j ,k

}
k

are the wavelet

coefficients at scale j of the Generalized Fractionary Brownian
Motion (GFBM) with Hurst index H = d + 1/2.
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In this case, as J1 →∞, with J2 − J1 = L,

ΓJ1,J2 → A2ML(d),

where ML(d) is the covariance matrix of the square of the GFBM
wavelet’s coefficients between J1, . . . , J2.
A and d can be estimated using the Abry and Veitch
log-regression estimator in the wavelet domain which relies on the
approximation

log(σ2
j ) ≈ log(A) + 2d(j − J1) log 2. (3)

For each j , σ2
j is estimated with the scalogram

σ̂2
j =

1

nj

nj∑
i=1

(
W

(X )
j ,i

)2
.
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Level of the test based on Bartlett estimator of the
Covariance Matrix.

n = 8192 WN MA(1) AR(1) ARFIMA(1, d , 1)
d = 0.2 d = 0.3

J2 = 3 KSM 0.02 0.02 0.062 0.089 0.1
J2 = 3 CVM 0.027 0.012 0.041 0.076 0.082

J2 = 4 KSM 0.04 0.04 0.18 0.2 0.29
J2 = 4 CVM 0.021 0.032 0.091 0.116 0.192

J2 = 5 KSM 0.014 0.017 0.31 0.302 0.341
J2 = 5 CVM 0.02 0.024 0.17 0.159 0.256

Table: Empirical level of KSM− CVM on 8192 observations of four different
classes of Gaussian processes using the Bartlett estimator when the
asymptotic level is set to 0.05 and the finest scale to J1 = 1.
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Level of the test based on the Asymptotic Covariance
Matrix.

n = 8192 WN MA(1) AR(1) ARFIMA(1, d , 1)
d = 0.2 d = 0.3

J2 = 7 KSM 0.052 0.042 0.082 0.109 0.21
J2 = 7 CVM 0.029 0.025 0.035 0.086 0.092

J2 = 8 KSM 0.071 0.070 0.08 0.074 0.11
J2 = 8 CVM 0.032 0.036 0.041 0.046 0.09

J2 = 9 KSM 0.074 0.07 0.1 0.151 0.181
J2 = 9 CVM 0.041 0.04 0.096 0.129 0.159

Table: Empirical level of KSM− CVM on 8192 observations of four different
classes of Gaussian processes using the asymptotic estimator when the
asymptotic level is set to 0.05 and the finest scale J1 = 5.
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Change point detection on real data

Daily runoffs of Boden−werder (01/1857−04/2002)
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Figure: Daily runoffs of station Vlotho (01/01/1823-05/12/1999)
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Change points on Weser

Boden-werder Vlotho

pvaluebartlett 2e−9 3e−11

pvalueasymptotic 1e−5 1e−10

year of change 1909 1887

Table: Change-point in the river Weser
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Conclusion

These tests are able to detect the presence of non-stationarity
for both long-range and short-range processes.

The theorical results are rigously justified.

The estimation of the Asymptotic Covariance matrix though
the long memory parameter yields better results than the
Bartlett estimator.
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