Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain.	Experiments 0000	Conclusion

Test of homogeneity of variance in wavelet domain.

O. KOUAMO, E. MOULINES, F. ROUEFF

University of Yaoundé I Institut Télécom/ Télécom ParisTech

EMS 2009 TOULOUSE

July 29, 2009

イロト 不得下 イヨト イヨト 二日

1/19

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain.	Experiments Conclusion
-			

Stationarity and Generalized Spectral Density

• $X \stackrel{\text{def}}{=} \{X_k\}_{k \in \mathbb{Z}}$: real-valued process, not necessarily stationary.

• Define
$$[\Delta X]_n \stackrel{\text{def}}{=} X_n - X_{n-1}$$
 and $\Delta^K = \Delta \circ \Delta^{K-1}$ for $K \ge 1$.

Definition 1

X is K-th order difference stationary if $\Delta^{K}X$ covariance stationary.

• f a non-negative 2π -periodic symmetric function.

Definition 2

X admits generalized spectral density f if $\mathbf{\Delta}^{K} X$ weakly stationary with spectral density function

$$f_{\mathcal{K}}(\lambda) = |1 - e^{-i\lambda}|^{2\mathcal{K}} f(\lambda) .$$
 (1)

・ロン ・四 と ・ ヨ と ・ ヨ と

Introduction	Wavelets setting. ●00	Change-points detection in the wavelet domain.	Experiments 0000	Conclusion
Wavele	t decompos	ition		

Let ϕ a scale function and ψ a wavelet. Associate to $\{x_k, k \in \mathbb{Z}\}$ the function :

$$\mathbf{x}(t) \stackrel{\mathrm{def}}{=} \sum_{k \in \mathbb{Z}} x_k \, \phi(t-k), \quad t \in \mathbb{R} \; .$$

The wavelet coefficient $W_{j,k}$ at scale $j \ge 0$ and location $k \in \mathbb{Z}$ is :

$$W_{j,k} \stackrel{\mathrm{def}}{=} \int_{-\infty}^{\infty} \mathbf{x}(t) \psi_{j,k}(t) \,\mathrm{d}t \;.$$

It only depends on x_1, \ldots, x_n for all (j, k) : $j \ge 0, 0 \le k < n_j$ with $n_j = 2^{-j}n + O(1)$.

Introduction	Wavelets setting. ○●○	Change-points detection in the wavelet domain.	Experiments 0000	Conclusion
Compu	tation			

For all $j \ge 0$, $(W_{j,k})_k$ can be expressed as a linear filtering of $(x_k)_k$ followed by 2^{-j} -downsampling :

$$\mathcal{N}_{j,k} = \sum_{l \in \mathbb{Z}} x_l h_{j,2^j k-l},$$

where, the impulse response $h_{j,\cdot}$ has length $O(2^j)$. Standard assumptions on (ϕ, ψ) imply that

$$h_{j,\cdot}=(1-B)^M(\tilde{h}_{j,\cdot}),$$

where $(\tilde{h}_{j,k})_k$ is a finite sequence, *B* the lag operator and *M* is called the number of vanishing moments of the wavelet.

Introduction	Wavelets setting. 00●	Change-points detection in the wavelet domain.	Experiments 0000	Conclusion
T I I .				

The between-scale process

If $M \ge K$

- $\{W_{j,k}\}_{k\in\mathbb{Z}} j \ge 0$ is stationary but the two-dimensional process $\{[W_{j,k}, W_{j',k}]^T\}_{k\in\mathbb{Z}}$ with $j \ne j'$, is not stationary.
- Consider instead the between-scale process

$$\{[W_{j,k}, \mathbf{W}_{j,k}(j-j')]^T\}_{k \in \mathbb{Z}}, \text{ for } j > j' = j - u, \text{ where }$$

$$\mathbf{W}_{j,k}(u) \stackrel{\text{def}}{=} [W_{j-u,2^{u}k}, W_{j-u,2^{u}k+1}, \ldots, W_{j-u,2^{u}k+2^{u}-1}]^{T}.$$

are non overlapping blocks of wavelet coefficients at the finer scale j'.

Change-points detection in the wavelet domain : AR(1)-ARMA(1,1)

6/19

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain. ●0000000	Experiments 0000	Conclusion
Test hv	notheses			

Let X_1, \ldots, X_n , *n* observations of a process and $W_{j,k}$ the associated wavelet coefficients. Define $\sigma_{i,k}^2 = \operatorname{Var}(W_{j,k})$

$$\begin{cases} \mathcal{H}_0: \sigma_{j,1}^2 = \dots = \sigma_{j,n_j}^2, & \text{for all } j \in \{J_1, \dots, J_2\} \\ \mathcal{H}_1: \sigma_{j,1}^2 = \dots = \sigma_{j,k_j}^2 \neq \sigma_{j,k_j+1}^2 = \dots = \sigma_{j,n_j}^2 & \text{for at least one} \\ & j \in \{J_1, \dots, J_2\} \end{cases}$$

where J_1 is the finest scale and J_2 is the coarsest scale. Under \mathcal{H}_0 , we suppose that X is a Gaussian process with generalized spectral density given by $f(\lambda)$ + assumptions on f and on the wavelet (e.g: $M \ge K$).

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain. 0000000	Experiments 0000	Conclusion
Eunctio				

Define the partial sums:
$$S_{J_1,J_2}(t) = \frac{1}{\sqrt{n_{J_2}}} \left[\sum_{i=1}^{\lfloor n_j t \rfloor} W_{j,i}^2 \right]_{j=J_1,...,J_2}$$

Theorem 1 (Under \mathcal{H}_0)

$$(S_{J_1,J_2}(t) - \mathbb{E}[S_{J_1,J_2}(t)]) \xrightarrow{\mathcal{L}} \Gamma^{1/2}_{J_1,J_2}(B_{J_1}(t),\ldots,B_{J_2}(t))^T,$$

in $D^{J_2-J_1+1}[0,1]$, where $\{B_j(t)\}_{j=J_1,...,J_2}$ are independent Brownian motions and Γ_{J_1,J_2} is a covariance matrix depending on f, ϕ , ψ , J_1 , J_2 .

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain. 00●00000	Experiments 0000	Conclusion

Bartlett estimator of the covariance

Consider the following process

$$Y_{J_1,J_2,k} = \left(W_{J_2,k}^2, \dots, \sum_{l=0}^{2^{J_2-j}-1} W_{j,2^{J_2-j}k+l}^2, \dots, \sum_{l=0}^{2^{J_2-J_1}-1} W_{J_1,2^{J_2-J_1}k+l}^2 \right)$$

The Bartlett estimator of the covariance matrix of the square wavelet's coefficients between scales J_1, \ldots, J_2 is the $(J_2 - J_1 + 1) \times (J_2 - J_1 + 1)$ symmetric definite positive matrix $\hat{\Gamma}_{J_1, J_2}$ where :

$$\begin{split} \hat{\gamma}_{J_1,J_2}(\ell) &= n_{J_2}^{-1} \sum_{k=1}^{n_{J_2}-|\ell|} \left(Y_{J_1,J_2,k} - \bar{Y}_{J_1,J_2} \right) \left(Y_{J_1,J_2,k+\ell} - \bar{Y}_{J_1,J_2} \right)^T ,\\ \hat{\Gamma}_{J_1,J_2} &= \sum_{\ell=-q(n_{J_2})}^{q(n_{J_2})} w_\ell[q(n_{J_2})] \hat{\gamma}_{J_1,J_2}(\ell) , \end{split}$$

9/19

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain.	Experiments 0000	Conclusion

Consistency of the Bartlett estimator.

and
$$w_l(q(n_j)) = 1 - \frac{|l|}{1+q(n_j)}$$
 are the Bartlett weights.

Theorem 2 (Under \mathcal{H}_0)

Assume that
$$q(n_{J_2}) \to \infty$$
 and $\frac{q(n_{J_2})}{n_{J_2}} \to 0$ as $n_{J_2} \to \infty$, then

$$\widehat{\Gamma}_{J_1,J_2} \xrightarrow{P} \Gamma_{J_1,J_2},$$

where $\Gamma_{J_1,J_2}(i,j) = \sum_{\tau \in \mathbb{Z}} \operatorname{Cov}(Y_{j,0}, Y_{i,\tau})$ with $1 \le i \le j \le J_2 - J_1 + 1$.

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain.	Experiments 0000	Conclusion
Test sta	atistic (1)			

$$T_{J_1,J_2}(t) \stackrel{\text{def}}{=} (S_{J_1,J_2}(t) - tS_{J_1,J_2}(1))^T \hat{\Gamma}_{J_1,J_2}^{-1} (S_{J_1,J_2}(t) - tS_{J_1,J_2}(1))$$
(2)
converges in weakly in the Skorokhod space $D([0,1])$

$$T_{J_1,J_2}(t) \stackrel{\mathcal{L}}{\longrightarrow} \sum_{\ell=1}^{J_2-J_1+1} \left[B^{\mathsf{0}}_\ell(t)
ight]^2$$

where $t \mapsto (B_1^0(t), \ldots, B_{J_2-J_1+1}^0(t))$ is a vector of $J_2 - J_1 + 1$ independent Brownian bridges.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain.	Experiments 0000	Conclusion
Test sta	atistic (2)			

$$\operatorname{CVM}(J_1, J_2) \stackrel{\text{def}}{=} \int_0^1 \mathcal{T}_{J_1, J_2}(t) \mathrm{d}t \;,$$

which converges to $\int_0^1 \sum_{\ell=1}^{J_2 - J_1 + 1} \left[B_\ell^0(t) \right]^2 \mathrm{d}t \;.$

It is also possible to use the max. functional leading to an analogue of the Kolmogorov-Smirnov statistics,

$$\operatorname{KSM}(J_1, J_2) \stackrel{\operatorname{def}}{=} \sup_{0 \le t \le 1} T_{J_1, J_2}(t)$$

which converges to $\sup_{0 \le t \le 1} \sum_{\ell=1}^{J_2 - J_1 + 1} \left[B_\ell^0(t) \right]^2$.

12/19

イロト イポト イヨト イヨト 一日

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain. $\texttt{oooooooo}$	Experiments 0000	Conclusion

Asymptotic estimator of the Covariance matrix

Suppose that
$$f(\lambda) = |1 - \mathrm{e}^{\mathrm{i}\lambda}|^{-2d} f^*(\lambda)$$
,

- $d \in \mathbb{R}$: memory parameter
- $f^*(0) > 0, f^* \in C^2$.

From Theorem 1 in [Moulines et al 2008], for two scales $i \leq j$

$$\sigma_j^2(d, f^*) \approx f^*(0) \operatorname{K} 2^{2jd} \text{ and}$$

$$\operatorname{Cov}\left(W_{j,k}^{(X)}, \, \mathbf{W}_{j,k'}^{(X)}(u)\right) \approx f^*(0) \operatorname{Cov}\left(W_{j,k}^{(d)}, \, \mathbf{W}_{j,k'}^{(d)}(u)\right),$$

where K depends on ψ and d and $\left\{W_{j,k}^{(d)}\right\}_k$ are the wavelet coefficients at scale j of the Generalized Fractionary Brownian Motion (GFBM) with Hurst index H = d + 1/2.

Introduction	Wavelets setting.	Change-points detection in the wavelet domain.	Experiments	Conclusion
		0000000		

In this case, as $J_1 \rightarrow \infty$, with $J_2 - J_1 = L$,

$$\Gamma_{J_1,J_2} \to A^2 \mathbf{M}_L(d),$$

where $M_L(d)$ is the covariance matrix of the square of the GFBM wavelet's coefficients between J_1, \ldots, J_2 . A and d can be estimated using the **Abry and Veitch** log-regression estimator in the wavelet domain which relies on the

approximation

$$\log(\sigma_j^2) \approx \log(A) + 2d(j - J_1)\log 2.$$
(3)

For each j, σ_i^2 is estimated with the scalogram

$$\hat{\sigma}_j^2 = \frac{1}{n_j} \sum_{i=1}^{n_j} \left(\mathcal{W}_{j,i}^{(X)} \right)^2.$$

<ロ><一><一><一><一><一><一><一><一</th>14/19

Introduction		Vavelet	s setting.	Char 000	ge-point	s detection in the v	wavelet domain.	Experiments ●000	Conclus
Level	of t	he	test	based	on	Bartlett	estimator	of the	
Covari	ianc	e N	/latr	ix.					

<i>n</i> = 8192		WN	MA(1)	AR(1)	ARFIMA(1, d, 1)	
					<i>d</i> = 0.2	<i>d</i> = 0.3
$J_2 = 3$	KSM	0.02	0.02	0.062	0.089	0.1
$J_2 = 3$	CVM	0.027	0.012	0.041	0.076	0.082
$J_2 = 4$	KSM	0.04	0.04	0.18	0.2	0.29
$J_2 = 4$	CVM	0.021	0.032	0.091	0.116	0.192
$J_2 = 5$	KSM	0.014	0.017	0.31	0.302	0.341
$J_2 = 5$	CVM	0.02	0.024	0.17	0.159	0.256

Table: Empirical level of KSM – CVM on 8192 observations of four different classes of Gaussian processes using the Bartlett estimator when the asymptotic level is set to 0.05 and the finest scale to $J_1 = 1$.

Introduction	Wavelets setting. 000	Change 00000	-points detect	ion in the wavelet domain.	Experiments ○●○○	Conclusio
Level of Matrix.	the test	based	on the	Asymptotic	Covariance	

<i>n</i> = 8192		WN	MA(1)	AR(1)	ARFIMA(1, d, 1)	
					<i>d</i> = 0.2	<i>d</i> = 0.3
$J_2 = 7$	KSM	0.052	0.042	0.082	0.109	0.21
$J_2 = 7$	CVM	0.029	0.025	0.035	0.086	0.092
$J_2 = 8$	KSM	0.071	0.070	0.08	0.074	0.11
$J_2 = 8$	CVM	0.032	0.036	0.041	0.046	0.09
$J_2 = 9$	KSM	0.074	0.07	0.1	0.151	0.181
$J_2 = 9$	CVM	0.041	0.04	0.096	0.129	0.159

Table: Empirical level of KSM – CVM on 8192 observations of four different classes of Gaussian processes using the asymptotic estimator when the asymptotic level is set to 0.05 and the finest scale $J_1 = 5$.

 Introduction
 Wavelets setting. 000
 Change-points detection in the wavelet domain. 00000000
 Experiments 0000
 Control

 Change point detection on real data
 Control
 Control
 Control
 Control

Daily runoffs of Vlotho (01/1823-12/1999)

Introduction Wavelets setting. Change-points detection in the wavelet domain. Experiments ocoo Change points on Weser

	Boden-werder	Vlotho
<i>pvalue</i> _{bartlett}	$2e^{-9}$	$3e^{-11}$
pvalue _{asymptotic}	$1e^{-5}$	$1e^{-10}$
year of change	1909	1887

Table: Change-point in the river Weser

Introduction	Wavelets setting. 000	Change-points detection in the wavelet domain.	Experiments 0000	Conclusion
Conclus	ion			

- These tests are able to detect the presence of non-stationarity for both long-range and short-range processes.
- The theorical results are rigously justified.
- The estimation of the Asymptotic Covariance matrix though the long memory parameter yields better results than the Bartlett estimator.