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Outline

1 New algorithm We propose a new iterative algorithm for the

computation of the covariance matrix of the wavelet

coefficients for a process which is not necessarily stationary:

either stationary

or, it is K -th order stationary.

Problem: Since the process is not stationary, it is not true

that any wavelet functions will provide stationary wavelet

coefficients =⇒ their covariance matrix is not defined.

Originality of our approach: since a K -th order difference of

the process X is a stationary process

we can find an appropriate wavelet function so that the

wavelet coefficients of X are stationary;

then, we compute the covariance matrix of these coefficients.
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1 New algorithm

2 Application to the calibration of generalized ARFIMA

processes which includes

long-memory processes

both stationary and non-stationary processes

by a Maximum-Likelihood (ML) approach in the wavelet

domain.

Problem: when the process is not stationary, the ML approach

is untractable since the covariance matrix of the process is not

defined.

Our contribution: for K -th order stationary process, we are

able to provide a ML estimation of the ARFIMA coefficients.
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Computation of the covariance matrix in the stationary

case

When the process X is stationary: there exist iterative algorithms

(for example see Moulines [2007]) such that given

the covariance matrix of the process X

a wavelet function (with compact support) and the associated
quadrature mirror filters h, g see Mallat [1998]

they compute recursively the covariance matrix of the wavelet

coefficients among scales of X .

Problem when X is not stationary: its covariance does not exist

=⇒ these usual algorithms do not apply.

Answer: we provide an answer in the case X is K -th order

difference stationary.
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Computation of the covariance matrix for a K -th order

difference stationary process X

Define

the first order difference process ∆X : [∆X ]n
def
= Xn − Xn−1

the K -th order difference process ∆K : ∆K def
= ∆ ◦ ∆K−1

Definition 1

X is a K -th order difference stationary process if ∆KX is

stationary.

For a K -th order difference stationary process X

there exist non-iterative (and thus “greedy”) algorithms for

the computation of the covariance matrix see e.g. (Percival and al 2000)

we provide an iterative algorithm.
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Algorithm (KMR,2010)

INPUT the covariance of the stationary process ∆KX .

a wavelet function with M ≥ K vanishing

moments

adequate filters hM , gM

OUTPUT covariance matrix of the wavelet coefficients of the

process X

In the case K = 0, i.e. when X is stationary this algorithm is the iterative

algorithm proposed by Moulines [2007].

In the case K > 0, how to compute the filters hM and gM ?
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How to compute the filters hM and gM ?

Intuition: When X is stationary, given a wavelet function with M

vanishing moments, there exist quadrature mirror filters g0 and h0

such that

Pyramidal algorithm Mallat,[1998]

A0,k = Xk , k ∈ Z ,

Aj ,k =
[
↓2 (h0 ∗ Aj−1,·

)
]
k
, k ∈ Z, j ≥ 1 ,

Wj ,k =
[
↓2 (g0 ∗ Aj−1,·

)
]
k
, k ∈ Z, j ≥ 1 ,

and {Wj ,k , j ≥ 0, k ∈ Z} are the wavelet coefficients of X .
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How to compute the filters hM and gM ?

Intuition: When X M-th order difference stationary , given a

wavelet function with at least M vanishing moments

adapted Pyramidal algorithm (KMR, 2010)

A
(M)
0,k = [∆MX ]k , k ∈ Z ,

A
(M)
j,k =

[
↓2

(
hM ∗ A

(M)
j−1,·

)]

k
, k ∈ Z, j ≥ 1 ,

Wj,k =
[
↓2

(
gM ∗ A

(M)
j−1,·

)]

k
, k ∈ Z, j ≥ 1 ,

where g0 = ∆MgM hM =
M∑

s=0

(
M

s

)
h0[k − s]

and {Wj ,k , j ≥ 0, k ∈ Z} are the wavelet coefficients of X .
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Indeed,

Wj ,k =
[
↓2 (g0 ∗ Aj−1,·

)
]
k

=
[
↓2

(
∆MgM ∗ Aj−1,·

)]

k
=

[
↓2

(
gM ∗ ∆MAj−1,·

)]

k

=
[
↓2

(
gM ∗ AM

j−1,·

)]

k
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Conclusion

INPUT the covariance of the stationary process ∆KX .

a wavelet function with M ≥ K vanishing

moments

filters hM , gM computed by the formula

g0 = ∆MgM hM =
M∑

s=0

(
M

s

)
h0[k − s]

where h0, g0 are the quadrature mirror filters

associated to the wavelet function and computed through

the Pyramidal algorithm of Mallat [1998]

K the number of differentiation of X

OUTPUT covariance matrix of the wavelet coefficients of the

M-th order difference stationary process X .
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Maximum Likelihood method in the wavelet domain

For the estimation of the parameters of a M-th order difference

stationary or stationary ARFIMA process X ,

1 in the parametric case

2 in the semi-parametric case

we apply algorithms that rely on the covariance of the wavelet

coefficients of X . We thus compute this matrix by applying our

algorithm to estimate the parameters in the ARFIMA (p, d , q)

model.

In the semi-parametric case, we also run for comparison the Local

Whittle Wavelet (LWW) estimator of the memory parameter d .
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Parametric case

Two experiences :

1 n = 1024 samples of a ARFIMA(0, d , 0)

2 n = 1024 samples of a ARFIMA(1, d , 1), φ = 0.8 and θ = 0.5

for different values of d : include both stationary and non

stationary cases

we estimate the parameters (d , φ, θ) and the innovation

variance σ2 of the process.

We compute 1000 independent estimated of the parameters and

report in the tables

the mean value of the estimators over the 1000 replications.

the estimated variance of these estimators (by a Monte Carlo

method over the 1000 replications).
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Likelihood experiments

n = 1024 ARFIMA(0, d, 0) σ2 = 1

d -0.8 -0.4 0 0.2 0.6 1 1.6 2 2.6

Sample mean(d̂) -0.79 -0.39 0.002 0.19 0.603 1.007 1.59 1.99 2.588 -

Sample SD(d̂) 0.0265. 0.029 0.028 0.026 0.029 0.027 0.027 0.027 0.028 0.024

Sample mean(σ̂2) 0.99 0.99 1.002 0.98 1.003 0.99 1.002 1.003 0.99 -

Sample SD(σ̂2) 0.047 0.046 0.045 0.045 0.046 0.047 0.045 0.047 0.048 0.044

n = 1024 ARFIMA(0.8, d, 0.5) σ2 = 1

d -0.8 -0.4 0 0.2 0.6 1 1.6 2 2.6

Sample mean(d̂) -0.780 -0.38 0.0061 0.18 0.61 1.021 1.609 1.98 2.64

Sample SD(d̂) 0.037 0.034 0.031 0.035 0.032 0.038 0.033 0.032 0.039

Sample mean(φ̂) 0.79 0.78 0.81 0.802 0.78 0.76 0.79 0.78 0.75

Sample SD(φ̂) 0.042 0.042 0.041 0.04 0.041 0.042 0.042 0.041 0.043

Sample mean(θ̂) 0.48 0.47 0.503 0.51 0.506 0.47 0.49 0.505 0.41

Sample SD(θ̂) 0.069 0.070 0.071 0.069 0.067 0.069 0.068 0.067 0.071

Sample mean(σ̂2) 0.997 1.008 0.99 0.99 1.007 0.99 0.98 0.99 0.98

Sample SD(σ̂2) 0.045 0.046 0.045 0.045 0.045 0.046 0.045 0.045 0.048

ARFIMA(p, d, q) model using wavelet domain.
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Semi-Parametric case

In this case,

the parameter of interest is the memory parameter d

we are only interested at coarse scales

The ML method in the wavelet domain takes into account the

wavelet dependence within and between scales

whereas

the Local Whittle Wavelet method Moulines and al [2008] does

not.

The following numerical applications show the high performance of

the ML method when compared to the LWW method.
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Experience:

n = 4096 of an ARFIMA(0, d , 0)

J2 = 9 and J1 = 3, 4, 5 for d ∈ {−0.8 . . . , 1.6}

J2 = 8 and J1 = 3, 4, 5 for d ∈ {2, 2.6}

we estimate the memory parameter d from scale J1 to scale J2

We compute 1000 independent estimated of d and report in the

table

the mean value of the estimator over the 1000 replications

the mean square error (MSE) of each estimator over the 1000

replications
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ML vs LWW

n = 4096, J2 = 8, 9 ARFIMA(0, d, 0) σ2 = 1

d -0.8 -0.4 0 0.2 0.6 1 1.6 2 2.6

d̂ML -0.802 -0.401 0.002 0.200 0.596 1.002 1.599 1.999 2.59

J1 = 3
MSE

ML 0.0014 0.001 2e−3 4e−5 0.006 0.001 1e−3 7e−4 0.001

d̂
LWW -0.71 -0.37 0.008 0.204 0.59 0.99 1.59 1.99 2.58

MSE
LWW 4.14 0.32 0.03 0.007 0.01 0.005 0.003 0.04 0.05

d̂ML -0.803 -0.402 2e−3 0.199 0.602 0.998 1.596 1.999 2.596

J1 = 4
MSE

ML 0.003 0.002 2e−5 5e−5 2e−3 8e−4 0.006 3e−4 0.056

d̂
LWW -0.72 -0.38 0.01 0.205 0.606 0.99 1.59 1.99 2.59

MSE
LWW 3.0 0.24 0.05 0.01 0.02 0.01 0.02 0.02 0.036

d̂ML -0.801 -0.401 9e−3 0.192 0.599 0.998 1.596 1.999 2.598

J1 = 5
MSE

ML 0.003 5e−4 9e−4 0.002 3e−4 9e−4 5e−3 5e−4 1e−3

d̂
LWW -0.72 -0.37 0.01 0.203 0.603 0.99 1.59 1.98 2.58

MSE
LWW 3.42 0.32 0.001 0.001 5e−3 0.01 0.02 0.11 0.053

Table: Comparison of the MSE of ML vs LWW on 1000 independent

replication of ARFIMA(0, d , 0).
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  J1=3   J1=4   J1=5

d=−0,8

ML

LWW

  J1=3   J1=4   J1=5

d=−0,4

ML

LWW

  J1=3   J1=4   J1=5

d=0

ML
LWW

  J1=3   J1=4   J1=5

d=0,6

ML
LWW

Figure: 1- Comparison of ML and LWW estimators of the memory

parameter d of an ARFIMA(0, d , 0) in a semi-parametric frame.
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  J1=3   J1=4   J1=5

d=1

ML

LWW

  J1=3   J1=4   J1=5

d=1,6

ML

LWW

  J1=3   J1=4   J1=5

d=2

ML
LWW

  J1=3   J1=4   J1=5

d=2,6

ML
LWW

Figure: 2- Comparison of ML and LWW estimators of the memory

parameter d of an ARFIMA(0, d , 0) in a semi-parametric frame.
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Conclusion

We have derived an iterative algorithm for the computation of

wavelet coefficients covariance matrix that allow us to work

beyond the stationary regime.

When applied to the estimation of the parameters of an

generalized ARFIMA(p, d , q) model

in the parametric case: we provide an exact maximum

likelihood in wavelet domain.

in the semi parametric framework, the estimation of d by

d̂ML(J1, J2) yields better results than the one obtain by

d̂LWW(J1, J2) in the first case, we obtain smaller MSE than in

the second.
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Inference of a generalized long memory process in the wavelet

domain.

O. Kouamo E. Moulines and F. Roueff

available upon request

olaf.kouamo@telecom-paristech.fr
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