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ABSTRACT

We propose in this paper robust estimators of the memory parameter
d of a (possibly) non stationary Gaussian time series with general-
ized spectral densityf . This generalized spectral density is char-
acterized by the memory parameterd and by a functionf∗ which
specifies the short-range dependence structure of the process. The
memory parameterd is estimated by regressing the logarithm of the
estimated variance of the wavelet coefficients at different scales. The
two robust estimators ofd that we consider are based on robust esti-
mators of the variance of the wavelet coefficients, namely the square
of the scale estimator proposed by [?] and the median of the square
of the wavelet coefficients. We establish a Central Limit Theorem for
these robust estimators as well as for the estimator ofd based on the
classical estimator of the variance proposed by [?]. The properties
of these estimators are also compared on publicly available Internet
traffic packet counts data.

Index Terms— Memory parameter estimator, long-range de-
pendence, robustness, wavelet analysis.

1. INTRODUCTION

During the last decades, long-range dependence has been observed
in many different fields, including financial econometrics, hydrology
or analysis of Internet traffic. In most of these applications, how-
ever, the presence of atypical observations is quite common. These
outliers might be due to gross errors in the observations but also to
unmodeled disturbances; see for example [?] and [?] for possible ex-
planations of the presence of outliers in Internet traffic analysis. It is
well-known that even a few atypical observations can severely affect
estimators, leading to incorrect conclusions. Hence, defining robust
estimators of the memory parameter which are less sensitive to the
presence of additive outliers is a challenging practical problem.

In this paper, we consider the class of fractional processes, de-
notedM(d) defined as follows. LetX = {Xk}k∈Z be a real-valued
Gaussian process, not necessarily stationary and denote by∆X the
first order difference ofX, defined by[∆X]n = Xn − Xn−1,
n ∈ Z. Define, for an integerK ≥ 1, theKth order difference
recursively as follows :∆K = ∆ ◦ ∆

K−1. Let f∗ be a bounded
non-negative symmetric function which is bounded away from zero
in a neighborhood of the origin. Following [?], we say thatX is an
M(d) process if for any integerK > d − 1/2, ∆KX is stationary
with spectral density function

f∆KX(λ) = |1 − e−iλ|2(K−d) f∗(λ), λ ∈ (−π, π) . (1)

Observe thatf∆KX(λ) in (??) is integrable since−(K−d) < 1/2.
Whend ≥ 1/2, the process is not stationary. One can nevertheless
associate toX the function

f(λ) = |1 − e−iλ|−2df∗(λ) , (2)

which is called ageneralized spectral density function. In the sequel,
we assume thatf∗ ∈ H(β, L) with 0 < β ≤ 2 andL > 0 where
H(β, L) denotes the set of non-negative and symmetric functions
g satisfying, for allλ ∈ (−π, π), |g(λ) − g(0)| ≤ Lg(0) |λ|β .
Our setting is semi-parametric in that bothd andf∗ in (??) are un-
known. Here,f∗ can be seen as a nuisance parameter whereasd is
the parameter of interest. This assumption onf∗ is typical in the
semi-parametric estimation setting; see for instance [?] and [?] and
the references therein.

Different approaches have been proposed for building robust es-
timators of the memory parameter for M(d) processes in the semi-
parametric setting outlined above. [?] have proposed a robustified
wavelet based-regression estimator developed by [?]; the robustifi-
cation is achieved by replacing the estimation of the wavelet coeffi-
cients variance at different scales by the median of the square of the
wavelet coefficients. Another technique to robustify the wavelet re-
gression technique has been outlined in [?] which consists in regress-
ing the logarithm of the square of the wavelet coefficients at differ-
ent scales. [?] proposed a robustified version of the log-periodogram
regression estimator introduced in [?]. The method replaces the log-
periodogram of the observation by a robust estimator of the spectral
density in the neighborhood of the zero frequency, obtained as the
discrete Fourier transform of a robust autocovariance estimator de-
fined in [?]. This procedure works well in practice but there is no
theoretical support in the semi-parametric context (note however that
the consistency and the asymptotic normality of the robust estimator
of the covariance have been discussed in [?] in several dependence
frameworks).

The two robust estimators ofd that we propose consist in re-
gressing the logarithm of robust variance estimators of the wavelet
coefficients of the processX on a range of scales. We use as ro-
bust variance estimators the square of the scale estimator proposed
by [?] and the square of themean absolute deviation(MAD). These
estimators are a robust alternative to the estimator ofd proposed by
[?] which uses the same method but with the classical variance esti-
mator. Here, we derive a Central Limit Theorem (CLT) for the two
robust estimators ofd and also for the estimator ofd proposed by
[?].

The paper is organized as follows. In Section??, we introduce
the wavelet setting and define the wavelet based regression estima-
tors ofd. Section?? is dedicated to the asymptotic properties of the
robust estimators ofd. An Internet traffic packet counts dataset col-
lected from the University of North Carolina, Chapel is studied as an
application in Section??.



2. DEFINITION OF THE ESTIMATORS OF THE MEMORY
PARAMETER

2.1. The wavelet setting

The wavelet setting involves two functionsφ andψ in L2(R) and
their Fourier transforms

φ̂(ξ)
def
=

∫ ∞

−∞

φ(t)e−iξt dt and ψ̂(ξ)
def
=

∫ ∞

−∞

ψ(t)e−iξt dt .

(3)
Assume the following:

(W-1) φ andψ are compactly-supported, integrable, andφ̂(0) =∫ ∞

−∞
φ(t) dt = 1 and

∫ ∞

−∞
ψ2(t) dt = 1.

(W-2) There existsα > 1 such that
supξ∈R

|ψ̂(ξ)| (1 + |ξ|)α <∞.

(W-3) The functionψ hasM vanishing moments,i.e.∫ ∞

−∞
tmψ(t) dt = 0 for all m = 0, . . . ,M − 1.

(W-4) The function
∑

k∈Z
kmφ(· − k) is a polynomial of degree

m for all m = 0, . . . ,M − 1.

Condition??ensures that the Fourier transform̂ψ decreases quickly
to zero. Condition?? ensures thatψ oscillates and that its scalar
product with continuous-time polynomials up to degreeM − 1 van-
ishes. It is equivalent to asserting that the firstM − 1 derivatives of
ψ̂ vanish at the origin and hence

|ψ̂(λ)| = O(|λ|M ) , asλ→ 0 . (4)

Daubechies wavelets (withM ≥ 2) and the Coiflets satisfy these
conditions, see [?]. Viewing the waveletψ(t) as a basic template,
define the family{ψj,k, j ∈ Z, k ∈ Z} of translated and dilated
functions

ψj,k(t) = 2−j/2 ψ(2−jt− k), j ∈ Z, k ∈ Z . (5)

Positive values ofk translateψ to the right, negative values to the
left. Thescale indexj dilatesψ so that large values ofj correspond
to coarse scales and hence to low frequencies. We suppose through-
out the paper that

(1 + β)/2 − α < d ≤M . (6)

We now describe how the wavelet coefficients are defined in dis-
crete time, that is for a real-valued sequence{xk, k ∈ Z} and for
a finite sample{xk, k = 1, . . . , n}. Using the scaling functionφ,
we first interpolate these discrete values to construct the following
continuous-time functions

xn(t)
def
=

n∑

k=1

xk φ(t−k) and x(t)
def
=

∑

k∈Z

xk φ(t−k), t ∈ R .

(7)
Without loss of generality we may suppose that the support of the
scaling functionφ is included in[−T, 0] for some integerT ≥ 1.
Then

xn(t) = x(t) for all t ∈ [0, n− T + 1] .

We may also suppose that the support of the wavelet functionψ is
included in[0,T]. With these conventions, the support ofψj,k is
included in the interval[2jk, 2j(k + T)]. The wavelet coefficient
Wj,k at scalej ≥ 0 and locationk ∈ Z is formally defined as the

scalar product inL2(R) of the functiont 7→ x(t) and the wavelet
t 7→ ψj,k(t):

Wj,k
def
=

∫ ∞

−∞

x(t)ψj,k(t) dt =

∫ ∞

−∞

xn(t)ψj,k(t) dt,

j ≥ 0, k ∈ Z , (8)

when[2jk, 2jk + T] ⊆ [0, n − T + 1], that is, for all(j, k) ∈ In,
where

In
def
= {(j, k) : j ≥ 0, 0 ≤ k ≤ nj − 1}

with nj = [2−j(n− T + 1) − T + 1] . (9)

If ∆
MX is stationary, then from [?, Eq (17)] the process

{Wj,k}k∈Z of wavelet coefficients at scalej ≥ 0 is stationary but
the two–dimensional process{[Wj,k, Wj′,k]T }k∈Z of wavelet co-
efficients at scalesj and j′, with j ≥ j′, is not stationary. Here
T denotes the transposition. This is why we consider instead the
stationarybetween-scaleprocess

{[Wj,k, Wj,k(j − j′)T ]T }k∈Z , (10)

whereWj,k(j − j′) is defined as follows:

Wj,k(j − j′)
def
=

[
Wj′,2j−j′k, Wj′,2j−j′k+1, . . . ,

Wj′,2j−j′k+2j−j′−1

]T

.

For all j, j′ ≥ 1, the covariance function of the between scale pro-
cess is given by

Cov(Wj,k′(j − j′),Wj,k) =

∫ π

−π

eiλ(k−k′)
Dj,j−j′(λ; f) dλ ,

(11)
whereDj,j−j′(λ; f) stands for the cross-spectral density function of
this process. For further details, we refer the reader to [?, Corollary
1]. The casej = j′ corresponds to the spectral density function of
thewithin-scaleprocess{Wj,k}k∈Z.

In the sequel, we shall use that the within- and between-scale
spectral densitiesDj,j−j′(λ; d) of the processX with memory pa-
rameterd ∈ R can be approximated by the corresponding spectral
density of the generalized fractional Brownian motionB(d) defined,
for d ∈ R andu ∈ N, by

D∞,u(λ; d) =
[
D

(0)
∞,u(λ; d), . . . ,D(2u−1)

∞,u (λ; d)
]

=
∑

l∈Z

|λ+2lπ|−2d
eu(λ+2lπ) ψ̂(λ+ 2lπ)ψ̂(2−u(λ+2lπ)) ,

(12)

where,

eu(ξ)
def
= 2−u/2 [1, e−i2−uξ, . . . , e−i(2u−1)2−uξ]T , ξ ∈ R .

For further details, see [?, p. 307].

2.2. Definition of the robust estimators of the memory parame-
ter

Let us now define robust estimators of the memory parameterd of
the M(d) processX from the observationsX1, . . . , Xn. These esti-
mators are derived from the [?] construction, and consists in regress-
ing estimators of the scale spectrum

σ2
j

def
= Var(Wj,0) (13)



with respect to the scale indexj. More precisely, if̂σ2
j is an estimator

of σ2
j based onWj,0:nj−1 = (Wj,0, . . . ,Wj,nj−1) then an estima-

tor of the memory parameterd is obtained by regressinglog(σ̂2
j )

for a finite number of scale indicesj ∈ {J0, . . . , J0 + ℓ} where
J0 = J0(n) ≥ 0 is the lower scale and1 + ℓ ≥ 2 is the number of
scales in the regression. The regression estimator can be expressed
formally as

d̂n(J0,w)
def
=

J0+ℓ∑

j=J0

wj−J0
log

(
σ̂2

j

)
, (14)

where the vectorw
def
= [w0, . . . , wℓ]

T of weights satisfies
∑ℓ

i=0 wi =

0 and2 log(2)
∑ℓ

i=0 iwi = 1, see [?] and [?]. For J0 ≥ 1 and
ℓ > 1, one may choose for examplew corresponding to the least
squares regression matrix, defined byw = DB(BTDB)−1

b where

b
def
=

[
0 (2 log(2))−1

]
, B

def
=

[
1 1 . . . 1
0 1 . . . ℓ

]T

is the design matrix andD is an arbitrary positive definite matrix.
The best choice ofD depends on the memory parameterd. However
a good approximation of this optimal matrixD is the diagonal matrix
with diagonal entriesDi,i = 2−i, i = 0 . . . , ℓ; see [?] and the
references therein. We will use this choice of the design matrix in
the numerical experiments. A heuristic justification for this choice
is that by [?, Eq. (28)],

σ2
j ∼ C 22jd , asj → ∞ , (15)

whereC is a positive constant. In the sequel, we shall consider three
different estimators ofd based on three different estimators of the
scale spectrumσ2

j with respect to the scale indexj which are defined
below.

2.2.1. Classical scale estimator

This estimator has been considered in the original contribution of [?]
and consists in estimating the scale spectrumσ2

j with respect to the
scale indexj by the empirical variance

σ̂2
CL,j =

1

nj

nj∑

i=1

W 2
j,i , (16)

where for anyj, nj denotes the number of available wavelet coeffi-
cients at scale indexj defined in (??).

2.2.2. Median absolute deviation

This estimator is well-known to be a robust estimator of the scale
as explained in [?]. Since the wavelet coefficientsWj,i are centered
Gaussian observations, the square of the median absolute deviation
of Wj,0:nj−1 is defined by

σ̂2
MAD,j =

(
m(Φ) med

0≤i≤nj−1
|Wj,i|

)2

, (17)

whereΦ denotes the c.d.f of a standard Gaussian random variable
and

m(Φ) = 1/Φ−1(3/4) = 1.4826 . (18)

2.2.3. The Croux and Rousseeuw estimator

This estimator is another robust scale estimator introduced in [?].
Its asymptotic properties in several dependence contexts have been
further studied in [?] and the square of this estimator is defined by

σ̂2
CR,j =

(
c(Φ){|Wj,i −Wj,k|; 0 ≤ i, k ≤ nj − 1}(knj

)

)2

,

(19)
wherec(Φ) = 2.21914 and knj

= ⌊n2
j/4⌋. That is, up to the

multiplicative constantc(Φ), σ̂CR,j is theknj
th order statistics of

then2
j distances|Wj,i−Wj,k| between all the pairs of observations.

3. ASYMPTOTIC PROPERTIES OF THE ROBUST
ESTIMATORS OF THE MEMORY PARAMETER

We derive, in this section, a Central Limit Theorem for the robust
wavelet-based regression estimators ofd defined by

d̂∗,n(J0,w)
def
=

J0+ℓ∑

j=J0

wj−J0
log

(
σ̂2
∗,j

)
, (20)

whereσ̂2
∗,j are given for∗ = CL, MAD andCR by (??), (??) and

(??), respectively.

Theorem 1. Assume thatX is a GaussianM(d) process with gen-
eralized spectral density function defined in(??) such thatf∗ ∈
H(β, L) for someL > 0 and 0 < β ≤ 2. Assume that??-??
hold withd, α andM satisfying(??). LetWj,k be the wavelet coef-
ficients associated toX defined by (??). If n 7→ J0(n) is an integer
valued sequence satisfyingJ0(n) → ∞ andn2−J0(n) → ∞, as
n→ ∞, and if

n2−(1+2β)J0(n) → 0 , asn→ ∞, (21)

then,d̂∗,n(J0,w) satisfies the following Central Limit Theorem:
√
n2−J0(n)

(
d̂∗,n(J0,w) − d

)
d−→ N

(
0,wT

V∗(d)w
)
, (22)

whereV∗(d) is the(1 + ℓ) × (1 + ℓ) matrix defined by

V∗,i,j(d) =
∑

p≥2

4c2p(IF∗)

p! K(d)p
2pd|i−j|+i∧j

∑

τ∈Z

2|i−j|−1∑

r=0

( ∫ π

−π

D
(r)

∞,|i−j|(λ; d)eiλτdλ
)p

, 0 ≤ i, j ≤ ℓ .

(23)

In (??), K(d) =
∫

R
|ξ|−2d|ψ̂(ξ)|dξ, D∞,|i−j|(·; d) is the cross-

spectral density defined in(??), cp(IF∗) = E[IF(X, ∗,Φ)Hp(X)],
whereHp is thepth Hermite polynomial andIF(·, ∗,Φ) is defined
as follows:

IF (x,CL,Φ) =
1

2
H2(x),

IF (x,CR,Φ) = c(Φ)

(
1/4 − Φ(x+ 1/c(Φ)) + Φ(x− 1/c(Φ))∫

R
ϕ(y)ϕ(y + 1/c(Φ))dy

)
,

IF(x,MAD,Φ) = −m(Φ)

(
{|x|≤1/m(Φ)} − 1/2

2ϕ(1/m(Φ))

)
,

whereϕ denotes the p.d.f of the standard Gaussian random vari-
able,m(Φ) and c(Φ) being defined in (??) and (??), respectively
andH2(x) = x2 − 1 is the second Hermite polynomial.

The proof of this theorem is omitted here for reasons of space.



4. APPLICATION TO INTERNET TRAFFIC PACKET
COUNTS DATA

In this section, we analyze an Internet traffic packet counts dataset
collected at the University of North Carolina, Chapel (UNC)
which has also been studied by [?]. This dataset is publicly
available and can be downloaded from the following website
http://netlab.cs.unc.edu/public/old_research/net_lrd/.

Figure?? displays a packet count time series measured at the
link of UNC on April 11, a Thursday, from 1 p.m. to 3 p.m., 2002
(Thu1300). These packet counts were measured every 1 millisecond
but, for a better display, we aggregated them at 1 second.
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Fig. 1. Packet counts of aggregated traffic every 1 second.

The maximal available scale for this dataset is 20. Since we
have less than 4 observations at this scale, we set the coarse scale
J0 + ℓ = 19 and vary the finest scaleJ0 from 1 to 17.

In Figure ??, we display the estimateŝdn,CL, d̂n,CR and
d̂n,MAD of the memory parameterd as well as their respective
95% confidence intervals fromJ0 = 1 to J0 = 14. We propose
to chooseJ0 = 9 for Thu1300 since from these values ofJ0 the
successive confidence intervals are such that the smallest one is
included in the largest one (for the robust estimators). Note that [?]
chose the same values ofJ0 using another methodology. For these
values ofJ0 we obtaind̂n,CL = 0.43 (with 95% confidence inter-
val [0.412, 0.443]),d̂n,CR = 0.37 (with 95% confidence interval
[0.358, 0.385]) and̂dn,MAD = 0.38 with (95% confidence interval
[0.362, 0.397]). These values are similar to the one found by [?].
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Fig. 2. Confidence intervals of the estimatesd̂n,CL (red), d̂n,CR (green)

andd̂n,MAD (blue) on the data Thu1300 forJ0 = 1, . . . , 14.

With this choice ofJ0 for Thu1300, we observe a significant

difference between the classical estimator and the robust estimators.
Thus to better understand the influence of outliers on the estimated
memory parameter a new dataset with artificial outliers was gener-
ated. The Thu1300 time series shows two spikes shooting down. Es-
pecially, the first downward spike hits zero. [?] have shown that this
dropout lasted 8 seconds. Outliers are introduced by dividing by 6
the 8000 observations in this period. The new memory parameter es-
timators arêdn,CL = 0.445, d̂n,CR = 0.375 andd̂n,MAD = 0.377.
As expected, the classical estimator was affected while the robust
estimators remain stable.


