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ABSTRACT which is called generalized spectral density functidn the sequel,

We propose in this paper robust estimators of the memory parametéﬁﬁ""s;'me that™ € H(5, L) with 0 < 5 < 2 andL > 0 where

d of a (possibly) non stationary Gaussian time series with general-"\". _denotes the set of non-negative and symmetric fl;ncnons
ized spectral density. This generalized spectral density is char- 9 Sasfying, for all € (=m,m), |g(A) — g(0)] ~ L%E)O) AP
acterized by the memory parametéand by a function/* which Our setting is s*eml-parametrlc in that_ battand f* in (??) are un-
specifies the short-range dependence structure of the process. wn. Heref can be seen as a nuisance par_ametgr w_hdreas
memory parametet is estimated by regressing the logarithm of the (€ parameter.of |nt.eres.t. Thls.as.sumptlon.fdnls typical in the
estimated variance of the wavelet coefficients at different scales. THEM-Parametric estimation setting; see for instarfedd [7] and

two robust estimators af that we consider are based on robust esti-"'¢ references therein.

mators of the variance of the wavelet coefficients, namely the square

of the scale estimator proposed &} &nd the median of the square ) o

of the wavelet coefficients. We establish a Central Limit Theorem for  Different approaches have been proposed for building robust es-
these robust estimators as well as for the estimatdrzised on the ~timators of the memory parameter for #)(processes in the semi-
classical estimator of the variance proposed Hy [The properties ~Parametric setting outlined above?] have proposed a robustified

of these estimators are also compared on publicly available Intern¥f@velet based-regression estimator developed?hyttie robustifi-
traffic packet counts data. cation is achieved by replacing the estimation of the wavelet coeffi-

) cients variance at different scales by the median of the square of the
Index Terms— Memory parameter estimator, long-range de-yayelet coefficients. Another technique to robustify the wavelet re-

pendence, robustness, wavelet analysis. gression technique has been outlined?hich consists in regress-
ing the logarithm of the square of the wavelet coefficients at differ-
1. INTRODUCTION ent scales.q] proposed a robustified version of the log-periodogram

regression estimator introduced #.[The method replaces the log-
During the last decades, long-range dependence has been abserperiodogram of the observation by a robust estimator of the spectral
in many different fields, including financial econometrics, hydrologydensity in the neighborhood of the zero frequency, obtained as the
or analysis of Internet traffic. In most of these applications, how-discrete Fourier transform of a robust autocovariance estimator de-
ever, the presence of atypical observations is quite common. Thesi@ed in [?]. This procedure works well in practice but there is no
outliers might be due to gross errors in the observations but also tiheoretical support in the semi-parametric context (note however that
unmodeled disturbances; see for examg]efd [?] for possible ex-  the consistency and the asymptotic normality of the robust estimator
planations of the presence of outliers in Internet traffic analysis. It isf the covariance have been discussed?jrirj several dependence
well-known that even a few atypical observations can severely affedtameworks).
estimators, leading to incorrect conclusions. Hence, defining robust
estimators of the memory parameter which are less sensitive to the
presence of additive outliers is a Challenging practical problem. The two robust estimators af that we propose consist in re-

In this paper, we consider the class of fractional processes, dgressing the logarithm of robust variance estimators of the wavelet
notedM (d) defined as follows. LeX = { Xy }rez be areal-valued coefficients of the proces’ on a range of scales. We use as ro-
Gaussian process, not necessarily stationary and denaeXbyhe  pyst variance estimators the square of the scale estimator proposed
first order difference ofX, defined by[AX], = X, — Xn_1,  by[?] and the square of theean absolute deviatiqMAD). These
n € Z. Define, for an integefX’ > 1, the Kth order difference  estimators are a robust alternative to the estimatormiposed by
recursively as follows ‘A® = Ao A®~!. Let f* be a bounded [7] which uses the same method but with the classical variance esti-
non-negative symmetric function which is bounded away from zergmator. Here, we derive a Central Limit Theorem (CLT) for the two
in a neighborhood of the origin. Followin@][ we say thatX isan  robust estimators of and also for the estimator af proposed by
M (d) process if for any integek > d — 1/2, A® X is stationary [7].
with spectral density function

—iN2(K—d) pgx*
farx() =[1=e P PEDL0), Ae(mm) . @) The paper is organized as follows. In Secti®h we introduce
Observe thaf 4 x x (A) in (??) is integrable since- (K —d) < 1/2.  the wavelet setting and define the wavelet based regression estima-
Whend > 1/2, the process is not stationary. One can neverthelestrs ofd. Section??is dedicated to the asymptotic properties of the
associate to¥ the function robust estimators of. An Internet traffic packet counts dataset col-
) lected from the University of North Carolina, Chapel is studied as an
FO) =1 —e 2 (), (20  application in Sectior??.



2. DEFINITION OF THE ESTIMATORS OF THE MEMORY
PARAMETER

2.1. The wavelet setting

The wavelet setting involves two functiogsand« in L*(R) and
their Fourier transforms

o6« /OC pt)e €t dt and (&) Y /oo w(t)e € dt .
(3)

Assume the following:

(W-1) ¢ andty are compactly-supported, integrable, aﬁﬂ(d) =
[ o(t)dt =1and[*_v¢*(t)dt=1.

(W-2) There existsx > 1 such that
supecp [(§)] (14 [€])" < oo

(W-3) The functiomny) hasM vanishing moments,e.
S tmp(t)ydt =0forallm=0,...,M —1.

(W-4) The function)_, ., k™ ¢(- — k) is a polynomial of degree
mforallm=0,...,M — 1.

Condition?? ensures that the Fourier transfordecreases quickly
to zero. Condition?? ensures that) oscillates and that its scalar
product with continuous-time polynomials up to degide- 1 van-
ishes. It is equivalent to asserting that the fivét— 1 derivatives of
1) vanish at the origin and hence

[ =O0(AM) , asA —0. )
Daubechies wavelets (with/ > 2) and the Coiflets satisfy these
conditions, see?]. Viewing the wavelet)(t) as a basic template,
define the family{v; x,j € Z,k € Z} of translated and dilated
functions

YiR(t) =272 (27t —k), jEL, kET. (5)

Positive values of translatey to the right, negative values to the
left. Thescale index dilatesy so that large values gfcorrespond

to coarse scales and hence to low frequencies. We suppose througfansi

out the paper that

(1+8)/2—a<d<M. )

We now describe how the wavelet coefficients are defined in dis-

crete time, that is for a real-valued sequekieg, k£ € Z} and for
a finite sample{z, & = 1,...,n}. Using the scaling functiom,

we first interpolate these discrete values to construct the following

continuous-time functions

def

X (t) d:efixkdmtfk) and x(t)

k=1

>k d(t—k), teR.
kEZ
™

scalar product if.?(R) of the functiont +— x(t) and the wavelet
t— ¢],k(t)

def

W [ " ety (1) dt = / " (s (1) dt,

j20,kcZ, (8)

when[27k, 27k + T] C [0,n — T + 1], that s, for all(j, k) € Z,,
where

T, ¥ {(G,k): j>0,0<k<n; —1}
withn; =[277(n—T+1) =T +1].

= ©)

If AMX is stationary, then from? Eq (17)] the process
{W,.x }rez of wavelet coefficients at scaje > 0 is stationary but
the two-dimensional proceg$WV; ., W,/ x]” }xez of wavelet co-
efficients at scaleg andj’, with j > j’, is not stationary. Here
T denotes the transposition. This is why we consider instead the
stationarybetween-scalprocess

{Wik, WG =30 Ykez (10)
whereW; ;. (5 — j') is defined as follows:
. .7y def
Wk(j—J) = [Wj',y’—j’k’ Wj’,2.7'—«7"k+1’ Tt
T

Wj/,z:*j’kwi*f’ —1

For all j, 5/ > 1, the covariance function of the between scale pro-
cess is given by
Cov(W,w(j —3"), Wjx) =

/ METRIDL (O f) d

’ (1)
whereD; ;_;/(); f) stands for the cross-spectral density function of
this process. For further details, we refer the reade? t&prollary
1]. The casg = j' corresponds to the spectral density function of
thewithin-scaleprocess{ W i } kez.

In the sequel, we shall use that the within- and between-scale
spectral densitie®, ;_;/(); d) of the processY with memory pa-
rameterd € R can be approximated by the corresponding spectral
ty of the generalized fractional Brownian motiBpy, defined,
ford € R andu € N, by

Daoc.u(N\:d) = [Dg‘;{u(A; d),...,DE" 7\ d)]

ST A+ 20| ew(A+20m) H(A + 2m)p(2 7 (A 20m)
leZ

(12)
where,
e (&) a1 o727

For further details, se€[p. 307].

TETRTT e,

Without loss of generality we may suppose that the support of the 2. Definition of the robust estimators of the memory parame-

scaling functiong is included in[—T, 0] for some integefl > 1.
Then

xn(t) =x(t) forall te[0,n—T+1].

We may also suppose that the support of the wavelet fungticm
included in[0, T]. With these conventions, the supportf ;. is
included in the interval2’k, 27 (k + T)]. The wavelet coefficient
W; i, at scalej > 0 and locationk € Z is formally defined as the

ter

Let us now define robust estimators of the memory paramketér
the M(d) processX from the observationX, ..., X,,. These esti-
mators are derived from th&][construction, and consists in regress-
ing estimators of the scale spectrum

o? & Var(W;,0) (13)



with respect to the scale indgxMore precisely, iﬁf isanestimator 2.2.3. The Croux and Rousseeuw estimator

2 . — . . I -

of o based orlVjom; -1 = (W_J’O’ o Wi,n;—1) then an eStA'Ta This estimator is another robust scale estimator introduce@in [

tor of the memory parametet is obtained by regressingg(o7)  1ts asymptotic properties in several dependence contexts have been

for a finite number of scale indiceg € {Jo, ..., Jo + £} where e studied in7] and the square of this estimator is defined by

Jo = Jo(n) > 0 is the lower scale antd + ¢ > 2 is the number of )

scales in the regression. The regression estimator can be expresseg?2 (C((I)){|Wji —Wil; 0<ik <nj;—1}u )> ,

formally as ' ' - - " (19)
Jott wherec(®) = 221914 andk,, = [nj/4]. Thatis, up to the

gn(me) def Z w; 1, log (8?) 7 (14) muIt|2pI|(?at|ve constant(®), ocr,; is the ky; th grder S’[atIStICS. of

i=Jo thenj distancegWW; ; — W; x| between all the pairs of observations.

where the vectom % [uw, . .., we]T of weights satisfie™’_, w; — 3. ASYMPTOTIC PROPERTIES OF THE ROBUST

0 and2log(2 )Zz Jiwi = 1 see P] and [?]. For Jo > 1 and ESTIMATORS OF THE MEMORY PARAMETER

£ > 1, one may choose for examp¥e corresponding to the least

squares regression matrix, definediy= DB(BTDB)‘lbWhere We derive, in this section, a Central Limit Theorem for the robust

wavelet-based regression estimatorg defined by

T
def 1 def 11 ... 1 R Jo+¢
b= 1[0 (2log2)7'], B {0 1 ... e} e (Jo,w) S wy_ g, log (52,) (20)
Jj=Jo

is the design matrix and) is an arbitrary positive definite matrix. \yheres2 . are given for« = CL, MAD andCR by (??), (??) and
The best choice ab depends on the memory parameteHowever (o) resbjectively.

agood approximation of this optimal matr)D(is the diagonal matrix ) ) )

with diagonal entriesD; ; = 277, i = .0; see P] and the Theorem 1. Assume thak is a GaussianV/ (d) process with gen-
references therein. We will use this ch0|ce of the design matrix irfralized spectral density function defined () such thatf* €
the numerical experiments. A heuristic justification for this choice’(3; L) for someL > 0 and0 < 3 < 2. Assume thaP?-??

is that by P, Eq. (28)], hold withd, o and M satisfying(??). LetW; . be the wavelet coef-
ficients associated t& defined by ??). If n — Jy(n) is an integer
o ~C2Y%  asj — oo, (15)  valued sequence satisfyinfy(n) — oo andn2=70(™ — oo, as

n — oo, and if
where(C' is a positive constant. In the sequel, we shall consider three
different estimators ofl based on three different estimators of the
scale spectrumf- with respect to the scale indgxvhich are defined then,d. o (Jo,
below.

n2~ 20700 _ o asp — oo, (21)

w) satisfies the following Central Limit Theorem:
Vn2=7o(m (c?*,n(Jo,w)— ) —>/\/<0 wlV. (d)w ) . (22)

2:2.1. Classical scale estimator whereV, (d) is the(1 + £) x (1 + ¢) matrix defined by

This estimator has been considered in the original contributio?] of [ 42 (TF
and consists in estimating the scale spectnjmvith respect to the V.i;(d) = Z Mgpdliﬂ‘\ﬂw
scale index by the empirical variance =2 p!K(d)?

s 2li=il 4
~ 1 & (r) Lo AT p .
Gy = S Wi, . 2 2 (/_ DU (sd)e™dr)" 0 << e

7 =1 TEL =0
(23)
where for anyj, n; denotes the number of available wavelet coeffl 2d .
cients at scale indexdefined in P?). n (?9), K(d) = [ 1¢l” [$(&)Ide, Do ji—j|(+;d) is the cross-
spectral densny defined i®??), ¢, (IF.) = E[IF(X, *, ) H,(X)],
where H,, is the pth Hermite polynomial andF(-, x, ®) is defined
2.2.2. Median absolute deviation as follows:

This estimator is well-known to be a robust estimator of the scalgp (z,CL, ) = ng( )
as explained in7]. Since the wavelet coefficieni¥’; ; are centered ’ 2 ’
Gaussian observations, the square of the median absolute deviatlﬁg (CR, @) = c(®) (1/4 D(x + l/c( ) + @(z — 1/c(‘1>)))

of Wj0.n;—1 is defined by Jo oWy + 1/c(@))dy
—1/2
IF (2, MAD, @) = —m() ( =/} ) :
( )=o) (-
where ¢ denotes the p.d.f of the standard Gaussian random vari-

where® denotes the c.d.f of a standard Gaussian random variabkble, m(®) and ¢(®) being defined inT?) and (??), respectively
and and H»(z) = z* — 1 is the second Hermite polynomial.

m(®) =1/97"(3/4) = 1.4826 . (18) The proof of this theorem is omitted here for reasons of space.

2
aﬁdAD,j:(m(@) med \Wj,io , (17)

0<i<n;—1



4. APPLICATION TO INTERNET TRAFFIC PACKET difference between the classical estimator and the robust estimators.
COUNTS DATA Thus to better understand the influence of outliers on the estimated
memory parameter a new dataset with artificial outliers was gener-
In this section, we analyze an Internet traffic packet counts datasgted. The Thu1300 time series shows two spikes shooting down. Es-
collected at the University of North Carolina, Chapel (UNC) pecially, the first downward spike hits zer@] have shown that this
which has also been studied by].[ This dataset is publicly dropout lasted 8 seconds. Outliers are introduced by dividing by 6
available and can be downloaded from the following websitethe 8000 observations in this period. The new memory parameter es-
[http:/netlab.cs.unc.edu/public/old_research/net Ird/. timators arejn’CL — (.445, ngR — 0.375 and@LMAD — 0.377.

_ Figure ?? displays a packet count time series measured at thag expected, the classical estimator was affected while the robust
link of UNC on April 11, a Thursday, from 1 p.m. to 3 p.m., 2002 astimators remain stable.

(Thul300). These packet counts were measured every 1 millisecond
but, for a better display, we aggregated them at 1 second.
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Fig. 1. Packet counts of aggregated traffic every 1 second.

The maximal available scale for this dataset is 20. Since we
have less than 4 observations at this scale, we set the coarse scale
Jo + ¢ = 19 and vary the finest scal®& from 1 to 17.

In Figure ??, we display the estimatedA,L,CL, En,cﬁ and
c?n,MAD of the memory parametei as well as their respective
95% confidence intervals fromy, = 1to Jo = 14. We propose
to chooseJ, = 9 for Thul300 since from these values 4&f the
successive confidence intervals are such that the smallest one is
included in the largest one (for the robust estimators). Note #at [
chose the same values &f using another methodology. For these
values ofJy we obtaind,, cr, = 0.43 (with 95% confidence inter-
val [0.412, 0.443])d,.cr = 0.37 (with 95% confidence interval
[0.358, 0.385]) andl,, mian = 0.38 with (95% confidence interval
[0.362, 0.397]). These values are similar to the one foundby [
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Fig. 2. Confidence intervals of the estimatés, ¢y, (red), d,,.cr (green)
andc?nyMAD (blue) on the data Thul300 fop = 1, ..., 14.

With this choice ofJ, for Thul300, we observe a significant



