
École Doctorale
d’Informatique,
Télécommunications
et Électronique
de Paris

Thèse

présentée pour obtenir le grade de docteur

de Télécom Paris Tech

Spécialité : Électronique et communication

Nidhal SELMANE

Attaques en fautes globales et locales sur
les cryptoprocesseurs AES : mise en

œuvre et contremesures

Soutenance prévue le 13 Décembre 2010 devant le jury composé de

David NACCACHE Rapporteurs
Regis LEVEUGLE
Guido BERTONI Examinateurs
Jacques FOURNIER
Habib MEHREZ
Gilles PIRET
Jean-Luc DANGER Directeurs de thèse
Sylvain GUILLEY

To my parents...

Acknowledgements

I would like to acknowledge all the people who supported me during my

research.

First and formost, i would like to thank my thesis director Jean-luc Danger

for his valuable guidance and supports, his understanding and encourag-

ing have provided a good basis for the present thesis. I would like also to

express my deep and sincere gratitude to my supervisor Sylvain Guilley,

his wide knowledge and his logical way of thinking have been of great

value for me.

Furthermore, I wish to express my warm and sincere thanks to the mem-

bers of my reading committee, David Naccache, Regis Leveugle, Jacques

Fournier and Guido Bertoni how have accepted to evaluate my work and

for their detailed and constructive comments.

Moreover, During this work I have collaborated with many colleagues for

whom I have great regard, and I wish to extend my warmest thanks to

all those who have helped me with my work in COMELEC. Especially, i

would like to mention Sami Mekki, Youssef Suissi, Shivam Basin, Hossem

Magrebi, Zouha Chrif, Taoufik Chouta, Maxim Nassar, Sebastien Thomas,

Oliver Meynard, Aziz ElAbid, Laurent Sauvage, Florent Falment, Som-

pasong Somsavaddy, Chantale Cadiat, Daniel Childz, Zouina Sahnoune,

Karim Ben Kalaia, Guillome Duc, Tarik Grabaa, Lirda Naviner and Philippe

Matehrat.

Finally, i would like to thank my family for their support through my ed-

ucation and studies. Without their encouragement and understanding it

would have been impossible for me to finish this work.

For all our Freedom martyrs, Tunisia 14/01/2011

ii

Contents

List of Figures vii

List of Tables xi

1 Résumé 1

2 Physical Attack On Cryptographic Implementation 21

2.1 Cryptography . 21

2.1.1 Symmetric Ciphers . 22

2.1.2 Asymmetric Cryptography . 30

2.2 Smartcard Architecture . 33

2.3 Side Channel Attack . 35

2.3.1 Timing Attack . 35

2.3.2 Power Analysis . 36

2.3.3 Electromagnetic Analysis . 39

2.4 Fault Attacks . 40

2.4.1 Power Spikes . 40

2.4.2 Clock Glitches . 40

2.4.3 Optical Attack . 41

2.4.4 Electromagnetic Perturbations Attack 41

2.4.5 Definition of Fault Model . 42

2.4.6 Fault Attack on AES . 43

2.4.7 Summary of DFA on AES . 50

2.5 Conclusion . 51

3 Practical Attacks on AES 53

3.1 Global Attack: Setup time violation attack 53

3.1.1 Attack Theory . 53

iii

CONTENTS

3.1.2 Acquisition Platform . 55

3.1.3 Fault Analysis . 56

3.1.4 Attack on ASIC . 58

3.1.5 Attack on FPGA . 61

3.2 Local Attack: Optical Fault Injection . 74

3.2.1 Decapsulation . 74

3.2.2 Practical Setup . 75

3.2.3 Experimental Results . 77

3.3 Conclusion . 78

4 Fault Attack Countermeasures 81

4.1 Fault Detection . 82

4.1.1 Parity . 82

4.1.2 Concurrent Error Detection . 83

4.1.3 Cyclic Redundancy Check . 83

4.1.4 Non Linear Robust Code . 84

4.1.5 Double-Data-Rate as countermeasure 86

4.1.6 Low cost countermeasure against setup time violation attacks . . 86

4.2 Fault Resilience . 88

4.2.1 Comparison between Detection and Resilience 88

4.2.2 Further Merits of the Fault Injection Resilience ”FIR” 90

4.2.3 Related Works . 90

4.2.4 Some Practical Implementations of FIR 91

4.2.5 Dual-Rail with Precharge Logic as a Global Countermeasure against

Implementation-Level Attacks . 96

4.2.6 Cost Estimation of FIR versus Traditional Approaches 104

4.2.7 Associating Three Protections to Reduce the Probability of a Suc-

cessful FIA . 107

4.2.8 Applicability of Resilience with Certification Procedures 108

4.3 Case study on WDLL . 109

4.3.1 Wave Dynamic Differential Logic 109

4.3.2 Design Flow for WDDL Implementation 111

4.3.3 Experimental Results . 113

4.3.4 Theoretical Fault Analysis on AES in WDDL 115

4.3.5 WDDL w/o EPE . 121

iv

CONTENTS

4.3.6 Analysis of the DFA Protection for DPL w/o EPE 122

4.4 Conclusion . 126

5 Conclusion 127

Bibliography 133

v

CONTENTS

vi

List of Figures

1.1 standard de chiffrement AES . 3

1.2 Injection de l’erreur dans AES . 5

1.3 Erreur dans le tour 9 . 5

1.4 Erreur dans le tour 8 . 6

1.5 Violation de temps de setup . 7

1.6 Plate-forme d’injection de fautes . 8

1.7 Occurrence des fautes — (tension). 9

1.8 Occurrence des fautes (fréquence). 9

1.9 Architecture du cryptoprocesseur AES . 11

1.10 Occurrence des fautes simple dans Altera Stratix. 12

1.11 Occurrence des fautes simple dans Xilinx Virtex5. 12

1.12 Plate-forme d’injection optique . 13

1.13 Cartographie des fautes . 13

1.14 Code robuste non-linéaire . 15

1.15 protocole DPL . 16

1.16 occurrence des fautes dans une version wddl d’AES 17

2.1 Data Encryption Standard . 24

2.2 AES encryption . 26

2.3 SubBytes transformation [1]. 27

2.4 ShiftRow transformation [1]. 27

2.5 MixColumn transformation [1]. 28

2.6 AddRoundKey operation . 29

2.7 AES Key Schedule . 29

2.8 Smartcard internal architecture . 34

2.9 SPA on RSA implementation . 36

vii

LIST OF FIGURES

2.10 DPA on DES: Bad and correct subkey . 38

2.11 EMA on DES: Bad and correct subkey . 39

2.12 Fault effect on round 9 of AES. 48

2.13 Fault effect on round 8 of AES . 49

3.1 Setup violation. 55

3.2 Experimental faults injection platform . 56

3.3 AES faults analysis. 57

3.4 Occurrence of Fault — (power). 58

3.5 Occurrence of fault (over-clocking). 58

3.6 Coverage of exploitable faults. 59

3.7 Temporal localization of single faults. 61

3.8 Spatial localization of single faults.The SubBytes box si,j has index 4 × i + j in

the histogram. 61

3.9 Simple AES. 62

3.10 AES architecture. 63

3.11 Composite Field implementation of SubBytes 63

3.12 Occurrence of faults: sbox in GF (24).(ALTERA) 64

3.13 Occurrence of faults: sbox in LUT. (ALTERA) 65

3.14 Occurrence of faults: sbox in RAM.(ALTERA) 65

3.15 Coverage of single faults, and detail of exploitable faults in GF (24). . . . 66

3.16 Coverage of single faults, and detail of exploitable faults in LUT. 66

3.17 Coverage of single faults, and detail of exploitable faults in RAM. 68

3.18 Hamming weight of exploitable faults in GF (24). 68

3.19 Exploitable errors ”Round 8 and 9”. 69

3.20 AES architecture with critical path strictly confined in the datapath. . . . 71

3.21 Temporal localization of single fault on Altera GF(24). 71

3.22 Occurrence of single Faults (Altera Stratix) 73

3.23 Occurrence of single faults (Xilinx Virtex5) 73

3.24 Optical fault injection platform . 76

3.25 Temporal localization with random hit . 77

3.26 Cartography of faults . 78

4.1 Parity based countermeasure . 83

4.2 Concurrent error detection . 84

4.3 Robust code countermeasure. 85

viii

LIST OF FIGURES

4.4 Double-Data-Rate as countermeasure . 86

4.5 Counter-measure based on the insertion of a monitoring logic with a

propagation time larger than the critical path of the rest of the circuit. . . 86

4.6 Chain Voltage/lcell. 87

4.7 Suicide in case of fault detection (top), opposed to survival in case of

fault resilience (bottom) protection schemes. 90

4.8 Probabilistic encryption and deterministic decryption 93

4.9 Two kinds of faults for 3-valued logic and for DPL, 95

4.10 Susceptible organs of a smartcard in two representative sensitive oper-

ations (EXTERNAL AUTHENTICATE and INTERNAL AUTHENTICATE).

Typically, the cryptography will be triple-DES or AES. 97

4.11 DPL protocol. 98

4.12 Two DPL w/ EE drawbacks to fight DFAs, illustrated on the example

of a WDDL AND gate. In this figure and in the subsequent ones, the

asterisk character (*) symbolizes the faults. 101

4.13 Difference of detection and resilience working factors, represented on

an example netlist. 103

4.14 Memorization element in TMR. 106

4.15 Memorization element in DPL. 107

4.16 Multiple faults, where the false valid is not completely hidden by the

’X’ wave. 108

4.17 Timing diagram for a WDDL AND gate. 110

4.18 WDDL building block. 111

4.19 WDDL design flow. 112

4.20 occurrence of faults in wddl version . 113

4.21 Temporal and Spatial localization of single faults for the Wddl imple-

mentation . 114

4.22 WDDL implementation of the XOR gate. 117

4.23 Dual-to-single rail circuitry usable in the case of a NULL0 spacer. 119

4.24 WDDL w/o AND gate . 122

4.25 Probability that m faults injected on n wires be innocuous due to the

protection conveyed by two different countermeasures: either a detec-

tion by an informational redundancy scheme or an annihilation of the

faulted data by one or several VALID ∗
→ NULL token transformations. . . 125

ix

LIST OF FIGURES

x

List of Tables

1.1 Localisation temporelle et spatial de fautes simples dans Altera Stratix . 10

1.2 Altera Vs Xilinx . 12

2.1 Summary of Differential Fault Attack . 51

3.1 Temporal and Spatial localization of single faults on Altera Stratix board 67

3.2 Temporal and Spatial localization of single faults on Xilinx Virtex 5

board . 72

3.3 Characterization and attack results for Altera and Xilinx with the three

Sbox architectures. 73

4.1 Nonlinear Robust code implementation. 85

4.2 Classical fault detection characteristics. 88

4.3 Performance overhead of different SCA+FIA countermeasures. 105

4.4 Single fault in round 10. 114

4.5 Single fault in round 9. 114

4.6 Fault strictly before round 9. 115

4.7 Modified functionality of an AND gate in the presence of erasure faults. 116

4.8 Modified functionality of an XOR gate in the presence of erasure faults. . 117

4.9 Equations for the bytes transformations ×01, ×02 and ×03. 118

4.10 WDDL w/o area overhead . 122

xi

LIST OF TABLES

xii

Chapter 1

Résumé

Introduction

Avec l’apparition des ordinateurs et des circuits intégrées, la cryptologie a connue

un vrais essor. Elle est utilisée dans plusieurs domaines (carte à puce, Transaction

bancaire, Télévision payante . . .). La cryptologie rassemble l’ensemble des techniques

de cryptographie et de cryptanalyse.

La cryptographie est l’art de dissimuler un message en utilisant des techniques de

transposition et de substitution. Le mot cryptographie vient du mot grec « Kryptos

» qui veut dire « caché » et du mot « graphein » pour « écriture ». Elle respecte les

principes de Kerckhoffs, qui justifient que toute information liée à un crypto système

peut être publique à l’exception des clés de chiffrements.

La cryptanalyse inclut des techniques très avancées afin de retrouver ces clés pour

pouvoir déchiffré les messages codés. Les attaques linéaires et différentielles en sont

les exemples les plus probants. Toutefois bien que ces techniques nécessitent encore

souvent de grandes quantités de paires de textes en clairs et de textes chiffrés, il ex-

iste d’autres méthodes très puissantes basées sur les "fuites d’information" involon-

taires. En effet un crypto système peut laisser fuir de l’information de différentes

manières, c’est ainsi que des données sensibles peuvent parfois être extraites de sig-

naux physiques émis par une machine de chiffrement. La température, la consom-

mation, le rayonnement électromagnétique, le temps de calcul ou la lumière (infra

rouge, interaction avec un laser) sont autant d’indices qui peuvent s’avérer extrême-

ment dangereux. On parle alors de side channel attack. Il existe plusieurs branches

1

1. RÉSUMÉ

de ce type d’attaque notamment Differential Power Analysis (DPA) qui exploite la

consommation ou Differential Fault Analysis (DFA) qui exploite les erreurs du calcul

cryptographique pour retrouver la clé du chiffrement.

La cryptanalyse par canaux cachés on longtemps été le terrain de compétence réservé

des services secrets, mais depuis une dizaine d’années, avec la puissance de calcul

qu’offre les ordinateurs modernes ce genre d’attaque c’est ouvert au milieux scien-

tifique et universitaire. Ce qui constitue une vrai menace pour la sécurité des sys-

tèmes d’informations. C’est pour cette raison que les industriels et les laboratoires de

recherche accorde de plus en plus d’importance à la sécurisation des circuits destiné à

des applications cryptographiques

C ’est dans ce cadre que s’inscrit ma thèse qui consiste à mettre en oeuvre les attaque

par injection de fautes (DFA) sur les cryptoprocesseurs AES, puis de mettre en place

les contre-mesures nécessaires pour sécuriser les processeurs contre ce type d’attaque.

Le standard de chiffrement AES

L’algorithme de Chiffrement DES a été développé en 1976 par IBM. C’est un chiffre-

ment à clé symétrique qui est encore utilisé dans plusieurs domaines (transactions

bancaires. . .). Mais avec les progrès de l’informatique, les 256 clés possibles du DES ne

représente plus une barrière infranchissable. Il est désormais possible, même avec des

moyens modestes, de percer les messages chiffrés par DES en un temps raisonnable.

En janvier 1997, le NIST (National Institute of Standards and Technologies) des Etats-

Unis lance un appel d’offres pour élaborer l’AES (Advanced Encryption standard). Le

2 octobre 2000, le NIST choisi parmi les sept candidats finals, l’algorithmeRijndael qui

est choisi pour être le successeur de DES. C’est un algorithme de chiffrement par bloc

mis au point par deux chercheurs belges, Joan Daemen et Vincent Rijmen.Le Rijndael

procède par blocs de 128 bits, avec une clé de taille variable selon l’importance du

message. AES est un algorithme itérative le nombre de tour dépend de la taille de la

clé utilisé[1].

1. 128 bits, Nombre de tour 10.

2. 196 bits, Nombre de tour 12.

3. 256 bits, Nombre de tour 14.

2

La Figure 1.1 montre les différentes étapes de l’algorithme AES. Le chiffrement trans-

K
00

K
03K

02K
01

K
12K

11
K

13

K
21

K
20

K
22

K
23

K
30

K
31 K

33
K

32

K
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

MixColumns

ShiftRows

ShiftRows

SubBytes
C

00
C

03C
02C

01

C
12C

11
C

13

C
21

C
20

C
22

C
23

C
30

C
31 C

33
C

32

Message

Message

Cipher

Key Round i

Key Round Nr

Key Round 0

Round 1

Round Nr−1

Round Nr

C
10

Inital

Key
Clear

Round 0

SubBytes

Key Schedule

Figure 1.1: standard de chiffrement AES

forme les données contenues dans le bloc en appliquent quatre transformations sur

les octets de la matrice d’état.

1. une substitution non linéaire « SubBytes ».

2. une permutation circulaire des octets au sein d’une même ligne « ShiftRows ».

3. une multiplication dans GF (28)[X]
(X4+1)GF (28)[X]

pour chaque colonne « Mixcolumns »

4. une addition de clé « AddRoundKey ».

La transformation SubBytes

La transformation SubBytes() est une substitution non linéaire d’octets, utilisant une

table S (S-box). Cette table est construite en composant deux transformations :

3

1. RÉSUMÉ

1. Prendre l’inverse de l’octet dans Z2[X]
m(X)Z2[X] , l’octet 0x00 étant par convention son

propre inverse.

2. Lui appliquer la transformation affine suivante (dans Z2[X]
m(X)Z2[X]) :

pour 0 ≤ i < 8

b
′

i = bi ⊕⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci

La transformation ShiftRows

La transformation ShiftRows() applique une permutation circulaire sur les trois dernières

lignes du bloc
0 < r < 4 et 0 < c < Nb
s
′′

r,c = s
′

r,(c+shift(r,Nb))mod Nb

La transformation MixColumns

La transformation MixColumns() traite chaque colonne comme un polynôme de degré

3, on calcule dans le corps galois GF28 le produit de ce polynôme avec un polynôme

fixe a(x).

a(x) = (0x03)x3 + (0x01)x2 + (0x02)x + (0x02)

La transformation AddRoundKey

La transformation AddRoundKey() addition au bloc une clé de la façon suivante :

1. une clé de tour est extraite à chaque tour, celle-ci est composée de 4 mots de 4

octets.

2. Les mots sont additionnés aux colonnes avec un simple XOR ⊕ sur les 16 octets.

Attaque de Piret

Comme on a vue dans la présentation de l’algorithme AES, dans le dernier tour

de chiffrement on n’utilise pas la transformation MixColumns, C’est pour pouvoir

décrypter le message avec la clé de la 10eme ronde, inversement à l’AddRoundKey du

tour initial. L’attaque de Piret exploite cette faille de l’AES. Mais elle ne fonctionne que

si les deux fautes touchent un unique octet (néanmoins inconnu) de l’avant-dernier

9emeRonde l’avant-avant-dernier tour du chiffrement 8emeRonde , l’erreur doit être

4

injecter avant la transformation MixColumns sinon elle ne sera pas expoitable. La

figure 1.2 montre l’injection de la faute dans le tour 9 du pipe du Calcul.

Figure 1.2: Injection de l’erreur dans AES

Analyse des effets de l’erreur

L’erreur touche un octet unique dans une colonne de la matrice d’état ShiftRows et

SubBytes ne propage pas l’erreur Mais la transformation MixColumns affecte le reste

des octets de la colonne. La figure 1.3 illustre la propagation d’une erreur qui tombe

dans le tour 9 .

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
u
b
B

y
te

s

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

S
u
b
B

y
te

s

S
h

iftR
o
w

s

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10
��
��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

K9

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10
��
��
��

��
��
��

��
��
��
��
��
��
��
��

��
��
��

��
��
��

K10

S
h

iftR
o
w

s

M
ix

C
o
lu

m
n

s

S
h

iftR
o
w

s

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10
��
��
��

��
��
��

��
��
��
��

Cipher Text

S
u
b
B

y
te

s

Figure 1.3: Erreur dans le tour 9

On remarque que l’erreur qui affecte l’octet S12 de la colonne 2 peut nous donner

l’information sur quatre octets de la clés K01, K10, K23, K32. En utilisant trois autres

fautes qui affecte les trois autres colonnes on peut avoir de l’information sur les 16

octets de la clé. Donc pour casser la clé, il faut avoir 4 paire de messages.

5

1. RÉSUMÉ

Analyse de l’information de l’erreur

Soit C un message chiffré sans erreur et D un message chiffré avec une erreur dans

le tour 9 donc E = C ⊕ D représente l’erreur, et on trouve que dans E il y a quatre

octets non nulle[?],qu’on peut exploiter pour trouver quatre octets de la clé comme

suit:

1. Preparer une liste Ld qui contient 1020 différences possibles de MixColumns du

Round 9 (255 x 4).

2. Faire une recherche exhaustive sur les KNr
0,d , KNr

1,(d−1)mod4, K
Nr
2,(d−2)mod4, K

Nr
3,(3−d)mod4.

3. Calculer ∆t = SubBytes−1((C ⊕KNr)∗,d)⊕ SubBytes−1((D ⊕KNr)∗,d)

4. Voir si ∆t ∈ Ld

5. Si oui ajouter les quatre octets de la clé à la liste Cd des candidats possibles

6. Retour à l’êtape 2 avec une autre paire jusqu’a avoir un seul candidat.

On remarque qu’on utilise 4 paires de message pour trouver les 16 octets de la clé.

Mais on peut faire d’une pierre quatre coups en injectant l’erreur dans le Round 8, et

c’est la transformation ShiftRows qui va affecter les quatre colonnes de la matrice,puis

c’est la transformation MixColumns qui affecte toute la matrice comme le montre la

figure 1.4.

K8

S
u
b
B

y
te

s

S
h
iftR

o
w

s

S
u
b
B

y
te

s

M
ix

C
o
lu

m
n
s

S
h
iftR

o
w

s

S
u
b
B

y
te

s

S
h
iftR

o
w

s

K10K9

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
02

S
12S

11
S

13

S
21

S
30 S

33
S

32

S
02

S
12S

11
S

13

S
21

S
30 S

33
S

32

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
u
b
B

y
te

s

M
ix

C
o
lu

m
n
s

S
h
iftR

o
w

s

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

Cipher Text

S
u
b
B

y
te

s

S
h
iftR

o
w

s

Figure 1.4: Erreur dans le tour 8

6

Attaque par violation de setup

Dans la logique séquentielle, un signal global, appelé l’horloge, cadence tous les cal-

culs combinatoires. Toutes les portes devraient avoir fini de propager leurs don-

nées lorsque le front montant d’horloge arrive. Ce qu’on appelle le temps de setup,

correspond à la période d’horloge la plus petite recevable.Si pour une raison quel-

conque la période d’horloge est inférieur au temps de setup, des erreurs dans le cal-

cul peuvent apparaître. Puisque temps de propagation augmente avec la diminution

de l’alimentation diminuer la tension d’alimentation peut provoquer des violations

de temps de setup comme le montre la figure 1.5. Le délai de propagation, ainsi

qu’un second élément, inhérent à l’échantillonnage des bascule D, appelé temps de

stabilisation “Setup-time” définisse la fréquence maximale du circuits. En effet afin

d’assurer un fonctionnement normal du circuit, la période d’horloge doit être stricte-

ment supérieur au délai de propagation maximal du circuit Tclk > Tcritique + Tsetup.

Le sur-cadencement “overclocking” consiste à diminuer la période d’horloge et si les

Setup violatedSetup met

Q’

QD

Q’

QD

clk clk

V cc ↓ ⇒ Tpropagation ↑

Figure 1.5: Violation de temps de setup

délais de stabilisation ne sont pas respectés. Cela a pour effet de stabiliser des fausse

donnés d’ou l’injection de faute dans le système.

Plate-forme d’acquisition

A fin d’injecter les fautes on a développé une plate-forme qui permet de changer la ten-

sion d’alimentation et la fréquence d’horloge. La plate-forme consiste en une commu-

nication régulière entre un terminal RS232 et le circuit, l’alimentation et la fréquence de

l’appareil sont également contrôlables à distance, de telle manière différentes valeurs

7

1. RÉSUMÉ

de fréquence et de tension peuvent être testés successivement. La figure 1.6 montre le

dispositif d’injection de fautes. Pour chaque valeur de tension on enregistre la valeur

de la clef, le message et le chiffré.

V

GPIB

RS232

USB

Vcc

Clk

RS232

GPIB

FSM

RX
RTSN

TX
CTSN

UARTAES

Vcc

Figure 1.6: Plate-forme d’injection de fautes

Analyse

Afin d’analyser les fautes, nous supposons que le message et la clé sont connus par

l’attaquant et nous utilisons une implémentation en C++ de AES adaptés pour pouvoir

corrompre un octet de la matrice d’état à n’importe quel tour de chiffrement.

Attaque sur ASIC

Une première attaque sur le circuit SecMat V1 a été réaliser par:

1. Diminution de la tension d’alimentation a une fréquence nominal de 32 Mhz,

2. Augmentation de la fréquence a une tension d’alimentation nominal de 1.2 V,

On a progressivement augmenté le niveau de stress du circuit, et on remarque que

l’attaquant peut choisir précisément la quantité de fautes induites dans le circuit. La

figure 1.7et1.8 montre qu’il existe une plage confortable de la tension et de fréquence

vulnérables où le circuit cryptographique fait sortir des résultats erronés.

Attaque sur FPGA

Architecture du SOC

A fin d’attaquer AES sur FPGA nous avons réalisé un circuit cryptographique que

nous avons synthétisé sur Altéra Stratus et Filin Vortex5. Le circuit est composé de

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 760 770 780 790 800 810 820 830

O
cc

ur
re

nc
e

[%
]

Voltage [mV]

Majority of
single errors

Majority of
multiple errors

Faults
Single errors

Multiple errors

Figure 1.7: Occurrence des fautes —
(tension).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 60 61 62 63 64 65 66 67 68 69 70

O
cc

ur
re

nc
e

[%
]

Frequency [MHz]

Majority of
single errors

Majority of
multiple errors

Faults
Single errors

Multiple errors

Figure 1.8: Occurrence des fautes
(fréquence).

trois modules: une interface UART, un contrôleur et coprocesseur AES. Trois dif-

férentes implémentations du module Sbox de aes on été réalisés. Dans la première

on a utilisé les LUT’s de l’FPGA ,dans La deuxième implémentation on a utilisé la

RAM de l’FPGA et dans la dernière implémentation on utilise une factorisation de

la Sbox dans GF 4 . Finalement, on a réalisé l’attaque par violation de setup sur les

différentes architectures.

Résultat sur Altera Stratix

Le tableau 1.1 montrer la localisation temporelle et spatial des fautes simples dans

l’ FPGA Stratix d’Altera. On peut voir qu’il y a suffisamment de fautes simples qui

arrivent dans les deux avant-dernier tours pour réaliser l’attaque de Gilles piret. On

remarque que comme pour l’ASIC que les fautes ne sont pas uniformément répartis.

Comparaison Altera Stratix et Xilinx Virtex

La figures 1 montrent la fréquence d’apparition apparition des fautes simples dans

les trois architectures d’ Altera et de Xilinx. Seul les fautes simple qui affecte un octet

avant la transformation Sbox sont affiché on remarque que les trois architectures sont

vulnérable face au attaque par violation de setup.

En se référant au tableau 1.2 on remarque que le chemin critique dépend de l’architecture

de la sbox implémentée. On peux voir aussi que l’architecture LUT a plus de fautes

simple dans altera que dans Xilinx par contre on observe l’inverse pour l’implémentation

9

1. RÉSUMÉ

Table 1.1: Localisation temporelle et spatial de fautes simples dans Altera Stratix

L
U

T

 0

 5

 10

 15

 20

 25

 30

 35

 R
10 R
9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f f
au

lts

Round

Temporal localization

 0

 10

 20

 30

 40

 50

 60

 S
15

 S
14

 S
13

 S
12

 S
11

 S
10 S
9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f f
au

lts

Sbox

Spatial localization

R
A

M

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 R
10 R
9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f f
au

lts

Round

Temporal localization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 S
15

 S
14

 S
13

 S
12

 S
11

 S
10 S

9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f f
au

lts

Sbox

Spatial localization

G
F(

24
)

 0

 5

 10

 15

 20

 25

 30

 R
10 R

9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f f
au

lts

Round

Temporal localization

 0

 5

 10

 15

 20

 25

 30

 35

 40

 S
15

 S
14

 S
13

 S
12

 S
11

 S
10 S
9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f f
au

lts

Sbox

Spatial localization

10

ShiftRows

MixColumns

SubBytes

AddRoundKey Key
Expansion

Round
Key

Register

Register

Reset

AES DATAPATH

AES
CONTROLControl

Start

Done

Input
Key

DataRound
Input
Message

Clock

Critical Path

Cipher

Figure 1.9: Architecture du cryptoprocesseur AES

dans la RAM. On remarque aussi que dans l’ FPGA Xilinx les fautes simple commence

a apparaître a des tensions plus basse que dans Altera.

Attaque optique

Plate-forme d’attaque

L’idée d’injection de fautes optiques a été présenté par S.Skorobogatov et R.Anderson

en 2003 [2]. Ils ont montré qu’il est possible de modifier le contenu de la mémoire sta-

tique par la lumière. Pour réalise les différentes campagnes d’injection de fautes par

tir laser nous utilisons une plate-forme laser composée d’une table XYZ, une caméra,

deux lasers un vert de longueur d’onde 532 nm et un autre infrarouge de longueur

d’onde 1064 nm et d’un générateur de basse fréquence pour contrôler la durée du tir

11

1. RÉSUMÉ

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1160 1180 1200 1220 1240 1260 1280

E
xp

lo
ita

bl
e

fa
ul

t [
%

]

Voltage [mV]

GF(2^4)
LUT

RAM

Figure 1.10: Occurrence des fautes simple
dans Altera Stratix.

:
 0

 10

 20

 30

 40

 50

 60

 70

 80

 620 640 660 680 700 720 740 760

E
xp

lo
ita

bl
e

fa
ul

t [
%

]
Voltage [mV]

GF(2^4)
LUT

RAM

Figure 1.11: Occurrence des fautes simple
dans Xilinx Virtex5.

Table 1.2: Altera Vs Xilinx

Architecture Temps critique(ns) % faute simple Surface Voltage
FPGA Altera Xilinx Altera Xilinx Altera Xilinx Altera Xilinx

LUT 13.725 7.772 39 % 69 % 0.872 0.513 1.21 0.64
RAM 17.569 9.758 42 % 29 % 0.795 0.282 1.26 0.71

GF(24) 18.818 14.426 33 % 50 % 0.635 0.335 1.24 0.76

laser. L’ensemble du système est contrôlé par un programme qu’on a développé 1.12.

La taille du spot laser est de 5 µm ce qui nous permet de cibler une petite zone du

composant attaqué. Pour injecter les fautes une étape de préparation du composant

est nécessaire c’est ce qu’on appel la décapsulation. Deux type de préparations peu-

vent être effectués sur le composant: une préparation chimique et une préparation

mécanique. Cette étape permet au faisceau blaser d’atteindre la couche de silicium

sans perdre beaucoup d’énergie. Le circuit qu’on a attaqué est un admet Armera128

qui implémente l’algorithme AES.

Résultat

On a réalisé plusieurs tentative d’injection en variant la puissance du laser et la zone

d’injection finalement on réussit a trouvé une zone sensible autour d’un bus de donnée

dans la flash. En utilisant un trigger qui déclenché le tir laser on a réussit a injecter

12

Ethernet

USB

RS232

T
rig

g
er

C
o
ax
ial

Figure 1.12: Plate-forme d’injection optique

des fautes dans l’avant dernier tour du chiffrement. Une analyse des fautes injectées a

montrés que c’est des collages de type "stuck-at". la figure 1.13 montre la cartographie

des fautes.

Freeze

Fault Free

Freeze

SEU

MEU
0xd2

0x83

0x7d

Figure 1.13: Cartographie des fautes

13

1. RÉSUMÉ

Contre-mesure

Vue l’importance des applications qui utilisent cette algorithme, il est nécessaire que

les implémentations intègrent des solutions efficaces. Les contre-mesures sont tou-

jours possibles et disponibles, mais elles doivent être bien pensées pour ne pas faire

d’autre faille qui seront peut être exploiter dans le future. La plus part des solutions

qu’on trouve dans la littérature se base sur deux principes, redondance spatiale et

redondance temporelle.

Détection

C’est une contre-mesure proposée pour l’AES par Ramish. Karri [3]. Le principe est

de déchiffrer chaque groupe de transformations en parallèle du chiffrement et de com-

parer la sortie du déchiffrement avec l’entrée avant le chiffrement. Il y a dans ce cas

une double perte en terme de surface et de temps : un Sur-coût en surface de l’ordre

de la duplication puisque chaque la sortie de chaque module doit être décodée, et un

Sur-coût en temps puisque chaque élément doit être mémorisé pour être comparé avec

le même élément codé et décodé.

Code robuste non-linéaire

Cette technique consiste à calculer pour chaque colonne de la clé et du message une

signature sur 32 bits qui va nous permettre de détecter les erreurs, La signature est

calculée à chaque cycle en utilisant une colonne de la clé du ronde. Le calcul de la

signature ce fait en utilisant un prédicteur linéaire, puis un compresseur linéaire qui

permet de réduire la signature de 32 bit à Sl bits tel que Sl < 32 . La signature est cubé

X3 dans GF2 pour produire une signature non linéaire comme la sortie d’une ronde

de l’AES. Une fois la signature originale obtenue on utilise un réseau de détection

d’erreur(EDN) qui va permettre de calculer à partir de la sortie du ronde une autre

signature qui sera comparer avec la signature final et ainsi détecter les erreurs [4].

Cette méthode de détection est très efficace car elle permet de protéger l’algorithme

contre les attaques qui vise le datapath comme celle de Piret et les attaque qui vise

l’expansion de la clé et elle permet de détecter les erreurs à la volée. Mais elle induit

une augmentation considérable dans la surface du circuit. La figure 1.14 illustre cette

contre mesure:

14

32 bits 32 bits

32 bits

R bits

R bits

32 bits

R bits

Key Round i

EDN

AES Round

Error

Key Schedule

Compressor
Linear

Compressor

Linear

P
re
d
ic
to
r Predictor

Linear

SubBytes/Inv

ShiftRows/Inv

X^3

X^3

MixColumns/inv

Figure 1.14: Code robuste non-linéaire

Résilience

Une autre stratégie pour contrer les attaques en fautes est la résilience, elle consiste

a laisser la faute se propager dans le circuit tout en empêchant l’attaquant d’avoir un

résultat exploitable pour pouvoir monter une DFA a fin de retrouvé la clé de chiffre-

ment. Contrairement aux techniques classique de détection d’erreur, cette nouvelle

approche autorise le circuit à continuer son calcul et a fournir un résultat faux,tant

que ce résultat ne porte pas d’information utile pour retrouvé le secret. on propose

dans cette thèse deux solution pour contré les attaques en fautes.

Niveau protocole

A fin de réaliser une attaque en faute, l’attaquant a besoin de chiffré deux fois le

même message avec la même clé. Donc si on arrive a l’empêcher d’avoir ce couple de

chiffrement faux et correcte. il ne sera pas capable de faire une DFA même si il réussi a

injecter une faute dans le calcul. Pour implémenter ce niveau de résilience il suffit de

modifier le message en lu ajoutant de l’aléa comme le montre les algorithmes suivants:

15

1. RÉSUMÉ

Algorithm 1: Chiffrement probabiliste

Générer un message aléatoire r de même taille que x.1

Envoyer le couple (y = AESk(x⊕ r), r).2

Algorithm 2: Déchiffrement Déterministe.

Déchiffrer y avec k: z = AES−1
k (y).1

Envoyer z ⊕ r = x.2

Niveau logique

Une autre méthode pour implémenter la résilience c’est d’utiliser la logique DPL.

En effet cette technique est utilisée généralement comme contre-mesure contre les at-

taques passives possède des propriétés de résilience. En effet il y a seulement deux

états valide (0, 1) et (1, 0) donc si on injecte une faute simple on obtient deux états

invalides NULL0 (0, 0) et NULL1 (1, 1) comme le montre la figure 1.15. Vue que les

algorithmes cryptographiques possèdent une grande propriété de diffusion, ces états

invalides se propagent dans toute la net-liste pour effacer tout l’information utile ce

qui empêche un attaquant de réaliser une DFA.

A fin de validé cette contre mesure on a réalisé une implémentation en WDDL d’un

AES puis une attaque par violation de temps de setup sur le circuit. Une observa-

tion intéressante est que a chaque fois qu’un octet est affecté par une fautes, un octet

nul apparaît dans le texte chiffré a la place du bon octet. Cela signifie que même

après avoir réussi à injecter la faute lors du chiffrement et de connaître précisément

l’emplacement de la faute, la sortie ne donne aucune information qui peut être ex-

ploiter pour récupérer la clé de chiffrement. Par conséquent, une conception WDDL

NULL0

VALID1

NULL1

VALID0

Precharge:

Evaluation:
(output disclosed)

Figure 1.15: protocole DPL

16

est naturellement protégé contre les attaques par violation de temps de setup 1.16. Par

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1900 1910 1920 1930 1940 1950 1960

O
cc

ur
re

nc
e

[%
]

Voltage [mV]

Faults
Single errors

Multiple errors

Figure 1.16: occurrence des fautes dans une version wddl d’AES

contre si l’attaquant arrive a injecter une faute symétrique (1, 0) → (0, 1) la logique

DPL n’est pas capable d’assurer la protection du circuit mais en pratique il est presque

impossible d’introduire ce type de fautes.

conclusion

Dans cette thèse, nous présentons différents aspects d’attaque sur les implémenta-

tion cryptographique de l’algorithme de chiffrement AES, ainsi qu’une étude sur les

contre-mesures possibles.

La première méthode d’injection de fautes est une nouvelle technique pour injecter

des fautes globales cette technique est non-invasive basée sur la violation temps de

setup. Nous avons démontré que cette méthode globale permet l’injection de fautes

aléatoires dans le circuit . Malgré que nous ne contrôlons pas le temps et le emplace-

ment de l’injection de la fautes, On arrive a obtenir suffisamment de faute pour réaliser

les attaques en fautes. Nous avons montré que cette attaque peut être réalisé sur les

circuits ASIC et FPGA. On a aussi réalisé une attaque locale sur un microprocesseur

Atmel ATmega128 en utilisant un laser.

17

1. RÉSUMÉ

Nous présentons aussi dans cette thèse, une nouvelle approche pour contré les at-

taque en fautes basé sur la résilience. La résilience n’impose aucune destruction des

secrets dans le cas d’une attaque par faute. Dans une implémentation protégée par

résilience, quand une faute est injecté avec succès mais n’a pas de conséquence dans

le calcul, le circuit ne présente aucune réaction à la faute par contre un circuit protégé

par un système de détection arrête automatiquement le calcul même si la faute n’a pas

d’effet. Dans une implémentation résiliente même si la faute est injectée lors du calcul

l’attaquant ne peut pas exploiter le résultat a fin d’exécuter une attaque DFA.

Plusieurs méthodes concrètes pour mettre en oeuvre la résilience pour les chiffre-

ments symétriques sont proposées, parmi lesquelles un mode aléatoire de fonction-

nement qui convient pour des cartes à puce a faible coût. Nous proposons d’utiliser

les logiques DPL comme méthode de protection. Ces logiques protègent simultané-

ment contre les attaques par observation et par perturbation, et sont moins coûteux

que la détection basée sur les codes.

18

General Introduction

Nowadays, digital information is more and more important in our information soci-

ety and it is necessary to protect such sensitive information using cryptographic algo-

rithms. Those cryptographic systems are often implemented in hardware to increase

the throughput of information. When cryptographic systems can be accessed phys-

ically no one is sure of the security of transferred information. Indeed attacks that

target directly the physical implementations can be devised.

This kind of attacks is known as “side channel attacks” (SCA). They can be classified

in two types: active and passive, both of which providing enough information to fully

compromise the security. The devices that are concerned are, for instance, smartcards

(pay-TV cards, SIMs, etc.) or handheld terminals (mobile phones, PDAs, etc.).

The first type of SCA is called passive attack and consists in observing physical em-

anations of the system, like power (Differential Power analysis, or DPA [5]) or Elec-

troMagnetic field (ElectroMagnetic Analysis, or EMA [6]). An off-line analysis of the

physical measurements allow to extract the full key, by correlation or pattern matching

techniques.

The second type of attacks is called active attack and consists in injecting faults

during the execution of a cryptographic algorithm. Faults attacks can of course be

used to obtain DoS (Denial of Services). But the real strength of fault attacks is that

they enable an attacker to retrieve secret information concealed within the device [7].

From the knowledge of one or multiple couples {correct ciphertext, faulted ciphertext},

some hypotheses on the secret key can be discarded. This generic attack strategy is

referred to as DFA (Differential Fault Analysis). Although active attacks were reported

later (in 2001 [8]) than passive attacks (in 1998 [5]), many attacks have been published,

which show how very few errors can break even the most secure cryptosystems: The

19

General Introduction

most astounding results are the Bellcore attacks against RSA, where a single faulty

signature may reveal the secret key, and AES, where only two well localized faults can

break the cipher.

There are several techniques known for fault injections in a system: The variations of

the supply voltage, the clock frequency, the temperature variation, or the irradiation

by a laser beam will most probably lead to a wrong computation result that can be

exploited to realize DFA.

This kind of attack represents a greater threat for the implementation of crypto-

graphic algorithms such as the AES and RSA than passive attacks.

This thesis concentrates on one specific side-channel namely faults. Here, an adver-

sary induces faults into a device, while it executes a known program, and observes

the reaction. The adversary has to tamper with an attacked device in order to create

faults, thereby opening the desired side-channel.

The main propose of this work is to validate the feasibility of fault attacks and

to implement some countermeasure to protect crypto processors. This thesis work is

recorded in three chapters. The outline of the thesis is as follows:

• In chapter 1 we introduce cryptography, side channel attacks and state of art of

fault attacks.

• In chapter 2 we give a new method to inject global faults in both ASICs and

FPGAs, then we show local optical semi invasive attacks on software implemen-

tation of AES.

• In chapter 3 we present fault attack countermeasure and discuss a new method

of protection based on resilience, then we study the resilience on WDDL.

• Finally, in chapter 4 we conclude by an overall review on this work and open

some perspectives to improve it.

20

Chapter 2

Physical Attack On Cryptographic
Implementation

Standardized cryptographic algorithms are basically secure against algorithmic at-

tacks. But once such algorithms are implemented, either on dedicated hardware or

as software on a micro-controller, different physical properties of the algorithm can

be observed. Over the years, sophisticated attacks have been developed that enabled

attackers to break cryptographic devices by such observations. In this chapter, we in-

troduce the basic principles of cryptographic algorithms and we show how its physical

implementation can be exploited.

First, we will describe some general principles, such as symmetric ciphers and

public-key schemes. Then we will give an overview of cryptanalytic techniques aimed

at breaking the most used cryptosystems. We will focus our attention on active at-

tacks. In practice, we present attack methodologies based on intentional injection of

errors during the computation process, describing how we can inject such faults and

the most common attacks to exploit faulted results.

2.1 Cryptography

The prefix of the “cryptology” stems from the Greek root crypto that means “hiding”.

Cryptology include two branches “cryptography” and “cryptanalysis”. Cryptogra-

phy provides methods to transform legible information (plaintext) into a form that is

protected (ciphertext) with the help of a secret information (cipherkey). Any informa-

tion related to cryptographic system can be public except the key. While cryptanal-

ysis provides methods to extract the “cipherkey”. Cryptography is used nowadays

21

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

in a large variety of domains. Information is now created, transmitted and stored in

an electronic form and this sensitive data must be protected from unauthorized use.

This can be easily accomplished through cryptographic systems which can be roughly

divided into two main classes: symmetric ciphers and public-key algorithms. The

symmetric algorithms use the same private key to cipher and decipher, on the other

hand, public key cryptography requires a pair of keys private for decipher and public

to cipher message .

2.1.1 Symmetric Ciphers

Symmetric ciphers are the oldest and most common algorithms in cryptography.

One of the simplest forms is known as the Caesar cipher ”reputedly used by Julius

Caesar to conceal messages” in which the process is simply one of shifting the alphabet

by so many places in one direction or another. Symmetric ciphers accept a plain input

text and a secret key and return an encrypted output text.

Usually, the algorithm is made of two distinct processes: a data-path, where the

initial input is processed and mixed with the key and a key schedule, which is used to

obtain the whole needed key material starting from the secret key. The algorithms are

mostly iterative, which means that a few simple operations are repeated for a certain

number of times; at the same time, for each iteration (called round) the key schedule

computes a round key which will be used only once.

Decryption is computed using the same encryption key: usually, the decryption

process is the execution in the reverse order of the inverse functions of the encryption

data-path, although in some cases the same algorithm can be used (these are called

involution ciphers such as NOEKEON [9]). The key schedule, however, must still

provide key material in the reverse order, which means that the key must be com-

pletely unrolled before decryption can start. Sometimes, the key schedule is executed

before the encryption and the key material is stored into memory for future use; al-

ternatively, if allowed by the cipher structure, it can be executed in parallel with the

encryption process (on-the-fly).

Symmetric ciphers are partitioned into two categories. When the input data is pro-

cessed one bit or byte at a time, then the algorithm is called stream cipher. When the

input is a block of few bytes, it is a block cipher. The variety of symmetric block ciphers

22

2.1 Cryptography

available in the literature, in the industry and on the market, is huge. They constitute

the simplest way to protect a transmission, which led many parties to implement their

own proprietary encryption scheme and keep it jealously secret. In the most ancient

one, the robustness of the encryption scheme relies on the secrecy of the key, but also

on the secrecy of the algorithm. Such practice is against the Kirchhoff’s principle, stat-

ing that the security must rely only on the key. If the algorithms specifications leak

and become public, chances are that the scheme is no longer secure: this happened

with the Content Scrambling System [10], the protection scheme used on commercial

DVDs. Luckily, the recent trend is to develop public algorithms, which are therefore

given to the community of researchers, who can find possible weaknesses.

Symmetric cryptography normally requires the key to be shared and simultane-

ously kept secret within a restricted group. It is simply not possible for a person who

views the encrypted data with a symmetric cipher to be able to do so without having

access to the key used to encrypt it in the first place. If such a secret key falls into the

wrong hands, then the security of the data encrypted using that key is immediately

and completely compromised. Hence, what all systems in this group of secret key

methods share is the problem of key management.

The most common symmetric block ciphers are DES and AES.

2.1.1.1 Data Encryption Standard

As presented in the FIPS standard1 this algorithm is designed to encipher and de-

cipher blocks of data consisting of 64 bits under control of a 64-bit key of 56 bits of

entropy. Deciphering must be accomplished by using the same key as for encipher-

ing, but with the schedule of addressing the key bits altered so that the deciphering

process is the reverse of the enciphering process.

1Federal Information Processing Standards (FIPS) are publicly announced standards developed by
the United States Federal government for use by all non-military government agencies and by govern-
ment contractors. Many FIPS standards are modified versions of standards used in the wider commu-
nity (ANSI, IEEE, ISO, etc.) Some FIPS standards were originally developed by the U.S. government.
For instance, standards for encoding data (e.g. country codes), but more significantly some encryption
standards, such as the Data Encryption Standard (FIPS 46) and the Advanced Encryption Standard (FIPS
197).

23

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

A block to be enciphered is subjected to an initial permutation IP, then to a complex

key-dependent computation and finally to a permutation which is the inverse of the

initial permutation IP−1. Figure 2.1 shows the DES algorithms.

The key-dependent computation can be simply defined in terms of a function f,

called the cipher function, and a function KS, called the key schedule [11].

R
15

L
15

R
15

L
16

R
0

L
0

S 0

S 7

S 6

S 5

S

S 3

S 2

S 1

R
1

L
1

IP

IP

Key

Key
16

2

32 32

64

64

48

48

48

f

f

Key
1

f

48 323232
P E

Key

3232

32 32

48

64

64

64

64

64

64

64

4

64

Plaintext

Ciphertext

−1

Figure 2.1: Data Encryption Standard

Data can be recovered from cipher only by using exactly the same key used to

encipher it. Unauthorized recipients of the cipher who know the algorithm but do

not have the correct key cannot derive the original data algorithmically. However,

anyone who does have the key and the algorithm can easily decipher the cipher and

obtain the original data. A standard algorithm based on a secure key thus provides

24

2.1 Cryptography

a basis for exchanging encrypted computer data by issuing the key used to encipher

it to those authorized to have the data. Selection of a different key causes the cipher

that is produced for any given set of inputs to be different. But with the increase of

the computation speed in new computers this key can be found in few minutes using

brute force attack (which means a trial of all possible values of the key). In fact, in

June 1997 the DES was cracked by a federation of hackers that were using a network

of normal computers and it took 23 hour and 15 minutes [12]. This motivated the need

for a more robust encryption mechanism has been performed especially that this algo-

rithm is used in important economic transactions and governmental communications.

The first idea was to use 3DES which consists in using a call of DES, then −DES−1,

and finally DES. But being aware of the weakness of the DES, the NIST2 made an

invitation to tender to work out a new standard.

2.1.1.2 Advanced Encryption Standard

In 2 October 2000, the NIST has chosen between the seven final candidates, and that

was the ‘‘Rijndael” algorithm that won the competition and became the new Encryp-

tion standard algorithm AES [1].

AES is an encryption algorithm invented by two Belgians researchers Joan Daemen

and Vincent Rijmen. The AES algorithm proceeds by block of 128 bits, and a key

of variable length. The length 128, 192, 256 allows a trade off between security and

efficiency.

AES is an iterative algorithm, the number of rounds depend on the length of the

key, for a 128-bit key length the number of round is equal to 10 rounds, 12 for 192-bit

key and 14 for 256-bit key.

Furthermore, AES encryption and decryption are based on four different transfor-

mations that are performed repeatedly in a certain sequence. Each transformation

maps a 128-bit input state into a 128-bit output state.The transformations are grouped

2The National Institute of Standards and Technology (NIST), known between 1901 and 1988 as the
National Bureau of Standards (NBS), is a non-regulatory agency of the United States Department of Com-
merce. The institute mission is to promote U.S. innovation and industrial competitiveness by advancing
measurement science, standards, and technology in ways that enhance economic security and improve
quality of life.

25

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

in rounds. The rounds are slightly different for encryption and decryption. These

transformations are described in the Figure 2.2.

K
00

K
03K

02K
01

K
12K

11
K

13

K
21

K
20

K
22

K
23

K
30

K
31 K

33
K

32

K
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

MixColumns

ShiftRows

ShiftRows

SubBytes
C

00
C

03C
02C

01

C
12C

11
C

13

C
21

C
20

C
22

C
23

C
30

C
31 C

33
C

32

Message

Message

Cipher

Key Round i

Key Round Nr

Key Round 0

Round 1

Round Nr−1

Round Nr

C
10

Inital

Key
Clear

Round 0

SubBytes

Key Schedule

Figure 2.2: AES encryption

In the AES, the 128-bit data block is considered as a 4× 4 array of bytes called state

matrix. The algorithm consists of an initial data/key addition, 9 full rounds (when

the key length is 128 bits), and a final (modified) round. A separate key scheduling

module is used to generate all the sub-keys, or round keys, from the initial key; a sub-

key is also represented as 4 × 4 array of bytes. The full Rijndael round involves four

steps:

1. a non-linear substitution that is applied on the state matrix: « SubBytes ».

2. A circular bytes permutation within the same line: « ShiftRows »

3. A multiplication in GF (28) for each column: « MixColumns »

26

2.1 Cryptography

4. A simple XOR with the output of the key register: « AddRoundKey ».

SubBytes Transformation

The SubBytes transformation replaces each byte in a block by its substitute from an

S-box as shown in figure 2.3. The Sbox is an invertible substitution table which is

constructed by a composition of two transformations:

• First, each byte Ai,j is replaced with its reciprocal in GF (28) (except that 0, which

has no reciprocal, is replaced by itself).

• Then, an affine transformation f is applied.

Figure 2.3: SubBytes transformation [1].

The S-box is usually implemented as a look-up table consisting of 256 entries, each

entry is 8 bits wide, but it also can be computed “on-a-fly”.

ShiftRows Transformation

Next comes the ShiftRows transformation, each row in a 4× 4 array of bytes of data is

shifted 0, 1, 2 or 3 bytes to the left in a round fashion, producing a new 4 × 4 array of

bytes as shown in figure 2.4.

Figure 2.4: ShiftRow transformation [1].

27

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

MixColumns Transformation

The MixColumns transformation, operates on each column individually as shown in

figure 2.5. Each byte is mapped into a new value that is a function of all four bytes in

the column. The transformation can be defined as a matrix multiplication on the state,

each column is treated as a polynomial over GF (28) and is then multiplied modulo

x4 + 1 with a fixed polynomial a(x):

a(x) = (0x03)x3 + (0x01)x2 + (0x02)x + (0x02)

Figure 2.5: MixColumn transformation [1].

AddRoundKey Transformation

The final transformation is AddRoundKey, it simply XOR-es the result with the sub-

key for the current round as shown in the following figure 2.6

The Key Schedule

Each round accepts a round key derived from the initial secret key by means of the

Key Schedule process as described in figure 2.7.

• ”Rotword” operation takes a 32-bit word and rotates it by eight bits to the left.

• ”Subword” operation uses S-Box table to replace each byte of the columns.

• ”Rcon” is a table of constants depending on the round number.

More precisely, if k0 is the secret key and ki is the ith round key, then Key Schedule

computes ki = KSi(k
i−1) as a function of the previous round key. The functions KSi

themselves depend on the round and on the size of the key. However, the KSi do not

differ much from each other, and for a key size of 128 bits they are all identical.

28

2.1 Cryptography

Figure 2.6: AddRoundKey operation

Figure 2.7: AES Key Schedule

29

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

2.1.2 Asymmetric Cryptography

Symmetric ciphers are highly efficient from the computational point of view, but

they have an important issue: key management is extremely inefficient. First of all,

the secret key must be exchanged securely and the encryption of the secret key is not

an option, since it would represent the same problem again and again. If the key gets

leaked, then it should be revoked and new one should be shared. In addition to this,

each different secure link requires its own key: every pair of users should be assigned

a unique key, known only to the authorized owners, which means that the overall

number of keys would grow exponentially. Even if the key is shared within a single

group of people, there would be no way to identify correctly the sender within the

group, or have a subset of authorized receivers.

Public-key (asymmetric) cryptosystems are the solution to these issues. Each user

has a pair of keys: a secret key (the private key) and a second public key. The keys of

each pair are related to each other: it is easy to compute the public key from the pri-

vate key, but the inverse is computationally infeasible. Thus, each user can generate a

(random) public key, which will be posted publicly and then compute his secret key;

other users will be able to know only the public key, and will be unable to invert the

process to obtain the user’s secret key. What is encrypted with one of the keys, can

be decrypted only using the other: for instance, if we use our public key to encrypt a

message, it will be decrypted only by our private key. This scheme allows to provide

some very important properties for secure communications:

Confidentiality: it is the guarantee that the message will not be read by an unautho-

rized user; it can be achieved by encrypting the message with the public key of the

receiver, thus we can guarantee that only his private key will allow decryption.

Authentication: it is the proof of the sender’s identity, certifying that the sender of

the message is actually the one who claims to be; it can be achieved by encrypting the

message with the private key of the sender. It will be decrypted only with the public

key of the sender, revealing his identity.

Non-repudiation:it is strictly related to the previous concept and means that the sender

can not deny having sent the message. It is based on the assumption that the private

key is known only to its legitimate owner and that it can not be inferred from the pub-

lic key. Thus, the message could not be sent by any other user.

Integrity: it guarantees that the message was not modified or tampered with, and it

30

2.1 Cryptography

is exactly the message that was transmitted at the source. It is usually achieved by

attaching a digest of the message itself, usually the result from a commonly shared

hashing algorithm; then, the digest only can be encrypted with the sender’s private

key. At the reception point, the receiver computes the digest of the message; then he

decrypts the digest he got by using the sender’s public key and compares the results,

proving that they were not modified. The system relies on the security of the hash-

ing algorithm, i.e., the complexity of creating different messages with the same digest

(collision attacks).

31

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

2.1.2.1 RSA

The most used public-key crypto system is RSA [13], based on modular exponenti-

ation in finite ring Zn. Encryption is computed by exponentiating the message with

the secret or the public key, decryption is computed again by exponentiation with the

other exponent. RSA is based on the problem of factoring the product of two large

primes.

Algorithm 3: RSA Algorithm

1. Choose two distinct large primes p and q of the same bit length.

2. Compute N = p.q as the RSA modulus.

3. Let ϕ(N) = (p− 1).(q − 1) denote Euler’s totient function.

4. Choose a public key 3 < e < ϕ(N)− 2 coprime to ϕ(N)

5. Compute as the secret key the unique integer 1 < d < ϕ(N) such that
e.d = 1 mod ϕ(N).

• Encryption a message M ∈ Zn Compute C = M e mod N .

• Decrypting a ciphertext C ∈ Zn Compute M = Cd mod N .

• Signature of a message M ∈ Zn , the signature S is created as S = Md mod N .

• Verification of a signature S ∈ Zn of a message M Se = M mod N .

2.1.2.2 Elliptic Curve Cryptography

Another method to define public key algorithms is to use elliptic curves [14]. In

contrast to RSA, computations take place in a finite additive group. An elliptic curve

E over field K is defined by the Weierstrass equation: E : y2 +a1xy+a3y = x3 +a2x
2 +

a4x + a6. The set of points (x,y) ∈K2 as a solution of the equation E, together with the

point at infinity O form and additive abelian group. The point O is the neutral element

of the group. It is denoted as E(Fp). The group operation is called addition for two

distinct points and doubling otherwise. An elliptic curve group operation consists of

many field operations. For a field Fp with a characteristic other than 2 the equation E

can be simplified to E : y2 = x3 + ax + b a, b ∈ K. In order to encrypt message using

ECC we have to chose and elliptic curve E defined over a prime filed Fp such that the

32

2.2 Smartcard Architecture

order of E is divisible by a large prime q, then we chose a base point P on E of order q.

Obviously the choice of E and P is crucial for the security of the system. The order of

the base point P must be a large prime.

Algorithm 4: ECC Algorithm

1. Choose an elliptic curve E defined over Fp.

2. Choose a base point P on E of order q.

3. Choose the secret key k ∈ {1, 2, ..., q − 1}

4. Compute public key Q=k.P on E.

Encryption

• Choose a random session key r ∈ {1, 2, ..., q − 1}

• Compute the two points R=r.P=(x1, y1) and r.Q=(x2, y2).

• Compute C = x2 + M where M ∈ Zp is the message to be encrypted.

• Send out (R,C) =(x1, y1, C)

Decryption

• Compute (x′
2, y

′
2) = k.R

• Recover M = C − x′
2

2.2 Smartcard Architecture

The trend for miniaturisation and portability of every computing device has led to

the development of smartcards which is a small computing device as large as a credit

card and equipped with processing unit, some memory and dedicated processors for

cryptographic computations. The smartcard has a microprocessor embedded in it that,

when coupled with a reader, has the processing power to serve many different appli-

cations. By the means of cryptographic algorithm, smart cards make personal data

available only to the appropriate users.

33

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

Since its commercial launch in 1992, the smart card has taken full advantage of the

miniaturization of circuits and, although the maximum area of the chip is standard-

ized to 25 mm2, the circuits have evolved to more computing capabilities. Smart cards

are used in combination with terminals; such as bank cards, prepaid phone cards or

SIM, whose terminal is the mobile phone. Most of the time they are links in the chain

of custody of a larger system. The industry has set standard ISO/IEC 7816 to facilitate

interoperability of the smartcard and FIPS-140 to ensure the security of this compo-

nent of cryptographic modules.

The integrated circuit as shown in figure 2.8, may contain a microprocessor (CPU)

capable of processing this information and specialized cryptographic hardware that

uses algorithms such as RSA, 3DES or AES. Smartcard is mainly used as means of

personal identification(identity card ,SIM card), payment service(credit card) or for

prepaid services (phone card, pay-TV).

UART

RAM

Flash

CPUclk

rst

vdd

gnd

io

in
te

rn
al

b
u
s

crypto-
engine

TRNG

smartcard

Figure 2.8: Smartcard internal architecture

The smartcard have in general five pin-out:

• Vdd is the supply voltage that drives the chips at 5V, 3V or 1.8V.

• Gnd is the substrate or ground reference voltage against which the Vdd potential

is measured.

• Reset is the signal line that is used to initiate the state of the integrated circuit

after power on.

• IO input/output connector. This is the signal line by which the chip receives

commands and interchanges data with the outside world.

34

2.3 Side Channel Attack

• CLK is the clock signal is used drive the logic of the IC and is also used as the

reference for the serial communications link.

Smartcards are extremely customizable and can be applied to a large variety of ap-

plication domains, but on the other hand they are extremely vulnerable to physical

attacks based on side channel information leakage. Next section will be dedicated to

present physical attacks known as Side Channel attack “SCA”.

2.3 Side Channel Attack

Cryptosystems are usually implemented as embedded devices or software algorithms.

Even if the cryptosystem is secure and without any apparent flaw, its implementation

may reveal some useful information about the secret key in an indirect way. Kocher

in [15] and in [16] published two novel attack techniques, witch exploit side chan-

nel leakage of cryptographic devices. Computation requires time, consumes power

and causes electromagnetic radiations: all these are possible sources of information

related to secret key. These techniques are rather powerful, since they allow to reduce

the complexity of an attack to several orders of magnitude, on the other hand, they

require physical access to the device to collect the necessary measurements, while the

computation phase of the attack can be done off-line.

2.3.1 Timing Attack

The timing attack was predefined opposed by Paul Kocher in 1996 [15]. The sim-

plest concept of timing attacks is that the attackers exploit the observed different exe-

cution time between different instructions to see if some specific instruction was exe-

cuted or skipped by Mich the attackers can extract the secret key.

Consider the flow of any program, programs always spend much time in compar-

ison and conditional-jump. Each condition leads to distinct path. Therefore, if the

attacker inputs different messages into a program, the time consumed will be slightly

different for different inputs. Thus, the attacker can observe the variance in execu-

tion time, and then obtain the secret key. For example,In RSA the execution time for

the square-and-multiply algorithm used in modular exponentiation depends linearly

on the number of ’1’ bits in the key. While the number of ’1’ bits alone is not nearly

enough information to make finding the key trivially easy, repeated executions with

35

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

the same key and different inputs can be used to perform statistical correlation analy-

sis of timing information to recover the key completely.

2.3.2 Power Analysis

Cryptographic devices are implemented using semiconductor logic gate, which are

constructed out of CMOS. The electron flow across the silicon substrate when charge is

applied to a CMOS’s gate consumes power and produces electromagnetic radiation.

Further more, most power is consumed when the gate is in transition. This power

variation can be recorded as a trace of the executed data.

Simple Power Analysis

Simple power analysis [16] involves directly observing a device power consumption.

When the instruction processes different secret values, the corresponding power con-

sumptions is different for each value. If the difference is discernable, then the attacker

could analyze these power consumptions of instruction and extract the involved se-

cret key. The SPA cannot only analyze the impressible instructions, but also reveal the

sequence of instructions executed, it can be used to break cryptographic implementa-

tions in which the execution path depends on the data being processed such as naive

implementations of RSA, whose electromagnetic trace is shown in Figure 2.9.

Figure 2.9: SPA on RSA implementation

Differential Power Analysis

Differential power attack “DPA” [16] exploits biases in the varying power consump-

tion of microprocessors or other hardware while performing operations using secret

36

2.3 Side Channel Attack

keys. DPA attacks involves signal processing, that can extract secrets from measure-

ments which contain too much noise to be analyzed using Simple Power Analysis.

DPA can attack on either first or the last round of Symmetric key algorithm and re-

quires the knowledge of either the plaintext or the ciphertext. The side channel ex-

ploited is the difference between the power consumed by a single gate when its out-

put rises or falls. The attack exploits the fact that in CMOS logic, a gate only dissipates

energy when it change states.

DPA uses a model of the attacked device, which is used to predict several values of

the side-channel output. Then a set of power traces is collected by computing many

encryptions. The power traces are then partitioned into two sets, according to the

model. If the model and the partitioning are good, then a difference should emerge

from the analysis, revealing information on secret key as shown in Algorithm 5.

In order to mount DPA an attacker proceeds in two phases. First, a large number

of power consumption traces for different plaintexts are recorded. The second step

consists in extracting the secret key by applying statistical techniques. The attacker

carefully uses the measuring equipment to reduce external noise and repeatedly pro-

cess the same data a sufficient number of times, then average the correct data to reduce

the algorithmic noise.

The basic concept of DPA is that the plaintexts (or the ciphertexts) are divided in two

parts according to the related key value guessed. If the related key value is guessed

correctly, the power consumptions of the corresponding plaintexts (or the ciphertexts)

can be divided into two parts correctly . The average power consumption of one part

will be slightly more than the other. Then, some obvious biases in the total differences

of these two parts will appear in the total difference trace. If the key value is guessed

incorrectly, traces are randomly spread into both set which the averages are very close

to each others. Hence, the total difference of these divided two parts will nearly be

null in the total differential trace as shown in Figure 2.10.

37

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

Algorithm 5: DPA Algorithm

1. Encrypt many randomly selected plaintexts "M"

2. Collect their corresponding power traces "T"

3. Choose selection function "L"

4. Make guess on the key "K"

For (i = 0 to keylength)
Collect the average power trace: T ({Li(M,K) = 0})
Collect the average power trace: T ({Li(M,K) = 1})
Compute the differential trace: Di = T ({Li(M, K) = 1}) − T ({Li(M,K) = 0})
If Di has a positive spike
Ki = 1

Else
Ki = 0

End For
Output: Cipherkey

Figure 2.10: DPA on DES: Bad and correct subkey

38

2.3 Side Channel Attack

2.3.3 Electromagnetic Analysis

Electromagnetic analysis “EMA” as presented by Quisquater and Samyde [17] are

very similar to DPA, but they exploit the information leaked by Electromagnetic ra-

diations.Since any electrical current flowing through a conductor induces electromag-

netic (EM) emanations, it seems natural to look for the same phenomenon in the vicin-

ity of a semiconductor. In fact, when CMOS gates consume power, the current pulse

cause variation in the EM field surrounding the chip. Power consumption of the de-

vice varies while data are being processed, so does the em field and one may legiti-

mately expect to extract secret information from a relevant EM analysis. Quisquater

and Samyde showed that it is possible to measure the Electromagnetic radiation from

a smart card as shown in Figure 2.11. Their measurement setup consisted of a sensor

which was a simple flat coil, a spectrum analyser or an oscilloscope and a Faraday

cage. In their article they introduced the terms Simple EMA ”SEMA” and Differential

EMA ”DEMA”.This attacks exploits correlations between secret data and variations in

power radiations emitted by the cryptographic devices.

Figure 2.11: EMA on DES: Bad and correct subkey

39

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

2.4 Fault Attacks

Fault attacks exploit the physical properties of devices. Theoretical fault attacks are

based on fault models. In this section, we will give an overview of actual physical

methods to induce practical faults. This will show that there are numerous ways to

induce faults into physical devices as shown in “The Sorcerer’s Apprentice Guide to

Fault Attacks” [18].

2.4.1 Power Spikes

Embedded system needs power supply which is provided externally. An adversary

with laboratory equipment is capable of both tampering with the power feeding as

well as measuring power consumption (thus enabling power attacks).

It has been defined by standards [19], that a smartcard must tolerate a certain vari-

ation in the power supply VCC of ±10% of the standard voltage. However, if the

variation is significantly higher than 10%, the embedded system is no longer required

to work properly. In fact, short massive variations of the power supply, which are

called spikes, can be used to induce errors into the computation of the smartcard.

Variations in supply voltage during execution may cause a processor to misinterpret

or skip instructions. These methods do not require a modification of the device itself

but provoke faults by modifying the working conditions. Power spikes are cited as

standard way to induce faults by various authors [20, 21].

2.4.2 Clock Glitches

Similar to the power supply, an adversary is able to tamper the clock signal. The

clock signal CLK has to meet various electrical constraints. For instance the voltage

for the CLK signal at high level VIH may range from 0.7 VCC to VCC and the low level

VIL from 0 to 0.5 VCC, where VCC is the power supply voltage. The embedded system

must also work properly with deviations of clock rise and clock fall times of 9% from

the standard period clock cycle[19]. . The the adversary may provide the embedded

system with an external clock signal, which incorporates short massive deviations

from the standard voltage, which are beyond the required tolerance bounds. Such

signals are called glitches.

40

2.4 Fault Attacks

Glitches can be defined by a huge range of different parameters [22], and they can

be used to both induce memory faults as well as causing a faulty execution behaviour

(code change attacks). Hence, the possible effects are the same as for spike attacks.

However, clock-signal glitches are the simplest and most practical attacks as presented

by Agoyan and al. [23]. Details about glitches can be found in [21, 24, 25]

2.4.3 Optical Attack

If an embedded system is depackaged, such that the silicon layer is visible, it is pos-

sible to use a laser cutter (red or green laser) or focused UV light in order to change the

state of internal signals (transient faults) or even destroy them (destructive faults) [22].

This allows to induce a great variety of faults. Memory cells used for EEPROM mem-

ory and semiconductor transistors have been found to be sensitive to coherent light, i.e

lasers, and ionizing radiation such as cosmic rays. This is due to photoelectric effects

and already works for white light.

By using lasers or focused ultraviolet light, EEPROM bits can be erased, as shown

in [2]. This happens if the photon energy of the applied kind of light exceeds the semi-

conductor band gap. Modern green or red lasers can be focused on relatively small

regions of a chip, such that faults can be targeted fairly well. Agoyan et al. showed in

there article [26] that reproducible single-bit faults on SRAM, often considered unfea-

sible, can be obtained.

2.4.4 Electromagnetic Perturbations Attack

Changes in the external electrical field have been considered as a possible method

for inducing faults into embedded systems [24, 27]. Here, faults are induced by plac-

ing the device in an Electro-Magnetic field, which may influence the transistors and

memory cells. However, the main problem using such an approach is to target specific

bits or variables stored in the card.

The use of Eddy currents to induce faults has been motivated by electromagnetic

analysis of smartcards, which has been proposed as a passive side-channel for these

devices. If the passive probing antenna is subjected to an alternating current, the re-

sulting Eddy currents can be strong enough to interfere with the operation of a tran-

sistor or memory block.

41

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

The property exploited for fault attacks is the fact that Eddy currents can modify the

number of electrons inside a transistors oxide grid [28]. This changes the threshold

voltage of the transistor such that it cannot be switched during the electromagnetic

perturbation. Depending on the actual transistor, this can be used to ensure that a

memory cell contains the value 0 or 1. This effect can be used to induce transient or

permanent faults.

Inducing Eddy currents does not require to depackage a chip, hence, attacks can

easily be carried. However, this requires that an adversary knows the layout of an

attacked device in order to control the targeted area to attack. It has been shown by

Samyde in [27] that Eddy currents can be used to induce faults very precisely, such

that individual chosen bits can be set or reset.

2.4.5 Definition of Fault Model

Fault attacks are based on tampering with a device in such a way that the device

performs abnormally. The reaction of the device, can be a faulty result or an error

message, or some form of safety or urgency behaviour as a destruction of the device.

An adversary can take advantage of the induced modification to find the secrets hid-

den in a device. As cryptographic algorithms are generally public according to the

Kerckhoffs’s principle, an adversary has a minimum knowledge of the algorithm im-

plementation and thus, can assume a set variables witch depends on the secret key.

This allows the adversary to determine what kind of error will provoke the reaction

which may be observable. For example if a single bit in the secret key is flipped dur-

ing an attack, and if the device does not detect this fault, a faulty result with a specific

pattern is returned. By comparing this faulty result with the correct one, an adversary

might be able to deduce one bit of the secret key. An adversary may also target the

flow of operations, such that certain operations are repeated or skipped. To achieve

and exploit a desired effect, he needs to have the knowledge about how a certain

physical attack will affect the logical flow of the attacked algorithm.

There has been a large number of different fault attacks in the literature [7, 29, 30,

31]. They differ by the faults models which is a set of different parameters like the

fault type (transient vs permanent), the number of bits affected, the probability to get

an exploitable fault, the duration of the fault, the location of the fault, the time when

42

2.4 Fault Attacks

the fault is applied and the preparation work that has to be done. We propose three

main types of parameters which define the faults models:

• Spatial parameters: The stress is applied on the whole device “global faults” or

a small region “local faults”.

• Temporal parameters: The time when the fault occurs can be fully synchronized

or completely random.

• Number of affected signals: We differentiate between a “single faulty bit”,“few

faulty bits” e.g. in the same Byte “single faulty byte” or random number of faulty

bits”multiple faults”.

2.4.5.1 Transient Faults

This type of fault corresponds to a fault which is short-lived, such that after a given

amount of time, the effect vanishes and the correct value is present again. This type of

fault induces "soft errors" in the device. It is generally assumed that during the decay

of a transient fault, there are no intermediate states, i.e., there is only a unique faulty

value and a correct value. If a transient fault occurs in a memory block ”RAM”, the

fault can be memorized. In this case the fault impact of the modified variable lasts

until that variable is explicitly overwritten. For instance after a reset of the device the

fault can disappear as the volatile memory can be reinitialized.

2.4.5.2 Permanent Faults

Permanent faults modify definitively the behavior of the device. They are also called

destructive as once injected, there is no way to return to the initial state. This may be

caused by a fault injection in a non-volatile memory ”ROM” or the cutting of a wire

inside the chip by means of a laser cutter or a Focus Ion Beam (FIB) machine. This

fault are equivalent to Stuck-At faults which are the fault models used for the ASIC

integrity test after manufacturing.

2.4.6 Fault Attack on AES

2.4.6.1 Blömer and Seifert

In [7],Blömer and Seifert present an attack that allows the adversary to retrieve the

whole key when the block length is greater than or equal to the key size “128 bits”.

43

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

The attack consists in encrypting a null block, i.e., a plain text where each bit is ’0’.

Thus, after the initial key addition, the temporary state stores the whole encryption

key: sij = 0 ⊕Kij = Kij for i, j ∈ {0, 1, 2, 3} Before computing any other operation

(namely, the SubBytes), the attacker tries to set a specific bit Sl
ij to 0. After that, the

encryption process can continue without any other interference. If K l
ij = 0, then set-

ting the corresponding Sl
ij value to 0 does not affect the final result, which is still the

correct encrypted output; on the other hand, if K l
ij = 1, resetting the bit to 0 actually

affects the temporary state and results in an incorrect ciphertext.

Even if the cryptographic device is able to detect the corruption and resets itself, the

adversary knows that the fault has an impact, thus revealing the value of the bit key

K l
ij . In conclusion, the correct encryption key can be found with only 128 bit faults,

provided that they are precisely located. The attack, however, can also be applied

when the key is longer than the data block. Once the first 128 bits of the key have been

recovered using the above technique, the encryption process can be simulated up to

the next AddRoundKey operation in Round 1. Hence, we can choose the plaintext

such that the state consists of all zeros before AddRoundKey is applied. The round

key is added to the state, then the attacker tries to reset Sl
ij to 0 and completes the

encryption. Similarly, if the result is correct, the corresponding bit of the key is 0; if an

error is detected at the output, then that specific bit of the key is 1. This attacks is also

known as safe error attacks.

2.4.6.2 Giraud

In 2003, Christophe Giraud proposed a couple of attacks against AES [29] . In the

first attack, the model of the fault is restricted to the single-bit fault . To find the key the

fault must occur just before the subByte of the last round of AES, the attacker chooses

a message and enciphers it twice, one time to get the correct ciphertext C and then a

faulted ciphertext C∗ and i the faulted byte number. If one bit error is injected, we can

denote A the correct byte and A′ the faulted one and we have the following equation:
{

δ = Ci ⊕ C∗i ,
δ = (SubBytes[A]⊕K10)⊕ (SubBytes[A′]⊕K10) .

Next step is to do an exhaustive search for the couple of (A, A′) that match the two

conditions:

1. δ = SubBytes[A]⊕ SubBytes[A′]

44

2.4 Fault Attacks

2. A⊕A′ = 2iwith i ∈ {0, . . . , 7}

The exhaustive search will allow to compute a list of possible Keys bytes Ki = SubBytes[A]⊕

Ci. Therefore, each pair of (A, A′) will generate one possible key that we put in the

list α of possible keys if |α| > 1 repeat the same operation with new message to build

a new list of possible message β then take the intersection of the two sets α ∩ β and

repeat the operation until we have only one candidate left. With probability of about

97%, three faults are enough to recover one byte of K10.

Algorithm 6: Giraud one bit DFA algorithm

Input : C, C∗

Output: Ki where i is the faulted byte ∈ {0, . . . , 15}

Create two empty set α and β
Compute δ = Ci ⊕ C∗i.
while |α| 6= 1 do

Clear β
Look up for A and A′

if SubBytes[A] ⊕ SubBytes[A′] = δ and A⊕A′ = 2j with j ∈ {0, . . . , 7} then
β ← SubBytes[A]⊕ C

if |α| = 0 then
α← α ∪ β

else
α← α ∩ β

end if
end if

end while

In the second attack, the injected error may affect a whole byte. The attacker ad-

dresses the Key Schedule unit, in order to inject the fault, at first, in the last word of

the penultimate round key; those ciphertexts which are not suitable for the first step

of the attack are discarded and a new attempt is made. By comparing the correct and

corrupted results, it is possible to detect the position and actual ej value of the fault

by solving the following equation in the unknown ej : Ck ⊕ C∗
k = SubBytes(K9

j) ⊕

SubBytes(K9
j ⊕ ej)

Then, solving the equation in K9
j allows to identify the key candidates; the correct

value can be found by cross-comparing with the results from another faulty ciphertext.

Using only 32 faulty ciphertexts (on average), the last 4 bytes of the penultimate round

45

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

key (from K9
12 to K9

15) can be detected. The process is then repeated by attacking the

last word of K8. The only difference is that it might be more difficult to retrieve the

error value and hence more faulty ciphertexts might be required. However, the values

K8
12 −K8

15 can be recovered with few ciphertexts (the author claims 19 ciphertexts for

a 99% chance to succeed). These values can be used to compute K9
8 − K9

11. Finally,

injecting the fault in the temporary state at the beginning of the 9th round allows to

guess the error value; the error value can be used to recover the affected state bytes

(by exhaustive search), which in turn can be used to simulate the cipher and retrieve

the remaining key values. The author claims that this attack can break the AES-128 by

using less than 250 faulty ciphertexts.

2.4.6.3 Chen and Yen

In [31], Chen and Yen published their attack against AES. The attack is very similar

to the second attack of Giraud [29], although they claim a reduced complexity and

hence less ciphertexts to recover the key. First, a fault in injected into one of the last

four bytes of K9 , which is the penultimate round key; this means that, due to the Key

Schedule routine, the last round key will have 5 corrupted bytes which will appear in

the final output. This allows to collect some condition statements on some bytes of

the last round key; by intersecting a few statements coming from different faults, the

exact values of the key can be found. Then, an error is injected in the antepenultimate

round key (namely k8). Only three bytes are useful targets; when those bytes are hit

more bytes of the key material can be guessed.

So far, the attack is just like that proposal by Giraud. Here the authors inject again

the error in the antepenultimate round key, but in a different position (namely, in the

penultimate word of the antepenultimate key) This leads to 6 or 7 corrupted bytes in

the final output, that can be used to guess 8 additional key bytes, as in the previous

steps. In conclusion, 13 bytes of the final round key can be guessed; the remaining

3 bytes can be recovered without much effort by exhaustive search. The initial secret

key can be revealed just by computing the Inverse Key Schedule. In conclusion, the

attack is able to break the AES-128 key by using less than 44 fault injections, when the

fault can be induced with accuracy.

46

2.4 Fault Attacks

2.4.6.4 Dusart,Letrourneux and Vivolo

In [32], the authors presented a very simple and effective attack to retrieve the last

round key. Since the AES Key Schedule is invertible, it is then possible to compute the

initial secret key going backwards. Moreover, the fault model is highly practical, since

the initial assumption is that a random error is injected before the last MixColumns

operation. Timing must be accurate, while location knowledge is not essential, since

it can be easily gathered by comparing a pair of faulty and correct ciphertexts: in the

corrupted result, only 4 bytes differ and their location depends on the fault location.

A random byte fault injected before the MixColumns is spread immediately to the

other bytes of the same column. The subsequent key addition and the final round

exploit only local operations, modifying the value of bytes independently. The only

exploitable operation is the SubBytes, since the non linearity allows to make some

assumptions on the error value.

The attack hence relies on solving a system of equations describing the final steps

of the algorithm, the equations depend on the values of the state, of the round key

and of the injected error: SubBytes(x) + SubBytes(x + c.ǫ) = ǫ′ where c is one of

the MixColumns coefficients and depends on the specific byte we are considering. By

solving each equation in ǫ, we obtain some sets of possible error values, which can be

intersected, thus obtaining a smaller set. Then, for each error value, the correspond-

ing key bytes can be guessed: it can be proved that the number of possible key byte

values ranges from 2 to 4, depending on the fault value. However, after few iterations,

intersecting the set solutions allows to retrieve 4 bytes of the key quickly; the complete

AES-128 key can be recovered by using less than 50 ciphertexts.

2.4.6.5 Piret and Quisquater

In [30], Piret and Quisquater describe a further attack on AES. In the initial descrip-

tion, they follow the same path as Dusart [32]. Injecting the fault between the last

and the penultimate MixColumns, it is possible to obtain a set of candidates for 4 key

bytes. In principle, a couple of well located faults allow to find the unique correct

candidate.

They present, however, a further attack: to analyze the faulty ciphertext when the

error is injected before the penultimate MixColumns. When injecting the error, the

subsequent MixColumns spreads the infection over the whole column, thus affecting

47

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

4 bytes as shown in Figure 2.12, this sequence of events is shown in Figure 2.12, the

non-linear substitution layer (SubBytes) is computed, then the bytes are shuffled ac-

cording to the ShiftRows operation. At this point, we still have only 4 corrupted bytes,

but they are all scattered over different columns. Again, the last MixColumns finally

spreads the 4 errors over the whole state, thus infecting all 16 bytes, by exploiting this,

it is possible to retrieve the whole AES-128 key with only a couple of faults using the

algorithm 7.

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
u
b
B

y
te

s

S
u
b
B

y
te

s

K9 K10

S
h

iftR
o
w

s
S
h

iftR
o
w

s

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03S

02

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
01

S
00

S
03S

02S
01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

Cipher Text

S
u
b
B

y
te

s

M
ix

C
o
lu

m
n

s

S
h

iftR
o
w

s

S
10

Figure 2.12: Fault effect on round 9 of AES.

Algorithm 7: Piret’s DFA Algorithm.

1. Prepare a list LD that contain 1020(255×4) different possibility of Mixcolumn of
the Round 9.

2. Make an exhaustive search on the KNround
0,d , KNround

1,(1−d)mod[4], KNround
2,(2−d)mod[4] and

KNround
3,(3−d)mod[4].

3. Compute ∆t =SubBytes−1((C⊕KNround)∗,d)⊕ SubBytes−1((D ⊕KNround)∗,d).

4. Verify if ∆t ∈ LD.

5. If yes we will add the four bytes of the key to the list Cd of the potential
candidates.

6. Return to the second step with another pair of fault until we get only one
candidate.

48

2.4 Fault Attacks

An error in round 8 yield to four errors in round 9, thus we just need two well

located faults to recover the hole key. The propagation of the a faults in round 8 is

show in Figure2.13.

Figure 2.13: Fault effect on round 8 of AES .

2.4.6.6 Moradi, Shalmani and Salmasizadeh

In CHES 2006, Amir moradi presented new attacks against AES [33]. The authors

proposed new fault models that cover all faults that can occur in the 9th round of

encryption. The biggest advantage of these attack methods is the high coverage rate of

used fault models. With the first fault model the author needs only 6 faulty ciphertexts

in average for discovering the main key and 1495 faulty ciphertexts for the second one.

2.4.6.7 Tusntall and Mukhopadhyay

In [34] the authors present an enhanced Differential Fault Attack that can be applied

to the AES using a single fault. The single fault affects the input of the antepenultimate

round. The AES key can be found using a two stage algorithm. If we note xi, correct

byte of the ciphertext and x′
i faulted byte of the ciphertext then we can derive sixteen

equations by using MixColumns. Once resolved an attacker could expect to have

49

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

232 key hypotheses for the secret key. In order to further reduce keys hypotheses

the relationship between the ninth round and the last round can be used. Using the

Inverse MixColumns operation and the equation found in the first step, the authors

define a set of four new equations. Finally all the key hypotheses generated by the first

step are tested using the new set of equations, if the hypotheses satisfies the new set

then it can be recorded as a key candidate, else it discarded. Using the second step an

attacker would expect to have 28 possible keys, and can easily perform a brute-force

attack to find the cipher key.

2.4.6.8 Differential Behavioral Analysis

Differential Behavioral Analysis “DBA” as described in [35] is an hybrid attack be-

tween differential power analysis ”DPA” and a safe-error attack. The model of the

fault used is byte-wise “stuck-at” as for Safe error attack. Then the probabilistic treat-

ment of DPA is applied. DBA is similar to DPA but instead of power we use the

behaviour of the circuit when a fault is injected as side channel.

2.4.6.9 Fault Sensitivity Analysis

In CHES 2010, a new fault attack was presented known as fault sensitivity analy-

sis [36]. Unlike most existing fault based attack FSA does not use values of faulted

ciphertexts. In FSA, starting from a condition where a correct ciphertext is obtained,

the attacker gradually increases the intensity to which he disturbs the power supply or

external clock. While stressing the device, there must be a moment where the success

rate of fault injection is non zero and a moment where the success rate is 1. This in-

formation is recorded as new side channel information and using correlation between

the data and the success rate, the attacker can retrieve secret information.

2.4.7 Summary of DFA on AES

Table 2.1 presents a comparison between different attacks. The comparison criteria

are:

• The fault model. It corresponds to the number of bit which are necessary to

modify. the location

• The fault target. The datapath is generally the target but the key expansion path

can also be targeted.

50

2.5 Conclusion

• The number of faults. This indicate the number of faults which are needed to

make sure the attack will succeed.

Attack Fault model Fault target # of faults

Tusntall and Mukhopadhyay [34] Single Byte Datapath 1
Piret and Quisquater [30] Single Byte Datapath 2

Giraud 1 [29] Single Bit Datapath 35
Dusart et al. [32] Single Byte Datapath 50

Blömer 1 [7] Single Bit Datapath 128
Blömer 2 [7] Single Byte Datapath 256

Moradi et al. [33] Multiple Bytes Datapath 1495
Takahashi et al. [37] Single Byte KeySchedule 7/1
Chen and yen [31] Single Byte KeySchedule 44

Giraud 2 [29] Single Byte KeySchedule 248

Table 2.1: Summary of Differential Fault Attack

Among these attacks the Piret and Tunstall proposals present the minimum num-

ber of faults. This is particularly important to increase the attack feasibility as it could

be difficult to get different errors from the same fault injection. Moreover they target

the datapath which is easier to disturb than the keypath for some attacks. For instance

the setup violation attack, which is presented in chapter 2, targets the logic on critical

paths which are more numerous in the datapath than in the keypath.

2.5 Conclusion

In this chapter, the general concepts about cryptography and the main attack tech-

niques used to recover the secret keys have been introduced. A specific attention has

been given to the Differential Fault Analysis “DFA” as it is one of the most effective

attacks against implementation of cryptographic algorithm. A synthesis of different

DFA targeting the AES algorithm is presented. Among them it has been shown that

the attack of Piret and Quisquater is particularly powerful as only two faults are nec-

essary to retrieve the 128-bit AES key. This attack type has been chosen to perform the

practical attacks presented in chapter 2. The Tunstall attack would have been inter-

esting to carry out but this new attack was not yet known during the Phd period. As

the question about the feasibility of such attack arises, chapter 2 shows the implemen-

tation instances by using both non-invasive and invasive methods. These methods

51

2. PHYSICAL ATTACK ON CRYPTOGRAPHIC IMPLEMENTATION

inject respectively global and local faults and they clearly show the efficiency of the

DFA attack with a relatively cheap equipment.

52

Chapter 3

Practical Attacks on AES

In this chapter, the DFA on AES experiments are presented. The attacks have been

carried out and analyzed in detail on two different platforms which have been set up

specifically for this purpose.

The first platform allows to inject faults by using a global and non-invasive tech-

nique based on under-powering or overclocking the device. This simple technique

is cheap to carry out and had never been used for the time being. It provides ways

to subtly analyze attacks on targets in embedded systems based on FPGAs or ASICs.

The smartcard is not the primary target of this attack as some voltage protections ex-

ist against spikes attacks. The attack impact is to provoke setup time violations on

Flip-Flop, thus generating faults. A complete study of the temporal and spatial lo-

calization of single faults has been done. Three target types have been used: custom

ASIC (SECMAT project) Altera Stratix and Xilinx Virtex5.

The second platform allows to inject faults by using a semi-invasive method based

on a laser beam. With this more costly technique it becomes possible to inject well

located faults on a device. The target is an ATMega128 microcontroller running a

software implementation of AES.

3.1 Global Attack: Setup time violation attack

3.1.1 Attack Theory

In CMOS logic [38], every gate has a propagation delay, that is inherent to the tran-

sition switching time and to the existence of capacitance (most often unwanted, i.e.

parasitic) around it. Thus, every stimulus at the input of a logic gate requires some

53

3. PRACTICAL ATTACKS ON AES

time to produce its effect at the output. The propagation delay depends on many

factors.

The most important one is the function of the gate. For instance, an AND gate with

one input equal to 0 will evaluate to 0 irrespective of the second input arrival date.

This “early evaluation” would not have happened with the same data configuration

on an OR gate. Indeed, the OR gate cannot decide of the final result before being ac-

quainted on the value of its latest input if the fastest ones are equal to 0.

At the second order, the propagation time also depends on the shape of the input

signals. An input signal transiting slowly will take a longer time to propagate through

the gate. A signal coming from a long line is likely to have a smooth edge, whereas

a well buffered signal that has a short interconnect length will probably have a steep

transition slope. Thus the routing also influences the propagation time. The cross-

coupling of the wires is also a subtle effect that affects the signal’s speed and transition

speed: depending on the neighbour wires, any signal can be either slowed down or

sped up, or have its waveform be modified.

Additionally, we mention that some gates can answer in a non-deterministic time.

One representative example is the XOR gate that is placed in the situation of an arbiter:

this occurs when the two inputs change almost simultaneously from (0, 1) to (1, 0).

Then, depending on the relative delay between the two inputs, the gate can start to

glitch. The answer time is also dependant on thermal fluctuations.

Eventually, the CMOS gates do glitch, which means that some transitions can be

generated even if they are not the final values. Once generated, the glitches propagate

and lead to other glitches. The final value of the computation is taken only after no

other changes occur. Indeed, the digital computations can be modeled as the trans-

mission of events on an oriented graph: the signals propositions being causal, every

computation in a combinational netlist necessarily converges.

To summarize, the propagation time in CMOS logics depends highly on the data

and on the routing. Furthermore, the longest path for the same input data might not

be the same, because of the non-deterministic behavior of some gates.

54

3.1 Global Attack: Setup time violation attack

In sequential logic, one global signal, called the clock, cadences all the combina-

tional computation in parallel, at the same place. One implicit condition is that all the

gates are expected to have finished propagating their data when the clock rising edge

arrives. Of particular importance is the longest path, that determines the maximal

clock frequency. As discussed in the previous subsection, this critical path is data-

dependent and corresponds to the clock smallest admissible period. If for whatever

reason the clock period is lower than the setup time, then faults can occur. When ei-

ther the clock accelerates or the data signals decelerate, the setup time can eventually

be violated. The propagation time increases with the decrease of the power supply

and faults are caused by an early latching of a combinatorial function as shown in

figure 3.1.

Setup met Setup violated

Q’

QD

Q’

QD

Q’

QD

Q’

QD

clk clk

V ↓ ⇒ Tpropagation ↑

Tclk < Tcrit + TsetupTclk ≥ Tcrit + Tsetup

Figure 3.1: Setup violation.

3.1.2 Acquisition Platform

The setup is composed of two parts:

1. A communication channel between the analyzer (personnel computer) and the

circuit under test. This allows the user to inject the ciphering orders and receive

back the results.

2. A remotely controlled power supply and clock synthesizer which provides re-

spectively the supply voltage and the clock. Hence various values of frequency

and voltage can be accurately adjusted to feed the attacked circuit.

Figure 3.2 sketches the experimental setup.

55

3. PRACTICAL ATTACKS ON AES

V

GPIB

RS232

USB

Vcc

Clk

RS232

GPIB

FSM

RX
RTSN

TX
CTSN

UARTAES

Vcc

Figure 3.2: Experimental faults injection platform

The power supply and the frequency generator can be controlled through a GPIB

port. The power supply can deliver a voltage with an accuracy of half a millivolt. The

frequency generator can deliver a frequency with an accuracy of one MHz. In order

to collect data we have conducted the flowing acquisition campaign:

• The triples {message, key, ciphertext} are recorded for N encryptions at each

values of V cc or F (2.000.000 ciphertexts for ASIC and 100.000 ciphertexts for

FPGA’s).

• In view to simulate an attack, we decided to keep the key at a constant value.

• To collect representative results, the input message varies randomly at each en-

cryption.

3.1.3 Fault Analysis

This software tool is very important to know where and when the fault has been

generated. The only assumption to do is that the message and the key are known by

the attacker, and that they are not faulted. In other words, the faults concern only

the encryption, and thus can affect only the ciphertext. For each target (ASIC and

FPGAs) a classical AES architecture of the “encrypt” function is used. The rounds

of the AES algorithm are implemented with a unique loop as this serial approach

provides a significant cost reduction in hardware. Therefore setup violation can occur

at each AES round.

In the “encrypt” function, the fault value XORed is with the message and permits

any fault injection at any round of the AES encryption. The array fault_t is defined

as:

56

3.1 Global Attack: Setup time violation attack

// Mask ready to be applied

// to every round’ state

typedef reg_128 fault_t[10];

where reg_128 is typedef’ed for char[4][4]. To simulate a single Byte fault in-

jection, the fault_t f is initialized to full zero, with the exception of a single byte

(char) within the reg_128 state for a single round index. The fault analysis con-

sists in calling this function for all the possible faults values, and compare with the

ciphertext obtained from the experimental platform. Indeed, the only evidence that a

fault has occurred experimentally is a faulted ciphertext. The exhaustive search of sin-

gle “byte-flip” requires (28 − 1)
︸ ︷︷ ︸

single Byte fault

× 16
︸︷︷︸

Bytes

× 10
︸︷︷︸

Rounds

= 40 800 calls to the “encrypt”

routine. This allows to:

• Find the experimental faulty ciphertext. In this case, the fault is called “covered”,

or

• Declare that the fault is “uncovered”, if the faulty ciphertext matches none of the

function “encrypt”. This fault is called “uncovered”.

The purpose of this implementation is to identify the typology of faults that occurs

in the device, as shown in Figure 3.3. In this figure, the AES function with two argu-

ments is the regular implementation of AES-128, whereas the AES function with three

arguments is the “encrypt” routine detailed previously.

The encryption is faulted
AES(m, k) 6= c

∃f, AES(m, k, f) = c
The fault is covered

{m, k, c} value

f ∈ {R8, R9}
The fault is exploitable

f 6∈ {R8, R9}
The fault is unexploitable

The fault is uncovered
∀f, AES(m, k, f) 6= c

AES(m, k) = c
The encryption is correct

Figure 3.3: AES faults analysis.

57

3. PRACTICAL ATTACKS ON AES

3.1.4 Attack on ASIC

In this section, we present some result on power and frequency attack on Sec-

Mat v1 [39] witch is an academic ASIC designed to evaluate side channel attacks

and their possible countermeasures. It contains two different implementation of non-

protected DES, an implementation of protected DES and an unprotected implemen-

tation of AES along with peripherals like CPU, RAM, etc. The AES is a “low area”

pipelined implementation which computes column by column, i.e. 4 cycles per round

or 50 cycles per encryption. The size of the circuit is 4.0 mm2 for 2.0 million transistors.

We considered soft stresses:

1. Supply deprivation, based on the power voltage decrease at nominal clock fre-

quency (32 MHz),

2. Over-clocking, based on clock frequency increase at nominal power voltage

(1.2 volt).

We gradually raise the stress level, and show that an attacker can accurately choose the

quantity of faults induced within the device. The figures 3.4 and 3.5 show that there

is comfortable range of vulnerable voltage and frequency where the cryptographic

device outputs faulty results while not crashing.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 760 770 780 790 800 810 820 830

O
cc

ur
re

nc
e

[%
]

Voltage [mV]

Majority of
single errors

Majority of
multiple errors

Faults
Single errors

Multiple errors

Figure 3.4: Occurrence of Fault —
(power).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 60 61 62 63 64 65 66 67 68 69 70

O
cc

ur
re

nc
e

[%
]

Frequency [MHz]

Majority of
single errors

Majority of
multiple errors

Faults
Single errors

Multiple errors

Figure 3.5: Occurrence of fault (over-
clocking).

Given the resemblance of the fault occurrence profile, we conclude that the two

studied stress modalities generate faults of the same type. The errors are caused by

a setup time violation: the output of a combinatorial logic block is sampled in its

58

3.1 Global Attack: Setup time violation attack

downstream synchronous register prematurely. In the case of supply deprivation, the

combinatorial logic becomes slower at constant clock frequency, whereas in the case of

over-clocking, the combinatorial logic keeps its natural speed but the registers latches

more often. With both fault injection paths, a critical path is violated, resulting in

single errors for low level of stresses: in Figures 3.4 and 3.4, single errors are dominant

above ≈ 800 mV and below ≈ 65 MHz.

3.1.4.1 Experimental Evaluation of Piret’s DFA

The Figure 3.6 presents the coverage of single faults. The coverage is defined as being

the ratio between single and detected faults:

Coverage =
P

Single Faults
P

Detected Faults .

A fault is said “detected” when the ciphertext has not the expected value, i.e.

AES(m, k) 6= c where m is the plaintext, k the key and c the expected ciphertext. A

fault is said “single” when only one Byte is faulted among the intermediate variables

of AES. To apply the Piret’s algorithm only single faults have to be injected either in

the penultimate or antepenultimate round.

The first faults (for the highest voltage values), are almost all single. This can

be seen in Figure 3.6 by the fact that the coverage is close to one hundred percent.

As the voltage decreases, the coverage degrades, attesting the gradual appearance of

multiple faults. We can also compute the coverage CoverageRi in specific round Ri:

Figure 3.6: Coverage of exploitable faults.

59

3. PRACTICAL ATTACKS ON AES

CoverageRi =
P

Single Faults ∈Roundi
P

Detected Faults

and can we observe that, amongst the “covered” (i.e. single) faults, 16 % fall in the

round 8 and 4 % in the round 9, where Piret’s DFA can exploit them. As a consequence,

Piret’s DFA is practical.

Furthermore, we are now able to quantify the experimental efficiency of Piret’s

DFA. We can state that the average number Nexperimental of faults to collect experimen-

tally (at V cc=820 mV) in order to successfully mount Piret’s DFA is:

• Nexperimental = ⌈Ntheory/0.16⌉ = ⌈2/0.16⌉ = 13 for an attack in round 8, and

• Nexperimental = ⌈Ntheory/0.04⌉ = ⌈8/0.04⌉ = 200 for an attack in round 9.

This proves that, in practice, the key can be found with only 13 ciphertexts. This

collection is typically realised in a couple of seconds.

3.1.4.2 Spatio-Temporal Characterization of Faults

The “covered” faults are analyzed in terms of spatio-temporal locality (% of encrypted

messages):

• in which rounds (from R1 to R10) are they more likely? (refer to Figure 3.7) and

• in which byte of state are they more likely? (refer to Figure 3.8).

We can see that the first round (R1) is never affected by faults. This observation was

indeed predictable, since the first is special: it consists of the AddRoundKey transfor-

mation alone. Therefore, the critical path is not in this round.

It can seem counter-intuitive that faults are not uniformly distributed between rounds.

In a static timing analysis (STA) of a design, the critical path is the same for every iter-

ation. Therefore, one might expect that if a critical path is violated at one round, then

all the rounds (8 or 9) will be faulty. However, we observe single errors localized at a

given round. The reason could be that the critical path is highly data-dependant.

From the analysis of Figure 3.7 and 3.8, we have shown that the faults are not

uniformly distributed over time and space. This observation, albeit not general since

our setup is very particular, can be a valuable information for the designers in charge

of implementing counter-measures.

60

3.1 Global Attack: Setup time violation attack

Figure 3.7: Temporal localization of
single faults.

 0

 5

 10

 15

 20

 25

 30

 S
15

 S
14

 S
13

 S
12

 S
11

 S
10 S
9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f f
au

lts

Sbox

Spatial localization

Figure 3.8: Spatial localization of sin-
gle faults.The SubBytes box si,j has in-
dex 4 × i + j in the histogram.

One of the reason that could explain the non-uniformity of faults can be the dis-

tribution of faults over the time, if we suppose that the occurrence of faults follows a

Gaussian distribution centred in µ ≈ Tc

2 where Tc is the encryption time and with a

random variance σ. Then we can find that the probability to have a X a single bytes

fault in one round is:

P{X|Ri} = (1− 1
2(1 + erf(

i
10

Tc−µ

σ
√

2
))).(1− 1

2(1 + erf(
9−i
10

Tc−µ

σ
√

2
))) where erf is the error

function and i ∈ {0 . . . 9} is the round number.

3.1.5 Attack on FPGA

3.1.5.1 SoC Architecture

In order to attack AES on FPGA we implement a cryptographic SOC that we synthe-

size on Altera Stratix and Xilinx Virtex5 FPGAs. The encryption platform is composed

of three modules: UART interface, a controller and AES co-processor as shown in Fig-

ure 3.9. This design communicates with a monitoring PC via RS-232 cable. The critical

path of the design is located in the cryptographic module to avoid the crash of the

system when we decrease the power supply.

3.1.5.2 AES architecture

Figure 3.10 shows the architecture of a simple, non protected AES co-processor. The

AES co-processor is designed to have a parallel architecture. It performs each round of

AES in each clock cycle. The four sub-rounds are SubBytes, ShiftRows, MixColumns

61

3. PRACTICAL ATTACKS ON AES

FSM

RX
RTSN

TX
CTSN

UARTAES

Figure 3.9: Simple AES.

and AddRoundKey. These sub-rounds along with some multiplexers and key sched-

uler comprise the datapath. The key scheduler or expander calculates a key for each

round which is then used in the datapath.

The most important module in the AES is SubBytes, therefore we try to implement

this component in three different ways. In the first architecture we implement Sbox

as look-Up Table (LUT) [1]. This asynchronous table is a non-linear byte substitution

indexed by the most significant nibble and least significant nibble of the input. The

second implementation also uses the same design but the table is made synchronous

and is sensitive to falling edge of the clock. Such implementations are automatically

moved to the block RAM by the synthesis tool. At each falling edge, RAM samples

the input address. In the third implementation, we optimize sbox using composite

field. In fact, The Rijndael Sbox is a nonlinear transformation over the finite field

GF (28) each element of the 256 field can be represented as a 2 dimensional vector over

GF (24) : a = ah ∗ x + al with a ∈ GF ((24)2) and ah, al ∈ GF (24). We can define

an isomorphic mapping of the field elements which are represented with respect to

GF (24). Using subfield we can build optimized sbox as described in [40]. Figure 3.11

shows the architecture of the composite field sbox. We use the same SubBytes for the

Datapath and the Key schedule.

62

3.1 Global Attack: Setup time violation attack

ShiftRows

MixColumns

SubBytes

AddRoundKey Key
Expansion

Round
Key

Register

Register

Reset

AES DATAPATH

AES
CONTROLControl

Start

Done

Input
Key

DataRound
Input
Message

Clock

Critical Path

Cipher

Figure 3.10: AES architecture.

−1
map

map

x2

x2ah

al

a

a′h

a′l

a−1

X−1

X[e]

Figure 3.11: Composite Field implementation of SubBytes

63

3. PRACTICAL ATTACKS ON AES

3.1.5.3 Experimental Results on ALTERA Stratix

In our architecture, the delays in the datapath are greater than in the key sched-

ule. As we focus on non-invasive attacks, we assume local faults cannot be injected

directly into the keypath. Moreover, as global perturbations will not affect the key-

path either, we assume that the key schedule block is fault-free. At higher voltages

V ∈ [1.28V . . . 1.275] only single faults occur. As we decrease the voltage beyond a

certain threshold, setup time is violated on multiple paths and faults become multiple

(uncovered). It is straightforward to adapt the results obtained in this section to other

attacks, such as attacks on the key schedule [29].

Figures 3.12, 3.13, 3.14 show the occurrence of faults in the three architectures on

the Altera board. Faults are partitioned into single i.e. faults which affect one byte on

the AES state before the SubBytes transformation in the datapath or multiple i.e. faults

affecting multiple byte or occur in the keypath. Single faults have a “bell-shape” dis-

tribution. This behavior is compatible with a fault model where errors are caused by

a setup violation on critical combinatorial path. It is well established that propagation

time of a signal on a particular path increases with decreasing supply voltage [41].

Thus at lower voltages it is more likely that a critical path is violated to generate fre-

quent single faults. Nevertheless, below a threshold, multiple critical paths are vi-

olated. Hence an augmentation of multiple faults, and a subsequent diminution of

single faults.

 0

 20

 40

 60

 80

 100

 1230 1240 1250 1260 1270 1280

O
cc

ur
re

nc
e

[%
]

Voltage [mV]

Majority of
single errors

Majority of
multiple errors

Faults
Single errors

Multiple errors

Figure 3.12: Occurrence of faults: sbox in GF (24).(ALTERA)

64

3.1 Global Attack: Setup time violation attack

 0

 20

 40

 60

 80

 100

 1180 1190 1200 1210 1220 1230 1240 1250 1260

O
cc

ur
re

nc
e

[%
]

Voltage [mV]

Majority of
single errors

Majority of
multiple errors

Faults
Single errors

Multiple errors

Figure 3.13: Occurrence of faults: sbox in LUT. (ALTERA)

 0

 20

 40

 60

 80

 100

 1220 1230 1240 1250 1260

O
cc

ur
re

nc
e

[%
]

Voltage [mV]

Majority of
single errors

Majority of
multiple errors

Faults
Single errors

Multiple errors

Figure 3.14: Occurrence of faults: sbox in RAM.(ALTERA)

Figures 3.15, 3.16, 3.17 present the coverage of single faults, i.e. the ratio between

single and detected faults. The first faults , are almost all single as the coverage is close

to one hundred percent. As the voltage decreases, the coverage degrades, attesting

the gradual appearance of multiple faults. In our experiments, we use the “Piret’s

Attack” [30] to exploit the faults. As per this attack, single faults affecting only the

two penultimate rounds are used for retrieving the key. From here, we address such

faults as exploitable faults.

Figure 3.18, shows the Hamming weights of the exploitable byte-flips for the GF (24)

65

3. PRACTICAL ATTACKS ON AES

 0

 20

 40

 60

 80

 100

 1230 1240 1250 1260 1270 1280

C
ov

er
ag

e
[%

]

Voltage [mV]

Detected errors
Exploitable errors R8
Exploitable errors R9

Figure 3.15: Coverage of single faults, and detail of exploitable faults in GF (24).

 0

 20

 40

 60

 80

 100

 1180 1190 1200 1210 1220 1230 1240

C
ov

er
ag

e
[%

]

Voltage [mV]

Detected errors
Exploitable errors R8
Exploitable errors R9

Figure 3.16: Coverage of single faults, and detail of exploitable faults in LUT.

architecture. One interesting observation from this figure is that most of the faults oc-

curring in the circuit are a single bit fault (Hamming Weight of the fault=1). This

information allows attacker to mount some of the published “Bit Fault” attacks [29].

Table 3.1 shows the temporal localization of the single faults in the Altera Stratix

FPGA. In temporal localization the single faults are classified according to the round

of occurrence. When using Piret’s attack, the attacker is interested by the single faults

occurring in the two penultimate rounds only. As for the ASIC attack, we can see that

66

3.1 Global Attack: Setup time violation attack

Table 3.1: Temporal and Spatial localization of single faults on Altera Stratix board

L
U

T

 0

 5

 10

 15

 20

 25

 30

 35

 R
10 R

9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f f
au

lts

Round

Temporal localization

 0

 10

 20

 30

 40

 50

 60

 S
15

 S
14

 S
13

 S
12

 S
11

 S
10 S
9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f f
au

lts

Sbox

Spatial localization

R
A

M

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 R
10 R

9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f f
au

lts

Round

Temporal localization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 S
15

 S
14

 S
13

 S
12

 S
11

 S
10 S

9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f f
au

lts

Sbox

Spatial localization

G
F(

24
)

 0

 5

 10

 15

 20

 25

 30

 R
10 R

9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f f
au

lts

Round

Temporal localization

 0

 5

 10

 15

 20

 25

 30

 35

 40

 S
15

 S
14

 S
13

 S
12

 S
11

 S
10 S

9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f f
au

lts

Sbox

Spatial localization

67

3. PRACTICAL ATTACKS ON AES

 0

 20

 40

 60

 80

 100

 1220 1230 1240 1250 1260

C
ov

er
ag

e
[%

]

Voltage [mV]

Detected errors
Exploitable errors R8
Exploitable errors R9

Figure 3.17: Coverage of single faults, and detail of exploitable faults in RAM.

 0

 20

 40

 60

 80

 100

 1230 1240 1250 1260 1270 1280

H
am

m
in

g
w

ei
gh

t [
%

]

Voltage [mV]

Hamming weight 1
Hamming weight 2
Hamming weight 3
Hamming weight 4
Hamming weight 5
Hamming weight 6
Hamming weight 7
Hamming weight 8

Figure 3.18: Hamming weight of exploitable faults in GF (24).

there is no fault in the first round. This is because the first round in AES is comprised

only of the AddRoundKey operation resulting in a fairly small timing path. This also

proves that the communication between the FPGA and PC is fault free.

Table 3.1 shows that each sbox has different number of faults. Since the computation

time of logic gates is data-dependent, there is an uneven temporal and spatial distri-

bution of the faults. The spatial localization of the faults (i.e. the classification of faults

according to the affected Sbox) is shown in Table 3.1. As shown in the histograms the

68

3.1 Global Attack: Setup time violation attack

attacker can find sufficient number of faults to successfully mount the attack.

3.1.5.4 Security Evaluation of the three architecture against DFA

In this section, we compare the three architectures with respect to security. Fig-

ures 3.12, 3.13, 3.14 show the occurrences of faults in different architectures. For the

sake of comparison, we plot the exploitable faults on the same diagram. In figure 3.19

we see that the peak of the bell shaped distribution is highest for the architecture with

sbox in GF(24). It shows that around 13% of the single faults are exploitable. On the

other hand, less than 6% of the faults are exploitable when the sbox is implemented

as a table in LUT. This means that we need half the amount of faulty ciphertext when

attacking sbox in GF(24) than needed for LUT. These results are in accordance with

the results obtained in [42], where authors have used the timing analysis of post map

netlist of AES co-processor. The Authors demonstrate that it is more difficult to attack

sbox in LUT than a sbox in GF(24) because a higher attack frame means higher proba-

bility of creating a single fault. Thus, we have practically prove the results which were

stated theoretically in [42]. Voltage is another parameter for security. A sbox which

gets faulty at lower voltage is more secure because it is more likely that some other

part of the design stops working at lower voltages.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1160 1180 1200 1220 1240 1260 1280

E
xp

lo
ita

bl
e

fa
ul

t [
%

]

Voltage [mV]

GF(2^4)
LUT

RAM

Figure 3.19: Exploitable errors ”Round 8 and 9”.

Recently, few methods have been reported [43] which suggest to synthesize the

bulky parts of AES like SubBytes & MixColumns into the peripherals like block RAM,

69

3. PRACTICAL ATTACKS ON AES

DSPs, etc. These methods reduce the logic utilization in the FPGA and hence are cost

effective. We also tested an sbox implementation in the RAM. The results as shown in

Figure 3.19 is that 9% of the faulty ciphertexts are exploitable for RAM implementa-

tion against 6% in case of sbox in LUT. So we see there is a trade-off between cost &

security. It has always been known that higher security comes at higher cost; this rule

of thumb also applies to AES.

Figure 3.19 shows that sbox in RAM is more secure than the sbox in GF(24). The

timing information on critical path in the datapath suggests that sbox in RAM should

be less secure than sbox in GF(24). Contrary results can be explained by following

arguments. The clock period is 20 ns.

The RAM is sampled on the falling edge while the state register is sampled at the

rising edge. The critical path calculated is between these two edges which is just for

negative half of the clock cycle. The Altera CAD tool “Quartus” normalizes the tim-

ing depending on the duty cycle of the clock and displays in terms of one full cycle.

This fact was confirmed when reduction in the duty cycle of the clock resulted in a

higher maximal frequency of operation. In practice, the timing of the path is less than

19.818ns and should be interpreted separately for each half of the clock cycle. This is

also corroborated by figure 3.19. In case of sbox in GF(24), timing information given

by “Quartus” is trustworthy as all the operations are sensitive to the rising edge of

the clock. When the sbox is implemented in GF(24), as shown in the architecture,

the worst-case critical path in the datapath will begin from and end at the state reg-

ister which stores round data. In case of sbox in RAM, the worst-case critical path

is between the output of RAM & state register. As compared to RAM, apart from

operators of ShiftRows, MixColumns & AddRoundKey, the sbox in GF(24) also uses

combinatorial operators to implement the sbox as well. Since occurrence of fault is a

dynamic parameter, the presence of larger number of combinatorial components may

increase the probability of fault occurrence in this architecture. However nothing def-

inite can be concluded as the construction of RAM and LUTs are different. Due to the

difference in construction, the delays due to under-powering will evolve differently.

In order to check the impact of the controller on the critical path of the previous

experiments, we implemented a new architecture (GF (24)): the control signals are

computed prior to every round. This architecture is depicted in figure 3.20.

70

3.1 Global Attack: Setup time violation attack

data state key state FSM state

round logic

key schedule control logic

Figure 3.20: AES architecture with critical path strictly confined in the datapath.

We check that the one hundred first critical paths originate from and finish in the

datapath. We reproduce the same fault campaign for Altera FPGA with the GF(24)

architecture of SubBytes. The fault occurrence per round is shown in Figure 3.21.

This figure clearly shows that the faults are not uniformly distributed despite the de-

coupling of the datapath from the control. This observation seems to be specific to

hardware implementations: similar result obtained in a CPU show uniform distribu-

tion [44]. This is certainly due to the greatest complexity of algorithms implemented

on hardware, were 128 bits are processed in parallel as opposed to 8 bits in a CPU.

 0

 5

 10

 15

 20

 25

 R
1

 R
2

 R
3

 R
4

 R
5

 R
6

 R
7

 R
8

 R
9

 R
10

%
 o

f f
au

lts

Round

Figure 3.21: Temporal localization of single fault on Altera GF(24).

71

3. PRACTICAL ATTACKS ON AES

Table 3.2: Temporal and Spatial localization of single faults on Xilinx Virtex 5 board

L
U

T

 0

 10

 20

 30

 40

 50

 60

 R
1

 R
2

 R
3

 R
4

 R
5

 R
6

 R
7

 R
8

 R
9

 R
10

%
 o

f f
au

lts

Round

Temporal localization

 0

 5

 10

 15

 20

 25

 30

 35

 S
0

 S
1

 S
2

 S
3

 S
4

 S
5

 S
6

 S
7

 S
8

 S
9

 S
10

 S
11

 S
12

 S
13

 S
14

 S
15

%
 o

f f
au

lts

Sbox

Spatial localization

R
A

M

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 R
1

 R
2

 R
3

 R
4

 R
5

 R
6

 R
7

 R
8

 R
9

 R
10

%
 o

f f
au

lts

Round

Temporal localization

 0

 20

 40

 60

 80

 100

 S
0

 S
1

 S
2

 S
3

 S
4

 S
5

 S
6

 S
7

 S
8

 S
9

 S
10

 S
11

 S
12

 S
13

 S
14

 S
15

%
 o

f f
au

lts

Sbox

Spatial localization

G
F(

24
)

 0

 5

 10

 15

 20

 25

 R
1

 R
2

 R
3

 R
4

 R
5

 R
6

 R
7

 R
8

 R
9

 R
10

%
 o

f f
au

lts

Round

Temporal localization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 S
0

 S
1

 S
2

 S
3

 S
4

 S
5

 S
6

 S
7

 S
8

 S
9

 S
10

 S
11

 S
12

 S
13

 S
14

 S
15

%
 o

f f
au

lts

Sbox

Spatial localization

3.1.5.5 Experimental Results on Xilinx Virtex5

Table 3.2 shows the temporal localization of the single faults for the Xilinx Virtex5

FPGA. We can exploit faults that occur in the RAM and the GF(24) implementation.

But there is no exploitable faults for the LUT implementation. We can argue this is due

to the fact that the critical path is shorter in LUT implementation, hence the controller

can also be affected by the setup time violation and the fault is detected as multiple.

72

3.1 Global Attack: Setup time violation attack

Table 3.3: Characterization and attack results for Altera and Xilinx with the three Sbox
architectures.

Architecture Critical path(ns) % of Sing. faults PDF Voltage(V)
FPGA Altera Xilinx Altera Xilinx Altera Xilinx Altera Xilinx

LUT 13.725 7.772 39 % 69 % 0.872 0.513 1.21 0.64
RAM 17.569 9.758 42 % 50 % 0.795 0.282 1.26 0.76

GF(24) 18.818 14.426 33 % 29 % 0.635 0.335 1.24 0.71

3.1.5.6 Security Comparison between ALTERA and XILINX

Figure 3.22 and Figure 3.23 shows the occurrence of single faults in the three archi-

tectures for Altera and Xilinx. Faults are partitioned into single i.e. faults which affect

one byte on the AES state before the SubBytes transformation in the datapath or mul-

tiple i.e. faults affecting multiple byte or occur in the keypath. Single faults have a

“bell-shape” distribution.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1160 1180 1200 1220 1240 1260 1280

S
in

gl
e

fa
ul

ts
 [%

]

Voltage [mV]

GF(2^4)
LUT

RAM

Figure 3.22: Occurrence of single
Faults (Altera Stratix)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 620 640 660 680 700 720 740 760

S
in

gl
e

fa
ul

ts
 [%

]

Voltage [mV]

GF(2^4)
LUT

RAM

Figure 3.23: Occurrence of single
faults (Xilinx Virtex5)

Now referring to table 3.3, we see that the critical path are different for the same

implementations on different FPGAs but stay in the same order for the two FPGAs.

We also see that the LUT implementation has more exploitable faults in Altera FPGAs

than in Xilinx and the opposite for RAM implementations. From this we can deduce

that the attacker has to change his strategy according the target and their sensitiv-

ity to setup time violations. This fact is confirmed by GF implementations where the

73

3. PRACTICAL ATTACKS ON AES

exploitable fault are increased if the RAM is not targeted. Here we introduce the con-

cept of probability density function (PDF (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2) of the fault. The PDF

determines the area under the fault curve of each implementation and thus the over-

all robustness. The higher the PDF, the higher are the possibilities for an attacker to

succeed. We see that overall, the implementations on Xilinx have a smaller PDF and

hence are more robust. The reason behind this is that faults occur in Xilinx at a much

lower voltage to make non-cryptographic parts of the circuit non-functional.

We have shown that global attack apply also to FPGA without deprogramming

them, in fact the setup violation does not affect the configuration. Local fault dis-

cussed in the section 3.2 are more powerful in so far as they can target an accurate

area. However,they can affect the configuration of FPGA [45], therefore in the next

section we focus on local attack on ASIC ”ATMega128”.

3.2 Local Attack: Optical Fault Injection

The idea of optical fault injection was presented by S. Skorobogatov and R. An-

derson in 2002 [2]. They showed that it is possible to change the content of a static

memory by light. In this section, we present optical fault injection attack using syn-

chronized laser in order to set up and optimize the conditions for a successful fault

attack. Later, in 2010 Canivet and Leveugle showed practical laser fault attacks on

SRAM-based FPGAs [46] and Agoyan et al. presented in [26] practical laser attack on

a microcontroller. More precisely, as compared to global attacks (such as Setup viola-

tion attack), laser fault injection do target the intended logic and not only the module

containing the critical timing path.

3.2.1 Decapsulation

In order to access the surface of a chip in a common plastic package, a decapsulation

procedure is applied. Generally speaking, a chip can be accessed from the front side or

from the rear side. A decapsulation from the front side gives access to the passivation

that covers the metal layers. Accessing the substrate is possible from the rear side.

74

3.2 Local Attack: Optical Fault Injection

3.2.1.1 Front-Side Decapsulation

The plastic of the package over the chip has to be removed to gain access to the

chips passivation. If the chip is no damaged and the bonding wires are intact, the

decapsulation has not impact on the functionality of the device. The plastic can be

etched by fuming nitric acid (> 95%), which is a mixture of concentrated nitric acid

(HNO3) and nitrogen dioxide (NO2). In order to concentrate the etching process on

a region above the chip and to minimize the amount of plastic that has to be etched

away, a hole is milled into the package beforehand.

The milling step has to be done carefully to prevent damaging the bonding wires

of the chip. Afterwards, a pipette is used to fill the hole with acid, which causes

the plastic to carbonize. Since nitric acid also affects the pins of the package, it is

necessary that the acid does not accidentally touch them. After an etching period of a

few seconds, the acid and the solvents are removed in acetone by ultrasonic treatment.

Etching and cleaning processes are repeated several times until the chip is exposed to

the needs of the attack. Heating the acid and the device accelerates the etching process

and decreases the number of repetitions.

3.2.1.2 Rear-Side Decapsulation

Applying a decapsulation procedure from the rear side does not involve any chem-

icals. A mill and a screwdriver are enough to access the substrate. First, the device

package is milled down to the copper plate, which is part of a typical plastic package.

The chip is mounted onto the plate during the packaging process. Second, the plate

is removed using a screwdriver. The residues of the glue that stuck chip and plate

together are removed by milling. The substrate is thinned carefully, using the mill, if

required.

3.2.2 Practical Setup

In order to realise the attack we developed a software able to control an XYZ table,

a camera and a frequency generator which control the laser pulse. The optical fault in-

jection platform is showed in figure 3.24. The laser we are equipped with is an acoustic

diode-pumped solid-state laser working on two different wavelengths, namely green

75

3. PRACTICAL ATTACKS ON AES

(at 532 nm) and infra-red (at 1064 nm). We use green laser to attack front-side decapsu-

lated circuits, while infra-red laser is generally used to attack back-side decapsulated

circuits.

Ethernet

USB

RS232

T
rig

g
er

C
o
ax
ial

Figure 3.24: Optical fault injection platform

The attacked device is the ATMEL ATMega128 microcontroller, in which a software

AES-128 was implemented using the SubBytes table stored in flash memory. Once

the front side decapsulation done thanks to the CMP “Centre Microélectronique de

Provence” we can see as shown in figure 3.26 the circuit is not a flip-chip, the next step

to successfully inject fault’s consist in localizing an area where the laser pulse can be

injected without perturbing the whole circuit. To perform a local attack our approach

is to scan the whole circuit by steps of 1µm and on every scanned point we change

the laser power and the pulse width while it’s ciphering. In fact using a laser at a

high power level can irreparably damage the device. Indeed several zones (a data or

address bus of the EEPROM) on the device are very sensitive and lead to complete

freeze black zone in figure 3.26. Only some areas happen to lead to exploitable faults.

76

3.2 Local Attack: Optical Fault Injection

3.2.3 Experimental Results

A first random attack with a laser of 1ms period and 2 µs pulse width on the sen-

sitive area, shows that we can induce single byte fault as needed for G. Piret and

J.-J. Quisquater attack [30]. The temporal location is shown in figure 3.25 where we

can see that almost all the rounds can be hit with a random localization.

 0

 2

 4

 6

 8

 10

 12

 14

 R
1

 R
2

 R
3

 R
4

 R
5

 R
6

 R
7

 R
8

 R
9

 R
10

%
 o

f f
au

lts

Round

Figure 3.25: Temporal localization with random hit

To get a fault in a precise round the laser pulse needs to be synchronized. Con-

sequently the AES code programmed within the ATMega is complemented with in-

structions allowing to output a trigger in order to launch the laser at a precise timing.

With the help of this synchronization we noticed that all the injected faults are ex-

ploitable except one among 10000. We attacked first the Byte S0 but by changing the

synchronization at the beginning of the 8th round it has been shown that other bytes

can be affected as well. We have characterized the faults by testing all the hypotheses

of the single byte error with the same software described in 3.1.3.

In order to realise a cartography of faults, we can collect 100 faulted ciphertext for

each point that we analyse to find occurrence of single faults. The result is shown in

figure 3.26, the cartography of the faults seems to be around an address or a data bus

of the Flash memory. Another important point is that the power level ≈ 10mW of the

laser does not affect the value of the fault injected, only the change of spatial location

around the sensitive area has an impact on the value of the faulted Byte.

77

3. PRACTICAL ATTACKS ON AES

Freeze

Fault Free

Freeze

SEU

MEU
0xd2

0x83

0x7d

Figure 3.26: Cartography of faults

3.3 Conclusion

In this chapter practical attacks have been implemented and allowed us to under-

stand the fault injection mechanism for both global and local faults. Two platforms

have been specifically designed for this objective, one being dedicated for global fault

attacks, the other for the local fault attacks. On each platform an home-made analysis

software has been developed. It permits the control and the evaluation of the fault

attacks.

The global fault injection is performed on the first platform. It is based on setup

time violation caused by underpowering or overclocking the targeted device. This

fault injection method is new, although particularly simple, in the academic commu-

nity. In this method, the time and location of the occurrence of the faults are not con-

trolled, making the attack particularly easy and cheap. It has been shown that both

ASIC and FPGAs are vulnerable to this attack by using the Piret’s algorithm. The sin-

gle fault distribution among the rounds and the Sboxes is dependant on the targeted

device implementation. The faults may be unexploitable if it does not occur at the

correct round. The experiments have shown that this happens seldomly. This attack

is relatively easy to thwart as simple countermeasures, as the use of voltage sensors,

should detect such attacks. It is the case in smartcards but not in many other electronic

78

3.3 Conclusion

systems embedding cryptography.

The local fault injection method is based on a laser platform with a target device

being a processor running a software implementation of AES. The laser power, the

shot location and time to trigger the shot were controllable. This allowed to perform

a fault cartography to determine the exploitable locations as well as the fault types.

Successful attack on AES have been obtained by using transient ”stuck-at” faults on a

specific area of the device.

In the next chapter we will present fault attack countermeasures. In particular a

new protection strategy based on resilience rather than detection will be introduced.

79

3. PRACTICAL ATTACKS ON AES

80

Chapter 4

Fault Attack Countermeasures

In this chapter, we will discuss fault attack countermeasures for the Advanced En-

cryption Standard. In the early years of fault tolerance in secure embedded systems,

analogue solutions were used. They consist in disseminating voltage, temperature,

light sensors on the surface of the chip, and any miscellaneous combination thereof.

The problem with this approach is that it requires a mixed design, which is much more

complicated from a CAD perspective than a purely digital design. Also, the analogue

parts are consuming a lot of power and area in the design. Those practical and eco-

nomical reasons explain why the analogue this solution is no longer sufficient against

the new threats.

Therefore modern designs resort to all-digital detection mechanisms. The generic

ones exploit some artificial redundancy. It can be either implemented in time, space or

information (code-based). All those strategies have been compared in [47], and shown

to be roughly alike. Depending on the cryptographic scheme to protect, some dedi-

cated countermeasures can also be implemented. The idea is to exploit some identities

of the algorithm in order to detect possible errors with a high probability. In a typical

encryption: the encrypted message can be decrypted and tested against the original

plaintext. The same applies to digital signatures: the signature can be verified before

being outputted. We underline that these verifications can represent a weakness per

se,notably in front of so-called safe errors attacks [48].

However, the resilience against faults attacks has seldom be proposed. At the op-

posite, resilience in observation attacks is a hot topic. Following the proposal of Paul

C. Kocher at CHES 2006 [49] to update the keys on a frequent and regular basis, ideas

for side-channel resilient schemes have come up, as illustrated for instance by the

81

4. FAULT ATTACK COUNTERMEASURES

“Provable Security against Physical Attacks” workshop [50]. Actually, many tech-

niques of reliability have been ported as such to security applications. Nonetheless the

objectives of reliability and security differ:

• Reliability requires ideally that either the computations are correct or that an

alarm is raised;

• Security requires that the computation result, if erroneous, carries no informa-

tion about secret involved in the computation. This is a more flexible require-

ment than for reliability. On the one hand, it allows the system to output a

false result C∗ instead of the correct one C, as long as it reveals no information

about the secret K. A formalization of security models under fault attacks can

be done, and has actually already been initiated for instance by this paper [51].

From an information-theoretic perspective, the requirement can be stated as “the

mutual information between (C, C∗) and K is null”. Rising an alarm can even be

a vulnerability in some contexts. For instance, the differential behavior analysis

(DBA [35]) manages to extract a key simply by knowing whether or not the com-

putation went well, provided the fault model is of “stuck-at” type and roughly

reproducible. Fault Injection Resilience ”FIR” has no concept of alarm, hence is

immune against such attack methods.

4.1 Fault Detection

4.1.1 Parity

In [52] the authors describe a solution for the low cost concurrent error detection in

the substitution-permutation network. The detection scheme is based on single par-

ity bit which is propagated through the non-linear and the linear layer of the ciphers.

Prediction through the linear layer can be very simple, reducing itself to a bunch of

XOR as shown in figure [52]. The prediction for the non-linear layer “SubBytes” can

be obtained by extending the tables storing the output values. This method can detect

only single faults, moreover, the fault coverage is not impressive, since it about 96.3%

for single stuck-at faults and the overhead is about 18%. In conclusion, this counter-

measure may not be considered as sufficient to protect against a malicious attacker.

This why we can add more parity bits in order to detect multiple faults as proposed

in [53] to improve fault coverage, but faults of even order may still be masked with a

non-negligible probability, the area overhead is 33%.

82

4.1 Fault Detection

SBOX PSBOX PSBOX PSBOX P

K K K K

ShiftRows

MixColumns

S S S S P(S)

P(S)+P(SB)

P(K)

Figure 4.1: Parity based countermeasure

4.1.2 Concurrent Error Detection

In 2002 Karri et al. have proposed a solution [3] based on the involution property

(inverse relationships that exist between encryption and decryption) to check if the

condition f−1(f(x)) = x is respected through the cipher. We can implement CED at

algorithmic level, round level or operation level as shown in Figure. 4.2. The most

straightforward methods of performing CED are Hardware Redundancy and Time

Redundancy. In Hardware Redundancy, two copies of the hardware are used con-

currently to perform the same computation on the same data. At the end of each

computation, the results are compared and any discrepancy is reported as an error.

The advantage of this technique is that it has minimum error detection latency and it

can detect both transient and permanent faults. A drawback of this technique is that it

entails at least 100% hardware overhead. In Time Redundancy, the same hardware is

used to perform both the normal and re-computation using the same input data. The

advantage of this technique is that it uses minimum hardware overhead, in the other

hand its drawbacks are that it entails 100% time overhead.

4.1.3 Cyclic Redundancy Check

In this solution [54], fault detection is based on the cyclic redundancy check (CRC)

over GF (28). This approach used the linear behavior of each operation in AES to de-

sign a detection scheme. This scheme only uses a (n + 1, n) CRC to detect the errors,

where n is 4, 8, 16 (depending on the implemented in 8-bit, 32-bit, or 128-bit archi-

tecture) and the parity of the output of each operation is predicted. Because AES is

83

4. FAULT ATTACK COUNTERMEASURES

MixColumns

ShiftRows

S

Round 1

Round Nr−1

InvMixColumns

InvShiftRows

InvSubBytes

SubBytes

Figure 4.2: Concurrent error detection

byte-oriented and its constants are ingeniously designed, the parity of the output can

be predicted from a linear combination of the parity of the input. In most cases, the

parity is the summation of the input data; also, the schemes are highly scalable and

are suitable for 8-bit, 32-bit, or 128-bit architecture. This is important because many

AES designs are either 8-bit or 32-bit architecture. Another advantage of the proposed

approaches is that the parity calculation between the encryption and the decryption

is symmetric because the parity generation in encryption is quite similar to the one in

decryption. This will bring some benefits while integrating encryption and decryption

into one circuit. This method can also be used to protect the KeySchedule.

4.1.4 Non Linear Robust Code

Karpovsky et al presented in [55] two different solutions. In the first architecture,

AES is devised into 2 parts non-linear and linear, where the non-linear block consists

in the multiplicative of the Rijndael S-box. In order to detect a fault in this part we

perform an inverse multiplication of the Sbox output, then we check only few bits(2 or

3) of the result in order to reduce the area overhead. The non-linear block is checked by

computing a partial GF product: in practice, the input and the output of the inversion

functional unit are multiplied together, and it is verified that the result is the field unit.

The linear layer is protected by exploiting that the sum of the bytes of a single column

is not affected by the Mixcolumns transformation, hence a 8-bit signature is used for

each column.

In the second proposal [4], a robust non-linear code is described, based on the

addition of two cubic networks, computing y(x) = x3 in GF (28), to the previous

84

4.1 Fault Detection

***** Slice Frequency Hardware Overhead

Non Protected 3856 53.29 Mhz 0%
Robust Nonlinear 5205 51.98 Mhz 35%

Table 4.1: Nonlinear Robust code implementation.

linear scheme. The method allows to produce r-bit signatures as shown in figure 4.3 to

detect errors. This solution provides good error detection properties against faults of

all multiplicities 22−r. The overall hardware overhead cost is about 35 % for a piplined

architecture of AES that we have implemented on Altera Stratix FPGA the result is

shown in Table 4.1.4. For parallel architecture like the one presented in [4] the total

area overhead is about 77%.

32 bits 32 bits

32 bits

R bits

R bits

32 bits

R bits

Key Round i

EDN

AES Round

Error

Key Schedule

Compressor
Linear

Compressor

Linear

P
re
d
ic
to
r Predictor

Linear

SubBytes/Inv

ShiftRows/Inv

X^3

X^3

MixColumns/inv

Figure 4.3: Robust code countermeasure.

85

4. FAULT ATTACK COUNTERMEASURES

4.1.5 Double-Data-Rate as countermeasure

In 2008 Maistri and Leveugle proposed a new countermeasure [56] against fault attack

on AES. This countermeasure is based on time redundancy using Double Data Rate

computation. This countermeasure uses both the rising and the falling clock edges to

compute twice the ciphertext. In fact, registers are duplicated in order to create two

parallel data paths, controlled by the clock edges, while the operation logic is shared

between the two paths as shown in figure 4.4. The area overhead is 36 % for a piplined

architecture and the throughput reduction is between 15% and 55%.

Cryptographic

Operation
Path1

CLK

Path2

Path1

Path2

Figure 4.4: Double-Data-Rate as countermeasure

4.1.6 Low cost countermeasure against setup time violation attacks

A straightforward countermeasure against non-invasive global attacks on various

circuits consists in inserting into the circuit some logic in charge of detecting abnor-

mal situations before the critical parts of the designs become faulty. For instance, the

figure 4.5 presents a setup consisting of a series of buffers followed by an inverter,

making up a delay line, inserted between two registers. The source register value

passes through the series of buffers, inverted by the inverter and then stored in the

destination register at the next clock cycle.

tchain (N buffers) > tcrit

00

OI
error
(I = O)

Monitoring DFF

0 0 1

Figure 4.5: Counter-measure based on the insertion of a monitoring logic with a propaga-
tion time larger than the critical path of the rest of the circuit.

86

4.1 Fault Detection

The source registers also receives the complement of its current value every clock

cycle. For a circuit working in nominal conditions, the outputs of the two registers

should be complementary. If this condition is violated, the circuit is faulty and should

be immediately stopped. The number of buffers are chosen such that the delay of

this chain becomes a little greater than the critical path of the targeted circuit. If the

operating voltage is reduced, the delay chain will be violated before the actual circuit

and an alarm is raised before the cryptographic parts of the design become faulty.

The chain should be implemented in such a way that it operates at the same clock

as the protected circuit and driven by the same source voltage. We implemented

this countermeasure on an Altera Stratix FPGA. Instead of using RTL buffer, we used

“lcell”, the stratix primitive cell. The advantage of using lcell is that the user is sure

that synthesis tool will not remove or shorten the length of the chain while optimiza-

tion.

We analyzed the chain in order to find a relation between the length of the chain

and the faulty voltage. Figure 4.6 shows the voltage of the setup violation in function

of the lcell number used in the chain. It is clear that the violation voltage increases

more or less linearly with the number of buffers.

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 40 45 50 55 60 65 70 75 80

V
ol

ta
ge

 [m
v]

Lcell [Number]

Lcell/Volatge

Figure 4.6: Chain Voltage/lcell.

87

4. FAULT ATTACK COUNTERMEASURES

Table 4.2: Classical fault detection characteristics.

Ciphertext incorrect?
Yes No

A
la

rm
ra

is
ed

?

Y
es Safe Problem

of
availability

N
o Problem

of
security

Safe

4.2 Fault Resilience

4.2.1 Comparison between Detection and Resilience

Neither detection nor resilience schemes are able to withstand all the faults. Indeed,

whatever the protection mechanism, we can theoretically build an attack (possibly

adaptative) able to replace an authentic value with another one. The goal of the coun-

termeasure is to make this substitution very chancy.

In this subsection, we investigate the side-effects of the countermeasures. The de-

tection strategy suffers from two drawbacks illustrated in Tab. 4.2. First of all, the

device can raise an alarm even if the result is correct. This is the case when the fault

happens on a variable that does not impact the output. This situation is of course not

true in general, otherwise the variable could have been removed from the implemen-

tation. However, in the course of a specific computation, this is possible. One trivial

example is the result of an AND gate, that has zero for one input, and that is faulted

on its second input. The fault will not be propagated and the result will be correct

irrespective of the fault taking place or not. However, if a detection mechanism raises

an alarm, then the whole computation will be stopped and adequate actions will be

undertaken, thus causing a denial of service (DoS) despite the absence of a security

problem. Second, detection mechanisms do not cover all the possible faults, and some

faults can propagate without being detected.

On the contrary, an ideal resilient scheme will feature:

• an optimal availability: false detections do not exist, since errors are not caught

but propagated.

88

4.2 Fault Resilience

• an optimal security: the fault generates a wave of erroneous data independent

of the previous pristine (and sensitive) values. Therefore no sensitive informa-

tion is propagated.

Also, in terms of coding and deployment guidelines, the advantages of resilience

as opposed to resistance (fault detection) are manifold. We can really claim that re-

silience is a new security approach to protect cryptography, because of these typical

improvements:

• In traditional designs, miscellaneous checks are scattered in the code. For in-

stance, ratification counters and baits are usual tricks to detect “blind attacks”.

No such extra operations are required in the context of fault resilience, since it is

not catastrophic that the IC fails. To be perfectly clear, such subterfuges are more

palliative than curative. They notably hinder automatic or formal code expertise,

although some applications would demand such a high confidence evaluation

level.

• When using detection, faults can also occur in the detection logic. But then, the

problem becomes eventually insolvable, since more and more logic is necessary

(by recursion, we need detection logic for the detection logic, itself being pro-

tected by detection, etc.)

• On top of that, the resilience relieves the designer from having to deal with the

reactions to the threat. These features are all in one very annoying for the chip

manufacturer; if they are activated unexpectedly they possibly ruin the device,

causing large costs to replace the defective cards. Now, the secure chip manufac-

turers are often balancing between activating the maximum level of countermea-

sures and risking card auto-scuttling (false positive)1. Such a dilemma does not

exist with fault resilience. The card starts to produce faulty results while under

stress (either because of an attack or because of a natural hazard), but returns to

its nominal operating conditions as soon as the stress disappears. Thus the risk

of having a permanent damage due to a false alarm is merely nonexistent. This

point is exemplified in Fig. 4.7

1Remember that early countermeasures against faults were intended to make up for the poor quality
card readers, that inappropriately injected unwanted electrical glitches in the smartcards! Also, Ross An-
derson and Markus Kuhn explained in [57] that the wild fluctuations in clock frequency that frequently
occur when a card is powered up and the supply circuit is stabilising, caused so many false alarms that
the [detection] feature is no longer used by the card’s operating system.

89

4. FAULT ATTACK COUNTERMEASURES

stress:

results:

device’s state:

no stress

functional non-functional

correct incorrect

functional

correct

no stressheavy stress

Resilience scheme:
time

stress:

detection:

device’s state:

no stress

functional non-functional (locked state)

nominal alert

no stressheavy stress

Detection scheme:
time

nominal

Figure 4.7: Suicide in case of fault detection (top), opposed to survival in case of fault
resilience (bottom) protection schemes.

4.2.2 Further Merits of the Fault Injection Resilience ”FIR”

One feature that gives to FIR a remarkable strength is its agnosticism with respect

to attacks. By making any faults independent at its source and during its propaga-

tion independent of the previous values, it merely prevents any attack at their root.

Therefore, new scenario schemes not envisioned yet are thwarted proactively, which

provides a forward security. Typically, most – if not all – attacks studied so far are dif-

ferential: they assume the attacker knows couples of correct & faulted computations.

Now, higher-order attacks could as well be possible: they would imply more than one

faulty result. Additionally, faulted ciphertext-only attacks could also be devised. FIR

fights all those future new threats that a pure DFA counter-measure would maybe fail

to cover.

4.2.3 Related Works

Earlier publications have noticed the interest of allowing cryptographic devices to

output faulty results, without jeopardizing their security. However, all those results

focused on asymmetric cryptography, and more specifically on RSA. A fault tolerant

90

4.2 Fault Resilience

RSA with CRT1 algorithm is given and formally proved in [58]. This article introduces

the concepts of “fault infective CRT computation” and “fault infective CRT recombination”.

the algorithm is designed to have the errors occurring during the “mod p” half prop-

agate in the “mod q” half, and vice-versa, thus denying the Bellcore [59] attack. This

idea is definitely a FIR, albeit crafted to the case of RSA and more specifically against

the Bellcore attack, whereas, the FIR scheme we present is algorithm-agnostic.

Other formal ways to secure sensitive algorithms have been proposed. For instance,

the paper [60] about “Algorithmic Tamper-Proof” (ATP) explains how to protect an

implementation, by the specification of security requirements on the circuit and by re-

stricting the power of the attacker. A cryptographic module implementing the FIR is

definitely not protected in the context described in paper [60]. We would like to make

clear that the FIR notion introduced applies to a system that has a trusted environ-

ment: the asset at risk is therefore only the cryptographic core. In other terms, the two

methods ATP and FIR do not consider the same security boundary.

4.2.4 Some Practical Implementations of FIR

The purpose of this section is to provide with some resilient cryptographic schemes.

For the sake of clarity, we focus on the protection of symmetric block encryption mod-

ules. Indeed, as they are deprived by construction from any algebraic properties, they

are also the most difficult ones to protect. The state-of-the-art in asymmetric algo-

rithms protection is very well advanced and formally proved. An overview, on the

example of RSA, can for instance be found in these papers [61, 62].

In the subsection 4.2.4.1, we provide with a protocol-level resilient scheme. The

subsection 4.2.4.2 rather introduces two gate-level solutions.

4.2.4.1 Formal Counter-Measures against Fault Injection Attacks

A differential fault analysis (DFA [63]) requires the same plaintext to be encrypted

twice with the same key. Common attack scenarios consider the case where the at-

tacker is able to inject one fault in only one of the encryptions. Then, she can deduce

information about the key using a DFA. Thus, DFAs are made impossible if an attacker

1The computations “mod n = p · q” are done separately “mod p” and “mod q”, and then combined
back. This processing – possible only for the owner of the private key – speeds up the overall computa-
tion by a factor of four.

91

4. FAULT ATTACK COUNTERMEASURES

is not able to request twice the same encryption. It is possible to devise such a scheme,

as typified by algorithm (8).

Algorithm 8: Probabilistic Encryption Algorithm built on top of AES.

Input : A plaintext x to be encrypted with the key k.
Output: A ciphertext with a random number.

Determine a random number r of the same size as x.1

Return the couple (y = AESk(x⊕ r), r).2

This algorithm (8) is considered as secure against DFA because the probability that

two encryptions are generated with the same plaintext is roughly speaking 2n/2, where

n is the entropy of x or r. Indeed, this is a classical instance of the birthday paradox.

We mention additionally that the scheme of algorithm (8) protects against a broader

class of attacks than only the DFAs. It is a random encryption scheme, that has the re-

markable property that the attacker cannot decide if the encryption is actually faulty

or not.

Unfortunately, this scheme is not secure in decryption. As a matter of fact, the

decryption algorithm corresponding to (8) is given in algorithm (9). This algorithm

can be called repeatedly without the AES inputs being modified:it is deterministic.

Algorithm 9: Deterministic Decryption Algorithm matching algorithm (8).

Input : A ciphertext under the form (y = AESk(x⊕ r), r) to be decrypted by
the AES key k.

Output: The plaintext x.

Decrypt y with key k: z = AES−1
k (y).1

Return z ⊕ r = x.2

This situation can however be exploited to protect low cost embedded systems, such

as smartcards or RFID tags, that communicate with a larger device, such as a reader.

It is fairly easy to protect the reader against fault attacks by “physical tamper-proof

measures”. For instance, the reader’s electronic circuits can be imprisoned into a mold,

protected with a pasted metallic cover and sealed into a box equipped with intrusion

detection sensors. The same level of sophistication is impossible for smartcard or tags

modules, because their form factor is extremely constrained in size (due to stringent

92

4.2 Fault Resilience

Easy to protect:

Difficult to protect:
⇒ Algorithm (6)

Probabilistic
encryption,
with blinding

at the output
at the input &

⇒ Algorithm (7)
and tamper-evident
reader

in a tamper-proof
decryption,
Deterministic

Figure 4.8: Probabilistic encryption and deterministic decryption

requirements about the mechanical strength edicted by ISO 7816-1). Therefore, the

attacker will most certainly prefer to attack the embedded system to extract the shared

secret key. Thus, if the reader plays the decryption (9) and the embedded system

the encryption (8), the unbalance between the tamper-resistance of the two devices is

made up by the opposite unbalance of the algorithm, in terms of resistance against

DFA. This strategy of reinforcing the security by algorithmic means of the weakest

element in the security chain is illustrated in Fig. 4.8.

Notice that if a handy homomorphous encryption algorithm HEA is available, a

completely secure encryption/decryption scheme can be devised. Let us denote by

HDA = HEA−1 the corresponding decryption algorithm and × the composition law

in the group of homomorphy:

∀y1, y2, HDA(y1 × y2) = HDA(y1)×HDA(y2) .

The encryption proceeds as per algorithm (8) using HEA instead of AES, whereas

the decryption consists in algorithm (10). This scheme can use for instance RSA or

Paillier’s cryptosystem [64] as underlying encryption primitive.

The resilient algorithms presented in this subsection 4.2.4.1 have the drawback that

the size of the ciphertext is doubled. This can be a limitation for instance in contactless

cards authentication, where the transmission time must remain short. Also in wireless

sensor networks the increasing of the data transmitted means a very high cost in terms

of power.

93

4. FAULT ATTACK COUNTERMEASURES

Algorithm 10: Probabilistic Decryption Algorithm matching (8) with HEA in-
stead of AES as underlying cipher.

Input : A ciphertext under the form (y = HEAk(x⊕ r), r) to be decrypted by
the HEA key k.

Output: The plaintext x.

Determine a random number s of the same size as y or r.1

Return HDAk(y × s)/HDAk(s)⊕ r = x.2

Nonetheless the algorithm (8) can be made more bandwidth and power-efficient if

the message x to encrypt is cut into several blocks.

In this case, alternative encoding, such as the probabilistic all-or-nothing transform

(AONT) described in [65, 66], could be taken advantage of. With respect to other prob-

abilistic symmetric encryption schemes (most of the times, the encryption involves a

random IV – which is short for initialization vector), this AONT scheme is original in the

sense that the randomness is not disclosed along with the ciphertext. This denies the

possibility to conduct a side-channel attack on the first round(s) of the encryption al-

gorithm. A similar scheme has also been described in [67]. As such, this all-or-nothing

scheme (in general, but also under the form of its “Probabilistic Signature Scheme”,

aka PSS, avatar [68]) is an implementation of FIR. In addition, it reduces the number of

blocks to be exchanged to the number of plaintext blocks plus one. In summary, algo-

rithm (8) combined with [65] has the benefit of bringing a SCA-resistance in addition

to the FIA-resilience. Certainly, this suggestion of protocol-level countermeasure can

be optimized, but we leave this topic open for future works [69].

4.2.4.2 Multi-Valued and Redundant Representation Logics

Multi-valued logics allow to encode more than one bit with one electrical state. It is

for instance used in some power-constant logic styles [70]. Let us consider the case of

an equipotential holding three states, denoted 0, 1/2 and 1, amongst which only the

two 0 and 1 are functional. Then, if a fault turns a valid value into 1/2, the provenance

has been forgotten.

The same goes for redundant logics, such as the m-out-of-n representations (for

0 < m < n). For instance, the 1-out-of-2 representation, also known as dual-rail with

precharge logic (DPL), admits two valid states, denoted by 01 and 10, and two invalid

94

4.2 Fault Resilience

Case #1 Case #2Case #1 Case #2

00

11

*

*

01 10 01 10

00 *

11 *0

1/2

1

0

1/2

1

* 0

1/2

1

0

1/2

1
*

Multi-valued logic Redundant logic

Figure 4.9: Two kinds of faults for 3-valued logic and for DPL,

states, denoted by 00 and 11. In the case one fault turns a valid token into an invalid

one, the value before the fault is lost. The effect of faults on these two logic styles is

summed up in Fig. 4.9. It clearly appears that the state after the fault is decorrelated

from the initial state, thereby establishing the resilience, for the relevant cases where

the data is sensitive.

Now, the resilience only works in the case the attacker fails to inject “false valid”

faults, i.e 0
∗
↔1 faults in multi-valued logic or 01 ∗

↔10 faults in DPL. Let us assume this

situation is rare. It seems all the more difficult to achieve in DPL because the attacker

must produce two antinomic concerted faults.

As will be exposed into greater details in Sec. 4.2.5, the resilience will build up each

time a valid false is produced along with invalid faults. In this case, the two faults

will propagate, and if the logic favors the generation of invalid instead of valid states,

then the diffusion of the netlist will encourage the invalid states to hide the false valid

states. This case is optimal if the logic meets this requirement:

“if any input is invalid, so is the output”.

This behavior is “saturating”; the faults will percolate in the netlist and the invalid

values will saturate most of the nets, thereby absorbing all the false valids that are

crossed. So the resilience is amplified by the diffusion in the netlist and the collab-

orative behavior of gates to favor invalid values propagation. This phenomenon of

invalid values (dominant) suppressing false valid values (recessive) is further detailed

in the next section 4.2.5.

95

4. FAULT ATTACK COUNTERMEASURES

4.2.5 Dual-Rail with Precharge Logic as a Global Countermeasure against
Implementation-Level Attacks

DPL styles are solutions primarily designed to protect a cryptographic implemen-

tation against side-channel attacks. However, it has been noticed that these styles can

also natively withstand some perturbation attacks [71, 72, 73, 74]. Unlike traditional

counter-measures against fault attacks, the DPL does not implement a protection, but

is rather resilient. This means that faults are not caught, but rather left free to cas-

cade their effect, knowing that eventually their observable consequences will not be

harmful.

4.2.5.1 Requirements for Simultaneous SCA and FIA Protection

In order to better illustrate the close relationship between observation and pertur-

bation attacks, we need to notice that security perimeters depend on the application.

For instance, in an ISO/IEC 7816 compliant smartcard, several security violation situ-

ations can be encountered.

• The critical part is the memory in case of an external authentication. Indeed, if

the memory can be corrupted, then any rogue reader can be forced to be seen as

authentic. Here, there is no secret to retrieve, but simply an invalid state to be

setup by force.

• However, during an internal authentication, the smartcard uses its cryptographic

secret. Therefore, the risk for the smartcard is to have its key retrieved illegiti-

mately. Differential fault attacks and side-channel attacks are two tools available

to recover the key. In addition, as the protection against attacks is expansive, the

designer will try to partition the cryptographic block at risk. Typically, when it

implements symmetrical encryption, this block can be split into:

– a control part, subject to fault attacks, such as round reduction attacks [75],

but leaking no sensitive information as the algorithm is supposed to be

known by the attacker (common assumption with Kerckhoffs’ law), and

– a data processing part, subject to both fault attacks, such as DFAs [30, 63],

and side-channel attacks, such as DPA [16].

The overall requirement for security against implementation-level attacks in a smart-

card is depicted in Fig. 4.10. This block-diagram shows in red the security boundary

96

4.2 Fault Resilience

potential
targets of
fault
attacks

potential
targets of
side-channel
attacksUART

RAM

Flash

CPU crypto-

data-

clk

rst

vdd

gnd

io

engine
control

path

engine
crypto-

smartcard

in
te

rn
al

b
u
s

Figure 4.10: Susceptible organs of a smartcard in two representative sensitive operations
(EXTERNAL AUTHENTICATE and INTERNAL AUTHENTICATE). Typically, the cryptogra-
phy will be triple-DES or AES.

for fault attacks and in cyan that for SCAs. It appears clearly that some organs shall

be protected only against fault attacks, but that all the organs that shall be protected

against SCA must also be protected against FIA. This is an advanced question, all

the more important as it is in this part of the design that the largest overheads are

expected.

The countermeasures against SCA include:

• Information masking, implemented with random splitting of data into shares,

• Information hiding, implemented with DPL.

More information about these two categories of protection against SCAs can be found

in the “DPA book” [76], respectively at chapter 7 and 9.

Amongst this array of possible protections, DPLs [77, 78] are of particular interest

because they have native protections against DFAs.

We will thus focus in this section on the combined DFA and SCA protection of the

datapath of cryptographic modules; The type of fault attacks we consider are those

described in [79], the two most famous of them being that of Biham & Shamir [63]

(DES) or Piret & Quisquater [30] (AES), enhanced by Tunstall in [34].

97

4. FAULT ATTACK COUNTERMEASURES

NULL0

VALID1

NULL1

VALID0

Precharge:

Evaluation:
(output disclosed)

Figure 4.11: DPL protocol.

Another motivation to focus on the crypto-datapath is that it is usually the most

complex design part; therefore it represents the largest area and contains the longest

critical timing paths. This explains that local faults are more likely to target the datap-

ath because of its predominant surface, and that global faults also affect preferentially

the datapath that is most tight in meeting the setup time constraint.

4.2.5.2 Previous Art about DPL in the Presence of Faults

We use the following notations for the DPL representation. Every logical variable a

is represented by a couple (af , at) of wires, that carry two values. The semantic of the

four possible combinations is detailed below.

• a is VALID if af ⊕ at = 1 . More precisely, VALID .
= {VALID0, VALID1} or

VALID .
= {(1, 0), (0, 1)}.

• a is NULL if af ⊕ at = 0 . More precisely, NULL .
= {NULL0, NULL1} or

NULL .
= {(0, 0), (1, 1)}.

The two NULL states are used alternatively with the VALID ones as precharge stage,

so that the next evaluation starts afresh from a known state. The DPL protocol is

recalled in Fig. 4.11.

There are two flavors of DPL, depending they feature the early propagation effect

(named EPE in the literature, discovered independently by [80, 81]) or are protected

against it. The definition of those variants can be summarized by the following condi-

tions to be fulfilled by all the instances f :

• DPL w/ EPE: ∃a VALID, f(a, NULL) = VALID;

• DPL w/o EPE: ∀a VALID, f(a, NULL) = NULL.

98

4.2 Fault Resilience

In DPL, only results on evaluation are observable, because return to precharge faults

are not outputted. We adopt the following faults typology on DPL:

• Asymmetric faults: {VALID0, VALID1}
↓
−→NULL0, triggered by global pertur-

bations (e.g. caused by a setup time violation due to power/clock glitch, over-

clocking or under-powering);

• Symmetric faults: {VALID0, VALID1}
↓ or ↑
−→ {NULL0, NULL1}, triggered by local

perturbations (e.g. caused by injection of high energy laser light, electromagnetic

field or particles beam).

4.2.5.3 DPL w/ EPE is Protected against Multiple Asymmetrical Faults

WDDL [82] is a typical DPL w/ EPE style. In this logic, the AND function is defined as:

(yf , yt)
.
= (af + bf , at · bt). We use the following color code in Boolean truth tables:

• gray: the regular truth table in the absence of faults (i.e. the intended functional-

ity),

• purple: anticipated values (evaluation even if not all inputs are valid).

Otherwise, green and red still represent respectively correct and incorrect behaviors

or properties.

As shown below, WDDL can propagate correct valid results in the presence of

asymmetrical faults.

❍
❍

❍
❍

b
a

VALID0 VALID1 NULL0

VALID0 VALID0 VALID0 VALID0 (EPE)
VALID1 VALID0 VALID1 NULL0
NULL0 VALID0 (EPE) NULL0 NULL0

This behavior is positively resilient. It is that of the Unitialized value in VHDL

enumerated type ieee.std_logic_1164.std_ulogic, recalled below:

❍
❍

❍
❍

b
a

’0’ ’1’ ’U’

’0’ ’0’ ’0’ ’0’

’1’ ’0’ ’1’ ’U’

’U’ ’0’ ’U’ ’U’

where the tokens {VALID0, VALID1, NULL0} implement respectively the items {’0’,’1’,’U’}.

99

4. FAULT ATTACK COUNTERMEASURES

These conclusions can be challenged in the case of a coupling of the fault injec-

tion analysis with a side-channel analysis. For instance, the fault sensitivity analysis

(FSA [36]) can, under some circumstances, exploit the unbalance within the two wires

making up a dual-rail pair. However, the FSA has only been demonstrated as partially

successful on a WDDL chip.

Actually, this FIA-resistance solution has already been sketched in [83]. This article

introduces two methods to protect circuits against FIAs.

The first one consists in resisting to an arbitrary number of “stuck-at-0”1. Those “re-

set faults” correspond to our “asymmetric faults”. However, this publication is overly

conservative; invalid tokens are generated even if the data is not tainted. Also, the

authors of [83] add a series of cascade gates at the output of the circuit. Their role is to

turn all other valid tokens to invalid ones. Additionally, they request that the circuit

commits suicide at this point (when the ciphertext is all NULL, noted “⊥” in [83]).

Our key remark is that those two requirements are actually overkill. Indeed, the over-

all security is not jeopardized if some valid and some invalid tokens are outputted;

therefore, we can save the cascade stage. In addition, we insist that it is then useless

to permanently destroy the circuit: as we know the attacker only gets faulted crypto

results that do not convey any information about the sensitive variables, it is safe to

continue without erasing the secrets, that are merely not compromised. Therefore, the

scheme we present is more user-friendly, in the sense it keeps the application up-and-

running unless a fault is indeed influencing the result.

The second countermeasure against arbitrary faults in [83] is more ad hoc, since one

needs to know the maximum number of faults an attacker can inject to dimension

the level of protection (based on an adaptively sized countermeasure). In the next

paragraph, we study FIR in the presence of multiple symmetric faults.

4.2.5.4 DPL w/ EPE is not Protected against Multiple Symmetric Faults

To start with, we assume neither a
∗
→a nor b

∗
→b happens. However, even in this fa-

vorable case, WDDL can generate incorrect false results. They are presented by skulls

(symbol: ❆) in the following table.

1...or equivalently “stuck-at-1” for all the faults.

100

4.2 Fault Resilience

(a): 1 NULL stopped (b): 2 NULLs turned into 1 false VALID

aF : 1
∗
→ 0

bF : 1

aT : 0
bT : 0

OR

AND

yF : 1
∗
→ 1 [no change]

yT : 0

aF : 0
∗
→ 1

bF : 0

aT : 1
bT : 1

∗
→ 0

OR

AND

yF : 0
∗
→ 1

yT : 1
∗
→ 0

Figure 4.12: Two DPL w/ EE drawbacks to fight DFAs, illustrated on the example of a
WDDL AND gate. In this figure and in the subsequent ones, the asterisk character (*)
symbolizes the faults.

❍
❍

❍
❍

b
a

VALID0 VALID1 NULL0 NULL1

VALID0 VALID0 VALID0 VALID0 (EPE) VALID0 (EPE)
VALID1 VALID0 VALID1 NULL0 NULL1
NULL0 VALID0 (EPE) NULL0 NULL0 VALID0 (❆)
NULL1 VALID0 (EPE) NULL1 VALID0 (❆) NULL1

For instance, the twain simultaneous errors:

1. a = VALID1
∗↑
−→ a = NULL1 and

2. b = VALID1
∗↓
−→ b = NULL0

trigger a dreadful transformation: VALID1 ∗
−→ VALID0.

Therefore, because of EPE, logical inversions f(a, b)
∗
→f(a, b) can occur, which makes

FIAs (such as DFAs) possible.

The implication is that DPL in itself does not provide a good protection against

symmetrical faults. As a matter of fact, it can filter out a NULL (see Figure 4.12(a))

and generate a faulted VALID from NULL tokens (see Figure 4.12(b)). In contrast, the

DPL styles that are EE-free propagate the NULL unconditionally; this feature is even

part and parcel of the DPL w/o EE specification. Additionally, the NULL (behaving

like an ’X’) always absorbs other VALID faults, as shown in Figure 4.16.

4.2.5.5 DPL w/o EPE is Protected in front of Multiple Symmetric Faults

Now, the DPL w/o EPE styles are protected against multiple symmetric (hence asym-

metric) faults. This is shown in the table below.

❍
❍

❍
❍

b
a

VALID0 VALID1 NULL0 NULL1

VALID0 VALID0 VALID0 NULL0 NULL1
VALID1 VALID0 VALID1 NULL0 NULL1
NULL0 NULL0 NULL0 NULL0 NULL1
NULL1 NULL1 NULL1 NULL0 NULL1

101

4. FAULT ATTACK COUNTERMEASURES

Remark that if we call:

• ’0’: VALID0,

• ’1’: VALID1,

• ’X’: NULL = {NULL0, NULL1},

then we have the same behavior (i.e. “propagate always”) as VHDL. This is illustrated

below:

❍
❍

❍
❍

b
a

’0’ ’1’ ’X’

’0’ ’0’ ’0’ ’X’

’1’ ’0’ ’1’ ’X’

’X’ ’X’ ’X’ ’X’

Finally, we note that even if a few mutations a
∗
→a exist for some variables a, it is

very likely that the ’X’ wave caused by a
∗
→NULL eats them. As detailed in the next

sub-section, the recessivity of ’X’ over NULL, coupled with the avalanche of ’X’

caused by the diffusion property of the logic, accounts for that.

4.2.5.6 Revisiting the Comparison Resilience vs. Detection

One can argue that the DPL used as a FIR is in fact a very low-grain fault detection

scheme. Indeed, FIR shares with the detection strategy the fact that redundancy is re-

quired. However, it is coupled to a diffusion that makes the detection at one stage take

advantage of the rest of the stages. This detection is propagated in a wave, that con-

stitutes a collaborative strategy that is absent from the pure detection schemes. This

difference is illustrated in Fig. 4.13. In traditional detection schemes, the computation

(noted: C) and the detection (noted: D) logics are dissociated. In particular, the de-

tection blocks do not communicate. In the DPL FIR scheme, the computation and the

detection are merged (noted: C+D) and this information propagates downwards the

netlist.

There are two properties of DPL that help resilience:

• The redundancy of the netlist. At an n-bit output of a combinational block, only

2n amongst the 22n possible ones are valid.

102

4.2 Fault Resilience

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

2

2

2

2

a[1]

a[2]

a[n-1]

a[n]

Resilience scheme:

na[1:n]

Detection scheme:

alarm alarm

C+D

C+D

C+D

C+D

C+D

C+D

C+D

C C C

DDD

Figure 4.13: Difference of detection and resilience working factors, represented on an
example netlist.

103

4. FAULT ATTACK COUNTERMEASURES

• The diffusion within the netlist, which is characteristic to the cryptographic al-

gorithms. This property is especially true at the netlist level for logics free from

EPE [74]. Indeed, the fanout of each gate is double w.r.t. separable logics such as

WDDL [82].

Current detections schemes work independently of the computation and in a non-

collaborative way. At the opposite, FIR consists in intricating the detection agents

with the computation and to tightly interconnect them. The objective is to trigger a

proliferation of tamper-evidence logic markers (NULL tokens).

4.2.6 Cost Estimation of FIR versus Traditional Approaches

The traditional approach to counteract implementation-level attacks is a composition:

• first use detection schemes, that can be inserted early at the RTL of the algo-

rithm [84];

• then map this FIA-aware RTL description into a SCA-proof logic style. Indeed,

the detection logic manipulates sensitive variables, and might itself leak secrets [85].

Therefore, it deserves a protection against SCAs. In a similar fashion, the study

reported in paper [86] confirms that gate-level countermeasures against FIAs do

not reduce the information leakage.

This implies that the overhead of the FIA and SCA countermeasures get multiplied.

A typical overhead for FIA countermeasures can be found in [47]. Let us consider

the case of a non-linear code, such as [87], that is suited to detect multiple faults. Its

overhead is 77 % in area and 15 % in throughput.

As such, those performance losses are more affordable than those required to thwart

SCAs. For instance, WDDL incures an increase of 3.1 in area and 3.9 in through-

put [88].

The combination of [87] and [88] results in an increase of 5.5 in area and 4.5 in

throughput.

Those results are to be contrasted with the FIR approach using an EPE-proof DPL

style. This style already merges FIA and SCA countermeasures. The reported over-

heads for two of those logics are given in Tab. 4.3.

104

4.2 Fault Resilience

Table 4.3: Performance overhead of different SCA+FIA countermeasures.

Strategy Detection + DPL Resilience = DPL
Countermeasure [87] + [88] DRSL [101] IWDDL [102]

Area 5.49 × 2.56 × 4.34 ×
Throughput 4.49 × 2.00 × 1.53 ×

It clearly appears that using a symbiotic SCA+FIA countermeasure is more effi-

cient than combining two countermeasures one on top of each other. We notice that

those alternative “DPL without EPE” logics yield similar performances: iMDPL [89],

STTL [90, 91], SecLib [92, 93, 94, 95] and WDDL w/o EPE [74] and BCDL [96, 97].

We also attract the reader’s attention on the fact that asynchronous logics, espe-

cially the quasi-delay insensitive (QDI) style [71, 75], can be implemented in DPL [98].

Now, asynchronous logic is designed to remain functional irrespective of the envi-

ronmental variations. Concrete work [99] on this topic had been carried out in the

framework of the G3Card project [100]. However, the G3Card consortium only de-

tects NULL1 as an error marker in a DPL protocol where the only allowed spacer is

NULL0. This signalization is restrictive and do not consider propagation of errors;

instead, an instantaneous detection is suggested, which seams hard to put in practice

in real-time given that such checks shall be done for each and every gate of the design.

Moreover, asynchronous QDI logics have a drawback in terms of resilience: each gate

being sequential in nature (due to the necessary handshakes with the upstream fanin

and downstream fanout gates), a fault can cause a deadlock, should the fault cause

a protocol violation (i.e. the transitions depicted in Fig. 4.11 are not respected). To

relieve the circuit from this deadlock, the asynchronous circuit shall be reset. Thus the

resilience provided by an asynchronous circuit is in-between the two cases illustrated

in Fig. 4.7. The card is not destroyed permanently, since a reinitialization relaunches

it; however, the system must detect that the logic hung (perhaps with the help of a

watchdog) in order to restart it. Despite of these discrepancies with the FIR concepts,

we note that QDI still increases the number of situations where the circuit remains

functional, while remaining “resilient” if the external conditions are too harsh.

Eventually, we wish to underline that these overheads are not that dramatic when

contrasted with those encountered in other domains that also require dependability

105

4. FAULT ATTACK COUNTERMEASURES

Figure 4.14: Memorization element in TMR.

features. Typically, the avionic industry makes use of techniques such as triple modu-

lar redundancy (TMR) to thwart single event upsets (SEUs). An example of a memo-

rization element in TMR style is given in Fig. 4.14 as implemented in Xilinx “XTMR”

solution [103].. The amount of logic involved in this structure is by far larger than

that required in the DPL counter-part, depicted in Fig. 4.15 although four times larger

than an unprotected flip-flop, this structure is nevertheless much smaller than that in-

volved in TMR logic (see Fig. 4.14). This structure has two stages to accompany the

evaluation↔ dynamic of the DPL protocol. We notably insist that such a construction

is naturally immune to the attack presented in [104], that exploits an optimization of

some DPL style: when the redundant dual-rail state is stored as one single bit, an ex-

ploitable leakage appears at the flip-flop level. To conclude this comparison between

figures 4.14 and 4.15, we emphasize that the overhead figures shall not be considered

in absolute, but relatively to the protection goal that is intended to be achieved.

106

4.2 Fault Resilience

at yt

yfaf

CLK

Figure 4.15: Memorization element in DPL.

4.2.7 Associating Three Protections to Reduce the Probability of a Success-
ful FIA

Some faults in DPL circuits do not disclose any information about the faulted sen-

sitive variable. However, in the case "false valid" are generated, the problem becomes

different. This can happen in two problematic cases:

1. When the absorbing fault is too deep in the logic cone w.r.t. the false valid, as

shown in Fig. 4.16, where f is a block with perfect diffusion, such as a substitu-

tion box implemented in logic. In this case, if the logic cone covered by the ’X’

happen to yield a correct value, then a valid fault is generated; unless the ’X’

are checked for at the output.

2. When a valid false occurs on one column of the state matrix alone, but that an

’X’ is generated on another column (knowing the two columns are not interfer-

ing in AES last round). In this case also, the faulty behavior can be observed by

checking the validity of all the output bits.

To fight these remaining risks, three protections can be associated so as to increase

the security level:

1. DPL, as detailed in the previous section.

2. Detection of NULLs at the end of the computation.

3. Regular detection schemes, such as coding.

107

4. FAULT ATTACK COUNTERMEASURES

VALID
∗
→

VALID∗

VALID
∗
→

NULL
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

F
u
n
ct

io
n

f

output =
f(input)

input

faults

The output is mixed NULL and VALID∗

absorption
boundaries

’X’

style
DPL w/o EPE
implemented in
AES SubBytes)

Combinatorial
block (e.g. one
sbox, such as

Figure 4.16: Multiple faults, where the false valid is not completely hidden by the ’X’
wave.

4.2.8 Applicability of Resilience with Certification Procedures

The two main certification schemes of security products are the FIPS 140 and the

common criteria. We examine in this section if the resilience can be applied with the

current version of those standard, or if the standards are too conservative.

4.2.8.1 NIST FIPS 140-3

The FIPS 140 [105, 106] formulates security requirements for cryptographic modules.

It defines four levels of security, the highest of which is referred to as “security level

4”. The functional security objectives of FIPS 140 are defined in §3. It includes those

two requirements:

1. to detect errors in the operation of the cryptographic module and

2. to prevent the compromise or the modification of sensitive data and SSPs (Sen-

sitive Security Parameters) resulting from these errors.

The “resilience” protection discussed in this thesis definitely fulfills the second re-

quirement. However, not all resilient schemes comply with the first requirement. For

instance, using the randomized homomorphic encryption (Algorithm 8), the errors

cannot be detected. The partial resilience of dual-rail type countermeasure can allow

108

4.3 Case study on WDLL

a detection of the fault. However, the security of this scheme is ensured even if there

is no detection. This means that FIPS-140 standards 2 & 3 are not resilience-ready,

although they express this idea.

More precisely, the exact statement of the requirements is detailed in §4.5.5 (140-

2 [105]) or §4.6.5 (140-3 [106]). For the security level 4, the cryptographic module

shall either employ environmental failure protection (EFP) features or undergo en-

vironmental failure testing (EFT). The EFP consists in a constant monitoring of the

environment (temperature and voltage) whereas EFP is an a priori characterization

of the perturbation consequences. In both cases, the protection circuitry shall either

(1) shutdown the module to prevent further operation or (2) immediately zeroize all

secret plaintext and private cryptographic keys and SSPs.

Such authoritative and irremediable actions could have been prevented using a re-

silience scheme, without compromizing the device security. Therefore, we find that

FIPS 140-{2,3} standards are too strict, resulting in potential inconveniences from the

user perspective if non malicious faults causes the module shutdown or zeroization.

4.2.8.2 Common Criteria

The Common Criteria (CC) [107] is a framework that permits comparability be-

tween results of independent security evaluations. It is an international standard

ISO/IEC 15408:2005. The CC in themselves do not specify security requirements. In-

stead, a “target of evaluation” (TOE) must meet “security targets” (ST). One or more

“protection profiles” (PP) must be respected by the ST. The security requirements are

expressed in the PPs, whose structure is standardized but whose content is up to

the designer. This flexibility allows a designer to tailor the PP to his (or that of his

client) security objectives. Therefore, the CC readily accepts the resilience as a solu-

tion against fault attacks.

4.3 Case study on WDLL

4.3.1 Wave Dynamic Differential Logic

Power consumption of a standard CMOS cell is dependent on the transition of its

input. Thus for a DPA-resistant design, a possible solution could be to introduce a

109

4. FAULT ATTACK COUNTERMEASURES

family of DPA resistant cells. In a WDDL cell [82], one transition per cycle is observed,

which is favourable for a DPA resistant logic style.

WDDL uses true and false representations of each signal (I/O of each cell). To make

the power consumption fairly uncorrelated to the processed data, it is necessary that

there should be the same number of transitions every cycle. This condition is fulfilled

by alternate cycles of precharge and evaluation. In the precharge phase all the signals

are charged to the same level (e.g. 0 in WDDL) and during evaluation exactly one

of the two complementary outputs is evaluated (=1). Figure 4.17 shows the timing

diagram of WDDL AND gate. We can see that during precharge all signals are put to

logic 0. During evaluation, exactly one of the two complementary inputs and outputs

evaluates to 1.

Precharge Evaluation

bt

yt

bf

yf

af

at

PRE/EV AL

Figure 4.17: Timing diagram for a WDDL AND gate.

In DPL, glitches make the design vulnerable to attacks [108]. Indeed, without spe-

cial attention, if the inputs arrive at different moments, glitches can be observed. To

avoid glitches it is necessary that all the gates in the design should be positive in

nature. To ensure this in WDDL, the design is synthesized with a library consist-

ing of only positive gates (like AND, OR) [109]. As shown in figure 4.18, a WDDL

AND gate consists of an AND gate (G) and a complementary OR gate (G∗, satisfying

G∗(x)
.
= G(x)).

110

4.3 Case study on WDLL

For sequential circuits, each flip-flop is replaced by a pair a flip-flops. This double

flip-flop allows the precharge wave to propagate through the whole design as all the

gates are positive. It has to be noted that inverters in WDDL are implemented by

crossing the true and false signals of the same variable.

A point worth noting in figure 4.18 is that one flip-flop in the single-rail design is

replaced by four flip-flops in the WDDL design. This is explained as follows. During

the precharge phase, the combinatorial part of the circuit will be discharged to 0 and

this 0 is stored to the first of the two flip-flops. The second flip-flop will store the result

of the last computation. In the evaluation phase, the value stored in the second flip-

flop serves as input and the output is stored in the first flip-flop. In the mean while,

the zero stored in the first flip-flop is shifted to the second flip-flop to allow proper

precharge of the circuit ahead in the next cycle. This phenomenon happens in both

true and false rail. Thus the number of flip-flops is quadrupled in the WDDL design.

G

G

Single−rail

Dual−rail

Q
B

A

Qf

Qt
Bt

At

Af

Bf G∗

Figure 4.18: WDDL building block.

4.3.2 Design Flow for WDDL Implementation

As every digital system, cryptographic coprocessors can be separated into control and

datapath parts. As the secret key is used only in the datapath part, leakage from the

111

4. FAULT ATTACK COUNTERMEASURES

control part is not crucial. Thus to assure security of the design it is sufficient to imple-

ment only the datapath in WDDL. This will also save area as WDDL takes more area

on the FPGA than a single-rail design. The design flow to implement a cryptographic

coprocessor on an FPGA is shown in figure 4.19. The datapath is first synthesized

using an ASIC synthesizer taking advantage of a library with only positive LUTs (the

FPGA synthesis tool does not provide enough options to limit the library therefore

we use an ASIC synthesizer). As the number of positive functions with four inputs

is fairly large (166), the library size is reduced by keeping only one function for any

equivalence class where the inputs or the output are logically inversed and the inputs

are swapped. Indeed, the inversions are dealt with externally from the LUT with wire-

crossings (typical transformation of WDDL), and the FPGA mapper tools are able to

change the LUT mask to make up for input pins permutations. Then the output netlist

is processed using a custom tool (called vDuplicate in figure 4.19) which converts a

single-rail netlist into a WDDL netlist. The controller is then connected to the WDDL

datapath using a wrapper. The FPGA vendor tool does synthesis, mapping, placing &

routing for the whole design on the FPGA.

Figure 4.19: WDDL design flow.

112

4.3 Case study on WDLL

4.3.3 Experimental Results

In order to evaluate DPL, we carried out a setup time violation attack on the WDDL

impelementation of AES. As for the setup in chapter 2, we keep the key fixed and we

change randomly messages. We decrease the voltage by a step of 0.5 mV and for each

voltage the triple K,M,C is recorded. We collect 120.000 encryptions. For the WDDL

version of AES, the SuBbytes was implemented in GF 4. Once analysis done, we can

see the results in the figure 4.20. Less than 2% of the detected faults are single and

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1900 1910 1920 1930 1940 1950 1960

O
cc

ur
re

nc
e

[%
]

Voltage [mV]

Faults
Single errors

Multiple errors

Figure 4.20: occurrence of faults in wddl version

all of them fall in the last round of AES as shown in figure 4.21. These faults are not

exploitable and thus the key cannot be retrieved using Piret attack. The reason why all

the faults are seen in the last round is as follows. When an XOR gate is implemented

using positive logic, it is a combination of AND, OR gates and inverters (for inverted

inputs). These inverters yield a mixture of true and false part of the design as per the

definition of XOR. Thus a fault occurring in a true part is further corrupted by mixing

with the false part and vice versa. The MixColumns operation involves a lot of XOR

operations.

Therefore a MixColumns operation after a fault will corrupt the fault which cannot

be detected. Since the last round does not have MixColumns, the faults are detected

but not exploitable. One interesting observation was that every time a byte is affected

113

4. FAULT ATTACK COUNTERMEASURES

by a fault, a null byte in the ciphertext was reflected at its expected place. This means

that even after successfully injecting the fault during encryption and precisely know-

ing the location of the fault, the output does not give any information which can be

acted upon to retrieve the hidden secrets. Therefore, a WDDL design is naturally se-

cure against setup time violation faults.

 0

 20

 40

 60

 80

 100

 R
10 R
9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f f
au

lts

Round

Temporal localization

 0

 20

 40

 60

 80

 100

 S
15

 S
14

 S
13

 S
12

 S
11

 S
10 S
9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f f
au

lts

Sbox

Spatial localization

Figure 4.21: Temporal and Spatial localization of single faults for the Wddl implementa-
tion

The output of faulted ciphertexts is illustrated in Tables 4.4, 4.5, 4.6.

Table 4.4: Single fault in round 10.

key 00000000000000000000000000000000

message 093c7b78f4fa44baff2f67fc2d259dd0

ciphertext 96296994aba80db3ea81b491230985db

ciphertext∗ 96296994aba80db3ea81b491230900db

Table 4.5: Single fault in round 9.

key 00000000000000000000000000000000

message c4968c64c72bbcb88acb744253f51be7

ciphertext 43720bee23f577a8311bf769f58e97e7

ciphertext∗ 00720bee23f57700311b0069f50097e7

114

4.3 Case study on WDLL

Table 4.6: Fault strictly before round 9.

key 00000000000000000000000000000000

message be6d1ddeb2406e9a8546efc65284c4e7

ciphertext fa73bc0ffb30e9209ec8bfe8f77b96f4

ciphertext∗ 00000000000000000000000000000000

4.3.4 Theoretical Fault Analysis on AES in WDDL

The purpose of this section is to show that the fault model corresponding to a setup

violation time has the consequence that all DFAs on AES in WDDL are impractical.

In an under-powering or overclocking attack, faults arise from a setup time vio-

lation [110, 111]. Authors of paper [42] argue that the effect of a glitch on the power

supply increases the propagation times of all the signals, which makes this disturbance

similar in effect to under-powering the global chip. As the WDDL protocol with a (0,

0) spacer starts in evaluation step with all the nodes voltage equal to zero, the eval-

uation consists in propagating rising transitions along exactly half of the wires. If by

any means, an attacker manages to trigger a setup time violation, the consequence is

an asymmetric bit flip: only 1 to 0 errors are considered. Therefore, the consequence

of the fault is to leave (at least) one dual-rail signal in its (0, 0) precharge state, while

the others couples of wire are in legal (0, 1) or (1, 0) evaluation state.

The error is likely to happen for a few dual-rail signals if the stress level is low.

This invalid data representation will then propagate through the next round logic.

Four cases are possible:

1. the protocol error can turn into functional errors on the data or not, and

2. the protocol errors can vanish while flowing through the combinatorial logic

(self protocol healing), or, at the opposite, be amplified.

The next subsection shows that functional errors occur, corresponding to bits era-

sure. In addition, the erasure rate increases: one single error at the entrance of a round

will trigger many invalid precharge bits to be generated, and we show that in a rea-

sonable cryptographic algorithm (no computation is done uselessly), the erasure rate

increases. The consequence is that, after some percolation in the combinatorial logic,

most of the values are erased.

115

4. FAULT ATTACK COUNTERMEASURES

4.3.4.1 Propagation of Faults

We start this analysis by the example of two representative gates: the AND and the

XOR functions each having two inputs that we note a and b. We assume in this study

that the fault occurs on input a. In evaluation, instead of having (at, af) = (0, 1)

when a = 0 and (at, af) = (1, 0) otherwise, we simply have at = af = 0, which can

also be expressed as a=NULL. The logic that implements the AND gate is (ct, cf) =

(at · bt, af + bf). When a is faulty, the Tab. 4.7 function degenerates to AND(a∗, b) = 0

if b = 0, and NULL otherwise.

Table 4.7: Modified functionality of an AND gate in the presence of erasure faults.

Correct computation
a b at af bt bf ct cf c

0 0 0 1 0 1 0 1 0
0 1 0 1 1 0 0 1 0
1 0 1 0 0 1 0 1 0
1 1 1 0 1 0 1 0 1

Faulted computation
a b at af bt bf ct cf c

NULL 0 0 0 0 1 0 1 0
NULL 1 0 0 1 0 0 0 NULL

The same analysis can be carried out for the WDDL XOR gate in figure 4.22. The

logic that implements the WDDL XOR gate is (ct, cf) = (at·bf+af ·bt, (af+bt)·(at+bf)).

This equation shows that if we have a faulty input (at = af = 0) then the output will

be NULL (ct = cf = 0) . Thus the XOR gate has a maximum error propagation since

the error is propagated for any value of b as shown in table 4.8

Now, for any function f , we have this property: The output of f is correct when f

does not depend on the faulty input, and erased otherwise.

Let f be a positive Boolean function with inputs (a, b) then its WDDL equivalent F

can be defined as:
{

Ft(at, bt) = f(at, bt) ,

Ff (af , bf) = f(af , bf) .

116

4.3 Case study on WDLL

Table 4.8: Modified functionality of an XOR gate in the presence of erasure faults.

Faulted computation
a b at af bt bf ct cf c

NULL 0 0 0 0 1 0 0 NULL
NULL 1 0 0 1 0 0 0 NULL

True

False
Cf

Bf

Af

Bt

At

Ct

Figure 4.22: WDDL implementation of the XOR gate.

The proof is straightforward. If the output does not depend on the faulty input,

the computation is correct for both the true and the false outputs, because the protocol

violation does not impact the result. On the contrary, for the configuration of non-

faulty inputs b such as F depends on the faulty input bit, then we have four cases:

1. Ft = Ff = 1: impossible since F is positive and the inputs are lower than a legal

value, that is either (1, 0) or (0, 1),

2. Ft = 1 and Ff = 0. In this case, 1 = f(0, b) [equation for Ft] and 0 = f(0, b) =

f(1, b) [equation for Ff] , i.e. 1 = f(1, b). Therefore f(0, b) = f(1, b). However,

we assumed that F does depend on the first faulty input, hence a contradiction.

3. Ft = 0 and Ff = 1: for the same reason, this case is incompatible with the input

configuration such that F does depend on the faulty input.

117

4. FAULT ATTACK COUNTERMEASURES

4. Consequently, the only possibility is that Ft = Ff = 0, hence a NULL propaga-

tion.

Let us now study a random function, modeling the byte substitution table (SubBytes)

of the AES. If there is a NULL fault at the input, then:

• for one half of the input data, a specific output bit will depend on this input, and

• for the other half, the targeted output bit does not depend on the input.

Therefore, statistically, one half of the output bits are erased to NULL. Notice that

this result is independent of the exact functional decomposition in a positive dual

gates netlist. Similarly, if two inputs are erased, then 3/4 of the outputs will also be

NULL. And of course, when seven or eight errors are presented at the input, all the

output bits become NULL.

We have already shown in section 4.3.4.1 that with XOR gates the fault propagation

is maximal. The MixColumns transformation is a multiplication of a polynomial over

GF (28) with the fixed polynomial a(x)[4.1], reduced modulo x4 + 1.

a(x) = (0x03)x3 + (0x01)x2 + (0x01)x + (0x02) (4.1)

The equations for the byte multiplications involved in this multiplication are written

down in Tab. 4.9. Hence we see that the MixColumns operation is implemented as a

tree of XOR gates. This ensures a maximum propagation of NULL.

Table 4.9: Equations for the bytes transformations ×01, ×02 and ×03.

a′ a× 01 a× 02 a× 03

a′7 a7 a6 a7 ⊕ a6

a′6 a6 a5 a6 ⊕ a5

a′5 a5 a4 a5 ⊕ a4

a′4 a4 a3 ⊕ a7 a4 ⊕ a3 ⊕ a7

a′3 a3 a2 ⊕ a7 a3 ⊕ a2 ⊕ a7

a′2 a2 a1 a2 ⊕ a1

a′1 a1 a0 ⊕ a7 a1 ⊕ a0 ⊕ a7

a′0 a0 a7 a0 ⊕ a7

118

4.3 Case study on WDLL

xf

xt x

Figure 4.23: Dual-to-single rail circuitry usable in the case of a NULL0 spacer.

In an SPN (substitution permutation network) like AES, the fault number can only

grow at each step. Indeed, for every block f , if a fault is stopped, then: f(’U’, x) is

certain, for a given input x. Now, this means that f(’0’, x) = f(’1’, x), and this

implies that f is not bijective. Therefore, differential attacks become difficult as the

attacker observes an erased value, and cannot backtrack from the faulty ciphertext.

The best case being when all the output bits are erased and thus no information that

can be useful to generate the key is available.

As shown in Figure 4.23, the conversion of the dual-rail signals to single-rail turns

a NULL into a ’0’. This circuit makes use of both true and false signal halves, so as

to prevent the CAD tool from simplifying half of the logic and balance the true and

false networks. Therefore, if a fault occurs during the computation, it can be observed.

This difference could be exploited by an attack, as done in the attack of Gilles Piret.

However, the computed differential will not disclose any information about the last

round key, since the XOR function used to mix it propagates a NULL.

All the considerations detailed regarding WDDL rely on the fact the gates are posi-

tive. Indeed, the gates will stick to zero unless valid values are produced. This is not

true for delay insensitive gates which stay in a zero state and jam the computation.

Notice that in WDDL the results are independent of the type of spacer used. It can be

NULL0
.
= (0, 0), NULL1

.
= (1, 1), used as constants or interleaved alternatively or

randomly.

4.3.4.2 Generalization to Arbitrary Fault Models

We consider two categories of faults:

1. Asymmetric faults, where bits can only be flipped from 1 to 0. This type of

faults is typically encountered in WDDL circuits stressed by a global perturba-

tion, such as under-voltage or over-clocking. Glitch attacks can lead to the same

119

4. FAULT ATTACK COUNTERMEASURES

symptom, because it manifests in adding a delay globally to all wires. Flashes

of white light have been reported in [112, §12, page 163] to zero selectively the

output of some operations. Equally, laser shots on SRAM-based FPGAs tend to

favor 1→ 0 bit-flips over 0→ 1 [113]. Notice that in DPL with a (1, 1) spacer, the

opposite transition occurs when trying non-invasive attacks. We do not detail

this situation as it is the exact opposite of the 1 to 0 case.

2. Symmetric faults, where bits are susceptible of toggling in both directions. Laser

shots can trigger both 1 to 0 and 0 to 1 transitions. This fault is thus semi-

invasive, as opposed to the previous ones. Therefore, it models a more powerful

attacker, at least able to chemically prepare the sample to attack.

In the context of asymmetric faults, DPL circuits are natively protected as such.

In this respect, it is interesting to compare the pros and the cons of synchronous

and asynchronous circuits. When exposed to under-voltage, asynchronous circuits

will continue to work, down to a voltage value where the gates will not be supplied

enough to produce a strong one. Below this threshold, errors of type "stuck at zero"

will manifest, exactly as in the case of synchronous circuits. Overclocking is not an

attack that applies to asynchronous circuits that are, by definition, clockless. How-

ever, we have noticed that this perturbation is ineffective exposing secrets. Therefore,

a synchronous circuit will be less reliable in the presence of non-invasive faults, but

as secure as an asynchronous circuit. A trade-off between the two approaches can be

reached by considering synchronous circuits with jitter on the clock. The jitter can

have a large variance, since even if it conducts to a setup time violation, the secrets

remain safe. Therefore, with DPL, it is secure when used in addition with aggressive

clock jitter.

If the attacker has the means to inject symmetric faults, then three types of protec-

tions must be considered:

1. When the fault induction is gentle, single bit flips is the most likely fault model.

In this case, even if the fault is a 0 to 1 transition occurring during the evaluation

stage, the only risk is to create a (1, 1), also called NULL1. However, in a dual

way of the case study of the propagation of NULL0 values, we can show that the

propagation of NULL1 consist in an erasure of the data, so that the syndrome

does not convey any single bit of information about the faulty circuit internal

state. DPL style thus forces the attacker to be less furtive.

120

4.3 Case study on WDLL

2. With a more intense stress, the attacker will start to induce multiple faults with

low multiplicity. In this case, a DPL gate can output completely false values. For

instance, an AND gate for which the inputs are NULL0 and NULL1 evaluates to

the correct value 0 (with respect to WDDL valid states), even if the two unfaulty

inputs were both equal to 1. To protect the implementation against those attacks,

additional detection hardware must be added so as to cross-check the computa-

tion. A little gain can however be obtained: As the DPL style is protected against

single faults, a datapath of n bits can be checked with code words of only n − 1

bits without risking to weaken the security level. A protection method at the

technological level such as the one presented in [114] could be extended from

SRAM points to DFFs and combinatorial gates. By using high-VT1 P transis-

tors (those that compute the ’1’) and low-VT N transistors (those that compute

the ’0’), the designer could make the faults 1 → 0 much more likely than the

opposite 0→ 1.

3. When the stress is very strong, then we expect the faults to be very frequent.

Hence the recommendation to use physical captors spread on the chip surface.

4.3.5 WDDL w/o EPE

In this section we propose to improve the WDDL, in order to be more secure against

multiple symmetrical faults. For this prupose, we introduce new varient of WDDL

namely(WDDL w/o EE) which is a logic style dedicated to FPGAs that removes the

EE without computing a rendezvous. Instead, each functional half gate receives the

true and false inputs, and decides to output the VALID value only when all the inputs

are VALID. This behavior can be achieved by a purely combinatorial gate. The detailed

rationale behind the “WDDL w/o EE” style is the following:

• The gate outputs NULL{0,1} when the inputs are NULL{0,1} or transitional from

this value.

• The gate outputs VALID only when all the inputs are VALID.

• In case of inconsistent values w.r.t. the DPL convention, the gate outputs an

arbitrary NULL value.

1VT means here: “Voltage of Threshold”.

121

4. FAULT ATTACK COUNTERMEASURES

This logic does not evaluate early by design, and propagates errors: if any input is

stuck to NULL or if the input is out of specifications, then the output always remains

to NULL too. In addition, this logic does not generate glitches even if the functionality

is not positive, and can be inverting. Therefore, the synthesis is more optimized than

for plain WDDL. For an AND function with inputs (a, b) , WDDL w/o EPE equivalent

ANDT , ANDF is:

{
Ft(at, af , bt, bf) = at.bt + at.af + bt.bf .af ,
Ff (at, af , bt, bf) = at.bf + at.af + bt.af + bf .af .

ct

ANDT

cf

ANDF

at
bt

at
af

af
bt
bf

at
bf

at
af

af

bt

af
bf

Figure 4.24: WDDL w/o AND gate

Architecture CLB Area Overhead

WDDL w EE 10937 NA
WDDL wo EE 13322 21%

Table 4.10: WDDL w/o area overhead

Once implemented the area overhead of the new version is 21% as shown in ta-

ble 4.3.5.

4.3.6 Analysis of the DFA Protection for DPL w/o EPE

Single bit faults are inefficient against DPL because they turn a VALID data into a

NULL token, that propagates and leads to an unexploitable error since it hides the

faulted value. This is the typical scenario described in paper [73]. Highly multiple

122

4.3 Case study on WDLL

faults generate randomly a large quantity of NULL values along with some more un-

likely but devastating bit-flips. However, as NULL values are systematically prop-

agated, they proliferate very quickly after some combinatorial logic layers traversal.

And as they have the nice property to contaminate VALID values, the risky coherent

bit-flips (simultaneous 0
∗
→ 1 and 1

∗
→ 0 in one dual-rail couple), they jam their prop-

agation hopefully before they reach the algorithm output. This absorption property

is all the more efficient as the number of NULL generated by the multiple faults is

high. Therefore, the only way to inject a poisonous fault is to stress the circuit suffi-

ciently enough to have multiple faults, without nonetheless creating too many faults

so as to leave a chance for them not to be absorbed during their percolation towards

the outputs. But, hopefully, in this opportunity window of low stress (generation of

2, 3, or maximum 4 errors because of the high diffusion of cryptographic algorithms),

efficient coding schemes can be used in supplement to the DPL w/o EE protection.

To be more accurate, we present a simple model that provides a convincing proof

of our assertion. Let us consider a dual-rail circuit that is attacked with a perturba-

tion that is focalized on 2n wires, and that has an intensity sufficient enough to cause

m ≤ 2n simultaneous faults. We also make the optimistic hypothesis that the m faults

are equidistributed over the 2n wires, and that the flips are truly symmetrical, i.e. it

is as likely to flip to a 0 and to a 1. Those conditions modelize a worst case from the

defense view point, because they foster coherent bit-flips susceptible to turn a VALID

value into a VALID∗ one, by the mean of two antinomic flips on two wires pertaining

to the same dual-rail couple. To further simplify the modelization, we also assume

that the attacked block has a perfect diffusion: in practice, this is not exactly true for

one round of an algorithm, but for at least two of them (and exactly two in the case

of AES). Nevertheless, it helps us grasp more intuitively the idea of the proof with-

out introducing overcomplicated considerations. Therefore, for a fault to successfully

propagate through the round, no single NULL shall be generated. Otherwise, the

NULL wave catches the fault, because of the perfect diffusion, as already depicted in

Figure 4.16. The first constatation is that for VALID faults to be generated, m must

be even. Indeed, they are generated by pairs. If, on the contrary, m is odd, then at

least one NULL (bit-flip of one wire in a pair) is generated, leading to the VALID fault

absorption. Then, a VALID fault is generated iff, given a unique fault, a second one

occurs in the paired wire. For m = 2 faults, this happens with probability 1/(2n − 1).

For more faults, the generation of solely paired faults consists in always pairing the re-

maining faults. Then, the probability to generate at least one VALID fault that survives

123

4. FAULT ATTACK COUNTERMEASURES

until the output is equal to:

p(2n, m)
.
=

(
n

m/2

) /(
2n
m

)

if m is even,

0 otherwise.

This probability becomes very small starting from a multiplicity of 4 when m increases

up to n1. This is to be contrasted with schemes involving a coding with error detection.

They are basically able to detect:

• all the faults of multiplicity smaller than the error detection capability r2, but

• only a ratio of 1− 1/2r faults for m > r.

The figure 4.25 compares the rate of successful faults injection depending on the mul-

tiplicity, for an n = 8 set of wires, respectively for the proposed scheme based on DPL

w/o EE and for a classical integrity check with a linear code detecting r = 2 bits of

error.

In fact this is the first time that a countermeasure against DFA proves efficient even

in the context of a large number of faults. As a matter of fact, usual schemes, based

on spatio-temporal or coding, can be defeated with high probability if the number

of faults is greater than the detection capacity. Smartly enough, the implementations

using DPL w/o EE take advantage of three properties that all contribute to destroy

the VALID faults:

1. faults are very likely to alter only one wire in a pair, especially if the stress

is badly localized, thus creating much more NULL tokens than wrong VALID

pairs,

2. because of the protection against EE, NULL values win against VALID ones,

hereby hiding in particular VALID fault propagation,

3. as the algorithms implement cryptography, they have a high diffusion, which

helps the NULL values meet (and thus eat) the possibly faulted VALID values

still alive.

1When m is too large, starting from n, the probability increases, because of the property: p(2n, m) =
p(2n, 2n − m).

2Faults of multiplicity m ≤ r mutate a code word into a non-code word.

124

4.3 Case study on WDLL

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7

P
ro

po
rt

io
n

of
 fa

ul
ts

 n
ot

 b
ei

ng
 c

ou
nt

er
ed

 [%
]

Faults multiplicity

Linear coding with r=2 [state-of-the-art]
DPL w/o EE [this thesis]

Figure 4.25: Probability that m faults injected on n wires be innocuous due to the pro-
tection conveyed by two different countermeasures: either a detection by an informational
redundancy scheme or an annihilation of the faulted data by one or several VALID ∗

→NULL
token transformations.

125

4. FAULT ATTACK COUNTERMEASURES

4.4 Conclusion

This chapter shows the state of the art of fault countermeasures as well as fault detec-

tion strategy.

A new strategy of fault protection based on resilience is introduced. The principle

is based on the fact the injected faults are not exploitable as the information they con-

tain about any secret is nullified. This property comes from the fact the circuit does not

react to the fault as compared to a circuit protected with a detection structure which

may confirm occurrence of the fault.

This chapter also has showed that fault resilience at logical level can take ad-

vantage of naturally redundant logic as the differential logic. Hence this logic type

protects simultaneously against passive and active attacks. In this case it becomes a

cheaper solution than detection based on codes. However the basic differential logic

protects only against asymmetric faults, i.e. faults whose the effect is to nullify the

targeted signal. An enhancement of this logic is to make it insensitive to the Early

Propagation effect. Consequently this will also protect against asymmetric and sym-

metric faults.

An example of resilience at logical level is given with the WDDL logic. The expe-

riences carried out on the AES platform implemented in WDDL clearly showed the

efficiency of this logic to thwart setup time violation attacks, in addition to passive

attacks like DPA. In order to improve WDDL we proposed and implemented new

version called WDDL w/o EE which is free from early evaluation hence more robust

against passive attacks and against multiple symmetric faults.

126

Chapter 5

Conclusion

In this thesis, different aspects of practical attack implementations: both “global”

and “local”, and their countermeasures, have been presented.

Chapter 1 outlines various aspects of cryptography and side channel attacks. It is

specially focused on fault attacks and various Differential Fault Attack (DFA) pro-

posed in the scientific literature. It also details some of the commonly used techniques

to inject faults in a circuit.

In chapter 2, we present two different methods and their associated platforms to in-

ject exploitable faults in cryptographic devices. The first method is a novel technique

to inject global non-invasive faults based on the setup time violation. We demon-

strated that this global method allows the injection of random faults in the desired

circuit. In this method, we do not control the time and location of the occurrence of

the faults. Nevertheless, when we create enough faults we are able to find required

number of exploitable faults. Piret’s DFA can be used to extract key from these ex-

ploitable faults. We have shown this attack can be carried out on both ASICs and

FPGAs.

In the second method a laser beam has been used to inject surgical errors in a cryp-

tographic circuit. Such faults are difficult to mount but have an obvious advantage

in terms of control over time and location. Therefore we just need the exact number

of faults as required by the DFA which need single byte fault. In our experiments,

the target was a software implementation of AES on ATMEL ATMEGA128 microcon-

127

5. CONCLUSION

troller where we successfully introduced single byte faults in the penultimate round

using an adequately triggered laser.

In chapter 3, we discussed DFA countermeasures. Over the years, the dominant

strategy to counter faults has been their detection by spatial, temporal or information

redundancy. We present in this thesis a new approach based on resilience. First of

all, the resilience imposes no destruction of the secrets in case of a fault attack. In an

implementation protected by fault-resilience, when a fault is injected successfully but

has no consequence on the computation, the circuit shows no reaction towards fault as

compared to a circuit protected with a detection-based scheme which may react and

confirm occurrence of the fault. Even if the fault is injected during computation the

attacker cannot exploit the faulted result to perform DFA.

Several concrete methods to implement resilient symmetrical encryption are pro-

posed, amongst which a random mode of operation that is suitable for low-cost (with-

out expensive module-level protections) embedded systems. When the designer can

propose a hardware countermeasure, we suggest to use multi-valued or Dual-Rail

Precharge Logic for protection. These logics simultaneously protect against observa-

tion and perturbation attacks, and are cheaper than detection based on codes.

As a perspective, we underline that an interesting topic to work on could be the

“smart trigger”. The principle of a smart trigger is to detect the starting point of an

encryption cycle of the cryptographic circuit under test using its power consumption

or electromagnetic emanations. From these side-channels, we can generate a signal

automatically to trigger the laser gun in real-time. Thus it becomes possible to attack

at any round without the need of a specific trigger signal which should not exist.

Another prospective could be to study the possibility and efficiency of injecting

faults using electrostatics charges or electromagnetic pulses [115, 116]. In fact even

if this method is less precise than laser attack, we can target small regions of the chip.

Moreover, this method is non-invasive and the setup is cheaper than optical attacks as

there is no specific and costly preparation stage.

128

Another interesting field of study which we can derive from this research is to

implement a unified countermeasure against active and passive attacks which is in-

dependent from the used algorithms. As already shown that DPL are highly re-

silient against majority of the faults. DPL was initially introduced as a countermea-

sure against passive side channel attacks owing to its near-constant data independent

power consumption. However some problems like early evaluation and technological

bias reduces the efficiency of this countermeasure against the DPA but also the DFA

as explained in chapter 3. We propose to implement a version of DPL which is free

from its reported short-coming. Hence the proposed DPL would be a common and

enhanced countermeasure against passive and active attacks.

While some new results can be expected in these fields, an upcoming topic could

be to use fault attacks for reverse engineering secret cryptographic algorithms using

“FIRE” attacks (Fault Injection for Reverse Engineering).

129

Publications

• ”Practical Setup Time Violation Attacks on AES” Nidhal Selmane,

Sylvain Guilley et Jean-Luc Danger, EDCC 2008, The seventh Euro-

pean Dependable Computing Conference, Kaunas, Lithuania.

• ”Silicon-level solutions to counteract passive and active attacks” Syl-

vain Guilley, Laurent Sauvage, Jean-Luc Danger, Nidhal Selmane and

Renaud Pacalet, FDTC 2008, 5th workshop on Fault Tolerance and

Detection in Cryptography, IEEE-CS, Washington DC, USA.

• ”Fault Analysis Attack on an FPGA AES Implementation”, Nidhal

Selmane, Farouk Khelil, Mohamed Hamdi, Sylvain Guilley and Jean-

Luc Danger, NTMS 2008, Tangier, Morocco.

• ”Security Evaluation of Different AES Implementations Against Prac-

tical Setup Time Violation Attacks on FPGAs” Shivam Bhasin, Nidhal

Selmane, Sylvain Guilley and Jean-Luc Danger, HOST 2009 (Hard-

ware Oriented Security and Trust) San Francisco, CA, USA.

• ”WDDL is Protected Against Setup Time Violation Attacks” Nidhal

Selmane, Shivam Bhasin, Sylvain Guilley, Tarik Graba and Jean-Luc

Danger, FDTC 2009 (IEEE Fault Diagnosis and Tolerance in Cryptog-

raphy), Lausanne, Switzerland.

• ”Combined SCA and DFA Countermeasures Integrable in a FPGA

Design Flow” Shivam Bhasin, Jean-Luc Danger, Flament Florent, Tarik

Graba, Sylvain Guilley, Yves Mathieu, Maxime Nassar, Laurent Sauvage

and N. Selmane, ReConFig 2009, Cancun, Mexico.

• ”Fault Injection Resilience”,Sylvain Guilley, Laurent Sauvage, Jean-

Luc Danger and N. Selmane, FDTC 2010, Santa Barbara, CA, USA.

• ”Countering Early Evaluation: An Approach Towards Robust Dual-

Rail Precharge Logic” Shivam Bhasin,N. Selmane, Jean-Luc Danger

and Sylvain Guilley, WESS 2010, Scottsdale AZ, USA.

• ”Security Evaluation of ASICs and FPGAs against Setup Time Viola-

tion Attacks”, IET Journals Nidhal Selmane, Shivam Bhasin, Jean-Luc

Danger and Sylvain Guilley.

5. CONCLUSION

132

Bibliography

[1] FEDERAL INFORMATION PROCESSING STANDARDS (FIPS) PUBLICATION. Announcing
the Advanced Encryption Standard (AES). Number 197. November 2001.

[2] SERGEI P. SKOROBOGATOV AND ROSS J. ANDERSON. Optical Fault Induction Attacks
. 2523 of LNCS, pages 2–12. Springer, august 2002. CA USA.

[3] RAMESH KARRI, KAIJIE WU, PIYUSH MISHRA, AND YONGKOOK KIM. Concurrent
Error Detection Schemes for Fault Based Side-Channel Cryptanalysis of Symmetric
Block Ciphers. IEEE Transactions on Computer-Aided Design, 21(12):1509–1517, december
2002.

[4] MARK KARPOVSKY, KONRAD J. KULIKOWSKI, AND ALEXANDER TAUBIN. Robust Pro-
tection against Fault-Injection Attacks on Smart Cards Implementing the Advanced
Encryption Standard. IEEE Transactions on Computer-Aided Design, 21(2), may 2004.

[5] P. KOCHER, J. JAFFE, AND B. JUN. Differential Power Analysis. In CHES99, LNCS
Springer, 1666, pages 388–397, 1999.

[6] J.-J. QUISQUATER AND D. SAMYDE. ElectroMagnetic Analysis (EMA) Measures and
Counter-Measures for Smart Cards. In e-SMART, LNCS Springer, 140, pages 200–210,
2001.

[7] JOHANNES BLÖMER AND JEAN-PIERRE SEIFERT. Fault based cryptanalysis of the Ad-
vanced Encryption Standard. In SPRINGER, editor, Financial Cryptography, 2742 of
LNCS, pages 162–181, 2003.

[8] DAN BONEH, RICHARD A. DEMILLO, AND RICHARD J. LIPTON. On the Importance
of Eliminating Errors in Cryptographic Computations. Journal of Cryptology, 14(2):101–
119, 2001.

[9] JOAN DAEMEN, MICHAËL PEETERS, GILLES VAN ASSCHE, AND VINCENT RIJMEN.
Nessie Proposal: NOEKEON, 2000. http://gro.noekeon.org/.

[10] T. KALKER J.A BLOOM, I.J COX AND M.L. MILLER. Copy protection for DVD video.
Proceedings of the IEEE, pages 1267–1276, July 1999.

[11] U.S. DEPARTMENT OF COMMERCE/NATIONAL INSTITUTE OF STANDARDS AND

TECHNOLOGY. "DATA ENCRYPTION STANDARD (DES)". FIPS PUB 46-3, October
1999.

[12] ELECTRONIC FOUNDATION. "Cracking DES". O’Reilly Media, November 1998.

133

http://gro.noekeon.org/

BIBLIOGRAPHY

[13] A. SHAMIR R.L. RIVSET AND L.ADLEMAN. A method for obtaining digital signatures
and public-key cryptosystems. commun. ACM, 21:120–126, 1978.

[14] G.SEROUSSI I.F. BLAKE AND N.P. SMART. Elliptic Curves in Cryptography. London
Mathematical Society Lecture Notes Series. Combrige University Press, 265, 1999.

[15] PAUL C. KOCHER, JOSHUA JAFFE, AND BENJAMIN JUN. Timing Attacks on Implemen-
tations of Diffie-Hellman, RSA, DSS, and Other Systems. In Proceedings of CRYPTO’96,
1109 of LNCS, pages 104–113. Springer-Verlag, 1996. (PDF).

[16] PAUL C. KOCHER, JOSHUA JAFFE, AND BENJAMIN JUN. Differential Power Analysis.
In Proceedings of CRYPTO’99, 1666 of LNCS, pages 388–397. Springer-Verlag, 1999.

[17] JEAN-JACQUES QUISQUATER AND DAVID SAMYDE. ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smard Cards. In I. ATTALI AND T. P. JENSEN,
editors, Smart Card Programming and Security (E-smart 2001), 2140 of LNCS, pages 200–
210. Springer-Verlag, September 2001. Nice, France. ISSN 0302-9743.

[18] HAGAI BAR-EL, HAMID CHOUKRI, DAVID NACCACHE, MICHAEL TUNSTAL, AND

CLAIRE WHELAN. The Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of
the IEEE, 94(2):370–382, 2006. DOI: 10.1109/JPROC.2005.862424.

[19] Electronic signals and transmission protocols. International Organization for Standardiza-
tion, 2002.

[20] Fault attacks on RSA CRT:Concrete results and prcatical countermeasures. Springer, 2002.

[21] Cryptographic smart cards, 03, 1996.

[22] Design principles for tamper-resistant smartcard processors, 1999.

[23] MICHEL AGOYAN, JEAN-MAX DUTERTRE, DAVID NACCACHE, BRUNO ROBISSON,
AND ASSIA TRIA. When Clocks Fail: On Critical Paths and Clock Faults. In CARDIS,
pages 182–193, 2010.

[24] Robust protection against fault-injection attacks on smart cards implementing the advenced en-
cryption stadard, 2004.

[25] Faults and side-channel attacks on pairing based cryptography, 2004.

[26] MICHEL AGOYAN, JEAN-MAX DUTERTRE, AMIR-PASHA MIRBAHA, DAVID NAC-
CACHE, ANNE-LISE RIBOTTA, AND ASSIA TRIA. How to flip a bit? On-Line Testing
Symposium, IEEE International, 0:235–239, 2010.

[27] JEAN-JACQUES QUISQUATER AND DAVID SAMYDE. Eddy current for Magnetic Analy-
sis with Active Sensor. In Esmart 2002, Nice, France, 9, 2002.

[28] MARTIN OTTO. fault attacks and countermeasures, December 2004. Dissertation,
Paderborn University .

[29] CHRISTOPHE GIRAUD. DFA on AES. In SPRINGER, editor, Advanced Encryption Standard
(AES) 4th international conference, LNCS springer, 3373 of LNCS, pages 27–41, May 2005.
Bonn, Germany.

134

http://www.cryptography.com/timingattack/paper.html

BIBLIOGRAPHY

[30] GILLES PIRET AND JEAN-JACQUES QUISQUATER. A Differential Fault Attack Tech-
nique against SPN Structures, with Application to the AES and KHAZAD. In CHES,
2779 of LNCS, pages 77–88. Springer, September 2003. Cologne, Germany.

[31] CHIEN-NING CHEN AND SUNG-MING YEN. Differential fault analysis on AES key
schedule and some countermeasures. In SPRINGER, editor, Information Security and Pri-
vacy, 2727 of LNCS, pages 118–129, 2003.

[32] P. DUSART, G. LETOURNEUX, AND O. VIVOLO. Differential Fault Analysis on A.E.S.
In SPRINGER, editor, Applied Cryptography and Network Security, 2846 of LNCS, pages
293–306, October 2003. Kunming, China.

[33] SHALMANI MOHAMMAD MORADI AMIR AND SALMASIZADEH MAHMOUD. A Gener-
alized Method of Differential Fault Attack Against AES Cryptosystem. 4249:91–100,
2006.

[34] MICHAEL TUNSTALL AND DEBDEEP MUKHOPADHYAY. Differential Fault Analysis
of the Advanced Encryption Standard using a Single Fault. Report 2009/575, 2009.
http://eprint.iacr.org/2009/575.

[35] BRUNO ROBISSON AND PASCAL MANET. Differential Behavioral Analysis. In CHES,
4727 of LNCS, pages 413–426. Springer, September 10-13 2007. Vienna, Austria.

[36] YANG LI, KAZUO SAKIYAMA, SHIGETO GOMISAWA, TOSHINORI FUKUNAGA, JUNKO

TAKAHASHI, AND KAZUO OHTA. Fault Sensitivity Analysis. In CHES, 6225 of Lecture
Notes in Computer Science, pages 320–334. Springer, August 17-20 2010. Santa Barbara,
CA, USA.

[37] JUNKO TAKAHASHI, TOSHINORI FUKUNAGA, AND KIMIHIRO YAMAKOSHI. DFA
Mechanism on the AES Key Schedule. In IEEE COMPUTER SOCIETY, editor, FDTC
2007 Workshop, pages 62–74, September 2007. Vienna, Austria.

[38] NEIL H.E. WESTE AND DAVID HARRIS. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison Wesley, 2004. 3 edition (May 11, 2004), ISBN: 0321149017.

[39] “Circuits Multi-Projets” (alias CMP, < cmp@imag.fr >) Annual Report 2005. http:

//cmp.imag.fr/aboutus/gallery/details.php?id_circ=63&y=2005.

[40] SUMIO MORIOK AND AKASHI SATOH. An Optimized S-Box Circuit Architecture for
Low Power AES Design. Lecture Notes in Computer Science, 2523/2003(6):271–295, 2003.

[41] L. NAVINER JL DANGER AND G. DUC. Application Specific Integrated Circuits. august
2009. http://sen.enst.fr/filemanager/active?fid=501.

[42] JULIEN FRANCQ AND OLIVIER FAURAX. Security of several AES Implementations
against Delay Faults. In Proceedings of the 12th Nordic Workshop on Secure IT Systems
(NordSec 2007), October 2007. Reykjavík, Iceland.

[43] SAAR DRIMER, TIM GÜNEYSU, AND CHRISTOF PAAR. DSPs, BRAMs and a Pinch of
Logic: New Recipes for the AES on FPGAs. In IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 99–108. IEEE, 14-15 Apr 2008. Stanford, Palo
Alto, CA.

135

http://eprint.iacr.org/2009/575
http://cmp.imag.fr
mailto:cmp@imag.fr
http://cmp.imag.fr/aboutus/gallery/details.php?id_circ=63&y=2005
http://cmp.imag.fr/aboutus/gallery/details.php?id_circ=63&y=2005
http://sen.enst.fr/filemanager/active?fid=501

BIBLIOGRAPHY

[44] ALESSANDRO BARENGHI, GUIDO BERTONI LUCA BREVEGLIERI, MAURO PELLICIOLI,
AND GERARDO PELOSI. Low Voltage Fault Attacks to AES. In HOST (Hardware Ori-
ented Security and Trust). IEEE Computer Society, June 13-14 2010. Anaheim Convention
Center, CA, USA.

[45] 14th IEEE International On-Line Testing Symposium (IOLTS 2008), 7-9 July 2008, Rhodes,
Greece. IEEE, Jul. 2008.

[46] GAETAN CANIVET, P. MAISTN, RÉGIS LEVEUGLE, FRÉDÉRIC VALETTE, JESSY

CLÉDIÈRE, AND MARC RENAUDIN. Robustness evaluation and improvements under
laser-based fault attacks of an AES crypto-processor implemented on a SRAM-based
FPGA. In European Test Symposium, page 251, 2010.

[47] TAL MALKIN, FRANÇOIS-XAVIER STANDAERT, AND MOTI YUNG. A Comparative
Cost/Security Analysis of Fault Attack Countermeasures. In FDTC, 4236 of Lecture
Notes in Computer Science, pages 159–172. Springer, October 10 2006.

[48] SUNG-MING YEN AND MARC JOYE. Checking Before Output May Not Be Enough
Against Fault-Based Cryptanalysis. IEEE Trans. Computers, 49(9):967–970, 2000. DOI:
10.1109/12.869328.

[49] PAUL C. KOCHER. Leak-resistant cryptographic indexed key update, March 25 2003.
United States Patent 6,539,092 filed on July 2nd, 1999 at San Francisco, CA, USA.

[50] Workshop on “Provable Security against Physical Attacks”, February 10-19 2010.
Amsterdam, Netherlands. http://www.lorentzcenter.nl/lc/web/2010/383/
program.php3?wsid=383.

[51] YANG LI, SHIGETO GOMISAWA, KAZUO SAKIYAMA, AND KAZUO OHTA. An Informa-
tion Theoretic Perspective on the Differential Fault Analysis against AES. Cryptology
ePrint Archive, Report 2010/032, 2010. http://eprint.iacr.org/.

[52] GUIDO BERTONI, LUCA BREVEGLIERI, ISRAEL KOREN, AND PAOLO MAISTRI. An Effi-
cient Hardware-Based Fault Diagnosis Scheme for AES. proceedings of DFT, 52:130–138,
2004.

[53] G. BERTONI, L. BREVEGLIERI, I. KOREN, P. MAISTRI, AND V. PIURI. Error Analysis and
Detection Procedures for a Hardware Implementation of the Advanced Encryption
Standard. IEEE Transactions on Computer-Aided Design, 52(4), April 2003.

[54] CHIH-HSU YEN AND BING-FEI WU. Simple error detection methods for hardware
implementation of Advanced Encryption Standard. IEEE transactions on computers,
55(6):720–731, june 2006.

[55] MARK KARPOVSKY, KONRAD J. KULIKOWSKI, AND ALEXANDER TAUBIN. Differential
Fault Analysis Attack Resistant Architectures For The Advanced Encryption Stan-
dard. DSN 2004, (9), August 2004.

[56] P. MAISTRI AND R. LEVEUGLE. Double-Data-Rate Computation as a Countermeasure
against Fault Analysis. 57, pages 1528 –1539, nov. 2008.

[57] ROSS ANDERSON AND MARKUS KUHN. Tamper Resistance – a Cautionary Note. In In
Proceedings of the Second USENIX Workshop ON Electronic Commerce, pages 1–11, 1996.

136

http://www.lorentzcenter.nl/lc/web/2010/383/program.php3?wsid=383
http://www.lorentzcenter.nl/lc/web/2010/383/program.php3?wsid=383
http://eprint.iacr.org/

BIBLIOGRAPHY

[58] SUNG-MING YEN, SEUNGJOO KIM, SEONGAN LIM, AND SANG-JAE MOON. RSA
Speedup with Chinese Remainder Theorem Immune against Hardware Fault Crypt-
analysis. IEEE Trans. Computers, 52(4):461–472, 2003. DOI: 10.1109/TC.2003.1190587.

[59] DAN BONEH, RICHARD A. DEMILLO, AND RICHARD J. LIPTON. On the Importance
of Checking Cryptographic Protocols for Faults. In Proceedings of Eurocrypt’97, 1233 of
LNCS, pages 37–51. Springer, May 11-15 1997. Konstanz, Germany.

[60] ROSARIO GENNARO, ANNA LYSYANSKAYA, TAL MALKIN, SILVIO MICALI, AND TAL

RABIN. Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Secu-
rity against Hardware Tampering. In TCC, 2951 of Lecture Notes in Computer Science,
pages 258–277. Springer, February 19-21 2004. Cambridge, MA, USA.

[61] ARNAUD BOSCHER, HELENA HANDSCHUH, AND ELENA TRICHINA. Blinded Fault Re-
sistant Exponentiation Revisited. In FDTC, pages 3–9. IEEE Computer Society, Septem-
ber 6 2009. Lausanne, Switzerland.

[62] ARNAUD BOSCHER, ROBERT NACIRI, AND EMMANUEL PROUFF. CRT RSA Algorithm
Protected Against Fault Attacks. In WISTP, 4462 of LNCS, pages 229–243. Springer,
May 9-11 2007. Heraklion, Crete, Greece.

[63] ELI BIHAM AND ADI SHAMIR. Differential Fault Analysis of Secret Key Cryptosys-
tems. In CRYPTO, 1294 of LNCS, pages 513–525. Springer, August 1997. Santa Barbara,
CA, USA.

[64] PASCAL PAILLIER. Public-Key Cryptosystems Based on Composite Degree Residuos-
ity Classes. In EUROCRYPT, 1592 of Lecture Notes in Computer Science, pages 223–238.
Springer, May 2-6 1999. Prague, Czech Republic.

[65] ROBERT P. MCEVOY, MICHAEL TUNSTALL, CLAIRE WHELAN, COLIN C. MURPHY, AND

WILLIAM P. MARNANE. All-or-Nothing Transforms as a Countermeasure to Differen-
tial Side-Channel Analysis. Cryptology ePrint Archive, Report 2009/185, April 30 2009.
http://eprint.iacr.org/2009/185.

[66] ROBERT P. MCEVOY, MICHAEL TUNSTALL, CLAIRE WHELAN, COLIN C. MURPHY, AND

WILLIAM P. MARNANE. A differential side-channel analysis countermeasure. Euro-
pean Patent Application (EP 2148462 A1), filled in 27.01.2010.

[67] MARCEL MEDWED, FRANÇOIS-XAVIER STANDAERT, JOHANN GROSSSCHÄDL, AND

FRANCESCO REGAZZONI. Fresh Re-Keying: Security against Side-Channel and Fault
Attacks for Low-Cost Devices. In AFRICACRYPT, 6055 of LNCS, pages 279–296.
Springer, May 03-06 2010. Stellenbosch, South Africa. DOI: 10.1007/978-3-642-12678-
9_17.

[68] JEAN-SÉBASTIEN CORON AND AVRADIP MANDAL. PSS Is Secure against Random
Fault Attacks. In ASIACRYPT, 5912 of LNCS, pages 653–666. Springer, December 6-10
2009. Tokyo, Japan.

[69] SHIVAM BHASIN, TAOUFIK CHOUTA, GUILLAUME DUC, JEAN-LUC DANGER, AZIZ EL

AABID, FLORENT FLAMENT, PHILIPPE HOOGVORST, TARIK GRABA, SYLVAIN GUILLEY,
HOUSSEM MAGHR’EBI, OLIVIER MEYNARD, MAXIME NASSAR, RENAUD PACALET,

137

http://eprint.iacr.org/2009/185

BIBLIOGRAPHY

LAURENT SAUVAGE, NIDHAL SELMANE, AND YOUSSEF SOUISSI. Combined counter-
measures against perturbation & observation attacks. In PASTIS (PAca Security Trends
In embedded Security), Gardanne (École des Mines de Saint-Étienne), France, June 16-17
2010. http://www.secure-ic.com/PDF/pastis_2010.pdf.

[70] YUICHI BABA, ATSUSHI MIYAMOTO, NAOFUMI HOMMA, AND TAKAFUMI AOKI.
Multiple-Valued Constant-Power Adder for Cryptographic Processors. In ISMVL,
pages 239–244. IEEE Computer Society, May 21-23 2009. Naha, Okinawaw, Japan.

[71] SIMON MOORE, ROBERT MULLINS, PAUL CUNNINGHAM, ROSS ANDERSON, AND

GEORGE TAYLOR. Improving smart card security using self-timed circuits. In ASYNC
(Asynchronous Circuits and Systems), pages 211– 218, April 2002. ISSN: 1522-8681, ISBN:
0-7695-1540-1j INSPEC Accession Number: 7321683.

[72] SIMON W. MOORE, ROSS J. ANDERSON, ROBERT D. MULLINS, GEORGE S. TAYLOR,
AND JACQUES J. A. FOURNIER. Balanced self-checking asynchronous logic for smart
card applications. Microprocessors and Microsystems, 27(9):421–430, 2003.

[73] NIDHAL SELMANE, SHIVAM BHASIN, SYLVAIN GUILLEY, TARIK GRABA, AND JEAN-
LUC DANGER. WDDL is Protected Against Setup Time Violation Attacks. In FDTC,
pages 73–83. IEEE Computer Society, September 6th 2009. In conjunction with CHES’09,
Lausanne, Switzerland. DOI: 10.1109/FDTC.2009.40; Online version: http://hal.

archives-ouvertes.fr/hal-00410135/en/.

[74] SHIVAM BHASIN, JEAN-LUC DANGER, FLORENT FLAMENT, TARIK GRABA, SYLVAIN

GUILLEY, YVES MATHIEU, MAXIME NASSAR, LAURENT SAUVAGE, AND NIDHAL

SELMANE. Combined SCA and DFA Countermeasures Integrable in a FPGA De-
sign Flow. In ReConFig, pages 213–218. IEEE Computer Society, December 9–11
2009. Cancún, Quintana Roo, México, DOI: 10.1109/ReConFig.2009.50, http://hal.
archives-ouvertes.fr/hal-00411843/en/.

[75] YANNICK MONNET, MARC RENAUDIN, RÉGIS LEVEUGLE, CHRISTOPHE CLAVIER, AND

PASCAL MOITREL. Case Study of a Fault Attack on Asynchronous DES Crypto-
Processors. In FDTC, 4236 of Lecture Notes in Computer Science, pages 88–97. Springer,
October 10 2006. Yokohama, Japan.

[76] STEFAN MANGARD, ELISABETH OSWALD, AND THOMAS POPP. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer, December 2006. ISBN 0-387-30857-1, http:
//www.dpabook.org/.

[77] DANIL SOKOLOV, JULIAN MURPHY, ALEXANDER BYSTROV, AND ALEX YAKOVLEV. De-
sign and Analysis of Dual-Rail Circuits for Security Applications. IEEE Trans. Com-
put., 54(4):449–460, 2005.

[78] JEAN-LUC DANGER, SYLVAIN GUILLEY, SHIVAM BHASIN, AND MAXIME NASSAR.
Overview of Dual Rail with Precharge Logic Styles to Thwart Implementation-
Level Attacks on Hardware Cryptoprocessors, — New Attacks and Improved Counter-
Measures —. In SCS, IEEE, pages 1–8, November 6–8 2009. Jerba, Tunisia. Complete
version online: http://hal.archives-ouvertes.fr/hal-00431261/en/. DOI:
10.1109/ICSCS.2009.5412599.

138

http://www.secure-ic.com/PDF/pastis_2010.pdf
http://hal.archives-ouvertes.fr/hal-00410135/en/
http://hal.archives-ouvertes.fr/hal-00410135/en/
http://hal.archives-ouvertes.fr/hal-00411843/en/
http://hal.archives-ouvertes.fr/hal-00411843/en/
http://www.springer.com/
http://www.dpabook.org/
http://www.dpabook.org/
http://hal.archives-ouvertes.fr/hal-00431261/en/

BIBLIOGRAPHY

[79] CHRISTOPHE GIRAUD AND HUGUES THIEBEAULD. A Survey on Fault Attacks. In
KLUWER, editor, CARDIS, pages 159–176, 2004. Toulouse, France.

[80] DAISUKE SUZUKI AND MINORU SAEKI. Security Evaluation of DPA Countermea-
sures Using Dual-Rail Pre-charge Logic Style. In CHES, 4249 of LNCS, pages 255–269.
Springer, 2006. Yokohama, Japan. http://dx.doi.org/10.1007/11894063_21.

[81] KONRAD J. KULIKOWSKI, MARK G. KARPOVSKY, AND ALEXANDER TAUBIN. Power
Attacks on Secure Hardware Based on Early Propagation of Data. In IOLTS, pages
131–138. IEEE Computer Society, 2006. Como, Italy.

[82] KRIS TIRI AND INGRID VERBAUWHEDE. A Logic Level Design Methodology for a Se-
cure DPA Resistant ASIC or FPGA Implementation. In DATE’04, pages 246–251. IEEE
Computer Society, February 2004. Paris, France. DOI: 10.1109/DATE.2004.1268856.

[83] YUVAL ISHAI, MANOJ PRABHAKARAN, AMIT SAHAI, AND DAVID WAGNER. Private
Circuits II: Keeping Secrets in Tamperable Circuits. In EUROCRYPT, 4004 of Lecture
Notes in Computer Science, pages 308–327. Springer, May 28 – June 1 2006. St. Petersburg,
Russia.

[84] RÉGIS LEVEUGLE. Early Analysis of Fault-based Attack Effects in Secure Circuits.
IEEE Trans. Computers, 56(10):1431–1434, 2007.

[85] FRANCESCO REGAZZONI, THOMAS EISENBARTH, JOHANN GROSSSCHÄDL, LUCA

BREVEGLIERI, PAOLO IENNE, ISRAEL KOREN, AND CHRISTOF PAAR. Power Attacks
Resistance of Cryptographic S-Boxes with Added Error Detection Circuits. In DFT,
pages 508–516. IEEE Computer Society, September 26-28 2007. Rome, Italy.

[86] VINCENT MAINGOT AND RÉGIS LEVEUGLE. Influence of error detecting or correcting
codes on the sensitivity to DPA of an AES S-box. In SCS, IEEE, pages 1–5, November
6–8 2009. Jerba, Tunisia. DOI: 10.1109/ICSCS.2009.5412600.

[87] MARK G. KARPOVSKY, KONRAD J. KULIKOWSKI, AND ALEXANDER TAUBIN. Robust
Protection against Fault Injection Attacks on Smart Cards Implementing the Ad-
vanced Encryption Standard. In DSN, pages 93–101. IEEE Computer Society, June 28 –
July 01 2004. Florence, Italy.

[88] KRIS TIRI, DAVID HWANG, ALIREZA HODJAT, BO-CHENG LAI, SHENGLIN YANG,
PATRICK SCHAUMONT, AND INGRID VERBAUWHEDE. A side-channel leakage free co-
processor IC in 0.18 µm CMOS for Embedded AES-based Cryptographic and Biomet-
ric Processing. In DAC, pages 222–227. ACM, June 13-17 2005. San Diego, CA, USA.

[89] THOMAS POPP, MARIO KIRSCHBAUM, THOMAS ZEFFERER, AND STEFAN MANGARD.
Evaluation of the Masked Logic Style MDPL on a Prototype Chip. In CHES, 4727 of
LNCS, pages 81–94. Springer, Sept 2007. Vienna, Austria.

[90] RAFAEL SOARES, NEY CALAZANS, VICTOR LOMNÉ, PHILIPPE MAURINE, LIONEL TOR-
RES, AND MICHEL ROBERT. Evaluating the robustness of secure triple track logic
through prototyping. In SBCCI’08: Proceedings of the 21st annual symposium on Inte-
grated circuits and system design, pages 193–198, New York, NY, USA, September 1-4 2008.
ACM.

139

http://dx.doi.org/10.1007/11894063_21

BIBLIOGRAPHY

[91] RAFAEL SOARES, NEY CALAZANS, VICTOR LOMNE, THOMAS ORDAS, PHILIPPE MAU-
RINE, LIONEL TORRES, AND MICHEL ROBERT. Evaluation on FPGA of Triple Rail
Logic Robustness against DPA and DEMA. In DATE, track A4 (Secure embedded im-
plementations), pages 634–639. IEEE, April 20–24 2009. Nice, France.

[92] SYLVAIN GUILLEY, PHILIPPE HOOGVORST, YVES MATHIEU, RENAUD PACALET, AND

JEAN PROVOST. CMOS Structures Suitable for Secured Hardware. In DATE’04 – Vol-
ume 2, pages 1414–1415. IEEE Computer Society, February 2004. Paris, France. DOI:
10.1109/DATE.2004.1269113.

[93] SYLVAIN GUILLEY, SUMANTA CHAUDHURI, LAURENT SAUVAGE, PHILIPPE

HOOGVORST, RENAUD PACALET, AND GUIDO MARCO BERTONI. Security Eval-
uation of WDDL and SecLib Countermeasures against Power Attacks. IEEE
Transactions on Computers, 57(11):1482–1497, nov 2008.

[94] SYLVAIN GUILLEY, FLORENT FLAMENT, RENAUD PACALET, PHILIPPE HOOGVORST,
AND YVES MATHIEU. Security Evaluation of a Balanced Quasi-Delay Insensitive
Library. In DCIS, Grenoble, France, nov 2008. IEEE. 6 pages, Session 5D – Reliable
and Secure Architectures, ISBN: 978-2-84813-124-5, full text in HAL: http://hal.
archives-ouvertes.fr/hal-00283405/en/.

[95] SYLVAIN GUILLEY, LAURENT SAUVAGE, FLORENT FLAMENT, PHILIPPE HOOGVORST,
AND RENAUD PACALET. Evaluation of Power-Constant Dual-Rail Logics Counter-
Measures against DPA with Design-Time Security Metrics. IEEE Transactions on Com-
puters, 9(59):1250–1263, September 2010. DOI: 10.1109/TC.2010.104.

[96] MAXIME NASSAR, SHIVAM BHASIN, JEAN-LUC DANGER, GUILLAUME DUC, AND SYL-
VAIN GUILLEY. BCDL: A high performance balanced DPL with global precharge and
without early-evaluation. In DATE’10, pages 849–854. IEEE Computer Society, March
8-12 2010. Dresden, Germany.

[97] JEAN-LUC DANGER AND SYLVAIN GUILLEY. Circuit de cryptographie programmable –
Logique BCDL (Balanced Cell-based Differential Logic), 25 Mars 2008. Brevet Français
FR08/51904, assigné à l’Institut TELECOM; WO/2009/118264.

[98] SYLVAIN GUILLEY, SUMANTA CHAUDHURI, LAURENT SAUVAGE, JEAN-LUC DANGER,
TAHA BEYROUTHY, AND LAURENT FESQUET. Updates on the Potential of Clock-Less
Logics to Strengthen Cryptographic Circuits against Side-Channel Attacks. In ICECS,
IEEE, pages 351–354, December 13–16 2009. Medina, Yasmine Hammamet, Tunisia. DOI:
10.1109/ICECS.2009.5411008.

[99] ZHONGCHUAN C. YU, STEPHEN B. FURBER, AND LUIS A. PLANA. An Investigation
into the Security of Self-Timed Circuits. In ASYNC, pages 206–215. IEEE Computer
Society, May 12-16 2003. Vancouver, BC, Canada.

[100] 3rd Generation Smart Card Project, G3Card; European project under grant IST-1999-
13515. Website: http://www.g3card.org/.

[101] ZHIMIN CHEN AND YUJIE ZHOU. Dual-Rail Random Switching Logic: A Counter-
measure to Reduce Side Channel Leakage. In CHES, 4249 of LNCS, pages 242–254.
Springer, 2006. Yokohama, Japan, http://dx.doi.org/10.1007/11894063_20.

140

http://www.dcis.org/
http://hal.archives-ouvertes.fr/hal-00283405/en/
http://hal.archives-ouvertes.fr/hal-00283405/en/
http://www.g3card.org/
http://dx.doi.org/10.1007/11894063_20

BIBLIOGRAPHY

[102] ROBERT P. MCEVOY, COLIN C. MURPHY, WILLIAM P. MARNANE, AND MICHAEL TUN-
STALL. Isolated WDDL: A Hiding Countermeasure for Differential Power Analysis
on FPGAs. ACM Trans. Reconfigurable Technol. Syst. (TRETS), 2(1):1–23, 2009.

[103] THE “XILINX TMR TOOL”. FEATURES DESCRIPTION AT THIS WEB PAGE:. http://www.
xilinx.com/ise/optional_prod/tmrtool.htm.

[104] AMIR MORADI, THOMAS EISENBARTH, AXEL POSCHMANN, CARSTEN ROLFES,
CHRISTOF PAAR, MOHAMMAD T. MANZURI SHALMANI, AND MAHMOUD SALMA-
SIZADEH. Information Leakage of Flip-Flops in DPA-Resistant Logic Styles. Cryp-
tology ePrint Archive, Report 2008/188, 2008. http://eprint.iacr.org/.

[105] NIST FIPS (FEDERAL INFORMATION PROCESSING STANDARDS) PUBLICATION 140-2.
Security Requirements for Cryptographic Modules. page 69, May 25 2001.

[106] NIST FIPS (FEDERAL INFORMATION PROCESSING STANDARDS) PUBLICATION 140-3.
Security Requirements for Cryptographic Modules (Draft, Revised). page 63, 09/11
2009.

[107] Common Criteria (ISO/IEC 15408). http://www.commoncriteriaportal.org/.

[108] STEFAN MANGARD, NORBERT PRAMSTALLER, AND ELISABETH OSWALD. Successfully
Attacking Masked AES Hardware Implementations. In LNCS, editor, Proceedings of
CHES’05, 3659 of LNCS, pages 157–171. Springer, August 29 – September 1 2005. Edin-
burgh, Scotland, UK.

[109] SYLVAIN GUILLEY, LAURENT SAUVAGE, JEAN-LUC DANGER, TARIK GRABA, AND

YVES MATHIEU. Evaluation of Power-Constant Dual-Rail Logic as a Protec-
tion of Cryptographic Applications in FPGAs. In SSIRI, pages 16–23, Yokohama,
Japan, jul 2008. IEEE Computer Society. DOI: 10.1109/SSIRI.2008.31, http://hal.
archives-ouvertes.fr/hal-00259153/en/.

[110] NIDHAL SELMANE, SYLVAIN GUILLEY, AND JEAN-LUC DANGER. Setup Time Violation
Attacks on AES. In EDCC, The seventh European Dependable Computing Conference, pages
91–96, Kaunas, Lithuania, may 7-9 2008. ISBN: 978-0-7695-3138-0, DOI: 10.1109/EDCC-
7.2008.11.

[111] FAROUK KHELIL, MOHAMED HAMDI, SYLVAIN GUILLEY, JEAN-LUC DANGER, AND

NIDHAL SELMANE. Fault Analysis Attack on an FPGA AES Implementation. In
NTMS, pages 1–5, Tangier, Morocco, nov 2008. IEEE. DOI: 10.1109/NTMS.2008.ECP.45.

[112] CHRISTOPHE CLAVIER. De la Sécurité des Cryptosystèmes Embarqués. PhD thesis, (french).
Université de Versailles Saint-Quentin-en-Yvelines, November 23 2007.

[113] VINCENT MAINGOT, JEAN-BAPTISTE FERRON, RÉGIS LEVEUGLE, VINCENT POUGET,
AND ALEXANDRE DOUIN. Configuration errors analysis in SRAM-based FPGAs: soft-
ware tool and practical results. Microelectronics Reliability, 47(9-11):1836–1840, 2007.

[114] G. TORRENS, B. ALORDA, S. BARCELÓ, J. L. ROSSELLÓ, S. BOTA, AND J. SEGURA. An
SRAM SEU Hardening Technique for Multi-Vt Nanometric CMOS Technologies. In
DCIS, November 12–14 2008. ISBN: 978-2-84813-124-5, Grenoble, France.

141

http://www.xilinx.com/ise/optional_prod/tmrtool.htm
http://www.xilinx.com/ise/optional_prod/tmrtool.htm
http://eprint.iacr.org/
http://www.commoncriteriaportal.org/
http://hal.archives-ouvertes.fr/hal-00259153/en/
http://hal.archives-ouvertes.fr/hal-00259153/en/

BIBLIOGRAPHY

[115] JEAN-JACQUES QUISQUATER AND DAVID SAMYDE. Radio Frequency Attacks. In HENK

C. A. VAN TILBORG, editor, Encyclopedia of Cryptography and Security. Springer, 2005.

[116] FABIAN VARGAS, D. L. CAVALCANTE, E. GATTI, DÁRCIO PRESTES, AND D. LUPI. On
the Proposition of an EMI-Based Fault Injection Approach. In IOLTS, pages 207–208.
IEEE Computer Society, July 6-8 2005. Saint Raphaël, France.

142

	List of Figures
	List of Tables
	1 Résumé
	2 Physical Attack On Cryptographic Implementation
	2.1 Cryptography
	2.1.1 Symmetric Ciphers
	2.1.2 Asymmetric Cryptography

	2.2 Smartcard Architecture
	2.3 Side Channel Attack
	2.3.1 Timing Attack
	2.3.2 Power Analysis
	2.3.3 Electromagnetic Analysis

	2.4 Fault Attacks
	2.4.1 Power Spikes
	2.4.2 Clock Glitches
	2.4.3 Optical Attack
	2.4.4 Electromagnetic Perturbations Attack
	2.4.5 Definition of Fault Model
	2.4.6 Fault Attack on AES
	2.4.7 Summary of DFA on AES

	2.5 Conclusion

	3 Practical Attacks on AES
	3.1 Global Attack: Setup time violation attack
	3.1.1 Attack Theory
	3.1.2 Acquisition Platform
	3.1.3 Fault Analysis
	3.1.4 Attack on ASIC
	3.1.5 Attack on FPGA

	3.2 Local Attack: Optical Fault Injection
	3.2.1 Decapsulation
	3.2.2 Practical Setup
	3.2.3 Experimental Results

	3.3 Conclusion

	4 Fault Attack Countermeasures
	4.1 Fault Detection
	4.1.1 Parity
	4.1.2 Concurrent Error Detection
	4.1.3 Cyclic Redundancy Check
	4.1.4 Non Linear Robust Code
	4.1.5 Double-Data-Rate as countermeasure
	4.1.6 Low cost countermeasure against setup time violation attacks

	4.2 Fault Resilience
	4.2.1 Comparison between Detection and Resilience
	4.2.2 Further Merits of the Fault Injection Resilience ''FIR''
	4.2.3 Related Works
	4.2.4 Some Practical Implementations of FIR
	4.2.5 Dual-Rail with Precharge Logic as a Global Countermeasure against Implementation-Level Attacks
	4.2.6 Cost Estimation of FIR versus Traditional Approaches
	4.2.7 Associating Three Protections to Reduce the Probability of a Successful FIA
	4.2.8 Applicability of Resilience with Certification Procedures

	4.3 Case study on WDLL
	4.3.1 Wave Dynamic Differential Logic
	4.3.2 Design Flow for WDDL Implementation
	4.3.3 Experimental Results
	4.3.4 Theoretical Fault Analysis on AES in WDDL
	4.3.5 WDDL w/o EPE
	4.3.6 Analysis of the DFA Protection for DPL w/o EPE

	4.4 Conclusion

	5 Conclusion
	Bibliography

