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Résumé xi

1 Context 1

1.1 Biological context . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Gene regulation . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1.1 General mechanisms . . . . . . . . . . . . . . 1
1.1.1.2 Why study gene regulation? . . . . . . . . . 4
1.1.1.3 Experimental characterization . . . . . . . . 6
1.1.1.4 In silico inference . . . . . . . . . . . . . . . . 8

1.1.2 The disease gene hunting problem . . . . . . . . . . . . 14
1.1.2.1 Disease gene discovery . . . . . . . . . . . . . 14
1.1.2.2 Experimental approaches for disease gene iden-

tification . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Data resources . . . . . . . . . . . . . . . . . . . . . . 17

1.1.3.1 Transcriptomics data . . . . . . . . . . . . . . 19
1.1.3.2 Subcellular localization data . . . . . . . . . . 21
1.1.3.3 Sequence data . . . . . . . . . . . . . . . . . 21
1.1.3.4 Annotation data . . . . . . . . . . . . . . . . 22
1.1.3.5 Data fusion . . . . . . . . . . . . . . . . . . . 25

1.2 Machine learning context . . . . . . . . . . . . . . . . . . . . . 25
1.2.1 Learning from data . . . . . . . . . . . . . . . . . . . . 26

1.2.1.1 Unsupervised versus supervised learning . . . 26
1.2.1.2 The bias-variance trade-off . . . . . . . . . . . 26
1.2.1.3 Some variants of supervised learning . . . . . 28

1.2.2 The Support Vector Machine . . . . . . . . . . . . . . 32
1.2.2.1 A geometrical intuition . . . . . . . . . . . . . 32
1.2.2.2 Soft margin SVMs . . . . . . . . . . . . . . . 35

i



ii CONTENTS

1.2.2.3 Non-linear SVMs . . . . . . . . . . . . . . . . 37
1.2.3 Kernels methods . . . . . . . . . . . . . . . . . . . . . 38

1.2.3.1 Motivations . . . . . . . . . . . . . . . . . . . 38
1.2.3.2 Definitions . . . . . . . . . . . . . . . . . . . 38
1.2.3.3 The kernel trick . . . . . . . . . . . . . . . . . 39
1.2.3.4 A kernelized SVM . . . . . . . . . . . . . . . 40
1.2.3.5 Data fusion with kernels . . . . . . . . . . . . 42

1.3 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . 44
1.3.1 A bagging SVM to learn from positive and unlabeled

examples . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.3.2 Regulatory network inference . . . . . . . . . . . . . . 45
1.3.3 Identification of disease genes with PU learning . . . . 45

2 A bagging SVM for PU learning 47
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qui comprend déjà mon humble personne et mon directeur de thèse). Ce qui
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foireuses en buvant du café dès le matin. La liste est longue mais on va
essayer de ne pas oublier de monde. Précisons aussi que certains peuvent
se trouver dans plusieurs catégories même je ne cite leur nom qu’une fois.
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éternuements et Dieu sait qu’il en faut de la constance pour tenir le rythme
: Bruno, Valentina et Paola. Une mention spéciale à Pierre N. qui m’a initié
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Abstract

In biology there are many problems for which traditional laboratory tech-
niques are overwhelmed. Whether they are time consuming, expensive,
error-prone or low throughput, they struggle to bring answers to these many
questions that are left unanswered. In parallel, biotechnologies have evolved
these past decades giving rise to mass production of biological data. High-
throughput experiments now allow to characterize a cell at the genome-scale,
raising great expectations as for the understanding of complex biological phe-
nomenons. The combination of these two facts has induced a growing need
for mathematicians and statisticians to enter the field of biology. Not only
are bioinformaticians required to analyze efficiently the tons of data coming
from high-throughput experiments in order to extract reliable information
but their work also consists in building models for biological systems that
result into useful predictions. Examples of problems for which a such ex-
pertise is needed encompass among others regulatory network inference and
disease gene identification. Regulatory network inference is the elucidation of
transcriptional regulation interactions between regulator genes called tran-
scription factors and their gene targets. On the other hand, disease gene
identification is the process of finding genes whose disruption triggers some
genetically inherited disease. In both cases, since biologists are confronted
with thousands of genes to investigate, the challenge is to output a priori-
tized list of interactions or genes believed to be good candidates for further
experimental study. The two problems mentioned above share a common
feature: they are both prioritization problems for which positive examples
exists in small amounts (confirmed interactions or identified disease genes)
but no negative data is available. Indeed, biological databases seldom report
non-interactions and it is difficult not to say impossible to determine that a
gene is not involved in the development process of a disease. On the other
hand, there are plenty of so-called unlabeled examples like for instance genes
for which we do not know whether they are interacting with a regulator gene
or whether they are related to a disease. The problem of learning from pos-
itive and unlabeled examples, also called PU learning, has been studied in
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x ABSTRACT

itself in the field of machine learning. The subject of this thesis is the study
of PU learning methods and their application to biological problems. In the
first chapter we introduce the baggingSVM, a new algorithm for PU learning,
and we assess its performance and properties on a benchmark dataset. The
main idea of the algorithm is to exploit by means of a bagging-like procedure,
an intrinsic feature of a PU learning problem, which is that the unlabeled set
is contaminated with hidden positive examples. Our baggingSVM achieves
comparable performance to the state-of-the-art method while showing good
properties in terms of speed and scalability to the number of examples. The
second chapter is dedicated to SIRENE, a new method for supervised in-
ference of regulatory network. SIRENE is a conceptually simple algorithm
which compares favorably to existing methods for network inference. Finally,
the third chapter deals with the problem of disease gene identification. We
propose ProDiGe, an algorithm for Prioritization Of Disease Genes with PU
learning, which is derived from the baggingSVM. The algorithm is tailored
for genome-wide gene search and allows to integrate several data sources.
We illustrate its ability to correctly retrieve human disease genes on a real
dataset.



Résumé

En biologie, il est fréquent que les techniques de laboratoire traditionnelles
soient inadaptées à la complexité du problème traité. Une raison possible à
celà est que leur mise en oeuvre requiert souvent beaucoup de temps et/ou de
moyens financiers. Par ailleurs, certaines d’entre elles produisent des résul-
tats peu fiables ou à trop faible débit. C’est pourquoi ces techniques peinent
parfois à apporter des réponses aux nombreuses questions biologiques non
résolues. En parallèle, l’évolution des biotechnologies a permis de produire
massivement des données biologiques. Les expériences biologiques à haut
débit permettent à présent de caractériser des cellules à l’échelle du génome
et sont porteuses d’espoir pour la compréhension de phénomènes biologiques
complexes. Ces deux faits combinés ont induit un besoin croissant de math-
ématiciens et de statisticiens en biologie. La tâche des bioinformaticiens
est non seulement d’analyzer efficacement les masses de données produites
par les expériences à haut débit et d’en extraire une information fiable mais
aussi d’élaborer des modèles de systèmes biologiques menant à des prédic-
tions utiles. L’inférence de réseaux de régulation et la recherche de gènes de
maladie sont deux exemples parmi d’autres, de problèmes où une expertise
bioinformatique peut s’avérer nécessaire. L’inférence de réseaux de régula-
tion consiste à identifier les relations de régulation transcriptionnelle entre
des gènes régulateurs appelés facteurs de transcription et des gènes cibles.
Par ailleurs, la recherche de gènes de maladie consiste à déterminer les gènes
dont les mutations mènent au développement d’une maladie génétiquement
transmise. Dans les deux cas, les biologistes sont confrontés à des listes de
milliers de gènes à tester. Le défi du bioinformaticien est donc de produire
une liste de priorité où les interactions ou gènes candidats sont rangés par
ordre de pertinence au problème traité, en vue d’une validation expérimen-
tale. Les deux problèmes mentionés plus haut partagent une caractéristique
commune: ce sont tous les deux des problèmes de priorisation pour lesquels
un petit nombre d’exemples positifs est disponible (des interactions connues
ou gènes de maladie déjà identifiés) mais pour lesquels on ne dispose pas de
données négatives. En effet, les bases de données biologiques ne reportent
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xii RÉSUMÉ

que rarement les paires de gènes non interactives. De même, il est difficile
voire impossible de déterminer à coup sûr qu’un gène n’est pas impliqué
dans le développement d’une maladie. Par ailleurs, des nombreux exem-
ples indéterminés existent qui sont par exemple des gènes dont on ne sait
pas si ils interagissent avec un facteur de transcription ou encore des gènes
dont on ne sait pas s’ils sont causaux pour une maladie. Le problème de
l’apprentissage à partir d’exemples positifs et indéterminés (PU learning en
anglais) a été étudié en soi dans le domaine de l’apprentissage automatique
(machine learning). L’objet de cette thèse est l’étude de méthodes de PU
learning et leur application à des problèmes biologiques. Le premier chapitre
présente le baggingSVM, un nouvel algorithme de PU learning et évalue ses
performances et propriétés sur un jeu de données standard. L’idée princi-
pale de cet algorithme est d’exploiter au moyen d’une procédure voisine du
bagging, une caractéristique intrinsèque d’un problème de PU learning qui
est que l’ensemble des exemples indéterminés contient des positifs cachés. Le
baggingSVM atteint des performances comparables à l’état de l’art tout en
faisant preuve de bonnes propriétés en termes de rapidité et d’échelle par rap-
port au nombre d’exemples. Le deuxième chapitre est consacré à SIRENE,
une nouvelle méthode supervisée pour l’inférence de réseaux de régulation.
SIRENE est un algorithme conceptuellement simple qui donne de bons résul-
tats en comparaison à des méthodes existantes pour l’inférence de réseaux.
Enfin, le troisième chapitre décrit ProDiGe, un algorithme pour la priorisa-
tion de gènes de maladie à partir d’exemples positifs et indéterminés. Cet
algorithme, issu du baggingSVM, peut gérer la recherche de gènes de mal-
adies à l’échelle du génome et permet d’intégrer plusieurs sources de données.
Sa capacité à retrouver correctement des gènes de maladie a été démontrée
sur un jeu de données réel.



Chapter 1

Context

In this chapter, we expose the basic notions which are necessary to under-
stand the developments of this thesis. Section 1.1 is dedicated to the biolog-
ical aspects of gene regulation and disease gene hunting which are two topics
of interest of our work. Then, section 1.2 focuses on the machine learning
aspects of this work.

1.1 Biological context

1.1.1 Gene regulation

1.1.1.1 General mechanisms

This section aims to give an overview of the gene regulation process within
a living cell. The genome of an individual is defined as the hereditary infor-
mation encoded in its genetic material. Therefore, it contains all information
needed by the organism to develop and live. The physical support of the
genome is a molecule called DesoxyriboNucleic Acid (DNA). The general
aspect and localisation of DNA is illustrated on figure 1.1.

A single DNA strand is a sequence of nucleotides, which are composed of
a phosphate group, a sugar and a base. There are four types of bases which
are thymine (T), adenine (A), guanine (G) and cytosine (C). Then, a double
DNA strand is made of two single DNA strands which form complementary
bonds in the following way : a T base is always complementary with an A and
a G base is complementary with a C. This double strand of complementary
base pairs has the shape of an helix. It is coiled around proteins called
histones and then super-coiled to form a chromosome, which is located in the
nucleus of the cell. In humans, there are 23 pairs of chromosomes.

All cells in an organism contain the totality of the genome, that is to say,

1



2 CHAPTER 1. CONTEXT

Figure 1.1: General aspect and localisation of DNA in a eukaryotic cell

the whole DNA sequence. The central dogma of biology (cf figure 1.2) states
that coding genes on DNA are transcribed into messenger RNA (mRNA)
that transport themselves outside the nucleus, to be translated into proteins.
Each protein has a specific function to achieve inside the cell. Some have
cellular functions: they might serve for cell motility, for maintaining the cell
structure, for communication with the outside, for transporting molecules...
Some proteins, called enzymes have a biochemical function, meaning that
they serve as catalyzers to chemical reactions. In a word, proteins are the
main actors of a cell’s activity.

However, the cells of an organism are not all the same. Their activity, and
therefore the type and quantity of proteins they produce, varies according
to their location and to the environmental conditions they are facing. For
instance, a liver cell and a blood cell do not behave identically. Likewise,
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Figure 1.2: The central dogma of biology

variations in the environment like a change of temperature or the presence
of some chemical compounds, do result in an adaptive behaviour of a cell.
As a consequence, a cell does not express all coding parts of the genome, in
the sense that there are genes that do no result into functional proteins into
that cell. This also means that a cell is able to modulate the production of
its proteins to satisfy its needs. This process is called gene regulation. There
are several levels of gene expression regulation:

• DNA level regulation
In order to allow for transcription, the structure of DNA must be mod-
ified. Some enzymes are responsible for DNA methylation or histone
modifications that strengthen DNA packing, thus preventing the tran-
scription machinery from accessing the sequence to be transcribed.

• Transcriptional regulation
Among the proteins produced by a cell, some are called transcription
factors (TF) and their function is precisely to regulate gene expression.
A single TF has a certain number of gene targets. RNA polymerase is
an enzyme complex responsible for transcription initiation. It binds to
particular DNA sequences named promoters. By recognizing a target’s
binding site, a transcription factor increases (or decreases) the affinity of
RNA polymerase for that gene’s promoter, thus allowing (or disabling)
its transcription into mRNA. In the first case, the TF is an activator,
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whereas it is called an inhibitor in the second case. Figure 1.3 gives
an example case of the activating regulation of gene A on gene B. In
condition 1, gene A is transcripted and translated into an activator
TF protein, which binds to the operator (O) of gene B, allowing RNA
polymerase to bind the promoter (P), which initiates transcription of
gene B into mRNA, which is then translated into a triangular protein.
Then, under a second condition, which could be an external stimulus or
that it has been produced in a sufficient quantity, the triangular protein
is not needed anymore. The TF becomes inactive (see the change of
shape), it cannot bind anymore to the operator, RNA polymerase is
not recruited and transcription does not happen.

• Post-transcriptional regulation
Being transcribed is a necessary but not sufficient step for being trans-
lated into a functional protein. Between transcription and translation,
the transcripts undergo various processing mechanisms. They are sta-
bilized (capping and polyadenylating) and spliced. Splicing is a mecha-
nism that removes introns (non-coding regions). But, they can also be
sequestated and degradated. At this stage, gene silencing and degra-
dation are processes which participate to a regulation system named
RNA interference whose main actors are micro RNAs (miRNA) and
small interfering RNAs (siRNA).

• Translational regulation
At last, translation itself can be disabled mainly at the beginning of
the translation by the ribosome.

In this thesis, we focus on the particular case of transcriptional regulation.
In particular, we neglect the last two types of regulation and assume that
measuring mRNA quantities is sufficient to measure gene expression.

1.1.1.2 Why study gene regulation?

Elucidating the regulatory structure of a cell is a long-studied issue to which
many efforts have been devoted. If we were able to understand a cell’s func-
tional mechanisms, we could predict its behaviour under different stimuli,
like for instance the response to a drug. Another practical application in
biomedicine is the search for new therapeutic targets. Trying to cure some
disease, one often wishes to be able to inhibit or enhance some particular
functional pathway. For instance, one could imagine a novel cancer ther-
apy which would stop cancerous cells from proliferating while not being too
toxic for surrounding tissues. As another example, Plasmodium falciparum
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Figure 1.3: Example case of an activating regulation interaction.
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is a parasite responsible for malaria. Some strains of this parasite are now
resistant to known treatments. Unraveling the defense mechanisms of this
parasite could allow to disable them and to design a new efficient treatment.

1.1.1.3 Experimental characterization

Low-throughput assays Historically, the first attempts to discover tran-
scriptional regulatory interactions were carried out by experimental biolo-
gists. A regulatory interaction is, as we have described above, a binding
reaction between a protein (the transcription factor) and a DNA fragment
(the target gene’s binding site). We review here the main experimental tech-
niques used for assessing protein-DNA interactions.

• Gel shift analysis
A DNA fragment, marked with a fluorescent marker is put on a gel,
which has previously been impregnated with a protein. Since binding
slows down the fragment, the difference in speed at which the DNA
fragment moves along the gel with and without a protein, indicates
whether the protein and DNA bind.

• DNase footprinting
This technique exploits the fact that a protein binding to a DNA frag-
ment tends to protect this fragment from cleavage. A DNA fragment
of interest is amplified and labeled at one end. The obtained fragments
are separated in two portions. The first portion is incubated with the
protein of interest and DNase, a DNA cleaving enzyme. The second
portion is incubated with DNase but without the protein of interest.
The amount of DNase is calibrated so that each fragment is cut once.
Both samples are then separated by gel electrophoresis 1 and the cleav-
age pattern in the presence of the protein is compared to the pattern
in the absence of the protein.

• Nitrocellulose filter binding assay
This assay aims to estimate the strength of interaction between a pro-
tein ligand and a DNA fragment by measuring the binding constant
as a function of the protein quantity. Nitrocellusose paper, used as a
filter, is ideal for immobilizing proteins, whereas DNA will not stick
to it unless being bound to a protein. Radioactively labeled DNA is
incubated with a known amount of protein and the mixture is spilled

1A technique for separating molecules placed on a gel matrix, by subjecting them to

the action of an electric field.
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on a nitrocellulose filter, placed above a vacuum which pumps the liq-
uid downward. This way, all DNA which is not bound to a protein is
removed. Then, radioactivity is measured, reflecting the quantity of
bound DNA. This is repeated for various amounts of protein, so that
we obtain a function plot of the amount of bound DNA against the
amount of protein. A rapidly increasing curve shows a high affinity (cf
figure 1.4).

Figure 1.4: Results of a filter binding assay.

High throughput technologies A major drawback of the methods pre-
sented so far is their cost in terms of time and money. Indeed, one has to
replicate manually the experiment for each pair of protein-DNA fragment
one wants to test. That is why high-throughput experimental assays have
been designed, which allow to test for many pairs at the same time. Here
we focus on the ChIP-on-chip technology, also know as genome-wide local-
ization analysis. The ChIP-on-chip technique, which stands for Chromatin
ImmunoPrecipitation on chip, is a widely used technique for testing DNA-
protein interactions. More specifically, such an experiment aims to identify
the binding sites of a DNA-binding protein, such as a transcription factor.
Figure 1.5 illustrates the experiment which we roughly describe. The protein
is linked to the DNA in an in vivo environment. Then, DNA is chunked
and the protein is targeted with a specific antibody, which allows to retrieve
complexes made of a protein and a DNA fragment bound to it (a step called
chromatin immuno-precipitation). These fragments are separated from the
protein of interest and they are spotted on a DNA microarray (a chip)2 in

2The microarray technology is explained later.
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order to identify them. The ChIP-Seq technology is the same, except that
the identification of the fragments is made by sequencing and mapping them
on a reference genome. It is more sensitive than ChIP-on-chip and less prone
to saturation effects of the signal.

Figure 1.5: The ChIP-on-chip experiment.

1.1.1.4 In silico inference

Switching to the systems biology paradigm Even though high through-
put assays have alleviated the experimental burden, a ChIP-on-chip exper-
iment is still restricted to a single TF protein. Moreover, results still lack
reliability. For instance, there are interactions which remain difficult to char-
acterize by a ChIP-on-chip assay because it is not possible to design an
antibody to recognize the protein of interest, or because an antibody exists
but is not specific enough to this protein. In a general perspective, the great
complexity of cellular mechanisms, generated by the numerous interactions
existing in the cell between genes or proteins, makes it a grueling (and expen-
sive) work to elucidate biological networks in situ i.e through experimental
means. For those reasons, whether they are reliability or cost issues, in silico
(computational) methods are increasingly appealed to for the inference of
regulatory interactions.
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The problem of regulatory interaction inference as we have depicted it,
typically fits into the scheme of systems biology. We have already pointed
out that cells could have very complex behaviors. Classical biology studies
these behaviors by dissecting the cell and zooming on a few of its compo-
nents. In opposition to that point of view, systems biology claims that one
cannot understand the way a cell functions unless one sees it as a system,
where any biological function is the result of thousands of components inter-
acting, rather than the product of the activity of some isolated components.
The two main problems that have caught the attention of systems biologists
are network inference and model validation. In the context of transcriptional
regulation, network inference consists in the elucidation of regulatory inter-
actions between the components of the cell. This task is often referred to
as “reverse engineering” in literature. The model validation part deals with
the search for some general design principles underlying the regulatory struc-
tures. Fitting a model to an inferred network structure, we are allowed to
make predictions which in turn, help to gain insight on the mechanistic of
the cell . A common way to proceed is to reduce the complex machinery to
a more simple model, whose parameters and/or shape allow one to test some
hypotheses. Then, the model is usually validated by carrying out simulations.
While reverse engineering operates at a very global scale, model validation
often necessitates to focus on smaller networks, first because fitting a model
on a too large network is difficult and also for interpretation purposes (some
particular pathways of interest can be studied more precisely).

It is worth noting at this stage that the goal of systems biology is not
to discard experimental biology. Both approaches are meant to complement
each other in an iterative scheme. Whenever a computational algorithm is
trained to infer an interaction network, high confidence interactions need
to be experimentally validated. Likewise, whenever a model is found to be
plausible, it needs to be checked by experimental means. In any case, the
objective of computational methods is to guide experimentalists who would
otherwise have to move blind. In turn, it is important that systems biologists
can rely on the biologists’ experience and knowledge, to build meaningful and
relevant models. A crucial remark we can make about network inference is
that, in this iterative scheme, it seems important to produce some confidence
score for each interaction, so that only the most likely TF/gene pairs are
submitted to experimental validation. In other words, it seems that the job
expected from computational methods is above all a prioritization job.
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Learning the edges between the nodes Under the systems biology vi-
sion, it is convenient to view the regulatory machinery as a graph. Naturally,
the nodes of the graph are be genes, proteins or any acting component one
wants to study and an edge represents an interaction between two of these
components. Figure 1.6 gives a representation example of a regulatory net-
work. In this particular example, nodes are heterogeneous and edges are
directed. Red nodes are genes coding for transcription factor proteins (which
we can directly call transcription factor as well) and blue nodes are other
non-TF coding genes. A directed edge can only be drawn from a red node,
meaning that the corresponding TF regulates the expression of the corre-
sponding target gene.

Figure 1.6: A graph representation of a regulatory network.

Having represented the transcriptional machinery as a graph, the task of
is equivalently stated as “learning the edges between the nodes of the graph”.
A common way to proceed is to start from the output of a network, namely
the expression levels of genes in order to get back to what has generated
these expression patterns, that is the original structure of the network. DNA
microarrays are devices that provide expression level measures (see section
4.5). A gene is featured by an expression profile that describes the activity
of that gene under various conditions (steady state data) or at various time
points (time-series data). We now give a brief review of methods which infer
regulatory networks de novo from gene expression data. Mainly, these meth-
ods differ in the interpretation of the graph representation. We detail below
the mathematical formalism they use, their specificities and the assumptions
they make.

• Clustering methods [Eisen et al., 1998, Amato et al., 2006]
Genes are clustered in groups of genes having similar expression profile,
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indicating co-expression. Indeed, co-expressed genes are likely to par-
ticipate to the same pathways and therefore, to be functionally related.
Therefore, an edge between two genes on the graph is not directed
and cannot be interpreted as a regulatory interaction but rather as a
functional relationship. Steady-state as well as time-series data can be
used.

• Correlation-based and information-theoretic methods [Butte and Ko-
hane, 2000, Margolin et al., 2006, Faith et al., 2007]
The rationale behind these approaches is that an interaction between a
TF-coding gene and one of its targets can be detected through the de-
pendence relationship that is induced between their expression levels.
Information-theoretic methods use the mutual information measure,
which can be seen as a measure of departure from independence. Con-
trary to correlation-based methods, information-theoretic methods are
able to detect more complex forms of dependence than just linear de-
pendence. An undirected edge between two nodes on the graph stands
for a (linear) dependency between the expression of the two genes. If
correlation is used, one can distinguish between activating and inhibit-
ing regulation, according to the sign of correlation. However, causality
cannot be determined through correlation only and therefore, an edge
might just represent an indirect regulation. To avoid this, the concept
of partial correlation has been proposed, which computes correlation
between two variables conditional to all other variables [Rice et al.,
2005, Liang and Wang, 2008].

• Boolean network inference [Akutsu et al., 2000]
In that particular setting, the expression level of a gene i is encoded as
a Boolean variable Xi: Xi = 1 means “expressed” as opposed to a value
of 0. To do so, expression profiles are discretized into binary vectors.
The value of the Boolean variable Xi depends on the values of the
nodes pointing to it through a logical function. We note that this type
of inference produces qualitative rather than quantitative relationships.
The logical function for one node can vary over time or not, depending
on which type of data is used.

• Bayesian network inference Friedman et al. [2000], Beal et al. [2005],
Yu et al. [2004b]
A graphical model represents conditional independence relationships of
a set of random variables by means of a graph. A Bayesian network
is a particular type of graphical model where the graph is a directed
acyclic graph. Figure 1.7 gives an example of such a graph. Each
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variable is represented by a node and each node is independent to all
other nodes conditionally to its parents. For instance, figure 1.7 shows
that conditionally to variables 5 and 7, variable 11 is independent from
variables 2, 3, 8 , 9 and 10. Given the conditional dependency graph

Figure 1.7: A directed acyclic graph.

G, data D and a model for the conditional likelihood (gaussian for
instance), one can compute the posterior probability of that graph given
the data D and maximize it with respect to G. In practice, since this
optimization is an NP-hard problem, Bayesian inference methods resort
to heuristic searches of the optimal graph. Bayesian networks have
been extended to dynamic bayesian networks which additionally take
into account the evolution over time of the regulatory network.

• Ordinary differential equations (ODE) methods [Gardner et al., 2003,
di Bernardo et al., 2005, Bansal et al., 2006]
While previous methods consider mainly statistical dependencies be-
tween the nodes, ODE-based methods are deterministic by nature and
they focus on causal relationships. Following the principles of chemical
kinetics, the expression variation of each gene is related to the level
expression of all other genes and possibly to an external signal via a
differential equation. The parameters of that equation are estimated by
fitting the data to the model. These parameters determine the nature
of the edges. A basic example is when the variation of the expression
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of a gene xj is chosen to be linearly related to the expression level of
other genes {xi}i�=j

ẋj =
�

i�=j

ai ∗ xi

Coefficients ai are computed to fit the data and they are interpreted
as weights on edges leaving from xj to the x�is. In essence, ODE-based
methods are well suited for the analysis of time-series data, but they
can also be used with steady-state expression profiles, in which case
ẋj = 0 ∀j.

In silico methods are meant to investigate a very wide search space. To
handle the level of complexity one is faced with when adopting a systemic
point of view, one has to resort to simplifying assumptions. Linearity or dis-
crete node value are examples of simplifying assumptions. We see that the
approaches we have presented above adopt different formalisms correspond-
ing to different assumptions on the data and on the way interactions might
be captured. Some take into account the nature of the interactions (is the
TF an activator or an inhibitor) while others do not, some do consider their
dynamics (different interactions may be active at different time points). At
last, some, like ODE-based methods, are able to infer synergistic effects while
others are not. Besides, the complexity of the networks to be learnt might
raise underdetermination issues, meaning that the available data might be
insufficient to determine a single solution. To overcome this issue, one can
also encode prior beliefs in the algorithm in order to restrict the search space
and to guide the inference process. These priors beliefs often come as evolu-
tionary constraints [Marbach et al., 2009] and are used to guide the inference
towards biologically plausible networks. For instance, many computational
methods enforce some sparsity constraints on the network structure and claim
that gene networks tend to be parsimonious for the robustness property this
confers them [Leclerc, 2008]. A possible way to proceed is to restrict the
in-degree of the nodes [Akutsu et al., 2000]. Indeed, it is a widely accepted
fact that each gene is regulated by a small set of regulators. This is related to
the scale-free property which states that the networks we want to infer con-
tain a few densely connected nodes called “hubs”, while the rest of the nodes
have very few connections. Moreover, studying the topology of some known
regulatory networks, it has been noticed that some particular motifs would
appear more frequently than what would be expected by chance. Again, this
feature can be used to enforce the algorithm to output realistic networks.
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1.1.2 The disease gene hunting problem

In this section, we introduce the problem of disease gene hunting. Then, we
briefly review the traditional approaches that were used to identify disease
genes.

1.1.2.1 Disease gene discovery

Having discovered the path which leads from genes to proteins and therefore
to a corresponding phenotype, the task of finding which genes are respon-
sible for the appearance of a given phenotype has attracted great attention
in the genetic scientists community. In particular, a burning topic during
the past 20 years has been to identify those genes whose disruption lead
to acquired Mendelian diseases. Mendelian diseases are genetically inher-
ited diseases caused by a mutation in a single gene. They are sometimes
called monogenic diseases. For instance, cystic fibrosis (or mucoviscidosis)
is a Mendelian disease caused by a mutation in the gene for the protein
cystic fibrosis transmembrane conductance regulator (CFTR). The Online
Mendelian Inheritance in Men (OMIM) database [McKusick, 2007] was ini-
tially created to gather knowledge on Mendelian disease/gene associations.
However, efforts have been progressively shifting to the harder task of finding
genes associated with polygenic or complex diseases. Indeed, the disruption
of a single gene is sometimes not enough to trigger a disease phenotype, and
it is thought that instead, the disease is caused by the simultaneous action of
several genes and possibly by environmental factors. Yet, the mode of action
of this set of genes is unknown and if environmental factors are playing a role
in the development of the disease, it is uneasy to distinguish the environ-
mental basis from the genetic causes. Alzheimer’s disease is an example of a
complex disease. The main reason why researchers concentrate their efforts
on the disease gene hunting is that many diseases remain misunderstood.
The identification of novel causal genes would give additional insight on the
mechanisms which are at the origin of these poorly known diseases and above
all, could open the way for the design of new therapies to cure them.

1.1.2.2 Experimental approaches for disease gene identification

Traditional strategies for finding disease genes are mixed strategies involving
both molecular biology and genetic (statistical) techniques. There are mainly
three ways to proceed.

Candidate gene approach This approach requires prior knowledge of the
diseases, such as the type of function that is perturbed by the disease or the
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tissues that are affected [Kwon and Goate, 2000]. Candidate genes are pri-
oritized using his knowledge and then tested in association studies. These
studies gather a set of individuals, some of whom are affected by the dis-
ease, some of whom are healthy people. The candidate gene is statistically
tested for segregating polymorphisms among this population of individuals.
Namely, if a given allele of that gene is significantly inherited more frequently
in subjects having the disease than in healthy subjects, it is acknowledged
as a disease gene. We can make a distinction here between population-based
studies and family-based studies. Population-based studies allow the inclu-
sion of any subject in the population and is similar to a classical epidemiology
study. Genotypes are looked for that are more present in the case population
than in the control population of healthy subjects. The inclusion plan of such
a study must be made carefully, since the genotype frequency also varies be-
tween subjects of different geographical and/or ethnic origin. Otherwise, the
success of the study might be hampered by what is called a stratification con-
founding effect. On the other hand, in family-based studies, healthy parents
are used as controls for their affected offspring. They avoid the confounding
stratification effect but since members from the same family live in the same
environmental conditions, the role played by the candidate gene is not clearly
separated from that of environmental hidden factors. A general drawback of
the candidate gene approach is that it might fail if the disease pathophysiol-
ogy is currently misunderstood or our knowledge of it is incomplete, which
is often the case.

Genome-wise Association Studies Single Nucleotide Polymorphisms
are variations on a single base pair of the genome between individuals of
the same species. They represent around 90% of human genetic variations.
SNP arrays are a special type of DNA microarrays (see section 4.5) which
are designed to detect such polymorphisms on the whole genome for a given
population. They have marked the advent of genome-wise association stud-
ies(GWAS). GWAS are association studies such as described in the previous
paragraph except they examine systematically all SNPs across the genome.
They are different from candidate gene studies because they do not use any
knowledge of the disease to focus on particular genes but rather proceed to
extensive statistical tests for association between a phenotype and genomic
variations.

Genomic screen approach Contrary to the previous approach, genomic
screening is a systematic method which operates without any prior knowl-
edge on the studied disease. It relies on the use of “genetic markers” and



16 CHAPTER 1. CONTEXT

“genetic linkage”. Genetic markers are highly polymorphic3 DNA sequences
(possibly genes) whose location on the genome is known. They are evenly
distributed on the genome and usually serve as identifiers of the genome (like
kilometer markers on a road). Genomic linkage could be defined as an inher-
itance property. During meiosis, DNA segments are exchanged between the
chromosome inherited from the father and that inherited from the mother.
This process, called recombination, allows to create new trait combinations
and participates to genetic diversity. The consequence of that crossing-over
is that alleles that would have been inherited together otherwise, can now
be split up in different daughter cells. Moreover, it has been observed that
the chances of being split-up by a recombination event were higher for alle-
les further away from each other. Therefore, if a marker is observed to be
frequently inherited along with the phenotype of interest, this indicates that
the gene responsible for that phenotype is likely to be close to it. The genetic
distance between two markers is defined as the recombination frequency, i.e
the proportion of recombining meiosis. A recombination frequency of 1%
corresponds to a genetic map unit and is called a centiMorgan (cM). The
corresponding physical distance (in number of bases) varies according to the
localization on the genome. There are statistical tests which allow to identify
two markers delimiting a candidate region, likely to contain the responsible
gene. Figure 1.8 is extracted from [Silver, 1995] and illustrates the whole pro-
cess: in this example, the phenotype of interest is “green eyes”. Two markers
D3Ab34 and D3Ab29 are found to have a recombination frequency with the
phenotype of 2 over 400, one marker, D3Xy12, had a frequency of 1 over
400 and D3Xy55 was concordant in all 400 cases (panel A). Therefore, the
candidate region was delimited by markers D3Ab34 and D3Ab29 (panel B).
Then, fine mapping of this region can then be achieved by a technique called
positional cloning. This comprises a time consuming procedure called chro-
mosome walking, which consists in moving forward from the first delimiting
marker towards the second, getting each time closer to the gene of interest.
The process is aided by hybridizing a series of overlapping clones from a li-
brary to the region. The ordered series of such clones is called a contig, which
can be seen as a physical representation of the region. These clones are easily
identifiable. At each step of the walk, specific tests (including co-segregation
tests) can determine whether the current clone belongs to the gene that is
looked for. In panel E of figure 1.8, we see the results of co-segregating tests
for the different clones. 1R and 10R show one recombining event (resp. in
individuals number 156 and 332), while 6L and 2R fragments are concordant

3A gene is said to be polymorphic if it comes into different shapes or “alleles” in a

population, yielding different versions of the same phenotype.
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with the phenotype. Therefore, localization of the “green eyes” locus is en-
hanced and restricted to a narrower region between 1R and 10R. Although
the initial interval is narrowed down, the output of positional cloning is usu-
ally not a gene but rather an interval, whose size depends on the resolution
limit (on the order of 1-10 cM). Candidate genes in that interval must then
be examined successively. Note that the evolution of sequencing technologies
now allows to save a lot of times. Nevertheless, both approaches necessitate
recruiting a large number of families and collecting DNA samples from the
members of these families, which is still a very long and heavy process.

Prioritization using in silico methods Considering the inherent diffi-
culty of traditional techniques of disease gene identification, and the fact that
researchers were often left with a remaining list of thousands of genes to in-
vestigate, there were a growing need for automated techniques. That is why
this area of research has turned towards computer scientists and mathemati-
cians to develop computational techniques. Similarly to the gene regulation
case, what is expected from in silico methods in the case of disease gene
discovery is rather a prioritization job than a classification job. That is to
say the desired output of an algorithm is an ordered list of genes, where the
top genes are believed to be the better disease gene candidates.

1.1.3 Data resources

The increasing need for automated methods is a general phenomenon in bi-
ology, that goes far beyond the two particular problems presented in this
thesis. It is true that for many biological problems, experimental techniques
are time consuming and sometimes very expensive but this fact by itself is
insufficient to explain the growing success of computational biology nor why
mathematicians, statisticians and computer scientists have got interested in
the biological issues. This phenomenon takes a lot more sense if we place
under the light of what can be termed a “data revolution”. This revolution
has been triggered by the completion of the Human Genome Project in 2003.
The goal of this project was to determine the sequence of base pairs which
constitute human DNA and to identify all human genes. This achievement
was a considerable step towards understanding molecular mechanisms in gen-
eral and was chosen to mark the advent of the post-genomic era. Since then,
biotechnologies have evolved at a fast pace and advances in that field have
generated an unprecedented variety of data, describing living cells at a very
high precision level. Among them, high-throughput techniques have enabled
researchers, for the first time in history, to characterize biological samples
through a high number of quantitative measures at the genome scale. As a
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Figure 1.8: The different steps of positional cloning.
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practical consequence, data analysis and mathematical/statistical modeling
have been increasingly integrated at the core of biological research. Besides,
the analysis of datasets having the size and complexity of those produced
by high-throughput technologies raise challenging methodological issues that
require appropriate statistical treatment.

In the two problems we have introduced earlier, the principal object to be
described is a gene. Therefore, we now review the different types of data that
are now available to characterize genes or equivalently the proteins they code
for. Figure 1.10 illustrates further a few types of data that are available to
describe a gene and gives a better idea of the kind of quantitative information
they provide.

1.1.3.1 Transcriptomics data

The most well known type of high-throughput data to describe genes is proba-
bly transcriptomics data, also known as microarray expression data. Microar-
rays are devices for measuring the level of expression of all genes in a tissue in
a particular condition or time point. The expression level of a gene is quan-
tified via the abundance of messenger RNA after transcription of that gene.
We mentioned in section 1.1.1 that this was a simplification, since measuring
the quantity of proteins would be more sensible to quantify expression. The
corresponding data are called proteomics data. However, proteomics tech-
niques are far less mature than transcriptomics and researchers implicitely
consider that transcriptome is correlated enough with proteome to provide a
good approximation of the actual expression of a gene. For a broad expla-
nation of the technical details, a microarray is a solid suppport, also called a
“chip”, with an arrayed series of spots, each of which contains a fixed amount
of probes. A probe is a short sequence designed to match a specific mRNA.
The target sample is fluorescently labeled and hybridized to the probes on
the array. A labeled mRNA matching a probe generates a light signal whose
intensity ideally depends on its quantity (see figure 1.9). The intensity signal
is captured (see left picture on figure 1.10) and processed to yield a single
quantitative measure for each gene. Affymetrix and Agilent are two compa-
nies whose microarray technology is widely spread in the genomic research
community. Finally, a single microarray produces a snapshot of the activity
of a tissue sample in a particular condition. Generally, this process is re-
peated in different conditions (steady-state data) or at different time points
(time series data). Different conditions usually means either different samples
(from normal individuals versus patients with a disease, or different tissues)
or different environmental conditions (oxydative stress, drug, temperature
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change, PH change...). Time series experiments may be designed to observe
how expression evolves in time after a given event (for instance, knock out
of a gene or subjecting the sample to a drug). In both cases, one eventually
obtains an expression profile or each gene which is a vector of measures that
characterizes the gene in question.

Figure 1.9: Target samples are hybridized to probes on a microarray.

A related type of expression data, which is perhaps less popular, is Ex-
pressed Sequence Tag (EST) data. EST are short sequenced fragments of
complementary DNA (cDNA) obtained from mRNA bits sampled from a
given tissue. These fragments are indicators of expression of a gene. There-
fore, they can be used to identify yet unknown genes by physical mapping.
But even when the corresponding gene is already known, the information
about the tissues and the conditions in which the gene was found to ex-
pressed is still valuable and can be used to describe this gene. For instance,
in the candidate approach for disease gene discovery we have been reviewing
previously, if one was looking for a gene responsible for a disease affecting the
brain, she would start by investigating those genes known to be expressed in
this area of the body.
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1.1.3.2 Subcellular localization data

An important feature for a gene is the localization within the cell of the pro-
tein it codes for. Knowing where a protein lives enables one to know more
about its function, about it interacting partners. It can also be a valuable
information for who would like to target this protein. Laboratory techniques
encompass immuno-fluorescence, fluorescent microscopy, fractionation com-
bined with mass spectometry.

1.1.3.3 Sequence data

The sequencing technologies are probably those that have known the most
spectacular development since their invention in the late seventies (they
were independently discovered by Sanger’s team in the UK and Maxam and
Gilbert’s team in the US). Nowadays, it has become straightforward to char-
acterize a gene by its nucleotide sequence. A lot of work has been dedicated
to sequence analysis, sequence alignment and sequence comparison. Sequence
analysis has allowed to identify particular structures, recurrent patterns or
motifs associated with specific types of sequences. An important application
of sequence alignment and comparison has been to find homologous proteins.
Homologous proteins are coded by genes deriving from a common ancestor.
Going a step further, one can distinguish between two types of homologous
proteins:

• Paralogous proteins belong to a single species and result from a dupli-
cation event.

• After a speciation event, the two copies of the same gene in the two
newly formed species are brought to evolve separately and therefore
their sequence and possibly function diverge. They are called ortholo-
gous.

However, even after billions of years, homologous genes might have kept a
certain degree of resemblance, both because their sequences are similar and
because their function might be conserved. Homology is often detected by
means of sequence similarity. Detection of homologous proteins is the ground
of comparative genomics. or instance, when looking for the function of a gene
(protein), a fruitful approach is to look for informations from similar proteins
either in other better known species, via its orthologous proteins or possibly
within the same species, via its paralogous proteins.
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Data available

Biologists have collected a lot of data about proteins. e.g.,

Gene expression measurements
Phylogenetic profiles
Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes.

Jean-Philippe Vert (ParisTech) Inference of biological networks 6 / 37
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Figure 1.10: Different data representation for genes.

1.1.3.4 Annotation data

Annotation is a generic term that refers to the process of attaching biological
knowledge to a gene or a protein. This biological knowledge covers many
types of information. Here is a non-exhaustive list.

Phylogenetic profiling Phylogenetic data are typically produced by com-
parative genomics methods. For each gene A in a given species (let’s say a
human gene) one can look for orthologous genes in a list of other species
(for instance, mouse, worm and pig). As mentioned above, this is done by
measuring sequence similarity. BLAST (Basic Local Alignment Tool) is a
popular tool to output such measures [Altschul et al., 1990]. By threshold-
ing the BLAST score, one can get a binary vector of size 3 (the number of
other species) with 1 indicating that your gene has an orthologous gene in
the corresponding species. Comparing genes using such phylogenetic profiles
makes sense since it is believed that genes conserved in the same species are
likely to be functionally related.

Functional annotation Functional annotation is meant to describe what
is known about the function of a gene. For instance, Gene Ontology (GO)
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database [Ashburner et al., 2000] structures this information via a controlled
vocabulary of terms, embedded into a hierarchical tree. For instance, the
term “intracellular organelle” has for parent term “intracellular part” and for
children “cytoplasmic vesicle”. The list of GO terms associated with a gene
describes that gene at the functional level. Besides molecular functions per-
formed, these terms can describe biological processes (or pathways) in which
the gene is involved and cellular components in which it is active. Simi-
larly, a gene can be attached a list of pathways it participates to. Pathway
membership can be found for instance in the Kyoto Encyclopedia of Genes
and Genome (KEGG) database [Kanehisa et al., 2004]. KEGG works fol-
lowing the same type of organization. As an example, pathway hsa05218
is named “Melanoma-Homo sapiens” and belongs to the class of “Human
diseases;cancers”. Both types of data can presented as binary matrix (like
localization or phylogenetic data, see figure 1.10), each column correspond-
ing to a GO or KEGG term. Likewise, literature contains vast amounts of
biological information, which be be automatically searched with text mining
tools, like TXTGate [Glenisson et al., 2004].

Functional relatedness is even more directly reported in physical interac-
tion data (Protein-protein interaction or PPI), which we therefore mention
here, even though they are not exactly annotation data. PPI data can be
found in numerous databases, such as Bind, Biogrid, Dip, Human Protein
Reference Database (HPRD), IntNetDb, IntAct or String [Bader et al., 2003,
Stark et al., 2006, Xenarios et al., 2002, Mishra et al., 2006, Xia et al., 2006,
Aranda et al., 2010, Jensen et al., 2009].

Structural annotation When translated from a messenger RNA, a pro-
tein is folded so as to acquire a particular structure, this is illustrated in
figure 1.11. As can be seen on this picture, the structure of a protein is
really difficult to describe. At the level of the primary structure, the de-
scription concerns the sequence of amino-acids. Sequence analysis can also
be performed directly at the gene level. As briefly mentioned, it deals with
identifying motifs that are recurrent patterns in the chain of amino-acids (or
nucleotides). Examining co-occurrence of identical motifs in two gene se-
quences is a possible way to compare them. At a higher level, there are parts
of the protein that can evolve independently from the rest of the chain. They
are called domains and they are widely used to annotate proteins. The pres-
ence of common domains in two proteins is a clue for functional relatedness.
InterPro is an example of a database which might contain such information
on a protein.
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Figure 1.11: The several successive levels of structure acquired by a protein.
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1.1.3.5 Data fusion

As a conclusion of this long and yet incomplete list of data types, there are
many ways to characterize a gene. Each data representation has its own
specificities and all of them carry very different information with respect to
the problem at hand. As a result, it is highly probable that the results one
can obtain from a single data type are incomplete but complementary to
those obtained with different views. Besides, it is likely that the relationship
between different data contain some information as well. To get the whole
picture, a natural idea is therefore to incorporate many data sources in the
inference process. This is currently referred to as data fusion. There are
many ways to proceed. One that is quite straightforward is to combine the
results obtained from different data sources a posteriori. For instance, in the
context of regulatory network inference, you could learn a first set of edges
{Eexpr} using gene expression data, a second set {Ephylo} using phylogenetic
data and take as a final result either the union or intersection of these two
sets of edges. Intuitively, taking the intersection reduces the set of predicted
edges, hence drastically decreasing sensitivity, all the more so as the sets have
a small overlap. For that matter, it is a known issue that inference methods
often lack robustness and that data perturbation results in weakly overlap-
ping predictions. In that case, taking the union tends to hinder precision.
Furthermore, this solution does not fit in a prioritization perspective, since
it cannot handle properly ranked lists of predictions. A second option is to
integrate the data sources a priori, i.e to find a way to combine them first
and to give this as input to the learning process to finally output a ranked
list of predictions. We subsequently indicate a way to do this in section 1.2.

1.2 Machine learning context

We have already stressed the need for automatized methods to tackle com-
plex biological problems. Among scientific disciplines, machine learning is
particularly well adapted to that framework. It can be defined as a sub-
domain of artificial intelligence which designs algorithmic techniques aimed
at giving a machine the ability to learn. It deals with the automatic extrac-
tion of information from input data, aided by computational and statistical
methods. Examples of topics that typically appeal to machine learning are
natural language processing, computer vision, written digit recognition, robot
locomotion or video games. In this thesis, we show that they can be partic-
ularly useful in biology. This section is dedicated to a brief introduction to
the main machine learning tools we have used, that are kernel methods and
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more specifically Support Vector Machines (SVM).

1.2.1 Learning from data

In a very general context, machine learning algorithms need to be fueled with
data in order to produce an output. To formalize this, consider that data are
actually a collection of objects or individuals, each described by p random
variables or “features”. We denote by X = (X1, . . . , Xp) these features. We
assume that their distribution is unknown and that, however, we want to
learn something from these features.

1.2.1.1 Unsupervised versus supervised learning

A major distinction can be made regarding the kind of information one wants
to retrieve. If one wants to learn anything about the data distribution itself,
he will perform “unsupervised learning”. This includes density estimation or
learning about the topographical organization of the distribution (via clus-
tering or manifold inference, for instance). The learner will be aided by a
training set which consists in observations of the p variables (actual measure-
ments of these variables) for n objects or individuals:

xi ∈ Rp, i ∈ (1, . . . , n)

On the other hand, if the output is some other variable Y = (Y1, . . . , Yn), we
are dealing with “supervised” learning. In this case, the inference is guided
and the goal is to guess the relationship between the input variable X and the
output variable Y, under the shape of a generic function which links them:
Y = f(X). This time, as a training set, the learner is given a vector of values
of Y for the n objects: [yi]i∈(1...n) in addition to the matrix of measurements
[xi]. A typical strategy is to define a loss function that quantifies the cost of
incorrectly predicting the output. Then, the algorithm’s objective will be to
minimize the expectation of that loss. Since this expectation is unknown, the
theoretical objective criterion will be estimated by an empirical criterion. If
we denote the loss function by L, the algorithm boils down to the following
optimization problem

f̂ = argmin
f

n�

i=1

L
�
f(xi), yi)

�
. (1.1)

1.2.1.2 The bias-variance trade-off

To start with, the function f is generally searched for in some determined
Hilbert function space H. A major challenge is to determine how complex
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this function must be. A primary reflex might be to pick one as complex
as possible in order to fit the training set. This typically corresponds to
However, the objective is wider than just fitting the training set, it is to find
a function that is true in general. If new observations of X were produced,
the learner would then be able to predict correctly the output Y for these new
objects. This is called the generalization property. Most of times, achieving
both goals at the same time is not possible and this dilemma is usually
referred to as the bias-variance trade-off.

A related difficulty lies in the amount of data available. In statistics, in
general, the more observations one has, the better. In the biological con-
text, a critical issue is that the number of observations n is frequently much
smaller than the number of variables p, creating a gap between the number
of observations required to infer a highly complex function and the actual
amount of available observation points. Again, in this case, many functions
can fit the training set perfectly but generalize poorly. This phenomenon,
known as overfitting, can be walked around by a regularization process, which
consists in practice to limit the search of function f to a restricted class of
functions F ⊂ H. The larger the function class (or the higher its capacity),
the more complex function f is allowed to be. The theoretical criterion to
be optimized is called the risk and is defined as

RL(f) = E[L(f(X),Y)] .

Then, the empirical version this risk is

Rn
L(f) =

1

n

n�

i=1

L
�
f(xi, yi)

�
.

Let us assume that

f ∗ = argmin
f∈H

RL(f) ,

fF = argmin
f∈F

RL(f) ,

and f̂n = argmin
f∈F

Rn
L(f) .

The difference between the optimal risk and the estimated empirical risk can
be decomposed as

E
�
Rn

L(f̂n)−RL(f ∗)
�

= E
�
Rn

L(f̂n)−RL(fF)
�

� �� �
Estimation error

+ RL(fF)−RL(f ∗)� �� �
Approximation error

.
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Let us consider a particular class of functions FB = {f ∈ H, �f�H ≤ B}.
A classical result states that the estimation error can be upper bounded by
term which decreases with n the number of data examples and increases with
B, the capacity of the function class FB. On the other hand, the approxi-
mation error decreases with B. To minimize the risk, one finally has to find
the ideal value of B which minimizes the upper bound. If the function class
is too large, the approximation error will be small but the number of points
will be insufficient to estimate the over-complex function fFB . On the other
hand, if it is too small, there is a high chance that function fFB , which we
estimate, is actually too far from the ideal function f ∗.

In practice, for the optimization problem, constraints are added to dis-
card functions which are overly complex in the sense that they vary too much.
Following the risk minimization perspective presented in the previous para-
graph, this is equivalent to restricting the function space H and is generally
done by penalizing the norm of the function in that space (a small norm or
small B indicating low variations). The criterion in (1.1) gets an additional
term and the optimization problem becomes:

f̂ = argmin
f∈H

�f�2
H

+ C
n�

i=1

L
�
f(xi), yi

�
. (1.2)

Note that parameter C orchestrates the bias-variance trade-off and that it
usually needs to be optimized.

If the output variable Y is continuous, the problem of finding function f
is called regression while it is called classification if the output is a discrete
variable. In this case, the values of Y represent class labels. We have un-
derlined the fact that our goal in network inference as well as disease gene
discovery was prioritization rather than classification. However, any classifi-
cation method that produces a score function f reflecting our confidence in
the predictions is well suited for prioritization. Indeed, it is the case of most
of them but this score is usually thresholded in order to obtain a classification
rule. In section 1.2.2, we focus on a particular classification method called
the Support Vector Machine (SVM).

1.2.1.3 Some variants of supervised learning

In this subsection, we present a few situations when the training information
is reduced, that have led to specific developments in machine learning.
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Semi-supervised learning A general problem in supervised learning is
the lack of labeled samples (both positive and negative). On the other hand,
it frequently happens that plenty of examples are available for which we do
not know whether they belong to the positive or to the negative class, these
are called “unlabeled” examples. A possible reason for this established fact
is that labeled examples are difficult to obtain because it takes time, money
or expertise to identify them, while unlabeled examples are easy to get. To
overcome this problem, it has been suggested that unlabeled data could be
useful. Indeed, it seems logical to think that some information is contained
in the distribution of the huge amount of unlabeled examples which are avail-
able. Methods built on that premise are called “semi-supervised” methods.
In this perspective, let us mention co-training, a method developped by Blum
and Mitchell [1998]. This method makes up for the lack of labeled samples
by using two distinct views of the data. Two learning algorithms are trained
separately on each view and their predictions are used so that they mutually
learn from each other. Other authors choose to consider unlabeled samples
as missing data and have proposed the use of the Expectation-Maximization
algorithm, see for instance Nigam et al. [2000]. At last, it is worth mention-
ing the work of Joachims [1999] on transductive SVM. Transductive learning
is based on Vapnik’s principle [Vapnik, 1998] : “When solving a problem of
interest, do not solve a more general problem as an intermediate step.” Thus,
tranductive methods focus on the prediction of the labels of the unlabeled set
only. This is all the more relevant if one is not interested in building a general
rule but rather in predicting the label vector y

∗ = (y∗1, . . . , y
∗

NU
)� ∈ {−1, 1}NU

for a given unlabeled set with features {x∗1, . . . ,x∗NU
}. Let the set of labeled

examples be {(y1,x1), . . . , (yNL ,xNL)}. The transductive problem minimizes
a criterion in both function f and label vector y

∗:

min
f∈H, y∗∈{−1,1}NU

�
�f�2

H
+

NL�

i=1

L(yi, f(xi)) + C
NU�

j=1

L(y∗j , f(x∗j))
�

.

This expression can be transformed successively into :

min
f∈H

�
min

y∗

�
�f�2

H
+ C

NL�

i=1

L(yi, f(xi)) + C
NU�

j=1

L(y∗j , f(x∗j))
��

,

min
f∈H

�
�f�2

H
+ C

NL�

i=1

L(yi, f(xi)) + C min
y∗∈{−1,1}NU

� NU�

j=1

L(y∗j , f(x∗j))
��

,

min
f∈H

�
�f�2

H
+ C

NL�

i=1

L(yi, f(xi)) + C
NU�

j=1

min
y∗

j∈{−1,1}

�
L(y∗j , f(x∗j))

��
.
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This shows that transductive learning can be seen as a functional optimiza-
tion problem alike to equation (1.2) using a particular loss function for the
unlabeled examples. Let’s denote this loss function by L∗ :

L∗(f(x∗)) = min

�
L(1, f(x∗i )), L(−1, f(x∗i ))

�
.

Then, we eventually come to

min
f∈H

�
�f�2

H
+ C

NL�

i=1

L(yi, f(xi)) + C
NU�

j=1

L∗(f(x∗j))

�
. (1.3)

For more details on these methods and many others, we refer the reader to
Chapelle et al. [2006].

Learning from positive examples only We now discuss another partic-
ular type of supervised problem, in which only positive examples are avail-
able. Sometimes, negative labeled examples are particularly hard, not to
say impossible, to obtain. A straightforward approach consists in using the
positive set to determine some area in space X which would likely contain
the positive class examples. This amounts to estimating the support of the
positive distribution or its density level sets. One-class SVM is a popular
method to achieve this [Schölkopf et al., 2001, Manevitz and Yousef, 2001,
De Bie et al., 2007]. It can also be formulated as functional optimization
problem with a regularization term:

min
f∈H

�
�f�2

H
+ C

NP�

i=1

max(0, f(xi))
�

. (1.4)

Nevertheless, these methods easily suffer from overfitting, are hardly ap-
plicable in high dimensional problems and therefore, require a large amount
of examples to learn correctly. Since many datasets are characterized by a
small positive set P , these methods are often unsuitable.

Learning from positive and unlabeled examples Once more, in many
practical cases and despite the absence of negative examples, a huge amount
of unlabeled examples are available in addition to the positive set. Learning
from positive and unlabeled examples is often referred to as “PU learning”.
A theoretical study of Probably Approximately Correct learning from posi-
tive and unlabeled examples has been provided by Denis [1998] showing that
any functional class learnable under the statistical query model of Kearns
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[1993] such as the k-DNF class, is learnable from positive and unlabeled ex-
amples. Inspired from that result, Letouzey et al. [2000] have proposed an
algorithm using a modified decision tree algorithm based on the statistical
query model. Following the same idea of estimating statistical queries over
positive and unlabeled examples, Denis et al. [2002] have also noticeably
worked on a Naive Bayes classifier. They use a probabilistic trick to estimate
conditional negative probabilities from the positive examples. Nevertheless,
an important drawback is that an estimate of the positive class probability
is required. Later, they have successfully used co-training to enhance their
classifier’s performance in Denis et al. [2003]. PU learning is also a particular
case of learning with class-conditional classification noise or CCCN learning
[Decatur, 1997]. In this kind of learning problems, the true labels of the train-
ing examples are known up to some noise. Namely, the labels are flipped with
some probability which quantifies the level of noise. This probability may
depend on the class of the considered example. In PU learning particularly, if
unlabeled examples are negatively labeled, the noise on negative labels (the
probability of a negative label being flipped) is null while it is strictly positive
for positive labels. In other words, positive examples are trustworthy while
negative examples contain false negatives. Stempfel [2009] and Stempfel and
Ralaivola [2009] have studied this problem thoroughly, and in particular they
have proposed an algorithm to learn SVMs efficiently from sloppily labeled
data. However, the value or an estimate of the classification noise is needed.

Since it is sometimes difficult to provide an estimate of the positive weight,
another natural idea is to identify a set of reliable negative examples. This
idea is implemented by the S-EM method for text classification in Liu et al.
[2002], the PEBL method for Webpage classification in Yu et al. [2004a] and
by others, reviewed in Liu et al. [2003]. This leads to iterative procedures
where labels might be allowed to vary or not from step to step.

An obvious drawback of these methods is that they rely on the quality of
the initially identified negative subset. Convergence is not ensured because a
few errors might propagate very quickly. Therefore, other methods propose
to directly discriminate the unlabeled examples against the positive ones [Liu
et al., 2003, Lee and Liu, 2003, Elkan and Noto, 2008]. They are based on
the theoretical justification provided in Liu et al. [2002] that minimizing the
number of unlabeled examples classified as positives while keeping positive
labeled examples classified correctly gives functions with small expected er-
ror if the number of positive and unlabeled examples are large enough. To
account for noise, errors on the positive labeled examples might be allowed
but to a smaller extent than errors on the unlabeled set. The latter idea can
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be formulated as :

min
f

�
�f�2

H
+ wP ∗ C

NP�

i=1

L(1, f(xi)) + wU ∗ C
NU�

j=1

L(−1, f(x∗j))
�

.

In particular, Liu et al. [2003] propose to use the hinge loss (cf. section 1.2.2)
and to optimize the weights wP and wU . This method, called the BiasedSVM,
is currently the state-of-art PU learning method. Another possible choice for
the weights is derived from a common practice when dealing with unbalanced
data: wP = NU

N and wU = 1− wP .

1.2.2 The Support Vector Machine

The Support Vector Machine (SVM) is a supervised classification method
which was developed in the nineties by Boser et al. [1992] on the grounds of
Vapnik-Chervonenkis statistical learning theory [Vapnik, 1998]. Their abil-
ity to tackle high dimensional problems and their good performance in many
applications have made SVMs a popular technique.

1.2.2.1 A geometrical intuition

Introducing SVMs from a geometrical point of view provides a good intuition
of the principles underlying this method. To give a formal framework to our
introduction, suppose the input data is a random variable X which takes its
value in X 4, while Y ∈ {−1, 1}. The training set S = {(x1, y1), . . . , (xn, yn)}
consists in n observations drawn from P , the unknown joint distribution of
(X,Y). Figure 1.12 gives an example of a pattern recognition problem. Here,
an instance yi = 1 means example i is a pear while y = −1 means the example
is an apple. Variable X, which features the pictures, might be the set of its
pixels for instance.

Assume you want to find a linear separation, i.e a hyperplane to discrim-
inate your two classes. There might be several hyperplanes that are suitable
for this. A natural idea is to represent each class by its centroid and to draw
the bisecting plane of these two points. Figure 1.13 shows that this is not
always a successful strategy, even in the case where the classes are linearly
separable.

Adopting a different perspective, Vapnik introduced the large margin sep-
aration paradigm. He proposed to consider a hyperplane class defined in a

4For the moment, let’s consider X ⊆ Rp.
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Output y ∈ {−1, 1}.
Training set S = {(x1, y1) , . . . , (xn, yn)}.
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Figure 1.12: A pattern recognition problem.

Figure 1.13: A straighforward separating hyperplane is not always conve-
nient.
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Hilbert space H by
�
w ∈ H, b ∈ R|�w,x�+ b = 0

�
.

The optimal hyperplane separates the two classes while satisfying

max
w∈H,b∈R

min
�
�x− xi�,x ∈ X , �w,x�+ b = 0, i ∈ {1, . . . , n}

�
.

Figure 1.14 shows an example for X ⊂ R. A first remark is that the hyper-
plane remains unchanged if both b and w are muliplied by the same constant.
Thus, to set up a scale, the constant c is conventionally fixed to 1. The re-
sulting canonical hyperplane is at equal distance from the two points with
opposite labels x1 and x2 and the margin is equal to 2

�w�
. This hyperplane

can be obtained by maximizing the margin under the constraint that the
points are correctly separated, which amounts to solving the following con-
vex optimization problem

�
min
w,b

�w�2

st yi ∗ (�w,xi�+ b) ≥ 1 ∀i ∈ {1, . . . , n} .

54
CHAPTER 4. IDENTIFICATION OF DISEASE GENES WITH PU

LEARNING

negative examples turn out to be less accurate and very sensitive to the
prior identification step. Overall, I have the feeling that the huge amounts
of unlabeled data available in many situations are still under-exploited and
that PU learning remains an immature area of machine learning research.
As for our own contribution to this field, in chapter 2, we have introduced
the baggingSVM. The main feature of this algorithm was the addition of
a bagging-like procedure. Bagging a SVM classifier, and more generally
a linear classifier, is known to be useless, not to say detrimental. How-
ever, our hope was that, due to the contaminated nature of the unlabeled
set (which contains hidden positive examples), the increased variability of
classifiers trained on bootstrapped subsamples would still enhance the per-
formance of the biasedSVM. The experiments were not able to confirm this
since the performance of both methods was found to be identical. However,
the conclusion was that our algorithm presents clear advantages in terms
of scalability and speed over the biasedSVM, while performing equivalently.
Therefore, I believe that even though it did not have the expected effect,
the heuristic justification we have brought is still valid to explain the good
properties of the baggingSVM. An interesting practical consequence is that
the PU learning setting allows an SVM on a very large number of points
to be replaced by a reasonable number of SVMs on much smaller sets of
points. However, this is solely supported by our intuition and empirical
facts and it cruelly lacks proper theoretical grounds. Note that the bagging
was justified in terms of classification error, whereas we would like to build
a justification in terms of prioritization instead. Technically, the difficulty
lies in the quantification the instability of the SVM score function and the
establishment of a relationship to a theoretical measure of the prioritization
performance (like the probability of correctly ranking a pair of examples,
one of which has a positive label while the other is a negative example).

2

�w�
Chapter 3 introduced SIRENE, a new algorithm for the inference of

regulatory networks. SIRENE decomposes the problem into a series of sub-
problems where the goal is to learn the regulated genes of a given TF. To
do so, we proposed to discriminate the positive set of known targets against
a subset of unlabeled examples. The inherent principle was that targets
of the same TF must behave similarly. Of course, this a simple model of
reality and one might argue for instance that inhibited targets obviously
behave differently from activated targets. Therefore, if SIRENE is useful
to discover the “big picture”, the model needs further refinement to unravel
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Figure 1.14: The large margin separating hyperplane.

At this point, there are a few remarks to make:
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• As no error is tolerated, it can happen that no solution exists for the
optimization problem.

• From a robustness point of view, a solution where an outlier can affect
the hyperplane dramatically is not desirable.

• We have restricted ourselves to linear classifiers but in real situations,
the examples are seldom linearly separable.

1.2.2.2 Soft margin SVMs

To circumvent the two first issues, Cortes and Vapnik [1995] have introduced
the soft margin SVM. The idea was to add “slack variables” that represent
errors. Figure 1.15 represents these slack variables ξi.
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negative examples turn out to be less accurate and very sensitive to the
prior identification step. Overall, I have the feeling that the huge amounts
of unlabeled data available in many situations are still under-exploited and
that PU learning remains an immature area of machine learning research.
As for our own contribution to this field, in chapter 2, we have introduced
the baggingSVM. The main feature of this algorithm was the addition of
a bagging-like procedure. Bagging a SVM classifier, and more generally
a linear classifier, is known to be useless, not to say detrimental. How-
ever, our hope was that, due to the contaminated nature of the unlabeled
set (which contains hidden positive examples), the increased variability of
classifiers trained on bootstrapped subsamples would still enhance the per-
formance of the biasedSVM. The experiments were not able to confirm this
since the performance of both methods was found to be identical. However,
the conclusion was that our algorithm presents clear advantages in terms
of scalability and speed over the biasedSVM, while performing equivalently.
Therefore, I believe that even though it did not have the expected effect,
the heuristic justification we have brought is still valid to explain the good
properties of the baggingSVM. An interesting practical consequence is that
the PU learning setting allows an SVM on a very large number of points
to be replaced by a reasonable number of SVMs on much smaller sets of
points. However, this is solely supported by our intuition and empirical
facts and it cruelly lacks proper theoretical grounds. Note that the bagging
was justified in terms of classification error, whereas we would like to build
a justification in terms of prioritization instead. Technically, the difficulty
lies in the quantification the instability of the SVM score function and the
establishment of a relationship to a theoretical measure of the prioritization
performance (like the probability of correctly ranking a pair of examples,
one of which has a positive label while the other is a negative example).

2
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Chapter 3 introduced SIRENE, a new algorithm for the inference of

regulatory networks. SIRENE decomposes the problem into a series of sub-
problems where the goal is to learn the regulated genes of a given TF. To
do so, we proposed to discriminate the positive set of known targets against
a subset of unlabeled examples. The inherent principle was that targets
of the same TF must behave similarly. Of course, this a simple model of
reality and one might argue for instance that inhibited targets obviously
behave differently from activated targets. Therefore, if SIRENE is useful
to discover the “big picture”, the model needs further refinement to unravel

Figure 1.15: Soft margin hyperplane: introducing slack variables.

The soft margin hyperplane is obtained by minimizing the margin and
correctly separating the two classes up to errors as small as possible. The
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corresponding optimization problem is now:





min
w,b

�w�2 + C
n�

i=1

ξi

st yi ∗ (�w,xi�+ b) ≥ 1− ξi ∀i ∈ {1, . . . , n}
ξi ≥ 0 ∀i ∈ {1, . . . , n} .

(1.5)

Parameter C ∈ R in equation (1.5) plays exactly the same role as in equa-
tion (1.2), that is controlling the bias-variance trade-off. When C is large, the
second terms prevails and the optimizer will strive to fit the data to reduce
the bias at the detriment of the variance of the predictor. On the contrary,
when C is small, it will endeavor to minimize the first term, allowing more
errors (more bias) but yielding a predictor with better generalization abil-
ity (less variance). Note that slack variables can be introduced similarly for
transductive and one-class SVM in equations (1.3) and (1.4).

Equation (1.5) can equivalently be re-written:




min

f
�f�2 + C

n�

i=1

ξi

st ξi ≥ max
�
1− yi ∗ (f(xi) + b), 0

�
∀i ∈ {1, . . . , n} .

(1.6)

which is equivalent to

min
f
�f�2 + C

n�

i=1

max
�
1− yi ∗ (f(xi) + b), 0

�
, (1.7)

where f(xi) = �w,xi� and �f� = �w�. This makes the link with equation
(1.2) for the choice of a particular loss function known as the hinge loss
(see figure 1.16). If we note h(x) = f(x) + b, the distance from x to the
hyperplane, the hinge loss is defined as

L(h(x), y) = max(1− y ∗ h(x), 0) .

It is small when y and h(x) have the same sign and zero when h(x) is addi-
tionally bigger than 1. When 0 ≤ y ∗ h(x) ≤ 1, the corresponding point is
between the margin hyperplanes but correctly classified so the loss is positive
but small. At last, y ∗ h(x) < 0 means the point is incorrectly classified (on
the wrong side of the separating hyperplane) and this error is penalized by
a larger loss value. Function h is the score function, it can be used directly
for prioritization purposes. If one wishes to produce a classification rule in-
stead, one can decide to assign each point x to the positive or negative class
according to the sign of h(x). Note that the hinge loss is also used for trans-
ductive SVM (see equation (1.3)). For one-class SVM, the loss function is
max(0, f(x)).
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Figure 1.16: The hinge loss function.

1.2.2.3 Non-linear SVMs

In practice, the idea of error tolerance has to be combined with the search
for separation boundaries that are more general than linear boundaries. In
order to obtain an elliptic separation boundary like on figure 1.17, one feels
that it makes sense to define it mathematically by:

w1x
2 + w2y

2 + 2w3xy + w4x + w5y + b = 0 . (1.8)

!"#

!$#

Figure 1.17: Looking for a non-linear separation boundary.

If we define w = (w1, . . . , w5) and the transforming function φ as

φ : R2 −→ R5

x = (x1, x2) �−→ (x2
1, x

2
2, 2x1x2, x1, x2) ,

we see that equation (1.8) can be re-written as a linear equation defining a
hyperplane in R5.

w
T φ(x) + b = 0 .
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More generally, one can proceed in the following manner:

• Apply a non-linear transformation φ to the input data to map them
from X to a higher-dimensional space H.

• Build a linear hyperplane in H.

This hyperplane will define a non-linear separation in the original feature
space X . All one needs to do is replace x by φ(x) in all the minimization
problems above. Nevertheless, a critical issue is the choice of function φ. In
the following section, we introduce the reader to kernel methods, which allow
to choose φ “implicitely” and we present further non-linear SVMs.

1.2.3 Kernels methods

1.2.3.1 Motivations

Learning algorithms all use a certain data representation, such as those we
have reviewed in section 4.5. However, it is not always obvious to describe
data efficiently. It might be unclear which representation to choose, and if
this representation makes sense. In addition, if descriptors are too numerous,
computations might become difficult. When looking at the different repre-
sentations we have proposed in section 4.5, we see that many of them are
rather justified by what they imply in terms of comparison between two genes
and not so much by their ability to feature intrinsically these genes. Ker-
nel methods offer a framework for representing any kind of object through
pairwise comparisons.

1.2.3.2 Definitions

The central tool of these methods is the kernel function. It is indeed a
comparison function K : X × X �→ R which transforms the input data

xi ∈ X , i ∈ (1, . . . , n)

into a n× n matrix K defined by:

[K]ij := K(xi,xj) .

This matrix is called the Gram matrix. More precisely, we restrict ourselves
to a specific type of kernels which are positive definite kernels.
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Definition A positive definite (p.d) kernel on X is a symmetrical function
K : X × X → R :

∀(x,x�) ∈ X 2, K(x,x�) = K(x�,x),

which satisfies, for all N ∈ N, (x1,x2, . . . ,xN) ∈ XN and (a1, a2, . . . , aN) ∈
RN :

N�

i=1

N�

j=1

aiajK(xi,xj) ≥ 0.

Lemma 1.2.1 Let X be some input space and Φ : X �→ Rd. Then, function
K : X 2 �→ R defined as follows is p.d:

∀ (x,x�) ∈ X 2, K (x,x�) = �Φ (x) , Φ (x�)�Rd .

1.2.3.3 The kernel trick

Lemma 1.2.1 states that an inner product defines a positive definite kernel.
To show the converse, one needs to introduce the notion of a reproductive ker-
nel Hilbert space (RKHS) and to expound Aronszajn’s theorem [Aronszajn,
1950].

Definition Let X be some set and H ⊂ RX a class of functions forming a
Hilbert space endowed with an inner product �., .�

H
. Function K : X 2 �→ R

is called a reproducing kernel (r.k) of H if

1. H contains all functions of the form

∀x ∈ X , Kx : t �→ K(x, t) .

2. ∀x ∈ X and f ∈ H, the reproducing property is satisfied :

f(x) = �f, Kx�H .

If a r.k exists, then H is a reproducing kernel Hilbert space (RKHS).

Theorem 1.2.2 (Aronszajn, 1950)

1. If a r.k exists, it is unique.

2. A r.k exists iff ∀x ∈ X , the mapping f �→ f(x) (from H in R) is
continuous.
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3. A r.k is positive definite.

4. Conversely, if K is a d.p kernel, then a RKHS exists whose reproducing
kernel is K.

The consequence of this theorem is that a positive definite kernel is an inner
product:

Corollary 1.2.3 K is a positive kernel on X if and only if there is a RKHS
H and a mapping

Φ : X �→ H ,

such that for all x,x� ∈ X :

K (x,x�) = �Φ (x) , Φ (x�)�
H

.

A major practical application of this corollary is called the “kernel trick”.
The idea is the following: if an algorithm handles finite dimension vectors
and can be expressed using only inner products of these vectors, replacing
them all by a positive kernel function K is implicitly equivalent to applying
this algorithm to the vectors mapped in the RKHS HK . Therefore, it is nei-
ther necessary to manipulate the transformed vectors Φ(x) nor to formulate
function Φ. However, note that when n is large, computing the Gram ma-
trix might be computationally heavy, notwithstanding memory and storage
issues.

A straighforward way to define a kernel when a vectorial representation
of the data is available, is to compute the Gram matrix as the matrix of
dot products. This is the linear kernel. In the vectorial cases, there are also
several direct definitions of “ready-made” kernels such as the polynomial and
gaussian radial basis function (RBF).

Definition

• Polynomial: K(x, x�) = (xx� + 1)d.

• Gaussian RBF: K(x, x�) = exp
�
−�x−x��2

2σ2

�
.

1.2.3.4 A kernelized SVM

We now explain how to solve the SVM optimization problem using the re-
producing kernel theory. Let HK be a RKHS, the problem can be stated as

min
f∈HK ,b∈R

�f�2
HK

+ C
n�

i=1

max
�
1− yi ∗ (f(xi) + b), 0

�
. (1.9)
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We now present the representer theorem which states that f admits a
particular shape that will help solve the optimization problem in (1.9).

Theorem 1.2.4

• Let X be a set with a p.d kernel K, HK the associated RKHS and let
S = {x1, . . . ,xn} ⊂ X be a finite set of points of X

• Let ψ : Rn+1 �→ R be a function of n + 1 variables, strictly increasing
with respect to the last variable.

• Then, any solution of the optimization problem

min
f∈HK

ψ(f(x1), . . . , f(xn), �f�HK )

admits a representation of the form

∀x ∈ X , f(x) =
n�

i=1

αiK(x,xi) .

Using the representer theorem, the dual problem comes as

�
max
α∈Rn

−αT Kα + 2αT
y

st 0 ≤ αiyi ≤ C, ∀i ∈ {1, . . . , n} .
(1.10)

Since this is a convex optimization problem, the Karush-Kuhn and Tucker
(KKT) conditions hold and provide some interpretation of coefficients αi on
the data points:

1. αi = 0 ⇒ ξi = 0 and yi(f(xi) + b) > 1
The first constraint is not active while the second is. The point is well
classified and beyond the marginal hyperplanes.

2. 0 < αiyi < C ⇒ ξi = 0 and yi(f(xi) + b) = 1
Both constraints are active. The point is well classified and lies exactly
on the marginal hyperplane.

3. αiyi = C ⇒ ξi > 0 and yi(f(xi) + b) < 1
The first constraint is active while the second is not. This point lies on
the wrong side of its marginal hyperplane and can even be misclassified.
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Figure 1.18 illustrates the different cases. The points of the training
set are circled with a different color according to their α coefficient and the
corresponding location with respect to the marginal hyperplanes (represented
with dashed lines). The points for which αi �= 0 are called the “support
vectors” and have given its name to the method. Only these points in all the
training set play a role in the score function and are therefore determinant
to classify or score a new test point via

∀x ∈ X , h(x) =
�

i∈SV

αiK(x,xi) + b .

The solution is sparse in the input which leads to fast algorithms. Besides,
scoring a new point only requires a few kernel evaluations.

!"#$%&%'%(%)%*%
!"#$%&%'%(%*%

!"#$%&%'%(%+%

α = 0

0 < αy < C

αy = C

Figure 1.18: A geometrical interpretation of the α coefficients.

1.2.3.5 Data fusion with kernels

We now present a proposition which allows to perform data fusion in an
elegant manner with kernels. Suppose you have two data sources and you
have built two positive definite kernels K1 and K2.
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Proposition 1.2.5 Let X be a set and K1, K2 two positive definite kernels
defined on X × X .
For all positive coefficients λ1, λ2, the function K : X × X → R defined by

(x,x�) �−→ K(x,x�) = λ1K1(x,x�) + λ2K2(x,x�)

is a positive definite kernel.

As a consequence, performing any kernel learning method with kernel K
amounts to integrating simply two data sources. Actually, if we denote by
Φ1 : X → HK1 ⊆ Rd1 (resp. Φ2) the mapping function associated with K1

(resp. K2), we can show that the mapping function Φ of kernel K is defined
by

Φ : X −→ HK ⊆ Rd1+d2

x �−→ (
√

λ1 ∗ Φ1(x)T ,
√

λ2 ∗ Φ2(x)T )T .

Therefore, the transformed features are simply weighted and concatenated.
A learner can choose the weights if he has a prior idea on the relative impor-
tance of the data sources. Equal weights mean that all data sources equally
contribute to the score function f . Suppose there are d positive definite ker-
nels {K1, K2, . . . , Kd}. Replacing K with the sum of these kernels in equation
(1.10) gives the following problem:





max
α∈Rn

−
d�

j=1

αT Kjα + 2αT
y

st 0 ≤ αiyi ≤ C, ∀i ∈ {1, . . . , n} ,

(1.11)

which is the dual of a minimization problem, which looks for a function f of
the form f = f1 + . . . + fd, with (f1, . . . , fd) ∈ HK1 × . . .×HKd

:

min
(f1,...,fd),b∈R

d�

j=1

�fj�2
HKj

+ C
n�

i=1

L
� d�

j=1

fj(xi) + b, yi

�
. (1.12)

Otherwise, the weights can also be learnt from the data thanks to Multiple
Kernel Learning (MKL) [Bach et al., 2004, Lanckriet et al., 2004c]. We
further assume that all kernels are normalized to have a 1-diagonal. The
optimal weights should solve the following min-max problem






min
µ∈Rd

max
α∈Rn

−
d�

j=1

µj ∗ αT Kjα + 2αT
y

st 0 ≤ αiyi ≤ C, ∀i ∈ {1, . . . , n}
�µ�1 = 1 and µj ≥ 0, ∀j ∈ {1, . . . , d} .

(1.13)
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This is in turn equivalent to





max
t∈R

max
α∈Rn

−t + 2αT
y

st 0 ≤ αiyi ≤ C, ∀i ∈ {1, . . . , n}
t ≥ αT Kjα, ∀j ∈ {1, . . . , d} .

(1.14)

Finally, Bach et al. [2004] have shown that problem (1.14) is the dual of the
Support Kernel Machine (SKM) problem:

min
(f1,...,fd),b∈R

d�

j=1

�fj�HKj
+ C

n�

i=1

L
� d�

j=1

fj(xi) + b, yi

�
. (1.15)

We see that only the functional norm term has changed with respect to equa-
tion (1.12).

In this section, we have provided a unified view of some machine learning
methods, in terms of functional optimization. This should allow the reader
to see clearer in the landscape of methods and also to compare them more
easily.

1.3 Contributions of this thesis

In this section, we give an overview of the contributions of this thesis. There
are mainly three contributions, one methodological and two of applicative
nature. Each of them is the topic of a dedicated chapter where it is further
developped. Note that each chapter corresponds to a published or submitted
paper. For the sake of consistency, we did not follow any chronological order
in the presentation.

1.3.1 A bagging SVM to learn from positive and un-

labeled examples

In chapter 2, we first consider the problem of learning a binary classifier from
a training set of positive and unlabeled examples, both in the inductive and
in the transductive setting. This problem, aforementioned as PU learning in
section 1.2.1.3, differs from the standard supervised classification problem by
the lack of negative examples in the training set. It corresponds to an ubiq-
uitous situation in many applications such as information retrieval or gene
ranking, when we have identified a set of data of interest sharing a particular
property, and we wish to automatically retrieve additional data sharing the
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same property among a large and easily available pool of unlabeled data.
A first contribution was to propose a conceptually simple method, akin to
bagging, to approach both inductive and transductive PU learning problems,
by converting them into series of supervised binary classification problems
discriminating the known positive examples from random subsamples of the
unlabeled set. We empirically demonstrated the relevance of the method
on simulated and real data, where it performs at least as well as existing
methods while being faster.

1.3.2 Regulatory network inference

Chapter 3 is dedicated to the problem of regulatory network inference. As
explained in section 1.1.1, living cells are the product of gene expression pro-
grams that involve the regulated transcription of thousands of genes. The
elucidation of transcriptional regulatory networks in thus needed to under-
stand the cell’s working mechanism, and can for example be useful for the
discovery of novel therapeutic targets. Although several methods have been
proposed to infer gene regulatory networks from gene expression data, a re-
cent comparison on a large-scale benchmark experiment revealed that most
current methods only predict a limited number of known regulations at a
reasonable precision level. A second contribution of this thesis is to propose
SIRENE, a new method for the inference of gene regulatory networks from
a compendium of expression data. The method decomposes the problem of
gene regulatory network inference into a large number of local binary classifi-
cation problems, that focus on separating target genes from unlabeled genes
for each TF. SIRENE does not need any assumption on the data and it intro-
duces a new paradigm of inference, based on a biologically meaningful idea:
if a gene A is regulated by a TF B, then a gene A’ showing similarity with
gene A is likely to be regulated by TF B. SIRENE is thus conceptually simple
and computationally efficient. We have tested it on a benchmark experiment
aimed at predicting regulations in E. coli, and shown that it retrieves of the
order of 6 times more known regulations than other state-of-the-art inference
methods.

1.3.3 Identification of disease genes with PU learning

Finally, chapter 4 deals with the application of PU learning to the disease
gene identification problem. Recall that elucidating the genetic basis of hu-
man diseases is a central goal of genetics and molecular biology. While tradi-
tional linkage analysis and modern high-throughput techniques often provide
long lists of tens or hundreds of disease gene candidates, the identification of
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disease genes among the candidates remains time-consuming and expensive.
As stressed in section 1.1.2.2, efficient computational methods are there-
fore needed to prioritize genes within the list of candidates, by exploiting
the wealth of informations available about the genes in various databases.
As a third contribution of this thesis, we propose ProDiGe, a novel algo-
rithm for Prioritization of Disease Genes. ProDiGe implements a machine
learning strategy based on learning from positive and unlabeled examples,
which allows to integrate various sources of information about the genes, to
share information about known disease genes across diseases, and to perform
genome-wide searches for new disease genes. Experiments on real data show
that ProDiGe outperforms state-of-the-art methods for the prioritization of
genes in human diseases.



Chapter 2

A bagging SVM to learn from

positive and unlabeled

examples

2.1 Résumé

Ce premier chapitre est consacré au problème d’apprentissage d’un classifieur
binaire à partir d’un ensemble d’entrâınement constitué d’exemples positifs
et indéterminés (non étiquetés). On s’intéresse tant au cadre inductif que
transductif. Ce problème, appelé PU learning en anglais, diffère du cadre
d’apprentissage supervisé standard par le manque d’exemples négatifs dans
l’ensemble d’entrâınement. Il correspond à une situation omniprésente dans
des applications aussi variées que la recherche d’information ou la priorisation
de gènes, où l’on a identifié un ensemble de données d’intérêt ayant en com-
mun une propriété particulière et où l’on souhaite identifier automatiquement
d’autres objets partageant cette propriété parmi un ensemble large et facile-
ment accessible d’exemple indéterminés. Dans ce chapitre, nous proposons
une méthode conceptuellement simple, voisine du bagging (bootstrap aggre-
gating) pour traiter à la fois l’approche inductive et transductive du problème,
en le convertissant en une série de problèmes de classification binaire super-
visés discriminant les exemples positifs contre des sous-échantillons aléatoires
de l’ensemble des indéterminés. La pertinence de cette méthode est démon-
trée empiriquement sur des données simulées puis sur des données réelles,
où l’on observe qu’elle a au moins d’aussi bons résultats que les méthodes
existantes tout en étant plus rapide.

47
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2.2 Introduction

In many applications, such as information retrieval or gene ranking, one is
given a finite set of data of interest sharing a particular property, and wishes
to find other data sharing the same property. In information retrieval, for
example, the finite set can be a user query, or a set of documents known
to belong to a specific category, and the goal is to scan a large database of
documents to identify new documents related to the query or belonging to
the same category. In gene ranking, the query is a finite list of genes known
to have a given function or to be associated to a given disease, and the
goal is to identify new genes sharing the same property [Aerts et al., 2006].
In fact this setting is ubiquitous in many applications where identifying a
data of interest is difficult or expensive, e.g., because human intervention is
necessary or expensive experiments are needed, while unlabeled data can be
easily collected. In such cases there is a clear opportunity to alleviate the
burden and cost of interesting data identification with the help of machine
learning techniques.

More formally, let us assign a binary label to each possible data: positive
(+1) for data of interest, negative (−1) for other data. Unlabeled data
are data for which we do not know whether they are interesting or not.
Denoting X the set of data, we assume that the “query” is a finite set of data
P = {x1, . . . , xm} ⊂ X with positive labels, and we further assume that we
have access to a (possibly large) set U = {xm+1, . . . , xn} of unlabeled data.
Our goal is to learn, from P and U , a way to identify new data with positive
labels, a problem often referred to as PU learning. More precisely we make
a distinction between two flavors of PU learning:

• Inductive PU learning, where the goal is to learn from P and U a
function f : X → R able to associate a score or probability to be
positive f(x) to any data x ∈ X . This may typically be the case in an
image or document classification system, where a subset of the web is
used as unlabeled set U to train the system, which must then be able
to scan any new image or document.

• Transductive PU learning, where the goal is estimate a scoring function
s : U → R from P and U , i.e., where we are just interested is finding
positive data in the set U . This is typically the case in the disease gene
ranking application, where the full set of human genes is known during
training and split between known disease genes P and the rest of the
genome U . In that case we are only interested in finding new disease
genes in U .



2.2. INTRODUCTION 49

Several methods for PU learning, reviewed in Section 2.3 below, reduce
the problem to a binary classification problem where we learn to discrimi-
nate P from U . This can be theoretically justified, at least asymptotically,
since the log-ratio between the conditional distributions of positive and un-
labeled examples is monotonically increasing with the log-ratio of positive
and negative examples [Elkan and Noto, 2008, Scott and Blanchard, 2009],
and has given rise to state-of-the-art methods such as biased support vector
machine (biased SVM) [Liu et al., 2003] or weighted logistic regression [Lee
and Liu, 2003]. Although this reduction suggests that virtually any method
for (weighted) supervised binary classification can be used to solve PU learn-
ing problems, we put forward in this chapter that some methods may be
more adapted than others in a non-asymptotic setting, due to the particular
structure of the unlabeled class. In particular, we investigate the relevance
of methods based on aggregating classifiers trained on artificially perturbed
training sets, in the spirit of bagging [Breiman, 1996]. Such methods are
known to be relevant to improve the performance of unstable classifiers, a
situation which, we propose, may occur particularly in PU learning. Indeed,
in addition to the usual instability of learning algorithms confronted to a
finite-size training sets, the content of a random subsample of unlabeled data
in positive and negative examples is likely to strongly affect the classifier,
since the contamination of U in positive examples makes the problem more
difficult. Variations in the contamination rate of U may thus have an impor-
tant impact on the trained classifier, a situation which bagging-like classifiers
may benefit from.

Based on this idea, we propose a general and simple scheme for inductive
PU learning, akin to an asymetric form of bagging for supervised binary clas-
sification. The method, which we call bagging SVM, consists in aggregating
classifiers trained to discriminate P from a small random subsample of U ,
where the size of the random sample plays a specific role. This method can
naturally be adapted to the transductive PU learning framework. We demon-
strate on simulated and real data that bagging SVM performs at least as well
as existing methods for PU learning, while being often faster in particular
when |P| << |U|.

This chapter is organized as follows. After reviewing related work in Sec-
tion 2.3, we present the bagging SVM for inductive PU learning in Section
2.4, and its extension to transductive PU learning in Section 2.5. Experi-
mental results are presented in 2.6, followed by a Discussion in Section 2.7.
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2.3 Related work

A growing body of work has focused on PU learning recently. The fact that
only positive and unlabeled examples are available prevents a priori the use
of supervised classification methods, which require negative examples in the
training set. A first approach to overcome the lack of negative examples is
to disregard unlabeled examples during training and simply learn from the
positive examples, e.g., by ranking the unlabeled examples by decreasing sim-
ilarity to the mean positive example [Joachims, 1997] or using more advanced
learning methods such as 1-class SVM [Schölkopf et al., 2001, Manevitz and
Yousef, 2001, Vert and Vert, 2006, De Bie et al., 2007]

Alternatively, the problem of inductive PU learning has been studied on
its own from a theoretical viewpoint [Denis et al., 2005, Scott and Blanchard,
2009], and has given rise to a number of specific algorithms. Several authors
have proposed two-step algorithms, heuristic in nature, which first attempt to
identify negative examples in the unlabeled set, and then estimate a classifier
from the positive, unlabeled and likely negative examples [Manevitz and
Yousef, 2001, Liu et al., 2002, Li and Liu, 2003, Liu et al., 2003, Yu et al.,
2004a]. Alternatively, it was observed that directly learning to discriminate P
from U , possibly after rebalancing the misclassification costs of the two classes
to account for the asymetry of the problem, leads to state-of-the-art results
for inductive PU learning. This approach has been studied, with different
weighting schemes, using a logistic regression or a SVM as binary classifier
[Liu et al., 2003, Lee and Liu, 2003, Elkan and Noto, 2008]. Inductive PU
learning is also related to and has been used for novelty detection, when P is
interpreted as “normal” data and U contains mostly positive examples [Scott
and Blanchard, 2009], or to data retrieval from a single query, when P is
reduced to a singleton [Shah et al., 2008].

Transductive PU learning is arguably easier than inductive PU learning,
since we know in advance the data to be screened for positive labels. Many
semi-supervised methods have been proposed to tackle transductive learn-
ing when both positive and negative examples are known during training,
including transductive SVM [Joachims, 1999], or many graph-based meth-
ods, reviewed by Chapelle et al. [2006]. Comparatively little effort has been
devoted to the specific transductive PU learning problem, with the notable
exception of Liu et al. [2002], who call the problem partially supervised clas-
sification and proposes an iterative method to solve it, and Pelckmans and
Suykens [2009] who formulate the problem as a combinatorial optimization
problem over a graph. Finally, Sriphaew et al. [2009] recently proposed a
bagging approach which shares similarities with ours, but is more complex
and was only tested on a specific application.
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2.4 Bagging for inductive PU learning

Our starting point to learn a classifier in the PU learning setting is the ob-
servation that learning to discriminate positive from unlabeled samples is a
good proxy to our objective, which is to discriminate positive from negative
samples. Even though the unlabeled set is contaminated by hidden positive
examples, it is generally admitted that its distribution contains some infor-
mation which should be exploited. That is for instance, the foundation of
semi-supervised methods.

Indeed, let us assume for example that positive and negative examples
are randomly generated by class-conditional distributions P+ and P− with
densities h+ and h−. If we model unlabeled examples as randomly sampled
from P+ with probability γ and from P− with probability 1 − γ, then the
distribution of unlabeled has a density

hu = γh+ + (1− γ)h− . (2.1)

Now notice that
hu(x)

h+(x)
= γ + (1− γ)

h−(x)

h+(x)
, (2.2)

showing that the log-ratio between the conditional distributions of positive
and unlabeled examples is monotonically increasing with the log-ratio of pos-
itive and negative examples [Elkan and Noto, 2008, Scott and Blanchard,
2009]. Hence any estimator of the conditional probability of positive vs.
unlabeled data should in theory also be applicable to discriminate positive
from negative examples. This is the case for example of logistic regression or
some forms of SVM [Steinwart, 2003, Bartlett and Tewari, 207]. In practice
it seems useful to train classifiers to discriminate P from U by penalizing
more false negative than false positive errors, in order to account for the fact
that positive examples are known to be positive, while unlabeled examples
are known to contain hidden positives. Using soft margin SVM while giv-
ing high weights to false negative errors and low weights to false positive
errors leads to the biased SVM approach described by Liu et al. [2003], while
the same strategy using a logistic regression leads to the weighted logistic
regression approach of Lee and Liu [2003]. Both methods, tested on text
categorization benchmarks, were shown to be very efficient in practice, and
in particular outperformed all approaches based on heuristic identifications
of true negatives in U .

Among the many methods for supervised binary classification which could
be used to discriminate P from U , bootstrap aggregating or “bagging” is an
interesting candidate [Breiman, 1996]. The idea of bagging is to estimate a
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series of classifiers on datasets obtained by perturbing the original training set
through bootstrap resampling with replacement, and to combine these classi-
fiers by some aggregation technique. The method is conceptually simple, can
be applied in many settings, and works very well in practice [Breiman, 2001,
Hastie et al., 2001]. Bagging generally improves the performance of individ-
ual classifiers when they are not too correlated to each other, which happens
in particular when the classifier is highly sensitive to small perturbations of
the training set. For example, Breiman [2001] showed that the difference
between the expected mean square error (MSE) of a classifier trained on a
single bootstrap sample and the MSE of the aggregated predictor increases
with the variance of the classifier.

We propose that, by nature, PU learning problems have a particular
structure that leads to instability of classifiers, which can be advantageously
exploited by a bagging-like procedure which we now describe. Intuitively,
an important source of instability in PU learning situations is the empirical
contamination γ̂ of U with positive examples, i.e., the percentage of positive
examples in U which on average equals γ in (2.1). If by chance U is mostly
made of negative examples, i.e., has low contamination by positive examples,
then we will probably estimate a better classifier than if it contains mostly
positive examples, i.e., has high contamination. Moreover, we can expect
the classifiers in these different scenarii to be little correlated, since intu-
itively they estimate different log-ratios of conditional distribution. Hence,
in addition to the “normal” instability of a classifier trained on a finite-size
sample, which is exploited by bagging in general, we can expect an increased
instability in PU learning due to the sensitivity of the classifier to the em-
pirical contamination γ̂ of U in positive examples. In order to exploit this
sensitivity in a bagging-like procedure, we propose to randomly subsample
U and train classifiers to discriminate P from each subsample, before ag-
gregating the classifiers. By subsampling U , we hope to vary in particular
the empirical contamination between samples. This will induce a variety of
situations, some lucky (small contamination), some less lucky (large contam-
ination), which eventually will induce a large variability in the classifiers that
the aggregation procedure can then exploit.

In opposition to classical bagging, the size K of the samples generated
from U may play an important role to balance the accuracy against the
stability of individual classifiers. On the one hand, larger subsamples should
lead on average to better classifiers, since any classification method generally
improves on average when more training points are available. On the other
hand, the empirical contamination varies more for smaller subsamples. More
precisely, let us denote by γ̂ the true contamination rate in U , that is, the true
proportion of positive examples hidden in U . Whenever a bootstrap sample
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Ut of size K is drawn from U , its empirical number of positive examples is
a binomial random variable ∼ B(K, γ̂), leading to a contamination rate γ̂t

with mean and variance:

E(γ̂t) = γ̂ and V(γ̂t) =
1

K
γ̂(1− γ̂) .

Smaller values of K therefore increase the proportion of “lucky” subsamples,
and more generally the variability of classifiers, a property which is benefi-
cial for the aggregation procedure. Finally this suggests that the size K of
subsample is a parameter whose effect should be studied and perhaps tuned.

In summary, the method we propose for PU learning is presented in Algo-
rithm 1. We call it bagging SVM when the classifier used to discriminate P
from a random subsample of U is a biased SVM. It is akin to bagging to learn
to discriminate P from U , with two important specificities. First, only U is
subsampled. This is to account for the fact that elements in P are known
to be positive, and moreover that the number of positive examples is often
limited.Second, the size of subsamples is a parameter K whose effect needs
to be studied. If an optimal value exists, then this parameter may need to
be adjusted.

The number T of bootstrap samples is also a user-defined parameter.
Intuitively, the larger T the better, although we observed empirically little
improvement for T larger than 100. Finally, although we propose to aggregate
the T classifiers by a simple average, other aggregation rules could easily
be used. On preliminary experiments on simulated and real data, we did
not observed significant differences between the simple average and majority
voting, another popular aggregation method.

2.5 Bagging SVM for transductive PU learn-

ing

We now consider the situation where the goal is only to assign a score to
the elements of U reflecting our confidence that these elements belong to the
positive class. Liu et al. [2002] have studied this same problem which they
call “partially supervised classification”. Their proposed technique combines
Naive Bayes classification and the Expectation-Maximization algorithm to
iteratively produce classifiers. The training scores of these classifiers are
then directly used to rank U . Following this approach, a straightforward
solution to the transductive PU learning problem is to train any classifier
to discriminate between P and U and to use this classifier to assign a score
to the unlabeled data that were used to train it. Using SVMs this amounts
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to using the biased SVM training scores. We will subsequently denote this
approach by transductive biased SVM.

However, one may argue that assigning a score to an unlabeled example
that has been used as negative training example is problematic. In partic-
ular, if the classifier fits too tightly to the training data, a false negative
xi will hardly be given a high training score when used as a negative. In
a related situation in the context of semi-supervised learning, Zhang et al.
[2009] showed for example that unlabeled examples used as negative training
examples tend to have underestimated scores when a SVM is trained with the
classical hinge loss. More generally, most theoretical consistency properties
of machine learning algorithms justify predictions on samples outside of the
training set, raising questions on the use of all unlabeled samples as negative
training samples at the same time.

Alternatively, the inductive bagging PU learning lends itself particularly
well to the transductive setting, through the procedure described in Algo-
rithm 2. Each time a random subsample Ut of U is generated, a classifier is
trained to discriminate P from Ut, and used to assign a predictive score to
any element of U \Ut. At the end the score of any element x ∈ U is obtained
by aggregating the predictions of the classifiers trained on subsamples that
did not contain x (the counter n(x) simply counts the number of such classi-
fiers). As such, no point of U is used simultaneously to train a classifier and
to test it. In practice, it is useful to ensure that all elements of U are not
too often in Ut, in order to average the predictions over a sufficient number
of classifiers.

Algorithm 1 Inductive bagging PU learning
INPUT : P, U , K = size of bootstrap samples, T = number of bootstraps

OUTPUT : a function f : X → R
for t = 1 to T do

Draw a subsample Ut of size K from U .

Train a classifier ft to discriminate P against Ut.

end for
Return

f =
1

T

T�

t=1

ft
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Algorithm 2 Transductive bagging PU learning
INPUT : P, U , K = size of bootstrap samples, T = number of bootstraps

OUTPUT : a score s : U → R
Initialize ∀x ∈ U , n(x) ← 0, f(x) ← 0

for t = 1 to T do
Draw a bootstrap sample Ut of size K in U .

Train a classifier ft to discriminate P against Ut.

For any x ∈ U \ Ut, update:

f(x) ← f(x) + ft(x) ,

n(x) ← n(x) + 1 .

end for
Return s(x) = f(x)/n(x) for x ∈ U

2.6 Experiments

In this section we investigate the empirical behavior of our bagging algorithm
on one simulated dataset (Section 2.6.1) and two real applications: text
retrieval with the 20 newsgroup benchmark (Section 5.2), and reconstruction
of gene regulatory networks (Section 5.3). We compare the new bagging
SVM to the state-of-the-art biased SVM, and also add in the comparison for
real data two one-class approaches, namely, ranking unlabeled examples by
decreasing mean similarity to the positive examples (called Baseline below),
and the one-class SVM [Schölkopf et al., 2001]. Both bagging and biased
methods involve an SVM with asymetric penalties C+ and C− for the positive
and negative class, respectively. By default we always set them to ensure that
the total penalty is equal for the two classes, i.e., C+n+ = C−n−, where n+

and n− are the number of positive and negative examples fed to the SVM,
and optimized the single parameter C = C+ + C− over a grid. We checked
on all experiments that this choice was never significantly outperformed by
other penalty ratio C+/C−.

2.6.1 Simulated data

A first series of experiments were conducted on simulated data to compare
our bagging procedure to the biased approach in an inductive setting. We
consider the simple situation where the positive examples are generated from
an isotropic Gaussian distribution in Rp : P ∼ P+ = N (0p, σ ∗ Ip), with
p = 50 and σ = 0.6, while the negative examples are generated from another
Gaussian distribution with same isotropic covariance and a different mean,



56 CHAPTER 2. A BAGGING SVM FOR PU LEARNING

of norm 1. We replicate the following iteration 50 times for different values
of γ :

• Draw a sample P of 5 positives examples, and a sample U of 50 unla-
beled examples from γ ∗ P+ + (1− γ) ∗ P−.

• Train respectively the biased and bagging logit (with 200 bootstraps)1.

• Compare their performance on a test set of 1000 examples containing
50% positives.

For K, we tested equally spaced values between 1 and 50, and we varied
γ on the interval [0; 0.9]. The performance is measured by computing the
area under the Receiving Operator Characteristic curve (AUC) on the inde-
pendent test set. Figure 2.1 (left) shows the performance of bagging logit for
different levels of contamination of U , as a function of K, the size of the ran-
dom samples. The uppermost curve thus corresponds to γ = 0, i.e., the case
where all unlabeled data are negative, while the bottom curve corresponds
to γ = 0.8, i.e., the case where 80% of unlabeled data are positive. Note that
K = 50 corresponds to classical bagging on the biased logit classifier, i.e., to
the case where all unlabeled examples are used to train the classifier.

We observe that in the classical setting of supervised binary classifica-
tion where U is not contaminated by positive samples (γ = 0), the bagging
procedure does not improve performance, whatever the size of the bootstrap
samples. On the other hand, as contamination increases, we observe an over-
all decrease of the performance, confirming that the classification problem
becomes more difficult when contamination increases. In addition, the bag-
ging logit always succeeds in reaching at least the same performance for some
value of K below 50, even for high rates of contamination. Figure 2.1 (right)
shows the evolution of AUC as γ increases, for both methods. For the bag-
ging logit we report the AUC reached for the best K value. We see that
bagging logit slightly outperforms biased logit method.

To further illustrate the assumption that motivated bagging SVM, namely
that decreasing K would decrease the average performance of single classifiers
but would increase their variance due to the variations in contamination, we
show in Figure 2.2 a scatter plot of the AUC of individual classifiers as a
function of the empirical contamination of the bootstrap sample γ̂, for two
values of K (10 and 40). Here the mean contamination was set to γ = 0.2.
Obviously, the variations of γ̂ are much larger for K = 10 (between 0 and 0.5)
than for K = 40 (between 0.1 and 0.25). The correlation coefficient between

1The bagging logit corresponds to the procedure described above, when the classifier

is a logistic regression. This is the same for the biased logit, see also[Lee and Liu, 2003]
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Figure 2.1: Results on simulated data. Left: AUC of the bagging logit
as a function of K, the size of the bootstrap samples, on simulated data.
Each curve, from top to bottom, corresponds to a contamination level γ ∈
{0; 0.1; 0.2; . . . ; 0.8}. Right Performance of two methods as a function of γ,
the contamination level, on simulated data. The performance of bagging logit
was taken at the optimal K value.

γ̂ and the performance (reported above each plot) is strongly negative, in
particular for smaller K. It is quite clear that less contaminated subsamples
tend to yield better classifiers, and that the variation in the contamination is
an important factor to increase the variance between individual predictors,
which aggregation can benefit from.

2.6.2 Newsgroup dataset

The 20 Newsgroup benchmark is widely used to test PU learning methods.
The version we used is a collection of 11293 articles partitioned into 20 sub-
sets of roughly the same size (around 500)2, corresponding to post articles of
related interest. For each newsgroup, the positive class consists of those ∼500
articles known to be relevant, while the negative class is made of the remain-
der. After pre-processing, each article is represented by a 8165-dimensional
vector, using the TFIDF representation over a dictionnary of 8165 words
[Joachims, 1997].

To simulate a PU learning problem, we applied the following strategy.
For a given newsgroup, we created a set P of known positive examples by

2We used the Matlab pre-processed version available at http://renatocorrea.
googlepages.com/ng2011293x8165itrn.mat

http://renatocorrea.googlepages.com/ng2011293x8165itrn.mat
http://renatocorrea.googlepages.com/ng2011293x8165itrn.mat
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Figure 2.2: Distribution of AUC and γ̂ over the 500 iterations of one boot-
strap loop on the simulated dataset, γ = 0.2.

randomly selecting a given number of positive examples, while U contains
the non-selected positive examples and all negative examples. We varied the
size NP of P in {5, 10, 20, 50, 100, 200, 300} to investigate the influence of
the number of known positive examples. For each newsgroup and each value
of NP , we train all 4 methods described above (bagging SVM, biased SVM,
baseline, one-class SVM) and rank the samples in U by decreasing score
(transductive setting). We then compute the area under the ROC curve
(AUC), and average this measure over 10 replicates of each newsgroup and
each value of NP . For bagging and biased SVM, we varied the C parameter
over the grid [exp(−12 : 2 : 2)], while we vary parameter ν in [0.1 : 0.1 : 0.9]
for 1-class SVM. We only used the linear kernel.

We first investigated the influence of T . Figure 2.3 shows, for the first
newsgroup, the performance reached as a function of T , for different settings
in NP and K. As expected we observe that in general the performance
increases with T , but quickly reaches a plateau beyond which additional
bootstraps do not improve performance. Overall the smaller K, the larger T
must be to reach the plateau. From these preliminary results we set T = 35
for K ≤ 20, and T = 10 for K > 30, and kept it fix for the rest of the
experiments. To further clarify the benefits of bagging, we show in Figure
2.6.2 the performance of the bagging SVM versus the performance of a SVM
trained on a single bootstrap sample (T = 1), for different values of K and
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a fixed number of positives NP = 10. We observe that, for K below 200,
aggregating classifiers over several bootstrap subsamples is clearly beneficial,
while for larger values of K it does not really help. This is coherent with the
observation that SVM usually rarely benefit from bagging: here the benefits
come from our particular bagging scheme. Interestingly, we see that very
good performance is reached even for small values of K with the bagging.
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Figure 2.3: Performance on one newsgroup as a function of the number of
boostraps T , for different values of NP and K.

Figure 2.5 shows the mean AUC averaged over the 10 folds and the 20
newsgroups for bagging SVM as a function of K, and compares it to that
of the biased SVM. More precisely, each point on the curve corresponds to
the performance averaged over the 20 Newsgroups after choosing a posteriori
the best C parameter for each newsgroup. This is equivalent to comparing
optimal cases for both methods. Contrary to what we observed on simulated
date, we observe that K has in general very little influence on the perfor-
mance. The AUC of the bagging SVM is similar to that of the biased SVM
for most values of K, although for NP larger than 50, a slight advantage can
be observed for the biased SVM over bagging SVM when K is too small. We
conclude that in practice, parameter K may not need to be finely tuned and
we advocate to keep it moderate. In all cases, K = NP seems to be a safe
choice for the bagging SVM.

Finally, Figure 2.6 shows the average AUC over the 20 newsgroups for
all four methods, as a function of NP . Overall all methods are very similar,
with the Baseline slightly below the others. In details, the bagging SVM
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Figure 2.4: Performance on one newgroup of bagging SVM (bagging AUC )
vs a SVM trained on a single bootstrap sample (mean AUC ), for different
values of K.

curve dominates all other methods for NP ≥ 20, while the 1-class SVM is
the one which dominates for smaller values of NP . Although the differences
in performance are small, the bagging SVM outperforms the biased SVM
significantly for NP > 20 according to a Wilcoxon paired sample test (at 5%
confidence). For small values of NP however, no significant difference can be
proven in either way between bagging SVM and 1-class SVM, which remains
a very competitive method.
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Figure 2.5: Macro averaged performance of the bagging SVM as a function
of K. The dashed horizontal lines show the AUC level of the biased SVM.
The curves are plotted for different values of NP , the size of the positive set.
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Figure 2.6: Performance of the baseline method, the 1-class SVM, the biased
SVM and the newly proposed bagging SVM methods on the 20 Newsgroups
dataset. Each curve shows how the mean AUC varies with the number of
positive training examples NP . For each value of NP , the performance of
bagging SVM is computed at the optimal value for K, as shown in Figure
2.5.

2.6.3 E. coli dataset : inference of transcriptional reg-

ulatory network

In this section we test the different PU learning strategies on the problem
of inferring the transcription regulatory network of the bacteria Escherichia
coli from gene expression data. The problem is, given a transcription fac-
tor (TF), to predict which genes it regulates. Following Mordelet and Vert
[2008], we can formulate this problem as transductive PU learning by start-
ing from known regulated genes (considered positive examples), and looking
for additional regulated genes in the bacteria’s genome.

To represent the genes, we use a compendium of microarray expression
profiles provided by Faith et al. [2008], in which 4345 genes of the E. Coli
genome are represented by vectors in dimension 445, corresponding to their
expression level in 445 different experiments. We extracted the list of known
regulated genes for each TF from RegulonDB [Salgado et al., 2006]. We
restrict ourselves to 31 TFs with at least 8 known regulated genes.

For each TF, we ran a double 3-fold cross validation with an internal loop
on each training set to select parameter C of the SVM (or ν for the 1-class
SVM). Following Mordelet and Vert [2008], we normalize the expression data
to unit norm, use a Gaussian RBF kernel with σ = 8, and perform a particular
cross-validation scheme to ensure that operons are not split between folds.
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Finally, following our previous results on simulated data and the newsgroup
benchmark, we test two variants of bagging SVM, setting K successively to
NP and 5 ∗ NP . These choices are denoted respectively by bagging1 SVM
and bagging5 SVM.

Figure 2.6.3 shows the average precision/recall curves of all methods
tested. Overall we observe that all three PU learning methods give signifi-
cantly better results than the two methods which use only positive examples
(Wilcoxon paired sample test at 5% significance level). No significant dif-
ference was found between the three PU learning methods. This confirms
again that for different values of K bagging SVM matches the performance
of biased SVM.
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Figure 2.7: Precision-recall curves to compare the performance between the
baggin1 SVM, the bagging5 SVM, the biased SVM, the 1-class SVM and the
baseline method.

2.7 Discussion

The main contribution of this work is to propose a new method, bagging
SVM, both for inductive and transductive PU learning, and to assess in
detail its performance and the influence of various parameters on simulated
and real data.

The motivation behind bagging SVM was to exploit an intrinsic feature of
PU learning to benefit from classifier aggregation through a random subsam-
ple strategy. Indeed, by randomly sampling K examples from the unlabeled
examples, we can expect various contamination rates, which in turn can lead
to very different single classifiers (good ones when there is little contamina-
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tion, worse ones when contamination is high). Aggregating these classifiers
can in turn benefit from the variations between them. This suggests that K
may play an important role in the final performance of bagging SVM, since it
controls the trade-off between the mean and variance of individual classifiers.
While we showed on simulated data that this is indeed the case, and that
there can be some optimum K to reach the best final accuracy, the two ex-
periments on real data did not show any strong influence of K and suggested
that K = NP may be a safe default choice. This is a good news since it does
not increase the number of parameters to optimize for the bagging SVM and
leads to balanced training sets that most classification algorithms can easily
handle.

The comparison between different methods is mitigated. While bagging
SVM outperforms biased SVM on simulated data, they are not significantly
different on the two experiments with real data. Interestingly, while these
PU learning methods were significantly better than two methods that learned
from positive examples only on the gene regulatory network example, the
1-class SVM behaved very well on the 20 newsgroup benchmark, even out-
performing the PU learning methods when less than 10 training examples
were provided. Many previous works, including Liu et al. [2003] and Yu
et al. [2004a] discard 1-class SVMs for showing a bad performance in terms
of accuracy, while Manevitz and Yousef [2001] report the lack of robustness
of this method arguing that it has proved very sensitive to changes of pa-
rameters. Our results suggest that there are cases where it remains very
competitive, and that PU learning may not always be a better strategy than
simply learning from positives.

Finally, the main advantage of bagging SVM over biased SVM is the
computation burden, in particular when there are far more unlabeled than
positive examples. Indeed, a typical algorithm, such as an SVM, trained
on N samples, has time complexity proportional to Nα, with α between 2
and 3. Therefore, biased SVM has complexity proportional to (P + U)α

while bagging SVM’s complexity is proportional T ∗ (P + K)α. With the
default choice K = P ratio of CPU time to train the biased SVM vs the
bagging SVM can therefore be expected to be ((P + U)/(2P ))α /T . Then
we conclude that bagging SVM should be faster than biased SVM as soon
as U/P > 2T 1/α − 1. For example, taking T = 35 and α = 3, bagging
SVM should be faster than biased SVM as soon as U/P > 6, a situation
very often encountered in practice where the ratio U/P is more likely to be
several orders of magnitude larger. In the two real datasets, this was always
the case. Table 2.7 reports CPU time and performance measure for training
bagging SVM on the first fold of newsgroup 1 with C fixed at its best value
a posteriori and NP = 10.
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CPU AUC-AUP
Bagging K=10 K=50 K=200 K=10 K=50 K=200

T
35 13 39 91 0.921-0.531 0.917-0.524 0.902-0.518
50 18 54 127 0.920-0.539 0.914-0.522 0.904-0.522
200 72 170 473 0.918-0.539 0.910-0.528 0.904-0.511

Table 2.1: CPU time and performance measures for different settings of T
and K for bagging SVM.

In comparison, the biased SVM’s CPU time is 227s for AUC = 0.932
and AUP = 0.491. This confirms that for reasonable values of T and K,
the bagging SVM is much faster than the biased SVM for a comparable
performance.



Chapter 3

Regulatory network inference

This chapter presents the work which was published in Mordelet and Vert
[2008].

3.1 Résumé

Le chapitre 3 traite le problème de l’inférence de réseaux de régulation. On
rappelle que le comportement des cellules vivantes résulte d’un programme de
régulation de l’expression des gènes qui implique des milliers de gènes. Elu-
cider ces réseaux de régulation transcriptionnelle est donc essentiel pour com-
prendre comment la cellule fonctionne et peut s’avérer utile pour découvrir
des cibles thérapeutiques nouvelles. Il existe plusieurs méthodes qui infèrent
ces réseaux à partir de données d’expression des gènes. Une comparaison
récente des ces méthodes sur un jeu de données de référence à grande échelle,
a révélé que la plupart de ces méthodes existantes ne recouvre qu’un nom-
bre limité de régulations connues à un niveau de précision raisonnable. Ici,
nous proposons SIRENE, une nouvelle méthode supervisée pour l’inférence
de réseaux de régulation à partir de données transcriptomiques. SIRENE
décompose le problème global en un grand nombre de problèmes de classi-
fication binaire, dits locaux car chacun vise à identifier de nouveaux gènes
cibles parmi les gènes indéterminés pour un facteur de transcription parti-
culier. SIRENE ne nécessite aucune hypothèse sur les données et introduit
un nouveau paradigme d’inférence biologiquement fondé : si un gène A est
régulé par une gène B et qu’un gène A’ est similaire au gène A, alors il est
très probable que le gène A’ soit aussi régulé par le facteur de transcription
B. SIRENE est une méthode conceptuellement simple et efficace d’un point
de vue calculatoire. Les tests effectués sur le jeu de données de référence pour
la prédiction de régulations chez E. coli démontrent que SIRENE recouvre
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environ 6 fois plus de régulations connues que les méthodes de l’état de l’art.

3.2 Introduction

Elucidating the structure of gene regulatory networks is crucial to understand
how transcription factors (TF) regulate gene expression and allow an organ-
ism to regulate its metabolism and adapt itself to environmental changes.
While high-throughput sequencing and other post-genomics technologies offer
a wealth of information about individual genes, the experimental characteri-
zation of transcriptional cis-regulation at a genome scale remains a daunting
challenge, even for well-studied model organisms. In silico methods that
attempt to reconstruct such global gene regulatory networks from prior bi-
ological knowledge and available genomic and post-genomic data therefore
constitute an interesting direction towards the elucidation of these networks.

Transcriptional cis-regulation directly influences the level of mRNA tran-
scripts of regulated genes. Not surprisingly, many in silico methods have
been proposed to reconstruct gene regulatory networks from gene expression
data, produced at a fast rate by microarrays [Bansal et al., 2007]. Clustering
gene expression profiles across different conditions identifies groups of genes
with similar transcriptomic response, suggesting co-regulation within each
group [Tavazoie et al., 1999]. Clustering methods are widely used, computa-
tionally efficient, but do not easily lead to the identification of regulators for
a given set of genes. Some authors nonetheless have observed that identify-
ing similarities, or more generally mutual information between the expression
profiles of a TF and of a target gene is a good indicator of regulation [Butte
et al., 2000, Faith et al., 2007]. When time series of gene expression data are
available, other reverse-engineering methodologies can be applied to capture
the interactions governing the observed dynamics. Different mathematical
formalisms have been proposed to model such dynamics, including boolean
networks [Akutsu et al., 2000] or ordinary or stochastic partial differential
equations [Chen et al., 1999, Tegner et al., 2003, Gardner et al., 2003, Chen
et al., 2005, Bernardo et al., 2005, Bansal et al., 2006]. Some authors have also
attempted to detect causality relationships between gene expression data, be
they time series or compendia of various experiments, using statistical meth-
ods such as Bayesian networks [Friedman et al., 2000]. These methods that
estimate the regulatory network by fitting a dynamic or statistical model are
often computationally and data demanding.

The comparison of these different approaches and of their capacity to ac-
curately reconstruct large-scale regulatory networks has been hampered by
the difficulty to assemble a realistic set of biologically validated regulatory
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relationships and use it as a benchmark to assess the performance of each
method. Recently, Faith et al. [2007] compiled such a benchmark, by gather-
ing all known transcriptional cis-regulation in Escherichia coli and collecting
a compendium of several hundreds of gene expression profiling experiments.
They compared several approaches, including Bayesian networks [Friedman
et al., 2000], ARACNe [Margolin et al., 2006], and the context likelihood
of relatedness (CLR) algorithm, a new method that extends the relevance
networks class of algorithms [Butte et al., 2000]. They observed that CLR
outperformed all other methods in prediction accuracy, and experimentally
validated some predictions. CLR can therefore be considered as state-of-the-
art among methods that use compendia of gene expression data for large-scale
inference of regulatory networks.

In this chapter we present SIRENE (Supervised Inference of REgulatory
NEtworks), a new method to infer gene regulatory networks on a genome scale
from a compendium of gene expression data. SIRENE differs fundamentally
from other approaches in that it requires as inputs not only gene expression
data, but also a list of known regulation relationships between TF and target
genes. In machine learning terminology, the method is supervised in the
sense that it uses a partial knowledge of the information we want to predict
in order to guide the inference engine for the prediction of new information.
The necessity to input some known regulations is not a serious restriction
in many applications, as many regulations have already been characterized
in model organisms, and can be inferred by homology in newly sequenced
genomes. Known regulations allow us to use a natural induction principle
to predict new regulations: if a gene A has an expression profile similar to a
gene B known to be regulated by a given TF, then gene A is likely to be also
regulated by the TF. The fact that genes with similar expression profiles are
likely to be co-regulated has been used for a long time in the construction
of groups of genes by unsupervised clustering of expression profiles. The
novelty in our approach is to use this principle in a supervised classification
paradigm. This inference paradigm has the advantage that no particular
hypothesis is made regarding the relationship between the expression data of
a TF and those of regulated genes. In fact, expression data for the TF are
not even needed in our approach.

Many algorithms for supervised classification can be used to transform
this inference principle into a working algorithm. We use in our experiments
the support vector machine (SVM) algorithm, a state-of-the-art method for
supervised classification. The idea to cast the problem of gene or protein
networks inference as a supervised classification problem, using known in-
teractions as inputs, has been recently proposed and investigated for the
reconstruction of protein-protein interaction (PPI) and metabolic networks
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[Yamanishi et al., 2004, Ben-Hur and Noble, 2005]. Bleakley et al. [2007]
proposed a simple method where a local model is estimated to predict the
interacting partners of each protein in the network, and all local models
are then combined together to predict edges throughout the network. They
showed that this method gave important improvement in accuracy compared
to more elaborated methods on both the PPI and metabolic networks. Here
we adapt this strategy for the reconstruction of gene regulatory networks. For
each TF, we estimate a local model to discriminate, based on their expression
profiles, the genes regulated by the TF from others genes. All local models
are then combined to rank candidate regulatory relationships between TFs
and all genes in the genome. SIRENE is conceptually simple, easy to im-
plement, and computationally scalable to whole genomes because each local
model only involves the training of a supervised classification algorithm on a
few hundreds or thousands examples.

We test SIRENE on the benchmark experiment proposed by Faith et al.
[2007], which aims at reconstructing known regulations within E. coli genes
from a compendium of gene expression data. On this benchmark, SIRENE
strongly outperforms the best results reported by Faith et al. [2007], with the
CLR algorithm. For example, at a 60% true positive rate (precision), CLR
identifies 7.5% of all known regulatory relationships (recall), while SIRENE
has a recall of 44.5% at the same precision level using expression profiles.

3.3 System and Methods

3.3.1 SIRENE

SIRENE is a general method to infer new regulation relationships between
known TF and all genes of an organism. It requires two types of data as
inputs. First, each gene in the organism needs to be characterized by some
data, in our case a vector of expression values in a compendium of expression
profiles. Second, a list of known regulation relationships between known TF
and some genes is needed. More precisely, for each TF, we need a list of genes
known to be regulated by the TF, and if possible a list of genes known not
to be regulated by it. Such lists can typically be constructed from publicly
available databases of experimentally characterized regulation, e.g., Regu-
lonDB for E. coli genes [Salgado et al., 2006]. While such databases usually
do not contain informations about the absence of regulation, we discuss in
Section 3.3.3 below how we generate negative examples.

When such data are available, SIRENE splits the problem of regulatory
network inference into many binary classification subproblems, one subprob-
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lem being associated to each TF. More precisely, for each TF, SIRENE trains
a binary classifier to discriminate between genes known to be regulated and
genes known not to be regulated by the TF, based on the data that charac-
terize the genes (e.g., expression data). The rationale behind this approach
is that, although we make no hypothesis regarding the relationship between
the measured expression level of a TF and its targets, we assume that if
two genes are regulated by the same TF then they are likely to exhibit sim-
ilar expression patterns. In our implementation, we use a SVM to solve the
binary classification problems (Section 3.3.2), but any other algorithm for
supervised binary classification could in principle be used. Once trained, the
model associated to a given TF is able to assign to each new gene, not used
during training, a score that tends to be positive and large when it believes,
based on the data that characterize the gene, that the gene is regulated by
the TF. The final step is to combine all scores of the different models to rank
the candidate TF-gene interactions in a unique list by decreasing score.

In summary, SIRENE decomposes the difficult problem of gene regulatory
network inference into a large number of subproblems that attempt to esti-
mate local models to characterize the genes regulated by each TF. A similar
approach was proposed by Bleakley et al. [2007] to infer undirected graphs,
and successfully tested on the reconstruction of metabolic and PPI networks.
Here we are confronted with a slightly different problem, since the graph we
wish to infer is directed and we just need to infer local models to predict
genes regulated by any given TF.

3.3.2 SVM

In our implementation of SIRENE, we use a SVM to train predictors for each
local model associated to a TF. SVM is a popular algorithm to solve general
supervised binary classification problems which is considered state-of-the-art
in many applications and is available in many free and public implementa-
tions [Vapnik, 1998, Schölkopf et al., 2004]. The basic ingredient of a SVM
is a kernel function K(x, y) between any two genes x and y, that can often
be thought of as a measure of similarity between the genes. In our case, the
similarity between genes is measured in terms of expression profiles. Given
a set of n genes x1, . . . , xn that belong to two classes, denoted arbitrarily −1
and +1, a SVM estimates a scoring function for any new gene x of the form:

f(x) =
n�

i=1

αiK(xi, x) .

The weights αi in this expression are optimized by the SVM to enforce as
much as possible large positive scores for genes in the class +1 and large
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negative scores for genes in the class −1 in the training set. A parameter,
often called C, allows to control the possible overfitting to the training set.
The scoring function f(x) can then be used to rank genes with unknown class
by decreasing score, from the most likely to belong to class +1 to the most
likely to belong to class −1.

The kernel K(x, y) defines the similarity measure used by the SVM to
build the scoring function. In our experiments we want to infer regulations
from gene expression data. Each collection of gene expression data is a vector,
so we simply use the common Gaussian radial basis function kernel between
vectors u and v:

K(u, v) = exp

�
−||u− v||2

2σ2

�
,

where σ > 0 is the bandwidth parameter of the kernel.
Each SVM has therefore two parameters, C and σ. In order to limit the

risk of overfitting and positive bias in our performance evaluation that could
result from an over-optimization of these parameters on the benchmark data,
we simply fix them for all SVM to the unique values C = +∞ and σ = 8.
The value C = +∞ means that we train hard-margin SVM, which is always
possible with a Gaussian kernel [Vapnik, 1998]. The choice σ = 8 was based
on the observation that we use expression profiles for 445 microarrays scaled
to zero mean and unit standard deviation, i.e., each gene is represented by
a vector of dimension 445 and of length

√
445 ∼ 21. Hence the distance be-

tween two orthogonal profiles is of the order of
√

2×
√

445 ∼ 32. We expect
that a bandwidth of the order of σ = 8, which puts two orthogonal profiles
at about 4σ from each other, is a safe default choice. We performed prelim-
inary experiments with different values of C and σ, which did not result in
any significant improvement or decrease of performance, suggesting that the
behaviour of SIRENE is robust to variations in its parameters around these
default values. All results below were obtained with this default parameter
choice.

3.3.3 Choice of negative examples

SIRENE being a supervised inference algorithm, two sets of positive and
negative training examples are needed for each SVM. Although regulations
reported in databases such as RegulonDB can safely be taken as positive
training examples, the choice of negative examples is more problematic for
two reasons. First, few information is published and archived regarding the
fact that a given TF is found not to regulate a given target gene. Hence
there is no systematic source of negative examples for our problem. A nat-
ural choice is then to take TF-gene pairs not reported to have regulatory
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relationships in databases as negative examples, mixing both true negative
and false negative. In that case, we are then confronted with the second
problem which is that, once a hard-margin SVM is trained on positive and
negative examples, it always predict significantly negative scores on negative
examples used during training. As a result it is not possible to use the SVM
score on genes used during training if we want to find TF-pairs that were
wrongly assigned to the negative class.

To overcome this issue, we propose the following scheme. Let us suppose
we want to predict whether genes are regulated of not by a given TF. All
genes known to be regulated by this TF form a set of positive examples, and
no prediction is needed for them. The other genes are split in 3 subsets of
roughly equal size. Then, in turn, each subset is taken apart, and a SVM is
trained with all positive examples and all genes in the two other subsets as
negative examples. The SIRENE score for the genes in the subset left apart
is the SVM prediction score on these genes, which were not used during SVM
training. Repeating this loop 3 times, we obtain the SIRENE score for all
genes with no known regulation by the TF. This process is then repeated for
all other TF one by one. The advantage of this procedure is that, even though
there are false negative in the training set of each SVM, the predictions on
the genes not used during training can still be positive if some of these genes
look similar to the positive training examples.

3.3.4 CLR

We compare the performance of SIRENE with CLR, a method for gene net-
work reconstruction from gene expression data that was shown by Faith et al.
[2007] to be state-of-the-art on a large-scale benchmark evaluation. CLR an
extension of the relevance networks class of algorithm [Butte et al., 2000],
which predict regulations between TF and genes when important mutual
information can be detected. In the case of CLR, an adaptive background
correction step is added to the estimation of mutual information. For each
gene, the statistical likelihood of the mutual information score is computed
within its network context. Then, for each TF-target gene pair, the mutual
information score is compared to the context likelihood of both the TF and
the target gene, and turned into a z-score. Putative TF-gene interactions are
then ranked by decreasing z-score.

3.3.5 Experimental protocol

In order to assess the performance of SIRENE as an inference engine, and
compare it with other existing methods, we test it on a benchmark of known



72 CHAPTER 3. REGULATORY NETWORK INFERENCE

regulatory network. However, SIRENE being a supervised method, we adopt
a cross-validation procedure to make sure that its performance is measured on
prediction not used during the model training step. Consequently we adopt
the following 3-fold cross validation strategy, coherent with the SIRENE
protocol to make predictions explained in Section 3.3.3. Given a set of TF,
a set of genes, and a set of known TF-gene regulations within these sets, we
split randomly the set of genes in 3 parts, train the SVM for each TF on two
of these subsets, and evaluate their prediction quality on the third subset,
i.e., on the regulations of those genes that were not used during training
(Figure 3.1). This process is repeated 3 times, testing successively on each
subset, and the prediction qualities of all folds are averaged.

In this cross-validation procedure, a particular attention must be paid to
the existence of transcription units and operons in E. coli. Indeed, a given
TF typically regulates all genes within an operons, which moreover usually
have very similar expression profiles. As a result, if genes within an operon
are split between a training and a test set, then the SVM prediction is likely
to be correct simply because the SVM will predict that a test gene with a
profile very similar to a training gene should be in the same class. In other
words, the SVM can probably easily recognize operons and make correct
predictions due to the presence of operons. However we are interested here
in the prediction of inference of regulations for new operons. To simulate
this problem in our cross-validation setting, we make sure that all genes that
belong to the same operon are in the same subset of genes, i.e., are always
either in the training set or in the test set together. In our experiments
below we report results both an a classical cross-validation setting, and on
this particular scheme that preserves the integrity of operons in the train/test
splits.

The CLR algorithm is evaluated with the same protocol. However, since
CLR is unsupervised, the training set is not used in each fold, and the final
ROC and precision/recall curves are equivalently obtained by computing the
curves on all genes simultaneously.

To evaluate the quality of a prediction we rank all possible TF-gene reg-
ulation in the test set by decreasing score, and compute both the receiving
operating characteristic (ROC) curve and the precision/recall (PR) curve.
The ROC curve plots the recall, i.e., the percentage true interactions that
have a score above a threshold, as a function of the false positive rate, i.e., the
fraction of negative interactions that have a score above a threshold, when
the threshold varies. The PR curve plots the precision, i.e., the percentage of
true positive among the predictions above a threshold, as a function of recall,
when the threshold varies. One ROC and PR curve is obtained in each fold
of cross-validation, and these curves are averaged over the three folds to yield
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Figure 3.1: Cross validation for the transcriptional regulatory graph

the final estimated ROC and PR curve.

3.4 Data

We used in our experiments the expression and regulation data made pub-
licly available by Faith et al. [2007] for E. coli, and downloaded from http:

//gardnerlab.bu.edu/data/PLoS_2007/data_and_validation.html. The expression data con-
sist of a compendium of 445 E. coli Affymetrix Antisense2 microarray expres-
sion profiles for 4345 genes. The microarrays were collected under different
experimental conditions such as PH changes, growth phases, antibiotics, heat
shock, different media, varying oxygen concentrations and numerous genetic
perturbations. The expression data for each gene were normalized to zero
mean and unit standard deviation. The regulation data consist of 3293 exper-
imentally confirmed regulations between 154 TF and 1211 genes, extracted
from the RegulonDB database [Salgado et al., 2006].

We downloaded the list of 899 known operons in E. coli from RegulonDB.
Each operon contains one or several genes, and each gene belongs to at most
one operon. Genes not present in any of the regulonDB were considered to
form an operon by themselves, resulting in a total of 3360 operons for the
4345 genes. This operon information was used to create the folds in the
cross-validation procedure, as explained in Section 3.3.5.

http://gardnerlab.bu.edu/data/PLoS_2007/data_and_validation.html
http://gardnerlab.bu.edu/data/PLoS_2007/data_and_validation.html
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3.5 Results

SIRENE was compared to CLR and other algorithms on the E coli bench-
mark used by Faith et al. [2007] and described in the previous section. Fig-
ure 3.2 shows the ROC and PR curves of CLR and SIRENE. The two curves
for the later, labeled SIRENE and SIRENE-Bias, are respectively obtained
when we use the cross-validation protocol presented in Section 3.3.5 and when
we use a classical cross-validation scheme where genes within a known operon
can be split between training and test sets.
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Figure 3.2: Comparison of performance between CLR and SIRENE. (A)
ROC curves, and (B) precision/recall curves. The SIRENE curve corresponds
to the SIRENE algorithm evaluated by 3-fold cross-validation, when genes
within an operon are never split between the training and the test set. The
SIRENE-bias curve is the same algorithm evaluated by classical 3-fold cross-
validation, where genes are randomly assigned to training and test sets.

CLR scores were obtained directly from Faith et al. [2007]. The PR curve
of CLR is similar to that presented by Faith et al. [2007], confirming that we
use the exact same benchmark. Both for ROC and PR, SIRENE performance
curves are significantly above CLR. SIRENE-bias is itself much better than
SIRENE, confirming the importance of the evaluation bias if operons are split
artificially between training and test sets in the cross-validation procedure.
In what follows we restrict ourselves to the analysis of the results of SIRENE
in the correct cross-validation protocal.

The PR curve is particularly relevant because the number of true regula-
tions is very small compared to the total number of possible TF-gene pairs.
We see that the recall obtained by SIRENE, i.e., the proportion of known
regulations that are correctly predicted, is several times larger than the re-
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call of CLR at all levels of precision. More precisely, Table 3.1 compares the
recalls of SIRENE, CLR and several other methods at 80% and 60% preci-
sion. The other methods reported are relevance network [Butte et al., 2000],
ARACNe [Margolin et al., 2006], and a Bayesian network [Friedman et al.,
2000] implemented by Faith et al. [2007]. The performance of these three
methods was taken directly from Faith et al. [2007].

Table 3.1: Recall of different gene regulation prediction algorithm at differ-
ent levels of precision (60% and 80%). The values for relevance network,
ARACNe and Bayesian network were taken from Faith et al. [2007].

Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%

CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

At 60% precision, SIRENE predicts 6 times more known regulations than
CLR, which was the best among all methods tested on this benchmark by
Faith et al. [2007]. With 44.5% recall at this precision level, the performance
of SIRENE allows one, in principle, to retrieve almost half of all known
regulations.

The main conceptual difference between SIRENE and other methods is
that SIRENE is a supervised method that requires known regulations to
train its models. As an attempt to understand why the performance of
SIRENE was better than that of other state-of-the-art unsupervised methods,
we reasoned that TF with a large number of known regulated target genes
could better take advantage of the supervised setting, and therefore that
predictions for these TF should in general be better than predictions for
TF with few known targets. To validate this hypothesis, we computed the
ROC curve for SIRENE by cross-validation, restricted to the prediction of
targets for each individual TF in turn. For each TF, we then computed the
area under the ROC curve (AUC) as an indicator of how well the targets of
each particular TF are predicted. We did this estimation for both CLR and
SIRENE, and show in Figure 3.3 the distributions of AUC scores for all TF as
a function of the number of known target genes in RegulonDB, for both CLR
and SIRENE. As expected, the values for SIRENE tend to be larger than
those for CLR. More importantly, we observe in the SIRENE plot a trend to
have better AUC values for TF trained on more known targets. This trend
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is not present for CLR, which does not benefit from the knowledge of more
or less targets for each TF. This result was expected and suggests that, as
our knowledge expands and the number of known regulations continues to
increase, so will the performance of supervised methods like SIRENE.
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Figure 3.3: AUC per TF as a function of the number of regulated genes. (A)
CLR and, (B) SIRENE

Having validated the relevance and performance of SIRENE on the regu-
lonDB benchmark, we performed a global prediction of the E. coli regulatory
network at 60% precision in order to predict new regulations in E. coli. More
precisely, for each of the 154 TF with at least one known target in Regu-
lonDB we computed the SIRENE score for all E. coli genes (4345 in total)
that were not known targets, using the protocol described in Section 3.3.3.
The RegulonDB database contained 3293 known TF-target regulations, so
we assigned a score to the 4345 × 154 − 3293 = 665837 other candidate
TF-gene pairs. From the cross-validation experiment we calibrated the level
of SIRENE score threshold associated to various levels of precision. We se-
lected all pairs with a score above a threshold of −0.41, corresponding to an
estimated precision of 60%. At this threshold, 991 new regulations were pre-
dicted in addition to the 3293 known ones. Combining known and predicted
regulations we obtained a regulatory network with 4284 edges involving 1688
genes.

In order to illustrate some predicted regulations, we focus now on the
regulations of TF by other TF. Removing all non-TF genes of the predicted
network, we obtain a graph with 131 TF and 349 interactions among them
(TF with no interaction were removed). Among them, the rpoD gene, which
codes for the RNA polymerase sigma factor, accounts alone for 85 regulations.
In order to obtain a picture easier to visualize with the Cytoscape software
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[Shannon et al., 2003], we removed rpoD from this graph, and only kept the
main connected component which is shown in Figure 3.4. This core regulatory
network involves 90 TF, and combines 196 known regulations among them
with 32 predicted ones.

Figure 3.4: Main connected component of the predicted regulatory network
among TF of E. coli, at an estimated 60% precision level. For clarity purpose
the rpoD gene was removed from this picture. Grey arrows indicate known
regulations, blue arrows indicate new predicted interactions.

Most regulations in this densely connected region of the E. coli regula-
tory network have been investigated in detail, and it not a surprise that the
number of newly predicted regulations is limited. Still a quick survey of the
literature can confirm some of these predictions. For example, four new reg-
ulators are predicted for yhiW (crp,hns,rpoS,yhiX and itself), which is itself
predicted to regulate yhiE. Although these regulations were not present in
the database used to train the model, they are confirmed by the literature.
The GadW protein coded by yhiW is a regulator that participates in con-
trolling several genes of the acid resistance system. It is indeed regulated by
the proteins coded by yhiX and by the general proteins crp,hns,rpoS that
control resistance to acidity through the gad system that utilizes two isoforms
of glutamate decarboxylase encoded by gene regions gadA and gadB and a
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putative glutamate:-aminobutyric acid antiporter encoded by gadC [Tucker
et al., 2002, Waterman and Small, 2003, Ma et al., 2003]. Another predicted
regulation that was confirmed by a literature search is the dependence of
hcaR, a TF involved in the oxidative stress response, by a functional CAP
protein encoded by the crp gene [Turlin et al., 2001]. Although preliminary,
these first validations confirm the relevance of the approach and may suggest
further experimental validations for subsystems of interest.

SIRENE is easy to implement and scales well to large-scale inference. In-
deed, the main idea behind SIRENE is to decompose the network inference
into a set of local binary classification problems, aimed at discriminating
targets from non-targets of each TF. Although we used a SVM as a basic
algorithm to solve these local problems, any algorithm for pattern recogni-
tion may be used instead. Each local problem involves at most a training set
of a few thousands genes, easily manageable by most machine learning algo-
rithms. This strategy also paves the way to the use of other genomic data to
predict regulation. Indeed, local models for gene classification often improve
in performance when several data, such as phylogenetic or cell subcellular lo-
calization information is available, and SVM provide a convenient framework
to practically perform this data integration [Lanckriet et al., 2004a, Bleakley
et al., 2007]. Another interesting features of SIRENE is its ability to predict
self-regulation, that other methods have generally difficulties to deal with.

A important limitation of SIRENE is its inability to predict targets of TF
with no a priori known target. More generally, the performance of SIRENE
tends to decrease when few targets are known. Thus, for example, it can
not be used to discover new transcription factors. An interesting direction of
future research is therefore to extend the predictions to TF with no known
target. A possible direction may be to combine the supervised approach with
other non-supervised approaches in some meaningful way.



Chapter 4

Prioritization of disease genes

with PU learning

4.1 Résumé

Le chapitre 4 est dédié à l’application de l’apprentissage à partir d’exemples
positifs et indéterminés au problème de l’identification de gènes de maladies.
On rappelle que retrouver les bases génétiques des maladies humaines est
un des objectifs centraux de la génétique et de la biologie moléculaire. Les
analyses de liaison traditionnelles et les techniques modernes à haut débit
fournissent souvent de longues listes, de dizaines voire de centaines de gènes
candidats. De ce fait, l’identification de gènes de maladies parmi ces candi-
dats reste coûteuse et particulièrement chronophage. Comme nous l’avons
souligné dans la section 1.1.2.2, des méthodes de calcul efficaces sont donc
indispensables pour prioriser les gènes de la liste des candidats, tout en ex-
ploitant la mine d’informations disponibles sur ces gènes au travers des dif-
férentes bases de données génomiques. Nous proposons ProDiGe, un nouvel
algorithme de priorisation de gènes de maladies. ProDiGe implémente une
stratégie d’apprentissage statistique à partir d’exemples positifs et indéter-
minés, qui permet l’intégration de sources d’information hétérogènes. Par
ailleurs, il permet de partager l’information sur les gènes causaux déjà iden-
tifiés entre différentes maladies et de rechercher de nouveaux gènes de maladie
à l’échelle du génome. Les expériences, réalisées sur des données réelles, mon-
trent que ProDiGe surpasse les méthodes existantes pour la priorisation de
gènes de maladie chez l’humain.

79
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4.2 Introduction

During the last decades, considerable efforts have been made to elucidate
the genetic basis of rare and common human diseases. The discovery of
so-called disease genes, whose disruption causes congenital or acquired dis-
ease, is indeed important both towards diagnosis and towards new therapies,
through the elucidation of the biological bases of diseases. Traditional ap-
proaches to discover disease genes first identify chromosomal region likely
to contain the gene of interest using, e.g., linkage analysis or study of chro-
mosomal aberrations in DNA samples from large case-control populations.
The regions identified, however, often contains tens to hundreds of candi-
date genes. Finding the causal gene(s) among these candidates is then an
expensive and time-consuming process, which require extensive laboratory
experiments. Progresses in sequencing, microarray or proteomics technolo-
gies have also facilitated the discovery of genes whose structure or activity are
modified in disease samples, on a full genome scale. However, again, these ap-
proaches routinely identify long lists of candidate disease genes among which
only one or a few are the causative agents of the disease process, and further
biological investigations are required to identify them. In both cases, it is
therefore important to select the most promising genes to be further studied
among the candidates, i.e., to prioritize them from the most likely to be a
disease gene to the less likely.

Gene prioritization is typically based on prior information we have about
the genes, e.g., their biological functions, patterns of expression in different
conditions, or interactions with other genes. The availability of complete
genome sequences and the wealth of large-scale biological data sets now pro-
vide an unprecedented opportunity to speed up the gene hunting process
[Giallourakis et al., 2005]. Integrating a variety of heterogeneous information
stored in various databases and in the literature to obtain a good final rank-
ing of hundreds of candidate genes is, however, a difficult task for human ex-
perts. Unsurprisingly many computational approaches have been proposed to
perform this task automatically via statistical and data mining approaches.
While some previous works attempt to identify promising candidate genes
without prior knowledge of any other disease gene, e.g., by matching the
functional annotations of candidate genes to the disease or phenotype under
investigation [Perez-Iratxeta et al., 2002, Turner et al., 2003, Tiffin et al.,
2005], many successful approaches assume that some disease genes are al-
ready known and try to detect candidate genes which share similarities with
known disease genes for the phenotype under investigation [Freudenberg and
Propping, 2002, Aerts et al., 2006, De Bie et al., 2007, Linghu et al., 2009,
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Hwang and Kuang, 2010, Yu et al., 2010] or for related phenotypes [Freuden-
berg and Propping, 2002, Ala et al., 2008, Wu et al., 2008, Köhler et al.,
2008, Vanunu et al., 2010, Hwang and Kuang, 2010]. These methods, which
we review in more detail in Section 4.3 below, vary in the algorithm they
implement and in the data they use to perform gene prioritization. For ex-
ample, Endeavour and related work [Aerts et al., 2006, De Bie et al., 2007,
Yu et al., 2010] use state-of-the-art machine learning techniques to integrate
heterogeneous information and rank the candidate genes by decreasing simi-
larity to known disease genes, while PRINCE [Vanunu et al., 2010] uses label
propagation over a protein-protein interaction (PPI) network and is able to
borrow information from known disease genes of related diseases to find new
disease genes.

Here we propose ProDiGe, a new method for prioritization of disease
genes, with brings several novelties compared to the state-of-the-art:

• Given a list of known disease genes, ProDiGe implements a machine
learning algorithm to rank candidate genes using both the known and
the candidate genes in the model building phase. This differs from ap-
proaches like those of Aerts et al. [2006], De Bie et al. [2007], Yu et al.
[2010] which only use the known disease genes to build the scoring func-
tion, which is then used to rank the candidate genes. In the machine
learning jargon, we formulate the problem as an instance of learning
from positive and unlabeled examples (PU learning) [Liu et al., 2002,
Denis et al., 2005, Mordelet and Vert, 2010], which brings improved per-
formance by exploiting the relative functional similarity of both known
and candidate disease genes.

• ProDiGe borrows information from genes known to play a role in phe-
notypes related to the disease of interest. This again differs from Aerts
et al. [2006], De Bie et al. [2007], Yu et al. [2010], which can only process
diseases one by one. It allows to rank genes even for diseases with no
known gene by relying only on known disease genes of related diseases.
In the machine learning jargon, we implement a multi-task strategy
to share information between different diseases [Evgeniou et al., 2005],
and weight the sharing of information by the phenotypic similarity of
diseases.

• ProDiGe performs heterogeneous data integration to combine a vari-
ety of information about the genes in the scoring function, including
sequence features, expression levels in different conditions, PPI inter-
actions or presence in the scientific literature. We use the powerful
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framework of kernel methods for data integration [Pavlidis et al., 2002,
Schölkopf et al., 2004, Lanckriet et al., 2004a], akin to the work of Aerts
et al. [2006], De Bie et al. [2007], Yu et al. [2010]. This differs from ap-
proaches like that of Vanunu et al. [2010], which are limited to scoring
over a gene or protein network.

We test ProDiGe on real data extracted from the OMIM database [McKu-
sick, 2007]. It is able to rank the correct disease gene in the top 5% of the
candidate genes for 78% of the diseases with at least one other known dis-
ease genes, and for 67% of the diseases when no other disease genes is known,
outperforming state-of-the-art methods like Endeavour and PRINCE.

The chapter is organised as follows. A first Section 4.3 is dedicated to a
more extensive review of related work. In Section 4.4 we describe ProDiGe
and its different variants. Section 4.5 summarizes the data we use, and Sec-
tion 4.6 presents the results of our experiments. We conclude with discussion
in Section 4.7.

4.3 Related work

The problem of disease gene prioritization, or gene hunting, has come into
many different variants. A first series of approaches have been dedicated to
the discovery of disease genes in general, i.e., genes responsible for at least
one disease. Indeed these genes tend to share distinctive sequence features
such as greater length of their amino acid sequence or broader phylogenetic
extent [López-Bigas and Ouzounis, 2004, Calvo et al., 2007, Adie et al., 2005].
These methods, however, are designed to predict disease genes in general, but
can not associate these genes with any particular disease, which is our goal
in this chapter. In order to achieve this goal, many authors exploit the fact
that for many diseases, genetic linkage studies have identified genomic loci
which are highly susceptible to contain one or many of their causal genes
[Vanunu et al., 2010, Ala et al., 2008, Adie et al., 2005, Turner et al., 2003,
Franke et al., 2006, van Driel et al., 2003, Oti et al., 2008, 2006]. Though
still leaving one with hundreds of genes to investigate, the prior knowledge
of these loci greatly alleviates the identification task. A commonly adopted
strategy consists of the two following steps. First, a score is attributed to each
gene reflecting confidence that it is related to some disease. Then, for each
disease, genes within its associated loci are prioritized by decreasing order of
their score. For instance, Turner et al. [2003] proposed POCUS, a method
based on co-occurrence of Gene Ontology (GO) terms in different loci to de-
termine significant enrichment of IDs between loci relative to the genome.
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In a similar spirit, Franke et al. [2006] attribute high scores to those genes
that are functionally close to genes located on different loci (as measured
by the distance on a functional linkage graph). Oti et al. [2008] compute
a score measuring conserved co-expression to rank candidate disease genes.
Nevertheless, such methods are not tailored to more difficult problems. For
instance, it may occur that rare diseases have not yet been the object of any
exhaustive study and that no region of interest is available for them. Besides,
genetic linkage studies are often supported by statistical methods which are
by nature error-prone and might miss positional candidates. In those cases,
one needs a method which is able to scan efficiently the whole genome.

Another major distinction to be made between gene prioritization meth-
ods is whether or not they explicitly use known disease genes as guides to
discover novel ones. Some methods, among which many early works, propose
to infer disease genes de novo, that is, as if no disease gene had yet been dis-
covered. A few methods mentioned above fall into this category [Oti et al.,
2008, Turner et al., 2003, Franke et al., 2006, van Driel et al., 2003], which
also includes the work of Perez-Iratxeta et al. [2002] who use a data min-
ing technique based on fuzzy relation to compute association scores between
a query disease and a gene. However, knowledge about disease genes has
greatly increased recently, and most recent approaches are supervised, in the
sense that they use as prior knowledge a training set of known disease genes.
Candidate genes are then scored according to some similarity measure to
this positive training set. Following this principle, Linghu et al. [2009] build
a functional linkage network and prioritize genes according to their distance
on this graph to training genes for a query disease, whereas Oti et al. [2006]
prioritize interacting partners of known causing genes which are found inside
a mapped loci lacking an identified causal gene.

As can be noticed from the previous paragraphs, methods also vary ac-
cording to the type of information they use to predict disease genes. Most of
the times, the underlying paradigm is that genes involved in a disease share
common patterns at the functional level, which can be measured in several
ways. Some procedures rely on functional annotation data, like GO for in-
stance [Freudenberg and Propping, 2002, Turner et al., 2003, Franke et al.,
2006]. However, it has been argued that such data were incomplete and bi-
ased towards better characterized genes, therefore poorly exploring unknown
parts of the genome. Likewise, microarray expression data, though having
a wider coverage, are prone to noise, which alters their ability to produce
robust predictions. To counter this, other data sources supporting functional
relatedness in a more robust way have been proposed such as protein-protein
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interaction networks [Oti et al., 2006, Vanunu et al., 2010, Köhler et al.,
2008, Wu et al., 2008] and co-expression measures [Oti et al., 2008, Ala et al.,
2008]. Likewise, López-Bigas and Ouzounis [2004] and Adie et al. [2005] use
sequence-based features to characterize disease genes. Nevertheless, using
a single data source might still be unsufficient, which explains why main-
stream research has been redirected towards integrative approaches [Aerts
et al., 2006, Linghu et al., 2009, Hwang and Kuang, 2010]. For instance, the
functional linkage network built by Linghu et al. [2009] incorporates mul-
tiple data sources by means of a naive Bayes classifier. Also, Aerts et al.
[2006] generate several rankings from distinct heterogeneous data sources
and eventually combines them into a single ranking using order statistics.
Then, De Bie et al. [2007], followed by Yu et al. [2010] have developped a
kernel-based approach allowing data fusion. Both use a one-class support
vector machine (SVM) with multiple kernel learning to adjust the impor-
tance weights assigned to each data source in the learning process.

A major drawback of supervised approaches is that they cannot process
diseases for which no causal gene has been discovered yet, which we refer to
as “orphan” diseases. All methods that process diseases individually, trying
to infer new causal genes from a training set of previously identified causal
genes are termed as local approaches in the following. In contrast, we use the
term global approaches to characterize the methods which try to learn causal
genes simultaneously for a given set of diseases, and share disease gene in-
formation across diseases. In practice, this means that the different learning
tasks associated to individual diseases are treated interdependently. To relate
them, a widespread principle is to use a similarity measure between the dif-
ferent diseases. This time, the underlying paradigm goes a little further than
before, stating that similar diseases are caused by similar molecular mech-
anisms and thus by functionally related genes. Freudenberg and Propping
[2002] have pioneered this kind of methods to produce scores of association
for disease/gene pairs, followed later by Ala et al. [2008] and Wu et al. [2008].
Köhler et al. [2008], Vanunu et al. [2010] and Hwang and Kuang [2010] im-
plement a similar principle through label propagation on a graph. The two
former methods use disease similarity to enforce some prior knowledge on a
particular disease and then propagate labels on a PPI network. The latter
have adapted a label propagation algorithm to deal with a heterogeneous
network, whose nodes are diseases and genes.

At last, it is important to observe that from a machine learning point
of view, most of the presented works relate to so-called one-class learning
methods, in the sense that they only use a positive training set of genes
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known to be related to some disease to build a scoring function, which is
then applied on candidate genes to rank them. Since learning what a disease
gene is from just a few examples characterized by many features is difficult
from a statistical point of view, it could be tempting to go beyond this set-
ting and try to learn instead what is different between a disease gene and a
non-disease gene. While many powerful algorithms exist in machine learning
to discriminate between two categories of objects, which could be disease and
non-disease genes in our case, the reason why such methods have not been ap-
plied yet in the context of gene prioritization is the lack of negative examples.
Indeed, it is usually not possible to determine that a gene is not involved in
a particular disease, forcing prioritization algorithms to start from positive
examples only. This issue was pointed out by López-Bigas and Ouzounis
[2004] but not adressed. In this chapter, we put forward that although neg-
ative examples may not be available, the fact that we know in advance the
candidate genes which have to be ranked allows us to exploit them as un-
labeled examples during the learning process, and therefore to express the
gene prioritization problem as a PU learning problem, instead of a one-class
learning problem. The context of PU learning, also called partially supervised
classification [Liu et al., 2002, Calvo et al., 2007], is the following: a “learner”
is given a set of positive examples, defined as a set of data of interest (for
instance, they might share some property or common features) and is asked
to retrieve more of this kind of data from a set of unlabeled examples. Often,
unlabeled data are easily available and numerous, whereas obtaining posi-
tive examples require human intervention or costly experiments, resulting in
relatively small amounts. This information retrieval-like problem arises clas-
sically in areas such as text categorization and web page classification [Liu
et al., 2002, Li and Liu, 2003, Liu et al., 2003, Yu et al., 2004a, Sriphaew
et al., 2009, Pelckmans and Suykens, 2009, Elkan and Noto, 2008, Denis
et al., 2005, Mordelet and Vert, 2010], and has recently been applied to the
problem of predicting gene regulatory networks [Mordelet and Vert, 2008,
2010]. As far as we know, the only previous work which follows a similar
viewpoint in the context of gene hunting is the work of Calvo et al. [2007].
However, their goal was different from ours since they aimed to retrieve dis-
ease genes in general, independently of which disease this might be. In our
setting, we want to be able to relate a gene to the disease it is responsible for.

For a more extensive review of disease gene identificatin methods, we refer
the reader to Tranchevent et al. [2010].
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4.4 Methods

4.4.1 The gene prioritization problem

Let us first formally define the disease gene identification problem we aim to
solve. We start from a list of N human genes G = {G1, . . . , GN}, which typi-
cally can be the full human genome or a subset of interest where disease genes
are suspected. A multitude of data sources to characterize these genes are
given, including for instance expression profiles, functional annotation, se-
quence properties, regulatory information, interactions, literature data, etc...
We assume that for each data source, each gene G ∈ G is represented by a
finite- or infinite-dimensional vector Φ(G), which defines an inner product
K(G, G�) = Φ(G)�Φ(G�) between any two genes G and G�. K is called a
kernel in the machine learning community [Schölkopf and Smola, 2002]. In-
tuitively, K(G, G�) may be thought of as a measure of similarity between
genes G and G� according to the representation defined by Φ. Since sev-
eral representations are available, we assume that L feature vector mappings
Φ1, . . . , ΦL are available, corresponding to L kernels for genes K1, K2, . . . , KL.
Finally, we suppose given a collection of M disorders or disease phenotypes
D = {D1, . . . , DM}. For each disorder Di, the learner is given a set of genes
Pi ⊂ G, which contains known causal genes for this phenotype, and a set
of candidate genes Ui ⊂ G where we want to find new disease genes for Di.
Typically Ui can be the complement set of Pi in G if no further information
about the disease is available, or could be a smaller subset if a short list of
candidate genes is given for the disease Di. For each disease Di, our goal is
to retrieve more causal genes for Di in Ui. In practice, we aim at ranking the
elements of Ui from the most likely disease gene to the less likely, and assess
the quality of a ranking by its capacity to rank the disease genes at or near
the top of the list.

4.4.2 Gene prioritization for a single disease and a sin-

gle data source

Let us first describe our gene prioritization approach ProDiGe for a single
disease (M = 1) and a single data source (L = 1). In that case, we are
given a single list of disease genes P ⊂ G, and must rank the candidate genes
in U ⊂ G using the kernel K. As explained in Section 4.3, most existing
approaches define a scoring function s : U → R, using only positive examples
in P , to quantify how similar a gene G in U is to the known disease genes in
P . Here we propose to learn the scoring function s(.) both from P and U ,
i.e., to formulate the problem as an instance of PU learning.
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Intuitively, the motivation behind PU learning is to exploit the infor-
mation provided by the distribution of unlabeled examples to improve the
scoring function, as illustrated in Figure 4.4.2. Here we initially have a set of
positive examples (genes known to be related to a given disease for instance)
which are represented on the graph by blue crosses, and we want to retrieve
more of them. One-class approaches usually try to estimate the support of
the positive class distribution, which could be in that case delimited by the
dashed line. Now suppose that we additionally observe a set of unlabeled
examples, represented by U letters. Green Us are positive unlabeled and red
ones are negative unlabeled but this information is not available. Then, we
can have the feeling that the boundary should rather be set in the low den-
sity area as represented by the solid line, which better captures reality than
the dashed line. Consequently, using the distribution of U in addition to the
positive examples can help us better characterize the positive examples. This
is particularly true in high dimension with few examples, where density es-
timation from a few positive examples is known to be particularly challenging.
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Figure 4.1: An intuitive example of how the unlabeled examples could be
helpful.

In practice, a possible strategy to solve PU learning problems is to sim-
ply assign negative labels to elements in U , and train a binary classifier to
discriminate P from U , allowing errors in the training labels. Assuming that
the binary classifier assigns a score to each point during training (which is
the case of, e.g., logistic regression or SVM), the score of an element in U
is then just the scored assigned to it by the classifier after training. This
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approach is easy to implement and it has been shown that building a clas-
sifier that discriminates the positive from the unlabeled set is a good proxy
to building a classifier that discriminates the positive from the negative set.
When the binary classifier used is a SVM, this approach leads to the biased
SVM of Liu et al. [2002], which was recently combined with bagging to reach
faster training time and equal performance [Mordelet and Vert, 2010]. In
practice, the biased SVM over-weights positive examples during training to
account for the fact that they represent high-confidence examples whereas the
“negative” examples are to known to contain false negatives, namely, those
we hope to discover. Here we use the variant of Mordelet and Vert [2010],
which adds a bootstrap procedure to biased SVM. The additional bagging-
like feature takes advantage of the contaminated nature of the unlabeled set,
allowing to reach the same performances while increasing both speed and
scalability to large datasets. The algorithm takes as input a positive and
an unlabeled set of examples, and a parameter T specifying the number of
bootstrap iterations. It discriminates the positive set from random subsam-
ples of the unlabeled set and aggregates the successive classifiers into a single
one (bootstrap aggregating). The output is a score function s such that for
any example G, s(G) reflects our confidence that G is a positive example.
We then rank elements in U by decreasing score. For more details on the
method, we refer the reader to Mordelet and Vert [2010].

4.4.3 Gene prioritization for a single disease and mul-

tiple data sources

When several data sources are available to characterize genes, e.g., gene ex-
pression profiles and sequence features, we extend our PU learning method
to learn simultaneously from multiple heterogeneous sources of data through
kernel data fusion [Lanckriet et al., 2004a]. Formally, each data source is
encoded in a kernel function, resulting in L ≥ 1 kernels K1, . . . , KL. We
investigate two strategies to fuse the L data sources:

• First, we simply define a new kernel which integrates the information
contained in all kernels as the mean of the L kernels, i.e., we define:

Kint =
1

L

L�

i=1

Ki . (4.1)

In other words, the kernel similarity Kint(G, G�) between two genes is
defined as the mean similarity between the two genes over the different
data sources. This simple approach is widely used and often leads to
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very good performance with SVM to learn classification models from
heterogeneous information [Pavlidis et al., 2002, Yamanishi et al., 2004,
Bleakley et al., 2007]. In our setting, we simply use the integrated kernel
(4.1) each time a SVM is trained in the PU learning algorithm described
in Section 4.4.2, to estimate a prioritization score from multiple data
sources.

• Alternatively, we test a method for multiple kernel learning (MKL)
proposed by Lanckriet et al. [2004b,a], which amounts to building a
weighted convex combination of kernels of the form

KMKL =
1

L

L�

i=1

βiKi , (4.2)

where the non-negative weights βi are automatically optimized during
the learning phase of a SVM. By weighting differently the various infor-
mation sources, the MKL formulation can potentially discard irrelevant
sources or give more importance to gene characteristics with more pre-
dictive power. Again, combining MKL with our PU learning strategy
described in Section 4.4.2 is straightforward: we simply use the MKL
formulation of SVM instead of the classical SVM each time a SVM is
trained.

4.4.4 Gene prioritization for multiple diseases and mul-

tiple data sources

When multiple diseases are considered, a first option is to treat the diseases
independently from each other, and apply the gene prioritization strategy
presented in Sections 4.4.2 and 4.4.3 to each disease in turn. However, it is
known that disease genes share some common characteristics [López-Bigas
and Ouzounis, 2004, Adie et al., 2005, Calvo et al., 2007], and that simi-
lar diseases are often caused by similar genes [Freudenberg and Propping,
2002, Ala et al., 2008, Wu et al., 2008, Köhler et al., 2008, Vanunu et al.,
2010, Hwang and Kuang, 2010]. This suggests that, instead of treating each
disease separately, it may be beneficial to consider them jointly and share
information of known disease genes across diseases. By mutualizing infor-
mation across diseases, one may in particular attempt to prioritize genes for
orphan diseases, with no known causal gene. This is an important property
since these diseases are obviously those for which predictions are the most
needed.
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We propose to jointly solve the gene prioritization problem for different
diseases by formulating it as a multitask learning problem, and we adapt
the multitask learning strategy of Evgeniou et al. [2005] to our PU learning
framework. In this setting, instead of learning a scoring function over individ-
ual genes G ∈ G to rank them, we learn a scoring function over disease-gene
pairs of the form (D, G) ∈ D × G. Instead of starting from a set of positive
examples P ⊂ G made of known disease genes for a particular disease, we
start from a set of positive pairs

�
Dd(i), Gg(i)

�
i=1,...,T

⊂ D × G obtained by
combining the pairs where gene Gg(i) is known to be a disease gene for dis-
ease Dd(i). T is then the total number of known disease-gene pairs. Given
the training set of disease-gene pairs, we then learn a scoring function s over
D × G using our general PU learning algorithm described in Section 4.4.2,
where the kernel function between two disease-gene pairs (D, G) and (D�, G�)
is of the form:

Kpair

�
(D, G), (D�, G�)

�
= Kdisease(D, D�)×Kgene(G, G�) . (4.3)

In this equation, Kgene is a kernel between genes, typically equal to one
of the kernels described in Sections 4.4.2 and 4.4.3 in the context of gene
prioritization for a single disease. Kdisease is a kernel between diseases, which
allows sharing of information across diseases, as in classical multitask learning
with kernels [Evgeniou et al., 2005, Jacob and Vert, 2008a,b]. More precisely,
we consider the following variants for Kpair, which give rise to various gene
prioritization methods:

• The Dirac kernel is defined as

KDirac(D, D�) =

�
1 if D = D�,

0 otherwise.
(4.4)

Plugging the Dirac kernel into (4.3), we see that the pairwise kernel
between two disease-gene pairs for different diseases is 0. One can then
show that there is no sharing of information across diseases, and that
learning over pairs in this context boils down to treating each disease
independently from the others [Evgeniou et al., 2005, Jacob and Vert,
2008a,b]. This is thus our baseline strategy, which treats each disease
in turn, and does not provide a solution for orphan disease. We call
this method ProDiGe1 below.

• The multitask kernel is defined by

Kmultitask(D, D�) = 1 + KDirac(D, D�) . (4.5)
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This kernel, which was proposed by [Evgeniou et al., 2005], allows a
basic sharing of information across diseases. In addition to the genes
known to be causal for a disease of interest through the Dirac kernel, the
addition of a constant in (4.5) allows all other known disease genes for
other diseases to play the role of positive training examples, although to
a lesser extent than the disease genes for the disease of interest. Here we
do not use any specific knowledge about the different diseases and their
similarity, and simply try to capture properties that may be shared by
disease genes in general. This corresponds to a low information prior
because a disease equally exploits knowledge about all other diseases.
We call this variant ProDiGe2 below.

• The phenotype kernel is an attempt to capture phenotypic similarities
between diseases to control the sharing of information across diseases.
Indeed, many previous works have used as prior knowledge the fact that
similar phenotypes are likely to be caused by similar genes [Freudenberg
and Propping, 2002, Ala et al., 2008, Köhler et al., 2008, Lage et al.,
2007, Wu et al., 2008, Vanunu et al., 2010, Hwang and Kuang, 2010].
This suggests that, instead of sharing information uniformly across dis-
eases as the multitask kernel (4.5) does, it may be beneficial to do it in
a more principled way. In particular, the more similar two diseases are,
the more they should share information. In practice, this is obtained by
defining a kernel Kphenotype between diseases that measures their pheno-
typic similarity, and plugging it into the general pairwise kernel (4.3).
Here we propose to use the phenotypic similarity measure for diseases
based on text mining proposed by van Driel et al. [2006]. Since this
measure is derived as a correlation measure, the matrix whose entries
contain the pairwise similarity measures is eligible for kernel learning.
We call the resulting gene prioritization method ProDiGe3 below.

• The phenotype+Dirac kernel. Finally, we propose a slight variant to
the phenotype kernel by adding to it the Dirac kernel:

KP+D(D, D�) = Kphenotype(D, D�) + KDirac(D, D�) . (4.6)

The motivation for this kernel is that, since the description of disease
phenotypes we use to build Kphenotype is incomplete and does not fully
characterize the disease, it may occur that two different diseases, with
different disease genes, have similar or even identical phenotypic de-
scription. In this case, the addition of the Dirac kernel in (4.6) allows
to still distinguish different diseases, and give more importance to the
genes associated to the disease of interest than to the genes associated
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to different diseases with similar phenotypes. We call ProDiGe4 the
resulting gene prioritization method.

In summary, each of the four kernels for diseases presented above can be
plugged into (4.3) to define a kernel for disease-gene pairs. Then, the PU
learning strategy presented in Section 4.4.2 can be applied to learn a scor-
ing function over D × G. Finally, the ranking of candidate genes in Ui for
a particular disease Di is obtained by decreasing score s(Di, G) for G ∈ Ui.
We thus obtain four variants summarized in Table 4.1. When heterogeneous

Table 4.1: Summary of ProDiGe variants. We propose four variants, which
differ in the way they share information across diseases, as summarized in the
third column of the table. The second column shows the kernel for diseases
used by each variant to achieve the sharing of information. Apart from the
choice of disease kernel, the four variants follow exactly the same procedure
described in Section 4.4.4.

Name Disease kernel Sharing of disease gene information across diseases
ProDiGe1 KDirac No.
ProDiGe2 1 + KDirac Uniform sharing.
ProDiGe3 Kphenotype Weighted by phenotypic similarity.
ProDiGe4 KDirac + Kphenotype Weighted by phenotypic similarity and disease identity.

sources of information for genes are available, the two strategies proposed in
Section 4.4.3 can be easily combined with each of the four ProDiGe variants,
since each particular gene kernel translates into a particular disease-gene ker-
nel through (4.3). In the experiments below, we only implement the MKL
approach for ProDiGe1 to compare it to the mean kernel strategy. For other
variants of ProDiGe, we restrict ourselves to the simplest strategy where the
different information sources are fused through kernel averaging.

In practice, the PU learning strategy that underlies ProDiGe involves a
SVM, which we ran using the libsvm implementation [Chang and Lin, 2001].
After observing in preliminary experiments that the regularization parameter
C of the SVM did not dramatically affect the final performance, we set it
constant to the default value C = 1 for all results shown below. The number
of bootstrap iterations was set to 30.
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4.5 Data

4.5.1 Gene features

The first type of data required by ProDiGe is the description of the set G
of human genes. We used the dataset of De Bie et al. [2007], based on
Ensembl v39 and which contains multiple data sources. We removed genes
whose ID had a “retired” status in Ensembl v59, leaving us with 19540 genes.
These genes are described by microarray expression profiles from Son et al.
[2005] and Su et al. [2002] (MA1, MA2), expressed sequence tag data (EST),
functional annotation (GO) , pathway membership (KEGG), protein-protein
interactions from the Human Protein Reference Database (PPI), transcrip-
tional motifs (MOTIF), protein domain activity from InterPro (IPR) and
literature data (TEXT). For PPI data which consists in a graph of interac-
tions, a diffusion kernel with parameter 1 was computed to obtain a kernel for
genes [Kondor and Lafferty, 2002]. All other data sources provide a vectorial
representation of a gene. The inner product between these vectors defines
the kernel we create from each data source. All kernels are normalized to
unit diagonal to ensure that kernel values are comparable between different
data sources, using the formula:

K̃(G, G�) ← K(G, G�)�
K(G, G)×K(G�, G�)

. (4.7)

4.5.2 Disease features

To define the phenotype kernel between diseases we borrow the phenotypic
similarity measure of van Driel et al. [2006]. The measure they propose
is obtained by automatic text mining. A disease is described in the OMIM
database by a text record [McKusick, 2007]. In particular, its description con-
tains terms from the Mesh (medical subject headings) vocabulary. van Driel
et al. [2006] assess the similarity between two diseases by comparing the Mesh
terms content of their respective record in OMIM. We downloaded the sim-
ilarity matrix for 5080 diseases from the MimMiner webpage at http://www.
cmbi.ru.nl/MimMiner/MimMiner_Exp_AC_T_TXCS_basedonACMESH_filt_RW.

mat.gz.

4.5.3 Disease gene information

We collected disease-gene associations from the OMIM database [McKusick,
2007], downloaded on August 8th, 2010. We obtained 3222 disease-gene
associations involving 2606 disorders and 2182 genes.

http://www.cmbi.ru.nl/MimMiner/MimMiner_Exp_AC_T_TXCS_basedonACMESH_filt_RW.mat.gz
http://www.cmbi.ru.nl/MimMiner/MimMiner_Exp_AC_T_TXCS_basedonACMESH_filt_RW.mat.gz
http://www.cmbi.ru.nl/MimMiner/MimMiner_Exp_AC_T_TXCS_basedonACMESH_filt_RW.mat.gz


94 CHAPTER 4. PRIORITIZATION OF DISEASE GENES

4.6 Results

4.6.1 Experimental setting

We assess the performance of various gene prioritization methods by leave-
one-out cross-validation (LOOCV) on the dataset of known disease-gene asso-
ciation extracted from the OMIM database. Given the list of all disease-gene
associations (Dd(i), Gg(i))i=1,...,T in OMIM, we remove each pair (Dd(i), Gg(i))
in turn from the training set, train the scoring function from the T−1 remain-
ing positive pairs, rank all genes G not associated to Dd(i) in the training set
by decreasing score s(Dd(i), G), and check how well Gg(i) is ranked in the list.
Note that in this setting, we implicitly assume that the candidate genes for a
disease are all genes not known to be associated to the disease, i.e., Ui = G\Pi.
In the LOOCV setting, each time a pair (Dd(i), Gg(i)) is removed from the
training set, the ranking is then performed on Ud(i) ∪ {Gg(i)}. We monitor
the success of the prioritization by the rank of Gg(i) among candidate genes
in Ud(i). Since we are doing a LOOCV procedure, the rank of the left-out
sample is directly related to the classical area under the Receiver Operating
Characteristics curve (AUC), via the formula rank = (|U |+1)× (1−AUC).
Therefore, an easy way to visualize the performance of a gene prioritization
method is to plot the empirical cumulative distribution function (CDF) of
the ranks obtained for all associations in the training set in the LOOCV pro-
cedure. For a given value of the rank k, the CDF at level k is defined as the
proportion of associations Dd(i), Gg(i) for which gene Gg(i) ranked among the
top k in the prioritization list for disease Dd(i), which can also be called the
recall as a function of k.

We compare the proposed ProDiGe methods to two state-of-the-art gene
prioritization methods. First we consider the 1-SVM L2-MKL from Yu et al.
[2010], which extends and outperforms the Endeavour method [Yu et al.,
2010], and which we denote MKL1class below. This method performs one-
class SVM [Schölkopf et al., 2001] while optimizing the linear combination of
gene kernels with a MKL approach in the same time. We downloaded a Mat-
lab implementation of all functions from http://homes.esat.kuleuven.be/

~sistawww/bioi/syu/l2lssvm.html. We used as input the same 9 kernels
as for ProDiGe, and we set the regularization parameter of the algorithm
ν = 0.5, as done by Yu et al. [2010]. Second, we compare ProDiGe to the
PRINCE method introduced by Vanunu et al. [2010], which is designed to
share information across the diseases. Prior information consists in gene la-
bels that are positive for genes known to be related to the query disease and
zeros otherwise. PRINCE propagates these labels on a PPI network and pro-

http://homes.esat.kuleuven.be/~sistawww/bioi/syu/l2lssvm.html
http://homes.esat.kuleuven.be/~sistawww/bioi/syu/l2lssvm.html
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duces gene scores that vary smoothly over the network. We used the same
PPI network for PRINCE as the one used by ProDiGe.

4.6.2 Gene prioritization without sharing of informa-

tion across diseases

We first compare the ability to retrieve disease genes for the three local ap-
proaches which treat the diseases independently from each other, namely,
the MKL1class method of Yu et al. [2010], and ProDiGe1 using either the
mean kernel or the MKL strategy to integrate the 9 gene kernels. To be able
to run a LOOCV procedure, these three algorithm were tested on the 285
diseases in our dataset having at least 2 known disease genes. Indeed, all
three methods require at least one known disease disease gene for training,
and for the purpose of LOOCV, we need in addition one known disease gene
removed from the training set.

Figure 4.2 presents the CDF of the rank of the left-out positive gene, i.e.,
the number of genes that were ranked in the top k genes of the list as a
function of k, for each method. Note that the rank is always between 1 (best
prediction) and 19540−|P |, where |P | is the number of genes known to be as-
sociated to the disease of interest. The right panel zooms on the beginning of
this curve which corresponds to the distribution of small values of the rank.
We see clearly that both ProDiGe variants outperform MKL1class in the
sense that they consistently recover the hidden positive gene at a better rank
in the list. A Wilcoxon signed rank test confirms these visual conclusions at
5% level with P-values 6.1e−29 and 8.8e−28, respectively, for the average and
MKL variants of ProDiGe. This illustrates the benefits of formulating the
gene ranking problem as a PU learning problem, and not as a 1-class learning
one, since apart from this formulation both MKL1Class and ProDiGe1 use
very similar learning engines, based on SVM and MKL.

Both ProDiGe1 variants recover roughly one third of correct gene-disease
associations in the top 20 genes among almost 19540, i.e., in the top 0.1%.
However, we found no significant difference between the mean and MKL
variants of ProDiGe in this setting (P-value=0.619). This means that in this
case, assigning equal weights to all data sources works as well as trying to
optimize these weights by MKL. Supported by this result and by the fact
that MKL is much more time-consuming than a SVM with the mean kernel,
we decided to restrict our experiments to the mean kernel in the following
experiments with other variants of ProDiGe.



96 CHAPTER 4. PRIORITIZATION OF DISEASE GENES

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

 

 

ProDiGe1−Mean
ProDiGe1−MKL
MKL1class

0 2 4 6 8 10 12 14 16 18 20
0.1

0.15

0.2

0.25

0.3

0.35

Rank

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

 

 

ProDiGe1−Mean
ProDiGe1−MKL
MKL1class

(A) (B)

Figure 4.2: Cumulative distribution function of the rank for local methods,
in the LOOCV experiment. ProDiGe1-Mean and ProDiGe1-MKL refer to
the ProDiGe1 variant combined with the mean kernel or the MKL strategy
to fuse heterogeneous gene information. (A) Global curves, (B) Zoom on the
beginning of the curves.

4.6.3 Gene prioritization with information sharing across

diseases

In a second run of experiments, we assess the performance of methods which
share information across diseases, namely, PRINCE and ProDiGe2,3,4. Since
some of these methods require the phenotypic similarity between diseases, we
limit ourselves to the 1873 diseases in the disease-gene association dataset
which were also in the phenotypic similarity matrix from MimMiner. This
corresponds to a total of 2544 associations between these diseases and 1698
genes.

Figure 4.3 shows the CDF curves for the four methods. Comparing areas
under the global curve, i.e., the average rank of the left-out disease gene in
LOOCV, the four methods can be ranked in the following order: ProDiGe4
(1682) > ProDiGe3 (1817) > ProDiGe2 (2246) > PRINCE (3065). The fact
that ProDiGe3 and ProDiGe4 outperform ProDiGe2 confirms the benefits of
exploiting prior knowledge we have about the disease phenotypes to weight
the sharing of information across diseases, instead of following a generic strat-
egy for multitask learning. The fact ProDiGe4 outperforms ProDiGe3 is not
surprising and illustrates the fact that the diseases are not fully character-
ized by the phenotypic description we use. Zooming to the beginning of the
curves (right picture), we see that the relative order between the methods is
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conserved except for PRINCE which outperforms ProDiGe2 in that case. In
fact, ProDiGe2 has a very low performance compared to all other methods
for low ranks, confirming that the generic multitask strategy should not be
pursued in practice if phenotypic information is available.

The fact that ProDiGe3 and ProDiGe4 outperform PRINCE for all rank
values confirm the competitiveness of our approach. On the other hand, the
comparison with PRINCE is not completely fair since ProDiGe exploits a
variety of data sources about the genes, while PRINCE only uses a PPI net-
work. In order to clarify whether the improvement of ProDiGe over PRINCE
is due to a larger amount of data used, to the learning algorithm, or to both,
we ran ProDiGe3 with only the kernel derived from the PPI network which
we call ProDiGe-PPI in Figure 4.3. We see on the left picture that this
variant is overall comparable to PRINCE (no significant difference between
PRINCE and ProDiGe-PPI with a Wilcoxon paired signed rank test), con-
firming that the main benefit of ProDiGe over PRINCE comes from data
integration. Interestingly though, at the beginning of the curve (right pic-
ture), ProDiGe-PPI is far above PRINCE, and even behaves comparably to
the best method ProDiGe4. Since ProDiGe-PPI and PRINCE use exactly
the same input data, this means that the better performance of ProDiGe-PPI
for low ranks comes from the learning method based on PU learning with
SVM, as opposed to label propagation over the PPI network.
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Figure 4.3: Cumulative distribution function of ranks in the LOOCV exper-
iments, for global approaches which share disease gene information across
diseases. ProDiGe2, 3, 4 refer to the three variants of ProDiGe which share
information, while ProDiGe-PPI refers to ProDiGe3 trained only the PPI
network data. (A) Global curve. (B) Zoom on the beginning of the curve.
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Figure 4.4: Comparison of rank measures between different variants of
ProDiGe. Each point represent a disease-gene association. We plot the rank
they obtain from the different methods when they are left out in the LOOCV
procedure. Small rank are therefore better than large ranks.

To better visualize the differences between the different variants of ProDiGe,
the scatter plots in Figure 4.4 compare directly the ranks obtained by the
different variants for each of the 2544 left-out associations. Note that smaller
ranks are better than large ones, since the goal is to be ranked as close as
possible to the top of the list. On the left panel, we compare the Pheno-
type to the Phenotype+Dirac kernel. We see that many points are below
the diagonal, meaning that adding a Dirac kernel to the Phenotype generally
improves the performance as compared to using a Phenotype kernel alone.
On the right panel, the Multitask kernel is compared to the Phenotype ker-
nel. We see that the points are more concentrated above the diagonal, but
with large variability on both sides of the diagonal. This indicates a clear
advantage in favor of the Phenotype kernel compared to the Multitask kernel,
although the differences are quite fluctuant.

4.6.4 Is sharing information across diseases beneficial?

In order to check whether sharing information across diseases is beneficial,
i.e., to compare the local approaches tested in Section 4.6.2 to the global
approaches tested in Section 4.6.3, we restrict ourselves to diseases with phe-
notypic informations in the MimMiner similarity matrix and with at least
two known associated genes in the OMIM database. This way, we are able
to share information across diseases and at the same time, to run methods
that do not share information because we ensure there is at least one train-
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ing gene in LOOCV. This leaves us with 265 diseases, corresponding to 936
associations.

Figure 4.5 shows the CDF curves of the rank for the various methods
on these data, including the two methods MKL1class and ProDiGe1 (with
the mean kernel for data integration), which do not share information across
diseases, and ProDiGe 2, 3, 4 and PRINCE, which do share information.
Interestingly, we observe different retrieval behaviors on these curves, de-
pending on the part of the curve we are interested in. On the one hand, if we
look at the curves globally, ProDiGe 4 and 3 perform very well, having high
area under the CDF curve, i.e., a low average rank (respectively 1529 and
1770). PRINCE and MKL1class have the worse average ranks (respectively
3220 and 3351). A systematic test of differences between the methods, using
a Wilcoxon paired signed rank test over the ranks for each pair of meth-
ods, is summarized in Figure 4.6. In this picture, an arrow indicates that a
method is significantly better than another at level 5%. This confirms that
ProDiGe 4 is the best methods, significantly better than all other ones except
ProDiGe 1. Three variants of ProDiGe are significantly better than PRINCE
and MKL1Class.

On the other hand, in the context of gene prioritization, it is useful to
focus on the beginning of the curve and not on the full CDF curves. Indeed,
only the top of the list is likely to deserve any serious biological investigation.
Therefore we present a zoom of the CDF curve in panel (B) of Figure 4.5. We
see there that the local methods ProDiGe1 and MKL1class present a sharper
increase at the beginning of the curve than the global methods, meaning that
they yield higher concentration of disease genes in low rank values than other
methods. Additionally, we observe that ProDiGe1 is in fact the best method
when we focus on the proportion of disease genes correctly identified in up
to the top 350 among 19540, i.e., in up to the top 1.8% of the list. These
results are further confirmed by the quantitative values in Table 4.2, which
show the recall (i.e., CDF value) as a function of the rank. ProDiGe 1, which
does not share information across diseases, is the best when we only focus at
the very top of the list (up to the top 1.8%), while ProDiGe 4, which shares
information, is then the best method when we go deeper in the list.

At this point it is interesting to question what position in the list we are
interested in. In classical applications where we start from a short list of, say,
100 candidates, then being in the top 5% of the list means that the correct
gene is ranked in the top 5 among the 100 candidates, while the top 1%
corresponds to the first of the list (see the last 3 columns of table 4.2). If we
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Figure 4.5: Cumulative distribution function of ranks for local and multitask
approaches. (A) Global curve. (B) Zoom on the beginning of the curve.

only focus on the first gene of a short list of 100 candidates, then ProDiGe1
is the best method, with almost half of the genes (49.2%) found in the first
position, followed by ProDiGe4 (43.4%) and MKL1class (41.1%). As soon
as we accept to look further than the first place only, ProDiGe 4 is the best
method, with 68.9% of disease genes in the top 5 of a list of 100 candidates,
for example. On the other hand, if we consider a scenario where we start from
no short list of candidates, and directly wish to predict disease genes among
the 19540 human genes, then only the few top genes in the list are interest-
ing (see the first 2 columns of table 4.2). In that case, the methods that do
not share information are clearly preferable, with 27.8% (resp 25.3%) of genes
correctly found in the top 10 among 19540 for ProDiGe 1 (resp. MKL1class).

In summary, sharing information is not beneficial if we are interested only
in the very top of the list, typically the top 10 among 19.450 candidates. This
setting is however very challenging, where even the best method ProDiGe1
only finds 12.3% of all disease genes. As soon as we are interested in more
than the top 2% of the list, which is a reasonable level when we start from a
short list of a few tens or hundreds of candidate genes, sharing information
across diseases becomes interesting. In all cases, some variant of ProDiGe
outperforms existing methods. In particular ProDiGe4, which shares infor-
mation using phenotypic information across diseases while keeping different
diseases distinct, is the best way to share information.
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2033

Figure 4.6: Wilcoxon paired signed rank tests for significant rank differ-
ence between all methods. ProDiGe1 and MKL1class are the only local
approaches, which do not share information across diseases. The number
in each ellipse is the average rank obtained by the method in the LOOCV
procedure. An arrow indicates that a method is significantly better than
another.

top 1 top 10 top 1% top 5% top 10%
MKL1class 11.5 25.3 41.1 52.8 59.9
ProDiGe1 12.3 27.8 49.2 61.9 71.2
ProDiGe2 0.1 0.7 17.8 51.2 66.9
ProDiGe3 1.9 11.4 38.6 64.0 74.2
ProDiGe4 3.1 14.6 43.4 68.9 78.4

PRINCE 1.5 6.8 37.3 57.1 65.4

Table 4.2: Recall of different methods at different rank levels, for diseases
with at least one known disease gene. The recall at rank level k is the
percentage of disease genes that were correctly ranked in the top k candidate
genes in the LOOCV procedure, where the number of candidate genes is near
19540. Top 1 and top 10 (first two columns) correspond respectively to the
recall at the first and first ten genes among 19540, while top X% (last three
columns) refer to the recall at the first X% genes among 19540.
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4.6.5 Predicting causal genes for orphan diseases

Finally, we investigate the capacity of the different gene prioritization meth-
ods to identify disease genes for orphan diseases, i.e., diseases with no known
causative gene yet. ProDiGe1 and MKL1class, which treat diseases indepen-
dently from each other and require known disease genes to find new ones, can
not be used in this setting. Methods that share information across diseases,
i.e., ProDiGe2, 3, 4 and PRINCE, can be tested in this context, since they
may be able to discover causative genes for a given orphan diseases by learn-
ing from causative genes of other diseases. In fact, ProDiGe3 and ProDiGe4
boil down to the same method in this context, because the contribution of
the Dirac kernel in (4.6) vanishes when no known disease gene for a disease
of interest is available during training. We summarize them by the acronym
ProDiGe3-4 below.

To simulate this setting, we start from the 1608 diseases with only one
known disease gene in OMIM and phenotypic information in MimMiner,
resulting in 1608 disease-gene associations involving 1182 genes. For each
disease in turn, the associated gene is removed from the training set, a scoring
function is learned from the associations involving other diseases, and the
removed causal gene is ranked for the disease of interest. We compute the
rank of the true disease gene, and repeat this operation for each disease in
turn. Figure 4.7 and Table 4.3 show the performance of the different gobal
methods in this setting. Interestingly, they are very similar to the results
obtained in the multitask setting (Figure 4.3 and Table 4.2), both in relative
order of the methods and in their absolute performance. Overall, ProDiGe3-
4 performs best, retrieving the true causal gene in the top 10 genes of the list
13.1% of times, and in the top 5% of candidate genes 66.9% of times. This
is only slightly worse than the performance reached for diseases with known
disease genes (respectively 14.6% and 68.9%), highlighting the promising
ability of global approaches to deorphanize diseases.

4.7 Discussion

We have introduced ProDiGe, a new set of methods for disease gene priori-
tization. ProDiGe integrates heterogeneous information about the genes in
a unified PU learning strategy, and is able to share information across dif-
ferent diseases if wanted. We have proposed in particular two flavours for
disease gene ranking: a local (ProDiGe1) and a global (ProDiGe4) approach.
The local approach learns new causal genes for each disease separately, based
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Figure 4.7: Cumulative distribution function of ranks for prioritization of
causal genes for orphan diseases. (A) Global curve. (B) Zoom on the begin-
ning of the curve.

top 1 top 10 top 1% top 5% top 10%
ProDiGe2 0.1 1.4 16.8 50.4 68.1
ProDiGe3-4 1.9 13.1 42.7 66.9 76.1

PRINCE 0.5 4.8 36.9 52.9 60.6

Table 4.3: Recall of different methods at different rank levels, for orphan
diseases. In this case, since the disease has no known causal genes, only
the causal genes of other diseases intervene in the learning, meaning that
ProDiGe3 and 4 are equivalent approaches.

on already known causal genes for each disease, while the global approach
additionally transfers information about known disease genes across differ-
ent diseases, weighting information sharing by disease phenotypic similarity.
We have demonstrated the efficiency of both variants on real data from the
OMIM database where they outperform Endeavour and PRINCE, two state-
of-the-art local and global gene prioritization methods.

A particularity of ProDiGe is the possibility to encode of prior knowl-
edge on disease relatedness through the disease kernel. While a Dirac kernel
prevents sharing of information across diseases, we tested different variants
to share information including a generic multitask kernel and kernels taking
into account the phenotypic similarity between diseases. We demonstrated
the relevance of using the phenotypic similarity, compared to the generic mul-
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titask kernel, and have enhanced it by the addition of a Dirac kernel. Given
the influence of the disease kernel on the final performance of the method,
we believe that there is still much room for improvement in the design of
the prior, using the general ProDiGe framework. We note in particular that
if other descriptors were available for phenotypes, one could also integrate
these data and the prior they induce on task relatedness in the disease kernel.

A important question in practice is to choose an approach between the
local (ProDiGe 1) and global (ProDiGe 4) ones. We have seen that the
former has higher recall in the top 1 or 2% of the list, while the latter is
better after. Hence a first criterion to chose among them is the rank level
that we are ready to investigate. In addition, one could think that the lo-
cal method ProDiGe1, which can not be used for orphan disease, is more
generally handicapped compared to ProDiGe4 when the number of known
disease genes is small, while it is in a better situation when many genes are
already known. Indeed, if enough causal genes are known for a given disease,
there is intuitively no need to borrow information from other diseases, which
may mislead the prediction. This dependency of the relative performance of
a local and a global approach on the number of training samples has previ-
ously been observed in other contexts [Jacob and Vert, 2008b] where a global
approach was shown to bring tangible improvements over a local one when
the number of positive examples was low. We have however checked for the
presence of such an effect, and found that it could not be brought to light, as
illustrated in Figure 4.7 which plots the mean and standard deviation of the
rank of the left-out gene in LOOCV as a function of the number of known
genes of the disease during training. We observe no trend indicating that the
performance increases with the number of training genes, and no different
behaviour between the local and multitask approaches, as long as at least
one disease gene is known. This surprising finding, which is coherent with
the observation there was no big difference in performance for orphan and
non-orphan diseases, suggests that the number of known disease genes in
not a relevant criterion to choose between the local and multitask version of
ProDiGe. Instead, we suggest in practice to use the local version ProDiGe
1 if we are interested only in genes ranked in the very top of the candidate
gene lists (below the top 1%), and ProDiGe 4 as soon as we can afford going
deeper in the list.

Finally, except for the work of Calvo et al. [2007], the PU learning point of
view on this long-studied gene prioritization problem is novel. Classical one-
class approaches which learn a scoring function to rank candidate genes using
known disease genes only are prone to over-fitting in large dimensions when
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Figure 4.8: Effect of the number of related genes on the performance.

the training set if small, which results in poor performance. We observed
that our PU learning strategy, augmented by a multitask point of view to
share information across diseases, was useful to obtain better results in the
disease gene identification task. In fact, learning from positive and unlabeled
examples is a common situation in bioinformatics, and PU learning methods
combined or not with multitask kernels have a good potential for solving
many problems such as pathway completion, prioritization of cancer patients
with a higher risk of relapse, or prediction of protein-protein or protein-ligand
interactions.
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Conclusion

In this thesis, we have highlighted the ubiquity of the problem of learning
from positive and unlabeled examples in many research fields and in par-
ticular in biology. The main message is that using the unlabeled data and
hence carrying out PU learning methods helps to reach better performances
as compared to one-class methods which use positive examples only. Chapter
2 provided a comprehensive analysis of PU learning techniques. Besides, it
presented a new PU learning algorithm which extends the state-of-the- art
biasedSVM. Extensive experiments on a benchmark dataset have assessed its
relevance to the PU learning problem and have provided a thorough analy-
sis of its behavior in response to various parameters. The efficiency of PU
learning was then demonstrated on two real problems. Chapter 3 dealt with
the inference of regulatory networks while chapter 4 attacked the problem
of identifying disease genes. In the former, treating unlabeled examples as
negative examples, we were able to retrieve regulatory interactions with a
high precision and recall. In the latter, the previously introduced algorithm
was put into practice and was shown to outperform existing approaches for
the prioritization of disease genes.

Concerning PU learning as a discipline, it is striking that the most suc-
cessful techniques of the field generally amount to discriminating directly the
positive set of examples against the unlabeled set. This approach might seem
very simplistic at first sight and a natural idea, when no negative examples
are available is indeed to try to identify some before applying a classical
supervised method. There are many caveats to this approach. First, the
identified set might not be exactly reliable resulting in a quick propagation
of errors. Then, it might not be stable in the sense that a different training
set would not yield the same set, which in turn would result in a highly unsta-
ble classifier. And last, another possibility is that the reliable set consists in
negative examples that are too easily identified, therefore bringing little addi-
tional information. That probably explains why the many heuristic methods
which rely on the identification of a set of reliable negative examples turn out
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to be less accurate and very sensitive to the prior identification step. Overall,
I have the feeling that the huge amounts of unlabeled data available in many
situations are still under-exploited and that PU learning remains an imma-
ture area of machine learning research. As for our own contribution to this
field, in chapter 2, we have introduced the baggingSVM. The main feature of
this algorithm was the addition of a bagging-like procedure. Bagging a SVM
classifier, and more generally a linear classifier, is known to be useless, not
to say detrimental. However, our hope was that, due to the contaminated
nature of the unlabeled set (which contains hidden positive examples), the
increased variability of classifiers trained on bootstrapped subsamples would
still enhance the performance of the biasedSVM. The experiments were not
able to confirm this since the performance of both methods was found to
be identical. However, the conclusion was that our algorithm presents clear
advantages in terms of scalability and speed over the biasedSVM, while per-
forming equivalently. Therefore, I believe that even though it did not have
the expected effect, the heuristic justification we have brought is still valid
to explain the good properties of the baggingSVM. An interesting practical
consequence is that the PU learning setting allows an SVM on a very large
number of points to be replaced by a reasonable number of SVMs on much
smaller sets of points. However, this is solely supported by our intuition and
empirical facts and it cruelly lacks proper theoretical grounds. Note that
the bagging was justified in terms of classification error, whereas we would
like to build a justification in terms of prioritization instead. Technically,
the difficulty lies in the quantification the instability of the SVM score func-
tion and the establishment of a relationship to a theoretical measure of the
prioritization performance (like the probability of correctly ranking a pair
of examples, one of which has a positive label while the other is a negative
example).

Chapter 3 introduced SIRENE, a new algorithm for the inference of reg-
ulatory networks. SIRENE decomposes the problem into a series of sub-
problems where the goal is to learn the regulated genes of a given TF. To do
so, we proposed to discriminate the positive set of known targets against a
subset of unlabeled examples. The inherent principle was that targets of the
same TF must behave similarly. Of course, this a simple model of reality and
one might argue for instance that inhibited targets obviously behave differ-
ently from activated targets. Therefore, if SIRENE is useful to discover the
“big picture”, the model needs further refinement to unravel more complex
types of interactions. Likewise, people are often interested in discovering
synergistic effects of a set of TFs and the nature of these effects. Another
possible improvement direction is to extend SIRENE to make it able to pre-
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dict targets for orphan TF. A straightforward way to do that is to resort
to a multitask approach, very close to that we developped in chapter 4 for
gene ranking. As it is, SIRENE does not exploit the data describing the TFs
themselves. From these data, we could imagine building a similarity score (a
kernel) between for TFs, such that similar TFs have similar targets. However,
the TF kernel should be designed carefully so that it encodes a biologically
meaningful prior on the information shared by two TFs. Incorporating prior
knowledge is indeed a powerful idea but as we have shown in chapter 4, not
all priors are actually efficient. For the disease identification problem though,
we were able to improve performance by a slight modification of the disease
kernel. This suggests that there might still be room for improvement in this
direction. Furthermore, a current trend in the field of disease gene ranking is
to try and find complexes of proteins or pathways involved the development
of a disease rather than isolated genes [Lage et al., 2007, Vanunu et al., 2010].
This is an issue we are currently not able not adress with ProDiGe.

At last remark I would make is that the work of this thesis was largely
motivated by the fact that it could help guide future experimental studies.
Indeed, one could question the relevance of this work (and of many others),
since it remains very focused on methodology and has not yet been subjected
to any experimental validation. In a general perspective, the work of statisti-
cians and machine learners might seem far too disconnected from reality and
one could cast serious doubts on the practical utility of this type of research.
In my opinion though, a first requirement before submitting any result to a
biologist for further validation is to ensure that this is a high-confidence re-
sult. That is why I am convinced that the work of bionformaticians is useful,
that it is worth spending time and efforts on methodology, yet keeping in
mind the finality of this research.
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Méthodes d’apprentissage statistique à partir d’exemples positifs et
indéterminés en biologie

Résumé : En biologie, il arrive que les techniques de laboratoire soient inadaptées à la complexité
du problème traité, pour des problèmes de temps et de coût. En parallèle, les biotechnologies per-
mettent à présent de produire des données caractérisant une cellule à l’échelle du génome et sont
porteuses d’espoir pour la compréhension de problèmes biologiques complexes, tels que l’identifica-
tion d’interactions de régulation transcriptionnelle ou encore de gènes responsables du développe-
ment d’une maladie génétique. Dans les deux cas, le but est de prioriser une longue liste de gènes
à tester expérimentalement pour dégager les candidats les plus prometteurs. Pour cela, on dispose
d’un petit nombre d’exemples positifs (des interactions ou gènes de maladie identifiés) ainsi que de
nombreux exemples indéterminés. Ce type de problème a été étudié en soi dans le domaine de l’ap-
prentissage statistique. L’objet de cette thèse est l’étude de ces méthodes et leur application à des
problèmes biologiques.
Mots clés : Apprentissage statistique, Exemples positifs et indéterminés, Réseaux de régulation
transcriptionnelle, Gènes de maladies

Learning from positive and unlabeled examples in biology

Abstract: In biology laboratory techniques may be unsuitable to the complexity of the problem at
hand due to cost issues. In parallel, biotechnologies now allow to generate high-throughput data which
characterize a cell at the genome-scale, raising great expectations as for tackling complex biological
problems such as transcriptional regulatory interaction inference and the identification of genes whose
disruption triggers some genetically inherited disease. In both cases the goal is to prioritize a list of
thousands of genes to determine the best candidates for further experimental study. In both cases
positive examples exists in small amounts (confirmed interactions or identified disease genes) while
there are plenty of unlabeled examples. The problem of learning from positive and unlabeled examples
has been studied in itself in machine learning. The subject of this thesis is the study of such methods
and their application to biological problems.
Keywords: Machine learning, Positive and unlabeled examples, Transcriptional regulatory net-
works, Disease genes


