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Résumé étendu en français

1 Introduction

1.1 Télédétection des milieux urbains

Les dernières années ont permis de constater qu'avec la très grande avancée des tech-
niques de télédétection, les informations disponibles sont beaucoup plus riches et l'analyse
des milieux urbains peut désormais se faire à une échelle beaucoup plus �ne. Des images
satellites à une résolution proche de 10 cm sont disponibles. Les derniers capteurs hyper-
spectraux peuvent acquérir plusieurs centaines de bandes spectrales en même temps à des
résolutions là aussi de plus en �ne. Les Radars à Synthèse d'Ouverture sont eux très prisés
en situations d'urgences ou quand une forte répétitivité est souhaitée. Le traitement de
ces données a permis l'émergence d'un très grande nombre d'applications pour la généra-
tion de bases de données et en conséquence la cartographie automatique des paysages. En
fonction des données utilisées, les bases de données ne sont pas à la même échelle et n'ont
pas la même �nalité : détection de changements, gestion des risques naturels, tourisme,
navigation etc.

Dans un tel contexte, les systèmes laser aéroporté topographiques (ou lidar) présentent
de nombreux avantages. Il s'agit d'une technologie active fournissant directement l'infor-
mation de distance entre le capteurs et les cibles atteintes. Cette information est ensuite
géoréférencée et toutes les mesures successives fournissent au �nal un nuage de points en
trois dimensions. Ces nuages sont reconnus pour leur très grande précision altimétrique
(<0,1 m), même s'ils échantillonnent la surface terrestre de manière plus irrégulière que
les capteurs image. De plus, en fonction de la géométrie des objets illuminés par le fais-
ceau laser, plusieurs rétrodi�usions peuvent être enregistrés pour une seule impulsion laser
(par exemple, la canopée des arbres et le terrain sous-jacent). On parle de systèmes lidar
multi-échos. Cette capacité a permis leur rapide adoption, dès les années 1990, pour l'é-
tude des milieux forestiers, puis pour des cas plus spéci�que comme la détection de ponts
ou de lignes à haute tension. Les données lidar sont également très prisées dans toutes
les applications nécessitant une représentation 3D de grande qualité altimétrique des sur-
faces acquises : reconstruction 3D de villes, Modèles Numériques de Terrain (MNT) ou
de Surface (MNS) pour, par exemple, la gestion des zones à enjeux, la métrologie, ou les
applications patrimoniales.
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1.2 L'avènement du lidar aéroporté à retour d'onde complète

Les systèmes lidar traditionnels ne fournissent qu'une simple représentation géométrique
des scènes sous forme de coordonnées tri-dimensionnelles. Les systèmes nommés à retour
d'onde complète ont émergé il y a vingt ans environ et sont devenus très populaires les
cinq dernières années avec l'apparition des systèmes topographiques commerciaux. Ces cap-
teurs permettent d'enregistrer des signaux rétrodi�usés par chaque impulsion laser émise.
Ces signaux sont appelés "ondes" (waveform) et sont numérisés à fréquence constante. Une
telle séquence représente donc l'avancée de l'impulsion laser interagissant avec les surfaces
ré�échissantes. On nomme alors "onde complète" (OC) chacun de ces ensembles quanti�és
de données d'amplitude rétrodi�usée. La forme de ces ondes varie en fonction des objets
atteints : cette variation est due à la fois à leurs propriétés géométriques et radiométriques.
En conséquence, les données à retour d'onde complète (ROC) apportent des informations
supplémentaires par rapport aux données multi-échos classiques. En lieu et place de nuages
de points 3D faiblement structurés, les systèmes ROC fournissent une succession de pro-
�ls 1D des scènes 3D, apportant des connaissances physiques additionnelles sur les objets
atteints par le faisceau laser.

L'enregistrement de ces ondes permet leur analyse a posteriori de la phase d'acquisi-
tion, et donc le développement de traitements plus avancés que ceux implémentés dans
les logiciels embarqués avec le capteur. Dans un premier temps, la détection des maxima
d'amplitude dans les ondes, que l'on appelle échos, qui deviendront des points 3D après
géoréférencement, peut être améliorée (nombre et position), en particulier en cas de struc-
tures complexes (végétation), mais également quali�ée. Dans un second temps, la forme
des ondes, non disponible auparavant, peut être analysée pour retrouver des informations
sur les propriétés physiques sur les objets atteints.

Les premiers systèmes ont été conçus pour des applications bathymétriques, puis, sous
l'impulsion de la NASA, des systèmes topographiques expérimentaux, souvent satellitaires,
ont vu le jour. Ils ont démontré la pertinence de l'enregistrement des ondes complètes
pour caractériser les zones de végétation tropicales. Puis, en 2004 est apparu le système
commercial petite empreinte (tâche au sol du faisceau laser inférieure à 1 m) LiteMapper
5600, développé sans application particulière. De nombreux travaux ont alors été initiés
sur ce type de données, soit en zones forestières soit en zones urbaines, et se sont accrus les
trois dernières années avec l'augmentation du nombreux de systèmes commerciaux ayant
cette capacité de numérisation. L'intérêt de ce type de données est désormais démontré.
Certains travaux de thèse récents ont développé des méthodes de traitements originales
[Jut07; Lin09; Rei10], mais la contribution spéci�que des donnés ROC pour la cartographie
automatique des milieux urbains a été peu investigée jusqu'à maintenant.

1.3 Objectifs et limitations de la thèse

L'Institut Géographique National (IGN) a pour vocation de développer et d'entretenir
le Référentiel à Grande Echelle (RGE), et parmi ses objectifs, se trouve la production, la
mise à jour et l'enrichissement de la composition topographique du RGE (BD TOPO R©).
Dans ce contexte opérationnelle de cartographie à échelle nationale, l'IGN a acquis en 2007
un système lidar aéroporté à retour d'onde complète (Optech 3100). Le premier objectif
est d'améliorer la qualité des MNT sur les zones à enjeux (inondations etc.) et de forêts,
avec des précisions altimétrique et planimétrique supérieures à respectivement 0,3m et 1m.
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Pour cela, une chaîne de production fondée sur le simple nuage de points 3D a été mise en
place, et il a été démontré que des acquisitions avec de faibles densités de points (∼ 2-3
points/m2 par bande) sont su�santes pour atteindre les qualités souhaitées

L'émergence des systèmes ROC a soulevé beaucoup de questions quant à leurs potentiel
réel pour la cartographique à la fois urbaine et rurale. Que faire des informations physiques
désormais disponibles en supplément des informations géométriques traditionnelles ?
L'objectif de la thèse est donc d'évaluer la contribution des données lidar à retour d'onde
complète petite empreinte en zones urbaines. Cette tâche sera menée dans le cadre de
la classi�cation des zones d'occupation du sol, étape préliminaire à grands nombres de
méthodes pour constituer, mettre à jour, quali�er et enrichir les bases de données to-
pographiques. Une analyse similaire a été mené en parallèle de ce travail pour les zones de
forêt.
Le processus mis en place doit prendre en entrée les signaux 1D lidar bruts (avec toutes les
métadonnées nécessaires pour ensuite les géoréférencer), les traiter pour générer un nuage
de points 3D, et en�n classer ce dernier en se servant des informations supplémentaires
extraites durant l'étape de traitement du signal.

Puisque la problématique porte sur l'analyse des milieux urbains avec des données haute
résolution, les ondes issus des systèmes petite empreinte seront utilisées. Cela signi�e que
la tâche au sol du faisceau laser est inférieure à 1 m, c'est-à-dire inférieure à la taille
des objets d'intérêt (sauf pour la végétation). En conséquence, chaque écho de chaque
onde correspond à une cible spéci�que et son analyse morphologique peut donc apporter
des informations physiques propres à cette dernière. Par ailleurs, notre problématique de
travail porte uniquement sur la contribution des ROC vis-à-vis des données lidar multi-
échos. Nous ne l'évaluerons pas par rapport à des données images, par exemple multi-
ou hyper-spectrales, comme on pourrait légitimement s'y attendre dans un contexte de
caractérisation de l'occupation du sol.
Trois classes d'intérêt ont été choisies : sol, bâtiment et végétation. La classe "sol" regroupe
tous les types de sol ainsi que les objets du bas-sursol (i.e., légèrement au-dessus du sol, par
exemple, les voitures, les poteaux). La classe "végétation" comprend elle les arbres ainsi
que la basse-végétation, comme les haies. Nous avons décidé de ne pas abordé le problème
de discrimination des espèces d'arbres, des matériaux de toits et des types de surfaces
de sol. En e�et, nous pensons que la première est principalement fondée sur l'analyse
de la répartition des points 3D (et donc non spéci�que onde complète). A l'inverse, les
deux derniers problèmes sont di�cilement abordables avec la simple connaissance de la
géométrie 3D et donc toute comparaison s'avèrerait fallacieuse.

L'objectif �nal de la thèse est la classi�cation du nuage de points 3D issu des ondes
lidar. Un grand nombre d'autres sujets d'intérêts relatifs aux données ROC ont donc été
volontairement laissés de côté. Il s'agit de :

� la classi�cation directe des signaux 1D, sans décomposition sous forme d'échos ;
� la simulation d'ondes lidar, dans un objectif d'analyse/synthèse, pour améliorer la
compréhension de l'in�uence des propriétés physiques des objets ;

� la reconnaissance de forme sur les nuages 3D générés ou sur les données OC brutes
(volume spatio-temporel), trop redondant avec la chaîne de reconstruction 3D semi-
automatique de bâtiments déjà mise en place à l'IGN.
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Fig. 1 � Vue globale de l'approche retenue.
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1.4 Stratégie adoptée

La stratégie retenue est donc composée de deux étapes principales, se suivant :

1. Décomposition et modélisation des ondes. La décomposition consiste à détecter
pour chaque onde la position des maxima d'amplitude, chaque maximum (écho) cor-
respondant à la rétrodi�usion d'un objet spéci�que. L'étape de modélisation vise
elle à caractériser la forme de chaque écho via l'estimation des paramètres d'une
fonction analytique, ces paramètres étant ensuite introduits lors de l'étape de classi-
�cation.
Une première stratégie cherche à accomplir ces deux tâches successivement, une fonc-
tion modèle unique étant sélectionnée. Dans un second temps, une approche stochas-
tique, fondé sur un processus ponctuel marqué, ne se limitant plus à un unique
modèle, est mise en place : on cherche la meilleure fonction analytique dans une
grammaire donnée.

2. Classi�cation. Après géoréférencement des échos extraits, nous sommes en possession
d'un nuage de points 3D avec des attributs morphologiques. Ces attributs sont fu-
sionnés avec des attributs spatiaux (calculés sur la simple analyse géométrique locale
autour de chaque point laser) et sont introduits dans un classi�eur supervisé par Sé-
parateurs à Vaste Marge (SVM). A�n de sélectionner les attributs les plus pertinents,
mais également pour évaluer la contribution des caractéristiques morphologiques des
échos vis à vis de celles spatiales, une étape de sélection d'attributs est ajoutée en
amont de celle de classi�cation.

2 Le lidar topographique à retour d'onde complète

2.1 Motivation, principes et connaissances actuelles

En cas d'unique objet atteint par le faisceau laser, un capteur enregistrent un unique
retour est su�sant. Cependant, même pour de petites empreintes au sol (de 0,2 à 2 m),
plusieurs cibles peuvent être atteintes. Cela a motivé le développement de capteurs multi-
échos, capables désormais d'enregistrer jusqu'à six retours pour une unique impulsion
(zones de végétation par exemple). Pour ce type de capteur, la détection des échos (ie
le passage d'un signal quanti�é à un ensemble discret de valeurs de distance) s'e�ectue
lors de l'acquisition par un algorithme temps-réel embarqué avec le système. De tels al-
gorithmes sont inconnus pour les utilisateurs �naux, et en particulier leurs performances
qui peuvent être critiques en cas de paysages complexes. Les inconvénients suivant ont
été relevés : 1/ mauvaise estimation de la position des échos (et donc dégradation de la
qualité altimétrique des points lidar, pouvant aller jusqu'à 0,3 m) ; 2/ omission d'échos
dans les ondes (car les systèmes multi-échos sont limités en nombre d'échos par onde) ; 3/
non détection du deuxième écho en cas de superposition ; 4/ non détection des échos de
faible amplitude (car les systèmes sont réglés pour détecter au dessus d'un certain seuil
prédé�ni). Ces raisons ont motivés le développement des capteurs ROC, avec l'ajout d'un
numériseur et de capacité de stockage supplémentaire.

Ils sont apparus très récemment (2004), après des phases opérationnelles en contexte
bathymétrique (années 80 et 90) puis expérimentale en contexte topographique pour l'-
analyse des zones d'occupation du sol et des forêts (dès 1994). Les données résultant de ces
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(a) Orthoimage c©IGN.

(b) Volume brut de données onde complète.

(c) Nuage de points 3D estimé (altitude). (d) Nuage de points 3D estimé (amplitude).

(e) Classi�cation : Bâtiment � Végétation � Sol.

Fig. 2 � (a) Illustration de la stratégie mise en place sur une zone d'intérêt. (b) Données
d'entrée : signaux 1D, ici géoréférencés et où chaque échantillon de chaque onde est colorié
selon son amplitude. (c) Ces signaux sont décomposés en échos, ce qui permet de générer
un nuage de points 3D. (d) Ces échos sont ajustés avec une fonction modèle, fournissant
des attributs de forme. (e) Ces attributs sont regroupés avec des attributs spatiaux puis
sont introduits dans un classi�eur supervisée SVM.
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capteurs sont donc également très nouvelles et peu maîtrisées. La forme des ondes dépend
à la fois des paysages survolés mais également des spéci�cations d'acquisition : plus le fais-
ceau est divergent, plus on augmente la probabilité d'atteindre un grand nombre d'objets.

L'enregistrement des ondes lidar se fait avec un échantillonnage toutes les nanosecondes.
Il débute dès que le signal rétrodi�usé dépasse un seuil prédé�ni, au-delà d'une distance
données (par exemple 100 m), et est limité en nombre d'échantillons (souvent entre 50 et
80). Si toutefois, à la �n d'une séquence, l'amplitude du signal est encore supérieure à
un seuil prédé�ni, une nouvelle séquence, toujours de taille �xe, peut être enregistrée. Les
numériseurs onde complète n'enregistrent toutefois pas mieux les signaux de faible ampli-
tude et donc, en cas de faible rapport Signal à Bruit et de con�gurations défavorables (fort
angle d'incidence couplé à une forte pente de la cible atteinte), des ondes retour peuvent
ne pas être enregistrées. En�n, les signaux émis, appelés T0, ou du moins une proportion
non connue, sont enregistrés pour chaque impulsion. Ils sont nécessaires pour connaître
exactement le temps d'aller-retour du faisceau laser et pour mener à bien l'étape de cor-
rection des valeurs estimées d'amplitude et de largeur des échos.
Une telle numérisation présente de nombreux avantages, souvent liés à la possibilité de
pouvoir, a posteriori de l'acquisition, traiter les signaux lidar. Un certain nombre d'in-
convénients existent également : l'enregistrement des signaux entraîne une baisse de la
cadence de tir, les volumes de données enregistrés sont beaucoup plus important (entre
cinq et dix fois), et en�n, il n'existe pas à l'heure actuelle de solution logicielle permettant
à un utilisateur �nal de gérer, visualiser et traiter les ondes lidar.

2.2 Traitements des ondes lidar

À l'heure actuelle, le traitement des ondes lidar consiste principalement en l'extrac-
tion (1) d'échos, qui géoréférencés donneront des points 3D, et (2) de paramètres mor-
phologiques de ces échos qui serviront à l'étape de classi�cation. Une partie de la littéra-
ture met donc l'accent sur des méthodes de détections d'échos avancées (pour trouver les
d'échos de faible amplitude ou se recouvrant ainsi que pour estimer très �nement la dis-
tance cible-capteur). Une autre partie se focalise sur la modélisation des échos par des
fonctions paramétriques simples. L'hypothèse communément adoptée est qu'une onde est
un mélange de fonctions gaussiennes. A l'étape de détection des échos succède donc une
étape d'estimation des paramètres de la gaussienne (amplitude et largeur), e�ectuée soit
par Moindres Carrés non linéaires, soit par Expectation-Maximization.
La connaissance des ondes émises permet elle deux types de traitements. En amont de la
modélisation, certains auteurs e�ectuent une étape de déconvolution a�n d'éliminer l'in�u-
ence de la forme des ondes émises sur l'onde retour. Cette étape est d'autant plus nécessaire
que la forme d'onde émise est spéci�que (c'est-à-dire fortement asymétrique à droite). En
aval, en modélisation également l'onde émise par une gaussienne, il est possible de nor-
maliser les amplitudes et largeurs estimées par écho de celle de l'onde émise. L'objectif est
là d'obtenir des valeurs homogènes entre zones d'acquisition et au sein même d'une acqui-
sition. Il a été en e�et noté qu'au cours du temps les pics émis ont tendance à s'élargir et
à diminuer d'amplitude.
Plus de détails sur les traitements des ondes peuvent être trouvés dans [MB07].
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2.3 Applications

Les applications fondées sur les données lidar ROC sont de deux types : celles qui
utilisent le nuage de points 3D avec attributs de forme (amplitude+largeur) obtenu par
modélisation, et celles qui utilisent directement les signaux 1D géoréférencés en trois di-
mensions. On renvoie là aussi le lecteur vers [MB07] pour de plus amples détails.
Les applications fondées "nuage de points 3D" concernent la classi�cation des zones d'oc-
cupation du sol, l'étape de �ltrage préalable à la génération de Modèles Numériques de
Terrain, l'estimation des paramètres forestiers, la détection et la classi�cation des arbres
à la fois en milieux naturels et urbains. Les paramètres forestiers (hauteurs d'arbres etc.)
sont estimés de manière plus �able grâce à un plus grande nombre de points 3D détectés
et à une meilleure qualité de détection. Les classi�cations en zones naturelles et urbaines
tirent elles parti des attributs de forme pour segmenter un plus grand nombre de classes
(surfaces de sol par exemple) ou pour améliorer les méthodes existantes (en particulier la
détection de la végétation). Le �ltrage des nuages de points et la classi�cation des arbres
béné�cient à la fois du plus grand nombre de points 3D détectés et des attributs de forme
estimés. Ainsi, la largeur des échos est un indice fondamental pour discriminer les points
3D appartenant au sol de ceux situés sur des buissons bas dans le cadre de la génération de
MNT. Les points 3D supplémentaires se situant eux souvent dans la canopée des arbres,
ils permettent une meilleure description de la forme des arbres pour leur classi�cation.
Les applications fondées "signaux 1D" sont de deux types. En milieux urbains, l'analyse
d'ondes successives permet un traitement spatio-temporel du volume de données. Des im-
ages spatio-temporelles sont ainsi générées à plusieurs intervalles de distance. Les lignes dé-
tectées dans chacune des images sont ensuite accumulées en 3D pour retrouver des pans de
toits complets. En zones de végétation, dans une approche analyse/synthèse, les paramètres
forestiers sont estimés en comparant des ondes lidar réelles (souvent moyenne empreinte
10-25 m) à celles simulées à partir de modèles de forêts. Une étape d'inversion du modèle
de transfert radiatif utilisé, plus ou moins complexe, est e�ectuée pour cela.

3 Données

Deux jeux de données sont disponibles pour notre étude. Comme annoncé en introduc-
tion, nous travaillerons avec des données issues de capteurs lidar à petite empreinte, i.e.,
telles que les faisceaux laser ont une tâche au sol inférieure à 1m. Le premier jeu correspond
à une unique bande laser acquise sur la ville de Biberach (Allemagne) avec le capteur Riegl
LMS-Q560. La densité de points est proche de 5 points/m2. Le deuxième jeu de données
a été acquis sur la ville d'Amiens (France) avec le système Optech 3100 EA : 11 bandes
laser avec une densité de 2 points/m2 couvrent des zones urbaines plus ou moins denses.
Toutefois, les données seront traitées bandes par bandes, sans béné�cier du recouvrement
entre elles.
Le tableau 1 récapitule les principales spéci�cations des deux zones test.

4 Traitement et modélisation des ondes lidar

L'extraction de points 3D à partir d'ondes lidar passe nécessairement par une étape
de traitement du signal, désormais laissée à l'utilisateur �nal des données. La détection
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`````````````̀Métadonnées
Zone

Biberach Amiens

Date Septembre 2006 Février 2008
Capteur Riegl LMS-Q560 Optech 3100 EA

Surface (km2) 1.1 20
Nombre de bandes 1 11
Nombre d'ondes 2 342.103 70 135.103

Hauteur de vol (m) 500 1000
Empreinte au sol (m) 0,25 0,8

Fréquence d'acquisition (kHz) 100 100
Largeur de l'impulsion laser (ns) 4 4
Echantillonnage des ondes (ns) 1 1
Densité d'impulsions (/m2) 5 2
Projection cartographique Gauss-Krueger Germany 9o Lambert 93

Tab. 1 � Spéci�cations des deux jeux de données

(a) Orthoimage sur la zone de Biberach.

(b) Orthoimage et nuage de points 3D, colorié selon l'altitude des points sur la zone encadrée
en rouge.

Fig. 3 � Jeu de données sur Biberach.
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(a) Trajectoire de l'avion sur dix bandes laser acquises sur Amiens (Scan25 c©IGN)

(b) Orthoimage c©IGN et nuage de points 3D sur le centre-ville d'Amiens.

Fig. 4 � Jeu de données sur Amiens.
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des maxima d'amplitude, que l'on appelle échos, dans chacune des ondes su�t à obtenir
l'information de distance entre le capteur et les cibles et donc à générer un nuage de points
3D. Toutefois, dans notre objectif de classi�cation de ce nuage, on cherche à confronter
informations issues des ondes complètes et informations calculables uniquement à partir
d'un nuage de points multi-échos standard. L'objectif de détection des échos se double de
l'objectif de modélisation de ces derniers. La modélisation consiste à estimer la forme de
chacun des échos via les paramètres d'une fonction analytique. Ces paramètres sont ensuite
introduits dans l'étape de classi�cation et de sélection d'attributs.
Les étapes de détection d'échos et de modélisation peuvent être menées conjointement ou
séparément. Un grand nombre de méthodes de traitement du signal abordant le problème
de mélange �ni de modèles peuvent être adaptés à notre contexte, et deux approches
distinctes sont proposées dans cette thèse. La première part de l'hypothèse communément
admise dans la littérature lidar à retour d'onde complète que les échos des ondes sont
bien modélisés par une fonction Gaussienne. La seconde considère que la reconstruction
des signaux avec une unique fonction modèle symétrique n'est pas su�sante et on propose
alors d'utiliser un processus ponctuel marqué pour ajuster les les échos des ondes lidar avec
la meilleure fonction paramétrique prise dans une grammaire de modèles.

4.1 Décomposition et modélisation avec un modèle Gaussienne Général-
isée

Il a été démontré dans la littérature qu'une très large majorité des échos des ondes
lidar issues du capteur petite empreinte Riegl LMS-Q560 peuvent être modélisés par la
fonction gaussienne. Celle-ci présente également l'avantage d'être simple (pas de problème
pour estimer ses paramètres) et de fournir deux paramètres physiques, directement inter-
prétables : l'amplitude et la largeur de l'écho. Notre propre analyse des ondes lidar issues
à la fois des capteurs Riegl et Optech nous a montré qu'une telle hypothèse symétrique
semblait valable. Toutefois, nous avons noté une légère distorsion des échos au sommet,
apparaissant parfois plus pointus ou plus aplatis. Cela nous a conduit à proposer comme
fonction modèle la Gaussienne Généralisée (GG), qui est une extension de la fonction
gaussienne (cf. tableau 2). Son équation est la suivante :

fGG(x) = A exp

(
−(x− µ)α

2

2w2

)
(4.1)

A et w sont respectivement l'amplitude et la largeur des échos. µ est la position de l'écho.
Le paramètre additionnel, appelé paramètre d'aplatissement est α et permet d'obtenir une
plus grande �exibilité dans la modélisation.
La chaîne de traitement mise en place est la suivante :

1. le bruit de fond des ondes est éliminée puis ces dernières sont lissées par un �ltre
gaussien pour faciliter l'étape de détection des échos ;

2. la détection des échos se fait par une simple analyse du passage par zéro de la dérivée
première du signal ;

3. l'algorithme de Levenberg-Marquardt est utilisée comme méthode d'estimation des
paramètres de chacun des échos par Moindres Carrés Non Linéaires ;

4. on calcule les résidus entre les échantillons de l'ajustement obtenue et ceux de l'onde
initiale :
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� si au moins un résidu est supérieur à un seuil que l'on a dé�ni, on ajoute un nouvel
écho à la position du résidu maximal et on recommence les étapes 3 et 4

� sinon l'ajustement est terminé.

Comparée à la plupart des méthodes existantes, nous proposons la détection itérative des
échos manquants via un ou plusieurs ajustements préalables du signal. Cela permet de
détecter des échos dans des cas complexes (par exemple, deux échos se recouvrant) que ne
peut résoudre une méthode simple de détection. En pratique, deux itérations su�sent, les
ondes lidar n'étant pas très complexes.

Cette méthode d'ajustement itératif des ondes par Gaussienne Généralisée a été ap-
pliquée aux jeux de données de Biberach et d'Amiens. Les résultats sont évalués selon deux
aspects : nombres d'échos détectés et qualité d'ajustement.
Tout d'abord, la méthode proposée permet de détecter 4,1% de points en plus pour Amiens,
et 24% supplémentaires sur Biberach, si l'on compare aux nuages de points qui sont obtenus
par une analyse temps-réel des ondes lidar (nuages fournis avec les données ROC). L'é-
cart entre les deux zones s'explique par le fait que les conditions d'acquisition étaient
di�érentes : vol "sans feuilles" pour Amiens et "avec feuilles" pour Biberach. Les ondes
lidar d'Amiens sont moins complexes que celles de Biberach (ratio nombre d'échos par onde
respectivement de 1,03 et 1,42 pour Amiens et Biberach). Cela représente tout de même
près de 2,7M de points sur Amiens sur environ 63,8M d'ondes acquises. Cette di�érence
se retrouve également dans le pourcentage de points additionnels détectés par notre ap-
proche itérative : 0,69% pour Amiens et 3,6% pour Biberach. Les échos supplémentaires
sont principalement détectés dans les zones de végétation et sur les bords de bâtiments.
Dans un second temps, l'ajustement des ondes est évalué selon deux aspects : précision de
détection des échos et qualité de reconstruction. Puisqu'il est très di�cilement envisage-
able de procéder à une quali�cation exhaustive de notre détection des échos, une simple
comparaison est faite avec les échos détectés en vol par le système lidar. Il s'agit d'une
comparaison en distance suivant la direction du faisceau laser. Avec notre méthode, nous
améliorons la détection des échos de 6 cm en moyenne, avec un écart-type moyen d'envi-
ron 38 cm pour Amiens. En pratique et après géoréférencement, cela correspond à générer
des nuages de points avec une qualité altimétrique supérieure maximale de 15 cm et plan-
imétrique supérieure maximale de 2,5 cm. En�n, la qualité de reconstruction obtenues par
notre méthode a été comparée à celles obtenues par une simple décomposition gaussi-
enne et avec une décomposition GG mais sans détection itérative des échos. Les résultats
montrent qu'à la fois l'approche itérative et l'ajout du paramètre d'aplatissement dans le
modèle gaussien améliorent les résultats et valident l'approche proposée.

La décomposition des ondes par Gaussienne Généralisée permet d'extraire deux types
d'attributs : les paramètres de la fonction (A, w et α) et les attributs que peuvent être
calculés à partir de ces derniers. Il s'agit de la largeur à mi-hauteur (Full-Width-at-Half-
Maximum), l'énergie de l'écho et la section rétrodi�usante σ (cf. �gure 5. En particulier,
σ est estimée avec une méthode de calibration fondée sur l'équation lidar. On se sert de
cibles au sol de ré�ectance connue pour calculer σ. Des zones d'asphalte sont utilisées car
elles représentent le seul candidat acceptable disponible sur tous les jeux de données mal-
gré deux défauts principaux : faible ré�ectance et forte variabilité spectrale selon l'angle
d'incidence.
Dans un objectif de classi�cation, les histogrammes d'amplitude, de largeur, d'aplatisse-
ment et de section rétrodi�usante sont analysés pour les trois classes d'intérêt (sol, végéta-
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 � Visualisation des attributs ROC extraits d'une modélisation des ondes par Gaussi-
enne Généralisée sur la ville de Biberach. (a) Orthoimage. Nuage de points 3D coloriée
selon : (b) l'altitude, (c) l'amplitude, (d) la largeur, (e) l'aplatissement et (f) la section
rétrodi�usante des échos.
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tion, bâtiment), di�érents types de sol (asphalte, terre battue et herbe) et de matériaux de
toits (métal, tuiles, ardoise). Ils montrent le fort potentiel de l'amplitude et de la section
rétrodi�usante pour la segmentation des zones à faible ré�ectance (asphalte et métal) de
celles à forte ré�ectance (terre battue et tuiles). Comme déjà présenté dans de nombreux
articles, la largeur des échos semble discriminante pour les zones de végétation (largeur
supérieure). En�n, le paramètre d'aplatissement α ne montre pas un fort potentiel de dis-
crimination parmi toutes les classes présentées. Il sera toutefois conservé dans l'étape de
classi�cation et de sélection d'attributs qui suit.

En conclusion, la méthode proposée s'est avérée très e�cace. De plus, les améliorations
proposées par rapport à la décomposition gaussienne traditionnelle ont permis la détection
d'échos supplémentaires, l'amélioration de la qualité de reconstruction, l'amélioration de la
qualité altimétrique des nuages de points 3D obtenus ainsi que l'extraction de paramètres
morphologiques supplémentaires pour notre objectif �nal de classi�cation. L'approche pro-
posée n'est pas spéci�que aux milieux urbains ni aux capteurs ROC petite empreinte. Elle
peut être adaptée pour d'autres applications en changeant simplement la fonction modèle,
tant que celle-ci reste estimable par Moindres Carrés. par ailleurs, il semble su�sant de
jouer sur le niveau de bruit, le seuil de détection d'échos supplémentaires ainsi que sur le
lissage de l'onde en entrée pour traiter des données issus de capteurs terrestres ou spatiaux.
La qualité de reconstruction des ondes a été jugée satisfaisante avec le modèle GG. Cepen-
dant, une telle solution est trop restrictive. En e�et, l'analyse de qualité d'ajustement
a montré une certaine variabilité sur de grandes zones, y compris pour des ondes uni-
modales. Il semble donc qu'un certain nombre d'échos dans les ondes aient un comporte-
ment asymétrique et qu'il faille les ajuster avec une/des fonction(s) modèle spéci�que(s).
En�n, dans un objectif de classi�cation, il peut être intéressant de tester de nouvelles fonc-
tions avec des paramètres distincts de ceux de la gaussienne. En conséquence, nous avons
développé une approche originale qui prend en compte ces deux points d'amélioration.

4.2 Une approche par processus ponctuel marqué

4.2.1 Problème, approche et grammaire proposées

La deuxième approche proposée a pour objectif d'ajuster spéci�quement les échos
asymétriques par une ou des fonctions autres que le modèle gaussien. Cela concerne cer-
tains échos d'ondes lidar et l'on ne sait pas a priori desquels il s'agit. Cette asymétrie
apparaît dans plusieurs cas. Tout d'abord, la géométrie des cibles peut déformer les échos
dans le cas de données petite empreinte : pour les zones planes, la rugosité des cibles peut
entraîner un dissymétrie à droite comme à gauche, alors que pour les zones de végétation,
la présence de plusieurs objets proches conduit souvent à une dissymétrie à droite, c'est-à-
dire que l'énergie rétrodi�usée va en diminuant avec la pénétration dans la canopée. Etant
donné que le modèle gaussien généralisé convient tout de même à une grande majorité
des échos d'ondes petite empreinte, notre méthode doit également prendre en entrée ce
modèle, en supplément du ou des modèles asymétriques choisis. L'avantage de mettre en
place une telle méthode est également de pouvoir rester facilement di�érentes fonctions,
fournissant ainsi di�érents jeux de paramètres qui pourront être ensuite intégrés et évaluer
dans l'étape de classi�cation. Mieux ajuster les ondes c'est en�n mieux les représenter et
c'est donc proposer une meilleure méthode de compression des données ROC. Vu le volume
supplémentaire de données issues de la numérisation des ondes, il s'agit d'un enjeu majeur
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quoique peu abordé dans la littérature.

Il n'existe pas de méthode existante capable de résoudre notre double problème de
sélection de modèle dans un mélange de composition inconnue. Il est possible d'envisager
des méthodes de type Colonies de fourmis ou algorithmes génétiques mais notre choix
s'est porté vers les méthodes stochastiques fondés sur les processus ponctuels marqués, qui
ont montré un fort potential dans de nombreux problèmes de télédétection 2D ou 3D. Le
modèle proposé présente alors un certain nombre d'avantages par rapport aux méthodes
fondés sur le mélange de gaussiennes :

� Gestion de plusieurs modèles en même temps : la méthode prend en entrée une
grammaire de fonctions. L'estimation de leur paramètres ne nécessite que l'évaluation
des fonctions en tout point du signal. Toute fonction analytique est donc envisageable.

� Intégration de connaissances physiques sur le lidar : l'énergie de la formulation du
modèle stochastique peut inclure des caractéristiques lidar physiques connues ainsi
que des interactions entre échos voisins, permettant ainsi de bien gérer les ondes
complexes.

� Exploration e�cace de l'espace des con�gurations : un échantillonneur de Monte-
Carlo par Chaîne de Markov couplé à des noyaux de propositions pertinents évite
une recherche exhaustive dans de grands espaces de con�gurations. Cela est partic-
ulièrement intéressant quand le nombres d'objets est inconnu.

Il existe trois stratégies pour construire la grammaire de fonctions paramétriques. On
a tout d'abord chercher à trouver une unique fonction capable de simuler tous les cas exis-
tants (symétrique, faible dissymétrie à gauche, plus ou moins forte à droite) mais la seule
solution convenable (fonction Levy-skew α stable) ne possède pas de formulation analy-
tique. Ensuite, on peut vouloir intégrer un grand nombre de fonctions simples (entre 5 et
10) pour couvrir tout le champs des possibilités. Toutefois, l'étape de sélection de modèles
devient plus complexe et devant la faible variété de forme des échos, les résultats peuvent
devenir di�cile à quali�er. La solution s'est donc portée sur une grammaire minimale (2 à
4 fonctions) a�n de rendre le processus plus robuste et de limiter les temps de calcul.
Trois fonctions ont donc été sélectionnées (cf. tableau 2) parmi un grand nombre de fonc-
tions testées (Weibull, Gamma Généralisée etc.) :

� Le modèle Gaussien Généralisée est conservé (trois paramètres : A, w et α) car il
convient à une grande majorité d'échos.

� La fonction Nakagami est choisie pour ajuster les échos dissymétriques d'un côté
comme de l'autre. Elle possède trois paramètres : A, ω un paramètre d'asymétrie
contrôlant la décroissance de l'écho et ξ un paramètre de forme contrôlant sa largeur.

� En�n, pour les échos à la queue plus lourde (dissymétrie forte à droite), le modèle
Burr est ajouté. Il possède quatre paramètres : A, deux paramètres de forme b et c
ainsi qu'un paramètre d'échelle a.

La méthode proposée permet à la grammaire d'évoluer en fonction d'autres applications
et d'autres formes de signaux.

4.2.2 Formulation énergétique du problème

Nous ne détaillerons pas dans ce résumé la théorie des processus ponctuels marqués.
Nous renvoyons le lecteur vers [Lie00; Des11]. Notre cas dépasse le cas de comptage d'ob-
jets puisqu'il y a également une sélection de modèle à e�ectuer. On parle alors de processus
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Gaussienne Généralisée (I, µ, w, α) Nakagami (I, µ, ξ, ω) → dissymétries à gauche et à droite

w = 0.1 ξ = 1

Burr (I, µ, a, b, c) → fortes dyssymétrie à droite

b = 1 � c = 1 a = 1 � c = 1

Tab. 2 � Grammaire de fonctions modèle sélectionnée, leurs paramètres et quelques com-
portements de celles-ci (I = 1 et µ = 0, 3 dans tous les cas).

ponctuel marqué multiple. Dans un cadre particulier, le problème de trouver la meilleure
con�guration pour notre problème dans un certain espace de recherche revient à minimiser
une énergie donnée. On modélise donc chaque onde par une con�guration d'objets, nos
objets étant des fonctions paramétriques. Le modèle énergétique proposé permet d'évaluer
ces con�gurations. La performance de notre méthode d'ajustement d'ondes lidar se fonde
donc principalement sur la construction d'une énergie adaptée à notre problème. Cette
énergie est composée d'un terme d'attache aux données (norme L2 entre l'onde lidar et la
con�guration proposée) et un terme de régularisation qui permet d'introduire des connais-
sances a priori mais également des interactions entre objets d'une con�guration. Le but
est ainsi de favoriser ou de pénaliser certaines con�gurations possibles. Dans notre cas, il
s'agit de limitations physiques liées à la rétrodi�usion de l'impulsion laser. Ces limitations
sont modélisées par trois termes distincts :

� Limitation du nombre d'objets : un objet correspond à un écho. On cherche donc
à favoriser les con�gurations ayant un nombre d'échos réaliste (jusqu'à 7), et en
particulier celles avec un très faible nombre d'échos (entre 1 et 3).

� Limitation sur l'énergie rétrodi�usée : la connaissance de l'énergie de l'impulsion
laser émise nous permet d'interdire toutes les con�gurations dont l'énergie n'est pas
réaliste.

� Complexité de reconstruction : ce terme cherche à pénaliser les con�gurations dont
deux échos sont plus proches que la résolution en distance du capteur lidar (souvent
2ns c'est-à-dire deux échantillons). Cela favorise encore un reconstruction de signaux
avec un faible nombre d'objets.

Trouver la con�guration qui minimise l'énergie proposée est un problème d'optimisation
non convexe dans un espace de grande dimension lui-même union de sous-espaces de dimen-
sions variables. En e�et, le nombre d'échos est inconnu et les trois fonctions choisies n'ont
pas toutes le même nombre de paramètres. Une solution communément adaptée consiste
à choisir un échantillonneur de Monte-Carlo par Chaîne de Markov à Sauts Réversibles
(RJMCMC). Il s'agit d'un processus itératif : à partir d'une con�guration initiale quel-
conque, une perturbation est proposée puis est acceptée ou refusée. L'échantillonneur ef-
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fectue donc des sauts entre espaces de dimensions di�érents et ces sauts sont guidées par
trois familles de mouvement appelés noyaux de proposition. L'acceptation ou le refus s'-
e�ectue selon l'algorithme de Metropolis-Hastings-Green.Le RJMCMC est couplé à un
processus de relaxation, ici un recuit simulé, a�n de converger vers la solution désirée. Cela
permet d'atteindre sous certains conditions légèrement violées ici le minimum globale de
l'énergie proposée quelque soit la con�guration initiale proposée.

Le modèle proposé a été testé sur des données simulées, des ondes lidar large empreinte
et sur les ondes des deux jeux test (petite empreinte, cf. Figure 6).
Les données simulées nous ont permis de quali�er le modèle mis en place et ses di�érents
termes. Il a été ainsi véri�é le comportement de l'approche en cas de faible Rapport Signal
à Bruit (moins bonne estimation des paramètres des échos), pour di�érents cas de recou-
vrement entre échos (tous bien gérés), en cas de mélanges de fonctions (sélection du bon
modèle jusqu'à un taux de recouvrement critique). Tous les échos sont toujours détectés et
leur position est précisément localisée. Il n'y a donc pas eu de perte de qualité quant aux
nuages de points 3D générés par cette méthode.
Ensuite, les ondes issues des capteurs topographique moyenne et grande empreinte SLICER
et LVIS ont été traitées. Les résultats montrent que la grammaire proposée permet rela-
tivement d'ajuster ces signaux plus complexes que ceux des capteurs petite empreinte.
Dans ce cadre, les fonctions Nakagami et Burr sont privilégiées de manière équivalente
par rapport au modèle GG. Les ondes traitées concernent en e�et des zones de végétation
tropicale dont la distribution altimétrique des cibles n'a pas de raison d'être gaussienne.
Ainsi, l'atténuation du signal par le haut de la canopée est bien modélisé par la fonction
Burr, alors que la Nakagami est utile pour le dernier "écho" du signal couvrant végétation
basse et sol.
En�n, les zones d'Amiens et de Biberach ont été traitées. Une analyse visuelle des ondes
nous montre que l'ajustement est correct et que le processus itératif a bien le comportement
souhaité : la première partie du processus cherche à se focaliser sur les modes du signal
(détection d'écho) alors que la deuxième partie procède à l'ajustement local des échos avec
la sélection du meilleur modèle et du jeu de paramètres optimal. Pour e�ectuer une analyse
détaillée, six zones d'intérêt urbaines ont été choisies (bâtiments, herbe, cathédrale, zones
mixtes etc.). Les principales conclusions sont :

� La détection d'échos est satisfaisante puisque nous obtenons des résultats similaires
à ceux de la modélisation GG simple. Il n'y a pas de sur-ajustement ni de fausse
détection d'échos.

� L'ajustement est de très bonne qualité et est amélioré par rapport à une modélisation
GG simple.

� Le modèle Gaussien Généralisé est sélectionné pour plus de 80% des échos en zones
urbaines. Il s'agit des zones planes (sol et pans de toits).

� Pour les zones de végétation, les trois modèles sont sélectionnés de manière équitables.
� Des échos asymétriques sont détectés sur des bâtiments, principalement quand leur
géométrie se complexi�e : faîtes de toits ou bordures. Il est également noté que le
comportement symétrique ou non des échos est également lié à la radiométrie des
objets puisque les échos de faible amplitude (i.e., de ré�ectance plus faible) a�chent
une dissymétrie supérieure.

En résumé, les résultats montrent qu'il existe bien un certain nombre d'échos qui ne sont
pas de forme symétrique mais qu'il en existe une assez faible proportion, et surtout que
ces formes ne sont pas caractéristiques d'objets en particulier puisqu'il existe une in�uence
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corrélée entre géométrie et radiométrie des cibles.

4.2.3 Conclusions et perspectives

En conclusion, l'approche originale proposée s'est avérée �exible à di�érents types de
signaux et bien adaptée à notre double problème de détection d'échos et de sélection de
la fonction paramétrique ajustant le mieux chacun des échos. On améliore ainsi la qualité
d'ajustement des ondes et donc la compression des données ROC. On extrait également de
nouveaux paramètres de forme pour les échos modélisés par la Nakagami et la Burr.
La principale limitation de l'approche stochastique concerne les temps de calculs. Les 70M
d'ondes d'Amiens sont traitées en 58 jours contre 3,5 heures pour la décomposition en
Gaussienne Généralisée. Les premières perspectives d'évolution de la méthode doivent donc
se focaliser sur une amélioration du temps de traitement pour rendre le processus ponctuel
marqué plus e�cace à grande échelle. En supplément de la nécessaire amélioration des codes
sources développés et de l'utilisation optimale des ressources des ordinateurs désormais
disponibles, il paraît intéressant d'essayer de fusionner les deux méthodes de traitement
des ondes proposées, c'est-à-dire de coupler ajustements local et global. Un ajustement
par décomposition GG peut débuter ce processus puis un traitement spéci�que pour les
échos dont l'ajustement n'est pas satisfaisant, fondé sur l'approche stochastique pourrait
être proposé. Il permettrait de démêler les cas de fonction modèle non adapté des cas de
sous-détection d'échos.
Une dernière perspective de travail concerne le traitement des ondes non plus une par une
mais de manière consécutive en gardant une cohérence temporelle, et donc spatiale. Des
méthodes de type �ltrage particulaire semblent bien adaptées à notre problème.

5 Classi�cation de zones urbaines

5.1 Méthode proposée

Dans la dernière étape de notre processus, nous cherchons à classer les nuages de points
obtenus par les étapes de décomposition des ondes décrites précédemment en bâtiment,
végétation et sol. De plus, nous souhaitons évaluer la contribution des attributs issus des
deux méthodes de modélisation (que nous appellerons attributs ROC) vis-à-vis d'attributs
calculables uniquement à partir de systèmes lidar multi-échos (c'est-à-dire avec la connais-
sance unique de la géométrie 3D des points et de leur numéro d'écho). Nous cherchons
à savoir si la numérisation des ondes lidar et les traitements supplémentaires nécessaires
permettent une amélioration de la qualité de classi�cation. Il existe un grand nombre d'ar-
ticles traitant de la classi�cation de données lidar à partir d'attributs ROC mais très peu se
sont également penchés sur l'évaluation de leur pertinence dans le cas d'un grand nombre
d'attributs lidar à disposition.
La classi�cation s'e�ectue en 3D point par point. La stratégie adoptée est la suivante :

1. Calcul d'attributs fondés sur le nuage de points multi-échos.

2. Synthèse des attributs ROC obtenus par les deux méthodes décrites auparavant.

3. Classement groupé de ces deux types d'attributs par trois méthodes de sélection
d'attributs.
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Fig. 6 � Décomposition et modélisation de quelques ondes par utilisation d'un processus
ponctuel marqué. Une fonction correspond à un écho détecté (zone de Biberach). (a-b)
Arbres. (c) Toit de bâtiment. (d) Buisson.

4. Classi�cation supervisée des nuages de points lidar par Séparateurs à Vaste Marge
(SVM) : di�érentes stratégies fondées sur les di�érents classements obtenues juste
avant sont testées.

Les attributs sélectionnés sont décrits dans la section suivante.
La méthode proposée est �exible car l'ajout de nouvelles fonctions modèles dans le pro-
cessus de modélisation des ondes lidar ne modi�e pas l'étape de classi�cation. De même,
elle peut facilement être adaptée à d'autres problèmes de classi�cation, puisqu'il su�t de
modi�er l'étape d'apprentissage du classi�er SVM (c'est-à-dire la vérité terrain).

Trois méthodes de sélection d'attributs ont été sélectionnées dans la très grande littéra-
ture existante sur le sujet. Nous les avons choisies car elles sont facilement reproductibles,
supervisées, et se fondent sur des caractéristiques di�érentes. Il s'agit du F-score, de ReliefF
et de SVM-RFE (Recursive Feature Elimination). F-score et ReliefF mesurent directement
le pouvoir de discrimination de chacun des attributs pour un problème de classi�cation
donnée. le classement des attributs se fait donc selon cette mesure. SVM-RFE utilise elle
un classi�eur SVM pour éliminer de manière récursive l'attribut qui contribue le moins à
la décision d'étiquetage. Elle ne fournit donc qu'un classement.

Le choix des Séparateurs à Vaste Marge comme classi�eur supervisée dans la large
palette des choix possibles est assez objectif. Il s'agit d'une méthode non paramétrique qui
possède une très grande capacité de généralisation (i.e., qui ne nécessite pas une phase
d'apprentissage exhaustive). Elle est également simple puisqu'il su�t de fournir un vecteur
d'attribut et qui fonctionne très bien pour des données de grande dimension. Nous sommes
dans ce cas-là puisqu'en entrée du SVM nous avons des nuages de points de plusieurs mil-
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lions de points auxquels nous allons attacher un vecteur de 27 attributs. D'autres classi�eurs
tels que les Forêts Aléatoires et les Arbres de Classi�cation et de Régression possèdent des
propriétés équivalentes et sont également pertinents pour mener à bien cette tâche.
Nous ne détaillerons pas la théorie des SVM. Signalons simplement que notre choix s'est
porté sur un noyau gaussien simple, l'estimation des deux paramètres du SVM se fait par
validation croisée (largeur du noyau + facteur de pénalité C car nous nous trouvons dans
un cas avec marges relaxées), et en�n puisque nous sommes dans un cas à quatre classes,
la décision �nale d'étiquetage se fait en "un contre un".

5.2 Attributs

Chaque point lidar 3D est associé à un vecteur de vingt-sept attributs. Ces attributs
sont de trois types : spatiaux, fondés écho et ROC. Les attributs spatiaux et fondés écho
sont calculables avec la simple connaissance de nuages de points multi-échos alors que les
attributs ROC proviennent des deux méthodes de modélisation des ondes décrites aupar-
avant. Les attributs non ROC sélectionnés ont été choisis pour deux raisons principales :
(1) ils ont déjà montré leur pertinence pour la discrimination d'une ou plusieurs classes
de notre problème et on souhaite les confronter aux attributs ROC extraits ; (2) ils nous
ont semblé pertinents et étant donné que l'on vise une évaluation objective des attributs
ROC, il semble en e�et intéressant de les confronter au plus grand nombre d'informations
calculables à partir de nuages de points lidar standard. Nous n'avons toutefois pas inclus
tous les attributs existants de la littérature (par exemple, ceux de texture altimétrique).

Les attributs spatiaux (ou géométriques) sont au nombre de 15. Ils sont fondés sur la
simple connaissance de la position 3D de chaque point, mais sont améliorés par le traitement
des ondes lidar. On les classes en trois sous-catégories :

� Attributs altimétriques (3) : fondés sur l'altitude du point courant (par exemple,
hauteur du point par rapport au point le plus bas dans un grand voisinage donnée).

� Attributs fondés sur le calcul des valeurs propres du tenseur de structure local (9) :
l'analyse des voisins proches de chaque point (voisinage sphérique de 1,25m) permet
d'obtenir des informations sur la structure locale du nuage de points 3D. Les trois
valeurs propres du tenseur de structure sont combinées pour fournir divers descrip-
teurs locaux : planarité, sphéricité, anisotropie etc.

� Attributs planaires (3) : les voisins de chaque point servent également à estimer un
plan local dont on se sert pour calculer divers indices tels que la normale au plan.

Les attributs fondés-écho se servent de la connaissance de la position du point courant
dans l'onde à laquelle il appartient : numéro d'écho, nombre d'échos dans l'onde etc. Ils
sont au nombre de quatre et peuvent être calculés à partir de la simple connaissance d'un
nuage de points multi-échos.

En�n, les attributs ROC (8) sont extraits des deux méthodes de traitement des ondes
présentées dans la partie 4 :

� La décomposition simple par Gaussienne Généralisée fournit ses trois paramètres de
forme (l'amplitude A, la largeur w et l'aplatissement α de l'écho) ainsi que trois
paramètres issus de l'étape de calibration radiométrique des données ROC. Il s'agit
de la section rétrodi�usante σ, de la section rétrodi�usante normalisée par la surface
illuminée par le faisceau laser σ0 et en�n la section rétrodi�usante normalisée à la
fois de la surface illuminée et de l'angle d'incidence du faisceau laser sur la cible
atteinte γ.
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� L'approche par processus ponctuel marqué fournit un nombre de paramètres variable
par écho puisque toutes les fonctions modèles choisies n'ont pas le même nombre de
paramètres. On a donc choisi de synthétiser les informations de forme obtenues avec
deux paramètres : le modèle sélectionné par le processus (M Nakagami, Burr ou
GG), un coe�cient d'asymétrie s de l'écho qui indique si ce dernier est symétrique
ou possède un dissymétrie à gauche ou à droite.

5.3 Résultats

La zone de Biberach a entièrement été traitée (2,3M de points). La qualité des di�érents
classi�cations testées se fonde sur le critère de précision moyenne (Average Accuracy � AA,
qui est la moyenne des précisions par classe). Pour quali�er les résultats, faire la phase
d'apprentissage du SVM et l'estimation de ses paramètres, une vérité terrain a été saisie
pour environ 1/3 des points 3D de la zone. Le choix d'une saisie 2D, plus simple et plus
facile d'accès pour un utilisateur �nal, empêche la bonne sélection des points en bords de
classes et entraîne une sur-estimation de la qualité de classi�cation.

5.3.1 Sélection d'attributs

Les trois méthodes de sélection d'attributs ont été lancées sur le vecteur de 27 attributs.
On obtient donc trois classements di�érents que l'on synthétise également en faisant la
moyenne des trois classements. Les attributs ROC sont segmentés en trois groupes, ce
qui donne une première information de leur pertinence vis-à-vis des autres attributs en
présence : les bien classés (dans l'ordre A γ et σ), les mal classés (M, w, s et α) et celui
dont le comportement est plus �uctuant en fonction des algorithmes (σ0). L'ordre est ainsi :

A > γ > σ > σ0 >M > w > s > α

Le mauvais classement de M, de s et de α est assez logique. On trouve s et α dans
des intervalles de valeurs assez restreints et on a déjà pu constater que l'asymmétrie et
l'aplatissement des échos n'étaient pas spéci�ques à des classes d'objets mais à des interac-
tions faisceau laser/cible(s) particulières. De même, la sélection de modèle par l'approche
stochastique fournit des résultats un peu bruités puisque deux jeux de paramètres pour
deux modèles di�érents peuvent fournir des formes quasiment équivalentes. En�n, la largeur
de l'écho w est classée comme peu discriminante alors qu'elle est énormément utilisée dans
la littérature. Ce classement peut provenir du fait que les méthodes sélectionnées ne gèrent
pas correctement les variables corrélées. En e�et, la largeur de l'écho est également présente
dans σ, σ0 et γ.
De manière similaire, pour les autres attributs spatiaux et multi-échos, nous retrouvons
des attributs toujours très bien classés, telle que le nombre d'échos par onde ou la hauteur
relative du point par rapport au sol, et d'autres toujours mal classés.

En supplément du simple classement des attributs, une manière plus robuste de qual-
i�er l'apport d'une variable est d'évaluer sa contribution à l'amélioration de la qualité de
classi�cation. Pour cela, pour chacune des trois méthodes, nous introduisons de manière
progressive dans le classi�eur SVM un attribut par un en descendant dans le classement.
Nous procédons alors à la phase d'apprentissage, de classi�cation et de quali�cation à
chaque étape. Une telle méthode nous permet de savoir pour chaque méthode (1) quand
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est atteinte la meilleure classi�cation ; (2) le nombre minimal d'attributs su�sant pour
atteindre une qualité proche de la meilleure possible. On quali�e donc de pertinents les
attributs inclus dans ces sous-ensembles minimaux (cf. tableau 3).

� F-score : une très bonne qualité est atteinte pour sept attributs, dont l'amplitude
de l'écho A, alors que la meilleure qualité est obtenue avec les 27 attributs. Cette
méthode s'avère donc peu performante.

� ReliefF : les 18 premiers attributs permettent d'obtenir la meilleure classi�cation
mais six attributs fournissent une qualité assez proche. A y appartient une nouvelle
fois.

� SVM-RFE : la meilleure classi�cation est obtenue avec un sous-ensemble de huit
attributs. Cela semble donc être la méthode de sélection la plus e�cace. Parmi ces
attributs se trouvent trois attributs ROC : A, γ et σ.

5.3.2 Classi�cations

Di�érentes stratégies de classi�cation sont adoptées pour de nouveau évaluer l'apport
(ou non) des attributs ROC. On a en particulier comparé ainsi la classi�cation des 27
attributs à celles des 8 attributs ROC, des 19 attributs non ROC, des sous-ensembles
minimaux obtenus pour chacune des trois méthodes de sélection d'attributs ainsi qu'à
celles des 27 attributs pondérés par les mesures de pertinence obtenues grâce au F-score et
à ReliefF. On s'aperçoit que les attributs ROC ajoutés aux attributs non ROC améliorent
la qualité de classi�cation, que la pondération des attributs y contribuent aussi, et que
la meilleure qualité est obtenue avec le sous-ensemble de huit attributs (dont trois ROC)
sélectionnés par la méthode SVM-RFE (95.3%). Tous les chi�res sont synthétisés dans le
tableau 3.

Stratégie Average Accuracy (%)

Attributs ROC (8) 64,8
Attributs non ROC (19) 91,4
Tous les attributs (27) 94,35

F-score + sélection du meilleur sous-ensemble (7) 93,8
F-score + pondération des attributs 94,4

ReliefF + sélection du meilleur sous-ensemble (6) 94,6
F-ReliefF + pondération des attributs 94,7

SVM-RFE + sélection du meilleur sous-ensemble (8) 95,3

Tab. 3 � Qualité de classi�cation pour les di�érentes stratégies adoptées.

Les principales erreurs rencontrées concernent des mauvaises classi�cation ponctuelles
liées à des comportements locaux non pris en compte lors de la phase d'apprentissage du
classi�eur. Il s'agit de points se trouvant sur les bords de bâtiments, sur les superstructures
des toits ou sur les objets du bas-sursol (voitures, poteaux). Ils ont un comportement de
végétation (rétrodi�usion multiple, faible ré�ectance) et sont donc étiquetés comme tels.
La deuxième source d'erreur provient de la forte in�uence des attributs les plus discrim-
inants comme la hauteur des points par rapport au sol ou leur amplitude. Dans les cas
correspondant à des comportements non appris, l'étiquetage de zones entières peut être
erroné. C'est le cas de certains bâtiments bas, aux toits souvent en métal, qui sont confon-
dus avec la classe sol. Toutefois, une analyse globale de la scène classée permet de corriger
ce type d'erreurs (Figure 7).
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Fig. 7 � Résultats sur la zone de Biberach. Gauche : orthoimage. Milieu : nuage de points
3D généré par traitement des ondes lidar. Droite : classi�cation obtenue (Rouge : bâtiments,
vert : végétation, gris : sol).
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5.4 Conclusions et perspectives

L'approche proposée a permis d'une part la classi�cation bâtiment/végétation/sol de
nuages de points 3D lidar en utilisant des attributs issus de plusieurs modélisations des
onde complètes et d'autre part l'évaluation de la pertinence de ces derniers. Cette approche
est �exible et peut accueillir d'autres attributs lidar si besoin ait. Nous avons réalisé une
évaluation objective des attributs ROC en les confrontant à un grand nombre d'attributs
calculables sans la connaissance des ondes complètes à travers trois méthodes de sélection
d'attributs et diverses stratégies de classi�cation. Les qualités de classi�cation obtenues
sont autour de 95%, ce qui montre également l'e�cacité générale de la méthode.
L'analyse particulière du comportement des attributs ROC montre que :

� Trois attributs à savoir l'amplitude A, le coe�cient de rétrodi�usion γ et la section
rétrodi�usante normalisée par l'aire d'interception du faisceau laser σ sont parmi les
plus discriminants.

� La dissymétrie et l'aplatissement des échos sont respectivement pas du tout et peu
discriminants.

� Une fonction paramétrique symétrique su�t pour modéliser les échos des ondes dans
ce cadre de classi�cation bâtiment/végétation/sol.

� γ et σ sont obtenues via des méthodes de calibration radiométriques qui sont donc
fondamentales pour notre problème.

Les perspectives de travail pour l'analyse des zones d'occupation du sol sont nom-
breuses. Tout d'abord, une étape de régularisation paraît primordiale. En e�et, le classe-
ment se fait point par point sans tenir de la similarité avec les voisins. L'ajout d'informa-
tions contextuelles devrait améliorer la qualité de classi�cation. Dans un second temps,
étant donné que notre objectif était l'étude de la contribution des données ROC nous
avons restreint notre problème à trois classes. Cependant, l'analyse des attributs extraits
de la modélisation des échos par Gaussienne Généralisée nous a montré un fort potentiel
pour discriminer matériaux de toits et surfaces au sol. Cela pourrait être testé mais né-
cessite également le développement de méthodes de calibration radiométrique adéquates.
En�n, l'enrichissement des thèmes d'occupation du sol passe également par le retour à
la géométrie d'acquisition des ondes lidar. En e�et, les ondes lidar mixtes, c'est-à-dire qui
contiennent des points lidar étiquetés dans di�érentes classes, peuvent permettre, au moins
en deux dimensions, l'apparition de nouvelles classes (bords de bâtiment, forêt dense, forêt
éparse etc.).

6 Conclusions

Dans un contexte peu abordé dans le domaine du lidar aéroporté topographique, nous
avons proposé une méthode complète, polyvalente et automatique pour le traitement et
la classi�cation de données issues de systèmes petite empreinte à retour d'onde complète.
Elle permet de traiter une grande variété de signaux lidar en entrée tout en fournissant
des résultats de classi�cation de très bonne qualité. Dans un contexte d'évaluation de
la technologie à retour d'onde complète apparue très récemment, nous avons également
intégré des outils de comparaison vis-à-vis des données issues des systèmes lidar multi-
échos classiques. La principale conclusion est que les informations que l'on est capable
d'extraire sur la morphologie des échos laser sont discriminantes pour la classi�cation des
zones de sol, bâtiment et végétation. Nous nous sommes focalisés sur l'étude du milieu
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urbain mais l'approche développé est totalement applicable aux milieux naturels et ne
nécessitent aucun développement supplémentaire. Dans le cadre d'un travail mené au sein
d'un agence cartographique national, l'IGN, cette thèse a également permis d'améliorer
nos connaissances sur le vrai potentiel et les possibilités liés aux données ROC ainsi que la
création d'outils pour leur manipulation et leur traitement.
La principale limitation de notre travail est la non-prise en compte des cohérences spatiale
et temporelle entre ondes voisines qui devraient permettre à la fois de faciliter et d'améliorer
les processus développés. Cela est nécessaire dans un objectif de passage à l'échelle des
traitements pour de la cartographie à très grande échelle.

Les perspectives générales de recherche pour l'analyse des ondes lidar sont de trois
ordres. Tout d'abord, des travaux sur la simulation d'ondes lidar pourraient permettre de
mieux comprendre les in�uences particulières de la radiométrie ainsi que de la géométrie et
de la micro-géométrie des cibles. L'objectif est d'améliorer à la fois les processus de classi-
�cation en enrichissant le nombre de classes (matériaux de toits et de sol) et les méthodes
de calibration radiométriques des données ROC. Dans un deuxième temps, la classi�cation
devrait être améliorée avec l'intégration de connaissances additionnelles telles que plusieurs
points de vue lidar ou l'utilisation d'images aériennes. En�n, si l'on s'écarte des chaînes de
traitement classiques fondés sur les nuages de points 3D, il semble envisageable de mener
à bien un traitement du volume 3D de données ROC pour une reconnaissance de formes
directe sans analyse préalable.
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Chapter 1

Introduction

1.1 The analysis of urban areas

In recent years, the analysis of urban areas has become a challenging problem for the
remote sensing community, due to advances in the technology. The ground sampling of
satellite optical images is nowadays sub-metric. The most recent hyperspectral sensors can
collect more than one hundred bands with also an increasing spatial resolution [Fau07]. Be-
sides, aerial optical images with spatial resolution below 10 cm are available, opening new
�elds of research and potential applications with the detection of �ner structures [Bré10].
Furthermore, in addition to data acquired in the nadir view, Synthetic Aperture Radar
active imagery also contribute to the analysis of urban areas, especially for time critical
events and when frequent datasets are required [Soe10].
A large range of applications actually appear when processing such high resolution data in
urban areas [NRS05; Urb09]. The detection and characterization of urban structures such
as man-made constructions, roads, or vegetated areas are necessary inputs for Geograph-
ical Information Systems i.e., for generating databases of 3D buildings, trees, land-cover
classes i.e., �nally for automatic mapping purposes. Depending on the resolution and
the type of the data available over the area of interest, these databases may not be at the
same scale, and will not be used necessarily for the same usage: change detection, disaster
management, telecommunications, tourism, defense, navigation, simulations for detecting
and solving ecological or social issues etc.

For such purposes, the airborne laser scanning (ALS) technology has many bene�cial prop-
erties. Topographic data is captured with high density, allowing to reconstruct high spatial
data over large areas. Furthermore, ALS systems deliver high resolution height data with
an accuracy around 10 cm in a highly automatic way. We have a direct access to the
geometrical properties of the objects without the need to �rst recover 3D features from
optical images. The technique is therefore particularly suited for planning, monitoring and
control purposes. In the last decade, the 3D representation of topographic objects has
become more and more prominent, especially in consumer applications. The last ten years
have gone to show that the airborne laser scanning community has actively taken part in
the developments of new and e�cient methodologies for the automatic acquisition of 3D
urban objects (especially buildings), ground surface reconstruction (Digital Surface and
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Terrain Models), as well as land-cover classi�cation [ST09; Are09; Rot09; PY09; ZN10;
VM10; Elb10].

1.2 Airborne laser scanning. . .

Airborne laser scanning (ALS) for topographic purposes is an active remote sensing tech-
nique providing direct range measurements between the laser scanner and the Earth to-
pography. Such distance measurements are mapped into 3D point clouds. Such 3D points
are reliable estimates of the location of the terrain surface and of the above-ground objects,
but sample irregularly the acquired landscape. The altimetric accuracy of a topographic
lidar measurement is indeed high (< 0.1 m), thanks to the direct georeferencing process,
steadily improved in the two last decades with the introduction of the di�erential GPS
technology and Inertial Measurement Units.
First active sensors carried by airborne or satellital platforms were designed at the be-
ginning of the 1970's. They provided 1D pro�les along the sensor track (nadir view) by
sequences of single pulses. Modern sensors acquire many parallel overlapping strips. Such
technology provides denser point clouds with a more regular distribution on the Earth
surface: the point density can reach more than 100 pts/m2 in some speci�c applications,
e.g., river dike monitoring.
ALS has become a well established technique for the acquisition of geospatial information,
and is now widely established as a major tool for generating high quality 3D representa-
tions of the landscape. Due to the large number of devices and their yearly improvements,
the growing number of surveying companies, the large variety of acquisition speci�cations,
and the increasing number of available visualization and processing softwares, ALS data,
also referred to topographic lidar data, has been adopted as standard input for many
remote sensing applications.
The interrelationship between ALS and aerial photogrammetry has been intensively dis-
cussed in the last decade [Bal99c; Bre06]. Various comparison factors concerning both
data acquisition (e.g., coverage, weather conditions, costs, etc.) and surface reconstruction
(e.g., accuracy, redundancy, post-processing time, etc.) have to be taken into account to
choose the optimal method for a certain purpose. They are commonly considered as com-
plementary surveying techniques.

Depending on the geometry of illuminated surfaces, several backscattered echoes can be
recorded for a single pulse emission. Such systems are called multiple pulse or multi-
echo lidar sensors. This is particularly interesting in forested areas since lidar systems can
measure both the canopy height and the terrain elevation underneath at once, contrary
to photogrammetric techniques. Such a unique ability led to the immediate acceptance of
ALS data for forest monitoring and management [HHL+04; AMR05].
Furthermore, lidar data are known to be useful in many speci�c applications, in addition
to 3D city modelling, such as bridge and power line detection [SV06; JS10], Digital Terrain
Model generation [KPO+07; BC10], corridor, coastal or opencast mapping [IL99], as well
as metrology [FCH04] and cultural heritage [DBFJ08].



1.3. and the full-waveform technology 37

1.3 and the full-waveform technology

Topographic lidar data only provide a basic geometric representation of a scene: three-
dimensional coordinates. The "intensity" feature is sometimes available in addition, but
due to its low quality and the lack of knowledge on what it really is, it has been barely
used.

The new technology of full-waveform (FW) lidar systems has emerged in the last twenty
years, and has become popular in the last �ve years, with the emergence of airborne topo-
graphic commercial devices. It permits to record the received signal for each transmitted
laser pulse, the result is called a waveform. Since the waveform is digitized at constant
rate (GigaHertz resolution), FW data is thus a set of equally-spaced discrete samples of
the amplitude of the echo signal.
Such a sample sequence represents the progress of the laser pulse as it interacts with the
re�ecting surfaces, and thus is constructed as an amplitude-against-time dataset (cf. Fig-
ure 1.1). Hence, FW lidar data yield more than a basic geometric representation of the
Earth topography. Instead of clouds of individual 3D points, lidar devices provide con-
nected 1D pro�les of the 3D scene, which allows gaining further insight into the structure of
the scene. Thus, in addition to range measurements, further physical properties of objects
included in the laser di�raction cone may be revealed.

Figure 1.1: Successive lidar waveforms plotted in the laser beam direction plane (small
footprint sensor).

Waveform analysis allows to set up advanced processing methods which increase pulse
detection reliability, accuracy, and resolution: more 3D points can therefore be detected
than multiple pulse systems. Digitized waveform data supplements the time-of-�ight and
intensity data that multiple-pulse sensors provide. This is especially bene�cial for extended
target ranging and for complex structures such as trees and vegetation. Furthermore, this
new technology gives more control to the end user in the interpretation process of the phys-
ical measurement. It provides additional information about the structure and the physical
backscattering properties of the illuminated surface (re�ectance and geometry).
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Full-waveform sensors have been �rst used for bathymetric purposes. Because of the com-
plex shape of the signals in water areas, the sea�oor depth cannot be correctly estimated
on-board, during the survey. Consequently, a digitization process has been set up [GM88;
GCRR00]. The �rst truly operational FW topographic system, LVIS, from NASA, ap-
peared in 1999, and demonstrated the value of recording the entire waveform for vegeta-
tion analysis [BRH99]. This is the consequence of early e�orts made since the beginning
of the 1980's [Lin97]. The �rst commercial full-waveform lidar system, the LiteMapper
5600, appeared in 2004 [HUG04]. This is a small-footprint system (<1 m), in contrast to
previously mentioned devices (>2.5 m), which has been designed without any dedicated
application. However, several authors have shown the interest of such kind of data both for
natural and urban areas, that is why major laser scanning companies have decided to add
digitization terminals to their multiple-pulse systems. Since laser scanners with waveform
digitizers are becoming increasingly available, many studies have been carried out during
the last �ve years. In particular, the three last ones have witnessed a tremendous increase
of research and literature on the subject.

Some recent works have presented original methodologies for processing full-waveform data
[Jut07; Lin09; Rei10], but the contribution of such data for the analysis of urban areas has
been, in fact, barely investigated.

1.4 Speci�c context of the thesis

The Institut Géographique National (IGN) is the French national mapping agency. The
French State has entrusted the IGN with developing the Large Scale Reference system
(RGE R©) that incorporates data from its own databases or databases from other companies.
Among its objectives is the production and the update of the topographic component of
the RGE (BD TOPO R© [TOP10]), which corresponds to CityGML's LOD0, LOD1, and
LOD2. Indeed, LOD0 concerns the 2D geometric description of the elements with semantic
attributes, whereas 3D building modelling attains LOD2.

In the operational context of national mapping, the IGN owns two digital cameras for
orthoimage generation, and has purchased in 2007 an airborne laser scanner with waveform
digitizer (Optech 3100 device). At �rst, the aim is improve the quality of the Digital
Terrain Models (DTM), with an accuracy better than 0.3 m in altimetry, and better than
1 m in planimetry. The IGN has �rst focused on forested areas and regions vulnerable to
�ooding hazards (rivers and coastal areas). For such purposes, only the 3D point cloud
(spatial information) is used. A fully operational work�ow has been set up, from the strip
registration task to the �ltering process. The DTM are computed using the points labelled
as ground during the latter step. Surveys are carried out with medium density point clouds
(∼ 2-3 points/m2 per strip), which has been proved to be su�cient to reach the requested
qualities.

The emergence of full-waveform data has arisen many questions about its genuine potential,
both in forested and urban areas. Physical information about the scattering properties of
the objects are now available, in addition to spatial features. The context of this thesis
is therefore to assess the real contribution of small-footprint full-waveform airborne laser
scanning data in urban areas 1. The analysis will be carried out in the scope of land-cover

1A similar work on forested areas has be performed in the IGN in parallel to our thesis.
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classi�cation, which is the preliminary step of various kinds of algorithms for populating
topographic databases. The development of more general land-cover classi�cation processes
is obviously at stake in national mapping agencies.

1.5 Objectives and limitations

The general objective of this thesis is to take as an input raw full-waveform lidar data
i.e., 1D signals (with all the metadata required for georeferencing them), process these
waveforms to generate a 3D point cloud, and classify it with respect to the additional in-
formation retrieved during the processing step. In addition to this main work�ow, our will
is to understand the real potential of such recent data. From an engineer point of view,
our goal is also to develop new tools to handle, display, and process lidar waveforms, as a
�rst step for future developments.

Since we aim the analysis of urban areas with high resolution data, small-footprint lidar
waveforms will be adopted. This means that the footprint size is inferior to 1m i.e., inferior
to the size of the objects of interest (except for vegetated areas). Consequently, each echo
within the waveforms is likely to correspond to a speci�c target, and its shape analysis
may reveal information about the scattering properties of this target.
When land-cover classi�cation is at stake, multispectral or hyperspectral images should
be involved because of their highly relevant spectral content. Nevertheless, the fusion of
multisource data and the comparison of these two kinds of data will not be tackled. Our
work will focus on ALS data, and the contribution of FW data will only be addressed with
respect to multiple pulse sensors.

Three classes of interest are selected: ground, vegetation, and building. The ground class
gathers roads and pavement, as well as the street items such as cars or poles. Vegetation
include both trees and low above-ground vegetation such as hedges or bushes.
The discrimination of tree species, ground surfaces, and roof materials has not been ad-
dressed. We consider that tree species classi�cation mainly relies on the 3D repartition of
the points and is not FW speci�c. Conversely, opaque targets with di�erent surfaces may
be segmented using the scattering properties revealed by full-waveform data analysis but
not with merely 3D spatial data.

The �nal goal of the thesis is the classi�cation of the 3D point clouds generated from lidar
waveforms. Therefore, several other topics of interest in urban areas will not be tackled.
They are enumerated below, and will not be mentioned until the conclusions of the thesis.

• Direct classi�cation of the waveforms, instead of classical 3D point labelling.
Considering such classi�cation still possible at the end of our work�ow, this aspect
has not been developed.

• Waveform simulation would be relevant for classi�cation by adopting an analysis-
synthesis strategy. However, we are not convinced to be able to reach the quality
of simulation of small-footprint data that would be necessary for more advanced
classi�cation. For instance, discriminating grass and asphalt surfaces or slanted and
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tilted roofs require sophisticated re�exion models that the traditional Lambertian
assumption.

• Pattern recognition on enhanced point clouds or on FW data. Waveform
processing allows to detect additional 3D points, compared to multiple lidar systems.
Such points mainly lie on building edges, superstructures, and trees. Furthermore,
the spatio-temporal data volume can be directly processed to extract objects of in-
terest (planes, lines, building edges etc.), that would be relevant inputs for many
3D building modelling algorithms. The contribution of FW data may therefore be
assessed from a pattern recognition point of view. Nevertheless, the IGN has al-
ready developed an e�cient semi-automatic work�ow for 3D city modelling from
high-resolution optical images. Addressing such issues would therefore be redundant
or ine�cient without high density point clouds.

1.6 Overall strategy

Our strategy is composed of two main steps that are sketched in Figure 1.2. The inputs
and the outputs of each of these two steps are illustrated in Figure 1.3.

1. Waveform decomposition and modelling. Raw data are 1D signals. To generate
a 3D point cloud, we need to extract the locations of the modes within these signals,
since each mode (called echo) is assumed to correspond to a speci�c object (i.e., a
waveform is the superimposition of several signals considered as independent). This
task is called decomposition.
The shape of these echoes depends on the properties of the hit target. Characteriz-
ing this shape by a parametric function is interesting since more than simple spatial
features can be derived, and fed into a classi�er. This is the modelling step.
These two parts are traditionally tackled successively. We will �rst adopt such strat-
egy and select one relevant modelling function, whose parameters will be estimated
with a Least-Squares algorithm. Secondly, another methodology will be presented.
Instead of being limited to a unique model, the development of a stochastic approach
using a marked point process will allow us to �nd the best-�t model in a given library,
and merge the decomposition and modelling steps. A better adjustement leads to
improved signal reconstruction and data compression.

2. Classi�cation. The �rst part has allowed us to derive, for each waveform, several
range values. A georeferencing process turns such values into a 3D cartographic
point cloud. Along with spatial information are associated various shape features,
named full-waveform features, extracted from the two methods mentioned above.
Besides, a local neighbourhood analysis is performed for each point, providing other
spatial attributes relevant for our classi�cation purpose.
These two kinds of features are merged into a single feature vector, input of the classi-
�cation task. A supervised classi�er is selected, namely Support Vector Machines.
In order both to choose the most relevant feature set, and evaluate the relevance of
full-waveform features in comparison to geometric attributes, a feature selection
step is added. Two options will be considered: performing the selection before mak-
ing the decision, and wrapping the selection into the classi�cation. Consequently,
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conclusions may be provided, independently or not of the selected discrimination
method.

The methodology for land-cover classi�cation in urban areas by full-waveform lidar data
analysis is designed to be �exible. Depending the theoretical understanding of pulse propa-
gation in such regions or the sensor speci�cations, the modelling functions may vary. With
the proposed approach, it can be changed without modifying the feature selection process
and the classi�er rules. Furthermore, the same conclusion can be drawn when adjusting
the level of detail of the classi�cation: one simply has to modify the training samples of
the classi�er.

Figure 1.2: Overview of the �owchart of the thesis.
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(a) Ortho-image c©IGN.

(b) Raw 3D full-waveform volume.

(c) Estimated 3D point cloud (height coloured). (d) Estimated 3D point cloud (amplitude
coloured).

(e) Classi�cation: Building � Vegetation � Ground.

Figure 1.3: (a) Illustration of the proposed strategy over a small area of interest. (b) Our
input data are 1D signals, here georeferenced and coloured with respect to the amplitude of
each bin of each waveform. (c) These signals are decomposed into echoes, which generates
a 3D point cloud. (d) These echoes are adjusted by a model, which provides shape features.
(e) These features along with spatial ones are used as input in a supervised classi�er.
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1.7 Structure of the document

This work is divided in four main chapters, organized in three parts. The �rst part in-
troduces full-waveform data and existing process. The second one deals with waveform
decomposition and modelling, whereas the last part addresses the issue of 3D point cloud
classi�cation.

• Chapter 2 presents airborne laser scanning and the speci�city of the full-waveform
technology. The �rst aim of this chapter is to provide information about the recording
process so that an end-user may know what these "raw" signals really represent. Fur-
thermore, the main FW sensors are described, whatever their applications: pioneer
bathymetric sensors, NASA experimental systems, and eventually current available
topographic devices. Finally, an as comprehensive as possible state-of-the-art of the
main existing FW processes is provided. The main signal processing methods is �rstly
presented. Secondly, the subsequent applications on generated 3D point clouds are
described, both for urban and forested areas.
This chapter also aims to introduce general models and notions that will be taken up
in the following chapters, e.g., the lidar equation or the echo amplitude calibration
and correction.

• For generating 3D point clouds with echo shape features, a waveform processing step
is mandatory. In Chapter 3, we propose a variation of the standard Gaussian decom-
position method. The echoes are modelled with the Generalized Gaussian function,
introducing a new feature, namely the echo shape. The objective is to improve signal
�tting, and therefore better estimate the morphological echo attributes: amplitude
and width. Such model coupled with an enhanced echo detection method allows
to retrieve additional 3D points compared to traditional multiple pulse data. The
waveform decomposition and modelling stages are quantitatively and qualitatively
evaluated, and, �nally, the extracted FW features are analyzed through the perspec-
tive of land-cover classi�cation.

• An alternative approach of the standard Gaussian-based decomposition methods is
proposed in Chapter 4. The problem is addressed using a marked point process. Such
stochastic framework o�ers the possibility to �t each echo by the most suitable func-
tion of a prede�ned library (in our case, three models), and adversely with far less
restrictions that using a non-linear least square method. The signal processing task
is moved towards a higher level since it is now mainly ruled by physical lidar-based
parameters. Furthermore, a better signal reconstruction is expected which would
lead to better data compression and representation. The performance and the e�ec-
tiveness of the method are assessed both on simulated and various real waveforms.
The relevance of the model library is discussed for several urban areas of interest.
Finally, the �tting process is evaluated and compared to the Gaussian method.

• Subsequent to waveform decomposition and modelling, Chapter 5 deals with the clas-
si�cation of the generated 3D point clouds. In addition to the 3D point geometry and
other ensued pure spatial features, the modelling step provides echo shape features
that may be discriminant for land-cover classi�cation. The Support Vector Machine
(SVM) classi�er is presented as a supervised classi�er suited to our problem: it is
robust to the dimensionality of the data and has good generalization performance,
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even if the situation of a limited training set. Because of the fusion of geometrical and
FW attributes for discriminating ground, vegetation, and building areas, an attribute
ranking approach is set up to assess the relevance of the newly derived FW features,
the SVM classi�er is coupled with a feature selection step. Two main procedures are
investigated, and the results compared in term of accuracy. This chapter ends with a
brief presentation of an alternative approach involving Random Forests for FW data
relevance assessment in urban areas.

• Eventually, the conclusions about the contributions of our analysis are drawn in
Chapter 6, and interesting perspectives of research are also presented for the analysis
of urban areas. An outlook on the real potential of FW data is �nally sketched.
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Chapter 2

Full-waveform topographic lidar

The aim of this chapter is threefold. Firstly, Section 2.1 brie�y recalls the principle of
airborne laser scanning. Then, the full-waveform technology and resulting data are pre-
sented in Section 2.2. The objective is also to gather the knowledge that we have acquired
at the engineering level with the processing of the raw data, so that an end-user may re-
ally know which kind of information is really provided. Secondly, this chapter may also
be considered as a state-of-the-art of the existing sensors (Section 2.3) and methods that
have been developed so far to process lidar waveforms (Section 2.4). This comes in useful
as an introduction of modelling and classi�cation issues that will be addresses in details
in the corresponding Parts. Furthermore, several general models and notions such as the
lidar equation or the amplitude feature calibration and correction are introduced in this
Chapter, and will be used afterwards in various parts of the following chapters. Eventu-
ally, the two datasets that have been processed in this thesis are presented and their main
speci�cations detailed in Section 2.7.

2.1 Principle and technology of laser scanning

Airborne topographic laser scanning (ALS) is an active remote sensing technique providing
direct range measurements between a laser scanner device and the Earth surface. ALS
physical principle consists in the emission of laser pulses from an airborne (aircraft or
helicopter) or spatial (satellite) platform at a high repetition frequency. The distance is
derived from the measured round-trip time of the backscattered signal between the sensor
and the target [Bal99b]. Then, 3D point clouds are obtained with a direct georeferencing
processes:

• An hybrid system using both GPS (di�erential measurements with a ground station
located near the survey area) and inertial measurements (IMU) is used to optimally
calculate supporting vector attitudes, the absolute orientation of the laser sensor and
by post-processing after the survey, the smoothed best estimated trajectory [HJW02].

• The embedded hardware system perform real-time signal processing tasks: range
values are retrieved by �nding the location of the modes of the backscattered signal.
Such modes are called echoes.
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• Afterwards, a georeferencing process turns the point value expressed in laser device
polar coordinates {range, scan angle } to a {x, y, z} triplet within a given geographic
datum. Laser scanning companies traditionally deliver 3D point clouds to end-users.

Basic airborne lidar (Light Detection And Ranging) systems are therefore composed of a
laser transmitter and a receiver (range�nder unit which receives the re�ected pulses and
measures the distance), a mechanical scanner, a hybrid GPS/INS positioning system, a
storage media, and an operating system for signal digitization and on-line data acquisition.
This unit monitors and synchronises measurements, and processes data in real-time to
extract range values. The georeferenced points are not computed on-board but afterwards
[Bal99a; TW04].
The �rst active sensors carried by airborne or satellital platforms were designed at the
beginning in the 1970's. They provided 1D pro�les along the sensor track by sequences
of single pulses nadir view. By forward motion of the sensor carrier and an additional
scanning mechanism in across-track direction (e.g., a rotating mirror, a prism. . . ), strips
of 150m to 600m swath width are covered by modern sensors, depending on type of device
and carrier altitude. Such technology provides denser point clouds with a more regular
repartition on the Earth surface.
Airborne topographic systems have now proved to enable fast, reliable, dense, accurate,
but irregular mapping of terrestrial landscapes. The accuracy of the measurement is high
(typically < 0.1 m in altimetry and < 0.4 m in planimetry).

2.1.1 Physical principles

Both pulsed and continuous wave lasers are being used. Pulsed systems measure the
round-trip time of a short light pulse from the laser to the target and back to the receiver.
Continuous wave systems carry out ranging by measuring the phase di�erence between
the transmitted and received signal. Most of airborne topographic lidar systems are pulse-
based.
Laser pulses are emitted with very high energy, short pulse duration, high �ring rate,
and narrow beam width. The laser light is coherent with monochromatic radiation. The
measurement of the time-of-�ight t, created by light travelling in a given medium, allows
to simply evaluate the slant range d between the sensor and the target using:

d =
vg
n

t

2
(2.1.1)

where vg is the group velocity of light and n the refraction index of the medium (n w1.00025
in the air, and often assumed as equal to 1).
Laser ranging devices actively emit pulses of short duration (typically a few nanoseconds)
in the infra-red domain (wavelength between 800 nm and 1550 nm) of the electromagnetic
spectrum. The target sizes are therefore much larger than the wavelengths. Depending
on the wavelength, the emitted electromagnetic wave interacts with atmospheric particles
(absorption or scattering, known to have negligible in�uence if water vapour and aerosols
are absent), but mainly with the illuminated natural or man-made objects belonging to
the Earth surface. Thus, the propagation velocity of the laser pulse is most of the time
assumed to be constant.
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The Pulse Repetition Frequency (PRF) depends on the acquisition mode, determines the
�ying altitude, and is typically superior to 100 kHz. A pulse release is done when the
previous pulse recording is e�ective. In fact, the PRF is constant. For instance, with a
50 kHz pulse rate, the laser system is not obliged to wait the previous pulse return under
a �ying height of 3 km. With ALS systems, such borderline cases never occur. However,
the latest systems have even the ability to �re a second laser pulse before the recording of
the previous pulse [RT08], thus increasing the point density without additional strips.

Due to di�raction, the laser beam inevitably fans out; a typical value for the beam diver-
gence lies between 0.4 and 0.8 mrad. Therefore, a single emitted pulse may cause several
echoes from objects located at di�erent positions inside the conical 3D volume traversed
by the pulse. The number of multiple returns therefore depends on the site characteristics
(see Section 2.1.3), but also on the �ight speci�cations. Indeed, the laser spot diameter D
is (assuming a fronto parallel �at target):

D = 2H tan
β

2
(2.1.2)

where H is the distance to the sensor, and β the beam divergence. For instance, D=0.5m
at a distance of 1000 m with β=0.5 mrad. In the ALS context, the laser beam once it
intersects with the surface (H is then the �ight height) produces a spot diameter with
known dimension, called the laser footprint, which varies according to the surface (slope
and material characteristics), and may be deformed as an ellipsis for �at surface. With
increasing beam divergence, the footprint and the 3D conical region become larger, and
the probability to obtain multiple echoes per emitted pulse increases. This is particularly
interesting in forested areas since lidar systems can measure simultaneously both the tree
canopy height and the terrain elevation underneath.

A typical pulse width of τp=4 ns corresponds to a length of approximately 1.2 m at the
speed of light. This is an important characteristic of any laser system, since it has a major
impact on how multiple returns may be detected or di�erentiated. Two echoes can be
discriminated if their distance d is larger than half of the pulse length lp:

d ≥ 1
2
lp with lp =

c

n
τp (2.1.3)

This means that for τp=4ns, targets may be discriminated if their distance is at least larger
than 0.6 m.
More details about topographic laser scanning principles (from laser fundamentals to sys-
tem components) and existing systems may be found in [ST09; VM10].

2.1.2 Lidar measurement formulas

The standard lidar equation is derived from the radar equation. It describes the measure-
ment process by taking the detector and target characteristics into account. It also relates
the power of the transmitted and return signals [Jel92]. More detailed formulas have been
proposed to model real world constraints [DRC97; CSL01]. Nevertheless, they are only
valid for single sources or for �at surfaces. In case of targets that are distributed in space,
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the re�ected signal is the superposition of echoes at di�erent distances.
The received power Pr can be expressed as an integral:

Pr(t) =
D2

4π λ2

∫ H

0

ηsys ηatm
R4

Pt(t−
2R
vg

)σ(R)dR (2.1.4)

where t is the time, D is the aperture diameter of the receiver optics, Pr is the received
power, Pt is the emitted power, λ the wavelength, H the �ying height, R the distance
from the system to the target, ηatm and ηsys respectively the atmospheric and system
transmission factors, vg the group velocity of the laser pulse, and σ(R)dR the apparent
e�ective di�erential cross-section [WUD+06]. The cross-section is called �apparent� since
an object re�ecting the signal at a given distance may occlude an object further away.
The power of the received signal can also be considered as the sum of the contribution of
N targets with their own characteristics:

Pr(t) =
N∑
i=1

(Pr,i ? ηsys ? ηatm)(t) (2.1.5)

where ? is the convolution operator and Pr,i(t) is the echo of the ith object expressed as:

Pr,i(t) =
D2

4π λ2

∫ Ri+∆R

Ri−∆R

1
R4

Pt(t−
2R
vg

)σi(R)dR (2.1.6)

where Ri is the mean distance, [Ri −∆R,Ri + ∆R] is the spatial spread, and σi(R) is the
e�ective di�erential backscattering cross-section of the object. The re�ected signal can be
seen as the convolution between the transmitted pulse and the e�ective di�erential cross-
section. Typically ∆R lies between 0.4 and 1.5 m. Thus, ∆R� R, and as a consequence,
we have:

Pr,i(t) ≈
D2

4π λ2R4
i

(Pt ? σ
′
i)(t) (2.1.7)

where σ
′
i(t) is the apparent cross-section of illuminated areas within each range interval

(in m2). The power of the received signal can �nally be expressed as:

Pr(t) =
N∑
i=1

D2

4π λ2R4
i

(Pt ? ηsys)(t)︸ ︷︷ ︸
system contribution

? (ηatm ? σ
′
i)(t)︸ ︷︷ ︸

environment contribution

(2.1.8)

The received waveform is therefore the convolution between the emitted pulse and the
surface response σ

′
i, that is known to be the backscatter cross-section (BCS).

For a given local survey, ηatm is almost constant with the time but is mainly a�ected by the
range value R. ηatm = exp(−2Ra) for [Ste00; JSE02] or ηatm = 10−2Ra/10000 for [HP07],
where a is the atmospheric attenuation coe�cient expressed in dB/km and as a function of
the laser wavelength and the visibility distance in [Ste00] (empirical spectral approximation
based on Koschmieder's formula). In practice, ηsys is assumed to be constant over time
and for a given lidar sensor.
The apparent cross-section σ

′
i gathers all the target characteristics and is de�ned as:

σ
′
i = 4π

ρAt
Ω

(2.1.9)
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where Ω is the solid angle of the target (Ω = π), At is the target area (At = πR2β2/4), and
ρ is the target re�ectance. Assuming a Lambertian scattering target ρ = ρm cosα, where
ρm is the material re�ectance and α is the angle between the laser beam and the target
normal. Therefore, we have:

σ
′
i = πρm cosαβ2R2

i (2.1.10)

Finally, Equation 2.1.8 may be rewritten as follows:

Pr(t) = D2ηsysρm cosα
N∑
i=1

exp(−2Ria)
4R2

i

Pt(t) (2.1.11)

2.1.3 Limitations of multiple pulse systems

The �rst commercially available airborne laser scanners provided a simple backscattered
echo per emitted pulse. The recording of a single echo is su�cient if there is a simple
target within the di�raction cone. However, even for small laser footprints (0.2 - 2 m),
there may be many objects within the travel path of the laser pulse: individual scattering
contributions are generated for each illuminated object. Multiple pulse or multi-echo
laser scanning systems are designed to record more than one echo. The earlier systems
typically collected �rst and last pulses only. The more recent systems are now able to
discriminate up to six individual returns from a single pulse [TW04]. Multiple re�ections
occur on vegetated areas. When the vegetation is not very dense, it is often assumed that
the �rst echo belongs to the canopy top and the last pulse to the ground. In reality this
is not always the case. For urban areas, in a particular viewing angle, when the laser
beam hits a building edge, two echoes can be generated. The �rst pulse corresponds to
the spot illuminating a part of the roof, while the second one to the spot hitting the
ground (see Figure 2.1). The same behaviour may be noticed within building roofs when
superstructures (mainly chimneys) of su�cient height are present. Large laser footprints
enhance this phenomenon.

For multi-echo systems, pulse detection is performed on the �ight on the backscattered sig-
nal. The hardware system detector turns a continuous waveform to several time-stamped
pulses, giving the position of individual targets. Many peak detection methods exist, but
lidar manufacturers do not provide any information and quali�cation about the method im-
plemented in their hardware systems. The number and the timing of the recorded pulses
are critically dependent on the detection method, since discrete systems provide only a
range value at a certain rise time of the echo and no information about the echo shape
[WUM+04]. Standard peak detection methods are detailed and analyzed in Chapter 7
of [ST09].

The returned signal depends on the emitted pulse, the incident angle between the emitted
pulse and the target, the target roughness and re�ectivity behaviour (expressed with the
Bidirectional Re�ectance-Distribution Function � BRDF), the distance to the target (R2

attenuation), and the occlusion and in�uence of previous hit targets in more complex
situations. Consequently, distance computation methods based on simple trigger echo
detectors su�er from several drawbacks in the following critical measurement situations:
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(a) Orthoimage c©IGN. (b) Location of lidar multiple echoes. Blue
and green points correspond to second and
third echoes, respectively.

Figure 2.1: Illustration of the multiple pulse property of lidar systems in urban areas
(Amiens, France). Building edges and vegetated areas are clearly enhanced with a 0.8 m
footprint size (Optech 3100 sensor).

- Misestimation of pulse location: depending on the target characteristics and laser
incidence angle, the laser pulse may be attenuated, stretched or skewed. This may have an
impact on the performance of the detection method, even for �at areas [WUM+04]. The
resulting noise in the �nal 3D point cloud is mainly altimetric (more than 0.3 m in some
cases).

- Missing echoes: lidar systems may be limited to detect a maximum number of peaks
(e.g., 4). When this upper bound is exceeded, echoes are inevitably missed. It happens in
vegetated areas.

- Overlapping pulses: standard detection techniques may not resolve signals into sep-
arated echoes when several modes are closely located. Firstly, signal modes can be missed
(Figure 2.2.b). Secondly, the pulse location may be estimated between these two pulses
and then generate a wrong 3D point [PSTA05]. In urban areas, such cases can be:

• low ground vegetation, low above ground urban items, and building superstructures:
they may give rise to a small bump on the leading edge of the ground or building
echo;

• vegetation areas, due to the tree canopy re�ection (top, branches, and stem).

- Weak echoes: The two �rst echoes contain a large majority of the total re�ected signal
power. Real-time detection of more than three or four pulses requires thus the detection
of low intensity signal within noise. Weak echoes may therefore be missed (Figure 2.2.a).
These situations correspond to:

• echoes within trees and lying on the ground below;

• roof echoes attenuated by strong material absorption and/or signi�cant incident an-
gle.
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(a) A two-mode lidar waveform with one
weak echo (Optech 3100 system).

(b) A lidar waveform with two overlapping
echoes, e.g., a hedge (Riegl LMS-Q560 sys-
tem).

Figure 2.2: Limitation of on-board waveform processing. In both cases, a single mode
is found, and inaccurately. The vertical lines symbolize the position of the echo pulse
extracted by the hardware system.

2.2 Full-waveform lidar data

Full-waveform topographic laser scanning permits to record the received signal for each
transmitted laser pulse. Such sequence is called a waveform.

2.2.1 What does a waveform represent ?

A waveform represents the laser backscattered energy as a function of time. Full-waveform
lidar systems di�er in sampling rate, in scan pattern and in footprint size. Most com-
mercial systems are small-footprint (0.2 - 1 m diameter, depending on altitude and beam
divergence) and high pulse rate. They gear to high resolution terrain mapping by pro-
viding a high point density and an accurate altimetric description within the di�raction
cone. They illuminate a single or a few surfaces within the footprint, yielding waveforms
with distinct return pulses corresponding to speci�c surfaces. A small laser footprint is
therefore required to collect a high number of geometrically well de�ned terrain echoes,
such as urban areas. With very small spot sizes in urban areas (<0.5 m), the waveforms
are bound to be "single-mode", except at discontinuities. Such cases correspond to hard
targets such as ground and building roofs (see Figures 1.1 and 2.3). For distributed targets
like trees, the number of modes is not foreseeable but may be solved with suitable signal
processing algorithms (see Figure 2.4).

In natural areas, the main drawback of such systems with small footprints is that they
often miss the top of the trees. It is di�cult to determine whether or not ground under
dense vegetation has been reached. Consequently, ground and tree heights cannot be es-
timated accurately [DB00]. Large footprint systems (10-70 m diameter) are intended for
characterization of canopy structure. Their advantage is to increases the probability of
the laser beam to hit the ground and avoid the biases of small-footprint systems. More-
over, they sample a representative canopy volume in a simple footprint since the return
waveform gives a record of the vertical distribution of intercepted surface within a wider
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area (Figure 2.3). Consequently, widening the footprint decreases the point density and
aggregate the altimetric pro�les, providing an average signal.

Figure 2.3: The laser beam is displayed in red. Left: Emitted and received signals in a
forested area with a small-footprint lidar (spot size ∼ 0.5m). With a small-sized footprint,
all targets strongly contribute to the waveform shape, but the laser beam has a high
probability of missing the ground. Right: Emitted and received signals in a forested area
with a large-footprint lidar (size > 5m). When considering large footprints, the last pulse
is bound to be the ground, but each echo is the integration of several targets of identical
range at di�erent locations and with di�erent properties.

2.2.2 Recording full-waveform data

The two main techniques for recording the signals using an analog-to-digital converter are
described in [JS03]. First, the received optical signal (which is the backscattered laser
radiation) is collected by the receiver optics and converted to an electrical signal by an
avalanche photodiode. In a second time, the output photocurrent is ampli�ed and then
digitized using a n-bit quantizer and a sampling period (of 1 ns for commercial devices).
The waveform amplitude values are the output of this process. They have no units, and
are often expressed in DN (Digital Number).

To record the waveform, lidar manufacturers have added digitization terminals to their
systems and hard disks with high storage capacity. The waveforms are usually digitized
on 8, 12 or 16 bits. The volume of data is bound to very superior to the 3D point cloud
over the same area (more than �ve times for the Amiens dataset, see Section 2.7). The
main limitation of surveying areas with a full-waveform lidar system is subsequently the
storage capacity. One current issue thus deals with data handling and management since
much larger data volume are now recorded.
The digitization sampling period is constant and varies between 1 and 10 ns. To avoid
massive storage problems, the entire waveform (i.e., the time history of the laser pulse
from the sensor to the target and coming back) is not integrally recorded but only for
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(a) Building roof (one echo). (b) Superstructure (one echo for the su-
perstructure, one for the roof).

(c) Hedge (one echo for the hedge, one for
the ground).

(d) Dense vegetation.

(e) Sparse vegetation (three echoes for the
canopy, the last one for the ground).

(f) Vegetation with two main levels (last
pulse for the ground).

Figure 2.4: Several examples of small-footprint waveforms over various objects of interest.
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a given length after crossing a �xed minimum value. Such recording is ruled by sensor
speci�cations and some of them may be tuned depending on the surveying area:

• A range gate exists, during which the digitizer does not respond to a signal, in order
to prevent spurious return signals from the atmosphere from triggering the digitizer
(e.g., 100 m for the Optech 3100).

• In the case of a drop-out, the backscattered signal never crosses the threshold and
no segments are recorded.

• The record is limited to a prede�ned maximum number of samples. For example,
Optech ALTM systems can store up to 440 samples for each pulse. This is equivalent
to a discrete vertical section of 66m (440 × 0.15m per sample). The TopEye MarkII
system saves 128 samples according to a prede�ned mode which is either "�rst pulse
and later" (127 samples after the �rst) or "last pulse and earlier". It means that
full-waveform systems will not record, within a given waveform, both echoes from
the canopy and from the ground, if the trees are taller than the maximum "recording
length" of the system.

• To overcome this drawback, systems may assemble several sequences for a single laser
shot. If the amplitude of the last samples of the waveform are above a �xed threshold,
a new segment of �xed length is recorded. The number of waveform segments thus
depends on the terrain. Flat, open terrains produce one segment, while more complex
targets may produce more segments. The upper bound is 2 for the Riegl LMS-Q560
system and 7 for the Optech 3100 sensor. In practice, two sequences su�ce.

• In addition to the data above the threshold, the digitizer also records a number of
samples before the �rst sample crosses the threshold, and after the last one drops
below the threshold.

The digitizer does not detect weaker signals any better than a traditional multi-echo device.
In fact, the signal-to-noise ratio (SNR) of the digitized signal is lower because of quantiza-
tion and other noise introduced by the digitizer. Greater sensitivity can only be realized
by averaging multiple waveforms. All waveform data are captured in a single shot with a
sensor operating from a moving platform. Thus, this is only possible by post-processing
techniques (see Section 2.4.2).

Finally, when a pulse is emitted by the laser, a tiny part of its energy is diverted by a
beam splitter onto a photodiode whose signal or start pulse triggers the timing device. It
is often called the "emitted/transmitted pulse" or "T0 pulse". The proportion of the real
emitted laser energy that is recorded in unknown to an end-user.

2.2.3 Advantages and limitations

We detail here the advantages and limitations of using full-waveform data for a beginner
end-user. These conclusions are bound to be objective, and are also based on practical
issues that have been noticed when displaying the data, without any assumption on which
processes would be carried out on waveforms.
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Advantages

- No minimum pulse separation limitation: FW systems overcome the inevitable
limitations of the range�nder electronics i.e., the inability of discrete-return systems to
resolve features separated by less than a few meters in the range direction. Overlapping
peaks may be found, resulting in denser 3D point clouds. The remaining limitation comes
from the digitization rate (Nyquist-Shannon sampling theorem).

- Detection of ground re�ections: In presence of ground-clutter and of signi�cant
background noise, weak echoes may be missed by sensor hardware algorithms. Waveform
processing can enhance the ability to detect such echoes.

- Additional information retrieval: O�-line processing allows to foster information
extraction from the raw signal. In addition to peak extraction, a morphological analysis
of the waveform modes may be carried out.

- Data accuracy improvement: By designing an appropriate peak detection algorithm,
a end-user can improve range estimation, and may qualify the extracted 3D point cloud.

- Metadata availability: For each emitted pulse, the GPS time stamp, scan angle, sensor
trajectory, position and attitude, and ranger�nder data (range+amplitude) are available
in addition to the emitted and backscattered signals. These information are necessary to
generate a 3D point cloud but also o�er several opportunities.

- Amplitude data exploitation: Metadata knowledge allows to make the peak
amplitudes more homogeneous for the corresponding survey (see Section 2.6.2).

- Sensor geometry processing possible: We call sensor geometry images raster
data which topology is based on lidar metadata. One axis of the image corresponds to
the sensor acquisition angle, and the other represents the scan line number (which may be
considered as the acquisition time) [DMB08]. Each pixel refers to a unique lidar waveform
(see Figure 2.5). This e�cient image-based organization allows a direct access to wave-
form metadata and neighbours, which is algorithmically interesting and not possible with
traditional 3D unstructured point cloud (e.g., image processing algorithms can be used).
Full-waveform data can therefore be considered as 3D data with a depth distance.

Limitations

- Lower pulse repetition frequency: Waveform digitizing and recording forces the lidar
system to decrease the pulse repetition frequency. High density FW surveys thus require
more overlapping strips which has two drawbacks: the survey costs increase and additional
strip registrations are necessary.

- Lower Signal-to-Noise Ratio (SNR): The waveform SNR is lower than for discrete-
return systems. This can lead to poor signal dynamics and sometimes to holes in datasets.
Weak pulses may have amplitude values under the prede�ned threshold and thus waveforms
may not be recorded (see Figure 2.6).

- Entire waveforms? To avoid recording hundreds of useless samples, the recording
process is constrained (see Section 2.2.2). For high building edges and vegetated areas
without understory, waveform recording may be stopped before the laser pulse reaches the
ground since no sample of su�cient amplitude is present in between (the so-called dead
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zone).

- Huge datasets: Since full sequences of emitted and backscattered signals as well as
metadata are now recorded, FW acquisitions lead to �ve to �fteen times more bulky
�les that those provided by multiple pulse systems, even in binary formats. A tedious
engineering task is therefore compulsory to extract the waveforms and the information to
georeference them. [LZT10] have proposed a wavelet-based lossy compression scheme for
lidar waveforms, allowing a data reduction rate of 21%.

- Limited acquisition time: With overwhelming datasets, FW lidar surveys are currently
limited by hard-drive capacities. A 140 GB hard-drive corresponds to 1.6 hours of data
acquisition time at a 50 kHz PRF for the Optech 3100 system.

- No dedicated software: At the moment, there are no standard FW �le formats nor
dedicated softwares that allow an end-user to visualize in 1D and 3D, process and georefer-
ence raw waveforms. The ASPRS Las �le format version 1.3 allows waveform data storage
but has not yet been adopted. Moreover, lidar companies o�er display softwares to their
customers, even with processing tools, but they are limited to their own �le formats (e.g.,
Riegl's RiAnalyze). Several free or open-source softwares exist but they are not yet fully
operational [CBD+09; MOK+09].

Lidar sensor companies are now making e�orts to reach a PRF close to the one of multiple
pulse systems. In order to allow end-users to handle, display and easily process FW data,
one solution that is now proposed is to directly generate a 3D point cloud by on-board
waveform analysis. Additional features are derived by partial waveform modelling that
also overcomes the problem of pulse separation of multi-echo devices [UT10].

Additional properties of FW ALS Evaluation

A
d
v
a
n
ta
g
e
s

No minimum pulse separation limitation +++
Detection of ground re�ections +++
Additional information retrieved +++
Data accuracy improvement ++

Metadata available ++
Amplitude data exploitable ++

Sensor geometry processing possible ++

L
im

it
a
ti
o
n
s Lower PRF -

Lower Signal-to-Noise Ratio - -
Entire waveforms ? -
Huge datasets? - -

Limited acquisition time -
No dedicated software - - -

Table 2.1: Advantages and limitations of full-waveform laser scanning.
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Figure 2.5: Illustration of the generation of the so-called sensor geometry (courtesy of
Adrien Chauve).

Figure 2.6: In case of the high SNR and low amplitude values, waveforms can exhibit very
low values, and therefore will not be recorded: example over roof tops of Amiens. (a)
Orthoimage c©IGN. (b) and (c) two points of view of the same section in the waveform
data volume. The left roof has been acquired. The right one exhibits holes in one side.
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2.3 Typology of full-waveform systems

The �rst full-waveform systems were designed in the 1980's for bathymetric purposes
[GM88]. Topographic devices appeared in the mid-1990's with spatial and airborne ex-
perimental systems from NASA. Aerial systems have been commercially available since
2004. Both bathymetric and experimental systems have been developed for speci�c appli-
cations, whereas lidar companies have added digitization terminals without targeting par-
ticular purposes. In contrast to the pioneer systems, commercial systems exhibit smaller
footprints. They also feature higher sampling rate.

2.3.1 Bathymetric systems

Designed for accurate sea-depth determination, they are composed of two beams, one
green, and one infrared. The green beam (532 nm) traverses the air-water interface and
propagates in the water until the sea bottom with a minor attenuation. The infrared
beam (1064 nm) is re�ected by the water and measures the range from the plane to the
sea surface. Although the absorption coe�cient is high in near infra-red wavelengths, the
footprint of the beam is su�ciently large (> 2.5 m) to result in a return from small waves
which cause the signal to be re�ected back to the receiver (a Raman return is used as a
secondary surface detector). Bathymetric waveforms are therefore composed of two peaks.
Processing these waveforms consists in �nding the two main signal maxima and deriving
the range values. We will not further detail bathymetric lidar systems in this dissertation.
More information are available, for instance, in [GCRR00].

There are currently several bathymetric lidar systems: LARSEN-500, the very �rst
bathymetric system, LADS (Laser Airborne Depth Sounder), the SHOALS series (Scan-
ning Hydrographic Operational Airborne Lidar Survey), fully operational since 1994,Hawk
Eye, developed in Sweden on a model similar to SHOALS and EAARL (Experimental
Advanced Airborne Research Lidar), developed by NASA in 2002. Their main character-
istics are described in Section 2.3.4.
Particularly, the EAARL system has been designed to map near-shore bathymetry, topog-
raphy, and vegetation structure simultaneously [NBWO06]. It can accommodate a large
signal dynamic range and has been built to consider signi�cant variations in the vertical
complexity of the surface target. Thus, it enables an automatic adaptive acquisition of
dramatically di�erent surface types, which suits very well to coastal areas.

2.3.2 Experimental topographic systems

The earliest e�orts to use full-waveform digitization topographic lidar systems have been
shown by NASA, mainly in forestry research. The following prototypes have been designed
to assess the characteristics of woodlands or land cover. They aim at mapping large areas
to provide data at a resolution of several meters and a swath width up to 1-2 km. More
details can be found in [ST09], Chapter 2.

- Scanning Lidar Imager of Canopies by Echo Recovery (SLICER): It was de-
signed to characterize the vertical structure of the canopy. This medium-sized footprint
airborne device demonstrated that full-waveform systems could be used to assess the char-
acteristics of woodlands, distinguish tree ages and species, and characterize the structure
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of extensive areas [LHC+99]. SLICER data may be downloaded on line [SLI10].

- Shuttle Laser Altimeter (SLA): This satellite sensor was designed to cover seas,
clouds, and land (glaciology, tectonics, hydrology, geomorphology, etc.). Two versions
were produced, SLA-01 and 02 (1996-1997), for a feasibility study for the future MBLA
and GLAS systems. SLA-02 was used to verify the accuracy of a global 1 km resolution
DTM and thus characterize some systematic biases [HGCL99].

- Laser Vegetation Imaging Sensor (LVIS): This improved version of SLICER was
used to test and provide data for developing algorithms, calibrating instruments and eval-
uating the performance of measurements to assess the ulterior Vegetation Canopy Lidar
(VCL) mission (cf. MBLA system). It also demonstrated the potential of full-waveform
data to characterize woodland areas and measure the Earth topography, even below the
canopy [BRH99]. For surfaces with similar re�ectance, the amplitude of the waveform, cor-
rected by attenuation e�ects, is a measure of the amount of canopy material. It was mainly
used to develop a processing scheme to determine biomass features as well as a real-time
algorithm for classifying ground points by analysing the return waveform. Sample data
from this system are public [LVI10].

- Multi-Beam Laser Altimeter (MBLA): The MBLA system was part of the VCL
mission (Vegetation Canopy Lidar). VCL is an active space-based lidar remote sensing
system consisting of a �ve beam instrument with 25 m contiguous along track resolution.
VCL aimed at providing datasets for understanding major environmental issues (climatic
change, sustainable land use), and improving global biomass and carbon stocks estimation.
VCL's core measurement objectives were canopy top heights, vertical distribution of in-
tercepted surfaces and ground surface topographic elevations [VCL10]. This program was
due to be launched in 2003 but was abandoned.

- Geoscience Laser Altimeter System (GLAS): The �ve year ICESat satellite mission,
carrying GLAS sensor, was launched in January 2003 to study the evolution of land and
sea glacial masses in the Antarctic and Greenland, the roughness and thickness of sea ice,
the topography (using a 1064 nm laser) and the vertical structure of clouds and aerosols
(532 nm laser) [Let04; GLA10]. ICESat classi�es the return waveform in real-time into
land/ice and icesheet/sea by analysing the return waveform and recognizing Gaussian
distributions from which the main characteristics are extracted [BZB+03]. GLAS data
has also been processed for forest parameter retrieval, hydrological and change detection
purposes [USN08]. Datasets are available on the mission Web site [ICE10].

- Forthcoming sensors: The ICESAT-II mission (NASA) aims to measure vegetation
canopy height as a basis for estimating large-scale biomass and changes. It will use a
multi-beam approach, in contrast to ICESAT, and is scheduled for launch in late 2015.
The DESDynI (NASA) mission combines an L-band Interferometric Synthetic Aperture
Radar (InSAR) system, and a multiple beam lidar with 25m spatial resolution and 1m ver-
tical accuracy. The goal is to study surface deformations, ecosystems (terrestrial biomass
structure), and ice dynamics. DESDynI aims to take advantage of the precision and direct-
ness of the lidar to calibrate and validate the InSAR, especially in ecosystem types where
�eld campaigns have not occurred, and to measure the distance between the canopy top
and bottom elevation. It should be launched in 2016 or 2017 [DES10]. The Excalibur
project (ESA) should be operational near 2018 with a lidar system that should sample
every 1 m the signal backscattered from the Earth surface over the last 300 m until the
ground.
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2.3.3 Commercial lidar systems

The �rst commercial airborne full-waveform laser scanner system was introduced in 2004
(Lite Mapper-5600 based on the Riegl LMS-Q560 laser scanner), without any dedicated
application [HUG04]. The manufacturing companies are Riegl (LMS-Q560/680, VQ-
380/460), Toposys (Falcon series), TopEye/Blom (MarkII), Optech (ALTM 3100), and
Leica (ALS-50II and 60). They have added digitization terminals to their latest sensors
and reduced their pulse rate, even if now e�orts are made to reach PRF close to multiple
pulse systems.
Companies such as Riegl also propose full-waveform systems for terrestrial laser scanning
and mobile mapping systems. At the moment, waveform processing is only performed
on-board and there are no more digitization [DBS10]. A solution may be to use airborne
systems in a terrestrial context [BM07], while preserving eye-safety conditions.

2.3.4 Technical speci�cations of the main existing systems

The following two tables summarize the main characteristics of the full-waveform lidar
systems mentioned above. Commercial sensor speci�cations will vary with the time, de-
pending on the spring of new sensor generations. For instance, Riegl has recently launched
the LMS-Q680 with much higher PRF (up to 400 kHz), thanks to multiple-time-around
processing algorithms.

Notes:
IFinal year : blank if the system is still in use.
IWavelength: when two wavelengths are given (typically 1064 and 532 nm), this means

that the system includes two lidar systems, each with its own wavelength. These are either
bathymetric applications or satellites with dual coverage (land and sea).

I From Flying height to Range accuracy : the characteristics are given as ranges of
values. These are manufacturer's data and are limited by the system �ying height. The
formulas for determining the exact values for a given height may be found in [Bal99b].

IRange accuracy : this is the accuracy given by the manufacturers after on-board peak
detection in the return waveform (telemeter accuracy). It is distinct from the along-track
minimum distance between two consecutive peaks and from the altimetric accuracy of lidar
data.

I In a cell, "-" means that the information is unknown or not available.
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2.4 Processing the backscatter waveforms

Two approaches have been explored for processing the lidar waveforms (see Figure 2.7).
On the one hand, it consists in decomposing the waveform into a sum of components (the
so-called echoes), so as to di�erentiate and characterize the di�erent targets along the path
of the laser beam. The aim of this approach is to maximize the detection rate of relevant
peaks, to generate a denser 3D point cloud and, �nally, to extend the waveform processing
capabilities by fostering information extraction from the raw signal. Increasing the num-
ber of 3D points is of interest for forestry applications (cf. Section 2.6), and for retrieving
building edges in urban areas. Extracting more information may be useful for segmenta-
tion and classi�cation purposes, in both forested and urban areas (see Section 2.6.3 and
Chapter 5).
On the other hand, the whole 1D signal is preserved. A spatio-temporal analysis is applied
to �nd features within a 3D waveform space. This approach is suitable for urban areas
where the geometry is regular (cf. Section 2.6.4).

Most research on full-waveform analysis are focused on the former point cloud enhance-
ment approach. The latter approach has barely been investigated. This section therefore
deals with waveform decomposition. First, waveform may be deconvolved from the �uctu-
ating transmitted pulse in order not to be sensor dependent (Section 2.4.1). If advanced
techniques focus on extracting strong and weaks echoes and on improving range determi-
nation (Section 2.4.2), other approaches model the waveforms using analytical functions
(Section 2.5) subsequent to the decomposition process.

Figure 2.7: From data acquisition to �nal products: comparison between (a) Multiple pulse
systems, and (b) Full-waveform sensors.
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2.4.1 Deconvolution

When the transmitted pulse is known, deconvolution can be carried out to remove the
in�uence of its shape on the recorded data. The main issue is that this is an ill-posed
problem if no a priori knowledge is introduced to constraint the problem. Standard signal
processing approaches, such as the Fourier-quotient method, therefore yield unsatisfactory
results. The following paragraphs present the approaches that have been proposed to
address this problem in the lidar waveform context.

Wiener �ltering

Based on a physical understanding of the pulse propagation and its interaction with the
illuminated surface, [JS06] propose a relevant algorithm to discriminate di�erent surface
responses which are very closely located in range (< 0.15m). First, the received waveform of
the backscattered pulse is computed using the lidar equation. It depends on the transmitted
waveform (modeled by a Gaussian function randomly modulated by a Gaussian noise), on
the spatial energy distribution of the emitted pulse (which models the laser device), on the
surface response (with given re�ectance and geometric properties, here with two di�erently
elevated specular plan plates), on the atmospheric transmission, and receiver e�ciency.
Echoes are �rst detected within the received waveform with a noise dependent threshold.
Then, deconvolution in the Fourier domain of the transmitted waveform with the received
waveform is carried out, and the surface function is estimated using the Wiener Filter
(the Wiener Filter is a real function estimated from the modulated transmitted waveform
and the background noise, it is mainly applied here for noise reduction in the frequency
domain). Finally, waveform �tting is performed with the Levenberg-Marquardt technique
(see Part 2.5), using the surface function as the modelling function. Experiments on
di�erent kinds of surfaces show that surfaces with a distance corresponding to less than
0.15 m may be resolved.
An alternative to the Wiener �lter may be the Richardson-Lucy algorithm [Nor06]. The
author reports that the latter one converges slower, is much more computationally heavy,
and may amplify the noise during its iterative procedure.

Expectation-Maximization based approach

An Expectation-Maximization (EM) based deconvolution strategy adapted from [FN01] is
adopted in [Par07; PN09]. The problem is formulated as a Bayesian estimation problem
where the maximum a posteriori (MAP) of a given energy function is estimated. This
function incorporates prior knowledge of the waveform and does not require any assumption
on the waveform noise (explicitly or implicitly as for the Wiener Filter approach). The
iterative EM algorithm is used to �nd a close solution of the MAP estimator. One salient
feature of this method is the provision of a parameter that tunes the trade-o� between a
high number of detected peaks and a high probability of false detection. This method was
developed for airport obstruction surveying, in order to improve object detection (such as
poles, antennas, etc.).
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Least-squares method with regularization

[WZR+09] have proposed a method for deconvolution in the time domain. The three vari-
ables (emitted and received waveform + backscatter cross-section � BCS) are considered
as piecewise linear functions that allow to turn the deconvolution problem into the reso-
lution of a system of linear equations with a least-square method. Moreover, due to the
presence of noise, the solution may be unstable and a regularization technique is necessary.
A smoothness constraint is therefore applied on the least-square problem. This technique
is e�cient but requires a good knowledge of the noise level within the data. Results on
synthetic simulations and real waveforms from various sensors are shown.

B-splines

A method based on uniform B-splines has been proposed by [RBP10]. This also allows
to solve the problem in a linear least-square approach, without any initialization step and
assumption on the shape of the emitted pulse and the scatterers. Indeed a B-spline of
degree 3, corresponds to a function with continuous curvature (C2 class). The emitted and
received waveforms are modelled as B-splines. The BCS can therefore also be estimated as
a B-spline curve. Fitting a B-spline curve to observations is a linear least-square problem.
The authors show good results both on synthetic datasets with known cross section and
real waveforms.

2.4.2 Advanced echo extraction methods

The main reason for decomposing the waveform is to extract more points in a more reliable
way. Several methods have been carried out so far. Waveform �tting algorithms, described
in Section 2.5, also permit to �nd peak location and echoes undetected by conventional
multiple pulse systems due to hardwired internal thresholds for peak detection. However,
they often require to model the echoes with an appropriate analytical function.

Correlation-based methods

[TWH05] detect pulses using both pulsed and continuous wave ranging systems. They
have noticed that a peak detection using a single threshold leads to constant errors that
depend on the SNR, whereas an adaptative threshold may be used when the emitted pulse
is known. Measuring the correlation between echoes coming from both systems allows a
signi�cative noise reduction and improves peak detection.
For estimating the number and position of echoes within the waveforms, [RWMU08] have
adopted the Average Square Di�erence Function (ASDF) method. This is a time delay
estimation technique based, here, on the correlation between the emitted laser pulse and the
recorded waveform. A function is de�ned to describe the shift between the two waveforms.
The single echoes are located at the minima of this function, that can either be local or
global minima, since multiple echoes may appear.
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Improved range determination

For urban landscapes, [KJS08] propose an iterative method to improve the point density,
the range accuracy as well as the segmentation between partially penetrable objects and
impenetrable surfaces. The goal of this approach is to �ll gaps that can appear in partly
occluded surface regions. Assuming that the laser beam hits a planar surface with a
given slope, the surface response is modelled (transmitted and received waveforms are
known) using a Matched Filter [Tur60]. It produces range values and generates a 3D point
cloud. Points are segmented according to a given feature and those expected to belong to
impenetrable surfaces are used to estimate surface primitives. A new surface response is
�nally computed and used as prior knowledge at the beginning of the algorithm.
This method (as well as the deconvolution approach) allows to determine the range of each
echo without any pulse shape assumption, and to detect weak echoes corresponding to
partially occluded and partly illuminated regions.

Detection of weak and overlapping pulses

[SYJ07] show it is possible to detect weak pulses corresponding to partially occluded targets
or objects with poor surface backscatter properties. A waveform stacking technique is
performed by establishing neighbourhood relationships between consecutive waveforms.
Mutual information is therefore accumulated to produce a "global� scattering for such
targets. This technique predicts new echoes left undetected by standard algorithms. The
method has been applied on terrestrial waveforms but would be e�cient as well on airborne
data.
[LMSV10] have also tackled this problem with a special emphasis on overlapping peaks.
They have developed an algorithm that detects echoes within pulse shapes that exhibit
asymmetric or non Gaussian behaviours (e.g., low above ground vegetation). They aim to
�nd in�exion points on both sides of primary visible peaks, with su�cient amplitude and
distance to the main peak location. Then, a Gaussian �t is applied and missed peaks are
iteratively retrieved in the residuals maxima. Finally, a qualitative analysis on motorway
barriers shows that overlapping pulses may be resolved very well and thus close target
di�erentiated (<0.6 m in this case).

2.5 Waveform modelling and echo �tting

The advantages of waveform modelling are three-fold. First, as for methods described
above, new echoes are found. On forested areas, it can, for instance, provide up to 100%
more pulses than a real-time system [RKS08; CVB+09]. Secondly, waveform processing
improves object range determination, even over complex surfaces [ZSA+02]. For instance,
in forested areas, both canopy and ground height estimates may be improved [DPLV08]
but this result depends on the survey speci�cations and the landscape [CVB+09]. In ur-
ban areas, range accuracy of solid opaque targets can also be improved [KJS08]. Thirdly,
modelling the echoes provide additional parameters that may be useful for classi�cation
purposes (see Section 2.6.3).

When modelling the echoes within a waveform, a parametric approach is always chosen in
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current state-of-the-art approaches. Parameters of an analytical function are estimated for
each detected peak in the signal. These parameters provide additional information about
the target characteristics (shape and re�ectance) and extend the waveform processing ca-
pabilities. Statistical elements extracted by signal processing techniques are the number of
signi�cant peaks, their range to the sensor, and the parameters of their modelling function.
A single function is always used to model all echoes of the waveforms.

One wishes to decompose a waveform y = f(xi) into a sum of n components:

yi =
n∑
k=1

φk(xi) + b (2.5.1)

where φk the analytical function with a set of parameters Θ, f is the waveform model
(f =

∑
k φk), {xi}i=1,..,N is a sequence of N uniformly-spaced points, y ={yi}i=1,..,N is the

sampled waveform, and b is the background noise.
A relevant echo model is particularly suitable so that related parameters should be used
for segmenting and classifying the 3D point cloud. A large body of literature addresses the
issue of echo �tting with a given parametric model. The two main steps and associated
references are described below.

2.5.1 Modelling the waveforms with Gaussian mixtures

A waveform is the convolution between a laser transmitted pulse (assumed to be of Gaus-
sian shape with a calibrated width) and a "surface" scattering function (backscatter cross-
section � BCS), often considered as a Gaussian function [WUD+06]. The received signal
is then assumed to be a mixture of Gaussian distributions. The Gaussian function is then
the unique adopted function to model full-waveform data. Its analytical expression is:

φk(x) = Ak exp

(
−(x− µk)2

2w2
k

)
(2.5.2)

where µk is the pulse location, Ak is the pulse amplitude, and wk is the pulse width. Thus,
θk={µk, Ak, wak}.
The Gaussian model is su�cient for most applications, especially for large-footprint lidar
data [ZSA+02; WUD+06]. It has been noticed for GLAS data that the Gaussian decom-
position method is inaccurate when a waveform is deformed due to atmosphere forward
scattering [BZB+03]. Besides, for small-sized and medium-sized footprints, this model
is not always justi�ed. In urban areas, many peaks are distorted: indeed, most of the
return waveforms are subject to the mixed e�ects of geometric (e.g., roof slopes) and ra-
diometric object properties (e.g., di�erent kinds of streets and roof materials). Hence, the
characteristics of return peaks may di�er signi�cantly.

2.5.2 Fitting the waveforms

Two main methods have been carried out to �t the waveform with a single modelling
function: Non-linear optimization techniques (e.g., using a least-squares approach or the
Trust Region algorithm, Maximum likelihood estimate with Expectation-Maximization al-
gorithm.
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Non-linear least-squares approach

[HMB00] provide a general description of non-linear least-square methods which are used
in bathymetric [WA91], satellite [BZB+03], terrestrial [JS06], and airborne laser scanning
systems [DPLV08; RKS08].
This problem is a system of N observations with m× n unknown parameters. m=card θ
is the number of parameters of the modelling function and n the number of echoes. n is
estimated using standard peak detections methods or approaches described in Section 2.4.2.
The quality of the results is evaluated by a variable ξ. One aim at �tting the data with a
prescribed accuracy ε.

ξ =

√√√√ 1
N

N∑
i=1

(f(xi)− yi)2 < ε (2.5.3)

The system is solved using a non-linear least-squares method, the Levenberg-Marquardt
(LM) technique [Mar63]. There is no algorithm for solving the problem directly since the
{φk}k functions are not linear. The LM algorithm is known to be robust but requires a
good initialization step. Further details are provided in Chapter 3.
Initial values are provided by traditional pulse detection methods, often improved to take
into account weak and overlapping pulses undetected by such methods. For instance, to
overcome the problem of a wrong initialization step, [HMB00] add progressively peaks in
the least-squares �tting algorithm according to their amplitude (from highest to lowest
peaks) until ξ is greater than a given threshold.
For applying constraints on parameter estimates, [LMSV10] prefer using the Trust Region
algorithm as non-linear optimization technique.

Maximum likelihood approach: the EM algorithm

[PSTA05] have developed a pulse detection method based on the Expectation-Maximization
algorithm (EM) [DLR77]. The EM algorithm is a two-stage iterative optimization tech-
nique for �nding maximum likelihood solutions. EM alternates between performing an
expectation (E) step, which computes an expectation of the likelihood, and a maximiza-
tion (M) step, which computes the maximum likelihood estimates of the parameters by
maximizing the expected likelihood found on the E step. It consists in computing, for each
sample, the probability of belonging to one of the kth distributions which decomposes the
signal. Parameters found during the M step are then used to begin another E step, and
the process is repeated. They assume that the return waveform is a sum of Gaussians.
Nevertheless, it is possible to choose functions to �t the return waveforms. Since there the
number of echoes is not known beforehand, a model selection step is required. A modi�ed
version of the Akaike's Information Criterion (AIC) has been implemented to both take
into account the closeness of the reconstructed signal to the waveform and a reconstruction
complexity term.

2.6 FW point clouds: quantitative analysis and processing

The after mentioned studies made great strides towards demonstrating the relevance of
FW lidar data. Most of them are subsequent to the decomposition and modelling steps.
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2.6.1 Pulse shape analysis

The elements which could modify the shape of the waveform have been studied so far by
several authors. These works have been carried out mainly with simulated or close-range
data. The FOI (Swedish Ministry of Defence Research Institute) proposes a comprehensive
laser data simulation model. It includes the detector characteristics, the target geometry
and re�ectivity, the atmospheric attenuation, etc. The main assessment is that the in�u-
ence of target geometry and radiometry are mixed and cannot be decorrelated simply.

- Emission angle: variations in the shape are noticed with changes in the angle of
incidence. The smaller the angle, the narrower and more symmetrical the peak.

- Roughness: di�erent responses are noticed between smooth surfaces (one or two echoes
if there are discontinuities) and porous surfaces (multiple echoes at di�erent depths, equiv-
alent to the behaviour of trees and vegetation) [VAM04]. [HH10b] have noticed that the
pulse echo width allows to derive a surface roughness criterion similar to a standard rough-
ness criterion computed from a much more denser point cloud.

- Target geometry: [KKL07] measured for various urban materials the dependency of
the amplitude from the incidence angle. Furthermore, [Ste00] and [CSL01] have carried out
experiments on targets with simple shapes to study the combined e�ect of the geometry and
target re�ectance on the return waveform. A signi�cant spread in the pulse and a decrease
in its amplitude are observed over �at surfaces when the incident angle increases. It may
lead to an erroneous estimation of the distance, especially with signi�cant incidence angles.
Besides, similar waveforms are observed between plane surface and corners. Consequently,
two plane surfaces can be assimilated to a single one. Eventually, simulations were carried
out on step targets to investigate whether it was possible to resolve two close planar
surfaces, and on di�erent canopy shapes.
A comparison of waveforms re�ected by various shapes shows the potential advantage of
classifying objects by analysing the full waveform from a single pulse. However, it must
be pointed out that these conclusions are based on the major assumption that the target
exhibits a Lambertian re�ectance.

- Geometry + radiometry: [JS03] set up experiments to assess the e�ect of various
urban materials on the return waveform. Images of range, amplitude, and pulse width are
calculated for pebbles, corrugated iron, slanted slate plate and �at roof tiles. The four
types of roof material tested behave in di�erent ways. This con�rms that it is not possible
to classify waveforms simply as vegetation/buildings/roads. Similar responses are recorded
between objects of di�erent classes. Besides, there is signi�cant deviation within the same
class. This study is similar to that described for example in [LMBM05] on the study of
the variation in re�ectance of various urban materials (asphalt, tar, concrete, granite, etc)
using very high resolution aerial images.

- Range: the received power is function of 1/R2 (see Equation 2.1.11) where R is the
distance from the sensor to the target. The survey speci�cations and the local topography
have thus an impact on the received waveforms.

- Other factors: [CSL01] have noticed that the in�uence of the atmosphere and specular
e�ects on the target are negligible on the range measurement compared with the other
e�ects.
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2.6.2 Calibration and correction of the intensity feature and the target
cross-section

The intensity of the returned pulse has been found to be of low quality and to be highly
dependent on the incidence angle, and thus, in the past, it was concluded to be of little
use. However, with the spring of FW sensors, improvements are possible.
Intensity is not yet a clearly de�ned term [WHU+08]. The echo amplitude is most com-
monly referred to as intensity. However, the intensity should be associated to the total
energy of the echo (i.e., I =

√
2π Aw for a pulse of Gaussian shape). In this dissertation,

amplitude will refer to the value of the echoes at the maximum location and intensity will
refer to the echo energy.

The echo amplitude depends on many factors: target characteristics, lidar system, scan
geometry, etc. Fluctuations can be noticed on large datasets between surveys, for in-
stance, due to di�erent atmospheric conditions, and even between �ight strips. The inten-
sity/amplitude values provided by commercial lidar systems as well as those extracted from
waveforms processing are neither calibrated nor corrected. Few studies have been carried
out so far on intensity calibration and correction. They are described below. They aim at
converting intensity to a relative but comparable measurement for di�erent epochs with
di�erent conditions, e.g., for multi-temporal analysis or classi�cation. Three main meth-
ods exist: calibration using arti�cial reference targets or natural targets, and correction of
speci�c in�uencing factors.

Calibration

The Finnish Geodetic Institute (FGI) has �rst proposed methods using reference targets
with calibrated re�ectance to study the e�ect of the albedo on the shape of the return
waveform and their directional properties [KAHS05]. Results show that re�ectance plays
a predominant role on the amplitude and width of the peak. The in�uence of the albedo
cannot be separated from other target properties. However, the calibration protocol makes
it possible to use intensity as data in its own right. Besides, a laboratory study was carried
out on various targets [KHM05]. The materials tested are sand with various grain sizes,
asphalt, trees, lichen and moss with small angle variations. Calibration is possible but
it proves to be di�cult to de�ne a reliable method to classify into various components
based only on the intensity characteristics. The authors recommend studying much larger
samples in the hope of drawing up an initial classi�cation methodology.

Calibration may also be performed using the lidar equation [WUD+06; WHU+08] and
natural targets of known re�ectance. For that purpose, the echo amplitude and width
are needed over reference targets. Therefore, only full-waveform sensors allow an accurate
calibration for all target classes. A Gaussian behaviour of the emitted pulse and the
scatters are hypothesized. We have for a given target σ

′
= CcalR

4Âŵ, where Â and ŵ
are respectively the estimated echo amplitude and width. Asphalt streets are considered
as Lambertian targets with re�ectance ρasphalt=0.2. Thus the calibration constant can be
estimated, assuming a high stability of the laser pulse and constant atmospheric conditions:

Ccal =
π ρasphalt β

2

R2 Âasphalt ŵasphalt

(2.6.1)
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It leads to the following calibration formula for target cross-section:

σ
′

=
π ρasphalt β

2R2 Â ŵ

Âasphalt ŵasphalt

(2.6.2)

This process is improved in [BHL+08] by measuring accurately the backscattering proper-
ties of natural surfaces with a re�ectometer, and using Spectralon targets from homoge-
neous reference targets.

Correction

Correction techniques have been developed to adjust amplitude variations due to the in-
�uence of varying atmospheric conditions, �ying altitude, and topography [CS06].
[AKHS06] show a strong correlation between the re�ectance of surfaces and intensity for
any �ight height. Thus, the intensity value has to be corrected according to the scanning
distance, the angle of incidence, the atmospheric transmission, the attenuation and power
transmitted by the system. Certain �ying heights are preferred (from 200 to 1000m) for a
suitable ground spot, with scan angles less than 10o.
Two methods for intensity correction are proposed in [HP07]. A data-driven correction
allows to globally correct datasets with di�erent �ying heights thanks to an empirical
mathematical model. The function parameters are estimated using extended targets. An-
other correction is possible point by point, based on the lidar equation, assuming the same
knowledge as in [AKHS06].

A number of hypothesis are made in these papers. Using full-waveform lidar data may
overcome several issues of amplitude correction [HP07].

- Target geometry: First, the angle of incidence θ between the laser beam and the
surface is accurately known, and the surface slope can be better estimated than with a
conventional 3D point cloud [KJS08]. The apparent surface of the target in the sensor
direction decreases with a cos θ factor if the target is assumed to be an ideal Lambertian
scatterer.

- Range factor: The range e�ect is corrected by applying a R2/R2
strip factor on the

intensity value, where R2
strip is an arbitrary value set for the whole survey area. However, it

is shown in [PDHF07] that this range dependent inverse-square model might be insu�cient
to estimate the accurate amplitude.

- Pulse �uctuations: Since the emitted pulse is recorded, it permits to take emitted
pulse intensity �uctuations into account. It is no longer needed to assume it constant,
and �uctuations up to 10% have been noticed between scan lines. This may be corrected
by applying a normalizing factor which is the ratio between the mean amplitude of all
the emitted pulses (Astrip

e ) and the estimated amplitude of the current emitted pulse (Ae)
[BCB+09].

The �nal amplitude correction formula is:

A�nal =
Â

cos θ
R2

R2
strip

Astrip
e

Ae

1
T 2

(2.6.3)

Where T is the atmospheric transmission (assumed constant). The impact of amplitude
correction over a dense urban area may be noticed on Figure 2.8.
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Figure 2.8: Amplitude correction based on geometric and full-waveform information (Bib-
erach). The trajectory of the plane goes from left to right, close to the northern part of the
church. (a) Orthoimage; (b) Amplitude before correction; (c) Amplitude after correction;
(d) Di�erence between both values.

[JG09b] have noticed that the intensity inside a region exhibit a signi�cant variance even
for a constant incidence angle. This may be due to material features or local surface e�ects.
The latter ones are di�cult to model. The authors have investigated the use of the Phong
model instead of the traditional Lambertian model (specular characteristics in addition to
the di�use backscatter properties), but no improvements have been yet noticed, mainly
because of the lack of various roof materials in the dataset and reference targets with
known backscattering characteristics, and because of the low variability of the angle of
incidence.

2.6.3 Parameter behaviour and subsequent classi�cation

It is possible to de�ne some particular behaviour for several objects. The echo is wider on
the canopy or ploughed �elds compared to roads or meadow areas. High amplitudes are
noticed on grass and bare earth and variable amplitudes on the roofs of buildings, depend-
ing on the roof materials. Moreover, weak echoes are wider and the intensity of additional
extracted points is, predictably, lower than for the �rst echoes. FW datasets thus allow
the gathering of relevant features for segmentation and classi�cation applications.
However, a point cloud obtained by one of the methods described in Section 2.5 cannot
be classi�ed categorically, even with additional features and hints about the knowledge of
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the in�uence of each object. A wide echo with low amplitude does not necessarily come
from vegetation. Roads and building roofs are made of di�erent types of material and,
therefore, have di�erent characteristics. The features currently extracted from a modelling
step often have values similar to natural objects [GJT07]. Consequently, simple classi�-
cation algorithms, e.g. classi�cation tree with empirical thresholds, lead to a high rate of
incorrect classi�cation [DPL06; DHU+06]. A reliable approach to detect vegetated areas is
proposed in [GJT07], based on the eigenvalues of the covariance matrix computed for each
point with the intensity values in a cylindric environment. However, geometric features are
used in addition to waveform features for the discrimination. Other features and methods
have to be found to classify full-waveform point clouds. Attributes such as the BCS or
the backscattering coe�cient, which describe the scattering properties of the targets, seem
valuable to retrieve these physical characteristics and improve segmentation/classi�cation
results [WHU+08].
Moreover, in order to exploit pulse shape parameters, we have to bear in mind that the
shape of the nth pulse of a waveform depends on the scattering characteristics of the n− 1
�rst echoes. It is known that the cross-section of the nth target is expected to decrease
depending on its "rank" in the waveform, but it is not straightforward to predict how
[WHBD08].

The problem of vegetation discrimination is also tackled in [RHHP08], in an object-based
approach. The 3D point cloud is �rst slightly over-segmented using a seeded region growing
algorithm based on the echo width. Then, for each segment, basic statistics (minimum,
maximum, standard deviation, etc.) are computed for the selected point features: ampli-
tude, echo width and geometrical attributes. These features are fed into a Classi�cation
Tree algorithm with distinct complexity parameters. It allows to select automatically
the best discriminative features and the associated thresholds, and to reach accuracies
slightly superior to those reported in [DHU+06] (>90%). An improved echo ratio feature
is computed in [HH10a] allowing a better vegetation discrimination with lower computa-
tional point cloud analysis (especially when dealing with very high point densities, e.g., 50
pts/m2). Finally, the rule-based classi�cation is re�ned using, in particular, echo ampli-
tude and width to discriminate non vegetation objects such as building walls, roof edges,
and power-lines.

[NMT09] evaluate the discrimination performance of the Gaussian parameters and wave-
form metrics (see Section 2.6.5.1) for land cover classi�cation. With a supervised Bayesian
pairwise classi�er, eight features are used to discriminate seven classes (grass, trail, dead
trees, oaks, junipers etc.). The method allows to select class dependent features based on
their incremental contribution to a given relevance function. All the pairwise classi�ers
are computed and the ultimate class is selected within the outputs based on a maximum
Bayesian posterior probability rule. The most frequently selected features are the peak
amplitude and the energy ratio, and the rise time and fall time of the waveforms are also
discriminant for di�erent tree types and densities. The classi�cation results are compared
favorably to the same work�ow based on Quickbird multi-spectral high resolution images.
The main reason is that the lidar-based input data are structural parameters and these
features improve the classi�cation of labels that are spectrally similar but structurally
di�erent, such as trees of di�erent ages.
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2.6.4 Filtering and surface reconstruction

The pulse width is an important FW feature since it holds information on the vertical
spread of the object surface. For small-footprint systems, the echo width is mainly af-
fected by the presence of low vegetation (ferns, small bushes etc.) and low objects lying
on the ground (street items or hedges). They feature a pronounced height variation within
a footprint. Therefore, objects closely located in range will contribute to a single echo
but with an echo width superior to the emitted echo width. Conversely, this is not in�u-
enced strongly by the terrain slope because the height di�erences due to slope are typically
much smaller than the length of the pulse (a 4 ns pulse corresponds to 1.2 m in height).
Echo width can therefore be used to discriminate echoes that cannot originate from the
ground. The following authors have consequently improved Digital Terrain Model (DTM)
algorithms by taking this property into account.

(a) DTM computed from a multiple pulse
point cloud.

(b) Map of the echo width.

(c) Green: �nal points conserved for the new
computation.

(d) Final DTM, using FW information.

Figure 2.9: Improvement in Digital Terrain Model generation using the echo width ex-
tracted from a Gaussian decomposition of full-waveform data [DBFJ08].

[DBFJ08] look after archaeological features under vegetated areas. They remove from a
last echo point cloud all points that exhibit an echo width superior to an empirically-based
threshold. It corresponds in practice to the understory vegetation. Then, a traditional
�ltering process is carried out on the remaining points. This step improves the computed
DTM by removing small bumps that are not subtle topographic changes (Figure 2.9).
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However, a pre-elimination step is not mandatory. Multiple-pulse DTM algorithms have
also been improved to wrap the echo width as ground/o�-ground discriminant feature.
For instance, [LM09b] introduce the width feature into the progressive TIN densi�cation
approach developed in [Axe00] (also used with FW data in [LM09a] for archaeological pur-
poses). They �rst label the point cloud depending on the echo width: class "Overlapping
pulses" correspond to close echoes where width estimates are unreliable: class "Type B"
is rough surface pulses with a width superior to a given threshold and class "Type A"
corresponds to smooth surfaces (width inferior to the same threshold). This class is split
into "Open smooth" and "Obscured smooth" points depending on their position within
the waveform (single or multiple returns). Such labelling allows a target speci�c tuning
of the parameters of Axelsson's algorithm. Finally, the authors demonstrate that their
approach is able to remove low vegetation and may correct local under and overestimation
of the terrain surface. The "Type A/Type B" threshold has been determined in [LM10],
where a ground/o�-ground point segmentation is subsequently performed. The Decision
Tree segmentation is re�ned by regularizing the point label depending on the labels of
the neighbourhood points. The authors also noticed that pulse width must be used with
caution for weak and very strong amplitude echoes.

[Müc08; MBH10] prefer introducing a priori weights into the hierarchical robust interpo-
lation algorithm presented in [KP98]. The aim is to attract the terrain surface on points
that have a high probability to belong to the ground. The method has the advantage
of keeping all the lidar points for the DTM generation process (thus the false negative
ground points may still in�uence, even weakly, the surface). The weights are set up by
�tting a distribution function on the histogram of the pulse width with respect to the pulse
amplitude. The results show that it both improves and fastens the process.

2.6.5 Applications in forested areas

Full-waveform lidar data have been widely used for forest analysis. The waveforms are
decomposed to produce dense 3D point clouds in the canopy which are then used mainly
to estimate forest parameters at the scale of the stand. Most of the literature on full-
waveform systems deals with this topic. Firstly, one tries to bene�t from a denser point
cloud to improve forest parameter estimation. Indeed, it is especially bene�cial in biomass
and forest structure estimation techniques, where conventional multiple pulse methods
may be biased due to their limited understory tree detection capabilities. Secondly, us-
ing jointly lidar geometric information and estimated radiometric properties (backscatter
cross-section) has been tackled for tree segmentation and species classi�cation. Finally,
modelling is performed to understand the in�uence of forest parameters on the waveform
shape.

2.6.5.1 Estimating forest parameters

Many studies have already been carried out to estimate forest parameters using multi-echo
lidar data: high point density can be used to extract trees in small areas, their height and
crown diameter [PHS02], their volume, to classify them according to species [HP04], to
estimate their particular characteristics [AMR05] and even to measure the growth of the



76 2. Full-waveform topographic lidar

forest and detect trees that have been felled [YHKM04]. Woodland parameters may be
estimated at large scale: density of population, coverage, biomass, etc [MAH+99].

Multi-peak waveforms have a longer rise time due to the energy scattering and pulse
broadening. Rise time corresponds to how quickly energy reaches the 90% amplitude on
the leading edge. For single Gaussian waveforms, it is proportional to amplitude. Thus,
for large-footprint systems, rise time is correlated with the amount of crown variability
and crown depth. [DB00; LCPH02; RAM05] present the main studies with multi-echo and
full-waveform airborne lidar for forestry applications, pioneered with NASA experimental
sensors. Full-waveform lidar metrics are used to estimate the following woodland parame-
ters:
- Canopy height: modeled from the measurement of the di�erence between the height of
the �rst and last echoes, for di�erent types of forest (temperate, boreal and tropical), at
the tree or the stand levels [LCA+99; KRSB06; RNSL08]. It is generally underestimated
by at least one meter.
- Vertical distribution of canopy material: essential to determine other canopy fea-
tures such as the above-ground biomass, predicting the state of the forest and determining
the age of a plantation [LCA+99].
- Canopy height pro�le: directly derived from the vertical canopy distribution for any
deciduous forest. It de�nes the occlusion rate of a plantation [HLP01].
- Canopy cover: obtained directly. This is the fraction of the signal re�ected by the
target corrected by the estimated ground re�ectance [MAH+99].
- Canopy volume pro�le: obtained by modelling. It can show the qualitative and quan-
titative di�erences between di�erent ages of a given species [LCA+99]. It may also provide
information on vertical leaf pro�les [HLP01].
- Above-ground biomass: modeled from the tree height measurements. This correla-
tion was shown in mixed coniferous/deciduous areas, in mountains and in dense boreal and
tropical forests [DDC+02; HDP+05].
- Basal area: cross sectional area of the trunk, at DBH (Diameter Breast Height, i.e.,
1.37 m) [LHC+99; MAH+99].
- Mean stem diameter: tree height is strongly correlated to the stem diameter [DDC+02].
Allometric equations allow to derive the stem diameter according to the canopy height and
the tree species.
- Crown and stem volume: these features are inferred. The crown volume (tree pa-
rameter) is computed knowing the canopy volume (stand parameter), the tree density and
species. The stem volume is inferred according to the mean stem diameter and the tree
height.
- Waveform metrics: canopy energy, ground energy, total waveform energy, ratio be-
tween canopy and ground energy, rise time to the �rst peak, fall time of the last peak,
and height of median energy are computed in addition to Gaussian features in [NMT09]
to discriminate between tree species.
- Other parameters: the density of large trees can be inferred. Other additional data
(thermic, optical, radar) is required for a satisfactory determination of the Leaf Area Index
(LAI) and to have a knowledge of the tree species. It appears possible to classify species
[RKS08] but a reliable algorithm has yet to be implemented.

Certain variables are obtained using allometric equations and vary according to the type
of forest and their main characteristics [HDP+05]. Some parameters cannot be obtained or
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with low accuracy. It is therefore di�cult to obtain a comprehensive estimation of forest
parameters (even for the main parameters such as the tree height and the crown diameter),
and consequently parameters inferred as well as general relationships between structural
forest variables for a given type of biome (and a fortiori for all types). Metrics derived
from full-waveform data are not always signi�cantly correlated with forest structural char-
acteristics at the tree level, even if it works well for some forest types [AMS+06].
First works dealing with forest change parameters have been carried out with large-
footprint lidar data [DPLV08]. Di�erences, in maximum canopy height, for instance,
(0.5 m), have been noticed between summer and winter data.

Finally, forest parameter retrieval on steeped areas has to be mentioned. The height of
the upper layer of the tree canopy, located in thalwegs, for instance, can be the same as
the higher ground parts of the terrain. In case of erroneous DTM, several forest param-
eters, such as the canopy height, crucial for modelling and inferring other features, will
be incorrect. That is the reason why waveform features have been introduced to improve
ground/o�-ground segmentation algorithms and derive more reliable DTMs. [NRSL10]
state that the Gaussian decomposition of the large-footprint GLAS waveforms is a reliable
approach for identifying the ground surface within the waveforms. Moreover, an increas-
ing slope leads only to a minor negative o�set in ground estimation, which assesses the
relevance of large footprints for coarse DTM generation.

2.6.5.2 Tree detection and tree species classi�cation

Other works consider full-waveform data at the scale of the tree. For instance, tree stems
can be detected. [RKS07] bene�t from a high point density extracted from waveform
data to have enough points reaching the stems (25 pts/m2). The authors �rst separate
low above ground points that belong or not to the tree crown by a clustering algorithm
and then perform a RANSAC-based 3D line adjustment to �nd the stems. Moreover, in
[RSKS09], the authors segment in 3D the tree crowns using �rst a watershed algorithm on
the Canopy Height Model. The Normalized Cut algorithm is then employed, integrating
point amplitude, point echo width and estimated stem positions as feature vector for
clustering. The authors �nally state that a high point density (>10 pts/m2) is bene�cial
for the crown segmentation but does not improve the stem detection results.

In case of surveys with high scan angles, [LRLL07] have noticed that waveforms with two
strong close echoes correspond to signals that �rst hit the tree foliage and then the stem.
They thus use the second strong echo to determine the trunk location. Eventually, features
provided by the waveform decomposition may be used in combination with geometrical at-
tributes to classify deciduous and coniferous trees [LRLL07; RKS08]. A K-means clustering
approach is adopted in [RKS08], where a high overall accuracy is reached under leaf-o�
conditions (96%).

The tree species classi�cation problem has also been tackled in [HHL+08; HMH+09].
[HHL+08] describe the method to segment the forest canopy and provide reliable regions
for the area-based classi�cation carried on in [HMH+09]. [HHL+08] also states that statis-
tical values of geometric and radiometric lidar features extracted from full-waveform data
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Figure 2.10: Waveforms displayed in 3D along 1D pro�les. Each bin is represented by a
sphere which radius is proportional to the bin amplitude. The area of interest is a forested
mountaneous area in the French Alps. The data have been visualized using the software
FullAnalyze [CBD+09] (courtesy of Adrien Chauve).
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(a) First
pulse/last pulse
point cloud.

(b) FW point
cloud.

(c) Additional
points retrieved.

(d) Tree detection
(1).

(e) Tree detection (2).

Figure 2.11: Additional points retrieved in vegetated areas, and tree detection using a
Normalized Cut approach [RSKS09; Rei10]. Red: �rst pulses � Green: last pulses � Blue:
Middle points � Yellow: Single points.
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have great potential for species classi�cation. For that purpose, the dataset has to be ac-
quired under leaf-o� condition: this allows geometric features to better reveal the physical
backscattering properties of the canopy (not only the top layer). Consequently, geometric
criterion (a canopy density feature, the 50th height percentile d50, and the echo width) and
the BCS are jointly used to discriminate both at pixel and segment levels beech, spruce,
and larch trees in [HMH+09]. First, a fuzzy rule set based on d50 and the backscattered
cross section is employed to separate deciduous (beech) and coniferous trees (spruce and
larch). Then, segments with a standard deviation of the echo width superior to a threshold
are assigned to the larch labels. However an overall accuracy of 75% is reached, the ground
truth is not signi�cant enough to assess the transferability of the method to other areas.

2.6.5.3 Modelling forested areas

Modelling forested areas is particularly di�cult due to the strong geometric complexity
of the internal structure of the trees. Several studies have been carried out on this topic
mainly with large-footprint lidar data. Waveforms are generated over large areas (footprint
superior to 10m) in order not to take small tree elements into account. A tree model with
a high level of details (leaves) is therefore not necessary.

[BH99] give one of the �rst methodological developments for modelling forest scenes by
simulating full-waveform lidar data. They simulate waveforms by breaking down the sur-
face hit into small surfaces with their own backscattering characteristics but with the same
re�ectivity (typical of dense forest). A strong correlation between this data and that from
the LVIS sensor is obtained. They show that the unmodelled e�ects such as multiple
retrodi�usions do not make a signi�cant contribution to the shape of the return waveform.

[SR00] propose a more comprehensive model linking full-waveform data to the spatial
structure and to optical properties of the vegetation. They simulate a forest where each
tree can be parameterized by its height, its species and its maximum diameter. The
return waveforms are simulated by dividing the 3D scene into small cells, with speci�c
characteristics. Full-waveform data are then simulated with di�erent tree species and ages
and then compared to terrain data and SLICER samples. The simulations show that
the model may be used to �nd main lidar signatures. It also shows that a lidar signal
provides an indication of forest populations for both horizontal and vertical structures. It
has also been noticed that the age and species of the trees have a considerable e�ect on
the waveform shape.

A di�erent study of the relationship between the waveform and the canopy structure pa-
rameters is proposed in [NMJD01]. The arrangement of the structure on this relationship
is taken into account to determine the 3D vegetation parameters. This is an adaptation of
a hybrid geometric optical radiative transfer model (called GORT), to describe the e�ects
of these parameters on the radiation environment [NMLW+97]. GORT describes the wave-
form as a function of the canopy parameters, which was checked against SLICER data.
The lidar equation is used to determine the probability that a gap above a given height in
the canopy appears. Besides, the authors propose a Directional Gap Probability Function
to represent the probability that a laser beam reaches a certain point of height without
being re�ected. Finally, the results of the model are con�rmed by comparing SLICER and
LVIS data [PNMB+01].

[KMS+06] use the 3D model proposed in [SR00]. The radiative transfer model is inverted
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to determine the forest biophysical parameters. Some parameters are set using in situ
spectrometric measurements or approximations. Simulated data are used to establish the
feasibility of the inversion and show that the parameters can, potentially, be deduced: the
tree height is accurately estimated, unlike the other parameters such as the LAI and the
vegetation coverage.

These methods do not take multiple scattering into account which also a�ect the return
waveform. The method described in [Kot05] considers possible model errors, in particular
for a dense canopy. To solve this, a 3D radiative transfer model is applied to simulate the
propagation of photons across the vegetation. The predictions obtained on various mixed
forest sites are compared to SLICER data. The simulated signal does not always match the
real backscattered signal, regardless of the tree species. The main limitation of the model
comes from the formulation of the probability functions that quantify the canopy structure.

Finally, the FLIGHT radiative transfer model presented in [NRSL10] may also represent
multiple scattering of light (at di�erent wavelengths) within the canopy and with the
ground surface. In addition, a topographic surface can be introduced in order to model
the e�ect of the topography on the simulated waveforms. They are compared with GLAS
waveforms over a complex forest structure. Good agreement is found for several forest
metrics, but some di�erences between both waveforms have been noticed without having
been explained so far.

2.6.6 Applications in urban areas

The contribution of full-waveform data is less obvious in urban areas than in woodlands
since multiple pulses only appear when the laser beam hits building edges. Most of the
literature dealing with FW data in urban areas concern 3D point cloud classi�cation (cf.
Section 2.6.3). However, the problem of enhanced pattern recognition in raw FW data
has also been tackled. [JS03] show that it is possible to visually distinguish between
di�erent urban materials hit by a laser beam and concludes that in-depth processing is
required to recognise objects. They use the concept of neighbourhood between waveforms
and extracted points to interpret their data. Henceforth, the interpretation of a 3D point
cloud can be improved by spatial and temporal cross-correlation of the peaks in successive
waveforms.

The well-known problem of detecting the building edges is covered in [JNS05]. A scene
is segmented in "boundary zones" and "internal zones" by a region growing technique
using the number of pulses, amplitude and distance to the target. The results are re�ned
by modelling the amount of the laser beam power that fails in each region (inner and
outer parts). This allows to locate where the beam center is and helps �nding where the
boundary line is. Precise results are obtained accurate to 1/10 to 1/12 of the point spacing.
However, these results are based on simulated data, assuming uniform re�ectance and �at
"internal" areas, simplifying the modelling problem.

Eventually, by analysing the parameters of each echo and taking the relationships between
adjacent waveforms into account, they distinguish vegetation and man-made structures
and then extract characteristic lines for the objects found in the scene [JS05]. A spatio-
temporal measurement irregular voxel space (x, y, t) is �rst generated to show neighbour-
hood relationships x for the forward motion direction, y for the swath direction, and t for
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the time). Such 3D volume is analyzed in 2D in order to retrieve the sensor geometry (see
Section 2.2.3). The volume is therefore sliced in vertical sections in the (x − t) plane to
give 2.5D information and the required relationships. The aim is to detect 3D segments
within this cube, assuming a scene with a �at surface perpendicular to the incident signal
(e.g., , a facade). Intensity images are obtained and are processed by line detectors (in this
case, Hough transform).

2.7 Data sets

Two full-waveform datasets are available for our purpose.

I The �rst dataset has been acquired over the city of Biberach an der Riÿ (Bade-
Wurtemberg, Germany). The survey has been carried out by Toposys on September 2006,
with the Riegl LMS-Q560 system, covering approximately 1.1km2 (leaf-on condition). One
strip is available, with a point density close to 5 points/m2. It results on more than 2.2M
waveforms. The strip covers di�erent kinds of landscape: a residential area, a wooded area
with signi�cant slope, a semi-dense downtown, and an industrial area (see Figure 2.12).

I The second dataset covers the city of Amiens (France) in February 2008 (leaf-o� condi-
tion). 11 strips have been acquired with a Optech 3100 EA device (approximately 20km2),
directly by IGN. The point density is approximately 2 points/m2. The North and the
West sides of the city correspond to �elds and crops. The East side is mainly composed
of woods and �elds between small water channels (see Figure 2.14). Amiens downtown is
not very dense but is composed of building with various kinds of shapes. The overlapping
ratio between two strips is superior to 50%. However, we have decided not to bene�t from
such an overlap for the modelling and classi�cation steps (see Section 1.6). All the strips
are therefore considered as independent. More than 70M waveforms are available over the
city of Amiens.

Orthoimages are available for the two areas of interest. 0.25m orthorecti�ed aerial images
cover the city of Biberach (except for the industrial area), and Amiens downtown. 0.5 m
orthoimage tiles, with lower radiometric and geometric qualities compared to the latter
ones, are available for the rest of the Amiens area. Since it has been decided not to use
aerial image data for classi�cation (see Chapter 5), the orthoimages are mainly used for two
practical issues. First, they are mandatory data for checking the quality of the 3D point
cloud georeferencing process (visual inspection). Besides, they are used to create manually
2D polygons of the classi�cation ground truth. Such reference data are necessary for both
training the supervised classi�er and for assessing its accuracy.
We have carried out the whole waveform processing chain (see Figure 2.7). Firstly, from the
raw full-waveform �les, multiple pulse range values, T0 pulses, backscattered signals, as well
as navigation metadata are extracted. Secondly, waveform processing and georeferencing
is performed to turn range values into 3D point clouds expressed in the cartographic
projection of the area of interest (Gauss-Krueger Germany 9o, and Lambert 93 for Biberach
and Amiens, respectively).
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XXXXXXXXXXXMetadata
Area

Biberach Amiens

Date September 2006 February 2008
Sensor Riegl LMS-Q560 Optech 3100 EA

Surface (km2) 1.1 20
Number of strips 1 11
Number of points 2,342.103 70,135.103

Flight height (m) 500 1000
Footprint size (m) 0.25 0.8

PRF (kHz) 100 100
Pulse width (ns) 4 4

Temporal sampling (ns) 1 1
Pulse density (/m2) 5 2

Table 2.4: Full-waveform datasets

(a) Orthoimage (0.25 m resolution).

(b) 3D point cloud, coloured with respect to the altitude.

Figure 2.12: Biberach dataset: one strip across city downtown.
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(a) Orthoimage and 3D point cloud of a residential area (Area 1).

(b) Orthoimage and 3D point cloud of the downtown (Area 2).

Figure 2.13: Focus on two areas of Biberach. See Figure 2.12.a for their location on the
whole strip.

Figure 2.14: Amiens dataset. The trajectory of each strip is coloured separately. Strip 1
has not been displayed. This is the calibration strip and the lidar system has operated far
more in the North. Scan25 c©IGN.



2.7. Data sets 85

(a) Orthoimage c©IGN, and 3D point cloud of a dense urban area.

(b) Orthoimage c©IGN, and 3D point cloud of a residential area.

Figure 2.15: Focus on two areas of Amiens.
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Part II

Processing lidar waveforms
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Chapter 3

A Generalized Gaussian model for
decomposition and modelling

3.1 Introduction

The full-waveform laser scanning technology consists in recording a signi�cant amount of
consecutive 1D signals backscattered from the Earth surface. No additional process is
performed on the data. As introduced in Chapter 2, data provided by such sensors yield
more than a basic geometric representation of the Earth topography. The objective of
waveform processing is to extract more information from raw lidar data than provided
by multi-echo lidar systems or basic processing methods. Theoretical advantages and
limitations of such data have been underlined in Section 2.2.3.
On the one hand, end-users have now access to the raw data: T0 pulses, waveforms, and
georeferencing metadata. On the other hand, a pre-processing step is now mandatory to
turn raw signals into 3D points clouds, so as to subsequently foster information extraction.
The advantage of waveform processing is twofold (see Figure 3.1). By designing his own
signal �tting algorithm, an end-user can:

1. Maximize the detection rate of relevant peaks within the waveforms. Waveform
decomposition allows to �nd the echo positions: a waveform is a series of compo-
nents assuming that the position of each component within the waveform can be used
to calculate the mean elevation of a speci�c object within the laser footprint. More
points can be extracted in a more reliable and accurate way. Therefore, maximum
locations should be better determined, and close objects better discriminated.

2. Model each echo with a suitable parametric function. The echo shape can be re-
trieved, providing relevant features for subsequent segmentation and classi�cation
purposes. This step is called waveform modelling or/and waveform/echo �t-
ting.

These two steps can be carried out successively or jointly. The number of echoes within
the waveforms can be estimated with an advanced algorithm beforehand (and then the
best-�t functions can be estimated for each echo), or directly wrapped into the mod-
elling step. A large body of the literature address the problem of lidar waveform mod-
elling. Most of the papers that deal with FW data have proposed their own methodology
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(a) Principle of waveform decomposition. The number of modes of the received
signal is found and their position estimated. Then, the range between the sensor and
the objects is estimated by computing the elapsed time between the emitted pulse
and the retrieved echoes (here shown with object 1).

(b) Waveform modelling. For each waveform echo and for the transmitted signal,
parameters of a modelling function are estimated (Gaussian in this case). Their
speci�c shape is retrieved and the waveform reconstructed.

Figure 3.1: The two steps of waveform processing: decomposition and modelling. For each
waveform, the output of such process is a series of range and model parameters values,
speci�c to each retrieved echo.

to extract 3D points with additional features. They have in common that they use a
superimposition of Gaussian functions, which is �tted to the measured waveforms with
least squares, and mainly di�er in the waveform decomposition step, often designed to
�t to a speci�c problem (vegetated areas acquired with large footprint data, close target
discrimination with small footprint sensors etc.) [HMB00; DPLV08; RKS08; RWMU08;
LMSV10]. One can notice that such works are barely focused on urban areas [JS06;
WHBD08]. Since our motivation is to analyze 3D point clouds generated from FW data
in urban areas, waveform processing is mandatory and will be tackled in this chapter.

Methods based on wavelets [HD02], neural networks [BMWW04], splines [Uns99], kernel-
based density estimation techniques involving, for instance, Parzen windows [BV03] or
Support Vector Machines [WGS+98] are known to �t 1D signals with large �exibility and
e�ciency. However, they do not ful�ll our requirements since the problem is not addressed
by adopting a �nite mixture model (FMM) [MP00]: each mode of the waveform is not
segmented and modelled with a given analytical function. Such approaches are therefore
not suitable. The problem of FMMs, and especially when dealing with a Gaussian Mixture
Model, has been widely tackled in the image processing community, and may be relevant



3.1. Introduction 91

to process lidar waveforms: pixel colour histograms are multimodal signals that are aimed
to be decomposed and modelled, e.g., for background/foreground segmentation of images
and videos. Historically, estimates of the parameters of the class probability densities in
mixture densities have been retrieved via the Expectation-Maximization (EM) algorithm
[DLR77]. The maximum-likelihood-based method either requires knowledge of the num-
ber of components or must be coupled with model selection (as adopted, for instance, in
[PSTA05]); many authors have proposed improvements and extensions to this algorithm
[FJ02]. The e�ciency of such algorithms relies on good initial model parameter values that
is why a large body of literature also deals with this issue. For instance, EM can be coupled
with simplex search, particle swarm optimization [FL07] or genetic algorithms [BBM07].
A widely adopted solution, especially when dealing with complex modelling functions, con-
sists in adopting a stochastic version of the EM algorithm (SEM, see [CCD96]). Thanks
to the stochastic sampling involved in this scheme, numerical tractability is gained along
with the better exploring capabilities as compared to EM scheme and higher chances of
missing the local maxima. Nevertheless, such advanced methods are not necessary in our
context since for waveform decomposition it has already been shown that simple detec-
tion methods are su�cient [WUD+06] and that suitable initial parameter estimate can
be achieved using lidar sensor physical knowledge (see Section 3.2.3). In case of complex
waveforms with overlapping peaks, state-of-the-art image histogram thresholding methods
may be helpful but still require the integration of physical knowledge.

Alternatives to EM exist such as Bayesian methods, Kalman �ltering, the minimum-
distance algorithm, optimization techniques (using, for instance, the gradient descent or
the Levenberg-Marquardt algorithm), or the method-of-moments [Cra46; KZ04]. When
dealing with parametric functions yielding more complicated analytical expressions than
the standard Gaussian function, the classical statistical estimation methods fail because
their moments do not exist or are too complicated to compute. For instance, in a con-
text close to the lidar remote sensing community, new approaches have been developed
for SAR data to deal with this problem combining the method of log-cumulants and the
Mellin transform [TNTM04; KMSZ08].

Since seminal papers on airborne waveform processing [HMB00; WUD+06] have proved
that Gaussian decomposition using non-linear least squares optimization techniques give
good results, �rstly for generating 3D points and secondly for extracting additional pa-
rameters for subsequent classi�cation, we have followed the 2-step work�ow adopted in the
literature, with some improvements for urban areas. There is no speci�c need to design
a dedicated algorithm for Gaussian-based waveform modelling. In case of non symmetric
echoes, this is however relevant and will be tackled in Chapter 4.

Waveform decomposition is �rst performed with a standard �rst derivative analysis of a
smoothed version of the waveforms. Besides, assuming echo shape to be symmetric but
with slight distortion, we model them with the Generalized Gaussian function, which is an
extension of the standard Gaussian model. This leads to a nonlinear optimization problem,
which is performed adopting a non-linear least squares method, the Levenberg-Marquardt
algorithm. Finally, the �tting step is repeated until no additional echoes are found in
the residuals between the raw waveform and the proposed adjustment. The results of
the decomposition are compared qualitatively and quantitatively both with the real-time
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sensor detection methods and the standard Gaussian decomposition approach. Finally,
extracted Generalized Gaussian parameters are analyzed over areas and classes of interest
in a urban context.
However focused on urban areas for small-footprint data, the developed approach remains
valid over vegetated areas [CVB+09] and could be adapted to large-footprint waveforms
with minor modi�cations.

The proposed approach is developed in the following Section, whereas Section 3.3 presents
the decomposition and modelling results for our two datasets. The �tting process is also
quali�ed. Then, the full-waveform features, namely the parameters of the Generalized
Gaussian modelling function, as well as derived attributes are analysed in the perspective
of land-cover classi�cation in urban areas. Eventually, the main conclusions and interesting
outlooks are discussed in Section 3.5.
Figure 3.2 gives an overview of this 2-step approach.

Figure 3.2: Overview of the waveform decomposition and �tting process.

3.2 Methodology

3.2.1 Presentation

The �rst goal is to extract as many peaks from the signal as possible, but also shape
information for each echo. The approach is parametric i.e., we estimate parameters of
a mathematical model for each echo. We assume that the returning laser pulse is com-
posed of a series of potentially-overlapping re�ections similar in shape to the impulse
response and that can be �tted with the same analytical function. To improve signal
�tting, a new waveform model has been proposed and is described in Section 3.2.2. As
mentioned above, waveform processing consists in two main steps: �rst, the number of
components and initial values are estimated (Section 3.2.3). Then the parameters are op-
timized. The optimization process is well-known and it has been demonstrated that either
the Expectation-Maximization algorithm (Maximum Likelihood estimates) [PSTA05] or
the Levenberg-Marquardt algorithm (non-linear least-squares method) give good results
(Section 3.2.4). Nevertheless, optimization relies strongly on initial parameters. They
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therefore must be estimated very carefully to avoid erroneous results. As waveforms may
be complex, the 2-step process is carried out iteratively. Once the model parameters have
�rst been optimized for each echo, the waveform is reconstructed and compared to the raw
waveform. If signi�cant residuals are found, we assume this corresponds to undetected
echoes, and the optimization process restart for all the echoes. New comparisons and new
peak additions are performed until the residuals are lower than a given threshold ε. The
full work�ow is described in Figure 3.3.

A waveform is composed of a sequence of N points uniformly-spaced {(xj , yj)}j=1,..,N sam-
pled traditionally at 1GHz. We aim to decompose each sequence into a sum of components
representing the targets located within the travel path of the laser beam as

y =
n∑
i=1

fi(x) + b (3.2.1)

where b is the noise of the waveform, n is the number of components, and fi the echo
model. Here, we have the same model for all the echoes.

3.2.2 Model selection

Based on Equation 2.1.8, the received power as a function of time can be expressed as
follows:

Pr(t) =
n∑
i=1

ki S(t) ∗ σi(t) (3.2.2)

where n is the number of echoes, ki is a target-dependent value varying with range between
sensor and target, S(t) = Pt(t) ∗ ηsys(t) is the system waveform of the laser scanner, and
σi(t) the apparent cross-section of the ith target. [WUD+06] describe that S has a Gaussian
behaviour for RIEGL LMS-Q560 system and we consider that this hypothesis is still valid
for our Optech 3100 device. Several other models exist and are tailored to speci�c sensors
(uniform for [Ste00] or with exponential decrease for [JS06]). Furthermore, by assuming
that the scattering properties of the n targets can also be described by Gaussian functions,
[WUD+06] have derived the following formulation of the received power, that, due to
convolution properties, allows to represent waveforms as a series of Gaussian functions.

Pr(t) =
√

2πA0w0

n∑
i=1

ki
Aiwi√
w2

0 + w2
i

exp− (t− ti)2

2(w2
0 + w2

i )
(3.2.3)

where A0/i and w0/i are the amplitude and the width of the emitted pulse and the target
i respectively.

The Gaussian function has been widely adopted in the literature, and has been shown
to be an e�cient model for small-footprint waveforms, however incorrect in theory. It is
known that the transmitted pulse is slightly dissymmetric and thus not really Gaussian.
Moreover, we have no a priori knowledge on the true parametric form of the target cross-
sections. The simulation of waveforms over di�erent kinds of shape, vegetation, or urban
items has been barely investigated and no analysis by synthesis reasoning has been derived
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Figure 3.3: Flowchart of Generalized Gaussian waveform processing. The iterative proce-
dure allows to retrieve three echoes instead of two.

yet. Thus, the Gaussian model has appeared to be a simple and e�cient solution: 1/
many authors have exhibited very good �tting quality results based on this assumption;
2/ amplitude and width parameters are discriminant features for classi�cation (cf. Sec-
tion 2.6.3) It would be therefore logical to adopt such solution. However, a close look at the
data shows that many echoes are indeed symmetric with the well-known bell curve, but are
slightly distorted on the top. It is therefore of interest to extend waveform processing capa-
bilities by using a more complex parametric model that is able to deal with such behaviour.
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The choice of the new modelling function relies on several criteria. First, the function has
to be unimodal, and its parameters have to be related directly to the shape of the target.
Second, it should be capable of modelling a larger variety of statistical behaviours (�exi-
bility). Third, for numerical stability and tractability, it should not require the estimation
of a large number of parameters and the derivative of the function should have an explicit
formulation, in order to use classical optimization algorithms. Among the models available
in the literature, the Generalized Gaussian (GG) distribution is a particularly attrac-
tive candidate as it requires only one additional parameter to be estimated compared to
the Gaussian model, and it can approximate a large class of statistical distributions thanks
to its shape parameter α (e.g., impulsive, Laplacian, Gaussian, and uniform distributions).

fGG(x) = A exp

(
−(x− µ)α

2

2w2

)
(3.2.4)

The parameter set is Θ = {µ,A,w, α}, where:

• A and w give the amplitude and the width of the Gaussian model.

• Shift parameter µ still indicates the position of the mode of the function.

Figure 3.4: Behaviour of the Generalized Gaussian function.

The behaviour of the GG model is displayed in Table 4.1. The main limitation of its
introduction is that with a simple non-linear least-squares algorithm, it will increase the
number of �ts that do not converge. This is due to the increasing number of degrees of
freedom of the function and also to the more complex expression of the gradient [AAB99].
The Generalized Gaussian is a popular solution to model SAR amplitude [MZS06], image
texture [dWSD99; DV02] or even outliers in image matching [HSSV03]. One can notice
that we have not adopted the traditional formulation, involving the Beta function. On the
one hand, the Beta function allows higher �exibility as our simple GG formulation. On
the other hand, when processing millions of waveforms, its evaluation and the evaluation
of its derivation become computationally very expensive in time. This is why it has been
removed.
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3.2.3 Peak detection and initial parameters estimation

The two �rst steps of the algorithm are a coarse peak detection and an estimation of the
model parameters in order to initialize the Non-Linear Least-Squares (NLS) �tting (Step 2
in Figure 3.3). Peak detection can be carried out by traditional pulse detection methods:
leading-edge, constant fraction or center-of-gravity methods are valid and often used in the
literature (see [WUM+04] and Chapter 7 of [ST09] for further explanations).

The basic detection method is based on the zero crossings of the �rst derivative on the
thresholded version of the waveform. We estimate the number of components n from the
number of in�ection points of the signal and obtain initial estimates of the locations from
the positions of its consecutive in�ection points.
As such a method is a�ected by noise present in the waveform, the background noise is
�rst thresholded. We �rst set the background noise to a rough value b equal to the digital
current o�set value (i.e., an o�set value of a signal from zero is included when the signal
is converted from analogue to digital � e.g., 5 for the Riegl LMS-Q560 datasets, and 9 for
the Optech 3100 device). The real noise value is computed with the mean amplitude value
of all the bins which amplitude is inferior or egal to this �rst value.
Then, smoothing is performed by convolving a Gaussian of width τ with the observed
waveform.
The detection algorithm takes into account a minimal number of samples separating two
detected peaks. This bound is set to the sensor range resolution which is cτ/2, where τ is
the half width of the impulse response. Our ability to resolve these peaks is limited by the
vertical resolution of the device and determined by factors such as the laser pulse width,
the emitted pulse, and the digitizer sampling rate.
Di�culties arise when two neighbouring peaks are close enough together that only two
in�ection points (instead of four) are detected making it impossible to isolate the pair.
One solution is to perform a second pulse detection on the residuals between the observed
waveform and the previous �t. If for a bin, the residual is superior to a given threshold
ε, a new peak is located here and a new �t is run with the new component. The iterative
procedure is similar, for instance, to [HMB00; LMSV10]. [HMB00] have adopted a relevant
ranking strategy. A high number of peaks is detected. Echoes with signi�cant amplitude
and width are used for the initialization step. Then, peaks are successively added following
a given order based on the proximity of the peak to previously accepted peaks. Echoes are
introduced only if the quality parameter is not satisfactory. [LMSV10] focus their e�orts
on asymmetric peaks arguing such behaviours result from the superposition of the contri-
bution of two targets (see Section 2.4.2 for more details).

Once peak locations {µi}i=1..n have been estimated,

• their amplitude are set to the mean value of the two adjacent bin values:

∀i, Ai =
ydµie − ybµic

2

• w and α are initialized with constant values for all the waveforms, respectively
w = τ ns and α =

√
2.
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Due to the low SNR, rough noise reduction is performed and prevent the detection of
weak pulses (i.e., with amplitude slightly over the noise level). One solution should be a
cross-waveform pulse detection, based, for instance, on stacking (Section 2.4.2), perform-
ing a round trip between the waveform of interest, the previous and following waveforms
(temporally speaking), and an accumulation of spatially close waveforms.

3.2.4 Fitting the waveforms

We aim to �nd the optimal values for n GG functions, knowing N bins of a waveform.
The problem is thus described by a system of N observations with 4n unknown parame-
ters. Such an optimization problem can be e�ciency solved using non linear least-squares
methods (since the modelling function f is not linear).
As presented in Section 2.5.2, a variety of such techniques exist for the GMM problem
(simple linear superposition of Gaussian components), which �nd the solution by itera-
tively trying a series of combinations of the parameters until a solution is found: [JS05]
use the Gauss-Newton, many authors such as [HMB00] prefer the Levenberg-Marquardt
technique, whereas [PSTA05] estimate the Gaussian parameters with the EM algorithm.
One can notice that in case of Gaussian mixtures, the least squares and maximum like-
lihood problems are exactly the same [Bis06]. In the context of Generalized Gaussian
distributions, this is still true and such techniques are still valid.

We choose the Levenberg-Marquardt algorithm to compute the �t. The Levenberg-Marquardt
method is a simple variation on Gauss-Newton iteration, designed to provide faster con-
vergence and regularization in the case of overparametrized problem [Lev44; Mar63]. It
requires that the �rst derivatives of the minimizing function for each parameter to be
known. In a linear least-squares problem, knowing {xi, yi}i=1,..,N , we aim to optimize the
set of parameters Θ so that the sum of the squares of the deviations

ELS(Θ) =
N∑
i=1

‖ri‖2 =
N∑
i=1

‖yi − f(xi|Θ)‖2 (3.2.5)

becomes minimal. ri is the residual between the observed waveform and the predicted one
(adjustment). Thus, we look after:

Θ∗ = argmin
Θ

ELS(Θ) (3.2.6)

For functions f that are not linear in the unknown parameters Θ , the problem is solved
by iteratively re-linearizing Equation 3.2.5 around the current estimate of Θ using the
gradient derivative J = ∂f

∂Θ ; and computing an incremental improvement ∆Θ. J ∈ R4n is
the Jacobian matrix, and f is thus approximated using the Taylor expansion: f(Θ+∆Θ) =
f(Θ) + J∆Θ + O(‖∆Θ‖2). To minimize the problem, we iteratively �nd an update ∆Θ
to the current parameter estimate Θ by minimizing:

ENLS(Θ) =
N∑
i=1

‖yi − f(xi|Θ)‖2 (3.2.7)

≈
N∑
i=1

‖J(xi|Θ)∆Θ− ri‖2 (3.2.8)
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One can notice that two issues appear: 1/ this approximation only holds near a local
minimum; 2/ for small values of ∆Θ, the update Θ← Θ + ∆Θ may not always decrease
the overall residual error. In order to mitigate this problem, a solution is to take a smaller
step Θ← Θ+α∆Θ with α ∈ [0, 1]. α can be found by linear search applied to the function
φ(α) = f(Θ+α∆Θ) [MNT04; NW06]. Another solution to ensure a downhill step in error
is to add a diagonal damping term to be approximate Hessian matrix H =

∑
i=1
JT(xi)J(xi).

We therefore have to solve:

[H + λ diag(H)]∆Θ =
N∑
i=1

JT(xi) ri (3.2.9)

The damping parameter λ is increased (multiplied by 10) if the squared residual is not
decreasing as fast as predicted in Equation 3.2.8, and is decreased (divided by 10) if the
expected decrease is obtained. λ is initially set to typically 10−3. The algorithm moves
between Newton iteration when λ is very small (rapid convergence in the neighbourhood of
the solution), and a descent approach when lambda is large (substantially larger than 1),
which still enables a decrease of the squared residuals. Since we minimize with respect to a
small number of parameters, there is no need to adopt enhanced versions of the algorithm,
such as the sparse Levenberg-Marquardt algorithm [HZ00].

Problems occur when the �t ends up in a local minimum, which may not be the best solu-
tion possible: this is mainly due to initial estimates signi�cantly far from the true solution.
However, waveforms have "known" shapes. Thus, the initialization step, constrained by
our lidar physical knowledge, is very rarely wrong. Nevertheless, Levenberg-Marquardt can
fail to converge. Contrary to the Newton algorithm, the Levenberg-Marquardt algorithm
requires the inversion of the Hessian H. It can lead to inconsistent numerical values for Θ
parameters: such cases happen very rarely since in practice we have to �nd a maximum of
28 parameters, considering modelling waveforms composed of a maximum of seven echoes
with the GG function.

As indicated in the previous section, if the �t does not approximate the return waveform
to a prescribed accuracy, the full optimization process is reiterated. If for one bin of
the waveform, the residual between the estimate and the raw waveform is superior to a
threshold ε, a new peak is found at that location and 4(n+ 1) parameters are optimized.
In practice, ε has to set to 3

2b.

3.2.5 Georeferencing process

The output of the waveform processing step is a 3D point cloud with p additional features.
In our case, p = 3, and the features are the parameters of the Generalized Gaussian model
A, w, and α.

As described in Figure 3.1.a, the peak location µi gives the elapsed time to the beginning
of the laser pulse transmission. This value must be subtracted by µ0 which is the location
of the transmitted pulse. Since this pulse slightly �uctuates in shape and its amplitude
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and width are required for subsequent feature normalization (see Section 3.4), a Gener-
alized Gaussian �t is also performed on it. The main di�erence with waveform �tting is
that we know that only one easy-to-�nd peak is present in the T0 pulse. The real range
value between the sensor and the target is ∀i ∈ [1, n], di = c (µi − µ0)/2. Each target
coordinate is expressed in the scanner coordinate frame, in polar coordinates (di, γi). The
so-called georeferencing process is now performed to turn these coordinates to a (x, y, z)
triplet within a given geographic datum. The GPS position of the aircraft, and the sensor
attitude values for each laser shot are recovered from the full-waveform data �le for each
laser shot to compute the {x, y, z} in the geocentric datum. The �nal step consists in
transforming these positions in some cartographic projection (planar coordinates). The
transformation formulas cannot be expressed in details because they di�er from a sensor
to another. O�set values are di�erent, depending on the con�guration of the laser system,
GPS and Inertial Measurement Unit (IMU) devices. However, some basic transformation
formulas are provided below.

Direct georeferencing is illustrated in Figure 3.5. The following steps are necessary to
transform the polar coordinates expressed in the laser local frame:

1. Compute the cartesian position of the point in the sensor frame from the polar
coordinates;

2. Compute the position in the IMU/GPS frame using sensor and GPS calibration data;

3. Compute the position in the geocentric datum using plane position (provided by the
GPS device) and attitude (roll, pitch, heading � provided by the IMU).

The global transform can be expressed as follows:

c gcP = c gcgps +Rgps→gc

(
Tlas→gps +Rlas→gps c

las
P

)
(3.2.10)

where:

• c gcP are the coordinate of the point P in the geocentric datum;
• c gcgps are the coordinate of the GPS in the geocentric datum;
• Rgps→gc is the rotation from the GPS frame to the geocentric datum;
• Tlas→gps is the translation of the laser frame to the GPS frame;
• c lasP are the coordinates of the laser point in the laser frame;
• Rlas→gps is the rotation from the laser frame to the GPS frame.

Tlas→gps and Rlas→gps are constants that are calibrated when the lidar device is mounted.
Rotation Rgps→gc is given by the plane attitude and position c gcgps is provided by the GPS.
Since laser PRF is superior to 100kHz and GPS and IMU frequencies at around 200Hz and
2Hz respectively, the plane position and attitude are simply linearly interpolated between
two values.

The geometric accuracy of the estimate of the peak position has an impact on the �nal
planimetric and altimetric qualities of the georeferenced 3D point. If the e�ect of beam
divergence caused by di�raction is neglected and considering that the o� nadir angle of
our data is usually small, therefore the laser pro�les diverge only little from nadir view
and the peak location misestimation e�ects mostly the vertical direction (see Figure 3.6).
The altimetric and planimetric shifts are respectively equal to ε cos θ and ε sin θ, where ε is
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Figure 3.5: Georeferencing process and notations.

the line-of-sight distance between the real maximum position and the estimated one, and
θ the emission angle of the laser impulse. If we assume an o�-nadir angle of 8 degrees, a
line-of-sight distance d=7.5 cm (half of range sampling grid of 15 cm or 1 ns) is projected
to a line of length of 7.4 cm on the vertical axis and 1.2 cm on the horizontal axis.

Such values are mitigated by the transform of the point coordinates in the laser frame to
geographic coordinates. This impact is di�cult to evaluate theoretically since the georef-
erencing process involves metadata that both depend on the sensor (e.g., attitude o�sets)
and the current survey (�ight height and plane attitude).

3.3 Results and evaluation

Amiens and Biberach datasets have been entirely processed. The number of points that are
retrieved as well as the associated �tting quality are provided in the two following sections.
The proposed approach can be quantitatively evaluated comparing these results �rstly with
the multiple-pulse point cloud, and secondly with the standard Gaussian decomposition.

3.3.1 Decomposition results

Waveform decomposition (or peak detection) is quali�ed by the number of echoes that
are retrieved. In such a case, "ground truth" is almost impossible to obtain since a man-
ual labelling of a su�ciently signi�cant number of waveform is too tedious to be carried
out. Consequently, we cannot provide detection results in terms of "true positive", "false
positive", and "false negative". A close look at the decomposition results, waveform per
waveform has been carried out in order to assess the reliability of the proposed approach,
and to set up the underlying parameters (width of the Gaussian �lter τ , and residual
threshold ε). However, it only provides very good hints about the general behaviour of our
�tting algorithm on di�erent kinds of shapes, without comprehensive evaluation.

One solution for evaluation is to compare the decomposition results with the number of
points that are delivered to an end-user (i.e., who has no access to the lidar waveforms).
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(a) Illustration of the planimetric
and altimetric shifts caused by a
peak misestimation of ε bins.

(b) Plots of the planimetric and altimetric shifts, in the
geocentric datum, between a 3D point with correct peak es-
timation and a 3D point with shifted peak estimation. Three
simulations are carried out with the Optech sensor and with
three di�erent shifts: 0.5, 1, and 2 bins (1 bin=1 ns). Scan
angle also varies.

Figure 3.6: In�uence of the peak misestimation on the planimetric and altimetric accuracies
of the resulting 3D point.

Tables 3.1 and 3.2 provide the full decomposition results for Amiens and Biberach areas,
respectively. MP stands for "Multiple Pulse", in contrast to FW ("Full-waveform"). It
refers to the end-user point cloud. Such a point cloud is not generated identically for the
two datasets. For Amiens, a maximum number of four range values (�rst-second-third-
last) is provided on-the-�ight by the Optech sensor, using the constant fraction method
(Table 3.1). For Biberach, the MP point cloud has been generated by Riegl's software
RiAnalyze. First, a simple threshold-based peak detection is performed. Afterwards, a
Gaussian decomposition is carried out (Table 3.2).

From Table 3.1, one can see that full-waveform processing allows to retrieve more points
that multiple pulse sensors. This is a already widely known assessment. Approximately,
4.1% additional points are found over Amiens. This mainly correspond to building edges
and vegetated areas, mainly trees (see Figure 3.11). Considering a survey of more than
20 km2, this leads to around 2.7M additional points. Compared to additional percentages
that are traditionally reported in the literature, especially in forested areas, such a �gure
can be considered as relatively low. The reasons are twofold. Firstly, Amiens in a urban
area, surrounded by crops and �elds, acquired under leaf-o� condition (February). The
probability of multiple re�ections (and subsequent complex waveforms) are therefore much
lower than in a wooded area under leaf-on conditions. Secondly, the laser beam divergence
was 0.8 mrad, leading to a footprint size of 0.8 m. Such a speci�cation favors waveforms
with multiple peaks (Figure 2.1), but does not make the waveforms more complex. Since
the laser energy is spread in a larger patch, the targets should exhibit strong backscattering
properties to generate a signal with su�cient amplitude, especially under low SNR con-
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ditions. Table 3.1 gives the results for Amiens, strip by strip. Strip 8 exhibits the higher
additional percentage of all the strips (6.2%). Such percentage locally reaches more than
10% in the Southern part of Amiens.

Strip # waveforms # FW points # MP points # additional % additional

1 3,713,105 3,906,624 3,762,797 143,827 3.8
2 10,552,552 11,147,831 10,733,378 414,453 3.86
3 7,0603,46 7,394,908 7,162,135 232,773 3.25
4 4,685,378 4,892,859 4,725,393 167,466 3.54
5 5,958,867 6,328,962 6,056,634 272,328 4.49
6 5,426,282 5,672,696 5,454,878 217,818 3.99
7 6,502,702 6,977,330 6,627,451 349,879 5.3
8 2,415,712 2,574,170 2,423,806 150,364 6.2
9 6,030,496 6,444,359 6,146,551 297,808 4.8
10 6,204,585 6,471,038 6,261,637 209,401 3.3
11 5,254,211 5,532,875 5,318,653 214,222 4.03

Total 63,804,236 67,343,652 64,673,313 2,670,339 4.1

Table 3.1: Decomposition statistics for the Amiens data set. FW: 3D points extracted
with the proposed approach. MP: 3D points extracted using the range values provided
directly by the Optech sensor.

For Biberach area, the data have been acquired with a very small footprint sensor, and
under leaf-on conditions. Moreover, the area has a higher proportion of vegetated areas,
leading to more complex waveforms. The ratios of the number of detected peaks over
the number of waveforms are approximately 1.05 and 1.43 for Amiens and Biberach, re-
spectively. Table 3.2 shows that the additional percentage of retrieved points is much
higher, and reaches 24%. This is also a consequence of the peak detection algorithm that
is employed. The echoes have been estimated with a simple threshold-based method for
Biberach, which leads to coarser results, compared to the constant fraction method.

Strip #waveforms #FW points #MP points #additional % additional

Biberach 2,027,547 2,903,976 2,341,916 562,060 24

Table 3.2: Decomposition statistics for the Biberach data set. FW: 3D points extracted
with the proposed approach. MP: 3D points extracted using the range values provided
by Riegl's sotfware RiAnalyze (simple waveform thresholding and subsequent Gaussian
decomposition).

The speci�c interest of our proposed algorithm can also be assessed in terms of decom-
position performance. First, the choice of the Generalized Gaussian model instead of
the Gaussian function only slightly changes the number of detected echoes. For Amiens,
around 10 points per strip are additionally found with the GG model, which is negligible.
These points are located inside the tree canopy, and this is di�cult to ensure whether they
correspond to genuine objects. This may due to the fact the GG function allows to deal
with more rectangular echoes, leading to potential higher residuals in the ascending and
descending parts of the peaks, compared to a smoother Gaussian curve.

Furthermore, the impact of the iterative procedure can be seen on the two �rst columns of
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Tables 3.3 and 3.5. For Amiens dataset, 0.68% of the waveforms exhibited residuals above
the threshold and were processed with one additional echo. This second step has lead to
approximately 267,000 more points, which correspond to 0.69% more points (among the
total of 4.1%, presented in Table 3.1). For Biberach, 84,000 additional points are found
(3.6% over 24%). Figure 3.7 shows on a small area that such waveforms mainly correspond
to waveforms that have reached vegetated areas.

Finally, there are some MP peaks that have no FW homologue (less than 100 for the whole
Amiens dataset). This is due to two main reasons. Firstly, some of them exhibit low am-
plitude, very close to the noise level, which is not possible with our algorithm. Secondly,
the Levenberg-Marquardt optimization procedure may fail, and leads to inconsistent pa-
rameters values. Such echoes are discarded in the georeferencing process, and do not lead
to a 3D point. Moreover, the two-step peak detection method enhances the stability of the
optimization method. Indeed, when providing more relevant estimates of echo positions as
input data, the �tting procedure �nds more easily, and less inconsistent results are �nally
obtained.

Strip % 2 iterations % additional ξ1 ξ2 ξgauss
1 0.63 0.62 2.33 2.09 2.93
2 0.65 0.64 2.15 2.01 2.51
3 0.6 0.61 1.69 1.55 2.41
4 0.61 0.61 2.20 1.97 2.78
5 0.62 0.61 2.12 1.98 2.56
6 0.61 0.62 1.96 1.67 2.44
7 0.65 0.64 1.87 1.70 2.71
8 0.72 0.73 2.03 1.88 2.19
9 0.68 0.69 1.88 1.64 2.25
10 0.79 0.78 1.97 1.74 2.42
11 0.64 0.65 1.44 1.17 1.79

Total 0.68 0.69 1.99 1.55 2.43

Table 3.3: Comparison of the waveform �tting quality between the proposed Generalized
Gaussian decomposition (ξ1 and ξ2, for one and two iterations, respectively), and the
standard Gaussian approach (ξgauss), for Amiens data set.

3.3.2 Quality analysis

Two main quality measures are considered of interest for our purpose:

• the range accuracy: does waveform processing allow to better locate the peaks?

• the �tting quality: does an iterative GG decomposition improve signal �tting?

The range accuracy i.e., the ability of our approach to correctly detect the echo maxima
within the waveform cannot be evaluated with a self diagnostic. The required detection
precision cannot be lower than one bin which is the sampling rate. Some simulations have
been carried out. They have shown that the absolute di�erences between the real peak
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Strip ε (m) σε

1 0.058 0.38
2 0.061 0.385
3 0.056 0.37
4 0.058 0.37
5 0.060 0.37
6 0.056 0.37
7 0.062 0.39
8 0.072 0.41
9 0.059 0.38
10 0.057 0.36
11 0.059 0.37

Table 3.4: Statistics on range measurement di�erences between the sensor values and the
waveform decomposition approach (Amiens dataset).

Strip % 2 iterations % additional ξ1 ξ2 ξgauss
Biberach 4.18 3.6 1.51 1.12 1.87

Table 3.5: Comparison of the waveform �tting quality between the proposed General-
ized Gaussian decomposition (ξ1 and ξ2, for one and two iterations, respectively) and the
standard Gaussian approach (ξgauss) (Biberach data set).

and the estimated one were below half-a-bin. This is totally acceptable but, therefore, this
is impossible to give a quantitative evaluation of such di�erences. Consequently, we have
privileged the measure of the range di�erence between homologous MP and FW points (ε,
see Figure 3.6.a). Results are shown in Table 3.4, strip by strip for the Amiens dataset.
We consider that waveform processing leads to better results that on-line peak detection.
ε is the mean value of such di�erence for each strip, and σε is the associated standard
deviation.
Two echoes are considered as "homologue" whether the di�erence of range values for a
given waveform is inferior to 0.75 m. Such an upper bound is necessary to prevent mis-
matching and set up accordingly to the sensor range resolution. The mean ε value is around
0.07 m, with a standard deviation of 0.38. This means, in a Gaussian sense, that 95% of
the matched points show an improvement better than 0.83 m ' 1 bin, since the sampling
rate of the Optech sensor is equal to 1 ns. Finally, considering Figure 3.6.b, we can state
that waveform processing allows to generate 3D points with a higher altimetric accuracy of
0.15m maximum, and with a higher planimetric accuracy of 0.025m maximum. The latter
value can be considered as negligible with respect to the georeferencing process accuracy
values and other errors (see [VM10], Chapter 3).

The �tting quality is the global measure of closeness of the reconstructed waveform to the
raw signal. Its is evaluated by:

ξ =
1
N

N∑
i=1

(yi − f(xi|Θ∗))2 (3.3.1)
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(a) Orthoimage c© IGN.

(b) 3D point cloud coloured with the point
altitude.

(c) 3D point cloud coloured with the number
of �tting iterations (Blue: one � Green: two).

Figure 3.7: Relevance of an iterative waveform decomposition and �tting procedure
(Amiens).

where Θ∗ is the optimal parameter set, estimated with the Levenberg-Marquardt algo-
rithm. Results are shown in the right part of Tables 3.3 and 3.5 for Amiens and Biberach,
respectively. Three di�erent �gures are provided. ξ1 and ξ2 give the mean error per strip
with the Generalized Gaussian decomposition method with one and two iterations, respec-
tively, whereas ξgauss provides quality measures for a one-step Gaussian decomposition (the
initial peak detection step is the same as described in Section 3.2.3). The results show that
both the introduction of the GG model, and of a second optimization step improve the �t-
ting accuracy (Figure 3.9). The α parameter, introduced to cope with sharp or �at peaks,
permits a higher �exibility of the modelling function, and tends to reduce the ξ values i.e.,
the �tting error. For the purpose of data compression, the Generalized Gaussian model is
relevant.

Finally, two 3D point clouds over a residential area and the downtown of Amiens, coloured
with respect to the ξ value, are provided in Figure 3.8. Since the quality measure is given
for one waveform, two 3D points that belong to the same waveforms therefore have the
same value (and colour). One can see the quality criterion exhibits the lowest values for
the streets (asphalt ground) and most of the building roofs. Conversely, highest values
(i.e., ξ ≥= 2) are found on �eld areas, trees, low above ground objects, and some building
roofs depending on the material. This corresponds to more complex targets or targets
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(a) Area #1.

ξ
0 2

(b) Area #2.

Figure 3.8: Waveform �tting quality ξ, displayed for the two areas presented in Figure 3.10.
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Figure 3.9: Histograms of ξ values for three di�erent scenarii. The values have been
computed for Strip 7 of Amiens area.

with highest re�ectance (e.g., red �at roof in the middle of Figure 3.8.b), i.e., waveforms
with high and narrow pulses. Both cases thus reveal some local misadjustments. Besides,
both medium and high values are visible on grass areas depending on the area: lower
values correspond to Amiens downtown i.e., public areas in contrast to private gardens
in the residential areas. Consequently, the roughness of the terrain has an impact on the
�tting accuracy. A close look to the waveforms shows that such waveforms exhibit a slight
asymmetry that cannot be perfectly handled by the Gaussian model and its extensions.

3.4 Analysis of the extracted parameters

This section deals with the analysis of the behaviour of the extracted full-waveform features.
The georeferencing process after the Generalized Gaussian waveform decomposition has
released a 3D point cloud {x, y, z}, and the so-called FW attributes.

3.4.1 Full-waveform parameters

The Generalized Gaussian waveform decomposition allows to retrieve two kinds of features:

• the model parameters, namely the amplitude A, the width w, and the shape α (see
Equation 3.2.4);

• the features that can be computed using the above-mentioned parameters: the Full-
Width-at-Half-Maximum FWHM , and the backscattered cross-section σ (see Ta-
ble 3.6).

Parameter µ of the GG function is not a morphological parameter, but indicates the posi-
tion of the peak maximum. This is therefore the key feature for the georeferencing process.
The formulas for deriving FWHM and σ from the Gaussian model parameters are known
(see, for instance, Equation 2.6.2). Since the Generalized Gaussian model has been adopted,
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Figure 3.10: Four areas of interest over Amiens: (a) Area #1 � (b) Area #2 � (c) Area #3
� (d) Area #4 c© IGN.
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these formulas are therefore modi�ed (see Table 3.6). In practice, α is close to
√

2 and the
FWHM and σ values do not much vary.

Feature Gaussian Generalized Gaussian

FWHM 2w
√

2 ln 2 2 α2√
2 ln 2w2

Pulse energy Aw
√

2π
Aw

α2
Γ( 1

α2 )

Backscattered cross-section CcalR
4Aw CcalR

4 Aw

α2
Γ( 1

α2 )

Table 3.6: Full-waveform derived features from the Gaussian and Generalized Gaussian
modelling functions.

Figure 3.11: Additional points retrieved with our approach (yellow points), compared
to those provided by the sensor (dark green points). The areas correspond to those of
Figures 3.10a and b.

Figures 3.12 and 3.13 provide several examples of these FW features for both residential,
urban, and dense urban areas. It can be clearly noticed that their behaviours both depend
on the geometry and the backscattering properties of the targets.

3.4.2 Calibration and correction

As already mentioned and explained in details in Section 2.6.2, both radiometric calibration
and feature correction steps are required.

The radiometric calibration is necessary to compute the backscattered cross-section σ for
each point. The calibration constant Ccal has to be derived. For that purpose, for each
lidar strip, small asphalt areas close to the nadir view of the plane are manually delineated.
According to the Aster Spectral Library [BHGR09], the re�ectance value of such targets
is set to 0.2. Ccal is calculated for each 3D point lying on the selected areas and labelled
as "single" echo of a waveform (both �rst and last). We follow Equation 2.6.1, derived for
the GG model. Finally, the mean value of all the computed constant is taken as reference
value. The number of samples points ranges, depending on the strip, from 950 to 3200.
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Figure 3.12: Full-waveform features for two areas of Amiens (namely Area #1 on the left
column, and Area #2 on the right one). 3D point cloud coloured with respect to the: (a)
altitude, (b) amplitude, (c) FWHM, (d) cross-section.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Full-waveform features for a small areas of Biberach. (a) Ortho-image. 3D
point cloud coloured with respect to the: (b) altitude, (c) amplitude, (d) FWHM, (e) shape
(α), and (f) cross-section.



112 3. A Generalized Gaussian model for decomposition and modelling

Echo amplitude, width, and shape have to be corrected from the emitted pulse shape
�uctuations. This is no longer needed to assume it constant. The T0 pulse is recorded,
which permits to take into account its speci�c shape for each waveform. For that purpose, it
is also modelled by a Generalized Gaussian function, and the same optimization procedure
is applied than for return signals. The {A,w,α} triplet can be corrected by applying a
normalizing factor which is the ratio between the mean feature value of all the emitted
pulses of a given strip ({Astrip

e , wstrip
e ,αstripe }), and the estimated amplitude of the current

emitted pulse ({Ae, we, αe}).

Figure 3.14 shows the variation in amplitude and length of the T0 pulse for four strips
of Amiens. One can notice that the emitted pulse tends to spread (wider with lower
amplitude) with the acquisition time. Such a normalization process is therefore necessary
to be sensor independent but also not be strip speci�c. Finally, following Equation 2.6.3,
the 3D point amplitude can be additionally corrected from the run length dependency of
the laser beam, and the in�uence of the target geometry, in order to minimize the e�ect
of the slope. Such a process has been carried out for both datasets, and an example of
improvement over Biberach is provided in Figure 2.8.

Finally, the improvement can also be assessed with Figure 3.16.a that displays for the
whole Biberach area the amplitude histograms before and after correction. One can notice
that the small �uctuations on the raw amplitude values are smoothed with the geometrical
correction. Such e�ect comes from the building roofs that compose most of the area of
Biberach. Many buildings are composed of gable or hipped roofs and are located on each
side of the plane trajectory. Therefore, the laser beam will hit one face with an orthogonal
incidence angle (no geometrical in�uence), and the other side with a signi�cant angle,
leading to strong attenuation and lower amplitude values (see Figure 2.8). Each type
of building (i.e., with almost the same geometry and radiometry) will therefore generate
locally one high value and one low value in the amplitude histogram.
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Figure 3.14: Illustration of the transmitted pulse variation with the time. 500,000 points
have been randomly picked in four distinct strips of the Amiens dataset to compute the
histograms.

3.4.3 Point-based analysis

The behaviour of four full-waveform features is examined in this section: the amplitude,
the width, the shape, and the cross-section. The analysis is carried out with an echo-based
approach and not with a segment-based approach. Histograms are computed per feature
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�rst for whole lidar strips. Besides, the point cloud is segmented per echo type (single -
�rst - intermediate - last). Finally, the analysis is performed per various classes of interest.
Such a labelling has been carried out manually, and will serve as basis for the ground truth
of the classi�cation process (see Chapter 5). On the one hand, we select the three main
classes of interest that will be used for subsequent classi�cation: ground, vegetation, and
building. Terrain echoes are only composed of single echoes. On the other hand, ground
and building classes are splitted for particular in-depth analysis. Asphalt, clay court, and
grass areas are delineated for ground points, and several metal, slate, and tiled roofs are
labelled for the building class. For further analysis, we have also decided for the Biberach
area to split two kinds of tiled roofs according to their colour on the associated orthoimage:
such classes are called "orange" and "brown" tile classes.

Amplitude A and width w

Figure 3.15 �rst shows the general behaviour of these two parameters of four various areas
of Amiens. The four areas are visible on Figure 3.10. Area #1 is a residential area mixing
vegetated areas and anthropic structures, that is why the associated amplitude histogram
is composed of several modes. The amplitude is higher for grasses than woody vegetation
due to the fact that the laser energy is scattered more through the multiple layers and less
energy is returned to the sensor. In case of dense urban areas, less vegetation is present
and targets with poor re�ectance properties (such as the asphalt, the cement or slate roofs)
prevail: the amplitude histogram thus exhibit lower values (Figures 3.12b 3.15.a). The
echo width histograms of these two areas are almost identical, and no conclusion can be
made at the moment on the target in�uence. Area #3 is a region with two distinct crop
areas. They have not the same roughness and radiometric properties which explains the
two modes in the associated histogram. In such simple conditions, an amplitude-based
discrimination is possible. Finally, area #4 correspond to a crop with small areas of vege-
tation (bushes and trees). Figure 3.15.b shows that the echo width values are higher than
for urban areas. Vegetation therefore spreads the laser pulse.

(a) Amplitude. (b) Width.

Figure 3.15: Amplitude and width histograms for the full points of various areas of Amiens
(see Figure 3.10).

Figure 3.16.b shows the amplitude behaviour depending on the position of the echo within
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the waveform. Since single echoes mainly correspond to building and ground areas, whereas
�rst/intermediate/last pulses stem predominantly from vegetated areas, such histograms
are slightly similar to those displayed with respect to the echo label (Figure 3.17.a). Single
points exhibit the higher values, and the amplitude decreases with the increasing echo
number. First points correspond to the top of the tree canopy and sometimes to building
edges. Intermediate and last points have almost the same behaviour. Some last points may
be ground points but they are at least second echoes and their amplitude values re�ect the
loss of laser energy due to multiple re�ections.

(a) Before and after correction. (b) Per type.

Figure 3.16: Echo amplitude (Biberach).

Figure 3.17.a shows that vegetation areas, which are mainly composed of non-single points,
exhibit low amplitude values. Indeed the laser pulse is highly absorbed and such behaviour
is increased by the multiple re�ections. The more echoes occur, the less energy is scattered
back with the last ones. Slightly higher values can be noticed for building areas. For the
ground class, the amplitude values are signi�cantly dispersed. Firstly, this can come from
the manual labelling of the point cloud. Delineated ground areas may gather various low
above ground items such as cars, street items, etc. with very distinct and unforeseeable
behaviours. This is mainly due to the very distinct behaviours of ground surfaces (see
Figure 3.17.b). Asphalt areas feature re�ectance values (0.1-0.3) leading to low amplitude
values, contrary to clay tennis courts and tiled roofs (Figure 3.13.c). Grass points exhibit
medium values, which depend on the grass roughness and composition.

Moreover, Figure 3.17.c features amplitude histograms for four di�erent kinds of roofs.
Tiled roofs have almost the same behaviour, whereas the metal roofs speci�cally exhibit
low values due to their low re�ectance (e.g., large building in the middle of the Area #2
of Figure 3.12b). Finally, vegetation/building/ground classi�cation is not straightforward
with the single amplitude feature. Nevertheless, it can be, for instance, a relevant feature
for ground surface discrimination (asphalt versus clay courts/grass). It can be noticed on
Figure 3.12b both for Area #1 and for Area#2.

Finally, all amplitude histograms feature a low dynamic. The values range from 10/15
to 150, in spite of a digitization process over 8 bits (i.e., until 255). This comes from
the calibration process and the survey parameter setting. The record sensitivity is set up
such as the emitted pulse and the backscattered signal are fully recorded in amplitude (no
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(a) All points. (b) Per ground surface.

(c) Per roof material.

Figure 3.17: Echo amplitude for various classes of interest (Biberach).

saturation). When such process is not perfectly tunes, this can lead to poor amplitude
values that can have a signi�cant impact on the subsequent classi�cation process.

Echo width behaviour is displayed in Figures 3.18 and 3.19. The histogram for all the
points over Biberach (Figure 3.18.a) is right skewed and shows little dispersion around
the mean value of the emitted pulse (we=4.3 ns). Figures 3.18.b and 3.19.a show that
the skewness comes from the intermediate and last echoes i.e., vegetation points. Such
histograms are far more scattered than for the building and ground classes. Nevertheless,
the two corresponding plots are slightly right-skewed, enhancing the fact that the lidar
pulse can be stretched by some kinds of objects. This is particularly the case of building
roofs. Figures 3.19.b and 3.19.c, we can see that asphalt surfaces and metal roofs (which
are the most �at surfaces of their category) tend to stretch the laser pulse, whereas the
clay courts and tiled roofs barely in�uence the echo width. Finally, grass areas, rougher
surfaces, broaden the emitted pulse.

In urban areas, and as already shown in forested and natural areas, echo width may
contribute to the classi�cation of vegetated areas. The pulse is wider in such areas (as
in Figure 3.13.d). Building edges have also the same e�ect (see Figure 3.12c). Even if
building roofs stretch the pulses more than terrain surfaces, the two histograms are very
similar. Finally intra-class discrimination does not seem possible for the building and
ground classes, since the histograms of the selected surfaces and roof materials of interest
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(a) All points. (b) Per type.

Figure 3.18: Echo width (Biberach).

largely overlap.

(a) All points. (b) Per ground surface.

(c) Per roof material.

Figure 3.19: Echo width for various classes of interest (Biberach).

Echo shape α

The echo shape indicates how peaked or how �at an echo is. α =
√

2 means this is a
Gaussian curve. Histogram of Figure 3.20.a shows the general non Gaussian behaviour
of the lidar echoes. Values range between 1.3 and 2, with a mean value of 1.58. The
distribution of the values show a slight asymmetry and a shift to the right. However, most of
the values lie between 1.5 and 1.7. We can therefore conclude that such behaviour does not
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remote far from the Gaussian assumption. Lower and higher shape values are characteristic
of ground points and vegetation, respectively (see Figure 3.13.e). However, the plots of the
vegetation and building roof points do not di�er. Metal roofs and asphalt surfaces feature
the highest values (i.e., �atter peaks) but one can notice that these two classes of interest
also feature low echo width and amplitude. Such echoes look consequently �at even if
there is no real distortion, conversely to narrow high pulses that look more peaked. This is
an e�ect of the (relatively low) digitization rate of the waveforms. Figures 3.13.e, 3.21.b
and 3.21.c eventually enhance the di�culty to use α as a single discriminative feature for
classifying terrain surfaces and building roofs in urban areas.

(a) All points. (b) Per type.

Figure 3.20: Echo shape (Biberach).

Cross-section σ

The histogram of σ values computed for the whole Biberach area feature two main modes
with a long descending tail (Figure 3.22.a). The cross-section decreases with the increas-
ing position of the echoes within the waveforms. Single and �rst pulses exhibit higher
values than intermediate and last echoes that have narrower histograms and closer to 0
(Figure 3.22.b). Figure 3.23 �rst con�rm the vegetated areas, with smallest targets (with
respect to the laser footprint), have the lowest cross-sections. The ground class histogram
is more scattered than the two other main classes. One can notice in Figure 3.13.f that
ground regions can be easily discriminated from building points. However, some roofs
feature low σ values since the cross-section is highly in�uenced by the amplitude that is
also in�uenced by the object re�ectance. Furthermore, a close look to the terrain surfaces
shows that the asphalt and clay court plots barely overlap. The grass plot lies in between
the two latter ones. The σ feature therefore shows a better discrimination between these
land-cover classes than the features previously presented. For roof materials, the classes
of tile and metal are distinguished better, having a small overlap. σ is therefore a relevant
feature for their discrimination. A visual inspection of the 3D point clouds (Figure 3.12d)
assesses such relevance since several land-cover classes are easily distinguishable. Cross-
section values of slate roof points are located between these two classes but are not totally
overlapping them.
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(a) All points. (b) Per ground surface.

(c) Per roof material.

Figure 3.21: Echo shape for various classes of interest (Biberach).

(a) All points. (b) Per type.

Figure 3.22: Echo cross-section (Biberach).
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(a) All points. (b) Per ground surface.

(c) Per roof material.

Figure 3.23: Echo cross-section for various classes of interest (Biberach).

3.5 Conclusions

We have presented in this chapter a methodology to process airborne lidar waveforms by
adopting the standard Gaussian Mixture Model approach. This has already been exten-
sively tackled in the literature. All the echoes of the waveforms are described in the same
symmetric analytical function. The number of echoes is �rst retrieved, and afterwards
parameter estimation is performed traditionally using a Non-Linear Least Squares opti-
mization algorithm. We have adopted this framework but have proposed at the same time
two main modi�cations.

Firstly, the performance of such methodology mainly relies on the estimation of the num-
ber of modes within the waveforms. Such modes therefore need to be carefully retrieved.
This is all the more crucial that incorrect signal processing with a high number of missing
points would turn the full-waveform laser scanning to an ine�cient technology. Due to
the relatively low digitization rate of the waveform, �nding the correct number of in�exion
points within the lidar signals is not straightforward, especially when dealing with over-
lapping peaks. We have therefore proposed to smooth the waveforms in order to primarily
�nd a "coarse" number of modes. A �rst Levenberg-Marquardt optimization step provides
us a �rst reconstruction, which compared to the raw waveform, helps us to assess whether
strong di�erences exist. In this case, a new echo is created where the most important shift
exist, and the parameter optimization restarts. Such slight improvement of the standard
approach has been proposed by several authors in parallel to this thesis. Results have
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shown that two iterations are enough, since we mainly deal with single and double-mode
signals. In urban areas, additional points are retrieved on building edges and trees, allow-
ing to fully bene�t from the potential of the FW technology, in comparison to multiple
pulse sensors. Furthermore, detecting echo location with higher accuracy that on-the-�ight
signal processing algorithms leads to 3D points with higher geometrical accuracy. In best
cases, a higher altimetric accuracy of 0.15 m can be retrieved for the subsequent georefer-
enced 3D points.

Secondly, concerning the modelling function, we have decided to extend the Gaussian stan-
dard by adopting the Generalized Gaussian (GG) model. This is still a symmetric model
but it allows to cope to more peaked or �at echoes with one additional parameter α. In
the perspective of land-cover classi�cation, this is all the more relevant that such feature
may prove to be discriminant for the classes of interest. The waveform processing results
show that this improves the �tting accuracy, while still using a simple parametric model.
Well-known full-waveforms features, namely the amplitude, the width, and the derived
cross-section are consequently better estimated. Radiometric calibration, geometrical cor-
rection, and emitted pulse �uctuation normalization also stem from the modelling step of
both the waveforms and the emitted laser pulses. These three features show high potential
for discriminating our classes of interest (ground -building-vegetation) for our landscapes
of interest. The newly introduced shape feature is not clearly discriminative since the
histograms of α values are almost the same. Nevertheless, the feature will be conserved in
Chapter 5 in order to assess its genuine relevance. Further intra-class analysis has even-
tually been performed for the building class and the ground class. We can say that the
echo cross-section has revealed to be a relevant feature, but more in-depth analysis and
subsequent classi�cation must be carried out for full conclusions.
The main limitation of the GG model compared to the Gaussian one may come from the
fact that adding one parameter in the optimization process may lead to a higher number
of inconsistent results. However, statistics have shown that the same order of magnitude
is reached for both the Gaussian and the GG models (approximately 1:700,000).

The proposed work�ow has not been speci�cally designed for urban areas, and is not lim-
ited to small-footprint airborne lidar waveforms. The method can be tailored for other
applications and for a required �tting accuracy. Changing the modelling function allows
to retrieve new parameters that may be discriminant for classifying the resulting 3D point
clouds. However, it should be �rst veri�ed that its parameters can be computed in the
optimization process. Least-squares and EM approaches require the knowledge of the �rst
derivatives of the modelling function for each parameter. The Generalized Gaussian model
can still be handled by such techniques since this is a simple extension of the Gaussian
model. For more complex functions, other algorithms have to be developed.
Moreover, the issue of decomposing terrestrial or spatial lidar waveforms can also be tack-
led with our approach. For other kinds of landscapes and altimetric pro�les, the key point
is the initial number of echoes as well as the rule for aggregating new echoes in the second
optimization step. For instance, for spatial waveforms over forested areas, as illustrated in
Figure 2.3, two options are conceivable. If we aim to retrieve each layer of the tree canopy,
a slight smooth of the signal coupled with multiple echo addition based on high residuals
should be e�ective. For a coarse strategy, i.e., in an area-based approach, favoring the
main trends of the signal, the raw waveform should be smoothed with a larger kernel and
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a single optimization step should be enough.

To top it all, on the one hand, we can say the Generalized Gaussian model, as an exten-
sion to the standard Gaussian function, still provide a suitable trade-o� between a simple
solution with some relevant features and that can be easily handled, and a correct recon-
struction accuracy for a whole area of interest. One the other hand, such simple solution
can also be considered as very restrictive. First, the symmetric assumption does not always
hold: the �tting quality criterion can be relatively superior to the expected even for single-
mode waveforms. This enhances the asymmetric behaviour of the waveforms, and more
precisely of backscattered signals within the waveforms. Better adjusting the waveforms
would lead to better signal reconstruction, and to top it all, to better data compression.
Such issue is clearly at stake due to the large amount of data provided by FW sensors.
Furthermore, in order to foster information extraction, it may be of interest to deal with
full-waveform features, requiring new modelling functions.
The following part introduce a strategy to cope with the two above-mentioned issues at
the same time using a stochastic approach based on a marked point process.
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Chapter 4

A marked point process approach for
waveform modelling

4.1 Motivation

As discussed in Chapter 3, the Gaussian assumption does not always hold, and approximat-
ing the waveforms by a sum of Gaussians may be inadequate, depending on the required
accuracy, the application and the landscape. In the lidar equation (see Equation 2.1.8),
the emitted power Pt and the echoes are usually described by Gaussian functions, but this
is not always correct, and waveforms can therefore be composed of modes with non-similar
shapes (symmetric and asymmetric). To remove both, the broadening and the asymmetric
e�ects caused by a varying Pt on the received waveforms, a deconvolution step is usually
carried out, using, for instance, matched �ltering, Wiener �ltering [JS06], or B-splines
[RBP10]. Indeed, target cross-sections are physical parameters which are independent of
the emitted pulses. However, asymmetric peaks are also reported after deconvolution, that
is why we have to depart from the symmetric assumption. Such asymmetry has been
pointed out when quantifying the �tting accuracy of the Generalized Gaussian decompo-
sition approach. It can stem from various conditions (see Figure 4.1):

• Two overlapping Gaussian echoes of distinct amplitude can lead to a single left or
right-skewed pulse. A simulated case illustrates in Figure 4.1.a what is usually found
in tree canopies, with right-skewed echoes.

• Waveforms acquired with small-footprint sensors are highly in�uenced by the local
geometry of the intercepted surfaces. They can be positively or negatively skewed
by rough surfaces like vegetated areas (upper part of the tree canopy, hedges) or
ploughed �elds (Figures 4.1.b and 4.1.c).

• Waveforms received from medium and large-footprint sensors are bound to hit a
sequence of targets both dispersed in planimetry and in altimetry. They will exhibit
non-symmetric altimetric distribution leading to complex pulse shapes (Figures 4.1.d-
4.1.e- 4.1.f).

More advanced lidar waveform processing can be consequently motivated by two main
reasons. First, the �tting quality measure has shown that, for small-footprint sensors,
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Figure 4.1: Types of waveform signals (a) Right-skewed waveform (dark green dashed
curve) simulated with two Gaussian curves (red continuous curves). (b) and (c) Wave-
forms resulting from the small-footprint laser pulse backscattered from a hedge and a
tilted building roof (Biberach dataset). (d), (e), and (f) Several illustrations of complex
asymmetric waveforms acquired on tropical vegetated areas with LVIS sensor.

even for simple single mode waveforms, the reconstructions are not always perfect, and
the Generalized Gaussian model does not solve the problem. A new modelling function
with the adequate behaviour has to be introduced. However, in a large majority of cases,
the "symmetric" assumption is valid, and may be conserved for the corresponding echoes.
Secondly, we must remind that waveform processing is performed in order to generate
a 3D point cloud with additional features. The application of interest is 3D land-cover
classi�cation. The features, derived from the modelling function, should be discriminant
for the classes of interest. Consequently, in order to foster information extraction, and in
addition to the standard echo amplitude, width, and derived cross-section, other morpho-
logical parameters may be relevant. The relevance of these features may only be correctly
assessed embedded with the selected classi�er. Thus, our approach needs to be �exible
and be designed to be able to deal with several kinds of functions without modifying the
algorithm.

No solution has yet been proposed to transform the well-known parameter estimation prob-
lem into an optimal model selection problem for each mixture component where (i) the
number of components is unknown, (ii) the parametric models come from a prede�ned
library, and (iii) the most suitable model for each echo is not known beforehand. The
coarsest solution would be to adapt the approach proposed in Chapter 3. After initial
peak detection, a greedy algorithm may look for the optimal parameter values for each
peak for the set of proposed functions i.e., least-squares matching would be performed for
each combination. Finally, the minimal value of a well-designed energy would give the
reconstruction. However, this su�ers from three main drawbacks. Firstly, each echo is
segmented separately and no real coherence exists within the waveform. Secondly, such
process does not allow to correct peak under-detection and would lead to sparser point
clouds. Finally, the least-squares optimization process still limits the introduction of new
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functions. As a consequence, many models that we would like to test cannot be well han-
dled since speci�c techniques are required to estimate their parameters (e.g., the Weibull
function, see [Men63]). Besides, modelling functions with a higher number of parameters
may be prohibited since a high number of inconsistent results would appear.
Such combinatorial optimization problem may be solved, for instance, using simply simu-
lated annealing, Ant Colony Optimization [DS04], or Genetic Algorithms [YS94]. Stochas-
tic methods based on marked point processes [BL93; Lie00], that also use simulated
annealing, are very promising for addressing such issue, and have been adopted here. These
models, which allow the sampling of parametric primitives, while taking into account com-
plex interactions, have shown very good potential for many applications in remote sensing
[HSB03] and especially in image analysis aiming at the extraction of line networks [LDZ05;
SSZ07; TP09], vegetation [PDZ05], or 3D urban objects [ODZ07; LDZPD10]. The sam-
pling of the primitives is performed by Markov Chain Monte Carlo (MCMC) techniques
[Has70] which exhibit very good signal reconstruction properties [PADF02].

Each waveform is considered as a con�guration of objects. Our objects of interest are
parametric functions, and we aim to model each mode of the signal. The con�gurations
are assessed using an energy term. The global minimum of this energy is then found by
applying a Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampler embedded
into a simulated annealing scheme [Gre95]. The Reversible Jump framework is adopted
since the number of objects/echoes is not known beforehand.

Figure 4.2: Overview of the waveform decomposition and �tting process.

Such techniques have been already adopted immediately before in [HMWG07] where a
speci�c model composed of four exponential parametric functions is �tted to lidar inten-
sity histograms of data a�ected by signi�cant background noise. The model estimate is
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used for counting and locating the re�ected returns from surfaces, as well as retrieving
their amplitudes. It thus provides an e�ective algorithm for 3D ranging, all the more since
prior knowledge can also be incorporated into the model. However, this approach is not
suitable for our airborne lidar waveform: the parameters of the underlying shape model
can vary, but this increases dramatically the dimensions of the parameter space and makes
the problem much more complex. Thus, the authors of [HMWG07] assume all the peaks
of the signals to have a similar underlying shape model, an invalid assumption in our case.

Our model presents several interesting characteristics compared to conventional symmetric
(Gaussian) Mixture Model approaches:

• Multiple function types - The joint sampling of multiple functions types allows to deal
with various parametric functions. First, by using a library of shapes, more accurate
estimates are performed compared to classical approaches such as the Gaussian mix-
ture model (see [SGKR09] and Figure 4.1). Secondly, by selecting the most suitable
function for each peak, which is unknown beforehand, the estimated parameters are
more discriminant for a subsequent classi�cation.

• Lidar physical knowledge integration - Prior information on lidar waveform charac-
teristics can be introduced in the energy of the stochastic model formulation (e.g.,
maximal number of echoes). This permits to get a more realistic model and to achieve
better results.

• E�cient exploration of con�guration spaces - A MCMC sampler associated with rel-
evant proposition kernels allows us to avoid exhaustive explorations of large con�gu-
ration spaces, which can be both continuous and discrete. It is particularly e�cient
when the number of functions is unknown.

Eventually, the Reversible Jump Markov Chain Monte Carlo (RJMCMC) [Gre95] algo-
rithm is attractive because in a multi-object framework it can deal with parameter esti-
mation and model selection jointly in a single paradigm.

Section 4.2 �rst describes the parametric functions that compose the library. Three models
have been selected, including the Generalized Gaussian function. Then, the marked point
process is brie�y presented in Section 4.3. Our goal is not to detail all the mathematical
background of point process. Therefore, readers may, for instance, refer instead to [Lie00]
for further explanations. Next, the model energy is described in Section 4.4, and Section 4.5
deals with the optimization of the proposed energy. Finally, simulated experiments show
the relevance of such an energy, and results for various kinds of signals are presented in
Section 4.6. Finally, conclusions and perspectives are drawn in Section 4.7.

4.2 Library of modelling functions

As underlined in Section 4.1, the set of functions has to be chosen carefully since the
function parameters shall be used subsequently for classifying the lidar data (presented in
Chapter 5). Three options are conceivable:

• Find a single function with a very high �exibility allowing to deal with symmetric,
right and left-skewed echoes at the same time. For example, the Levy-skew α stable
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Generalized Gaussian Nakagami

A = 1 � s = 0.3 � w = 0.1 A = 1 � s = 0.3 � ω = 5 A = 1 � s = 0.3 � ξ = 1

Burr

A = 1 � s = 0.3 � b = 1 � c = 1 A = 1 � s = 0.3 � a = 1 � c = 1 A = 1 � s = 0.3 � a = 1 � b = 5

Table 4.1: Overview of various parameter set-ups of the three modelling functions of the
library.

function gathers these properties [NS95]. However, it features one main drawback
that prohibits its use: its analytical form is bulky, which would result in unfeasible
computational load for bin-to-bin comparison.

• Integrate much more models (5-10) to be able to deal with a large variety of lidar
waveforms. The process would be more time consuming since the selection of the best-
�t function would be a problem of higher dimensionality. A close look to waveforms
both from large-sized and small-sized footprints reveals that lidar echoes eventually
do not exhibit a large range of distinct behaviours. Therefore, it would be di�cult
to qualify the process and assess whether each echo is �tted by the "best" model.
Introducing models with similar behaviours would lead to random results since mostly
noise would govern the choice of model.

• Select a few number of functions (2-4) . The process will be robust if the library is
limited to very discriminative modelling functions, and with limited computing time.
Each model will �t its own class of echoes.

The strategy with few models has been adopted. Three di�erent distributions are chosen
to model the waveforms. They have been selected among a large variety of mathematical
functions that arise in physical and engineering problems [AS64].

The Gaussian andGeneralized Gaussian (GG) models have been shown to �t most of the
echoes of small-footprint lidar waveforms in urban areas (see [WUD+06] and Chapter 3).
They allow to model symmetric echoes which form the majority of lidar signals. Therefore,
the GG model is conserved. The properties of GG function are described in Section 3.2.2.

Nevertheless, the Gaussian assumption does not always hold. Asymmetric echoes are
observed within waveforms corresponding to ground surface or tree canopy (Figure 4.1).
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Thus, many waveforms exhibit heavier tails and require a more �exible parametric char-
acterization. Moreover, the GG model gives the amplitude, width, and �atness for only
symmetric echoes.
Other kinds of functions must therefore be included: functions able to �t asymmetric peaks
and those which can cope with both left- and right-skewed curves which therefore deliver
other parameters than those provided by the GG model. Several functions have been
tested, such as Weibull, Fisher, or Generalized Gamma models, but have not been selected
since they were not enough �exible for our purpose. The Nakagami function features all
the requested properties, except the ability to �t peaks with heavy tails, that is why the
Burr function has been added.

The Nakagami distribution is a generalization of the χ distribution and can model right-
skewed and left-skewed distributions with a skewness/spread parameter ω:

f(x | A, s, ξ, ω) = A
2 ξξ

ωΓ(ξ)

(
x− s
ω

)2ξ−1

exp −ξ
(
x− s
ω

)2

(4.2.1)

When ω increases, the peak becomes narrower and more symmetric. Scale parameter ξ
controls the peak width: large ξ leads to narrow peaks of higher amplitude. The Nakagami
function is traditionally used to model Synthetic Aperture Radar (SAR) images to esti-
mate their amplitude probability density functions as well as for subsequent classi�cation
[TNTM04]. A large body of literature has presented and studied probability density func-
tions so as to model the dispersion of the received signals produced by di�erent objects,
using either theoretical or heuristic models [MZS06; KMSZ08].

Finally, the Burr function is especially useful to model asymmetric modes with two shape
parameters. It enables to �t right-skewed peaks that the Nakagami model cannot handle. It
is a generalization of the Fisk distribution thanks to the parameter c. The scale parameter
is a, and b and c are two shapes parameters (b has the same e�ect as the ω parameter for
the Nakagami function). The ratio between peak amplitude and skewness is tuned by c.

f(x | A, s, c, a, b) = A
bc

a

(
x− s
a

)−b−1
(

1 +
(
x− s
a

)−b)−c−1

(4.2.2)

For airborne lidar waveforms, there is no physical background justifying their use. Fur-
thermore, contrary to the Gaussian model, their parameters cannot be, at the moment,
directly converted into physical parameters: no calibration method has been developed
yet, as for the amplitude feature. On the one hand, we admit that there is no physical
entity exclusively attached to these curves. On the other hand, they enable us to handle
asymmetric peaks and therefore we expect their application will outperform standard ap-
proaches. These distributions are de�ned in continuous domains. Table 4.1 provides some
representations of these functions with critical parameter variations.
Finally, one can notice that the library can evolve and be extended to other models to
become more generic and be able to deal with a larger scope of signals.

4.3 Marked point processes

Marked point processes are stochastic tools which have been introduced in signal and image
processing by Baddeley and Van Lieshout [BL93], and extended further in [RS98; PG98;
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Lie00]. These models can be considered as an extension of conventional Markov Random
Fields [GG84] such that random variables are not associated with signal values but with
parametrical functions describing the signal. An overview of marked point processes is
given below. We mainly follow the theory fully presented in [LDG10].

4.3.1 Point processes

A con�guration x is a unordered �nite set of points {x1, ..., xn}. X is a measurable mapping
from an abstract probability space (Ω,A,P) to Ω. Ω is the con�guration space, A is a σ-
algebra , and P the associated measure. Ω can be written:

Ω =
⋃
n∈N

Ωn (4.3.1)

K = [0, Lmax] (Lmax is the length of the 1D signal) is a continuous bounded set. For every
Borel set B ∈ K, NX(B) de�nes the number of points of X in B. A point process X of
points in K is a measurable mapping that associates with an event ω ∈ Ω a con�guration
of points X(ω) = {x1, ..., xn(ω)} with xi ∈ K. n(ω) represents the number of points
associated with the event ω. Accordingly, a point process is a random variable whose
realizations are random con�gurations of points.
The most random point process with respect to the entropy is the Poisson point process.
This is the reference point process. We consider ν(.) as a positive measure on K. A Poisson
point process X with intensity measure ν(.) has the two following properties:

• For every Borel set B ⊂ K, NX(B) follows a discrete Poisson distribution with the
mean ν(B), i.e.:

P (NX(B) = n) =
ν(B)n

n!
e−ν(B).

• If the Borelian sets B1, ..., Bl (�nite sequence) are disjoint, the random variables
NX(B1), ..., NX(Bl) are independent.

The Poisson process induces a complete spatial randomness, given by the fact that the
positions are uniformly and independently distributed.

Figure 4.3: Illustration of various point processes - From left to right: a 1D signal
de�ned on the support K, realizations of a point process on K, a marked point process of
Gaussian functions, and a point process speci�ed by a library of various functions.

4.3.2 Density of a point process

An interesting feature of point processes is the possibility of de�ning a point process dis-
tribution by its probability density function. In most applications, this is not realistic to
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assume points are scattered randomly. Poisson processes are useful to build more complex
models. Complex point processes introducing both, consistent measurements with data
and interactions between points, can therefore be de�ned by specifying a density with
respect to the distribution of a reference Poisson process. ν(.) is the intensity measure
of a Poisson process. h(.) is a non-negative function on the con�guration space C (see
Section 4.3.3). Then, the measure µ(.) having a density h(.) with respect to ν(.) is de�ned
by:

∀B ∈ B(C), µ(B) =
∫
B
h(x)ν(dx) (4.3.2)

If 0 < µ(B) <∞, then µ can be normalized to make a probability measure π de�ned by:
µ(B)/µ(Ω). A Gibbs energy U(x) can also be used to specify a point process. The density
h(x) of a con�guration x is then formulated using the Gibbs equation:

h(x) =
1
Z

e−Ux) (4.3.3)

where Z is a normalizing constant such that Z =
∫
x∈C e

−U(x). De�ning the Gibbs density
of the associated marked point process with respect to the Poisson measure allows to
reduce the issue to an energy minimization problem. Generally, a Monte Carlo Markov
Chain sampler coupled with a simulated annealing is used to �nd the maximum density
estimator1 x̂ = arg maxh(.). This optimization process is particularly interesting since
the density h(.) does not need to be normalized. Thus, the complex computation of the
normalizing constant Z is avoided.

4.3.3 Marks and object library

The con�gurations of points described so far only include simple points of R. To describe
random con�gurations of geometrical objects, random marks are added to each point. In
order to model signals in terms of parametric functions, it is possible to extend a point
process by adding speci�cmarks that associate a parametric function (also called an object)
to each point2.
A marked point process in S = K×M is a point process inK where each point is associated
with a mark from a bounded set M (see Figure 4.3).
The �nite con�guration space of n objects belonging to S, C, and can be expressed as
follows:

C =
⋃
n∈N

(K ×M)n (4.3.4)

For more details on point processes and their applications, the reader should refer to [Lie00].

Usually, the marked point process based models [LDZ05; ODZ07; SSZ07; TP09; GC09] use
a single type of object. Some authors [LDG10] have extended the conventional framework
in order to sample various kinds of objects extracted from a library. The mark space M

1 This estimator corresponds to the con�guration minimizing the Gibbs energy U(.), i.e., bx =
arg min U(.) .

2 In many cases, the point corresponds to the mean of the function.
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associated with this library is then speci�ed as a �nite union of bounded subsets Mq:

M =
Ns⋃
q=1

Mq (4.3.5)

where each mark space Mq corresponds to one of the Ns speci�c object types. This
extension of the marked point processes, which is able to deal with objects having di�erent
numbers of control parameters, will be used in the following.
The reference process for building our model is a uniform Poisson process on the space K of
the positions within the 1D signal. The objects are the three modelling functions described
in the previous section: Generalized Gaussian, Nakagami, and Burr. All the objects have
between four and �ve control parameters. The parameters, detailed in Table 4.2, represent
the marks of the object types. They are all de�ned in continuous domains. The chosen set
includes all basic objects used in the conventional marked point process based models.

Object type Marks De�nition domains

Generalized
I, s, w, α [Imin, Imax] × [smin, smax]× [wmin, wmax]× [αmin, αmax]Gaussian

Nakagami I, s, ξ, ω [Imin, Imax] × [smin, smax]× [ξmin, ξmax]× [ωmin, ωmax]

Burr I, s, a, b, c
[Imin, Imax] × [smin, smax]× [amin, amax]×

[bmin, bmax]× [cmin, cmax]

Table 4.2: Parameter de�nition of the marks.

4.4 Energy formulation

Let x be a con�guration of parametric functions (or objects) xi extracted from the above
library. The energy U(x) measures the quality of x such as:

U : C → R (4.4.1)

x→ U(x) (4.4.2)

U is composed of both a data term Ud(x) and a regularization term Up(x) such that:

U(x) = (1− β) Ud(x) + β Up(x) (4.4.3)

where β ∈ [0, 1] tunes the trade-o� between the data term and the regularization.

4.4.1 Data term

The data energy steers the model to best �t the lidar waveform. It measures the likelihood
of the waveform w.r.t. the objects. It can be obtained by computing a distance between
the given signal Sdata and the estimated one Sx, which thus depends on the current objects
on the con�guration x:

Ud(x) =

√
1
|K|

∫
K

(Sx − Sdata)2 (4.4.4)
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The term Ud(x) measures the quadratic error between the signal and its estimation: it
allows to be sensitive to high variations i.e., to local strong errors in the signal estimate
that correspond to poorly �tted peaks.
The L2 norm has been chosen among several distances that have been tested to assess
which of them would be the most discriminative for measuring the consistence between
the estimated signal and the reference one. For that purpose, two reference signals have
been used: a real waveform over a building roof consisting of two close echoes embedded
into background system noise (Figure 4.4a), and a simulated one composed of three peaks
of which two overlap signi�cantly (Figure 4.4b). They have been compared with various
correct or erroneous con�gurations (see Table 4.4), and their distances to the two refer-
ence signals have been measured with seven distinct measures: the L1, L2, L∞ norms,
the Kullback-Leibler, χ2, Matusita, and Bhattacharrya distances. These distances are de-
scribed in detail in [SB91; PHB97; CS02]. They are based on bin-to-bin distances, i.e.,
they aim to measure the correspondence for each bin between the two signals without tak-
ing into account information for neighbouring bins. Such similarity measures are therefore
sensitive to the signal length.

Figure 4.4: Comparison of several metrics measuring the consistence between the refer-
ence signal and a good estimated signal. (a-b-c) show several examples of �tted signals
(coloured curves) with various qualities, compared to the reference signal (black dashed
curve). (d) gives (respectively (e)) the values of the seven tested distances for simulations
presented in (a) and (b) (resp. (c)).

Figure 4.4d shows that the L1 norm is not adapted to real waveforms since it is greatly
in�uenced by the background noise (con�gurations A and B), however it allows to clearly
detect missing peaks (con�gurations E and H). The L∞ norm behaves similarly and is
able to enhance erroneous results (con�guration G), and un�tted single echoes (con�gu-
ration H), but is less e�ective when dealing with real waveforms that are poorly adjusted
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Distance De�nition Distance De�nition

Lp norm
1
|K|
(∫
K
|Sx − Sdata|p

) 1
p χ2

1
2|K|

∫
K

(Sx − Sdata)2

Sx + Sdata

L∞ norm sup
K
|Sx − Sdata| Matusita 1

|K|

√(∫
K

(
√
Sx −

√
Sdata)2

)
Kullback-Leibler 1

|K|

(∫
K

(Sdata − Sx) log SdataSx

)
Bhattacharrya 1

|K|
(
− log

∫
K

√
SxSdata

)

Table 4.3: De�nitions on various distances tested as data term Ud (Figure 4.4).

(con�gurations D and E). Besides, the Kullback-Leibler distance has an appropriate be-
haviour for missing peaks. However, it is less a�ected by erroneous adjustments than by
the background noise (con�guration D compared to B). It can be seen in Figure 4.4d that
the χ2 distance has the requested behaviour, but, as each bin-to-bin measure is weighted
by the mean of the two values, the �nal measure is levelled and is not able to penalize
con�gurations composed of a global peak �tting two close echoes (con�gurations C and
G). Finally, the Matusita and the Bhattacharrya distances are almost constant for all the
simulated con�gurations since the use of the square root smoothes the di�erences between
both signals. Thus, they cannot be used for measuring the consistence between them.

The L2 norm has been chosen for that purpose. In practice, to reduce the e�ect of the
background noise on the distance computation, a threshold-based removal approach is
adopted. The amplitude of the receiver noise is known before from a given survey (�uc-
tuating with ±2 DN). Then, the mean noise value is computed using all the waveform
bins which amplitude is lower than the noise amplitude + 4 DN. Finally, all the waveform
bins are subtracted from this mean value. It allows con�gurations that perfectly �t the
waveforms in the "echo sections" to have a data term very close to 0.

Con�guration Speci�city Expected value

S
im
u
la
ti
o
n
1

A Reference signal without noise Low

B
Reference signal

Low
and background noise set to a constant value

C Signal with a single coarse peak, instead of two High

D
Signal with a single peak

Moderate
located between the �rst and the second one

E Signal with the second echo missing Moderate

S
im
u
la
ti
o
n
2 F Signal with a single coarse peak, instead of three Very high

G
Signal with two echoes

High(one correct, and a peak locate)
between the second and the third one)

H Signal with the �rst echo missing Very high

Table 4.4: Description of the simulated con�gurations, presented in Figures 4.4a-b-c.
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4.4.2 Regularization term

The term Up(x) allows the introduction of interactions between objects of x and to fa-
vor/penalize some con�gurations.

Up(x) = Un(x) + Ue(x) +
∑
xi∼xj

Um(xi, xj) (4.4.5)

where xi ∼ xj constitutes the set of neighbouring objects in the con�guration x. This
neighbourhood relationship ∼ is de�ned as follow:

xi ∼ xj = {(xi, xj) ∈ x | |µxi − µxj | ≤ r} (4.4.6)

Parameter µxi (resp. µxj ) represents the mode (i.e., the position of the maximum ampli-
tude of the echo) of the associated function to object xi (resp. xj), and r is constrained by
the lidar sensor range resolution (i.e., the minimum distance between two objects along the
laser line of sight that can be di�erentiated) as well as the complexity of the reconstruction
we aim to achieve.
For airborne lidar waveforms the prior knowledge is set up by physical limitations in the
backscatter of lidar pulses. These limitations are modelled by three terms Un (echo number
limitation), Ue (backscatter laser energy limitation), and Um (reconstruction complexity)
that are described below.

Echo number limitation

The two �rst echoes of a waveform contain in general most of the total re�ected signal
power. Consequently, even for complex targets like forested areas, a waveform empirically
reaches a maximum of seven echoes and it is quite rare to �nd more than four echoes. In
urban areas, most of the targets are rigid, opaque structures like buildings and streets.
Thus, more than two echoes are usually only found in open forests. We therefore aim to
favor con�gurations with a very limited number of re�ecting objects (i.e., echos) per emit
pulse, with an energy given by:

Un(x) = − log Pcard(x) with
∞∑
n=0

Pn = 1 (4.4.7)

where Pn is the probability for the waveform to have n echoes. The probabilities were
empirically determined by a coarse mode estimate on the Amiens dataset. Here, we have:
P1 = 0.6, P2 = 0.27, P3 = 0.1 and P46n67 = 0.01. For n > 7, Un(x) is set to a very high
positive value, which bans such con�gurations in practice. This de�nes the upper bound
for the acceptable number of objects within a con�guration. Since the number of echoes
within a waveform is not known beforehand, this energy only slightly favors waveforms
with few objects. In case of more complex signals with a signi�cant number of pulses, this
term might be discarded. Or, we could choose a probability decreasing with the number
of echoes until a prede�ned upper bound, in order to model the expect loss of energy on
the signal path.

Backscatter energy limitation

We take advantage of the law of conservation of energy and de�ne an upper bound for
the backscatter energy as well. This upper bound depends on the emitted laser energy
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and the target re�ectance and scattering properties. This reference energy Eref can be set
empirically to

√
2πAmaxwmax, which is the energy of a Gaussian pulse of amplitude Amax

and width wmax. Amax and wmax are upper bounds for the amplitude and the width of
echoes within the waveforms over the area of interest. Waveforms with larger pulse energy
are penalized as follows:

Ue(x) = πe 1{E(x)>Eref}(E(x)− Eref)2 (4.4.8)

where 1{.} is the characteristic function, E(x) =
∫
K Sx is the pulse energy of Sx, compared

to a reference energy Eref (see Figure 4.5), and πe ∈ R is a weighting parameter. In our
data sets, transmitted waveform energy is always much higher than received signal energy.
Therefore, Ue = 0 for most of the con�gurations, and only penalizes con�gurations with
unrealistic pulse shapes.

Reconstruction complexity

Our aim is twofold:

• to penalize objects spatially closer along the line of sight than the sensor range
resolution;

• to favor con�gurations with a small number of objects, following the Minimum De-
scription Length (MDL) principle [Ris78].

Such energy is given by:

Um(xi, xj) = πm exp

(
r2 − |µxi − µxj |2

δ2

)
(4.4.9)

where πm, δ ∈ R are weighting parameters. This means that a mode of a waveform may be
either reconstructed by a single peak or by a sequence of peaks whose accepted minimum
distance is governed by parameter r (see Figure 4.5). The lower bound of r is given by
range resolution τ×c/2 (where τ is the laser pulse duration, and c the speed of light), while
the upper bound of r is thus model based and may be chosen depending on the scene. For
example, if we know that the data were acquired in a forested area in the leaf-o� period
and the trees have preferably few, but strong branches, we would chose a large r.

4.4.3 Parameter estimation

Physical and weight parameters can be distinguished in the energy. Physical parameters
are r and δ. r is tuned according to sensor speci�cations and our knowledge on acquired
waveforms. Indeed, for our datasets, τ=4 ns. It leads to r=0.75 m. δ is chosen in order to
set how strong close echoes are penalized (see Figure 4.5.b). In our experiments, we set δ
to 0.01. Thus, Um(xi, xj) exhibits large values when µxi → µxj .

Data and regularization terms are weighted with respect to each other using a factor
β (see Equation 4.4.3). Regularization energy terms are weighted with the two πe and
πm parameters. Several methods allowing to estimate such kinds of parameters exist,
such as the Expectation-Maximization algorithm [DLR77] or its stochastic version [CD85].
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Figure 4.5: Left: Backscatter energy limitation term plotted against the energy of the
current con�guration E(x). Right: Reconstruction complexity term plotted against the
absolute distance between two neighbouring objects of the current con�guration.

However, these algorithms are very general and are not speci�cally adapted to our problem.
These parameters are therefore determined by "trial-and-error" tests. For instance, good
results are found with β values included in the interval [0.45 - 0.6].

4.5 Optimization

We aim to �nd the con�guration x̂ which gives the minimum value of the energy U :

x̂ = arg min
x∈C

U(x) (4.5.1)

This is a non-convex optimization problem in a high dimension space C. Moreover, since
the functions of the library are de�ned by di�erent numbers of parameters, C is the union
of variable dimension spaces. Two options are therefore conceivable:

• A stochastic algorithm adapted to our problem but with a signi�cant computing
time. Markov Chain Monte Carlo (MCMC) methods are very popular techniques to
solve this issue [RC99].

• Other techniques that require to simplify the optimization problem. First, the state
space may be narrowed: it necessitates to reduce the de�nition domain of the marks
or adopt discrete values. Both solutions are not adequate since it may prevent the
developed algorithm to �nd the best solution or even a suitable solution. Another
possibility would be to simplify the proposed energy in order to be able to use rel-
atively fast optimization techniques such as stochastic di�usion or jump-di�usion
based approaches [SSF02; HTZ04].

The �rst solution has been adopted since our �rst implementations have shown a satisfac-
tory computing time.

4.5.1 RJMCMC sampler

Markov Chain Monte Carlo (MCMC) sampler techniques consist in simulating a discrete
Markov Chain (Xn), n ∈ N on the con�guration space, having an invariant measure spec-
i�ed by the energy U . The transitions of this chain correspond to local perturbations of



4.5. Optimization 137

the current con�guration. This means that a single object of the con�guration is per-
turbed. This sampler performs "jumps� between spaces of di�erent dimensions respecting
the reversibility assumption of the Markov chain. They consist in two main steps: �rstly,
a perturbation of the current step is proposed; secondly, this perturbation is accepted or
refused. One of the advantage of this iterative algorithm is that it does not depend on the
initial state.

The formalism of MCMC samplers have been introduced in [MRTT53] and [Has70] (Metro-
polis-Hastings algorithm), and extended in [GM94] and [Gre95] (Metropolis-Hastings-
Green algorithm), where sampling con�guration spaces with variable dimension is now
possible. Since it is required to sample from parameter spaces of varying dimensions, the
Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm is well adapted to
our problem. [Gre95] has proposed this extension for a model selection problem in case
of a mixture of k Gaussian, with k unknown. Several papers have shown the e�ciency of
the RJMCMC sampler for the problem of multiple parametric object recognition [DTC04;
Rip08; TP09] in image processing and computer vision.

Metropolis-Hastings-Green algorithm

In the framework of Marked Point Processes, [GM94] have designed a sampler for space
state with variable dimensions. The Markov Chain (Xn)n∈N evolves with object birth or
death proposals. These two perturbations allow an e�cient exploration of the con�gura-
tion space, with a variable number of objects. The convergence of the chain is ensured
since the two moves allow to reach any variation of the space state.
In a more general framework, [Gre95] has proposed a sampler that gathers the properties of
the Metropolis-Hastings sampler (object perturbations) and the Geyer and Møller sampler
(object births and deaths). Adding perturbation kernels allows to fasten the convergence
process.

The jumps are realized according to these families of movesm called proposition kernels and
denoted by Qm(x, .). Each kernel is associated with a probability pm. The jump process
performs a move from an object con�guration x to y according a probability Qm(x→ y).
Then, the move is accepted with the probability min(1, Rm(x, y)), where Rm(x, y) is called
the Green ratio, and de�ned as follows:

Rm(x, y) =
Qm(y→ x)
Qm(x→ y)

exp−(U(y)− U(x)) (4.5.2)

Finally, the Metropolis-Hastings-Green algorithm is detailed in Algorithm 4.1, and the
proposition kernels are presented in Section 4.5.2.

In practice, if the ratio is larger than 1, the move is forbidden. Otherwise, the acceptance
is computed by comparing the Green ratio with a value κ sampled uniformly in the interval
[0, 1].
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Algorithm 4.1: Metropolis-Hastings-Green algorithm

Data: x(0)= initial con�guration
Qm(x, .)= a set of proposition kernels
pm= the probabilities associated to the proposition kernels.

Result: Con�guration associated to the minimal energy x̂

At iteration t, if x(t) = x

1. Choose a perturbation kernel Qm(x, .) with probability pm;

2. Propose a new con�guration y according to Qm;

3. Compute Green ratio Rm(x, y) according to Qm using Equation 4.5.2;

4. Accept the proposition with a probability α = min(1, Rm(x, y)): x(t+1) = y.
Otherwise, keep x(t+1) = x.

4.5.2 Proposition kernels

Two families of moves are used in order to perform jumps between the subspaces. Birth-
and-death and perturbation kernels are designed to uniformly perturb the state space.
Another type of move which is more speci�cally dedicated to the exploration of such
subspaces is also proposed: the switching kernel.

• Birth-and-death kernel QBD: an object is added or removed from the current con-
�guration x, following a Poisson distribution. These transformations corresponding
to jumps into the spaces of higher (birth) and lower (death) dimension are theoret-
ically su�cient to visit the whole con�guration space. However, other kernels can
be speci�ed, which �t better to our problem. The aim is to speed up the process
convergence by proposing relevant con�gurations more frequently. Therefore, two
other kernels have been introduced.

• Perturbation kernel QP : the parameters of an object belonging to the current
con�guration x are modi�ed according to uniform distributions.

• Switching kernel QS : the type of an object belonging to x is replaced by another
type of the library. Contrary to the previous kernel, this move does not change the
number of objects in the con�guration. However, the number of parameters can
be di�erent (e.g., four parameters for the Nakagami model are substituted by �ve
parameters for the Burr one). This kernel creates bijections between the di�erent
types of objects [Gre95].

The impact of the four distinct kernels for a given con�guration is illustrated in Figure 4.6.
If an object is added, its type and its associated parameters are randomly chosen. Because
no assumption can be made which move is more relevant at the current state, we choose
equiprobability of the kernels in order not to favor one with respect to another. The com-
putation of these kernels for the Green ratio is detailed in [LDG10].
Data-driven perturbations would also be possible to explore more e�ciently the con�gu-
ration spaces [TZ02]. Instead of using a uniform law, a Normal law can be adopted for
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parameters which mean and variance have been estimated beforehand. It would be possi-
ble, for instance, for the amplitude and the width of the Generalized Gaussian model, but
much more di�cult for the two other functions since several combinations of their param-
eters can simulate almost the same realistic shapes. Therefore, data-driven perturbation
kernels have not been designed.

Figure 4.6: Illustration of the e�ect of the four adopted proposition kernels.

4.5.3 Simulated annealing

In order to converge on the desired solution, the RJMCMC sampler is coupled with a
relaxation process. The simulated annealing algorithm, introduced by [MRTT53], is a
stochastic global optimization procedure which exploits an analogy between the search of
a minima and a statistical thermodynamic problem. It allows to reach the global maximum
x∗ of the probability density h(.) for all initial con�gurations x0. A series of densities ht(.)
is generally built as follows:

ht(x) ∝ h
1
Tt (x) (4.5.3)

The relaxation parameter Tt is de�ned by a sequence of temperatures decreasing to zero
when t tends to in�nity. U(.) is thus substituted by U(.)

Tt
in the Green ratios (see Equa-

tion 4.5.2).
There are three main phases in a simulated annealing process (see Figure 4.7):

• First, the temperature is high. The density is close to the reference point process,
barely biased by the energy U : most moves are accepted initially. It allows to
explore non contiguous modes of the density. However, this phase is not critical
as the relaxation is very fast at high temperatures. Contrary to greedy algorithms
where the total energy is not globally minimized, it allows not to be stuck in its local
minima.
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• The second phase is the most important: the process explores the di�erent density
modes (the con�gurations of interest) and becomes more and more selective.

• Finally, the temperature is close to 0. It corresponds to local adjustments of the
objects of the con�guration. The rate of rejected propositions is very high.

The simulated annealing decrease scheme represents how the temperature Tt evolves with
the time t. It should take into account both the decrease type and speed of the series
of temperatures, and the estimate of the initial temperature when t = 0. According
to [SSF02], the decrease schedule should take into account various characteristics of the
density h(.) (or of the associated Gibbs energy U(.): the scale, the landscape, the number
of local maxima, and their size. However, in practice, such information cannot be known
easily. Thus, information about the energetical variations gathered during the sampling
process are used instead.
During the process, a large number of proposed con�gurations are rejected, leading to a
high computing time without any evolution. A sampler can be considered as "e�cient" if
the acceptance rate reaches 1/3. To deal with this problem and other theoretical issues,
[DMZ09] have proposed a multiple birth-and-death process, which allows to propose a
higher number of con�gurations for each iteration of the relaxation process.

Temperature decrease

Simulated annealing allows to reach the global maximum of the energy using a logarithmic
temperature decrease. In practice, we prefer to use a geometrical cooling scheme (some-
times also referred as exponential schedule), which is faster and gives an approximate
solution close to the optimal one:

Tt = T0 α
t (4.5.4)

where α and T0 are the decrease coe�cient and the initial temperature, respectively. α can
vary and be adapted to the energy variations during the process [Var96; SSF02; PDZ05].
However, this may not really fasten the process. Thus we prefer to use a constant decrease
coe�cient. The cooling factor is usually set to a number close to 1. In our experiments, α
is set to 0.99995, which is much faster that using α = 0.99999, or α = 0.999999999 etc.

Initial temperature T0

According to [Whi84], T0 should be chosen such that the system should initially be su�-
ciently hot to allow large �uctuations in the energy. This initialization is very important.
If T0 is too high, the �rst phase of the process will be too long and useless, and the com-
puting time will increase. If T0 is too low, the simulated annealing will directly start in
the selection phase (step 2), which will be shortened (and bound to be too short). T0 can
be therefore estimated in function of the energy variations of a sample of random con�gu-
rations. The scale of these �uctuations is set by the standard deviation σU of the energy
computed at in�nite temperature. In practice, T0 is chosen twice as large as σU :

T0 = 2σUT=∞ = 2
√
〈U2

T=∞〉 − 〈UT=∞〉2 (4.5.5)

where 〈U〉 is the empirical mean of the energy computed from the sample of examples.
In practice, for a robust estimation, several hundreds or thousands of con�gurations are
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necessary. However, the time required to estimate the initial temperature is negligible,
compared to the simulated annealing process time. The sample of random con�gurations
is generated as follows:

Algorithm 4.2: Automatic set up of the initial temperature in simulated annealing.
Data: nC= number of con�gurations to be simulated

m= parameter of the Poisson law
Result: Initial temperature T0

for i=1 to nC do

1. Compute the number of objects no, according to a Poisson law with parameter m.

2. Simulate a con�guration with no objects. The object parameters are set up
randomly using a Uniform distribution.

3. Compute the associated energy Ui

T0 = 2σ(UT=∞)

Stop temperature T�nal

[Whi84] suggests taking the stop temperature of the order of the smallest energy scale in
the system. It corresponds to the smallest energy variation of a single move. Another more
common and simpler solution consists in stopping the process if the energy does not evolve
in the last Nstop iterations. This solution has been adopted here with Nstop = 1000.

Practical aspects

Algorithm 4.2 has been applied to �nd T0. Parameterm is the expected value of the Poisson
law, which is here the expected mean number of objects. We set m=2 and nC=10000.
This leads to T0 values superior to 20 millions. This is mainly due to Ue and Um terms
in the proposed energy. Con�gurations that are randomly proposed may contain almost
superposed objects with signi�cant backscatter energy. This leads to very high energy
values (setting m=2 only prevents con�gurations to have a high number of peaks, which
concerns the last prior term Un). Such T0 values are, in practice, too high, and too much
time is spent in the highest temperatures, which slows down the process. Consequently,
T0 has been set up manually by an analysis of the energy behaviour during the simulated
annealing process. Thus, T0=10.

In our experiments, the optimization process requires between 100,000 and 150,000 itera-
tions. Moreover, T�nal is close to 0.00005. The process lasts approximately 0.5s/waveform.
Thus, processing millions of waveforms requires a rather signi�cant computing time. With
a 8-core 2.93 GHz Mac Pro with 6 GB RAM, approximately 50,000 waveforms can be
processed per hour. In comparison, the Generalized Gaussian decomposition presented in
Chapter 3 can process 2.5M signals in the same time lapse (1:50 ratio).
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Figure 4.7: Optimization process: evolution of the object con�guration from the initial
temperature T0 to the �nal one T�nal (left to right, and top to down).
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4.6 Results

The proposed approach has been �rst assessed on simulated data and subsequently applied
to di�erent kinds of spatial and airborne lidar signals. The results have been evaluated
quantitatively by computing the normalized cross-correlation coe�cient ρ and the relative
Kolmogorov-Smirnov distance KS between the raw and the estimated signals. We have:

ρ =

N∑
i=1

(Sdata(i)− Sdata) · (Ŝ(i)− Ŝ)√
N∑
i=1

((Sdata(i)− Sdata)2

√
N∑
i=1

(Ŝ(i)− Ŝ)2

∈ [-1,1] (4.6.1)

Sdata is the reference waveform, and Ŝ is our estimated signal, both composed of N bins.
Sdata and Ŝ are their respective mean values. If the reconstructed signal perfectly �ts with
the lidar waveforms bins, ρ=1. The correlation coe�cient is rather sensitive to outliers.
KS is a normalized L∞ norm, both used to detect missing echoes and local shifts between
signals. It is de�ned as follows:

KS(Sdata, Ŝ) =
sup
K
|Sdata − Ŝ|

max
K
Sdata

∈ [0,1] (4.6.2)

The L∞ norm has been normalized to allow comparisons between waveform �tting results
from di�erent sensors. KS=0 means that every lidar bin perfectly matches with the re-
constructed signal, whereas KS=1 means that the main echo has been missed. Setting a
satisfactory KS upper bound thus mainly depends on the noise level of the lidar waveforms.
The standard L2 norm, already used in Chapter 3 to evaluate the �tting performance of the
Generalized Gaussian decomposition, would have been another solution. However, such
distance has already been introduced in the algorithm: this is the data term of our energy.
Therefore, selecting a �tting quality measure for evaluating an algorithm which minimizes
the optimized metric is extremely biased. The �tting process and the evaluation criterion
must be independent.

4.6.1 Simulated data

Relevance of the optimized energy

Various simulations have been carried out to assess the relevance and the e�ectiveness of
the proposed energy model. Figure 4.8 shows several reconstructions of a simulated signal
composed of three pulses with two overlapping peaks with variations on the optimized
energy. The simulated signal and the estimated one are represented by the dotted black
line and the continuous grey line, respectively.
First, the data term Ud has been considered only (i.e., we only minimize the di�erence
according to Equation 4.4.4). It can be noticed in Figure 4.8a that the signal is correctly
estimated, but the con�guration is composed of a high number of echoes (eleven). Thus,
the result is not realistic since not all echoes do represent a real target. Then, only the
regularization term is considered (Up, see Equation 4.4.5). Figure 4.8b shows that the pro-
posed regularization energy constraint is useful since it provides a realistic lidar waveform:
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one echo with a bounded energy. This is due to both the echo number limitation and the
backscatter energy limitation terms. Finally, Figures 4.8c to 4.8f show the in�uence of
the reconstruction complexity term Um. It is �rst discarded on Figure 4.8c: the signal is
perfectly reconstructed, but with the maximum number of echoes allowed by Un. It does
not correspond to reality since the echoes are too closely located to each other. Then, Um
is introduced and r is respectively set to 0.3, 0.75, and 3m in Figures 4.8d, 4.8e, and 4.8f.
The greater the radius r, the lower the number of peaks. It can be noticed that a rea-
sonable value of r allows the reconstruction of the signal with the appropriate number of
echoes (Figure 4.8e), whereas larger values lead to erroneous detections (Figure 4.8f).

Figure 4.8: Various signal reconstructions with variations of the model energy. The dotted
black line and the continuous grey one are respectively the raw and the estimated signals.
The other colours correspond to the individual echoes that compose the estimated wave-
form. (a) No regularization term. (b) No data term. Both data and regularization terms
are now considered. The reconstruction complexity term Um is disabled in (c) (πm=0).
Then, Um is introduced with increasing parameter values r: r is set to 0.3, 0.75, and 3 m
respectively for (d), (e), and (f).

Figure 4.9: Results of complex waveform �tting on a simulated signal with nine echoes
(left) and on the same signal with Gaussian noise (right). The dotted black line and the
continuous grey one are respectively the raw and the reconstructed signals.
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Target counting assessment

The algorithm has been �rst applied on signals with a higher complexity than real lidar
waveforms. Longer signals with more echoes than physically expected have been �tted
with our method, with distorted and overlapping modes as well as corrupted with noise.
The interaction between objects can be changed by decreasing and increasing r and σ. To
reconstruct signals with higher energy, Eref can be tuned. To �t signals with more modes,
the echo number limitation can be modi�ed by accepting more echoes within the signal
and with the same probability.
Figure 4.9 shows that good �tting results can be achieved on simulated waveforms, even
corrupted with Gaussian noise, by tuning prior parameters. The nine echo locations are
accurately found. However, small di�erences between the reference and the estimated
signals can be locally noticed, especially with noisy signals where the algorithm has more
di�culties to �nd the exact maxima and �t the upper parts of the modes (e.g., 2nd and
4th echoes in Figure 4.9b).

Figure 4.10: Top: simulated waveforms � Bottom: estimated waveforms and decompo-
sition of the mixture (the colour indicates the type of the object, see Section III-A). (a)
Five Gaussian pulses. (b) Two skewed pulses. (c) Two groups of two overlapping pulses
with one Gaussian and one skewed pulse.

Parameter estimation accuracy and model selection assessment

Finding the right number of relevant peaks allows to count the appropriate number of
targets. However, it is not su�cient for the generation and the subsequent classi�cation of
point clouds.
First, the parameters of each function should be accurately estimated. This is particu-
larly true for the position of each peak (or the parameters of the function that allows
to retrieve the peak mode) since such information is used to georeference the peak. For
waveforms sampled at 1 ns, an error of half-a-sample in the peak location estimate leads
to errors of ±7 cm and ±1 cm in altimetry and planimetry, respectively, for the derived 3D
point. Besides, the correct analytical function must be retrieved for each peak. That is the
genuine aim of the proposed method and crucial to perform 3D point cloud classi�cation
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afterwards.
Three experiments have been carried out with three simulated signals to assess the per-
formance of the approach for these two issues (Figure 4.10). First, a signal composed of
�ve Gaussians with overlapping peaks has been simulated, and estimated with our ap-
proach using only the Generalized Gaussian function with the α parameter set to

√
2 (i.e.,

a Gaussian function, see Figure 4.10a). Table 4.5 shows the parameters are accurately
estimated even for the two overlapping peaks. The peak modes are retrieved with an error
below 1/10 of a bin which is satisfying for any kind of sensor. Besides, a signal with two
single skewed peaks (one Nakagami and one Burr, see Figure 4.10b) has been simulated
and estimated using the full library. One can see in Table 4.6 that the correct functions
have been selected, and the parameters correctly retrieved with few errors in the mode
location estimate (1/4 bin for the Burr pulse). Finally, two GG peaks are added to the
waveform previously simulated to assess the impact of having overlapping pulses on the
parameter estimates (Figure 4.10c). The functions are correctly selected, except for the
third peak (see Table 4.7). However, the estimated parameters of the Nakagami pulse lead
to a symmetric peak, similar to the simulated GG one. Moreover, the parameters of the
two �rst peaks are correctly estimated but with an accuracy inferior to single peaks. The
closeness of two peaks has therefore an impact on the estimation that cannot be neglected.
The fourth peak is well �tted with the Burr model. This is due to the fact that several
parameter combinations can lead to the same shape for this model, with the same mode
location.

XXXXXXXXXXEcho
Parameter

I µ w

# 1 simulated / estimated 125 / 124.988 25 / 25.0006 5 / 5.001
# 2 simulated / estimated 45 /45.11 60 /59.92 5.3 / 5.23
# 3 simulated / estimated 60 / 59.988 74 / 73.962 4.8 / 4.845
# 4 simulated / estimated 50 / 50.32 125 / 124.985 7 / 6.969
# 5 simulated / estimated 100 / 99.82 170 / 170.005 3 / 3.0007

Table 4.5: Comparison between a simulated waveform composed of �ve Gaussians and the
estimated signal (see Figure 4.10a).

XXXXXXXXXXEcho
Parameter

I µ ξ/a ω/(b,c) mode

1
simulated (Nakagami) 230 10 15 2 22.99
estimated (Nakagami) 230.67 10.198 14.797 1.899 22.89

2
simulated (Burr) 100 65 8.5 8.6 16.4 76.354
estimated (Burr) 99.71 64.455 8.651 8.724 16.824 76.608

Table 4.6: Comparison between a simulated waveform composed of two asymmetric peaks
and the estimated signal (see Figure 4.10b).

4.6.2 Medium and large footprint waveforms

The proposed approach and generally the content of this work are not dedicated to medium
and large footprint sensors. We have however found relevant to assess the versatility of
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XXXXXXXXXXEcho
Parameter

I µ ξ/w/a ω/α/(b,c) mode

1
simulated (Nakagami) 230 10 15 2 22.99
estimated (Nakagami) 230.55 11.419 12.95 1.42 22.84

2
simulated (Generalized Gaussian) 50 35 5 2 35
estimated (Generalized Gaussian) 49.903 35.001 4.82 1.991 35.001

3
simulated (Generalized Gaussian) 30 72 2.8

√
2 72

estimated (Nakagami) 201.65 52.62 19.48 13.11 71.72

4
simulated (Burr) 100 65 8.6 8.7 16.8 76.73
estimated (Burr) 105.84 49.766 24.404 19.819 7.6809 76.73

Table 4.7: Comparison between a simulated waveform composed of a mixture of Gaussian
and non-Gaussian pulses and the estimated signal (see Figure 4.10c).

our methodology. This is all the more interesting as the resulting waveforms can exhibit
strong asymmetric behaviour due to the spread of the laser beam.

Waveforms from LVIS (Laser Vegetation Imaging Sensor) and SLICER (Scanning Lidar
Imager of Canopies by Echo Recovery) NASA sensors have been decomposed and modeled
with our approach (Figure 4.11). The sensor goals and speci�cations are described in
Section 2.3. LVIS waveforms have been acquired in March 1998 over a 800 km2 area
of Costa Rica using 25 m-diameter footprints3 [HRBD02]. Both �ne and coarse �tting
strategies have been tested. The �ne strategy consists in selecting r such that each mode
of the waveform will be �tted by a function (r = 3 m). It leads to almost perfect signal
approximation, but conclusions are di�cult to draw since the function selected for a given
peak depends on the functions of the neighbouring echoes (Figure 4.11a). With the coarse
solution, r is set to higher value (9 m) and σ to 0.001. This reduces the complexity of the
reconstruction and therefore prevents overlapping or close echoes from being separated. A
unique global peak is selected instead (Figure 4.11b), providing a general trend for the �rst
part of the signal (in practice, the �rst tree canopy layer). SLICER elevation pro�les come
from in the BOREAS Northern Study Area in Canada4, and have been acquired in July
1996 [Har00]. Table 4.8 shows that signals from both sensors are correctly decomposed,
without signi�cant errors. However, the KS distance values show that some small peaks
are not retrieved. Indeed, LVIS and SLICER elevation pro�les are very complex since
the sensor laser beam integrates many distinct objects. Thus, even with the �ne strategy,
several close narrow pulses (as displayed on Figure 4.11b) cannot be all detected.

With medium and large-footprint waveforms, the Generalized Gaussian model is not pre-
ferred by the algorithm. The two functions allowing to simulate asymmetric peaks are
preferred. The main noticeable results (see also Table 4.8) are that:

• the GG function is rarely chosen, mainly for peaks with a small amplitude. Thus, the
lidar echo Gaussian assumption is no longer valid. This fact underlines the relevance
of our approach for modeling lidar waveforms with a library of functions.

3Data set available at https://lvis.gsfc.nasa.gov/index.php
4Data set available at http://core2.gsfc.nasa.gov/research/laser/slicer/browser.html

https://lvis.gsfc.nasa.gov/index.php
http://core2.gsfc.nasa.gov/research/laser/slicer/browser.html
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Burr

Nakagami
Burr Nakagami

Nakagami

Generalized
Gaussian

Burr Nakagami

Generalized
Gaussian

Figure 4.11: Examples of �tted (a-b) LVIS and (c-d) SLICER waveforms. Waveform
(b) has been �tted setting r to a high value, to prevent small overlapping echoes to be
individually detected.

Sensor
ρ KS GG (%)

Nakagami
(%)

Burr (%)
(# waveforms)
SLICER (76417) 0.949 0.11 6.5 51.2 41.8
LVIS (4001) 0.968 0.14 5.1 57.0 37.9

Table 4.8: Medium and large-footprint waveform �tting and modeling statistics. The �ne
solution has been adopted for the signal decomposition. The two �rst columns (ρ; KS)
provide quality measures. The three last columns indicate the percentage of echoes that
have been �tted with each of the three modeling functions.
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• the Nakagami model is preferred to the Burr function, since its parameters allow for
a higher �exibility. It is mainly selected for the last echo, which correspond to the
ground and low above-ground objects, and is usually left-skewed.

• the Burr function is relevant for echoes that correspond to pulses backscattered from
the tree canopy (�rst layer of the vegetation).

Nakagami

Burr

Burr
Nakagami

Generalized
Gaussian

Burr

Burr

Generalized
Gaussian

Figure 4.12: Decomposed and modelled waveforms on (a-b) trees, (c) a building roof, and
(d) a hedge (Riegl LMS-Q560 sensor).

4.6.3 Small footprint waveforms

Both Riegl and Optech sensor waveforms have been processed with the proposed approach.
For the RIEGL LMS-Q560 device over Biberach, some simple 1D results are presented in
Figure 4.12. First, it can be noticed in Figure 4.12 that the algorithm performs well on
complex waveforms. The correct number of echoes is found as well as the correct shape
of the waveform: single and multiple overlapping echoes are retrieved, even in vegetated
areas where the noise level is signi�cant with respect to the echo amplitudes (Figures 4.12a
and b). Moreover, for opaque solid targets like building roofs and ground, slightly asym-
metric echoes are retrieved, and correctly adjusted: the Burr model allows to adjust them,
especially when dealing with the second echo of two overlapping ones (Figures 4.12c and
d).

Furthermore, approximately 6M waveforms acquired over Amiens for various kinds of (ur-
ban) landscapes have been �tted. First, six small patches have been selected, and more
than 123,000 waveforms have been analyzed. The aim is to assess the reliability of the
method in heterogeneous landscapes and to show its local stability in homogeneous areas.
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Figure 4.13: Orthoimages of the six areas of interest presented in Table 4.9 c©IGN (same
order).
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The six regions of interest are (see Figure 4.13): three simple aligned buildings with dif-
ferent slopes and materials (Building #1 (a)); a complex area with high and low buildings
with grass and trees (Building #2 (b)); a Gothic cathedral (Cathedral (c)); a �at harvested
�eld (Field (d)); a slightly sloped grass surface (Grass (e)); and a mixed set of buildings
with a street, pavement, and trees (Street (f)). Furthermore, the echoes detected by the
lidar system during the acquisition survey are provided (MP echoes). To assess the rel-
evance of waveform processing and to solve a multiple mixture problem, the waveforms
have been �tted with our proposed approach using the library of functions as well as based
exclusively on the Gaussian model. Quality measures (ρ and KS) are provided for both.
The percentages of echoes that have been �tted by each of the three modeling functions
are indicated, as well as the percentage of echoes additionally retrieved, compared to the
unknown hardware detection method. All the results are included in Table 4.9, and three
model maps are presented in Figure 4.14.

Figure 4.14: 3D point clouds interpolated in 2D, and coloured with the selected function:
Generalized Gaussian �Nakagami �Burr. Left: Building #1 � Middle: Cathedral �
Right: Grass.

On a second time, larger areas have been processed to assess whether local scale behaviour
is coherent with large scale results. We focus on two tiles composed 500,000 waveforms,
namely Areas #1 and #2, presented in Figure 3.12. The generated 3D point clouds,
coloured with the selected model, are displayed in Figure 4.16. Besides, Table 4.10 provide
statistics about the �tting process: the distribution of the three models, the number of point
that are retrieved, and the �tting quality both for the full library and the single Generalized
Gaussian function. Since such results are averaged over the number of processed waveforms,
further statistics are provided in Figures 4.15 and 4.17. Histograms for the two �tting
quality measures ρ and KS are given in Figure 4.15. The distributions of the selected
functions for each echo number are eventually displayed in Figure 4.17.

The main conclusions are:

• Whatever the region of interest, the �tting accuracy is high (ρ >0.99 and KS<0.1)
with our approach. One can notice that using a library of shapes slightly improved the
�tting accuracy compared to only the Gaussian model or the Generalized Gaussian
model. We have gained a higher �exibility in the �tting process with new models
featuring more and distinct parameters. The �tting accuracy is higher than for
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Area Building #1 Building #2 Cathedral Field Grass Street

# waveforms 9,943 38,565 43,563 10,035 9,790 11,770
# MP echoes 10,555 40,785 49161 10,035 9,790 12,428

L
ib
ra
ry

# echoes 11,054 43,385 50,638 10,035 9,790 13,033
GG 81.2 60.3 62.5 91.2 99.5 61.7

Nakagami 12.6 35.3 27.4 4.4 0.35 31.4
Burr 6.2 4.4 10.1 4.2 0.15 6.9
ρ 0.9947 0.9948 0.9948 0.997 0.999 0.994
KS 0.098 0.0977 0.095 0.038 0.025 0.102

G
au
ss
.

ρ 0.991 0.987 0.9824 0.992 0.995 0.981

KS 0.109 0.125 0.113 0.087 0.057 0.134

Additional
+4.7 +6.4 +3 0 +0.5 +4.8

points (%)

Table 4.9: Fitting results on six urban regions of interest of Amiens (see Figure 4.13). Our
approach has been tested using both the full library of models and the single Gaussian
function.

Area Area #1 Area #2
# waveforms 500,001 500,001
# MP echoes 508,252 491,973

L
ib
ra
ry

# echoes 526,701 520,129
GG 79.7 86.5

Nakagami 12.1 8.9
Burr 8.2 4.6
ρ 0.9939 0.9927
KS 0.092 0.095

G
G

# echoes 526,996 520,533
ρ 0.991 0.989
KS 0.111 0.117

Additional points � MP (%) +3.6 +5.7
Additional points � GG (%) -0.06 -0.08

Table 4.10: Fitting results on Areas #1 and #2 (Optech 3100EA sensor, see Figure 4.13).
Our approach has been tested using both the full library of models and the single Gen-
eralized Gaussian (GG) function. Quality measures (ρ and KS) are provided for both.
The percentages of echoes that have been �tted by each of the three modeling functions
are indicated, as well as the percentage of echoes additionally retrieved, compared to the
unknown hardware detection method (MP) and to the method presented in Chapter 3
(GG).
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(a) ρ. (b) KS.

Figure 4.15: Histograms of �tting quality for the two areas of interest presented in Ta-
ble 4.10.

medium and large-footprint waveforms. However, the latter ones are much more
complex.

• The echo detection rate is still improved compared to the 3D point cloud provided
by the lidar device. The �gures are similar to those obtained in Chapter 3, using
the Generalized Gaussian decomposition approach. This is an assessment of the
e�ectiveness of our approach at large scales. Thanks to the introduction of basic
physical knowledge, there is no over�tting, and the method does not generate false
echoes anywhere. Such an issue was really at stake since the �tting procedure does
not rely at all on any peak detection step. However, one can notice in Table 4.10 that
compared to the latter method, the new method leads to a slightly inferior number
of points. This may come from asymmetric pulses. On the one hand, they are �tted
with one skewed peak. On the other hand, they are adjusted with two symmetric
peaks, similarly to Figure 4.1.a. We do not consider they are con�icting results, but
rather as two distinct �tting strategies.

• For �at areas, the echoes are symmetric and the Generalized Gaussian function is
selected (Field and Grass areas, see Figure 4.14c, and streets in Figure 4.16). How-
ever, in some cases also the Burr and Nakagami functions have been selected because
for some parameter set-ups they are very similar to Gaussian distributions.

• In vegetated areas (trees), the algorithm does not preferably select a particular model
(see Figure 4.18). The usefulness of asymmetric modelling functions is therefore
di�cult to assess for �tting echoes of small-footprint waveforms in forested areas,
and the Gaussian function should be su�cient.

• For building regions, both symmetric and skewed peaks are retrieved. Asymmet-
ric echoes can be found on building roofs and where surface discontinuities exist
(buildings edges clearly appear on Figure 4.16.b). Such behaviour is also frequently
observed for the Cathedral scene depicted in Figure 4.14b. When the target geometry
becomes complex, the Nakagami and Burr functions are preferred.

• The re�ectance of the targets also has an in�uence on the �tting algorithm: for high
re�ectance objects, the backscattered pulse has a signi�cant amplitude and becomes
narrower. In such cases, the Gaussian model is selected, as displayed in Figure 4.14a



154 4. A marked point process approach for waveform modelling

(a) Area #1.

(b) Area #2.

Figure 4.16: 3D point cloud coloured with respect to the selected model (top view): Gen-
eralized Gaussian �Nakagami �Burr. The areas of interest are presented in Figure 3.12.
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Figure 4.17: Distribution of the three modelling functions (Generalized Gaussian �
Nakagami �Burr) for the two areas of interest according to the echo number. We have
limited the plot to the fourth echo since there were not enough �fth and sixth echoes
(< 15) for interesting statistics.

for the Building #1 area. For roofs with lower re�ectance, the peaks are smoother
and the algorithm may favor slightly asymmetric peaks (e.g., in Figure 4.16.a, where
pink aligned patches correspond to small roofs with waveforms adjusted with the
Burr model).

• Eventually, as enhanced in Tables 4.9 and 4.10, and in Figure 4.17, there are indeed
asymmetric peaks, but in a relative low proportion. This is particularly true for
�rst echoes, whereas for third and fourth echoes, there are no privileged solutions.
This surely comes from the fact that such echoes have been in�uenced by the targets
previously hit, and have relatively low amplitude. When dealing with signals with
low SNR, the model selection step may not be straightforward since no real privileged
solution exist.

Figure 4.18: 3D pro�le of a vegetated place in Area #1 (Colour=selected model).
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4.7 Conclusions and perspectives

We have proposed in this chapter a new and original methodology to process lidar wave-
forms, using a marked point process. Such a stochastic approach is well adapted to both
locate echoes in signals, and accurately describe them with parametric functions taken
from an extensible and tunable model library. Therefore, this allows to model lidar wave-
forms by complex parametric functions which results in a better �tting accuracy, compared
to conventional Gaussian waveform �tting schemes. The signal is therefore better recon-
structed, which also means that less loss in data compression. However this aspect has not
been investigated, it seems to be a particularly interesting advantage of our method, due
to the signi�cant amount of data end-users have to deal with.
The algorithm has been successfully applied to waveforms from di�erent lidar sensors, and
at di�erent spatial scales, showing its e�ectiveness and �exibility for various landscapes and
resolutions. For that purpose, given a set of functions, one just has to change the maximal
number of echoes that is accepted as well as the parameter r tuning the reconstruction
complexity. The MDL term of the regularization energy is all the more interesting as it
o�ers the possibility to free the waveform processing algorithm from the peak detection
step, speci�c to each sensor. Indeed, the knowledge of the range resolution of a lidar sensor
(and of course the digitization rate) is almost su�cient to blindly process the waveforms
acquired with this sensor.

The multi-marked point process framework o�ers a very high �exibility for the given recon-
struction problem. This is an evolving process which can integrate more or less parametric
functions. The only condition to be ensured is the ability to evaluate the function for each
value within the interval [0, #bins]. Thus, less restrictions are present that with a least-
squares or EM approach. Few functions will provide more homogeneous results and it will
be easier to assess their contribution, especially if they exhibit very distinct behaviours. A
less restrictive library will generate more fuzzy results. The lidar waveforms are not very
complex signals (even large-footprint ones), and inevitably several functions would produce
almost identical curves. For instance, in addition to the Nakagami and Burr functions, the
Weibull distribution has been introduced in early works [MLB+09]. It has been removed
afterwards since its behaviour was �nally too similar to the Nakagami, without any ability
to simulate left-skewed peaks.

For medium and large footprint waveforms, the library functions allow to adjust the fre-
quently occurring asymmetric peaks. Our approach is thus particularly relevant for such
data: not all the peaks within the waveforms exhibit such asymmetry. We have processed
these signals mainly in order to validate the approach and to show its versatility. It would
be interesting to assess, in an analysis/synthesis framework, whether the segmentation of
the waveforms in speci�c behaviours can be used in forest and large land-cover applications
(LVIS and GLAS sensors, respectively).
For small footprints, the skewness of the echoes is less signi�cant, and shows the present
limitations of our model. For �rst echoes, the method is relevant and reveals us that most
of the echoes are in reality symmetric. For slightly asymmetric echoes, all the asymmetric
objects of the library are suitable and can be chosen, resulting in a sort of ambiguity.
Even for symmetric echoes, the Burr and the Nakagami functions can be preferred to the
Generalized Gaussian one since some combined ranges of parameters can produce almost
symmetric curves. As mentioned above, the content of the library is therefore a key point
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of the proposed approach. This is a limitation of the current version of our approach which
should be targeted in future work.
Eventually, other non topographic waveforms have also been processed with the proposed
approach, namely bathymetric green lidar waveforms [MLB+09]. They are ideally com-
posed of two echoes corresponding respectively for the �rst and second echoes to the
air-water boundary and the sea�oor. They are both skewed, due to the scattering and
spreading of pulse at the sea surface, and the water depth and the attenuation coe�cient,
respectively. Thus, they cannot be �tted with a Gaussian model and satisfactory results
have also been found with such data. Since the second pulse can be represented by an
exponential decaying function, in future works, such waveforms may be good candidates
towards further demonstrating the versatility of the algorithm.

Many improvements and extensions of the proposed approach are conceivable. First, more
speci�c proposition kernels may be introduced. For example, it should be interesting to
speci�cally deal with overlapping echoes. Birth and death in a neighbourhood kernels may
be a good solution for process complex shapes where several superimposed signals exist.
We may therefore prevent some local signal misadjustments. Moreover, for two overlapping
peaks, the selection of a model for the �rst peak has an in�uence on the �t of the second
echo. Such in�uence has not been analysed. Dealing with such cases can come in useful
for regularizing the proposed solution.
Besides, the automatic estimation of the parameters of the con�guration energy is a well-
known problem for marked point processes, and has been barely tackled in the literature.
This is interesting in order to achieve fully unsupervised waveform reconstruction. Re-
cent works have shown that embedding an algorithm within a Stochastic Expectation
Maximization (SEM) framework is relevant [CDZ09]. Such technique has been applied in
[HCDZ10] to solve various pattern recognition problems. Its main limitation is the signif-
icant computing time of the evaluation of the pseudo-likelihood (E step). 70% more time
is necessary, which is, in our context, a crippling drawback.

Eventually, the RJMCMC technique is often adopted since the result is independent of
the initialization step. On one hand, this can be considered as an appreciable feature
of our approach. On the other hand, this is also a limitation. Indeed, as consecutive
small-footprint waveforms along a scan line and in the orthogonal directions have very
high probability to exhibit similar shapes, spatial interactions should also be included in
the regularization term of the proposed model. One may want to take into account the
output of the �tting procedure of the neighbouring waveforms. Such data-driven approach
would smooth the selection of distinct models for consecutive waveforms and corresponding
echoes. This is obviously the most intuitive knowledge we can integrate in the model. In
urban areas, if we consider corresponding echoes of consecutive waveforms (along a scan
line i.e., in a temporal meaning), they will almost have the same location within the
signals. The location will only slightly move depending on the slope of the surface e.g., for
a building roof or the ground. Additional echoes may sparsely spring whether a chimney
or a low above-ground item are present. From a ground point of view, occlusions may
appear in case of vegetated areas or buildings. Therefore, such regularization problem may
be tackled as in classical visual tracking issues, using, for instance, Particle Filters. It
has already been addressed in with a varying number of objects with surveillance video
datasets [Smi07]. We consider such an approach as a very promising outlook, in addition
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to the design on a global approach that is able to process all the waveforms at the same
time.

Finally, Compressed Sensing [Don06] seems to be another promising dictionary-based
method for waveform reconstruction.
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Part III

Classi�cation of urban areas
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Chapter 5

Classi�cation of 3D lidar point clouds

Subsequent to waveform processing, point-based classi�cation is performed in order to
discriminate ground, vegetation, and building points. For each 3D point, a feature vector is
computed, gathering both spatial attributes and full-waveform attributes. Various kinds of
spatial features are especially selected for this purpose, whereas all the previously computed
FW features are introduced. Since achieving a high classi�cation accuracy is coupled with
assessing the relevance of the FW attributes, a feature selection is performed jointly with
the selection process. Figure 5.1 sketches the work�ow that will be set up.

Figure 5.1: Overview of the classi�cation process.
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5.1 Introduction

5.1.1 Context

Part II has addressed the problem of waveform processing (decomposition and modelling)
with two distinct methods. For each lidar signal, the outputs of both approaches are:

• A series of ranges that correspond to the positions of the modes of the signal. The
ranges may be one of the parameters of the modelling function (as in Chapter 3), or
has to be computed afterwards, once the parameters have been all estimated (e.g.,
Burr and Nakagami models in Chapter 4).

• For each range, several shape features, parameters of the modelling functions.

The range values give estimates of the location of the targets: they are the required
inputs for the georeferencing process, which allows to generate the 3D point cloud (see
Section 3.2.5).
The shape features or so-called full-waveform features, such as amplitude, echo width
or cross-section are additional information along with spatial attributes. They provide
knowledge on the scattering properties of the targets, and consequently, they may be used
for classi�cation. This is especially relevant in urban areas since most of the echoes are
single echoes: their shape (and therefore the associated features) is only in�uenced by the
target, and not by the targets previously hit by the laser beam, as in forested areas. Such
interactions are really di�cult to model [WHBD08], and this is not yet possible to correct
such disturbance.

The objective of this chapter is to perform point cloud (3D) classi�cation in urban areas,
subsequently to a waveform modelling step, i.e., with the introduction of the full-waveform
features. As mentioned in Chapter 1, three classes of interest have been selected: ground,
vegetation, and building. We have noticed in Chapter 3 (Section 3.4) that it is not possible
to classify the types of ground and road surfaces using the waveform properties alone. For
assigning each return pulse to a speci�c surface type, additional information is required,
such as optical images, but cannot result from the 3D geometric relationships of the re-
turns within the point cloud. Such issue will therefore not be addressed in this chapter.
Conversely, the classi�cation of tree species mainly relies on the amplitude feature, and
spatial attributes. It might be tackled at the same time. However, as we focus on urban
areas and full-waveform features, this problem is considered out of our scope.

5.1.2 Related works

A point-wise classi�cation strategy aims to label the 3D points resulting from the waveform
modelling process. Each 3D point is associated to a feature vector mixing geometric fea-
tures and full-waveform features. Geometrical features are spatial attributes relying only
on the 3D coordinates and the echo number of the lidar point, whereas FW features are
those extracted from the early modelling step. Feature selection is important since mean-
ingful features facilitate accurate classi�cation of the data. Indeed, for instance, buildings
may have quite di�erent appearances both with respect to their geometric dimensions and
their re�ectance properties. Such heterogeneous appearance may not be handled easily by
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combining only planar- and amplitude-based attributes.
Segmentation followed by classi�cation would be another possibility. It has been adopted,
for instance, in [FNSZ06; SZ07; RHHP08] where region-growing, random walk, and normalized-
cut segmentations precede the labelling task, respectively. In order not to aggregate distinct
objects in the same segment, over-segmentation is often preferred as preliminary step. On
the one hand, an object-based approach may lead to more homogeneous results than a
point-based approach since (1) spatial coherency is enforced, and (2) segment-based fea-
tures can be computed (area, compacity, etc. [Tóv06]). On the other hand, one may �nd
the most appropriate measure to turn point features to a single segment attribute (mean?
standard deviation?). This is not necessarily a straightforward task. Furthermore, the
local discrepancies in the point-based labelling process may also be corrected subsequently
with a contextual regularization step [CML04].

Several classi�cation methods have already been applied to lidar data for urban scenes.
Speci�c works on full-waveform data have already been presented in 2.6.3. Both unsu-
pervised (e.g., Mean-Shift algorithm in [Mel07]) and supervised (e.g., cascade of binary
classi�ers in [CGCZ09]) classi�cations are conceivable. Rule-based methods have been fa-
vored since many features (such as the echo number or the height above ground) have a
physical meaning, and may be discriminative using simply thresholds. Decision trees (DT)
have therefore been adopted in [DHU+06; RHHP08; ATK+10]. On the one hand, DT may
allow to discriminate a large number of classes (e.g., trees, shrubs, grass, roofs, and road
are labelled in [DHU+06]). On the other hand, such heuristic method may su�er from
area-speci�c and sensor-speci�c thresholds [ATK+10]. Besides, DT can be easily com-
puted with few number of features (but high classi�cation accuracy may not be achieved),
whereas a large feature vector may lead to very complex trees where the optimal splitting
order may not be easy to �nd. Consequently, supervised approaches have been selected to
deal with such issues.
For such methods, in addition to the feature vector, a set of data samples have class la-
bels associated with them. This set is called the training dataset and is used to estimate
the parameters of the classi�er. An important underlying assumption is that the whole
dataset is similar in terms of distribution of features to the training dataset. This means
that the classi�er must have observed similar features in the training in order to perform a
good classi�cation (the so-called generalization performance). A Gaussian Mixture Model
approach, solved with the Expectation-Maximization algorithm, is adopted in [CML04],
whereas the Random Forest classi�er is chosen in [GCMB10] (see Section 5.6 for further
details). Furthermore, since classi�ers based on statistical learning theory have shown
remarkable abilities to deal with both high-dimensional data and a limited training set,
Support Vector Machines (SVM) have been naturally investigated for the classi�cation of
airborne lidar data in urban areas [LKHF06; SZ07; SBR10]. This method is well adapted to
deal with high-dimensional feature space since the algorithm complexity does not depend
on the data dimension. Furthermore, SVM belong to the non-parametric classi�cation
techniques, i.e., no parametric probability density functions are required. Moreover, the
training step is reduced to a convex optimization problem, and eventually the kernel trick
allows to �nd a linear classi�er in some feature space.
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5.1.3 Strategy

A point-based classi�cation based on Support Vector Machines is adopted. SVMs have
been selected because a simple feature vector can be used as input for the discrimination
task. As mentioned above and in Section 1.6, the feature vector partly stems from the
modelling step. Therefore, even if the modelling functions are modi�ed, our proposed
work�ow will not have to be adapted. This would not be the case for Decision Trees. The
choice of Support Vector Machines is rather objective. Other methods, such as Classi�ca-
tion and Regression Trees (CART) or ensemble classi�ers (e.g., Random Forests), would
be as suitable as SVMs, and are known to provide the same level of performance.
The principle of SVM is presented in Section 5.2, as well as the classi�cation strategy.
Both spatial and full-waveform features are computed for each 3D lidar point. Afterwards,
they are introduced into the supervised classi�er. The analysis is also performed on the
local neighbourhood level for the geometric attributes. One may �nd the set of selected
features in Section 5.3.
The aim of this chapter is two-fold. In addition to 3D classi�cation, we aim to assess the
relevance of full-waveform features in urban areas. We would like to quantify the genuine
contribution of the modelling step in comparison to simple on-board methods i.e., tra-
ditional multiple pulse datasets. For that purpose, a feature selection has to be carried
out in conjunction to the labelling process. Two main strategies are conceivable, and are
presented in Section 5.4.
The full classi�cation process is carried out both on Biberach and Amiens datasets on the
basis of manually selected ground truth. The results are presented in Section 5.5.

Eventually, in parallel to the 3D analysis of urban areas, another approach involving full-
waveform data has been developed with other authors. We also aimed at assessing the
contribution of FW sensors with respect to multiple pulse lidar data. Random Forests
have been adopted to perform 2D classi�cation with feature selection in urban areas. Such
an approach will be brie�y presented, and the results will be put in parallel with our
method.

5.2 Support Vector Machines and feature selection

5.2.1 Principle of SVMs

The general mathematical formulation of Support Vector Machines (SVMs) is brie�y re-
called in this section. SVMs can be considered as the merge of the optimal separating
hyperplane theory [Vap95], with a modi�ed margin for mislabelled examples [CV95] (lin-
ear classi�cation), and the kernel trick applied to create non-linear classi�ers [BGV92].
In-depth theoretical and practical aspects of SVMs can be found, for instance, in [SS02].

Supervised classi�cation and statistical learning theory

A supervised algorithm aims to label a set of elements given a training set S, such as
S = {(x1, y1), ..,xl, yl)} = D × L. D is the data space, and L is the label space. For
instance, L = {−1,+1} for a two-class problem. The problem is therefore to �nd a
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function f ∈ F that assigns label +1 (resp. −1) to the xi such as f(xi) ≥ 0 if yi = 1 (resp.
f(xi) < 0, if yi = −1). f is a function from the vector space D to the label space L. The
decision boundary is ker(f) = {x|f(x) = 0}, and a classi�er g is derived by considering
the sign of such a function to solve problem y = g(x) = sgn(f(x)).
One solution may be to minimize the training error, called empirical risk Remp(f), i.e., the
rate of misclassi�ed samples over S.

Remp(f) =
1
l

l∑
i=1

L(f(xi), yi) (5.2.1)

where L is a loss function, e.g., L(x, y) = 1
2 |y − f(x)|.

The so-called "Empirical Risk Minimization" principle has two main limitations. First,
there is no unique solution. Second, minimizing the error over a subset is not equivalent to
minimize the error over all the elements: f may have not a good generalization ability, i.e.,
we could face to over-learning, due to the fact that the surface ker(f) is very complex, and
sticks to the training set. The statistical learning theory uses only simple assumption about
the complexity of the class of possible functions F : simple functions are favored so that
to achieve a good generalization ability. The Vapnik-Chervonenkis (VC) theory detailed
in [Vap98] allows to measure such complexity with the VC dimension h, and provides a
relation between the empirical risk and the total risk, i.e., the misclassi�cation over D. h is
de�ned as the largest number of points that can be separated with F , whatever L. Hence,
the structural risk minimization principle allows to select the function f that minimizes a
given upper bound error.

R(f) 6 Remp(f) + V (h, l) (5.2.2)

with V (h, l) detailed in [Vap98], and only dependent of F (now limited). Such inequality
should be minimized for the training step of the classi�er, according to VC theory.
A speci�c case of functions f are linear functions. They are described in the next section,
and leads to the de�nition of the SVM classi�er.

Linear SVMs

The classi�cation is carried out using a linear discriminant function f . The decision func-
tion has the following expression:

f(x) = 〈w,x〉D + b (5.2.3)

where w ∈ D, b ∈ R, and 〈, 〉 is the inner product. For a supervised classi�cation problem,
we de�ne the separation hyperplane H as a linear decision function of w and b which
separates the space into two half-spaces (each half-space corresponds to a given class), i.e.,
∀ (xi, yi) ∈ S, yi = sgn(〈w,xi〉D + b).
In the following, we consider real n-dimensional vector space i.e., D = Rn, and L = {−1, 1}
in a two-class problem. In Section 5.3, we will see that n is close to 30, which is, for remote
sensing applications between multispectral (n ∈ [3, 10]) and hyperspectral data (n� 10).
If we assume that the data are linearly separable, thus the learning problem is to �nd the
parameters (w, b). However, many separating hyperplanes are acceptable, and the optimal
separating hyperplane is found so that to minimize the upper bound of the risk R (see
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Equation 5.2.2). In order to correctly classify the training data set, we should have:

〈w,x〉+ b ≥ 1 if yi = +1 (5.2.4)

〈w,x〉+ b < −1 if yi = −1 (5.2.5)

In the statistical learning theory, the VC dimension is estimated by the margin for a class
of separating hyperplanes. The margin is de�ned by the minimum distance of a training
sample from the decision boundary (not necessarily correctly classi�ed). It is given by the
distance ζ between the two samples that are the closest to the hyperplane (x+1 − x−1),
projected onto the unary vector normal to the hyperplane.
w.(x+1−x−1) = 1⇒ ζ = 2‖x+1−x−1‖ ⇒ ζ = 2

‖w‖ . Finally, by considering Equation 5.2.2,
the learning strategy is to both minimize:

The empirical risk : the hyperplane parameters are constrained to give perfect classi�-
cation of S. It means that: ∀ (xi, yi) ∈ S, yi 〈w,xi〉+ b ≥ 1.

The complexity term : by minimizing ‖w‖2. Please see [Sch97; MMR+01] for more
details.

Hence, we have to solve the following constrained quadratic optimization problem:

minimize
〈w,w〉

2
(5.2.6)

subject to ∀ (xi, yi) ∈ S, yi 〈w,xi〉+ b ≥ 1 (5.2.7)

Such a problem can be solved by introducing the Lagrange multipliers. One dual variable
αi is introduced for each constraint, i.e., for each training sample. The gradient of the
function must be orthogonal to the tangent plane of the constraints. That is the projection
of the gradient of f onto the space of directions tangent to the constraint "surface" is zero.
The problem is now:

L(w, b, α) =
〈w,w〉

2
+

l∑
i=1

αi (1− yi( 〈w,xi〉+ b)) (5.2.8)

The Lagrange multipliers have to be minimized with respect to w and b (primal parame-
ters), and maximized with respect to the parameters αi (dual parameters). At the optimal
point, we have the following gradient expressions:

∂L

∂x
= w−

l∑
i=1

αiyixi = 0 (5.2.9)

∂L

∂b
=

l∑
i=1

αiyi = 0 (5.2.10)

Combining the two latter equations with Equation 5.2.8 gives us the dual quadratic problem
with bound constraints, and a linear equality constraint, with only one variable (the αi):

max
α

g(α) =
l∑

i=1

αi −
1
2

l∑
i,j=1

αiαjyiyj〈xi,xj〉 (5.2.11)

subject to αi ≥ 0 and
l∑

i=1

αiyi = 0 (5.2.12)
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Calling α∗i the solution of this problem, the solution parameters w∗ are obtained from
Equation 5.2.10:

w∗ =
l∑

i=1

α∗i yixi, (5.2.13)

and b∗ can be derived from the constraints of Equation 5.2.7:

α∗i [1− yi(〈w∗,xi〉+ b∗)] = 0 (5.2.14)

If α∗i 6= 0, the corresponding xi lies exactly on the boundary, i.e., at a distance equal to
the half margin from the optimal separating hyperplane. Otherwise, α∗i = 0, and xi lies
on the "good side" of the boundary.
One can note that w∗ is a linear combination of the vectors xi for which Lagrange multipli-
ers are not null. Such vectors are the so-called support vectors (see Figure 5.2.a). They
are the closest elements to the optimal separating hyperplane. Moreover, the optimal set
of parameters (w∗, b∗, α∗i ) remain the same if non-support vectors are removed from the
training set.
The �nal decision is given by:

g(x) = sgn

(
l∑

i=1

α∗i yi〈x,xi〉+ b∗

)
(5.2.15)

Such decision rule has been obtained assuming that the data are linearly separable, which
is far too restrictive for remote sensing problems. To solve this problem, slack variables ξi
are introduced (see Figure 5.2.b). A slack variable is a nonnegative variable that turns an
inequality into an equality constraint.
We therefore now consider soft-margin constraints: ∀ (xi, yi) ∈ S, yi 〈w,xi〉 + b ≥ 1 + ξi.
Errors are allowed during the training process, and that avoids over-�tting the classi�er to
the training samples, which would result in poor performance. The optimization problem
described in Equation 5.2.7 has now changed to:

minimize
〈w,w〉

2
+ C

l∑
i=1

ξi (5.2.16)

subject to ∀ (xi, yi) ∈ S, yi 〈w, xi〉+ b ≥ 1− ξi and ξi ≥ 0 (5.2.17)

C is a constant which controls the number of training errors and therefore determines
the trade-o� between margin maximization and training error minimization. C is called
the regularization parameter. A larger C assigns a higher penalty on the training error,
whereas a smaller value tends to increase the margin and the training errors. Equation 5.2.8
becomes:

L(w, b, ξ, α, β) =
〈w,w〉

2
+

l∑
i=1

αi(1− ξi − yi (〈w,xi〉+ b))−
l∑

i=1

βiξi + C
l∑

i=1

ξi (5.2.18)

The dual problem described in Equation 5.2.12 is �nally slightly modi�ed with now:
0 ≤ αi ≤ C. The method of Lagrange multipliers is only valid for equality constraints.
For inequality constraints, it is generalized by the Karush�Kuhn�Tucker conditions, that
require additional constraints. A new derivative can be computed:

∂L

∂ξi
= −αi − βi + C = 0 (5.2.19)
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By substituting the three partial derivatives into Equation 5.2.18, we obtain:

max
α

g(α) =
l∑

i=1

αi −
1
2

l∑
i,j=1

αiαjyiyj〈xi,xj〉 (5.2.20)

subject to 0 ≤ αi ≤ C and
l∑

i=1

αiyi = 0 (5.2.21)

Furthermore, the Karush�Kuhn�Tucker conditions, that allow to compute b, are:

αi (1− ξi − yi( 〈w,xi〉+ b)) = 0 (5.2.22)

subject to βi ≥ 0 and βiξi = 0 (5.2.23)

Equation 5.2.23 requires that αi = 0 or 1 − ξi − yi( 〈w,xi〉 + b) = 0. It means only some
of the αi are not equal to 0. The αi 6= 0 de�ne the separating hyperplanes. One can
notice that the αi = 0 are not involved on the formulation of the optimal classi�er given
in Equation 5.2.15. Therefore, the two separating hyperplanes given by w are supported
by the training samples with α∗i 6= 0 (the support vectors).

(a) Linear case. (b) Linear case with soft margins.

Figure 5.2: Classi�cation of separable and non separable data by SVMs using the optimal
separating hyperplane.

Non-linear SVMs

However, as underlined in Section 3.4 for full-waveform features, classes of interest are
partially overlapped. Therefore, a linear classi�er would not be optimal. When the clas-
si�cation problem is not linearly separable, one solution consists in changing the feature
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space. The kernels methods are designed to both have the e�ectiveness of a linear train-
ing model, and the discriminant ability of a non-linear model. The data is projected in a
higher dimension space using a non-linear mapping function Φ : D → H, in which the new
distribution of samples enables the �tting of a linear hyperplane. Kernels methods provide
non-linear hyperplanes, and improve classi�cation abilities. The same margin optimization
method can then be performed.
The optimization problem can be formulated as follows:

max
α

g(α) =
l∑

i=1

αi −
l∑

i,j=1

αiαjyiyj〈Φ(xi),Φ(xj)〉 (5.2.24)

subject to 0 ≤ αi ≤ C and
l∑

i=1

αiyi = 0 (5.2.25)

which gives:

g(x) = sgn

(
l∑

i=1

αiyi〈Φ(x),Φ(xi)〉+ b

)
(5.2.26)

One can notice that projecting D in a higher dimension space do not complexify the
algorithmic resolution of the problem since the parameters to be optimized are still of size
l.
Finding Φ is a di�cult problem. In practice, the xi points are implicitly projected in H
by de�ning a kernel K : D ×D → R such as:

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 (5.2.27)

This is the so-called kernel trick. The kernel function represents an inner product in the
new representation space. Hence, it characterizes a certain similarity of two data in the
initial space.
Two approaches are possible to de�ne a kernel. On one hand, K can be directly de�ned.
On the other hand, indirectly, one can use the Φ function and the inner product in the
new representation space. In fact, the knowledge of K is su�cient to compute the optimal
classi�er. SVMs work implicitly on the feature space. The kernel has only to ful�ll Mercer's
condition [SBS98]: it should be a symmetric de�nite positive function. Therefore, the
problem de�ned in Equation 5.2.25 is still convex.
One main property of kernels is the possibility to compose them without knowing both
the direct and indirect expressions of the two kernels. For instance, knowing the direct
expression of the �rst one, and the indirect expression of the second one is enough to know
the direct expression of their product.

Multi-class SVMs

SVMs are intrinsically binary classi�ers. When having n ≥ 3 classes of interest, various
approaches are possible to address the problem. Di�erent possibilities are:

• Multi-class optimization: the design of the SVM can be modi�ed in order to incorpo-
rate the multi-class learning directly in the quadratic programming solving [WW98];
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• Two-class optimization: a set of binary classi�ers is combined. In such a case, two
strategies are possible [SS02]:

� One versus the rest. This is the simplest solution of the decomposition meth-
ods. n binary classi�ers are applied on each class against the others (i.e., n
hyperplanes are constructed). Each sample is assigned to the class with largest
output of the decision function: ∀ i, yi = arg max

k∈[1,n]
fk(xi) [BSB+96].

� One against one. For such pairwise classi�cation, n (n− 1)/2 binary classi�ers
are computed on each pair of classes. Each sample is assigned to the class
getting the highest number of votes. A vote for a given class is de�ned as a
classi�er assigning the sample to that class [PV97]. Such decision rule may vary
according to the problem and the number of classes.

The number of classes to be discriminated simultaneously can be large. Therefore, the
number of parameters to be estimated increases considerably in a multi-class optimization
formulation. The method tends to be less stable and, accordingly, a�ects the classi�cation
performances in terms of accuracy. For this reason, multi-class optimization has not been
as successful as the approach based on the two-class optimization.
According to a comparison study [WW98], correctly tuned SVMs with "one versus the
rest" solution have shown performances slightly inferior but close to the "one-against-one"
approach. However, one can notice the performance of the �rst technique can be com-
promised due to unbalanced training datasets. However the "one-against-one" approach
is more computationally intensive (larger number of classi�ers), the classi�cation task is
divided in much simpler ones.
Other strategies have been proposed such as hierarchical tree-based approaches [MB04].
In spite of an improved computing time, the results exhibit lower accuracy since errors can
be propagated inside the branches of the trees. Furthermore, such methods also require a
far more complex training step.
We choose the "one-against-one" approach mainly because it has been shown to be more
suitable for large problems [HL02].

Implementation

The LIBSVM software1 is used to implement the SVM algorithm. Slack variables are
introduced (soft-margin classi�er). Then, the parameter C has to be optimized with the
kernel hyperparameters (see Section 5.2.2).
There are several standard methods to solve the above mentioned convex quadratic pro-
gramming problem, with linear and box constraints. However, fast algorithms have been
developed to cope with the important number of training samples, which may turn these
methods ine�ective. Vapnik has, for instance, proposed a chunking algorithm [Vap98],
which removes from the problem the non-support vectors (since the problem remains the
same). Then, his algorithm breaks the large problem into a series of smaller sub-problems,
which aims to identify the non-null Lagrange multipliers and remove the other ones.
The matrix Q such as Qi,j = yiyjK(xi,xj) is usually fully dense and may be too large to
be stored. Decomposition methods are designed to handle such di�culties (e.g., [OFG97;
Pla98a; CFL06]). Unlike most optimization methods which update the whole vector α

1Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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in each step of an iterative process, the decomposition method modi�es only a subset of
α per iteration. This subset leads to a small sub-problem to be minimized in each it-
eration. A speci�c case is the Sequential Minimal Optimization (SMO) [Pla98b], which
restricts the subset to have only two elements. Therefore, in each iteration, one does not
require any optimization software in order to solve a simple two-variable problem. Indeed,
the 2-dimensional sub-problem can be solved analytically, i.e., without time-consuming
numerical quadratic optimization. The SMO strategy has been adopted in LIBSVM.

5.2.2 Kernel selection

Without su�cient a priori knowledge of the in�uence of geometric and radiometric param-
eters on the pulse shape, the design of a kernel dedicated to our speci�c purpose given our
cues is a very di�cult task. Therefore, a classical kernel is selected, the Gaussian kernel,
de�ned as:

K(xi,xj) = exp
(
‖xi − xj‖2

2ϑ2

)
with ϑ > 0 (5.2.28)

ϑ tunes how similar to the training data the test data is expected to be. ϑ → 0, for
instance, leads to over-�tting, and consequently reveals a low generalization ability of the
classi�er.
The polynomial kernel has also been tested but have not shown better performance. More-
over, since this kernel has more hyperparameters, the model selection is more complex
(see below). The grid search becomes a 4-dimension tensor search (see below). Moreover,
the polynomial kernel has more numerical di�culties because kernel values may go to the
in�nity or zero, while the degree is large (in contrast, 0 < KGauss(xi,xj) 6 1). The other
reason why adopting the Gaussian kernel is that many authors have stated that more
sophisticated kernels do not mean better results.

Hyperparameter tuning

There is no criterion concerning the choice of the parameters involved in the optimization
problem. A simple way to choose them is a trial-and-error strategy i.e., to take several
values and test their e�ciency in order to select the most suited ones. [Fau07] tackles this
problem by considering some a priori to choose a proper value for the penalty factor C. In
their experiments, C is set to 200. They have a high penalty for non-separable points and
impose no training errors, considering the data are linearly separable in the feature space.
The grid search therefore becomes a line search.

Because optimal values of C and ϑ are not known beforehand, we prefer a simple variation
of the latter method. A grid search exhaustively sweeps the parameter space, and for
each point the cross-validation accuracy (CVA) is computed. In a v-fold cross-validation
procedure, the training data are divided in v subsets of equal size. The classi�er is trained
on v − 1 subsets and ran on the remaining one. The CVA represents the percentage
of samples correctly classi�ed averaged over all the subsets when they were used as the
testing subset (mean between the True Positive Rate and the True Negative one). The
(C,ϑ) grid is composed of exponentially growing values of C and ϑ, for instance, in our
study C, ϑ = 2−15, 2−13,.., 215. After the coarse grid search, a �ner one is computed in a
smaller range around the optimal parameters found in the �rst step. Such grid search is
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necessary since the CVA over (C,ϑ) set is not convex. The values of the kernel parameters
can have a signi�cant impact on the learning capacity but their optimum values are not
critical: there is a range of values which gives almost the same cross-validation accuracies.
Consequently, this is not necessary to perform in-depth grid search.
The CVA has one main drawback. The SVM needs to be trained many times. For instance,
if v = 4 and 15 values of two hyper-parameters are tested, each binary classi�er requires 900
training steps. Therefore with more than 2 hyper-parameters, since the complexity of such
grid search is exponential with respect to the number of optimized parameters, training
and test become intractable even for small-scale problems. This is the main justi�cation
of choosing the Gaussian kernel for our problem. Concerning hyper-parameter tuning,
the CVA has been shown to be a suitable performance measure among other solutions
[DKP03]. We choose v = 5, whatever the area of interest.

More advanced methods have also been proposed. The VC dimension h, which de�nes
an upper bound of the risk (Equation 5.2.2) can be used. [Kee01; CVBM02] �nd the
optimal hyperparameters by minimizing an error bound, based on the risk upper bound
and function of the kernel parameters. The solution is found with a gradient descent, or
more e�ective techniques [BTB05]. These training strategies are compared with the CV
method in [Fau07] for hyperspectral data. The main conclusion is that the gradient-based
approaches are able to �t a much larger number of parameters (more than 100 according
to [CVBM02]), with higher classi�cation accuracies. However, such methods are mainly
useful for advanced kernels or composition of kernels, and is not necessary for our (simple)
classi�cation task. More discussions on cross-validation techniques and optimality with
respect to the given problem can be found in [AC10].

5.3 Features of interest

5.3.1 Various kinds of features (and computational strategies)

Our feature vector for each 3D lidar point has 27 components. All the attributes are lidar
based. Part of the vector is composed of purely geometric features (15), and attributes
derived from the echo number (4). The remaining part comes from the two waveform
modelling methods that have been proposed (8).

Geometrical (spatial) features are computed with the single knowledge of the 3D co-
ordinates, i.e., without any waveform recording (multiple pulse sensors). However, they
are indubitably improved by the waveform processing step. Retrieving additional points
allows a better 3D representation of the scene and a better computation of several at-
tributes. Three groups of features can be computed. They are described below.

Echo-based features The echo number or the type of echo (single, �rst of many, interme-
diate, or last) may be discriminant, especially for vegetated areas. Multiple-pulse sensors
nowadays provide such information, but it is demonstrated that on-board echo detection
methods may fail in case of waveform of complex shapes. As a consequence, an e�cient
peak detection after waveform digitization may supply more reliable echo numbers, and
derived features.
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(a) Spherical neighbourhood. (b) Cylindrical neighbourhood.

Figure 5.3: Two kinds of 3D environments for computing geometric features (adapted from
[GJT07].

The full-waveform features come from the processing of the waveforms described in
Chapter 3 and 4.
Since the Generalized Gaussian model provides interesting features, its three morpholog-
ical parameters are fed into the feature vector. Two other attributes derived from the
cross-section are also computed since recent works have highlighted their relevance for
classi�cation purposes [ATK+10; Wag10].
Furthermore, we also want to bene�t from the stochastic approach. The function selected
in the prede�ned library is therefore introduced. Eventually, the three models have not the
same parameters and the same number of parameters. When dealing with a �uctuating
number of parameters, one solution is to design a speci�c kernel that can handle such cases.
However, this is not enough for us since, even if with a �xed number of parameters, this is
not straightforward to compare the features of two models. Therefore, we have decided to
synthesize all these parameters in a single common one, the peak skewness, that enhances
the asymmetry, or not, of the echoes.

Geometrical and echo-based features are computed using a volumetric approach, i.e., lidar
points included in a restricted 3D neighbourhood V are used in addition to the current
lidar point P . V is called environment. It can be a sphere centered on the point P (Vs),
or a vertical cylinder (Vc). Vc includes all the points inside a 3D environment without
restriction on the vertical position. It favors the measure of the dispersion in height of the
neighbours. These two environments have a single parameter, the radius r (see Figure 5.3).

5.3.2 Description

The features may be separated as follows:

- Height features: they are related to the altitude of the current 3D point. They may
discriminate both above-ground points and points with a signi�cant altimetric scattering.
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• ∆z: height di�erence between the lidar point and the lowest point found in a large
cylindrical volume whose radius has been experimentally set to 20 m.

• ∆z�: the height di�erence between the �rst and the last pulses of the waveform.

• σz: the height variance of the 3D points included in Vc.

σ2
z =

1
|Vc|

√∑
i∈Vc

(zi − z̄)2

where z̄ is the mean height in Vc.

- Eigenvalue features: a covariance matrix of the 3D coordinates is computed in Vc.
Such matrix can be considered as a 3D structure tensor [TMMT04] that gives information
about the repartition of the points within Vc. The three eigenvalues λ1, λ2, and λ3 (de-
scending order) are a direct link to the dimensions of the ellipsoid that really represents
the local 3D structure [Sze10]. A �at ellipsoid (λ1 ' λ2 � λ3) means the point cloud is
locally plane. When λ1 � λ2;λ3, we face a linear structure (e.g., building edge), whereas
λ1 ' λ2 ' λ3 corresponds to volumic structures such as vegetated areas. Many combina-
tions of these features are conceivable and may provide discriminant features, especially
in urban areas [JG09a; CGCZ09]. A visual assessment has allowed us to keep the most
promising ones.

• Σλ: the sum of the three eigenvalues.

• e1, e2, and e3: the three eigenvalues normalized by Σλ (∀ i ∈ [1, 3], ei = λi/Σλ).

• Aλ, Oλ, Pλ, Eλ, Sλ: anisotropy, omnivariance, planarity, eigentropy, and scatter,
respectively. They are eigen-based features describing the spatial local distribution.
Their formulation are taken from [GT06; TMT10], with slight variations (normaliz-
ing coe�cient).

Aλ =
e1 − e2

e1
; Oλ = 3

√
e1e2e3 ; Pλ = 2(e2 − e3)

Eλ = − ln(e1)e1 − ln(e2)e2 − ln(e3)e3 ; Sλ =
e3

e1

- Local plane features: they are related to the 3D local plane Π. Such plane has been
estimated by a robust M-estimator with norm L1.2. The selection of an optimal p value
for Lp norms has been investigated in [XZ96], and for p around 1.2, a good estimate may
be expected. The deviation angle is useful for discriminating ground from building roofs
(Nz ' 0 and Nz ∈ [−45o, 45o], respectively). The two other features are good hints for
enhancing the altimetric scattering around P .

• Nz: deviation angle of the local normal vector from the vertical direction.

• σNz : variance of the deviation angles, computed for all points in Vs.

• Rz: residuals of the local plane Π.

Rz =
∑
i∈Vc

(di)p

p



5.3. Features of interest 175

where di is the distance between the lidar point i ∈ Vc and the plane Π, and p the
norm (here p = 1.2).

- Echo features: they enhance the multiple scatterings of the laser pulse.

• n: the echo number.

• N : the total number of echoes within the waveform of P .

• Ne: the normalized number of echoes. Ne = n
N .

• PDR: the point density ratio. This is ratio between the number of points within Vs
and within Vc [RHHP08].

- Full-waveform features: their relevance has already been discussed in Section 3.4.

• A, w, σ, α: echo amplitude, width, cross-section, and shape, respectively. They have
been retrieved using the General Gaussian model (see Chapter 3).

• σ0: the cross-section per illuminated area. We have: σ0 =
σ

Ai
, where Ai is the

illuminated surface area (see [WHU+08; Wag10]).

• γ: the backscatter coe�cient, which is σ0 corrected from the incidence angle. If we
assume a circular transmitter aperture,

γ =
4σ

πR2β2

where R is the range between the point and the sensor, and β is the beam divergence.

• M: the modelling function selected in the marked point process approach (Chap-
ter 4).

• s: the echo asymmetry. This is the ratio between the widths at half-maximum that
are located before and after the peak mode. s < 1 means that the echo is left-skewed,
whereas s > 1 reveals a right-skewness.

Finally, the feature vector fv can be written as follows:

fv =



∆z,∆z�, σz;
Σλ, e1, e2, e3, Aλ, Oλ, Pλ, Eλ, Sλ;
Nz, σNz ,Rz;
n,N,Ne, PDR;
A,w, σ, α, σ0, γ,M, s

(5.3.1)

Many other geometric features are conceivable and may be relevant for discriminating
our three classes of interest. A large body of literature has indeed addressed the spe-
ci�c problem of building detection and some attributes may also be useful in our context.
For instance, border gradients or texture features can be computed from raster data such
as Grey Level Co-occurrence Matrix features [MKH07] or slope indices [EJL+01; Tóv06].
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(a) Orthoimage. (b) ∆z (0→ 35 m).

(c) ∆z� (0→ 25 m). (d) σz (0→ 35).

(e) Σλ (0.3→ 4). (f) e1 (0.35→ 1).

(g) e2 (0→ 0.5). (h) e3 (0→ 0.3).

Low values High values

Figure 5.4: Features of interest over the area of Biberach (Part 1).
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(a) Orthoimage. (b) Aλ (0.1→ 1).

(c) Oλ (0.1→ 0.5). (d) Pλ (0→ 1).

(e) Eλ (0.5→ 1.1). (f) Sλ (0→ 1).

(g) Nz (0→ 74o). (h) σNz (0→ 310).

Low values High values

Figure 5.5: Features of interest over the area of Biberach (Part 2).
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(a) Ne (0→ 1). (b) A (0→ 150).

(c) σ (0→ 2 m−2). (d) γ (0→ 1).

Low values High values

Figure 5.6: Features of interest over the area of Biberach (Part 3).
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Raster data may be, for instance, Digital Surface Models computed from both �rst or last
pulses or the normalized DSM, which is the subtraction of the DTM from the DSM [EM00;
RTCK05]. Nevertheless, such features rely on the computation of advanced lidar products
(DTM-DSM). Since they require interpolation or �ltering methods, which is not in the
framework of the proposed approach, we do not further consider these attributes.

5.3.3 Optimal neighbourhood analysis

For the search of neighbouring 3D points, parameter r can be set up empirically, according
the point density, in order to gather a minimal set of points for reliable statistics and plane
estimate. Another solution is its automatic tuning. On the one hand, the neighbourhood
environment can be adaptative i.e., may be speci�c to each point. Indeed, the neighbour-
hood will depend on the object the point lies on [FP05]. Such approach has been developed
in [LUVH05] for terrestrial autonomous navigation, in order to compute the normal vectors
on the largest number of points. However, the approach is focused in planar surfaces and
may not be straightforward to adapt to the aerial context with our classes of interest. On
the other hand, one may want to �nd a single value for a whole point cloud. A low value
will provide a small set of points and unreliable statistics, whereas a high value will smooth
the feature values, which will be highly correlated for adjacent 3D points. The analysis of
the feature entropy EVc is one solution to �nd the best r between these two bounds. EVc
is de�ned as follows, using eigenvalue-based features:

EVc = − ln(Pλ)Pλ − ln(cλ)cλ − ln(sλ)sλ (5.3.2)

where Pλ = 2(e2 − e3), cλ = e1 − e2, and sλ = 3e3 are the planarity, cylindricity, and
sphericity features. Therefore, EVc allows to indicate whether Vc has one predominant
behaviour (plane, line, or volume) among these three ones. A value of r for which EVc
is low means that the current scale of analysis allows to easily describe the point local
geometry. The mean value of EVc for all the point of the dataset is computed between
a prede�ned lower and upper radius bounds (e.g., 0.5 m→10 m, with a step of 0.1 m).
Then, the optimal r value is obtained as the global minimum of this mean value. In our
experiments, we have found a value of r=1.25 m for Biberach dataset, and r=1.75 m for
Amiens area. More details can be found in [Dem10].

5.4 Classi�cation strategies with feature selection

5.4.1 Classi�cation strategies

Although theoretically considered to be insensitive to the dimensionality of the discrimi-
nation problem, SVM classi�ers have proved to be in�uenced by the redundancy and by
the irrelevance of input features. Such statements have lead towards the development of
various feature selection strategies. Feature selection is the technique of selecting a subset
of relevant attributes (v features among D), and may not be confused with feature extrac-
tion. This is another method for dimensionality reduction that aims to combine features
also in order to obtain a relevant representation of the data in a lower dimensional space.
Such method is often used for data compression, whereas, for our purpose, our goal is
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�rst variable ranking. Moreover, the elimination of the less relevant features would also
improve class separability. Both unsupervised (such as the Principal Component Analysis)
and supervised (such as the Linear Discriminant Analysis) methods exists. Since training
datasets are available, the selection step is performed according to the properties of the
training set.
Three main feature selection strategies exist. Some of them are �lter-type approaches, i.e.,
feature selection is performed before the classi�cation task (intrinsic discriminate power),
some are wrapper-type methods i.e., the process is included in the SVM classi�er (which
is therefore modi�ed to choose important features as well as conduct training and test-
ing steps) and assessment is made on its performance, whereas the embedded models
incorporate selection into the training process, and feature relevance is obtained from the
objective of the learning model. A very large body of literature has addressed the is-
sue with both strategies, and many Feature Selection Challenges exist on various kinds
of datasets [GGNZ06]. Reviews on selection algorithms may be found in [BL97; KJ97;
GE03].

Three distinct classi�cation strategies have been carried out in order to evaluate the rele-
vance of the FW features.

- No selection: The strategy is to directly use SVM without selection. In such case, the
classi�cation accuracies achieved with the full set of features and with a subset including
only multiple-pulse features (i.e., discarding FW ones) will be compared.

- Filter selection: Such technique may not be optimal since there is no link between the
selection step and the classi�er. Intrinsic data properties are used without reference to any
application. However, this is an e�cient strategy since it requires only the computation
of d scores (where d is the number of features) and their sorting. This is also statistically
robust to over�tting. Two techniques will therefore be tested in our context: F-score and
ReliefF. They are described below.

- Wrapper-based selection: SVM is directly used to conduct feature selection. Wrapper
algorithms perform selection, while maintaining or even enhancing the application perfor-
mance. When using classi�cation error rates as evaluators for selection processes, it is
important to note that selection algorithms must be applied inside the cross validation
loop. For this kind of family, the Recursive Feature Elimination (SVM-RFE) has been
adopted [GWBV02].
The SVM-RFE does not provide a variable importance metric. Contrary to �ltering meth-
ods, the features will not be weighted and no comparison will be performed.

Usually SVM su�ers from a large number of features. In our case, the number of features
is not really signi�cant, and we have found that a direct use of SVM works well. Nev-
ertheless, the variable ranking provided by the three above-mentioned methods allows to
sequentially feed the classi�er, one feature by one, starting from the best ranked attributes.
The analysis of the evolution of the classi�cation accuracy will lead to the selection of a
subset of features, providing performances similar or better to the full feature vector. This
is interesting for enhancing the generalization capability of the SVM as well as for speeding
up the learning process.
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In practice, the available ground truth is divided into two sets. The �rst one is used
for feature selection, and the SVM learning phase. The second subset is employed for
evaluating the classi�cation accuracy. In a 5-fold cross-validation procedure, the respective
ratio are 4/5 and 1/5.

5.4.2 Feature selection methods

F-score

F-score, or Fisher score, is a technique measuring the discrimination of two sets of real
numbers. xk=1,.., l are the training vectors, and n+ and n− are the number of positive and
negative instances, respectively. Then, the F-score of the ith feature is de�ned as:

F (i) =

(
x

(+)
i − xi

)2
+
(
x

(−)
i − xi

)2

1
n+ − 1

n+∑
k=1

(
x

(+)
k,i − x

(+)
i

)2
+

1
n− − 1

n−∑
k=1

(
x

(−)
k,i − x

(−)
i

)2
(5.4.1)

where xi, x
(+)
i , x(−)

i are the average of the ith feature of the whole, positive, and negative
datasets, respectively; x(+)

k,i and x
(−)
k,i are the ith feature of the kth positive and negative

instances, respectively. The numerator indicates the discrimination between the positive
and negative sets, and the denominator indicates the one within each of the two sets.
A large value of the F-score means that this feature is more likely to be discriminative
[CL06].

ReliefF

This algorithm is the improvement of the Relief algorithm presented in [KR92]. It has
been adapted to the multi-class problem in [RvK03]. The key idea of ReliefF is to estimate
the quality of the attributes according to how well their values distinguish between the
instances that are near to each other. It does not just eliminate the redundant features
but de�nes a relevance criterion. This is the ability of each feature to gather the instances
with the same label and to discriminate those with distinct labels. The method is described
in Algorithm 5.1.
The function di�(I1, d, I2) computes the di�erence between the values of the attribute d
for two instances I1 and I2. It is de�ned by:

di�(I1, d, I2) =
|xI1,d − xI2,d|

max(d)−min(d)
(5.4.2)

max(d) (respectively min(d)) is the maximal value (respectively the minimal) of feature d
in S, and xi,d is the value of xi for the feature d. The function di� is used also for calcu-
lating the distance between instances to �nd the k nearest neighbours. The total distance
is the sum of distances over all attributes. Moreover, the contribution for each class of the
misses is weighted with the prior probability of that class P (c), which is estimated from
the training set (see [RvK03] for more details).
If the data from the same label have close values, and the data coming from di�erent
classes are well discriminated, the feature will exhibit a signi�cant weight.
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Algorithm 5.1: Description of the ReliefF algorithm.
Data: S= the training set,

D= the number of features,
M= iteration times,
k= the number of nearest neighbours.

Result: ∀ d ∈ [1, D], weights wd.

Initialization: ∀ d ∈ [1, D], wd = 0

for i=1 to M do

1. Randomly choose a (xi, yi) ∈ S;

2. Find the k nearest neighbours with label yi (hits � Hj);

3. For each class c 6= yi, �nd the k nearest neighbours with label c (misses � Mj,c);
for d=1 to D do

Update wd such as:

wd = wd −
k∑
j=1

di�(xi, d,Hj)
m× k

+
∑
c6=yi

P (c)
1− P (yi)

.

k∑
j=1

di�(xi, d,Mj,c)
m× k

For our experiments, we choose k = 10. Since it controls the locality of the estimation, it
should not be set to high values. Otherwise, with increasing k values, informative features
may become less and less distinguishable from useless attributes [RvK03].

The Data Mining software Weka [HFH+09] has been used to compute the ReliefF metric.

Recursive Feature Elimination

The selection algorithm has been initially presented in [GWBV02], and extended in [Rak03].
The goal is to �nd a subset of a given size v among D variables which maximizes the per-
formance of the predictor. The method is based on a backward sequential selection. One
starts with all the features, and removes one feature at a time until v features are left.
At each iteration, the variable d to be removed is the one whose removal minimizes the
variation of ‖w‖2. The cost function C(d) is therefore:

C(d) = |‖w‖2 − ‖w(d)‖2| = 1
2
|
∑
k,j

α∗kα
∗
jykyjK(xk,xj)−

∑
k,j

α
∗ (d)
k α

∗ (d)
j ykyjK

(d)(xk,xj)|

(5.4.3)
where K(d) is the matrix of the training data when variable d is removed, and α∗ (d)

k is the

solution of Equation 5.2.25. In practice, [GWBV02] assume α∗ (d)
k = α∗k in order to reduce

the computational complexity.
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Algorithm 5.2: SVM Recursive Feature Elimination (SVM-RFE).
Data: S= the training set,

D= the number of features,
d= the number of remaining features.

Result: f∗v the feature vector sorted with respect to the feature importance.

while d > 0 do
1. Train the SVM linear classi�er;

2. ∀ δ ∈ [1, d], compute the ‖w(δ)‖2;

3. Remove the feature with the lowest C(δ) value.

end

Contrary to the F-score and ReliefF strategy, the Recursive Feature Elimination method
does not provide any relevance metric but a simple variable ranking. One can see this is a
rather greedy algorithm.

Weka has also been employed to compute variable ranking with the SVM-RFE approach.
The method implemented in Weka is restricted to the linear case (however, it has been
extended to non-linear cases). Therefore, C is the only parameter to be optimized. C is
arbitrarily set to 100, in order to impose no training errors.

5.5 Results

5.5.1 Some preliminary remarks

Quality measures

The confusion matrix is used to estimate the classi�cation accuracy. This is a visualization
tool widely adopted in supervised learning, where each column represents the instances in
the predicted class, while each row gives the instances of the actual class. Several measures
can be extracted from the confusion matrix.

• The Overall Accuracy (OA) is the percentage of correctly classi�ed pixels for all
the classes.

OA = 100×

Nc∑
i=1

Ci i

Nc∑
i,j=1

Ci j

(5.5.1)

where Nc is the number of classes (Nc=3 in our case), and Ci j is the number of pixels
assigned to the class j by the SVM classi�er, which are referenced as class i. When
the OA reaches 100%, this means that the classi�cation is almost perfect. When the
OA is close to 1/Nc (in our case, ∼33%), this signi�es the classi�er randomly chooses
the class for each point with the same probability. Nevertheless, when the ground
truth is unbalanced, the OA may not reveal the true performance of the classi�er.
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In fact, even if a class with few reference points is totally misclassi�ed, the OA value
may still be very high. Indeed, its in�uence will be very low in the computation
whether other classes with a larger number of points are correctly labelled.

• The Average Accuracy (AA) is the mean of class accuracy for all the classes.

AA = 100×

Nc∑
i=1

CAi

Nc
with CAi =

Ci i
Nc∑
j=1

Ci j

(5.5.2)

CAi is the Class Accuracy (or Producer's accuracy), and the percentage of correctly
classi�ed points for the class i.
A high di�erence between the OA and AA values may indicate that a high proportion
of instances of a speci�c class is wrongly labelled.

(a) De�ning the ground truth with manually selected 2D polygons (full area of Biberach).

(b) One limitation of the 2D labelling: building edges and inside tree canopy
points are not classi�ed (dark grey points).

Figure 5.7: Principle and limitations of 2D-based ground truth de�nition (Biberach).
Classi�cation: Building � Vegetation � Ground.
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De�ning a suitable ground truth

A suitable ground truth is necessary for two main reasons. First, random instances will be
selected for the training step of the SVM classi�cation. The priority is therefore to avoid
mislabelled instances. Furthermore, ground truth is the basis of the computation of the
quality measures. Consequently, it should be as exhaustive as possible. Achieving both
objectives is not straightforward.

The manual selection of 2D polygons on an orthoimage, as presented in Figure 5.7.a, is
a simple and e�cient approach. 3D points lying with {x, y} coordinates lying on such
polygons will be labelled according to the polygon semantic. It works well for ground and
building regions. For the vegetation class, we may cope with the third dimension problem
by labelling only echoes that are not last echoes (e.g., using the normalized number of
echoes � Ne 6= 1). Such process is su�cient for the SVM training step, but has one
main drawback. A large majority of 3D points located on the tree canopy or on the
understory, as well as those lying on the building edges, are not labelled (dark grey points
in Figure 5.7.b), whereas they are likely to be misclassi�ed. As a consequence, it leads
to an overestimation of the accuracy of the classi�cation process, which is, objectively
speaking, not desirable. However, this approach has been selected: approximately 1/3 of
the 3D points over Biberach have been labelled.

The optimal solution would be to �rst provide a coarse classi�cation, and secondly, re�ne
it with 3D tools. This can be achieved using for instance Pointools [Poi10] or TerraSolid's
TerraScan software [Soi10]. However, even with a good initialization, such task is tedious,
and is not applicable at large scale, e.g., for the area of Amiens (more than 67 million
points).

The �gures on feature selection and classi�cation accuracies will therefore be presented
only over Biberach.

The ground truth is not error-free, and the mislabelled points has therefore a negative
or positive in�uence on the quality results, as discussed in [Car09; Foo10]. However, this
should correspond to a very large minority of the manually labelled samples.

5.5.2 Feature selection

Figures 5.8, 5.9, and Table 5.1 present the feature ranking for the F-score and ReliefF
metrics, and the SVM-RFE strategy respectively. The behaviours of the three selection
strategies are compared in terms of classi�cation accuracy using a forward approach. For
each method, the features are introduced one by one in the SVM, starting by the most
relevant one. The training step with hyperparameter tuning is �rst carried out, and,
afterwards, the classi�cation is performed. Results are presented in Figure 5.10.

Since we have not �rst worked on synthetic datasets, we are not able to evaluate the rele-
vance of the three adopted feature selection methods as pure selection methods. However,
some conclusions can be drawn:

• F-score does not reveal mutual information (e.g., Sλ/e3 in Figure 5.8);

• ReliefF favors in fact the addition of redundant characteristics (e.g., A/γ/σ0/σ or
Sλ/e3 in Figure 5.9);
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Figure 5.8: F-scores computed with 100,000 instances. The full-waveform features are
displayed in red.

Figure 5.9: ReliefF metric computed with approximately 150,000 instances (number of
neighbours equal to 10). The full-waveform features are displayed in red.
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Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Feature ∆z PDR A n Ne γ σ σz N w Sλ M Eλ ∆z�

Rank 15 16 17 18 19 20 21 22 23 24 25 26 27

Feature e3 Pλ Aλ Oλ Nz σNz σ0 α e1 e2 s Σλ Rz

Table 5.1: Variable ranking using the SVM-RFE method. The full-waveform features are
displayed in red.

• ∆z, σz, and Ne are always among the most relevant features: both spatial and echo-
based features are discriminative. One can remind that Ne is clearly improved using
FW data.

• Several attributes are always ranked among the less discriminant features (Eλ or Σλ).
Thus, they can be removed in future works.

• Some features can behave very di�erently according to the selectors. For instance, the
point density ratio (PDR) is ranked second, and in the second half of the set for the
embedded method and the �lters, respectively. Some eigenvalue-based features, such
as the omnivariance, are correctly ranked for the �lters, whereas for the SVM-RFE,
they do not appear on the ten �rst attributes.

• Full-waveform features can be clearly classi�ed in two groups. The �rst one cor-
responds to relevant features (A, γ, and σ), whereas the second one gathers non-
discriminative attributes (w, s, and α). We can conclude that:

� feature selection assesses the relevance of modelling lidar echoes by a Gaussian
model;

� radiometric calibration provides meaningful but also discriminant attributes;

� the Generalized Gaussian is not necessary in the scope of building, ground,
vegetation classi�cation;

� taking the asymmetry of echoes into account does not prevail towards improving
the classi�cation accuracy.

• The complete set of features does not give the best result (see Figure 5.10). Adding
features can degrade the classi�cation performance; this also justi�es our interest for
selection procedures.

5.5.3 Classi�cation accuracy

The training step has been performed, for both Biberach and Amiens datasets, using Bib-
erach ground truth. 100 samples per class have been randomly selected. This corresponds
to 0.04% of the training set, and approximately to 0.01% of the test set. Another 0.05% of
the samples have been randomly chosen in the ground truth to �nd the optimal values of
C and ϑ in the Cross-Validation procedure. For all the tests carried out, the correct clas-
si�cation rate for the training step oscillated between 80 and 90%. It illustrates that the
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(a) F-score.

(b) ReliefF.
SVM RFE

(c) SVM-RFE.

Figure 5.10: Evolution of the classi�cation accuracy with the three methods: forward
introduction of features, according to their ranking .
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SVM classi�er does not over-�t, but is able to generalize, and has been trained su�ciently.

The full feature vector introduced in the SVM classi�er allows to achieve an accuracy
of 94.35%. A �rst comparison is performed with a reduced set of 19 "multiple-pulse"
attributes. The eight full-waveform features are discarded: the average accuracy reaches
91.4%. Consequently, this is another simple assessment of their bene�cial impact for our
classi�cation task.

Moreover, in addition to the estimation of the relevance of features, variable ranking helps
to �nd:

1. the subset that achieves the highest accuracy;

2. the minimal subset necessary to reach a suitable accuracy. As mentioned before,
the less features you have, the less complicated the decision function will be, and
the more important the generalization capability of the SVM will be. Such minimal
subset can be retrieve by analyzing the evolution of the accuracy by forward selection.
Figure 5.10 enhances the logarithmic behaviour of the classi�cation performance
while adding less and less discriminative attributes.

For the F-score strategy, a correct accuracy is found for seven attributes (93.8%), and the
highest score is reached for the full set (Figure 5.10.a). This reveals the low performance of
such feature selection method. Nevertheless, the full set of features may also be weighted
by the F-score, which allows an improvement of the accuracy (94.4%).
The highest accuracy is reached for a subset of 18 features using ReliefF (94.9%), whereas
suitable accuracy is found with only six features (94.6%). Besides, the SVM classi�er also
bene�ts from the weighting the variables with the ReliefF metric since a slight improvement
can be noticed (94.7%).
The Recursive Feature Elimination strategy allows to achieve the best accuracy (95.3%),
and to top it all, with a small subset of features (8). This enhances the performance
of wrapper-based methods in relation to �ltering methods. The �nal subset that can be
conserved is:

{∆z, PDR,A, n,Ne, γ, σ, σz}

. Three full-waveform features are included in such an optimal subset, demonstrating their
signi�cant impact for solving our 3-class problem.
Table 5.2 summarizes the classi�cation performances achieved with the various strategies
that have been tested.

Figures 5.11.a and 5.12 show the results in 3D for the full area of Biberach, and two regions
of interest (one residential area, and a dense urban center). The classi�cation has been
achieved with the optimal solution we have found: selection of a subset of features using
the SVM-RFE, and afterwards application of SVM over this subset. Not so many errors
exist, the results are globally coherent: thus, the labelling process is very satisfactory. The
confusion matrix is reported in Table 5.3.

Furthermore, Figures 5.11.b and 5.13 present the comparison between our classi�cation and
the manually selected ground truth. One can see that misclassi�ed points are found �rst on
building edges. They are labelled as vegetation since such points feature similar behaviours
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(a) Classi�cation. (b) Comparison with ground truth.
Blue: correct � Red: incorrect � White:
no ground truth.

Figure 5.11: Classi�cation results for Biberach dataset (2.3 million points) using the
RFE+subset selection+SVM strategy.



5.5. Results 191

(a) Residential area.

(b) Downtown.

Figure 5.12: Focus on the classi�cation results for two areas of Biberach.
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Strategy Average Accuracy (%)

Full-waveform features (8) 64.8
Geometrical + echo-based features (19) 91.4

All features (27) 94.35
F-score + subset selection (7) + SVM 93.8

F-score + weighted SVM 94.4
ReliefF+ subset selection (6) + SVM 94.6

F-ReliefF + weighted SVM 94.7
SVM-RFE+ subset selection (8) + SVM 95.3

Table 5.2: Average accuracies with distinct classi�cation strategies.

Figure 5.13: Quali�cation of the classi�cation over Biberach downtown. White: correct �
Red: incorrect � Pink: no ground truth.
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for many attributes, especially the most relevant ones: low amplitude and large echo width,
equivalent point density ratio, and multiple re�ections. Conversely, many erroneous points
can be found on vegetated areas (even if this does not appear with respect to the ground
truth). Inside canopy points are often labelled as buildings. This can be due to the
very heterogeneous behaviour of the tree points. In case of non multiple scatterings, a
point may locally appear as a building point: the echo-based features are similar in such
cases, and the most important feature ∆z ranges in the same value intervals. Besides,
errors appear very locally on roof tops and on the ground, where points are labelled as
vegetation and buildings, respectively (see Figure 5.13). They mainly correspond to low-
rise objects (chimneys, cars or poles) that are not (and cannot be) taken into account in
the classi�cation process, and which do not behave as the large majority of the 3D points
belonging to their class. Finally, the major source of errors comes from the labelling of
whole buildings as ground points. Such buildings are not very elevated, and their roofs
are composed of metal. Their scattering properties are very similar with streets, and since
full-waveform features A, γ, and σ are included in the optimal subset, this leads to a certain
confusion (see Figure 3.17.c).

Eventually, the classi�cation of ground points is very satisfactory, and our proposed ap-
proach is valuable as an alternative method for performed lidar point �ltering in urban
areas, e.g., for Digital Terrain Model generation. The minor errors, as well as those on
building roofs, may be easily corrected with a regularization step. The main remaining
issue is the misclassi�cation of full building roofs, that also can be solved using some
contextual knowledge at the object level.

# ground truth points Class Building Ground Vegetation
275,058 Building 94.4 3.8 1.8
333,506 Ground 1.7 98.1 0.2
157,281 Vegetation 5.0 0.1 94.9

Table 5.3: Confusion matrix for the strategy RFE+ subset selection+SVM. AA = 95.3%
with 765,845 points.

"Historical" evolution of the accucary

Finding the most relevant features among an unordered set of attributes is the �rst and
most objective way to assess the contribution of full-waveform data. Furthermore, such
assessment can also be carried out by adding progressively the attributes within the feature
set, and performing the classi�cation with the available set. We have decided to insert them
according to their "historical order of appearance".

• We �rst start with all the attributes that can be computed with the simple knowledge
on the {x, y, z} triplet (i.e., a simple 3D point cloud which corresponds to 14 features
� scenario 1). The echo number and the amplitude are then successively added
(�ve new features � scenario 2, and one for scenario 3, respectively), enhancing the
development of multiple sensors providing an amplitude value. This �rst group of 20
features does not need any waveform recording process.

• Later, with the development of full-waveform sensors, the Gaussian decomposition
method has provided another feature (namely the echo width), as well as those com-
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puted for the calibration procedure (three other features � scenario 4). Afterwards,
our work has allowed to extract the echo shape (scenario 5), and jointly the best-�t
model and the peak asymmetry (2 features � scenario 6).

For each of these six scenarii, a SVM classi�cation is performed without any feature selec-
tion step. The evolution of the classi�cation Average Accuracy is reported in Figure 5.14.
Both multiple-pulse (MP) and full-waveform data have been tested. One can note that
MP data only allows to reach scenario 3. MP data correspond to the point cloud that is
provided with the full-waveform datasets.
When comparing MP and FW data, one can �rst note that the simple knowledge of the
3D position of the points leads to slightly better results with MP data than with FW data.
This can be explained by the fact that the waveform processing step allows to retrieve
points in complex locations, such as building edges, facades, or inside the tree canopies.
But, as reported in the previous sections, such points typically correspond to confusing ar-
eas, where the classi�cation procedure may fail. This explains why the results are getting
worse. However, the results are reversed with the addition of the amplitude feature: the
classi�cation process clearly bene�ts from its correction procedure, with the knowledge of
the survey metadata and the emitted pulses.
From scenario 1 to scenario 4, i.e., until the waveform Gaussian decomposition process,
one can note in Figure 5.14 a constant improvement of the AA (from 85.2% to 94.75%).
Then, the addition of the shape feature α only allows to reach an AA of 94.9%. It shows
that the Generalized Gaussian model is at present time more relevant for improving the
waveform reconstruction. Finally, the same conclusion can be drawn with the scenario 6,
since the knowledge of the asymmetry of the echoes provide worse results (94.9%→94.35%).
However, this can only be stated for our 3-class problem, using a standard SVM classi�er,
with our limited ground truth.

5.6 An alternative approach: the Random Forests

5.6.1 Motivation

In parallel to our work, another approach dealing with full-waveform lidar data classi�ca-
tion in urban areas has been carried out in conjunction with the EGID Institute/GHYMAC
lab of the University Bordeaux III. In particular, this is part of the thesis work of Li Guo.
More details on this work can be found in [CGM09; GCMB10]. The relevance of full-
waveform features is also assessed with a feature selection step. Consequently, we have
decided to brie�y present the strategy and related results, in order to enlighten similarities
with the conclusions that can be drawn with our approach.
Two distinct strategies have been adopted in Li Guo's work: relevance of FW data versus
various multiple pulse (MP) lidar features, and versus MP features and Red-Green-Blue
channels of an aerial orthoimage. Since our thesis is focused on lidar data, we only present
the �rst strategy.
In comparison with our SVM-based approach, there are four main distinctions:

• four classes are selected: building, vegetation, arti�cial ground, and natural ground ;

• an image-based approach has been adopted (2D classi�cation);

• the lidar feature set is not exactly the same;
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Figure 5.14: Evolution of the Average Accuracy of the classi�cation procedure according to
the progressive insertion of the 27 features of interest. The "historical" order of appearance
has been selected for the introduction order. The two plots correspond to the two distinct
kinds of lidar data than have been tested (multiple pulse versus full-waveform data).

• the Random Forests classi�er is selected (the supervised approach is kept).

In this case, the 3D point cloud is interpolated in 2D. The output of such process is
therefore a 2D land-cover classi�cation. It allows to use afterwards 2D based applications,
and may be a valuable input for subsequent 3D classi�cation, especially in urban areas.
Consequently, this solution has been adopted.
For each pixel, the lidar features are computed using the 3D points included in a given
cylindrical neighborhood (see Figure 5.3). The raster cell spacing and the cylinder radius r
are chosen with respect to the 3D point density, and the contrast between objects we aim
to retrieve. Interpolation has one main limitation: edges between classes are smoothed.
Indeed, with a cylindric environment, one pixel that fails at the border between classes
will include mixed information from these two classes, and its labelling may be biased.
However, we can cope with this issue by applying more advanced interpolation processes
involving adaptative neighbourhoods, but this is not the topic of this dissertation (see
[Dem10]). The impact of the interpolation process is further discussed in [CGM09].

5.6.2 Strategy

The input of the algorithm is again a feature vector fv2. The Random Forests classi�er is
applied on it, and provides a feature importance measure. Such approach has been tested
on the Biberach dataset with 21 features.
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Random Forests

Random Forests (RF) is a variant of bagging proposed by Breiman [Bre01]. It is a decision
tree based ensemble classi�er that can achieve a classi�cation accuracy comparable to
SVMs [Zhu08a]. It belongs to the family of the multiple classi�ers i.e., several classi�ers
are trained and their results combined through a voting process. It has been successfully
applied to multispectral data [Pal05], multitemporal SAR images [WB09], hyperspectral
data [HCCG05], or multi-source data (spatial images and topographic date in [GBS06] or
SAR and multispectral images in [WB07]).

RF are a combination of tree predictors such that each tree depends on the values of
a random vector sampled independently and with the same distribution for all trees in
the forest. In training, the algorithm creates T multiple bootstrapped samples of the
original training data, then builds a number of no pruned Classi�cation and Regression
Trees (CART) from each bootstrapped samples set. Only a randomly selected subset of
the input features is considered to split each node of CART. The feature that minimizes
the Gini impurity is used for the split [Bre01]. For classi�cation, each tree gives a unit
vote for the most popular class at each input instance. The �nal label is determined by a
majority vote of all trees. The RF classi�er has two parameters: the number of trees T ,
and the number of variables M randomly chosen at each split.
When the training set for a particular tree is drawn by sampling with replacement, about
one-third of the cases are left out of the sample set. These samples are called Out-of-Bag
(OOB) data, and are used to estimate the features importance as detailed hereby. More
details can be found in [GCMB10].

Feature importance measure

Aside from classi�cation, Random Forests provide measures of variable importance based
on the permutation importance measure. It was shown that it is a more reliable indicator
than the mean Gini importance [SBAT07]. The importance of the variable f can be
estimated by randomly permuting all the values of the f th variable in the OOB samples
for each classi�er. The measure of feature importance is the di�erence between prediction
accuracy (i.e., the number of observations correctly classi�ed) before and after permuting
feature f , averaged over all the trees. A high prediction accuracy decrease denotes the
importance of that feature. An increasing OOB error indicates the importance of that
variable [GBS06].

The feature vector

21 lidar features, both spatial and FW, are selected. It has been designed in our early works
to compare lidar features. Most of the features (19) are the same than those selected for
Support Vector Machines classi�cation (see Section 5.3). The two other ones are described
below. The full-waveform features are those extracted from the Generalized Gaussian
decomposition approach described in Chapter 3. We have:

fv2 = {∆z ∆z� σ2
z C; λ1 λ2 λ3 Aλ Pλ Sλ Lλ; Nz σ

2
Nz Rz DΠ; N Ne; A w σ α} (5.6.1)

C is the local curvature. This is the maximum value of the altimetric gradient di�erences,
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which are computed in four main directions. Please see [SV01; Tóv06] for more details.
DΠ is the distance from the current point to the local estimated plane Π.

5.6.3 Results and discussions

The ground truth is directly derived from the 3D ground truth of Biberach, described in
Section 5.5. The feature selection was run with M = 4 and T = 1000 trees.

Feature importance and selection

The most important features are height-based: the height di�erence, and the height vari-
ance. Echo-based features are not important when using other attributes that describe
more accurately the local distribution of 3D points, such as eigenvalue-based or 3D plane-
based features. Moreover, the �rst-last height di�erence is not important to classify urban
objects since it is used with the height variance. In fact, both variables can be correlated
and the latter has more values which allows to distinguish rooftops building and ground
for instance. λ3 is the most important eigenvalue, and the sphericity Sλ shows a high
importance, whereas the correlated anisotropy shows a lower one. This illustrates the
advantage of permutation accuracy measure since redundant features should be less im-
portant. Among 3D-plane based features, the distance to plane DΠ seems to be the most
important one. Finally, for full-waveform features, echo amplitude, and width are the most
important for all classes. The FW cross-section σ is less important as it is correlated to
the former features.

Figure 5.15.b is obtained by the backward iterative elimination of features using OOB
errors. The graph is shown in a forward way to illustrate the more relevant features.
As mentioned previously, the selection resolution increases when the number of features
becomes smaller. The smallest error rate returns a feature vector of 17 attributes, where
∆z� , σ, N and Ne are eliminated. However, we can also keep the smallest set of features
that returns a low error rate which corresponds to {∆z, σz, w, DΠ, A, Sλ}. One can observe
that four feature groups are represented: the height based group is the most important
one, then two FW features are selected, which con�rms the contribution of full-waveform
lidar data for urban scene classi�cation.

Classi�cation results

The Random Forests classi�er is run with the 17 best selected features. The confusion
matrix is given in Table 5.4. The training dataset is highly imbalanced with two major
classes (building and arti�cial ground), that are more than 10 times larger than vegetation
and natural ground classes. We can notice that arti�cial ground and buildings are well
classi�ed. However, the algorithm has more di�culties in classifying natural ground and
vegetation which su�er from smaller training sets. Errors essentially occur between building
and arti�cial ground since (1) these two classes have similar colors on optical images,
and the presence of shadows increases these errors; (2) lidar features are ambiguous for
building facades that are transitions between both classes. In addition, vegetation classes
can be confused with arti�cial ground classes as the laser pulse can reach the ground
under sparse vegetation. This confusion is increased by the 2D lidar data interpolation.
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(a) Variable importance. (b) Iterative elimination feature selection.

Figure 5.15: Feature importance and selection for the entire lidar feature vector fv2. The
vertical axis corresponds to the Mean Decrease Permutation Accuracy.

Finally, classi�cation errors may occur between natural and arti�cial grounds since MP
lidar features do not allow to discriminate them.

# pixels Building Vegetation Arti�cial Ground Natural Ground
188015 Building 92.3 0.3 7.4 ∼ 0
15723 Vegetation 3.6 79.8 16.6 0
192945 Arti�cial Ground 1.7 0.6 97.7 ∼ 0
2149 Natural Ground 0.9 0.3 23.3 75.5

Table 5.4: Confusion matrix for test data using a RF classi�er with 17 best features of fv2,
60 trees, and 4 split variables. AA = 94.35%.

5.6.4 Outlook

Although performed in 2D, another feature selection approach embedded in the Random
Forests classi�er, similar to the SVM-RFE, has assessed the relevance of full-waveform
lidar data for land-cover classi�cation in urban areas. In addition, it has also allowed to
�nd the optimal feature selection, achieving the highest classi�cation accuracy.
The SVM and RF lidar feature sets are not exactly the same but almost similar conclusions
can be drawn: spatial features are important, especially the height above the ground,
but the echo amplitude estimated from the approach described in Chapter 3 has also a
signi�cant impact on the discrimination between classes. Finally, as for the SVM-based
classi�cation, misclassi�ed pixels can be found on the border between classes (building
edges, limits of vegetated areas), and punctually on low-rise ground objects (cars, poles
etc.). A regularization step would also be bene�cial for improving the global accuracy.
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5.7 Conclusions and perspectives

5.7.1 Conclusions

This chapter has addressed the issue of the classi�cation of 3D point clouds in urban areas,
using full-waveform features derived from a previous modelling step. The three classes of
interest were building, ground, and vegetation. Even if choosing more classes would have
been possible, as presented in Section 5.6, we have considered the segmentation of roof ma-
terials, ground surfaces, and tree species as a subsequent step of this 3-class problem. Our
land-cover classi�cation has been designed to be "su�cient" for many applications: Digital
Terrain Model generation with ground points, focusing step for building reconstruction or
tree modelling.
The FW features are extracted from the two distinct approaches described in Chapters 3
and 4. The supervised Support Vector Machines classi�er has been adopted because it
performs well for large datasets, it has a good generalization performance, and can be fed
with a simple feature vector. Such feature vector is computed for each point. It gathers the
FW attributes but also features that only rely on the 3D coordinates of the point, its local
neighborhood and its echo number. They can be therefore computed using only multiple
pulse data. However, as extensively demonstrated in Part II, such spatial features bene�t
from the o�-board waveform processing chain. 27 features are �nally introduced in the
SVM, which allows to reach a classi�cation accuracy close to 95% for the three classes of
interest, with very few training samples. This is very satisfactory. The mislabelled points
correspond mostly to building edges and vegetated areas. This can be explained by the
fact that such regions have complex behaviours, which are all the more di�cult to learn
for the SVM than such points are barely included in the ground truth (and therefore in
the learning step). Errors are also noticed for �at low-rise buildings exhibiting radiometric
properties similar to the ground.

In order to objectively assess the relevance of FW data for land-cover analysis, the su-
pervised classi�er has been coupled with a feature selection step. Two distinct strategies
have been chosen: variable ranking before classi�cation, and selection based on the decision
taken by the SVM (SVM-RFE). For variable ranking out of the classi�er, two methods have
been adopted (F-score and ReliefF metrics). The performance of the these three methods
have not been evaluated nor compared. Nevertheless, common trends emerge: (1) sev-
eral full-waveform features, namely the amplitude, the cross-section, and the backscatter
coe�cient are among the most discriminative features; (2) the shape and the skewness
attributes are among the less discriminative ones.
Moreover, such a variable ranking has two other advantages: �rstly, it may permit to weight
the features in the SVM classi�er, which improves the accuracy; secondly, the analysis of
the evolution of the accuracy with forward selection enables to �nd the minimal feature
set allowing to achieve suitable accuracy. All of the three reduced feature set include the
point amplitude.

Eventually, the main positive point is that some full-waveform features are very relevant for
3D classi�cation. This is true in 2D as well. An image-based strategy based on Random
Forests have also been applied on FW lidar data with almost the same set of features.
Similar conclusions can be drawn.
The main negative point comes from the relatively low contribution of the model featureM
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and the poor ranking of the echo shape (extracted from the Generalized Gaussian modelling
of Chapter 3), and the skewness attribute (computed from the results of Chapter 4). This
may lead us to conclude that for the scope of classi�cation, the Gaussian model is su�cient
to provide additional useful and discriminative information.

Contrary to waveform decomposition and modelling, there is no classi�cation method with
a unique set of features that has been adopted by research teams as a standard approach.
However, we have tried to design a rather objective work�ow for full-waveform data con-
tribution evaluation. This has motivated the adoption of SVM, instead for instance, of
Decision Trees, that, however, represent a simple and e�cient method. The limitation of
the problem to three classes that can be both discriminated with MP and FW data has
also "facilitated" the comparison: the additional introduction of various kinds of ground
or roof materials, di�cult to classify with spatial lidar features, would have arti�cially
demonstrated the relevance of radiometric properties extracted from the waveform mod-
elling step. Finally, we have proceeded to a very selective choice of spatial features that
we also tried to compute as e�ciently as possible. The good discriminative behaviour of
FW data in relation to such an optimal MP feature set also demonstrates their relevance
in our context.

5.7.2 Perspectives

We have only initiated land-cover classi�cation works in urban areas, and many perspec-
tives are conceivable.
Firstly, only point-wise labelling has been performed. Adding contextual information would
indubitably improve the results. Indeed, even if several spatial features are currently com-
puted using a local neighborhood analysis, many isolated points are misclassi�ed. Regular-
ization algorithms (e.g., Markov Random Fields, Graphical Models, or Graph Cut-based
methods) are suited to cope with such a problem.
Secondly, when dealing with medium scale classi�cation, labelling small urban objects is
not interesting: street items, such as cars, tra�c lights, poles etc. have been put with the
ground class, however they do not feature similar behaviours. Therefore, the introduction
of a "rejection class" should cope with such objects, that are likely to be misclassi�ed.
In such a case, one has to pay attention to the learning step, especially if performed in
2D using an orthoimage. Diachronism may exist, and training areas for the ground class
should be carefully checked to ensure valid training samples.
To deal with both issues, an interesting perspective would be to rely on the estimate, for
each point, of the probabilities to belong to each of the classes of interest. Such probabil-
ities can be computed using one of the approaches described in [WLW04], and which are
improvements of the seminal work presented in [HT98]. 3D points with a high probability
in one class may have a strong in�uence on its neighbours, whereas an instance without
peremptory decision would be more prone to be reclassi�ed.

We have restricted our problem to three labels, arguing that it was the fairest strategy to
evaluate the impact of FW data with respect to multiple pulse data. Once such a coarse
classi�cation achieved, it would be relevant to test whether full-waveform features may
help to discriminate ground surfaces, roof materials or tree species, without necessarily
involving spatial features.
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Furthermore, as enlightened in Section 5.5.1, the performance of the learning stage of a
supervised classi�er heavily relies on a correct manual ground truth. However, the acquisi-
tion of such a ground truth is a time-consuming and tedious task, often 2D-based. Besides
the existence of misclassi�ed training samples should not be neglected. Consequently, in
order to reduce this task, and to learn using simultaneously a small training set with a
large set of unlabelled instances, a large variety of semi-supervised methods have been
developed [CSZ06; Zhu08b]. In our context, it would be interesting to test, for example,
transductive Support Vector Machines [Vap98]. Moreover, to encode some knowledge on
geometry and data distribution, an unsupervised classi�cation should be performed �rst
to understand how the data set can be separated.

Eventually, we have presented in this chapter two distinct classi�cation methods. They
have been carried out in parallel, but a merge would also be conceivable: decision fusion
may use the outputs of both classi�ers, whereas a SVM ensemble strategy may embed
SVM and multiple classi�er systems directly at the decision level [WvdLB+10].
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

6.1.1 Summary

Full-waveform lidar systems can provide a more in-depth description of ground topography
than standard multiple pulse systems.
The analysis of small-footprint data over urban areas was addressed in this thesis. The
objective was to propose a methodology to process lidar waveforms in order to carry out
land-cover classi�cation. Since systems with waveform digitizers have very recently ap-
peared, and its potential for urban classi�cation is barely evaluated, the goal was to assess
at the same time the genuine contribution of full-waveform data, in relation to multiple
pulse systems.
The proposed methodology was composed of two phases. The �rst one consisted in a sig-
nal processing task. From the raw waveforms, a sequence of ranges values was derived,
as well as shape features revealing the particular morphology of each echo composing the
waveform. The output of the �rst step was a 3D point cloud, coupled with these shape
attributes, named full-waveform features. The second phase tackled the issue of classifying
the resulting point cloud into ground, vegetation, and building labels.

Two general strategies have emerged from the waveform processing step:

1. The �rst methodology consists in dividing the analysis of the waveforms into two
stages: decomposition and modelling, i.e., echo detection and �tting. Both steps
are commonly tackled in the literature, and we only proposed slight variations to
the widely adopted work�ow. Each peak detected in the waveform is adjusted by
the same parametric function, the Gaussian model, using a Least-Squares technique.
Two parameters are estimated, namely the amplitude and the width.
Our contribution in this topic concerned the use of an iterative procedure for echo
�nding in case of complex waveforms, and the introduction of the Generalized Gaus-
sian function, which is an extension, still symmetric, of the Gaussian curve.
This lead to the detection of a higher number of echoes compared to multiple pulse
data, and improvements in the �tting procedure. Flattened and peaked echoes are
better handled, the echo amplitude and width are better estimated, and to top it all,
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a new feature, namely the echo shape, was from now on provided.
The bene�t of such an advanced echo detection method can be assessed whatever
the subsequent application. The position of previously undetected objects was re-
trieved. Closely located targets were discriminated. This should be helpful for vege-
tation characterization, and any pattern recognition problem involving 3D lidar point
clouds. The performance of our proposed detection algorithm (as well as any other
"o�-line" methods) is now ruled by the waveform digitizing sampling rate and the
characteristics of the transmitted pulse.
Full-waveform features were analyzed in the scope of land-cover classi�cation. Echo
amplitude and width have revealed high potential for the discrimination of our three
classes of interest (as well as the cross-section, derived from these two ones), con-
versely to the shape feature. The latter one only demonstrated that the �tted echoes
are not perfect Gaussian curves. Various kinds of ground surfaces and roof materials
were �nally selected: the amplitude and the cross-section may be discriminant for
their segmentation. However, more in-depth analysis is still necessary to really draw
such conclusions.

2. The Generalized Gaussian decomposition enhanced the fact that some waveforms,
even those corresponding to �at targets, exhibited signi�cant residuals with the es-
timated signals. A close look to the waveforms revealed the asymmetry of many
peaks. Consequently, an innovative strategy has been developed to cope with wave-
forms composed of echoes with distinct behaviours. We therefore aimed to �nd, for
each peak of each waveform, the most appropriate parametric function among a given
library. The stochastic framework of marked point process has been adopted due to
its ability to deal with echo detection, parameter estimation, and model selection
jointly in a single paradigm. Three functions, including the Generalized Gaussian
model, have been selected.
Experiments on simulated data, large-footprint and small-footprint waveforms shown
the performance and versatility of this new method. This is due to the introduction
of a priori physical knowledge on the �tted waveforms.
Despite a signi�cant computing time, it yielded satisfactory results in term of echo
detection (similar to the �rst strategy), and �tting accuracy (slightly better). For
small-footprint data in urban areas, statistics showed a very large majority of echoes
were �tted with the Generalized Gaussian function, validating the standard Gaussian
assumption. Asymmetric peaks are found mainly on building edges. For vegetated
areas, all three models are identically selected: we can conclude symmetric models
are su�cient.

Subsequent to the processing of the waveforms, the second main part of the thesis dealt
with the classi�cation of the derived 3D point cloud.
Both spatial and newly estimated full-waveform features were considered as discriminant
attributes for our purpose. They were introduced into a supervised Support Vector Ma-
chines classi�er. Besides, since we aimed to assess the contribution of the FW technology
in relation to multiple pulse system, a special attention has been focused on feature selec-
tion. Selection have been performed before the classi�cation task as well as embedded into
it. Both strategies revealed that the amplitude and the cross-section features are among
the most relevant for discriminating between ground, vegetation, and building classes. Con-
versely, the echo model and skewness, extracted from the stochastic approach did not prove
to be very useful. Eventually, the embedded strategy yielded more satisfactory results in
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terms of accuracy than the �lter and the "full feature vector" approaches, and in terms of
optimal subset selection.
Another classi�cation strategy, based on Random Forests, involving also echo amplitude
and width showed the relevance of full-waveform features, for urban areas.

Some �nal conclusions can be drawn:

• For waveform decomposition and modelling:

� With 1ns digitization sampling and transmitted pulses of 4/5ns, slight improve-
ments of standard echo detection techniques su�ce to retrieve all the necessary
peaks;

� A symmetric function is enough for echo modelling;

� In urban areas, the standard Gaussian model should always be adopted since
its parameters are discriminant for many objects and surfaces of interest.

� Superior geometric information is provided by full-waveform sensors;

� The stochastic approach is suited for testing a larger variety of models;

� The stochastic approach is better suited for adjusting medium and large foot-
print data.

• For 3D classi�cation:

� The SVM classi�er performs very well, even with small training sets;

� A feature selection (if possible embedded in the classi�er) is necessary to improve
the classi�cation accuracy and select a small set of relevant attributes;

� The feature selection step demonstrates the relevance of the amplitude feature
and the backscatter coe�cient in urban areas;

� The two previous conclusions are not limited to Support Vector Machines;

� Since the amplitude exhibits highly discriminative information, calibration tech-
niques have to be set up to be able to carry out classi�cation over several distinct
areas.

6.1.2 Contributions and limitations

We review here the contributions of the proposed approach and highlight its main limita-
tions, which leads to mention some of its possible extensions in the next Section.

Contributions

I Complete work�ow: we proposed a complete work�ow for analyzing small-footprint
lidar waveform in urban areas, starting from raw 1D signals, and �nishing with a 3D
classi�cation. It allowed us not to move away from the standard products of multiple-pulse
systems, the 3D point clouds, and therefore perform more easily comparisons at several
levels: how many additional 3D points are we able to �nd ? what is the contribution of
the newly extracted morphological parameters for classi�cation purposes ?
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I Versatile approach: our approach is designed to be �exible. For one or several modelling
functions, one may change it (them) easily, and assess its impact in terms of classi�cation
accuracy, without modifying any step in the work�ow. Furthermore, however focused on
urban areas, the approach can be adapted to other landscapes: one has just to train the
SVM classi�er with other classes of interest.

I Full automation: simple knowledge on lidar sensor speci�cations are su�cient to set up
the parameters of the two processing methods. Furthermore, SVM hyperparameters are
automatically selected as well as the most discriminative features.

IAbility to process a large variety of signals: out of the scope of land-cover classi�cation,
the proposed marked point process approach has revealed a high versatility for handling
lidar waveforms. It can be reused to analyze other kinds of remote sensing signals.

I Accurate classi�cation: satisfactory labelling results have been reached in terms of
accuracy. However noisy the �nal results are, we prevent the use of a �ltering step that
may be not be always transferable to other landscapes.

I Objective assessment of the contribution of FW data: the feature selection step coupled
with a supervised classi�er has shown that FW features, especially the amplitude, are relevant for
classi�cation purposes.

I New tools: the development of such a work�ow has eventually allowed us to create
several tools for handling, processing, and visualizing full-waveform lidar data. These
tools are not speci�c to urban areas, and may serve as a basis for future developments and
research on the subject.

Limitations

I No classi�cation regularization: no post-processing step has been developed in order
to cope with isolated misclassi�ed points. Adding contextual information i.e., reaching the
object-based level would �nalize this part, and improve the classi�cation accuracy.

I No integration of waveform similarity: each waveform, as well as each 3D point,
is processed separately. Taking into account the closeness of the shapes of successive
waveforms, or the dissimilarity between them, has been left out.

6.2 Perspectives

We �rst consider that the development of fully new methodologies for waveform decom-
position and modelling is not necessary. Simple peak detection methods are suited, and
even modi�cations in the sensor speci�cations (higher digitizing rate and lower transmitted
pulse width) will not drastically change the problem. Concerning echo modelling, it may
be of interest to test other symmetric parametric functions, one by one, in the perspective
of land-cover classi�cation. For that purpose, our proposed framework is still valid since
it does not require any modi�cation (except in the learning stage of the SVMs).
One potential improvement of both waveform processing methods would be to perform
�tting regularization between consecutive waveforms. For instance, the knowledge of the
overlapping ratio between two successive footprints might be an interesting a priori knowl-
edge on how similar these waveforms are likely to be.
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From a classi�cation point of view, many improvements are conceivable. Some of them
directly stem from the proposed work�ow. They have been presented in Section 5.7.
Full-waveform classi�cation is always considered from a traditional point of view. Stan-
dard ALS products are point clouds, that is why almost all the research teams �rst perform
waveform processing in order to generate a 3D point cloud. However, it should be interest-
ing to directly classify the 1D signals. The advantages would be threefold: 1/ no modelling
function is required; 2/ new classes can be introduced (e.g., building edge, dense vegeta-
tion, open vegetation etc. depending for instance on the presence of ground returns and
the complexity of the waveforms); 3/ and �nally 3D labelling can still be derived after
peak detection. The classi�cation of sequences that are themselves composed of smaller
sequences exist in many domains, such as bioinformatics or speech analysis. It would be
interesting to assess whether an adaptation of existing approaches is suited in our context.
Moreover, classi�cation of FW data can be performed separately on the point cloud (in
3D), on the waveforms (in "1D"), and in 2D (image-based approach). Subsequently to the
three labelling processes, a challenging task would be to fuse the decisions. In case of �nal
point-based classi�cation, the 3D approach would bene�t from the spatial regularity of
the 2D process, and the topological context of the 1D classi�cation. If one aims to derive
2D thematic maps, image-based classi�cation can take advantage of 1D and 3D labels to
enrich the existing classes (e.g., di�erent kinds of vegetation).

The above-mentioned perspectives are not speci�c to urban areas. Nevertheless, many
other interesting works can be carried out on these ones.
As mentioned in Section 2.6.6, developing pattern recognition algorithms directly on the
3D volume avoids to perform any peak detection, and allows to directly bene�t from a
spatio-temporal analysis of the data, which is not straightforward to achieve afterwards.
Furthermore, building edges cannot be easily retrieved on 3D point clouds but may be
facilitated keeping the raw waveforms. Waveforms lying on building edges have a typical
shape (two modes). For instance, if we assume the waveforms have temporal and spatial
Gaussian shapes, �tting these two distinct echoes indicates the proportion of energy that
has felt on the roof, and on the ground. Eventually, a good hint on the localization of the
edge is retrieved, and can be re�ned using several waveforms lying on the same border.
For building characterization, another relevant �eld of research is the direct estimation of
the roof normal vector without any point-based analysis. As already performed by sev-
eral authors, an hypothesis-and-verify approach should help to carry out such estimation.
Several superimposed waveforms from all hypotheses are compared to verify the estimate.
Moreover, waveforms from di�erent strips (i.e., di�erent points of view) can also be used
to re�ne the normal vector computation.
Eventually, the issue of building roof material and ground surface discrimination has to be
tackled. Several possibilities are conceivable. The �rst would be to carry out simulation
studies in order to assess whether surface micro-structures (e.g., tiles for a roof, or low grass
for the ground) have an impact on the shape of the waveforms. In order to enhance surface
micro-characteristics, and in order to mitigate the local discrepancies that may appear at
�ne scales, it should be better to perform such analysis at the object level, i.e., after a �rst
classi�cation of ground and building regions. Besides, we have shown that the amplitude
may be a relevant cue for such segmentation. The forthcoming development of sensors
with multiple wavelengths, i.e., not restricted to the infra-red domain, may help to carry
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out such task. Conversely, by assuming the type of surface known, lidar waveforms may
be used synergistically with optical images to better estimate the BRDF of these surfaces.

To top it all, whatever the employed signal processing and classi�cation methods, when
one has to deal with such a signi�cant amount of data, many issues raise on the scalability
of the data and the processes. E�cient data parsing and processing methods have to
be developed, and the actual constant improvement of the performance of the computers
(multiple cores etc.) is de�nitively an advantage for such tasks.

6.3 Outlook on the real contributions and limitations of FW

data

In Chapter 2 (Section 2.2.3), we have detailed, rather objectively, the advantages and lim-
itations of using full-waveform data from a beginner end-user point of view. They were
based on results presented in the literature, as well as on practical issues that we faced,
without any assumption on the subsequent processes.
The same outlook can be performed, still from an end-user point of view, having in mind
the 2-step work�ow that we have proposed, as well as the latest technological sensor im-
provements:

• Advantages:

� No minimum pulse separation limitation (+++ → +++): the perfor-
mance of echo detection is limited by sensor speci�cations and, due to the
asymmetry of several peaks, this is not straightforward to convert an "echo
assumption" into an "echo detection".

� Additional information retrieved (+++ → ++): digitizing the waveforms
allows to model them as one wants. However, the proposed stochastic approach
enlightened the prominence of symmetric peaks. On the one hand, it can be
considered as a limitation since this means the echo shapes are homogeneous,
and not really speci�c to objects. On the other hand, there is no concluding
that other modelling functions, with other parameters than amplitude and width
may not reveal other discriminant features.

� Data accuracy improvement (++ → ++): the quali�cation of the peak
detection step is still a signi�cant improvement compared to on-board methods.
However, its is limited in case of overlapping peaks since the two modes may
not always be visually distinguishable.

� Metadata available (++ → +++): they are irreplaceable for georeferencing
the point cloud, but have also revealed to be mandatory for amplitude correction
or amplitude and echo width normalization.

� Amplitude data exploitable (++ → +++): being able to calibrate and
correct amplitude values over strips and surveys is all the more important than
the feature is among the most relevant ones for urban land-cover classi�cation.

� Detection of ground re�ections and Sensor geometry processing pos-
sible: these two topics have not been tackled in this thesis. Their evaluation is
not considered again.
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Full-waveform data properties Final evaluation
A
d
v
a
n
ta
g
e
s

No minimum pulse separation limitation ++
Detection of ground re�ections (+++)
Additional information retrieved ++
Data accuracy improvement ++

Metadata available ++
Amplitude data exploitable +++

Sensor geometry processing possible (++)

L
im

it
a
ti
o
n
s Lower PRF =

Lower Signal-to-Noise Ratio �/� � �
Entire waveforms ? =
Huge datasets? �

Limited acquisition time =
No dedicated software � �

Table 6.1: Final evaluation of advantages and limitations of small-footprint full-waveform
topographic data. Marks within parenthesis correspond to aspects that have not been
re-evaluated.

• Limitations:

� Lower Pulse Repetition Frequencies (� → =): several sensors are now
able to reach PRF superior to 100 kHz, and, with multiple overlapping strips,
point densities higher than 25 points/m2 can be reached. Consequently, we no
longer consider such feature as a limitation.

� Lower Signal-to-Noise Ratio (- - → �/� � �): this depends on the calibra-
tion procedure. If the waveforms are acquired over 6 or 7 bits instead of 8 or
12 bits, the background noise may have an impact on the recording process and
therefore on all the processing chain. Holes may appear in the point cloud for
slopped targets, spatial feature computation will be a�ected, and be less e�ective
for �nal classi�cation. However, such problem can be solved with calibration
�ights.

� Entire waveforms (� → =): the recording process is indeed constrained
with multiple thresholds. However, a trade-o� has to be found between the
recording of useless information and the volume of acquired data. We consider
data volume as a genuine limitation to the process of FW data, conversely to
the supposed insu�cient length of the waveforms.

� Huge datasets (� � → �): this is still a signi�cant limitation. Nevertheless,
parallel processing is possible, since computers are now equipped with numerous
cores.

� Limited acquisition time (� → =): the acquisition time is bound by hard-
drive capacities. There is no doubt that their performance will increase and
such limitation will no longer be valid.

� No dedicated software (� � � → � �): we believe this point as one of the
most crucial issue. This is perhaps the only limitation that may prevent an
end-user from adopting the full-waveform technology. However, several tools



212 6. Conclusions and perspectives

have appeared during the three last years, which now allow to process raw sig-
nals. Some companies have developed sensors with "on-line" Gaussian decom-
position facilities, directly providing a 3D point cloud with amplitude and echo
width. Preliminary engineering task is thus facilitated. Finally, the question
of a full-waveform standard �le format has arisen, especially in the open-source
community, enhancing the increasing interest for such kind of data. This also
may favor the rapid development of tools for end-users.

6.4 Final outlook

We have proposed a full-work�ow for the processing and the analysis of small-footprint
airborne full-waveform lidar data over urban areas. It lead us to satisfactory results in
term of waveform processing and point cloud classi�cation. To top it all, this thesis has
allowed us to �gure out the genuine potential of FW data and interesting �elds of research.

Full-waveform features (amplitude, width, and backscatter coe�cient) should be integrated
in traditional applications dealing with 3D lidar point clouds to enhance them. This is
the most popular issue at stake at the moment, and there is no doubt that an increasing
number of research teams will be involved on the subject. The retrieval of new scatter-
ing parameters will necessarily go through the development of standardized radiometric
calibration techniques.

Finally, we also advocate the overtaking of standard echo-based approaches by adoption a
real "full-waveform" processing strategy. The decomposition and modelling steps are not
mandatory. Keeping the waveform topology, and working on the 3D data volume directly
seems to be for us most promising �eld of research.
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Appendix A

Thesis Publications

This chapter presents the publications dealing with full-waveform laser scanning that we
have co-authored during the PhD thesis. All are not focused on urban areas.
Non peer-reviewed papers are pointed out with the symbol †.

Book chapter

• F. Lafarge, C. Mallet. Quelques applications à la reconnaissance de formes. In Appli-
cations de la Géometrie stochastique à l'analyse d'images, pp. 235-263, Descombes
X. (Ed.), Editions Hermès, 2010, to appear (in French).

Journal papers

• L. Guo, N. Chehata, C. Mallet, S. Boukir. Relevance of airborne lidar and multispec-
tral image data for urban scene classi�cation using Random Forests. ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 66(1), pp. 56�66, 2011.

• C. Mallet, F. Lafarge, M. Roux, U. Soergel, F. Bretar, C. Heipke. A Marked Point
Process for Modeling Lidar Waveforms. IEEE Transactions on Image Processing,
vol. 19(12), pp. 3204�3221, 2010.

• C. Mallet, F. Bretar. Full-Waveform Topographic Lidar: State-of-the-Art. ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 64(1), pp. 1�16, 2009.

• F. Bretar, A. Chauve, J.S. Bailly, C. Mallet, A. Jacome. Terrain surfaces and 3D
land-cover classi�cation from small footprint full-waveform LiDAR data: Application
to Badlands. Hydrology and Earth System Sciences, vol. 13(8), pp. 1531�1544, 2009.

• C. Mallet, F. Bretar, U. Soergel. Analysis of Full-Waveform Lidar Data for Classi�-
cation of Urban areas. Photogrammetrie - Fernerkundung - Geoinformation, vol. 5,
pp. 337-349, 2008.

• C. Mallet, F. Bretar. Le Lidar Topographique à Retour d'Onde Complète: État de
l'art. Traitement du Signal, vol. 24 (6), pp. 441�465, 2007 (in French).
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Conference papers

• C. Mallet, F. Lafarge, F. Bretar, U. Soergel, C. Heipke. Lidar Waveform Modeling
using a Marked Point Process. IEEE International Conference on Image Processing,
pp. 1713�1716, Cairo, Egypt, November 2009.

• N. Chehata, L. Guo, C. Mallet. Contribution of Airborne Full-Waveform Lidar and
Image Data for Urban Scene Classi�cation. IEEE International Conference on Image
Processing, pp. 1669�1672, Cairo, Egypt, November 2009.

• C. Mallet, F. Lafarge, F. Bretar, M. Roux, U. Soergel, C. Heipke. A stochastic ap-
proach for modelling airborne lidar waveforms. International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences. Vol. 38 (Part 3/W8), pp.
201�206, Paris, France, September 2009.

• N. Chehata, L. Guo, C. Mallet. Airborne Lidar feature Selection for urban classi-
�cation using Random Forests. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences. Vol. 38 (Part 3/W8), pp. 207�212, Paris,
France, September 2009.

• N. David, C. Mallet, T. Pons, A. Chauve, F. Bretar. Pathway detection and ge-
ometrical description from ALS data in forested mountaneous areas. International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol.
38 (Part 3/W8), pp. 242�247, Paris, France, September 2009.

(†) F. Bretar, A. Chauve, C. Mallet, B. Jutzi. Managing Full Waveform Lidar Data: A
Challenging Task for the Forthcoming Years. International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences. Vol. 37 (Part 1), pp.
415�420, Beijing, China, July 2008.

• C. Mallet, U. Soergel, F. Bretar. Analysis of full-waveform lidar data for classi�cation
of urban areas. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences. Vol. 37 (Part 3A), pp. 85�92, Beijing, China, July
2008.

• C. Mallet, A. Chauve, F. Bretar. Analyse et traitement d'ondes lidar pour la car-
tographie et la reconnaissance de formes: Application au milieu urbain. RFIA (Re-
connaissance des Formes et Intelligence Arti�cielle), pp. 693�702, Amiens, France,
January 2008 (in French).

• A. Chauve, C. Mallet, F. Bretar, S. Durrieu, M. Pierrot-Deseilligny, W. Puech. Pro-
cessing full-waveform lidar data: modelling raw signals. International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 36 (Part
3/W52), pp. 102�107, Espoo, Finland, September 2007.
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Analyse de données lidar à Retour d'Onde Complète pour la classi�cation en
milieu urbain

Avec l'émergence récente des systèmes lidar aéroportés à retour d'onde complète, capables de fournir
plus qu'une représentation topographique en trois dimensions, se pose la question, entre autres, de son
utilité pour l'analyse du milieu urbain. Nous souhaitons en particulier comparer ses performances aux
systèmes lidar multi-échos traditionnels. Les signaux lidar fournis sont en e�et porteurs d'informations
supplémentaires sur les objets atteints. L'objectif �nal visé dans cette thèse est une cartographie au-
tomatique 3D améliorée des zones d'occupation du sol, comme socle de grands nombres d'applications
déjà existantes, en partant des données brutes enregistrées.

L'approche proposée se compose de deux grandes phases.
La première étape consiste à traiter les signaux enregistrés pour générer des nuages de points 3D de
qualité maîtrisée, ainsi que pour extraire des informations sur la morphologie de ces derniers. Deux
méthodes distinctes sont présentées. L'une cherche à améliorer la méthode standard consistant à
supposer que tous les échos suivent un modèle gaussien. La deuxième permet d'explorer l'hypothèse
d'un mélange de modèles, donc de caractériser chaque écho séparément, tout en proposant une
formulation physique simple et �exible du problème.
Dans un second temps, les nuages 3D ainsi générés sont classés en se servant d'attributs spatiaux mais
également des attributs morphologiques extraits lors de l'étape précédente. Une approche supervisée
utilisant les Séparateurs à Vaste Marge est adoptée pour séparer les zones de sol, de bâtiments, et de
végétation. Elle est couplée à un processus de sélection des attributs les plus pertinents. En plus de
l'obtention d'une classi�cation de bonne qualité, cette étape met en évidence l'apport des données à
retour d'onde complète dans un cadre de cartographie automatique des paysages urbains.

Analysis of Full-Waveform lidar data for urban area mapping

The recent development of airborne full-waveform lidar systems, that are able to provide more than a
simple 3D representation of the topographic surfaces, has arisen many questions with respect to the
analysis of urban areas, and in relation with traditional multiple pulse sensors. Indeed, the recorded
lidar waveforms provide additional information about the geometry and the radiometry of the targets.
The �nal aim of this thesis is to process the raw data in order to achieve a 3D automatic land-cover
classi�cation, as a basis for various subsequent applications.

The proposed work�ow is composed of two main stages.
The �rst step consists in processing the waveform in order to generate an improved 3D point cloud,
and retrieve morphological information about these points. Two distinct methods have been proposed.
The �rst one aims to improve the standard approach, which assumes that all echoes can be modelled
by the Gaussian curve. The second method hypothesizes a mixture of several models � each echo is
then characterized separately � and allows to propose a simple physical and �exible solution.
Afterwards, the generated 3D points are classi�ed using both spatial features and the morphological
ones retrieved from the previous processing step. A supervised approach using Support Vector
Machines is adopted in order to label ground, building, and vegetation areas. Furthermore, the
classi�er is coupled with a feature selection step. Eventually, results with high accuracy are achieved,
and enhance the relevance of full-waveform data for automatically mapping urban areas.
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