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Abstract

Cognitive radio is a promising technique for efficient spectrum utilization. It dynamically mo-
nitors activity in the primary spectrum and adapts its transmission to available spectral resources.
The blind spectrum sensing and resource allocation in cognitive radio are being addressed in this
thesis.

In the first part of this thesis, we will show how methods relying on traditional sample based
estimation methods, such as the energy detector and autocorrelation based detector, suffer at low
signal to noise range. This problem is attempted to be solved by investigating how model selection
and information theoretic distance measures can be applied to do spectrum sensing. Results from
a thorough literature survey indicate that the Kullback-Leibler distance between signal and noise
distributions and the information theoretic distance are promising when trying to devise novel
spectrum sensing techniques. Two novel detection algorithms based on the distribution analysis
and the dimension estimation of the primary user received signal are proposed. Furthermore, we
derive also closed-form expressions of false alarm probabilities for a given threshold for both de-
tectors. Detection performance of the two proposed detectors in comparison with some reference
detectors will be assessed. Detection performance will be also assessed by applying the detectors
to real signal captured by EURECOM RF Agile Platform. Simulations show good results for the
two proposed techniques in terms of local spectrum holes detection and primary user presence
detection. An extensive analysis on cooperative communications for cognitive radio networks will
be discussed. In particular, we will study collaborative sensing as a means to improve the perfor-
mance of the proposed detectors and show their effect on cooperative cognitive radio networks.

In the second part of this thesis, we will address the problem of resource allocation in the
context of cognitive radio networks and we will propose two user selection strategies. The two
new strategies are based on outage probability to mange the quality of service of the cognitive
radio system. We will derive in a first step a distributed user selection algorithm under a cognitive
capacity maximization and outage probability constraints. Specifically, we allow secondary users
to transmit simultaneously with the primary user as long as the interference from the secondary
users to the primary user that transmits on the same band remains within an acceptable range. We
impose that secondary users may transmit simultaneously with the primary user as long as the
primary user in question does not have his quality of service affected in terms of outage proba-
bility. The second algorithm investigates multiuser multi-antenna channels using a beamforming
strategy. The proposed strategy tries to maximize the system throughput and to satisfy the signal-
to-interference plus-noise ratio constraint, as well as to limit interference to the primary user. In the
proposed algorithm, secondary users are first pre-selected to maximize the per-user sum capacity
subject to minimize the mutual interference. Then, the cognitive radio system verifies the outage
probability constraint to guarantee quality of service for the primary user. Both theoretical and
simulation results based on a realistic network setting, for the two proposed strategies, provide
substantial throughput gains, thereby illustrating interesting features in terms of cognitive radio
network deployment while maintaining quality of service for the primary system.
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Résumé

La radio cognitive est une technique prometteuse pour l’utilisation efficace du spectre. Elle
doit surveiller l’activité dynamique dans le spectre du primaire et adapter la transmission des utili-
sateurs secondaires pour une meilleure allocation des ressources spectrales. La détection spectrale
aveugle et l’allocation des ressources pour la radio cognitive sont traitées dans cette thèse.

L’objectif de la première partie de cette thèse est de voir si la sélection des modèles ou l’estima-
tion de la dimension spatiale du signal primaire ainsi que la théorie de l’information et les mesures
de distance pourraient être utilisés pour améliorer les performances de détection du spectre d’une
manière aveugle et dans des zones à faible rapport signal à bruit. Grâce à un effort de recherche
approfondie, deux nouvelles méthodes de détection basées sur l’analyse de la distribution et l’es-
timation de la dimension du signal primaire reçu ont été proposées et analysées. En outre, nous
avons dérivé des expressions théoriques de la probabilité de fausse alarme pour un seuil donné
pour les deux détecteurs. Les performances de détection des deux techniques proposées en com-
paraison avec quelques détecteurs de référence sont évaluées. Ces performances sont également
évaluées en appliquant les détecteurs à des signaux réels captés par la plate-forme d’EURECOM.
Les simulations montrent des résultats encourageants en termes de détection des trous dans le
spectre du primaire ainsi la détection binaire de la présence de l’utilisateur primaire. Une analyse
sur l’application des deux techniques proposées en communication coopérative pour les réseaux
radio cognitive est présentée également.

Dans la deuxième partie de cette thèse nous adressons le problème d’allocation de ressources
dans le contexte des réseaux radio cognitive et nous présentons et analysons deux stratégies de
sélection d’utilisateurs secondaires basées sur la probabilité outage pour gérer la qualité de service
du système. La première stratégie explore l’idée de combiner la diversité des gains multiutilisa-
teurs avec des techniques de partage spectrale pour essayer de maximiser la somme des capaci-
tés des utilisateurs secondaires tout en maintenant la probabilité outage de l’utilisateur primaire
non dégradée d’une manière distribuée. La deuxième stratégie traite le problème de beamforming
pour minimiser l’interférence dans le contexte de la radio cognitive pour un système d’utilisateurs
secondaires MIMO et propose une méthode de sélection d’utilisateurs basée sur la probabilité
outage. Dans l’algorithme proposé, les utilisateurs secondaires sont d’abord présélectionnés pour
maximiser la somme des capacités des utilisateurs secondaires sous réserve de minimiser les inter-
férences mutuelles. Ensuite, le système radio cognitive vérifie la contrainte de probabilité outage
pour garantir la qualité de service du système primaire. Les résultats théoriques et expérimentaux
en utilisant des conditions réel, pour les deux stratégies proposées, montrent des gains de débit
important, illustrant ainsi des caractéristiques intéressantes en termes de déploiement du réseau
radio cognitive, tout en garantissant une qualité du service pour le système primaire et secondaire.
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Introduction

Motivation

The discrepancy between current-day spectrum allocation and spectrum use suggests that radio
spectrum shortage could be overcome by allowing a more flexible usage of the spectrum. Flexibi-
lity would mean that radios could find and adapt to any immediate local spectrum availability. A
new class of radios that is able to reliably sense the spectral environment over a wide bandwidth
detects the presence/absence of legacy users (primary users) and uses the spectrum only if the
communication does not interfere with primary users (PUs). It is defined by the term cognitive
radio [1] [2] [3]. Cognitive Radio (CR) technology has attracted worldwide interest and is belie-
ved to be a promising candidate for future wireless communications in heterogeneous wideband
environments.

The original definition of CR is wide, as it envisions the wireless node as a device with cog-
nitive capabilities utilizing all available environmental parameters. According to [1], examples of
parameters the CR can exploit are knowledge of time, user location, user preferences, knowledge
of its own hardware and limitations, knowledge of the network and knowledge of other users in
the network. This initial definition of CR is conceptual, and deviates somewhat from the common
contemporary working definition of CR. A sub set of CR that has received a substantial amount
of focus is the Spectrum Sensing and Resource Allocation for Cognitive Radio. This is a radio
that dynamically monitors activity in its available electromagnetic spectrum and adapts its trans-
mission to available spectral resources. The most common scenario is an unlicensed secondary
user (SU) wishing to utilize idle parts of the spectrum when transmission from the licensed PU
is absent. It has become a standard practice to simply use the wide term CR also when referring
to limited sub definitions such as Spectrum Sensing or Resource Allocation for Cognitive Radio.
This is for instance reflected in modern redefinitions. A typical example is this definition of CR
from the U.S. National Telecommunications and Information Administration (NTIA) [4] :

Cognitive Radio A radio or system that senses its operational electromagnetic environment
and can dynamically and autonomously adjust its radio operating parameters to modify sys-
tem operation, such as maximize throughput, mitigate interference, facilitate interoperabi-
lity, access secondary markets.

This definition is a slight misnomer, since it only refers to a more limited adaptive radio, and
not to the complete cognitive device, utilizing all available parameters from its environment, as
presented by the pioneer Mitola in [1]. However, this redefinition of CR appears to have been wi-
dely adopted. To stick with this practice, the NTIA definition of CR will be the working definition
in this thesis. But the reader should still be aware of the fact that the original concept of CR was
coined around a concept where a complete set of environmental parameters, and not only spectral
parameters, was considered. Therefore, the thesis is divided into two parts : Part I discusses the
spectrum sensing topic and proposes two blind sensing schemes ; Part II investigates the resource
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allocation subject and proposes two distributed and centralized resource allocation strategies.
The research was split in the following sections :

1. Analysis of the problem at hand to limit the scope.

2. Literature survey on background information and current techniques in spectrum sensing
and resource allocation.

3. Analysis of a selection of the conventional approaches to identify problems for spectrum
sensing and resource allocation.

4. Literature survey in the areas suggested in the problem outline. It was related to distribution
and dimension analysis of a communication signal to decide on potential new blind spectrum
sensing approaches.

5. Study when SUs are allowed to transmit simultaneously with the PU and maintaining a
quality of service (QoS) for the PU using outage probability. Then investigation in new
resource allocation strategies to provide a solution to the problem.

6. Proposing a novel spectrum sensing schemes and resource allocation strategies and provi-
ding insight through a theoretical analysis and simulations.

From the list above it becomes obvious that the research for both topics is divided in two main
parts. The first part revolving around literature surveys and theoretical analysis, the second part
being founded on computer aided simulation. All simulations have been performed utilizing the
software package Matlabr R2009a.

Thesis 1 Objectives and Structure

As it has been presented in the motivation section, the CR research area is very open. A par-
ticularly problem in the context of CR, when we seek to optimize the secondary system capacity,
is to guarantee a QoS to PUs. There is a large number of proposals for all communication layers
treating the increase of restrictions to spectrum utilization [6], but the QoS issue still has not been
clearly defined. In addition, it is unclear how secondary system opportunism is compatible with
the support of QoS for both, CR systems and primary systems. The U.S. Federal Communica-
tions Commission (FCC) proposed the concept of "interference temperature" as a way to have
unlicensed transmitters sharing licensed bands without causing harmful interference [7, 8]. Rather
than merely regulate transmitter power at fixed levels, as it has been done in the past, the scheme
would have governed transmitter power on a variable basis calculated to limit the energy at victim
receivers, where interference actually occurs. As a practical matter, however, the FCC abandoned
the interference temperature concept recently [9] due to the fact that it is not a workable concept.
While offering attractive promises, CRs face various challenges, starting from defining the funda-
mental performance limits of this radio technology, in order to achieve the capability of using the
spectrum in an opportunistic manner. Specifically, CR is required to detect spectrum holes in the
spectrum band and to determine if the spectrum allocation meets the QoS requirements of different
users. This decision can be made by assessing the channel capacity, known as the most important
factor for spectrum characterization.

The purpose of the thesis is to present an analysis of the QoS problem along with a proposed
solution, while maintaining a limited scope to provide coherency and depth. The QoS problem
will be tackled in this thesis into two ways : Spectrum Sensing and Resource Allocation.

1. The work reported herein was partially supported by the European project SENDORA (SEnsor Network for
Dynamic and cOgnitive Radio Access [5]) and the National project GRACE (Gestion de Spectre et Radio Cognitive).
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Part I : Blind Spectrum Sensing Techniques

CR has been proposed as the means to promote efficient utilization of the spectrum by exploi-
ting the existence of spectrum holes. The spectrum use is concentrated on certain portions of the
spectrum while a significant amount of the spectrum remains unused. It is thus key for the deve-
lopment of CR to invent fast and highly robust ways of determining whether a frequency band is
available or occupied. This is the area of spectrum sensing for CR which is the first study part in
this thesis.

It is stated that current spectrum sensing techniques suffer from challenges in the low signal
to noise range (SNR). The reasons for this have to be analyzed. It is suggested that higher order
statistics or information theoretic criteria are possible areas to look for a solution to overcome the
problem. It is apparent that the problem at hand is wide and challenging. To meet the outlined de-
mands, it is important that the scope is limited to provide a tangible base for the thesis. In addition,
blind detection of spectrum holes in the frequency band is a very challenging requirement. As the
names imply, blind spectrum sensing algorithms make sensing decisions without any prior know-
ledge, whereas non-blind approaches utilize some form of a priori knowledge about the underlying
signals. Typical known signal features can be modulation type, carrier frequency or pulse shape.
Although the importance of blind sensing in the conception of CR devices, only few algorithms
exist in the literature. The blind detection is the second challenge to be raised in this part of thesis.

Hence the first step in the research has been to analyze the problem and to decide on the correct
approach. The first chapter gives a literature survey on background information and current tech-
niques in spectrum sensing. This chapter analysis also a selection of the conventional approaches
to identify problems in the low signal to noise region and to decide on a potential new approach.
Alongside the presentation of the survey results, a simultaneous discussion of their relevance is
given. A conclusion is made on results that were important enough to pursue further. Based on the
findings from the literature survey, two novel detectors are proposed and analyzed.

Chapter 2 presents the first blind spectrum sensing technique based on distribution analysis
of the PU received signal. The proposed detector tries to analyze the Kullback-Leibler distance
between signal and noise distributions. It compares the distribution of the received signal with
the Gaussian distribution. The idea is to decide if the distribution of the observed signal fits the
Gaussian model. The proposed algorithm, called the distribution analysis detector (DAD), exploits
Akaike weights information derived using Akaike information criterion (AIC) as a reliability index
in order to decide if the distribution of the received signal fits the noise distribution or not [10, 11].

In Chapter 3 we propose the second blind sensing method based on the investigation of the
dimension (entropy) of the received signal. Particularly we focus on analyzing the number of
significant eigenvalues which are computed using the AIC criteria and the Minimum Description
Length (MDL) criteria to conclude on the nature of the sensed band [11, 12]. Specifically, the slope
change of the signal space dimension curve (from positive to negative trend) is representative of
the transition from a vacant band to an occupied band (and vice versa). Based on these results we
propose the dimension estimation detector (DED).

In the last two chapters the proposed novel detectors are compared with the reference detec-
tors presented in Chapter 1 in terms of detection performance. Performance is mainly assessed
through simulations utilizing synthetic signals, but also on an authentic real signal captured by the
EURECOM RF Agile Platform in order to provide perspective and to strengthen the findings from
the simulations. We performed the detection capacity of the DAD and DED detectors in terms of
PU signal detection as well as of spectrum holes detection using sliding window technique even
if the analyzed band is not synchronized with the PU signal band. We derives also closed-form
expressions of false alarm probabilities for both detectors.
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Part II : Resource Allocation Techniques

If the CR can successfully determine with a high degree of certainty that a specific part of the
spectrum is idle, it can then transmit on these frequencies without interfering with the licensed
owner of the spectrum and thus achieving a better spectral resource efficiency. Therefore, the CR
protocol must adapt its signal to fill this void in the spectrum domain. Therefore, a SU device
transmits over a certain time or frequency band only when no other user does. The requirement
of no interference is extremely rigid to avoid disturbing licensed users. This is exactly the setup
in the second part of this thesis where the CR behavior is generalized to allow SUs to transmit
simultaneously with PU in the same frequency band. It can be done as long as the level of in-
terference to PUs remains within an acceptable range. It is proposed in this thesis to combine
CR with multi-user diversity technology to achieve strategic spectrum sharing and self-organizing
communications.

Chapter 4 provides a summary of the approach chosen to attack the topic, and explains how
the research was structured. This chapter starts by briefly introducing a number of theoretical
concepts of importance to the following analysis. It is assumed that the reader is familiar with basic
concepts from signal processing and communications. So the theory chapter will be structured
more as a review of essential fundamental topics and a as brief introduction to peripheral topics
where the reader might not be familiar with. A number of references providing further depth are
provided. A big part of Chapter 4 provides the main findings from a thorough literature survey
aimed at investigating the potential of centralized and distributed resource allocation techniques.
Following this chapter an overview of the problem context is presented and a current centralized
user selection solution that will act as a reference is described.

A starting point when trying to devise new user selection algorithms is to search for multi-
user technologies where each user tries to manage its local resources (e.g. rate and power control,
user scheduling). This search is based only on locally observable channel conditions such as the
channel gain between the access point and a chosen user, and possibly locally measured noise and
interference. This has been the main focus in Chapter 5 where we present a distributed user selec-
tion strategy based on outage probability. Specifically, we allow SUs to transmit simultaneously
with the PU as long as the interference from the SUs to the PU that transmits on the same band
remains within an acceptable range. We impose that SUs may transmit simultaneously with the
PU as long as the PU in question does not have his QoS affected in terms of outage probability. We
consider that PUs operate at a desired rate (depending on their respective QoS demands). Based
on PU channel statistics, we determine the outage failure or in other words the probability that the
PU of interest is actually under that rate. From a practical point of view the outage probability as
well as the requested rate can be broadcasted before the start of the communication by the primary
system, and it is used as a preamble for the PU to get informed which data rate is requested. This
preamble can also be overheard by SUs who can then learn about these outage values. The propo-
sed method guarantees also a certain QoS to SUs and ensures the continuity of service even when
the detected spectrum holes become occupied by the PU, this is done by the outage probability
control.

In Chapter 6 we adopt the same framework as in Chapter 5 by using the outage probability as
protection constraint for the PU. We propose in this chapter a centralized user selection strategy
combined with an efficient transmit beamforming technique using a multiuser SU system. The
proposed strategy tries to maximize the system throughput and to satisfy the signal-to-interference-
plus-noise ratio (SINR) constraint, as well as to limit interference to the PU. In the proposed user
selection algorithm, SUs are first pre-selected to maximize the per-user sum capacity subject to
minimize the mutual interference. Then, the CR system verifies the outage probability constraint
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to guarantee QoS for the PU. Finally a number of SUs are selected from those pre-selected SUs.
We also compare the results obtained by the proposed method to those obtained in Chapter 5.
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Chapter 1

Spectrum Sensing for Cognitive Radio
Applications

1.1 Introduction

This chapter provides background material to understand the spectrum sensing problem and
the results presented in this part of thesis. The concept of CR will be explained along with the prin-
ciples of spectrum sensing. We will present also some topics in spectrum sensing that have been
of great interest in recent research. We will especially focus on blind spectrum sensing, which is
the area of concentration chosen for the presented research. Therefore, selected existing spectrum
sensing algorithms will be introduced. Furthermore, we will describe some examples of feature
spectrum sensing algorithms including the cyclostationarity based detector and the autocorrela-
tion based detector, and examples of blind sensing algorithms including the energy detector, the
maximum-minimum eigenvalue detector and the Kullback-Leibler based detector. These algo-
rithms will serve as references when evaluating the novel approaches resulting from the research.

Apart from that, this chapter will provide a number of simulations aimed at assessing the
performance of the presented reference detectors. They will be compared with the two proposed
detectors in Chapter 2 and Chapter 3. Besides we will introduce the common simulation scenarios
used to test the detection algorithms. Three different scenarios with different properties have been
chosen to evaluate spectral detection performance. The reader is assumed to be familiar with com-
mon digital modulation and communication principles. All simulation scenarios follow the Monte
Carlo principle, where detection results are obtained as the average of a number of simulations.
For each iteration of the Monte Carlo simulation, a test statistic is computed on the basis of the
signal samples in one block, and a binary decision is made by comparing the test statistic to a
predetermined detection threshold.

The remaining chapter is organized as follows. We start by explaining some challenges as-
sociated with spectrum sensing in Section 1.2. Section 1.3 presents the spectrum sensing goal.
We will show in Section 1.4 some examples of feature detectors, that exploit knowledge about
the signal to be detected as well as blind sensing detectors. We will also give some fundamental
limits for detection by presenting some simulation results using the three different scenarios and
by studying the complexity required for sensing of each detector. In Section 1.5 we will show the
concept of cooperative detection. Finally we provide a summary of the contributions of the thesis
in Section 1.6.
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1.2 Challenges

Before getting into the details of spectrum sensing techniques, some challenges associated
with the spectrum sensing for CR are given in this section.

Sensing Time PUs can claim their frequency bands anytime while CR is operating in that band.
In order to prevent interference to and from primary licence owners, CR should be able to
identify the presence of PUs as quick as possible and should vacate the band immediately.
Hence, sensing methods should be able to identify the presence of PUs within a certain
duration. This requirement possesses a limit on the performance of sensing algorithms and
creates a challenge for CR [13].

Complexity Sensing methods can also be compared from the implementation point of view by
estimating the hardware cost and energy efficiency through computational complexity of
the sensing algorithm. The complexity issue in the sensing algorithm design is, however,
only partially resolved [13]. One aim of this thesis is to develop low-complexity sensing
algorithms.

Cooperation Cooperation between the users affected by such effects improve sensing perfor-
mance significantly [14]. When the CR is suffering from shadowing by a high building over
the sensing channel, it definitely can not sense the presence of the PU appropriately due
to the low received SNR. Therefore, CR accesses the channel in the presence of the PU.
To address this issue, multiple CRs can be coordinated to perform spectrum sensing co-
operatively. Several recent works have shown that cooperative spectrum sensing can greatly
increase the probability of detection in fading channels [14].

Other Challenges Some other challenges that need to be considered while designing effective
spectrum sensing algorithms include hardware requirements, presence of multiple SUs, co-
herence times, multi-path and shadowing, competition, robustness, heterogeneous propaga-
tion losses and power consumption [13].

Some challenges for spectrum sensing have been presented. The lack of a priori knowledge
of the signal is limited to blind spectrum sensing. Robust performance in low signal to noise
ratios and maintaining a low computational complexity are essential to both. The requirement for
reliability and accuracy in the low SNR region is the most important in general. This is also the
problem that will receive the main focus in this research.

1.3 Spectrum Sensing Goal

The CR concept proposes to furnish the radio systems with the abilities to measure and to be
aware of parameters related to the availability of spectrum and the radio channel characteristics.
The spectrum sensing radio system adopted in this work is given in details in this section. An
example test scenario for the presented sensing algorithms is given in Figure 1.1. This scenario
allows us to combine different PU signals with a variety of channel models and to generate a signal
received by the sensor. Then suitable sensing algorithms can be applied and evaluated. A sensor
network (SN) is deployed in the area to detect the spectrum usage in the corresponding frequency
band. A sensing unit composed of sensor nodes has detection capabilities and communicates detec-
tion results to a fusion centre (FC) entity that aggregates the information coming from the sensing
unit and that proposes an interface with global spectrum monitoring. A secondary network (base
station (BS) and SUs), deployed in the area, takes advantage from this interface provided by the
FC entity to perform communications in an opportunistic manner. If PU transmissions are detected
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FIGURE 1.1 – An example of a wireless sensor network aided cognitive radio scenario : primary
system, spectrum sensing unit and secondary network.

by the SN in the corresponding band, the FC shall receive the information and forward it to the
SN. The SUs shall adapt their transmissions to avoid harmful interferences generated by the PUs.

The transmitted signal by one PU is convolved with a multi-path channel where Gaussian
noise is added. The received signal at a sensor node, denoted by the (q×1) complex vector x (also
called observation in some chapters of this thesis), can be modeled as

x = As + n (1.1)

where A (q × p) complex matrix is the channel matrix whose columns are determined by the
unknown parameters associated with each signal. s (p × 1) complex vector is a PU transmitted
signal and n (q × 1) vector is a complex, stationary, and Gaussian noise with zero mean and
covariance matrix E{nnH} = σ2I.

The goal of spectrum sensing is to decide between the following two hypothesizes [2] [3] :

x =
{

n H0

As + n H1
(1.2)

We decide that a spectrum band is unoccupied if there is only noise, as defined in H0. On the other
hand, once there exists a PU signal besides noise in a specific band, as defined in H1, we say that
the band is occupied. Thus the probability of false alarm can be expressed as

PFA = Pr(H1 | H0) = Pr(x is present | H0) (1.3)

and the probability of detection is

PD=1− PMD

=1− Pr(H0 | H1)
=1− Pr(x is absent | H1) (1.4)
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where PMD indicates the probability of a missed detection. The decision threshold is determined
by using the required probability of false alarm PFA given by (1.3). The threshold γ for a given
false alarm probability is determined by solving the equation

PFA = Pr(Υ(x) > γ|H0) (1.5)

where Υ(x) denotes the test statistic for the given detector.
Based on the previously mentioned challenges and requirements, the spectrum sensing stra-

tegies can be broadly classified as non-cooperative detection strategies and cooperative detection
strategies. Each of these strategies has its own advantages and disadvantages and is further ela-
borated in the following section. In this section, we will describe these spectrum sensing methods
and we will discuss also the open research topics in this area.

1.4 Non-Cooperative Sensing

The non-cooperative detection strategies for spectrum sensing only rely on the local informa-
tion from a secondary node that is actually sensing the spectrum. This information is only used by
the node that does the sensing and is not shared among SUs. There are several non-cooperative
spectrum sensing techniques that were proposed for CR. The non-cooperative sensing strategies
are categorized in two families : feature detection strategies and blind detection strategies. In the
following section we will describe the state of the art spectrum sensing algorithms and widely
used representative methods in each of these categories.

1.4.1 Feature Detection Strategies

The feature detection approaches assume that a PU is transmitting information to a primary
receiver when a SU is sensing the primary channel band. The elaboration of sensing techniques
that use some prior information about the transmitted signal is interesting in terms of performance.
In fact, feature detection algorithms employ knowledge of structural and statistical properties of
PU signals when making the decision. Such properties include for example the cyclostationarity
property, the autocorrelation property or the finite alphabet property.

1.4.1.1 Cyclostationarity Based Detection

The most known feature sensing technique is the CD [15]. Cyclostationary processes are ran-
dom processes for which statistical properties such as mean and autocorrelation change periodi-
cally as a function of time. The theory of cyclostationarity is relevant to various fields like telecom-
munications, mechanics, biology, econometrics etc. [16]. For example, in mechanics, periodicity is
due to gear rotation and in econometrics, it is due to seasonality. In telecommunications and radar
applications periodicity is due to modulation, sampling, multiplexing and coding operations [16].

Wireless communication signals typically exhibit cyclostationarity at multiple cyclic frequen-
cies that may be related to the carrier frequency, symbol, chip, code or hop rates, as well as their
harmonics, sums and differences. These periodicities can be exploited to design powerful sensing
algorithms for CRs. Cyclostationarity based detectors have the potential to distinguish among the
PUs, SUs, and interference exhibiting cyclostationarity at different cyclic frequencies. Moreover,
random noise commonly does not possess the cyclostationarity property. Cyclostationarity based
detection has received a considerable amount of attention in the literature. Recent bibliography on
cyclostationarity, including a large number of references on cyclostationarity based detection, is
provided in [16].
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The cyclic autocorrelation function at some lag l and some cyclic frequency α can be estimated
from samples x by

r̂l(x, α)=
1

p− l

p−l−1∑

n=0

xn+lx
∗
ne−jαn l ≥ 0 (1.6)

where p is the length of the PU signal in samples. The cyclic autocorrelations are non-zero for
cyclostationarity based PU. This property is exploited to detect a PU by testing whether the ex-
pected value of the estimated cyclic autocorrelation is zero or not. In [17], an optimum spectral
correlation detector in stationary additive white Gaussian noise (AWGN) is presented. However,
the scheme requires lot of information related to the PU like signal phase, modulation type and its
parameters, such as carrier frequency, pulse shape and symbol rate, which makes the scheme im-
practical. In [18], authors have proposed a generalized likelihood ratio test (GLRT) for detecting
the presence of a cyclic frequency with an asymptotic constant false alarm rate (CFAR). Howe-
ver, it may be desirable to test the presence of multiple cyclic frequencies to improve the detector
performance. In [19], authors introduce a GLRT detector based on multiple cyclic frequencies,
where the CFAR property is retained over the set of cyclic frequencies. It is particularly suitable
for signals with multiple significant cyclic frequencies.

A GLRT may be obtained from the likelihood ratio test by replacing the unknown parameters
with their maximum likelihood estimates. Assuming that s is cyclic with cycle frequency α,

r̂=[Re {r̂l1(α)} , ..., Re {r̂lK (α)} , Im {r̂l1(α)} , ..., Im {r̂lK (α)}] (1.7)

denotes a 1 × 2K vector containing the real and imaginary parts of the estimated cyclic auto-
correlations for K time delays at the cyclic frequency stacked in a single vector [18]. The GLRT
statistic is given by [18]

ΥCD(x)=r̂Σ̂−1r̂T (1.8)

where Σ̂ is an estimate of the covariance matrix Σ ∼= cov {r̂} [18].
To detect the cyclostationary over the received signal we make the choice of the statistical test

proposed by Dandawate and Giannakis [15]. This test uses the asymptotic properties of the cyclic
autocorrelation function estimates. It has been shown in [15] that under hypothesis H0, regardless
of the distribution of the input data, the distribution of T (x) converges asymptotically to a central
χ2 distribution with 2p degrees of freedom where p is an integer with p ≥ 1. This makes it possible
to analytically calculate the probability of false alarm for a large enough observation length T for
a given threshold. This leads to an asymptotically constant false alarm rate test. Under H0, one can
write :

lim
T→∞

ΥCD(x)=χ2
2p (1.9)

Hence, the (asymptotic) probability of false alarm for this detector with threshold γCD is given by

PFA,CD=1−G
(γCD

2
,K

)
(1.10)

where G(.) is the (lower) incomplete gamma function [20].
The main advantage of the cyclic autocorrelation function is that it differentiates the noise

energy from the modulated signal energy. Therefore, a CD can perform better than other detectors
in discriminating against noise due to its robustness to the uncertainty in noise power. However, it
is computationally complex and requires a significantly long observation time.
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1.4.1.2 Autocorrelation Based Detection

Many communication signals contain redundancy, introduced for example to facilitate syn-
chronization, by channel coding or to circumvent inter-symbol interference. This redundancy oc-
curs as non-zero average autocorrelation at some time lag l. Based on the system model given in
Section 1.3, the autocorrelation function at some lag l can be estimated from :

r̂l(x)=
1

p− l

p−l−1∑

n=0

xn+lx
∗
n l ≥ 0 (1.11)

Any signal except for the white noise case will have values of the autocorrelation function different
from zero at some lags larger than zero. Although some might be exactly zero depending on
the zero crossings. In practice, this simplistic view will be obscured by the fact that we have to
estimate the autocorrelation function locally on stochastic signals and noise. This will inevitably
generate spurious values that are not accounted above. The autocorrelation function is proportional
to the received signal variance and its use in spectral sensing is therefore also dependent on either
knowing the variance of the noise without signal or deriving reliable estimates of the variance
based on long signal observations. If we assume that the noise level is constant, then the observed
variance of the received signal is lower bounded by the noise itself. Several options for deriving
the noise variance or some average received signal variance are open.

In [21], authors have proposed an autocorrelation-based detector for orthogonal frequency
division multiplexing (OFDM) signals. OFDM has developed into a popular scheme for wide-
band digital wireless. This detector is limited to the case when the PU is using OFDM. Another
autocorrelation-based detector was proposed in [22]. This detector relies on the fact that the au-
tocorrelation function of the oversampled communication signal exhibits non-zero values at non-
zero lags, whereas for the white noise (i.e., no signal) these values will be zero. We present in this
section a summary of the autocorrelation-based detector given in [22].

To detect the existence/non existence of a signal we use functions of the autocorrelation lags
where the autocorrelation is based on (1.11). Therefore, the autocorrelation-based decision statistic
is given by [22]

ΥAD(x)=
L∑

l=1

wl
Re {r̂l}

r̂0
(1.12)

where the number of lags, L, is selected to be an odd number. The weighting coefficients wl could
be computed to achieve the optimal performance. They are given by

wl=
L + 1 + |l|

L + 1
(1.13)

With decision threshold γAD, the probability of false alarm of this detector is

PFA,AD=Q


γAD

[
γ2

AD

p
+

1
2p

L∑

l=1

w2
l

]− 1
2


 (1.14)

where Q is the generalized Marcum Q-function [20].
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1.4.1.3 Other Feature Sensing Methods

Other feature spectrum sensing methods include matched filtering and multitaper spectral es-
timation. Matched filtering is known as the optimum method for detection of PUs when the trans-
mitted signal is known [23]. The main advantage of matched filtering is the short time to achieve a
certain probability of false alarm or probability of a miss detection [24] as compared to other me-
thods that are discussed in this section. However, matched filtering requires the CR to demodulate
received signals. Hence, it requires knowledge of the PUs signaling features such as bandwidth,
operating frequency, modulation type and order, pulse shaping, frame format, etc. Multitaper spec-
tral estimation is proposed in [25]. The proposed algorithm is shown to be an approximation to
maximum likelihood power spectral density (PSD) estimation. For wideband signals it is nearly
optimal. Although the complexity of this method is less than the maximum likelihood estimator,
it is still computationally demanding.

1.4.2 Blind Detection Strategies

Completely blind spectrum sensing techniques that do not consider any prior knowledge about
the PU transmitted signal are more convenient to CR. A few methods that belong to this category
have been proposed, but all of them suffer from the noise uncertainty and fading channels varia-
tions.

1.4.2.1 Energy Detection

One of the most popular blind detectors is the energy detector (ED) [26]. This detector is the
most common method for spectrum sensing because of its non-coherency and low complexity.

Conventional energy detectors can be simply implemented like spectrum analyzers. The energy
detector measures the received energy during a finite time interval and compares it to a predeter-
mined threshold. The test statistic of the energy detector is

ΥED(x) =
p∑

i=1

|xi|2 (1.15)

The performance of the energy detector in AWGN is well known and can be written in closed
form. The probability of false alarm is given by

PFA,ED=1−G

(
2γED

σ2
, p

)
(1.16)

where G denotes the cumulative distribution function [20] of a χ2 distributed random variable with
2p degrees of freedom. γED is the detection threshold of the ED and σ2 is the noise variance [26].

The energy detector is universal in the sense that it does not require any knowledge about the
signal to be detected. On the other hand, for the same reason it does not exploit any potentially
available knowledge about the signal. Moreover, the noise power needs to be known to set the
decision threshold and to control the false alarm probability. It is very common that the noise
power levels vary depending on time and locations. Consequently, there may be a need to estimate
the noise power from a signal-free data set in order to obtain a constant false alarm probability
detector performance.
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1.4.2.2 Model Selection Based Detection

Sub Space Analysis Based Detection One of the main contributions in this work is the inves-
tigation of the sub space analysis in spectrum sensing. We propose in this context the dimension
estimation detector (DED) which will be presented and analyzed in Chapter 3. This detector ex-
ploits the sub space analysis of the PU received signal using AIC and MDL criteria as model
selection tools [27] [11]. The same idea was applied in [28] and [29], published after our work, to
develop two spectrum sensing algorithms exploiting the maximum or/and the minimum eigenva-
lue as detection rule. However, in [28] and [29], the model selection has not been considered. This
work will be presented in Subsection 1.4.2.3.

Distribution Analysis Based Detection The second contribution in this part is the distribu-
tion analysis detector (DAD). To develop the DAD detector, we will compute the Kullback-Leibler
distance between signal and noise distributions using AIC criteria and Akaike weight as model se-
lection tools. Chapter 2 will describe this detector.

Kullback-Leibler Based Detection 1 The Kullback-Leibler detector (KLD) was developed
for comparison with the DAD detector. Note that, this work in under progress and the simulation
results which will be presented later are a preliminary step for this idea. We will give in this
subsection the basic idea of this detector and the work done until now.

The Kullback-Leibler (KL) divergence, or relative entropy, is a measure of the distance bet-
ween two probability distributions. The KL divergence between the two continuous probability
density functions f(x) and g(x) is defined as

D(f ||g)=E

[
log

f(x)
g(x)

]
(1.17)

where the expectation is taken with respect to f . D(f ||g) is only finite if the support set of f is
contained in the support set of g. Another important property of the KL divergence is that it is non
negative and in general non-symmetric.

The literature surveys in the two papers [30] and [31] were good references for more elabo-
rate KL divergence estimators. [30] suggests estimating the characteristic function of a normalized
version of the input signal, composing a toeplitz matrix of the characteristic function, computing
its eigenvalues and using these eigenvalues to estimate the KL divergence. The estimation pro-
cedure is founded in the relationship between the sum of the eigenvalues of an autocorrelation
matrix and the integral of the spectrum given by Szego’s theorem. [31] presents a completely
different approach. The algorithm given suggests estimating the KL divergence between two dis-
tributions through estimating their cumulative density functions. The analysis and ideas presented
in the paper are thorough and consistent, and the author implies that the estimation variance of the
algorithm only scales with the number of input samples.

The proposed algorithm depending on estimating the KL divergence is given on closed form
as [31]

ΥKLD(x) = D(f ||g)=−κ− 1
p

p∑

i=1

ln (p∆G(xi)) (1.18)

1. This work is a collaboration between our team in EURECOM and the Norwegian university of science and tech-
nology (NTNU) team. Acknowledgements to Professor Tor Audun Ramstad at NTNU and Jorgen Berle Christiansen
mastere student at NTNU for the collaboration we had.
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where κ = 0.577215 is the Euler-Mascheroni constant, p is the number of input samples, ∆G(xi) =
G(xi)−G(xi−1) and G denotes the CDF such that g(x) = G′(x). The probability of false alarm
for a given detection threshold is given as

PFA,KLD=Q

(√
p

π2/6− 1
γKLD

)
(1.19)

where Q(.) denotes the cumulative distribution function [20] of a χ2 distributed random variable
with 2p degrees of freedom.

1.4.2.3 Maximum-Minimum Eigenvalue Based Detection

In [28] and [29], two sensing algorithms are suggested. One is based on the ratio of the maxi-
mum eigenvalue to the minimum eigenvalue, the other is based on the ratio of the average eigenva-
lue to the minimum eigenvalue. It is assumed that the signal to be detected is highly correlated. Let
R be the covariance matrix of the received signal. Then, under H0, all eigenvalues of R are equal.
However, under H1 some eigenvalues of R will be larger than others. A detector exploiting this
property is called maximum-minimum eigenvalue detector (MMED) and was proposed in [28]. It
will be described briefly in the context of this section. Considering N observations xn received in
a sequence, the sample covariance matrix can be defined as

R̂=
1
N

N∑

n=1

xnxT
n (1.20)

Let λn|n=1,...,N be the eigenvalues of R. There are two eigenvalue-based detectors proposed
in [28]. The first detector uses the ratio of the largest eigenvalue to the smallest eigenvalue and
compares it to a threshold. So the test statistic of the first proposal of [28] is based on a condition
number

ΥMMED(x)=
maxλn

minλn
(1.21)

The probability of false alarm of the MMED is given by

PFA,MMED=1− F1




γMMED

(√
N −√p

)2
− (√

N − 1−√p
)2

(√
N − 1−√p

) (
1√

N−1
+ 1√

p

) 1
3


 (1.22)

where F1 is the cumulative distribution function (CDF) of the Tracy-Widom distribution of order
1, N is the number of PU observations and p is the length of each observation. The distribution
function is defined as

F1=exp
(
−1

2

∫ ∞

t

(
q(u) + (u− t)q2(u)

)
du

)
(1.23)

where q(u) is the solution of the nonlinear Painleve II differential equation

q”(u)=uq(u) + 2q3(u) (1.24)

With the above expressions for the probability of false alarm, the expected detection performance
can be evaluated. In [32] the authors propose a research perspective of the MMED considering a
finite number of cooperative receivers and a finite number of samples. They calculate in this paper
the exact decision threshold as a function of the desired probability of false alarm for the MMED
detector.
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Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Channel models Rayleigh/Rician (K=1)
Maximum Doppler shift 100Hz
Frequency-flat Single path
Sensing time 1.25ms
Location variability 10dB

TABLE 1.1 – The transmitted DVB-T primary user signal parameters

1.4.2.4 Other Blind Sensing Methods

Another blind technique called multi resolution sensing was proposed in [33]. This technique
produces a multi resolution PSD estimate using a tunable wavelet filter that can change its cen-
ter frequency and its bandwidth [34]. In [35], wavelets are used for detecting PU signals in blind
manner. The wavelet based approach is efficiently used for wideband spectrum sensing where a wi-
deband signal spectrum is decomposed into elementary building blocks of sub-bands that are well
characterized by local irregularities in frequency [35]. The wavelet transform is then employed in
order to detect and to estimate the local spectral irregular structure that carries important informa-
tion about the frequency location and power spectral densities of the sub-bands. Others methods
that exploit a recorded form of the covariance matrix are also derived in the literature [36].

1.4.3 Summary of Presented Methods and Simulations

Actual sensing results and performance studies will be provided in this subsection. The pri-
mary system used is a DVB-T system. Its communications are considered as PU communications.
DVB-T abbreviates Digital Television Broadcast - Terrestrial, and as the name implies it is a stan-
dard for wireless digital transmission of TV signals. The standard is administered by the European
Telecommunications Standards Institute (ETSI). The official ETSI web page can be found at [37].
The choice of the DVB-T primary user system is justified by the fact that most of the primary
user systems utilize the OFDM modulation format. The channel models implemented are AWGN,
Rician and Rayleigh channels. The latter two correspond to the two different types of propagation
that have to be handled in practice, namely line-of-sight (LOS) and Non-line-of-sight (NLOS).
Slow fading is simulated by adding log-normal shadowing. The simulation scenarios are genera-
ted by using different combinations of parameters given in Table 1.1. The evaluation framework
for all simulations has been implemented in Matlabr.

Three different scenarios with different properties have been chosen to evaluate the spectral
detection performance. It is assumed that the reader is familiar with common theoretical concepts.
Results presented in this part are obtained as the average of a number of Monte Carlo simula-
tions. For the Monte Carlo simulation, each signal block consists of one symbol which contains
2048 samples. 500 iterations are performed in the simulation. The threshold is computed for the
detectors to have a probability of false alarm PFA = 0.05.

OFDM is the modulation of choice for the three simulation scenarios to be used as evaluation
tools in this report. In OFDM, a wideband channel is divided into a set of narrowband orthogonal
subchannels. OFDM modulation is implemented through digital signal processing via to the FFT
algorithm [38].
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Scenario 1 : OFDM signal in AWGN channel We consider here a DVB-T OFDM signal in an
AWGN channel. It is assumed that the detection performance in AWGN will provide a good
impression of the performance, but it is necessary to extend the simulations to include signal
distortion due to multipath and shadow fading.

Scenario 2 : OFDM signal in Rayleigh multipath fading with shadowing This scenario utilizes
the same DVB-T OFDM signal as scenario 1, but to make the simulations more realistic,
the signal is subjected to Rayleigh multipath fading and shadowing following a log normal
distribution in addition to the AWGN. The maximum Doppler shift of the channel is 100Hz
and the standard deviation for the log normal shadowing is 10dB. Since the fading causes
the channel to be time variant, it is necessary to apply longer averaging than in scenario 1 to
obtain good simulation results. Thus the number of iterations in the Monte Carlo simulation
is increased from 500 to 1000.

Scenario 3 : OFDM signal in Rician multipath fading with shadowing The third simulation sce-
nario utilizes also a DVB-T OFDM signal in Rician multipath fading with shadowing. The
K-factor for the Rician fading is 10, which represents a very strong line of sight component.
The maximum Doppler shift of the channel and the standard deviation for the log normal
shadowing are the same as in the second scenario.

Simulations are important in assessing the performance of the presented spectrum sensing
algorithms. The three scenarios provide different attributes so that the performance can be asses-
sed under different conditions, providing fair conditions before making conclusions. Figure 1.2
presents the detection performances of the presented detectors in the three proposed simulation
scenarios. The simulations are split in two main parts. Part one presents the probability of detec-
tion versus SNR with a fixed PFA = 0.05. Part two evaluates the algorithms in terms of receiver
operating characteristics (ROC). In these simulations, the sensing time is set to 1.12ms.

Figures 1.2 (a), (b) and (c) show the PD versus SNR at a constant false alarm rate for the
five sensing detectors (CD, AD, ED, MMED and KLD) in the three proposed scenarios. From
these figures, we show that the ED has lost its detecting ability when decreasing the SNR. For
sufficiently low SNR, robust detection becomes impossible. The same can be observed for the
KLD. These results come from the fact that the theoretical analysis for the ED and KLD algorithms
assume the noise variance to be known, and the underlying noise to have a perfect stationary
Gaussian distribution. This assumption does not hold. In reality, the noise variance will usually
not be completely stationary. The assumption about the distribution of the noise is also known to
be weak. On the other hand, we find that if knowledge of signal parameters is provided, the CD
and AD can still perform a high probability of detection. Since this group of detection algorithms
requires a priori knowledge about the received signal, they are not blind and are therefore not
directly relevant to the work presented in this thesis. The two proposed detectors in this thesis will
be compared with the KLD and MMED as reference algorithms. In the following chapters we will
show as well the difference between these detectors and the proposed ones. Results in Figures 1.2
(d), (e) and (f) present the ROC curves. All detectors work at a SNR = −7dB condition. From
these curves we show that the CD and AD outperform the others detectors. These results confirm
the ones presented in Figures 1.2 (a), (b) and (c).

Complexity of signal detection process is also a great concern for CR other than detection
performance. Complexity terminology will be the asymptotic O − notation, which is standard
when analyzing algorithms. For readers who are not familiar with this notation, it will be briefly
introduced. The notation is used to describe an asymptotic upper bound and is defined as

O(g(n))={f(n) : ∃ positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) ∀ n ≥ n0}
(1.25)
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FIGURE 1.2 – Monte Carlo simulation results assessing detection performance of a number of
spectrum sensing algorithms using an DVB-T OFDM primary user system : Probability of detec-
tion versus SNR curves with PFA = 0.05 and ROC curves with SNR = −7dB and sensing time
= 1.12ms.
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FIGURE 1.3 – Cooperative spectrum sensing in cognitive radio networks : SU 1 is shadowed over
the reporting channel and SU 3 is shadowed over the sensing channel.

This definition is taken from [39]. This book is an excellent reference on algorithms and analysis
of algorithms.

We summarize the number of multiplications required for each technique in Table 1.2. Note
that p refers to the number of samples and N to the size of the covariance matrix (i.e. number of
observations). From this table, we conclude that the CD, AD and MMED detectors are the most
complex among all, while ED is the least complex among them. For more information about the
complexity study of spectrum sensing methods see [40].

1.5 Cooperative Sensing

The estimation of traffic in a specific geographic area can be done locally (by one SU only).
Alternatively information from different SUs can be combined. In the literature, cooperation is
discussed as a solution to problems that arise in spectrum sensing due to noise uncertainty, fading
and shadowing.

In Figure 1.3, SU 1 is shown to be shadowed by a high building over the sensing channel.
In this case, the CR cannot reliably sense the presence of the PU due to the very low SNR of the
received signal. Then, this CR assumes that the observed channel is vacant and begins to access this

Sensing Method Complexity
CD p2 + O(p log(p))
AD p + O(p log(p))
ED p
MMED Np + O(N3)
KLD O(p)

TABLE 1.2 – Complexity comparison of the different sensing techniques.
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channel while the PU is still in operation. To address this issue, multiple SUs can be coordinated
to perform spectrum sensing cooperatively.

The challenges of cooperative sensing include the development of efficient information sharing
algorithms and increased complexity. Cooperative sensing decreases also the probability of mis-
detections and the probability of false alarms considerably. In addition, cooperation can solve
the hidden PU problem and can decrease sensing time. It can also mitigate the multi-path fading
and shadowing effects, which improve the detection probability. However, the cooperation causes
adverse effects on resource-constrained networks due to the additional operations and overhead
traffic. The advantages and disadvantages of local and cooperative sensing methods are tabulated
in Table 1.3.

Cooperative sensing can be implemented in two fashions : centralized or distributed. These
two methods will be explained in the following sections.

Centralized Sensing In centralized sensing, a central unit collects sensing information from SUs,
identifies the available spectrum and broadcasts this information to other SUs or directly
controls the CR traffic.
The binary sensing results are gathered at a central place which is known as access point [41].
The goal is to mitigate the fading effects of the channel and to increase detection perfor-
mance. For the sensing algorithms presented in [41], the resulting detection and false alarm
rates are given in [42]. In [43], the sensing results are combined in a central node, termed as
master node, for detecting TV channels. Hard and soft information combining methods are
investigated for reducing the probability of missed opportunity. The results presented in [43]
show that soft information-combining outperforms hard information-combining method in
terms of the probability of missed opportunity.

Distributed Sensing In the case of distributed sensing, cognitive nodes share information among
each other but they make their own decisions when they have to determine which part of the
spectrum they can use. Distributed sensing is more advantageous in the sense that there is
no need for a backbone infrastructure.
A distributed collaboration algorithm is proposed in [41]. The collaboration is performed
between two SUs. The user that is closer to primary transmitter has a better chance of de-
tecting the PU transmission and cooperates with a user far away. An algorithm for pairing
SUs without a centralized mechanism is also proposed. In [44], a distributed sensing me-
thod is proposed where SUs share their sensing information among themselves. Only final
decisions are shared in order to minimize the network overhead due to collaboration.

In this work the cooperative spectrum sensing is performed as follows :

Step 1 Every SU performs local spectrum measurements independently and then makes a binary
decision.

Sensing Method Advantages Disadvantages
Non-cooperative Sensing Computational and Hidden node problem
(Local sensing) implementation simplicity Multipath and shadowing
Cooperative Sensing Reduced sensing time Traffic overhead

Higher accuracy The need for a control channel
Mitigate the multi-path fading Additional operations
and shadowing effects

TABLE 1.3 – Local versus cooperative sensing.
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FIGURE 1.4 – Monte Carlo simulation results assessing detection performance of ED and CD
algorithms in terms of PU signal detection in cooperative way using an DVB-T OFDM primary
user signal in AWGN channel and Rayleigh multipath fading with shadowing channel : Probability
of detection versus SNR curves with sensing time = 1.12ms.

Step 2 All the SUs forward their binary decisions to a FC.

Step 3 The FC combines those binary decisions and makes a final decision to infer the absence
or presence of the PU in the observed band.

In the above mentioned cooperative spectrum sensing algorithms, each cooperative partner makes
a binary decision based on its local observation and then forwards one bit of the decision to the FC.
At the FC, all one-bit decisions are fused together according to an ”OR” logic. This cooperative
sensing algorithm is referred to as decision fusion.

Figure 1.4 shows the performance evaluation of ED and CD detectors in a cooperative way
using scenario 1 and scenario 2. Remember that only on scenarios 2 we use a multipath fading
with shadowing channel. From the presented results we show that the detection performance of
the two detectors is improved as the number of cooperative users is increased especially in a hea-
vily shadowed environment (scenario 2). These results prove that the two cooperative detection
schemes allow to mitigate the multi-path fading and shadowing effects, which improves the detec-
tion probability.

1.6 Conclusion

This chapter presented the topic of spectrum sensing for CR and explained how spectrum sen-
sing algorithms can be divided in the two groups of blind and feature algorithms. In addition, the
chapter ended by providing a motivation for why only blind spectrum sensing is being investiga-
ted in this research. Some reference detectors have been presented. An intuitive explanation of the
algorithms along with the important mathematical descriptions should provide the reader with a
sound perspective of common blind and feature spectrum sensing algorithms. This is important
as the two following chapters will start analyzing the problems with these algorithms in the low
signal to noise ratio region, and will present two novel approaches that attempt to mitigate these
problems.
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Chapter 2

Distribution Analysis Based Detection

2.1 Introduction

Literature review in the last chapter shows that there are many proposed strategies and corres-
ponding techniques to achieve efficient spectrum sensing under various conditions. In this chapter,
we propose a blind sensing detector based on the distribution analysis of the PU received signal.
This detector analysis the Kullback-Leibler distance between signal and noise distributions. We
assume that the envelope of Gaussian noise can be modeled using Rayleigh distribution and the
one of signal data can be modeled by Rician distribution. To develop the distribution analysis de-
tector (DAD), we will exploit model selection tools like Akaike information criterion (AIC) and
Akaike weights [10]. AIC criteria was first introduced by Akaike in [11] for model selection. It
was shown in [11] that the classical maximum likelihood principle can be considered to be a me-
thod of asymptotic realization of an optimum estimate with respect to a very general information
theoretic criterion [11]. This criterion was recently used in the literature to estimate the number of
significant eigenvalues of the covariance matrix of a given observation vector [45]. The main goal
within our contribution is to exploit Akaike weights information in order to decide if the distribu-
tion of the received signal fits the noise distribution. Therefore, the Akaike weights derived using
AIC criterion are used as detection rule to decide on the best fit of the distribution of the received
signal. The proposed detector will be compared with the ones presented in the previous chapter.

The flow of the chapter is as follows. In Section 2.2, we give a short review of the basic ideas
of the model selection strategy and we formulate the AIC criterion, which will be used as a base to
develop the DAD algorithm presented in this chapter, and the DED algorithm given in Chapter 3.
Section 2.3 analyzes the Akaike weight information and Section 2.4 provides the motivation as to
why the norm of the Gaussian noise can be modeled using Rayleigh distribution and the signal
data can be modeled as a Rician distribution. In Section 2.5, we present the derivation of AIC
and Akaike weight in our context. The detection algorithm will be developed in Section 2.6 and a
theoretical probability of false alarm will be evaluated in Section 2.7. Performance evaluation and
advantages of the proposed detector are described in Section 2.8 and a comparison with detectors
presented in Chapter 1 is given. We present also in this section the complexity study of this sensing
algorithm. To complete this study, we will perform in Section 2.9 a sensing demonstration based
on the OpenAirInterface platform at EURECOM. The demonstration is composed of two nodes : a
PU with a varying transmission gain and four possible carrier frequencies, and a SU implementing
the DAD algorithm and the ED and CD algorithms, for comparison. The sensing results as well
as their corresponding measured SNR over the four carrier frequencies are displayed in real time.
Finally, Section 2.10 presents the conclusions of this study.
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2.2 Model Selection Strategy

It is assumed that the samples of the received signal are distributed according to an original
probability density function f , called the operating model. The operating model is usually unk-
nown, since only a finite number of observations is available. Therefore, approximating probability
model must be specified using the observed data, in order to estimate the operating model. The
approximating model is denoted as gθ, where the subscript θ indicates the U -dimensional para-
meter vector, which in turn specifies the probability density function. In information theory, the
Kullback-Leibler distance describes the discrepancy between the two probability functions f and
gθ and is given by [11] :

D(f‖gθ)=E{log fX(X)} − E{log gθ(X)}
=

∫
fX(x) log fX(x)dx−

∫
fX(x) log gθ(x)dx (2.1)

=−h(X)−
∫

fX(x) log gθ(x)dx

where the random variable X is distributed according to the original but unknown probability
density function f , and h(.) denotes differential entropy. This distance measure is not directly ap-
plicable, since the original probability density function f is not known. It is known, however, that
the Kullback-Leibler distance is nonnegative, i.e., D(f‖gθ) ≥ 0. This implies that the Kullback-
Leibler discrepancy,

−
∫

fX(x) log gθ(x)dx = h(X) + D(f‖gθ) (2.2)

approaches the differential entropy of X from above for increasing quality of the model gθ. The
differential entropy of X is reached if and only if f = gθ. Applying the weak law of large numbers,
the second term in (2.2) can be approximated by averaging the log-likelihood values given the
model over N independent observations x1, x2, ..., xN according to :

−
∫

fX(x) log gθ(x)dx ≈ − 1
N

N∑

n=1

gθ(xn) (2.3)

The log-likelihood depends on the estimated vector θ, which itself is a function of the actual ob-
servations x1, x2, ..., xN . If another set of observations x̃1, x̃2, ..., x̃N is used, a different Kullback-
Leibler discrepancy would be obtained. The expected Kullback-Leibler discrepancy is given by :

−Eθ

{∫
fX(x) log gθ(x)dx

}
(2.4)

where the expectation is taken with respect to the distribution of the estimated parameter vector θ.
This expression (2.4) cannot be computed, but estimated.

The information theoretic criteria was first introduced by Akaike in [11] for model selection.
Assuming a candidate model, the idea is to decide if the distribution of the observed signal fits the
candidate model. The AIC criterion is an approximately unbiased estimator for (2.4) and is given
by :

AIC=−2
N∑

n=1

log gθ̂(xn) + 2U (2.5)
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The parameter vector θ for each family should be estimated using the minimum discrepancy esti-
mator θ̂, which minimizes the empirical discrepancy. This is the discrepancy between the approxi-
mating model and the model obtained by regarding the observations as the whole population. The
maximum likelihood estimator is the minimum discrepancy estimator for the Kullback-Leibler
discrepancy.

2.3 Model Selection Using Akaike Weight

In this section, we analyze the Akaike weight information introduced by Akaike in [10]
and [11] in order to decide if the distribution of the received signal fits the suitable distribution
or not. Consider a probability distribution parameterized by an unknown parameter θ, associated
with either a known probability density function or a known probability mass function, denoted as
fθ. As a function of θ with x1, x2, ..., xN fixed, the likelihood function is :

L(θ)=fθ(x1, x2, ..., xN )

=
N∏

n=1

fθ(xn) (2.6)

Commonly, one assumes that the data drawn from a particular distribution are i.i.d. with unk-
nown parameters. This considerably simplifies the problem because the log-likelihood can then be
written as follows :

L(θ) =
N∑

n=1

log fθ(xn) (2.7)

The maximum of this expression can then be found numerically using various optimization
algorithms. The method of maximum likelihood estimates θ by finding the value of θ that maxi-
mizes L(θ). Maximum likelihood estimator (MLE) is one of the most used methods to estimate
functions parameters. This contrasts with seeking an unbiased estimator of θ, which may not ne-
cessarily yield the MLE but which will yield a value that (on average) will neither tend to over-
estimate nor under-estimate the true value of θ. The maximum likelihood estimator may not be
unique, or indeed may not even exist. The MLE of the parameters of θ is computed over a set of
samples of length N . We assume that the samples are independent identically distributed (i.i.d.).
The log-likelihood function L∗(θ) is given by :

L∗(θ) =
N∑

n=1

log gθ(xn) (2.8)

Consequently, the MLE expression of θ in our case is :

θ̂=argθ max
1
N

N∑

n=1

log gθ(xn) (2.9)

The AIC is hence described by the following form :

AIC=−2L∗(θ̂) + 2U (2.10)

where U indicates the dimension of the parameter vector θ.
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FIGURE 2.1 – Histogram of the envelope of a captured noise block and data block using an UMTS
signal versus desired Rayleigh and Rician distribution computed analytically, respectively.

Akaike weights can be interpreted as estimate of the probabilities that the corresponding candi-
date distribution show the best modeling fit. It provides another measure of the strength of evidence
for this model, and is given by :

Wj =
e−

1
2
Φj

∑N
i=1 e−

1
2
Φi

(2.11)

for a given distribution j, where Φj denotes the AIC difference defined by :

Φj = AICj −mini AICi (2.12)

where mini AICi denotes the minimum AIC value over all PU signals observations.

2.4 Probability Distribution of a Communication Signal

The probability distribution of communication signals is of vital importance to the analysis
for the DAD detector, as the research is aimed at finding distribution based methods to perform
spectrum sensing in CR. It is hard to completely characterize such distributions due to the stochas-
tic nature of many communication signals, however there are some common properties. In fact,
recall that the distribution of a sum of independent random variables is the convolution of their
distributions [46]. Hence, when the SNR is low, the noise distribution will dominate in the convo-
lution and the resulting distribution will tend to become close to Gaussian even if the signal has
an arbitrary non Gaussian distribution, and the envelope (norm) distribution of the signal is close
to Rayleigh distribution [46]. This property is verified by Figure 2.1 (a) when we use a UMTS
signal with low SNR. Another important property is the contribution of the dominant propagation
paths on the distribution of the communication signal. The envelope distribution of the received
communication signal tend to become close to Rician even if the input has a non Rician distribu-
tion [47] [23]. Figure 2.1 (b) plots the histogram of the envelope of data block samples using a
UMTS signal compared with the desired Rician distribution computed analytically. We tested also
other communication signal types (GSM, WiFi, DVB-T OFDM with different channel models,
etc.), and we found similar results. Hence, for the proposed DAD detector, we assume that the
norm of the Gaussian noise can be modeled using Rayleigh distribution and the signal data can be
modeled as a Rician distribution.
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Therefore, the operating model f (i.e. the original probability density function given in (2.2))
will be compared with Rice and Rayleigh probability density functions. In addition, the AIC equa-
tion is a function of Rice and Rayleigh distributions. As a first step, we proceed in this section to
the derivation of parameter vector θ for both Rayleigh and Rice distribution.

Rayleigh distribution The probability density function for the Rayleigh distribution is given
by :

gRayleigh(x | σ) =
x

σ2
exp

(−x2

2σ2

)
(2.13)

which leads to a log-likelihood function :

L∗Rayleigh(σ) =
p∑

i=1

log xi − p log σ2 − 1
2σ2

p∑

i=1

x2
i (2.14)

where the parameter θ = (σ). The MLE of the parameter σ is given by :

σ̂2 =
1
2p

p∑

i=1

x2
i (2.15)

Rice distribution The probability density function for the Rice distribution is given by :

gRice(x | v, σ) =
x

σ2
exp

(−(x2 + v2)
2σ2

)
I0

(xv

σ2

)
(2.16)

where I0

(
xv
σ2

)
is the modified Bessel function of the first kind with order zero. The approximated

probability density function leads to the following log-likelihood function :

L∗Rice(v, σ)=log

(∏p
i=1 xi

σ2p
exp

(
−

∑p
i=1

(
x2

i + v2
)

2σ2

)
p∏

i=1

I0

(xiv

σ2

))
(2.17)

Parameters v and σ are given by the solution of the following set of equations [48] :




v − 1
p

∑p
i=1 xi

I1
(

xiv

σ2

)

I0
(

xiv

σ2

) = 0

2σ2 + v2 − 1
p

∑p
i=1 x2

i = 0
(2.18)

where I1

(
xiv
σ2

)
= −I0

(
xiv
σ2

)
+ σ2

2xv I0

(
xiv
σ2

)
is the modified Bessel function with order one. When

xiv
σ2 À 0.25 and I0

(
xiv
σ2

)
=

exp
(

xiv

σ2

)
√

2π
xiv

σ2

, (2.18) can be expressed as :

{
v2 + 1

p

∑p
i=1 xiv − σ2

2 = 0
v2 − 1

p

∑p
i=1 x2

i + 2σ2 = 0
(2.19)

Resolving (2.19), the MLE for the parameters v and σ can be expressed as :

v̂ =
−2

∑p
i=1 xi +

√
4
(∑p

i=1 xi

)2 + 5p
∑p

i=1 x2
i

5p
(2.20)

σ̂2 = −1
2
v2 +

1
2p

p∑

i=1

x2
i = −1

2


−2

∑p
i=1 xi +

√
4
( ∑p

i=1 xi

)2 + 5p
∑p

i=1 x2
i

5p




2

+
1
2p

p∑

i=1

x2
i

(2.21)
and the parameter vector θ = (σ, v).
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2.5 Akaike Information Criteria and Akaike Weight Formulation

In this section, we present the derivation of AIC and Akaike weight in our context. In or-
der to show the results of comparison between distributions in a clear manner, we introduce the
Akaike weights WRice and WRayleigh derived from AIC values [49]. Akaike weights for Rice and
Rayleigh can be expressed as :

WRice=
exp

(−1
2ΦRice

)

exp
(−1

2ΦRice

)
+ exp

(−1
2ΦRayleigh

) (2.22)

WRayleigh=
exp

(−1
2ΦRayleigh

)

exp
(−1

2ΦRayleigh

)
+ exp

(−1
2ΦRice

) (2.23)

where

ΦRice=AICRice −min (AICRice, AICRayleigh) (2.24)

ΦRayleigh=AICRayleigh −min (AICRayleigh, AICRice) (2.25)

and

AICRice=−2LRice + 2URice (2.26)

AICRayleigh=−2LRayleigh + 2URayleigh (2.27)

where URayleigh = 1 and URice = 2.

2.6 Distribution Analysis Detector (DAD)

Sub-bands Detection The proposed method is based on the sliding window technique shown
in Figure 2.2. As an example, we use in this figure a frame divided into nw sub-bands. In the
first step, we select a sliding window size with T samples and slide the window over the spectral
band to obtain AIC values for each analysis windows. A time-lag sliding window of L samples
was used to scan all the signals. The size of the analyzed spectrum band and the number of the
sliding windows are denoted by p and nw = p

T , respectively. Therefore, we choose the size of
the observed window in order to estimate parameters θ for Rayleigh and Rice distributions. In
the second step of the DAD detector, we compute the value of AIC and then Akaike weights for
the two distributions. Once we get the corresponding Akaike weights, we shift the window by L
samples till the end of the band. The Akaike weights allow us not only to decide if the distribution
of the received signal fits the suitable distribution, but also provide information about the relative
approximation quality of this distribution.

PU Signal Detection According to the proposed sliding window technique, the DAD detector
can be formulated as a binary hypothesis test. If PU is present, the Akaike weight of Rician dis-
tribution is higher than Akaike weight of Rayleigh distribution, and if PU is absent, we have the
opposite. Therefore, the generalized blind DAD algorithm is given by :

ΥDAD(x) =
{

WRice −WRayleigh < γDAD noise
WRice −WRayleigh > γDAD signal

(2.28)
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FIGURE 2.2 – Sliding window technique : We select a sliding window of size T samples and
slide the window over the spectrum band to obtain AIC values and Akaike weight values for each
analysis windows. A time-lag sliding window of L samples was used to scan all the frame.

According to the system requirement on PFA,DAD, we calculate a proper threshold γDAD. If
AICRice − AICRayleigh > γDAD, we declare that the PU is present, otherwise, we declare the
PU is absent. The threshold expression depends only on PFA,DAD and is given in the following
section.

2.7 DAD False Alarm Probability

Since spectrum sensing is actually a binary hypothesis test, the performance we focus on is
the probability for identifying the signal when the PU is absent (the probability of false alarm
PFA,DAD). We will derive in this section a closed-form expression of PFA,DAD. According to
the sensing steps in Section 2.6, the false alarm occurs when the estimated decision ΥDAD(x) is
smaller than γDAD given that the PU is absent.

According to the presented sensing scheme, the false alarm probability for DAD detector can
be expressed as

PFA,DAD=Pr (WRice −WRayleigh > γDAD|H0)

=Pr

(
exp

(−1
2ΦRice

)− exp
(−1

2ΦRayleigh

)

exp
(−1

2ΦRice

)
+ exp

(−1
2ΦRayleigh

) > γDAD

∣∣∣∣H0

)

=Pr

(
exp

(−1
2AICRice

)− exp
(−1

2AICRayleigh

)

exp
(−1

2AICRice

)
+ exp

(−1
2AICRayleigh

) > γDAD

∣∣∣∣H0

)
(2.29)

According to AIC values for Rice and Rayleigh given in (2.26) and (2.27), we have

PFA,DAD=Pr

(
exp (LRice − 1)− exp (LRayleigh)
exp (LRice − 1) + exp (LRayleigh)

> γDAD

∣∣∣∣H0

)

=Pr

(
exp (LRice)− e exp (LRayleigh)
exp (LRice) + e exp (LRayleigh)

> γDAD

∣∣∣∣H0

)
(2.30)
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where e = exp(1).
Using now (2.14) and (2.17), we obtain

PFA,DAD=Pr




∏p
i=1 xi

σ2p exp
(
−

∑p
i=1(x2

i +v2)
2σ2

)∏p
i=1 I0

(
xiv
σ2

)− e
∏p

i=1 xi

σ2p exp
(
−

∑p
i=1 x2

i

2σ2

)

∏p
i=1 xi

σ2p exp
(
−

∑p
i=1(x2

i +v2)
2σ2

)∏p
i=1 I0

(
xiv
σ2

)
+ e

∏p
i=1 xi

σ2p exp
(
−

∑p
i=1 x2

i
σ2p

) > γDAD

∣∣∣∣H0




=Pr


e− exp

(
− pv2

2σ2

)∏p
i=1 I0

(
xiv
σ2

)

e + exp
(
− pv2

2σ2

)∏p
i=1 I0

(
xiv
σ2

) > γDAD

∣∣∣∣H0
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Using now I0 expression

(
I0

(
xiv
σ2

)
=

exp
(

xiv

σ2

)
√

2π
xiv

σ2

)
, we have

PFA,DAD=Pr




e− exp
(
− pv2

2σ2

)∏p
i=1

(
exp

(
xiv

σ2

)
√

2π
xiv

σ2

)

e + exp
(
− pv2

2σ2

)∏p
i=1

(
exp

(
xiv

σ2

)
√

2π
xiv

σ2

) > γDAD

∣∣∣∣H0




=Pr

(
e(1− γDAD) > (1 + γDAD) exp

(
− pv2

2σ2

) p∏

i=1

(
exp

(
xiv
σ2

)
√

2π xiv
σ2

) ∣∣∣∣H0

)

=Pr

(
e(1− γDAD)
1 + γDAD

(
2πv

σ2

) p
2

exp
(

pv2

2σ2

)
>

exp (
∑p

i=1 xi)

(
∏p

i=1 xi)
1
2

∣∣∣∣H0

)
(2.32)

and finally we obtain

PFA,DAD=Pr




(
p∏

i=1

xi

) 1
2

<
1 + γDAD

e(1− γDAD)

exp
(

p
2 − pv2

σ2 − pv2

2σ2

)

(
2πv
σ2

) p
2

∣∣∣∣H0




=Pr

(
p∏

i=1

xi <

(
1 + γDAD

1− γDAD

)2 (
2πv

σ2

)−p

exp
(

p− 3pv2

σ2
− 2

) ∣∣∣∣H0

)
(2.33)

At hypothesis H0, the distribution of the received signal is assumed as a Gaussian distribution.
Therefore, the distribution of the envelope of this signal is Rayleigh. Substituting (2.15) into (2.19),
we can find that pv2

σ2 → 0. If we introduce the Rician K-factor defined as the ratio of signal power
in dominant component σ2 over the (local-mean) scattered power v, the false alarm probability of
the DAD detector can be approximated as

PFA,DAD=Pr

(
p∏

i=1

xi <

(
1 + γDAD

1− γDAD

)2

(4πK)−p exp (p− 2)
∣∣∣∣H0

)
(2.34)

Applying now the distribution of the product of p independent Rayleigh random variables [50], the
product

∏p
i=1 xi satisfies the distribution of p independent Rayleigh random variables represented

by its CDF [50] given by :

F (t)=
(
2pσ2p

)− 1
2 tGp,1

1,p+1

((
2pσ2p

)−1
t2

∣∣ 1
2
1
2
,..., 1

2
,− 1

2

)
(2.35)
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where G denotes the Meijer G-function [50] defined by :

Gp,1
1,p+1

(
u
∣∣ 1
2
1
2
,..., 1

2
,− 1

2

)
=

1
j2π

∫

L

(
Γ

(
1
2 − s

))p−1 Γ
(

1
2 + s

)

Γ
(

3
2 + s

) u−sds (2.36)

The contour L is chosen so that it separates the poles of the gamma products in the numerator. The
Meijer G-function has been implemented in some commercial mathematical software packages.
Finally, the probability of false alarm of the DAD algorithm can be approximated as

PFA,DAD=F

((
1 + γDAD

1− γDAD

)2

(4πK)−p exp (p− 2)

)
(2.37)

or, alternatively, the threshold can be expressed as

γDAD=

√
(4πK)p F−1 (PFA,DAD) exp (2− p)− 1√
(4πK)p F−1 (PFA,DAD) exp (2− p) + 1

(2.38)

Note that Meijer’s G-function is a standard built-in function in most of the well known mathema-
tical software packages, such as Matlabr which used in this work.

From (2.37), it is clear that the probability of false alarm is independent of noise variances
σ2. Therefore, the proposed sensing algorithm based on distribution analysis is robust in practical
applications. This remark will be verified in the following section.

2.8 Performance Evaluation

In this section, we present some numerical examples to demonstrate the effectiveness of the
proposed sensing scheme and to confirm the theoretical analysis.

2.8.1 Simulation and Analytical Results Comparison

In this subsection, we present a comparison between simulation and analytical results to
confirm the theoretical results given in Section 2.7. For the proposed detector the threshold is
computed based on p (the length of PU received signal in samples) and PFA,DAD value. Table 2.1
shows the comparison results for the thresholds γDAD for the DAD detector with PFA = 0.05
and for PFA,DAD using different p values. In the presented results SNR = −7dB. One can find
that, the simulation results are slightly lower than the analytical results. This is due to the approxi-
mation we have used during the derivation of PFA,DAD and γDAD for the presented detector. The
presented table confirms the very good match between simulation and theoretic results.

p = 100 p = 150 p = 200

Simulation results for DAD detector
PFA,DAD 0.0571 0.0544 0.0502

γDAD 0.9948 0.9814 0.9561

Analytical results for DAD detector
PFA,DAD 0.0582 0.0563 0.0529

γDAD 0.9965 0.9907 0.9614

TABLE 2.1 – Simulation and analytical results of thresholds values γDAD with PFA = 0.05 and
probability of false alarm values for DAD detector with different p and SNR = −7dB.



34 2. DISTRIBUTION ANALYSIS BASED DETECTION

9.5 9.51 9.52 9.53 9.54 9.55 9.56

x 10
8

0

0.5

1

W
Rice

Frequancy [Hz]

9.5 9.51 9.52 9.53 9.54 9.55 9.56

x 10
8

0

0.5

1

W
Rayleigh

Frequancy [Hz]

9.5 9.51 9.52 9.53 9.54 9.55 9.56

x 10
8

−1
0
1

x 10
5 GSM Signal

Frequancy [Hz]

2.427 2.428 2.429 2.43 2.431 2.432 2.433

x 10
9

0

0.5

1
W

Rice

Frequancy [Hz]

2.427 2.428 2.429 2.43 2.431 2.432 2.433

x 10
9

0

0.5

1

W
Rayleigh

Frequancy [Hz]

2.427 2.428 2.429 2.43 2.431 2.432 2.433

x 10
9

−1
0
1

x 10
5 WiFi Signal

Frequancy [Hz]

(a) GSM signal (b) WiFi signal

FIGURE 2.3 – Performance evaluation of the DAD detector in terms of PU vacant sub-bands
detection for : (a) Baseband GSM signal at the carrier of 953MHz using sliding window technique
with T = 533 samples which correspond to the GSM bandwidth (equal to 200kHz) and L = 533
samples, (b) Baseband WiFi signal at the carrier of 2430MHz using sliding window technique with
T = 1332 samples which correspond to the WiFi bandwidth (equal to 500kHz) and L = 1332
samples.

2.8.2 Non-Cooperative Sensing Evaluation

In this subsection, the spectrum sensing is done locally. In a first step, we focus on the per-
formance of the proposed detector in detecting vacant spectrum sub-bands in the PU band using
the sliding window technique given by Figure 2.2. The validation of this detection mode is based
on experimental measurements captured by EURECOM’s RF Agile Platform [51]. We select a
sliding window size T samples and slide the window over the spectrum band to obtain AIC values
and Akaike weight values for each analysis windows. A time-lag sliding window of L samples
was used to scan all the signal. The test statistic used in this case was given by (2.22) and (2.23).
In a second step, we evaluate the performance of the proposed detector in terms of PU presence
detection using the binary hypothesis test given in (2.28). We use in this part the scenarios test
described in Section 1.4.3 using the DVB-T OFDM system.

Sub-bands Detection In order to evaluate the performances of the spectrum sensing method
in terms of spectrum holes detection, measurements by the RF Agile Platform at EURECOM are
considered [51]. RF Agile Platform covers an RF band from 200MHz to 7.5GHz, with a maximum
bandwidth of 20MHz. It is able to receive and transmit almost all the existing commercial radio
access technologies. Concerning the transmitted power, the target is comparable to existing GSM
terminals (+21dBm). On the receiver side, the noise figure is from 8 to 12dB, depending on the
frequency band. The RF equipment include up to 4 antennas and 4 RF chains. In addition, it allows
for experimenting with system on-chip architectures for wireless communications.
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At first stage, we focus on GSM signals at carrier of 953MHz with a bandwidth of 7680MHz.
The received signal in the frequency domain is shown in Figure 2.3 (a). Time channel samples
are stored in a vector of size p (with p equal to 20480 samples). Parameters vRice, σRice and
σRayleigh are estimated over T = 533 samples which correspond to the GSM bandwidth (equal
to 200kHz). From Figure 2.3 (a), it is clear that only sub-bands around 950MHz, 951.5MHz,
954.5MHz and 956MHz contain data. The remaining sub-bands are idle. Figure 2.3 (a) depicts
Akaike weight values for Rice and Rayleigh distributions obtained from the GSM signal. These
results demonstrate that the DAD detector estimates efficiently the distribution of the received
signal. In fact, when WRice → 1 (or WRayleigh → 0) we show that the PU is present, otherwise
(i.e. WRice → 0), we show that the PU is absent.

At second stage, we considered a WiFi signal at the carrier of 2430MHz. The size of the sli-
ding window is around 500kHz. From Figure 2.3 (b) we can see that similar to the case of GSM
signal, we obtain interesting results in terms of sub-bands detection for the proposed blind spec-
trum sensing technique.

PU Signal Detection We analyze now the performance of the DAD detector, in comparison
with detectors presented in Chapter 1, in detecting primary signals. We use here the binary hy-
pothesis test given by (2.28). We choose proper performance criteria given by the probability of
false alarm PFA and the probability of detection PD, in the three proposed simulation scenarios
presented in Subsection 1.4.3.

Figures 2.4 (a), (b) and (c) depict the detection comparison of the DAD detector with CD, ED
and KLD detectors in the three proposed scenarios. From the simulation results, we see that the
CD detector performs the best. Subsequent to the CD detector is the proposed DAD detector, with
approximately 2dB reduced performance compared to the CD, and ED detector, approximately
3dB behind CD. The worst performance is obtained by the KLD detector, which shows a perfor-
mance reduction of approximately 5dB compared to CD detector. The ROC curves in Figures 2.4
(d), (e) and (f) for all detectors can be observed to have very similar slopes. Hence, the proposed
detector exhibit very interesting results in term of spectrum detection in a perfectly blind way.

Two things can be inferred from this. It is expected that if knowledge of signal parameters is
provided, feature detectors are the optimal schemes for detecting the PU signal. These expectations
are confirmed when considering the simulation results seen in Figure 2.4. As expected, the CD
detector gives the best performance in the three scenarios cases. The other thing is to expect that the
proposed DAD detector have best distribution estimation compared with the KLD. Recall that the
KLD algorithm is based on the measurement of the distance between two probability distributions,
the estimated received PU signal distribution and a generated Gaussian distribution. On the other
hand, the DAD algorithm estimates distributions parameters directly from the received signal. This
confirms that the proposed technique is the optimal for estimating the PU signal distribution.

When considering the simulation results for scenario 2 and scenario 3, another obvious fact
is observed. It is clearly seen how introducing channel distortion in terms of multipath and sha-
dow fading clearly deteriorates the detection performance. While the detection performance under
AWGN dropped rapidly from 1 to PFA over a range of about 10dB, the slope of the detection
curve falls off considerably slower, extending the SNR range of the drop to at least 30dB, espe-
cially for scenario 3. Recall that the Rice factor for the multipath fading in scenario is K = 10,
and that this corresponds to a very strong LOS component compared to the multipath components.
Hence the Rician multipath fading is expected not to cause significant performance degradation.
The shadow fading on the other hand, has a standard deviation of 12dB, and can be expected to
decrease performance over a wide range of SNRs. This is clearly seen as the case in Figure 2.4 (c).
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FIGURE 2.4 – Performance evaluation of the DAD detector in terms of PU signal detection in non-
cooperative way using an DVB-T OFDM primary user system : Probability of detection versus
SNR curves with PFA = 0.05 and ROC curves with SNR = −7dB, and, sensing time = 1.12ms
and p = 2048.
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FIGURE 2.5 – Performance evaluation of the DAD detector in terms of PU signal detection in
cooperative way using an DVB-T OFDM primary user system : Probability of detection versus
SNR curves with PFA = 0.05 and the required SNR versus the number of collaborating users M .

2.8.3 Cooperative Sensing Evaluation

In this part, we consider a wireless CRN with a collection of users randomly distributed over
the geographical area. The cooperative sensing scenario system was described in Section 1.5. In
this scenario, only binary decisions are sent to the FC to make the final global decision.

In Figures 2.5 (a), (b) and (c), we present the detection performances of the cooperative spec-
trum sensing method for multiple users in the three proposed simulation scenarios. These figures
show the PD versus SNR. From the presented results, it is seen that the detection performance of
the DAD is improved as the number of cooperative users is increased. Performance gain of roughly
1dB for scenario 1 and 3dB using scenarios 2 and 3 is obtained from the cooperative sensing. This
confirms that using cooperation between SUs allows for mitigation of the multi-path fading and
shadowing effects.

Figure 2.5 (d) provides plots of SNR versus the number of collaborating users M for different
PD values using scenario 3. For each curve, the decision threshold is chosen such that PFA = 0.05.
The results show that there is significant improvement in the performance for spectrum sensing in
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FIGURE 2.6 – Simulation results assessing the performance in terms of execution time for the
DAD detector in comparison with three detectors : Execution time versus the number of samples
of the received DVB-T OFDM primary user signal.

terms of SNR in detecting the PU by performing cooperative spectrum sensing, especially when
the number of the cooperating cognitive users is large in the network. This is the main advantage
gained by performing cooperative spectrum sensing by using the spectral sensing information
obtained at the individual users. In fact, results indicate a significant improvement in terms of the
SNR required for detection. In particular, to achieve PD = 0.99, local spectrum sensing requires
SNR = −2dB while collaborative sensing with M = 10 only needs SNR of −13dB for the
individual users. In addition, we remark that the number of collaborating users increases with the
value of probability of detection especially at low SNR region. As an example, having SNR =
−14dB, more than 99% of the occupied bands can be correctly detected with 20 users. On the
other hand, for the same SNR, 90% of occupied bands is detected with M = 4 collaborating
users.

2.8.4 Complexity Study

Using the implementation steps of the DAD detector, we will study in this subsection the com-
plexity required to derive its sensing algorithm. It will also provide simulation results assessing
the performance in terms of execution time for the proposed algorithm in comparison with the
reference algorithms described in Chapter 1.

The complexity of the algorithm is measured through the number of complex multiplications
that the algorithm has to perform for the calculation of the test statistic. It is difficult to say anything
exact about the computational complexity of the proposed algorithm since this depends on the
implementation of the sub functions. However, when considering the pseudo code, some main
points can be noted. Complexity of the DAD algorithm is dominated by the computation of σ̂2 and
v̂. The running time of σ̂2 and v̂ depends on the implementation, but can in general be done in 2p
time since it only requires 2p multiplications.

To get an impression of the relative performance, the execution times have been recorded for
various input sizes. The input signal is circularly symmetric complex Gaussian noise. Execution
time has been measured by using the Matlabr stopwatch function tic/toc. Simulations were per-
formed on a laptop computer with a 1.6GHz CPU. Results from the simulations can be seen in
Figure 2.6. From this figure, it becomes clear that the former discussion on DAD algorithm perfor-
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(a) CardBus MIMO I (b) The sensing demonstration.

FIGURE 2.7 – The sensing demonstration using two laptops, one for transmission and one for
reception, equipped with the CardBus MIMO I data acquisition card and two antennas.

mance was accurate. The running time of the DAD algorithm clearly dominates when the number
of input samples increases. It is also seen that the proposed algorithm have execution times that
are of one to two orders of magnitude greater than the ED algorithm and smaller than CD algo-
rithm. This was expected as the amount of computation to be performed for the ED and the DAD
proposed detector is very limited.

2.9 Implementation of DAD using OpenAirInterface

In this section, we will present the sensing module implementation. This implementation is
based on the OpenAirInterface platform available at EURECOM [51] [52]. The aim of the de-
monstration is first to illustrate the spectrum sensing concept and second to assess the detection
performances of the proposed DAD detector which will be compared with ED and CD detectors.
Only the sensing and transmission of sensing information will be performed for the three detec-
tors. In the rest of this section, we will present the OpenAirInterfce platform and then the main
steps of the demonstration.

2.9.1 OpenAirInterfce Platform

The spectrum sensing demonstration that we performed is based on the OpenAirInterface de-
velopment platform at EURECOM [51]. The platform consists of dual-RF CardBus/PCMCIA data
acquisition cards called CardBus MIMO I (see Figure 2.7 (a)). The RF section is time-division du-
plex and operates at 1.900-1.920GHz with 5MHz channels and 21dBm transmit power per antenna
for an OFDM waveform. EURECOM has a frequency allocation for experimentation around its
premises in Sophia Antipolis. The cards house a medium-scale FPGA (Xilinx X2CV3000) allo-
wing for an embedded HW/SW system implementing the physical layer. Besides implementation
in the FPGA, for advanced PHY algorithms and real-time testing prior to HW implementation,
the physical (PHY) layer is usually run in real-time on the host PC under the real-time opera-
ting system (RTOS) RTAI. The PHY layer of the platform targets WiMax and UMTS LTE like
networks and thus uses multiple-input multiple-output orthogonal frequency division multiples
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(a) GUI Transmitter (b) GUI Receiver

FIGURE 2.8 – Graphical user interface for the transmitter and the receiver side of the sensing
demonstration.

access (MIMO-OFDMA) as modulation and multiple access technique. The MIMO-OFDMA sys-
tem provides the means for transmitting several multiple-bitrate streams (multiplexed over subcar-
riers and antennas) in parallel. The physical resources are organized in frames of OFDM symbols.
A nominal OFDMA configuration is shown in Table 2.2. One frame consists of 64 symbols and is
divided in an uplink transmission time interval (TTI) and a downlink TTI. More information can
be found on the OpenAirInterface web-site [53].

2.9.2 Sensing Demonstration

As we can see from Figure 2.7 (b), the demonstration consists of two laptops, one for transmis-
sion and one for reception, each of them is equipped with the CardBus MIMO1 data acquisition
cards and two antennas. To simulate the SNR variation, the transmission gain is adjusted within
the interval [0-256]. However the reception gain can be set manually or (by default) automatically.
Two sensing algorithms were selected, in addition with the DAD algorithm (the ED and CD). They
are running continuously and their results are graphically displayed in real time. At reception side,
we developed a graphical user interface (GUI) allowing the user to select one of the four sub-bands
(with 1.25MHz of width) of the EURECOM frequency allocation around 1917MHz, the transmis-
sion gain and running/stopping the transmission. At reception side, another GUI is developed and
displays, in real time, the measured SNR and the detection results of the sensing algorithms in
each sub-band. The GUI transmitter and receiver are given by Figure 2.8.

Sampling rate 7.68 Msamp/s
Frame length 64 symbols (2.67 ms)

Symbol (DFT/IDFT) size 256 samples
Prefix length 64 samples

Useful carriers 160

TABLE 2.2 – The transmitted OFDM signal parameters
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2.10 Conclusion

Chapter 1 has introduced the problem of spectrum sensing in CR, presented an analysis of
problems with existing detectors. This chapter, however, proposed a novel algorithm based on
the distribution analysis of the PU signal which provides improved performance, especially in
the low SNR, and, with low complexity and blindly. This chapter provided also a number of
simulations aimed at assessing the performance of the proposed detector in comparison with the
reference detectors. A sensing demonstrator was presented in the last part of this chapter, based on
the OpenAirInterface platform at EURECOM. In the following chapter, we will present a second
blind sensing detector based on the dimension estimation of the PU received signal.
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Chapter 3

Dimension Estimation Based Detection

3.1 Introduction

The work presented in the previous chapter suggested to use model selection tools like AIC
criteria and Akaike weight as a promising technique in the context of CR sensing. In this chapter,
however, we adopt the same framework to detect PU presence in the radio spectrum. The AIC
and MDL criterions were investigated in order to sense the signal presence over the spectrum
bandwidth. We focus on analyzing the number of significant eigenvalues determined by the value
which minimizes the AIC and/or MDL criterion and conclude on the nature of the sensed band.
Specifically, we will show that the number of significant eigenvalues is directly related to the
presence/absance of data in the signal. In particular, when a PU signal is present, we observe a set
of dominant eigenvalues which represents the primary system subspace. This information will be
used as a detection rule for the DED detector.

The rest of the chapter is organized as follows. Section 3.2 discusses the prime condition
for making the information theoretic criteria applicable to spectrum sensing. We will give in this
section an explicit model for the application of the information theoretic criteria in our context ;
the over sampling solution. In Section 3.3 we will formulate the two users selection tools used
throughout the development of the proposed algorithm. The DED algorithm will be presented in
Section 3.4 using AIC and MDL criteria. We will present two kinds of algorithms : Sub-bands
detection algorithm using sliding window technique and PU signal presence detection algorithm
using a binary hypothesis test. Furthermore, we derive in Section 3.5 and Section 3.6 closed-
form expressions of false alarm probabilities for a given threshold using both AIC and MDL
criteria, respectively. Performance evaluation and advantages will be described in Section 3.7 and
a comparison of the proposed detector with reference detectors will be given. The performance will
be assessed under different conditions, using the three common simulation scenarios presented in
Subsection 1.4.3 and experimental measurements captured by EURECOM RF Agile Platform. We
will show in this section the effect of the DED detector on both non-cooperative and cooperative
CRN. In addition, we will present the limits of this method by studying the complexity required for
sensing. We will show that the major complexity of this method comes from the computation of the
covariance matrix and the eigenvalue decomposition. Finally, Section 3.8 presents the conclusions
of this chapter.
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3.2 Information Theoretic Criteria Constraint

In this section, we will provide the background of information theoretic criteria. The general
problem for model selection using information theoretic criteria is : Given a set of N observations
{x1, x2, ..., xN} and a family of models which are represented by a parameterized family of pro-
bability density functions f , determine the best fit model. There are two well-known criteria that
have been widely used : AIC criterion and MDL criterion. Consider the system model described
in (1.1) and reformulated here as a linear convolution with a discrete vector of length p represented
by a matrix-vector product :

xi = Asi + ni (3.1)

where

xi=[x(ip− p + 1) x(ip− p + 2) . . . x(ip)]T (3.2)

A is a p× (l + p− 1) channel matrix defined as

A=




a(0) a(1) · · · a(l − 1) 0 0 · · · 0
0 a(0) · · · a(l − 2) a(l − 1) 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 a(0) a(1) · · · a(l − 2) a(l − 1)


 (3.3)

si=[s(ip− p + 1) s(ip− p + 2) . . . s(ip)]T (3.4)

and

ni=[n(ip− p + 1) n(ip− p + 2) . . . n(ip)]T (3.5)

The sampled channel have a finite discrete impulse response of length l taps. From (3.1) all the
possible numbers of source signals correspond to a family of different parameterized models. The-
refore, the estimation of the number of source signals can be characterized as the model selection
problem and both AIC criterion and MDL criterion can be applied. Motivated by the fact that the
information theoretic criteria have been used to effectively estimate the number of source signals
in array processing, it can certainly be applied to detect the presence of PUs. As discussed in Chap-
ter 1, spectrum sensing can be formulated as a binary hypothesis test. When the PU is absent, the
received signal xn is only the white noise samples, so the estimated number of source signals via
information theoretic criteria (AIC or MDL) should be zero. When the PU is present, the number
of source signal (including signal transmitted by the PU) must be larger than zero, even though
the exact number estimated by information theoretic criteria may not be accurate under low SNR
region. Hence, by comparing the estimated number of source signals with zero, we can detect the
presence of the PU.

Now, comparing (3.1) with (1.1), we find that a major difference is that the A in our consi-
dered system model is an under-determined matrix, i.e., the order of column is larger than the
order of row. Therefore, the information theoretic criteria are not directly applicable here [49].
To construct an over-determined channel matrix A, one needs to enlarge the observation space.
Obviously, simply increasing the observation window A does not work. Here we propose to ex-
pand the observation space using one of the following two methods. One is to increase the spatial
dimensionality by employing multiple receive antennas at the SU and the other is to increase the
time dimensionality by over-sampling the received signals. It turns out that the two methods are
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equivalent to each other. Hence we shall focus on the over-sampling approach hereafter. In spe-
cific, suppose that the over-sampling factor is k, i.e., the received baseband signal is sampled k
times in one symbol. Redefine (3.2) and (3.5) as

xi=[x(ikp− kp + 1) x(ikp− kp + 2) . . . x(ikp)]T (3.6)

ni=[n(ikp− kp + 1) n(ikp− kp + 2) . . . n(ikp)]T (3.7)

Then, the new channel matrix A becomes a kp× (l + p− 1) matrix

A=




a1(0) a1(1) · · · a1(l − 1) 0 0 · · · 0
...

...
...

...
...

...
ak(0) ak(1) · · · ak(l − 1) 0 0 · · · 0

0 a1(0) · · · a1(l − 2) a1(l − 1) 0 · · · 0
...

...
...

...
...

...
0 ak(0) · · · ak(l − 2) ak(l − 1) 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 a1(0) a1(1) · · · a1(l − 2) a1(l − 1)
...

...
...

...
...

...
0 · · · 0 ak(0) ak(1) · · · ak(l − 2) ak(l − 1)




(3.8)

Here, ak(i), for i = 0...l−1, denotes the k-th over-sampling point of the i-th channel tap. To ensure
that A is now an over-determined matrix (the order of row is larger than the order of column), we
need to have

k>
l + p− 1

p
(3.9)

or, alternatively,

p>
l − 1
k − 1

(3.10)

Given this over-determined channel matrix in (3.8), we can now readily apply the information
theoretic criteria to develop a blind sensing algorithm.

3.3 Information Theoretic Criteria

The first step of the proposed sensing algorithm is the calculation of the covariance matrix
R̂ of received signals {x1, x2, ..., xN}. Then, we obtain the eigenvalues of R̂ through eigenvalue
decomposition technique, and we compute finally AIC and MDL values to estimate the dimension
of the PU signal. In the rest of this section, we will define the covariance matrix in our context.
We will reformulate also the AIC formula, based on (2.5), that will be used throughout the deve-
lopment of the DED algorithm. We will define also the minimum description length (MDL) used
as a second tool in the development of the DED detector. To compute AIC and MDL values, we
need to estimate eigenvalues according to the covariance matrix of the received signal. From the
estimation values of AIC and MDL, we make decision about the presence/absence of PU signal.

Let p be the length of one observation x ∈ {x1, x2, ..., xN} (i.e. one PU received signal) and
q the length of the transmitted signal s and the additive noise n. Our goal within this part is to
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determine the value of q from N observations of x (i.e. the dimension of the PU received signal).
Because the noise is zero mean and independent of the signals, it follows that the covariance matrix
of x is given by :

R = ASAH + σ2I (3.11)

with S denoting the covariance matrix of the transmitted signal s, i.e., S = E{ssH}, and σ2 denotes
the noise power. Furthermore, if q uncorrelated signals are present, the q − p smallest eigenvalues
of R are equal to σ2. From the covariance matrix expression given by (3.11) and using linear
algebra, let’s consider the following family of covariance matrix :

R(k) =
k∑

i=1

(λi − σ2)ViVH
i + σ2I (3.12)

where λ1, ..., λk and V1, ..., Vk are, respectively, the eigenvalues and eigenvectors of R(k). Note
that k ranges over the set of all possible numbers of degrees of freedom (DoF), i.e. k = 0, 1, ..., p−
1. The parameter vector θ given by equation (2.2), is a function of the eigenvalues and eigenvectors
and is given by :

θ = (λ1, ..., λk, σ
2, V1, ..., Vk) (3.13)

The number of signals is determined from the estimated covariance matrix R̂ defined by :

R̂ =
1
N

N∑

n=1

xnxH
n (3.14)

where xn|{n=1,...,N} are the N independent observations. Therefore, we need to compute θ̂, the
estimated value of θ. We reformulate then the AIC criterion based on equation (2.5) as a function
of (3.13). If λ̂1, λ̂2, ..., λ̂q are the eigenvalues of R̂ in the decreasing order then [49] [12] :

AIC(k) = −2 log




∏p
i=k+1 λ̂

1
p−k

i

1
p−k

∑p
i=k+1 λ̂i




(p−k)N

+ 2k(2p− k) (3.15)

Inspired by Akaike work, Schwartz [12] and Rissanen [54] have an approach quite different.
In [12], Schwartz approached the problem by bayesian arguments. However Rissanen based his
work on information theoretic arguments [54]. It turns out that in the large-sample limit, both
Schwartz’s and Rissanen’s approaches yield the same criterion, given by [49] :

MDL=−
N∑

n=1

log gθ̂(xn) + 2U log N (3.16)

A comprehensive survey of these concepts, among others, can be found in [55]. Using the same
notations given in (3.15), the resulting cost function MDL has the following form

MDL(k) = − log




∏p
i=k+1 λ̂

1
p−k

i

1
p−k

∑p
i=k+1 λ̂i




(p−k)N

+
k

2
(2p− k) log N (3.17)

The number of DoF, possibly the number of significant eigenvalues, is determined as the value
of k ∈ {0, 1, ..., p − 1} which minimizes the value of AIC and/or the value of MDL. Figures 3.1
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(a) Data block (b) Noise block

FIGURE 3.1 – Akaike information criterion and minimum description length of captured noise
block samples and data block samples using an UMTS signal.

(a) and (b) present the computed number of DoF obtained by AIC and MDL criterion following
(3.15) and (3.17), respectively. We show in these two figures the behavior of the AIC and MDL
curves as function of the eigenvalues index for an occupied and vacant UMTS band, respectively.
The dimension of the covariance matrix is equal to 800 (i.e. N = 800 observations) and the length
of the received signals is 20480 samples. Based on (3.15) and (3.17), we determine the minimum
of AIC and MDL and we obtain then the number of significant eigenvalues. From Figures 3.1 (a),
we see clearly that the position of AICmin and MDLmin are located at a position of k 6= 0 for the
occupied spectrum band, and, at k = 0 for the vacant spectrum band as given by Figures 3.1 (b).

The number of significant eigenvalues (SE) is determined by the value which minimizes AIC
and/or MDL (p and q), and is given by [56] [27] :

SE =
{

q noise
p signal

(3.18)

According to (3.18), the number of significant eigenvalues in the first case (Figures 3.1 (a)) is
equal to SE = p = 300 and SE = q = 1000 for the second case (Figures 3.1 (b)).

3.4 Dimension Estimation Detector (DED)

Sub-bands Detection The previous discussion suggests that the number of significant eigen-
values concludes on the nature of the sensed sub-bands. Based on this result, we propose in the
rest of this section the DED algorithm. Using the same sliding window technique as the DED
given by Figure 2.2, we estimate the covariance matrix R̂ and compute AIC values for each win-
dow. The minimum of these values gives the number of significant eigenvalues. Therefore, for
each sliding window, we compute the number of significant eigenvalues. If the analysis window
contains a noise signal, the position of AICmin and/or MDLmin is located at 0. Else, the position
of these two values gives the dimension of the analyzed window. The idea here is to exploit the
slope change of the signal space dimension curve. This slope change, from positive to negative
trend, is representative of the transition from a vacant band to an occupied band (and vice versa).
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PU Signal Detection Motivated by the fact that the AIC and MDL criteria have been used
to effectively estimate the dimension of the PU received signals and to determine the spectrum
holes in the spectrum band, it can certainly be applied to detect the presence of PUs. As discussed
above, spectrum sensing can be formulated as a binary hypothesis test. When the PU is absent, the
received signal x is only the white noise samples, so the AIC curve, for example, monotonically
increases, as shown in Figure 3.1 (b). Therefore, AIC(0) < AIC(k), ∀k ∈ {1, ..., p − 1}, which
can be rewired as AIC(0) < AIC(1). On the other hand, when the PU is present, the AIC curve
monotonically decreases from AIC(0) to AICmin, as shown in Figure 3.1 (a). Similarly, we can
write that AIC(0) > AIC(1) if PU is present. Hence, the generalized blind DED using AIC criteria
can be given by

ΥDED−AIC(x) =
{

AIC(0)− AIC(1) < γDED−AIC noise
AIC(0)− AIC(1) > γDED−AIC signal

(3.19)

The same properties can be founded using MDL criteria and the DED static test is given in this
case by

ΥDED−MDL(x) =
{

MDL(0)−MDL(1) < γDED−MDL noise
MDL(0)−MDL(1) > γDED−MDL signal

(3.20)

We define here the two thresholds γDED−AIC and γDED−MDL in order to decide on the nature
of the received signal. These thresholds depend only on PFA and are calculated in Section 3.5 and
Section 3.6, respectively.

3.5 DED-AIC False Alarm Probability

According to the sensing steps in Section 3.4, the false alarm of the DED using AIC criteria
occurs when the estimated AIC values verify (3.19) given that the PU is absent or present. The test
static ΥDED−AIC(x) of the proposed detector is

ΥDED−AIC(x) = AIC(0)− AIC(1) (3.21)

Therefore, the probability of false alarm can be expressed as

PFA,DED−AIC≈Pr

(
AIC(0)− AIC(1) > γDED−AIC |H0

)
(3.22)

According to the AIC function defined in (3.15), we have

PFA,DED−AIC=Pr
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 (3.23)

At hypothesis H0 we have

1
p

p∑

i=1

λ̂i ≈ 1
p− 1

p∑

i=2

λ̂i≈σ2 (3.24)
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Substituting (3.24) into (3.23) yields :

PFA,DED−AIC=Pr

(
σ2p

σ2p−2λ̂1

> exp

(
4p− 2 + γDED−AIC

2N

) ∣∣∣∣H0

)

=Pr

(
λ̂1

σ2
< exp

(
2− 4p− γDED−AIC

2N

) ∣∣∣∣H0

)
(3.25)

Let µ =
(√

N +
√

p
)2

and ν =
(√

N +
√

p
)(

1√
N

+ 1√
p

) 1
3 . Then

N
λ̂1
σ2−µ

ν converges, with
probability one, to the Tracy-Widom distribution of order two [57]. The false alarm probability
can be rewritten as

PFA,DED−AIC=Pr


N λ̂1

σ2 − µ

ν
<

Nexp
(

2−4p−γDED−AIC

2N

)
− µ

ν

∣∣∣∣H0


 (3.26)

Let F2 denote the cumulative density function (CDF) for the distribution of Tracy-Widom of order
two given by [57] :

F2(t)=exp
(
−

∫ ∞

t
(u− t)h2(u)du

)
(3.27)

where h(u) is the solution of the nonlinear Painlevé II differential equation [57] :

h(u)=uh(u) + 2h3(u) (3.28)

Therefore, the probability of false alarm of the DED algorithm using AIC criteria can be approxi-
mated as

PFA,DED−AIC=F2


Nexp

(
2−4p−γDED−AIC

2N

)
− µ

ν


 (3.29)

or, equivalently

Nexp
(

2−4p−γDED−AIC

2N

)
− µ

ν
=F−1

2 (PFA,DED−AIC) (3.30)

we finally obtain the threshold

γDED−AIC=2− 4p− 2N ln
(

νF−1
2 (PFA,DED−AIC) + µ

N

)
(3.31)

Generally, it is difficult to evaluate the function F2. Fortunately, it can be computed using Matlabr [57].

3.6 DED-MDL False Alarm Probability

Similar with the above derivation, when the MDL criterion is applied, we only need to modify
the step in (3.23) as

PFA,DED−MDL=Pr
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 (3.32)
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p = 100 p = 150 p = 200

Simulation results for DED detector

PFA,DED−AIC 0.0531 0.0518 0.0504
PFA,DED−MDL 0.0549 0.0533 0.0520

γDED−AIC 3.8571e04 2.5901e04 2.1521e04
γDED−MDL 3.6133e04 2.0979e04 1.9561e04

Analytical results for DED detector

PFA,DED−AIC 0.0500 0.0500 0.0500
PFA,DED−MDL 0.0500 0.0500 0.0500

γDED−AIC 3.7623e04 2.5274e04 1.9846e04
γDED−MDL 3.4843e04 1.8259e04 1.7540e04

TABLE 3.1 – Simulation and analytical results of thresholds values γDED−AIC and γDED−MDL

with PFA = 0.05 and probability of false alarm values for DED detector using AIC and MDL
criteria with different p, N = 1000 and SNR = −7dB.

We consider the same supposition given by (3.24), where the received signal involves only the
noise samples. Therefore, (3.32) can be written as

PFA,DED−MDL=Pr

(
λ̂1

σ2
< exp

(
γDED−MDL +

(
p− 1

2

)
log N

N

)∣∣∣∣H0

)
(3.33)

Using the Tracy-Widom proposition, the false alarm probability of the DED algorithm using MDL
criteria can be rewritten as

PFA,DED−MDL=F2




Nexp

(
γDED−MDL+(p− 1

2) log N

N

)
− µ

ν


 (3.34)

where µ and ν are defined in the last section, and the threshold is given by

γDED−MDL=
(

p− 1
2

)
log N −N ln

(
νF−1

2 (PFA,DED−MDL) + µ

N

)
(3.35)

3.7 Performance Evaluation

In this section, we will provide a number of simulations aiming to asses the performance of the
proposed detector in comparison to the reference detectors presented in Chapter 1. We will present
also some numerical examples to proove the effectiveness of the proposed sensing detector and to
confirm the theoretical analysis.

3.7.1 Simulation and Analytical Results Comparison

When deriving the probabilities of false alarm in Section 3.5 and Section 3.6, it was assumed
that 1

p

∑p
i=1 λ̂i ≈ 1

p−1

∑p
i=2 λ̂i ≈ σ2 at hypothesis H0. This assumption is known not to be

correct, but it was argued that it should be sufficient to obtain good theoretical results for the
probability of false alarm. Note that, for the DED the threshold is not related to noise power and
is computed based only on N , p and PFA, irrespective of signal and noise, for the two cases
using AIC and MDL criteria. The comparison results for γDED and PFA,DED using AIC and
MDL criteria are given in Table 3.1. This table shows that the simulated false alarm and thresholds
performance matches the theoretical results with a high degree of accuracy.
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(a) GSM signal (a) WiFi signal

FIGURE 3.2 – Performance evaluation of the DED detector in terms of PU vacant sub-bands de-
tection in the frequency domain for : (a) Baseband GSM signal at the carrier of 953MHz signal
using sliding window technique with T = 533 samples which correspond to the GSM bandwidth
(equal to 200kHz) and L = 533 samples, (b) Baseband WiFi signal at the carrier of 2430MHz
using sliding window technique with T = 1332 samples which correspond to the WiFi bandwidth
(equal to 500kHz) and L = 1332 samples.

3.7.2 Non-Cooperative Sensing Evaluation

In this subsection, we will proceed similarly as in the pervious chapter. First, we perform the
proposed detector in terms of detection of vacant sub-bands in the spectrum band using sliding
window in both time and frequency domains. Then, we evaluate the performances of the algo-
rithm in terms of detection of PU presence using the binary hypothesis test.

Sub-bands Detection Figure 3.2 depicts the performance evaluation of the DED detector in
terms of PU vacant sub-bands detection using GSM and WiFi signals in frequency domain. The
signals parameters captured by EURECOM RF Agile Platform were given in Subsection 2.8.2.
The number of observations is N = 1000. In a first step, we compute the covariance matrix
for each analysis window. Then, we determine the position of the value that minimizes the AIC
and MDL of each window, and based on these values, we can find the number of significant
eigenvalues based on (3.18). The number of SE in the frequency domain is given in Figure 3.2
for both DED detectors using AIC criteria and MDL criteria. As expected, in the two cases, it
is found that the numbers of SE for vacant sub-bands are clearly higher than for the other sub-
bands and it is directly related to the presence/absence of data in the signal. We also compare our
analytical expressions with empirical simulations. For the empirical simulations, we determine the
empirical CDF of eigenvalues of each window, and based on these CDFs, we can find the number
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FIGURE 3.3 – Performance evaluation of the DED detector in terms of PU vacant sub-bands de-
tection in time domain for UMTS signals of duration 10ms composed by 15 slots at the carrier of
1.9GHz and a bandwidth of 5MHz.

of significant eigenvalues that capture a certain level of the signal energy (in our case 98% of the
total energy for each window). The comparison shows an excellent agreement between analysis
and simulation in terms of detection of vacant sub-bands in the radio band.

We consider now the sub-bands detection in time domain. A sequence of raw captured data
of UMTS signals has been acquired. These signals are captured by EURECOM RF Agile Plat-
form [51]. The raw data is represented as unsigned 16 bit integers. After this subtraction, the
signals are represented with the ordinary 64 bit floating point format which is the Matlabr de-
fault. The time domain components of the captured signals are depicted in Figure 3.3 for an SNR
= 0dB and SNR = −10dB. A signal block containing 2501 samples has been extracted. A cor-
responding noise block is acquired by retrieving the 2501 first samples. The signal to noise ratio
between these two blocks is 0dB in Figure 3.3 (a) and−10dB in Figure 3.3 (a). Note however that
there is a degree of uncertainty of this estimate due to the limited number of samples. Results from
the detection are summarized in Figure 3.3 using the two detection criteria AIC and MDL. From
this figure, we show that, similarly to the case of frequency sub-bands detection, the proposed
detector exhibits very interesting results in terms of detection holes in time domain.

PU Signal Detection Here we will assess the performance of the proposed detector in terms
of PU signal detection using the binary hypothesis test expressed in (3.19) and (3.20) for the
DED-AIC and the DED-MDL detectors, respectively. We will use the three different simulation
scenarios presented in Subsection 1.4.3, subject to provide different attributes so that the perfor-
mance can be assessed under different conditions, aiming to provide fair conditions before making
conclusions. The results from these simulations can be seen in the batch Figure 3.4. The best per-
formance is obtained from the CD detector. Subsequent is the DED using AIC criteria which has
a performance in the range from approximately 0.5dB to approximately 2.5dB below the CD de-
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FIGURE 3.4 – Performance evaluation of the DED detector in terms of PU signal detection in non-
cooperative way using an DVB-T OFDM primary user system : Probability of detection versus
SNR curves with PFA = 0.05 and ROC curves with SNR = −7dB, and, sensing time = 1.12ms
and p = 2048.
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FIGURE 3.5 – Performance evaluation of the DAD detector in terms of PU signal detection in
cooperative way using an DVB-T OFDM primary user system : Probability of detection versus
SNR curves with PFA = 0.05 and the required SNR versus the number of collaborating users M .

tector. Following the DED-AIC detector is the MMED detector, with a steady performance loss
of approximately from 2dB to 5dB compared to CD. The worst performance is displayed by the
DED-MDL detector and ED. DED-MDL performs approximately 3dB above DED-AIC, while
ED differs from the DED-AIC curves with as much as approximately 8dB. In total, DED-MDL
and ED can be seen to perform an average about 6dB worse than the best performance, which is
obtained by the CD detector. From Figure 3.4, we remark also that relative detection results for
scenario 2 and scenario 3 are to a large extent aligned with the results for scenario 1. This is expec-
ted as the underlying used signals are the same. The main difference is in absolute performance
which is caused by the addition of multipath and shadow fading. It is obvious from Figures 3.4
(b) and (c) how the absolute detection performance deteriorates when the signal is subjected to
channel fading. The PD slope for all the detectors starts dropping at higher SNR values than for
the AWGN case. While the PD curves started dropping off in the range from approximately−3dB
to about−5dB for the four detectors in the AWGN channel of scenario 1, all curves start dropping
off before 8dB under the fading applied in scenarios 2 and 3.
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FIGURE 3.6 – Simulation results assessing the performance in terms of execution time for the
DED detector compared to three detectors : Execution time versus the number of samples of the
received DVB-T OFDM primary user signal.

3.7.3 Cooperative Sensing Evaluation

In this subsection, we will evaluate the performances of the DED detector in a cooperative
way. Therefore, SUs share network information among each other to achieve a coordinated and
efficient spectrum management and to have a better decision about the availability of the spectrum
occupancy. This scenario was presented in Section 1.5. Recall, only binary decisions are shared
between SUs.

Results from the simulations can be seen in the batch Figure 3.5. These figures show the
impact of cooperative SUs number M in the detection performance. We plot the SNR for different
numbers of cooperative users M , over the three scenarios. The false alarm probability is set to 0.05.
From Figures 3.5 (a), (b) and (c) we can see that the cooperative sensing (M > 1) does increase
the detection probability to its single user counterpart (M = 1), and the performance enhancement
depends largely on the number of cooperative users. When M increases, the performance is getting
better. These results are confirmed in Figures 3.5 (d).

3.7.4 Complexity Study

This subsection provides a brief discussion on computational complexity of the DED algo-
rithm. In order to give an idea of the complexity of the DED algorithm, we provide in Figure 3.6
simulation results assessing the performance in terms of execution time of this algorithm in com-
parison with CD, MMED and ED algorithms. We use for these simulations the same conditions as
in Subsection 2.8.4. From these results, we find that the CD is the most complex among all, with
over 2 time complexity compared to DED. While CD and MMED have a comparable complexity.
The ED is the least complex among all compared spectrum sensing algorithms.

The complexity of the DED algorithm is computed according to the different steps of the al-
gorithm, namely computation of the covariance matrix and its corresponding eigenvalues and the
derivation of AIC and MDL criterion for the DED-AIC and DED-MDL algorithms, respectively.
Note that the complexity of AIC and MDL equations are equivalent because of the same number of
multiplication/addition in the two equations. From the algorithm given in Section 3.4, we remark
that the major complexity of this method comes from the computation of the covariance matrix
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and the eigenvalue decomposition. The covariance matrix is block Toeplitz matrix and hermitian,
then Np multiplications are sufficient. For the computation of eigenvalues, O

(
p3

)
multiplications

are needed. MDL and AIC values are computed according to (3.15) and (3.17) with Np2 multipli-
cations. The total complexity of the DED algorithm is therefore

Np2 + Np + O
(
p3

)
(3.36)

This section provided a discussion on the computational complexity of the DED algorithm.
It was argued that the DED algorithm asymptotically should have a better running time than the
MMED algorithm. This argument was further strengthened by simulation results. The simulations
also showed that the DED algorithm have running times of approximately one to two order of
magnitudes greater than the ED algorithm.

3.8 Conclusion

In the presented chapter, we have used an information theoretic based sub-space analysis for
the detection of PU signal and vacant sub-bands in the primary spectrum. The proposed technique
estimates the diemension of the PU received signal. Accordingly, we have explored the number of
independent diversity branches, possibly the number of significant eigenvalues, determined by the
value which minimizes the AIC and/or the MDL criterions.

Having looked at the spectrum sensing problem in CRN, we will address in the following
chapters the problem of resource allocation.
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Part II

Resource Allocation Techniques
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Chapter 4

Resource Allocation for Cognitive
Radio Applications

4.1 Introduction

In the second part of this thesis we address the resource allocation problem in the context of
CRN with special emphasis on QoS provisioning in a number of emerging broadband wireless
networks. This chapter overviews the underlying standards and/or technologies and provides a li-
terature review of related works on resource allocation and QoS provisioning in these broadband
systems. Specifically, depending on the choice of implementations, there are two approaches to
allocate the spectrum resource. The first approach is based on a central controller that requires
information about SUs and channel gains. This approach is referred as centralized solution. The
second approach doesn’t requires knowledge about the PU and SUs channels. This approach is
so-called distributed solution. The centralized solution in resource allocation context demands ex-
tensive control signalling and is difficult to implement in practice if information exchange about
all users and channels is limited. These two approaches will be introduced in this chapter. Particu-
larly, we will introduce the challenges in centralized and distributed resource allocation strategies
and present an overview of prior efforts. We highlight the motivation for this research, followed by
a presentation of an existing resource allocation algorithm. This algorithm will serve as references
when evaluating the novel approaches that resulted from the research.

The chapter is organized as follows. Section 4.2 will introduce a number of theoretical concepts
of importance. It will describe the CRN that will be used throughout this second part of thesis.
Section 4.3 will present the performance metrics used to evaluate the proposed resource allocation
algorithms. The following two metrics are considered : PU performance metrics including the pri-
mary capacity, the outage probability and the interference outage, and, SU’s performance metrics
including SU’s capacity, SU’s sum capacity, the interference power and fairness. In Section 4.4
and Section 4.5, we will provide a rather straightforward classification of resource allocation stra-
tegies attempting to show the diversity and advantages of these techniques. Two types of resource
allocation strategies, centralized strategies, and distributed strategies, are discussed in these two
sections, respectively. The binary power control policy that will be used in the development of the
distributed user selection strategy presented in Chapter 5, will be provided in Section 4.6. Sec-
tion 4.7 describes the centralized user selection strategy that will act as reference in this part of
thesis.
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FIGURE 4.1 – The cognitive radio network with N primary users and M secondary users attemp-
ting to communicate with their respective pairs in an ad-hoc manner during a primary system
transmission in downlink mode, subject to mutual interference.

4.2 Resource Allocation Goal

In order to facilitate the deployment of CR technologies for the secondary usage of spectrum,
it is crucial to prove the reliable detection of PUs by SUs. In fact, primary and secondary users can
coexist without a degradation of the PU transmission in order to convince regulatory authorities as
well as PUs to enable such technologies. Particulary, PU will not necessarily need all that multi-
rate system. In fact, the PU will experience the SU’s interference, and as long as all his target
rate (depending on his QoS) to be achieved, he does not care about what he leaves more. In what
follows, we adopt this setting and consider a CRN in which primary and secondary users both
attempt to communicate, subject to mutual interference. This is the main goal of the study in the
second part of this thesis.

We consider here a wireless CRN with a collection of users randomly distributed over the geo-
graphical area considered. Users can be both transmitters and receivers. By virtue of a scheduling
protocol, N PUs and M pairs of SUs are simultaneously selected from these users to communicate
at a given time instant, while others remain silent. We will consider in our analysis both downlink
and uplink scenarios, given in Figure 4.1 and Figure 4.2, respectively. In the downlink scenario,
we assume that a BS transmits to its user which has the highest channel power gain. In the uplink
scenario, its users transmit to the network’s BS. We introduce also in the presented figures the
interference channel gain between the n-th PU (resp. the m-th SU) and PU/BS, in the cases of the
downlink/uplink scenarios, respectively. Provided that no significant scatterers are presented in the
area, the channel gains between any pair of users are assumed i.i.d. in the two proposed scenarios
and they depend on the position of the users in the two-dimensional plane. Each PU is allocated a
unique resource slot so that it transmits in an orthogonal manner with respect to other PUs within
its coverage area, i.e. no interference between different PUs like in the Orthogonal Frequency-
Division Multiple Access-based (OFDMA-based). All details about the CRN parameters and the
propagation model in the downlink and the uplink mode will be given in Chapter 5. In this CRN,
we will consider only the case when we have one PU and M pairs of SUs.
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FIGURE 4.2 – The cognitive radio network with N primary users and M secondary users attemp-
ting to communicate with their respective pairs in an ad-hoc manner during a primary system
transmission in uplink mode, subject to mutual interference.

In order to facilitate the problem formulation of the resource allocation problem, we state the
following notations :

– the PU is indexed by pu,
– the index of SU m lies between 1 and M ,
– hl,m denotes the channel gain from SU l to the desired user m,
– the data destined from SU m is transmitted with power pm and a maximum power Pmax,
– hpu,m denotes the channel gain from the PU indexed by pu to the desired user m,
– hpu,pu denotes the channel gain between the BS and the PU,
– the data destined from the primary system is transmitted with power ppu.

In the coverage area of the primary system, there is an interference boundary within which no
SUs can communicate in an ad-hoc manner. Thus, as can be seen in Figures 4.1 and 4.2, for the
impairment experienced by the primary system to be as small as possible, a SU must be able to
detect very reliably whether it is far enough away from a primary base station, i.e., in the area of
possible CR operation. Under these schemes, we allow SUs to transmit simultaneously with the
PU as long as the interference from the SUs to the PU that transmits on the same band remains
within an acceptable range. Specifically, we impose that SUs may transmit simultaneously with the
PU as long as the PU in question does not have its QoS affected. Based on PU channel statistics,
we determine a QoS bound to ensure a protection to the PU. To compute this bound, we will use
the outage probability.

For system design purposes we will need to define metrics that will guide our development.
These metrics need to be sufficiently broad, so that a realistic system can be designed through
an optimization of all the metrics that we define. This would therefore need to include metrics to
measure the performance of the CRN. These metrics will be given in the following section.
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4.3 Resource Allocation Metrics

Algorithms that aid reliable resource management need to be verified and their performance
has to be quantified by some metrics. In this section, we will present the performance metrics used
to evaluate the proposed resource allocation algorithms.

4.3.1 Primary Users Performance Metrics

Primary Capacity In most of resource allocation strategies, algorithms must ensure that the
maximum capacity of the PU resulted from the SUs transmission is no greater than some prescri-
bed threshold. The PU instantaneous capacity is give by

Cpu = log2




1 +
ppu | hpu,pu |2

M∑

m=1

pm | hpu,m |2 +σ2




(4.1)

where σ2 is the ambient noise variance. Clearly, the primary capacity is directly related to the PU
transmission as well as the SUs transmission.

Outage Probability The notion of information outage probability, defined as the probability
that the instantaneous mutual information of the channel is below the transmitted code rate, was
introduced in [58]. Accordingly, the outage probability can be written as :

Pout(R) = P {I(x;y) ≤ R} (4.2)

where I(x;y) is the mutual information of the channel between the transmitted vector x and
the received vector y, and R is the target data rate in (bits/s/Hz). Reliable communication can
therefore be achieved when the mutual information of the channel is strong enough to support the
target rate R. Thus, a m−th cognitive transmitter can adapt its transmit power pm within the range
of [0;Pmax] to fulfill the following two basic goals :

– Self-goal : Trying to transmit as much information for itself as possible,
– Moral-goal : Maintaining the PU’s outage probability unaffected.

The outage probability can be rewritten as :

Pout = Prob {Cpu ≤ Rpu} (4.3)

where Rpu is the PU transmitted data rate. The information about the outage failure can be carried
out by a band manager that mediates between the primary and secondary users, or can be directly
fed back from the PU to the secondary transmitters through collaboration and exchange of the CSI
between the primary and secondary users.

Interference Outage The CR specific metrics relate to how well the CR is able to avoid PU
and the efficiency in using available spectrum. This will require a model for PU dynamics, such
as disappearance and reappearance time intervals, the amount of spectrum being used and the
strength and location of the PU. In addition to the primary capacity and the outage probability, we
define the interference outage meaning when the power of interference at a receiver PU exceeds a
pre-defined absolute limit. Let q be this absolute limit (i.e. the maximum outage probability).
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4.3.2 Secondary Users Performance Metrics

Secondary User’s Capacity By making SUs access the primary system spectrum, the m-th
SU experiences interference from the PU and all neighboring co-channel SU links that transmit
on the same band. Accordingly, the m-th SU instantaneous capacity is given by :

Cm = log2 (1 + SINRm) (4.4)

where

SINRm =
pm|hm,m|2

M∑

l=1
l 6=m

pl|hl,m|2 + ppu|hpu,m|2 + σ2

(4.5)

Secondary User’s Sum Capacity SUs need to recognize their communication environment
and to adapt the parameters of their communication scheme in order to maximize the per-user
cognitive capacity, expressed as

Csu =
M∑

m=1

Cm (4.6)

while minimizing the interference to the PUs, in a distributed fashion. The sum here is made over
the M SUs allowed to transmit. Moreover, we assume that the coherence time is sufficiently large
so that the channel stays constant over each scheduling period length. We also assume that SUs
know the channel state information (CSI) of their own links, but have no information on the chan-
nel conditions of other SUs.

Interference Power No interference cancelation capability is considered in our study. Power
control is used for SUs both in an effort to preserve power and to limit interference and fading
effects. The interference power (Intf) is given by :

Intfm =
M∑

l=1
l 6=m

pl|hl,m|2 + ppu|hpu,m|2 + σ2 (4.7)

Combining (4.5) and (4.7), we define the SINR as a function of Intf :

SINRm =
pm|hm,m|2

Intfm
(4.8)

and

pm =
SINRmIntfm
|hm,m|2 (4.9)

Fairness In addition to the SU instantaneous capacity and the global sum capacity, other func-
tions of SU rates are useful, as an example the fairness. Specifically, every station in the CRN
transmits as much data as possible and the throughput is calculated for each of them. Both the to-
tal throughput as well as the fairness (differences in the throughput achieved by individual stations)
are of interest.
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4.4 Centralized Resource Allocation Strategies

In the centralized mode, the resource allocation system would require a central controller and
information about all users and channels. The centralized resource allocation have been the main
focus of some research efforts in CRNs. We will provide in this section some solutions to this
issue that have been proposed in the literature.

The authors in [59] derived a centralized power control method for the CRN to maximize the
energy efficiency of the SUs and guarantee the QoS of both the PUs and the SUs. The feasibility
condition was derived in [59] and a joint power control and admission control procedure was
suggested such that the priority of the PUs is ensured all the time. However, in [59] only one CRN
was considered.

In [60], the authors considered spectrum sharing among a group of spread spectrum users with
a constraint on the total interference temperature at a particular measurement point, and a QoS
constraint for each secondary link. An optimization solution of this problem was proposed in [60]
by using a game theory method. Specifically, the authors defined the secondary spectrum sharing
problem as a potential game which takes different priority classes into consideration. Firstly, this
game is solved through sequential play. Then a learning automata algorithm is introduced which
only requires a feedback of the utility value. The same idea was proposed in [61], where the authors
study a centralized auction mechanisms to allocate the received powers. They consider an objective
function of maximizing utility which is a function of SINR. In [62] the authors tried to solve the
centralized resource allocation problem by including a beamforming strategy. In this work, the
primary systems are assumed to tolerate an amount of interference originating from secondary
systems. This amount of interference is controlled by a pricing mechanism that penalizes the
secondary systems in proportion to the interference they produce on the PUs.

Two centralized optimization frameworks were proposed in [63] in order to solve for the op-
timal resource management strategies. In the first framework, authors determine the minimum
transmit power that SUs should employ in order to maintain a certain SINR and use that result
to calculate the optimal rate allocation strategy across channels. In the second framework, both
transmit power and rate per channel are simultaneously optimized with the help of a bi-objective
problem formulation.

In [64], the authors studied the optimal power allocation strategies to achieve the ergodic ca-
pacity and the outage capacity of the SU fading channel under different types of power constraints
and fading channel models. However, they ignored the QoS requirement of SU or coexistence of
multiple SUs in a channel. The authors in [65] assume the same system model as in [64] and de-
sign a game to determine optimal transmit power with the objective of minimizing total transmit
power. The proposed solution guarantees a level of QoS, defined by minimum rate and the target
bit error rate (BER), for the primary system.

Though there have been ample research efforts on centralized resource management in CRNs,
there is still a lack of a complete framework that considers QoS for SUs as well as resource
management in a fair manner. One of the objective in this thesis is to take a step towards such a
solution.

In a realistic network, centralized system coordination is hard to implement, especially in fast
fading environments and in particular if there is no fixed infrastructure for SUs, i.e., no back-
haul network over which overhead can be transmitted between users. In fact, centralized channel
state information for a dense network involves immense signaling overhead and will not allow
the extraction of diversity gains in fast-fading channel components. To alleviate this problem,
distributed methods were proposed in the literature where SUs can get rid of PU knowledge.
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4.5 Distributed Resource Allocation Strategies

In the centralized case, the need may exist, as mentioned above, for the perfect knowledge
of all channel and interference state conditions for all nodes in the network. To circumvent this
problem, the design of so-called distributed resource allocation techniques is crucial. Distributed
optimization refers to the ability for each user to manage its local resources (e.g. rate and power
control, user scheduling) based only on locally observable channel conditions such as the chan-
nel gain between the access point and a chosen user, and possibly locally measured noise and
interference.

A number of distributed resource allocation strategies for CRNs have been proposed in lite-
rature. In addition to the two centralized frameworks presented in last section, the authors in [63]
designed a distributed suboptimal joint coordination and power control mechanism to allocate
transmit powers to SUs. A lower bound on SINR is used as a QoS constraint for SUs. In [66], the
authors propose a game theoretic framework to analyze the behavior of CRs for distributed adap-
tive channel allocation. They define two different objective functions for the spectrum sharing
games, which capture the utility of selfish users and cooperative users, respectively. The channel
allocation problem is modeled in [66] to a potential game which converges to a deterministic Nash
equilibrium channel allocation point. Game theory was applied in [67] to develop a distributed
power allocation algorithm. In this work, each user maximizes its own utility function (which
includes a pricing term) by performing a single-user price-based water-filling. However, in [67],
coexistence of multiple SUs in a channel has not been considered. Also, the QoS requirement of
SUs has been ignored. In [68], the authors studied the distributed multi-channel power allocation
for spectrum sharing CRNs with QoS guarantee. They formulate the problem as a noncooperative
game with coupled strategy space to address both the co-channel interference among SUs and the
interference temperature regulation imposed by primary systems.

The authors in [69] presented a general analytical framework, in which SU’s rate, frequency,
and power resource can be jointly optimized under the interference temperature constraints. This
framework was used to design an optimal distributed resource allocation algorithm with low po-
lynomial time complexities in multiuser broadband CRNs. In [70], the authors focus on designing
distributed resource allocation algorithms for cooperative networks. They proposed two share auc-
tion mechanisms, the SNR auction and the power auction, to distributively coordinate the relay
power allocation among users. The authors in [70] demonstrate that the SNR auction achieves the
fair allocation, while the power auction achieves the efficient allocation.

In [71], a framework of distributed energy efficient resource allocation was proposed for
energy constrained OFDMA based CR wireless ad hoc networks. A multidimensional constrai-
ned optimization problem was formulated by minimizing the energy consumption per bit over the
entire available subcarrier set for each individual user while satisfying its QoS constraints and
power limit. However, in [71], the authors assume that the subcarrier detection is perfect.

In [72], the authors propose a distributed resource allocation scheme where SUs are penali-
zed for interfering on the primary systems. The penalty is proportional to the interference rate
produced from the secondary transmitter to each PU. This mechanism is referred to as pricing
and is interpreted as introducing the effect of disturbance created from a user as a penalty mea-
sure in his utility function. In this means, the secondary transmitters can be controlled to choose
their transmission strategies satisfying soft interference constraints on the PUs. In [73], this mo-
del of exogenous prices is used to analyze a noncooperative game between the SUs. Distributed
algorithms are provided that iteratively modify the prices weights and eventually reach the Nash
equilibrium that satisfies the interference temperature constraints.
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4.6 Binary Power Control Policy

One basic assumption throughout this part is that a SU can vary its transmit power, under short
term (minimum and peak) power constraints, in order to maximize the cognitive capacity, while
maintaining a QoS guarantee to the PU. For the first proposed resource allocation algorithm, given
in Chapter 5, we will use a binary power control (nodes transmitting at maximum power Pmax or
being silent). The same policy will be used in the development of the reference algorithm given in
the Section 4.7.

The idea of the binary ”on”/”off” power control is simple, as well as yielding quasi-optimal
results in a number of cases [74]. As such, it constitutes a promising tool for making spectrum
sharing a reality. Besides complexity reduction, an important additional benefit of binary power
control is to allow distributed optimization. With binary power constraints, power control reduces
to deciding if links should be ”on” or ”off”. The power pm of the m-th SU transmitter is selected
from the binary set {0, Pmax}. It is intuitively clear that if the cross-gain is sufficiently low, then
all links should be ”on”.

The key idea within the iterative algorithm used in the development of the proposed distributed
user selection algorithm is, as in [75], to subsequently limit pm to {0, Pmax}, i.e., to switch ”off”
transmission in SUs’ links which do not contribute enough capacity to outweigh the interference
degradation caused by them to the rest of the network. The authors in [76, 77] propose an adapta-
tion of the distributed algorithm which allows a subset of controlled size M̃ of the total number of
SUs M to transmit simultaneously on the same sub-band. We will give in this section a summary
of the presented method in [76, 77].

Let Ψ be the set of indices of all presently active SUs. Denoting the SU which is to be poten-
tially turned off by m, the network capacity with and without SU turned off is given by the LHS
and the RHS of (4.10) respectively :

∑

l∈Ψ

log2




1 +
pl | hl,l |2

σ2 + ppu | hpu,l |2 +
∑

k∈Ψ
k 6=l

pk | hk,l |2




<

∑

l∈Ψ
l 6=m

log2




1 +
pl | hl,l |2

σ2 + ppu | hpu,l |2 +
∑

k∈Ψ
k 6=l 6=m

pk | hk,l |2




(4.10)

We define SINRlm as :

SINRlm=
pl | hl,l |2

σ2 + ppu | hpu,l |2 +
∑

k∈Ψ
k 6=l 6=m

pk | hk,l |2
(4.11)

After simple manipulations we fined :

(1 + SINRm)
∏

l∈Ψ
l 6=m

(1 + SINRl) <
∏

l∈Ψ
l 6=m

(1 + SINRlm) (4.12)
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At High SINR Regime Assuming all SUs to be in ”on” condition for the mentioned CRN, at
high SINR regime, we have dense environment with more users within smaller geometrical area
and hence a SU requires higher threshold to be active. After simple manipulation of (4.12) and
assuming that 1+ SINR = SINR holds, the signal-to-interference ratio (SIR) threshold for high
region comes out to be,

SIRm =
pm | hm,m |2

ppu | hpu,m |2 +
∑

k∈Ψ
k 6=m

pk | hk,m |2
> e = 2.718281... (4.13)

At Low SINR Regime By definition in the low SINR region ln(1 + x) ' x holds with good
accuracy, and binary power control is always optimal. We can go from (4.12), to come up with the
active user threshold at low SINR region as,

SIRm > 1 (4.14)

Detailed derivations of the two threshold at high and low SINR are given in [76, 77]. Re-
sults given in (4.13) and (4.14) confirm, as intuition would expect, that SUs under better SINR
conditions would transmit only above a higher threshold than in the low SINR regime.

4.7 Centralized User Selection Strategy

We will present in this section a centralized resource allocation strategy studied in [76, 77]. The
two proposed resource allocation algorithms in Chapter 5 and Chapter 6 will be compared with
this centralized one as reference algorithm. The motivation behind the centralized user selection
technique is that, by opportunistically adapting their transmit power with the guide of the binary
power allocation policy given in Section 4.6, SUs can maximize the achievable sum rate under the
constraint of maintaining the outage probability of the PU not degraded [76, 77]. The goal within
this method is thus to determine, under the assumption that the PU is oblivious to the presence
of the cognitive users, what would be the cognitive system capacity (which can also be viewed as
the total increase in system capacity (or spectral efficiency) due to the SUs’ activity) and, at the
same time, the maximum number of cognitive communication links allowed in such a system. The
optimization problem was expressed as follows [76, 77] :

Find pm|m=1,...,M = arg max
pm

Csu (4.15)

subject to :




pm ∈ {0, Pmax}, for m = 1, ..., M

Pout = Prob





log2




1 +
ppu | hpu,pu |2

M̃c∑

m=1

pm | hpu,m |2 +σ2



≤ Rpu





≤ q
(4.16)

where q is the maximum outage probability and M̃c is the maximum number of SUs allowed to
transmit using the centralized algorithm. The centralized algorithm proposed in [76, 77] selects
active SUs by checking the power and outage probability constraints iteratively.
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4.8 Conclusion

This chapter presented an overview of the resource allocation problem context. We started by
introducing the resource allocation goal and presenting the CRN model used in this part of the-
sis. We presented also the resource allocation metrics and the challenges within this research. A
literature review of related works on resource allocation was discussed in this chapter. Finally, a
centralized user selection strategy combined with a binary power allocation technique was presen-
ted in the last section of this chapter.

The main conclusion from the presented study is that joint resource allocation does not lend
itself easily to distributed optimization because of the strong coupling between the locally allo-
cated resources and the interference created elsewhere in the CRN. Hence the maximization of a
SU capacity taken individually will not in general result in the best overall network capacity, al-
though we suggest later cases for which the outcomes for the centralized and distributed capacity
optimization will differ little. Following the above trend, we will explore in the following chapter
a distributed joint resource allocation framework and then analyze what would be the loss when
considering a distributed strategy. Our study will treat both downlink and uplink communications.
In both cases, we will derive a distributed resource allocation algorithm and address the QoS issues
for the primary system from an outage point of view.
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Chapter 5

Distributed User Selection Strategy

5.1 Introduction

In this chapter, we will propose a different way to efficiently protect primary systems from
SUs interference, based on outage probability. The motivation behind doing so is that, in any case,
the PU will not necessarily need all that multi-rate system. In fact, the PU will experience the SU’s
interference, and as long as all his target rate (depending on his QoS) to be achieved, he does not
care about what he leaves more. In what follows, we adopt this setting and consider a CRN in
which primary and secondary users both attempt to communicate in a distributed way, subject to
mutual interference. We propose a distributed CR coordination that maximizes the CRN secondary
rate while keeping the interference to the PU acceptable. Our goal is to realize PU-SU spectrum
sharing by optimally allocating SU transmit powers, in order to maximize the total SU throughput
under interference and noise impairments, and short term (minimum and peak) power constraints,
while preserving the QoS of the primary system. In particular, it is of interest to determine, in a
distributed manner, the maximum number of SUs allowed to transmit threshold above which SUs
can decide to transmit without affecting the PU’s QoS. In such approaches, each user individually
makes its decision on its transmit power so as to optimize its contribution to the system throughput.
At the core of the distributed concept lies the idea that the interference is more predictable when
the network is dense, and consequently the resource allocation problem of a given user becomes
more dependent to the average behavior, thus facilitating distributed optimization.

Following the above trend, we will explore in this chapter a distributed joint resource allocation
framework and then analyze what would be the loss when considering a distributed strategy. Our
study treats both downlink and uplink communications. In both cases, we will derive a distributed
power allocation algorithm and address the QoS issues for the primary system from an outage
point of view.

The chapter is organized as follows. Section 5.2 describes the outage probability constraint
and gives a reformulation of this probability that will be used throughout the development of the
proposed user selection strategy. The same section presents also the optimization problem of the
proposed strategy. In Section 5.3, the distributed user selection strategy is presented. Section 5.4
is split in two main subsections. The first subsection will introduce the propagation model that
will be used to evaluate the performance of the presented strategy. The second subsection pre-
sents simulation results and a comparison with the centralized user selection strategy presented in
Section 4.7. Section 5.5 concludes the chapter.
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5.2 Distributed Strategy

In the current study, we adopt a QoS guarantee to the PU by means of an outage constraint. This
knowledge can be obtained with a centralized mode where the resource allocation system would
require information from a third party (i.e. central database maintained by regulator or another
authorized entity) to schedule SUs coming. This is the case of the presented user selection strategy
in Section 4.7. In fact, to compute the Pout, the CR system requires knowledge of the PU and SUs
channels. To alleviate this problem, we propose in this chapter a distributed method where SUs can
get rid of PU knowledge. In this distributed framework, the information about the outage failure
can be computed without exchange of information between the primary and secondary users. In
this section, we will present in a first step a reformulation of the outage probability that will be
used throughout the development of the proposed user selection strategy. Then, we will present
the optimization problem of this strategy.

5.2.1 Outage Probability Constraint

To proceed further with the analysis of the distributed strategy and for the sake of emphasis,
we introduce the PU average channel gain estimate Gpu based on the following decomposition :

hpu,pu , Gpu ∗ h′pu,pu (5.1)

where h′pu,pu is the random component of channel gain and represents the normalized channel
impulse response tap [74]. This gives us the following PU outage probability expression :

Pout = Prob





log2




1 +
ppuG2

pu | h′pu,pu |2
M∑

m=1

pm | hpu,m |2 +σ2



≤ Rpu





(5.2)

Let M̃d be the maximum number of SUs allowed to transmit using the distributed method and Gsu

be the SU average channel gain estimate. If we insert these two parameters in (5.2), we obtain

Pout ' Prob





ppuG2
pu | h′pu,pu |2

G2
su

M̃d∑

m=1

pm + σ2

≤ 2Rpu − 1





≤ q

' Prob

{
| h′pu,pu |2≤

(
2Rpu − 1

)
(

M̃dG
2
suPmax + σ2

G2
puppu

)}
≤ q

(5.3)

From now on we assume for simplicity of analysis that the channel gains are i.i.d Rayleigh distri-
buted. However, the results can be immediately translated into results for any other channel model
by replacing the appropriate probability distribution function. Continuing from (5.3), we have :

Pout '
∫ (

2Rpu − 1
)
(

M̃dG
2
suPmax + σ2

G2
puppu

)

0
exp(−t)dt ≤ q (5.4)
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Finally, we get the following outage constraint :

Pout ' 1− exp

[
− (

2Rpu − 1
)
(

M̃dG
2
suPmax + σ2

G2
puppu

)]
≤ q (5.5)

and the maximum number M̃d of active ”on” SUs that transmit with Pmax is given by

0 ≤ M̃d ≤ − log(1− q)
(2Rpu − 1)

.
G2

puppu

G2
suPmax

− σ2

G2
suPmax

(5.6)

By writing SNR =
G2

suPmax

σ2
, equation (5.6) can be expressed as :

0 ≤ M̃d ≤ − log(1− q)
(2Rpu − 1)

.
G2

puppu

G2
suPmax

− 1
SNR

= M̃theory (5.7)

where M̃theory is the theoretic maximum number of SUs allowed to transmit. The LHS in (5.7)
prevents from obtaining a negative number of users when the SNR decreases significantly. The
formula in (5.7) points out that the number of SUs allowed to transmit increases as their SNR
increases.

5.2.2 Optimization Problem

The SUs offer the opportunity to improve the system throughput by detecting the PU acti-
vity and adapting their transmissions accordingly while avoiding the interference to the PU by
satisfying the QoS constraint on outage. We present in this subsection a distributed user selection
strategy using the binary power allocation policy given in Section 4.6. The proposed strategy tries
to limit the number of SUs interfering with the PU so as to guarantee the QoS for the primary
system. Specifically, a SU will be deactivated if its action results in an increase in the cognitive
capacity of SUs or if its transmission violates the PU outage constraint. The optimization problem
can therefore be expressed as follows :

Find pm|m=1,...,M = arg max
pm

Csu (5.8)

subject to :





pm ∈ {0, Pmax}, for m = 1, ...,M

0 ≤ M̃d ≤ − log(1− q)
(2Rpu − 1)

.
G2

puppu

G2
suPmax

− 1
SNR

(5.9)

where M̃d is the maximum number of SUs allowed to transmit using the distributed algorithm
and q the maximum outage probability. As we can see from (5.9), the CR system does not require
knowledge about the PU and SUs channels in the sense that it decides distributively to either
SU transmit data or stay silent over the channel coherence time depending on the specified Pout

threshold (q). On the other hand, the optimization problem given by (4.16) requires all hm,pu and
hpu,pu data to compute the outage probability and to select then the SUs able to transmit without
affecting the PUs’ QoS.
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5.3 User Selection Algorithm

So far, we have studied the optimization problem of the distributed approach for user selection.
In this section, we will present a distributed algorithm where joint power allocation and channel-
aware user selection are used, in the view of maximizing the sum of users’ rates. We will describe
also the centralized algorithm given in Section 4.7 which observes the global network and makes
decisions about the SUs that are able to transmit without affecting the PU outage probability. The
goal here is to compare the centralized approach to the distributed scheme in terms of users ”on”
and the average rate.

The pseudo-code for the proposed approach and the centralized one are given in Algorithm 1.
An iterative approach is adopted throughout this algorithm. The algorithm is first initialized with
a zero power allocation vector. Each SU simultaneously measures its SIR, and depending on whe-
ther it is on high or low average SINR, respectively, he remains active or inactive during the next
time slot based on (4.13) and (4.14), respectively. Similarly, at every iteration of the Monte Carlo
simulation, inequality (4.13) and (4.14) are evaluated for the SU in question based on the po-
wer allocation resulting from the previous step, and the power allocation vector is updated. In
Algorithm 1, M̃theory is the number of SUs allowed to transmit ruled by (5.7) and ITmax is the
maximum number of iteration and is equal to 104 in the simulations results.

Algorithm 1 Distributed and centralized user selection strategies using binary power allocation
policy

1: for it = 1 : ITmax do
2: p

(it)
m = 0 ∀m

3: M̃
(it)
d = 0 and M̃

(it)
c = 0

4: while
(
M̃

(it)
d ≤ M̃theory

)
or

(
P

(it)
out ≤ q

)
do ¤ Distributed and centralized constraints

5: for m = 1 : M do
6: ¤ At high SINR regime
7: if SIR(it)

m > e then
8: p

(it)
m ← Pmax

9: end if
10: ¤ At low SINR regime
11: if SIR(it)

m > 1 then
12: p

(it)
m ← Pmax

13: end if
14: if p

(it)
m = Pmax then

15: ¤ Centralized case
16: if P

(it)
out ≤ q then

17: M̃
(it)
c ← M̃

(it)
c + 1

18: end if
19: ¤ Distributed case
20: if M̃

(it)
d ≤ M̃theory then

21: M̃
(it)
d ← M̃

(it)
d + 1

22: end if
23: end if
24: end for
25: end while
26: end for
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In the centralized case, where PU’s QoS constraint is guaranteed based on (4.16), each PU
verifies the outage probability constraint based on the resulting power allocation, within each
iteration. In fact, in the first iteration SU1 checks its power and outage probability constraints.
If one of the two constraints is not verified, SU1 will be switched ”off” and will be considered
inactive during the next time slot. We perform the same tests for all SUs to obtain in the last step
the maximum number of active SUs M̃c. In this case, the last SU entering in the system is removed
from the transmission. In the distributed case, where the PU’s QoS is insured by means of (5.9),
we compute the number of SUs allowed to transmit using (5.7). The value of M̃theory is computed
with a distributed manner. We choose in this case comprehensively the SUs that guarantee a QoS
to PU by maintaining the PU’s outage probability unaffected.

In traditional systems, a centralized entity, for instance the BS, decides which user is allowed
to transmit at each time slot. If the BS cannot schedule a user which contributes enough capacity
to the system to outweigh the interference produced, it will remain silent on that specific time
slot. However, in current CR protocols (e.g. the IEEE 802.22 Wireless Regional Area Network
(WRAN) [78]), SUs are supposed to be willing to collaboratively relay their proper SIR in order
to protect the PU’s instantaneous rate. Therefore, it is essential for the cognitive user to obtain the
message from the other SU in real time (via a broadcast channel), and to be strictly synchronized
with the rest of SU. Obviously, the SUs are supposed to be identified thanks to a specified beacon
in transmission. Specifically, we will consider a system where devices are scheduled no longer
by the BS but by a specified SU. Under the user selection distributed protocol, cognitive users
listen to the cognitive signaling channel broadcasted by the cluster head user and, depending on
the constraints considered previously, determine, either in time or frequency, the SU allowed to
transmit with Pmax.

5.4 Performance Evaluation

This section will provide a number of simulations aimed at assessing the performance of the
proposed distributed user selection method in comparison with the centralized reference method.
The section is split in two main subsections. The first subsection will provides the propagation
model used to evaluate the performance of the proposed algorithm, and, the second subsection
presents the simulations results.

5.4.1 Propagation Model

To go further with the analysis, we resort to realistic network simulations. Specifically, we
consider a CRN as described in Figure 4.1 and Figure 4.2, in the downlink and the uplink mode,
respectively, with one PU and M SUs attempting to communicate during a transmission, subject
to mutual interference. A hexagonal cellular system functioning at 1.8GHz with a secondary cell
of radius R and a primary protection area of radius Rp is considered. Secondary transmitters may
communicate with their respective receivers of distances d < Rp from the BS. We assume that
the PU and the SUs are randomly distributed in a two-dimensional plane as shown in Figure 5.1.
The BS is placed at the center (0, 0). The distances, dm, from the m-th SU to the BS, and, dpu,m,
between the PU and the m-th SU, are given by

dm =
√

x2
m + y2

m (5.10)

and
dpu,m =

√
(xpu − xm)2 + (ypu − ym)2 (5.11)
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FIGURE 5.1 – Two-dimensional plane of the cognitive radio network topology with one primary
user and M secondary users.

respectively, where (xpu, ypu) and (xm, ym) are the coordinates of the PU and the m-th SU, respec-
tively. With the same manner, we can define the distance, dm,l, between a pair of SU’s, transmitter
and receiver, m and l.

The channel gains are based on the COST-231 Hata model [79] including log-normal shado-
wing with standard deviation of 10dB, plus fast-fading assumed to be i.i.d. circularly symmetric
with distribution CN (0, 1). The basic path loss for the COST-231 Hata model (in dB) in an urban
area at a distance d is defined as :

PL = 46.3 + 33.9 log10(fc)− 13.82 log10(hb)−AM + (44.9− 6.55 log10(hb)) log10(d) + CM

(5.12)
where fc is the carrier frequency equal to 1.5GHz and hb is the base antenna height equal to 50
meters. The distance d is computed using the formula (5.11) or (5.10). CM is 0dB for medium
sized cities and suburbs and 3dB for metropolitan areas. In the simulations, we take CM = 0dB.
AM is defined for urban environment as :

AM = 3.20 (log10(11.75hm))2 − 4.97 (5.13)

where hm is the mobile antenna height equal to 10 meters. The shadowing variations of the path
loss can be calculated from the log-normal distribution

g(x | σ) =
1

σ
√

2π
exp

(−x2

2σ2

)
(5.14)

where σ is the variability of the signal equal to 10dB. The shadowing variation is computed using
the Matlabr function randn. Shadowing reflects the differences in the measured received signal
power with relation to the theoretical value calculated by path loss formulas. Averaging over many
received signal power values for the same distance, however, yields the exact value given by path
loss.

The peak power constraint is given by Pmax = 1Watt while the power ratio K is taken equal
to 10 for the downlink mode and equal to 1 for the uplink mode. This is justified in the light of the
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fact that the power control transmitted by the BS is generally taken almost ten times the primary
user transmitted power in multiple possible standards. Both centralized and distributed strategies
in the downlink and the uplink scenario are implemented using the software package Matlabr

R2009a.

5.4.2 Simulation Results

The performance of the proposed distributed user selection strategy is evaluated by Monte
Carlo simulations (ITmax = 104). It is assumed that the maximum outage probability q = 1% for
both distributed and centralized algorithms. We considered also that the radius of the secondary
cell R = 1000 meters and the radius of the primary protection area Rp = 600 meters. The
derivation of the maximum number of SUs allowed to transmit using the distributed algorithm is
based on the average channel gains Gsu and Gpu estimation. From the locations of the users in the
two-dimensional plane and the propagation characteristics of the environment, we can estimate
the two average channel gains for the downlink and the uplink mode. These values are estimated
assuming a wireless ad hoc network affected by a large number of interferers. From simulation
results, using M = 500 SUs and one PU, we find G2

pu/G2
su ' 15 in the downlink mode and

G2
pu/G2

su ' 20 in the uplink mode.
Figure 5.2 shows the behavior of the distributed strategy in comparison with the centralized

one, presented in Section 4.7, for both downlink and uplink scenarios. This figure presents the
number of active SUs versus the total number of SUs ranging between 1 user and a maximum of
140 users, and using different rate values (0.1, 0.3 and 0.5bits/s/Hz). From this figure, it is clear
that the distributed strategy always outperforms the centralized one. Generally, we found out that
the distributed scheme presents almost 3 additional active SUs than the centralized scheme. This
can be explained by the fact that, the number of active SUs in the centralized case is computed
iteratively and in the distributed one, we know in advance the maximum number of active SUs
(computed distributively) so, the algorithm is run until the maximum number M̃theory is reached.
In fact, in the distributed case, we compute M̃theory distributively using the average channel gains
Gsu and Gpu and if this maximum number of active SUs is reached, all remaining SUs will be
considered inactive. As explained in the first paragraph of this section, the two average gains
are estimated using a large number of SUs and a number of iteration equal to 106 iterations.
These conditions give more flexibility for the distributed algorithm and we have in this case a
broader concept. In the centralized case, however, the proposed algorithm in [76, 77] selects active
SUs using an iterative strategy by computing in each iteration the outage probability knowing all
channel gains for the selected SUs (active) until this iteration. The majority of classic algorithms
derived in the literature do not use the same concept and select active SUs with an exhaustive
manner among all SUs. In fact, in the first step of this centralized algorithm, all SUs are taken
inactive (”off”) and in each iteration, SUm checks its power and outage probability constraints. If
the two constraints are verified, SUm will be switched ”on” and will be considered active during
the next time slot. Here, the last SU entering in the system is removed from the transmission. We
also remark from Figure 5.2 that the number of active users in the downlink always outperforms
the uplink configuration. This can be explained by the fact that, as far as the downlink system
is considered, the power received from BS is K times the power in the uplink. This results on
better PU’s QoS guarantee. In fact, at a rate = 0.3bits/s/Hz, 12 SUs are allowed to transmit in
the downlink and 7 SUs in the uplink, when we have saturation of the number of active SUs. We
also remark that, asymptotically, i.e., as the number of SUs goes large, the number of active SUs
keeps constant due to the influence of interference impairments on the PU’s QoS. This tends to
confirm the intuition from formula (5.7) where the number of active SUs is always upper-bounded
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FIGURE 5.2 – Performance evaluation of the distributed user selection strategy in comparison with
the centralized one : Number of active secondary users versus total number of secondary users for
different rates (0.1, 0.3 and 0.5bits/s/Hz) and q = 1% in the downlink and the uplink mode.
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FIGURE 5.3 – Performance evaluation of the distributed user selection strategy in comparison with
the centralized one : Outage probability as function of the number of secondary users for a target
outage probability = 1% and a rate = 0.3bits/s/Hz in the downlink and the uplink mode.

by M̃theory in the distributed case, and PU outage probability protection given by the maximum
outage q.

In order to validate results in Figure 5.2 and the theoretical derivation given in Section 5.2,
we compare the centralized outage probability expressed in (4.16) to the distributed one given in
(6.15) using M̃theory. As an example we carry out simulations for a rate = 0.3bits/s/Hz. First, it
is shown from Figure 5.3 that the distributed algorithm guarantees a good protection for the PU
as well as the centralized one. We also remark that, for the outage probability of interest (i.e.,
q = 1%), the number of allowed SUs to transmit is equal to 40 for the downlink and 22 for the
uplink. This is exactly what Figures 5.3 (a) and (b) show, respectively, in the saturation state at a
rate = 0.3bits/s/Hz. From the presented results, we verified that we can maintain a QoS guarantee
to the PU. The question now, under the assumption that the PU outage probability is unaffected,
what would be the cognitive system capacity presented by the sum SU’s capacity as expressed
in (4.6).

Figure 5.4 (a) depicts the sum SU’s capacity in the case of the distributed strategy for both
downlink and uplink, and using R = 1000 meters and Rp = 600 meters. As expected, it is found
that the capacity of the uplink system outperforms that of downlink system. On the other side,
increasing the number of SUs yields significantly increase in capacity because the increase in
degree of freedom more than compensates for the decrease in SINR due to interference. Howe-
ver, reaching a certain number of SUs, the sum SU’s capacity stabilizes. In addition, the current
curve claims that in CRN, when one attempts to maximize the number of active SUs, the cognitive
capacity degrades asymptotically. Typically, there is a fundamental trade-off between cognitive
capacity maximization and number of active SUs maximization. We compute also the SU’s capa-
city in the case of the centralized user selection strategy and we find practically the same results.
This confirms the very good matches between the distributed and the centralized method. Now, we
change the size of the radius of the secondary cell and the primary protection area to R = 500 me-
ters and Rp = 300 meters, respectively. From Figures 5.4 (a) and (b), we remark that, as the radius
R and Rp decrease, the sum SU’s capacity becomes more sensitive to the interference impairments
leading to a significant decrease in the sum secondary rate.
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FIGURE 5.4 – Performance evaluation of the distributed user selection strategy in term of sum
secondary user’s capacity with q = 1% and a rate = 0.3bits/s/Hz in the downlink and the uplink
mode using different radius of the secondary cell and primary protection area : (R = 1000 meters,
Rp = 600 meters) and (R = 500 meters, Rp = 300 meters).

5.5 Conclusion

In this chapter, we explored the idea of combining multi-user diversity gains with spectral sha-
ring techniques to maximize the SU sum rate while maintaining a QoS to a PU with a distributed
manner. Our contribution within this work is the investigation of the QoS issues from an outage
point of view. In particular, we explored a distributed user selection strategy. Simulation results
based on a realistic network setting are shown to exhibit interesting features in terms of CRN
deployment while maintaining QoS for the primary system by means of outage probability. In
particular, we showed that in such CRN, one should make a trade-off between cognitive capacity
maximization and number of active SUs maximization. In the following chapter, we will propose
a second user selection strategy using multiuser MIMO SU system.
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Chapter 6

Centralized Beamforming User
Selection Strategy

6.1 Introduction

To enable the use of opportunistic spectrum sharing, many problems have to be solved. The
interference caused by sharing the same radio channel becomes an obstacle that limits system
performances, such as the system throughput. Thus, when sharing the spectrum with the PU,
one tries to find a way to increase the throughput. It is known that the interference from SUs
transmitters to a PU receiver can approach zero if it is mitigated by using an advanced signal
processing technique such as beamforming on the secondary system’s side. Consequently, this
chapter investigates a multiuser MIMO SU system from a beamforming perspective.

Developing scheduling strategies to best exploit multiuser diversity in multiuser MIMO sys-
tems with finite number of users and evaluating the capacity limit achieved by those strategies
have remained an active area of research. The authors in [80] proposed opportunistic beamfor-
ming where resources are allocated to only one user who has the best equivalent channel created
by the multiple antennas and beamforming. In [81], a random beamforming technique was pro-
posed, where the best single user is selected in communication based on the limited feedback
information from the users. In [82], the authors studied multiuser diversity gain by selecting a
single user or selecting multiple users simultaneously communicating in downlink.

In this chapter we focus on the beamforming problem in the context of CR using multiuser
MIMO SU system in a centralized way. We consider the primary system of a single CRN, where
cognitive transmitters transmit signals to a number of SUs using adaptive antennas, while the
primary BS receives its desired signal from a primary transmitter and interference from all the
cognitive transmitters. With the deployment of K antennas at each SU transmitter, an efficient
transmit beamforming technique combined with user selection is proposed to maximize the sum
throughput and satisfy the SINR constraint, thus limiting interference to the primary BS. Using
this approach, transmit beamforming weights can be found.

The rest of the chapter is organized as follows. Section 6.2 describes the channel model and
redefines the PU and SU’s parameters given in Section 4.3. In Section 6.3, we design the transmit
and receive beamvectors under the power and outage probability constraints. In Section 6.4, we
present the user selection algorithm. Simulation results and a comparison with the centralized and
the distributed user selection strategies are provided in Section 6.5, and Section 6.6 concludes the
chapter.
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FIGURE 6.1 – Multiple transmit and receive secondary users system structure.

6.2 Secondary Users MIMO System

In this section, we will describe the SU MIMO system model and multiuser diversity scheme
that we are considering in this chapter, and discuss the primary and secondary users metrics when
we use a SU MIMO system. We will reformulate the resource allocations metrics given in Sec-
tion 4.3 when we use a SU single-input-single-output (SISO) system.

The proposed system in this chapter consists of multiple transmit/receive SU links randomly
distributed over the geographical area considered. MIMO systems have great potential to enhance
the capacity in the framework of wireless cellular networks [83, 84]. Multiple antennas can for
example be deployed at a cognitive BS. Many wireless network standards provision the use of
transmit antenna arrays. Using baseband beamforming, it is possible to steer energy in the direction
of the intended users, whose channels can often be accurately estimated [84, 85]. Beamforming
has been also exploited as a strategy that can serve many users at similar throughput. Moreover,
beamforming has the advantage of limiting interference. Thus, we are interested in transmit beam-
forming schemes for cognitive transmission. For this purpose, we utilize joint beamforming that
implies an extension to the transmitter side of classical receive beamforming [86].

The SU system structure is based on beamforming at both the transmitter (K antennas) and the
receiver (K antennas) for each SU link as given in Figure 6.1. The number of secondary transmit-
ters (SUT ) is equal to M , and is equal to the number of secondary receivers (SUR). Assuming that
many scatterers are located around the transmitter and receivers, the channel coefficient matrix
Hrt (the channel between the t-th transmit SU and the r-th receive SU) exhibits flat fading. The
channel gain vector hpu,m from the PU indexed by pu to a desired SU m (m between 1 and M ) is
given by :

hpu,m = [hpu,m1
...hpu,mK

]T (6.1)

where the channel gains are assumed i.i.d. random variables. We consider that the channels bet-
ween different users are independent. We then set the received signal of the m-th user as follows
(the index of SUs m lies between 1 and M ) :

ym = Hm,msm +
M∑

l=1,l 6=m

Hm,lsl + hpu,mxpu + nm, m = 1, ..., M (6.2)

with nm of size K × 1 being zero-mean i.i.d. Gaussian noise with power σ2
m, and K being the

number of antennas. sm is the transmit vector of size K × 1 for the m-th SU and xpu being the
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SUTmbmxm

FIGURE 6.2 – Beamforming concept for the m-th secondary user transmitter.

transmit sample sent from PU. ym is the receive vector of size K × 1. Hm,m (K ×K matrix) is
the channel between the m-th SUT and the m-th SUR and Hm,l(l = 1, ..., m − 1,m + 1, ...,M)
are channel matrices between the other SUs, referred to as the interference channel matrices.

Here, a joint beamforming approach is proposed for the SU system, that is, all the transmitters
and receivers exploit a beamforming architecture [84]. The transmission scheme is characterized
by the power allocation (eigenvalues of the transmit covariance matrix) and the orientation (eigen-
vectors of the transmit covariance matrix) [87]. This yields

sm = bmxm, m = 1, ...,M (6.3)

where bm is the pre-beamforming vector and xm is the transmit sample for m between 1 and M
(see Figure 6.2). The output of the m-th receiver beamformer is :

rm=aH
mym

=aH
mHm,mbmxm + aH

m

M∑

l=1,l 6=m

Hm,lblxl + aH
mhpu,mxpu + aH

mnm (6.4)

where am is the post-beamforming vector at the receive SUs. Φm = E{nmnH
m} is the associated

covariance matrix. The SINR defined in (4.5) at the m-th SU can be rewritten as :

SINRm=
E{|aH

mHm,mbmxm|2}

E

{
M∑

l=1,l 6=m

|aH
mHm,lblxl|2

}
+ E{|aH

mhpu,mxpu|2}+ E{|aH
mnm|2}

=
|aH

mHsummbm|2

|aH
mhpu,m|2 +

M∑

l=1,l 6=m

|aH
mHm,lbl|2 + aH

mRmam

(6.5)

and the capacity of PU is given in this context by :

Cpu = log2

(
1 +

ppu|hpu,pu|2∑M
m=1 |hpu,mhpu,m

H |||bm||2 + σ2

)
(6.6)

An efficient transmit beamforming technique combined with user selection will be proposed in the
following section by optimizing a certain problem.
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6.3 Centralized Beamforming Strategy

In this section, we will present the design of the transmit and receive beamvectors. In fact,
beamvector associated with each SU is determined by optimizing a certain criterion to reach a
specific purpose such as maximizing the throughput or minimizing the interference. In the lite-
rature, depending on the objective function and the constraints, the beamforming optimization
problems can be divided into two classes. One is the SINR balancing problem [88], i.e., maximi-
zing the sum SINR among all the users. The other one is the power minimization problem with
SINR constraints [88], i.e., minimizing some power function with SINR constraints. In this work,
we adopt the first class combined with an outage probability constraint, i. e., we will maximize the
per-user sum capacity subject to minimize the mutual interference. The goal here is to choose for
each user who has the best equivalent channel created by the multiple antennas and beamforming
where resources are allocated. This concept is shown in Figure 6.2. In this section, we introduce
the power constraints to compute beamvectors. Then, we present the outage probability constrain.
Finally, we present the optimization problem of the proposed strategy.

6.3.1 Power Constraints

To compute the beamvectors, we consider just the SU MIMO system. The reason for this is
that the interference among PU is nulled in SINR equation given in (6.5). In fact, we propose an
algorithm that can minimize the interference between cognitive users. SUs are first pre-selected
so as to maximize the per-user sum capacity, and then, the PU verifies the outage probability
constraint and a number of SUs are selected from those pre-selected SUs. Specifically, beamvec-
tors are selected such that they satisfy the interference free condition aH

mhpu,m = 0. If we consider
this condition, the SINR at the m-th SU can then be written as :

SINRm=
E{|aH

mHm,mbmxm|2}

E{|aH
mnm|2}+ E

{
M∑

l=1,l 6=m

|aH
mHm,lblxl|2

}

=
|aH

mHm,mbm|2

aH
mΦmam +

M∑

l=1,l 6=m

|aH
mHm,lbl|2

=

(
aH

mHm,mbm

)H (
aH

mHm,mbm

)

aH
m


Φm +

M∑

l=1,l 6=m

Hm,lblbH
l HH

m,l


 am

(6.7)

We define the total interference plus noise covariance matrix at the m-th SU as :

Rm=Φm +
M∑

l=1,l 6=m

Hm,lblbH
l HH

m,l (6.8)

Therefore, the SINR at the m-th SU can be formulated as follows :

SINRm=

(
aH

mHm,mbm

)H (
aH

mHm,mbm

)

aH
mRmam

=
(
aH

mHm,mbm

)H (
aH

mRmam

)−1 (
aH

mHm,mbm

)

=bH
mHm,mR−1

m HH
m,mbm (6.9)
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From (6.9), the post-beamforming vector can be expressed as follows :

am=R−1
m Hm,mbm (6.10)

This gives us the following maximization of SINR at the m-th SU :

bH
mHH

m,mR−1
m Hm,mbm≤λmax(m)pm = SINRm|max (6.11)

where λmax(m) is the maximum eigenvalue of HH
m,mR−1

m Hm,m and pm = bH
mbm. For beamfor-

ming, the transmitted power through all the SUs for the m-th SU is proportional to ||bm||2. The
design goal is to find the optimum transmit weight vector subject to a carrier power constraint.
We consider the power allocation problem corresponding to the distribution of all the available
power at the transmitter among all SUs, when the data destined from SU m is transmitted with a
maximum power Pmax. This per-user power constraint is given by :

||bm||2 = pm ≤ Pmax, ∀m = 1, ..., M (6.12)

and the global power constraint is formulated as follows :

M∑

m=1

||bm||2 =
M∑

m=1

pm ≤ MPmax (6.13)

6.3.2 Outage Probability Constraint

The outage probability is given by (4.3). In this subsection, we will reformulate this equation
using the beamforming strategy. Proceeding in the same manner as in Subsection 5.2.1, the outage
probability can be written as :

Pout = Prob





log2




1 +
ppuG2

pu | h′pu,pu |2
M∑

m=1

|hpu,mhpu,m
H |||bm||2 + σ2



≤ Rpu





(6.14)

As in the development of the distributed user selection strategy in Chapter 5, we introduce here
the PU and SU average channel gain estimate Gpu and Gsu, respectively, defined in the Subsec-
tion 5.2.1. These assumptions give the following PU outage probability expression :

Pout ' 1− exp



− (

2Rpu − 1
)




G2
su

M∑

m=1

pm + σ2

G2
puppu







(6.15)

6.3.3 Optimization Problem

Concluding that the maximum eigenvalue λmax(m) must be chosen so as to maximize the
capacity of SUs given a fixed transmit power. In the first step of the proposed beamforming user
selection strategy, SUs are first pre-selected so as to maximize the per-user sum capacity. In the
second step of the user selection strategy, the PU verifies the outage probability constraint and a
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number of SUs are selected from those pre-selected SUs. If we maximize the per-user sum capacity
(Csu) : i.e. the sum of the SINR averaged over all SUs under the constraints of maintaining the
global power lower than MPmax and of satisfying the QoS constraint on outage, the problem can
be written as :





maximize f(p1, ..., pM ) =
1

ln 2

M∑

m=1

ln (1 + λmax(m)pm)

subject to
M∑

m=1

pm ≤ MPmax

Pout ' 1− exp



− (

2Rpu − 1
)




G2
su

M∑

m=1

pm + σ2

G2
puppu






≤ q

(6.16)

To compute the transmitted power through all SUs, we define the Lagrangian expression for
this maximization problem as follows :

J=
1

ln 2

M∑

i=1

ln (1 + λmax(i)pi)− µ

(
M∑

i=1

pi −MPmax

)

−ν




1− exp



− (

2Rpu − 1
)




G2
su

M∑

i=1

pi + σ2

G2
puppu






− q




(6.17)

We introduce in (6.17) two variables, µ and ν, called Lagrange multipliers. The solution of all the
system is found by calculating the derivatives of J with respect to the power allocation parameters
pm|m=1..M and Lagrange multipliers µ and ν. By calculating the derivatives of J with respect to
the power allocation parameters pm, we obtain :

∂J

∂pm
=

(ln 2)−1 λmax(m)
1 + λmax(m)pm

− µ− ν

(
2Rpu − 1

)
G2

su

G2
puppu

exp



− (

2Rpu − 1
)




G2
su

M∑

i=1

pi + σ2

G2
puppu







= 0

(6.18)

Let g(pi) = (2Rpu−1)G2
su

G2
puppu

exp



− (

2Rpu − 1
)




G2
su

M∑

i=1

pi + σ2

G2
puppu







, we can express the solution

of (6.18) as :

1
(µ + νg(pi)) ln 2

λmax(m)=1 + λmax(m)pm (6.19)
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The solution of this problem is formulated as follows :

pm=
1

(µ + νg(pi)) ln 2
− 1

λmax(m)
(6.20)

The derivatives of J with respect to the power allocation parameters pi|i=1..M :




p1 = 1
(µ+νg(pi)) ln 2 − 1

λmax(1)

p2 = 1
(µ+νg(pi)) ln 2 − 1

λmax(2)

.

.

.

.
pM = 1

(µ+νg(pi)) ln 2 − 1
λmax(M)

(6.21)

The sum of all equations in (6.21) gives :

M∑

i=1

pi=
M

(µ + νg(pi)) ln 2
−

M∑

i=1

1
λmax(i)

=M

(
pm +

1
λmax(m)

)
−

M∑

i=1

1
λmax(i)

=MPmax (6.22)

Finally, we obtain the following set of equalities :

pm=Pmax − 1
λmax(m)

+
1
M

M∑

i=1

1
λmax(i)

for m = 1, ...,M (6.23)

This equation gives the power allocation solution using the global power constraint given by (6.13).
Firstly, the per-user power constraint given in (6.12) has been utilized to solve the problem, i.e.
maximizing the per-user sum capacity under the constraint of maintaining the per-user power
constraint lower than Pmax for all users. In this case, the Lagrangian expression is given by :

J =
1

ln 2

M∑

m=1

ln (1 + λmax(i)pi)−
M∑

i=1

µi (pi − Pmax) (6.24)

and the transmitted power through all SUs is :

pm = Pmax, m = 1, ..., M (6.25)

but it is not the optimal solution. Besides, from (6.23), pm can have values higher than Pmax which
contradicts condition (6.12). To optimally solve this problem, one should adopt this solution :

pm = Pmax if pm > Pmax

pm = Pmax − 1
λmax(m) + 1

M

∑M
i=1

1
λmax(i) else (6.26)

Therefore, it will be shown later from simulation results that (6.26) can approximate very well the
per-user sum capacity with optimal power allocation.
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6.4 User Selection Algorithm

We propose here an iterative algorithm to solve the maximization problem presented in Sec-
tion 2.9.2. The pseudo-code for the user selection strategy is shown in Algorithm 2. We define M̃b

as the number of SUs allowed to transmit using the beamforming approach. In each iteration of
the proposed algorithm, we initialize the number of transmitter SUs M̃b to 1 and the power of the
first SU to Pmax. Thus, the first SU will be selected automatically under the constraint of main-
taining the outage probability of the PU not degraded (Pout ≤ q). Then, each SU simultaneously
measures his power based on (6.23) and we check if this value is higher than Pmax. Similarly, at
every iteration, inequality (6.15) is evaluated for the SU in question based on the resulting power
allocation, and the number of SUs allowed to transmit is updated.

Algorithm 2 Resource allocation for cognitive radio networks with a centralized beamforming
user selection strategy

1: for it = 1 : ITmax do
2: p

(it)
1 = Pmax

3: M̃
(it)
b = 1

4: while P
(it)
out ≤ q do

5: for m = 2 : M do
6: p

(it)
m ← Pmax − 1

λ
(it)
max(m)

+ 1

M̃
(it)
b

∑M̃
(it)
b

i=1
1

λ
(it)
max(i)

7: if p
(it)
m > Pmax then

8: p
(it)
m ← Pmax

9: end if
10: ¤ Outage constraint
11: if P

(it)
out ≤ q then

12: M̃
(it)
b ← M̃

(it)
b + 1

13: end if
14: end for
15: end while
16: end for

6.5 Performance Evaluation

This section provides a number of simulations aimed at assessing the performance of the
beamforming user selection strategy in comparison with the centralized strategy presented in Sec-
tion 4.7. We will use the same propagation model and CRN parameters as in Chapter 5. We ran
a Monte Carlo simulations in the downlink and the uplink mode with ITmax = 104. The ave-
rage channel gains Gsu and Gpu were evaluated to G2

pu/G2
su ' 15 in the downlink mode and

G2
pu/G2

su ' 20 in the uplink mode, through Monte Carlo simulations when the number of SUs
M = 500. A number of simulations were performed utilizing different rate values : 0.1, 0.3 and
0.5bits/s/Hz.

In Figure 6.3, the number of active SU links under the proposed algorithm versus the total
number of users, in comparison with the centralized scheme and the distributed one, using a maxi-
mum outage probability q = 1% and different rate values, is depicted. It can be seen from the
figure that increasing the number of SUs produces improvements in the number of active SUs. We
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(a) Downlink : rate = 0.1bits/s/Hz (b) Uplink : rate = 0.1bits/s/Hz
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(c) Downlink : rate = 0.3bits/s/Hz (d) Uplink : rate = 0.3bits/s/Hz
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FIGURE 6.3 – Performance evaluation of the proposed user selection strategies in comparison with
the centralized one : Number of active secondary users versus total number of secondary users for
different rates (0.1, 0.3 and 0.5bits/s/Hz) and q = 1% in the downlink and the uplink mode.
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FIGURE 6.4 – Performance evaluation of the centralized beamforming user selection strategy in
comparison with the centralized and distributed one : Outage probability as function of the number
of secondary users for a target outage probability = 1% and a rate = 0.3bits/s/Hz in the downlink
and the uplink mode.

show also that the proposed user selection method outperforms the centralized and the distributed
strategy. We gain almost 4 additional active SUs using the centralized beamforming strategy in
comparison with the simple centralized strategy. It is obvious from Figure 6.3 that the number of
active SUs slopes in the centralized strategy start dropping at a lower number of SUs than in the
beamforming strategy case. While the number of active SUs curve has dropped off starting from
approximately 40 SUs in the centralized algorithm, the curve of the beamforming strategy starts
dropping off after 60 SUs for the beamforming strategy, in the case of downlink scenario when
rate = 0.3bits/s/Hz. Observing Figure 6.3 (a), as an example, we get that the number of active SUs
is lower than 20 users for any number of transmitter SUs in the system. This means that the PU
outage probability is upper-bounded by the maximum outage probability q. Figure 6.4 confirms
these results. As reflected in the figure, the required maximum outage probability is respected,
since all outage probability values are lower then 1% for any number of SUs. From these results,
the Pout curves in both uplink and downlink cases can be observed to have very similar slopes as
in Figure 6.3. The saturation mode for the beamforming strategy is around 60 SUs in the case of
downlink, and around 28 SUs for the uplink scenario.

So far, we verified the first goal of the proposed method, maintaining the outage probability of
the PU not degraded. The second goal in developing this new strategy is to reduce the interference
from SUs transmitters. However, we must show the impact of the proposed centralized beamfor-
ming scheme on the interference power. Figure 6.5 depicts the normalized interference power of
the beamforming user selection strategy versus the number of SUs in the uplink mode, in compari-
son with the distributed and the centralized methods. This figure shows that the interference power
increases with the increasing number of SUs. It shows as well that the beamforming strategy per-
forms better in terms of interference power. On the other hand, the distributed and the centralized
strategies have virtually identical curves. Indeed, the proposed technique reduces interfering po-
wer by about 45% in comparison with the distributed and the centralized techniques. Therefore,
we conclude that the proposed beamforming strategy is highly efficient in terms of reducing the
interference power as well as robust in maintaining a certain QoS to a PU.
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FIGURE 6.5 – Performance evaluation of the centralized beamforming user selection strategy in
comparison with the distributed and the centralized one : Interference power versus number of
SUs with q = 1% and a rate = 0.3bits/s/Hz in the uplink mode.

6.6 Conclusion

In this chapter, we have explored the idea of combining user selection with an efficient transmit
and receive beamforming technique to maximize the SU rate while maintaining QoS to a PU. First,
SUs are pre-selected so as to maximize the per-user sum capacity. Then, the PU verifies the outage
probability constraint and a number of SUs are selected from those pre-selected SUs. We showed
that the proposed approach exhibits a significant number of cognitive users able to transmit while
constraining interference to guarantee QoS for the PU. Simulations were carried out based on a
realistic network setting.
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Conclusions and Perspectives

This thesis set forth exploring undiscovered ground in spectrum sensing and resource alloca-
tion for CR. Specifically, the aim of the first part of this research has been to investigate whether
model selection or signal space dimension estimation and information theoretic distance measures
could be used to improve spectrum detection performance in a blind way and low signal to noise
region. Through a thorough research effort, two novel spectrum sensing algorithms based on dis-
tribution analysis and dimension estimation of the PU received signal were proposed and analyzed.
The second part of this thesis presents and analyzes two user selection strategies based on outage
probability. One explored the idea of combining multi-user diversity gains with spectral sharing
techniques to maximize the SU sum rate while maintaining the outage probability of the PU not
degraded with a distributed manner, the other treat the beamforming problem in the context of
CR using multiuser MIMO SU system and proposes a user selection strategy based on outage
probability.

Based on the first three chapters, a number of conclusions can be made for the first part of
this thesis. Based on the theoretical analysis, it was shown how detectors relying on conventio-
nal sample average based estimation suffer when the signal to noise ratio decreases. In order to
maintain a fixed estimation variance, a linear decrease in signal to noise ratio requires a quadratic
increase in the number of samples used for the estimation. Hence, accurate estimation becomes
infeasible at low signal to noise ratios. Note that the proofs are only done for signals with a cir-
cularly symmetric Gaussian distribution. Experiments with real data captured by the EURECOM
RF Agile Platform revealed that the very common assumption in academia when doing spectrum
sensing research, that the signal under H0 can be modeled as circularly symmetric white Gaussian
noise, can be dangerous.

It can be concluded also that the distribution analysis based detection is hard due to the simi-
larity of signal and noise distributions in some cases. However, the dimension estimation based
detection algorithm is to some extent promising. It has a performance which is lower than the
CD and AD detectors, and a complexity which is higher than the ED and similar to the CD and
AD detectors. This detector tray to estimate the dimension of the PU signal using AIC or MDL
criteria. From these informations, it might be able to infer something about the position of the oc-
cupied sub-band in the spectrum band. The information can also be used for resource allocation.
The DAD detector however outperforms the ED with comparable complexity. This detector have
very good specifications, comprising especially the low estimation variance which only depends
on parameters such as number of samples, which is known a priori, and its low complexity. The
DAD detector compares the distribution of the received signal with a second distribution. Chap-
ter 2 have discussed how the proposed DAD computes the Kullback-Leibler distance between the
distribution of the received signal’s envelope and a reference distribution, typically chosen to be a
Rayleigh distribution, but we can choose other kind of reference distributions. It becomes apparent
how it would be interesting to search for other areas than CR comprising detection problems with
larger inherent discrepancy between the conditional distributions. One of the ideas that we propose
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as perspective for work is to meet specification of standards such as GSM, WiFi and UMTS, and
the distribution analysis algorithm and tray to choose the adequate distribution for each standard.

The research presented in the first part of this thesis has given rise to several scientific publi-
cations ; One journal paper and seven papers have been presented at international conferences :

– B. Zayen and A. Hayar, "Cooperative/Non-Cooperative Blind Spectrum Sensing Techniques
in Cognitive Radio Networks", Submitted to IEEE Transaction on Wireless Communica-
tions.

– A. Cipriano, P. Gagneur, A. Hayar, B. Zayen and L. Le Floc’h, "Implementation and Per-
formance of an Opportunistic Cognitive Radio System", 19th Future Network and Mobile-
Summit’10, June 16-18, 2010, Florence, Italy.

– B. Zayen, W. Guibene and A. Hayar, "Performance Comparison for Low Complexity Blind
Sensing Techniques in Cognitive Radio Systems", CIP’10, 2nd International Workshop on
Cognitive Information Processing, June 14-16, 2010, Elba Island, Tuscany, Italy.

– B. Zayen and A. Hayar, "Cooperative Spectrum Sensing Technique based on Sub Space
Analysis for Cognitive Radio Networks", COGIS’09, COGnitive systems with Interactive
Sensors Conference, November 16-18, 2009, Paris, France.

– B. Zayen, A. Hayar, H. Debbabi and H. Besbes, "Application of Smoothed Estimators in
Spectrum Sensing Technique Based on Model Selection", ICUMT’09, IEEE International
Conference on Ultra Modern Telecommunications : Workshop on Cognitive Wireless Com-
munications and Networking, October 12-14, 2009, St.-Petersburg, Russia.

– B. Zayen, A. Hayar and K. Kansanen, "Blind Spectrum Sensing for Cognitive Radio Ba-
sed on Signal Space Dimension Estimation", ICC’09, IEEE International Conference on
Communications, June 14-18, 2009, Dresden, Germany.

– M. Ghozzi, B. Zayen and A. Hayar, "Experimental Study of Spectrum Sensing Based on
Distribution Analysis", ICT-MobileSummit’09, 18th ICT Mobile and Wireless Communi-
cations Summit, June 10-12, 2009, Santander, Spain.

– B. Zayen, A. Hayar and D. Nussbaum, "Blind Spectrum Sensing for Cognitive Radio Ba-
sed on Model Selection", CrownCom’08, 3rd International Conference on Cognitive Radio
Oriented Wireless Networks and Communications, Mai 15-17, 2008, Singapore.

In the last three chapters, we have focused on resource allocation and interference manage-
ment. Within this setting, we have considered different system models in which SUs compete for
a chance to transmit simultaneously or orthogonally with the PU. On the basis of these models,
we have also defined the specific resource allocation problem and offer insights into how to design
such scenario in a CRN environments and we proposed two user selection strategies. One first
key idea is based on outage probability to mange the QoS of the CR system. We have derived a
distributed user selection algorithm under a cognitive capacity maximization criterion and outage
probability constraint. We found out that we should make a tradeoff between cognitive capacity
maximization and number of active SUs maximization.

Finally, we have investigated the problem of resource allocation for multiuser multi-antenna
channels using a beamforming strategy. The proposed strategy was proved to be the optimal one
that achieves the maximum rate for both users under the constraint that the SU guarantees a QoS
for the primary system within the outage probability constraint. We have explicitly derived the
capacity of the primary as well as the SU. Both theoretical and simulation results based on a rea-
listic network setting provide substantial throughput gains, thereby illustrating interesting features
in terms of CRN deployment while maintaining QoS for the primary system by means of outage
probability.
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Our main contribution within this part is the QoS management of the CR system. The origi-
nality in the proposed methods is that we guarantee a QoS to PU by maintaining the PU’s outage
probability unaffected in addition to a certain QoS to SUs and ensuring the continuity of service
even when the spectrum sub-bands change from vacant to occupied. Thus by the outage proba-
bility control, if we have a vacant spectrum holes in the PU band, we set the outage probability
Pout = 1 to exploit the available spectrum band by SUs, and if we have occupied sub-bands, the
outage probability is set to Pout = q depending on the PU’s QoS.

Extensions of the problem for multi-PUs are problems of timely relevance that require further
research. Moreover, fairness issues between SUs, which have not been taken into account in this
work, need to be incorporated in order to provide substantial throughput while satisfying certain
QoS constraints between SUs.

The work in this part has been published in :

– B. Zayen, M. Haddad, A. Hayar and G. E. Oien, "Binary Power Allocation for Cognitive
Radio Networks with Centralized and Distributed User Selection Strategies", Elsevier Phy-
sical Communication Journal, Vol.1, No. 3, pp. 183-193, September 2008.

– B. Zayen, A. Hayar and G. E. Oien, "Resource Allocation for Cognitive Radio Networks
with a Beamforming User Selection Strategy", Asilomar’09, 43rd Asilomar Conference on
Signals, Systems and Computers, pp. 544-549, November 1-4, 2009, Asilomar, California,
USA.

In order to conclude, we might say that the theoretical limits of CR systems are relatively
understood nowadays. However, the gap between the current practical schemes and the theoretical
limits is still significant, making the design of CR networks an open and exiting issue. Notably,
proposals such as ultra-wide band (UWB) and interference temperature have called into question
the validity of the FCCs hierarchy and required reexamination of the source of authority for the
FCCs unlicensed spectrum access rules.
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Appendix A

Résumé Français

A.1 Introduction

Dans le cadre de la radio cognitive telle que définie par J. Mitola [1] [2] [3], les utilisateurs
secondaires peuvent accéder de façon opportuniste aux parties du spectre détenues par les utilisa-
teurs primaires lorsque ceux-ci ne les utilisent pas et leur en donnent l’accord. Dans ce cadre, des
schémas de détection et de gestion de la ressource radio, seront supposés disposer d’informations
sur l’activité des systèmes primaires (interférence, etc) et proposeront par conséquence des stra-
tégies d’accès et d’allocation de ressource opportuniste permettant aux utilisateurs secondaires de
profiter des bandes libres du primaire pour transmettre.

Dans la première partie de ce résumé nous proposons deux stratégies d’accès pour la radio
cognitive basées sur la distribution et la dimension du signal primaire. Dans la deuxième partie,
deux politiques d’allocation de ressources seront développées. Les deux politiques sont basées sur
la probabilité outage. Des résultats de simulation seront présentés en utilisant des scenarios réels.

A.2 Stratégies d’accès pour la radio cognitive

Nous rappelons dans cette section le principe de détection dans le cadre de la radio cognitive
ainsi que le contexte de notre analyse. Nous développons par la suite les deux techniques de
détection qui sont proposées dans le cadre de cette thèse : une technique de détection basée sur
la distribution du signal et une deuxième technique basée sur la dimension du signal primaire.
Nous présentons enfin quelques résultats de simulation en comparant les méthodes proposées avec
quelques méthodes de référence.

A.2.1 Principe de détection pour la radio cognitive

Nous proposons dans la Figure A.1 un exemple de scenario d’un réseau radio cognitive où
nous avons un système primaire et un réseau de secondaires essayant d’exploiter les bandes libres
du primaire. Désignons par x le signal émis sur une antenne donné par :

x = As + n (A.1)

Ce signal peut êtres un signal secondaire, un signal primaire ou deux signaux, secondaire et pri-
maire, émis en même temps. Le problème de la détection d’une bande libre revient au test d’hy-
pothèses suivant :

x =
{

n H0

As + n H1
(A.2)
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FIGURE A.1 – Exemple de scenario d’un réseau radio cognitive.

où n est un vecteur colonne (q×1) représentant un bruit blanc gaussien complexe circulaire centré
de matrice de covariance égale à 2 fois l’identité et A est une matrice (q×p) regroupant l’ensemble
des coefficients d’atténuation complexes entre l’émetteur et le récepteur. s (p×1) est le signal utile
dont on souhaite détecter la présence.

Nous définissons aussi la probabilité de fausse alarme donnée par :

PFA = Pr(H1 | H0) = Pr(x est présent | H0) (A.3)

et la probabilité de détection :

PD=1− PMD

=1− Pr(H0 | H1)
=1− Pr(x est absent | H1) (A.4)

où PMD est la probabilité de détection manquée. La probabilité de fausse alarme peut êtres définie
en fonction du seuil de détection γ donnée par :

PFA = Pr(Υ(x) > γ|H0) (A.5)

avec Υ(x) présentant le test statistique pour un détecteur donné.

A.2.2 Technique de détection basée sur la distribution du signal

La première technique de détection proposée dans ce travail est basée sur l’analyse de la dis-
tribution du signal reçu (DAD). L’idée principale de cette technique de détection de bande libre est
basée sur la distribution du signal reçu x. En effet, si la distribution de x est une distribution Gaus-
sienne (la distribution de la norme est Rayleigh) alors nous affirmons dans ce cas que la bande est
libre (c.-à-d. il y a que du bruit n). Dans le cas contraire, la bande est occupée et la distribution de
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la norme du signal reçu est Rice. Nous utilisons pour cela le critère d’information d’Akaike (AIC)
résumé dans cette équation [11] [10] :

AIC=−2
N∑

n=1

log gθ̂(xn) + 2U (A.6)

où la fonction gθ̂ représente la fonction candidate (Rayleigh ou Rice) calculée à partir des pa-
ramètres des ces deux distributions, respectivement. Le paramètre θ sera estimé également pour
les deux distributions Rayleigh et Rice. Nous définissons maintenant l’Akaike weights, qui est
reformulé en fonction des AIC de Rayleigh et Rice. Ce paramètre peut êtres interpréter comme
la probabilité que la distribution de la norme du signal reçu est une Rayleigh dans le cas ou nous
avons que de bruit (hypothèse H0) et celle que la distribution est une Rice dans le cas contraire
(hypothèse H1). L’Akaike weights pour les deux distributions est défini comme suit [49] [12] :

WRice=
exp

(−1
2ΦRice

)

exp
(−1

2ΦRice

)
+ exp

(−1
2ΦRayleigh

) (A.7)

WRayleigh=
exp

(−1
2ΦRayleigh

)

exp
(−1

2ΦRayleigh

)
+ exp

(−1
2ΦRice

) (A.8)

où

ΦRice=AICRice −min (AICRice, AICRayleigh) (A.9)

ΦRayleigh=AICRayleigh −min (AICRayleigh, AICRice) (A.10)

et

AICRice=−2LRice + 2URice (A.11)

AICRayleigh=−2LRayleigh + 2URayleigh (A.12)

avec URayleigh = 1 et URice = 2. Par suite, un signal est présent si WRice est supérieur à WRayleigh

et vice versa. Par conséquent, l’algorithme de détection DAD peut être reformulé comme suit :

ΥDAD(x) =
{

WRice −WRayleigh < γDAD bruit
WRice −WRayleigh > γDAD signal

(A.13)

Le seuil de détection γDAD est calculé pour une probabilité de fausse alarme donnée PFA,DAD.
Si AICRice − AICRayleigh > γDAD, nous déclarons que le signal primaire est présent, sinon le
signal primaire est absent. Le seuil de détection est dérivé à partir de la fonction suivante :

PFA,DAD=Pr (WRice −WRayleigh > γDAD|H0)

=Pr

(
exp

(−1
2ΦRice

)− exp
(−1

2ΦRayleigh

)

exp
(−1

2ΦRice

)
+ exp

(−1
2ΦRayleigh

) > γDAD

∣∣∣∣H0

)

=Pr

(
exp

(−1
2AICRice

)− exp
(−1

2AICRayleigh

)

exp
(−1

2AICRice

)
+ exp

(−1
2AICRayleigh

) > γDAD

∣∣∣∣H0

)
(A.14)
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Après quelques dérivations, nous obtenons l’équation ci-dessous :

PFA,DAD=Pr

(
p∏

i=1

xi <

(
1 + γDAD

1− γDAD

)2

(4πK)−p exp (p− 2)
∣∣∣∣H0

)
(A.15)

en introduisant le facteur de Rice K. Nous appliquons maintenant la distribution de p variables
aléatoires de type Rayleigh [50], et nous obtenons :

F (t)=
(
2pσ2p

)− 1
2 tGp,1

1,p+1

((
2pσ2p

)−1
t2

∣∣ 1
2
1
2
,..., 1

2
,− 1

2

)
(A.16)

avec G est la fonction Meijer [50] définie par :

Gp,1
1,p+1

(
u
∣∣ 1
2
1
2
,..., 1

2
,− 1

2

)
=

1
j2π

∫

L

(
Γ

(
1
2 − s

))p−1 Γ
(

1
2 + s

)

Γ
(

3
2 + s

) u−sds (A.17)

Par suite, la probabilité de fausse alarme de l’algorithme de détection DAD est donnée par :

PFA,DAD=F

((
1 + γDAD

1− γDAD

)2

(4πK)−p exp (p− 2)

)
(A.18)

ou, alternativement, le seuil de détection est défini par :

γDAD=

√
(4πK)p F−1 (PFA,DAD) exp (2− p)− 1√
(4πK)p F−1 (PFA,DAD) exp (2− p) + 1

(A.19)

A.2.3 Technique de détection basée sur la dimension du signal

La deuxième technique de détection proposée dans ce travail est basée sur l’estimation de la
dimension du signal reçu (DED). Nous reformulons donc l’expression de la formule AIC qui sera
utilisée pour le développement de l’algorithme DED. Nous définissons également la longueur de
description minimale (MDL) [12] [54] utilisé comme un second outil dans le développement du
détecteur DED. Pour calculer les valeurs AIC et MDL, nous estimons les valeurs propres signifi-
catives à partir de la matrice de covariance du signal reçu et nous décidons ensuite sur la présence
ou l’absence de signal primaire.

Notons par p la taille d’une observation x ∈ {x1, x2, ..., xN} et q la taille du signal transmit en
échantillons. Notre objectif est de déterminer la valeur q à partir de N observations de x (c.-à-d.
la dimension du signal primaire reçu). La matrice de covariance du signal reçu x est donné par :

R = ASAH + σ2I (A.20)

avec S est la matrice de covariance du signal transmi
(
S = E{ssH}) et σ2 est la puissance du bruit.

D’après la matrice de covariance donnée par (A.20), nous pouvons avoir l’expression suivante :

R(k) =
k∑

i=1

(λi − σ2)ViVH
i + σ2I (A.21)

avec λ1, ..., λk et V1, ..., Vk sont, respectivement, les valeurs propres et les vecteurs propres de
la matrice R(k). Notons que, le paramètre k est lié au nombre de degré de liberté (DoF), c.-à-d.
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FIGURE A.2 – Valeurs de AIC et MDL pour un block où nous avons des données utiles et un
deuxième block où nous avons uniquement du bruit en utilisant un signal UMTS.

k = 0, 1, ..., p− 1. Le vecteur de paramètres θ est une fonction des valeurs propres et des vecteurs
propres et il est exprimé comme suit :

θ = (λ1, ..., λk, σ
2, V1, ..., Vk) (A.22)

et la matrice de covariance peut être estimée à partir de l’équation suivante :

R̂ =
1
N

N∑

n=1

xnxH
n (A.23)

avec xn|{n=1,...,N} sont les N observations indépendantes du signal x. Nous exprimons ainsi le
critère AIC en fonction des valeurs propres de la matrice R̂ (c.-à-d. λ̂1, λ̂2, ..., λ̂q) :

AIC(k) = −2 log




∏p
i=k+1 λ̂

1
p−k

i

1
p−k

∑p
i=k+1 λ̂i




(p−k)N

+ 2k(2p− k) (A.24)

Nous définissons de même le critère MDL par [49] :

MDL(k) = − log




∏p
i=k+1 λ̂

1
p−k

i

1
p−k

∑p
i=k+1 λ̂i




(p−k)N

+
k

2
(2p− k) log N (A.25)

En se basant sur (A.24) et (A.25), nous estimons la dimension du signal reçu. En effet, nous
traçons dans la Figure A.2 les valeurs de AIC et MDL pour un block où nous avons des données
utiles et un deuxième block où nous avons uniquement du bruit. Nous remarquons que dans le
premier cas, les valeurs minimales de AIC et MDL donnent la dimension du signal et les courbes
des AIC et MDL sont strictement décroissantes jusqu’à AICmin et MDLmin, respectivement et
croissante a partir de ces valeurs. Dans le deuxième cas où il y a que du bruit, le minimum de
AIC (de même pour le MDL) est égale à zéro et les deux courbes sont strictement croissantes.
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D’après ces résultats, nous proposons l’algorithme de détection DED suivant en utilisant AIC
comme critère :

ΥDED−AIC(x) =
{

AIC(0)− AIC(1) < γDED−AIC bruit
AIC(0)− AIC(1) > γDED−AIC signal

(A.26)

et en utilisant le critère MDL :

ΥDED−MDL(x) =
{

MDL(0)−MDL(1) < γDED−MDL bruit
MDL(0)−MDL(1) > γDED−MDL signal

(A.27)

Nous définissons dans les deux algorithmes proposés les seuils de détections γDED−AIC et γDED−MDL.
Ces seuils sont calculés en fixant les probabilités de fausse alarme pour chaque détecteur. Le seuil
de détection en utilisant le critère AIC est dérivé à partir de la fonction suivante :

PFA,DED−AIC≈Pr

(
AIC(0)− AIC(1) > γDED−AIC |H0

)
(A.28)

En remplaçant les valeurs de AIC(0) et AIC(1) et en effectuant quelques approximations nous
obtenons :

PFA,DED−AIC=Pr


N λ̂1

σ2 − µ

ν
<

Nexp
(

2−4p−γDED−AIC

2N

)
− µ

ν

∣∣∣∣H0


 (A.29)

Notons par F2 la CDF de la distribution de Tracy-Widom d’ordre deux donnée par [57] :

F2(t)=exp
(
−

∫ ∞

t
(u− t)h2(u)du

)
(A.30)

avec h(u) est la solution de l’équation différentielle de Painlevé II [57] :

h(u)=uh(u) + 2h3(u) (A.31)

Par suite, la probabilité de fausse alarme de l’algorithme DED utilisant le critère AIC est donnée
par :

PFA,DED−AIC=F2


Nexp

(
2−4p−γDED−AIC

2N

)
− µ

ν


 (A.32)

et le seuil de détection :

γDED−AIC=2− 4p− 2N ln
(

νF−1
2 (PFA,DED−AIC) + µ

N

)
(A.33)

avec µ =
(√

N +
√

p
)2

et ν =
(√

N +
√

p
)(

1√
N

+ 1√
p

) 1
3 .

En adoptant la même démarche, nous pouvons écrire la probabilité de fausse alarme de l’algo-
rithme DED utilisant le critère MDL comme suit :

PFA,DED−MDL=F2




Nexp

(
γDED−MDL+(p− 1

2) log N

N

)
− µ

ν


 (A.34)
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p = 150 p = 200

Résultats de simulation pour le DAD
PFA,DAD 0.0544 0.0502

γDAD 0.9814 0.9561

Résultats théoriques pour le DAD
PFA,DAD 0.0563 0.0529

γDAD 0.9907 0.9614

Résultats de simulation pour le DED

PFA,DED−AIC 0.0518 0.0504
PFA,DED−MDL 0.0533 0.0520

γDED−AIC 2.5901e04 2.1521e04
γDED−MDL 2.0979e04 1.9561e04

Résultats théoriques pour le DED

PFA,DED−AIC 0.0500 0.0500
PFA,DED−MDL 0.0500 0.0500

γDED−AIC 2.5274e04 1.9846e04
γDED−MDL 1.8259e04 1.7540e04

TABLE A.1 – Comparaison entre les résultats de simulation et les résultats théoriques des deux
seuils de détection et les probabilités de fausse alarme pour les deux techniques DAD et DED
pour différents valeurs p, N = 1000 et SNR = −7dB.

et le seuil de détection :

γDED−MDL=
(

p− 1
2

)
log N −N ln

(
νF−1

2 (PFA,DED−MDL) + µ

N

)
(A.35)

Le Table A.1 donne une comparaison entre les résultats de simulation et les résultats théoriques
des deux seuils de détection et les probabilités de fausse alarme pour les deux techniques DAD et
DED pour différents valeurs de p. Ces résultats montrent la bonne estimations théorique des seuils
de détection et des probabilités de fausse alarme.

A.2.4 Résultats des simulations

Dans un premier temps, nous appliquons les deux méthodes de détection sur des signaux
réels captés par la plateforme d’EURECOM où nous avons que le primaire présent : le signal
primaire est envoyé seul sur l’antenne et il n’y a pas de signal secondaire. Nous présentons dans
les Figures A.3 (a) et (b) un exemple de détection du signal primaire en utilisant la technique DAD
et en traçant l’Akaike weights pour les deux distributions Rice et Rayleigh. Les deux signaux
primaires choisis sont : un signal GSM avec une fréquence de coupure égale à 953MHz et une
fenêtre d’analyse de taille T = 533 échantillons égale à 200kHz, et un signal WiFi avec une
fréquence de coupure égale à 2430MHz et une fenêtre d’analyse de taille T = 1332 échantillons
égale à 500kHz. La puissance à l’émission du signal primaire est de dBm. Nous remarquons,
d’après ces figures, que le signal du primaire est bien localisé : Pour les sous-bandes du spectre
où nous avons que du bruit, l’Akaike weights de la distribution de Rayleigh est égale à 1 et celui de
la distribution de Rice est nul. Dans les sous-bandes où nous avons un signal primaire, les valeurs
d’Akaike weights changent de 1 à 0 et de 0 à 1 pour Rayleigh et Rice, respectivement.

Nous nous intéressons maintenant au deuxième algorithme de détection DED. Nous traçons
dans les Figures A.3 (c) et (d) la capacité de détection de l’algorithme DED des sous bandes
libre dans le spectre du primaire. Nous vérifions d’après ces figures que nous assurons une bonne
détection des trous dans le spectre en utilisant cette méthode.

Apres avoir étudié les performances des détecteurs proposés dans cette thèse pour la détection
des sous-bandes libres dans le spectre du primaire, nous évaluons maintenant les performances
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FIGURE A.3 – Évaluation de performances des deux techniques de détection DAD et DED pour
un signal GSM avec une fréquence de coupure égale à 953MHz et une fenêtre d’analyse de taille
T = 533 échantillons égale à 200kHz, et un signal WiFi avec une fréquence de coupure égale à
2430MHz et une fenêtre d’analyse de taille T = 1332 échantillons égale à 500kHz.
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FIGURE A.4 – Évaluation de performances des deux techniques de détection DAD et DED en
terme de détection locale du primaire en utilisant un signal DVB-T OFDM : Probabilité de détec-
tion en fonction du SNR pour une PFA = 0.05 et courbes ROC pour un SNR = −7dB, et, un
temps de détection = 1.12ms et p = 2048.
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des détecteurs pour la détection locale du primaire. Nous considérons pour cela trois scenarios
différents :

Scenario 1 Utilisant un signal OFDM avec un canal AWGN ;

Scenario 2 Utilisant un signal OFDM avec un canal multitrajets de type Rayleigh avec shado-
wing ;

Scenario 3 Utilisant un signal OFDM avec un canal multitrajets de type Rice avec shadowing.

La Figure A.4 montre les résultats des simulations des détecteurs DED et DAD en comparaison
avec le détecteur basée sur la cyclostationarité du signal (CD) [15], le détecteur basée sur le mini-
mum/maximum valeurs propres (MMED) [28] et le détecteur d’énergie (ED) [26], avec les trois
scenarios proposés. Nous traçons dans cette figure la probabilité de détection en fonction du SNR
pour les deux détecteurs proposés et les détecteurs de références ainsi que les courbes ROC (pro-
babilité de fausse alarme en fonction de la probabilité de détection). Nous remarquons d’après
ces résultats, que le détecteur CD donne les meilleurs résultats. Ce dernier en revanche a la plus
grande complexité comme il nécessite quelques informations sur le signal primaire émis (n’est pas
aveugle). Nous remarquons aussi que le détecteur DED donne des résultats très encourageants. Le
détecteur DAD a des résultats comparables avec le détecteur ED et une complexité très faible.

Concernant la détection coopérative, chaque noeud du réseau radio cognitive renvoie une in-
formation condensée résultant de son algorithme de détection locale au centre de fusion. Ce der-
nier les combine pour aboutir à un état plus précis et plus fiable de la bande de fréquence testée.
Ceci permettra par exemple d’éviter les problèmes de noeud caché dans lequel peut se trouver
un noeud du réseau. En fonction du type de l’information renvoyée par les noeuds, le centre de
fusion emploie un algorithme de combinaison différent. Si cette information est de type bit, la
combinaison est dite dure. Dans le cas d’une information du type réel (mesure d’énergie, rapport
de vraisemblance, etc.) la combinaison est dite douce. Ces deux techniques ont été appliquées aux
algorithmes de détection proposés et nous avons obtenu les résultats donnés par la Figure A.5.
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FIGURE A.5 – Évaluation de performances des deux techniques de détection DAD et DED en
terme de détection coopérative en utilisant un signal DVB-T OFDM : Probabilité de détection en
fonction du SNR pour une PFA = 0.05 et un nombre de secondaires M .
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FIGURE A.6 – Réseau radio cognitif avec N utilisateurs primaires et M utilisateurs secondaires
essayant de communiquer entre eux en ad-hoc, dans un système primaire en mode downlink.

A.3 Stratégies d’allocation des ressources pour la radio cognitive

Dans le cadre des politiques d’allocation de ressources dans les réseaux radio cognitive, nous
avons proposé deux méthodes de sélection d’utilisateurs basées sur la probabilité outage. Nous
présentons dans cette section ces deux stratégies. Nous commençons par une présentation générale
du contexte d’allocation de ressource avec les définitions des différents paramètres utilisés dans
notre développement. Par suite, nous présenterons les détailles des algorithmes d’allocation de
ressource et quelques résultats de simulation.

A.3.1 Principe d’allocation des ressources pour la radio cognitive

L’accès opportuniste au spectre par un réseau secondaire a pour obligation de ne pas gêner le
fonctionnement de l’utilisateur primaire. Nous proposons dans cette section les scenarios mises en
oeuvre dans cette deuxième partie de thèse ainsi que le modèle du système cognitive adopté. Nous
avons choisi les deux scenarios donnés par la Figure A.6 et la Figure A.7 dans les deux modes
downlink et uplink, respectivement.

Dans le même contexte, des études théoriques sur la gestion de la ressource radio sont menées,
notamment sur les points suivants :

– Modélisation et prise en compte l’environnement (interférences, technologies d’accès dis-
ponibles) ;

– Mécanismes d’allocations de ressources dans un contexte de radio opportuniste ;
– Architectures de réseau pour la gestion des ressources ;
– Interaction avec les applications en "Context Aware" et prise en compte de considérations

d’usage (exploitation du profil de l’utilisateur).
Nous proposons ici deux méthodes basées sur la probabilité outage pour pouvoir satisfaire les
points cités précédemment. Au cours de notre développement, nous utiliserons les paramètres
suivants :

– l’utilisateur primaire est représenté par l’indice pu,
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FIGURE A.7 – Réseau radio cognitif avec N utilisateurs primaires et M utilisateurs secondaires
essayant de communiquer entre eux en ad-hoc, dans un système primaire en mode uplink.

– l’indice d’un utilisateur secondaire m varie de 1 à M ,
– hl,m est le gain du canal d’un utilisateur secondaire l à un deuxième utilisateur secondaire

m,
– les données destinées à un utilisateur secondaire m sont transmit avec une puissance pm et

un maximum de puissance Pmax,
– hpu,m est le gain du canal de l’utilisateur primaire à un utilisateur secondaire m,
– hpu,pu est le gain du canal entre l’utilisateur primaire et la station de base BS,
– les données destinées à l’utilisateur primaire sont transmit avec une puissance ppu.

A.3.2 Technique d’allocation de ressource distribuée

Cet algorithme permet de sélectionner un nombre d’utilisateur secondaire aptes à communi-
quer entre eux tout en assurant une qualité de service pour le système primaire ainsi qu’une cer-
taine qualité de service pour les secondaires. La stratégie de sélection des utilisateurs secondaires
assure une protection de la probabilité outage (c.-à-d. une protection du primaire) en maximisant
la somme des capacités des secondaires.

Avant d’entrer dans les détailles de l’algorithme d’allocation de ressource proposé dans cette
partie, nous définissons quelques paramètres utiles pour le développement. Le premier paramètre
est la capacité du système primaire donnée par :

Cpu = log2




1 +
ppu | hpu,pu |2

M∑

m=1

pm | hpu,m |2 +σ2




(A.36)

avec σ2 est la variance du bruit ambiant. Nous devons ainsi sélectionner le nombre d’utilisateurs
secondaires pouvant transmettre dans la bande du primaire en assurant une certaine qualité de
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service pour ce dernier. Cette qualité de service est vérifiée à travers la capacité du primaire, en
fixant un seuil maximum Rpu. Nous définissons alors la probabilité outage comme suit :

Pout = Prob {Cpu ≤ Rpu} (A.37)

Après avoir garantir une certaine qualité de service pour le système primaire, nous tenons en
compte dans notre analyse une certaine qualité de service pour le système secondaire. Cette assu-
rance est garanti par une contrainte sur la capacité de chaque secondaire définie comme :

Cm = log2 (1 + SINRm) (A.38)

avec

SINRm =
pm|hm,m|2

M∑

l=1
l 6=m

pl|hl,m|2 + ppu|hpu,m|2 + σ2

(A.39)

et le but de l’algorithme d’allocation de ressource est de maximiser la somme des capacités des
secondaires :

Csu =
M∑

m=1

Cm (A.40)

Dans notre analyse, nous supposons que le gain du canal primaire peut être exprimé sous cette
forme :

hpu,pu , Gpu ∗ h′pu,pu (A.41)

fonction du gain moyen estimé du canal primaire h′pu,pu et la composante aléatoire de ce gain. La
probabilité outage peut s’écrire dans ce cas sous la forme suivante :

Pout = Prob





log2




1 +
ppuG2

pu | h′pu,pu |2
M∑

m=1

pm | hpu,m |2 +σ2



≤ Rpu





(A.42)

avec M̃d est le nombre maximum des utilisateurs secondaires pouvant transmettre sans affecter le
système primaire. Si nous prenons en considération la même forme de décomposition pour le gain
du canal secondaire en intégrant le gain moyen des secondaires Gsu, nous obtenons :

Pout ' Prob





ppuG2
pu | h′pu,pu |2

G2
su

M̃d∑

m=1

pm + σ2

≤ 2Rpu − 1





≤ q

' Prob

{
| h′pu,pu |2≤

(
2Rpu − 1

)
(

M̃dG
2
suPmax + σ2

G2
puppu

)}
≤ q

(A.43)
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Si nous supposons que le canal est i.i.d. distribué sous le format Rayleigh, nous avons l’équation
de probabilité outage suivante :

Pout '
∫ (

2Rpu − 1
)
(

M̃dG
2
suPmax + σ2

G2
puppu

)

0
exp(−t)dt ≤ q (A.44)

et finalement nous obtenons la contrainte de probabilité outage suivante :

Pout ' 1− exp

[
− (

2Rpu − 1
)
(

M̃dG
2
suPmax + σ2

G2
puppu

)]
≤ q (A.45)

Le nombre maximum d’utilisateurs secondaires actifs peut s’exprimer sous cette forme :

0 ≤ M̃d ≤ − log(1− q)
(2Rpu − 1)

.
G2

puppu

G2
suPmax

− 1
SNR

= M̃theory (A.46)

et le problème d’optimisation de l’algorithme d’allocation de ressource distribué est

Find pm|m=1,...,M = arg max
pm

Csu (A.47)

tenant compte que :




pm ∈ {0, Pmax}, for m = 1, ...,M

0 ≤ M̃d ≤ − log(1− q)
(2Rpu − 1)

.
G2

puppu

G2
suPmax

− 1
SNR

(A.48)

A.3.3 Technique d’allocation de ressource centralisée basée sur le beamforming

Le deuxième algorithme d’allocation de ressource proposé dans ce travail est basé sur l’an-
nulation des interférences causées par les utilisateurs secondaires. Nous avons opté pour cela une
technique de beamforming au niveau du système secondaire. L’algorithme fonctionne en deux
étapes indépendantes mais complémentaires : La première étape permet de sélectionner un nombre
d’utilisateurs secondaires en tenant compte de la probabilité outage, après, une deuxième sélec-
tion sera effectuer parmi les utilisateurs présélectionnés en vérifiant la contrainte d’allocation de
puissance assurée par le mécanisme de beamforming.

Nous proposons le système secondaire présenté par la Figure A.8. K antennes à l’émission et
à la réception sont considérés. Le vecteur de gains de l’utilisateur primaire pu vers un utilisateur
secondaire m est donné par :

hpu,m = [hpu,m1
...hpu,mK

]T (A.49)

et le signal reçu au niveau d’un utilisateur secondaire m est :

ym = Hm,msm +
M∑

l=1,l 6=m

Hm,lsl + hpu,mxpu + nm, m = 1, ..., M (A.50)

avec nm est un bruit Gaussien de moyenne nulle et de puissance σ2
m. sm est le signal transmis pour

le secondaire m et xpu est l’échantillon émis par le primaire. Hm,l(l = 1, ..., m−1,m+1, ...,M)
est la matrice de canaux entre le secondaire émetteur et le secondaire récepteur m.
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FIGURE A.8 – Strucure de réseau radio cognitive secondaire MIMO.

Le signal émis après opération de beamforming est :

sm = bmxm, m = 1, ...,M (A.51)

avec bm est le vecteur de pre-beamforming et xm est l’échantillon transmis par le secondaire m.
Le signal reçu est fonction du vecteur post-beamforming am, donné par :

rm=aH
mym

=aH
mHm,mbmxm + aH

m

M∑

l=1,l 6=m

Hm,lblxl + aH
mhpu,mxpu + aH

mnm (A.52)

Nous définissons ainsi la forme du SINR dans ce contexte :

SINRm=
E{|aH

mHm,mbmxm|2}

E

{
M∑

l=1,l 6=m

|aH
mHm,lblxl|2

}
+ E{|aH

mhpu,mxpu|2}+ E{|aH
mnm|2}

=
|aH

mHsummbm|2

|aH
mhpu,m|2 +

M∑

l=1,l 6=m

|aH
mHm,lbl|2 + aH

mRmam

(A.53)

et la capacité du système primaire :

Cpu = log2

(
1 +

ppu|hpu,pu|2∑M
m=1 |hpu,mhpu,m

H |||bm||2 + σ2

)
(A.54)

Notons par Rm la matrice de covariance d’interférence et bruit total pour un utilisateur secondaire
m donné par :

Rm=Φm +
M∑

l=1,l 6=m

Hm,lblbH
l HH

m,l (A.55)
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avec Φm = E{nmnH
m}. Par suite, le SINR du m-ème utilisateur secondaire est reformulé sous

cette forme :

SINRm=

(
aH

mHm,mbm

)H (
aH

mHm,mbm

)

aH
mRmam

=
(
aH

mHm,mbm

)H (
aH

mRmam

)−1 (
aH

mHm,mbm

)

=bH
mHm,mR−1

m HH
m,mbm (A.56)

La forme (A.56) conduit à la maximisation du SINR suivante :

bH
mHH

m,mR−1
m Hm,mbm≤λmax(m)pm = SINRm|max (A.57)

avec λmax(m) représente le maximum des valeurs propres de la matrice HH
m,mR−1

m Hm,m et pm =
bH

mbm.
Le problème d’optimisation de l’algorithme d’allocation de ressource centralisée basée sur le

beamforming est donné par :




maximiser f(p1, ..., pM ) =
1

ln 2

M∑

m=1

ln (1 + λmax(m)pm)

tenant compte
M∑

m=1

pm ≤ MPmax

Pout ' 1− exp



− (

2Rpu − 1
)




G2
su

M∑

m=1

pm + σ2

G2
puppu






≤ q

(A.58)

La solution de ce dernier probleme donne la forme suivante de la puissance pm d’un utilisateur
secondaire m :

pm=Pmax − 1
λmax(m)

+
1
M

M∑

i=1

1
λmax(i)

for m = 1, ...,M (A.59)

En tenant compte d’une deuxème contrainte sur la puissance, ||bm||2 = pm ≤ Pmax, nous obte-
nons la solution d’allocation de puissance ci-dessous :

pm = Pmax si pm > Pmax

pm = Pmax − 1
λmax(m) + 1

M

∑M
i=1

1
λmax(i) sinon (A.60)

A.3.4 Résultats des simulations

Nous présentons dans cette section quelques résultats de simulation des deux algorithmes d’al-
location de ressource proposés dans cette partie. Le scenario du réseau radio cognitive choisi est
donné par la Figure A.9. Nous considérons un utilisateur primaire pouvant se déplacer sur un
disque de rayon Rp et un ensemble de secondaires occupant une bande de rayon R comme montre
la Figure A.9. Dans les simulations qui seront présentées, nous avons fixé R = 1000 mètres et
Rp = 600 mètres. Le modèle de propagation utilisé est COST-231 Hata [79] et la puissance maxi-
male d’émission des utilisateurs Pmax, primaire et secondaires, est égale à 1 Watt.



111

6

- x

y

-¾
R

-¾
Rp

sBS

s

s

s

s

s

SU1

SU2

SU3

SU4

SU5

PPPPPPP

q

k
((((((1¾

s
sSUm

PU

dpu,m

dm

s
SUM

FIGURE A.9 – Réseau radio cognitive avec un utilisateur primaire et M utilisateurs secondaires.

La Figure A.10 montre le nombre maximum d’utilisateurs secondaires actifs d’un tel scéna-
rio en fonction du nombre total de tous les utilisateurs pour différents débits et dans les deux cas
downlink et uplink. Nous remarquons que plus le débit est faible, plus le nombre d’utilisateurs
actifs est grand. Nous remarquons aussi que l’algorithme d’allocation de ressource centralisée
basée sur le beamforming donne les meilleurs résultats. Ceci est expliqué par le fait que cet al-
gorithme prend en considération l’annulation des interférences causées par les secondaires sur le
système primaire. Aussi, l’algorithme d’allocation de ressource distribuée permet de sélectionner
plus d’utilisateurs actifs comparé au centralisé. En effet, l’algorithme distribué calcule le nombre
d’utilisateurs sans avoir besoin d’informations sur les conditions du canal (comme les gains, etc.).
Par suite, à partir de ce nombre connu au préalable, nous choisissons les utilisateurs qui causent
moins d’interférences. Par contre, dans le cas de l’algorithme centralisé, le nombre d’utilisateurs
actifs est estimé au fur et à mesure le nombre d’itérations augmente. En effet, nous initialisons
tous les utilisateurs actifs. Nous calculons pour chaque utilisateur la probabilité outage et la ca-
pacité et nous maximisons la capacité moyenne Csu. Si cet utilisateur vérifie les deux contraintes
mentionnées, il est maintenu actif, sinon cet utilisateur change d’état à inactif. Cette opération est
répétée pour chaque utilisateur rentrant dans le système.

La Figure A.11 présente l’évaluation des performances des deux stratégies d’allocation de
ressource pour garantir la qualité de service pour l’utilisateur primaire. En effet, la probabilité
outage est majorée par un seuil maximum q et au delà de cette valeur le système primaire sera
perturbé. Nous remarquons d’après la Figure A.11 que le système primaire reste protégé dans les
trois cas de figure. Ces résultats montrent également la performance du développement réalisé
surtout dans le cas de l’algorithme distribué et celui basé sur le beamforming.

Nous vérifions d’après la Figure A.12 un des objectifs fixé lors du développement de l’algo-
rithme d’allocation de ressource centralisé basé sur le beamforming, la minimisation des interfé-
rences générées par les secondaires. En effet, le but d’applique cette stratégie était de choisir une
meilleur combinaison beamforming et d’allouer le plus optimum possible les puissances d’émis-
sion des secondaires. La Figure A.12 montre que l’interférence du système secondaire a diminué
en utilisant la technique du beamforming.
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(a) Downlink : Débit = 0.1bits/s/Hz (b) Uplink : Débit = 0.1bits/s/Hz
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(c) Downlink : Débit = 0.3bits/s/Hz (d) Uplink : Débit = 0.3bits/s/Hz
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(e) Downlink : Débit = 0.5bits/s/Hz (f) Uplink : Débit = 0.5bits/s/Hz

FIGURE A.10 – Évaluation de performances des deux techniques d’allocation de ressource en
comparison avec la technique centralisée : nombre maximum d’utilisateurs secondaires actifs pour
différents débits (0.1, 0.3 et 0.5bits/s/Hz) dans les deux cas downlink et uplink pour q = 1%.
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FIGURE A.11 – Évaluation de performances des deux techniques d’allocation de ressource
en comparison avec la technique centralisée en terme de probabilité outage pour un débit =
0.3bits/s/Hz et probabilité outage maximale = 1% dans les deux cas downlink et uplink.

A.4 Conculsion

Dans cette thèse, nous avons mis l’accent sur deux domaines qui touchent la radio cognitive :
les techniques de détection spectrales et les politiques d’allocation de ressources. Dans la première
partie, nous avons proposé deux méthodes de détection : le détecteur basé sur la distribution du
signal primaire et le détecteur basé sur la dimension du signal. Nous avons donné dans ce résumé
les détailles des deux algorithmes ainsi que le développement des seuils de détection en fonction
des probabilités de fausse alarme pour les deux détecteur. Des résultats de simulation basés sur des
scenarios radio cognitive réels ont été présentés. Dans la deuxième partie, nous avons proposé aussi
deux stratégies d’allocation de ressource basées sur la probabilité outage. La première stratégie
essaye de garantir une certaine qualité de service pour le système primaire tout en assurant une
qualité de service pour les secondaires par le moyen de maximisation des capacités. La deuxième
méthode proposée utilise une technique de beamforming pour minimiser les interférences générées
par le système secondaire. L’originalité de ces deux stratégies est le fait de garantir une continuité
du service même lorsque les trous détectés par les méthodes de détection deviennent occupés et
ceux au moyen du control de la probabilité outage. En effet, si la totalité de la bande est libre
(le système primaire est silencieux), nous fixons la probabilité outage à 1 (le maximum). Dans ce
cas, les utilisateurs secondaires peuvent profiter de la totalité de la bande avec un maximum de
flexibilité. Si la bande du primaire est partiellement occupée, nous fixons une probabilité outage
maximale et nous vérifions cette condition pour chaque secondaire entrant dans le réseau pour
sélectionner les secondaires pouvant émettre dans les sous-bandes libres. Nous avons ainsi une
continuité de service quelque soit le résultat du système de détection.
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FIGURE A.12 – Évaluation de performances des deux techniques d’allocation de ressource en
comparison avec la technique centralisée en terme de minimisation des interférences générées par
les secondaires pour un débit = 0.3bits/s/Hz et probabilité outage maximale = 1% dans le mode
uplink.
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