Some Applications of Differential-Difference Algebra to Creative Telescoping

Shaoshi Chen
Algorithms Project-Team, INRIA, Paris-Rocquencourt
Key Lab of Mathematics Mechanization, Chinese Academy of Sciences, Beijing

February 16, 2011

Thesis defense
Supervisors: Frédéric Chyzak and Ziming Li

Outline

Introduction

Rational-function telescoping (Chapter 3)

Multiplicative structure (Chapter 4)

Termination criteria (Chapter 5)

Summary
In
Summary

Introduction
a

```
Multiplicative structure (Chapter 4)

Termination criteria (Chapter 5)

\section*{Rational-function telescoping (Chapter 3)}
```

Rational-function telescoping (Chapter 3)

```
Rational-function telescoping (Chapter 3)
Multiplicative structure (Chapter 4)
```

Multiplicative structure (Chapter 4)

```
    Summary

\(\qquad\)

\author{
\author{
\author{
都 \\ \\ \\ ( \\ \\ \\ 
}
}
}




Thesis defense
```

 <0
    ```







Introduction
-
- -

\section*{What is creative telescoping?}

Example: for every \(x \in[0,1 / 4)\), our goal is to prove the identity
\[
F(x) \triangleq \sum_{n=0}^{+\infty} f(x, n)=\frac{1}{\sqrt{1-4 x}}, \quad \text { where } f(x, n)=\binom{2 n}{n} x^{n} .
\]

Creative telescoping: find \(L\left(x, D_{x}\right)(f)=\Delta_{n}(g)\), where
\[
\begin{aligned}
& \underbrace{L\left(x, D_{x}\right)}_{\text {Telescoper }}=2-(1-4 x) D_{x} \text { and } \underbrace{g(x, n)}_{\text {Certificate }}=\frac{n}{x} \cdot f . \\
& \sum_{n} \text { and } L \text { commute }+ \text { "Nice" cond.: } \sum_{n=0}^{+\infty} \Delta_{n}(g)=0 \\
\Rightarrow & L(F(x))=L\left(\frac{1}{\sqrt{1-4 x}}\right)=0
\end{aligned}
\]

\section*{What is creative telescoping?}

Example: for every \(x \in[0,1 / 4)\), our goal is to prove the identity
\[
F(x) \triangleq \sum_{n=0}^{+\infty} f(x, n)=\frac{1}{\sqrt{1-4 x}}, \quad \text { where } f(x, n)=\binom{2 n}{n} x^{n} .
\]

Creative telescoping: find \(L\left(x, D_{x}\right)(f)=\Delta_{n}(g)\), where
\[
\begin{aligned}
& \underbrace{L\left(x, D_{x}\right)}_{\text {Telescoper }}=2-(1-4 x) D_{x} \text { and } \underbrace{g(x, n)}_{\text {Certificate }}=\frac{n}{x} \cdot f . \\
& \sum_{n} \text { and } L \text { commute }+ \text { "Nice" cond.: } \sum_{n=0}^{+\infty} \Delta_{n}(g)=0 \\
& \Rightarrow \quad L(F(x))=L\left(\frac{1}{\sqrt{1-4 x}}\right)=0 \\
& \quad+ \\
& \left.\quad F\right|_{x=0}=\left.\frac{1}{\sqrt{1-4 x}}\right|_{x=0}=1
\end{aligned}
\]

\section*{Algorithms for creative telecoping}

CT for sols of first-order \(D-\Delta\) systems
\begin{tabular}{ll}
\hline hypergeom. & \begin{tabular}{l} 
Zeilberger1990, Petkovšek-Wilf-Z.1996, \\
Gessel1995, Abramov-Le2002
\end{tabular} \\
\hline hyperexp. & Almkvist-Z.1990 \\
\hline q-hypergeom. & Wilf-Z.1992, Koornwinder1993, Paule-Riese1997 \\
\hline hyper.-hyper. & W-Z.1992, A-Z.1990, Koepf1998
\end{tabular}

CT for sols of high-order \(D-\Delta\) systems
holonomic
non-holonomic

Zeilberger1990, Takayama1992, Chyzak-Salvy1998 Chyzak2000
Majewicz1996, Kauers2007, Chen-Sun2008, Chyzak-Kauers-Salvy2009
-
\(\qquad\)
\(\qquad\)
\(\qquad\)都
．

(

\section*{Motivation and approach}

Complexity analysis \(\Rightarrow\) fast algorithms \(\Rightarrow\) fast implementation.

Risch's algorithm \(\longrightarrow\) Zeilberger-style algorithms.


Hermite reduction


Creative telescoping

\section*{Notation}

Rational functions:
- \(k\) : a field of characteristic zero;
- \(k(x, y)\) : the rational-function field in \(x\) and \(y\) over \(k\);

Linear differential operators:
- \(D_{x}=\frac{\partial}{\partial x}, D_{y}=\frac{\partial}{\partial y}\);
- \(k(x, y)\left\langle D_{x}, D_{y}\right\rangle\) : the ring of linear differential operators.

\section*{Rational case}

Specialized telescoping problem for rational functions:
Given \(f \in k(x, y)\), construct the minimal telescoper \(L \in k(x)\left\langle D_{x}\right\rangle\) and \(g \in k(x, y)\) s.t.
\[
L\left(x, D_{x}\right)(f)=D_{y}(g) .
\]

Classical tool: Hermite reduction for rational-function integration
\[
\int f d y=g+\sum_{i=1}^{n} c_{i} \log \left(h_{i}\right) .
\]

Applications:
Differential annihilators for diagonals and algebraic functions.

\section*{Main results on rational-function telescoping}

Algorithms:
- Hermite: a new method based on Hermite reduction;
- RatAZ: improvements over Almkvist-Zeilberger's algorithm.

Arithmetic complexity:
CT for bivariate rational functions has polynomial-time complexity. Hermite: \(\tilde{\mathcal{O}}\left(d^{7}\right), \quad\) RatAZ: \(\tilde{\mathcal{O}}\left(d^{9}\right)\)

Implementation:
Maple function rational_creative_telescoping in MgFun (Algolib 14.0.)

\section*{Hermite reduction for creative telescoping}

Let \(f=P / Q \in k(x, y), Q^{*}\) be the sqfr. part of \(Q\), and \(d_{y}^{*}=\operatorname{deg}_{y}\left(Q^{*}\right)\). Hermite reduction w.r.t. \(y\) :
\[
f=D_{y}(g)+\frac{a}{Q^{*}}, \quad \operatorname{deg}_{y} a<d_{y}^{*} .
\]


\section*{Hermite reduction for creative telescoping}

Let \(f=P / Q \in k(x, y), Q^{*}\) be the sqfr. part of \(Q\), and \(d_{y}^{*}=\operatorname{deg}_{y}\left(Q^{*}\right)\). Hermite reduction w.r.t. \(y\) :
\[
f=D_{y}(g)+\frac{a}{Q^{*}}, \quad \operatorname{deg}_{y} a<d_{y}^{*}
\]

Idea:
\[
\begin{aligned}
& \text { For } i=0,1,2, \ldots \text {, reduce } \\
& \qquad D_{x}^{i}(f)=D_{y}\left(g_{i}\right)+a_{i} / Q^{*}, \quad \operatorname{deg}_{y}\left(a_{i}\right)<d_{y}^{*} \\
& \text { until } \exists \eta_{0}, \ldots, \eta_{i} \in k(x) \text { with } \eta_{i} \neq 0 \text { s.t. } \sum_{j=0}^{i} \eta_{j} a_{j}=0
\end{aligned}
\]

\section*{Observations}
- Lemma on order bound: Given \(f=P / Q \in k(x, y)\), its minimal telescoper has order at most \(d_{y}^{*}\left(\leq \operatorname{deg}_{y} Q\right)\).
- Certificates are optional:
\[
\begin{aligned}
& a_{j} \in k(x)[y] \text { and } \operatorname{deg}_{y}\left(a_{j}\right)<d_{y}^{*} \\
& \sum_{j=0}^{i} \eta_{j}(x) \cdot a_{j}=0 \Longrightarrow \begin{cases}\text { Telescoper: } & \sum_{j=0}^{i} \eta_{j} D_{x}^{j} \\
\text { Certificate: } & \sum_{j=0}^{j} \eta_{j} g_{j}\end{cases}
\end{aligned}
\]

\section*{Observations}
- Lemma on order bound: Given \(f=P / Q \in k(x, y)\), its minimal telescoper has order at most \(d_{y}^{*}\left(\leq \operatorname{deg}_{y} Q\right)\).
- Certificates are optional:
\[
\begin{aligned}
& a_{j} \in k(x)[y] \quad \text { and } \operatorname{deg}_{y}\left(a_{j}\right)<d_{y}^{*} \\
& \sum_{j=0}^{i} \eta_{j}(x) \cdot a_{j}=0 \Longrightarrow \begin{cases}\text { Telescoper: } & \sum_{j=0}^{i} \eta_{j} D_{x}^{j} \\
\text { Certificate: } & \sum_{j=0}^{i} \eta_{j} g_{j}\end{cases}
\end{aligned}
\]

Very often, normalized certificates are not needed. Often, certificates are not needed at all.

\section*{Improved Almkvist-Zeilberger's algorithm}

AZ's algorithm: Given \(f \in k(x, y)\), set \(L=\sum_{i=0}^{\rho} \eta_{i} D_{x}^{i}\) and \(g=r f\) in
\[
\begin{gathered}
L\left(x, D_{x}\right)(f)=D_{y}(g) \\
\Downarrow \\
D_{y}(r)+q r=\sum_{i=0}^{\rho} \eta_{i} p_{i}, \quad \text { for } \rho=0,1, \ldots,
\end{gathered}
\]
where \(q=D_{y}(f) / f\) and \(p_{i}=D_{x}^{i}(f) / f\).
Improvements:
- Better denominator bounds (extending an idea in GeddesLe2002);
- Tighter degree bound (specializing a formula in Gerhard2001).

\section*{Complexity estimates for minimal telescopers}
- For \(f=P / Q \in k(x, y)\),
\[
d_{x}=\max \left(\operatorname{deg}_{x} P, \operatorname{deg}_{x} Q\right), \quad d_{y}=\max \left(\operatorname{deg}_{y} P, \operatorname{deg}_{y} Q\right) ;
\]
- L: minimal telescoper for \(f ; \quad g\) : certificate;
\[
L\left(x, D_{x}\right)(f)=D_{y}(g)
\]
- \(2 \leq \omega \leq 3\) : exponent of matrix multiplication over \(k\).
\begin{tabular}{|l|cc|cl|l|}
\hline Method & \(\operatorname{ord}(L)\) & \(\operatorname{deg}_{x}(L)\) & \(\operatorname{deg}_{x}(g)\) & \(\operatorname{deg}_{y}(g)\) & Complexity \\
\hline Hermite & \(d_{y}\) & \(\mathcal{O}\left(d_{x} d_{y}^{2}\right)\) & \(\mathcal{O}\left(d_{x} d_{y}^{2}\right)\) & \(\mathcal{O}\left(d_{y}^{2}\right)\) & \(\tilde{\mathcal{O}}\left(d_{x} d_{y}^{\omega+3}\right)\) \\
\hline RatAZ & \(d_{y}\) & \(\mathcal{O}\left(d_{x} d_{y}^{2}\right)\) & \(\mathcal{O}\left(d_{x} d_{y}^{2}\right)\) & \(\mathcal{O}\left(d_{y}^{2}\right)\) & \(\tilde{\mathcal{O}}\left(d_{x} d_{y}^{2 \omega+2}\right)\) \\
\hline
\end{tabular}
(Complexity is in terms of arithmetic operations in k.)

\section*{Implementations and timings (dense data)}
- AZ: Function Zeilberger in DEtools;
- RatAZ: Improved AZ for rational functions;
- Hermite: Hermite reduction based method.
\begin{tabular}{l|lllllll}
\(d\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline AZ & 0.054 & 0.158 & 2.731 & 64.75 & \(619.0>\mathrm{hr}\) & \(>\mathrm{hr}\) \\
RatAZ & 0.019 & 0.059 & 0.402 & 4.461 & 34.13 & 220.5 & 792.1 \\
Hermite & 0.016 & 0.057 & 0.398 & 2.664 & 18.80 & 106.2 & 422.5
\end{tabular}
(Timing in seconds.)

Data set: \(P\) and \(Q\) are in \(\mathbb{Z}[x, y]\) generated by randpoly (),
\[
f=\frac{P}{Q}, \quad d=d_{x}=d_{y} \in\{1,2, \ldots, 7\}
\]

\section*{Application to diagonals}

Definition. For \(f=P / Q \in k(x, y)\) with \(Q(0,0) \neq 0\), expand
\[
f=\sum_{i, j \geq 0} f_{i, j} x^{i} y^{j} .
\]

Define
\[
\operatorname{diag}(f):=\sum_{i=0}^{\infty} f_{i, i} x^{i}
\]

Lemma (Lipshitz, 1988). If \(L\) is a telescoper for \(\frac{f(y, x / y)}{y}\) w.r.t. \(y\), then
\[
L(\operatorname{diag}(f))=0
\]

Remark: Certificates are not needed at all.

\section*{Lattice path in the plane}
\[
\text { Let } S_{d}=\left\{(i, j) \in \mathbb{N}^{2} \mid i+j=d\right\},
\]
\[
f(x, y, d)=\frac{1}{1-\sum_{(i, j) \in S_{d}} x^{i} y^{j}}, \quad \text { for } 11 \leq d \leq 20 .
\]
\begin{tabular}{l|cccccccccc}
\(d\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline AZ & 48.7 & 5.72 & 144.12 .4 & 400. & 23.9 & 1016. & 46.7 & \(>\) & hr. 81.2 \\
RatAZ & 43.8 & 5.61 & 129 & 11.8 & 269. & 27.9 & 663.4 & 45.8 & 2976. & 88.4 \\
Hermite & 11.7 & 2.55 & 31.9 & 5.71 & 91.3 & 12.8 & 227.8 & 21.1 & 617.9 & 40.3 \\
\hline Order & 11 & 6 & 13 & 7 & 15 & 8 & 17 & 9 & 19 & 10
\end{tabular}

\section*{Introduction}

Rational-function telescoping (Chapter 3)

Multiplicative structure (Chapter 4)

Termination criteria (Chapter 5)

Summary

\section*{Motivation}

Wilf and Zeilberger's conjecture: Let \(h\) be a hyper-hyper function. Then \(h\) is holonomic \(\Leftrightarrow h\) is proper.

Multiplicative structure distinguishes
proper hyper-hyper functions from arbitrary ones.
- Differential case: multivariate Christopher's theorem;
- Difference case: the Ore-Sato theorem
- Mixed case: ?

\section*{Multivariate hyperexponential-hypergeometric functions}
- \(k\) : an algebraically closed field of characteristic zero;
- \(\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right), \quad \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)\);
- \(D_{i}\) : derivation \(\partial / \partial x_{i}, \quad E_{j}\) : shift operator \(y_{j} \rightarrow y_{j}+1\).

Hyper-Hyper: \(h(\mathbf{x}, \mathbf{y})\) is hyperexponential-hypergeometric over \(k(\mathbf{x}, \mathbf{y})\) if
\[
\text { all } \frac{D_{i}(h)}{h} \text { and } \frac{E_{j}(h)}{h} \text { are rational functions in } k(\mathbf{x}, \mathbf{y}) .
\]

Examples:
\[
\frac{1}{x_{1} x_{2}+y_{1}+y_{2}}, \exp \left(\frac{1}{x_{1}+x_{2}}\right),\left(x_{1} x_{2}+1\right)^{\sqrt{2}}, x_{1}^{y_{1}} x_{2}^{y_{2}},\left(y_{1}+y_{2}\right)!, \text { etc. }
\]

\section*{Classical structure theorems}

Ore-Sato theorem (Ore1930, Sato1960's). A hypergeometric term \(h(\mathbf{y})\) can be written as
\[
f(\mathbf{y}) \cdot \prod_{j=1}^{n} u_{j}^{y_{j}} \cdot \prod_{p=1}^{P}\left(\phi_{p, 1} y_{1}+\cdots+\phi_{p, n} y_{n}+\varphi_{p}\right)!^{e_{p}}
\]
where \(f \in k(\mathbf{y}), u_{j}, \varphi_{p} \in k\), and \(\phi_{p, j}, e_{p} \in \mathbb{Z}\).

Christopher's theorem (C. 1999). A hyperexponential function \(h(\mathbf{x})\) can be written as
\[
\exp (f) \prod_{\ell=1}^{L} g_{\ell}^{c_{\ell}},
\]
where \(f, g_{\ell} \in k(\mathbf{x})\), and \(c_{\ell} \in k\).

\section*{Compatible rational functions}

A first-order system
\[
D_{1}(z)=a_{1} z, \ldots, D_{m}(z)=a_{m} z, \quad E_{1}(z)=b_{1} z, \ldots, E_{n}(z)=b_{n} z
\]
has a nonzero solution iff \(b_{1} \cdots b_{n} \neq 0\) and the following compatibility conditions (CCs) hold:
\[
\begin{gathered}
D_{i}\left(a_{j}\right)=D_{j}\left(a_{i}\right), \quad \text { for } 1 \leq i<j \leq m, \\
\frac{E_{i}\left(b_{j}\right)}{b_{j}}=\frac{E_{j}\left(b_{i}\right)}{b_{i}}, \quad \text { for } 1 \leq i<j \leq n, \\
\frac{D_{i}\left(b_{j}\right)}{b_{j}}= \\
E_{j}\left(a_{i}\right)-a_{i}, \quad \text { for } 1 \leq i \leq m \text { and } 1 \leq j \leq n .
\end{gathered}
\]

Definition. \(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\) are compatible if \(b_{1} \cdots b_{n} \neq 0\) and the above CCs hold.

\section*{Bivariate mixed case: Feng-Singer-Wu's theorem}

Theorem (FSW, 2010). Let \(a, b \in k(x, y)\) with \(b \neq 0\). Then
\[
E_{y}(a)-a=\frac{D_{x}(b)}{b},
\]
if and only if there exist \(f \in k(x, y), \beta, \gamma \in k(x)\) and \(\alpha \in k(y)\) s.t.
\[
a=\frac{D_{x}(f)}{f}+y \frac{D_{x}(\beta)}{\beta}+\gamma \quad \text { and } \quad b=\frac{E_{y}(f)}{f} \beta \alpha .
\]

\section*{Multivariate extension of FSW's lemma}

Theorem 1 (new). Let \(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n} \in k(\mathbf{x}, \mathbf{y})\) with \(b_{1} \cdots b_{n} \neq 0\). Then they satisfy the compatibility conditions:
\[
D_{i}\left(a_{j}\right)=D_{j}\left(a_{i}\right), \quad \frac{E_{i}\left(b_{j}\right)}{b_{j}}=\frac{E_{j}\left(b_{i}\right)}{b_{i}}, \quad \text { and } \quad \frac{D_{i}\left(b_{j}\right)}{b_{j}}=E_{j}\left(a_{i}\right)-a_{i}
\]
if and only if there exist \(f \in k(\mathbf{x}, \mathbf{y}), \beta_{j}, \gamma_{i} \in k(\mathbf{x}), \alpha_{j} \in k(\mathbf{y})\), s.t.
\[
\begin{aligned}
& a_{i}=\frac{D_{i}(f)}{f}+\sum_{j=1}^{n} y_{j} \frac{D_{i}\left(\beta_{j}\right)}{\beta_{j}}+\gamma_{i}(\mathbf{x}), \quad 1 \leq i \leq m \\
& b_{j}=\frac{E_{j}(f)}{f} \cdot \beta_{j} \cdot \alpha_{j}(\mathbf{y}), \quad 1 \leq j \leq n
\end{aligned}
\]
and \(\gamma_{i}, \alpha_{j}\) are compatible.

\section*{Multiplicative structure}

Theorem 2 (new). A multivariate hyper-hyper function can be written as
\[
f \cdot \prod_{j=1}^{n} \beta_{j}^{y_{j}} \cdot H_{1}(\mathbf{x}) \cdot H_{2}(\mathbf{y})
\]
where \(f \in k(\mathbf{x}, \mathbf{y}), \beta_{j} \in k(\mathbf{x}), \quad H_{1}\) is hyperexponential over \(k(\mathbf{x})\), and \(H_{2}\) is hypergeometric over \(k(\mathbf{y})\).

\section*{Properness}

Cor. A multivariate hyper-hyper function can be written as

where \(f \in k(\mathbf{x}, \mathbf{y}), g_{0}, g_{\ell}, \beta_{j} \in k(\mathbf{x}), c_{\ell}, \varphi_{p} \in k\), and \(\phi_{p, j}, e_{p} \in \mathbb{Z}\).

Definition (Wilf-Zeilberger, 1992). A hyper-hyper function is proper if it admits the above form, in which \(f\) is a polynomial in \(k[\mathbf{x}, \mathbf{y}]\).

\section*{Introduction}

Rational-function telescoping (Chapter 3)

Multiplicative structure (Chapter 4)

Termination criteria (Chapter 5)

\section*{Telescoping problems: the bivariate case}

Let \(\Delta_{m}=E_{m}-1\).
Discrete case:
\[
\sum_{m} h(n, m) \quad \rightsquigarrow \quad L\left(n, E_{n}\right)(h)=\Delta_{m}(g)
\]

Continuous case:
\[
\int_{a}^{b} h(x, y) d y \quad \rightsquigarrow \quad L\left(x, D_{x}\right)(h)=D_{y}(g)
\]

Mixed case:
\[
\begin{array}{ll}
\sum_{n} h(x, n) & \rightsquigarrow L\left(x, D_{x}\right)(h)=\Delta_{n}(g) \\
\int_{a}^{b} h(x, n) d x \quad \rightsquigarrow \quad L\left(n, E_{n}\right)(h)=D_{x}(g)
\end{array}
\]

\section*{Zeilberger-style algorithms and their termination}

Zeilberger's algorithm: (Discrete case, 1990)
0 . Initialize \(\rho:=0\);
1. Set \(L_{\rho}:=\sum_{i=0}^{\rho} \ell_{i}(n) E_{n}^{i}\);
2. Solve \(L_{\rho}(h)=\Delta_{m}\left(g_{\rho}\right)\) via ParaGosper;
3. If find a nontrivial solution in Step 2, return; otherwise increase \(\rho\) by 1 and go to Step 1 .

Problem: When does Zeilberger's algorithm terminate?
\[
\text { Termination } \quad \Leftrightarrow \quad \text { Existence of telescopers }
\]

Sufficient condition: \(h\) is proper \(\Rightarrow \mathcal{Z}\) terminates on \(h\)

\section*{Existence criteria: the bivariate hyper-hyper case}
- Differential case (Bernstein 1971, Lipshitz 1988):

Hyperexponential \(\Rightarrow\) Holonomic \(\Rightarrow\) Telescoper exists
- Shift case (Abramov 2002), q-Shift case (Chen-Hou-Mu 2005):
\[
L\left(n, E_{n}\right)(h)=\Delta_{m}(g) \quad \Leftrightarrow \quad h=\Delta_{m}\left(h_{1}\right)+\text { proper term }
\]
- Mixed case:

Problem: Given a hyper-hyper function \(h(x, n)\), decide:
- \(\exists L \in k(x)\left\langle D_{x}\right\rangle \backslash\{0\}\) s.t. \(L\left(x, D_{x}\right)(h)=\Delta_{n}(g)\) ?
- \(\exists L \in k(n)\left\langle E_{n}\right\rangle \backslash\{0\}\) s.t. \(L\left(n, E_{n}\right)(h)=D_{x}(g)\) ?
where \(g\) is hyper-hyper over \(k(x, n)\).

\section*{Ingredient 1: Splitness}

Definition. A polynomial \(p \in k[x, n]\) is split if
\[
p=p_{1}(x) \cdot p_{2}(n) \text { with } p_{1} \in k[x] \text { and } p_{2} \in k[n] .
\]

Lemma. Let \(L\) be either in \(k(x, n)\left\langle D_{x}\right\rangle\) or in \(k(x, n)\left\langle E_{n}\right\rangle\). Assume that
\[
L(f)=p \quad \text { for some } f \in k(x, n) \text { and } p \in k[x, n] .
\]

Then \(\operatorname{den}(f)\) is split if the leading coeff of \(L\) is split.

\section*{Ingredient 2: Standard representations}

Notation.
\[
\mathcal{H}(a, b):=\left\{h \mid D_{x}(h)=a h, E_{n}(h)=b h\right\}
\]

Definition. \((f, \alpha, \beta, \gamma) \in k(x, n)^{4}\) is called a standard form of \(h(x, n)\) if
\[
h \in f \beta^{n} \mathcal{H}(\gamma, \alpha),
\]
where
- any factor of \(\operatorname{den}(f)\) is not split,
- \(\alpha \in k(n)\) has monic numerator and denominator,
- \(\beta, \gamma \in k(x)\).

Lemma. A hyper-hyper function is proper iff the first component of its standard form is a polynomial in \(k[x, n]\).

\section*{Ingredient 3: Additive decompositions}
(Abramov-Petkovšek 2002, Geddes-Le-Li 2004)
AP finds \(h_{1}\) with \(h / h_{1} \in k(x, n)\), s.t.,
\[
h-\Delta_{n}\left(h_{1}\right) \in \frac{v}{u} \cdot \beta(x)^{n} \cdot \mathcal{H}(\tilde{\gamma}(x), \tilde{\alpha}(n)),
\]
where ( \(u, v, \beta \tilde{\alpha}\) ) satisfies technical cond.'s (AP-triple).
Lemma. \(h=\Delta_{n}(g) \Rightarrow u \in k(x)\).
GLL finds \(h_{1}\) with \(h / h_{1} \in k(x, n)\), s.t.,


\section*{Ingredient 3: Additive decompositions}
(Abramov-Petkovšek 2002, Geddes-Le-Li 2004)
AP finds \(h_{1}\) with \(h / h_{1} \in k(x, n)\), s.t.,
\[
h-\Delta_{n}\left(h_{1}\right) \in \frac{v}{u} \cdot \beta(x)^{n} \cdot \mathcal{H}(\tilde{\gamma}(x), \tilde{\alpha}(n))
\]
where ( \(u, v, \beta \tilde{\alpha}\) ) satisfies technical cond.'s (AP-triple).
Lemma. \(h=\Delta_{n}(g) \Rightarrow u \in k(x)\).
GLL finds \(h_{1}\) with \(h / h_{1} \in k(x, n)\), s.t.,
\[
h-D_{x}\left(h_{1}\right) \in \frac{v}{u} \cdot \beta(x)^{n} \cdot \mathcal{H}(\tilde{\gamma}(x), \alpha(n))
\]
where \(\left(u, v, n \frac{D_{x}(\beta)}{\beta}+\tilde{\gamma}\right)\) satisfies technical cond.'s (GLL-triple).
Lemma. \(h=D_{\times}(g) \Rightarrow u \in k(n)\).

\section*{Ingredient 4: Applying \(L\) to additive decompositions}

Differential:
\[
\begin{gathered}
h=\Delta_{n}\left(h_{1}\right)+h_{2} \quad \text { AP decomp. } \\
\Downarrow \\
\forall L \in k(x)\left\langle D_{x}\right\rangle, \quad L(h)=\Delta_{n}\left(L\left(h_{1}\right)\right)+L\left(h_{2}\right) \quad \text { AP decomp. }
\end{gathered}
\]

Recurrence:
\[
\begin{gathered}
h=D_{x}\left(h_{1}\right)+h_{2} \quad \text { GLL decomp. } \\
\Downarrow \\
\forall L \in k(n)\left\langle E_{n}\right\rangle, \quad L(h)=D_{x}\left(L\left(h_{1}\right)\right)+L\left(h_{2}\right) \quad \text { GLL decomp. }
\end{gathered}
\]

\section*{Two new criteria for existence}

Theorem 1 (difference case): Let \(h=\Delta_{n}\left(h_{1}\right)+h_{2}\) be an AP decomposition of \(h\) w.r.t. \(n\). Then
\(h\) has a telescoper w.r.t. \(n \quad \Leftrightarrow \quad h_{2}\) is either zero or proper.

Theorem 2 (differential case): Let \(h=D_{\times}\left(h_{1}\right)+h_{2}\) be a GLL decomposition of \(h\) w.r.t. \(x\). Then
\(h\) has a telescoper w.r.t. \(x \quad \Leftrightarrow \quad h_{2}\) is either zero or proper.

\section*{Telescopers for rational functions}

Example:
\[
h(x, n)=\frac{1}{(x+n)^{s}},
\]
- \(s=1\) : \(h\) has no telescoper w.r.t. \(n\) or \(x\);
- \(s>1\) :
- \(h\) has no telescoper w.r.t. \(n\),
- \(h\) has a telescoper w.r.t. \(x\),
\[
h=D_{\times}\left(\frac{-1}{(s-1)(x+n)^{s-1}}\right) .
\]

\section*{Telescopers for non-proper functions}

Example:
\[
h(x, n)=\frac{-x+2 n x+2 n^{2}}{(x+n)^{2} x} \cdot x^{n} \cdot e^{-x}
\]

Though \(h\) is not proper, it still has a telescoper w.r.t. \(x\) since
\[
h=D_{x}\left(\frac{1}{x+n} x^{n} e^{-x}\right)+\frac{1}{x} \cdot x^{n} \cdot e^{-x} .
\] Summary
Introduction
Rational-function telescoping (Chapter 3)
Multiplicative structure (Chapter 4)
Termination criteria (Chapter 5 )
Summary
Thesis d Summary
Introduction
Rational-function telescoping (Chapter 3)
Multiplicative structure (Chapter 4)
Termination criteria (Chapter 5)
Summary
Shaoshi Chen Summary Summary
Introduction
Rational-function telescoping (Chapter 3)
Multiplicative structure (Chapter 4)
Termination criteria (Chapter 5 )
Summary
Thesis d Introduction Rational-function telescoping (Chapter 3) Summary
Introduction
Rational-function telescoping (Chapter 3)
Multiplicative structure (Chapter 4)
Termination criteria (Chapter 5 )
Summary
Thesis d Introduction Rational-function telescoping (Chapter 3) Summary
Introduction
Rational-function telescoping (Chapter 3)
Multiplicative structure (Chapter 4)
Termination criteria (Chapter 5 )
Summary
Thesis d
\(\square\)
Thesis defense ( [ Introduction (

 Summary
Introduction
Rational-function telescoping (Chapter 3)
Multiplicative structure (Chapter 4)
Termination criteria (Chapter 5 )
Summary
Thesis d Introduction Rational-function telescoping (Chapter 3)

\section*{Main contributions}
- Hermite reduction based algorithm:
- a lower complexity than RatAZ;
- separating the computation of \(L\) and that of \(g\);
- a Maple implementation integrated into Mgfun(Algolib 14.0).
(ISSAC2010 with Bostan, Chyzak, and Li)
- Structure theorem for hyper-hyper functions;
\[
\text { Hyper-Hyper }=\text { Mixed } \cdot \text { Christopher } \cdot \text { Ore-Sato }
\]
- Two criteria for the existence of telescopers:
- \(h\) has a telescoper w.r.t. \(n \Leftrightarrow h=\Delta_{n}\left(h_{1}\right)+\) proper term.
- \(h\) has a telescoper w.r.t. \(x \Leftrightarrow h=D_{x}\left(h_{1}\right)+\) proper term.

\section*{Ongoing work and Perspectives}
- Extending the Hermite-reduction based method to hypergeometric, hyperexponential, or multivariate rational cases
- Existence criteria for telescopers in the \(q\)-setting:
\begin{tabular}{|c|c|c|c|}
\hline\((L, g)\) & \(D_{y}\) & \(S_{n}-1\) & \(E_{n}-1\) \\
\hline\(L\left(x, D_{x}\right)\) & \(\checkmark\) & \(\checkmark\) & \(?\) \\
\(L\left(n, E_{n}\right)\) & \(\checkmark\) & \(\checkmark\) & \(?\) \\
\(L\left(n, Q_{n}\right)\) & \(?\) & \(?\) & \(\checkmark\) \\
\hline
\end{tabular}
- Wilf and Zeilberger's conjecture in the general mixed case.

\section*{Ongoing work and Perspectives}
- Extending the Hermite-reduction based method to hypergeometric, hyperexponential, or multivariate rational cases
- Existence criteria for telescopers in the \(q\)-setting:
\begin{tabular}{|c|c|c|c|}
\hline\((L, g)\) & \(D_{y}\) & \(S_{n}-1\) & \(E_{n}-1\) \\
\hline\(L\left(x, D_{x}\right)\) & \(\checkmark\) & \(\checkmark\) & \(?\) \\
\(L\left(n, E_{n}\right)\) & \(\checkmark\) & \(\checkmark\) & \(?\) \\
\(L\left(n, Q_{n}\right)\) & \(?\) & \(?\) & \(\checkmark\) \\
\hline
\end{tabular}
- Wilf and Zeilberger's conjecture in the general mixed case.

> Thank you!```

