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L'objectif principal de cette thèse a été de déterminer le rôle joué par l'architecture macromoléculaire du réseau 
sur les propriétés élastiques non linéaires, la résistance à la rupture et la résistance à la cavitation sous 
chargement hydrostatique. Nous avons synthétisé, dans des conditions contrôlées, trois réseaux élastomères dits 
« modèles » de Polyuréthanne (PU), à partir d’un triisocyanate et de polyether diols isomoléculaires (PPG). Une 
caractérisation physico-chimique fine des réactifs et des réseaux a été réalisée en utilisant des techniques telles 
que : RMN, FTIR et fractions solubles. Les propriétés élastiques non linéaires, viscoélastiques linéaires et la 
résistance à la rupture en mode I des trois réseaux modèles ont été caractérisées. Les essais de cavitation ont été 
effectués sur un dispositif expérimental développé pour cette étude, permettant de suivre les mécanismes de 
formation de cavités, à la résolution optique près, en temps réel. En menant une analyse systématique des 
conditions de cavitation, en fonction de la vitesse de déformation et de la température, il est apparu que, 
contrairement au modèle d’instabilité élastique communément utilisé, l’expansion critique de la cavité n’est pas 
uniquement pilotée par le module élastique; mais dépend fortement de l’énergie de rupture, GC et de 
l’extensibilité limite du réseau. 
Par ailleurs, nous avons observé l'apparition de cavités pré-critiques avant la fracture catastrophique ; ce qui met 
en évidence l'existence de deux critères : l'un, propre au processus de nucléation, principalement piloté par des 
mécanismes statistiques et activés thermiquement (distribution de défauts, temps, température, etc.) ; et l’autre, 
lié à la croissance de la cavité en milieu confiné contrôlé par GIC, et par le comportement aux grandes 
déformations. Enfin, la présence d’enchevêtrements dans l’architecture du réseau macromoléculaire s’est avérée 
clairement bénéfique pour stabiliser la croissance de cavités et donc pour renforcer la résistance à la cavitation. 
 
Mots clés : polyuréthanne, élastomères, réseaux modèle, fracture, cavitation. 
 
The main objective of this thesis was to establish the role played by the composition and crosslinking structure 
of an elastomer on its resistance to cavitation under a predominantly hydrostatic pressure. We prepared three 
polyurethane model networks from triisocyanate and monodisperse polyether diols (PPGs) of various molecular 
weights, under well controlled conditions and carried out a complete characterization of the reagents and of the 
networks by using NMR, FTIR, analysis of the solfractions and DMA. We evaluated the nonlinear elastic and 
linear viscoelastic properties of the three model networks and determined their fracture toughness in mode I with 
notched samples. We performed cavitation experiments at different strain rates and temperatures on the 
transparent samples using an original setup developed specifically for the thesis combining a well controlled 
confining geometry and real-time optical visualization. Failure occurred in two steps: small and stable  pre-
critical cavities appeared during loading before catastrophic fracture occurred by the rapid growth of a single 
large cavity at or near the center of the sample. This implied the existence of two separate criteria: one for the 
nucleation and one for the growth. The critical cavitation stress was found to decrease significantly with 
decreasing strain rate and increasing temperature in clear disagreement with existing cavitation models by cavity 
expansion or by fracture. The analysis of the cavitation results strongly suggests a beneficial influence of a high 
mode I fracture toughness GIc and of a marked strain hardening of the network on the critical cavitation stress. 
Moreover, the existence of time dependence of the nucleation rate of the cavities under stress has been pointed 
out. In terms of materials, we mainly demonstrate that the presence of entanglements toughen the material which 
stabilizes the crack growth even in confined conditions. We concluded that the cavitation strength depends not 
only on the modulus but on the mode I fracture toughness and that the distribution of defects and subcritical 
crack growth is important for the nucleation rate. 
 
Keywords: polyurethane, elastomers, model networks, fracture, cavitation.   
 
UPMC Université Paris 06 
Laboratoire PPMD UMR 7615 CNRS 
ESPCI 
10 Rue Vauquelin 
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General Introduction 
 
An elastomer is a polymer with the macroscopic property of elasticity at large strains. The 
molecular structure of elastomers can be imagined as a ‘spaghetti’ and ‘meatball’ structure, 
with spaghettis being the polymer chains and the meatballs the cross-links. Stress acting on 
the rubber network will stretch out and orient the chains between the crosslink joints (see 
Figure 1); this will decrease the entropy of the chains.   

 
Figure 1: A is a schematic drawing of an unstressed elastomer. The dots represent cross-links. 
B is the same elastomer under stress. When the stress is removed, it will return to the A 
configuration. 
 
The elasticity is a physical property of a material when it reversibly deforms under stress (e.g. 
external forces). In an elastomer the covalent cross-linkages ensure that the elastomer will 
return to its original configuration when the stress is removed. High extensibility and low 
shear modulus are the most remarkable properties of the elastomers; additionally, they present 
particular thermoelastic properties due to the entropic origin of the elasticity. The elastomers 
are used for coatings, seals, adhesives and molded flexible parts, among others. 
 
However crosslinked elastomers are nearly incompressible materials with a low resistance to 
shear. This makes them prone to failure under tensile hydrostatic stress (see Figure 2).   
 

Elastomer

Failure
by Cavitation

Elastomer

Failure
by Cavitation

 
Figure 2: Confined elastomer under tensile hydrostatic stress (left) fail by the formation of 
cavities or cavitation (right) 
 
In such elastomers, the application of a sufficiently large tensile load can cause the 
appearance of holes that were not previously evident in the material. Upon further loading, 
these cavities grow in size and may eventually coalesce. When loaded in tension, a critical 
state is reached when cavities suddenly grow in the body of the rubber, producing a drop in 
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the extending force. Experimental observations reveal the presence of internal cracks, which 
can initiate catastrophic failure if the load is increased further. This phenomenon is known as 
cavitation.  
 
Although the failure by cavitation has been observed experimentally and analyzed decades 
ago, there have been no systematic investigations since, despite several further theoretical 
advances. A key aspect which was not investigated experimentally is the role of fracture 
toughness of the rubber on cavity growth. Initial analyses only focused on deformation and 
only in 1991, Gent proposed a model for rubber fracture under hydrostatic stress which was 
subsequently improved by Lin and coworkers in 2005.  
 
The understanding of the resistance to cavitation is very important in applications such as 
optical fiber coatings where one cavity every kilometer is sufficient to disrupt transmission. It 
is essential for this application to obtain as high resistance to cavitation as possible while 
keeping the elastic modulus as low as possible.  
 
The main objective of this thesis was to establish the role played by the composition and 
crosslinking structure of an elastomer (soft material) on its resistance to cavitation under a 
predominantly hydrostatic pressure. To accomplish this objective we decided to work with 
model networks with well defined molecular weight between crosslink points and very few 
loops, pendant chains and unreacted chains. We prepared polyurethane model networks from 
triisocyanate and diols (PPGs) of various molecular weights. 
 
The first chapter of this thesis presents a brief selection of some basic concepts of chemistry, 
physico-chemistry, and mechanics of elastomers. Some well known fundamentals of fracture 
behaviour of polymers are presented and, the cavitation basics are introduced. 
 
The different experimental procedures used and the results obtained in the Thesis are 
presented in Chapter 2, 3, 4, 5 and 6.  
 
Chapter 2 focuses on the details of the preparation of the polyurethane model networks. Three 
different model networks were prepared: two homogeneous networks with two different 
molecular structures and crosslink densities, and a third bimodal network with the purpose of 
investigating the effect of adding short chains to long chains on the mechanical properties. 
The molecular characterization of the reagents and the thermoelastic properties and swelling 
properties of the networks are presented in order to determine their macromolecular 
architecture.  
 
Chapter 3 contains the detailed characterization of the mechanical properties of the three 
networks when they are deformed homogeneously and when they are fractured in a simple 
mode I geometry. Here are presented the linear viscoelastic properties, the large strain 
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properties to characterize the effect of entanglements and finite extensibility of the network 
chains, and the fracture properties at different loading rate and temperatures.  
 
Chapter 4 describes in detail the experimental methodology specifically developed to 
investigate the failure of the elastomers by cavitation in a reproducible and reliable way. We 
describe the design of a new original test set-up, the development of a specific methodology 
for the cavitation sample’s preparation, the experimental procedure, the raw experimental 
results and the data analysis method.  
 
Chapter 5 describes the experimental mechanisms of the observed cavitation phenomena 
occurring in the three polyurethane model networks under stress. To the best of our 
knowledge, this thesis reports the first experimental results on cavitation resistance as a 
function of average strain rate or temperature. Additionally, none of the previous studies have 
really focused on the early events of cavitation. We designed and performed well controlled 
cavitation experiments at different strain rates and temperatures and an optical real time 
visualization of the damage events inside the elastomers during the experiment was designed 
specifically to capture the early stages of cavity growth.  
 
Chapter 6 discusses how the resistance to cavitation can be predicted from simpler properties 
such as nonlinear elasticity and fracture resistance in mode I. Results are analyzed in light of 
the pre-existing theoretical cavitation models and a new picture of the effect of experimental 
conditions and material properties is constructed.  
 
A final comment to the French speaking reader. This thesis was funded and realized in close 
collaboration with the DSM Research Center in Geelen (The Netherlands). Specifically we 
worked with Markus Bulters, Paul Steeman, Bert Kerstra, and Jan Stolk, and we are 
particularly grateful to them for the continuing support and helpful discussions throughout the 
thesis. The manuscript has been completely written in English to let them read it. We 
apologize in advance for the additional effort of having to read in English.    
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Introduction 
 
This thesis is inherently interdisciplinary combining synthetic chemistry with polymer physics 
and solid mechanics. In order to follow more easily the aspects of the thesis with which the 
reader may be less familiar with, we have summarized here the main basic scientific concepts 
that are used.  
We start presenting some chemical reactions and components of Polyurethanes synthesis and 
the basic chemistry of surface modification by the preparation of Self-Assembled Monolayer 
(SAM). Then, we present the foundations of rubber elasticity: from its molecular origin to its 
continuum mechanics description at small (infinitesimal) and most importantly large (finite) 
strains. This section is then complemented by a brief reminder of the bases of viscoelasticity 
in polymers such as the time-temperature-superposition, and finally the continuum mechanics 
description of fracture and some basics of thermally activated processes are described.  
 
1.1.- The Networks 
 
1.1.1.- The Polyurethane (PU) Networks 
In this thesis we prepared three polyurethane model networks (elastomers) starting from diols 
and a triisocyanate. In this section we present the general aspects of polyurethane synthesis, 
including the main and secondary reactions.   
 
1.1.1.1.- Brief History 
 
In 1849, Würtz was the first using a reaction of a glycol with an isocyanate, but it was Otto 
Bayer in 1937 who discovered how to transform the product into a useful plastic. The 
pioneering work on polyurethane polymers was conducted by Otto Bayer and his coworkers 
at the laboratories of I.G. Farben in Leverkusen, Germany [Farben 1937]. They recognized 
that using the polyaddition principle to produce polyurethanes from liquid diisocyanates and 
liquid polyether or polyester diols seemed to point to special opportunities. Their objective 
was to obtain synthetic fibers and elastomers to substitute natural rubber. The new monomer 
combination also circumvented existing patents obtained by Wallace Carothers on polyesters. 
Initially, work focused on the production of fibres and flexible foams. With development 
constrained by World War II (when PU's were applied on a limited scale as aircraft coating), 
it was not until 1952 that polyisocyanates became commercially available. Commercial 
production of flexible polyurethane foam began in 1954, based on toluene diisocyanate (TDI) 
and polyester polyols. The invention of these foams (initially called imitation swiss cheese by 
the inventors) was thanks to water accidentally introduced in the reaction mix. These 
materials were also used to produce rigid foams, gum rubber, and elastomers. The first 
commercially available polyether polyol, poly(tetramethylene ether) glycol), was introduced 
by DuPont in 1956 by polymerizing tetrahydrofuran.  Between 1965 and 1980 were 
developed foams based on MDI (diphenylmethane diisocyanate). More recently, building on 
existing polyurethane spray coating technology and polyetheramine chemistry, extensive 
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development of two-component polyurea spray elastomers took place in the 1990s. Their fast 
reactivity and relative insensitivity to moisture make them useful coatings for large surface 
area projects, such as secondary containment, manhole and tunnel coatings, and tank liners.  
 
1.1.1.2.- Polyurethane components 
 
1.1.1.2.1.- Polyols 
 
A polyol is a molecule with two or more hydroxyl functional groups R'-(OH)n ≥ 2. These 
hydroxyl functional groups are available for organic reactions. A molecule with two hydroxyl 
groups is a diol (for linear chains), one with three is a triol (for network chains), one with four 
is a tetrol (for special foams) and so on. The main use of polymeric polyols is as reactants to 
make other polymers. They can be reacted with isocyanates to make polyurethanes, and this 
use consumes most polyether polyols.  
In practice, polyols are distinguished from short chain or low-molecular weight glycol chain 
extenders and crosslinkers such as ethylene glycol (EG), 1,4-butanediol (BDO), diethylene 
glycol (DEG), glycerine, and trimethylol propane (TMP). Polyols are polymers in their own. 
They are formed by base-catalyzed addition of propylene oxide (PO), ethylene oxide (EO) 
onto a hydroxyl or amine containing initiator, or by polyesterification of a di-acid, such as 
adipic acid, with glycols, such as ethylene glycol or dipropylene glycol (DPG). Polyols 
extended with PO or EO are polyether polyols (see Figure 1.1). Polyols formed by 
polyesterification are polyester polyols. The choice of initiator, extender, and molecular 
weight of the polyol greatly affect its physical state, and the physical properties of the 
polyurethane polymer. Important characteristics of polyols are their molecular backbone, 
initiator, molecular weight, percentage of primary hydroxyl groups, functionality, and 
viscosity.   
 

 
Figure 1.1: Polyether Polyol. 
 
1.1.1.2.2.- Polyisocyanates 
 
A polyisocyanate is a molecule with two or more isocyanate functional groups                      
R-(N=C=O)n ≥ 2. The isocyanates are very reactive components characterized by the presence 
of the group –N=C=O. The rate of the reaction depends on the family of the isocyanate, the 
most important parameters being the amount of reactive groups and the functionality. The 
polyisocyanates are produced by the phosgenation of an amine. Molecules that contain two 
isocyanate groups are called diisocyanates, and molecules containing three isocyanate groups 
are called triisocyanates. There exist two main families of aromatic polyisocyanates: TDI 
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(toluene diisocyanate) and MDI (diphenylmethane diisocyanate) (see Figure 1.2). There exist 
also aliphatic polyisocyantaes, such as hexamethylene diisocyanate (HDI) or isophorone 
diisocyanate (IPDI).  
 

                
                  (a)                                                                          (b) 
Figure 1.2: Isomers of (a) TDI and (b) MDI.  
 
The isocyanates present a double bond N=C which is quite polar and react with all the 
components having a mobile hydrogen. Depending on the kind of isocyanate, the charges can 
be presented in two mesomeric forms [Abder-Rahim 2001] (see Figure 1.3).   
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Figure 1.3: Mesomeric forms of isocyanate.  
 
1.1.1.3.- Polycondensation of isocyanate-polyol to produce Polyurethane 
 
The polycondensation reaction is exothermic and consists of the chemical reaction of two 
molecules with different functional groups. For the polyurethane formation (polycondensate) 
it consists on the reaction of a hydroxyl group (-OH), the presence of a free “active” hydrogen 
and an isocyanate group (-NCO) (see Figure 1.4). The base of the chemistry of polyurethanes 
is the high reactivity of the isocyanates. Since the isocyanate group (-NCO) can react with 
alcohols, amines, carboxylic acids and water (see Figure 1.5), it can form bond of urethane, 
urea and amides. Reaction of an isocyanate with an alcohol yields a urethane, reaction of an 
isocyanate with an amine yields a urea, and reaction of an isocyanate with water results in 
intermediates which decompose to yield carbon dioxide and an amine, which further reacts to 
again form an urea. The reaction with water is used for the production of foams.  
Polyurethanes are in the class of compounds called reaction polymer [Oertel 1985, Ulrich 
1996, Woods 1990] and are formed by reacting a monomer containing at least two isocyanate 
functional groups with another monomer containing at least two alcohol groups, in the 
presence (or not) of a catalyst. To form a network a reaction either of a triol with a 
diisocyanate or of a triisocyanate with a diol is needed. The rate of the reaction varies as a 
function of the kind of alcohol used in the following order: primary alcohol > secondary 
alcohol > tertiary alcohol > phenol. 
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Figure 1.4: Polycondensation reaction: Polyurethane formation. 
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Figure 1.5: Principal reactions with a polyisocyanate (taken from “techniques de 
l’ingenieur”). R’ represents each possible reactive functional group. 
 
Though the properties of the polyurethane are determined mainly by the choice of the polyol, 
the isocyanate exerts some influence. The cure rate is influenced by the functional group 
reactivity and the number of functional isocyanate groups per reactive molecule. 
Polyurethanes are based upon a well-defined stoichiometry. The choice of isocyanate also 
affects the stability of the polyurethane upon exposure to light. Polyurethanes made with 

urethane function 

Polyurethane 
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aromatic isocyanates yellow with exposure to light, then the use of stabilizers may be 
included in the formulation; whereas those made with aliphatic isocyanates are stable 
[Randall 2002]. There are several kinds of polyurethanes: cellular, compacts, elastomers, 
coatings and adhesives. In this thesis we prepared polyurethane elastomers from polyether 
polyols and a trifunctional isocyanate. 
 
1.1.1.3.1.- Secondary reactions 
 
The urethane and urea groups already formed as presented in Figure 1.6, have other reactive 
hydrogen atoms that can react with another isocyanate giving as secondary products 
allophanates and biurets as presented in Figure 1.7.  
 

UreaUrethane

Allophanate Biuret

UreaUrethane

Allophanate Biuret

 
Figure 1.6: Secondary reactions of the isocyanate with urethane and urea groups (taken from 
“techniques de l’ingenieur”).  
 
In the presence of certain “activators”, the isocyanates can react with each other and form by 
oligomerization, urediones (dimers), isocyanurates (trimers) or carbodiimides, as shown in 
Figure 1.7.  
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Figure 1.7: Secondary reactions of oligomerization of the isocyanates (taken from 
“techniques de l’ingenieur”). 
 
1.1.1.4.- Additives for polyurethanes’ preparation 
 
The main additives used to produce polyurethanes are catalysts, chains extenders, surfactants, 
dyes, blowing agents, fillers, etc. The catalysts are accelerators of the reactions and for the 
polyurethane production they are used to reduce the curing times. There are two main 
catalysts used, the amines (i.e. Trietilendiamine or TEDA) and metallic salts (i.e. 
Dibutyldilaurate DBTL). In our case the catalyst was not used due to too fast reactions.  
Polyurethanes made with aromatic isocyanates yellow with exposure to light, and the use of 
stabilizers may be included in the formulation (e.g. Irganox); whereas those made with 
aliphatic isocyanates are stable [Randall 2002].  
 
1.1.2.- Model Networks 
 
The rubbery networks prepared by random crosslinking of the precursor chains have 
inhomogeneous structures with a broad length distribution of the network strands; in addition, 
the characterization of the strand length distribution in elastomers is not possible by current 
analytical techniques. However end-linking end-reactive precursor chains of known molecular 
weight using multifunctional crosslinkers afford a tailor-made model network with a well 
characterized structure. In the case of complete reaction, the molecular mass of the network 
strands between neighboring crosslinks (Mc) is identical to that of the precursor chains, and 
the junction functionality ( fe) is the same as the functionality of the crosslinker. To consider 
the effect of the incomplete reaction on Mc and fe, the degree of the end-linking reaction (p) is 
estimated from the amount of soluble species extracted after the reaction [Andrady et al. 
1991, Urayama 2008]. 
An elastomer model network should have precursors with well known molecular weight and 
multifunctional crosslinker to be very close of the stoichimetric conditions, controlled lengths 
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of the network strands, reduced amount of trapped entanglements and inexistent or very few 
dangling chains [Urayama et al. 2009].  
 
1.1.3.- Bimodal Networks 
 
Experimentally, a bimodal network combines long- and short-polymer chains, presenting 
variable crosslinking density. Typically, bimodal networks result from blending difunctional 
long and short chains and crosslinking them together. They exhibit values of the modulus 
which increase very substantially at high elongations, thus giving unusually large values of 
the ultimate strength. This improvement in mechanical properties has been attributed to the 
limited extensibility of the short chains [Mark 1985, Mark and Erman 1988].  
The theoretical analysis of bimodal networks, was first performed by Higgs and Ball [Higgs 
and Ball 1988]. These networks are composed of two types of chains, conveniently referred to 
as short and long chains, differing either in their molecular weight or in their chemical 
structure, thus obeying two distinct probability distribution functions for their end-to-end 
separations. The original theoretical approach, based on Gaussian phantom network chains for 
both components, was essentially developed for random bimodal networks with a random 
number of short or long chains connected at a given junction. Later, Kloczkowski et al. 
[Kloczkowski et al. 1991] considered the statistical mechanics of regular bimodal networks, 
which, by definition, have a fixed number Φs and ΦL of short and long chains, respectively, at 
every junction and hence lend themselves to analytical solutions. 
 
1.2.-  Self-Assembled Monolayers (SAMs) 
 
During several stages of sample preparation we prepared self-assembled monolayers (SAMs). 
The main goal of the SAMs preparation was to modify glass surfaces (glass lenses and glass 
plates) to bond the polyurethane to the glass in a covalent way (as presented in chapter 4). We 
also modified the surface of metallic molds with SAMs to make an easy release fluoro-
terminated coating (also presented in chapter 4).  
A self assembled monolayer (SAM) is an organized layer of amphiphilic molecules in which 
one end of the molecule, the “head group” shows a special affinity for a substrate (glass in our 
case); SAMs also consist of a tail with a functional group at the terminal end as seen in Figure 
1.8 (b) and (c). The SAMs are created by the chemisorption of hydrophilic “head groups” 
onto a substrate from either the vapor or liquid phase [Schwartz 2001] followed by a slow 
two-dimensional organization of the “tail groups” (see Figure 1.8(a)) [Wnek and Bowlin 
2004]. Initially, adsorbate molecules form either a disordered mass of molecules or form a 
“lying down phase” [Schwartz 2001], and over a period of hours, begin to form crystalline or 
semicrystalline structures on the substrate surface [Love et al. 2005, Vos et al. 2003]. The 
hydrophilic “head groups” assemble together on the substrate, while the tail groups (that can 
be hydrophilic or hydrophobic) assemble far from the substrate. Areas of close-packed 
molecules nucleate and grow until the surface of the substrate is covered in a single 
monolayer. Adsorbate molecules adsorb readily because they lower the surface energy of the 
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substrate [Love et al. 2005] and are stable due to the strong chemisorption of the “head 
groups.” These bonds create monolayers that are more stable than the physisorbed bonds of 
Langmuir-Blodgett films. The monolayer packs tightly due to van der Waals interactions, 
thereby reducing its own free energy [Love et al. 2005, Sullivan 2003, Oclin 2004].  Self-
assembled monolayers (SAMs) offer a unique way to confine molecules in two dimensions. 
Figure 1.1 presents a schematic of self-assembled monolayers structures. 
 

Anchoring group
Head group
Anchoring group
Head group  

(a) 

          
 
                                      (b)      (c) 
Figure 1.8: Schematic of SAM structure: (a) from solution to SAM; (b) schematic of head 
and functional group on the substrate, and (c) n-alkyl silane on glass. 
 
1.3.- Rubber elasticity 
 
In this section we present some fundamental concepts on the elasticity observed in elastomers 
also called rubber elasticity. These fundamentals are needed to better understand the physical 
and mechanical characterization of the polyurethane model networks presented in the next 
chapters.  
  
Historically, the term rubber was used to refer to natural rubber only. The more modern term 
elastomer is sometimes employed in relation to synthetic materials having rubber-like 
properties, regardless of their chemical composition. The most important physical 
characteristic of the rubber-like state is a high degree of deformability exhibited under the 
action of relatively small stresses [Treloar 2005]. High extensibility and low Young’s 
modulus are the most remarkable properties of the rubber-like material; additionally, 
elastomers present particular thermal or thermoelastic properties. The thermoelastic effect 
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dates from Gough [Gough 1805] that made some experimental observations: 1) the elastomer 
in the stretched state, under a constant load, contracts (reversibly) on heating, and 2) the 
elastomer gives out heat (reversibly) when stretched. These observations were confirmed fifty 
years later by Joule [Joule 1859] who worked with perfectly reversible vulcanized rubber.  
The typical high elasticity of rubber arises from its molecular structure. Because the linear 
molecules are long and flexible, they take up random configurations under Brownian Thermal 
motions, like agitated snakes. When they are straightened out by an applied force, and 
released, they spring back to random shapes as fast as their thermal motion allows. In practice, 
the molecules are tied together by a few permanent chemical bonds, by a process known as 
“crosslinking”, to give the material a permanent shape. Thus, after crosslinking, rubber 
becomes a soft, highly elastic solid. Although rubber has a characteristic ability to undergo 
large elastic deformations, in practice many rubber springs are subjected only to relatively 
small strains, rarely exceeding 25% in extension or compression. A good approximation for 
the corresponding stresses is then given by conventional elastic analysis, assuming simple 
linear stress-strain relationships, because, like all solids, rubber behaves as a linearly elastic 
material at small strains. But some features of the behaviour of rubber can be understood only 
in terms of its response to large deformations. To treat large elastic deformations, we must 
consider how to characterize the elastic properties of highly extensible, nonlinearly elastic 
materials when a simple modulus of elasticity is not longer enough. 
 
1.3.1.- Continuum Mechanics, Small and Large Strain Elasticity 
 
Simple extension of an incompressible material such as rubber is defined by stretch ratios: 
λ1=λ, λ2=λ3=1/λ1/2 (Figure 1.9). This deformation satisfies the incompressibility condition 
λ1λ2λ3=1.  
 

  

x

zY

x

zY
                        

Figure 1.9: Principal extension ratios in simple extension. 
 
It is common to measure the stress in terms of the force f acting on a unit of undeformed 
cross-sectional area, 
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λ
tf =                                 eq. 1.1 

 
This equation is the large-deformation equivalent of a simple result: t=σ=Eε, applicable at 
small strains.  
 
1.3.2.- Elastic properties at small strains 
 
The elastic materials that are isotropic in their undeformed state can be described by two 
fundamental elastic constants. The first is related to the resistance to compression in volume 
under hydrostatic pressure called bulk modulus K, defined by:  
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where P is the applied pressure and ΔV is the consequent shrinkage of the original volume V0. 
The second constant describes the resistance to a simple shearing stress τ, called shear 
modulus G, defined by the relation: 
 

γ
τ
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where γ is defined as the ratio of the lateral displacement d to the height h of the sheared 
material. The tensile modulus E (Young’s modulus of elasticity), defined by the ratio of a 
simple tensile stress σ to the corresponding fractional tensile elongation ε, is given by: 
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Figure 1.10 shows the schematic of the three main kinds of stress.  

                             
Figure 1.10: (a) Bulk compression, (b) Simple shear, (c) Simple tension [Taken from Gent 
1992]. 
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The Poisson’s ratio υ, defined as the ratio of lateral contraction strain ε2 to longitudinal 
tension strain ε1 for a bar subjected to a simple tensile stress, is given by: 
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For rubbers, Poisson’s ratio υ is close to one-half (typically, 0.4995) and the tensile Young’s 
modulus of elasticity is given almost by 3µ. If we consider rubber to be completely 
incompressible in bulk the υ=1/2 and the elastic behaviour at small strains can be described 
by a single elastic constant: µ [Gent 1992].  
 
1.3.3.- The Strain Energy Function W 
 
The finite strain deformation can be described by the deformation of a cube of unit 
dimensions in the undeformed state to the rectangular parallelepiped (see Figure 1.9), which 
has edges λ1, λ2, λ3 in the directions x, y, z, respectively In the deformed state the forces 
acting on the faces are f1, f2, f3. The corresponding stress components as defined in the 
deformed state are σxx, σyy, σzz where 
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and these components of stress are different from those defined for small strain elasticity 
[Gent 1992]. The work done (per unit of initial undeformed volume) in an infinitesimal 
displacement from the deformation state where λ1, λ2, λ3 change to λ1+dλ1 , λ2 +dλ2, λ3+dλ3, 
is 
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For an elastic material the work done can be equated to a change in the stored elastic energy 
U=W. In the case of rubbers it is usual to consider a reversible isothermal change of state at 
constant volume, so that the work done can be equated to the change in the Helmholtz free 
energy A, i.e. ΔU=ΔA. Then W is called the strain energy function because it defines the 
energy stored as a result of the strain, i.e.  
 
W=f(λ1, λ2, λ3)                                                        eq. 1.8 
 
Because rubber is an isotropic material the form of this function f must be independent of the 
choice of the coordinates axes. For simplicity it should also become zero when denoted 
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λ1=λ2=λ3=1, i.e. for zero strain. A further requirement is that for small strain, we should 
obtain Hooke’s law for simple tension. An equation which satisfies these requirements is 
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where C1 is half the shear modulus µ. To obtain a stress-strain relationship from this equation 
it is invoked equation 1.10, together with the assumption that rubber is incompressible: 
λ1λ2λ3=1, and λ1=λ, λ2=λ3=1/λ1/2. Then equation 1.9 becomes 
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and from 1.10 we have 
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This equation is more usually represented as a consequence of the molecular theories of a 
rubber network. It follows from purely phenomenological considerations as a simple 
constitutive equation for the finite deformation of an isotropic, incompressible solid. 
Materials which obey this relationship are sometimes called neo-Hookean [Ward and Hadley 
1998, Gent 1992]. 
 
1.3.4.- Strain Invariants 
 
A general treatment of the stress-strain relations of rubber-like solids was developed by Rivlin 
[Rivlin in Eirich 1956], assuming only that the material is isotropic in elastic behaviour in the 
unstrained state, and incompressible in the bulk. Symmetry considerations suggest that 
appropriate measures of strain, independent of the choice of the axes, are given by three 
invariants, defined as:  
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Moreover, for an incompressible material I3 is identically unity; hence only two independent 
measures of strain, namely I1 and I2, remain. It follows that the strain energy density W (i.e., 
the amount of energy stored elastically in unit volume of material under the state of strain 
specified by λ1, λ2, λ3 is a function of I1 and I2 only: 
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( )3,3 21 −−= IIWW                    eq. 1.13 
 
(Since  I1 and I2  take the value 3 when λ1 = λ2 =  λ3 = 1, subtracting this amount gives strain 
measures that go to zero in the undeformed state). Furthermore, because 3,3 21 −− II  are of 

second order in the strains ε1, ε2, ε3, the strain energy function at sufficiently small strains 
must take the form 
 

( ) ( )33 2211 −+−= ICICW                            eq. 1.14 
 
where C1 and C2 are constants. This particular form of the strain energy function was 
originally proposed by Mooney [Mooney 1940] and is often called Mooney-Rivlin equation.  
  
1.3.5.- The statistical mechanical theory of rubber elasticity  
 
1.3.5.1.- Statistical theory of rubber elasticity 
 
Polymer networks are unique in their ability to reversibly deform several hundreds percent. 
This deformability arises from the entropic elasticity of the polymer chains. The early 
molecularly based statistical mechanical theory was developed by Wall [Wall 1942] and Flory 
and Rehner [Flory and Rehner 1943], with the simple assumption that chain segments of the 
network deform independently and on a microscopic scale in the same way as the whole 
sample (affine deformation). The simplest model that captures this idea is the affine network 
model originally proposed by Kuhn (see Figure 1.11). The main assumptions of the affine 
model are the following [Gedde 1999]: 1) the chain segments between crosslinking points can 
be represented by Gaussian chains; 2) the networks consist of N-chains per unit volume. The 
entropy of the system is the sum of the entropies of the individual chains; 3) the relative 
deformation of each network strand is the same as that on a macroscopic level i.e. the relative 
deformation imposed on the whole network is affine; then the crosslinks are assumed to be 
fixed in space at positions exactly defined by the specimen deformation ratio; 4) the 
unstressed network is isotropic; and 5) the volume remains constant during the deformation.  
 

b

l 

 
Figure 1.11: Schematic representation of the equivalent chain of Kuhn. Assembly of ‘n’ rigid 
rods with a fixed length ‘l’.  

r
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James and Guth [James and Guth 1943] avoiding the assumptions made in the affine model, 
treated a phantom network consisting of Gaussians chains having no material properties. In 
the phantom model, the ends of the network strands are joined at crosslinking functions that 
can fluctuate (are not fixed in the space as in the affine model). These two theories are in a 
sense ‘limiting cases’ with the affine network model giving an upper bound modulus and the 
phantom network model theory the lower bound. Figure 1.12 shows schematically the 
differences between the affine and phantom network model.  
 

 
Figure 1.12: Schematic representation of the deformation of a network according to the affine 
network model and the phantom network model. The unfilled circles indicate the position of 
the crosslinks assuming affine deformation (phantom network) [Taken from Gedde 1999]. 
 
The simplest way to describe a polymer chain is with the freely jointed chain model which 
assumes a polymer chain as a random walk and neglects interactions between monomers (see 
Figure 1.11). Because a long, flexible molecule can be represented to good approximation by 
a randomly arranged chain of ‘n’ freely joint links, each of length ‘l’, the distribution of the 
end-to-end lengths ‘r’ obeys a Gaussian probability function, at least for small end-to-end 
distances: 
 

( )22exp)( rCrP β−=                                        eq. 1.15 
 
where the parameter β2 is given by 3/2nl2. The mean square distance between the ends for free 
chain (phantom chains) averaged over all configurations is denoted by < r2>0 and is given by 
nl2 or 3/2β2.  Then the distribution of end-to-end lengths ‘r’ is well represented by [Flory 1985, 
Gedde 1999]: 
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Boltzmann’s entropy relationship (S=k lnP) is useful here: 
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which after simplification becomes 
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where C is a constant.  
 
1.3.5.1.1- Affine network model 
 
Figure 1.13 presents the sketch of a molecular strand in a network in the undeformed state 
(end-to-end vector r0=(x0,y0,z0)) and in the deformed state (end-to-end vector r=(x,y,z)). The 
deformed and undeformed configurations are related through the stretch (λ1, λ2, λ3) by: 
 

01xx λ=         02 yy λ=            03 zz λ=  

 

 
Figure 1.13: Affine deformation of a single chain from the unstretched state r0=(x0,y0,z0) to 
the stretched state r=( x0λ1, y0λ2, z0λ3). 
 
Recalling the assumptions and definitions made above it is possible to compute the difference 
in entropy ΔS between n chains in the stretched and unstretched state. Each chain being 
composed of ‘N’ Kuhn monomers of length ‘l’ with end-to-end vector ‘r’, we have: 
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where k is the Boltzmann constant. Assuming that the main contribution to the free energy of 
the network comes from the changes in entropy the free energy required to deform a network 
is given by: 
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If the number of chains n is now expressed per unit volume, the prefactor in equation 1.20 has 
the meaning of a shear modulus µ: 
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where, υ (=n/V=ρNav/ Ms) is the number of network strands per unit volume, ρ is the density, 
Ms is the number-average molar mass of network strand, and R is the gas constant. The 
network modulus increases linearly with the temperature because its origin is entropic, 
analogous to the pressure of an ideal gas. The modulus also increases linearly with the 
number density of network strands. The equation 1.24 states that the modulus of any network 
polymer is kT per strand. The affine predictions for the engineering stress in uniaxial 
deformation at constant network volume can be rewritten using the shear modulus [Rubinstein 
and Colby 2003]: 
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These classical stress-stretch equations are quite general, and the physics behind such 
classical models is the entropic elasticity of polymer chains.   
 
1.3.5.1.2- Phantom network model 
 
In this model, the ends of network strands are attached to other strands at crosslinks, which 
can fluctuate around their average position. These fluctuations lead to a net lowering of the 
free energy of the system by reducing the cumulative stretching of the network strands. The 
principal parameter of the phantom network is the functionality ‘f’ given by the number of 
segments between crosslinking points, which adds a corrective term to the shear modulus 
[Rubinstein and Colby 2003]: 
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For any functionality f, the phantom network modulus is lower than the affine network 
modulus because allowing the crossslinks to fluctuate in space makes the network softer. The 
typical functionality of a network is 3 or 4. For f=3, the phantom prediction is one third of the 
affine network modulus. In the limit of high functionality f, the crosslinks in the phantom 
network do not fluctuate and are almost fixed in space as in the affine network model. 
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1.3.6.- Thermodynamics of elastomers deformation 
 
To better understand the physics of the rubber elasticity it is important to separate the elastic 
force into entropic and energetic contributions. Stress acting on the rubber network will 
stretch out and orient the chains between the crosslink joints. This will decrease the entropy of 
the chains and hence give rise to an entropic force. The change in chain conformation is 
expected to change the intramolecular internal energy. The packing of the chains may also 
change affecting the intermolecular-related internal energy. Both the intra- and 
intermolecular potentials contribute to the force. The following thermodynamic treatments 
yield expressions differentiating between the entropic and energetic contributions to the 
elastic force. 
According to the first and second laws of thermodynamics, the internal energy change (dU) in 
a uniaxially stressed system exchanging heat (dQ) and deformation and pressure volume work 
(dW) reversibly is given by: 
 

TdSdQ =                   eq. 1.24 
 

fdLpdVdW +−=                  eq. 1.25 
 
then, 
 

fdLpdVTdSdU +−=                                       eq. 1.26  
 
where dS is the differential change in entropy, p dV is the pressure volume work and f dL is 
the work done by deformation. The force is a vector (denoted f) but in this treatment is treated 
as a scalar (denoted f; being the absolute value of the vector). Because of the very small 
compressibility of elastomers P dV is much smaller than f dL under most circumstances, and 
we can approximate the work as f dL. The Helmholtz free energy F is defined as internal 
energy minus the product of the temperature and entropy: 
 

TSUF −=                   eq. 1.27 
 
The change in the Helmontz free energy is a thermodynamics state function of variables T, V, 
and L: 
 

SdTTdSdUTSddUdF −−=−= )(  
       = fdLpdVSdT +−−                                                                                               eq. 1.28 
 
The change in Helmholtz free energy can be written as a complete differential: 
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Combining equation 1.29 with 1.30, we identify the partial derivatives of the Helmholtz free 
energy: 
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The force applied to deform a network consists then of two contributions: 
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where fE is the energetic contribution to the force, related to the change in internal energy 
with sample length, and fS is the entropic term, product of the temperature and the change in 
entropy with sample length. In ‘ideal networks’ there is no energetic contribution to the 
elasticity, so fE =0  [Treloar 2005, Gedde 1999, Rubinstein and Colby 2003].  
 
1.3.7.- Deviations from rubber elasticity theory 
 
Both affine and phantom network models predict the same dependence of stress on 
deformation. However, a comparison of the classical forms with experiments indicates two 
major disagreements (see Figure 1.14). Experiments demonstrate softening at intermediate 
deformations and hardening at higher deformations. In unfilled rubbers the softening indicates 
the presence of entanglements in addition to crosslinks, while in filled rubbers it is typically 
due to the breakup of interactions between fillers. The strain hardening at high deformations  
can be explained by the non-Gaussian statistic of strongly deformed chains. The finite 
extensibility is the major reason for strain hardening at high elongations. 
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Figure 1.14: Engineering stress in tension for a crosslinked rubber. The solid line the 
classical nominal stress fit to small strain data [taken from Treloar 2005]. 
 
1.3.7.1.- Chain entanglements 
 
In the affine network model strands are fixed in space, and in the phantom network model 
strands are allowed to fluctuate around some fixed position in space. In both models, chains 
are only aware that they are strands of a network because their ends are constrained by 
crosslinks. In real networks, the chains impose topological constraints on each other because 
they can not cross, and these topological constraints are called entanglements. The 
surrounding chains on a given strand is represented in the Edwards tube model by a quadratic 
constraining potential acting on every monomer of each network strand; in this model 
fluctuations driven by the thermal energy kT are allowed. The tube diameter a can be 
interpreted as the end-to-end distance of an entanglement strand of Ne monomers (a=bNe

1/2) 
where b is the Kuhn segment length. The strand between entanglement has an average molar 
mass Me= Ne M0.  For a purely entangled system, Me substitutes the average molecular weight 
between network strands in the determination of the modulus [Rubinstein and Colby 2003]: 
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The small strain modulus of an entangled and crosslinked polymer network can be 
approximated by: 
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Then, the modulus is controlled by crosslinks for low molar mass strands between crosslinks 
(µ~µx for Mx<Me) and by entanglements for high molar mass (µ~µe for Mx>Me). 
As the material is being stretched the entanglements (unlike the fixed chemical crosslinks) 
can slip and effectively reorient strands in the tensile direction resulting in a reduction of the 

strain 
hardening 
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apparent modulus and hence a softening observed relatively to an unentangled network with 
an identical small strain modulus. Several molecularly based models have been proposed to 
account for the presence of entanglements in the network and a good review can be found in 
[Rubinstein and Panyukov 2002]. 
A detailed comparison between models and experimental data would go beyond the purpose 
of this thesis. Rubinstein and Panyukov proposed however a particularly simple expression 
for the engineering stress as a function of λ based on a so-called slip-link model which 
introduces a confining potential around the chains. Their prediction for uniaxial deformation 
is given by: 
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where )( 1* −λf  is the prediction of the Mooney ratio on the nonaffine tube model. 

 

Figure 1.15 shows a comparison of cross-linked PDMS with the Mooney-Rivlin expression, 

nonaffine tube model, and the sliptube model.   

 

 
Figure 1.15: Comparison of cross-linked PDMS (open circles) with the Mooney-Rivlin 

expression (dotted line), nonaffine tube model (dash-dotted line), and the sliptube model 

(solid line) (taken from Rubinstein and Panyukov 2002).  

 
1.3.7.2.- Finite extensibility 
 
The assumption of Gaussian chain statistics does not predict any finite extensibility of 
polymer chains. At high strains, polymer chains are not organized as random coils and orient 
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themselves along the direction of the elongation. The Gaussian assumption is not valid at 
large strains when the chains approach their limiting stretched states. It is valid only for end-
to-end distance much inferior to the maximal end-to-end distance rmax (i.e. <r0

2> <<  rmax = nl). 
Several molecular models have been proposed to account for the finite extensibility of the 
polymer chains. The best known one is the Langevin model for the extension of a single chain 
[ref Treloar]. It is unfortunately difficult to implement in a three dimensional case. A 
commonly used molecularly based 3-D model including finite extensibility is the Vilgis-
Edwards models [Edwards and Vilgis 1986]. This model contains the notion of entanglements 
(described slightly differently from the Rubinstein-Panyukov model) and of finite 
extensibility leading to strain hardening. The four independent parameters are however 
difficult to match directly with a molecular structure. 
 
A relatively simple phenomenological model accounting for limiting chain extensibility is the 
Gent model [Gent 1996].  At small and moderate deformations: 
 

W = 16
JE                   eq. 1.37 

 

where W is the neo-Hookean strain energy function defined earlier, E is the Young’s modulus,  
J1 = I1-3= 32

3
2
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1 −++ λλλ . Gent postulated that the finite extensibility of the network chains 

would result in a limiting value Jm of the variable J1.  
 

The phenomenological equation proposed by Gent becomes then: 
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that diverges for  J1 → Jm , becoming the neo-Hookean equation at small strains (J1 → 0). 

From this expression, the engineering stress-strain relation in uniaxial deformation is given by: 
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This empirical equation can be used to fit uniaxial experimental data and the determined 

parameters E and Jm can then be used to simulate the behaviour of the material in an arbitrary 

geometry.  
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1.4.- Compression or Tension under confined conditions 
 
In this section we presented some general considerations applying when the material is 
confined between two rigid plates. These considerations are useful to understand the 
cavitation phenomenon presented on chapters 4 and 5. 
 
When a thin rubber block bonded on both faces is compressed (or extended) the deformation 
can be decomposed in two parts: a pure homogeneous compression or extension of amount ε, 
requiring a uniform compressive or tensile stress σ1=3G*ε, and a shear deformation restoring 
points in the planes of the bonded surfaces to their original positions in these planes [Gent and 
Lindley 1959, Gent and Meinecke 1970].  
  
The stress distribution of the compressed bonded block is shown schematically in Figure 1.16. 
Although it is incorrect at the edges of the block because the assumption of a simple shear 
deformation cannot be valid at this singular line, experiments show that it provides 
satisfactory approximations over the major part of the bonded surfaces [Gent et al. 1974].  
The effect of constraints at the bonded surfaces has been to increase the effective compression 
modulus from E(=3G) by a factor of (1+ a2/2h2) (where ‘a’ and ‘h’ are the radius and 
thickness of the cylindrical block, respectively). For thin blocks of large radius the effective 
value of Young’s modulus E is much larger than the real value. Indeed for values of the ratio 
a/h greater than about 10, a significant contribution to the observed displacement comes from 
volume compression or dilation because E is now so large that it becomes comparable to the 
modulus K of bulk compression.  
 

 
Figure 1.16: Stress distribution for a bonded block in compression (taken from Gent 1992). 
 
When a thin bonded block is subjected to tensile loading, a state of approximately equal 
triaxial tension (-P) is set up in the central region. Under an outwardly directed tension, any 
small cavity that might exist in the central region of the block will expand uniformly in size. 
Failure is governed by a “critical strain energy release rate”, not by a simple maximum strain 
criterion, so that a rather detailed calculation is necessary to find out what mean compressive 
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(or tensile) stress can be tolerated. As a first approximation it is assumed that a bonded block 
can support a strain energy density in critical regions of the same magnitude that could be 
imposed many times on a homogeneously deformed specimen in simple tension [Gent 1992].   
 
1.4.1.- Cavitation  
 
On polymers, the application of sufficiently large tensile load can cause the appearance of 
holes that were not previously evident in the material. Upon further loading, these cavities 
grow in size and eventually coalesce. When loaded in tension, a critical state is reached when 
cavities suddenly grow in the body of the rubber, producing a drop in the extending force. 
Subsequent analysis of the samples reveals the presence of internal cracks, which can initiate 
catastrophic failure if the load is increased further. This phenomenon is known as cavitation. 
[Gent 1992]. The state of the art and the theoretical models mertaining to the description of 
cavitation in the bulk of a rubber will be presented in the relevant chapters 5 and 6. 
 
1.4.1.1-  Inflation of a Spherical Shell (Balloon) 
 
To understand the type of unstable deformation occurring when a cavity expands in the rubber 
it however useful to consider the inflation of a thin membrane such as that of a rubber balloon. 
The pressure P1 required to inflate a spherical shell of initial radius r0 and thickness t0 to an 
inflated radius λr0 and thickness d0/λ2 can be obtained from equation 1.40, using Laplace’s 
relation between the stresses t in the plane of the shell and inflating pressure (Figure 1.17): 
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The inflating pressure P1 generates a tension stress t in the curved shell (Figure 1.25). On 
substituting for σ in equation 1.40, the relation between inflation pressure P1 and inflation 
ratio λ is obtained as follow: 
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where W1 and W2 are the derivatives of the strain energy function under different types of 
strain. This is highly nonlinear and a plot of the predicted behaviour (assuming W2=0) is 
presented in Figure 1.17. The inflation pressure is seen to pass through a sharp maximum at 
an expansion ratio of 38% and then decrease upon further inflation. This is a well-known 
feature of balloons: after a relatively small inflation it is much easier to continue inflating 
them. This instability is at the origin of the instability observed in the bulk of the rubber when 
cavities appear. 
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Figure 1.17: Inflation of a spherical shell (balloon). 
 
1.5.- Viscoelasticity: Effects of Temperature and Frequency  
 
In this section, we focus our attention to the time-temperature superposition principle, which 
we use in chapter 2 to characterize the viscoelastic behaviour of the polyurethane model 
networks. 
 
The main cause of delayed elastic response in rubbers is the internal viscosity between 
molecular chains. This property is strongly affected by the temperature. It depends on the rate 
at which small segments of a molecule move to new positions as a result of Brownian motions.  
A typical feature of the mechanical behavior of polymers is the way in which their mechanical 
response to an applied stress or strain depends upon the rate or time period of loading [Young 
and Lovell 1991, Ward 1983]. For example, if a polymer is subjected to a constant load, the 
deformation or strain (compliance) exhibited by the material will increase over a period of 
time. This occurs because the material under a load undergoes molecular rearrangement in an 
attempt to minimize localized stresses [Young and Lovell 1991, Alkonis 1972].  
The mechanical behavior of polymers depends upon the testing rate as well as the temperature 
and it is found that there is a general equivalence between time or frequency of observation 
and temperature. The mechanical response can be represented in a procedure known as time-
temperature superposition (TTS). In a series of mechanical measurements made over a range 
of temperatures at different testing frequencies, the data can be put onto a simple ‘master 
curve’ by shifting the data measured at one temperature along the frequency axis by a factor 
which is a function only of the test temperature, as represented in Figure 1.18. This is a very 
general property of many polymers and is due to the fact that the spectrum of relaxation times 
of a polymer has typically the same temperature dependence. Using a «master curve" the 
material property of interest at a specific temperature can be predicted over a broad time 
scale. The bases for time-temperature superposition are: 1) that the processes involved in 
molecular relaxation or rearrangements in viscoelastic materials occur at accelerated rates at 
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higher temperatures and 2) that there is a direct equivalency between time (the frequency of 
measurement) and temperature [Alkonis et al. 1972, Hiemenz and Timothy 2007, Young and 
Lovell 1991, Halary and Lauprêtre 2006]. 
If a reference temperature Ts is taken to fix one curve then if fs (where ωs =2πf) is the 
frequency of a point on the curve at Ts with a particular modulus and f is the frequency of a 
point with the same modulus on a curve at different temperature then the amount of shift 
required to superpose the two curves is a displacement of (log fs – log f) along the log 
frequency axis and the “shift factor” aT is defined by 
 
Log aT= log fs – logf = log (fs/f )                                                                                       eq. 1.42 
 
And this parameter is a function only of temperature. Here, f is the time that is required to 
give a specified response at a certain temperature, and fs is the time required to give an 
identical response at the reference temperature. The essential requirement for a substance to 
be rubbery is that it consists of long flexible chainlike molecules. The molecules themselves 
must therefore have a “backbone” of many non-colinear single valence bonds, about which 
rapid rotation is possible as a result of thermal agitation. Thousands of the molecular sub-
units of rubbery polymers linked together into a chain constitute a typical molecule of the 
elastomers. They take up random conformations in a stress-free state but assume somewhat 
oriented conformations if tensile forces are applied at their ends. One of the first questions to 
consider, then, is the relationship between the applied tension f and the mean chain end 
separation r, averaged over time or over a large number of chains at one instant in time. 
Moderately elevated temperatures may cause the exchange of crosslinks and formation of 
additional crosslinks, leading to some hardening of the rubber [Gent 1992]. 
In a range of temperatures between Tg and Tg + 100°C, the relationship between the test 
temperature and this factor aT is often given by an equation of the form 
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where C1 and C2 are constants and Tref is a reference temperature. This equation is normally 
termed the WLF (Williams-Landel-Ferry) equation and is based on the notion that molecular 
mobility depends on the available free volume which vanishes for a finite temperature T∞. 
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              (a) 

  
          (b) 

 
            (c) 
Figure 1.18: Building a master-curve with the time-temperature superposition: a) Dynamic 
tanδ, and b) Dynamic modulus, versus the frequency and two temperatures T2>T1; and c) 
example of time-temperature superposition principle using shear compliance, J  [Gent 1992, 
Young and Lovell 1991].  
 
1.6.- Fracture behaviour 
 
In this section, the general fracture behaviour of polymers is briefly summarized in order to 
build up the theoretical background needed to study the fracture of the three polyurethane 
model networks, which is directly related to the cavitation phenomenon.  
 
Fracture mechanics, which leads to the concept of fracture toughness, has been largely based 
on the work of A. A. Griffith [Griffith 1920] who, amongst other things, studied the 



 45

behaviour of cracks in brittle materials. He recognized that the macroscopic potential energy 
of the system consisting of the internal stored elastic energy and the external potential energy 
of the applied loads, varied with the size of the crack. Therefore fracture is associated with the 
consumption of energy. Once a crack is propagated throughout a material, the extension of the 
crack resulted in the creation of new crack surface. New free surfaces are created at the faces 
of a crack, which increases the surface energy of the system. One such model used to 
demonstrate the propagation of a crack in a brittle material is called the elastic strain energy 
model. 
At the beginning, Griffith considered that the fracture was related to the creation of new 
surface energy and postulated that the energy necessary to create new surface was balanced 
with the decreasing of the stored elastic energy. Later, to explain the large differences 
between theoretical and experimental results, he proposed that the stored elastic energy was 
not uniformly distributed in all the material, but concentrated at the crack tip. Then the 
fracture would occur by propagation of pre-existing cracks in the material.  
 
Griffith - Orowan - Irwin Failure Criteria 
 
The process of fracture consists of crack initiation and crack propagation. If there was a 
perfectly elastic body with a slit already present. For the slit to propagate thereby increasing 
its surface, it needs a certain amount of energy. This energy is called the energy of fracture. 
With the formation of a new surface the strain in the corresponding area will be reduced 
which results in the release of corresponding elastic energy from the body.  
 

δδτ *G=                                                                                   eq. 1.44 

 
where δτ is the energy of fracture necessary for the formation of a new fracture surface 
area.  G is the energy released into the crack tip per unit area of the crack (rate of elastic strain 
energy release), and δ is the crack growth increment. 
 
The strain energy release rate is higher for higher loads and larger cracks. If the strain 
energy so released exceeds a critical value Gc, then the crack will grow spontaneously. 
For brittle materials, Gc can be equated to the surface energy of the (two) new crack surfaces; 
in other words, in brittle materials, a crack will grow spontaneously if the strain 
energy released is equal to or greater than the energy required to grow the crack surface(s). 
The stability condition can be written as 
 
elastic energy released = surface energy created 
 
If the elastic energy released is less than the critical value, then the crack will not grow; 
equality signifies neutral stability and if the strain energy release rate exceeds the critical 
value, the crack will start growing in an unstable manner. For ductile materials, energy 
associated with plastic deformation has to be taken into account. When there is plastic 
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deformation at the crack tip, the energy to propagate the crack may increase by several orders 
of magnitude as the work related to plastic deformation may be much larger than the surface 
energy. In such cases, the stability criterion has to restated as 
 
elastic energy released = surface energy + plastic deformation energy 
 
Practically, this means a higher value for the critical value Gc. From the definition of G, we 
can deduce that it has dimensions of work (or energy)/area or force/length [Anderson 1995, 
Lawn 1993, Knott 1973].  The Stress Intensity Factor, K, is used in fracture mechanics to 
more accurately predict the stress state ("stress intensity") near the tip of a crack caused by a 
remote load or residual stresses. 
 
1.6.1.- The energy balance approach 
 
The basis of the fracture mechanics approach is the use of the strain energy release rate as a 
means of characterizing crack growth behaviour. If a specimen of material under stress is 
considered, the specimen will contain a certain amount of strain energy, U say. In the 
presence of a crack, U will be altered by an amount that depends on the crack length; if the 
specimen is considered at constant deformation, so that the external forces do no work, the 
stored energy will be decreased and the strain energy release rate can be defined as [Rivlin 
and Thomas 1953, Thomas 1994] 
 
G = -∂U/∂A                                         eq. 1.45 
 
where A is the area of one fracture surface of the crack and the partial derivative refers to 
constant deformation. (The latter condition is imposed merely for convenience of definition. 
In some calculations, it is more straightforward to allow movement of the external forces and 
then to take into account the work done, in calculating G). 
The development of the fracture mechanics approach for elastomers was greatly facilitated by 
the realization that G could be determined for certain specimen geometries without the need 
to solve the complex stress distribution around the crack tip. This has allowed the validity of 
the approach to be investigated experimentally [Rivlin and Thomas 1953, Thomas 1994, 
Thomas 1960, Lake, et al. 1969]. 
 
If dW is the amount of work (due to external force) necessary to propagate a crack, and dU is 
the variation of the elastic energy U during the propagation, then the difference between these 
two quantities dW – dU is the available energy to create new surface. For a crack of dl width, 
we can write the condition for crack propagation: 
 

dl
dA

dl
dU

dl
dW

sγ≥−                  eq. 1.46 
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where γs is the surface energy.  If the global deformation of the system is zero when the crack 
propagates, we have dW = 0 and equation 1.46 becomes: 
 

dl
dA

dl
dU

sγ≥−                  eq. 1.47 

 
We also define the energy release rate G  
 

⎥⎦
⎤

⎢⎣
⎡ −=−=

dc
dU

dc
dWe

dA
dU

dA
dWG 0                eq. 1.48 

 
where e0 is the sample thickness. Then the fracture occurs when G reach a critical value Gc.  
 
In order for the approach to be useful, it is necessary that the rate of growth be uniquely 
defined by G (at least to within the rather large variability that is commonly observed for 
fracture measurements). Under many circumstances, but not all, this has been found to be the 
case for elastomers. The results all fall essentially on the same relationship which thus 
constitutes a characteristic, geometry-independent property of the material [Thomas 1960, 
Lake, et al. 1969]. A crack in a solid may be loaded in three different modes presented in 
Figure 1.19. 
 

 
 

Figure 1.19: Three modes for loading a crack: Mode I, in tension, opening mode; Mode II, 
in-plane shear, sliding mode; mode III, out-of-plane shear, tearing mode. 
 
At first sight, it is perhaps surprising that an approach, in which the parameter used to 
characterize fracture is derived from considerations remote from the crack tip, should prove 
helpful in describing fracture phenomena. However, the energy release rate is in fact closely 
related to the strain energy density in the material at the tip (where fracture occurs), this 
relationship being of the form [Thomas 1955] 
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dU t=G                                                                                                                             eq. 1.49 

 
where Ut is a suitably averaged value of the strain energy density at the tip and d is the 
effective tip diameter. 
Thus G is, in fact, closely related to the stress concentration at the crack tip via the local strain 
energy density. It may be noted that the tip diameter, d, is also important and must be 
substantially unaffected by test piece geometry if the approach is to work [Lake 2003]. 
 
1.6.2.- The Threshold Energy: Molecular model 
 
According to Lake and Thomas [Lake and Thomas 1967] the effect of crosslinking is twofold. 
The shorter the molecular length between points of crosslinking, the fewer the number of 
bonds which must be stressed in order to break a molecular chain. On the other hand, when 
the chains are short there will be a greater number of them crossing a randomly chosen 
fracture plane. These two factors do not cancel out; their net effect is a predicted dependence 
of the fracture energy G0 upon the average molecular weight Mc of chains between points of 
crosslinking. The plane of crack propagation ahead of a crack tip will be crossed by a number 
of molecular chains, like illustrated in Figure 1.20, whose end points (crosslinks) lie on 
opposite sides of the plane. 
 

 
 

Figure 1.20: Schematic diagram showing a molecular chain crossing the fracture plane ahead 
of the crack tip in the unstrained state. The chain is supposed to contain μ freely jointed 
segments each of length ξ. 
 
Recalling equation 1.49  
 

dU t=G  

 
this gives d≅ξµ1/2, ξ is the length of a monomer unit and ‘μ’ is the number of units between 
crosslinks. The maximum possible energy density will be of the order of bJ, where b is the 
number of single bonds per unit volume and J is the energy stored by each single bond at its 
rupture point [Lake 2003, Gent 1992]. Substituting in equation 1.49 yields, 
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G0=bJξµ1/2                                   eq. 1.50  
 
The equation 1.50 predicts the threshold energy for crack growth: G0 proposed by Lake and 
Thomas [Lake and Thomas 1967]. The important result here is that G0 is predicted to scale 
with Mc

1/2 ,i.e. the more crosslinked the elastomer and the lower its threshold fracture energy. 
 
1.7.- Molecular rate processes with a constant activation energy: relevance 
for fracture processes. 
 
In this last section, we present some basics of the Arrhenius type equations that can govern 
physicochemical processes. The bases of all these approaches are the Brownian motion of the 
molecules due to thermal fluctuations. All molecules in liquids can move around their mean 
positions. As a result interatomic distances are not fixed but vary and there is a finite non zero 
probability to go over the activation barrier an break a bond. Elastomers behave like liquids at 
the molecular scale and therefore bond breakage under stress will be a probabilistic event.  
 
The Arrhenius equation is a simple, but remarkably accurate, formula for the temperature 
dependence of the rate constant. The diffusion coefficient for example D, is written as: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
RT
E

DD dexp0                           eq.  1. 51   

 
where D0 is a frequency factor correlating with the initial concentration dependence of D, T is 
temperature, R the gas constant, and Ed is the activation energy for diffusion. In addition, an 
Arrhenius equation applies to the kinetics of chemical reactions: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
RT
E

Ak aexp                                        eq. 1.52 

 
Where k is the rate of the chemical reaction, the frequency factor A is concerned with 
molecular collisions, and the activation energy Ea is the critical energy needed for reaction to 
occur. Common sense and chemical intuition suggest that the higher the temperature, the 
faster a given chemical reaction will proceed. Quantitatively this relationship between the rate 
a reaction proceeds and its temperature is determined by the Arrhenius Equation. At higher 
temperatures, the probability that two molecules will collide is higher. This higher collision 
rate results in a higher kinetic energy, which has an effect on the activation energy of the 
reaction. The activation energy is the amount of energy required to ensure that a reaction 
happens.   
The Eyring equation also known as Eyring–Polanyi equation in chemical kinetics relates 
the reaction rate to temperature. It was developed almost simultaneously in 1935 by Eyring, 
and Evans and Polanyi [Evans and Polanyi 1935, Eyring 1935]. This equation follows from 
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the transition state theory (aka, activated-complex theory) and contrary to 
the empirical Arrhenius equation this model is theoretical and based on statistical 
thermodynamics. The general form of the Eyring–Polanyi equation somewhat resembles the 
Arrhenius equation: 
 

RT
G

B e
h
Tk

k
Δ

−
=                              eq.1.53 

 
where ΔG  is the Gibbs energy of activation, kB is Boltzmann's constant, and h is Planck's 
constant. It can be rewritten as: 
 

⎟
⎠
⎞

⎜
⎝
⎛ Δ

−⎟
⎠
⎞

⎜
⎝
⎛ Δ

⎟
⎠
⎞

⎜
⎝
⎛=

RT
H

R
S

h
Tkk B expexp                eq. 1.54 

 
To find the linear form of the Eyring-Polanyi equation: 
 

R
S

h
k

TR
H

T
k B Δ

++
Δ−

= ln1*ln                 eq.1.55 

 
where: k = reaction rate constant, T = absolute temperature, ΔH = enthalpy of 
activation,R = gas constant, kB = Boltzmann constant, h = Planck's constant, ΔS= entropy of 
activation. A certain chemical reaction is performed at different temperatures and the reaction 
rate is determined. The plot of ln(k/T) versus 1/T gives a straight line with slope  -ΔH/R from 
which the  enthalpy  of activation can be derived and with intercept ln (kB/h) + ΔS/R  from 
which the entropy of activation is derived [Evans and Polanyi 1935, Eyring 1935, Polanyi 
1987]. 
The general Eyring model includes terms that have stress and temperature dependences (in 
other words, the effect of changing temperature varies, depending on the levels of other 
stresses). Most models in actual use do not include any interaction terms, so that the relative 
change in acceleration factors when only one factor changes does not depend on the level of 
the other factors.  Henry Eyring's contributions to chemical reaction rate theory have led to a 
very general and powerful model for acceleration known as the Eyring Model. 
 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ Δ
−=

RT
Va

RT
Hr

dt
dr σsinhexp0                           eq. 1.56 

 
These Eyring equations are commonly used to explain temperature activated processes such 
as fluid viscosity, plasticity and yield stress and also molecular fracture. In the late part of the 
manuscript we will explore briefly how this probabilistic analysis can apply to the process of 
nucleation of cavities. 
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Introduction  
 
The main objective of this thesis is to establish the role played by the composition and 
crosslinking structure of a rubber (soft material) on its resistance to cavitation under a 
predominantly hydrostatic pressure. To accomplish this objective we decided to work with 
model networks. An elastomeric model network is typically made by endlinking precursors 
with known molecular weights and functionality to a multi-functional cross-linker in well 
controlled stoichiometric conditions very close to the theoretical ones. This should give a very 
homogeneous network with a well defined molecular weight between crosslink points and 
very few loops, pendant chains and unreacted chains..  
Most of the work reported in the literature about elastomer model networks [Beshah et al. 
1986, Garrido et al. 1988, Andrady et al. 1992, Takeuchi and Cohen (1999), Yoo and Cohen 
(2006), Urayama et al. 2009, among others] has been done on polydimethylsiloxane (PDMS), 
which gives very elastic and transparent samples; however, monodisperse precursors are not 
commercially available in large quantity and typical stoichiometries used tend to be far from 
ideal because of side reactions. This has motivated us to use for our purpose a different model 
network system than PDMS.  
Another kind of elastomer model network already developed and available in the literature 
was the one prepared by Bos and Nusselder in 1994 [Bos and Nusselder 1994]. They prepared 
polyurethane model networks from triisocyanate and diols (PPGs) of various molecular 
weights. The use of commercially available poly (propylene) glycols (PPGs) very 
monodisperse, with relatively low molecular weights let them obtain very well defined 
molecular structures and very elastic materials. The use of unfilled materials also meant that 
the samples were transparent, an essential quality to follow optically and in real time the 
phenomena of cavitation (position, shape and number of cavities) during the tensile 
experiments in confined conditions (Chapters 4 and 5). 
Based on that model system, we however had to design a different protocol of purification for 
the reagents, and used different PPGs molecular weights. Three different model networks 
were prepared: the first one based on a PPG with molecular weight of 4000g/mol and 
triisocyanate (PU4000); a second one based on a PPG with molecular weight of 8000g/mol 
and triisocyanate (PU8000). These two networks were made with the purpose of having two 
different molecular structures with two different crosslink densities, close to and above the 
average molecular weight between entanglements (Me~3000g/mol [Florez et al. 2006]). A 
third network, a bimodal network, was prepared based on PPG8000g/mol and PPG1000g/mol 
and triisocyanate (PU8000/1000); this network was made with the purpose of investigating 
the effect of adding short chains (PPG1000) to long chains(PPG8000) on the mechanical 
properties, which based on recent publications, can have an important effect on mechanical 
properties [i.e. Youn Kim et al. 1986]. 
 
This Chapter describes the synthesis conditons: purification and characterization of the 
reagents (PPGs and DESMODUR RFE), procedure to prepare the three polyurethane model 
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networks and the characterization of the linear viscoelastic, local dynamics and swelling 
properties of the networks in order to determine their macromolecular architecture.  
 
2.1.- Materials 
 
The following chemicals were used without further purification: dry toluene (Aldrich); 
IRGANOX® 1035: sulphur containing primary (phenolic) antioxidant and heat stabilizer 
(kindly supplied by CIBA®). All solvents (acetone, cyclohexane, toluene, dichloromethane, 
and ethanol) were purchased from either Aldrich or Sigma.  
The following materials were purified before being used: ACCLAIM® 4200, Polyether Polyol 
with nominal molecular weight 4000 g/mol; and ACCLAIM® 8200, Polyether Polyol, with 
nominal molecular weight 8000g/mol (kindly supplied by Bayer). POLY-G® 20-112 Urethane 
grade, Polyether diol, with nominal molecular weight 1000g/mol (kindly supplied by Arch 
Chemicals, Inc.); DESMODUR® RFE, solution of tris(p-isocyanatophenyl) thiophospate in 
27% of ethyl acetate (purchased from Bayer). 
 
2.2.- Purifications and Characterization 
 
2.2.1.- Purifications of reagents 
 
In order to avoid the presence of additives, solvents, water and other impurities, the reagents 
necessary for the preparation of the polyurethane model networks were purified.  This 
purification was made to have better control on the stoichiometry of the reaction. All 
glassware used to perform purifications and synthesis was every time cleaned, rinsed with 
acetone and dried @ 120°C. The synthesis was carried out under nitrogen atmosphere (inside 
the gloves box, H20 < 0.5 ppm). 
 
2.2.1.1.- Purification of Poly(propylene) glycols (PPGs):  
 
The three PPGs that were used belong to the chemical family of polyether polyol, and are 
diols. Since the PPG is hygroscopic, an azeotropic distillation had to be carried out; this kind 
of distillation is used whenever further separation by conventional distillation is no longer 
possible. The azeotropic distillation consists of the separation of a liquid mixture containing 
azeotropes, at which the composition, temperature, and pressure of the liquid phase become 
equal to those of the vapor phase. By adding a selected entrainer to the mixture (in this case 
cyclohexane), it is often possible to “break” the azeotrope and thereby to achieve the desired 
separation [Seader 2005]. 
To do the azeotropic distillations, the PPG was poured into a balloon with cyclohexane and 
brought to the rotavap. At ~80°C, under vacuum (~2mbar) the cyclohexane and water are 
distilled. This procedure was repeated for every PPG used. The purified product was then 
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poured into a clean and dry bottle and stored inside the gloves box. Figure 2.1 shows the 
scheme of this purification procedure.  
 

1) The PPG is poured in a baloon
2) Cyclohexane is added

3) An azeotropic
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Figure 2.1: Scheme of purification of Poly (propylene) glycol (PPGs)  
 
2.2.1.2.- Characterization of PPGs 
 
Based on the technical data sheets of Bayer [Bayer data sheets], the ACCLAIM series (PPG 
diols) are the products with lowest percentage of monol (i.e. only one hydroxyl functional 
group per chain) content in the market: PPG 4200 has 2% of monol, and PPG 8200 has 4% of 
monol content. Additionally, the ACCLAIM series is said to have a very narrow molecular 
weight distribution: Ip~1.05-1.15. These two characteristics were the main reasons to choose 
the series ACCLAIM for our samples’ preparation.  
Once the PPGs were purified, a characterization was done to obtain a reliable molecular 
weight value (to be used in the stoichiometric calculations), the molecular weight distribution 
and the concentration of the hydroxyl numbers of each PPG. 
We used three techniques. The “Mn” (used to calculate the stoichiometry of the reaction and 
the functionality), and “n” values were obtained by NMR and Maldi-TOF and the Ip values 
(polydispersity or molecular weight distribution) were obtained by GPC. The PPG 
functionality was assumed to be two (diol).  
 
2.2.1.2.1.- Molecular weight: Nuclear Magnetic Resonance (NMR)  
 
In its simplest form NMR allows identification of individual atoms in a pure molecule. NMR 
is based in quantum mechanical properties of nuclei, and as such it is very reliable, 
predictable and reproducible. When a sample is placed in a magnetic field, NMR active nuclei 
(like 1H or 13C) resonate at a specific frequency, dependent on strength of the magnetic field 
[Pavia and Lampman, 2000]. 
The structures of the three PPGs were investigated using 1H and 13C NMR spectroscopy. 
Because the PPGs are hygroscopic we used both techniques (proton and carbon) to verify that 
the molecular weight obtained by 1H NMR was correct. 
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The 1H NMR study was achieved from samples of which the hydroxyl end groups were 
modified with trifluoroacetic anhydride (TFA). The nature of the end goups, the chemical 
structure and the molar mass were determined.  
The three PPGs were analysed before and after purification. The conditions used to perform 
the experiments were the following: 1H NMR spectra were recorded in TFA/CDCl3 (1/4 v/v) 
on a Bruker 400 MHz spectrometer @ ~25°C. 13C NMR spectra were recorded in CDCl3 + 
Crom(acac)2 on a « Avance 300 » with a sonde BBO 10 mm; and the program for analysis 
was Xwinnmr. The 1H and 13C chemical shifts were referenced to residual CHCl3 at 7.26 ppm 
and to CDCl3 at 76.9 ppm, respectively. The 1H NMR spectra were recorded after the 
hydroxyl end groups were reacted with trifluoroacetic anhydride (TFA). 
These experiments and analysis were done based on the study of Boulares A., Tessier M. and 
Marechal E., [Boulares et al. 1998], in collaboration with Martine Tessier at the University 
Pierre et Marie Curie, Paris VI. This analytical technique was also used by Yong and Wu 
[Yong 1988] and by Goldwasser and Adolph [Goldwasser 1986]. It allows the determination 
of the number-average molar mass (Mn) of the PPG as the protons in the end unit, while those 
in the backbone give separated signals.  
The proton and carbon numbering used for NMR analysis is described as follows: 
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And, the chemical shifts and assignments of 1H NMR signals are reported in Table 2.1. 
 
Table 2.1: Assignment of 1H NMR chemical shifts of PPG when R = COCF3 

 
n˚ H 1 4 3 6 2 5 
δ(ppm) 5.22 3.85-3.67 3.67 3.70-3.42 1.32 1.15 
 
Figure 2.2 shows one spectrum (for PPG 4000, purified) as an example of the kind of 
resulting spectra we obtained. The main difference among the spectra was the intensity of the 
OH peak. In appendix A2.1 are also presented the spectra of PPG 8000 and PPG 1000. 
The software Xwinnmr allowed the analysis of the each peak to understand how many 
protons give rise to the peak. This integration of the area under each peak gives a relative 
value that is assigned to the chemical shifts (protons n˚1, 2, 3, etc.). In appendix A2.1, an 
example of calculation is presented for the PPG 4000 purified. The resulting values calculated 
for each PPG by this methodology are reported in Table 2.2. The value “n”, which is the 
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number of times that the monomer repeats in the polymer, was calculated experimentally to 
obtain Mn for each PPG and these values are also reported in Table 2.2. 
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Figure 2.2: 1H NMR spectrum of PPG 4000 purified 
 
The three PPGs studied have all secondary hydroxyl end groups as the doublet at ~4.42 ppm 
relative to methylene protons in α position of trifluoroacetylated hydroxyl end group           
(i.e.CF3-CO-O-CH2-CH(CH3)-) is not observed. 
Two values were also calculated for the PPGs to know the concentration of hydroxyl 
functions (OH) are the C(OH) [mmol/gr] and the hydroxyl number [mg KOH/g]. Using 
values of Mn obtained by 1H NMR, the C(OH) [mmol/g] can be calculated assuming that the 
functionality given by the supplier is correct (2 OH per PPG molecule).  An example of this 
calculation is also given in Appendix A2.1 for PPG4000. The resulting values are reported in 
Table 2.2. The measured hydroxyl numbers correspond quite well to the values reported by 
the suppliers for these three PPGs [Bayer data sheet]. 
 
Table 2.2: Molecular weight Mn, value of the repetitive unit “n”, and calculated C(OH) 
mmol/g and hydroxyl number I (OH) of the three PPGs, obtained by 1H NMR. 
 
Nominal Mn 
PPG [g/mol] 

1H NMR  
Mn  [g/mol] 

1H NMR 
“n’ 

C(OH) mmol/g  
[N° mmol OH/g PPG] 

Hydroxyl Number 
I(OH)  [mg KOH/ g] 

1000 990 16.7 2.02 113.3 
4000 3887 66.7 0.51 28.6 
8000 7987 137.4 0.25 14.0 
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Figure 2.3 shows a spectrum (for PPG4000, purified) as an example of the kind of resulting 
spectra we obtained by 13C NMR. The peak assignment is reported in Table 2.3. An example 
of how Mn can be calculated by using 13C NMR spectra, integration peaks (for PPG4000 
purified) as well as the spectra of 13C NMR for PPG8000 and PPG1000 are presented in 
appendix A2.1.   
 
Table 2.3: Assignment of 13C NMR chemical shifts of PPG when R = H 
 
n˚ H 1 4 3 6 2 5 
δ(ppm) 66-67 74-75 74 73-75 18-19 17 
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Figure 2.3: 13C NMR spectrum of PPG 4000 purified 

The number average molecular weights Mn and the degree of polymerization “n” obtained for 
the three PPGs by 1H NMR and 13C NMR are summarized in Table 2.4. The values obtained 
by the two techniques are close, and we used for further calculations the values obtained by 
1H NMR. 

Table 2.4 Values of molecular weights Mn and “n” for PPGs obtained by 1H NMR and      
13C NMR  

Material  1H NMR  
Mn[g/mol]                n 

13C NMR  
Mn[g/mol]                 n 

PPG 1000         990                      16.7           946                       16 
PPG 4000        3887                    66.7          3960                      68 
PPG 8000        7987                   137.4          7960                     137 
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2.2.1.2.2.- Polydispersity: Gel permeation Chromatography (GPC) 
 
Size exclusion chromatography (SEC) also called gel permeation chromatography (GPC) 
allows the separation of polymer molecules based on their hydrodynamic radius. For our 
experiments THF was used as solvent and the three PPGs were studied. The set up we used 
had three detectors: (1) Refractometer; (2) Viscometer; (3) Light scattering.  
For PPG 1000 (purified and not purified) there was not enough signal in the light scattering 
detector, so a universal log [η] Mn in function of the elution volume calibration curve was 
used as reference. 
The GPC technique presents some limitations regarding the accuracy of the Mn value 
obtained. Then, since we had the NMR results, the Mn obtained by GPC was used only for 
comparison. However, this technique is quite good to obtain the molecular weight distribution 
or polydispersity (Ip) of the polymers.  
In Table 2.5 are reported the Ip values obtained by GPC for each PPG. It can be observed that 
the three PPGs are very monodisperse, as reported by the supplier. An example of the 
monodispersity of the samplesIis shown in Appendix A2.2.  

Table 2.5: Reported values of Ip obtained by GPC for PPG 1000, PPG 4000 and PPG 8000  
 

Material 
 

Ip 

PPG 1000 1.08 
PPG 4000 1.08 
PPG 8000 1.10 

 
2.2.1.2.3.- MALDI-ToF 
 
MALDI-ToF was used as the third technique to characterize the PPGs because in principle 
this technique is one of the most accurate to determine Mn. However as we will see in the 
results, when the molecular weight is higher (≥PPG 4000) the technique is not that precise 
anymore.   
The principle is that ions are generated by a Matrix-Assisted Laser Desorption/Ionisation 
(MALDI), accelerated by a high electric potential, and separated by the time taken to reach a 
detector (Time-of-Flight (ToF)). The time-of-flight is directly proportional to the mass-to-
charge ratio of an ion, and hence a mass spectrum is obtained [Pasch and  Schrepp 2003].  
The three PPGs were studied (before and after purification) by MALDI-ToF. The samples 
were prepared in MeOH + DHB (70% can, 0.1% TFA) and NaCl (high molecular weight 
species). The same molecular weight was measured for non-purified and purified PPGs, as 
expected. An example of the spectra obtained by MALDI-ToF is presented in A2.3. 
The Mn obtained by MALDI-ToF for PPG 4000 and PPG8000 are presented in Table 2.6 in 
comparison with the Mn obtained by 1H NMR.  The measured values were systematically 
lower than the ones obtained by the other techniques.  
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Table 2.6: Values of the molecular weight Mn obtained by Maldi-ToF and 1H NMR, for the 
three PPGs.  
 

Material 
 

MALDI-ToF 
Mn[g/mol]        

1H NMR  
Mn[g/mol]              

PPG 1000 941 990 
PPG 4000 3306 3887 
PPG 8000 6875 7987 

 
Then, based on these results, and considering the limitation of each technique, the values of 
Mn and “n” obtained by 1H NMR, and the Ip obtained by GPC were considered the most 
reliable.  
 
2.2.1.3.- Purification of DESMODUR RFE to obtain tris(p-isocyanatophenyl) thiophospate  
 
The DESMODUR RFE, because of its high reactivity, is sold commercially by Bayer and 
consists of a solution of tris(p-isocyanatophenyl) thiophosphate in 27% of ethyl acetate and an 
oily solution with additives. For the purification, this solution was poured into a balloon and 
brought to the rotavap; using a temperature up to ~80°C and vacuum (~2mbar) the ethyl 
acetate was distilled. The remaining oily solution (additives + tris(p-isocyanatophenyl) 
thiophosphate) was poured into a flask, and after cooling down (~40°C), some milliliters of 
cyclohexane were added. The flask was then heated up to ≤ 80°C. This heated solution was 
left to cool down; during the cooling, a phase separation took place between the “oily 
solution”(additives) and the “whitish solution” containing crystallized (tris(p-
isocyanatophenyl) thiophosphate + cyclohexane). The “whitish solution” was left to cool 
down completely until room temperature and the crystallized solid was vacuum filtrated until 
obtaining a fine white powder that was put on a cresol and taken to a desiccator for a final 
drying step under vacuum during ~2.5 h.  In Figure 2.4, shows schematically the procedure of 
purification of the DESMODUR RFE to obtain tris(p-isocyanatophenyl) thiophospate.  
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1) The DESMODUR RFE 
solution  is versed in a baloon

2) The ethyl acetate 
is distilled in a 
rotavap

3) oily solution (additives + 
triisocyanate is versed into a flask
4) after cooling down, some milliliters 
of cyclohexane are added 

5) The flask is then 
heated up to ≤80 C 

6) The flask is 
left to cool down for 
physical separation7) Physical separation of the

“oily solution”(additives) to the 
“whitish solution” ( triisocianate
+cyclohexane) 

8) The “whitish solution” is 
vacuum filtrated until obtaining 
a fine white powder 

9) The final product is put on a crisol
and taken to a dessecator for a final 
drying step under vacuum during ~2.5 h.  

10) tris(p-isocyanatophenyl) 
thiophosphate purified is 
obtained

N C O O P

S

O

O

N C O
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Figure 2.4: Schematic of the purification of the tris(p-isocyanatophenyl) thiophospate. 
 
2.2.1.4.- Characterization of purified tris(p-isocyanatophenyl) thiophosphate : 
 
Once the tris(p-isocyanatophenyl) thiophosphate was purified from DESMODUR RFE, a 
characterization was done by 1H NMR to evaluate how pure was the resultant product. The 
NCO groups in the tris(p-isocyanatophenyl) thiophosphate are quite reactive, they can react 
with themselves, with humidity, etc. then, special care has to be taken. The characterization as 
well as the synthesis using this product had to be done immediately after purification to avoid 
the loss of the available NCO groups.  
To do the characterization by NMR, a few milligrams of the purified product were put inside 
an NMR tube together with chloroform, and this samples’ preparation was done inside the 
gloves box. Figure 2.5 shows a typical spectrum. The quantitative analysis of the spectrum 
showed that the final product was >96% of tris(p-isocyanatophenyl) thiophosphate; the 
remaining percentage corresponding to impurities and cyclohexane. This result was taken into 
account when making the calculations of the stoichiometry for the preparation of the model 
networks.  
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Figure 2.5: 1H NMR Spectrum of purified DESMODUR RFE.  
 
2.3.- Preparation of Model Networks 
 
2.3.1. Synthesis of PU networks 
Due to the reactivity of the reagents, once purified, the synthesis of the networks had to 
immediately follow the purifications steps. On the basis of a blend of diol with triisocyanate, 
the stoichiometry for full conversion to obtain the polyurethanes was calculated by:  
 
Mctheor=MPPG + 2/3MDESMODUR 
 
where, for MPPG ,we used the Mn obtained by 1H NMR and for MDESMODUR we used the 
nominal value 465.18 g/mol. The general chemical reaction of the poly diol with the 
triisocyanate is shown in Figure 2.6.  
To determine the extent of conversion of these reagents into polyurethane, the solfractions, 
i.e. the amount of extractable material, was measured, using dichloromethane at room 
temperature. This technique was used to fine tune the stoichiometry by choosing the 
stoichiometry giving the lowest solfraction. There might be several reasons justifying the 
necessity of this final adjustment: the high reactivity of the NCO groups with impurities 
which depends on the experimental conditions but also the remaining solvents after 
purification of the DESMODUR RFE. Appendix A2.4 shows an example of the curve we 
used to obtain the lowest solfraction and the corresponding NCO/OH ratio. 
After these adjustments, three polyurethane model networks were prepared following the 
formulations reported in Table 2.7. 
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Figure 2.6: Chemical reaction of Poly (propylene) glycol and tris(p-isocyanatophenyl) 
thiophosphate: Polyurethane formation.  
 
Table 2.7: Formulation of the three polyurethane model networks  
 

Materials Chain extender Crosslinker Antioxidant Experimental  
NCO/OH 

PU 4000 PPG 4000 1.05 
PU 8000 PPG 8000 1.10 
PU 8000/1000 34% molar PPG 8000 

66% molar PPG 1000 

tris(p-isocyana-
tophenyl) 

thiophosphate 

0.1%wt. 
Irganox 1035 1.10 

1.0 
 
 
The synthesis of these three polyurethane model networks was carried out inside the gloves 
box to guarantee anhydrous conditions. The reagents were weighed on a scale (Summit 

.…. 

Poly(propylene) 
glycol 

tris 
(p-isocyanatophenyl) 
thiophosphate 

Urethane group 

Polyurethane 

2/3 
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230g/0.1mg) in a beaker, and using the proportions of the formulations reported in Table 2.7 
were mixed in a beaker, heated up to ~80°C and agitated using a magnetic stirrer, until the 
fluid solution became transparent. This procedure was repeated for every polyurethane 
prepared. After heating and stirring, the solutions were degassed during ½ hour. 
 
2.3.2. Networks molding and curing 
 
The reagents were poured into the molds which were either:  
 
1) a Petri dish to prepare films 
2) the mold for cavitation samples (see chapter 5 for cavitation samples’preparation); and  
3) the Teflon mold to prepare compression samples.  
 
Then, a new degassing of another ½ hour was done.  
The internal surface of the Petri dishes had to be previously modified chemically with SAMs 
of dichlorodimethylsilane, for later demolding.  
The amount of material (volume) was calculated to obtain films of ~1mm-thick. All the films 
obtained were transparent and quite homogeneous. It is worthwhile to note that the presence 
of the antioxidant prevented yellowing. 
All the molds with the isocyanates and polyols (still viscous liquids), were taken out of the 
gloves box and placed in a vacuum oven where cycles of vacuum and nitrogen were done, 
and finally the samples were left with nitrogen flow in the oven. The curing program in the 
oven was heating up @35°C during 48h (to increase viscosity in a controlled way) followed 
by 80°C during 80h for the complete crosslinking. Figure 2.7, shows a schematic of the 
synthesis of the polyurethane model networks. 
The optimization of the timing and temperatures selected for the complete cure of the 
networks was done based on the results of the sol fraction which were carried out for several 
curing times and temperatures in the oven (for an example of timing see Appendix A2.5). The 
main requirement for curing was to obtain fully cured networks and cavitation samples 
without bubbles. To achieve the second requirement a first curing step of 35°C during 48h 
was necessary to increase the viscosity before going to higher temperatures (80°C).  
To shorten the curing time, several tests were done using catalysts in the first part of the 
thesis. For this, the curing procedure was changed by using, during the mixture preparation, 
DBTDL (dibutyltin dilaurate) and also tin (II) 2-ethylhexanoate as catalysts, at different 
percentages of content (0.001, 0.01 and 0.1%). The results were fast curing reactions without 
enough time to do the degassing, and it was a problem mainly for the cavitation’s samples. In 
view of these difficulties, the “long” uncatalyzed curing inside the oven, was used.   
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Figure 2.7: Schematic of the Synthesis of Polyurethane model networks 
 
We prepared three kinds of polyurethane model networks, the first one based on a PPG with 
molecular weight of 4000g/mol and triisocyanate (called from now on PU 4000); a second 
one based on a PPG with molecular weight of 8000g/mol and triisocyanate (called from now 
on PU 8000). These two networks were made with the purpose of having two monomodal 
polyurethane networks with different crosslinking densities.  The third network, an expected 
bimodal network, based on 34% mol/mol of PPG 8000g/mol and 66% mol/mol of 
PPG1000g/mol and triisocyanate (called from now on PU 8000/1000); this last network was 
made with the purpose of studying the effect on the mechanical properties of adding short 
chains (PPG 1000) to long chains (PPG 8000). In Figure 2.8 are summarized the three 
polyurethane model networks that were prepared (and characterized) to be used for all the 
mechanical study in the next Chapters.  
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Figure 2.8: Scheme of the polyurethane model networks prepared for the mechanical testing 
 
2.4.- Model Networks Characterization 
 
2.4.1.- Chemical groups identification: ATR-FTIR 
 
Internal reflection spectrometry or attenuated total reflectance infrared (ATR/IR) 
spectrometry was used to analyze our polyurethane networks. It is considered one simple, 
direct and sensitive in situ infrared technique. ATR-FTIR spectroscopy was used to identify 
the main functional groups present in the synthesized polyurethanes.    
Mid-infrared spectra are obtained by pressing small pieces of sample against an internal 
reflection element (IRE), e.g., zinc selenide (ZnSe). IR radiation is focused onto the end of the 
IRE. Light enters the IRE and reflects down the length of the crystal. At each internal 
reflection, the IR radiation actually penetrates a short distance (~1 μm) from the surface of the 
IRE into the sample (Figure 2.9).   

 
Figure 2.9: Total internal reflection at the interface of an internal reflection element.  Depth 
of penetration of the evanescent wave is approximately 1 μm. 
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The mid-infrared, absorption of radiation is related to fundamental vibrations of the chemical 
bonds. Internal reflection spectrometry provides information related to the presence or 
absence of specific functional groups, as well as the chemical structure of polymer 
membranes.  Absorption bands are assigned to functional groups (e.g., C=O stretch and C-H 
bend).  Shifts in the frequency of absorption bands and changes in relative band intensities 
indicate changes in the chemical structure or changes in the environment around the polymer 
[Marek 1996, Smith 1995].   
To perform the experiments, every sample was placed on the horizontal face of the internal 
reflectance crystal where total internal reflection occurs along the crystal-sample interface. 
Spectra were aquired on a Spectrometer Bucker, Tensor 37, with a spectral scan of 4000-400 
cm-1, 31 scans. A first scan was done to obtain the reference (that includes humidity, etc.), and 
this reference was subtracted from the samples’ spectrum.   
Figure 2.10 shows the spectrum of PU4000, pointing out the main peaks corresponding to the 
PPG, and the peaks related to the urethane bond. The same kind of spectra was obtained for 
the three PU networks, meaning that in the three cases the same kind of reactions occurred for 
the formation of the polyurethane. It can be seen that there are no peaks in the region 2276-
2240 cm-1, which means that all the NCO reacted, which was anyway expected in view of the 
high reactivity of the NCO group.  
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Figure 2.10: ATR-FTIR spectra of Polyurethane PU 4000. 
 
Figure 2.11 shows a zoom of the region between 1800-1350 cm-1, where the main urethane 
linkages are present for PU 4000 and PU 8000. The peak C=O (band at 1730cm-1) 
corresponding to urethane carbonyl group is clearly observed.  
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Figure 2.11: ATR-FTIR spectra of Polyurethane PU 4000 and PU 8000. Zoom of the 
urethane links 
 
The only differences that were observed among the spectra of the three polyurethane networks 
is the height of some peaks, which is expected, since the mole fraction of urethane changes 
for each sample (e.g. PPG 4000 to PPG 8000); however, the height of the peaks was not 
normalized. In Table 2.8, are reported the FTIR bands assignments for the associated peaks in 
the polyurethanes.   
It is important to note that in the regions 1400-1750 cm-1 and 3600-3000 cm-1 appear only the 
peaks related to the urethane formed. There are no peaks related to urea for any of the samples 
at 1680-1715 cm-1; however, in the region 3320-3420 cm-1 the urea and the –NH urethane 
group related could be overlapped. A peak –NH (3300 cm-1) related to urethane group (and 
possible urea group) appear in all samples and it increases when the amount of isocyanates 
present in the reaction increases. We found no evidence of the presence of allophanates in the 
samples, which could appear for an excess of isocyanates, but this peak could be overlapped 
in the region of 1409cm-1.  
This FTIR study was not meant to be exhaustive, but we could identify the main groups 
present in our polyurethanes and show that side reactions are not detectable and should be 
negligible. 
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Table 2.8: FTIR band assignments for polyurethane [Smith 1995, O’Sickey 2002, Griffiths 
De Haseth 2007] 
 

Wave number [cm-1] Assignment Assignment to PU 
2980 ~(CH3) ν asym PPG 
2860 ~ (CH2) ν sym PPG 
3500 (NH) linked Urehtane 
3000 OH linked Urethane (or urea) 
2270 (N=C=O) Isocyanate, not present 
1730 C=O urethane carbonyl Urethane 

1600-1515 C=C aromatic Aromatic part of isocyanate 
1100-1000 C=O stretching PPG 
924-820 C-H, C-C PPG 

1460 ~ (CH3) ν asym PPG 
1380-1370 ~ (CH3) ν sym, CH PPG 
1550-1500 C=C Urethane 

1452 CH3 bend PPG 
1180-1160 C=O stretch aliphatic alcohols PPG 

 
 
2.4.2.- Density of Polyurethanes networks 
 
The density of the model networks was measured in the simplest way. Cylinders and 
rectangles were prepared to have two kinds of geometries for each polyurethane network, all 
the dimensions were measured as accurately as possible and these measurements were done at 
room temperature. Every cylinder and rectangle was weighed. The volumes were obtained by 
using the area and the thickness of the samples (see Appendix A2.6). The density was 
calculated by dividing the Mass/Volume=Density. Table 2.9 reports the density values 
obtained for each polyurethane at room temperature (25°C).   
 
Table 2.9: Calculated density values for the three model networks at room temperature. 
 

Material Density ρ25°C 

[Kg/m3] 
PU 4000 1036 ± 8 
PU 8000 965 ± 9 
PU 8000/1000 1079 ± 6 

 
The density value obtained by this methodology is very close to the density obtained by Bos 
and Nusselder [Bos 1994] for PU 4000, which was ρ=1034 Kg/m3.   
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2.4.3.- Sol Fraction and Swelling experiments 
 
2.4.3.1.- Solfractions 
The experimental conversion can be calculated by FTIR in situ, rheology and/or sol fractions. 
However while the first two techniques are very good for the initial stages of the reaction, the 
last one is by far the most sensitive for a nearly completely crosslinked network. As 
mentioned earlier, the sol fractions were used to optimize the stoichiometry of the reactions to 
prepare the polyurethanes networks, and the swelling was used to optimize the curing time. 
Systematically, for every batch of polyurethane networks, the sol fractions were determined in 
dichloromethane after a period of one week, at room temperature, and the amount of 
extractable material was measured. This technique was used together with DMA to check the 
reproducibility of each batch. 
The average sol fractions (ws) for the films and the cavitation samples, are listed in Table 2.10 
as a function of the PU;  ws ranges from ~2-3% for all the samples. These results show that 
only a small amount of non reacted material is left in the PUs. Due to the very long curing 
procedure and the high sensibility of the reagents to react with humidity before being 
completely cured, we investigated with this method the possible effect of curing in a 
completely confined environment (cavitation sample, see chapter 4 for cavitation 
samples’preparation) relative to an “open” environment (films).  In Table 2.10, we can see 
that for the cavitation samples the solfractions are lower than for the films, which is expected 
given the difference in curing; however we do not expect this difference to have an important 
impact on the mechanical properties.  
 
Table 2.10: Minimum sol Fractions (ws) obtained for the polyurethane networks in 
dichloromethane 
 

Material Sol fractions (ws) [%] 
PU4000 film 2.7 ± 0.1 
PU4000 cavitation sample 2.3 ± 0.2 
PU8000 film  3.1 ± 0.3 
PU8000 cavitation sample 2.7 ± 0.1 
PU8000/1000 film 2.9 ± 0.2 
PU8000/1000 cavitation sample 2.5 ± 0.2 

 
2.4.3.2.- Swelling experiments 
 
Additionally to the solfractions which indicate the level of unreacted material, swelling 
experiments were performed for the three polyurethanes, mainly as a way to characterize and 
compare the network structure of the cavitation samples and the films and to estimate possible 
differences between them. The swelling experiments may be more sensitive than the 
solfractions.  
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The theories of rubber elasticity have been developed in parallel with the theory of swelling 
proposed originally by Flory and Rehner [Flory and Rehner 1943] (correlated to the affine 
model). The principle is simple: As the rubber swells with liquid, the polymer chains stretch 
and the equilibrium value is dictated by the equilibrium in the chemical potential of the 
solvent molecules inside and outside of the network. 
The swelling experiments were carried out in dichloromethane which has a solubility 
parameter (δ) close to that of the PPG (see Appendix A2.7). The experiments were done at 
room temperature (~25°C) during one week until equilibrium was reached.  
The mass of each sample (md = mass dry samples) was obtained before swelling experiments; 
and after one week, the mass loss was obtained by weighing the samples every minute during 
15 minutes. Using this data were made graphs of mass versus time and the mass at t=0s (ms) 
was extrapolated. This value of mass represents the equilibrium mass in the swollen state (ms). 
From md and ms can be obtained the swelling in mass (Qp) using equation 2.1 
 

md
ms

mass
massQp

dry

swollen == = Swelling ratio in mass                                                     eq. 2.1 

 
And, the swelling ratio in volume (Qv) can be obtained by equation 2.2: 
 
Qv= 1+ [(Qp-1) * ρ2/ρ1]                  eq. 2.2 
 
where ρ1 is the density of the solvent and ρ2 is the density of the polymer (reported in Table 
2.9). In Table 2.11, are reported the Qv values obtained for the three PUs. 
 
Table 2.11: Swelling ratio in volume (Qv) for films and cavitation samples 
 

Material Qv 
PU4000 film 5.4 ± 0.02 
PU4000 cavitation sample 5.3 ± 0.01 
PU8000 film  6.6 ± 0.03 
PU8000 cavitation sample 6.9 ± 0.03 
PU8000/1000 film 5.8 ± 0.02 
PU8000/1000 cavitation sample 5.9 ± 0.01 

 
Based on the solfractions and swelling ratios reported in Table 2.11, there are no significant 
differences in structure between cavitation samples and films.  Comparing the 3 materials, the 
degree of swelling goes as: PU 8000 >  PU 8000/1000 > PU 4000.  
 
We can now try to estimate an average value of the molecular weight between crosslinks from 
the swelling theory of Flory and Rehner [Flory 1943] which gives at equilibrium: 
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[ln (1-(φ2) + (φ2 + χ12*φ2
2)] = V1 n [(φ2/2)- φ2

1/3 ]                                                             eq. 2.3 
 
with φ2 the volume fraction of polymer in the swollen mass, V1 the molar volume of the 
solvent, ν is the number density of network chain segments bound on both ends by crosslinks, 
and χ12 is the Flory solvent-polymer interaction term (If χ12 < 0.5 the solvent is considered a 
good solvent). For φ2 small, this equation is often simplified to explicitly calculate the number 
of crosslinks per unit volume ν (mole/cm3), from which the average molecular weight 
between crosslinks Mc can be directly obtained: 
 

( )
2
21222

1/3
2221

c χ)ln(1
/2)(V

M
φ+φ+φ−

φ−φρ
=                                     eq. 2.4 

 
where ρ2 is the density of the dry polymer. The main difficulty of using equation 2.3 or 2.4 is 
the accuracy of χ12 for a given system. It has been shown [Petrovic 1987] that the χ parameter 
of a copolymer network depends on the interactions between the solvent and the individual 
components of the networks and between these components themselves. In the polymer 
Handbook [Polymer Handbook], when non-polar solvents are used, the value of χ12 can be 
calculated by using the equation (2.5).   
 
χ12 = [ (δ1 - δ2)2  V1 / RT  ]  +  0.34                                                                               eq.     2.5 
 
Using equation 2.5, we obtained a χ12 ~0.34 for the three polyurethanes in dichloromethane. 
This result suggests that the equation 3.3 is probably not the right one to be used for our 
systems given the complexity of the interactions. However it is interesting to see from Table 
2.12 that the predicted Mc values obtained with equation 2.4 and χ12 ~0.34 are reasonably 
close to the values expected from the molecular weights of the PPG used to make the 
networks. Furthermore the differences observed in swelling ratios between the films and 
cavitation samples are only very small in terms of Mc values. 
 
Table 2.12: Mc values calculated by using Flory-Rehner equation 2.4. 
 

Polymer and Solvent 
 

Mc [g/mol] 
Flory-Rehner 

PU 4000 cavitation sample  3870 
PU 4000 film  3995 
PU 8000cavitation sample  5987 
PU 8000 film  6301 
PU 8000/1000 cavitation sample  4920 
PU 8000/1000 film  5090 
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2.4.4.- Model Networks Homogeneity: Proton Multiple-quantum (MQ) NMR 
 
Although average properties can be readily obtained from macroscopic experiments, the 
dispersion of chain length in the network can only be probed with a more molecular technique 
such as NMR. Solid-state NMR has proved to be a very powerful tool to study polymer chain 
dynamics and some very sophisticated pulse sequences and analyses methodologies have 
been developed specifically to address the question of local relaxation times. 
The homogeneity of our three polyurethane model networks was studied by solid-state NMR 
by Prof. Kay Saalwächter at Martin-Luther-Universität in Halle-Wittenberg, Germany.  
 
General introduction to the technique 
 
The NMR technique offers the advantage that a local chain order parameter Sb can be 
quantified by this technique in the undeformed state; this quantity is directly proportional to 
macroscopic measures of the cross-link density such as the elastic modulus or the equilibrium 
degree of swelling [Saalwächter and Sommer 2007]. A detailed explanation of this technique 
is beyond the scope of the thesis and the reader is referred to the literature [Saalwächter and 
Sommer 2007, Saalwächter 2007, Saalwächter et al. 2003]. We just note that the actual 
important NMR observable is a “residual dipolar copling”, Dres, which is directly proportional 
to Sb and thus to the cross-link density. 
Experimental results about the distribution of relaxation times in bimodal model networks 
have been published by Saalwächter [Saalwächter and Sommer 2007, Saalwächter 2007 
Saalwächter et al. 2003] and are shown in Figure 2.12 as an example. The fitting of these 
curves Figure 2.12(a) can be performed by using specific distribution models such as 
Gaussian or gamma distribution. The corresponding distribution curves of the order parameter 
in Figure 2.12 (b) demonstrate the two components nature of these distributions for bimodal 
networks. The local (dynamic) segmental order parameter Sb of the polymer backbone reflects 
the conformational space that is set by the presence of the cross-links or topological 
constraints. Sb directly depends on N-1, the inverse number of segments in a network chain, 
and is thus proprotional to crosslink density. 
Figure 2.12 (a) shows that shorter chains appear at lower excitation time than longer chains. 
In Figure 2.12 (b) the peak indicates a specific component with defined average crosslink 
density (which roughly scales with 1/Mc), and the area is proportional to its fraction if the 
peak is wide, there is an additional intrinsic heterogeneity. Apart from the so-determined 
heterogeneities in the local crosslink density, other defect structures such as loops, dangling 
ends, extractable free chains and/or all the defects which do not contribute to the elasticity of 
the network, can also be detected by the technique.  
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Figure 2.12: (a) Normalized DQ (nDQ) build-up curves of bimodal end-linked PDMS 
networks. Long and short chains have Mn=47 and 0.8 kg/mol, respectively. The solid lines are 
weighted superpositions of the experimental pure-component curves, and the dashed and 
dash-dotted lines are fits using different distribution models. (b) Order parameter distributions 
for the same networks, obtained by numerical regularization analysis of the build-up curves in 
(a). Taken from [Saalwächter and Sommer 2007, Saalwächter 2007].  
 
Analysis of our model networks: Results 
 
Solid-state NMR experiments were performed on the three networks using low-field 
instrumentation, to study the homogeneity of the networks, and in the following we report 
results in terms of “Dres”, being proportional to Sb [Saalwächter and Sommer 2007]. The 
experiments were performed at high temperature (70°C) to follow fast motions of the chains 
(at T>Tg), to see the coupling; however, the results are temperature-independent after 
normalization if the temperature is high enough. 
In Figure 2.13 the results for the three networks are presented. The "sum" curves (open 
symbols) were needed for normalization purposes, they do not carry information on the 
crosslink density, but from these curves, slowly relaxing defect components can be identified 
which correspond to the non-crosslinked chains. 
“x%y” means that there are x% of a component with a long relaxation time of “y” 
milliseconds. The "nDQ" build-up curves contain the info on crosslink density. In general, the 
steeper the initial raise, the higher the crosslink density. The order of increasingly quick rise 
does correspond to the samples ordered by their modulus, which from higher to lower the 
modulus are PU4000>PU8000/1000>PU8000 (as will be shown in the next section).  
Quantitatively, the "residual dipolar coupling" in Hz is proportional to crosslink density. This 
is the number in brackets given besides the fit curve (distribM2 fit). The first values are the 
average residual coupling (which scales with the modulus, thus 1/Mc), and the second is the 
width of the distribution (standard deviation, also in Hz). For the fitting of these three 
polyurethanes only one Gaussian was sufficient, meaning that no phase separation could be 
observed, even for the bimodal network. The ratio of standard deviation/average (std 
dev./average=111/261; 72/204 and 108/254) was similar for the three networks, about 35 to 
43%, which indicates a moderate distribution width (networks with much microscopic 
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disorder have standard deviations that are just as large as the averages), such that these 
networks can be considered to be relatively homogenous. Importantly, the two types of chains 
in the “bimodal” network (PU8000/1000) must be considered to be intimately mixed. 
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Figure 2.13: Normalized DQ build-up curves of PU4000, PU8000 and PU8000/1000 
(“bimodal”).  
 
These experiments show that PU4000 and PU8000/1000 have ~7% of defects and PU8000 
~9% of defects. Considering that about 2-3 % of these defects are extractable free chains (as 
reported in Table 2.10) the remaining amount of heterogeneities might be loops and dangling 
ends.  
Now, if Dres is proportional to 1/Mc + 1/Me (where Me is the average molecular weight 
between entanglements), then the graph in Figure 2.14 is considered to show the proportion of 
entanglements. The fitting of this curve gives y0=106 Hz which is considered to be the 
relative contribution of entanglements for this set of materials. Therefore on a relative scale, 
there is a higher entanglements contribution to Mc for PU8000>PU8000/1000≅PU4000. 
However, since the fitting was done only with three materials, the result remains qualitative. 
In Appendix A2.8 a plot of Dres is presented as a function of swelling ratio. 
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Figure 2.14: Fitting of Dres [Hz] as a function of the Modulus of the polyurethane model 
networks.  

 
2.5.- Small strain behaviour by Dynamical Mechanical Analysis (DMA) 
 
Dynamical mechanical analysis (DMA) is a technique which measures the modulus (stiffness) 
and the energy dissipation of materials in the linear viscoelastic regime (at small strain). 
When an oscillating stress, or load, is applied to a material it responds by deforming 
sinusoidally. This deformation, or strain, depends on how much viscous and elastic behaviour 
the material possesses. Two independent parameters are typically extracted from a DMA test: 
the stiffness of the material and the phase lag, i.e. the ratio between the viscous and elastic 
component [Sepe 1998]. Because these parameters are related to the molecular structure and 
architecture of the network, the DMA is sometimes called mechanical spectroscopy. 
In DMA, the modulus is measured as a function of time, temperature and frequency. By 
scanning the temperature at a fixed frequency, during a DMA experiment, the glass transition 
Tg or alpha relaxation Tα, can be observed. DMA can also be used to investigate the 
frequency (and therefore time) dependent nature of the transition at a fixed temperature. 
[Menard 1997].  
In our case we can extract several informations about our model networks. First of all the 
direct knowledge of the elastic modulus as a function of temperature and frequency will be 
necessary to interpret the fracture and cavitation tests, then the E’(f, T) and E’’(f, T) values 
can be used to extract information about the structure of the network using a rubber elasticity 
model. 
 
2.5.1.- DMA results and Thermoelasticity  
 
The thermoelasticity is the increase of the force with temperature for strained elastomeric 
systems due to a restoring force of entropic origin. This is the opposite behaviour of most 
solids, especially metals, and has long been recognized as a fundamental characteristic of 

PU4000 
PU8000/1000 

PU8000 
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elastomers [Treloar 2005, Marchessaultt et al. 1985]. The extent of the thermal contraction of 
elastomers under tension is directly related to their molecular structure, chain configurations, 
and morphology [Treloar 2005, Flory 1953].  
The elastic modulus as a function of temperature and the Tα transition temperature was 
studied by DMA for each polyurethane network. A DMA model Q800 of TA instruments was 
used in tension mode. The frequency was set at 1Hz and the amplitude at 14µm, a temperature 
ramp of 2°C/min was applied in a range of temperatures from -80°C to 110°C. Samples bars 
with dimensions of 4x30x1 mm3 (Lo~15mm) were used.  
DMA experiments (together with solfractions) were done for every batch prepared, as a way 
to verify the modulus of the networks and the reproducibility of the batches. The results 
showed that we were able to have reproducible polyurethane model networks (with 
reproducible properties) from one batch to another.   
Figure 2.15 shows a graph of the storage modulus of PU4000, PU8000 and PU8000/1000 as a 
function of temperature for the complete temperature range. The storage modulus E’, is a 
measurement of the energy stored during deformation and is related to the elastic portion of 
the elastomer. Since G’ is typically used for deformations in shear and E’ is used for 
deformations in traction, in our experiments we used E’. For nearly incompressible materials 
the two parameters are simply related by the expression: E = 3 G which is valid of course for 
both storage and viscous component. 
The glass transition temperature Tα was obtained from the maximum peak of the loss 
modulus E’’ [Steeman and Nusselder 1995]. The loss modulus E’’ is the measurement of the 
energy lost (usually lost as heat) during the deformation and related to monomer friction in 
the elastomer. Figure 2.16 shows the complete graph of E’’ as a function of T and it can be 
observed that if the three polyurethanes are compared, the Tα are very close. However, 
interestingly at temperatures over 20°C, the curves cross over and the loss modulus E” is 
higher for PU8000, which becomes more dissipative.   
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Figure 2.15: Storage Modulus of PU4000, PU8000 and PU8000/1000 as a function of 
temperature.  
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Figure 2.16: Loss Modulus of PU4000, PU8000 and PU8000/1000 in function of temperature.  
 
At room temperature and above, the three materials are very elastic as shown on Figure 2.17 

showing the graph of 
'
''

'
''

G
G

E
ETan ==δ  as a function of T. Values of tan δ vary between 0.01 

and 0.07 over the experimentally relevant range for our fracture and cavitation experiments. 
Again it is important to note that at room temperature and above the PU8000 is more 
dissipative than the PU8000/1000 and that the PU4000.                       
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Table 2.13 summarizes the transition temperature Tα, storage modulus E’ @ 25°C, and tanδ 
@ 25°C for the three polyurethane networks. 
 
Table 2.13: Values of E’, Tα and tanδ, for the three polyurethane networks 
 

Material Tα (°C) E’ [MPa] @25°C Tan δ @25°C 
PU4000 -54.1 ± 0.5 1.3 ± 0.08        0.041 ± 0.005 
PU8000 -59.8 ± 0.5 0.8 ± 0.06        0.067 ± 0.006 
PU8000/1000 -56.4 ± 0.4 1.2 ± 0.07 0.057 ± 0.004 
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Figure 2.17: Tan δ of PU4000, PU8000 and PU8000/1000 as a function of temperature.  
 
For our fracture and cavitation experiments we chose four temperatures, T=25°C which will 
be also referred to as standard conditions, and three higher temperatures, T=50°C, T=70°C 
and T=100°C. Figure 2.18 shows the storage modulus as a function of these four temperatures, 
for the three polyurethane networks.   
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Figure 2.18: Storage modulus as a function of temperature, for four selected temperatures. 
 
Table 2.14, summarizes the storage modulus E’ at these four temperatures. It is clear that the 
modulus increases when temperature increases, for the three polyurethanes.  This increase of 
E’ with temperature suggests that the thermoelastic behaviour dominates the response of the 
material. It is a telling sign of the very homogeneous and defect free character of the network, 
since any significant chain relaxation would have led to a modulus staying constant or even 
decreasing with temperature. This is particularly true at such low strains (below 0.1%) where 
entropic elasticity is not expected to dominate as much. 
 
Table 2.14: Storage Modulus E’ of PU4000, PU8000 and PU8000/1000 as a function of 
temperature. 
  

Material E’ [MPa] 
@25°C 

E’ [MPa] 
@50°C 

E’ [MPa] 
@70°C 

E’ [MPa] 
@100°C 

PU4000 1.3 ± 0.08 1.38 ± 0.07 1.45 ± 0.09 1.55 ± 0.04 
PU8000 0.8 ± 0.06 0.84 ± 0.03 0.88 ± 0.04 0.93 ± 0.04 
PU8000/1000 1.2 ± 0.07 1.28 ± 0.04 1.35 ± 0.06 1.44 ± 0.05 
 
Since all three networks present a very clear thermoelastic behaviour, it is interesting to 
extract molecular structure parameters from the modulus. According to the kinetic rubber 
elasticity theory (affine or phantom network), The tensile storage modulus of the networks in 
the rubbery region (Er [MPa]) should be proportional to the absolute temperature [Treloar 
2005, Gedde 1999]: 
 

Mc
RTEaffine

ρ3
=                                                                                                                   eq.  2.6 
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Mc
RTEphantom

ρ
=                             eq.  2.7 

 
where ρ [Kg/m3] is the density of the elastomer, R the gas constant, T[K] the absolute 
temperature and the Mc is the number average molar mass between the cross-links.  
The theoretical Mc of the three polyurethane networks can be calculated from the knowledge 

of the chemistry: urDesPPG
theor

C MMnM mod3
2

+=  [g/mol] [Bos and Nussleder 1994, Steeman and 

Nusselder 1995]. For the calculation of the Mc
theor, it is assumed that full conversion is 

reached, and that no physical crosslinks are present. The Mc theoretical values are calculated 
using MDesmodur=465.18g/mol and Mn of PPGs obtained by 1H NMR, and the Mc experimental 
values are calculated by rubber elasticity (eq. 2.6 and eq. 2.7) using T=298K, R=8,314 
J/mol*K. The results are summarized in Table 2.15.   
 
Table 2.15: 1H-NMR Molecular weight Mn of the PPGs, density at 25°C, experimental 
storage modulus (E’), theoretical and experimental molecular weight between crosslinking 
points Mc, for the three polyurethane networks. 
 

Material Density  

[Kg/m3] 
@ 25°C 

Mn of PPG 
[g/mol] 

Mc
theor 

[g/mol] 
Er

exp 
[MPa] 
@25°C 

Mc
exp 

Affine 
Model 

[g/mol] 

Mc
exp 

Phantom 
model 

[g/mol] 
PU4000 1036 ± 8 3887 4197 1.3 ± 0.08 5920 1975 
PU8000 965 ± 9 7987 8297 0.8 ± 0.06 8965 2990 
PU8000/1000 1079 ± 6 7987/990 3679 1.2 ± 0.07 6680 2230 
 
The main assumption of the affine network is that the crosslink junctions are fixed in space 
and are displaced affinely with the whole network. In the phantom model the ends of the 
network strands are joined at crosslink functions that can fluctuate. These fluctuations lead to 
a reduction of the cumulative stretching of the network [Rubinstein and Colby 2003].  
Table 2.14 and Figure 2.19 show that the Mc

theor has values in between the Mc
exp affine model 

and the Mc
exp phantom model. The affine model gives higher predicted values than Mc

theor. 
This model assumes that the network is “perfect” (which means no entanglements and no 
dangling ends); however, based on the characterization we did, 2-3% of free chains, and an 
additional 4-6% of heterogeneities (NMR proton) coming from loops and dangling ends are 
present. These small percentages of ‘imperfectness’ can modify the experimentally measured 
modulus and hence affect the predictions for Mc. From the possible networks defects, the 
defect called “loose ends” was treated quantitatively by Flory [Flory 1944]  who showed that 
if there are defects it could lead to errors in the prediction of Mc [Treloar 2005, Flory 1944].   
Additionally, the triisocyanate may undergo side reactions during the different steps before 
obtaining the final cured network, effectively reducing its functionality, which would give a 
resultant network with longer Mc

exp than expected.  
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The molecular weight between crosslink points (Mc) and crosslink density are critical 
parameters in the network synthesis, affecting mechanical properties such as modulus, 
strength, and toughness as well as swelling. Attention should be paid to the effect of the 
presence of entanglements molecular weight on the measured molecular weight between 
crosslink points (Me) [Mark 2003, Andrady and Sefcik 1983, Zhuang et al. 1999, Erman and 
Mark 1997]. Based on the literature [Florez et al. 2006], the entanglements molecular weight 
of PPG is Me~3000g/mol. It is generally accepted that both crosslink points and 
entanglements, which are trapped during curing, contribute to the elastic modulus of the 
networks [Termonia 1992]. The contribution to the elastic modulus from entanglements 
increases as crosslink density decreases and the molecular weight between crosslink points 
increases. Then we may have more entanglements for PU8000 than for the other two 
networks, but a complementary study about the effect of the entanglements on the molecular 
structure may be done and will be presented in Chapter 3.   
 
Since the size of our crosslinker (roughly ~3.6nm) is considered to be relatively large and 
immobile when compared to the PPG chains it would be expected to have all Mc

exp closer to 
the affine model than to the phantom model and this is the case for PU8000. In Figure 2.19, a 
summarizing graph of Mc

theor as a function of Mc
exp for the different models is analysed. In 

this graph, the swelling obtained by Flory-Rehner (also affine model) seems to be closest to 
the Mc

theor, however, since the χ12 parameter was not obtained accurately, the results remain 
only qualitative.   
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Figure 2.19: Mc

theor in function of Mc
exp for the different models analysed.  

 
The rubber elasticity assumes that the contribution of an increasing temperature on the 
modulus is merely entropic. In the thermodynamic treatment of thermoelasticity, the tensile 
force required to maintain a constant extension is presented as the sum of the internal energy 
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and entropy [Treloar 2005, Mark 1976]. The slope of the curves in Figure 2.16 is proportional 
to 3ρR/Mc for the affine model and to ρR/Mc for the phantom model. Due to thermal 
expansion, the density changes with the temperature (which is related to the internal energy of 
the system), then the thermal expansion coefficient was evaluated for the three polyurethane 
networks were.  

 
2.5.1.1.- Density changes with temperature: Thermal expansion of the networks 
 
Thermal expansion means that as the "thermal" energy (and temperature) of a material 
increases, so does the vibration of its atoms/molecules; and this increased vibration results in 
what can be considered a stretching of the molecular bonds - which causes the material to 
expand. Of course, if the thermal energy (and temperature) of a material decreases, the 
material will shrink or contract [Mark 1976]. This is a volume effect acting on the density and 
does not cause any deformation of the material per se, simply a change in average distance 
between molecules. 
For a long sample the main thermal expansion occurs along the length of the sample and is 
related to a change in temperature (Tf-To), the final temperature minus the initial temperature. 
If the change in temperature is positive we have thermal expansion, and if negative, thermal 
contraction. The linear coefficient of expansion is given by α (alpha) and is the fractional 
change in length per degree change in temperature.  
The expansion coefficient for the three polyurethane model network was measured by DMA. 
A constant force of 0.1N and an increasing temperature of 1°C/min were used and the length 
change for each sample was measured. The graph of the change of strain as a function of 
temperature is given in Appendix A2.9. Using the experimental values, the linear thermal 
expansion is calculated by: 
 

T
Lo

L
Δ=

Δ *α   ⇒   
TLo

L
Δ

Δ
=

*
α                                                                                      eq.   2.8 

 
In Table 2.16, are presented the expansion coefficient values, for the three networks. The 
thermal expansion coefficient published [Polymer Handbook 1975] for natural rubber is        
2-2.5*10-4K-1, but for the three polyurethane model networks were obtained lower coefficient 
values.  
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Table 2.16: Thermal expansion coefficient for the three polyurethane model networks, 
obtained by DMA 
 
 
 
 
 
 
 
 
Using the value obtained for the expansion coefficient for each polyurethane, the density can 
be calculated as a function of temperature. If it is assumed that the change in length due to 

expansion is the same in the three directions, then: T
V
V

Δ=
Δ α3

0

 and:  

)31(0 TΔ−= αρρ                                                                                                                eq. 2.9 

 
Table 2.17, shows the predicted values of densities for each material at different temperatures.   
 
Table 2.17: Densities corrected at four chosen different temperatures from the thermal 
expansion coefficient 

 
These calculated densities can now be used to represent the storage modulus as a function of  
ρT as shown in Figure 2.20 graph of storage modulus in function of the temperatures multiply 
by the density, and now the slope is due only to entropic contributions and the intercept y0 
should be the entalphic contribution. The slope of the curves in Figure 2.20 is proportional to 
3R/Mc for the affine model and to R/Mc for the phantom model. By doing a fitting of the 
curves, the intercept (which is proportional to the entalphic contribution) at y0 gives negligible 
values for the three polyurethanes. The slope gives 4.42x10-6, 3.97x10-6and 2.46x10-6, for 
PU4000, PU8000/1000 and PU8000, respectively. 
This result shows that in our polyurethane model networks the increment of the modulus with 
the increment of temperature is due merely to entropic contributions.  
 

Material α [K-1]  
Temperature range 20-100°C  

PU4000 2.43*10-4 
PU8000 2.34*10-4 
PU8000/1000 2.22*10-4 

Material ρ0 [Kg/m3] at  
T= 298K 

ρ1 [Kg/m3] at  
T=323K 

ρ2 [Kg/m3] at   
T=343K 

ρ3[Kg/m3] 
T=373K 

PU4000 1036 ± 8 1018 1002 980 
PU8000 965 ± 9 948 934  914 
PU8000/1000 1079 ± 6 1061 1046 1025 
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Figure 2.20: Storage modulus versus the Temperature multiplied by the Density, for the four 
chosen temperatures. 
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Conclusions 
 

The objective of this chapter was to present the synthesis method and molecular 
characterization of the PU model networks that will be the focus of the rest of the thesis. One 
of the goals of this work was the careful design of very simple networks with a very well-
defined network architecture and this was the reason to use polyurethane chemistry. We can 
draw from our results a series of conclusions: 

 
On the synthesis: 

 
• Despite the difficulty in obtaining purified products and the reactivity of the 

isocyanate, we have developed a protocol of purification of the reagents to have 
control on the stoichiometry of the reactions. A systemic and in-depth characterization 
of the reagents showed that the precursor chains are monodisperse, and the molecular 
weights are very close to the values given by the manufacturers.  

 
• Using a fully uncatalyzed two-stage curing procedure, we have been able to synthesize 

reproducible polyurethane model networks with well defined molecular structures and 
to prepare these networks in different types of molds without any problems of bubbles, 
macroscopic heterogeneities or degradations due to oxidation. Three different kinds of 
polyurethanes model networks were prepared with the idea of establishing 
comparisons among them regarding the molecular structure and the mechanical 
properties (studied in the next chapters).  

 
On the structure of the networks: 
 

• The networks obtained have very low sol fractions (below 3%), and a very elastic 
behavior above room temperature implying a very high degree of perfection. The 
stoichiometric ratio used to obtain the networks was very close to the theoretical one.  

• The low level of defects of the networks is confirmed by 
o The clear thermoelastic behavior dominated mainly by entropic elasticity 
o The multiple quantum NMR result showing very homogeneous and defect-free 

network architecture for the three networks.  
• Based on the DMA results and on the rubber elasticity theory, all three polyurethane 

model networks show a deformation behavior between the affine and phantom models.  
• The results obtained by extraction of the solfractions and swelling experiments for the 

three polyurethanes, show that the films cured in ‘open’ configuration and the 
cavitation samples  ‘close’ environments do not have significantly different structures.  
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On the differences between the three networks 
 
• The storage modulus of the networks increases from PU8000 < PU8000/1000 < 

PU4000. On the other hand the PU8000 is more dissipative than the other two 
materials above 20°C but has a lower Tg and a lower density. 

• The comparison between the value of Mc obtained from the chemistry and that 
obtained from the elastic modulus suggests that the PU8000 contains both 
entanglements and crosslinks. This is not the case at all for the PU4000 and may be 
partially true for the PU8000/1000.  

• The preparation of a true phase-separated bimodal network PU8000/1000 did not 
really reach its objective since the material remains very homogeneous (no clustering 
from solid-state NMR data). 

 
This concludes this chapter on the molecular structure. It is now necessary to characterize the 
mechanical properties of the materials at large strains and their fracture properties, which is 
the objective of Chapter 4 and will be essential to interpret the cavitation experiments. 
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Appendices A2 
 
Appendix A2.1:  NMR 
 
Analysis software (Xwinnmr) allows analysis of the size of peaks to understand how many 
protons give rise to the peak. The peak was integrated; the integrated area is proportional to 
the number of protons, or any other observed nucleus, in the very simplest one-dimensional 
NMR experiments. 
The proton and carbon numbering used for NMR analysis is described as follows: 

n

 
   O CH CH2

CH3

1           3

2

O CH CH2

CH3

4           6

5

O CH2 CH

CH3

O R

R= H
for 13C NMR

O

CF3

p

p=n-2 C

for 1H NMR

or R=

R

 
And, the chemical shifts and assignments of 1H NMR signals are reported in Table A2.1. 
 
Table A2.1: Assignment of 1H NMR chemical shifts of PPG when R = COCF3 
n˚ H 1 4 3 6 2 5 
δ(ppm) 5.22 3.85-3.67 3.67 3.70-3.42 1.32 1.15 
 
 
A2.1.1: 1H NMR spectrum of PPG 4000 purified 
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Figure A2.1: 1H NMR spectrum of PPG 4000 purified 
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Example of calculation of Mn for PU4000. 
2 protons n˚1 (OH terminal group), corresponds to 5.15 ppm, Integration = 200 = A 
6 protons n˚2 (OH terminal group), corresponds to 1.26 ppm, Integration = 663 = C 
 
Then, the massive ~3.5ppm   =     4 protons n˚3 
                                 1p  proton n˚4         here, Integration =  19815 = B =  4 + 3p 
                                 2p  proton n˚6 
 
B/A= 19815/200 = 4+3p / 2 = 2 + 3/2p  →  p=64.7 
n= p+2 = 66.7 
Mn = n x 58 + 18 = 66.7 x 58 + 18 = 3887 g/mol  
 
An example of the calculations done to obtain the concentration of hydroxyl functions (OH) 
are presented here, using values of Mn obtained by 1H NMR. 
 
 
C(OH) mmol/g  ==  No de mmol OH/g PPG : 

gPPGmmolgmolOHmolPPGx
molPPGg

OH /51.0/00051.01
/3887

2
==  

 
Hydroxyl number I(OH) [mg KOH/g]: 
3887 g/mol  ⇒  0.51 mmol OH /g PPG 
                      =   (0.51mmol OH/1g PPG) x 56.09 g KOH/mol KOH 
                      =   28.6 mg KOH / g PPG 
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A2.1.2: 1H NMR spectrum of PPG 8000 purified  
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Figure A2.2: 1H NMR spectrum of PPG 8000 purified 
 
 
A2.1.3: 1H NMR spectrum of PPG 1000 purified 
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Figure A2.3: 1H NMR spectrum of PPG 1000 purified 
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A2.1.4: 13C NMR spectrum of PPG 4000 purified 
 
Here it is presented an example of how can be calculated Mn by using 13C NMR spectra, 
integration peaks. The example is given for PPG 4000 purified. 
 
2 carbon n˚1 (CH terminal group), corresponds to 66.0 and 67.0 ppm, I = 100 + 76.03 = B 
Then, the massive ~75ppm   =     2 carbon n˚3 
                                 1p carbon n˚4                I = 11771 = A =  2p + 2 
                                 1p carbon n˚6 
A/B= 11771/176 = (2p+ 2)/2   →  p=66 
n= p+2 = 68 
Mn = n x 58 + 18 = 68 x 58 + 18 = 3962 g/mol 
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Figure A2.4: 13C NMR spectra of PPG 4000 purified 
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A2.1.5: 13C NMR spectrum of PPG 8000 purified 
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Figure A2.5: 13C NMR spectra of PPG 8000 purified 
 
A2.1.6: 13C NMR spectrum of PPG 1000 purified 
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Figure A2.6: 13C NMR spectra of PPG 1000 purified 
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Appendix A2.2: GPC 
 
Example of polydispersity obtained by GPC for PPG8000.  
  

Vi
sc

om
et

er
 D

P 
R
es

po
ns

e 
(m

V)

Retention Volume (mL)
  4,00   8,00  12,00  16,00  20,00  24,00 28,00 32,00 36,00

-53,77

-60,72

-67,67

-74,62

-81,57

-88,51

-95,46

-102,41

-109,36

-46,83

-116,31

0,00  40,00  
Figure A2.7: GPC of PPG 8000g/mol : (1) Viscometer; (2) Refractometer; (3) Light 
scattering. 
 
Appendix A2.3: MALDI-ToF 
 
In Figure A2.8 a comparison between PPG 4000 purified and non-purified is presented.    
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Figure A2.8: Comparison PPG 4200 purified and non-purified (Na+ distributions). High 
molecular weight species. 
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Appendix A2.4: Experimental adjustment of NCO/OH  
 
Example of experimental adjustment of the ratio NCO/OH. The same procedure was applied 
for the other two materials.  
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Figure A2.9: Stoichiometry adjusted by solfractions. For PU4000, PU8000, and  
PU8000/1000.  
 
 
Appendix A2.5: Optimization of the time for the curing at 80°C of the polyurethane 
model networks  
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Figure A2.10: Curing time adjusted by swelling. Example for PU4000.  
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Appendix A2.6: Density calculations 
 

For circular shape:

Diameter

thickness A=π*r2

V= A*t

For rectangular shape: 

length

thickness

width

V= l*w*t

For circular shape:

Diameter

thickness A=π*r2

V= A*t

For rectangular shape: 

length

thickness

width

V= l*w*t

 
 
Figure A2.11: Scheme of cylinders and rectangles of model networks measured. Typical 
values od the parameters are: diameter ~5mm; length ~6mm, width ~ 5mm; thickness ~1mm. 
 
 Appendix A2.7: Solubility parameters  
 
The solubility parameters can be calculated from cohesive energy densities, Ecoh, and the 
volume contribution of the atomic groups by using equation [Polymer Handbook, Petrovic 
1987]: 

δ2= (ΣEcoh)/(ΣVm)      

Table A2.7: Solubility parameters [Polymer Handbook, Petrovic 1987, Petrovic 1989]  
 

Polymer Solubility parameter (J/cm3)1/2 
PPG 1000  17.65 
PPG 4000 17.21 
PPG 8000 17.10 
DESMODUR RFE (polyurethane form) 31.9 
Solvent  
Dichloromethane 18.4 
Polyurethane  
PU4000  18.34 
PU8000 17.70 
PU8000/1000 17.91 

 
 
Appendix A2.8: Dres as a function of the swelling percentage in mass 
 
Both Dres and 1/Qp are proportional to 1/Mc, and the fitting of the graph shows the 
entanglement contributions.  
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Figure A2.12: Fitting of Dres [Hz] in function of the swelling percentage in mass of the 
polyurethane model networks.  
 
Note: According to Flory-Rehner theory, the modulus (and also the NMR observable) is 
proportional to 1/Q(5/3). This is only valid for high Q, but since Q=7-8 is probably OK for this 
approximation. 
 
 
Appendix A2.9: Thermal expansion 
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Figure A2.13: Change in strain for PU4000, PU8000 and PU8000/1000 in function of 
temperature.  
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Introduction 
 
In order to properly interpret the results of the cavitation experiments, it is essential to 
characterize in detail the mechanical properties of the elastomers when they are deformed 
homogeneously and when they are fractured in a simple geometry. 
The mechanical properties of main interest for our study (in addition to DMA results 
presented in Chapter 2) are the linear viscoelastic properties, the large strain properties to 
characterize the effect of entanglements and finite extensibility of the network chains, and the 
fracture properties.   
The viscoelastic dissipation of the three polyurethane networks was obtained from DMA 
multifrequency experiments, and time-temperature superposition master curves were 
constructed. Then, these results were correlated to the fracture results. Tensile tests were 
carried out and analyzed to extract the relative contribution of entanglements and crosslinks to 
the modulus and uniaxial compression experiments were carried out to characterize the finite 
extensibility of the chains and the strain hardening. 
Finally the fracture properties were studied at different temperatures and rates with the 
purpose of knowing the critical energy release rate GIC, which is a material parameter, of the 
three polyurethane model networks. By decreasing strain rate and increasing temperature, the 
experimental threshold energy G0, to initiate mechanical crack, may be obtained. The fracture 
energies and mechanical properties obtained in this Chapter will then be used to interpret the 
cavitation results (shown in Chapters 4 and 5) in light of existing models.   
 
3.1.-Large strain behaviour: Non-linear elasticity 
 
Although at small strains rubbers display linear elasticity, this ceases to be true at larger 
strains and although they remain mostly elastic, the dependence between stress and strain 
becomes non-linear. This is called non-linear elasticity or hyperelasticity. The nonlinear 
elastic behaviour needs to be characterized if any modelling needs to be done at large strains 
with realistic material parameters. Furthermore the nonlinear elastic behaviour is very 
sensitive to the network architecture and the existence of entanglements and the finite 
extensibility of the chains between crosslinks can be extracted from the analysis of the large 
strain behaviour. Different types of simple experiments can typically be done to characterize 
the homogeneous large strain behaviour: (1) simple extension (tensile), (2) uniaxial 
compression or equi-biaxial extension, and (3) shear. Although any of these geometries could 
be in principle used to characterize the material, experimental considerations dictated the use 
of uniaxial extension and compression in this Thesis.  
The uniaxial compression creates a state of strain equivalent to the one obtained in equi-
biaxial extension but with the addition of a compressive hydrostatic component to the stress. 
In uniaxial compression it is typically possible to achieve higher values of extension than in 
uniaxial extension before macroscopic fracture occurs. Figure 3.1 shows an example of the 
complete uniaxial extension and compressive curves [Treloar 2005].  
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Figure 3.1: Complete extension and compression curves. Compression data from equivalent 
two-dimensional extension [Taken from Treloar 2005]. 
 
For elastomer model networks, rupture criteria based on the strains, stresses or energy, were 
developed by several authors using experimental data determined from simple and biaxial 
tension tests on unfilled and carbon black filled elastomers. Smith [Smith 1958, 1960], 
Bueche [Bueche 1962], Bueche and Halpin [Bueche and Halpin 1964], studied the fracture 
properties of unfilled elastomers (e.g. unfilled SBR), considering the visco-hyperelastic 
behaviour of these materials. They also introduced the concept of ‘failure envelope’ for 
elastomers, which is a unique curve for all strain rates and test temperatures. For their criteria 
they used the principle of time-temperature superposition, which gives the possibility of 
determining for a given material the limiting properties of strain rate and temperature in 
relation to a reference temperature by using William, Landel and Ferry (WLF) equation 
[Ward and Hadley 1998, Hamdi, A. 2006].  
Dickie and Smith [Dickie and Smith 1969], studied the ultimate properties of an unfilled 
styrene-butadiene rubber vulcanizate in equal biaxial tension by inflating a circular membrane 
into a bubble. They used several extension rates and temperatures and evaluated from the 
pressure the stress in the vicinity of the pole when rupture occurred, as well as the radius of 
curvature, and the extension ratio . They obtained that values of the ultimate properties in 
truly equal biaxial tension were somewhat greater than those obtained from uniaxial extension. 
They concluded that no simple failure criterion was applicable for interrelating data obtained 
under the several states of combined stress. Kawabata [Kawabata 1973], studied 
experimentally the mechanical properties of vulcanized unfilled natural rubber and SBR 
under finite deformation using the biaxial stress relaxation method. The first technique he 
used was the stretching of thin films in two perpendicular directions, and the second 
technique was the inflation of a thin membrane into a bubble. He obtained that the maximal 
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elongation did not depend on the nature of the loading, and that the maximal stresses were 
higher under biaxial extension than on uniaxial extension.  
Several authors have considered that the rupture of elastomers can initiate from intrinsic pre-
existing defects. These defects may be microfractures that grow under loading. Based on this 
hypothesis Mars and Fatemi [Mars and Fatemi 2001, 2002] have used filled elastomers of 
natural rubber and SBR under cycling loading and defined a criterion of crack initiation in 
fatigue based on the ‘cracking strain energy density’ (Wc). 
 
3.1.1.- Uniaxial extension: Experimental part and Results 
 
Tensile tests were performed on a standard tensile Instron machine (model 5565) equipped 
with a video extensometer, which allows an accurate measurement of the strain. The machine 
used a 10N load cell with a resolution of 16mN. The films of the three polyurethane model 
networks, prepared as mentioned in Chapter 2, were used to prepare the sample; the films 
were cut by using a metallic punching system with a dog-bone shape (see Figure 3.2). The 
experiments were performed at an initial strain rate of ~0.7%/s (0.007 s-1) and at room 
temperature (~25°C).  
 

                     
 

Figure 3.2: Geometry of the samples used for the tensile tests. The dimensions were 
L=25mm; D=40mm; W=4mm, W0=12.5mm, R0=12.5mm and R=8mm (Iso 4661-1 Standard). 
 
To perform the tensile experiments, an initial gauge length was put on the sample with a 
special marker, inside the region of the central L=25mm, for the recognition of the sample by 
the video extensometer. In Figure 3.3, there is an example of the experiment and how is the 
field of view of the video extensometer at the beginning and close to the end of the 
experiment.  
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Figure 3.3: Scheme of the tensile test at the beginning and close to the end (before breaking). 
Video extensometer following the marks.  
 
Figure 3.4 shows the results obtained for the tensile experiments for the three polyurethane 
networks. All three curves are markedly non-linear and softening and no obvious evidence of 
strain hardening (i.e. a stiffer behaviour than a neo-Hookean rubber with an equivalent initial 
modulus) is visible. All three materials break at moderate extension values and the maximal 
extension values scale inversely with the initial modulus as is typically observed for simple 
elastic networks. Fracture is brittle with a non-controlled crack propagation in all cases. 
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Figure 3.4: Uniaxial extension. Nominal stress versus λ, for the three polyurethane model 
networks.  
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The intrinsic nonlinear behaviour appears more clearly using the Mooney stress σR defined as: 
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R                                                                                                                    eq. 3.1                         

 
where σR is the reduced stress, σN is the nominal stress and λ is the strain ratio. This 
representation normalizes the measured stress by the predicted behaviour of a neo-Hookean 
rubber in uniaxial extension and is usually plotted as a function of 1/λ (known as Mooney 
plot). In Figure 3.5, is presented an example of a Mooney plot, where can be seen the 
softening and the hardening of the network.   
 

1/λ 11/λ 1
 

Figure 3.5: Example of a Mooney plot.  
 
Plotting our tensile results as Mooney plot (see Figure 3.6), we observe that the three 
networks have some small degree of softening. In general, the softening is related to the 
presence of entanglements in the molecular structure, which contribute to the elastic modulus 
of the networks. As was mentioned in Chapter 2, the average molecular weight between 
entanglements of a PPG-based polyurethane is Me~3000g/mol [Florez et al. 2006]. Our 
results showing that the network PU8000 softens more than the others, suggest that the most 
entanglements are present in the PU8000. Interestingly the bimodal network does not show 
much softening implying that the presence of low molecular weight component in the 
network prevents any relaxation of the entanglements which are effectively trapped.   
Rubinstein and Panyukov developed a molecular model for entangled and crosslinked 
networks, that separates the respective contributions to the shear elastic modulus G of 
crosslink points and from entanglements [Rubinstein and Panyukov 2002]. In this model the 
topological constraints imposed by the neighbouring network chains on a given network are 
represented by the confining potential that changes upon network deformation. This 
topological potential restricts fluctuations of the network chain to the nonaffinely deformed 
confining tube. Network chains are allowed to fluctuate and redistribute their length along the 
contour of their confining tubes. In this model, the stress σ  and λ are usually represented in 
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the form of the reduced stress σR (Mooney stress). Then, the prediction of the model for the 
stress is given by: 

35.061.074.0 2/1 −λ+λ
+=σ −

e
cR

G
G                                                                                    eq. 3.2 

 
where Gc and Ge are the respective contribution of the crosslinks and entanglements to the 
small strain modulus. This model has two advantages over the more widely used Mooney-
Rivlin model [Mooney 1940, Rivlin 1948]: the fitting parameters are directly related to the 
network architecture, and the model fits the softening equally well in tension and compression.  
Table 3.1 shows the values of Gc and Ge obtained from fitting the data with equation 3.2. The 
contribution of the entangled network modulus is almost negligible for the PU4000, while it is 
slightly higher for the PU8000/1000 and becomes of the order of 20% for the PU8000.   
 
Table 3.1: Values obtained for the tensile experiments, Gc, Ge and E, by using Rubinstein 
and Panyukov fitting. 
 

Material Gc 
[MPa] 

Ge 
[MPa] 

G[MPa] E[MPa] E’ [MPa] 
@25°C, DMA 

PU4000 0.44 0.001 0.441 1.32 1.3 ± 0.08 
PU8000 0.20 0.05 0.250 0.75 0.8 ± 0.06 
PU8000/1000 0.37 0.01 0.380 1.14 1.2 ± 0.07 
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Figure 3.6: Mooney plot and Rubinstein and Panyukov fitting (dots line in white) of tensile 
results for the three polyurethane model networks.  
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It is worthwhile to note that the moduli reported in Table 3.1, obtained by the Rubisntein-
Panyukov fit, are very close to the moduli obtained by DMA, reported in Chapter 2, and this 
together with the relatively low contribution of the entangled network modulus for the 
PU4000, PU8000/1000 and still for PU8000, show that the three materials are model 
networks at small and large strain. 
 
3.1.2.- Uniaxial Compression: Experimental part and Results 
 
Given the brittleness of the three polyurethane networks in uniaxial tension preventing any 
characterization of the strain hardening at very large strains, we first considered doing 
experiments of bubble inflation which submits films to equi-biaxial extension in its center. To 
perform these experiments of equi-biaxial extension, thin films of the three networks were 
prepared; however, problems such as low viscosity, surface tension and difficulties in 
demolding made very difficult to obtain the required samples.   
Since for incompressible or nearly incompressible materials, equal biaxial extension of a 
specimen creates a state of strain equivalent to uniaxial compression, the only difference 
being the nature of the applied stress, we performed uniaxial compression experiments for the 
three networks. 
The state of strain known as uniaxial compression is obtained by the application of inwardly 
directed forces to a pair of opposite surfaces of a cylinder, in a direction parallel to the axis, 
while the lateral surfaces are free of stress. This type of stress is formally identical to simple 
extension, but in this case λ (the compression ratio) is less than 1 [Treloar 2005, Gent 1994]. 
The actual displacement during compression is very small and great care must be taken to 
measure only the specimen compliance and not the stiffness of the instrument itself or friction.  
The experiments were performed in a hydraulic MTS 810 machine with a load cell with a 
maximum capacity of 2.5 kN and a resolution of ±0.5 N. The samples were cylinders 
(d0=5mm in diameter and h0~5mm in height). These cylinders were obtained by using a 
Teflon mold machined with holes with the exact diameter and height, and the support of the 
mold was a glass plate (chemically modified for demolding). All the experiments were 
performed at room temperature (~25°C). An example of the compression experiment is 
presented in Figure 3.7.  

Sample

Glass plates well
lubricated
interfaces

Mobile Part

Sample

Glass plates well
lubricated
interfaces

Mobile Part  
Figure 3.7: Example of the compression experiment  
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The compression test consisted of an initial compressive contact to -1 N to ensure a starting 
point of complete contact between the sample and glass surfaces. The interfaces between the 
sample and the glass plates were lubricated with a silicone oil to avoid friction and to obtain 
an homogeneous strain field. The tests were performed at constant crosshead rate and at an 
initial compressive strain rate of 0.6%/s (0.006 s-1). The stretch is defined as λ=h/h0, where h0 
is the undeformed height of the sample and h is the deformed height. The samples in 
undeformed and deformed geometry are schematically shown in Figure 3.8.  

y Compression

h =λ h0

a =λbiax a0

F
a0h0

z

x

PU sample

y Compression

h =λ h0

a =λbiax a0

F
a0h0

z

x

PU sample

 
Figure 3.8: Schematic representation of a compression test [taken from Miquelard-Garnier 
2007].  
 
Figure 3.9 shows the results of the compressive nominal stress versus lambda λ for the three 
networks while Figure 3.10 shows the Mooney stress. The clear upswing in reduced stress at 
low values of λ can be observed for the three materials. However, since the moduli are 
different for all materials a more precise fit of the data has to be carried out.  
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Figure 3.9: Compression results for the three polyurethane model networks (at room 
temperature). 
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Figure 3.10: Mooney plot of compression results for the three polyurethane model networks. 
 
The Mooney-Rivlin model predicts softening in tension and hardening in compression which 
is not very physical, while the Rubinstein and Panyukov model does not have any hardening 
built in. However the literature is full of mechanical models including hardening parameters 
[e.g. Gent 1996, Arruda and Boyce 1993]. Most of these models are simply designed to fit the 
data as closely as possible to the expense of the physical interpretation of the parameters. To 
our knowledge the only physically based molecular model including strain hardening is the 
Edwards-Vilgis model [Edwards and Vilgis1988] using 4 parameters. However, the use of 4 
parameters does make the fitting more ambiguous given the limited range of our experimental 
data. A simpler fitting model was developed by Seitz et al. [Seitz et al. 2008] and consists of 
an exponential fitting. This model has two parameters, one free parameter Jm, and one fixed 
parameter E’ since the value of the Young’s modulus is known from the network’s small 
strain behaviour. Then at small strain this model is equivalent to the Neo-Hookean model. At 
large strains the finite extensibility of the chains is taken into account by Jm, similarly to the 
Gent’s model [Gent 1996]. To characterize our tensile and compression data we used the 
strain energy function, U (=W, see equation 3.3) developed by Seitz et al. [Seitz et al. 2008] 
for large strain behaviour:  
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where E is the small strain Young’s modulus and λx, λy and λz are the principal extension 
ratios. Since our materials are incompressible λx

2λy
2λz

2=1. The x and y directions are 
equivalents λx=λz=λy

-1/2 in the compression experiments, then the nominal stress (σN) is given 
by: 
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The equation 3.4 was then used to fit the compression and tensile data. Seitz et al. found that 
equation 3.3 provides a better description of the data than in Gent’s model and avoids 
divergent energies at finite strains which can be problematic when using FEM. Figure 3.11, 
presents the complete tensile and compression experimental curves for the three polyurethane 
networks and the fitting, we observe that the initial modulus fits well for both experiments 
implying that our lubricated compression experiments have been carried out properly. 
Table 3.2 shows the results of the fitting for the tensile and compression data. By using this 
model, the fitting values for the extension are over predicted; the values of Young’s Modulus 
are lower than the ones obtained by DMA. This may be expected since this model does not 
take into account the contribution of the entanglements to the modulus but only the strain 
hardening. In fact, in extension the model predicts better the behaviour of PU4000 than the 
other two materials.  
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Figure 3.11: Fitting of the complete tensile and compression curves for the three 
polyurethane model networks.  
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Table 3.2: Fitting of tensile and compression data by using the exponential model 
 

Material Young’s Modulus (fitting  
tensile data) E’ [MPa] 

Maximal extensibility (fitting 
compression data) Jm 

PU4000 1.17 ± 0.01 9.26 ± 0.70 
PU8000 0.69 ± 0.02 5.62 ± 0.36 
PU8000/1000 0.98 ± 0.02 7.37 ± 0.34 

 
 
Regarding the fitting for the compression data we observe that it is very good for the three 
materials (see Figure 3.11). However, when the strain hardening parameter Jm is compared for 
the three materials, there is a surprising result, since theoretically for materials with longer 
chains (PU8000) a higher value of the strain hardening parameter would be expected than for 
materials with shorter chains (PU4000). Yet Table 3.2 shows that the obtained order is 
inverted. This result may be due to microfracture events occurring during the compression 
before complete fracture for the two more fragile materials (PU4000 and PU8000/1000). To 
prove the existence of these ‘microfractures’ loading/unloading cycles were carried out on the 
three materials and the results are presented in Figure 3.12. We can see that when the 
materials are loaded in a second cycle they show fracture before completing the second load 
(Figure 3.12(a) and (b)), while PU8000 (Figure 3.12(c)) resisted the complete second 
load/unload. Hence the value of strain hardening for PU8000 will be mainly used in Chapter 6 
for the cavitation prediction model, and the strain hardening of PU4000 and PU8000/1000 
will be used for comparison. 
Since the compression data is representative of the biaxial extension which is equivalent to 
the inflation of a cavity, the exponential model is considered a good approximation to predict 
the strain hardening.  
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         (c) 

Figure 3.12: Nominal compressive stress versus the compression ratio for the three 
polyurethane model networks for two loading/unloading cycles. 
 
3.2.- Strain Rate Dependent Properties in the Linear Regime 
 
Although our elastomer networks have been designed to be as elastic as possible and show a 
clear thermoelastic behaviour (see chapter 2), some degree of viscoelasticity is always present. 
The DMA experiments presented in chapter 2 explored the temperature dependence of the 
viscoelastic behaviour but to characterize the variety of strain rates occurring during fracture 
and also during cavitation it is important to have the response of the material as a function of 
strain rate. This can be easily done in the linear regime by performing dynamical mechanical 
characterizations at different temperatures and strain rates and use the time-temperature 
superposition principle to build master curves. 
Dynamical mechanical experiments were performed on sample bars with dimensions of 
5x30x1 mm3 (L0~15mm) at five frequencies: 0.1, 0.5, 1, 5, 10 Hz, every 2°C/min in a range 
of temperatures between -80 and +100°C. The reference temperature was chosen as Ts=25°C, 
which is the temperature of the experiments performed at standard conditions.  
For the E’ and E’’ moduli in the rubbery state, there should be a slight vertical shift due to the 
thermal expansion. Two main corrections should be taken into account on theoretical grounds: 
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dividing the modulus by the temperature corrects for the changes in modulus due to the 
inherent dependence of the modulus in temperature while division by the density corrects for 
the changing number of chains per unit volume with temperature variation [Alkonis et al. 
1972].  In practice the horizontal shifts can be defined with the tan δ (independent of these 
corrections) and vertical shifts are optimized empirically while checking that the values 
remain compatible with the theoretically predicted values close to 1.  
The complete viscoelastic response of any polymer under any experimental conditions can 
then be obtained from the knowledge of any of two of the following three functions: the 
master curve at any temperature, the modulus-temperature curve at any time and the shift 
factors relative to some reference temperature.   
Figure 3.13 (a) and 3.13 (b), shows the master curve of tan δ and E’ as a function of the 
logarithm of the frequency (f=ω/2π) for PU4000 at a reference temperature Ts=25°C.  
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    (a)                               (b) 
Figure 3.13: Master curves for PU4000 at T = 25°C: (a) Tan delta as a function of frequency, 
and (b) Storage modulus E’ as a function of the frequency.  
 
Figure 3.14, shows the graph of Log aT in function of the inverse of the temperature. The 
physical meaning of aT is that of an acceleration (when aT is below zero) or deceleration 
factor relative to the reference temperature. This means that to achieve a certain molecular 
arrangements at higher temperatures than Ts, the corresponding time will be much lower 
(much faster process) than the time to achieve the same molecular arrangement at a lower 
temperature. Log aT is traditionally plotted as a function of 1/T to be easily comparable to 
theoretical predictions.  
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Figure 3.14: Log aT versus the inverse of the temperature (1/T), at temperatures between -80 
and +100°C, for PU4000.  
 
William, Landel and Ferry (WLF), based on free volume considerations, proposed that aT in 
the vicinity of the glass transition should only depend on the difference between the absolute 
temperature and a fixed temperature called T∞ = Ts-C2, where the relaxation time is infinitely 
long [Halary et al. 2008]. Then the functional dependence of aT would be given by an 
equation of the form 
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where C1 and C2 are constants that depend on the polymer and the reference temperature, and 
Ts is the reference temperature [Alkonis et al. 1972, Young and Lovell 1991, Halary and 
Lauprête 2006]. This functional form is only valid at temperatures around and above Tg 
(DSC), typically in a range of 50°C to about 100°C above. 
The shift factor aT can be used to predict the behavior of the material as a function of time. 
The extrapolation needs to be performed over an extended temperature range. To perform a 
linear fit, the WLF equation can be re-written as: 
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The linear fitting of the data gives the constants C1 and C2. For PU4000, C1= 2.97 and 
C2=108.17°C at a reference temperature of 25°C. The values of C1 and C2 at 25°C are 
reported in Table 3.3 and the details of the fits are in Appendix 3.1. Because the fracture and 
cavitation experiments have been also performed at 50°C, 70°C and 100°C, the respective 
shift factors for these temperatures relative to standard conditions are reported in Table 3.4. 
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Table 3.3: WLF constants values C1 and C2 for the three polyurethane model networks, at 
Ts=25°C. 
 

Material C1 C2 [°C] 
PU4000 2.97 108.17 
PU8000 2.34 105.80 
PU8000/1000 3.53 109.54 

 
Figure 3.15 and 3.16 shows tan δ and E’ as a function of the logarithm of the frequency for 
PU8000 and PU8000/1000 respectively at Ts=25°C. Details of the shift factors determination 
are in appendix 3.2 and 3.3. For all three materials the peak in dissipation occurs in the MHz 
range at room temperature, and at even higher frequencies for higher temperatures. 
 
Table 3.4: Shift factors for the three polyurethane model networks at 25°C, 50°C, 70°C and 
100°C. 
 

Material Temperature  [°C] Log aT aT 
PU4000 25 

50 
70 
100 

0 
-0.62 
-0.87 
-1.09 

1 
0.24 
0.13 
0.081 

PU8000 25 
50 
70 
100 

0 
-0.47 
-0.68 
-0.92 

1 
0.34 
0.21 
0.12 

PU8000/1000 25 
50 
70 
100 

0 
-0.69 
-0.98 
-1.31 

1 
0.28 
0.11 
0.05 
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   (a)            (b) 
Figure 3.15: Master curves for PU8000 at T = 25°C: (a) Tan delta as a function of the 
frequency, and (b) Storage modulus E’ as a function of frequency.  
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   (a)            (b) 
Figure 3.16: Master curves for PU8000/1000 at T = 25°C: (a) Tan delta as a function of the 
frequency, and (b) Storage modulus E’ as a function of frequency.  
 
Because the three networks are rather similar in their general behaviour, it is useful to plot the 
same data in the relevant range of strain rates for the fracture and cavitation experiments 
which will be ideally between 10-3 and 100 Hz. 
Figure 3.17 (a) and (b) shows the master curves of tan delta and E’, respectively, for the three 
polyurethane model networks, between 10-3 and 100 Hz at room temperature, which is the 
region of interest. At 25°C the dissipation starts to increase ~0.5 %/s for the three networks, 
and it is observed that at higher frequencies PU8000 and PU8000/1000 becomes significantly 
more dissipative than PU4000. Figure 3.17 (b) also shows that at higher frequencies and 
lower temperatures the storage modulus increases.  
 



 119

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Ta
n 

de
lta

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Log (aT * f) [f in Hz]

 PU4000
 PU8000
 PU8000/1000

0.67%/s

0.067%/s

0.0067%/s

0.00067%/s

 
             (a) 

 

6

7

8

9

1

S
to

ra
ge

 m
od

ul
us

 E
' [

M
Pa

]

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Log (aT * f) [f in Hz]

 PU4000
 PU8000
 PU8000/1000

0.00067%/s 0.0067%/s 0.067%/s 0.67%/s

 
            (b) 
Figure 3.17: Master curves of (a) tan delta and (b) storage modulus E’, for the three 
polyurethane model networks at 25°C. Note that vertical shifting has been used to adjust for 
thermoelasticity effects. 
 
3.3.- Fracture Properties 
 
3.3.1.- Introduction 
 
The fracture behaviour of brittle materials was first studied by Griffith [Griffith 1920]. The 
Griffith’s theory of fracture is the earliest statement of linear elastic fracture mechanics 
(LEFM) and is an energetic approach, where the fracture energy ‘G’ is calculated. Although it 
was initially conceived to describe the propagation of a crack in a perfectly elastic material at 
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small elastic strains (linear elastic), subsequent work has shown that it can be applied to other 
situations including localized plastic deformation at the crack tip [Ward and Hadley 1998].  
Later was introduced the concept of ‘tearing energy’ ‘T’ which is a characteristic of the 
material, and equivalent to G, but for elastomers showing non-linear elasticity [Rivlin and 
Thomas 1953, Greensmith 1955, 1956, 1960, 1963 and 1964, Greensmith and Thomas 1955, 
Thomas 1955]. They proposed different geometries of specimens to calculate ‘T’ by using 
simple empirical relationships, and where the total energy is independent of the shape of the 
test piece and the manner in which the deformed forces are applied. Rice [Rice 1968] 
introduced a parameter called J-Integral, equivalent to G, which can be used in non-linear 
elasticity. All ‘G’, ‘T’ and ‘J’, allow the determination of the critical energy needed to 
propagate a pre-existing crack.  
In fracture, when a crack grows, irreversible processes occur in the vicinity of the moving tip, 
leading to energy losses that must be made up from the available elastic energy [Griffith 1920, 
Gent 1992]. In the case of fracture of rubbers more specifically, the magnitude of these losses 
is determined by the properties of the rubber, the strain field at the crack tip region, and the 
growth rate of the crack. These losses can be large even for rubbers for which the bulk losses 
are negligible, such as model networks. Thus the energy necessary to propagate a crack at a 
particular rate is likely to be a characteristic of the rubber itself, even though it greatly 
exceeds the thermodynamics surface free energy, and may therefore be independent of the 
overall shape of the test piece [Gent 1992].   
In principle the ideal crack should be very sharp but in reality the crack that is obtained for 
elastomers is not sharp but rather blunted, as shown in the sketch below (Figure 3.18).  

 
 
Figure 3.18: Sketch of crack opening in elastomers.  
 
This kind of crack opening is also linked to the fact that the elastomers generally show non-
linear elastic behaviour, in particular at the crack tip. As presented in section 3.1, this is the 
case for the three polyurethane model networks and in particular the PU8000. The use of 
Linear Elastic Fracture Mechanics (LEFM) as an approximation for the fracture experiments 
becomes then questionable. We used a more global approach developed specifically for 
fracture of rubbers [Gent 1992, Rivlin and Thomas 1953, Greensmith and Thomas 1955, 
Greensmith 1963], which uses the stored-energy density (the area under the stress-strain curve 
in a fracture experiment) as the main parameter. When a small cut is made in one edge of a 
test piece stretched in simple extension the change in stored elastic energy in the test piece is 
given by [Rivlin and Thomas 1953]:  
 

hUcKWWi
2)(λ=−                    eq. 3.7 
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where Wi and W are the total stored energies before and after the cut is made, c and h are, the 
length of the cut and the thickness of the test piece, respectively, measured in the undeformed 
state, U is the stored-energy density to the extension ratio λ in the simple extension ratio and 
K(λ) is a numerical factor that varies with λ. Equation 3.7 assumes that: 1) the grip separation 
‘l’ is kept constant, 2) ‘c’ is large compared with the radius of curvature of the tip of the cut, 3) 
‘c’ is small compared with the width of the test piece, and 4) the cut is sufficiently far from 
the grips to affect only the central region of the simple extension.  
Equation 3.7 is equivalent, in terms of strain energy, to the expression for the stress 
concentration produced by the cut or tear. Differentiating equation 3.7 with respect to ‘c, with 
a constant ‘l’, gives the energy release rate. The value of K(λ) can be determined by 
performing experiments with different cut lengths [Rivlin and Thomas 1953, Greensmith 
1963]. For a tensile strip with an edge crack, G is given by [Gent 1992]: 
 

cUKG ***2=                             eq. 3.8 
 
where G is the fracture energy, and K(λ) is a slowly varying function of the strain given 
approximately by 
 

λ
3

=K                   eq. 3.9 

 
This dependence of K on extension appears to be directly associated with the lateral 
contraction of the test piece (and crack) in simple extension (which also goes as 1/√λ). 
Equations 3.8 and 3.9 were used in the experimental part to determine the energy release rate 
G and hence the fracture toughness Gc at the onset of crack propagation. 
 
3.3.1.1 Estimate of threshold energy for crack growth: G0 
 
Rivlin and Thomas [Rivlin and Thomas 1953] found that two characteristic tearing energies 
could be defined, one for very low rates of tearing (37 J/m2) and one for catastrophic growth 
(13x104 J/m2) and that both quantities were independent of the shape of the test piece. Later 
[Greensmith and Thomas 1955, Mullins 1959] reported values of tear energy ranging from 
about 102 to about 105 J/m2 determined from normal tearing experiments, and which depend 
upon the rate of tearing, test temperature, and elastomer composition. A threshold value for 
the fracture energy of elastomers was first pointed out by Lake and Lindley from studies of 
fatigue crack growth on noncrystallizing SBR [Lake and Lindley 1964, Lake and Lindley 
1965]. They found by extrapolation that a minimum amount of mechanical energy, about 50 
J/m2 of surface, was required for a crack to propagate, this value being much smaller than the 
values reported for normal tearing. Mueller and Knauss [Mueller and Knauss 1971] 
succeeded in measuring low tearing energies, independent of rate and temperature, by 



 122 

employing low rates of tear, high temperatures, and a urethane elastomer composition swollen 
in toluene; under these near-equilibrium conditions they obtained a lower limit of about 40 
J/m2 for tear energy of their elastomer, in good agreement with Lake and Lindley’s 
extrapolated value. Moreover, from a simple molecular model of the fracture process in 
elastomers, Lake and Thomas [Lake and Thomas 1967] calculated the theoretical threshold 
fracture energy for hydrocarbon elastomers, and obtained a value of about 20 J/m2. A detailed 
comparison between theory and experiments using two hydrocarbon elastomers differing in 
structural regularity was made by Ahagon and Gent [Ahagon and Gent 1975]; they observed 
threshold values ranging from 40 to 80 J/m2, at extremely low rates of tearing, at high 
temperatures, and in the swollen state. They found these values to be independent of the 
temperature and rate of tearing, and also on the degree of swelling and the nature of the 
swelling liquid.  
The similarity of G0 values for different elastomers suggest that it may be governed by the 
primary strength of the carbon-carbon bonds. G0 is the minimum fracture energy required to 
start breaking bonds. An estimate of G0 can be made using equation 3.10 if it is assumed that 
the tip diameter has its smallest possible value, which for an elastomer is of the order of the 
distance between crosslinks in the unstrained state. 
 
G=Utd                                                                         eq. 3.10 
 
where Ut is the strain energy density at the tip and ‘d’ is the diameter of the semicircular tip.  
This gives d≅ξµ1/2, where ξ is the length of a monomer unit and ‘μ’ is the number of units 
between crosslinks. Assuming forces to be transmitted primarily via the crosslinks, the energy 
stored by the carbon-carbon bonds will be small at the breaking force of the single bonds; also, 
if the chains are substantially straight at rupture, the force on each bond will be essentially the 
same [Lake 2003, Gent 1992]. Then the maximum possible energy density will be of the 
order of bJ, where b is the number of single bonds per unit volume and J is the energy stored 
by each single bond at its rupture point. Substituting in equation 3.10 yields, 
 
G0=bJξµ1/2                                   eq. 3.11  
 
Equation 3.11 [Lake and Thomas 1967], predicts for the three polyurethanes model networks 
G0=11.76 J/m2, for PU4000, G0=17.53 J/m2 for PU8000 and G0=12.54 J/m2 for PU8000/1000 
(as reported in Table 3.5). As predicted by Lake and Thomas the values decrease somewhat 
with increasing crosslinking density. 
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Table 3.5: Predicted values by Lake and Thomas for the three polyurethane model networks 
 

Materials G0 [J/m2] 
 

PU4000 11.8 
PU8000 17.5 
PU8000/1000 12.5 

 
3.3.2.- Experimental part   
 
As mentioned in Chapter 1, a crack can propagate in a material in several modes. Our DEN 
test aimed at fracturing the sample in pure mode I (see Figure 3.19) out of simplicity.  

 

 
 
Figure 3.19: Mode I for crack propagation. 
 
A double edge notch (DENT) geometry was used for the fracture experiments, as shown in 
Figure 3.20(a) while Figure 3.20 (b) shows the picture of a real sample with the double notch. 
This geometry was used because it was easy to obtain the samples from the molded PU sheets. 
The fracture experiments were performed in a DMA, model Q800 of TA instruments, in 
tension mode. The fracture toughness of the three polyurethane networks was first measured 
under standard conditions, which were defined as: T= 25°C and initial strain rate of 0.67%/s, 
and then at different temperatures and strain rates. All fracture experiments were carried out 
with samples bars with dimensions of 4x30x1 mm3 (L0~15mm). For each sample c ≤ 1 mm 
long notch was made on each side by using a razor blade. 
 
Figure 3.21 (a) shows the stress distribution in the far field when double edge notch (DEN) 
geometry is used. Figure 3.21 (b) shows the locally stress distribution close to the crack tip; it 
is observed that the higher stress is presented at the crack tip and the stress decreases to the 
center of the sample  
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Figure 3.20: (a) Schematic DENT geometry; (b) Real sample showing the double edge notch. 
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Figure 3.21: Stress distribution (a) far away from the notch and (b) close to the notch.  
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Figure 3.22 shows an example of a typical curve obtained in these fracture experiments. The 
integral of the curve of the nominal stress (in Pa) versus epsilon (mm/mm) gives the elastic 
energy density U, and the maximal value of this integral Umax is used to calculate GIC, using 
equations 3.8 and 3.9. 
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Figure 3.22: Example of a typical fracture result. After integration of this curve, Umax is 
used to calculate GIC. 
 
3.3.3.- Fracture Results at standard conditions 
 
Figure 3.23 (a), (b) and (c), shows tensile results on unnotched samples and fracture results on 
notched samples for the three polyurethane model networks. The difference in the area under 
the curve, is related to the stored elastic energy of the material, and is given by a difference of 
the size of the notch.   
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            (c) 
Figure 3.23: Tensile results and fracture experiments at standard conditions T= 25°C and 
ε& =0.67%/s for (a) PU4000, (b) PU8000 and (c) PU8000/1000.  
 
Figure 3.24 shows a comparison of the fracture results for the three networks. The difference 
in toughness between the PU8000 and the two other networks is apparent.   
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Figure 3.24: Fracture experiments at standard conditions, T= 25°C and V=0.67%/s, for the 
three polyurethane networks (PU4000 a/w=0.43, PU8000 a/w=0.32, PU8000/1000 a/w=0.41).  
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The average values of the fracture toughness GIC obtained over three measurements are given 
in Table 3.6 for the three polyurethane networks. It is clear from the data that the fracture 
toughness at 25°C is much larger than the predicted threshold value. This is not unusual for 
elastomers but indicates that a significant amount of dissipation must take place at the crack 
tip for all three materials at least at 25°C. One of the reasons of this large dissipated energy 
lies in the strain rate. 
 
Table 3.6: Fracture toughness GIC obtained for the three polyurethane model networks, at 
standard conditions, 25°C and ε& =0.67%/s. 
 

Materials GIC[J/m2] 
@25°C 

G0 [J/m2] 
(threshold) 

 
PU4000 136 ± 5 11.8 
PU8000 252 ± 4 17.5 
PU8000/1000 145 ± 5 12.5 

 
Fowlkess [Fowlkess 1974] studied the fracture toughness of rigid polyurethane foam 
(d=87.82Kg/m3) using specimens with single-edge-notch (SENT), double-edge-notch (DENT) 
and centred-notch in tension; he used LEFM to calculate GIC, since the polyurethane rigid 
foam is considered a brittle material. He obtained similar values of critical fracture toughness 
for all the geometries GIC= 192.94 ± 10% J/m2. He compared these result with other dense 
cast plastics such as polyester cast and polystyrene cast, which had the same order of 
magnitude. Our results (as reported in Table 3.6) are comparable with the fracture toughness 
obtained by Fowlkess, indicating that the three polyurethane model networks are rather brittle 
and have relatively low GIC considering that the tear energy for typical commercial filled 
elastomers under ‘standard conditions’ range from about 102 to about 105 J/m2 [Greensmith 
and Thomas 1955, Mullins 1959]. These values are however rather typical for unfilled and 
noncrystallizing rubbers. 
 
Estimate of the strain rate at the crack tip 
 
Most of the experiments were done in the DMA (in a closed environment), and the crack 
propagation process was not directly observed. Some experiments were however carried out 
in a standard tensile Instron machine (model 5565) using a load cell of 10N with resolution of 
16mN. This procedure allowed us also to film the fracture and to obtain an estimate of the 
crack velocity. Figure 3.25 shows an example of the sequence of images during fracture.  
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11.26s 11.35s 11.42s

0s 4.38s 8.31s0s 4.38s 8.31s

11.26s 11.35s 11.42s
11.26s 11.35s 11.42s

0s 4.38s 8.31s0s 4.38s 8.31s

11.26s 11.35s 11.42s  
Figure 3.25: Sequence of images in a video during a fracture experiment for PU8000/1000. 
Applied strain rate 0.006%/s-Estimated local strain rate at the crack tip ~6%/s.  
 
It is interesting to estimate the actual strain rate that the material sees at the crack tip to relate 
the fracture results with the viscoelastic properties in the linear regime. Very close to the 
notch there is a stress concentration which of course decreases toward the center of the sample. 
A measurement of the strain field ahead of the crack tip for a similar elastomer [Mzabi, 
unpublished work] showed that the approximate size of the zone where the stress 
concentration is significant was around 100 μm and the maximum strain directly ahead of the 
crack tip was of the order of 10 times the average nominal strain. From the videos of the crack 
propagation, an average crack velocity could be measured and from the size and shape of the 
highly strained zone we could estimate the local strain rate ahead of the crack tip.   
For PU8000/1000 deformed at an initial average strain rate of 0.006%/s, the local strain rate 
near the crack tip was estimated at ~6%/s, and similar values would be expected for the other 
two networks. As was experimentally shown in section 3.2 (see Figure 3.17), a higher strain 
rate means more dissipation due to viscoelastic processes.  
The crack propagation in rubber-like materials has been described and modelled by de Gennes 
[de Gennes 1988] and discussed by Gent [Gent 1996]. Although de Gennes’ model based on 
scaling arguments was not easily comparable with experimental data, he argued clearly that 
the resistance to crack propagation was mostly due to rate dependent viscoelastic dissipative 
mechanisms at the crack tip and set he foundation of a methodology to calculate these 
viscoelastic losses. Persson et al. [Persson et al. 2005] proposed a more quantitative model to 
calculate the crack propagation energy (per unit area) G from the linear viscoelastic properties 
of the rubber and argued, contrary to Gent, that the observed results could be explained 
without considering nonlinear deformations very close to the crack tip. 
 
In an effort to establish a lower bound on the fracture energy (G0), one is then led to 
investigate the fracture process at temperatures well above the glass transition temperature 
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and at crack velocities approaching zero. Experimentally this can be difficult; the question is 
whether the true limit below which propagation is impossible has been reached. The 
maximum test temperature is limited by the possibility of thermal degradation of the material 
[Mueller and Knauss 1971]. Within the frame of these limitations it may be possible however 
to observe experimentally the lower bound of fracture energy. For us finding the threshold 
energy (G0) was also important to use it as an input parameter for the cavitation model 
presented in Chapter 6. 
 
3.3.4.- Fracture Results at different temperatures 
 
The fracture toughness of the three networks was also measured at 50°C, 70°C and 100°C. 
Figure 3.26 shows typical curves (in this case for PU4000) of fracture experiments carried out 
at different temperatures. In all cases the fracture was uncontrolled and brittle but the values 
of the fracture stress (and strain) sharply decrease with increasing temperature, while the 
modulus (the slope of the curves) increases with temperature due to thermoelasticity. This 
behaviour was observed for all three materials and the curves for PU8000 and PU8000/1000 
are presented in Appendix A3.4.  
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Figure 3.26: Fracture experiments at different temperatures. Example given for PU4000. 
 
Table 3.7 shows the fracture toughness GIC of each material at different temperatures as 
obtained from the peak stress and calculated from equation 3.8 and 3.9.  These results are 
presented graphically in Figure 3.27 and clearly show that for higher temperature the fracture 
toughness decreases significantly suggesting that the viscoelastic dissipation processes at the 
crack tip decrease. Interestingly even at 100°C, there is no evidence of a plateau and it is not 
clear that a threshold value has been reached. Unfortunately time constraints prevented us 
from carrying out more experiments at higher temperatures and we will have to assume that 
the 100°C values are close to the G0 threshold values. 
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Table 3.7: Values of fracture toughness GIC obtained for the three polyurethane model 
networks at different temperatures 
 

Materials Temperature[°C] GIC[J/m2] 
PU4000 25 136 ± 5 
 50 104 ± 4 
 70 60 ± 4 
 100 41 ± 4 
PU8000 25 252 ± 4 
 50 140 ± 6 
 70 106 ± 7 
 100 66 ± 3 
PU8000/1000 25 145 ± 5 
 50 94 ± 5 
 70 58 ± 6 
 100 39 ± 2 
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Figure 3.27: Fracture energy GIC as a function of temperature for PU4000, PU8000 and 
PU8000/1000.  
 
3.3.5.- Fracture Results at different speeds 
 
In 1953 Rivlin and Thomas [Rivlin and Thomas 1953] established an energy criterion for 
fracture of nonlinear elastic rubbers with the same form as the fracture criterion for linear 
elastic materials derived by Griffith [Griffith 1920] on the basis of the energy conservation. 
Later it was shown by Greensmith and Thomas [Greensmith and Thomas 1955] that, if this 

G0 
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criterion is extended to propagating cracks, the fracture energy becomes a monotonically 
increasing function of the rate of propagation. Since the energy dissipation caused by the 
viscoelasticity of the material is included in the fracture energy, the question that arises is how 
much of the rate dependence of the fracture energy is solely attributed to viscous energy 
dissipation around the crack tip and how much is rate sensitivity of the bulk material, if any 
[Mueller and Knauss 1971].  
The fracture toughness was measured for the three networks at different average initial strain 
rates (the crosshead velocity was kept at a constant value), which were: 0.067%/s, 0.0067%/s 
and 0.00067%/s, at 25°C. Figure 3.28 shows a typical curve (PU4000) of fracture experiments 
carried out at different strain rates. Similar trends are observed for the other two materials and 
results are presented in Appendix A3.4. It is clear that the fracture toughness of the network 
depends strongly on the applied strain rate suggesting the existence of crack tip dissipation 
mechanisms at high strain rates. 
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Figure 3.28: Fracture experiments at different strain rates for PU4000. 
 
Table 3.8, shows the value of GIC calculated from the peak stress by using equations 3.8 and 
3.9 and the same results are presented graphically on Figure 3.29. They show that for lower 
strain rates the fracture toughness decreases significantly.  
 
This rate effect is large and strongly suggests that significant rate dependent dissipative 
mechanisms exist at the crack tip, deserving further analysis. The comparison of the 
temperature and rate effects qualitatively suggest the existence of a time temperature 
equivalence observed by others. A simple way to check such an equivalence is to use the shift 
factors determined in linear viscoelasticity to shift the results obtained at different  
temperatures along the frequency scale. This has been done in Figure 3.30 and the results 
demonstrate conclusively that for all three materials, while linear viscoelastic shift factor goes 
qualitatively in the right direction, it does not lead to master curves. We can deduce from this 
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that the temperature dependence of the relaxation mechanisms active at the crack tip is much 
more complex than a simple Arrhenius or WLF dependence and may depend on strain level. 
Since we do not have a series of experiments at different strain rates and temperatures it is 
impossible to go further at this stage. 
 
Table 3.8: Values of fracture energy GIC obtained for PU4000, PU8000 and PU8000/1000 at 
different strain rates 
 

Materials Strain rate[%/s] GIC [J/m2] 
PU4000 0.67 136 ± 5 
 0.067 89 ± 4 
 0.0067 51 ± 4 
 0.00067 43 ± 1 
PU8000 0.67 252 ± 4 
 0.067 117 ± 4 
 0.0067 76 ± 1 
 0.00067 53 ± 1 
PU8000/1000 0.67 145 ± 5 
 0.067 90 ± 1 
 0.0067 56 ± 1 
 0.00067 38 ± 2 
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Figure 3.29: Fracture energy GIC as a function of the strain rate for PU4000, PU8000 and 
PU8000/1000. 
 
 

G0 



 133

280

240

200

160

120

80

40

0

G
IC

  [
J/

m
2 ]

0.0001 0.001 0.01 0.1 1 10
strain rate (%/s)

 PU4000

25°C

50°C

70°C

100°C

 

280

240

200

160

120

80

40

0

G
IC

  [
J/

m
2 ]

0.0001 0.001 0.01 0.1 1 10
strain rate (%/s)

PU4000
 

aT @ 50°C

aT @ 70°C

aT @ 100°C

Ts = 25°C

 
 

280

240

200

160

120

80

40

0

G
IC

  [
J/

m
2 ]

0.0001 0.001 0.01 0.1 1 10
strain rate (%/s)

PU8000
25°C

50°C

70°C

100°C

 

280

240

200

160

120

80

40

0

G
IC

  [
J/

m
2 ]

0.0001 0.001 0.01 0.1 1 10
strain rate (%/s)

PU8000

aT @ 50°C

aT @ 70°C

aT @ 100°C

Ts = 25°C

 
 

280

240

200

160

120

80

40

0

G
IC

  [
J/

m
2 ]

0.0001 0.001 0.01 0.1 1 10
strain rate (%/s)

PU8000/1000

50°C

70°C

100°C

25°C

 

280

240

200

160

120

80

40

0

G
IC

  [
J/

m
2 ]

0.0001 0.001 0.01 0.1 1 10
strain rate (%/s)

PU8000/1000

aT @ 50°C

aT @ 70°C

aT @ 100°C

Ts = 25°C

 
 

Figure 3.30: Summary of fracture experiments. Right captions (open symbols) show 
temperature results shifted by the experimental values of aT obtained in section 3.2. 
 
The predicted threshold G0 values from the Lake-Thomas theory for the three polyurethane 
networks (see Table 3.5) are much lower than the lowest values measured experimentally for 
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GIC at 100°C and at 0.00067%/s. Then, either the values obtained are not yet the threshold 
values of the materials, or the prediction is underestimating the actual values because it does 
not take into account the entanglements and other possible complex properties of these 
particular materials (such as hydrogen bondings).   
Indeed for most elastomers, including these polyurethanes networks, the minimal value of tear 
strength than can be measured is much greater than a theoretical value of G0. The discrepancy 
may be due to the nonlinear viscoelastic behaviour (e.g. entanglements) of the material at the 
crack tip.  
As was mentioned before, the threshold fracture energies measured experimentally by 
Ahagon and Gent [Ahagon and Gent 1975] for polybutadiene elastomers, at very low rates 
and high temperatures range from 40 to 80 J/m2, and these values are in good agreement with 
our experimental results at high temperature and at low speed (see Tables 3.7 and 3.8). Also 
the results of Mueller and Knauss [Mueller and Knauss 1971] for polyurethane elastomers, 
and Lake and Lindley [Lake and Lindley 1965] for a variety of elastomers from fatigue crack 
studies, are in good agreement with our range of results. As was mentioned before we will 
have to assume that either the 100°C or the 0.00067%/s values are close to the G0 threshold 
values.  
Alternative expressions that we did not use in this Thesis were reported by Mazich et al. 
[Mazich et al. 1991]. He presented the threshold fracture energy for several lightly cross-
linked PDMS networks, and proposed two alternative expressions for G0 based on the role of 
trapped entanglements on the fracture mechanism.  
 
To summarize our results in a single graph, Figure 3.31 shows the critical fracture energy at 
different temperatures and different strain rates as a function of the elastic modulus E’, for the 
three polyurethane model networks. We can observe that there is no obvious correlation 
between toughness and modulus, which is hardly surprising but will be interesting to compare 
to the cavitation resistance data where the conventional wisdom predicts a resistance to 
cavitation scaling with the elastic modulus. 
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Figure 3.31: Fracture energy for different temperatures and different speeds as a  function of 
the modulus for the three polyurethane model networks.  
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Conclusions 
 
The mechanical properties of the three model networks were investigated in detail in this 
chapter. Several conclusions can be drawn from these results: 
 
On the tensile properties and the effect of entanglements 
 

• The tensile tests showed that the three model networks are brittle rubbers, as expected 
for very elastic materials. The Mooney plot revealed low (PU8000/1000) or no 
(PU4000) level of softening, except for the PU8000 where a fit to the Rubinstein-
Panyukov model implied ~20% of contribution of entanglements to the modulus. 

 
On the finite extensibility 
 

• Compression experiments showed that the three model networks strain harden. By 
using an ‘exponential’ model (two parameters) the fitting of the tensile and 
compression data was possible, implying that our lubricated compression experiments 
were carried out properly. This model predicted quite well the compression data and 
since the last is representative of the biaxial extension which is equivalent to the 
inflation of a cavity, the exponential model is considered a good approximation to 
predict the strain hardening.  

 
On the Fracture properties 
 

• The fracture energies GIc decrease significantly with increasing temperature and 
decreasing strain rate. These results were not expected for such elastic materials, 
implying that significant viscoelastic dissipation is active at the crack tip. The PU8000 
was tougher than the two other networks at all temperatures, qualitatively consistent 
with the higher level of viscoelastic dissipation at high strain rate observed for 
PU8000 and PU8000/1000 than for PU4000.   

• The lowest values of Gc measured (at high temperature or at very low strain rate) were 
probably close to threshold values and hence representative of the fracture of the 
network strands without much contribution of viscoelasticity.   
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Appendices A3 
 
Appendix A3.1: Time-Temperature Superposition for PU4000 
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Figure A3.1: Variation of tan delta in function of the frequency for a range of temperatures 
between -80 to +100 °C, for PU4000.  
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Figure A3.2: Variation of storage modulus in function of the frequency for PU4000. It is 
shown only the range between -30°C to +100°C.  
 
Graphically, it was obtained an offset in x axis and this was used to build up the master curve 
of Tan delta (where only horizontal shift is made) and this shift is reported in Table A3.1. To 
build up the master curve of the storage modulus a vertical shift was made and it is reported 
also in Table A3.1 as vT.  
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Table A3.1: Values of Log aT, aT and vT , for each temperature, for PU4000. 
 

Temperature [°C] Log aT  aT  vT 
-80 14.43 26.91*1013 -756.49 
-70 12.23 16.98*1011 -737.58 
-60 10.08 12.02*109 -272.29 
-50 7.15 14.12*106 12.368 
-40 4.71 51.28*103 0.3567 
-30 3.33 21.37*102 0.2756 
-20 2.23 169.82 0.1715 
-10 1.49 30.90 0.1388 
0 1.03 10.71 0.1058 

+10 0.49 3.09 0.0578 
+20 0.12 1.32 0.0221 
+25 0 1 0 
+30 -0.18 0.66 -0.0208 
+40 -0.43 0.37 -0.0609 
+50 -0.62 0.24 -0.1025 
+60 -0.77 0.17 -0.1427 
+70 -0.87 0.13 -0.1829 
+80 -0.95 0.11 -0.2218 
+90 -1.01 0.098 -0.2621 
+100 -1.09 0.081 -0.3009 

 
In Figure A3.3, is presented the results as y=(Ts-T)/Log aT versus x=T-Ts. 
. 
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Figure A3.3: WLF equation at temperatures between -80 to +100°C, for PU4000.  
 
Appendix A3.2: Time-Temperature Superposition for PU8000 
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Figure A3.4: Variation of tan delta in function of the frequency for a range of temperatures 
between -80 to +100 °C, for PU8000.  
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Figure A3.5: Variation of storage modulus in function of the frequency for PU8000. It is 
shown only the range between -30°C to +100°C.  
 
The horizontal and vertical shifts are reported in Table A4.2.  
 
Table A3.2: Values of Log aT, aT and vT , for each temperature, for PU8000. 
 

Temperature [°C] Log aT  aT  vT 
-80 12.13 13.61*1011 -934.76 
-70 10.09 12.30*109 -1035.82 
-60 7.48 3.06*107 -32.417 
-50 5.5 1 3.19*105 0.4633 
-40 3.88 7.5*103 0.2102 
-30 2.74 5.5*102 0.1424 
-20 1.83 68.23 0.0909 
-10 1.29 19.72 0.0875 
0 0.81 6.53 0.0633 

+10 0.41 2.55 0.0354 
+20 0.099 1.26 0.0118 
+25 0 1 0 
+30 -0.137 0.73 -0.0140 
+40 -0.366 0.43 -0.0377 
+50 -0.467 0.34 -0.0573 
+60 -0.568 0.27 -0.0814 
+70 -0.677 0.21 -0.1021 
+80 -0.772 0.17 -0.1264 
+90 -0.837 0.15 -0.1491 
+100 -0.916 0.12 -0.1705 
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Figure A3.6: Log aT versus the inverse of the temperature (1/T), at temperatures between -80 
and +100°C, for PU8000.  
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Figure A3.7: WLF equation at temperatures between -80 to 100°C, for PU8000.  
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Appendix A3.3: Time-Temperature Superposition for PU8000/1000.  
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Figure A3.8: Variation of tan delta in function of the frequency for a range of temperatures 
between -80 to +100 °C, for PU8000/1000.  
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Figure A3.9: Variation of storage modulus in function of the frequency for PU8000/1000. It 
is shown only the range between -20°C to +100°C.  
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Table A3.3: Values of Log aT, aT and vT , for each temperature, for PU8000/1000. 
 

Temperature [°C] Log aT  aT  vT 
-80 15.34 21.80*1014 -561.27 
-70 13.19 15.58*1012 -491.78 
-60 10.43 26.73*109 -294.03 
-50 7.67 46.97*106 37.42 
-40 5.13 13.42*104 0.3015 
-30 3.71 5.1*103 0.3203 
-20 2.59 389.49 0.2395 
-10 1.75 56.86 0.0858 
0 1.15 14.17 0.1027 

+10 0.646 4.43 0.0583 
+20 0.202 1.59 0.0207 
+25 0 1 0 
+30 -0.183 0.65 -0.0206 
+40 -0.466 0.34 -0.0541 
+50 -0.689 0.20 -0.0878 
+60 -0.862 0.14 -0.1236 
+70 -0.975 0.11 -0.1607 
+80 -1.099 0.08 -0.1920 
+90 -1.234 0.06 -0.2278 
+100 -1.312 0.05 -0.2612 
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Figure A3.10: Log aT versus the inverse of the temperature (1/T), at temperatures between -
80 and +100°C, for PU8000/1000. 
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Figure A3.11: WLF equation at temperatures between -80 to 100°C, for PU8000/1000.  
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Appendix A3.4: Fracture results 
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Figure A3.12: Fracture experiments at different temperatures for PU8000. 
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Figure A3.13: Fracture experiments at different temperatures for PU8000/1000. 
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Figure A3.14: Fracture experiments at different speeds for PU8000 
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Figure A3.15: Fracture experiments at different speeds for PU8000/1000. 
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Introduction 
 
Chapter 3 described the large strain and tear behaviour of the three polyurethane model 
networks using a fracture mechanics approach.  
The purpose of this Chapter is now to describe in detail the experimental methodology we 
used to investigate the failure of the elastomers by cavitation in a reproducible and reliable 
way. This includes the design of a new original test set-up, the development of a specific 
methodology for sample preparation, the experimental procedure and the raw experimental 
results obtained from the experiment itself and finally the data analysis method which was 
developed to extract the information we were looking for. The objective of the methodology 
was to observe the nucleation and growth of a single cavity if possible. 
 
4.1.- Literature review: selected geometry 
 
At this stage it is useful to briefly review the existing work on cavitation of rubbers. The 
inherent reason that rubbers are prone to failure by cavitation is the extremely high ration 
between their bulk modulus K and their shear modulus G. It is therefore much less costly in 
elastic energy to grow a cavity by shear than to change the volume of the rubber by bulk 
expansion. 
In practice, early theories have considered rubbers in pure hydrostatic tension in an infinite 
medium, while experiments have been carried out on thin rubber disks bonded to two surfaces. 
In this case if a tensile load is applied, due to constrains, the material is subjected to a large 
hydrostatic tension component and failure occurs by the mechanism called cavitation [Gent 
1992].  
The first documented evidence of the cavitation process is rather old [Busse 1938] and 
Yerzley [Yerzley 1939]. Busse bonded filled rubbers used in the automotive industry (NR) to 
flat metal end-pieces and applied a tensile stress while Yerzley did the same kind of 
experiment with neoprene. Both observed that the stress-strain curve had a marked softening 
and noted that the fracture surfaces after failure contained the evidence of whet they called 
“internal cracks”. 
Some years later Gent and Lindley [Gent and Lindsey 1959] used the same “poker chip” 
geometry (flat-to-flat) on natural rubber formulations, and the sample was also bonded to flat 
metal end-pieces. They prepared vulcanized rubber cylinders of 20mm in diameter and from 
0.6 to 5mm in thickness (a diameter to thickness aspect ratio of a/h from 33 to 4). They 
changed the aspect ratio by using cylinders with different thicknesses, and under tensile load 
obtained that the stress at which the internal cracks form decreases as the test-piece thickness 
is increased from very small values, becoming substantially constant for moderately thick 
samples; a series of small cracks were formed in thin cylinders, uniformly distributed across 
the section (multiple cavitation), and in moderately thick cylinders only one or two large 
cracks were formed in the centre, as shown in Figure 4.1. The most important observation of 
that study was that the fracture strength of the poker-chip samples appeared to be a 
reproducible material constant proportional to the elastic modulus. This brought Gent and 



 152 

Lindley to interpret their results as due to deformation (independent of initial cavity size) 
rather than fracture (dependent of cavity size).  
 

 

 
Figure 4.1: Central cross-sections of test-pieces of vulcanizate D, cut open after the 
imposition of a tensile stress of 28 Kg/cm2. The test-piece thicknesses are: top row, left right, 
0.061, 0.089, 0.137 cm; bottom, left to right, 0.180, 0.295, 0.370 cm; the diameter aspect ratio 
is a/h from 33 to 5.4. Taken from Gent and Lindley [Gent and Lindley 1959]. 
 
They used the theory of cavity growth of Green and Zerna [Green and Zerna 1954] to justify 
that the apparent yield point in the stress-strain curve appeared when the local hydrostatic 
pressure reached a critical value of 5E/6 (where E is the Young’s modulus of the rubber).  
This criterion of critical pressure was also confirmed by the studies of Cho and Gent [Cho and 
Gent 1988]; they used layers of transparent silicone rubber bonded to two steel balls (with 
diameters of 6.35, 9.50, 18.80 and 49.3mm) or to two parallel steel cylinders (with outer 
diameter of 9.55 and lengths of 12.5 to 50mm). Upon loading, cavities appeared in the rubber 
layers when the applied stress reached the order of the Young’ modulus E. However Cho and 
Gent made two interesting observations: for the thinner layers (layer thickness less than 5% of 
sphere diameter) the cavitation stress increased markedly above the elastic modulus, and the 
cavity appeared over time even when the load was kept constant just below the critical value. 
Experiments with rigid spherical inclusions have also been performed and reported in the 
literature, to characterize cavitation phenomena. Oberth and Bruenner [Oberth and Bruenner 
1965], Oberth [Oberth 1967] used samples of transparent polyurethane with rigid spherical 
inclusions, and observed that the cavities appeared at the edge of the inclusion, due to strong 
triaxial stress. They performed experiments with different types of polyurethanes and found a 
strong correlation between the cavitation stress and the modulus. Gent and Park [Gent and 
Park 1984], Hall, [Hall 1951] and Petch [Petch 1953] performed also cavitation experiments 
with rigid inclusions and showed that the cavitation pressure depends mainly on the shape of 
the inclusion [Hamdi, A. 2006].  
Lindsey et al. [Lindsey et al. 1963] presented some experiments on triaxial tension failure of 
viscoelastic materials. They used the “poker chip” geometry, and elastic transparent 
polyurethane rubber produced commercially. A critical aspect of their experiments was to 
bond the elastomer to the grips, without getting any debonding; they cut cured polyurethane 
sheets to bond them, by using a special adhesive, to the grips. They observed that up to a 
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certain applied stress (2.06MPa) very small internal bubbles appeared near the center of the 
disk. However all these experiments were performed at room temperature with a variety of 
elastomers and no particular mention of strain rate was ever made. 
 
It is interesting to note that there is an alternative way to nucleate cavities. When gas is 
dissolved in the rubber under pressure and this pressure is suddenly released, bubbles (or 
voids) may develop and grow with time [Denecour and Gent 1968, Gent and Tompkins 1969, 
Gent 1992]. This is the typical situation which occurs when underwater ocean cables or 
rubber seals are rapidly brought to the surface and start cavitating.  
These two situations are equivalent because of the incompressibility of the rubber. In both 
cases the formation of visible voids indicates that local fracture has occurred. Denecour and 
Gent [Denecour and Gent 1968] performed some model experiments in swollen transparent 
rubber vulcanizates, prepared from natural rubber. They dissolved gas under pressure into 
rubber sheets and observed upon depressurization, that up to a critical internal pressure of 
5E/6, bubbles formed. Also Gent and Tompkins [Gent and Tompkins 1969] observed 
experimentally the nucleation and growth of bubbles when the gas supersaturation pressure 
exceeded 5E/6. They used a variety of unfilled rubber sheets made of natural rubber (NR), 
polyisoprene (IR), butadiene-styrene copolymer (SBR) and polybutadiene copolymer (BR).  
 
The Selected geometry 
 
The flat-to-flat geometry (“poker chip”) for producing cavitation samples has been the most 
common used geometry reported in the literature.  
As shown in Figure 4.2, [Gent 1992] the hydrostatic stress distribution in such poker-chip 
bonded block in compression or in extension, is maximal in the central part, and decreases to 
the edges, as shown in Figure 4.2.  
 

 
Figure 4.2: Stress distribution for a bonded block in compression. t1 is the tensile stress and t2 
is the shear stress [Gent 1992]. 
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The main reason to use of the poker-chip geometry is to introduce a large hydrostatic tension 
component in the sample. Furthermore the incompressibility of the rubbery materials, which 
usually have large deformations during testing, is limited to relatively small strains before 
failure. This provides the benefit that the infinitesimal elasticity theory can be used in the 
analytical work without introducing large errors [Lindsey et al. 1963].  
Our design was guided by the dual goal to minimize multiple cavitation (possibly have a 
single cavity in the center) and to be able to model analytically the stress field prior to 
cavitation without worrying too much about boundary conditions (slippage). 
Furthermore a practical problem with the flat-to-flat geometry is the difficulty to control the 
parallelism of the sample with the machine; if the set-up allows adjustments (as is the case 
when a tripod has to be used to align the flat-to-flat sample) some compliance is introduced.  
A design of a different geometry such as sphere-to-flat would solve the problem of setting the 
parallelism. Our idea was to design a sample’s geometry to nucleate a single cavity close to 
the centre. Then a sphere-to-flat system (see Figure 4.3) was designed to obtain a less 
confined material (decreasing the shear stress at the edges) than in flat-to-flat geometry, but 
more concentrated hydrostatic stress toward the centre of the sample, to favor growth of a 
single cavity in the centre.  
In order to model quantitatively the stress field in the sample the degree of confinement had to 
be chosen in an intermediate range and we chose a ratio h/D = 0.027 and a/h = 10 as described 
in figure 4.3  
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a = 10mm

3mm

40mm  
 Figure 4.3:  Sphere-flat cavitation sample geometry: The PU network is sandwiched between 
a glass lens and a glass plate. Side and top in situ visualization can be carried out 
simultaneously.  
 
For the flat-to-flat cavitation system, approximate analytical solutions are available that give 
the maximum hydrostatic tension for extension and tilting deformations of bonded rubber 
blocks. For example, for a bonded cylinder of fairly large diameter-to-thickness ratio, the 
maximum hydrostatic tension is approximately twice the tensile stress applied to the cylinder 
[Gent 1992]. However, no analytical solution exists for the sphere-to-flat system to relate the 
force to the local stress field. Such a solution had to be obtained by FEM (Finite Element 
Method). The results of these simulations are presented in section 4.5.  
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4.2.- Experimental aspects: Cavitation samples preparation 
 
A typical “poker-chip” system consists of two flat end-pieces and a bonded cylinder of 
elastomer in between. When the bonding procedure is made, precautions must be taken in 
order to produce a bond of sufficient strength that it will not allow the elastomer to tear away 
from the flat pieces before an internal failure is produced. In our case, the bonding was 
achieved by chemical modification of our glass substrates, and the procedure was completed 
during the curing of the elastomer without any additional layer of glue. 
  
4.2.1.- Glass surface modification 
 
To avoid problems of debonding during the testing (between the PU and the glass substrates) 
and to make sure that failure happens in the bulk of the material, for the preparation of our 
cavitation samples a chemical modification of the two surfaces in contact with the 
polyurethane elastomer was carried out in order to have covalent bonds strong enough. As 
mentioned in Chapter 1, one of the typical reactions of the isocyanate group can occur with an 
amino group; then the chemical modification of the two glass surfaces was achieved by 
preparing amino-terminated self-assembled monolayers to make them react with the 
isocyanate groups available during the curing of the polyurethane networks.   
For the preparation of the sphere-to-flat geometry, we used glass plates of 40 mm in diameter 
and 3 mm in thickness, and plano-convex glass lenses of 18.2 mm in radius (see Figure 4.3). 
The materials and procedures used for the chemical modification of the glass surfaces are 
presented as follow.  
 
4.2.1.1.- Materials 
 
The following materials and chemicals were used as received: (3-
Aminopropyl)triethoxysilane purum ≥98% (Aldrich); dry toluene (Aldrich). Plano-convex 
lenses of BK7 for optical uses (Melles Griot), code 01LPX063: PL CX radius 18.2mm, 
Focale 35.0mm; Glass plates of BK7 of 40mm in diameter and 3mm in thickness. All solvents 
and chemicals (acetone, toluene, sulphuric acid, peroxide water) were purchased from either 
Aldrich or Sigma. Silanization reactions were carried out under nitrogen atmosphere (inside 
the glove box). All glassware used to prepare the monolayers was cleaned and dried @ 120°C.  
 
4.2.1.2.- Procedure  
 
The glass plates and the glass lenses were modified chemically by preparing self-assembled 
monolayers (SAMs). Prior to monolayer formation the substrates were oxidized by immersion 
in piranha (H2SO4 (96%): H2O2 (30%): 3:1 v/v) (Warning! Piranha solution should be 
handled with caution: it has been reported to detonate unexpectedly) for 20 minutes, rinsed 
with Millipore water and dried with a stream of nitrogen.  Amino-terminated monolayers 
were prepared by immersion of the clean substrates in a 4% v/v solution of (3-
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Aminopropyl)triethoxysilane purum ≥98%, in dry toluene, inside a gloves box (nitrogen 
atmosphere). After ~4h, the substrates were rinsed with dry toluene inside the gloves box, and 
finally rinsed a second time with toluene (outside the gloves box) and dried under a stream of 
nitrogen. Fig. 4.4 presents a schematic of this procedure. The surface modification remains 
chemically stable under ambient conditions. 
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Figure 4.4: Schematic of glass surface modification, for cavitation samples’ preparation. 
 
4.2.2.- Metallic molds: design and surface modification 
 
With the purpose of obtaining lateral transparency of the samples, metallic molds were 
designed, machined in DURAL (2017) and polished. Given the radius of curvature of the lens 
of 18.2mm, the internal height of the mold had to measure H=1.7mm, to give a central 
thickness of the sample of h ≅ 1mm (which gives an aspect ratio of a/h≅10, see Figure 4.3.). 
Figure 4.5 shows the design and dimensions of the metallic molds used for the cavitation 
samples preparation.   

 

                   
 

Figure 4.5: Schematic of the metallic molds. 
 
 
 

H =1.7mm 
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4.2.2.1.-Metallic molds: surface modification  
 
The metallic molds had to be chemically modified to ensure demolding after crosslinking of 
the polyurethane networks. The surface modification was carried out by preparing fluoro-
terminated monolayers.  
 
4.2.2.1.1.- Materials 
 
The following chemicals were used as received: Dry toluene (Aldrich) and (Heptadecafluoro-
1,1,2,2-tetrahydrodecyl) dimethylchlorosilane (ABCR). The solvents (acetone, toluene) were 
purchased from either Aldrich or Sigma. The silanization reactions were carried out under 
nitrogen atmosphere (inside the gloves box).  
 
4.2.2.1.2.- Procedure 
 
Prior to monolayers formation, the substrates were cleaned with acetone and dried during 
30min in the oven @ 120°C. The fluoro-terminated monolayers were prepared by immersion 
of the clean substrates in a 3% v/v solution of (Heptadecafluoro-1,1,2,2-tetrahydrodecyl) 
dimethylchlorosilane in dry toluene, inside a gloves box (nitrogen atmosphere). After ~4h, the 
substrates were rinsed with dry toluene inside the gloves box, and finally rinsed a second time 
with toluene (outside the gloves box) and dried under a stream of nitrogen. Figure 4.6 shows a 
schematic of this procedure.  
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Figure 4.6: Schematic of the surface modification of metallic molds, for the preparation of 
the cavitation samples. 
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4.2.3.- Cavitation Samples’ preparation – control of the geometry 
 
The samples’ preparation was carried out under nitrogen atmosphere (inside the gloves box). 
Once the preparation of the three polyurethane mixtures was done (as presented in chapter 2) 
the cavitation samples’ preparation can be carried out. The already degassed mixture was 
poured into the prepared cavitation samples system (glass plate + metallic mold, chemically 
modified) as shown in Figure 4.7. After pouring, a second degassing had to be done during ½ 
hour to avoid any remaining bubbles, and then the glass lens was placed on the top, being 
supported by the metallic mold.  
The samples were then taken out of the gloves box and placed in an oven where cycles of 
vacuum and nitrogen were done, and finally samples were left with nitrogen in the oven. As 
mentioned in section 2.3, the crosslinking takes 48h @35°C (to increase viscosity in a 
controlled way to avoid bubbles) followed by 80h @80°C, for final network crosslinking. 
After curing the network, the two-pieces of the metallic mold were demolded.  
 

+
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+

+
+
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+

 
Figure 4.7: Schematic of the cavitation samples’preparation 
 
The final step of the cavitation samples’ preparation, before testing, was to glue the sample 
(the free side of the glass lens) to the probe. For all the experiments at T ≤ 70°C araldite 
cristal was used, and for experiments at T= 100°C loctite® 407 was used, both transparent and 
with high mechanical resistance. Figure 4.8 shows an example of the cavitation sample 
already glued to the probe, ready for performing the cavitation experiment. The finish surface 
of the probe has to be as homogeneous as possible in order to ensure a neutral background for 
the top visualization. 
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Figure 4.8: Example of probe and cavitation sample, ready for testing. Top view can be 
performed through the glass plate. 
 
Geometry control  
 
Systematic measurement of the geometry was carried out by optical microscopy before 
performing the cavitation experiments. Figure 4.9 shows a picture of a cavitation sample and 
the corresponding dimensions. From this kind of picture, the values of ‘h’, ‘H’ and ‘a’ were 
obtained for each sample, every time, before performing the cavitation experiment. This 
measurement was done with an Optical Microscope. Note that the lateral edges of the sample 
do not show any obvious deformation implying therefore negligible residual stresses upon 
curing. 
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Figure 4.9: Picture of cavitation sample and dimensions, obtained by Optical Microscopy.  
 
The methodology to measure the thickness of the samples was validated, to be more confident 
of the ‘h’ values. Some samples called “blanks” were prepared for each network. For the 
“blanks” preparation the procedure to obtain the sample was the same as the one mentioned in 
section 4.2.3, but the glass plate and glass lens did not have any surface modification, then 
afterwards the complete piece of rubber could be taken out effortlessly from the mold to 
measure the ‘h’ value directly on the centre of the sample with a caliper. Both dimensions 
were compared and very similar values were obtained for both methods (see Appendix A4.1).  
 
 
 
 
 
 

Glue in between glass 
lens and probe  
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4.3.- Design, construction and positioning of samples’ holder  
 
To perform the cavitation experiments a specific sample holder had to be designed and built. 
The main requirement for this was to have a quite stiff set-up with a very low compliance 
(with this set-up the compliance was 10μm/100N). Other requirements were to have a good 
top view of the sample and to give some flexibility to the upper and lower parts to turn to a 
certain angle; this, to position a second camera in front of the set-up and to have both, top and 
lateral, visualization. The probe was designed to be glued to the glass lens on its entire surface 
(as shown in Figure 4.8) to reduce the compliance of the system. Figure 4.10 presents pictures 
of the actual samples’ holder showing the different pieces and the positioning of the sample 
and probe to perform the cavitation experiments. Figure 4.11 shows the positioning of the two 
cameras in front of the set-up. For the experiments performed under standard conditions 
(25°C) the heating chamber (used to control the temperature) was open, and the temperature 
was room temperature (measured using a thermocouple). In Appendix A4.2 are presented the 
samples’ holder pieces and in Table A4.2 are listed the pieces. 
 
The cavitation experiments were performed in a hydraulic MTS810 machine, and the 
displacement was measured with an LVDT extensometer (see details in the next section). To 
perform the experiments, the image acquisition from the camera were electronically 
connected to a computer were the visualization is done. For the data acquisition, the MTS 
data acquisition software and the cameras were connected to an oscilloscope to send the 
pulses that make possible the synchronization of images with the Force, time and 
displacement.  
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Figure 4.10: Samples’ holder and cavitation sample positioning.  
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Figure 4.11: Example of how the cavitation experiments were performed at 25°C.  
 
Experimental set-up at different temperatures 
 
To perform the experiments at different temperatures the heating chamber was maintained 
closed to heat up the samples, as shown in Figure 4.12.  
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Figure 4.12: Heating chamber to perform cavitation experiments at higher temperatures: 
50°C, 70°C and 100°C.  
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4.4.- Cavitation experiments and data treatment  
 
Systematic cavitation experiments were performed under standard conditions; the standard 
conditions were defined as T=25°C and V=10µm/s (since h ≅ 1mm, the initial strain rate 
ε& ~1%/s).  
The force was measured with a load cell of 2500N, with a force resolution of ±0.5 N. The 
displacement was measured by an external extensometer (LVDT 0-5mm, resolution of 
±0.5µm). The samples’ holder mentioned above was used. The sample and cameras were set 
as shown in Figures 4.10 and 4.11 for running experiments at room temperature, and as 
shown in Figure 4.12 for running experiments at higher temperatures. Two cameras were used 
for double visualization: Marlin F-033B, standard camera (25fps) with a resolution of 
656x494; and Pulnix TM-6740 CL high speed camera (200fps) with a resolution of 640x480. 
Figure 4.13 presents a typical curve of force versus displacement (obtained for PU8000/1000) 
under standard conditions. Figure 4.13 shows the curve of force versus displacement and the 
numbers that correspond to the synchronized image acquisition. The pictures taken from the 
top view are presented in Figures 4.14. The synchronized imaging allows the analysis of 
where the cavities appear related to the force and time, and the time is directly related to 
displacement.  
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Figure 4.13: Typical curve obtained by cavitation experiment (PU8000/1000) under standard 
conditions, 25°C and 10µm/s, and data treatment.  
 



 163

t=0s
F=0N

t=19.21s
F=100.36N

t=19.93 s
F=102.75N

t=19.97 s
F=106N

t=20.04 s
F=108N

t=20.7 s
F=88N

t=18.63s
F=94N

0 1 2

3 4 5

6

t=0s
F=0N

t=19.21s
F=100.36N

t=19.93 s
F=102.75N

t=19.97 s
F=106N

t=20.04 s
F=108N

t=20.7 s
F=88N

t=18.63s
F=94N

0 1 2

3 4 5

6

0 1 2

3 4 5

6

 
Figure 4.14: Images obtained from the top view (PU8000/1000) synchronized with the force 
versus time data acquisition.  The camera acquisition rate was 25fps. 
 
The force versus displacement curve can be generally divided in four parts (see Figure 4.15): 
 
A) An initial part of the curve, which can be considered as linear, that goes from zero up to 
certain force (increasing force) where no change is optically visible. 
B) A region (not seen for all conditions) where small cavities (seen as white spots) appear 
progressively and remain at a stable size. No measurable change of compliance is observed at 
this stage. 
C) The maximal force Fmax, corresponding to 1 cavity growing close to the centre of the 
sample; followed by the fast decrease of the force; 
D) Progressive decrease of the force, which corresponds to the crack propagation.  
 
These four ‘regions’ (A, B, C and D) are represented in Figure 4.15, as a general result. Since 
we were interested in the study of the nucleation of the cavitation, the main ‘region’ of 
interest in the force-displacement curve is the first part of the curve from zero force until the 
critical cavity appears and the force drops. The maximal force shown in the curve in Figures 
4.13 and 4.14 (before the force drops) corresponds to a rapid expansion of a single cavity and 
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is used to calculate the maximal local hydrostatic stress which may then be used as a criterion 
to predict resistance to cavitation; the calculation is presented in the next section.  
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Figure 4.15: Description of a typical result and the data of interest. 
 
Figure 4.16 shows the result of three cavitation samples of PU4000 and we can see that the 
samples are quite reproducible (see Appendix A4.3 for the curves of the other two materials).  
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Figure 4.16: Example of reproducibility of the maximal force for different samples in 
PU4000. 
 
The shape of the curves does change in function of the material and parameter conditions. In 
Chapter 5, a comparison of the cavitation resistance of the three polyurethane model networks 
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willl be presented under standard conditions (25°C), at three higher temperatures: 50°C, 70°C 
and 100°C, and at two different speeds (a two decade decrease). 
 
4.5.- Analysis of cavitation experiments by FEM Simulation 
 
The simplest criterion for the growth of a cavity is that of a critical value of the local 
hydrostatic stress [Green and Zerna 1954, Gent and Lindley 1959, Fond 1996]. Of course and 
as shown in figure 4.1, the stress varies spatially and temporally in our samples during a test. 
In order to go from a macroscopic force measurement to a local stress value, a model has to 
be used for the stress field for that particular geometry.  
The analytical solution for the relationship between force and local hydrostatic stress for the 
flat-to-flat geometry has been already reported in the literature [e.g. Gent 1992], but for the 
sphere-to-flat geometry the solution had to be calculated. With the purpose of obtaining the 
relationship between the force applied to the sphere and the hydrostatic stress numerical 
simulations with a Finite Element Method (FEM) were carried out at DSM Research by Jan 
Stolk.  
 
4.5.1.- The Geometry and boundary conditions  
 
The structure is analyzed by a FEM, in which the given geometric region or domain is divided 
in a collection of subdomains or elements, and over each element the governing equation is 
approximated by any traditional variational method. The geometry and corresponding 
dimensions of the sample are presented in Figure 4.17.  
An axisymmetric geometry was used, which is a two dimensional half-cross section of the 
component with an axis of symmetry. The problem is solved in 2D. 
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Figure 4.17: Geometry and finite element mesh (720 elements and 795 nodes). 
 
The characteristics of the mesh were: 

• 720 elements, 795 nodes (mesh-density determined in convergence study) 
• Axisymmetric Hermann elements (Hermann elements allow simulation of nearly 

incompressible behaviour) 
• Sphere and flat glass plate treated as rigid bodies 
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• Deformable material rigidly connected to rigid bodies (no relative interface motion 
allowed) 

 
For this problem the following boundary conditions were specified: 

• Nodes corresponding to the glass plate are fixed 
• Nodes corresponding to the sphere are lifted up to 0.2 mm (which is approximately the 

maximal deformation up to maximal force for our materials). Note that only vertical 
displacement is allowed, without any horizontal accommodation. 

• Nodes corresponding to the axis of symmetry are supposed to displace only vertically, 
in order to keep the symmetry conditions. 

We used “fixed” boundary conditions. They exist when a surface of the component is firmly 
attached to another component or the ground. When the surface (containing the nodes) is 
fixed, all the DOFs (degrees of freedom) are set to zero and the node cannot move in any 
direction.  
 
4.5.2.- The Material behavior 
 
Specifications of material properties for the linear analysis of an elastomer component involve 
the small strain basic elasticity equations, therefore: 
 

( )υ213 −
=

EK                         eq.4.1 

 
where K is the bulk modulus and ν is the Poisson’s ratio.  
It follows from equation 4.1 that if Poisson’s ratio is assumed to be 0.5, corresponding to an 
incompressible material, the bulk modulus goes to infinity. This assumption also dictates that 
Young’s modulus is 3 times the shear modulus E=3µ. This is generally not exactly true for 
engineering elastomers, but it makes analytical solutions possible and numerical simulations 
much easier. When Poisson’s ratio of 0.499 and 0.5 are used, most classical finite element 
programs cannot analyze properly the elastomer. Then the elements used in finite element 
analysis need to be reformulated to accommodate this high value of Poisson’s ratio. This is 
usually accomplished by using and approach developed by Herrnann and Toms [Herrnann 
and Toms 1964] and Herrnann [Herrnann 1985] by introducing a new variational principle 
that includes another degree of freedom called the “mean pressure function”.  
  
4.5.3.- Calculations of the stress distribution (in linear elasticity) 
 
4.5.3.1. Radial evolution of the Hydrostatic stress 
 
The theoretical stress distribution for bonded cylinders presents a higher stress in the central 
part of the sample either for flat-to-flat or sphere-to-flat (as shown in Figure 4.2). For 
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studying the differences between the two geometries, FEM calculations were done (the mesh 
for flat-to-flat geometry and the approach are shown in appendix A4.4).  
Figure 4.17 presents the graphs showing the numerical comparison for an applied 
displacement Δu of 0.2 mm for our experimental geometry and the flat-flat geometry. The 
hydrostatic stress is defined by: 
 

( )3322113
1

3
1 σσσσσ ++== trhydr                   eq.4.2 

 
where the indices refer to the three principal directions. The hydrostatic stress as a function of 
the radius (i.e. position from the center) is higher in the flat-flat system in the central part of 
the sample resulting by a more confined conditions (R=5mm, H=1mm). The decay occurs 
away from the central axis and it is almost proportional to the decay of the sphere-to-flat 
geometry (Figure 4.18(a) and Figure 4.19). When the hydrostatic stress is normalized by the 
maximal principal stress (tensile direction), the stress triaxiality ratio τ can be defined as: 
 

 
max,principal

hydr

σ
σ

τ =                    eq. 4.3 

 
The parameter τ can take critical values for pure shear τ =0 ; tension τ = 1/3 and purely 
hydrostatic τ = 1.  
Radial evolution of τ is shown in Figure 4.18 (b). A slight decrease from the centre is 
observed. The stress situation remains close to hydrostatic over most of the disc. A slightly 
lower stress triaxiality ratio is obtained for the sphere-flat geometry ( =− flatsphere

maxτ 0.921 versus 

=− flatflat
maxτ  0.961).  
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                        (a)                 (b) 
Figure 4.18: Triaxiality of sphere-to-flat geometry as a function of the radius of the sample, 
obtained by FEM (E=1MPa, ν=0,49994, Δu=0.2mm). As a comparison the same calculation 
has been done on flat-to-flat geometry (a=10mm, h=1mm) 
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Regarding the question of the localization of the maximal hydrostatic stress around the central 
axis, Figure 4.19 shows a comparison of the localization of the maximal hydrostatic stress 
along the mid-plane for the sphere-to-flat and flat-to-flat geometries. The prediction shows 
that the hydrostatic stress is slightly more concentrated for the sphere-to-flat geometry. This 
higher concentration of hydrostatic stress for the sphere-to-flat geometry, together with the 
chosen aspect ratio a/h=10 for our cavitation sample, made it possible to observe one single 
cavity growing in the centre of the sample. 
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Figure 4.19: Prediction of the localization of the maximal hydrostatic stress in the flat-to-flat 
and sphere-to-flat geometries in function of the radius of the sample.   
 
4.5.3.2.- Influence of confinement: the layer thickness 
 
Another analysis that was done by FEM for the sphere-to-flat geometry was the influence of 
the samples’ thickness (‘h’). The resulting curves of hydrostatic stress as a function of the 
layer thickness are shown in Figure 4.20. The hydrostatic stress at a given sphere 
displacement is sensitive to layer thickness as follows: 
- 5% thicker layer leads to 11% reduction in hydrostatic stress 
- 5% thinner layer leads to 13% increase in hydrostatic stress 
- The stress situation remains close to purely hydrostatic, irrespective of the layer thickness 
and position along the Z-axis. 
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Figure 4.20: Numerical calculation of the variation of the hydrostatic stress for different layer 
thicknesses at Δu=0.2 mm. 
 
4.5.1.5.- From the Force to the local  hydrostatic stress  
 
From Fmax to the maximal hydrostatic stress, σhydr,max 
 
The criterion used to calculate the resistance to cavitation was the use of the maximal Force at 
which cracks grow. This corresponds to the critical state reached when one critical cavitiy 
suddenly grows in the body of the rubber, producing a drop in the extending force. This 
maximal force is then used to calculate the maximal hydrostatic stress, σhydr,max , in the center 
of the sample, as presented in the schematic 4.21. 

 
Figure 4.21: Schematic of the maximal hydrostatic stress in the center of the sample 
 
To obtain the relation between the macroscopic applied force and the corresponding applied 
hydrostatic stress, a calibration constant C(ν) was calculated by FEM simulations. The 
calibration constant for a given geometry was independent of the elastic modulus and 
dependant on Poisson’s ratio. The relation between the measured force and the resulting 
hydrostatic stress was given by: 
 

maxmax, * FChydr =σ                                          eq. 4.4 

 
where C is the calibration constant.  
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The approach was to perform the calculation for several Poisson’s ratio 0.49 ≤ ν ≤ 0.49999 
and Δu = 0.2 mm, and in all cases C(ν)= σhydr,max/Fmax. Appendix A4.5 shows the calibration 
curve. The calculated calibration constant was specific for this geometry.  
If the geometry changes then the calibration curve will shift. In Appendix A4.5, Table A4.4 
are reported the values of h, F, σhydr,max and the correspondent value of C(ν). The calibration 
factor depends only slightly on h, as 5% change in layer thickness results in only 2% change 
in calibration factor. 
The measured value of ‘h’ was then used to obtain the calibration factor C(ν), see section 
4.2.3. The maximum hydrostatic stress calculated from the peak force was not very sensitive 
to variations in layer thickness, as the calibration factor, unlike the compliance, was not very 
sensitive to layer thickness. 
  
From the maximal hydrostatic stress to the local hydrostatic stress σhydr 
 
Using images synchronized with the force and displacement data (as the ones shown in Figure 
4.13), we did some statistics to study the pre-critical cavities as a function of position from the 
centre of the sample, for the different testing conditions.  
To define the local hydrostatic stress (i.e. as a function of the position from the sample centre) 
where the cavity appears, we used the FEM simulation of our geometry. Figure 4.22 presents 
the graph used for the determination of the stress as a function of the distance from the centre 
(which is the same shown in Figure 4.19 for the sphere-to-flat geometry). 
Each cavitation event was localized in the bulk of the sample, mainly occurring in the vicinity 
of the sphere; the position from the sample centre (coordinate R) was used in order to 
determine the local hydrostatic stress, σhydr.  
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Figure 4.22: Calibration curve to obtain the local hydrostatic stress: normalized hydrostatic 
stress over the maximal hydrostatic stress (at R=0), as a function of the position along the 
radial direction of the sample.  
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 4.6.- Cavitation experiments: FEM Simulation versus experimental results 
 
As was mentioned above, the main reason to use FEM simulations was to obtain the relation 
between the resulting force and the local hydrostatic stress.  
As an additional analysis, in this section we compared the experimental curves (Force versus 
displacement) obtained from the cavitation experiments with the theoretical curves calculated 
by FEM.  
 
For the simulation strategy two types of calculation were carried out: 

1) simple linear elastic model 
2) strain hardening model (non-linear elasticity: Gent’s model) 

The first results obtained with a simple linear elastic model have shown quite large 
discrepancies with the experimental data. Calculations were carried out using the small strain 
Young’s modulus obtained by DMA and a Poisson’s ratio of 0.49994. Experimental results 
were seen to be stiffer than the numerical predictions, which was an unexpected result. 
Neither relevant variation of Young’s modulus nor Poisson’s ratio could explain the observed 
discrepancies. 
 In a second step, strain hardening was introduced in the calculation. The model used was a 
strain hardening version of the neo-Hookean model (Gent’s model) as described in chapter 1. 
 
Optimization of the parameters was done on PU4000 tensile and compression data, using the 
small strain Young’s modulus obtained by DMA, see in Appendix A4.6. The following 
parameters were obtained: 
 E = 1.3 MPa (fixed by DMA results) 
 Im = 18, corresponding to a finite extensibility in a tensile test of λmax=4.5.  
 
Figure 4.23 presents the experimental curves and the three simulation curves, of the PU4000 
model network. The difference between experimental curves and simulation is about 20 to 
30%, with the simulation predicting a lower stiffness than the experimental curves. Having 
experimental results stiffer than the numerical predictions was an unexpected result; then 
several questions about the experiments were double checked and answered.  
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Figure 4.23: Fitting of the cavitation PU4000 data using Gent’s model.  
 
To look at possible explanations of theses differences we checked several aspects: 
 
1) Geometrical effects: Such as the radius of the glass lenses and the measurement of ‘h’.   
The radius of the glass lens was confirmed by profilometry, and the result was R=18.2mm, 
which is the same reported by the provider. Comparing the geometry of demolded blanks with 
that of the mold we found an identical shape, confirming the absence of residual stresses. 
The measurement of ‘h’, was verified by two techniques. 
 
2) Material properties, such as difference in modulus between the films used for the DMA 
measurements and cavitation samples. Because the films used to carry out DMA and the 
cavitation samples were cured in slightly different conditions as mentioned in Chapter 3 
(‘open’ environment versus completely confined environment, in the oven) the question about 
a possible difference in curing between films and cavitation samples came out. Swelling 
results did not show significant differences. However in order to have also a mechanical 
experiment to answer this particular point, two kind of compression samples were prepared, 
one under completely confined environment (same as cavitation samples) and another one in 
an ‘open’ environment. Both results were compared, and the differences in modulus between 
‘closed’ and ‘open’ environments, for the three materials, were less than 10%. Such 
difference was expected considering that polyurethanes’ preparation is very sensitive to the 
environment and our curing times are relatively long. However, this difference is too small to 
explain the gap between simulation and experimental results. 
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3) Residual (extra) polyurethane on the edges of the samples on the glass lens that remains 
after demolding could change the resistance of the material during cavitation testing. 
Regarding this question, a simulation was done considering this extra material, and the result 
was that the influence of having this extra material was negligible.  
 
Then, we concluded that the difference between the simulation and the experimental data 
comes from another factor that we did not take into account. Because our study is dealing 
with the same geometry, we have been mainly focused on comparative analysis. In any case 
such difference of 20-30% between experimental results and simulation can be considered 
acceptable. 
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Conclusions 
 
The objective of this chapter was to describe the experimental methodology developed to 
study cavitation.  
 
On the chosen geometry 
 

• Even if the so called “poker chip” (flat-to-flat) geometry has been the most used 
geometry reported in the literature, some practical aspects such as the control on the 
parallelism are difficult to set. Then mainly for practical reasons we chose the sphere-
to-flat geometry for the cavitation sample’s preparation, which gives less confinement 
but slight higher concentration of the hydrostatic stress to the centre of the sample. 
The chosen aspect ratio a/h =10/1 together with the higher concentration of the stress 
to the centre for this geometry,  allowed us to observe most of the time one single 
cavity very close to the centre of the sample.   

• To ensure good and strong interfacial bonds between the glass and the polyurethane, 
the top and bottom surfaces of the mold were chemically modified with amino-
terminated monolayers, which guarantee that failure occurs in the bulk of the 
polyurethane. 

• Lateral transparency of the cavitation samples was achieved by using metallic molds.    
 
On the very low compliance of the cavitation testing 
 

• A new samples’ holder was designed and built to perform the cavitations experiments. 
We obtained a quite stiff set-up in which the compliance was very low (0.1μm/N or 
107 N/m). This set-up was specially designed to have a good top view of the sample 
through one camera positioned in front of the machine and a good lateral visualization 
with a second camera. 

 
On the analysis of the cavitation experiments 
 

• Thanks to the synchronization of the data acquisition and video imaging, it was 
possible to obtain the curves of force versus displacement for each sample and to 
know where and when the cavities appeared (all the experimental results are presented 
in Chapter 5). Because the main interest of this Thesis was to look at the nucleation of 
cavitation our study was focused on the first part of the curve force versus 
displacement passing through three main ‘regions’: the ‘linear’ initial part of the curve, 
the pre-critical cavities region which appears from certain force and remain stable, 
until the critical cavity appears at the maximal force, the maximal force, 
corresponding to 1 cavity growing close to the centre of the sample; and there was a 
fourth region which was not analyzed, corresponding to the crack propagation.  
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• High reproducibity in the curves of force versus displacement was obtained, when 
comparing several samples of the same material and same condition. 

 
On the analysis of the cavitation experiment by simulation 
 

• Simulations using Finite Element Method (FEM) were performed and the relation 
between the force applied to the sphere and the local hydrostatic stress was obtained. 
For this, a calibration factor was calculated for our specific geometry, independent of 
the elastic modulus and dependant on the Poisson’s ratio. The combination of the 
calibration constant and the simulation of the radial stress distribution made it possible 
to calculate a reasonably accurate value of the local stress for cavity appearing in the 
sample before or at the peak force. 

• The comparison of the experimental stress-strain curve with simulation results, done 
by using the Gent’s model, gave differences of ~20-30% between the experimental 
data and the simulation, for the three networks. After double checking all the possible 
causes, we concluded that a geometric factor that was not properly taken into account 
was probably causing the difference but that such a difference for the compliance 
between experimental results and simulation can be considered relatively low and 
does not affect greatly the stress values. 
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Appendices A4 
 
Appendix A4.1: Comparison of ‘h’ measured by microscopy and directly in the center  
 
Table A4.1: Comparison of measured thicknesses ‘h’ by microscopy and directly measured 
in the center 
 

Material ‘h’ obtained by 
microscopy 

[mm] 

‘h’ obtained by direct 
measure in the center 

[mm] 
PU4000 1.027 1.03 ; 1.02 ; 1.04 
PU8000 1.0 1.01 ; 1.00 ; 1.02 

PU8000/1000 1.16 1.15 ; 1.16 ; 1.14 
 
Appendix A.4.2 Samples’holder 
 
Figure A4.1 presents the samples’ holder pieces and in Table A4.1 are listed the pieces.  
 

                   
 
Figure A4.1: Schematics of the design of the samples’ holder 
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Table A4.2: List of pieces corresponding to each part of the samples’ holder 
 

Number Piece description 
1 base adaptor  
2 high support 
3 support mirror and mirror 
4 Sample 
5 Clamps 
6 Probe 
7 Base 
8 T-piece 

 
The set up works as follow:  
The probe with the sample (4+6) is placed on the central part of the base (7), and it is fixed by 
screws that are on the T-piece (8). The bottom part, which is the mobile part connected to the 
hydraulics, moves up until it touches the upper part (2), and the clamps (5) are brought to the 
center and the sample is fixed by using screws. The optical fiber is placed in the lateral holes, 
left in the clamps for illumination of the sample; and the extensometer is fixed to the bottom 
part of the hydraulics, below the bottom base adaptor (1). Finally, the two cameras are set up 
in front of the samples’ holder for obtaining the best possible imaging from the top view 
trough the mirror (3) and from the lateral view. 
 
Appendix A4.3: Reproducibility of the curves obtained for cavitation experiments 
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Figure A4.2: Reproducibility of the maximal force for different samples in (a) PU8000 and 
(b) PU8000/1000 
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Appendix A4.4: Triaxiality of sphere-to-flat versus flat-to-flat 
 
Approach: 

• Use sphere-to-flat model and build new axisymmetric model for flat-to-flat geometry 
• Material properties: E = 1 MPa, ν = 0.49994 
• Lift sphere (in case of sphere-to-flat) or top plate (in case of flat-to-flat) by Δu=0.2mm 
• Calculate hydrostatic stress distribution and force on sphere, and the response of the 

top plate 
 

R = 5mm

h 
= 

1m
m

Top plate

Flat glass
counterplate

R = 5mm

h 
= 

1m
m

Top plate

Flat glass
counterplate

R = 5mm

h 
= 

1m
m

Top plate

Flat glass
counterplate

 
FEM model for flat-to-flat geometry 

 
 

Sphere/Lens

Flat glass
counterplate

Nearly incompressible
material

Axis of symmetry

R = 5mm

h 
= 

1m
m

H
 =

 1
.7

m
m

D = 39.4mm
Sphere/Lens

Flat glass
counterplate

Nearly incompressible
material

Axis of symmetry

R = 5mm

h 
= 

1m
m

H
 =

 1
.7

m
m

D = 39.4mm

 
 

FEM model for sphere-to-flat geometry 
 
 
 

Appendix A4.5: Calibration constant calculation 
 
For typical values of υ (0.499-0.49999) the calibration constant is virtually constant, meaning 
that also the hydrostatic stress is virtually constant 
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Table A4.3: Variation of Poisson’s ratio versus calibration constant  
 

Poisson’s ratio Calibration constant 
[MPa/N] 

0.49 0.0279 
0.4925 0.0287 
0.495 0.0297 
0.4975 0.0307 
0.499 0.0313 
0.4995 0.0315 
0.4999 0.0317 
0.49994 0.0317 
0.49999 0.0317 

 
By FEM, for different thicknesses ‘h’ values lower than 1.2 mm and higher than 0.8 mm, 
calibration factors were calculated, and the results are reported in Table A4.3. Then for a 
given value of thickness a calibration factor was obtained and using equation 4.2, the 
hydrostatic stress can be calculated.  
 

 

       
Figure A4.3: Calibration constant versus Poisson’s ratio. 
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Table A4.4: Dependence of the calibration factor on the samples’ thickness. 
 

h [mm] F [N] σhydr, max [MPa] Calibration factor [MPa/N] 
0.80 121.7 4.202 0.0345 
0.85 108.1 3.647 0.0337 
0.90 96.6 3.189 0.0330 
0.95 86.7 2.808 0.0324 
1.00 78.3 2.483 0.0317 
1.05 71.0 2.209 0.0311 
1.10 64.7 1.982 0.0306 
1.15 59.3 17.84 0.0301 
1.20 54.4 1.610 0.0296 

 
 
Appendix A.4.6: Fitting of hyperelastic model with experimental compression and 
tension data.  
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Introduction 
 
Chapter 4 described in detail the experimental methodology to investigate the failure of the 
three polyurethane model networks by cavitation. As mentioned in Chapter 4, the 
phenomenon of cavitation in elastomers has been previously observed and studied by several 
groups [Busse 1938, Yerzley 1939, Gent and Lindley 1959, Cho and Gent 1988, Oberth and 
Bruenner 1965, Oberth 1967, Gent and Park 1984, Hall 1951, Petch 1953, Lindsey et al. 
1963, Denecour and Gent 1968, Gent and Tompkins 1969, Hamdi 2006, Bayraktar 2008] 
mostly using rubber-metal bonded disks of large diameter-to-height (a/h) ratios.  
However, all these experiments were performed at room temperature with different types of 
elastomers. To the best of our knowledge none of the cavitation experiments reported in the 
literature examined the effect of parameters such as strain rate or temperature.  
Additionally, none of the experimental cavitation studied before have really focused on the 
events occurring before the stiffness drops macroscopically so that the physical mechanism of 
nucleation of the cavities is not fully understood. The first abrupt drop in stiffness has usually 
been considered as the signature of cavitation events.  

 
In an effort to answer this question we designed and performed well controlled cavitation 
experiments on fully transparent elastomers at different loading rates and temperatures. An 
optical real time visualization of the damage events inside the elastomers during the loading 
was designed specifically to capture the early growth stages of the cavities (as presented in 
chapter 4). 
With the purpose of establishing a relationship between the molecular architecture of the 
polymer networks and their resistance to cavitation, we studied and compared three 
polyurethane model networks, PU4000, PU8000 and PU8000/1000. An important practical 
question motivating this thesis and addressed in this chapter was if we could prepare a tough 
material with a high resistance to cavitation. 
 
Several aspects have been examined:  
 
1)  The use of the local maximal hydrostatic stress to predict cavitation resistance; 
2)  The effect of changing material and experimental parameters on the shape of the curves 
force versus displacement; 
3) The effects of the temperature and the possible thermal activation of the process; 
4) The effects of the strain rate on the cavitation and the role played by the viscoelasticity; 
5) The crack propagation once the critical cavity has appeared.  
6) The morphology of the fracture surfaces after complete fracture, and  
7) A qualitative study of pre-critical cavities has been made.   
 
Chapter 4 described the experimental setup and argued that the reason to use a sphere-to-flat 
geometry was to avoid multicavitation and in this chapter our choice of geometry is 
confirmed. In this Chapter we present all the experimental cavitation results. For each 
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experimental condition, five tests for each polyurethane model network were carried out. The 
results presented in this chapter are an average of the three most representative tests, for each 
condition and each material.  
 
Figure 5.1 recalls figure 4.15 in which the different stages of the process were represented on 
the curve force versus displacement. Since the cavitation criterion reported in the literature 
[Green and Zerna 1954, Gent and Lindley 1959, Fond 1996] is related to a critical value of 
the local hydrostatic stress for the growth of a cavity, in the first part of this chapter (sections 
5.1, 5.2 and 5.3) we analyze the curve force versus displacement from the peak, that 
corresponds to the maximal force (and maximal hydrostatic stress) to the later stages related 
to the crack propagation. In the last section of this chapter (section 5.4) we analyse the left 
side of the curve force versus displacement, in which pre-critical cavities are observed and a 
qualitative analysis is carried out.  
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Figure 5.1: Parts of the force versus displacement curve analyzed in this chapter in the 
experimental cavitation results. Fmax=critical crack growing. 
 
5.1.- Experimental cavitation results at standard conditions (room 
temperature - ε&  ~ 10-2 .s-1) 
 
Using the cavitation samples prepared as mentioned in chapter 4, experiments under standard 
conditions, defined as T=25°C and V=10µm/s (initial strain rate ~ 1%/s), were carried out to 
compare the different polyurethane model networks.  
 
5.1.1. General trends: Shape of the curve and Maximal hydrostatic stress 
 
5.1.1.1. PU4000 
 
Figure 5.2 shows a representative experimental curve of force versus displacement obtained 
for PU4000 at standard conditions. The maximal force that corresponds to the critical cavity 
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growing occurs at around ~15% strain; this relatively low strain shows the fragility of the 
sample. The numbers in the figure corresponds to the synchronized imaging acquisition of 
force as a function of time (and displacement). Every number is associated to one image and 
one event happening in the sample during the tensile experiment. The corresponding pictures 
taken from the top view and from the lateral view for PU4000, are presented in Figures 5.3 
and 5.4, respectively.  Figure 5.3 presents the time and position of the cavities observed 
during the data acquisition (camera rate 25fps). We observe that only one single cavity 
appears just before the maximal force is reached and then grows from the center to the edges. 
However in the early stages, the shape of the growing cavity as seen from the combined top 
and side projection is far from spherical and grows perpendicular to the tensile direction 
(Figure 5.3 and 5.4 (2, 3)) then in the direction of traction (compare Figure 5.4 (4 and 5)) and 
finally becomes circular in the top view (Figure 5.3 (5, 6)). During the growing of the cavity, 
after maximal force, the force drops first very fast and then slower until zero force (complete 
fracture). As one would expect, the observed images and the video clearly point out a fracture 
process rather than any reversible deformation.  
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Figure 5.2: Typical curve of PU4000 at standard conditions (25°C and 10µm/s) obtained 
during the cavitation experiment. 
 
Figures 5.3 and 5.4, show for PU4000 only one critical cavity growing. This is typically what 
was observed for the PU4000. Figure 5.4 shows the lateral view for PU4000. We observe that 
the critical cavity appears in the centre of the sample, close to the glass lens surface where 
hydrostatic stress is seen to be maximum.  
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Figure 5.3: Images of PU4000 obtained from the top view @ 25fps and synchronized with 
the force versus displacement data acquisition, at standard conditions. Note that picture 1 and 
2 are two consecutive images. Cavity size in picture 2 is around 1mm.  
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Figure 5.4: Images of PU4000 obtained from the lateral view @ 26.36fps and synchronized 
with the force versus displacement data acquisition, at standard conditions.   
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5.1.1.2. PU8000 
 
The cavitation behaviour of PU4000 was compared with PU8000, to analyze the effect of 
having two different molecular structures with two different crosslink densities, close to and 
above the average molecular weight between entanglements (Me~3000g/mol). Figure 5.5, 
presents a typical curve of force versus displacement obtained for PU8000 at standard 
conditions. Qualitatively, significant differences between the curve of PU4000 and PU8000 
were observed.  
In PU8000, the first peak is reached at a lower force than for PU4000 (see Appendix A5.1) 
and occurred at a mean strain around 20%. The shape of the curves are different, with more 
than one well defined peak so that the final drop of the force (before complete fracture) occurs 
at much higher mean strain, above 50% (see Figure 5.11).  
The reason why the curve of PU8000 shows more than one peak is that more than one cavity 
is growing in the sample: each peak corresponds to one cavity growing, see Figures 5.6 and 
5.7. When the first large cavity reaches a size where growth nearly stops or at least slows 
down to the point that the macroscopic force increases, then a second macroscopic cavity 
grows. For the PU4000 elastomer, a single growing large cavity was always observed while 
for PU8000 at least two large cavities appeared before the final ruin of the sample. PU8000 
has stable crack propagation, where the force increases still during propagation, showing 
higher crack propagation resistance than the other two materials.  
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Figure 5.5: Typical curve of PU8000 at standard conditions (25°C and 10µm/s) obtained 
during the cavitation experiment. 
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Figure 5.6: Images of PU8000 obtained from the top view @ 25fps and synchronized with 
the force versus displacement data acquisition, at standard conditions.  Note that picture 2 and 
3 are two consecutive images. Cavity diameter in picture 3 is around 1.4mm. 
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Figure 5.7: Images of PU8000 obtained from the lateral view @ 26.36fps and synchronized 
with the force versus displacement data acquisition, at standard conditions.   
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5.1.1.3-. PU8000/1000 
 
The cavitation behaviour of PU8000 in the cavitation experiments was compared with 
PU8000/1000, to investigate the effect of adding short chains (PPG1000) to long chains 
(PPG8000). Figure 5.8 presents a typical curve of force versus displacement obtained for 
PU8000/1000 at standard conditions. Figures 5.9 and 5.10 present the top view and the lateral 
view, respectively.  Several pre-critical cavities were observed (small cavities seen as white 
spots). They appear and remain stable and only one cavity grew very close to the centre of the 
sample, similar to the situation for the PU4000. We also observe that the shape of the curve is 
similar to that of the PU4000, but the force is slightly higher (see Appendix A5.1) as well and 
the fracture of the sample occurs at around 17% average strain.  
One single cavity was seen to grow close to the centre of the sample when the maximal force 
is reached. The fracture was brittle with non-controlled crack propagation in all cases for the 
three materials. 
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Figure 5.8: Typical curve of PU8000/1000 at standard conditions (25°C and 10µm/s) 
obtained during the cavitation experiment. 
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Figure 5.9: Images of PU8000/1000 obtained from the top view @ 25fps and synchronized 
with the force versus displacement data acquisition, at standard conditions.  Note that picture 
3 and 4 are two consecutive images. Cavity diameter in Picture 4 is around 1.2mm. 
 
 

t=0s
F=0N

t=19.21s
F=100.36N

t=19.93 s
F=102.75N

t=19.97 s
F=106N

t=20.04 s
F=108N

t=20.7 s
F=88N

t=18.63s
F=94N

0 1 2

3 4 5

6

t=0s
F=0N

t=19.21s
F=100.36N

t=19.93 s
F=102.75N

t=19.97 s
F=106N

t=20.04 s
F=108N

t=20.7 s
F=88N

t=18.63s
F=94N

0 1 2

3 4 5

6

 
Figure 5.10: Images of PU8000/1000 obtained from the lateral view @ 26.36fps and 
synchronized with the force versus displacement data acquisition, at standard conditions.   
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5.1.1.4.- Comparative analysis:  maximal hydrostatic stresses and critical cavity formation 
 
Shape of the force-displacement response 
 
Figure 5.11 shows a comparison of the cavitation curves obtained at standard conditions for 
the polyurethane model networks. We observe that the three curves are non-linear, and the 
stiffness of the materials clearly scales with the modulus (as presented in chapter 2 and 3). In 
a very confined geometry the stiffness of the cavitation curves becomes less dependent on the 
shear modulus of the materials and more on the bulk modulus and on the boundary conditions 
(which are nearly identical for the three materials), but since our geometry sphere-to-flat the 
material is less confined we do observe that the stiffness depends on the shear modulus.  
As mentioned in chapter 3 the three polyurethane model networks are rather brittle and have 
relatively low GIC at standard conditions. This brittleness is also reflected in the cavitation 
results, since the maximal force that corresponds to the critical cavity growing occurs at 
relatively low strain for the three polyurethane model networks. When comparing the 
materials we do observe that the effect of adding 20% wt. of PPG1000 to PPG8000 cancels 
the effect of having long chains (with entanglements) in terms of maximum extension at 
fracture, giving a bimodal network (PU8000/1000) with similar behavior as the monomodal 
PU4000.   
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Figure 5.11: Comparison of cavitation curves for the three polyurethane model networks at 
standard conditions. 
 
Maximal hydrostatic stress 
 
Table 5.1 presents the average maximal hydrostatic stress obtained at standard conditions, for 
the three polyurethane model networks. The methodology to go from the maximal force 
(unique peak for PU4000 and PU8000/1000 and first peak for PU8000) to the maximal 
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hydrostatic stress was presented in Chapter 4. Incidentally, we observe that the critical 
hydrostatic stresses obtained at standard conditions are almost five times the fracture strength 
of the materials in uniaxial tension (Figure 3.4).   
The cavitation phenomenon was experimentally observed by Gent and Lindley [Gent and 
Lindley 1959] in rubber disks. They observed that the stress at which the cracks form was 
highly reproducible, as we did. They used the nonlinear theory of elasticity to explain the 
unstable cavity growth in elastomers in which when a critical value of the negative pressure is 
reached then any cavity in the rubber will grow to infinite size. There were several problems 
with this simple theoretical approach and in particular Gent assumed reversible deformation 
and not fracture, and ignored the surface tension. William and Schapery [Williams and 
Schapery 1965] predicted the same result with a critical stored energy criterion. It is 
interesting to note that both models used a critical constant pressure inside the cavity and an 
infinite medium, which are not the experimental situations. 
Yet, they found experimentally that the critical stress for cavitation was directly proportional 
to the Young’s modulus of the rubber. Table 5.1 shows that PU4000 has higher maximal 
hydrostatic stress than PU8000/1000 followed by PU8000. This ranking scales well with the 
modulus of the materials; however, when the hydrostatic stress is normalized by using the 
modulus of the material the scaling is inverted. In other words the cavitation stress scales with 
the modulus but is not directly proportional to it. Figure 5.12 puts graphically in evidence this 
dependence on the modulus. 
 
Table 5.1: Maximal hydrostatic stress σhydro, max, and hydrostatic stress normalized by the 
Young’ modulus, for the three polyurethane model networks, at standard conditions.  
 

Material E 
[MPa] 

σhydro, max  

[MPa] 
σ/E 

PU4000 1.3 ± 0.08 3.25 ± 0.13 2.50 
PU8000 0.8 ± 0.06 2.45 ± 0.08 3.06 
PU8000/1000 1.2 ± 0.07 3.09 ± 0.15 2.58 
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Figure 5.12: Maximal hydrostatic stress σhydro, max, and hydrostatic stress normalized by the 
Young’ modulus, for the three polyurethane model networks, at standard conditions.  
 
Critical cavity formation 
 
Our experimental results have shown sequences of images that have been synchronized with 
force and time (as explained in chapter 4). For our cameras acquisition rate the time elapsed 
between two consecutive frames was 0.04s, then the average rate at which the critical cavity 
grows initially can be estimated. Figure 5.13 shows three region of critical cavity growth.  
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Figure 5.13: Schematic of critical cavity growth.  
 
In the region A the crack growth is very fast and is calculated between two consecutive 
images from which nothing can be seen and the critical cavity appears. Once the critical 
cavity is visible and starts growing the process is still uncontrolled but slower (region B), and 
in the later stages of the crack propagation (region C) the growth rate of the cavity slows 
down further and is now controlled by the applied crosshead displacement rate until complete 
fracture occurs.  
 
In region A, we observed that once the critical cavity appears the process is quite rapid. A 
small cavity that looks first grey and then white, burst and grows. The transition from not 
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visible critical cavity to a visible critical cavity with a certain size takes place a time shorter 
than the time between two successive frames, i.e. in less than 40 ms. The size of the first 
observable cavity and the estimated growth rates is shown in Table 5.2. 
 
Table 5.2: Initial size and growth rate of the critical cavity at standard conditions. 
 

Material Initial size  
[mm] 

Growth rate 
[mm/s] 

PU4000 1 x 0.5 26 
PU8000 1.4 x 0.7 36 
PU8000/1000 1.2 x 0.7 31 

 
 
Such big visible and measurable initial sizes mean that we are seeing cavities growth and not 
the cavities nucleation. It is expected that a much smaller pre-critical cavity existed before the 
critical cavity appeared but it was not visible to us. The camera speed and resolution, limit the 
visualization of the actual initial defect from which the fracture grows. 
 
5.1.2.- Critical cavity growth  - Crack propagation (Region B) 
 
The shape of the cavity and the growing rate depends on the material. From top view, the 
critical cavity grows in two directions, ‘size I’ corresponds to the longer size and ‘size II’ 
corresponds to the perpendicular direction to I. 
Figure 5.14 presents an example of the curves of the critical cavity growing as a function of 
time (see Appendix A5.1 for reproducibility). We observe that PU4000 has one side ‘size I’ 
growing faster than the other side ‘size II’, which means an initial growing with oval shape 
which afterwards become circular (or with radial shape).  
For PU8000/1000 we observed either an initial oval shape followed by circular shape, or a 
circular shape growing from the beginning, and for PU8000 the growing cavity was always 
circular. For PU8000 the growth rate of the critical cavities was lower than for PU4000 and 
PU8000/1000.  Note that the graphs of Figure 5.14 correspond to region B in Figure 5.13. 
As the displacement is increased the critical cavity propagates along a principal normal stress 
trajectory until the two pieces are completely apart. Figure 5.15 shows a typical picture of the 
fracture surfaces; we observe that the initial damage occurs in the central region of the sample, 
meaning that the cavity/cavities were in the bulk of the material and never at the 
elastomer/glass interface. Such cases were rare and the results were discarded. 
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            (c) 
Figure 5.14: Critical cavity growth for: (a) PU4000, (b) PU8000 and (c) PU8000/1000, at 
standard conditions.  
 

 
 
Figure 5.15: Lateral view of a cavitation sample just after complete fracture.  
 
5.1.3.- Morphology of the fracture surfaces 
 
Once the samples were completely fractured, the fracture surface were observed by optical 
microscopy. Figure 5.16 shows the fractured surface of a PU4000 sample (PU8000/1000 
fractured surface looks very similar, see Appendix A5.1). Most of the surface is very rough, 
which is related to the velocity of propagation [Lindsey 1966, Knauss 1965], being that 
slower process gives rougher surface. On the left side we observe that the fracture initiation 
was very close to the centre of the sample and that a crack of ~1.5-2mm long was first formed. 
By focusing closer on the fracture (right side of the figure) we observe that the surface of the 
crack is inclined at an angle of approximately ~45°- 90°, and that it forms a ‘step’. The 
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change in surface is abrupt, indicating a rapid change from slow to fast mode. These 
observations are consistent with the real time observations showing first a fast growth of a 
crack close to the center of the sample followed by a controlled fracture propagating outwards. 
A similar morphology was observed for PU8000/1000. 
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Figure 5.16: Typical optical microscopy fractured surface of PU4000 after cavitation, at 
standard conditions. Similar fracture surface is observed for PU8000/1000.  
 
Figure 5.17 shows the fractured surface of a PU8000 sample. We observe that the traces of 3-
4 oyster-shaped cavities are visible. Because cavity growth stops due to the toughness of the 
material, the stress keeps increasing as the material is deformed and several cavities can grow 
one after the other. The second nucleation of failure is typically less catastrophic and smaller 
in size. The fracture surface is virtually planar, consequently what had appeared to be a 
bubble growing while the fracture was being observed is believed to have actually been a 
penny-shaped crack in the plane normal to the tensile direction. Probably the fracture 
nucleates from a specific point (or in this case several points) where an initial defect in the 
material exists.  
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Figure 5.17: Optical microscopy fractured surface of PU8000 after cavitation, at standard 
conditions. 
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5.2.- Cavitation results at different temperatures 
 
With the purpose of evaluating the effect of the possible thermal activation on the cavitation 
process, experiments at different temperatures were carried out for the three polyurethane 
model networks. This section presents the main results. All the comparisons are done with the 
cavitation results that were obtained at ‘standard conditions’.   
 
5.2.1.- Experimental part and results at different temperatures 
 
5.2.1.1.- General trends 
 
To perform these cavitation experiments the same initial speed used at standard conditions 
was maintained which was 10µm/s (initial strain rate ~1%/s) but the temperature was varied. 
To perform the experiments at different temperatures the heating chamber in the MTS 
machine was maintained closed to heat up the samples (as presented in section 4.3). The 
effect on the behaviour of the materials at three additional higher temperatures was evaluated: 
50°C, 70°C and 100°C.  
Figure 5.18 shows typical curves of force versus displacement at standard conditions 25°C 
and at 100°C. The curves and the values of force at 25°C, 50°C, 70°C and 100°C, for the 
three materials are presented in Appendix A5.2. We observe that when the temperature is 
increased (100°C) the critical force is reached at lower values than at standard conditions 
(25°C) and the shape of the curves changes. The propagation regime becomes much faster 
and less controlled as the temperature is increased.  
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    (a)                                                                      (b) 
Figure 5.18: Typical cavitation curves showing a lower critical force at higher temperatures. 
Comparison at 10µm/s, 25°C and 100°C for: (a) PU4000 and PU8000/1000; (b) PU8000. 
 
Table 5.3 presents the calculated values of maximal hydrostatic stress for the different 
temperatures and the three materials. The values of maximal force and displacement are 
reported in Appendix A5.2. Figure 5.19 shows graphically the maximal hydrostatic stress as a 
function of temperature and we observe that for higher temperatures the hydrostatic stress 
decreases for the three polyurethane networks. The fracture results in chapter 3 reported that 
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at higher temperature the fracture toughness decreases significantly. Higher stiffness when the 
temperature is increased is due to the thermoelasticity of the elastomers, and was already 
observed by DMA in chapter 2 and in the fracture experiments described in chapter 3. Since 
we observe the same effect of the temperature on the fracture and cavitation results, we can 
say that the temperature in the cavitation experiments acts on the toughness of the material: 
showing that an increase of the temperature leads to a decrease in the toughness of the 
material, even in confined conditions.   
 
When the three polyurethane model networks are compared at different temperatures, we 
observe that, at all the temperatures, the order of resistance to cavitation from higher to lower 
is PU4000≥PU8000/1000>PU8000 which scales with the respective modulus of the materials 
at different temperatures (as stated by Gent and Lindley). However, when the maximal 
hydrostatic stress is normalized by the modulus, we observe (see Figure 5.20) that the order is 
inversed showing PU8000 higher cavitation resistance related to its modulus than PU4000 
and PU8000/1000, at all the temperatures. 
 
Table 5.3: Modulus, maximal hydrostatic stress σhydro, max, and hydrostatic stress normalized 
by the modulus for the three polyurethane model networks, at different temperatures.  
 

Materials Temperature
[°C] 

E  
[MPa] 

σhydro, max 

[MPa] 
σmax /E 

PU4000 25 1.3 ± 0.08 3.25 ± 0.13 2.50 
 50 1.38 ± 0.07 2.63 ± 0.06 1.91 
 70 1.45 ± 0.09 2.62 ± 0.08 1.81 
 100 1.55 ± 0.04 1.77 ± 0.07 1.14 
PU8000 25 0.8 ± 0.06 2.45 ± 0.08 3.06 
 50 0.84 ± 0.03 2.09 ± 0.13 2.49 
 70 0.88 ± 0.04 1.83 ± 0.10 2.08 
 100 0.93 ± 0.04 1.64 ± 0.12 1.76 
PU8000/1000 25 1.2 ± 0.07 3.09 ± 0.15 2.58 
 50 1.28 ± 0.04 2.66 ± 0.08 1.77 
 70 1.35 ± 0.06 2.19 ± 0.15 1.62 
 100 1.44 ± 0.05 1.77 ± 0.11 1.23 
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Figure 5.19: Maximal hydrostatic stress σhydrostatic, max., as a function of the temperatures 25°, 
50°C, 70° and 100°C, and 10µm/s. 
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Figure 5.20: Maximal hydrostatic stress σhydro, max normalized by the modulus, as a function 
of the temperatures 25°C, 50°C, 70°C and 100°C, and 10µm/s. 
 
Now as mentioned before, Gent and Lindley [Gent and Lindley 1959] proposed that the 
critical stress for cavitation was a linear function of the Young’s modulus of the rubber, but if 
we graph our cavitation results at different temperatures as a function of the modulus of the 
material (see Figure 5.21) we observe that for the three polyurethanes networks while the 
modulus increases as the temperature increases, the hydrostatic stress decreases and this result 
goes clearly in the opposite direction as Gent and Lindley’s statement.  This interesting result 
provides some clues on the mechanism. Any mechanism purely based on reversible non linear 
elastic behavior will be unable to capture such a behavior since nonlinear elastic properties 
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are weakly dependent on the temperature and the modulus of entropic origin increases with 
temperature. 
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Figure 5.21: Maximal hydrostatic stress σhydro, max in function of the modulus at different 
temperatures 25°, 50°C, 70° and 100°C, and 10µm/s. 
 
It is therefore interesting to represent the maximal hydrostatic stress as a function of the 
fracture energy measured in mode I with DEN samples. Figure 5.22 shows that clearly for a 
given material the resistance to cavitation increases with toughness, which is a new result, but 
also shows that the elastomer with higher moduli display a higher resistance to fracture in 
confined conditions as well, stressing the need for a model incorporating both parameters.  
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Figure 5.22: Maximal hydrostatic stress as a function of the critical fracture energy, at 
different temperatures for the three polyurethane model networks. 
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Once the critical cavity has appeared the fracture process occurs very fast and in an 
uncontrolled way. The shape of the curves of force versus displacement changes at the 
different temperatures for the three polyurethane networks. Table 5.4 presents a summary of 
the typical changes of the force-displacement curves when the temperature increases for each 
material. We observe that at higher temperatures than 25°C once the maximal force is reached 
the force drops sharply and very rapidly.  
 
Table 5.4: Typical change of the shape of the cavitation curves for the three polyurethane 
model networks, at different temperatures. 
 

 Materials 
Curves PU4000 PU8000 PU8000/1000 
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5.2.1.2.- Critical cavity size and crack propagation 
 
In general the cavitation process and the growing of the critical cavity occur faster and at 
lower forces at higher temperatures than at standard conditions. Table 5.5 shows the initial 
size of the critical cavity (initial size on the region B in Figure 5.13) at 25°C and at 100°C, the 
measures were roughly calculated but a comparison can be made. We observe that at higher 
temperatures a smaller critical cavity appears than at standard conditions, for the three 
materials, but the cavity becomes bigger very fast (Figure 5.23). Additionally, one can see 
that apparently the initial size of the critical cavity is larger for PU8000 than for the other two 
materials, at 25°C and higher temperatures. Note that the actual initial defect from which the 
fracture grows was probably much smaller for both conditions, for the three materials.  
 
Table 5.5: Approximate initial critical cavity size at standard conditions 25°C and at 100°C. 
The critical cavity grows in two directions, the ‘size I’ corresponds to the longer size and ‘size 
II’ corresponds to the perpendicular cavity size. 
 

Material Size I @25°C 
[mm] 

Size II @25°C 
[mm] 

Size I @100°C 
[mm] 

Size II @100°C 
[mm] 

PU4000 1.0 ± 0.28 0.49 ± 0.15 0.27 ± 0.05 0.17 ± 0.04 
PU8000 1.4 ± 0.06 0.72 ± 0.26 0.34 ± 0.03 0.28 ± 0.04 
PI8000/1000 1.2 ± 0.13 0.71 ± 0.17 0.33 ± 0.03 0.24 ± 0.03 

 
 
Figure 5.23 shows a comparison of the critical cavity growing as a function of time for 
standard conditions 25°C and at the highest temperature 100°C. Note that the graphs in Figure 
5.23 correspond to region B in Figure 5.13. Upon appearance of the critical cavity the process 
of cavity growth occurs much faster at higher temperatures than at standard conditions and the 
fastest fracture process occur at the highest temperature 100°C, for the three polyurethane 
networks (see Appendix A5.2 for reproducibility).  
Compared to standard conditions, at higher temperatures only one critical cavity appears and, 
from top view, the cavity is circular (symmetric radial growth) for the three materials, since 
both size I and II growth rates are similar.  
 
5.2.1.3.- Fracture morphology 
 
Figure 5.24 presents the micrographs of the fracture surface of PU4000 and PU8000/1000. 
We observe that at higher temperatures the surfaces display a mirror-like area in the center of 
the sample which is characteristic of a very fast crack growth encountered typically for brittle 
fracture. Figure 5.25 shows the fracture surface of PU8000, for higher temperatures ((a) 50°C, 
70°C and (b)100°C). When the materials are compared at higher temperatures, we observe 
that PU4000 and PU8000/1000 present more damaged surface than PU8000 after cavitation.  
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     (c) 

Figure 5.23: Cavity growth as a function of the time for two temperatures 25°C and 100°C, 
(strain rate 10µm/s ~ 1%/s) for: (a) PU4000, (b) PU8000 and (c) PU8000/1000.  
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Figure 5.24: Typical optical microscopy images of the fractured surface of PU4000 after 
cavitation at 50, 70°C and 100°C. Similar fracture surface is observed for PU8000/1000. 
Arrows point out radial cracks. 
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       Glass plate 1mmGlass plate 1mm  

    (a)                                                                         (b) 
Figure 5.25: Typical optical microscopy images of the fractured surface of PU8000 after 
cavitation at (a) 50°C and 70°C, and (b) 100°C. Arrows point out radial cracks. 
 
Our cavitation results obtained at higher temperatures are in agreement with our fracture 
results reported in chapter 3, where the fracture toughness GIC of the materials decreases as 
the temperature increases as presented in Figure 5.22. Fragile and very fast fractures are 
observed at higher temperatures for the three polyurethane model networks.  
 
5.3.- Cavitation results at different strain rates 
 
With the purpose of evaluating the effect of the viscoelastic properties on fracture and 
therefore on the cavitation process, experiments at a slow average strain rate, two decades 
below than at standard conditions, were carried out, for the three polyurethane model 
networks. This section presents the main results.  
 
5.3.1.- Experimental part and results at different strain rates 
 
The samples preparation was already reported in chapter 4. These cavitation experiments were 
carried out at 25°C and we used a crosshead velocity of 0.1µm/s (strain rate ~0.01%/s).   
 
5.3.1.1.- General trends  
 
Figure 5.26 shows typical curves of force versus displacement at standard conditions 10µm/s 
and at 0.1µm/s. We observe that at lower strain rates, the maximal force is reached at lower 
values (see Appendix A5.3) than at standard conditions. Table 5.6 reports the results obtained 
for the maximal hydrostatic stress at both speeds, for the three polyurethane networks. The 
storage modulus of the three materials is almost the same at both speeds as presented in 
section 3.2 for the time-temperature superposition.  
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    (a)                                                                             (b) 
Figure 5.26: Typical cavitation curves showing lower critical force at lower speed. 
Comparison at 10µm/s and 0.1µm/s for: (a) PU4000 and PU8000/1000, and (b) PU8000. 
 
Table 5.6:  Modulus, maximal hydrostatic stress σhydro, max, and hydrostatic stress normalized 
by the modulus, at two speeds 10µm/s and 0.1µm/s, for the three polyurethane model 
networks. 
 

Materials E [MPa] @10µm/s 
σhydro, max 

[Mpa] 

@10µm/s 
σmax /E 

@0.1µm/s 
σhydro, max 

[MPa] 

@0.1µm/s 
σmax /E 

PU4000 1.3 ± 0.08 3.25 ± 0.13 2.50 2.41 ± 0.11 1.85 
PU8000 0.8 ± 0.06 2.45 ± 0.08 3.06 1.95 ± 0.09 2.43 
PU8000/1000 1.2 ± 0.07 3.09 ± 0.15 2.58 2.24 ± 0.05 1.87 

 
Figure 5.27 shows graphically the maximal hydrostatic stress as a function of the crosshead 
speed. We observe that for lower strain rate the hydrostatic stress decreases for the three 
polyurethane networks. This shows that when a material is loaded during a longer time, lower 
forces are needed to fracture the material. Superficially, this rate effect on the cavitation 
results goes in the same direction as the fracture results reported in chapter 3, in which at 
lower strain rates a lower fracture toughness GIC is measured. Rate dependence effects 
suggest that dissipative mechanisms are present also in the cavitation mechanisms and that 
time temperature equivalence may be obtained. However, as presented in chapter 3 only a 
qualitative time-temperature dependence is observed for the three polyurethane networks, 
since quantitatively, a very different time temperature equivalence is obtained from linear 
viscoelastic master curves and from fracture results.    
When the cavitation results of the three polyurethane networks at different speeds are 
compared we observe that the rate dependence effect is roughly equivalent for all materials. 
Figure 5.28 shows the hydrostatic stress normalized by the modulus for the three polyurethane 
model networks at standard conditions (10µm/s) and two decades below (0.1µm/s).  At both 
strain rates PU8000 is more cavitation resistant than the other two materials as already 
observed for the tests at different temperatures. 
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Figure 5.27:  Maximal hydrostatic stress σhydrostatic, max., as a function of the speeds 10µm/s 
(strain rate ~1%/s) and 0.1µm/s (strain rate ~0.01%/s), and 25°C for the three polyurethane 
model networks. 
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Figure 5.28: Maximal hydrostatic stress σhydro, max normalized by the modulus, as a function 
of the speeds 10µm/s (strain rate ~1%/s) and 0.1µm/s (strain rate ~0.01%/s), and 25°C for the 
three polyurethane model networks. 
. 
If the maximal hydrostatic stress is plotted against the modulus we observe that the 
hydrostatic stress scales with the modulus for the three polyurethane networks at 0.1µm/s (see 
Figure 5.29).  
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Figure 5.29: Maximal hydrostatic stress σhydro, max as a function of the modulus at two speeds 
10µm/s (strain rate ~1%/s) and 0.1µm/s (strain rate ~0.01%/s), and 25°C for the three 
polyurethane model networks. 
 
5.2.1.2.- Critical cavity size and crack propagation  
 
Table 5.7 shows the size of the critical cavity when it is first measurable (region A), at 
10µm/s and at 0.1µm/s. The measurements were roughly estimated, but we observe that at 
lower speed the critical cavity is smaller and more symmetric than when it appears at standard 
conditions, for the three materials.  The visible critical cavity size at low strain rate measures 
approximately ~0.28 mm x 0.24 mm for PU4000, 0.47 mm x 0.36 mm for PU8000 and 0.35 
mm x 0.28 mm for PU8000/1000; after the fracture surface has been formed, the crack grows. 
However, since the time elapsed between two consecutive frames was the same at both speeds 
(25 fps, i.e. 40 ms) the average rate at which the cavity grows initially can be estimated to be 
different roughly by a factor of 2. Note that, as for the experiments done at different 
temperatures, the actual nucleus from which the fracture grows was probably much smaller 
for both conditions, for the three materials. 
 
Figure 5.30 (see Appendix A5.3 for reproducibility) shows in a log scale that, at low strain 
rate, once the critical cavity has appeared it grows slowly up to a second critical size and then 
the growth rate increases; however direct visual comparisons between the growth rates at low 
and high average strain rate are biased by the use of the log scale. The initial size of the 
critical cavity is slightly bigger for PU8000 than for the other two materials, at standard 
conditions and at low strain rate. The cavity growing is circular at low speed since both sizes I 
and II are parallel. At low speed, there is only one critical cavity growing for the three 
polyurethanes networks.  
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Table 5.7: Approximate initial critical cavity size at standard conditions 10µm/s and at 
0.1µm/s. 
 

Material Size I @10µm/s 
[mm] 

Size II @10µm/s 
[mm] 

Size I @0.1µm/s 
[mm] 

Size II @0.1µm/s 
[mm] 

PU4000 1.0 ± 0.28 0.49 ± 0.15 0.28 ± 0.04 0.24 ± 0.03 
PU8000 1.4 ± 0.06 0.72 ± 0.26 0.47 ± 0.08 0.36 ± 0.06 
PI8000/1000 1.2 ± 0.13 0.71 ± 0.17 0.35 ± 0.08 0.28 ± 0.06 
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Figure 5.30: Cavity growing as a function of the time for two speeds 10µm/s and 0.1µm/s, 
and 25°C for: (a) PU4000, (b) PU8000 and (c) PU8000/1000.  
 
5.2.1.3.- Fracture morphology 
 
Figure 5.31 (a) presents the fracture surfaces after the tests at low speed for PU4000 and 
PU8000/1000 and Figure 5.31 (b) for PU8000. No evidence of the critical cavity can be 
observed. Apparently, the three polyurethane networks present a more fragile fracture when 
the speed is at standard conditions (10 µm/s) where the crack growth is faster, compared with 
the fracture after cavitation at low strain rate (0.1 µm/s).  
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                          (a)           (b) 
Figure 5.31: Typical optical microscopy images of the fractured surface after cavitation at 
0.1µm/s of (a) PU4000 and PU8000/1000, and (b) PU8000. Arrows point out radial cracks. 
 
5.4.-  Pre-critical cavities analysis 
 
Until this point of the chapter, the discussion has been focused on the fracture process. On the 
unstable cavity growing, once a critical hydrostatic stress has been reached. We studied 
changes in the force-displacement curves upon fracture, the growth rate of the critical cavity 
and the fracture surfaces, for the three polyurethane model networks at different experimental 
conditions. Here, rises the question if the maximal force (Fmax) is the really the right criterion 
to study the nucleation of cavitation. The appearance of pre-critical cavities before 
catastrophic fracture occurs implies the existence of two separate criteria: one for the brittle 
expansion of the critical cavity and one for the growth (crack propagation). In this section we 
present an analysis that to-date has not been reported in the literature, the analysis of the pre-
critical cavities. 
 
5.4.1.-Lateral profile: Volume change  
 
Since the elastomers are considered incompressible or quasi-incompressible, non volume 
change is expected in the materials when submitted to certain amount of loading stress, unless 
the material has developed internal voids. In fact, a variation of the volume of these materials 
is an indication that pre-critical cavity/cavities have nucleated in it. 
Measures of the variation of volume were done for the three polyurethane model networks by 
using the lateral profiles obtained from the side projection. For each polyurethane three 
samples were studied. By using around fifteen (15) measurements of force and displacement, 
before the critical cavity starts growing, the volume change was calculated. For the images 
analysis a programme was developed in the lab.  
Figure 5.32 presents the typical graphs obtained for the variation of volume as a function of 
the displacement for (a) PU4000, (b) PU8000 and (c) PU8000/1000 ; the arrow points out 
where the critical cavity appears (whether it stays stable or not before crack growth). Note 
that at the beginning of the analysis the variation of the volume is almost zero. Later, there is 
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a change of the slope of the curve of force versus displacement, which shows a volume 
change. We observe for the three polyurethane model networks a total volume change of 
ΔV/V0 ≤ 2.5%, this maximum volume change is reached at the maximum force and 
displacement before the critical cavity grows for the three materials. We could not appreciate 
a clear difference in volume change for the three polyurethane networks.  
Despite the possible uncertainties that this measurement has, the results obtained show a 
tendency that was reproducible for the different samples. This change in volume obtained 
experimentally at the first stages of the cavitation experiments suggests that pre-critical 
cavities has been formed, even before they are visible to us on the camera.  
An analysis on the visible pre-critical cavities is presented in the next sections.  
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            (c) 
Figure 5.32: Volume change in function of the displacement for (a) PU4000; (B) PU8000; 
and (c) PU8000/1000. The arrow shows where the critical cavity appears. 
 
5.4.2.- Conditions of pre-critical cavity formation  
 
In order to better understand the mechanism of cavitation, and since our samples and 
cavitation system allowed us to visualize pre-critical cavities and to follow them in time, we 
did analyze the visible pre-critical cavities on different experimental conditions.  
The formation of relatively small stable white spots was observed and we made an analysis of 
these “pre-critical cavities”. In this section, the conditions of pre-critical cavity formation 
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have been analyzed in terms of number of events and time of appearance for different 
materials and conditions. . In chapter 6, a statistical analysis is proposed, looking at position 
distributions and probabilities of events. 
In this section we focus on the first part of the force versus displacement curve (the left side in 
Figure 5.1).  Figure 5.33 presents an example of how the analysis is carried out for each 
sample and condition. 
The procedure is based on the videos and the synchronized force versus time curves, the 
corresponding image where one event happens (a cavity appears) is taken with the timing and 
force at which it appeared, then by using the image, the distance of the cavity from the center 
of the sample is measured and the hydrostatic stress value is calculated. Since the hydrostatic 
stress has a stress distribution which is maximal in the central part, and decreases to the edges 
(see Figure 4.2), the maximal hydrostatic stress has to be normalized as a function of the 
position along the radial direction (see Figure 4.22) as introduced in chapter 4. 
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Figure 5.33: Example of pre-critical cavities analysis. Point 4 corresponds to the critical 
cavity appearance and the point after is the critical cavity growth.  

Number 
of pre-
cavity 

σhydrostatic (r) 

[MPa] 
Radius to 
the center 

[mm] 

Time 
[s] 

1 1.817 2.53 18.63 
2 2.762 1.42 19.21 
3 2.600 1.74 19.93 
4 2.874 1.44 19.97 
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5.4.2.1.- Pre-critical cavities analysis at standard conditions 
 
Figure 5.34 presents the local hydrostatic as a function of the time for the three polyurethane 
model networks, at standard conditions. Three samples were analyzed, for each condition. 
The typical size of a visible pre-critical cavity was ~200-300μm.   
We observe that at standard conditions few visible pre-critical cavities (~4-5 cavities) appear 
in PU4000 and in PU8000/1000 in centre region of the sample, but they stay stable and only 
one cavity, which was already there or not, is the one growing (the critical cavity).  For 
PU8000 less pre-critical cavities are observed (~2 cavities) before the critical cavity appears 
and growth. We can see, qualitatively, that PU4000 and PU8000/1000 present more 
‘dispersion’ in the stress values than PU8000, more detailed analysis is done in chapter 6.  
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Figure 5.34: Local Hydrostatic stress as a function of the time at standard conditions, for: (a) 
PU4000, (b) PU8000, and (c) PU8000/1000.  
 
The fact that we do observe pre-critical cavities which appear and remain stable and do not 
grow means that some pre-critical cavities are able to grow in the material as a consequence 
of the hydrostatic stress but due to the surface tension, only one or few cavities are able to 
expand. This also makes reasonable to assume that each defect acts independently. The pre-
critical cavities appear much less frequently in PU8000 implying that either the initial defects 
are smaller or they grow more slowly under stress. When comparing the networks with short 
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and long chains (unentangled and entangled) it is clear that the entanglements toughen the 
material which stabilizes the crack growth even in confined conditions.  
 
5.4.2.2.-Pre-critical analysis at high temperature 
 
When the temperature is increased less pre-critical cavities are observed for the three 
polyurethane model networks. Here, we only present the data for 100°C (the highest 
temperature we used) and the results are compared with standard conditions. Figure 5.35 
presents the local hydrostatic stress of the sample as a function of the time for the three 
polyurethane model networks, at 100°C. We observe that at higher temperatures only 2-3 pre-
cavities (less than at standard conditions) appear before the critical cavity appears for PU4000. 
For PU8000/1000, and for PU8000 only one critical cavity appears. Probably due to the 
increase in temperature the cavities are less stable and once they appear the material is prone 
to catastrophic failure.  
Figure 5.36 presents the local hydrostatic stress as a function of time for the three materials at 
100°C compared to 25°C. The graph shows clearly the effect of the temperature in the 
materials regarding the amount of cavities, the decrease of the stress and faster cavitation 
process.  The cavitation behaviour of samples at 50°C and 70°C is just in between the two 
extremes (25°C and 100°C).   
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Figure 5.35: Local Hydrostatic stress as a function of the time at 100°C, for: (a) PU4000, (b) 
PU8000, and (c) PU8000/1000.  
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Figure 5.36: Local Hydrostatic stress as a function of the time for the three polyurethane 
model networks, at 25°C and 100°C.  
 
5.4.2.3.-Pre-critical analysis at low strain rate 
 
When the speed of the cavitation experiment is decreased some changes are observed 
regarding the appearance of pre-critical cavities. The same trend is observed for the three 
networks, at lower speed pre-critical cavities appear earlier and stay stable for a longer time 
until the critical cavity grows, see. Figure 5.37. 
For PU4000, the number of pre-critical cavities highly increases with a decrease in strain rate: 
we observe about 8 pre-critical cavities at 0.1µm/s while at 10µm/s showed only 4-5 pre-
cavities before the growing of the critical cavity. For the sample PU4000 it was observed the 
more marked influence of the strain rate, being the amount of pre-critical cavities that appear 
at low strain rate around twice the amount that appear at standard conditions.  
For PU8000 and PU8000/1000 at 0.1µm/s the amount of pre-critical cavities that appear did 
almost not change with respect to the amount of pre-critical cavities observed at standard 
conditions. When comparing the networks with short and long chains (unentangled and 
entangled) it is clear that the entanglements toughen the material which stabilizes the crack 
growth even when the material is submitted longer time to stresses.  
Figure 5.38 presents the stress as a function of time for the three materials at 0.1µm/s 
compared to standard conditions. The graph shows the effect of the strain rate in the materials 
where at 0.1µm/s the stress is lower and the pre-cavities stay longer time stable even if they 
appear at lower forces.  
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Figure 5.37: Local Hydrostatic stress as a function of the time at 0.1µm/s, for: (a) PU4000, (b) 
PU8000, and (c) PU8000/1000.  
 

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

σ hy
dr

os
ta

tic
 (r

) [M
Pa

]

2 3 4 5 6 7 8 9
100

2 3 4 5 6 7 8 9
1000

2

time [s]

 PU4000
 PU8000
 PU8000/1000

 
 

10µm/s

0.1µm/s

 
Figure 5.38: Local Hydrostatic stress normalized as a function of the time for the three 
polyurethane model networks, at 10µm/s and 0.1µm/s.  
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Summarizing the pre-cavities analysis at different experimental conditions  
 
Figure 5.39 presents a comparison of the three materials at standard conditions, at higher 
temperature 100°C and at low speed 0.1µm/s. Here, only one sample of each material and 
condition is presented to make the comparison. When the experimental conditions are at 
higher temperature and low speed we observe lower hydrostatic stresses than at standard 
conditions. We observe that at higher temperature, only few pre-critical cavities appear, the 
hydrostatic stress is lower than at standard conditions and the cavitation process is faster than 
at standard conditions. At low strain rate, we observe for PU4000 more pre-critical cavities 
appear than at standard condition, however, for PU8000 and PU8000/1000 the amount of pre-
critical cavities is more or less the same than at standard conditions. At low strain rate, the 
hydrostatic stress is lower than at standard conditions and the cavitation process takes longer 
time while the cavities appear at lower forces. Table 5.8 summarizes the mean number of pre-
critical cavities for the different conditions. 
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Figure 5.39: Local Hydrostatic stress as a function of the time at high temperature and low 
speed, for the different conditions.  
 
 Table 5.8: Mean number of pre-critical cavities for the different conditions. 
 

Mean number of 
pre-critical cavities 

Standard conditions 
25°C – 10µm/s 

High Temperature
T=100°C – 10µm/s 

Low strain rate 
T=25°C – 0.1µm/s 

PU4000 4-5 2-3 8 
PU8000 2-3 1 2-3 
PI8000/1000 4-5 2-3 4-5 
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Conclusions 
 
On the physics of the problem 
 

• The critical cavity for the three materials appears very close to the centre of the sample 
when the maximal force is almost reached. 

 
• The appearance of stable pre-critical cavities before catastrophic fracture occurs 

implies the existence of two separate criteria: one for the nucleation and one for the 
cavity growth. 

 
• The temperature change acts mostly on the toughness but the time acts mostly on the 

pre-critical cavity formation. Both effects must be important. 
 

• For the different experimental conditions investigated (i.e. temperature and strain rate), 
no direct scaling of the hydrostatic stress with the modulus has been observed. On the 
other hand the cavitation stress appears to scale better with the fracture energy GIc of 
the material in mode I. 

 
On the materials properties  
 

• The presence of pre-critical cavities depends very markedly on the material and on the 
conditions (maximum for low rate and minimum for high temperature). This implies 
that the toughness does not control the appearance of these cavities (since GIc 
decreases both with rate and temperature but the pre-cavities do very differently). 

 
• The indications are that a softer material containing trapped entanglements (PU8000) 

as well as homogeneous crosslinks (PU8000/1000) can give a relatively high 
resistance to cavitation. PU8000/1000 has a cavitation strength higher than PU4000 
and the pre-critical nucleation at low rate is less pronounced than for the PU4000. 

 
• However, the presence of short chains in the bimodal network completely kills the 

entanglement effect in terms of toughness GIc but does not kill it in terms of slow 
growth in view that pre-critical cavities grow less for PU8000/1000 than for the 4000 
at low rates.  

 
The cavitation strength depends for use on Temperature, hydrostatic stress σ and time and a 
general function maybe a predictor. In the next chapter pre-existing cavitation models are 
presented and our experimental results are tried to fit them. A new fitting method is proposed 
by using our experimental results.  
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Appendices A5 
 
Appendix A5.1: Cavitation results at standard conditions 
 
Table A5.1: Maximal Force Fmax, maximal displacement Δμ and maximal hydrostatic stress 
σhydro, max, reported for PU4000, PU8000 and PU8000/1000, at standard conditions.  
 

Material E 
[MPa] 

Fmax  
[N] 

Δμmax 

 [µm] 
σhydro, max 

[MPa] 
σ/E 

PU4000 1.3 ± 0.08 103.5 ± 3.4 177 ± 8 3.25 ± 0.13 2.50 
PU8000 0.8 ± 0.06 78.5 ± 2.5 221 ± 11 2.45 ± 0.08 3.06 
PU8000/1000 1.2 ± 0.07 98.7 ± 3.5 214 ± 7 3.09 ± 0.15 2.58 
 
 
The cavity growth for three samples of each material at standard conditions is presented in 
Figure A5.1, A5.2 and A5.3.  
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Figure A5.1: Cavity growth for three samples of PU4000 at standard conditions.  
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Figure A5.2: Cavity growth for three samples of PU8000 at standard conditions.  
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Figure A5.3: Cavity growth for three samples of PU8000/1000 at standard conditions.  
 
 
 
 
 
 
 
 
 
 



 223

Figure A5.4 shows the fractured surface of a PU8000/1000 sample after performing the 
cavitation experiment.  
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Figure A5.4: Optical microscopy fractured surface of PU8000/1000 after cavitation at 
standard conditions. 
 
 
Appendix A5.2: Cavitation results at different temperatures 
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Figure A5.5: Cavitation results for PU4000 at different temperatures 
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Figure A5.6: Cavitation results for PU8000 at different temperatures 
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Figure A5.7: Cavitation results for PU8000/1000 at different temperatures 
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Table A5.2: Maximal Force Fmax, maximal displacement Δμ and maximal hydrostatic stress 
σhydro, max, reported for the three polyurethane model networks, at different temperatures.  

 
The cavity growth for two samples of each material at 100°C is presented in Figure A5.8.  
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Figure A5.8: Cavity growth for PU4000, PU8000 and PU8000/1000 at 100°C.  
 
 
 
 
 
 

Materials E 
[MPa] 

Temp.
[°C] 

Fmax [N] Δμmax 
[µm] 

σhydro, max 

[MPa] 
σmax /E 

PU4000 1.3 ± 0.08 25 103.5 ± 3.4 177 ± 8 3.25 ± 0.13 2.50 
 1.38 ± 0.07 50 82.67 ± 1.5 131 ± 6 2.63 ± 0.06 1.91 
 1.45 ± 0.09 70 83.5 ± 2.5 121 ± 3 2.62 ± 0.08 1.81 
 1.55 ± 0.04 100 57.7 ± 3.5 112 ± 5 1.77 ± 0.07 1.14 
PU8000 0.8 ± 0.06 25 78.5 ± 2.5 221 ± 11 2.45 ± 0.08 3.06 
 0.84 ± 0.03 50 65.1 ± 6.9 146 ± 7 2.09 ± 0.13 2.49 
 0.88 ± 0.04 70 58.1 ± 3.4 144 ± 5 1.83 ± 0.10 2.08 
 0.93 ± 0.04 100 51.2 ± 3.9 116 ± 6 1.64 ± 0.12 1.76 
PU8000/1000 1.2 ± 0.07 25 98.7 ± 3.5 214 ± 7 3.09 ± 0.15 2.58 

 1.28 ± 0.04 50 84.5 ± 1.4 141 ± 5 2.66 ± 0.08 1.77 
 1.35 ± 0.06 70 70.1 ± 4.2 130 ± 5 2.19 ± 0.15 1.62 
 1.44 ± 0.05 100 57.1 ± 3.4 97 ± 8 1.77 ± 0.11 1.23 
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Appendix A5.3: Cavitation results at different strain rates 
 
Table A5.2: Modulus, maximal hydrostatic stress σhydro, max, and hydrostatic stress normalized 
by the modulus, reported for three polyurethane model networks at different speeds 
 

Materials E 
[MPa] 

Speed 
[µm/s] 

Fmax [N] Δμmax 
[µm] 

σhydro, max 

[MPa] 
σmax /E 

PU4000 1.3 ± 0.08 10 103.5 ± 3.4 177 ± 8 3.25 ± 0.13 2.50 
 1.3 ± 0.08 0.1 90.6 ± 4.5 143 ± 5 2.41 ± 0.11 1.85 
PU8000 0.8 ± 0.06 10 78.5 ± 2.5 221 ± 11 2.45 ± 0.08 3.06 
 0.8 ± 0.06 0.1 61.1 ± 1.5 189 ± 13 1.95 ± 0.09 2.44 
PU8000/1000 1.2 ± 0.07 10 98.7 ± 3.5 214 ± 7 3.09 ± 0.15 2.58 
 1.2 ± 0.07 0.1 83.2 ± 3.6 151 ± 10 2.24 ± 0.05 1.87 
 
 
The cavity growth for two samples of each material at 0.1µm/s is presented in Figure A5.9.  
 

6000

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

C
av

ity
 S

iz
e 

[µ
m

]

2 3 4 5 6 7 8 9
100time[s]

 PU4000
 PU8000
 PU8000/1000

 
Figure A5.9: Cavity growth for PU4000, PU8000 and PU8000/1000 at 0.1µm/s.  
 
 
 
 
 
 
 
 
 



 227

Bibliography 
 
Busse W.F., Physics of rubber as related to the automobile, Journal of Applied Physics, 9, 

438-451 (1938). 
Bayraktar, E., Isac, N., Bessri, K. and Bathias, G., Fatigue and Fracture of Engineering 

Materials & Structures, 31, 2, 184-196 (2008). 
Cho, K. and Gent, A.N., Journal of Materials Science, 23, 141-144 (1988)  
Denecour, R.L. and Gent, A.N., Journal of Polymer Science Part A-2, 6, 1853-1861 (1968) 
Fond, C., Lobbrecht, A., Schirrer, R., Int. Journal of Fracture, 77, 141-159 (1996). 
Gent A.N. and and Lindley P.B., Proc. Roy. Soc. A249, 195-205 (1959). 
Gent A.N. and Tompkins, D.A., J.Appl. Phy., 40, 2520, (1969) 
Gent, A. N., Engineering with Rubber, USA, 1992.  
Gent, A.N. and Park, B., Journal of Polymer Science, 19, 1947-1956 (1984). 
Green A.E. and Zerna W., Theoretical elasticity, Oxford Univ. Press, London (1954).  
Hall, E.O., Proc. Physics Society, London, 64B, 747 (1951). 
Knauss, W.G., Report of the California Institute of Technology.- Preprint International 

Conference on Fracture, Sendai, Japan, Sept. (1965). 
Lindsey, G.H., Schapery, R.A., Williams, M.L. and Zak, A.R., Report of the California 

Institute of Technology, Aerospace Research Laboratories, USA Air Force (1963).  
Lindsey, G.H., Hydrostatic Tensile Fracture of Polyurethane Elastomers. California Institute 

of Technology, USA.  PhD Thesis (1966).  
Oberth, A.E. and Bruenner, R.S., Trans. of the Society of Rheology, 9(2), 165-185 (1965) 
Oberth, A.E., Rubber Chemistry and Technology, 40, 1337-1363 (1967) 
Petch, N.J., Journal Iron Steel Institute, London, 174, 174 (1953) 
Yerzley, F.L. Adhesion of Neoprene to metal, Ind. and Eng. Chem., 31, 950-956 (1939).  
Williams M. L. and Schapery R.A., Int. J. Fract. Mech., 1, 64-72 (1965).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 228 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 229

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 6 
 

Cavitation Models 
and Analysis 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 230 

Introduction ............................................................................................................................ 231 
6.1.- State-of-the-art ............................................................................................................... 231 
6.1.1.- Prediction of the resistance to cavitation based on the stress field and the elastic 
instability: Simple Deformation ............................................................................................. 231 
6.1.2.- Cavitation resistance prediction considering the surface energy................................ 233 
6.1.3.- Prediction of the cavitation resistance based on the expansion by fracture................ 235 
6.2.- Model-experiment comparisons: Temperature dependence .......................................... 238 
6.2.1.- Simple deformation cavitation model......................................................................... 238 
6.2.2.- Expansion by Fracture: Linear Elastic Fracture Mechanics (LEFM)......................... 239 
6.2.3.- Non-linear Model: Strain hardening ........................................................................... 240 

6.2.3.1.- Fit of our experimental results with the nonlinear fracture model................... 244 
6.3.- Model-experiment comparisons: Speed dependence..................................................... 248 
6.3.1.- Fitting of the experimental results at different speeds ................................................ 248 
6.4.- Statistics: Number of pre-critical cavities and position distribution.............................. 250 
6.4.1.- Cumulative probability of cavitation .......................................................................... 250 
6.4.2.- Spatial distribution of pre-critical cavities.................................................................. 251 
Conclusions ............................................................................................................................ 255 
Acknowledgements ................................................................................................................ 256 
Appendices A6 ....................................................................................................................... 257 
Appendix A6.1: FEM simulation for a penny-shaped crack in an infinite material subjected to 
internal pressure. .................................................................................................................... 257 
Appendix A6.2: FEM simulation ........................................................................................... 258 
Bibliography........................................................................................................................... 260 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 231

Introduction 
 
Chapter 3 presented the mechanical properties of the three polyurethane model networks 
including the fracture toughness, and Chapter 5 presented the results of the cavitation 
experiments. As described in Chapter 5 this is the first time that a complete study of fracture 
toughness in mode I and a study of the resistance to cavitation under very confined conditions 
is carried out on the same materials. This chapter discusses the results in view of the pre-
existing theoretical models to predict cavitation resistance. All analytical models describe the 
expansion of a preexisting cavity in an infinite medium under a symmetric hydrostatic 
loading. We start from older models considering expansion by deformation only, to go toward 
fracture models and to more recent models in which the limiting extensibility and the initial 
cavity size are taken into account. We compare our experimental data obtained with a finite 
size sample and confined conditions and propose possible explanations for the discrepancies 
between our experimental data and the model predictions. 
  
6.1.- State-of-the-art 
 
It is useful to briefly review now the most important existing cavitation models on rubbers. 
Although the notion of cavitation, which comes from liquids, implies the nucleation of a 
cavity from a previously homogeneous material, most mechanical descriptions of cavitation 
are actually cavity expansion models. They can be roughly divided in two categories: 
reversible expansion by deformation and irreversible expansion by fracture.   
 
6.1.1.- Prediction of the resistance to cavitation based on the stress field and the elastic 
instability: Simple Deformation 
 
The earliest cited theoretical work on cavity expansion by deformation in rubbers was 
reported by Green and Zerna [Green and Zerna 1954] and later by Gent and Lindley [Gent 
and Lindley 1959]. They proposed that, for a cavity expanding in an infinite medium of neo-
Hookean material, the relation between the extension ratio λ of the circumference in the inner 
surface and the inflating constant pressure P in the cavity takes the form: 
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EP                    eq. 6.1 

 
Figure 6.1 shows the schematic of the problem of internal pressure in a cavity that, in 
incompressible materials, is equivalent to an applied far-field constant true triaxial stress. 
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Figure 6.1: Schematic of the problem of internal pressure in a cavity, which is equivalent in 
incompressible materials. Left-down: Sketch of inflated spherical cavity. Right-down: 
Spherical cavity in a material under far-field triaxial tension of –P. 
 
Equation 6.1 shows immediately that for such a material, the hydrostatic stress applied to a 
sphere can not exceed a critical value Pc given by: 
 

μ
2
5

=cP     ⇔    EPc 6
5

=                                 eq. 6.2 

 
where Pc is the critical hydrostatic stress (Pc=σhydrostatic, max) corresponding to unstable 
inflation; and μ and E are the shear and Young’s moduli of the material measured at low 
strain, respectively.  
Based on these theoretical predictions Gent and Lindley [Gent and Lindley 1959] associated 
the critical hydrostatic stress measured in a poker-chip tensile test to the onset of cavitation. 
They found that the cracking stress (S’=Pc) was generally higher for stiffer vulcanizates 
rubbers and reported that the cracking stress depended linearly on the Young’s modulus E of 
the rubber. The cavitation models based on simple deformation [Green and Zerna 1954, Gent 
and Lindley 1959] assume that the results are independent of the initial size of cavity since the 
cavity is in an infinite medium and grows by deformation without surface tension. The cavity 
grows under a constant internal pressure and the deformation is reversible. Their results were 
interpreted by them as suggesting that probably, during the materials processing, some gas 
bubbles were trapped.  
 
In 1982, Ball [Ball 1982] proposed the first mathematical analysis of the phenomenon of 
nucleation of a cavity from a homogeneous material in non-linear elasticity. Using a 
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minimization of potential energy argument, he investigated a class of singular solutions to the 
equations of nonlinear elasticity in which a spherical cavity forms at the center of a ball of 
isotropic material placed in tension by means of surface tractions or displacements. The 
existence of such solutions depends on the properties of the strain energy function W for large 
strains. He justified theoretically that for a neo-Hookean material a hydrostatic pressure of 
5E/6 was needed to nucleate a cavity.  This theoretical analysis was later used by several 
authors [Chou-Wang and Horgan 1989, Horgan and Pence 1989, Horgan and Abeyaratne 
1986, Polignone and Horgan 1993].  Hou and Abeyaratne [Hou and Abeyaratne 1992] 
generalized the Ball’s model to an infinite media submitted to triaxial loading under arbitrary 
stress boundary conditions [Fond 2001, Hamdi 2006].  
 
The criterion of a critical pressure Pc=5E/6 for cavitation was confirmed experimentally by 
several authors such as Cho and Gent [Cho and Gent 1988], Kakavas and Chang [Kakavas 
and Chang 1992], Pond [Pond 1993], Oberth and Bruenner [Oberth and Bruenner 1965], 
Oberth [Oberth 1967], Gent and Park [Gent and Park 1984], Denecour and Gent [Denecour 
and Gent 1968], Gent and Tompkins [Gent and Tompkins 1969]. However, some 
experimental results had already shown that Pc could be higher than 5E/6 in certain conditions 
and that there certainly was a missing element in the model.   
 
6.1.2.- Cavitation resistance prediction considering the surface energy  
 
In 1969, Gent and Tompkins [Gent and Tompkins 1969] treated theoretically the expansion of 
an existing cavity in a neo-Hookean medium, in a relatively simple way. They obtained that 
the surface tension tends to close the very small cavities (needing pressures of 1000 atm. for 
holes of 10 Å radius) and they concluded that higher stresses should be necessary to cause the 
growth of microvoids, taking into account the surface energy, which provides an additional 
restraint upon expansion. The surface tension can be regarded as an internal negative pressure 
(Pi) by: 
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==                                                                                                eq. 6.3 

 
where γ is the surface tension of the rubber, r is the radius of the cavity, r0 is the initial radius 
of the cavity, and λ=r/r0 is the stretch ratio under equibiaxial tension in the inner surface 
[Fond 2001]. Gent and Tompkins, assumed that the surface of the cavity has a surface energy 
γ of the same kind as in simple liquids and they considered then that the inflation pressure of a 
cavity consists of both elastic and surface energy term resulting in the following prediction.: 
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Figure 6.2 presents the results of the model of Gent and Tompkins (on the left) and a sketch 
of the effect of the surface tension γ on the cavity growth, related as an internal pressure (Pi) 
(on the right); the present radius of the cavity noted by ‘a’ is equal to ’r’. 
Gent and Tompkins [Gent and Tompkins 1969] studied the case of a spherical cavity in an 
incompressible neo-Hookean material, and calculated the hydrostatic stress to be applied to an 
infinite medium containing a spherical cavity to increase its size.  
 

 
Figure 6.2: Model of Gent and Tompkins taking into account the surface tension of the 
rubber (taken from Fond [Fond 2001]). Present radius of the cavity = ‘a’ = ’r’. Pc > 5E/6. 
 
It is interesting to see what is the typical size of the cavity where surface tension becomes 
important since it is given by γ/E. For our materials this leads to rγ of the order of 50 nm. 
Therefore of the materials contains cavities (or cracks) larger than 50 nm the effect of surface 
tension can be neglected.  Since we do not expect our materials to be exempt of defects at that 
length scale, we will neglect surface tension on the following. 
 
Gent and Tompkins [Gent and Tompkins 1969] and also William and Schapery [William and 
Schapery 1965] developed a model considering the inflation pressure of a cavity, by 
considering both elastic and surface energy terms. The parameters taken into account in these 
models are the modulus E of the incompressible material, the surface tension γ and the initial 
size of the cavity r0. However, these models still consider a reversible deformation and do not 
take into account the limiting extension of any real rubber under equibiaxial tension, which 
will cause fracture of bonds if the cavity stretches macroscopically beyond the limiting 
extensibility of the network chains. This important remark leads us now to consider a 
different type of models. 
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6.1.3.- Prediction of the cavitation resistance based on the expansion by fracture 
 
As discussed in chapter 1, the bases of fracture criteria were laid by Griffith in 1921 [Griffith 
1920]. He stated that a critical amount of mechanical energy has to be released to propagate a 
tear G > Gc (released elastic energy G higher than the critical fracture energy Gc); therefore, 
the cavity growth is explained in terms of a critical fracture energy Gc. 
 
Apart from Williams and Schapery’s model [William and Schapery 1965] which was not 
really a fracture model, the first model considering explicitly expansion by fracture was 
proposed by Gent and Wang [Gent and Wang 1991] and then slightly modified by Diani 
[Diani 2001] who also developed criteria of irreversible expansion of cavities, based on 
energy approaches. In 1991, Gent and Wang [Gent and Wang 1991] proposed a model that 
was inspired by that of Williams and Schapery [William and Schapery 1965] and studied the 
conditions of propagation of a pressurized penny-shaped crack within a highly elastic 
material. They found that the critical internal pressure Pc depended strongly of the initial size 
of the crack.  
This last conclusion differs from earlier results where only expansion of a cavity in a neo-
Hookean material was considered, in which sufficiently large cracks would tear open at 
Pc=5E/6, independently of the crack size [Gent and Lindley 1959, Oberth and Bruenner 1965, 
Denecour and Gent 1968, Gent and Tompkins 1969, Gent and Park 1984, Cho and Gent 
1988]. However, this criterion remains useful as a guide for crack having initial radii in an 
intermediate range, r0=0.5µm to 1mm.  
Gent and Wang (G-W) [Gent and Wang 1991] calculated values of Pc for a range of initial 
crack sizes, using a critical energy release rate criterion for fracture. In this fracture model 
[Gent and Wang 1991] the main parameters that play an important role in cavitation are:  
 
- Materials parameters: Modulus (E), Fracture energy (Gc) and the nonlinear elastic properties 
of the material, including strain hardening due to finite chain extensibility.  
-  the initial crack size r0. 
- System parameters (loading): Hydrostatic stress (P)).  
 
The insight of the model of Gent and Wang [Gent and Wang 1991] is that it is possible to 
calculate the normalized pressure P/E as a function of the normalized energy release rate G/E 
r0 by calculating both as a function of λ, i.e.: 
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Since the adimensional parameters are normalized by E, there is only one solution for a neo-
Hookean material given as  
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Plotting 6.8 as a function of 6.7 for any given value of λ gives then the desired prediction of 
P/E as a function of G/Er0. 
 
If the material constitutive equation contains additional parameters, the details of the P/E vs. 
G/Er0 curve will depend on these additional parameters. It is particular noteworthy that for 
materials with a finite extensibility, the energy release rate is no longer unbounded at P/E = 
5/6 and a solution for G/Er0 can be found for higher pressures, as measured experimentally. 
The difficulty of the G-W approach is however the accurate calculation of G for a penny-
shaped crack. The solution given in equation 6.1 assumes that the crack can expand to a 
cavity of same diameter without external work, which is obviously incorrect. This leads to a 
wrong prediction of G for low values of P where G should be proportional to (P/E)2. The 
reader is referred ot the paper of Lin and Hui [Lin and Hui 2004] for a more complete 
discussion of the different models. 
 
In 2004, Lin and Hui [Lin and Hui 2004] proposed a numerical method (Finite Element 
Method FEM) to calculate G exactly for small penny-shaped cracks in an infinite medium. 
Lin and Hui [Lin and Hui 2004] used three different materials behaviour: a power law 
material model, a Mooney-Rivlin material, and a material model proposed by Gent [Gent 
1996] which takes into account that the molecular structure will fail at a limiting stretch ratio. 
Lin and Hui [Lin and Hui 2004] compared their results to the results of Gent and Wang [Gent 
and Wang 1991] and Williams and Schapery [William and Schapery 1965] as presented in 
Figure 6.4. 
 
Based on the results obtained by Lin and Hui, the linear fracture theory provides a reasonably 
approximation to the energy release rate, even at intermediate deformations. A nonlinear 
analytical approximation is also proposed for a neo-Hookean material.  
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Figure 6.3: Normalized pressure versus the normalized energy release rate (taken from Lin 
and Hui 2004).  
 
The resulting approximation equation (22) reported by Lin and Hui [Lin and Hui 2004] 
presented in the graph (Figure 6.3) is given in equation 6.8: 
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This equation relates the energy release rate G of a circular crack loaded by internal pressure 
to the volume of the deformed cavity. This numerical result gives an error of the order of 100 
percent for the energy release rate prediction. The expression is valid for incompressible 
hyperelastic materials. The plotted results of Williams and Schapery seem to be a better 
approximation of the energy release rate than Gent’s; however, Williams and Schapery’s 
theory overestimate the energy release rate by about 200 percent and the values of λ (not 
plotted here) are unphysical for low deformations.  
Since the G-W’s model [Gent and Wang 1991] overestimates the value of the energy release 
rate G, then if the Griffith criterion is used to predict fracture initiation, the Gent’s result 
underestimates (by about one order of magnitude) the critical hydrostatic stress Pc for crack 
initiation, while for large cavities the Pc values are abnormally low.  
However, Gent and Wang’s model [Gent and Wang 1991] is simple to implement and the 
finite extensibility can be built into the model. Then, by using Gent and Wang’s original idea 
[Gent and Wang 1991] but the Lin and Hui’s methodology [Lin and Hui 2004] we tried to fit 
our experimental data to the G-W model, as presented in the next sections. 
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6.2.- Model-experiment comparisons: Temperature dependence   
 
First, it is useful to summarize the results of chapter 5, on the maximal hydrostatic stress 
normalized by the Young’s modulus. Figure 6.4 shows that for all three networks at different 
temperatures, the softer network PU8000 is tougher and more cavitation resistant relative to 
its modulus, followed by PU8000/1000 and PU4000. The question is how can these results be 
explained theoretically?. 
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Figure 6.4: Maximal hydrostatic stress σhydro, max normalized by the modulus, for the three 
polyurethane model networks as a function of the temperatures 25°C, 50°C, 70°C and 100°C, 
and 10µm/s.  
 
6.2.1.- Simple deformation cavitation model 
 
Figure 6.5 (b) shows the maximal hydrostatic stress σhydro, max as a function of the modulus for 
the three polyurethane model networks for different temperatures. Figure 6.5 (b) shows 
clearly that for a given network the maximal hydrostatic stress σhydro, max decreases while the 
modulus increases due to thermoelasticity, in blatant contradiction with Gent and Lindley’s 
results(Figure 6.5 (a)). Yet comparing different networks as Gent did, the cavitation stress 
does seem to increase with modulus. How to reconcile these contradictory observations? 
 
We also observe in Figure 6.5 (b) that for our experimental results for the three polyurethane 
model networks the maximal hydrostatic stress σhydrostatic, max at different temperatures is 
significantly higher than the predicted criterion of critical pressure Pc =5E/6. Based on these 
results this simple criterion is inadequate to interpret the crack growth initiation of our 
experimental data.  
The simple deformation model was developed for neo-Hookean materials, considering that 
the cavity was in an infinite medium growing by deformation at constant applied true stress 
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no surface tension. This is cleary unrealistic and in the next section models taking into 
account the surface tension are mentioned. 
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Figure 6.5: Comparison of maximal hydrostatic stress σhydro, max as a function of the modulus 
for  (a) Vulcanizates (taken from Gent and Lindley 1959), and (b) the three polyurethane 
model networks at different temperatures 25°, 50°C, 70° and 100°C, and 10µm/s. 
 
6.2.2.- Expansion by Fracture: Linear Elastic Fracture Mechanics (LEFM) 
 
The Griffith’s fracture criterion [Griffith 1920], states that the crack growth occurs when the 
energy release rate ‘G’ reaches the critical value Gc (G≥ Gc) also called fracture energy which 
is in principle  a material constant, depending only on the mode of loading (mode I opening, 
II shear and III, transverse shear). Because the energy release rate depends on the initial flaw 
size, a given material can have different fracture stresses for the same value of Gc.  In our 
geometry and although the size and shape of flaws initially present is unknown, we assume 
that a penny-shaped crack with initial radius r0 much smaller than the sample size exists. 
Then, within the framework of linear elasticity the dependence of the fracture energy G on the 
initial crack radius r0 is given by [Lin and Hui 2004]: 
 

geometryorE
PG φ

2

≅                    eq. 6.9 

 
where φ is a dimensionless function that involves the geometry, E is the Young’s modulus of 
the hyperelastic material at small strains, and P is the hydrostatic stress. The hydrostatic stress 
P becomes Pc (Pc=σhydrostatic, max) when the maximal hydrostatic stress is reached, and G 
becomes Gc when the critical fracture energy value is reached. Equation 6.9 is valid at very 
low applied pressure, when the energy release rate G must be given by the small strain theory.  
The geometry used to perform fracture experiments, as presented in chapter 3, is different 
than the confined geometry used to perform the cavitation experiments. Yet we can check 

5E/6 

5E/6 
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whether E
Pc

2
 scales with GIc measured in DENT tests. Figure 6.6 shows clearly that for the 

same material at different temperatures the relationship between E
Pc

2
 and GIc is 

approximately linear. If now we try to fit all the materials in one single line we observe that it 
is not possible. This means that either r0 (proportional to G based on equation 6.9) is different 
for each material or the fracture energy G as calculated by equation 6.9 is not good because 
the Linear Elastic Fracture Mechanics (LEFM) does not take into the limiting extension of the 
chains (strain hardening).  
Anyway, as presented by Lin and Hui [Lin and Hui 2004] the simple model of the linear 
fracture theory provides a reasonably approximation to the fracture energy G, but this model 
by itself is not enough to predict the cavitation phenomenon and to fit our experimental data 
into a cavitation model. 
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Figure 6.6: Expansion by fracture using Linear Elastic Fracture Mechanics (LEFM). Relation 
between P2/E and Gc for the three polyurethane model networks at different temperatures.  
 
6.2.3.- Non-linear Model: Strain hardening 
 
Here we present the Gent and Wang’s method details [Gent and Wang 1991] and the Lin and 
Hui method’s details [Lin and Hui 2004], and we show our predicted curves and the fittings. 
Both methods calculate G/Er0 as a function of λ, but the methods to calculate it differ. 
 
  
The Gent and Wang’s method to calculate G: 
 
In the Gent and Wang’s model [Gent and Wang 1991] G is calculated by assuming from the 
start that a planar circular crack of radius r0 under hydrostatic stress can expand to an initial 
spherical cavity of the same radius r0 without any work.  This is then the reference 
configuration and G is calculated by comparing the strainenergy of two cavities of different 
initial radii expanded to the same volume.  Figure 6.7 illustrates schematically the Gent’s 
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procedure. Figure 6.7 (a) shows the deformation of a crack into a spherical void of the same 
radius with no applied pressure (stress free). The spherical void of radius r0 is then inflated 
into a spherical cavity of radius R0 (see Figure (1b)). Next, the same infinite solid with larger 
circular crack (r0+dr0) repeats the same process illustrated in Figure 6.7(a) and (b), and fluid is 
pumped into the interior of the larger spherical cavity in such a way that the final volume of 
the cavities are the same (see Figure 6.7 (c) and (d)), the elastic strain energy at the end of the 
process is given by W(r0+dr0). The difference between W(r0) and W(r0+dr0) divided by dr0 is 
the the energy release rate G. With the procedure outlined here this difference can be obtained 
analytically for a neo-Hookean material and the result is equation 6.7a. 
 

 
 
Figure 6.7: Gent and Wang’s procedure [Gent and Wang 1991] to compute the energy release 
rate of a penny-shaped crack (taken from Lin and Hui 2005). 
 
The advantage of this methodology is that if the constitutive equation is not too complicated 
the equivalent of equations 6.7 can be obtained analytically and a prediction can then be 
easily made. However, [Lin and Hui 2004] the approximation made by Gent and Wang in 
calculating G grossly overestimates G and does not extrapolate of the correct solution in the 
linear regime (as presented in Figure 6.3). Alternatively if the Griffith criterion is used to 
predict fracture initiation, the Gent’s result underestimates the critical hydrostatic stress Pc for 
crack initiation. 
 
The Lin and Hui’s method to calculate G: 
 
Lin and Hui [Lin and Hui 2004] compute G by simulating a volume controlled expansion test 
with a finite element method. Using the definition of fracture energy, 
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where W is the strain energy of the system, P is the hydrostatic stress and V is the volume.   is 
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where Ω is a dimensionless function, E the (initial) tensile modulus of the material. Then the 
fracture energy or energy release rate is obtained: 
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                eq. 6.13 

 
Equation 6.14 is a useful form of the fracture energy since the volume of the deformed crack 
at any applied load can be computed numerically. The details of the numerical methods are 
given in Appendix A6. 
 
The question that arises is how we can compare the fracture models with experimental data?. 
We can divide the procedure into three main steps.   
 
Step 1: To compute G (r0, P) for a given material with equation 6.15, we need the 
characterization of the elastic properties in the nonlinear regime and a reasonable constitutive 
equation needs then to be used to fit the tree materials. We use the constitutive equation 
proposed by Seitz et al. [Seitz et al. 2008]. The strain energy function is given by: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 1exp

6 *

1
* J

JJEU  and  3222
1 −++= zyxJ λλλ            eq. 6.14 

 
and the uniaxail compression prediction is given by: 
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If equation 6.17 is fitted to the data, two parameters are obtained: the initial modulus E and 
the strain hardening parameter J*. This is done for our materials in chapter 3.  
 

V 
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Step 2: The normalized energy release rate needs to be calculated analytically (with the Gent 
method) or numerically (with the Hui method) as a function of λ to obtain the curve of 
equation 6.5 for each material. Then an hypothesis needs to be made for the value of G and r0 
to obtain a critical value of  λ = λc where fracture occurs. 
 

( )c
c f

Er
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0

                                     eq. 6.16 

 
Step 3: The inflation pressure necessary to grow the bubble to the critical λc can now be 
calculated with equation which again can be calculated analytically or numerically: 
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The outcome is a prediction for:    
E
Pc   as a function of  

0* rE
Gc  

 
The use of the three steps mentioned before gives predictions of P/E as a function of Gc/Er0 as 
presented in Figure 6.8.  
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Figure 6.8: Typical curve predicted with the Gent and Wang’s methodology [Gent and Wang 
1991]: Pc/E vs. Gc/E r0.  
 
Now, the original insight of the model of Gent and Wang [Gent and Wang 1991] was to 
propose a methodology for a finite strain version of the Griffith argument. Lin and Hui 
proposed a numerical way to calculate G which does not require any approximation or new 
analytical calculations when the constitutive equation is changed. 
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For the purpose of this theeis, L. Rong in the research group of C.Y. Hui (at Cornell 
University), did a FEM calculation of G as a function of P and r0 for the three materials of our 
study as described by equation 6.15. The outcome of this FEM calculation is represented as: 
P/E vs. G/Er0 in figure 6.9.  
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 Figure 6.9: Predicted curves P/E vs. G/E*r0 obtained by FEM, for the three polyurethane 
model networks. Left: P/E in linear scale, and Right: P/E in log scale.  
 
Since in the exponential fit of the compression data we obtained for PU4000 and 
PU8000/1000 that the strain hardening was less pronounced than for PU8000, and since we 
had doubts about the validity of the data for the two most brittle networks, we decided to use 
PU8000 as the standard curve for our polyurethanes to check the theoretical prediction of the 
fracture model.  
 
6.2.3.1.- Fit of our experimental results with the nonlinear fracture model 
 
The average maximum hydrostatic stress for the three polyurethane model networks was 
obtained experimentally from the maximum force of the force displacement curve while the 
Young’s modulus was obtained in chapter 2. Hence Pc/E is well defined for each material and 
temperature. According to the nonlinear fracture model, this value of Pc/E should correspond 
to a value of Gc/Er0. The ‘adjustable’ parameters are Gc and r0, where Gc can either be a 
threshold value in the Lake-Thomas sense G0 (an intrinsic fracture resistance which does not 
take into account dissipation), or an experimentally determined value GIC (in mode I by 
DENT) which then can vary with strain rate and temperature.  
 
Figure 6.10 presents the PU8000 curve and our experimental data at different temperatures for 
the three polyurethane model networks. In the x-axis only Gc/E is used without using any 
specific r0.  
Figure 6.10(a) shows the experimental data using G0 ≅ Gc at highest temperature and Figure 
6.10(b) shows the experimental data using Gc at different temperatures. We observe that when 
G0 is used all points for the same material fall on the same vertical line. Comparing figure 
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6.10a and figure 6.9a, it is clear that the only vertical part of the theoretical curve falls around 
Gc/Er0 ~ 10. Given that our values of Gc are around 100 J/m2 and the moduli are around 1 
MPa this suggests values of r0 around 10 µm. 
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        (a)       (b) 
Figure 6.10: Fitting of our experimental data to the theoretical predicted curves, for the three 
polyurethane model networks: (a) using G0 ≅ Gc at highest temperature, and (b) using Gc at 
different temperatures. None r0 value was used.  
 
Indeed, if one arbitrary r0 (i.e. r0 = 5 μm = 5*10-6m) is used for all the temperatures and the 
three polyurethane model networks, then the experimental points are moved close to the 
theoretical curve (see Figure 6.11 (a) and (b)). When the fracture energy threshold is chosen 
as G0 ≅ GIc(DENT) at T = 100°C (Figure 6.11(a)) the data can clearly not fit the model..  
However, when Gc is taken as GIc(DENT) at the temperature were the cavitation tests were 
carried out (Figure 6.11(b)), we observe that the points fit much better to the theoretical curve, 
particularly knowing that only the theoretical curve for the PU8000 is precisely known and 
shown in the figure.  
This interesting result suggests that the cavitation resistance is controlled not only by E but 
also by Gc. However the question that arises here is why the data fits the model for all the 
temperatures and for the three polyurethane model networks when using the same initial crack 
r0.  
In other words while there is probably an initial size distribution of defects, the temperature 
dependence is controlled by the fracture toughness Gc and not by the distribution of initial 
sizes of the cavity r0 which would have given a much broader distribution of values of 
fracture stress.. 
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Figure 6.11: Fitting of our experimental data to the theoretical predicted curves using r0 = 8 
μm = 8*10-6m, for the three polyurethane model networks: (a) using G0 ≅ Gc at highest 
temperature, (b) zoom using G0 ≅ Gc at highest temperature, (c) using Gc at different 
temperatures, and (d) zoom, using Gc at different temperatures.  
 
Alternative Proposal:  thermally activated microscopic cavitation model 
 
Although the conclusion that the resistance to cavitation is controlled by Gc is reasonable, it 
may not be the only possible one. We made a qualitatively analysis, and we argue that the 
initial crack size r0 is different at different temperatures and we propose that a given sub-
critical crack with a given initial size (an initial defect) will grow due to thermal activation. 
  
The idea behind this model is that if a pre-crack grows (see Figure 6.12) by random but 
irreversible bond fracture under stress until a critical size where fracture mechanics applies,  
then at early stages thermal activation and subcritical crack growth may be the dominant 
(nucleation mechanism) and the Eyring model may be used [Guarino et al. 1999]. 
.  
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Figure 6.12: Pre-crack thermally activated. 
 
The equation governing the crack growth would be the Eyring equation, where the first term 
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In other words if each irreversible step of crack growth in the subcritical regime is thermally 
and stress activated, then the crack would grow faster for higher temperatures and slower for 
lower temperatures. Since in our cavitation experiments we are applying loading ramps at a 
constant strain rate we expect the samples loaded at high temperature to reach a critical crack 
size (by subcritical crack growth) for macroscopic growth, faster, i.e. at lower stresses. 
This effectively corresponds to adjusting r0 rather than Gc to adjust the model to the data (see 
Figure 6.13). The different r0 obtained at different temperatures (for PU8000) fitted into the 
curve are: 7.7μm, 8.6μm, 8.8μm, 9.9μm, at 25°C, 50°C, 70°C and 100°C. 
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Figure 6.13: Sub-critical crack growth: Thermally activated. 
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At this stage is is difficult to decide which behaviour is the most likely to dominate the 
response of the material and we need to consider further results. 
 
6.3.- Model-experiment comparisons: Speed dependence   
 
Since the thermal activation hypothesis implies that the probability of nucleation of a 
macroscopic cavity increases with time we have carried out experiment at the same 
temperature but at different strain rates. 
 
Figure 6.14 shows the normalized fracture stress as a function of macroscopic strain rate (v/h). 
For all 3 networks the fracture stress increases with strain rate and for both rates the PU800 
has a higher cavitation threshold than the other two materials. 
. 
6.3.1.- Fitting of the experimental results at different speeds  
 
Figure 6.15b shows that the rate of strain rate is important for the fracture resistance, yet the 
rate at which the cavity expands from the video images remains the same as discussed in 
5.2.1.2. This implies somehow that a time dependence of the nucleation of cavitation process 
exists and none of the cavity growth models by fracture or expansion take the time 
dependence into account.  
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Figure 6.14: Maximal hydrostatic stress σhydro, max normalized by the modulus, for the three 
polyurethane model networks: as a function of the crosshead speeds 10µm/s (strain rate 
~1%/s) and 0.1µm/s (strain rate ~0.01%/s), and 25°C.  
 
We also observe in Figure 6.15 (b) that for our experimental results for the three polyurethane 
model networks the maximal hydrostatic stress σhydrostatic, max at different speeds is 
significantly higher than the predicted criterion of critical pressure Pc =5E/6.  
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Figure 6.15: Comparison of maximal hydrostatic stress σhydro, max as a function of the 
modulus for  (a) Vulcanizates (taken from Gent and Lindley 1959); (b) the three polyurethane 
model networks at two speeds 10µm/s (strain rate ~1%/s) and 0.1µm/s (strain rate ~0.01%/s), 
and 25°C. 
 
To compare the experimental results at different speeds with the fracture model, there is an 
important consideration to make. As mentioned in section 6.2, the different speeds of the 
cavitation experiments were 10µm/s (strain rate ~1%/s) and 0.1µm/s (strain rate ~0.01%/s). 
We carried out GIc (DEN geometry) tests at 25°C, strain rate 0.67%/s (at standard conditions) 
which can be used for both speeds of the cavitation experiments.  
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Figure 6.16: Fitting of our experimental data to the theoretical predicted curves using r0 = 8 
μm = 8*10-6m, for the three polyurethane model networks: using Gc at 25°C. 
 
However the initial cavity growth rate is approximate between 10-30mm/s) for the three 
polyurethane model networks, at both speeds 10µm/s and at 0.1µm/s. Since the cavity growth 
is approximately the same for both cavitation rates (very fast independently of the pulling 
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rate), then the Gc can not be an ‘adjustable’ parameter when changing the speed. Then, what 
may control the rate dependence is the initial cavity size r0. Slow strain rates favour 
subcritical crack growth by loading the material over much longer periods of time. As a result 
the stress required to grow a macroscopic crack decreases with strain rate. Figure 6.16 shows 
data and model using one arbitrary r0 (i.e. r0 = 5 μm = 5*10-6m) and the same Gc (the fast 
strain rate Gc for both speeds. It is clear that the model fits very poorly the data obtained at 
two strain rates suggesting here much more clearly that a probabilitsitc view of the cavitation 
process is necessary to make lifetime predictions. 
 
6.4.- Statistics: Number of pre-critical cavities and position distribution 
 
At the end of chapter 5 we presented experimental evidence demonstrating that small cavities 
(called pre-critical) appear in certain conditions before catastrophic fracture occurs. The 
number, position and time of appearance of these pre-critical cavities can be analyzed further. 
 
6.4.1.- Cumulative probability of cavitation 
 
Some statistics, by using the cumulative probability of all the pre-critical cavities observed for 
each material and condition, was done. Three samples of each material and condition were 
used to calculate the cumulative probability of cavitation at a given hydrostatic stress 
depending on the experimental conditions. This was an interesting form of looking at the 
position distribution (dispersion) of the pre-critical cavities in the samples and to compare this 
dispersion for the three polyurethane model networks, and additionally to demonstrate (in a 
different form than in the graphs presented in the preceding chapter) the amount of pre-critical 
cavities present per condition and material. 
Supposing that for a given test condition (i.e. network, strain rate, temperature), the N pre-
critical cavities are independant events. Then the N events can be ordered by ascendant 
hydrostatic stress σj,hydrostatic (i=1, 2, ….N). For each experimental hydrostatic stress, a 
cumulative probability Pi of cavitation is associated. As it is done in Weibull’s treatments 
[Weibull 1951], the cumulative probability can be defined by: 
 

1+
=

N
iPi                   eq. 6.19 

 
Figure 6.17 shows the cumulative probability of cavitation as a function of hydrostatic stress. 
As defined in the model, an increasing hydrostatic stress leads to a higher probability of pre-
critical cavities appearance. In these graphs, for a given experimental condition, the slope 
traduces the distribution of events (i.e. distribution of defect size).  
Figure 6.17 (a) shows the cumulative probability for PU4000, and we observe that 
significantly more pre-critical cavities appear at low strain rate than at high temperature, 
while the position distribution of the pre-critical cavities in the sample is similar (similar 
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slope); this position distribution (slope) is also similar for the pre-critical cavities at standard 
conditions, but at higher hydrostatic stresses.     
Figure 6.17 (b) shows the cumulative probability for PU8000. We observe that more or less 
the same amount of pre-critical cavities at low strain rates and at standard conditions are 
present, while fewer amounts of pre-critical cavities are present at higher temperatures. The 
distribution of the pre-critical cavities seems to be similar (similar slope) for all conditions. 
However, for higher temperature, it is difficult to conclude (more experimental data would be 
necessary). We also observe that the hydrostatic stresses are lower at lower strain rate and 
higher temperature than at standard conditions.  
Figure 6.17 (c) shows the cumulative probability for PU8000/1000. Here, the amount of pre-
critical cavities is nearly the same at lower strain rate and at standard conditions, while less 
amount of pre-critical cavities appear at higher temperature. The position distribution of the 
pre-critical cavities in the sample is similar (similar slope) at low strain rate and high 
temperature, while apparently there is a higher dispersion of pre-critical cavities at standard 
conditions.  
In general, for the three conditions is shown a higher dispersion of the pre-critical cavities for 
PU4000 and PU8000/1000 than for PU8000. 
 
6.4.2.- Spatial distribution of pre-critical cavities 
   
Focusing the analysis on the number of pre-critical cavities as a function of the position in the 
sample (radius), Figure 6.18 shows the data when the numbers of pre-critical cavities that 
appears are classified from the center of the sample (0mm) to the edge of the sample (5mm). 
Figures 6.18 (a), (b) and (c) show the number of pre-critical cavities as a function of the 
radius (from the center to the edges) at standard conditions, high temperature and low strain 
rate, respectively, for the three polyurethane model networks.  
We observe that most of the cavities appear very close to the center of the sample (less than 
2mm from the center of the cavitation sample) where the hydrostatic stress is maximal and 
this happens for the three experimental conditions. With these graphs we re-validate the 
choice of our cavitation sample geometry sphere-to-flat, as a good geometry to avoid 
multicavitation and big dispersion of the cavities everywhere in the sample. We observe that 
most of the cavities appeared very close to the center and almost no cavities appeared at 
further distances than ~3.5 mm from the center of the sample.   
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            (c) 
Figure 6.17: Cumulative Probability of cavitation: Pre-critical cavities analysis for (a) 
PU4000, (b) PU8000, and (c) PU8000/1000. Note that the cavitation stress σcavitation, 
corresponds to the local hydrostatic stress. 
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Figure 6.18: Number of pre-critical cavities as a function of the position along the radial 
direction of the sample at (a) standard conditions, (b) high temperature 100°C and (c) low 
speed 0.1µm/s.  
 
Summary of the statistic analysis of pre-critical cavities 
 
The presence of pre-critical cavities depends clearly very markedly on the material and on the 
conditions. More pre-critical cavities appear at a lower strain rate (i.e.PU4000) and very few 
pre-critical cavities appear at high temperature.  
The three materials behave quite differently concerning their sensitivity to these two 
mechanisms: The indications are that a softer material containing trapped entanglements 
(PU8000) as well as homogeneous crosslinks (PU8000/1000) can give a relatively high 
resistance to the nucleation of theses precritical cavities. Interestingly PU8000/1000 has a 
cavitation strength higher than PU4000 and the pre-critical nucleation rate at low strain rate is 
clearly less pronounced than for the PU4000.  
Since the fracture toughness Gc decreases both with rate and temperature but the pre-critical 
cavities do differently, this implies that the toughness does not control by itself the 
appearance of these cavities.  
 
These results shed an interesting light on the whole initial problem and reveal some 
interesting and previously hidden differences between the materials. First, concerning the 
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effect of loading conditions, for all materials the increase in temperature results in less 
precritical cavities appearing (or even none for the PU8000) before catastrophic fracture. On 
the other hand reducing the strain rate has exactly the opposite effect, i.e. increasing the rate 
of nucleation of precritical cavities. These points reveal the existence of two separate 
“cavitation” mechanisms. A nucleation mechanism which is sensitive to time more than 
temperature, and a fracture mechanism which is accelerated by temperature more than time. 
 
We can conclude that the change in strain rate acts mostly on the cavities nucleation while the 
temperature change acts probably mostly on the toughness. As a result both effects must be 
considered to predict the cavitation resistance.  
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Conclusions 
 

• The simple deformation model [Gent and Lindley 1959] considered that the cavity 
was in an infinite medium growing by deformation at constant applied true stress and 
with no surface tension. This model predicting a cavitation strength increasing linearly 
with the modulus E does not fit at all the experimental results for a given material at 
different temperatures. 

 
• The linear model of fracture provides a reasonable approximation to the energy release 

rate G, but this approximation was not enough to predict quantitatively the differences 
between materials. The limited extensibility of the chains in the network, i.e. the strain 
hardening of the materials and the initial cavity size r0 has also to be included in the 
predictive models for resistance to cavitation.  

 
• The temperature dependence of the cavitation strength for a given elastomer is clearly 

not controlled by the modulus alone but also by the fracture toughness Gc.  
 

• However when we compare our tested model networks at different strain rates by 
using the existing models to predict cavitation, we obtain that E and Gc alone are not 
good general predictors of the cavitation strength, then the critical size of the cavity at 
which fracture occurs has to be taken into account. This implies that subcritical crack 
growth occurs before catastrophic fracture. 

 
• Since the fracture toughness Gc decreases both with rate and temperature but the pre-

critical cavities do differently, this implies that the toughness does not control by itself 
the appearance of these cavities. We can conclude that the change in strain rate acts 
mostly on the cavities nucleation while the temperature change acts mostly on the 
toughness. Then both effects must be considered to predict the cavitation resistance.  

 
• The appearance of pre-critical cavities before catastrophic failure implies the existence 

of two separate criteria, one for nucleation and one for propagation: 
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The cavitation strength depends on the hydrostatic stress σhydrostatic, max., the temperature and 
the time, then the Gent and Wang’s model is so far the best general idea to predict cavitation 
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resistance. However, to obtain a good estimate of the energy release rate G, it  was necessary 
to implement a FEM model by using Hui’s methodology. 
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Appendices A6 
 
Appendix A6.1: FEM simulation for a penny-shaped crack in an infinite material 
subjected to internal pressure. 
 
Problem definition 

 
Figure A6.1: Schematic of the crack. This is a cross section of an axisymmetric object.  

 
Figure A6.1 shows a circular crack in an infinite media with Young’s modulus E. Initially the 
crack has a radius of 0r .  Suppose we apply internal pressure P to the crack (this is equivalent 

to applying a uniform pressure field P at infinity).  The aim is to find out how the energy 
release rate G varies with internal pressure.  According to the previous paper by Y.Y Lin and 
C.Y. Hui [Lin and Hui 2005], one can calculate the energy release rate using the following 
formula: 
 

( )2
0 0

3
2

P

G V P dP
rπ

′ ′= ∫                eq. A6.1 

 
where ( )V P′  is the deformed volume of the crack subjected to the internal pressure of P′ . We 
introduce the normalization as following: 
 

0/G G Er= ,  /P P E= ,   3
0/V rΩ =                       eq. A6.2

    
Therefore, equation A6.1 becomes: 
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The reason we use equation A6.1 or A6.3 to determine energy release rate is because it only 
requires the volume of deformed crack instead of the local stress field near the crack tip (for 
example, through J-integral). It is easier to obtain the displacement field than the stress field 
with FEM method and the result for displacement field is also more accurate.   
 
Appendix A6.2: FEM simulation 
 
We used ABAQUSTM to implement the FEM simulation. By symmetry, only a quarter of the 
cross section is needed in the calculation. The mesh and boundary conditions are shown in 
Figure A6.2.  We increase the pressure with a fixed increment 0.01P EΔ =  and obtain the 
crack face profile for each pressure step.  From the crack face profile, we calculate the 
deformed crack volume in Matlab and use equation A6.3 to calculate the energy release rate.  
 
Because of large deformation, elements near the crack tip are highly distorted.  Such 
distortions are avoided using a remeshing technique.  Basically, one extracts the geometry 
from the previous step and applies a new mesh to it.  The stress field from the previous 
calculation is mapped to the new mesh using interpolation via an ABAQUS subroutine, MAP 
SOLUTION.   
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Figure A6.2: Mesh and boundary conditions in FEM simulation 
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General Conclusions  
 
In this thesis we studied the fracture by cavitation of model polyurethane elastomers. The 
main objective was to establish the role played by the composition and crosslinking structure 
of elastomers on their resistance to cavitation under a predominantly hydrostatic pressure. To 
accomplish our objective we worked with three polyurethane model networks prepared from 
triisocyanate and diols (PPGs) of various molecular weights.  
 
The specific sphere-to-flat geometry for the cavitation sample allowed us to observe most of 
the time one single critical cavity very close to the centre of the sample. The transparency of 
the samples, the synchronized visualization and data acquisition in the cavitation experiments, 
and the double visualization (from the top and lateral) let us visualize the early stages of the 
appearance of pre-critical cavities as well as the critical cavity.  
 
Despite the difficulty in obtaining purified products and the reactivity of the isocyanate, we 
developed a protocol of purification of the three poly(ethylene) glycols and the  
polyisocyanate (reagents) to have a good control on the stoichiometry of the reactions. A 
systematic and in-depth characterization of the reagents showed that the precursor chains 
were monodisperse, and the molecular weights were very close to the values given by the 
manufacturers. Using a fully uncatalyzed two-stage curing procedure, we have been able to 
synthesize reproducible polyurethane model networks with well defined molecular structures 
and to prepare these networks in different types of molds without any problems of bubbles, 
macroscopic heterogeneities or degradations due to oxidation. Three different kinds of 
polyurethanes model networks were prepared with the idea of establishing comparisons 
among them regarding the molecular structure and the mechanical properties.  
 
The networks obtained had very low sol fractions, and a very elastic behavior above room 
temperature implying a very high degree of perfection. The stoichiometric ratio used to obtain 
the networks was very close to the theoretical one. The low level of defects of the networks 
was confirmed by the clear thermoelastic behavior dominated mainly by entropic elasticity 
and by the multiple quantum NMR result, showing very homogeneous and defect-free 
network architecture for the three networks.  
 
Based on the DMA results and on the rubber elasticity theory, all three polyurethane model 
networks showed a deformation behavior between the affine and phantom models. The 
storage modulus of the networks increases from PU8000 < PU8000/1000 < PU4000. On the 
other hand the PU8000 is more dissipative than the other two materials above 20°C but has a 
lower Tg and a lower density. The comparison between the value of Mc obtained from the 
chemistry and that obtained from the elastic modulus suggested that the PU8000 contains 
both entanglements and crosslinks. This was not the case at all for the PU4000 and may be 
partially true for the PU8000/1000.  
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The tensile tests showed that the three model networks were brittle rubbers, as expected for 
very elastic materials. The Mooney plot revealed a low level of softening in all the three 
samples, except for the PU8000 where a fit to the Rubinstein-Panyukov model implied ~20% 
of contribution of entanglements to the modulus. 
 
Compression experiments showed that the three model networks strain harden. By using an 
‘exponential’ model’ (two parameters) both tensile and compression data could be fitted well, 
implying that our lubricated compression experiments were carried out properly. However the 
fitted finite extensibility of the three networks scaled, surprisingly, with the modulus. 
Although there was no direct evidence from the hysteresis it is possible that some damage to 
the two most brittle materials may have caused this counterintuitive result.  
 
The fracture energies GIc, decrease significantly with increasing temperature and decreasing 
strain rate. These results were not expected for such elastic materials, implying that 
significant viscoelastic dissipation is active at the crack tip. The PU8000 was tougher than the 
two other networks at all temperatures, qualitatively consistent with the higher level of 
viscoelastic dissipation at high strain rate observed for PU8000 and PU8000/1000 than for 
PU4000.  The lowest values of GIc measured (at high temperature or at very low strain rate) 
were probably close to threshold values and hence representative of the fracture of the 
network strands without much contribution of viscoelasticity.   
 
For the cavitation experiments we chose the sphere-to-flat geometry for the cavitation 
sample’s preparation, mainly for practical reasons. This geometry gives less confinement but 
a slightly higher concentration of the hydrostatic stress toward the centre of the sample than 
the flat-to-flat geometry. The chosen aspect ratio a/h =10/1 together with the higher 
concentration of the stress to the centre for this geometry,  allowed us to observe most of the 
time one single cavity very close to the centre of the sample.  
 
A new samples’ holder was designed and built to perform the cavitations experiments. We 
obtained a quite stiff set-up in which the compliance was very low. This set-up was specially 
designed to have a good top view of the sample through one camera positioned in front of the 
machine and a good lateral visualization with a second camera. Thanks to the synchronization 
of the data acquisition and video imaging, it was possible to obtain the curves of force versus 
displacement for each sample and to know where and when the cavities appeared. Because the 
main interest of this Thesis was to look at the nucleation of cavitation our study was focused 
on the first part of the curve force versus displacement passing through three main ‘regions’: 
1) the ‘linear’ initial part of the curve,  
2) the region of appearance of the pre-critical cavities, which appears above a certain force 
and remain stable,  
3) The critical cavity appearing and growing at the maximal force close to the centre of the 
sample. A high reproducibility in the curves of force versus displacement was obtained.  
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Simulations using a Finite Element Method (FEM) were performed to obtain the relation 
between the force applied to the sphere and the local hydrostatic stress. For this, a calibration 
factor was calculated for our specific geometry, independent of the elastic modulus and 
dependant on the Poisson’s ratio and slightly on confinement. The combination of the 
calibration constant and the simulation of the radial stress distribution made it possible to 
calculate a reasonably accurate value of the local stress for cavity appearing in the sample 
before or at the peak force.  
 
For a given elastomer the local hydrostatic stress at the peak force decreased markedly with 
increasing test temperature in contradiction with predictions from models based on cavity 
growth by deformation since thermoelasticity causes the elastomer to become stiffer with 
increasing temperature. On the other hand at a given temperature the cavitation stress 
increased with the modulus of the material in agreement with previous studies.  
 
This apparent contradiction can be predicted by a modified version of the Gent and Wang 
model for cavity growth by irreversible fracture. Incorporating the strain hardening in the 
constitutive equation and the mode I fracture toughness in the model a reasonable prediction 
of P/E as a function of Gc/r0E could be obtained. However the prediction worked 
quantitatively by assuming that the fracture energy measured in tension is relevant and that 
the initial defect size r0 is the same for all elastomers. This suggested that fracture energy and 
modulus are sufficient to predict fracture of an elastomer in a confined geometry. 
 
For a given elastomer the local hydrostatic stress at the peak force decreased with decreasing 
strain rate. Since the growth rate of the critical cavity was roughly the same for both strain 
rates, this difference could not be explained by a difference in Gc. The most likely explanation 
is then the thermally activated subcritical growth of cracks in the material. A longer time 
under stress causing the growth of subcritical defects to a larger size, leading to fracture at 
lower average stresses. 
 
This thermal activation of the nucleation process was confirmed by the appearance of stable 
pre-critical cavities before catastrophic fracture. The density of pre-critical cavities depended 
very markedly on the material and on the conditions (maximum for low rate and minimum for 
high temperature). This implied that the toughness does not control the appearance of these 
cavities (since GIc decreases both with rate and temperature but the pre-cavities do very 
differently). The temperature change acted mostly on the toughness but the time acts mostly 
on the nucleation. Both effects are important but toughness maybe dominant at high strain 
rates while resistance to subcritical crack growth may be important at low strain rates. 
 
Comparing the networks with short and long chains (unentangled and entangled) it was clear 
that the entanglements toughen the material which stabilizes the crack growth even in 
confined conditions. Pre-critical cavities appeared much less frequently implying that either 
the initial defects were smaller or they grew more slowly under stress. 
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The indications were that a softer material containing trapped entanglements (PU8000) as 
well as homogeneous crosslinks (PU8000/1000) can give a higher resistance to cavitation 
compared to its modulus(PU8000) or toughness (PU8000/1000). PU8000/1000 had a 
cavitation strength higher than PU4000 and the pre-critical nucleation at low rate was less 
pronounced than for the PU4000. 
 
The comparison between the long chains and a true bimodal network did not really reach its 
objective since the material remains very homogeneous (no clustering). However, the 
presence of short chains completely kills the entanglement effect in terms of toughness GIc but 
does not kill it in terms of slow growth in view that pre-critical cavities grow less for 
PU8000/1000 than for the 4000 at low rates.  
 
Final remark 
 
An important practical question addressed in the thesis is the identification of guidelines for 
the design of a soft material with high resistance to cavitation. The schematic below show that 
based on the cavitation models and on our experimental results, to have a material more 
resistant to cavitation, a pronounced strain hardening combined with a high fracture toughness 
(or low defect size) is ideal.  
 
From our three polyurethane model networks, these requirements are best fulfilled by PU8000. 
Additionally, since the fracture toughness Gc decreases both with rate and temperature but the 
pre-critical cavities do differently, this implies that the fracture enrgy GIc does not control by 
itself the appearance of these cavities. We can conclude that the change in strain rate acts 
mostly on the probability of nucleation of the cavities while the temperature change acts 
mostly on the toughness. However both effects are present and must be considered to predict 
the cavitation resistance.  
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In conclusion for all elastomers the probability to nucleate and then grow a cavity depends on 
stress, time and temperature. While the temperature dependence seems to be predictable and 
rather universal, the stress and time dependence depends markedly on the chemistry of the 
material and cannot be reduced to the modulus. We have shown clearly that entanglements 
play a major role in increasing the resistance to cavitation and the fracture toughness of 
unfilled elastomers, suggesting that sparse but regular crosslinking is a good strategy. 
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Résumé en Français 
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1.- Introduction 
 
Les élastomères réticulés sont des polymères quasi-incompressibles qui, sous des conditions 
de chargement fortement triaxiales en tension, s’endommagent par nucléation et croissance de 
cavités. Expérimentalement, la cavitation des élastomères a été observée dans la littérature il y 
a un certain nombre d’années déjà, mais depuis très peu d’études expérimentales 
systématiques ont été menées. Et notamment, un aspect clé qui n'a pas été étudié 
expérimentalement est le rôle de la résistance à la rupture des élastomères sur la croissance 
des cavités. Différents modèles théoriques ont été proposés dans la littérature, les modèles 
initialement proposés se sont concentrés sur les mécanismes de déformation d’une cavité pré-
existante ; ce n’est qu’en 1991, que Gent propose un nouveau modèle intégrant l’expansion de 
cavité avec la notion de taille de défaut et de rupture [Gent et Wang 1991]. Plus tard, Lin et al.  
revisitent et améliorent ce dernier modèle en effectuant un calcul éléments finis (E.F.) plus 
rigoureux [Lin et Hui 2004]. 
 
Nous avons étudié la fracture par cavitation dans des élastomères modèles de polyuréthanne 
(PU) à base de polyéthers. Nous avons synthétisé, dans des conditions bien contrôlées, trois 
réseaux dits « modèles » de polyuréthanne (PU) avec des masses molaires de chaînes entre 
points de réticulation inférieures ou supérieures à la masse molaire moyenne entre 
enchevêtrements de ce type de PU (Me∼ 3000g/mol).  
L'objectif principal de cette thèse a été de déterminer le rôle joué par l'architecture 
macromoléculaire du réseau sur les propriétés élastiques non linéaires, la résistance à la 
rupture ainsi que la résistance à la cavitation sous chargement hydrostatique. Nous avons 
développé un dispositif original permettant de suivre la nucléation et la croissance de cavités 
sous chargement hydrostatique, à la résolution optique près, en temps réel, et synchronisé 
avec les données mécaniques. Les mécanismes observés et les valeurs de résistance à la 
cavitation suggèrent un rôle important de la dissipation viscoélastique ou de la croissance de 
défauts de taille sous-critique thermiquement activée. 
 
2.- Partie expérimentale 
 
2.1.- Synthèse : 
 
Nous avons synthétisé, dans des conditions contrôlées des élastomères modèles de 
Polyuréthanne, avec une chimie basée sur un triisocyanate (le tris (4-isocyanatophenyl) – 
thiophospate) et des chaînes de PopyPropylène Glycols (PPG). Les trois réseaux modèles sont 
composés de trois types de PPG isomoléculaires (4000g/mol, 8000g/mol et 1000g/mol).  En 
utilisant ces composants ont été synthétisés : deux réseaux homogènes avec des masses 
molaires entre les points de réticulation respectivement de 4000 et de 8000 g/mol, ainsi qu’un 
réseau hétérogène avec une fraction molaire de 1/3 de polyol de 8000 g/mol et 2/3 de polyol 
de 1000 g/mol. La synthèse est réalisée en absence d’eau (dans une boîte à gants), après un 
protocole précis de purification des réactifs qui a été optimisé. La réticulation a été effectuée 
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en conditions anhydres à 35°C pendant 48h puis à 80°C pendant 80 heures pour tous les 
réseaux. Les élastomères obtenus sont non chargés et parfaitement transparents. 
 
2.2.- Caractérisations physico-chimie et essais mécaniques 
 
Une caractérisation physico-chimie fine des réactifs et des réseaux a été réalisée en utilisant 
des techniques telles que : RMN, FTIR, fractions solubles. Les propriétés mécaniques des 
trois réseaux modèles ont été analysées en menant des essais de traction, de compression, de 
rupture ainsi que des essais multifréquences en DMA afin de s’intéresser à la dissipation 
viscoélastique de ces réseaux.  
Les modules élastiques ont été caractérisés par DMA pour chaque réseau et les propriétés à 
rupture des différents systèmes ont été testées sur des éprouvettes entaillées en géométrie 
DENT (« Double Edge Notched Tension »).  
Pour étudier les mécanismes de cavitation, une variation sur l'essai de « poker-chip » a été 
développé. L’échantillon de PU est pris en « sandwich » entre deux plaques de verre. Les 
essais de cavitation ont été effectués avec une machine d'essai de traction MTS 810 avec un 
porte échantillon conçu au laboratoire. Le dispositif permet d’appliquer un état de contrainte 
hydrostatique au centre de l’échantillon et de suivre, par transparence, les mécanismes de 
formation de cavités. Chaque essai a été filmé par une caméra sur le côté et une, au dessus, 
afin d'observer en temps réel et de façon synchronisée le processus de cavitation et de rupture 
ayant lieu pendant l'essai de traction. 
 
3.- Résultats et discussion 
 
Module élastique aux petites déformations – température de transition vitreuse 
 
Les réseaux obtenus ont des fractions solubles très basses (en dessous de 3%), et un 
comportement très élastique au-dessus de la température ambiante, impliquant un très haut 
degré de perfection. Le faible niveau de défauts des réseaux (chaînes pendantes, boucles, etc.) 
a été confirmé par le comportement thermo-élastique observé à faible niveau de déformation 
et confirme un comportement dominé principalement par l’entropie. D’après les résultats de 
DMA et la théorie d'élasticité caoutchoutique, les trois réseaux modèles de polyuréthane 
révèlent un module élastique aux petites déformations encadré entre les modèles affine et 
fantôme. 
Dans le Tableau 1, figurent les modules de conservation E’ et les tan δ obtenus en DMA à 
température ambiante et à 1Hz pour les trois systèmes. Les modules de conservation, E’ des 
réseaux augmentent de PU8000 <PU8000/1000 <PU4000. D'autre part, le PU8000 avec une 
température de transition plus basse, est plus dissipatif que les autres deux matériaux au-
dessus de 20°C.  La comparaison entre la valeur de masse molaire moyenne entre points de 
réticulation, Mc obtenue théoriquement par la stoechiométrie et la caractérisation physico-
chimique et celle obtenue via le module élastique, suggère que le PU8000 contienne des 
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enchevêtrements. Ceci n'est pas le cas pour le PU4000 et n’est que peut être partiellement vrai 
pour le PU8000/1000.  
 
Tableau 1: Températures de transition vitreuse, Tα, valeurs des modules et du tan δ obtenu 
par DMA à 1 hertz. 

Matériaux Tα (°C) E’ [MPa] @25°C Tan δ @25°C 
PU4000 -54.1 ± 0.5 1.3 ± 0.08        0.041 ± 0.005 
PU8000 -59.8 ± 0.5 0.8 ± 0.06        0.067 ± 0.006 
PU8000/1000 -56.4 ± 0.4 1.2 ± 0.07 0.057 ± 0.004 
 
Comportement dissipatif et mécanique non-linéaire 
 
Les propriétés mécaniques, d'intérêt principal pour notre étude, ont été les propriétés 
viscoélastiques linéaires, les propriétés aux grandes déformations pour caractériser l'effet des 
enchevêtrements et  de l’extensibilité limite des chaînes, ainsi que les propriétés de fracture.  
La dissipation viscoélastique des trois réseaux de polyuréthane a été obtenue par des 
expériences multifréquences de DMA et les courbes maîtresses de module de conservation et 
de tan δ ont été construites. Ces résultats ont été liés aux résultats de fracture.  
L’analyse de la rupture a été menée sur des éprouvettes entaillées en faisant varier la vitesse 
de déformation et la température pour obtenir le taux de restitution d’énergie critique (GIc), 
qui est un paramètre « matériau ». En diminuant la vitesse de déformation et augmentant la 
température, la valeur seuil de l'énergie de rupture (minimale) G0 a été obtenue 
expérimentalement. Le taux de restitution d’énergie critique (GIc) obtenu pour les différents 
matériaux et conditions a été utilisé pour interpréter les résultats de cavitation à la lumière des 
modèles déjà existants. 
 
Mécanismes de cavitation dans les réseaux modèles 
 
Pour suivre la cavitation, un dispositif original a été développé afin de visualiser et de 
quantifier les premiers stades de l’endommagement: la nucléation et la croissance des cavités 
(Figure 1). L'échantillon est moulé entre une lentille en verre hémisphérique et une plaque de 
verre. Les deux verres ont été préalablement traités avec un aminosilane pour pouvoir former 
des liaisons covalentes entre le PU et la paroi de verre et obtenir une condition de parfaite 
adhésion entre l’élastomère et le substrat en verre (non glissement à la paroi). Une géométrie  
sphère-plan a été choisie, avec un confinement modéré (a/h=10). Les paramètres « h » et « a » 
ont été mesurés avant chaque essai, mais étaient en général respectivement de l’ordre de 1 
mm et 10 mm. 
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a
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Figure 1: Géométrie expérimentale pour l'essai de cavitation. L'échantillon PU est entre la 
lentille hémisphérique en verre et la plaque de verre. 
 
La Figure 2 présente une courbe Force-Déplacement typique d’un essai de cavitation. Les 
Figure 3 et 4 présentent les observations associées, respectivement en vue de dessus et en vue 
latérale.    
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Figure 2 : Force vs déplacement d'un essai typique de cavitation. 
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Figure 3 : Essai typique de cavitation (Vue de dessus). Les images correspondent aux temps 
et forces notés sur la courbe Force-Déplacement. 
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Figure 4 : Force vs déplacement d'un essai typique de cavitation (Vue latérale). Les images 
correspondent aux temps et forces notés sur la courbe Force-Déplacement de la figure 3. 
 
Dans le but d'établir une relation entre l'architecture moléculaire des réseaux de polymère et 
leur résistance à la cavitation, nous avons étudié et avons comparé les trois réseaux modèles 
de polyuréthane : PU4000, PU8000 et PU8000/1000.  
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Plusieurs aspects ont été examinés :  
1) L'usage de la contrainte maximale hydrostatique pour prédire la résistance a la cavitation ; 
2) L'effet de changer les paramètres expérimentaux sur la forme des courbes force vs 
déplacement ;  
3) L'effet de la température et l'activation thermique possible du processus ;      
4) L'effet de la vitesse de chargement sur la cavitation en raison de la viscoélasticité des 
matériaux ;  
5) La vitesse de croissance après l’apparition de la cavité critique ; 
6) L’observation des faciès de rupture après la cavitation, et  
7) Une étude qualitative de cavités pré-critiques a été faite.  
 
Les essais de cavitation ainsi que les essais de rupture ont été réalisés à quatre températures 
différentes et à quatre vitesses de traverse différentes. Les résultats montrent que le module 
élastique du matériau augmente avec la température (Figure 5) alors que la contrainte critique 
de cavitation diminue, en désaccord avec les résultats prédits par Gent [Gent et Lindley 1959]. 
Contrairement à ce modèle d’instabilité élastique communément utilisé, nos résultats 
montrent que l’expansion critique de la cavité n’est pas directement pilotée par le module, 
mais également par l’énergie de rupture, Gc, par le durcissement dû à l’extensibilité finie des 
chaînes du réseau ainsi que des propriétés complexes telles que les mécanismes dissipatifs. Ce 
résultat suggère que la rupture de l’élastomère en conditions non confinées, affecte la 
résistance à la cavitation, ou qu’il y a une croissance significative d’une cavité sous-critique 
par activation thermique avant que la rupture finale ne soit observée.  
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Figure 5: Contrainte hydrostatique locale de cavitation σhydro, max en fonction du module à 
différentes températures : 25°, 50°C, 70° et 100°C, et 10µm/s. 
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Par ailleurs, nous avons observé l'apparition des cavités pré-critiques avant la fracture 
catastrophique ; ce qui semble mettre en évidence l'existence de deux critères : l'un, propre au 
processus de nucléation, principalement piloté par des mécanismes statistiques (défauts, 
temps, température, etc.); et l’autre, lié à la croissance de la cavité en milieu confiné contrôlé 
par GIc, et par le comportement aux grandes déformations. Enfin, la présence 
d’enchevêtrements dans l’architecture du réseau macromoléculaire s’est avérée clairement 
bénéfique pour stabiliser la croissance de cavités et donc pour renforcer la résistance à la 
cavitation. 
 
A la question, comment rendre un réseau élastomère plus résistant à la cavitation ? ; nos 
résultats expérimentaux permettent de répondre. Afin d’augmenter la résistance à la cavitation, 
le matériau doit avoir un durcissement prononcé (« strain hardening ») combiné avec une 
grande résistance à la rupture (GIC grand ou bien une petite taille de défaut).  
Sur les trois réseaux modèles de polyuréthane, ces conditions sont mieux remplies par 
l’échantillon PU8000.  
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4.-Conclusion 
 
Nous avons enfin conclu que, en général, pour les élastomères la probabilité d’avoir 
nucléation et croissance d’une cavité dépend de la contrainte hydrostatique appliquée, du 
temps et de la température. Alors que la dépendance en température semble être plutôt 
déterministe, en jouant principalement sur la résistance à la propagation de la rupture ;,la 
dépendance en temps et au niveau de contrainte hysdrostatique appliqué dépend nettement de 
l’architecture macromoléculaire du matériau et ne peut pas être réduite au simple module 
élastique. Nous avons clairement montré que les enchevêtrements jouent un rôle majeur dans 
l’augmentation de la résistance à la cavitation et de la rupture des élastomères non chargés. 
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