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Summary

My thesis has addressed two complementary aspects of magnetic source imaging

using Magnetoencephalography:
1. Imaging of neural current sources from MEG surface recordings;

2. Dynamic characterization of neural current patterns at the surface of the

cortex.

MEG SOURCE IMAGING

Accurate estimation of the local spatial extent of neural current activity is
very important for the quantitative analysis of neural current sources, as esti-
mated from Magnetoencephalography (MEG) surface recordings. In association
with the excellent time resolution offered by MEG, this would represent a major
advancement in non invasive, time-resolved functional brain imaging.

We addressed this issue through a new method — called Multipole Cortical
Remapping (MCR) - to accurately specify the spatial extent of neural current
sources.

In MCR, the zeroth-order Tikhonov regularized image of the current distribu-
tion on the cortex is first estimated from MEG surface data for which we sought
for a realistic model of neural generators. Then the resulting functional image
is thresholded using a simple histogram-based principle. This thresholded image
is then decomposed into groups of activation patterns following an automatic la-

beling algorithm based on the geometrical properties of the cortical surface. The
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equivalent multipolar decomposition of each current patch is then obtained. By
default, the multipolar moments are not readily related to the actual anatomical
support of the actual neural currents detected using MEG. Hence we introduced an
image remapping techniques of the multipolar parameters back onto the original
cortical manifold, in a Bayesian framework including physiological and anatomi-

cal priors.

CHARACTERIZATION OF MEG SOURCE DYNAMICS

For dynamic characterization of neural current patterns at the surface of the
cortex, we used a modified Helmholtz-Hodge Decomposition (HHD), which was
applied on vector fields describing the flow of neural current sources. This motion
field stems from a generalized approach to optical flow estimation, developed
earlier in our team.

Optical flow is the apparent motion due to variations in the pattern of bright-
ness and, under specific conditions, may mimic the velocity field of an object.
Normally, the optical flow is obtained in a two-dimensional domain, which may
prevent access to some essential features of the object’s motion with respect to
the topology or geometry of the domain onto which it is evolving. A new vari-
ational method to represent optical flow on non flat surfaces using Riemannian
formulation was previously introduced by our group to overcome this issue.

We broadened this framework and introduced a new formalism to detect fea-
tures in the resulting optical flow model using a modified and extended framework
to the HHD on 2-Riemannian manifolds, which we used to characterize neural
current sources.

HHD is a technique used to decompose a two-dimensional (resp. three-
dimensional) continuous vector field into the sum of 3 distinct components: (1)
a non-rotational element, deriving from the gradient of a scalar potential U; (2)
a non-diverging component, deriving from the rotational of a scalar potential A

(resp. vectorial potential); (3) a harmonic vectorial part, i.e., whose Laplacian



vanishes.

We showed how HHD enables the decomposition and tracking of time-resolved
neural current flows as obtained from MEG source imaging as sources and sinks
e.g., by detecting relative maxima of the non-rotational scalar potential. We
henceforth suggest to extend the analysis of brain activity in terms of tracking
travelling objects onto the cortical manifold by detecting vectors of largest am-
plitudes in zero Laplacian harmonic vector fields.

We also considered HHD through a series of structural and functional brain
imaging applications, with very encouraging preliminary results.

The methods discussed in the HHD section of the thesis were implemented in
MATLAB as plug-in to the Brainstorm (MEG/EEG data processing software) and
can be downloaded from: http://neuroimage.usc.edu/brainstorm. A short

tutorial for this plug-in is presented in Appendix 3.
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Introduction






Background

Techniques for the observation of the Hu-

man brain

Exploration of the Human brain is of utmost intellectual interest: deciphering
brain using brain is a challenging task. Although a great deal has been learnt
about brain anatomy and physiology, the fundamental questions how brain store,
retrieve and processes information is still largely unknown and full discovery of
these mechanisms is the foundational purpose of neuroscience.

When brain processes information, electrophysiological currents flow within
and outside neural cells, thus producing electric and magnetic fields that are ac-
cessible to external measurements. Indeed, signs of this electrical neural activity
in the brain can be measured with electrodes at the scalp or with very sensi-
tive magnetic detectors placed very near the scalp. The technique of electrical
measurements from the scalp is called electroencephalography (EEG) [8]. His-
torical and recent EEG setups are shown in Figure [[l The technique measuring
magnetic signals generated by neural currents is called Magnetoencephalography
(MEG) [15].

The magnetic field produced by neural current sources are very weak and are
at least 8 orders of magnitude smaller than the earth static magnetic field, as
shown Figure 2l These fields are currently picked using series of magnetometers

coupled with super-conducting quantum interference devices (SQUID). A SQUID
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b)

Figure 1: (a) EEG setup in 1970’s. (b) Modern EEG setup with quick-fix
cap.

is a sensitive detector of magnetic flux, which was developed by James Zimmerman
[114] in the late 1960’s.

The seminal, original MEG measurements were performed at MIT in May,
1971 by Cohen. Alpha waves (electromagnetic brain oscillations in the frequency
range of [8,12] Hz) were recorded as shown FigureBla. A typical, state-of-the-art
MEG setup using 151 channels is shown Figure Blb.

Brain imaging techniques can be divided into two categories: structural and
functional. Anatomical structures can be investigated using computer-aided to-
mography (CT) scans and better so using more recent magnetic resonance imaging
approaches (MRI). For functional imaging beside neural electromagnetic signals,
brain metabolism, blood flow and volume (hemodynamics) can be accessed using
radioactively-labeled organic probes that are involved in the processes of interest

such as glucose metabolism or dopamine synthesis. Images of dynamic changes
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Spontaneous Electrical

brain disturbance,

activity traffic etc.

Earth
Evoked Magneto- magnetic Magnetic field
SQUID brain cardiogram field of earth
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Figure 2: Comparison of brain signals with other sources of electromagnetic
waves.

Multichannel MEG Shielded room
ADC and amplifiers

"

o T - e —

(a) (b)

Figure 3: (a)First MEG recording at MIT inside a spaceship like magnetic
shielded room using single channel SQUID. (b) MEG Setup at La Pitié-
Salpétriére Hospital, Paris inside modern multilayer shielded room using
151 SQUIDs covering whole brain.

in the spatial distribution of these probes, as they are transported and chemically
modified within the brain, can be imaged using positron emission tomography
(PET). These images can reach a spatial resolutions as high as 3mm. However,
temporal resolution is limited to minutes by the dynamics of the physiological pro-
cesses generating the signal of interest, and by photon-counting noise. For more

direct studies of neural activity, one can investigate local hemodynamic changes.
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As neurons become active, they induce very localized changes in blood flow and
oxygenation levels that can be imaged as a correlate of neural activity [65].
Hemodynamic changes can be detected using PET, functional Magnetic Res-
onance Imaging (fMRI), and transcranial optical imaging methods. Of these,
fMRI is currently the most widely used and can be readily performed using a
standard 1.5T clinical MRI magnet although an increasing fraction of studies are
now performed on higher field (3-7T) machines for improved SNR and resolu-
tion. Functional MRI studies are capable of producing spatial resolutions as high
as 2-4mm; however, temporal resolution is again limited by the relatively slow
hemodynamic response, when compared to electrical neural activity, to approxi-
mately one second. In addition to limited temporal resolution, interpretation of
fMRI data is hampered by the rather complex relationship between the blood
oxygenation level dependent (BOLD) changes that are detected by fMRI and the
underlying neural activity. Regions of BOLD changes in fMRI images do not

necessarily correspond one-to-one with regions of electrical neural activity [62].

10
I EEG
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5 - PET
[=] L
8 41 fMRI .
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Figure 4: Spatial and temporal resolution of different brain imaging meth-
ods.
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Introduction to MEG and EEG:

EEG and MEG measure the combined activity of multiple areas of the brain
as a mixture of complex signal patterns. A primary objective is to interpret the
complex patterns of the measured electric potentials and magnetic fields, in terms
of the respective locations and time-courses of their underlying sources. The key
to this task is to design a physical and numerical model to account for the origin
of the field patterns captured by MEG/EEG surface recordings. Estimation of
the electric and magnetic field patterns for a given model of the volume conductor
is a forward problem, following the nomenclature of modeling data formation as
encountered in a large variety of applications (from geophysics to medical imaging)
[96].

The estimation of neural currents from measured field patterns is a typical
mwerse problem. In EEG or MEG studies, the simplest way to model the geometry
of the head is to use a single sphere approximation or concentric spherical shells
each with homogeneous isotropic conductivity [76].

The main reason why considering spherical geometry is the availability of an-
alytical solutions, and therefore fast implementations, to solve the forward mod-
eling problem. However a spherical approximation of the head complex geometry
is likely to induce large source localization errors [72].

Using MRI, it is possible to provide more realistic geometrical models of the
head. Numerical techniques such as the Boundary Element Method (BEM) and
Finite Element Method (FEM) provide the flexibility of utilizing a realistic ge-
ometry [51].

EEG and MEG scalp patterns are qualitatively orthogonal to each other (see
figure [B)), providing distinctive information about the underlying neural current
distributions. They therefore might be viewed as complementary rather than
as competing modalities [24]. Most state-of-the-art MEG facilities are equipped
for simultaneous acquisition of EEG and MEG data. Inverse methods for the
two imaging techniques are very closely related and can even be combined and

optimized for joint source localization [93] [6].
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MEG and EEG - opposite

source-sink orientations [\
Body surface

Extracellu[aj

(volume) Intracellular
current (impressed)
current

Magnetic field

Figure 5: Left hand side figure represent the topographic sensitivity maps
of MEG and EEG for radial and tangential dipoles. Figure on right hand
side shows the orthogonality of MEG and EEG field patterns. patterns

Neural bases of brain electromagnetic signature

MEG and EEG (MEEG) are two techniques based on what Galvani, at the end of
the 18th century, called "animal electricity", today better known as electrophys-
iology [85]. Despite the apparent simplicity in the structure of the neural cell,
the biophysics of neural current flow relies on complex models of ionic current
generation and conduction [48]. Roughly, when a neuron is excited by other neu-
rons via an afferent volley of action potentials, postsynaptic potentials (PSPs)
are generated at its apical dendritic tree. When the excitatory PSP’s become
larger than inhibitory PSP’s, the apical dendritic membrane becomes transiently
depolarized and consequently extracellularly electronegative with respect to the
cell soma and the basal dendrites. This potential difference causes a current to
flow through the volume conductor from the non-excited membrane of the soma
and basal dendrites to the apical dendritic tree sustaining the PSP’s. Some of
the current takes the shortest route between the source and the sink by travel-
ling within the dendritic trunk (see figure [B]). Conservation of electric charges
imposes that the current loop be closed with extracellular currents flowing even
through the most distant part of the volume conductor. Intracellular currents are

commonly called primary current, while extracellular currents are also known as
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secondary, return, or volume currents.

Dendrites Synapses

Figure 6: The orientation of pyramidal neurons is normal to the cortex
surface. MEG signals preferentially reflect the current flow from pyramidal
cells oriented tangential to the skull surface.

Both primary and secondary currents contribute to magnetic fields outside the
head and to electric scalp potentials, but spatially structured arrangements of cells
are of crucial importance to the superposition of neural currents such that they
produce measurable fields. Macro-columns of tens of thousands of synchronously
activated large pyramidal cortical neurons are thus believed to be the main MEG
and EEG generators because of the coherent distribution of their large dendritic
trunks locally oriented in parallel, and pointing perpendicularly to the cortical
surface. The PSPs generated among their dendrites are believed to be at the
source of most of the signals detected in MEG and EEG because they typically
last longer than the rapidly firing action potentials travelling along the axons of
excited neurons. Indeed, calculations such as those shown in [44] suggest each
synapse along a dendrite may contribute as little as a 20 fA.m current source,
probably too small to measure in MEEG. Empirical observations instead suggest
we are seeing sources on the order of 10 nA.m, hence the cumulative summation

of millions of synaptic junctions in a relatively small region. Nominal calculations
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of neuronal density and cortical thickness suggest that the cortex has a macro-
cellular current density of the order of 100nA.mm~2 [44]. If we assume that the
cortex is about 4 mm thick, then a small patch of size 5 mm x 5 mm would yield
a net current of 10 nA.m, consistent with empirical observations and invasive
studies [44].

In MEEG studies, one is usually concerned with the uppermost layer of the
brain; the cerebral cortex, which is a 2 to 6 mm thick sheet of gray tissue where
most of the measured neural activity takes place. The section of cortex is illus-
trated in Figure [6l At least 10 billion neurons reside in the whole cortex tissue.
The total surface area of the cortex is about 2500 e¢m? , folded in a complicated
way, so that it fits within the innerskull volume. The true spatial extent of realis-
tic current sources associated with brain activation varies according to the cause
of the activation. Typically sensory stimuli activate cortical areas starting from
a few mm? up to a few em?, whereas for spontaneous activity and epileptic foci
can involve an activation area up to tens of cm? [95].

At a larger scale, distributed networks of collaborating and synchronously
activated cortical macro-columns are major contributors to MEG and EEG signals
[80]. This is compatible with neuro-scientific theories that model basic cognitive
processes in terms of dynamically interacting cell assemblies [105].

Most regions of the cortex are mapped functionally. For example, the primary
somatosensory cortex receives tactile stimuli from the skin. Areas of the frontal
lobe are concerned with the integration of muscular activity. Primary motor
cortex is involved in the movement of a specific part of the body. Large areas of
cortex are devoted to body parts, which are most sensitive to touch (e.g., lips) or

to the parts where accurate control of muscles is needed (e.g., fingers).

Forward problem

In order to analyze the electric and magnetic data obtained from EEG and MEG

measurements, we need to mathematically model the relationship between mea-
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sured electric/magnetic fields and the current distribution which produce it. This
relationship is known as forward modeling which translates as a lead-field matrix
or a gain matrix that binds the amplitude of source currents to the sensor data
as we shall detail below. If the primary source and the surrounding conductiv-
ity profile of tissues are known, the electric potential and magnetic field can be
calculated from Maxwell’s equations (see [7] for a comprehensive review of MEG

forward and inverse modeling).

Maxwell’s equations

In 1873, Maxwell showed that electromagnetic fields can be described using only

4 vector differential equations [70]:

OB

VxE+ - =0, (1)

V-B=0, 2)

v-E=L, (3)
€0

OE
B— o
V x po(J + €0 BT ),

where E is the electric field, B the magnetic field, p the charge density, and ¢y and
1o represent the permittivity and the permeability of the empty space with values
8.85 1072 Fm~! and 4710~ "Hm™!, respectively (the magnetic permeability uo
of brain tissues is considered identical to that of the free space).

Neglecting the effects of the time-dependent terms is the quasi-static approx-
imation of Maxwell’s equations. This depends on the typical frequency range of
the signals of interest and the properties of the medium. The frequency of the
signals obtained from bio-electromagnetic measurements in MEG and EEG are
typically below 1 KHz. It has therefore been verified that the physics of MEG
and EEG are well described using the quasi-static approximation of Maxwell’s

equations [44]. Quasi-static Maxwell’s equations can be written as:

VxE=0, (5)
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V-B=0, (6)

v-E=L, (7)
€0

V x B = yJ. (8)

Equation (B can further be satisfied by representing the electric field E as

the gradient of a scalar function V:
E=-VVW. (9)

From (B)), we obtain the relation between the current distribution J(r’) at

point ¥’ and the magnetic field B(r) measured at r which reads:

Ho / r—r /
Br)y=—1/1J —d 10
0= 52 [36) x fa (10)
where ||.|| represents the Euclidean norm.

This relationship (I0) is popularly known as Biot-Savart Law.

The current distribution J(r) can be divided into two parts:
1. Primary current JP(r) produced by the neural current activity;
2. Volume current J(r) produced in all the volume to prevent charge buildup.

Primary and secondary currents are shown in Figure[Glb. The current distribution

J(r) now can be represented as
J')=IP0)+I°(") = IP(t) + o (¢ )E(') = IP(2) — o(r)VV(Z'),  (11)

where o(r’) is the electrical conductivity of the tissue at location r’, which we
will consider to be isotropic throughout this thesis. See Figure[7]) where the head
consists of regions of constant conductivities o;,71 =1,2,..., N + 1.

Now we can rewrite the Biot-Savart equation (I{) and use () to divide it
into two parts: the first part consists of By(r), the magnetic field due to primary
currents only while the second term is due to the contribution of volume currents,
formed as a sum of surface integrals over the brain-skull, skull-scalp and scalp-air

boundaries. In fact, we have

B(r) = By(r) + Z—; (o7 — Uj)/s V(r’)ﬁ X dSZ{j. (12)

i ij
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Figure 7: Shell model of the head.

This general equation states that the magnetic field can be calculated if we
know the primary current distribution and the potential V(r’) on all the surfaces

S;j. We can create a similar equation for the potential itself, yielding

1 r—r
(0i + o)V (r) =200Vo(r) — = > (07 — Uj)/ V(r') g x dSj;,  (13)
i Sij ||I' - r ||
where Vj(r) is the potential at r due to the primary current distribution.
If we specify a primary current distribution J?(r’), we can calculate a primary

potential and a primary magnetic field as follows

Vo(r) = 1 /Jp( ) Lrl % ds’ (14)
o  4moy ' [lr — /|| gk
Ho / r—r /
B =— [ J? e x dS;.. 1
O(r) 471'/ (I') Hr_r,H X SZ] ( 5)

The primary potential is then used to solve (I3]) for the potentials on all the
surfaces, and therefore completes the resolution of the forward problem. These

surface potentials V' (r) and the primary magnetic field Bo(r) are then used to
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solve (I2)) for the external magnetic fields. Unfortunately, the solution to (I3]) is
analytic only in a special shapes and elliptic volume conductor and must otherwise
be solved numerically. This thesis will consider using spherical head models only.

In the next two sections, models for neural current distribution will be intro-

duced and subsequently models for volume conductor will be discussed.

Modeling primary currents

Consider a small patch of active cortex S(r’) centered at r’ and an observation
point r at some distance from this patch. The primary current distribution in
this case can be well represented by the multipolar representation Qg((w)) given
by

n 1 n
i) = 1 g (DI (16)

Tl
where 1 is the point of expansion for multipoles.

It is important to note that the brain activity does not actually consist of
discrete sets of physical current dipoles, but rather that the dipole is a conve-
nient representation for coherent activation of a large number of pyramidal cells,
possibly extending over a few square centimeters of gray matter.

If the primary current distribution is very focal then it can be well approxi-

mated by an equivalent current dipole (ECD) defined as:
Q' =q= /Jp(r')dr'. (17)
The ECD can be represented as a point source
) = able’ 1), (18)

where 0(r) is the Dirac delta distribution. Note that an ECD is a multipolar
expansion of order 0.

If the current distribution is not focal, then multipolar expansions are better
suited for the modeling of neural sources. The contributions reported |74, 54, (3]
describe this issue in great details.

Multipolar expansions will be explained in detail in Chapter 2 of this thesis.
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Figure 8: Current Distribution S(r’) centered at r’ and measured at r.
Adapted from [5)].

Head modeling

Spherical head model

Head modeling using as spherical approximation of its geometry has been widely
used in the MEG community, the reason for its popular use is the simplicity it
offers with respect to computation requirements. Computing scalp potentials and
induced magnetic fields require solving the forward equations (I3]) and (I2]) respec-
tively for a particular source model. We have seen above that when the surface
integrals are computed over realistic head shapes, these equations must be solved
numerically. However, analytic solutions exist for simplified geometries, such as
when the head is assumed to consist of a set of nested concentric homogeneous
spherical shells representing brain, skull, and scalp respectively. These models
are routinely used in most clinical and research applications to E/MEG source
localization. Figure [ describes a spherical head model approximation. Consider

the special case of a current dipole, with moment q, located at r, in a multi-shell
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spherical head, and a MEG system in which we only measure the radial compo-
nent of the external magnetic field, i.e., the coil surface of the magnetometer is
oriented orthogonally to a radial line from the center of the sphere through the
center of the coil. It is relatively straightforward to show that the contributions
of the volume currents vanish in this case, and we are left with only the primary
term. Taking the radial component of this field for the current dipole reduces to
the remarkably simple form:

/
AT I—T

o R

x dSl;. (19)

Figure 9: Spherical head model, where a sphere is fitted to the head geom-
etry.

In this same case, it is very simple to show that the contribution of volume
currents will also reduce to zero. Hence the second term in [19 vanishes and this

equation write the following simpler form:

r rxr
By(r) =L Bo(r) =12

= . 20
r A r|jr —r/|3 1 (20)
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Notice here that the magnetic field B,(r) is linear with respect to the dipole
moment q but highly nonlinear with respect to dipole location: rq.

In nutshell, B,.(r) is zero everywhere outside the head if q points towards
the radial direction rq. A more general result is that radially-oriented dipoles do
not produce any external magnetic field outside a spherically symmetric volume
conductor, regardless of the sensor orientation [89].

Importantly, this is not the case for EEG which is sensitive to radial sources,
which demonstrates one of the complementary differences between MEG and EEG

principles.

Realistic head model

In reality, the head has anisotropic tissue properties, is inhomogeneous and not
spherical but surprisingly, the spherical approximation works reasonably well, par-
ticularly for MEG, which is less sensitive than EEG to volume currents. These
latter are more affected than primary currents by deviations from the idealized
model. By using the individual MRI data from the subject, it is possible to con-
struct a more detailed head model by isolating different regions of interest using
fully-automatic segmentation techniques [I6]. Figure[[0lshows typical surface and
volume tessellations for use with BEM and FEM (see [33] for a complete review
of the head geometries used in MEG).

Two types of approaches are available for realistic head modeling:

1. Boundary Element Method (BEM) BEM is a numerical technique of solving
linear partial differential equations which have been formulated in a bound-
ary integral form. Normally in MEG, single-shell and three-shell BEM
methods are used. BEM methods still assume homogeneity and isotropy
within each region of the head. It therefore ignores, for example, the con-
ductivity anisotropy induced by white matter tracts, where conduction is
higher along axonal fibers compared to a transverse direction. Similarly,
the sinuses and diploic spaces in the skull make it very inhomogeneous, a

factor that is typically ignored in BEM calculations.
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2. Finite Element Method (FEM)) FEM is a numerical technique for finding
approximate solutions of partial differential equations (PDE). In FEM, dis-
cretization of the PDE is performed in the entire head volume. Anisotropy
and heterogeneity in different tissue types can therefore be modeled and
therefore represents a very comprehensive approach to solving the MEEG

forward problem.

Typically, BEM and FEM calculations are very time consuming and their use
may be considered as impractical when incorporated as part of an iterative in-
verse solver for current sources. In fact, through use of fast numerical methods,
pre-calculation, and look-up tables and interpolation of pre-calculated fields, both
FEM and BEM can be made quite practical for applications in MEG and EEG
[31]. One problem remains: these methods reauire the conductivity properties of
head tissues be known. Most of head models used in the bio-electromagnetism
community consider typical values for the conductivity of the brain, skull and
skin. Skull is typically assumed to be 40 to 90 times more resistive than brain
and scalp, which are assumed to have similar conductive properties. These val-
ues were measured in vitro from postmortem tissue samples, with conductivity
values that may be significantly altered from those in in vivo tissues however.
Consequently, some recent research efforts have focused on in vivo measurements
of tissue conductivity. Electrical Impedance Tomography (EIT) proceeds by in-
jecting a small current (1-10 microA) between pairs of EEG electrodes and by
measuring the resulting potentials at all electrodes. Given a model for the head
geometry, EIT solves an inverse problem by minimizing the error between the
measured potentials on the rest of the EEG leads and the model-based computed
potentials, in terms of parameters of the conductivity profile. Simulation results
with three or four-shell spherical head models have demonstrated the feasibility
of this approach though the associated inverse problem is also fundamentally ill-
posed [32]. These methods are readily extendible to realistic surface models as
used in BEM calculations in which each region is assumed homogeneous, but it

is unlikely that the EIT approach will be able to produce high-resolution images
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of spatially varying anisotropic conductivity. A second approach to imaging con-
ductivity is to use magnetic resonance. One technique uses the shielding effects
of induced eddy currents on spin precession and could in principle help deter-
mine the conductivity profile at any frequency [I13]. The second technique uses
diffusion-tensor imaging with MRI (DT-MRI) that probes the microscopic diffu-
sion properties of water molecules within the tissues of the brain. The diffusion
values can then be tentatively related to the conductivity of these tissues [100].
None of these MR-based techniques have reached common practise by far . Fur-
ther, given the poor signal-to-noise ratio (SNR) of the MR in bone regions, which
is of critical importance for the forward EEG problem, the potential for fully 3D

impedance tomography with MR remains speculative.
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Figure 10: (a) FEM modeling of the forward model; (b) BEM modeling of
the forward model.



32 BACKGROUND

Linear formulation

The forward problem now can be explained using the models for sources and head
geometry discussed above. The magnetic field and scalp potential measurements
are linear with respect to the dipole moment q and nonlinear with respect to
its location r’. For clarity, it is convenient to separate the dipole magnitude
q = ||q|| from its orientation u = q/||q||, which we write in spherical coordinates
by © = [¢,p]. Let b(r) denote the magnetic field generated by a dipole having
fixed orientation O:

b(r) = g(r,ry, O)q, (21)

where g(r,r,, ©) is a lead field solution of the magnetic field for a dipole having
unit amplitude and orientation ©.
For N dipoles located at ry;, their combined magnetic fields can be expressed

using linear superposition of Maxwell’s equations as

N
b(r) = g(r,ry,,0:)q. (22)
i=1

The simultaneous MEG measurements made at m sensors for N dipoles, can be

expressed as

B(I‘l) G(rl,rql,@l) G(I‘l,I‘qN,@N) q1

B(ry,) G(rm,rq1,01) ... G(ry,ren,ON) ap

It can be written in a matrix form as
B= G({ry 6:})J, (24)

where G({rg, ©;}) is the m x N gain matrix relating N dipoles to the m sensors.
Each column contains the contribution of one dipole to each sensor in the array.
The matrix J contains the set of instantaneous amplitudes of all the dipoles.

In this model, the orientation of the dipole is not a function of time. This type
of model is often referred to as a "fixed" dipole model. Alternative models that

allow these dipoles to "rotate" as a function of time are known as "unconstrained"

dipole model [75].
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Inverse problem

To produce estimates of the neural current sources that generated the observed
MEG signals, we must solve the associated quasi-static electromagnetism inverse
problem. The inherent ill-posedness of this problem, coupled with the limited
number of spatial measurements available with current MEG and EEG systems,
(150-300 measurements) and signal-to-noise ratio (SNR) make this estimation
very challenging [44].

The solutions to the neuromagnetic inverse problem will depend on which
forward model is used. In fact, a given inverse algorithm will yield slightly different
results if different forward models are used; hence, the importance of using an
accurate realistic forward model. However, these two problems are relatively
independent of one another. In the forward problem, we attempt to model the
classical physics of MEG and EEG as realistically as possible. In contrast, in the
inverse problem, we often deal with purely mathematical concepts and a priori
assumptions that are incorporated in a source model. The independence of the
inverse problem from the model’s physics allows one to use the same inverse
algorithm for MEG or EEG. On the other hand, many different estimates of
activity can be obtained for a particular data set using different inverse algorithms
but sharing the same forward model. This brings us to the main issue with
neuromagnetic inverse estimation: nonuniqueness. There is no unique solution to
the physically and mathematically ill-posed neuromagnetic inverse problem. In
fact, an infinite number of current source distributions can in theory generate any
particular magnetic field measurement vector due to the existence of magnetic
silent sources [47, [44], [89].

In both MEG and EEG, silent sources can be added to any given inverse
solution without changing the forward field and/or potential that the combined
source generates. Thus, there are indeed an infinite number of solutions that
explain any given MEG/EEG data set equally well. Therefore, a priori assump-
tions about the sources are implicitly or explicitly formulated to find solutions

with specific properties [5l [19], 23] 25] [79, [83]. It should be emphasized that even
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though mathematically unique solutions can be obtained by postulating special
source properties, physical non-uniqueness is intrinsic to the neuromagnetic in-
verse problem.

The two major approaches to the estimation of neural current sources are
"imaging" and "parametric/localization" methods.
Imaging methods typically constrain sources to a tessellated surface represen-
tation of the cortex, assume an elemental current source in each area element
(vertex) normal to the cortex surface, and solve the linear inverse problem that
relates these current sources to the measured data. Accurate tessellation of the
cortex requires on the order of 10° elements. Since the maximum number of MEG
sensors is about 300, the problem is highly under-determined. By using regular-
ized linear methods based on minimizing a weighted [?-norm on the image, we

can produce unique stable solutions.

Parametric/localization methods assume a specific parametric form for the
sources. By far the most widely used models in MEG are multiple-current-dipole
approaches [I112,[00]. These assume that the number of neural sources is relatively
small and each sufficiently focal that they can be represented by a few equivalent
current dipoles with unknown locations and orientations. In both imaging and

parametric methods, the MEG/EEG forward problem can be written as
B=G(0)J +e, (25)

where B is the M xtime vector representing MEG measurements, J is the N xtime
vector representing the distribution currents. For imaging methods, it is the am-
plitude of elementary currents at each cortical vertex. In parametric methods, it
is the values of amplitude parameters for each current model element. G(#) is the
M x N lead field matrix relating additional parameters of the current distribution
to the magnetic field measured by M sensors. 6 gathers the parameters which
the lead fields depend uppon, i.e., current sources, locations rg,, orientations ©;
and their amplitudes ¢;. The M X time noise vector € represents a combination of

system noise and far-field electromagnetic perturbations (power lines, elevators,
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activity of heart and eyes, etc) on sensors.

Parametric methods

Parametric methods can be broadly classified into "Dipole fitting" and "Beam-

forming".

Dipole fitting

The first inverse method for equation (23]) is based on the assumption that neural
activity can be modeled by a few sparse, elementary sources «. The problem
reduces to the estimation from the data of the parameters 0 for « sources, which
are described as their positions ry,, their orientations ©; and their amplitudes
gi (with ¢ € [1,«]). This may be written as an optimization problem of a cost
function to be minimized.

The estimate in the least-squares (LS) sense writes:
3(60) 5 = argmin [B ~ G(0)3|[} (26)

where ||.||r denotes the Frobenius norm. Let GT(6) be the pseudo-inverse of
G(6):

Gt (h) =USTVE, (27)
where USV? is the singular value decomposition (SVD) of G(6) and ST is the
diagonal matrix containing inverse of singular values of G(6) [39]. Equation (26])

can be written in the form:
J(0)s = B - G(O)[GT(0)B]|| = |1 - G(O)GT(0))BI%, (28)

where I is the identity matrix of rank «. Thus, the LS problem can be optimally
solved in the limited set of nonlinear parameters r,,,©; with an iterative minimiza-
tion procedure. The linear parameters in ¢; are then optimally estimated from
26} see [75]. Minimization methods range from Marquardt-Levenberg and Nelder-
Meade downhill simplex searches to global optimization schemes using multistart

methods, genetic algorithms and simulated annealing [T0T].
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Figure 11: (a) Dipole Fitting in axial view; (b) Dipole Fitting in coronal
view (c) Dipole fitting in sagittal view.

This least-squares model can either be estimated from data from a single time
snapshot or a time window. When applied sequentially to a set of time samples,
this results in a "moving dipole" model, since the location is not constrained [112].
Alternatively, by using a contiguous time block of data in the least-squares fit,
the dipole locations can optionally be fixed over the entire interval. The fixed
and moving dipole models have both proven useful in both EEG and MEG and
remain the most widely used approaches to processing experimental and clinical
data. A key problem with the LS method is that the number of sources to be
used must be decided a priori. Estimates can be obtained by looking at the
effective rank of the data using a SVD or through information-theoretic criteria,
but in practice expert data analysts often run several model orders and select

results based on physiological plausibility. Caution is obviously required since a
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sufficiently large number of sources can be made to fit any data set, regardless of
its quality. Furthermore, as the number of sources increases, the non-convexity
of the cost function results in increased chances of trapping in undesirable local
minima. This latter problem can be approached using stochastic or multistart
search strategies [50]. The alternatives to LS described below avoid the non-
convexity issue by scanning a region of interest that can range from a single
location to the whole brain volume for possible sources. An estimator of the
contribution of each putative source location to the data can be derived either via
spatial filtering techniques or signal classification indices. An attractive feature
of these methods is that they do not require a prior estimate of the number of

underlying sources.

Beamforming approaches

A beamformer performs spatial filtering on data from a sensor array to discrim-
inate between signals arriving from a location of interest and those originating
elsewhere. Beamforming originated in radar and sonar signal processing but has

since found applications in diverse fields ranging from astronomy to biomedical

signal processing [103].

Match filter

The simplest spatial filter, a matched filter, is obtained by normalizing the columns
of the lead field matrix and transposing this normalized dictionary. The spatial

filter for location r; is given by

T
r _ G5
O TeR (3)

This approach essentially projects the data onto the column vectors of the dictio-
nary. Although this guarantees that when only one source is active, the absolute
maximum of the estimate corresponds to the true maximum, this filter is not

recommended since this single-source assumption is usually not valid, and since
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the spatial resolution of the filter is so low given the high correlation between
dictionary columns. This approach can be extended to fast recursive algorithms,
such as matching pursuit and its variants, which sequentially project the data
or residual to the non-used dictionary columns to obtain fast suboptimal sparse

estimates.

Multiple signal classification (MUSIC)

The MUSIC algorithm was adopted from spectral analysis, Direction of Ar-
rival(DOA) estimation techniques and modified for spatial filtering of MEG data
[75, [73]. The MUSIC cost function is given by

2 2
I-U.0)Gill,  [[P5.G:ill,

w = | — : (30)
IG5 IG5

where B = USV7 is the singular value decomposition of the data, Uy is a matrix
with the first ds right singular vectors that form the signal subspace, and G.; is
the gain vector for the dipole located at r; and with orientation 6; (obtained from
anatomy or using the generalized eigenvalue decomposition). The operator Plle
is an orthogonal projection operator onto the data noise subspace. The MUSIC
map is the reciprocal of the cost function at all locations scanned. This map can
be used to guide a recursive parametric dipole fitting algorithm. The number d;
is usually set by an expert user.

For more complete explanation of subspace methods like MUSIC see [55].

Linearly constrained minimum-variance (LCMYV)

Beamformers, as used in the field of brain imaging, are spatial filtering algorithms
that scan each source-point independently to pass source signals at a location of
interest while suppressing interference from other regions using only the local gain
vectors and the measured covariance matrix. One of the most basic and often
used linear beamformers is the linearly constrained minimum variance (LCMYV)

beamformer, which attempts to minimize the beamformer output power subject
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Figure 12: A typical MUSIC scan for epileptic spikes.

to a unity gain constraint:

min - r (Wi . SgWi) subject to W;.G.; =1, (31)

where Xp is the data covariance matrix, G. is the dy by 3 gain matrix of the ith
source point, and Wj. is the 3 by dj, spatial filtering matrix [I04]. The solution

to this problem is given by

W = (GT2p'G.;) T GhLEe (32)

The parametric source activity at the ith source point is given by S;. = W;.B.

This can be performed at each source-point of interest to yield a score map of
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activity. This beamforming approach can be extended to a more general Bayesian
graphical model that uses event timing information to model evoked responses,
while suppressing interference and noise sources [I15]. This approach uses a vari-
ational Bayesian EM algorithm to compute the likelihood of a dipole at each grid

location.

Imaging methods

Imaging approaches to the MEG inverse problem consist of methods for estimating
the amplitudes of a dense set of dipoles distributed at fixed locations and orien-
tation within the head volume. In this case, since the locations and orientation
are fixed, only the linear parameters need to be estimated and the inverse prob-
lem reduces to a linear one with strong similarities to those encountered in image
restoration and reconstruction. By putting locations and orientation constraint

the equation (23]) becomes

B=GJ+e. (33)

Here the gain matrix G is fixed and only dipole amplitudes J have to be estimated.

The most basic approach consists of distributing dipoles over a predefined
volumetric grid similar to the ones used in scanning approaches. However, since
primary sources are essentially restricted to cortex, the image can be plausibly
constrained to sources lying on the cortical surface, as extracted from an anatom-
ical MR images of the subject [22]. Following segmentation of the MR volume,
dipolar sources are placed at each node of a triangular tessellation of the surface
of the cortical mantle. Since the pyramidal cells that produce the measured fields
are oriented normal to the surface, we can further constrain each of these elemen-
tal dipolar sources to be normal to the surface. The highly convoluted nature of
the human cortex requires that a high-resolution representation contains of the
order of ten to one hundred thousand dipole "pixels". The inverse problem is
therefore hugely under-determined and imaging requires the use of either explicit

or implicit constraints on the expected current source distributions. Typically,
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this has been accomplished through the use of regularization or Bayesian image

estimation methods.

Bayesian formulation

Bayesian approach to neuronmagnetic inverse problem was first introduced by
Clarke in 1989 [I4]. In the Bayesian formalism, the neuromagnetic inverse problem
is defined as the problem of estimating the matrix J of dipole amplitudes at each
tessellation element from the spatio-temporal data matrix B , which are related
in the noiseless case by B = GJ. The i-th row of J contains the amplitude image
across the cortex at time i. From Bayes theorem, the posterior probability p(J|B)

for the amplitude matrix J conditioned on the data B is given by

p(BlJ)p(J)
p(B)

where p(B|J) gives the forward probability density of getting magnetic field B

p(J|B) = (34)

conditioned on J. p(J) is a prior distribution reflecting our knowledge of the
statistical properties of the unknown image. While Bayesian inference offers the
potential for a full statistical characterization of the sources through the posterior
probability, images are typically estimated in practice by maximization of the
posterior or log-posterior probability.

The estimation of J in the mazimum a posteriori (MAP) sense is given by
Jurap = argmax p(B|I)p(J). (35)
The log-likelihood of ([B3)) is given by
Jarap = arg max(loglp(B|J)] + log[p(J))). (36)

Typically, MEG and EEG data are assumed to be corrupted with additive
Gaussian noise that we assume here to be spatially identically distributed over
all sensors (generalization is straightforward). The log-likelihood is then simply

given, within a constant, by

1

Infp(B|T)] = —
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The prior is a probabilistic model that describes our expectations concerning the

statistical properties of the source for which we will assume an exponential density

p(3) = eapl-6£(3) (38)

where z and 8 and f(J) depends on the image J. This form encompasses both
multivariate Gaussian models and the class of Gibbs distributions or Markov
random field models [I3]. Combining the log-likelihood and log-prior gives the
general form of the negative log-posterior whose minimization yields the maximum

a posteriori estimate:
jMAP:argH}]inHB_GJH%‘f‘)\f(J% (39)

where A = 2802, \ is the regularization parameter. The parameter \ should
be considered as a regularization parameter tuning between the prior f(J) and
fit to the data. If A = 0 estimation of the current distribution becomes simply
least squares. This type of solution to the inverse problems was introduced by

Tikhonov in [97].

Choice of the regularization parameter \

There are many approaches to estimate the value of A\. We summarize a few as
explained below:

1.L-Curve: When plotted on a log-log scale, the parametric curve of optimal
values of ||W/|| and data fit ||B — GJ|| often takes on an L shape. For this reason,
the curve is called an L-curve [45]. The value of A in the L-curve criterion is the
value of A that gives the solution closest to the corner of the L-curve, as shown
in Figure [3]

2. Generalized cross validation (GCYV) is an alternative method for
estimating the regularization parameter A [I07], that has a number of desirable
statistical properties. Consider

IB - GJ]| V)
J) = Trace(I— GG — T(\)

(40)
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Figure 13: Typical L-curve for classic shaw inverse problem.

The numerator in (I4) is the data misfit in the least squares sense and the
dominator measures the closeness of the data resolution matrix to the identity
matrix. In the GCV method, we pick the value of A\ that minimizes (I4]), as

shown in Figure [[4]

Linear estimators

The simplest approach to ([B9) is to consider prior distribution of source ammpli-

tudes J to be Gaussian with zero mean. Introduce
f(J) =tr[JC;13, (41)

where C;l is the inverse covariance matrix of sources. If we break this inverse

matrix as, C;' = WW?, then (%) can be written in the following manner:

jMAPZaTgHBiHHB—GJ||%+>\2||WJ||%- (42)
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Figure 14: Typical GCV-curve for classic shaw inverse problem.

The MAP estimator now takes the following simple linear form:
Jhap = WWIGH(GWW'G! + \I)'B. (43)

In this case, J MmAp also follows a Gaussian distribution. (B3]) is normally known as
zeroth order Tikhonov regularized solution of J [97) 26], where the regularization
parameter A\ can be estimated from any of the techniques explained in the previous

section.

Properties of the source covariance matrix

Source covariance is the last parameter of the model which will condition the
final form taken by (@2). The forms of source covariance matrices that are most

commonly used in MEG are:
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1. The identity matrix, which yields classical minimum-norm estimators [97].
The major assumption in using the identity matrix is that source amplitudes

J are independent and identically distributed.

In Figure [[3 a comparison is shown between LCMV beamformer and the
minimum-norm solution to the inverse problem, showing that though the
minimum-norm solution is widespread, the peak of maximum intensity is
in the right place in this median nerve stimulation experiment, where we

expect activity within primary somatosensory areas.

LCMV Beamformer Minimumnorm

{ ‘} .‘ "‘k};a‘

lef electical stmulation

a3y

Thresholded LCMV Solution Thresholded Minimumnorm Solution

e

Bmpitude (1)
6 B 2o . om e s oo

Figure 15: Comparison of LCMV and minimum norm.

2. A diagonal matrix whose elements are given by the norm of the elements
of the corresponding column in the lead-field matrix (i.e., Wy = ||g;||?
with g; the i column of G). This solution is a forward-field normalized

solution.
3. W which is based on the relationship between source neighbors [I08]. The
matrix W is given by
1 ifi = 7,
Wi =4 -1 ifjeN(i),

0 otherwise,
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where N (i) defines the first order neighbor of i** source and n = Card[N (i)].

4. W is diagonal with elements equal to some estimate of the source power
at that location, which may be computed from the output of a beamformer
or MUSIC scan evaluated for each dipole pixel [69] or weighted from other
functional imaging modalities such as fMRI, PET, or SPECT [64] 21].

These methods have the advantage to be fast and overall robust towards noise
[I06]. They provide estimates where the center of gravity of the activity is very
close to the true source. However, results are often very smooth spatially and
do not allow for estimation of the spatial extent of the activity. This problem of

spatial extent and its solution will be addressed in details in Chapter 2.

Nonlinear estimators of source amplitudes

It is possible to obtain sparser image estimates of the current distribution by using
alternative (non-quadratic) cost functions f(J) in ([89). Norms and semi-norms
on source amplitude priors with values p < 2 in (42)) have been investigated.
Solutions will become increasingly sparse as p is reduced. For the special case
of p = 1, the problem can be slightly modified to be recast as a linear program.
This is achieved by replacing the quadratic log-likelihood term with a set of under-
determined linear inequality constraints, where the inequalities reflect expected
mismatches in the fit to the data due to noise. The I!-cost can then be minimized
over these constraints using a linear simplex algorithm. Properties of linear pro-
gramming problems guarantee that there exists an optimal solution for which the
number of non-zero pixels does not exceed the number of constraints, or equiv-
alently the number of measurements. Since the number of pixels far outweighs
the number of measurements, the solutions are therefore guaranteed to be sparse.
This idea can be taken even further by using the quasi-norm for values of p < 1.
In this case, it is possible to show that there exists a value 0 < p < 1 for which

the resulting solution is maximally sparse [4], [34].
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Another approach defined cliquish relationships between neighborhood sources.
The whole network of sources may be described as distributed within a Markov
Random Field (MRF), this relationship was exploited in [5, 84]. A key property
of MRFs is that their joint statistical distribution can be constructed from a set of
potential functions defined on a local neighborhood system [83]. Thus, the energy
function f(J) for the prior can be expressed as

N

FE) =LY Jaad (i) +%l Y (JG) = J(1))*)°) (44)

=1 FEN ()
where L is the number of time samples, «; and ~; determines the weighting factors
between neighborhood sources. @ is the index of the amplitude of the neighbor-
hood group. N (i) neighborhood of the source 7 is defined as the 9 closest neighbors
to the source. The first term in equation (@4)) expresses sparsity while the second
one favors focal sources distributions.

The MRF-based image priors lead to non-convex [5] and integer [83] program-
ming problems in computing the MAP estimate. Computational costs can be very
high for these methods since although the priors have computationally attractive
neighborhood structures, the posteriors become fully coupled through the likeli-
hood term. Furthermore, to deal with non-convexity and integer programming

issues, some form of deterministic or stochastic annealing algorithms must be used

[35].

Conclusion

The excellent time resolution of MEG provides us a unique window on the dynam-
ics of human brain functions. Though the limited spatial resolution remains the
problem for this modality, adequate modeling and modern signal processing meth-
ods prove MEG as a dependable functional imaging modality. Potential advances
in forward modeling include better characterization of the skull, scalp and brain
tissues from MRI and in vivo estimation of the inhomogeneous and anisotropic

conductivity properties of the head. Progress in inverse methods include meth-
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ods for combining MEG with other functional modalities and exploiting signal

analysis methodologies to better localize the brain activity.



Part 2

MEG SOURCE IMAGING






Multipolar Cortical Remapping

Introduction

The equivalent current dipole model is directly interpretable as a current element
restricted to the cortical surface representing a point source. However, one of the
perceived key limitations of this model is that, distributed sources may not be
adequately represented. This problem was one of the prime motivations to the
development of imaging approaches. An alternative solution is to remain within
the model-based framework but to broaden the model to allow parametric rep-
resentations of distributed sources. The multipolar expansion provides a natural
framework for generating these models |79, 36]. Multipolar expansions are de-
rived from spherical harmonics of the magnetic scalar potential. If the expansion
point is chosen near the center of a distributed source, then the contribution of
higher-order terms will drop off rapidly as the distance from sources to the sensors
increases. Using this framework we expand the set of sources to include current
dipoles and first-order current multipoles. These sources are able to represent
the field from a distributed source more accurately than by current dipole model,
though still benefiting from a compact, low-dimensional form [78]. Multipolar ex-
pansions of magnetic scalar potentials originate from general spherical harmonics
solution of the Poisson equation.

In this thesis, we proposed an approach for estimating the spatial extent of
cortical current sources using a hybrid methodology called Multipole Cortical

Remapping (MCR). It takes the best of imaging and parametric approaches as

51
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explained in the previous chapter.

We will first detail the spherical harmonic expansions of scalar potentials, then
introduce a general treatment of the spherical harmonic multipole expansion. This
will be followed by the multipolar expansion of distributed dipole sources. These
treatments are adapted from the classic paper by Wikswo et al. [I1I]. We will
then proceed to the more specific treatment of magnetic scalar potentials in terms
of current multipolar moments.

Finally, following this theoretical background, the Multipolar Cortical Remap-
ping (MCR) method will be introduced, followed by results on simulated and
experimental MEG data.

Multipolar expansions of a scalar potential

A vector field with zero curl, termed conservative or irrotational, can be described
as the negative gradient of a scalar potential V,,(r) which satisfies the Poisson
equation:

V2V, (r) = —s(r'), (45)

where s(r’) describes the source distribution producing the scalar field V,,. The

solution to (45) is known to have the following form:

Vi(r) = — / s(r') &3 (46)

4 | r—1'

where the integral must be evaluated over the region where s(r’) is non zero. If
the source distribution is bounded by a closed surface S, then a scalar potential

can be described by Laplace equation:

V2V, (r) = 0,7 outside of S. (47)

Spherical multipolar expansions

Spherical multipolar expansion for a harmonic scalar potential, s.e. satisfying ({47,

can be written in odd and even unit potentials, V¢ (r) and V2 (r), with their
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multipole strengths a,,, and b, respectively,

Vin(r) = Z Z [anm Ve, (r)+bmn Ve, ()], 7> a, outside the volume of the conductor,

n=—om=—o (48)

where
Vin(r) = -r(=n = 1)V (6,6), (19)
Vin(r) = =r(=n = 1)V (6,6) (50)

are the unit potentials for the even and odd nm-th multipoles respectively, a is
the radius of the sphere, and 6 and ¢ are azimuth and elevation angles, respec-
tively. The even and odd spherical harmonics with P! (cosf) being the associated

Legendre function of the first kind are given by
Y (0, ¢) = cos(me) F (cosh), (51)
Yo (0,¢) = sin(me) P (cos®)m # 0, m < n. (52)
The first term Vi corresponds to the monopole (n = 0), There are three dipole
(n = 1) components, V5, V|7, V)3 and five quadruple (n = 2) components,
V5o, Va1, Vi, Vaa, Vo and the n-th order multipole has 2n + 1 components. The

multipole strengths are given by

B (n—m)! 2m N
Amn — Gmm . cos(mgb )d¢
/ P,S”(cos@')sin(@')d@'/ s(r)yr' 2 gy (53)
0 0
N (TL — m)' 2m . / /
bmn = Gmm A szn(mgb )d(b
/ P,T(cos@')sin(@')d@'/ s(r)r' 2 gy (54)
0 0

where €, is the Neumann factor
€m =1 for m =0,
em =2 for m #£ 0. (55)

The illustration of spherical harmonic multipole components are shown in Figure

16l
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MONOPOLE DIPOLE

3ng

Figure 16: Source-sink illustration of spherical harmonic multipole compo-
nents, adapted from [I10] 67]. The figure shows the physical source-sink
configurations corresponding to the multipole components of the dipole
(three components), quadrupole (five components), and octupole (seven
components).

Multipole expansions of a distributed dipole source

If the current distribution consists of a set D of n elementary current dipoles
D = {d;,i < n}, then it is straightforward to relate it its multipolar expansion
[I11]. The equations below provide the dipole to quadrupole moments for a single

dipole ¢ (¢z,qy, q-) at the point (2o, Yo, 20).
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Dipole
aio = 4qz
a11 = 4z

bi1 = qy

quadrupole
a20 = 220qQ; — ToQy — YoQqy
21 = ZoQz + %oq:
b1 = 20qy + Yoq-
1
g = §($qu - ony)

1
byo = §(woqy — Yolz)

95

For example consider a simple current distribution consisting of two dipole,

as shown in Figure [[7], such that

Qa = (Q:B,Qy,q,z) at ra = (xmymzo)

ab = (¢, Gy, qz) at v = (To, Yo, Z0)

The spherical harmonic multipole expansion for each dipole can be determined

using equations (B0)) to (63). The multipole expansion for this current distribution

is the sum of these two expansions and given:
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(qﬂb q}’? qz) at (XDB D> D)

@ o o -0 2t (%, 0,0

Figure 17: Distributed dipole model.

ayp =ay; =b;1 =0
a20 = —2Toqx

ag) = —2x,q;

bo1 =0

a22 = To(y

b22 = xoqy (66)

Equation (60]) has an important implication. Two opposed dipoles on opposite
sides of the origin produce a field that has no dipole moments. This kind of

current distribution can only be captured using a quadrupole model.
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Multipole moments of current distribu-

tions

The neural current distribution is zero outside the head. Thus the magnetic field

B can be represented as the negative gradient of a magnetic scalar potential V,,

43, 137, 52]:

B(r) = —1oVVi,(r), r outside the head. (67)

By taking the divergence of (&7]), V;, satisfies the following Laplace equation:
V2V, (r) = 0. (68)

The solution of (68]), i.e., the magnetic scalar potential caused by a localized
current distribution, was stated by Bronzan in [I] as follows:

r')-rxr

1 J( 3,./
m - d ,
Vin(r) 47‘(’/ r —r/|(rlr — /| + 12 —1 - 1) " (69)

where r’ is the local point at which current distribution is present and r is a field

point at which the magnetic field is measured. As noted by Bronzan, (69)) is valid
for any arbitrary coordinate system and localized source, where the observation
point r is outside the source and does not lie on a line between the origin and the
source (see Figure [[]]). Therefore, if we place the origin inside the source body,
these equations hold for all points outside of the body.

As in previous chapter, a convenient substitution in MEG is to divide the
current density into primary current density JP(r’) and a volume current JV(r’)
as follows:

J(r') =JP(") + JV(r)). (70)

Suppose that the head consists of spherically symmetric regions of homo-
geneous conductivity, which means that all surfaces are radial and therefore the
contribution from volume current vanishes. The magnetic scalar potential outside

a spherical symmetric volume conductor is given by

Vin(r) = % / % IR )d. (71)
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p N

Measurement coil

Ir-r’| \B (r)
r

JP

Volume r
conductor

Figure 18: MEG sensor measure the magnetic field caused by local current
distribution J(r’) (adapted from [53]).

Equation (7)) can also be represented using a multipole expansion [54]. A
multipole expansion is the series expansion of the field produced by the source in
which successive terms decrease in amplitude. An important factor to consider is
the expansion point for this multipole series. In most of the available literature,
multipole expansions are presented as expansions about the origin of the coor-
dinate system. Since it is advantageous to expand the field about the centroid
of the source, which is not necessarily at the origin of a fixed coordinate system,
some authors (e.g., [79]) use a coordinate system with a variable origin. Here,
we will explicitly give the equations for the general case of a multipole expansion
about an arbitrary location 1 for a fixed coordinate system.

The magnetic scalar potential for a spherical head model (extension to a
realistic head model is straightforward [76]) in terms of multipole moments (with

respect to an arbitrary expansion point 1) can be expressed as follows (for more

details see [54]):
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00
Vinlr) = = ;w%l‘))un“, (72)
where F(r,l) = |r —I|(r|r — 1] + 72 —1-1) is a scalar function. Here, r’ is the
local point at which the current distribution is present and r is the field point at
which the magnetic field is measured.
The double vertical in ([72) represents an n-fold contraction between the two
polyads V}'(the nth consecutive derivative w.r.t 1) and Q™ the nth order multipole
moment of the neural current distribution [54]. Q™ completely describes the

spatial characteristics of the current distribution and is defined by

an— L / (' — "I, (73)

n!
where J(r') represents the primary current producing a magnetic field outside the
volume conductor.
The magnitude of the successive terms of the multipole expansion decreases,
hence our study will be limited to orders 0 (dipoles) and 1 (quadrupoles), for prac-
tical SNR considerations. The first-order approximation of the magnetic scalar

potential defined by (72)) is stated as

1. rxl rxl
_ D Xy,
47T[(F(T',l)) +Vl(F(T,l)) Q]7
where D = [ J(r')dr’ is the current dipole moment and Q = [(+' — )J(r)dr’ is

Vin(r) (74)

the current quadruple moment.
Dipole and quadrupole moments depend on the spatial distribution of currents
[I11]. First-order approximation of the magnetic field produced by the neural

current distribution is given by

rxl rxl1
F(r,l))'D+vl[v(F(r,Z)

B(r) = -2 (v(

-t ) Q). (75)

Multipolar cortical remapping

Multipole Cortical Remapping (MCR) is an hybrid method that takes the best
of imaging and parametric approaches to the MEG inverse problem. Preliminary

results for this technique were presented in [56], [57].
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In MCR we first use an imaging approach and estimate the zero-order Tikhonov
regularized image of the current distribution on the cortex. We then threshold
this image using histogram-based thresholding principles. This thresholded image
is then converted into groups of activity using a labeling algorithm, [46] depend-
ing upon their spatial connectivity. We then estimate multipole moments at the
gravity center for each group. The multipole moments are not directly related
to the actual physiological processes that produce the MEG signals, so we de-
scribe a remapping technique to map these moments back onto the cortex using
a Bayesian formalism.

One of the main advantages of MCR is the use of a Tikhonov regularization
for the estimation of multipole moments and cortical remapping by matching
the multipole moments (only eight moments) of the original parametric source
and the equivalent cortical patch, rather than their forward fields. Hence we
achieve a significant reduction in the computational complexity of the inverse
problem. Most importantly, we introduce physiological priors in the moment
matching criterion.

We will present the performance of MCR by its application on simulated single
and two source scenarios. The robustness of the method against thresholding value
will also be presented. We will also present the results of the application of MCR
on somatosensory data using stimulation of four fingers from the right hand.

MCR takes advantage of both the compact parametric modeling of distributed
currents using equivalent current multipoles (ECM) and sparse-focal image mod-
els on restricted spatial supports. It yields a workable estimation of the surface
extent of regional brain activations. The MCR proceeds as follows: first, para-
metric modeling of cortical currents is obtained by fitting a series of compact
equivalent current multipole (ECM) model elements to a low-resolution regular-
ized image of the cortically-constrained current distribution. The second step
consists in efficiently adjusting a sparse-focal image model to each ECM element
using a maximum a posteriori (MAP) Bayesian estimation framework. Hence

the ECM decomposition acts as an intermediary between two image models of
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cortical currents, for the sake of considerable reduction in the dimensions of the

parameter subspaces.

Compact parametric decomposition of cortical

currents

The motivation is to reduce the dimension of the subspace in which a sparse
focal image model may be fitted to the data. One approach could consist in
directly adjusting equivalent current dipole (ECD) or ECM models to the data.
The nonlinear search for their optimal locations though has proven to be hardly
tractable in practice without strong priors on the number and the expected loci
of activations when multiple regions are simultaneously active.

Here the decomposition of cortical currents in a compact form using ECM
model elements relays a smooth, low-resolution image model of neural currents
to their final higher-resolution sparse-focal estimate in a two-step procedure.

The basic image support consists of a set D of n elementary current dipoles
D = {d;,i < n}, densely distributed over the MRI-extracted cortex of the subject
that forms a surface manifold I' of R3. The orientations o; of all the dipoles
follow the circumvolutions of the cortical mantle. Hence the estimation of cortical
currents reduces to that of their amplitude distribution y = {y;,7 < n}.

The low-resolution image model was obtained from the Tikhonov-regularized

weighted minimum-norm estimator (WMNE) [2]:
y = argmin{|[b - Gy||" + \y*C ™"y}, (76)

where b is a vector of m instantaneous measurements on the MEG sensor array;
G is the corresponding forward gain matrix and C is the expected covariance
matrix of the elementary sources; A is a scalar regularization parameter.

The solution to (76]) is unique and takes the following form:

¥ = GY(GG* + AI) b, (77)
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where Gt denotes the transposed G matrix and we have assumed that C =1,
without loss of generality. Note that ¥ may either be estimated at a single time
instant or over a larger time frame with no difference in the approach.

The low-resolution image model ¥ was thresholded using for instance an ab-
solute amplitude criterion based on the analysis of the histogram of the |y;|’s.
Dipole elements in D with absolute amplitude under the 85" percentile of the
histogram were set to zero. The remaining set of active elementary dipoles was
arranged in a set of ng spatially-contiguous dipole clusters {C;, j < nc} [46].

Let x; be the coordinates of dipole d; in R?. We define as X, the current-

weighted centroid of cluster C;, that is,

Xj= Z lyilxi.

i,diCCj

X serves as the expansion point of the ECM model m¢; —up to the quadrupole
— of the currents sustained by cluster C;. All the ECM moments from all clusters

are gathered in m¢ and are adjusted in the least-squares sense:
me = G, (GmGr) b, (78)

where Gy, is the ECM gain matrix of all the C; (j < n.) clusters, which compu-
tation is detailed in [54].

Sparse-focal imaging model

The second step in the MCR procedure consists of estimating an equivalent cor-
tical current distribution to each of the ECM elements m¢; using explicit sparse-
focal priors.

The quadrupolar ECM expansion m; € R® of any dipole d; C C; about
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Xi=[Xi1,Xi2, Xia] € R3, as introduced in Section , writes [T11]:

| 1 0 0_

0 1 0

0 0 1

my=| 2is oi Yi = & Yi- (79)

Xi3 1 Xia

0 Xiz  Xip

5X;1 —5Xiz 0

5X;s  B5Xi1 0

The equivalent sparse-focal image model of each m¢; defined in Section, consists
of a subset of cortical dipoles (; C D which amplitudes §j verify
me; = Z gy, +n=GJ'y,; +n, (80)
1,d; €¢j
where M§ is the equivalent cortical ECM moments and n is the residuals between
the ECM element mg; and its cortically-distributed counterpart.

We are able to estimate y as follows

y = argmin{|[Jo — Jey | + Allyl}- (81)

Studies of functional activation, such as somatosensory mapping using PET
and fMRI, reveal the sparse and focalized nature of the activation of neural cur-
rents. Our prior is therefore specifically designed to reflect the expectation that
the current sources tend to a sparse and focal representation. y is estimated us-
ing explicit sparse-focal priors, which can readily be inscribed in a Bayesian MAP
estimator of cortical current amplitudes exemplified in [84]. This has been demon-
strated for instance in the context of Markovian Random Field (MRF) models
of the cortical current distribution. Here, we revisit this approach and make it
tractable by running MAP estimates restricted to the local current distributions
about each ECM element and by matching their respective multipolar moments.
This latter point further reduces the dimension of the quantities under consid-

eration as we are interested in adjusting moments in a subspace of dimension 8
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rather than in the subspace of MEG sensors which is m ~ 100. The cortical
current density is modeled as a random process using extensions of the models
described in [84]. We characterize the current density g, at every vertex through
the association of a continuous, normally-distributed, random variable of dipole
amplitude z; and a binary indicator process z; of whether source 7 is on or off.

Thus J; = x;2;, and globally ¥ = x *z, with x and z assumed to be two
independent processes.

The conditional posterior probability of neural current distribution knowing

current multipole moments mc; is given by

p(mg|x, z)p(x)p(z)
p(mg;) '

p(x, Z\mcj) = (82)

The MAP estimate of the set of dipole amplitudes that will match the ECM

moments of m¢, writes:
Y, = {wizi,d; € (j} = arg max p(x, zjme;). (83)

The underlying MRF of the indicator process x follows a Gibbs distribution which

energy function V(z) writes:

Vo= 3 (e 46 3 B (54)

1,d;€¢;5 kev?

where o; > 0 and §; > 0 determine the sparseness and clustering relative weights;

V' is the set of nearest neighbors of vertex i, and ~;;, is proportional to the geodesic
distance between d; and dj and to the discrepancy between their orientations.

Source amplitudes z are assumed to be centered and normally-distributed

with covariance C,. Assuming the perturbation process in (80) to be zero-mean

Gaussian with covariance matrix C,, we can write

plx,#me,) =  exp{~U (x, 2jme, )} (55)

where D is the posterior partition function.
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The MAP estimation from (B3] reduces to the minimization of the energy
functional associated to the posterior distribution of §j:

1 — m
U(x,zlmc;) = 5[ e — G;”x*z]tcnl[mcj - G'x 2

1
+§ZTCZ_1Z + V(x). (86)

Minimization of U(x,z|mg;) is difficult since the optimization procedure must
be performed over a mixture of discrete and continuous variables. We will use a
modified version of the optimization procedure given in [84] based on Mean Field
Annealing.

This method works as follows. Since the function is quadratic in continuous
variable z, we can derive closed form of expression for the optimal z* as a function

of particular indicator process x:

z*(x) = C,x(GI") T (G]"xCx(G")T + Cpn) 'myg;. (87)
Substituting z*(x) into U(x, z[m¢;) result in
U(X’ij) = U(Xaz‘mc_i)‘z:z*(x)7 (88)
which is a Gibbs energy function for the binary density
- 1 =
pxIme;) = —{-U(x|mg;)}. (89)

We can therefore first find the optimal indicator process x by minimizing
U (Jmc;), and then substituting this result in (8Z) to get the optimal amplitude
process.

Identifying the elements of (; is achieved through a recursive and iterative
surface region-growing process. The process is recursive and considers each dipolar
source in C; as a seed to a patch growing process. This latter consists of a recursive
estimation of the local current density on a growing number of source candidates
in the vicinity of every seed until U(x,z|mg;) is minimized. At each iteration,
this latter is minimized with the iterated conditional mode (ICM) optimization
of the binary indicator process.

For every seed d; € C;:
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1. Initialization: set k = 1, the patch around the source i to vi = {i} and

Ul = 0;
2. Estimate §j and compute U,i from (R6]);
3. I UL = Ul > Uiy
a) Grow the patch by including the vertices connected to the source(s)
in vi = {i};

b) Set k =k + 1 and move to next seed in C;.

a) Define U' = U} _;
b) Define the best patch obtained from seed i, II' = fol;

c) Proceed to next seed.

We define the optimal sparse focal equivalent image support to me; as follows
(j = Uielll', (90)

with
[={i,U' <T — 300}, (91)
where U (resp. oyi) is the sample mean (resp. standard deviation) of the U?’s

obtained for each seed at step Hal

This process is repeated for the n. clusters.

Results

We will present MCR first through simulated datasets in two scenarios. Then we
will present performances of MCR on real somaesthetic data of four right hand
fingers.

Data processing, forward modeling and visualization is achieved through Brain-
storm Matlab ToolBox. Experimental data was acquired by Sabine Meunier using

a 151-channel axial gradiometer CTF system.



RESULTS 67

Simulated data

We tested the method on simulated data in single source and two source scenarios,
to obtain a quantitative analysis of MCR.

A high resolution tessellation of the grey /white matter boundary was obtained
from the segmentation of the MRI data set with the BrainSuite software. To
ensure high spatial resolution we used a tessellation of 37,723 vertices and 76,952
faces, with an average triangle area of 2.59mm?.

At every MC trial, an equivalent patch was estimated. C, was chosen as oI
with a? = 1072 (SNR), and C, as o’ with a? = 100[nA.m]? (to approximate
actual current distribution of cortex and real SNR conditions in a typical MEG
experiment). «; and [3; were set to 10~° for every source, and no priors besides
connectivity were taken into account and hence 7; ; = 1 for all pairs of neighbors.
e was set to 1079, Values of parameters were chosen following [84].

An active area of cortex was modeled by first randomly selecting a vertex and

then adding its nearby vertices until the desired patch size achieved.

Accuracy criteria

Performance evaluation criteria consisted of uniformly weighted sums of (i) dis-
tance between the original and remapped patch centroid; (ii) difference between
the area of the original and remapped patch; (iii) the subspace correlation be-
tween original and remapped patch (subspace correlation is explained in the next
section).

These criteria take their values between 0% (no match) and 100% (perfect
match).

Single source case

Monte-Carlo (MC) simulations were performed by growing about 2500 cortical

patches at randomly selected locations on the cortical surface with areas ranging
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from 5cm? to 30cm? (mean 17.27cm?). Uniform illumination was assigned to
the cortical dipoles within a patch using a 100-time-sample waveform for active
dipoles. MEG signals were simulated on 151 axial gradiometers (5¢m baseline)
uniformly distributed about the upper hemisphere of a spherical head. Gaussian
white noise was added to the signals with a uniform level across all the channels
of 10% of the peak of maximum amplitude. To account for the performance, the
patches generated in the MC simulations were gathered in 5 classes according to
their areas. Each class was labeled by the average value of the patch areas within
that class: Classl= 6.31Cm?; Class2= 12.00C'm?; Class3= 17.46Cm?; Classd—
22.75Cm?; Class5—=27.84C'm?.

Figure 22l in blue legend shows that there is no significant degradation of the
method with increasing area (average accuracy 89% with vertical bar showing

standard errors). MCR, performs well with patches belonging to all area classes.

Accuracy of method wrt area classes vertical bar showing Standard Error
95 T T T T

94

93

92

91

90

Accuracy(%)

89

88| b

87

86 b

85 1 1 1 1
5 10 15 20 25 30

Area Cm2

Figure 19: Accuracy of classes with vertical bar showing standard errors.

The subspace correlation between original and remapped patches is shown in
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Figure The subspace correlation is obtained from the ordered set of cosines of
the principles angle defined in [38]. The subspace correlation is the cosine of the
smallest principal angle and will be unity if the two matrices have at least one

dimensional subspace in common. In fact,
cos(9) = UV, (92)

where U and V are subspaces spanned by original and remapped patches, respec-
tively.
Results show high degree of subspace correlation between original and remapped

patches.

Area Classes vs Subspace Correlation
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Figure 20: Subspace correlation of Classes with vertical bar showing stan-
dard errors.
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The performance of the method in determining area of the patch is shown in
Figure 2I1 Results are presented in the form of linear regression between original
and estimated area and the best linear line through scatter plot is estimated
through quadratic minimization. It is very clear from the figure that the method
performs with good accuracy and the original surface area is restored with a high
precision. The estimator recovers quantitatively the area of the original surface

with a correlation of 0.98 for 2500 patches at an average error of 0.2cm?.

40
—©&— Area Data
35 ——— Linear Fitting
30 1

y =0.98% + 0.2
25

20

15

Estimated Area Cm2

10

O | | | | |
5 10 15 20 25 30 35

Orignal Area Cm2

Figure 21: Scatter plot showing original area vs estimated area with straight
line representing linear fit.

Robustness of MCR against changes in the thresh-
old

Robustness of MCR. against threshold value is presented by decreasing thresh-

old value 4 fold and performing 2500 Monte Carlo simulations, as stated in the
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previous sections.

It is clear in Figure 2] (red legend) that the average accuracy increases for
almost all classes (average accuracy is more than 90%). However by decreasing 4
fold the threshold the computation time increases manyfold, as now more seeds
need to be evaluated to find the best equivalent patch.

Accuracy vs Area Classes
95 T T

—#— MCR
94 —<— MCR Threshold decreases .

93 h

92 1

90 1

89 B

Accuracy in Percent

87 b

86| : .

85 I I I I
5 10 15 20 25 30

Area Classes (sz)

Figure 22: Accuracy of classes with vertical bar showing standard errors

under normal MCR parameters (in blue) and smaller threshold parameters
(in red).
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Two-source case

For the two source scenario we performed simulations by generating two random
patches of about 5¢m? and 10e¢m? on the cortex. This time we evaluated repeata-
bility of the performance of MCR by repeating the process of estimation 200 times
for these two patches.

The difference in area between original and remapped patches, and accuracy
of MCR as described in Section , for the patch of 10cm? were calculated. A
bootstrap based confidence interval for the repeatability of these two statistics
was also computed [27]. This bootstrapping was performed as shown in Figure

23l in which n = 200 and B = 5000.

Graphical Tllustration of Bootstrap

Original data Resampling Bootstrap Statistic

X x® x e x® T,

x{? xgz) X e x(

X{S) x§3) ng) ..... Xff) _ 1:3

x(® X(B)'XéB) ..... xX® Ty

Figure 23: Tllustration of the bootstrap estimate of confidence intervals.

To obtain the 95% confidence interval of repeatability, we took 2.5 % and
97.5% quantities of the B replication T, T, ..., T as the lower and upper bounds,

respectively.
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Table 1 presents the repeatability of MCR at 95% confidence interval in a two
source configuration for a patch of size 10cm?. It is clearly visible from the table

that repeatability of MCR is very good and remains within a very narrow limit.

Confidence interval 95%

Lower bound | Upper bound

Average accuracy || 81.1% 90.8%

Difference area 0.14¢m? 0.93¢m?

Table 1: Confidence interval for repeatability of MCR.
The reconstruction of these two patches by MCR is presented in Figure 24]
which shows that MCR works accurately in determining the spatial extent of the

patches.

Original Patches Estimated Patches

Figure 24: Reconstruction by MCR in two source scenario.
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Experimental data

The functional mapping of limbs and fingers is a matter of great interest in MEG
community and it is widely known as somaesthetic mapping. The early neural
responses at about 40ms following stimulation of hand fingers, follows a somaes-
thetic organization along the post-central sulcus. Somatosensory source models
are mostly considered as ECD models for these early responses. However, data
from animal models indicates that even though there is some somaesthetic orga-
nization of finger areas, these latter might be larger than expected and overlap
considerably. These findings indicate that ECD based model are not very use-
ful for somaesthetic mapping as they cannot describe the spatial extent of the
somaesthetic sources.

The data for somaesthetic mapping were gathered for one healthy right-
handed male [7I]. The somatosensory stimulation was an electrical square-wave
pulse delivered separately to four fingers of each hand: thumb, index, middle,
and pinky finger. The stimulation was applied between the middle and distal
phalanxes of each finger. The stimulation order was randomized. The pulse dura-
tion was 0.2 ms and the amplitude was set to twice the perceptual threshold. The
interstimulus interval (ISI) was varied randomly from 350 to 550 ms to minimize
habituation and anticipation effects. The magnetic fields were recorded with a
CTF Systems Inc. Omega 151 system with 151 channels. For each finger, a 300-
ms interval, including a 50-ms prestimulus interval, was recorded at a sampling
rate of 1250Hz. The number of single trials per finger after removal of those cor-
rupted by artifacts ranged from 386 to 415. The DC offset of the gradiometers
was removed from all single trials based on the prestimulus interval. Data for

each finger were averaged and bandpassed between 3Hz-90Hz.
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We applied MCR on this data at 40ms latency. Results revealed the expected

somaesthetic organization of the finger primary cortical projections, with a large

degree of overlap between fingers, the thumb having the largest area (see Figure

Figure 25: (a) Color-encoding of the four fingers stimulated in the study, as
used in subsequent figures; (b) Estimation of the respective spatial extent

of the cortical responses; (c) Zoom view of the cortical responses.

Table 2 presents the area of active cortex in response to stimulus for right

hand four fingers.

Right hand fingers

Thumb
Index
Middle
Pinky

9.29¢m?
3.58cm?
5.23cm?
4.71cm?

Table 2: Estimated activated cortical surface areas in response to stimulation of

each of the right hand fingers.

We also used MCR to evaluate the area of the active cortex in the primary

and secondary sensory areas. The results presented in Figure 26] are for the right

hand index finger.
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Figure 26: Active surface areas in S; and S5 regions.

These results are in accordance with the existing neurological data for this

experiment [I8] and demonstrate effectiveness of MCR on real data.

Conclusion

We have presented a fast and robust method for estimating the spatial extent of
cortical currents from MEG data. Results from extensive Monte-Carlo simulations
show excellent performances in terms of spatial characterization even for very
large patches of 30cm?. The estimation of the surface area of active regions is
very accurate. Average error is only 0.2cm? for 2500 patches. The results for two
sources show that the method reveals the repeatability of MCR. Good results for

somaesthetic data prove that the method works adequately with real data.
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Helmholtz-Hodge

Decomposition

Introduction

The Helmholtz-Hodge Decomposition (HHD) is a technique used to decompose a

2D (resp. 3D) continuous vector field into a sum of three parts:

e a non-rotational part deriving from the gradient of a scalar potential U;

e a non-diverging part deriving from the rotational of a scalar potential A

(resp. vectorial potential);

e a harmonic part, 7.e., whose Laplacian vanishes.

The non-rotational component corresponds to the diverging components such
as sources and sink in the vector field. The non-diverging part contains informa-
tion about rotating components of motion fields such as vortices. The harmonic
vectorial component is both divergence- and curl-free revealing travelling objects
in the vector field. So by identifying these components, different features in the
vector field may be extracted.

Features of a vector field are described as patterns or structures of interest
like sources, sinks and vortices. All these features must be detected and analyzed

in order to understand the physical behavior of a flow. Although feature analysis

79
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is an important area, only a few technical tools are available for their detection
and visualization in the context of vector fields [91].

HHD is used to detect features in vector fields, but in most of the current
literature it is described on flat 2D surfaces [4I] or on 3D space [98]. Even if
some authors describe it on polyhedral surfaces [86] computation are performed
locally on the Euclidean space. As shown in [39], the surface curvature has to
be taken into account for a proper estimation of vector fields on the tangent
spaces. Moreover, results on convergence are sensitively modified by non-flatness
properties. In this chapter, we redefine HHD on Riemannian space which enables
to detect features in motion fields even on highly curved surfaces such as the
cortex.

The detection of features in motion field is important in a wide variety of
fields: [82[42]. In airplane wind tunnel testing, identification of vortices on wings
are crucial for identifying lift of the plane [I] (Figure (a)). This problem
has applications in meteorology also, for instance, to identify hurricanes on the
surface of the earth [I7] (Figure 21 (a)). In cardiac motion analysis heart beats
are represented as sources and sinks [42]. The identification of all these points
is thus precious to understand and predict the phenomena of interest. Moreover,
feature identification also allow a compact representation of the vector field [91].

This feature detection takes place in three steps. First we estimate optical
flow on 2-Riemannian Manifold. We then apply Helmholtz-Hodge decomposition
to decompose optical flow in non-rotational scalar potential, rotational (solenoid)
scalar potential and harmonic vector field. Now the task of identifying features
simplifies to identifying critical points of two scalar potentials, and moving object
can be identified by locating highest norm vectors of the harmonic component.

The aim of this chapter is twofold: first redefinition of HHD on 2-Riemannian
manifold and secondly its application to feature detection in optical flow on gen-
eral surfaces.

In subsequent sections we will first explain the Riemannian framework for

Vectorial PDE; this framework is adapted from [59]. We then revisit the optical
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Figure 27: (a) Strength of vortices on wings of the plane; (b) Identification
of hurricanes eye.

flow on non flat surfaces. A new framework of HHD on 2-Riemannian manifold
will be defined next. Lastly, we will present results on an application of HHD on

different kinds of surfaces.

Vector fields on manifolds

We first recall some necessary background about differential geometry. For a more
detailed introduction, see [28].

Let M be a 2-Riemannian manifold representing an imaging support (for
example the surface of a planet or the highly circumvoluted brain envelope),
parameterized by the local coordinate system ¢ : p € M +— (w1,22) € R2
We introduce a scalar quantity defined in time on a 2-dimensional surface (e.g.,

weather data or time-evolving estimates of brain activation) as a function
I:(pt)e MxR+—R.

As for Euclidean spaces, it is possible to define vectors on manifolds and we
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provide the most intuitive approach to this question.

Figure 28: Basis vectors (in blue and green) are defined on locally tangent
planes at each node of a triangulation of the cortical surface (in purple).

Considering a curve ~(t) defined on M such as v(0) = p, we note that 7/(0)
does not depend on the local coordinate system. For any curve v(t), the tangent
vector 7/(0) engenders a tangent space T,M at point p. The canonical basis of

this vectorial space is

0
=~"(0) = —
eCl{ IYCV( ) 81‘&7
where z3(74(t)) = t0a,5.
Proceeding identically at any point of the manifold, we define T'M = Up T,M,
the tangent bundle of M. Thus a vector field V is naturally defined as an appli-

cation

V: M—TM.

We further proceed by suggesting adaptations to the concepts of angle and

distance as defined on a manifold. M may be equipped with a Riemannian metric.
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Hence at each point p of M, there exists a positive-definite form:
gp : TyM x TyM — R,

which is differentiable with respect to p. Hereafter, we note (gp)a,3 = 9p (ea, eﬁ).
A natural choice for g, is the restriction of the Euclidean metric to 7}, M, which
we have adopted for subsequent computations. Next, we will only refer to g, as
g.

Integrating on a manifold now becomes possible using a volume form, i.e., a
differential 2-form:

dppg : TM x TM — R,

The most convenient volume form may be associated to the metric g via:

Vdet(gq g)dzidas.

Optical flow on a Riemannian manifold

This section summarizes results from Lefévre and Baillet on which we have based
the HHD extension [59].

As in classical computation approaches to optical flow, we now assume that
the activity of a point moving on a curve p(t) in M is constant along time. The

condition

yields

where D),I is the differential of I at point p, that is, the tangent linear application
given by
Dyl :TM — R.

p =V = (V!,V?) stands for the unknown motion field we aim at computing.
However, mathematically speaking, the notion of differential is not intuitive when
manipulating vector fields. In this regard, we adopt an opposite approach to the

one exposed in [I0] for Maxwell’s equations where differential forms are preferred
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to vector fields. We will come back to this point at the discretization step. That is
why we express the linear application D,I as a scalar product and thus introduce
V ml, the gradient of I which is defined as the vector field satisfying at each point
p the following:

YV € T,M,g(VmI, V) =DyI(V).

[@3)) can thereby be transformed into an optical-flow type of equation:
ol +g(V,VmI)=0. (94)

We note that (@4) takes the same form as general conservation laws defined
on manifolds in [88]. Here, only the component of the flow V in the direction
of the gradient is accessible to estimation. This corresponds to the well-known
aperture problem [49], which requires additional constraints on the flow to yield a

unique solution.

Regularization

The previous approach classically reduces to minimizing an energy functional such

as the one in [49)]:

oI 2
E(V) :/ [——i—g(V,VMI)} d,uM—i—)\/ C(V)dppy- (95)
MmLOt M

The first term is a measure of fit of the optical flow model to the data, while
the second one acts as a spatial regularizer of the flow. The scalar parameter A
tunes the respective contribution of these two terms in the net energy cost £(V).
Here we rewrite the smoothness term from [49], which can be expressed as a

Frobenius norm:

C(V)=Tr('VV -VV), (96)

where

B
(VV), =0.VP +> T8 V7
Y

is the covariant derivative of V, a generalization of vectorial gradient. 9,V? is

the classical Euclidian expression of the gradient, and Zw I’gnyV reflects local
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deformations of the tangent space basis since the Christoffel symbols Fﬁ,y are
the coordinates of dge, along e,. This rather complex expression ensures the
tensoriality property of V, i.e., invariance with parametrization changes.

This constraint will tend to generate a regularized vector field with small
spatial derivatives, that is a field with weak local variations. Such a regularization
scheme may be problematic in situations where spatial discontinuities occur in
the image sequences. For example, in the case of a moving object on a static
background, the severe velocity discontinuities around the object contours are
eventually blurred in the regularized flow field (see [109] for a taxonomy of other

possible terms).

Variational formulation

Variational formulation of 2D-optical flow equation has been first proposed by
Schnorr in [92]. The advantage of such formulation is twofold. Theoretically, it
ensures that the problem is well-posed, that is, there exists a unique solution in
a specific and convenient function space, e.g., a Sobolev space [92], or a space of
functions with bounded variations [3]. Numerically, it allows to solve the problem
on discrete irregular surface tessellations and to yield discrete solutions belonging
to the chosen function space. A possible restriction can be done when dealing with
non-quadratic regularizing terms where iterative methods must replace matrix
inversions. We derive a variational formulation in the case of Horn & Schunk
isotropic smoothness priors, but the general framework remains the same for
Nagel’s anisotropic image-driven regularization approach [77].

Considering M, we need to define a working space of vector fields I''(M) on
which functional £(V) will be minimized. Let us first denote the Sobolev space
H'(M) defined in [29] as the completion of C*(M) (the space of differentiable
functions on the manifold) with respect to || - |1 derived from the following

scalar product

< u,v >H1:/ uv d,uM—}—/ g(Vu, V) dpupy.
M M
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We choose a space of vector fields in which the coordinates of each element

are located in a classical Sobolev space:

2
Fl(M):{V:M%TM/V:ZVO‘ea, Vo‘eHl(M)}, (97)
a=1

with the scalar product given by

< U,V >TIM)= /

g(U, V) dup + / Tr(*VUVV) dp .
M M

E(V) can be simplified from (@3] as a combination of the following constant, linear

and bilinear forms:

O MUK

f(u) = —/Mg(U,VMI)atIdMM,
W(U.V) = /Mg<U,vMI>g<V,vMI)duM
ax(U, V) = /MTr(tVUVV) dppg
a(U, V) = a1(U, V) + Aax(U,V).

Minimizing £(V) on I''(M) is then equivalent to the following problem :

vé{lli{h) (a(V, V) =2f(V) + K(t)). (98)

Lax-Milgram theorem ensures uniqueness of the solution with the following as-

sumptions:
1. a and f are continuous forms;

2. TH(M) is complete, the bilinear form a(.,.) is symmetric and coercive (el-

liptic), that is, there exists a constant C' such that

YV ETHM),a(V,V) > C |V iy

Moreover, the solution V to ([@8]) satisfies:

a(V,U) = f(U),¥ U € TY(M). (99)
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Continuity of f and a are straightforward. Completeness of I'' (M) is ensured
because any Cauchy sequence has components in H'(M) which are also Cauchy
sequences since || - |[z1 is bounded by || . [[p1(aq)-

Proof of coercivity can be adapted — analogously to flat domains [92] — thanks
to isothermal coordinates. Indeed, the Korn-Lichtenstein theorem (1914) allows
to find a system of coordinates for which the two basis vectors of tangent space
are orthogonal. In this basis, calculus are similar to those in Euclidian case by
introducing a multiplicative coefficient equal to the norm of the basis vectors.

A big difference with [92] is that the coercivity and therefore well-posedness
does not require an assumption about linear independency of the two components

of the gradient VI (see [59)]).

Helmholtz Hodge decomposition on 2-

Riemannian manifold

We will now present an extended framework to perform HHD on Riemannian
surfaces and show that it can be applied for any vector field defined on a 2-

Riemannian manifold M.

Theory

Definitions

In our framework M is a surface (or manifold) parameterized by local charts
(z1,x2). Thus, it is possible to get a normal vector at each point

0 0

n,=—N—.
P 83:1 a$2

It is important to see that the normal does not depend on the choice of the

parametrization (z1,z2). Then we define the gradient and divergence operators



88 HELMHOLTZ-HODGE DECOMPOSITION

through duality:

dU(V) = g(VmU,V),

/)MMMH = —/5m1vMUy
M M

Scalar and vectorial curl are at last given by

CurlyfA = VA AD,

curlpyH = divy(H An).

With these formulas we have intrinsic expressions which do not depend on the

parametrization of the surface.

Theorem

We start by reformulating results established in [86]. Given V a vector field in
I'Y(M), there exists unique functions U and A in L?(M) and a vector field H in
I'Y(M) such that

V = VU + CurlyA + H, (100)

where

curl p(VamU) =0,
divM(CurlMA) = 0,
divypH = 0,

curlp, H = 0.

In practice, few divergence components and a few rotational components are
to be found in the field H. To counter this problem, we can further decompose

the "harmonic" remainder, H, into three components such that more accurate
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results can be obtained. This iterative scheme can be formulated as below:

V = VU + Curly4; + Hy,
= VUi + Curly Ay + [VUs + CurlyAs + Hal,
= VmUp + Curly( A + VpUs + Curly A,
+...4+ VMU, + Curly4,, + Hy,
= [VMmUi +VmUs + ... + VU]

+[CurlpA; 4+ CurlpAg + ... + CurlyA,] + Hy,.

If the number of iterations is large enough, the final curl-free component and
the final divergence-free component will be very close to the respective true value.

In practice, one iteration is enough to extract useful features of a vector field.

Discretization

In this part we show how to construct the functions U and A starting from
theoretical considerations before addressing more practical aspects.

Following classical constructions, U and A will minimize the two functionals:

| v =vau
M

[ v - curtyal?
M

where ||.|| is the norm associated to the Riemannian metric g(.,-).
These two functionals are convex. Therefore, they carry a minimum on L?(M)

which satisfies:

Vo e LAM), /Mgw,w@ - /MgNMU,vM@, (101)

Vo € L2(M), /M g(V,Curlyp) = /M g(Curly A, Curl ). (102)

These two equations are very important since they provide the path to numeri-
cal computations when the space L?(M) is approximated by a finite dimension

subspace (e.g., continuous linear piecewise functions).
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Indeed if we have basis functions (¢1, ..., ¢,), then we can write U = (Uy, ..., U,)7,

A= (Aq,..., AT, and equations (I0I) and (I02) reads in a metrical way:

(103)

/ g(vm,ij)] U - [ / 9V, Vi)
M M

Z7j

[/ g(Curquﬁi,CurlMQSj)] A = [/ g(V,Curquﬁi)]. (104)
M M

i7j

1

7

The harmonic component H of the vector field V is obtained simply as

H:V—VMU—CUI'IMA. (105)

We provide some details about the numerical implementation of (I03]) and
([04), which are defined on a tessellation M approximating the manifold. This

tessellation consists of NV nodes and T triangles, as shown in Figure 29

lni . normal at node i

/

Ni;k: normal of triangle i,j,k

Tangent Plane

hi: height from i

Figure 29: Illustration of local computations and associated definitions from
FEM on a triangular surface mesh.

Following the finite element method (FEM), we define N functions, which are

continuous piecewise affine, with the property to be equal to 1 at node ¢ and 0 at
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all other triangle nodes. They are the basis functions for the approximation. So

([I03)) reads:

b b
: A(T , (106)
LZ M Ty FAD|7 = | AV 1y HZ]

where h; is the height taken from ¢ in the triangle 7', A(T") is the area of the
triangle 7.
In the same spirit, ([I04) is discretized as follows:

[§j<||tiiu2“>'<u A ) A= | LAV ( }iH?“‘)]’

where n is the normal to the triangle 7'
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Feature detection as critical points of potentials

The critical points of a vector field are often classified depending on the eigen-
values of the Jacobian matrix at a point in a vector field. In our case, however,
critical points of the flow can be found as local extrema of the divergence-free
potential A (representing rotation) and curl-free potential U (representing diver-
gence). Finding features as critical points on global potential fields is much less
sensitive to noise in the data and therefore be less likely to get false positives, in
comparison to local Jacobian eigenvalues based methods [68].

A sink corresponds to a local maximum of the potential U, whereas a source
corresponds to its local minimum. In Figure B0l a diverging vector field on flat
2D manifold is shown for illustration purposes, it is clearly visible from Figure
B0 (b), source and sink of vector fields can easily be detected from the curl free

potential U.

Original Motion Field curl free potential
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(a)

Figure 30: (a) Vector field having source and sink on a flat 2D manifold;
(b) Curl-free potential U of vector field.

Figure Bl shows diverging vector field overlap on a spherical manifold (Rie-
mannian manifold), the magnitude of the potential U is shown in color. In Figure
BTl (a), a source in the vector field is detected through minima (blue) of U, whereas

a sink is identified by maxima (red) in U; see Figure B1] (b).
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(a) )

Figure 31: (a) Source vector field overlapped with U on spherical manifold,

(b) Sink vector field overlapped with U.

Similarly, counterclockwise and clockwise vortices are represented as local
minima and maxima of A, respectively. In Figure B2 (a), a rotating vector field
on a flat 2D manifold is shown for illustration purposes. It is clearly visible from

Figure B2 (b) that rotating vector field can easily be detected from the divergence

free potential A.

Divergence free potential

iginal Mation Field
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(a)
Figure 32: (a) Vector field with vortex on a flat 2D manifold; (b) Divergence-

free potential A of a vector field.

Figure B3] shows that a rotating vector field on a spherical manifold, color

shows magnitude of the potential A. In Figure B3 (a) counterclockwise vortex
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in the vector field is detected by maxima (red) in A, whereas clockwise vortex is

identified by minima (blue) in A, Figure B3] (b).

(a) 0

Figure 33: (a) Counterclockwise vortex vector field overlap with A on spher-
ical manifold. (b) Clockwise vortex vector field overlap with A.

To detect traveling object on a Riemannian surface, one has to detect vectors
with highest norms in the vector field H and thus one is able to follow the path
of the moving object. This ability of HHD will be demonstrated in Figure
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Simulations and results

In order to test the new framework, we evaluate its performance in real and
simulated environments on four types of Riemannian manifolds (rabbit, elephant,
sphere and human brain).

First, we evaluate this methodology in detecting sources and sinks on the
surface of a bunny mesh. In this test bench, first we generate a vector field
with sources and sinks which mimic the optical flow of objects of increasing and
decreasing in size. Secondly we generate rotating vector fields which mimic the
optical flow of a tornado. We then performed HHD on these vector fields.

In Figure 3] (a), A on the surface of the rabbit is represented in color, while
arrows in green represent the vector field. It is clearly visible in the figure that
our framework identified vortices of the vector field. In Figure B4 (b), U on the
surface of the rabbit is represented in color.

Our framework reveals sources and sinks of the vector field, as shown by
this figure. The source is represented in blue while sink is in red. In Figure [34]
(c) and Figure B4] (d), rotating and diverging vector fields are shown, and their

corresponding A and U components are shown in colors on the surface.
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(c (d)

Figure 34: Examples of different types of vector field and their U and A
components. (a) Rotating vector field and its A component; (b) Diverging
vector field and its U component; (c) Rotating and diverging vector field
and its A component; (d) Rotating and diverging vector field and its U
component.

HHD decomposition is shown on the surface of an elephant object. In Figure
B3l vector fields containing both rotating and diverging components are shown.
It is clearly seen in Figure B3] (b) that HHD detects the source (minima of U),
sink (maxima of U), clockwise vortex (minima of A) and counter clockwise vortex

(maxima of A).
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(<) {d)

Figure 35: Vector field and its U and A components; (a) Vector field on
elephant surface; (b) Close-up view of vector field with U and A superim-
posed; (c) Rotating vector field detected by A Component; (d) Diverging
vector field identified by U.

In a second set of simulations, we first tracked a source and vortex on the
surface of a rabbit object by finding critical points of scalar fields U and A, as
shown in Figure B6] (a). Secondly, we tracked a constant intensity patch, which is

moving according to the advection equation [59)] by tracking highest norm vector
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in vector field H, as shown in Figure

(a) (b)

Figure 36: Tracking of Sink, vortex and constant intensity patch on the
surface of a rabbit. Symbols have been assigned for source vortex and
constant intensity patch while arrows show the track, and snapshots of
tracking are superimposed in figures; (a) Tracking of complete paths of a
source and a vortex; (b) Tracking of a complete path of constant intensity.

We further tested the HHD in a real scenario using experimental MEG data.
We first obtained the optical flow from MEG source images representing motion
fields of neural current on the surface of the brain and then applied HHD to detect

sources and sinks.
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As the majority of the neural electrical activity is predominantly diverging, we
present results for the U part only in Figure B, which shows a diverging source
in the primary somatosensory part of the brain, which is clearly related to the
somatosensory experiment (brain response to the electrical impulse on the finger)

undertaken to get this data.

(@) (b)

Figure 37: (a) U component of HHD on the surface of the brain; (b) Zoom
view of activation.

Conclusion

In this chapter, we have developed a framework for the decomposition of a vector
field on 2-Riemannian manifolds. The computations involved are simple, and took
less than 2 seconds to compute all HHD components for 1500 node tessellation
on a conventional workstation. Evaluation of this framework under real and
stimulated environments were presented.

In the next chapter, applications of HHD in functional and structural brain

imaging will be suggested.
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Applications of HHD

Introduction

In the subsequent sections of this chapter we will present several applications of
HHD in structural and functional brain imaging. We start from the decomposition
of data from a study in different feature sets. Then we show the ability of HHD in
characterizing epileptic activity. We also present how divergence representation is
different from normal current density. Lastly, we present two examples of HHD in
structural brain imaging: Firstly, we detect growth seeds in the neonate brain and
secondly, we characterize brain tumor growth. In the following applications, we
will also apply HHD on Electrocorticography (ECoG) data so before proceeding
further, we present brief description of ECoG.

ECoG is a method in which electrodes are placed directly on the surface of
the dura or of the brain. ECoG signals are composed of mixtures of local field
potentials. Electrodes consist of grids or strips. Grid electrodes are arranged in
an rectangular array, whereas strip electrodes are arranged along a line. A typical
ECoG setup is shown in Figure B8l

In order to run HHD on ECoG grids, we first need to generate a surface
representation of the recording grid, which follows the envelope of the cortex. The
process of grid generation and co-ordinate alignment are explained in Appendix

1.
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(b)

Figure 38: (a) Left view of grid and strips on a cortex; (b) Bottom view of
grid and strips on a cortex.

HDD of MEG experimental data

MEG, EEG and EcOG source imaging reveal spatially-distributed and dense infor-
mation contents in the temporal dimension. The extraction of patterns of interest
from the data has been the expertise of clinicians and investigators but remains
problematic when dealing with respect to reproducibility and expert-dependency,

especially when considering the complex geometry of the cortex.
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A first application of HHD aims at suggesting a principled approach to the
automatic extraction of salient dynamical features from cortical activity image
series, thereby facilitating the reproducible analysis of the experimental data. To
illustrate this application of HHD, we used a dataset from an MEG experiment
that consisted in mapping the primary somatosensory response to repeated elec-
trical stimulations of the hand fingers [71]. The trial duration was 300-ms that
included a 50-ms prestimulus interval; sampling rate was 1250Hz on all 151 MEG
channels (VSM/CTF MedTech).

In order to test this application we first obtained optical flow from the minimum-
norm source estimates we used them to calculate optical flow of neural currents
on the surface of the brain. HHD of this optical flow was applied to detect sources
and sink. As the majority of the neural electrical activity is predominantly di-
verging, and travelling, we present results for the U and H HHD parts only in
Figure B7, which shows diverging sources and travelling objects in the primary
somatosensory part of the brain.

In Figure B9 we extracted features of the cortical current activity between
30ms and 45 ms after stimulus delivery for the compact representation of electro-
physiological patterns in the data.

The current activity during this period is decomposed in only three features:
two sources and one travelling object. Hence we obtain a compact representation
of cortical activity during the early somatosensory activity.

The computations involved took less than 5 minutes over the 55,000 nodes of
a cortex mesh using a conventional desktop computer running Matlab.

The results for this application are presented in [58].

Characterizing epileptic activity

In the second set of applications, we will present the automatic characterization
of epileptic activity using HHD using ECoG and MEG.

This application of HHD finds its roots from typical flow dynamic problems.
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Figure 39: Decomposition of cortical activity in feature sets.

The vast amount of motion flow data has to be processed in such a way that
important flow features can be automatically detected. In ECoG/MEG during
epilepsy study, we face the same problem and an automatic mechanism is needed
to detect important features in epileptic data, e.g.: spikes and seizure onsets.

Let us first emphasize how a divergence representation of a current density
is different from the original current density. In comparison to current density,
its divergent U component yields a more focal and compact representation of the
cortical activity due to the fact that U is sensitive only to sources or sinks in the
current density.

A focal and compact representation of epileptic activity can be used in iden-
tifying and localizing the epileptic foci.

Figure shows comparison between two types of representation. Figure

A0l(a) shows divergence representation side by side with a normal cortical current
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activity. It is clear that divergence representation is very focal and can easily

indicate the epileptic foci.

@

Figure 40: (a) Divergence on a cortex during epileptic spikes; (b) Current
density on a cortex during epileptic spikes.

High divergence in the cortical current activity can characterize an epileptic
activity since it can easily be represented by sources and sinks.
Another important parameter we use is Kinetic Energy (KE) of a vector field and

it is defined as:

KE(t) = /M 1) dm. (108)

Characterizing of epileptic activity in ECoG

For HHD application on ECoG we used electrode data provided by Dr. M.
Raghavan (MCW Neurology). In total, 64 electrodes are placed on the right
motor-somatosensory cortex. Sampling rate for was set at 1 KHz. CT scans were
acquired to localize the electrodes and were aligned with the post-surgical MRI
image volume.

The result of the application of HHD on ECoG is summarized in Figure ATl
An epileptic spike is detected in time through maximum in KE of diverging com-

ponent Vy;,, = VU of optical flow V. Figure[dI](a) shows the kinetic energy. For
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spatial localization of the epileptic spike, we seek singularities in diverging U com-
ponent of HHD at the time instants detected through KE. In Figures ] (b) and
(¢), the diverging component U is shown on the surface of the grid. The sources
and sink represent points of high divergence in the data and indicate the epileptic
network causing epileptic activity. These results for this epileptic network was

subsequently confirmed by the neurologist.

KEvar

200
100
| 1 |
100 200 300 400

. 500
Time Samples

(a)

Figure 41: (a) Kinetic energy diverging component of optical flow; (b) HHD
source on the ECoG grid; (¢) HHD sink on the ECoG grid.



CHARACTERIZING EPILEPTIC ACTIVITY 107

Characterizing epileptic activity with MEG source
imaging
We used a dataset containing a rare occurrence of seizure during MEG recording.

We first calculate the Kinetic energy (KE) Vg, = VAU on the optical flow
vector field of the minimum-norm estimate of cortical currents. The highest peak
in KE as shown in Figure (b) correctly points at the start of the epileptic
seizure. Figures @2 (a), (d) and (c) show magnetic fields recorded at the left oc-
cipital region, telling the story of the seizure. Seizure starts with a high frequency
oscillatory (HFO) burst (Figure d2] (d)) and moves later to a continuous buzzing
mode, as shown in Figure @2 (c).

To correctly characterize the epileptic network, we focussed the analysis on the
start of the seizure. In Figures@dIl(e) and (f), the diverging component U is shown
in color on the surface of the cortex. Figure 2] (e) shows the source from where
the actual epileptic activity started (the source is represented in blue). After
bms, this source converted into the sink (the sink is represented in red) with a
new source nearby (Figure (f)). This pattern of activity, detected through
HHD, characterizes the early epileptic network en route to seizure. The results

for this application are presented in [5§].
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Figure 42: Epileptic seizure as seen by optical flow and HHD; (a) MEG
magnetic field at left occipital region in middle of seizure; (b) KE of Vi, =
V mU during recording; (¢) MEG magnetic field at left occipital region at
the start of seizure; (e) Epileptic source in blue; (f) Epileptic source (in
blue) and sink (in red).
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Identification of cortical development in

the neonate brain

This is a possible application of HHD to structural brain imaging. Using MRI [30]
it is possible to follow precisely the ontogenesis of the cortical folding during early
phases of development. Applications are numerous from the detection of potential
lesions [30] to the deciphering of sulci formation processes whose physiological
origins are yet not well understood [102], 99]. In this application, we report on a
new framework to characterize the rapid brain development of newborns.

The set of data consists of 4 healthy newborns with 2 MRI T2 acquisitions
for each at birth and around 3 weeks later. The white and gray matters are
segmented through a dedicated algorithm to overcome the inhomogeneity of the
contrast [63]. Once the cortical surfaces have been extracted we compute their
depth maps from a geodesic distance of the surface to a binary mask of the brain.

Then for each subject we registered the less mature cortical surface on the
more mature one and interpolate the depth maps by a nearest neighbors method
[12]. We obtained therefore two depth maps, in red on Figure 3] projected on
the same surface at two different time steps so it is possible to track the evolution

of those maps. For this, we computed a displacement field estimated by a surface

(b)

(@)

Figure 43: (a) Less mature cortical surface; (b) More mature cortical sur-
face.

optical flow method exposed in part 3 of this thesis. This displacement field, in
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green on Figure[d4], reflected local evolution of sulci directly on the cortical surface

(smoothed out here for a better visualization).

Figure 44: Surface optical flow method accounting for the displacement field
between two cortical surfaces.
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We further detected the critical points of the displacement field, i.e.: loca-
tions of points with high divergence using HHD. Minima of scalar divergence U
potential, revealed putative sources of fundamental folding during the develop-
mental process. We can see qualitatively on Figure @] the radial structure of
the vector field in green. More quantitatively, Figure reveals sources points
in yellow (minima of the U in red/blue) of the displacement field. The sources
can be viewed as growth seeds or in other terms points around which the sulcal

growth organizes itself. We show the reproducibility of these growth seeds on Fig-

Figure 45: Detection of growth seed through scalar divergence U of HHD.

ure [46] where the colors of the points correspond to 4 different neonates surfaces,
registered on the same template [9]. The numbers can be linked to a sulcal roots

taxonomy that we can find in the literature [87].
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Figure 46: The reproducibility of these growth seeds in four subjects.

The main originality of this application is the use of the Helmholtz decompo-
sition to characterize the brain folding of human newborns. We can note a good
reproducibility of these growth centers or growth seeds among 4 neonates. We
hypothesize a possible link between this new concept and the "sulcal roots" [87]
or sulcal pits [66] proposed to explain the variability of human brain anatomy.

The results for this application were published in [60] [61].



CHARACTERIZING TUMOR GROWTH PATTERNS 113

Characterizing tumor growth patterns

Primary brain tumors include any tumor that starts in the brain. Tumors may be
confined to a small area, invasive (spread to nearby areas), benign (not cancerous),
or malignant (cancerous).

In the last application of HHD, we focus on characterizing growth pattern of
invasive brain tumors. Here we used simple two-dimensional version of HHD to
show a proof of concept but it can be evolved in full application by extracting
tumor surfaces and by using the methods explained in neonate brain application,
to characterize tumor growth on Riemannian manifolds.

We used two sets of FLAIR MRI images collected on two different occasions
for the same tumor patient, both the MRI sequences were aligned in the same
coordinate system using FSL package [94]. We also normalized the contrast of
the two sets of images. We selected slice 84 on which tumor growth is most
prominent on both slides (Figure 7] (a) and (b)) and computed the optical flow
between these two slices (Figure lT (c)) with arrows showing optical flow. We
then computed the HHD on tumor portion of the slice; see Figure @7 (d).

In Figure 7] (e), color shown divergence component U with minima in white
dots. The vector field shown here is the diverging component of optical flow
VmU.

It is shown that the minima of U correctly identify the growth seeds of tumor,
with VU, revealing their relative spreading directions. Hence, this may be an
initial block of a tool that can automatically characterize growth patterns of brain

tumors.
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5

)

Figure 47: (a) Slice 84 of FLAIR MRI at time instant 1; (b) Slice 84 of
FLAIR MRI at time instant 2; (c) Optical flow of two slices; (d) Zoom view
of optical flow; (e) HHD on optical flow.
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Conclusion

We have presented four applications of HHD in structural and functional brain
imaging applications. The results are very encouraging and show promise HHD
offers in a wide variety of applications. We believe that HHD has probably many
other applications in all kind of spatiotemporal phenomena that occur in the

brain.
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Conclusion and Future Actions

We introduced a new multipole moment based approach to the MEG source char-
acterization in which we have shown that MCR can accurately characterize spa-
tially extended neural current sources by matching current multipole moments.
The procedure is based on zero-order Tikhonov regularized image but the method
can be initialized using any other imaging based method.

The MCR. approach solves the local imaging problem, hence reducing com-
putational load to very large extent. Moreover, in multipole matching, we are
matching only 8 moments instead of vectors equal to the dimension of the origi-
nal data (the number of sensors), which for current MEG system is around 300,
hence again reducing computational load. The algorithm is therefore tractable
and reasonably fast (about 20sec for a 37723-node cortical tessellation).

Another important factor is the modified Gibbs priors we used for matching.
Hence we may incorporate physiological information from other modalities such
as PET or fMRI. By doing so, we reduced the non triviality of the electromagnetic
inverse problem by restricting possible solutions.

Results from extensive Monte-Carlo simulations show excellent performances
in terms of spatial characterization even for very large patches of 30cm?. The
estimation of the surface area of active regions is very accurate, the average error
in area is only 0.2cm? for 2500 patches. The results for two sources show that the
method reveals the repeatability of MCR.

Good results for somaesthetic data shows the method works well for real data.

Using MCR. we can clearly locate the somatotopy of finger responses.
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The future upgrade of this method is to use magnetic multipole moments
instead of current multipole moments for remapping and to compare their corre-
sponding results. (For a detail description of the current and magnetic multipole
moments see [54].)

On the MEG source dynamic characterization front, we have developed a
framework for the decomposition of vector field on 2-Riemannian manifolds. The
computations involved are simple and it took less than 2 seconds to compute
all the HHD components for 1500 node tessellation on a conventional desktop.
Evaluation of this framework under real and stimulated environment gives very
encouraging results. The applications for this formulation are emerging, with
more and more three-dimensional imaging evolving in real world.

Future path for this framework is its modification in discretization to higher-
order finite element analysis, and its evaluation in more real world scenarios.

We have presented some applications of HHD in functional and brain imaging
but we feel that HHD has more promise in biomedical imaging and more appli-
cations need to be discovered in biomedical as well as in other fields. The tumor
growth characterization needs to be more mature in a way that the tumor surfaces
need to be extracted and HHD is applied on them in the same spirit as in the

neonate brain application.
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Grid Generation

To generate the grid on which HHD can be applied, subjects MRI and CT scan
are needed. In a first step CT and MRI of subject are aligned, using FSL package
[04]. After alignment we manually extract grid coordinates from the CT scan.

Grid electrodes are very coarse and electrode positions need to be detected to
create dense virtual electrode systems before HHD can be applied on it. We
used multidimensional scaling to interpolate between electrode positions and
VORONOI diagram is then used to generate the interpolated surface which fol-
lows the cortical envelope and on which virtual electrodes are located (see figure
[g]).

To interpolate between potential values for the virtual electrodes system we
used an interpolation scheme that is constrained by a minimal norm of the Lapla-

cian (see [81] for details), as shown in Figure 9
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Original Grid Interpolated Grid

(a) (b)

Figure 48: (a) Original grid; (b) Interpolated grid.

Original Grid Interpolated Grid

(a) (b)

Figure 49: (a) Data on original grid; (b) Interpolated data on interpolated
grid.



123

The cortical surface (the cortical surface is extracted from MRI using freesurfer

package [20]) and interpolated grid along with strips electrode are shown in Figure

D0l

Figure 50: Overlapped interpolated grid and the cortical surface.






MEG-ECoG source localization

and dynamics comparison

In this appendix we will compare MEG source localization and dynamics with
ECoG.

The MEG data set that has been used for this comparison was recorded on the
Elekta Neuromag 306 system at the Medical College of Wisconsin. This data is
recorded at 2KHz sampling rate with 204 gradiometers and 102 magnetometers.
Single sphere head model was used for forward computation minimumnorm is
used for inverse modeling.

ECoG data were also recorded at the Medical College of Wisconsin. In total,
73 electrodes were placed over the frontal, parietal and temporal cortices. Sam-
pling rate for acquisition was 1KHz. CT scans were acquired post-surgery and
aligned with a presurgical MRI image volume.

The data set in both methods consisted of an epileptic HFO burst, lasting
about 1s. First we will show source localization of HFO using MEG and secondly
we will show source dynamics using Granger causality.

Granger causality is a statistical concept of causality that is based on pre-
diction. According to Granger causality, if a signal X1 "Granger-causes" (or
"G-causes") a signal X2, then past values of X1 should contain information that
helps predict X2 above and beyond the information contained in past values of

X2 alone. Its mathematical formulation is based on linear regression modeling of
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stochastic processes [40].

Figure BI a. shows the epileptic HFO during MEG recording. Figure GBI b.
disaplys source localization for this HFO burst, when summed across whole 1s
duration. This source localization reveals the bifocal nature of the epilepsy. To
investigate further we extract the current density waveforms at the two epileptic
foci (see figure[5Ilc.). We then need to understand which epileptic focus is driving
other brain areas, so we estimated Granger causality between these regions, figure

BT d. which clearly reveals focus 1 is driving focus 2.
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Figure 51: (a) HFO recorded during MEG recording. (b) Source localization
for HFO sum across all time. (c¢) Current density waveform corresponding
to two epileptic foci. (d) Granger causality between epileptic foci.
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To confirm our MEG finding, we look at the ECoG data recorded indepen-
dently. HFO burst in ECoG data were found on electrodes 36 and 72. One sample
of this burst is shown in figure B2l b. We investigated the localization of these
bursting electrodes, after alignment of ECoG with MRI extracted surface using
the methods exposed in Appendix 1, we found that they were located above the
regions identified by MEG figure a., which confirms MEG as an efficient for

clinical investigation of epilepsy.
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Figure 52: (a) Position of electrode 36 and 72 (b) Electric potential wave-
forms for ECoG electrode during epileptic HFO burst
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We also computed the Granger causality between electrode 36 and 72 and
results confirmed the causal relation revealed by MEG figure B3] which confirms
that MEG is not only good at localizing epileptic activity but also for reveling

dynamics of its activity.

Granger Causalty: Channel 36 — Channel 72

Tine

(Granger Causally: Channel 72 — Channel 36

Figure 53: Granger causality between electrodes 36 and 72
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Another study we did to confirm findings for this patient, was to look for slow
waves under 0.1Hz. These slow waves may precede the epileptic seizure. The
data was recorded using 23 channel standard montage used at Medical College of
Wisconsin. Sampling rate was 200Hz. We used a 3-shell Sphere (Berg) model for

forward model calculation and Brainstorm minimum-norm for inverse calculation.

The results were in agreement with MEG and ECoG. Figure[b4]a. shows slow
wave components preceding the epileptic seizure. An autoregressive model was
used to clean blinking and heartbeat artifacts, and data was low passed at 0.1Hz.
A EEG slow wave is shown in figure B4l b. We then performed source localization
on this data and results were summed between 5 and 25 secs. Figure[B4lc. further

confirmed the results obtained from ECoG and MEG.

These slow waves were hardly been investigated in the literature, and these

preliminary results may confirm their effectiveness for localizing epileptic foci.
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Figure 54: (a) EEG Slow wave with artifacts. (b) Clean EEG slow wave.

(¢) Source Localization for EEG.






Brainstorm’s HHD-Opticalflow

plug-in Tutorial

Sheraz KHAN

shkhan@mcw.edu

Medical College of Wisconsin-2009

This tutorial explains GUI of HHD-Opticalflow plug-in developed using Matlab.
This plug-in implements the methods introduced in this thesis.
HHD-Opticalflow plug-in along with Brainstorm (MEG/EEG data processing

software) can be downloaded from:

http://neuroimage.usc.edu/brainstorm
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1) From Brainstorm
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Figure 55: Launching from brainstorm
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2) Plug-in GUI
When HHD-Opticalflow plug-in start, following window pops up come having
three TABs, Optical Flow, HHD and Visualization, Optical flow needs to be
calculated before calculating HHD.
Calculating Optical flow or HHD is memory intensive, so for large data sets, it
sometimes gives error "out of memory", to resolve this there are two solutions:
1) Run brainstorm in 64 bit operating system.
2) Use less time points for calculating optical flow or HHD.
Moreover HHD and optical flow are implemented in multi-threaded fashion, so
there is no progress bar, but at the end of calculation msgbox indicates end of

calculations.

HHD_GUI

Figure 56: Plug-in GUI
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3) Optical Flow Tab

Select time points on which optical flow needs to be calculated and click calculate

optical flow. Save data can be used to save calculated optical flow structure.

Time points on which optical flow will be calculated is by
default whole experement length, but user can select his
desired period.

HHD_GUL

‘ Calculate optical flow ‘

Figure 57: Optical Flow Tab
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4) HHD Tab

Select time points on which HHD needs to be calculated, recursion depth sets
number of times HHD is repeated, to refine Laplacian vector field (H) component

of HHD. Save data can be used to save calculated HHD structure.

HHD_GUI

——T

‘ Save appropriate, component.

Number of Time HHD repeated, to refine | Indicate Finish of HHD calculation
Laplacian vector field (H) component of
HHD

Figure 58: HHD Tab
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5) Visualization Tab
Select scalar field and vector field needed to be display, browse through all the time
points on which HHD and optical flow is calculated. Figure[59 shows overlapped

scalar and vector fields on the cortical manifold at a single time instant.

Select scalar field to displayl ‘select vector field to display

. - ‘cartical Manifold with overlap scalar field U and vector field Vdiv
For time points

Plot DE and abs(U), ing to,
dynamics of brain activity.

Figure 59: Visualization Tab
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