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Summary
My thesis has addressed two 
omplementary aspe
ts of magneti
 sour
e imagingusing Magnetoen
ephalography:1. Imaging of neural 
urrent sour
es from MEG surfa
e re
ordings;2. Dynami
 
hara
terization of neural 
urrent patterns at the surfa
e of the
ortex.MEG Sour
e ImagingA

urate estimation of the lo
al spatial extent of neural 
urrent a
tivity isvery important for the quantitative analysis of neural 
urrent sour
es, as esti-mated from Magnetoen
ephalography (MEG) surfa
e re
ordings. In asso
iationwith the ex
ellent time resolution o�ered by MEG, this would represent a majoradvan
ement in non invasive, time-resolved fun
tional brain imaging.We addressed this issue through a new method � 
alled Multipole Corti
alRemapping (MCR) � to a

urately spe
ify the spatial extent of neural 
urrentsour
es.In MCR, the zeroth-order Tikhonov regularized image of the 
urrent distribu-tion on the 
ortex is �rst estimated from MEG surfa
e data for whi
h we soughtfor a realisti
 model of neural generators. Then the resulting fun
tional imageis thresholded using a simple histogram-based prin
iple. This thresholded imageis then de
omposed into groups of a
tivation patterns following an automati
 la-beling algorithm based on the geometri
al properties of the 
orti
al surfa
e. The3



4equivalent multipolar de
omposition of ea
h 
urrent pat
h is then obtained. Bydefault, the multipolar moments are not readily related to the a
tual anatomi
alsupport of the a
tual neural 
urrents dete
ted using MEG. Hen
e we introdu
ed animage remapping te
hniques of the multipolar parameters ba
k onto the original
orti
al manifold, in a Bayesian framework in
luding physiologi
al and anatomi-
al priors.Chara
terization of MEG Sour
e Dynami
sFor dynami
 
hara
terization of neural 
urrent patterns at the surfa
e of the
ortex, we used a modi�ed Helmholtz-Hodge De
omposition (HHD), whi
h wasapplied on ve
tor �elds des
ribing the �ow of neural 
urrent sour
es. This motion�eld stems from a generalized approa
h to opti
al �ow estimation, developedearlier in our team.Opti
al �ow is the apparent motion due to variations in the pattern of bright-ness and, under spe
i�
 
onditions, may mimi
 the velo
ity �eld of an obje
t.Normally, the opti
al �ow is obtained in a two-dimensional domain, whi
h mayprevent a

ess to some essential features of the obje
t's motion with respe
t tothe topology or geometry of the domain onto whi
h it is evolving. A new vari-ational method to represent opti
al �ow on non �at surfa
es using Riemannianformulation was previously introdu
ed by our group to over
ome this issue.We broadened this framework and introdu
ed a new formalism to dete
t fea-tures in the resulting opti
al �ow model using a modi�ed and extended frameworkto the HHD on 2-Riemannian manifolds, whi
h we used to 
hara
terize neural
urrent sour
es.HHD is a te
hnique used to de
ompose a two-dimensional (resp. three-dimensional) 
ontinuous ve
tor �eld into the sum of 3 distin
t 
omponents: (1)a non-rotational element, deriving from the gradient of a s
alar potential U ; (2)a non-diverging 
omponent, deriving from the rotational of a s
alar potential A(resp. ve
torial potential); (3) a harmoni
 ve
torial part, i.e., whose Lapla
ian



5vanishes.We showed how HHD enables the de
omposition and tra
king of time-resolvedneural 
urrent �ows as obtained from MEG sour
e imaging as sour
es and sinkse.g., by dete
ting relative maxima of the non-rotational s
alar potential. Wehen
eforth suggest to extend the analysis of brain a
tivity in terms of tra
kingtravelling obje
ts onto the 
orti
al manifold by dete
ting ve
tors of largest am-plitudes in zero Lapla
ian harmoni
 ve
tor �elds.We also 
onsidered HHD through a series of stru
tural and fun
tional brainimaging appli
ations, with very en
ouraging preliminary results.The methods dis
ussed in the HHD se
tion of the thesis were implemented inMatlab as plug-in to the Brainstorm (MEG/EEG data pro
essing software) and
an be downloaded from: http://neuroimage.us
.edu/brainstorm. A shorttutorial for this plug-in is presented in Appendix 3.
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Introdu
tion





Ba
kground
Te
hniques for the observation of the Hu-man brainExploration of the Human brain is of utmost intelle
tual interest: de
ipheringbrain using brain is a 
hallenging task. Although a great deal has been learntabout brain anatomy and physiology, the fundamental questions how brain store,retrieve and pro
esses information is still largely unknown and full dis
overy ofthese me
hanisms is the foundational purpose of neuros
ien
e.When brain pro
esses information, ele
trophysiologi
al 
urrents �ow withinand outside neural 
ells, thus produ
ing ele
tri
 and magneti
 �elds that are a
-
essible to external measurements. Indeed, signs of this ele
tri
al neural a
tivityin the brain 
an be measured with ele
trodes at the s
alp or with very sensi-tive magneti
 dete
tors pla
ed very near the s
alp. The te
hnique of ele
tri
almeasurements from the s
alp is 
alled ele
troen
ephalography (EEG) [8℄. His-tori
al and re
ent EEG setups are shown in Figure 1. The te
hnique measuringmagneti
 signals generated by neural 
urrents is 
alled Magnetoen
ephalography(MEG) [15℄.The magneti
 �eld produ
ed by neural 
urrent sour
es are very weak and areat least 8 orders of magnitude smaller than the earth stati
 magneti
 �eld, asshown Figure 2. These �elds are 
urrently pi
ked using series of magnetometers
oupled with super-
ondu
ting quantum interferen
e devi
es (SQUID). A SQUID15



16 BACKGROUND

Figure 1: (a) EEG setup in 1970's. (b) Modern EEG setup with qui
k-�x
ap.is a sensitive dete
tor of magneti
 �ux, whi
h was developed by James Zimmerman[114℄ in the late 1960's.The seminal, original MEG measurements were performed at MIT in May,1971 by Cohen. Alpha waves (ele
tromagneti
 brain os
illations in the frequen
yrange of [8,12℄ Hz) were re
orded as shown Figure 3.a. A typi
al, state-of-the-artMEG setup using 151 
hannels is shown Figure 3.b.Brain imaging te
hniques 
an be divided into two 
ategories: stru
tural andfun
tional. Anatomi
al stru
tures 
an be investigated using 
omputer-aided to-mography (CT) s
ans and better so using more re
ent magneti
 resonan
e imagingapproa
hes (MRI). For fun
tional imaging beside neural ele
tromagneti
 signals,brain metabolism, blood �ow and volume (hemodynami
s) 
an be a

essed usingradioa
tively-labeled organi
 probes that are involved in the pro
esses of interestsu
h as glu
ose metabolism or dopamine synthesis. Images of dynami
 
hanges
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Figure 2: Comparison of brain signals with other sour
es of ele
tromagneti
waves.

Figure 3: (a)First MEG re
ording at MIT inside a spa
eship like magneti
shielded room using single 
hannel SQUID. (b) MEG Setup at La Pitié-Salpêtrière Hospital, Paris inside modern multilayer shielded room using151 SQUIDs 
overing whole brain.in the spatial distribution of these probes, as they are transported and 
hemi
allymodi�ed within the brain, 
an be imaged using positron emission tomography(PET). These images 
an rea
h a spatial resolutions as high as 3mm. However,temporal resolution is limited to minutes by the dynami
s of the physiologi
al pro-
esses generating the signal of interest, and by photon-
ounting noise. For moredire
t studies of neural a
tivity, one 
an investigate lo
al hemodynami
 
hanges.



18 BACKGROUNDAs neurons be
ome a
tive, they indu
e very lo
alized 
hanges in blood �ow andoxygenation levels that 
an be imaged as a 
orrelate of neural a
tivity [65℄.Hemodynami
 
hanges 
an be dete
ted using PET, fun
tional Magneti
 Res-onan
e Imaging (fMRI), and trans
ranial opti
al imaging methods. Of these,fMRI is 
urrently the most widely used and 
an be readily performed using astandard 1.5T 
lini
al MRI magnet although an in
reasing fra
tion of studies arenow performed on higher �eld (3-7T) ma
hines for improved SNR and resolu-tion. Fun
tional MRI studies are 
apable of produ
ing spatial resolutions as highas 2-4mm; however, temporal resolution is again limited by the relatively slowhemodynami
 response, when 
ompared to ele
tri
al neural a
tivity, to approxi-mately one se
ond. In addition to limited temporal resolution, interpretation offMRI data is hampered by the rather 
omplex relationship between the bloodoxygenation level dependent (BOLD) 
hanges that are dete
ted by fMRI and theunderlying neural a
tivity. Regions of BOLD 
hanges in fMRI images do notne
essarily 
orrespond one-to-one with regions of ele
tri
al neural a
tivity [62℄.

Figure 4: Spatial and temporal resolution of di�erent brain imaging meth-ods.



INTRODUCTION TO MEG AND EEG: 19Introdu
tion to MEG and EEG:EEG and MEG measure the 
ombined a
tivity of multiple areas of the brainas a mixture of 
omplex signal patterns. A primary obje
tive is to interpret the
omplex patterns of the measured ele
tri
 potentials and magneti
 �elds, in termsof the respe
tive lo
ations and time-
ourses of their underlying sour
es. The keyto this task is to design a physi
al and numeri
al model to a

ount for the originof the �eld patterns 
aptured by MEG/EEG surfa
e re
ordings. Estimation ofthe ele
tri
 and magneti
 �eld patterns for a given model of the volume 
ondu
toris a forward problem, following the nomen
lature of modeling data formation asen
ountered in a large variety of appli
ations (from geophysi
s to medi
al imaging)[96℄.The estimation of neural 
urrents from measured �eld patterns is a typi
alinverse problem. In EEG or MEG studies, the simplest way to model the geometryof the head is to use a single sphere approximation or 
on
entri
 spheri
al shellsea
h with homogeneous isotropi
 
ondu
tivity [76℄.The main reason why 
onsidering spheri
al geometry is the availability of an-alyti
al solutions, and therefore fast implementations, to solve the forward mod-eling problem. However a spheri
al approximation of the head 
omplex geometryis likely to indu
e large sour
e lo
alization errors [72℄.Using MRI, it is possible to provide more realisti
 geometri
al models of thehead. Numeri
al te
hniques su
h as the Boundary Element Method (BEM) andFinite Element Method (FEM) provide the �exibility of utilizing a realisti
 ge-ometry [51℄.EEG and MEG s
alp patterns are qualitatively orthogonal to ea
h other (see�gure 5), providing distin
tive information about the underlying neural 
urrentdistributions. They therefore might be viewed as 
omplementary rather thanas 
ompeting modalities [24℄. Most state-of-the-art MEG fa
ilities are equippedfor simultaneous a
quisition of EEG and MEG data. Inverse methods for thetwo imaging te
hniques are very 
losely related and 
an even be 
ombined andoptimized for joint sour
e lo
alization [93, 6℄.
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Figure 5: Left hand side �gure represent the topographi
 sensitivity mapsof MEG and EEG for radial and tangential dipoles. Figure on right handside shows the orthogonality of MEG and EEG �eld patterns. patternsNeural bases of brain ele
tromagneti
 signatureMEG and EEG (MEEG) are two te
hniques based on what Galvani, at the end ofthe 18th 
entury, 
alled "animal ele
tri
ity", today better known as ele
trophys-iology [85℄. Despite the apparent simpli
ity in the stru
ture of the neural 
ell,the biophysi
s of neural 
urrent �ow relies on 
omplex models of ioni
 
urrentgeneration and 
ondu
tion [48℄. Roughly, when a neuron is ex
ited by other neu-rons via an a�erent volley of a
tion potentials, postsynapti
 potentials (PSPs)are generated at its api
al dendriti
 tree. When the ex
itatory PSP's be
omelarger than inhibitory PSP's, the api
al dendriti
 membrane be
omes transientlydepolarized and 
onsequently extra
ellularly ele
tronegative with respe
t to the
ell soma and the basal dendrites. This potential di�eren
e 
auses a 
urrent to�ow through the volume 
ondu
tor from the non-ex
ited membrane of the somaand basal dendrites to the api
al dendriti
 tree sustaining the PSP's. Some ofthe 
urrent takes the shortest route between the sour
e and the sink by travel-ling within the dendriti
 trunk (see �gure 6). Conservation of ele
tri
 
hargesimposes that the 
urrent loop be 
losed with extra
ellular 
urrents �owing eventhrough the most distant part of the volume 
ondu
tor. Intra
ellular 
urrents are
ommonly 
alled primary 
urrent, while extra
ellular 
urrents are also known as
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ondary, return, or volume 
urrents.

Figure 6: The orientation of pyramidal neurons is normal to the 
ortexsurfa
e. MEG signals preferentially re�e
t the 
urrent �ow from pyramidal
ells oriented tangential to the skull surfa
e.Both primary and se
ondary 
urrents 
ontribute to magneti
 �elds outside thehead and to ele
tri
 s
alp potentials, but spatially stru
tured arrangements of 
ellsare of 
ru
ial importan
e to the superposition of neural 
urrents su
h that theyprodu
e measurable �elds. Ma
ro-
olumns of tens of thousands of syn
hronouslya
tivated large pyramidal 
orti
al neurons are thus believed to be the main MEGand EEG generators be
ause of the 
oherent distribution of their large dendriti
trunks lo
ally oriented in parallel, and pointing perpendi
ularly to the 
orti
alsurfa
e. The PSPs generated among their dendrites are believed to be at thesour
e of most of the signals dete
ted in MEG and EEG be
ause they typi
allylast longer than the rapidly �ring a
tion potentials travelling along the axons ofex
ited neurons. Indeed, 
al
ulations su
h as those shown in [44℄ suggest ea
hsynapse along a dendrite may 
ontribute as little as a 20 fA.m 
urrent sour
e,probably too small to measure in MEEG. Empiri
al observations instead suggestwe are seeing sour
es on the order of 10 nA.m, hen
e the 
umulative summationof millions of synapti
 jun
tions in a relatively small region. Nominal 
al
ulations
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orti
al thi
kness suggest that the 
ortex has a ma
ro-
ellular 
urrent density of the order of 100nA.mm−2 [44℄. If we assume that the
ortex is about 4 mm thi
k, then a small pat
h of size 5 mm x 5 mm would yielda net 
urrent of 10 nA.m, 
onsistent with empiri
al observations and invasivestudies [44℄.In MEEG studies, one is usually 
on
erned with the uppermost layer of thebrain; the 
erebral 
ortex, whi
h is a 2 to 6 mm thi
k sheet of gray tissue wheremost of the measured neural a
tivity takes pla
e. The se
tion of 
ortex is illus-trated in Figure 6. At least 10 billion neurons reside in the whole 
ortex tissue.The total surfa
e area of the 
ortex is about 2500 cm2 , folded in a 
ompli
atedway, so that it �ts within the innerskull volume. The true spatial extent of realis-ti
 
urrent sour
es asso
iated with brain a
tivation varies a

ording to the 
auseof the a
tivation. Typi
ally sensory stimuli a
tivate 
orti
al areas starting froma few mm2 up to a few cm2, whereas for spontaneous a
tivity and epilepti
 fo
i
an involve an a
tivation area up to tens of cm2 [95℄.At a larger s
ale, distributed networks of 
ollaborating and syn
hronouslya
tivated 
orti
al ma
ro-
olumns are major 
ontributors to MEG and EEG signals[80℄. This is 
ompatible with neuro-s
ienti�
 theories that model basi
 
ognitivepro
esses in terms of dynami
ally intera
ting 
ell assemblies [105℄.Most regions of the 
ortex are mapped fun
tionally. For example, the primarysomatosensory 
ortex re
eives ta
tile stimuli from the skin. Areas of the frontallobe are 
on
erned with the integration of mus
ular a
tivity. Primary motor
ortex is involved in the movement of a spe
i�
 part of the body. Large areas of
ortex are devoted to body parts, whi
h are most sensitive to tou
h (e.g., lips) orto the parts where a

urate 
ontrol of mus
les is needed (e.g., �ngers).
Forward problemIn order to analyze the ele
tri
 and magneti
 data obtained from EEG and MEGmeasurements, we need to mathemati
ally model the relationship between mea-
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tri
/magneti
 �elds and the 
urrent distribution whi
h produ
e it. Thisrelationship is known as forward modeling whi
h translates as a lead-�eld matrixor a gain matrix that binds the amplitude of sour
e 
urrents to the sensor dataas we shall detail below. If the primary sour
e and the surrounding 
ondu
tiv-ity pro�le of tissues are known, the ele
tri
 potential and magneti
 �eld 
an be
al
ulated from Maxwell's equations (see [7℄ for a 
omprehensive review of MEGforward and inverse modeling).Maxwell's equationsIn 1873, Maxwell showed that ele
tromagneti
 �elds 
an be des
ribed using only4 ve
tor di�erential equations [70℄:
∇×E+

∂B

∂t
= 0, (1)

∇ ·B = 0, (2)
∇ · E =

ρ

ǫ0
, (3)

∇×B = µ0(J+ ǫ0
∂E

∂t
), (4)where E is the ele
tri
 �eld, B the magneti
 �eld, ρ the 
harge density, and ǫ0 and

µ0 represent the permittivity and the permeability of the empty spa
e with values8.85 10−12 Fm−1 and 4π10−7Hm−1, respe
tively (the magneti
 permeability µ0of brain tissues is 
onsidered identi
al to that of the free spa
e).Negle
ting the e�e
ts of the time-dependent terms is the quasi-stati
 approx-imation of Maxwell's equations. This depends on the typi
al frequen
y range ofthe signals of interest and the properties of the medium. The frequen
y of thesignals obtained from bio-ele
tromagneti
 measurements in MEG and EEG aretypi
ally below 1 KHz. It has therefore been veri�ed that the physi
s of MEGand EEG are well des
ribed using the quasi-stati
 approximation of Maxwell'sequations [44℄. Quasi-stati
 Maxwell's equations 
an be written as:
∇×E = 0, (5)
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∇ ·B = 0, (6)
∇ ·E =

ρ

ǫ0
, (7)

∇×B = µ0J. (8)Equation (5) 
an further be satis�ed by representing the ele
tri
 �eld E asthe gradient of a s
alar fun
tion V :
E = −∇V. (9)From (8), we obtain the relation between the 
urrent distribution J(r′) atpoint r′ and the magneti
 �eld B(r) measured at r whi
h reads:

B(r) =
µ0

4π

∫

J(r′)× r− r′

||r− r′||3dv
′, (10)where ||.|| represents the Eu
lidean norm.This relationship (10) is popularly known as Biot-Savart Law.The 
urrent distribution J(r) 
an be divided into two parts:1. Primary 
urrent Jp(r) produ
ed by the neural 
urrent a
tivity;2. Volume 
urrent Jv(r) produ
ed in all the volume to prevent 
harge buildup.Primary and se
ondary 
urrents are shown in Figure 5.b. The 
urrent distribution

J(r) now 
an be represented as
J(r′) = Jp(r′) + Jv(r′) = Jp(r′) + σ(r′)E(r′) = Jp(r′)− σ(r′)∇V (r′), (11)where σ(r′) is the ele
tri
al 
ondu
tivity of the tissue at lo
ation r′, whi
h wewill 
onsider to be isotropi
 throughout this thesis. See Figure 7) where the head
onsists of regions of 
onstant 
ondu
tivities σi, i = 1, 2, . . . , N + 1.Now we 
an rewrite the Biot-Savart equation (10) and use (11) to divide itinto two parts: the �rst part 
onsists of B0(r), the magneti
 �eld due to primary
urrents only while the se
ond term is due to the 
ontribution of volume 
urrents,formed as a sum of surfa
e integrals over the brain-skull, skull-s
alp and s
alp-airboundaries. In fa
t, we have

B(r) = B0(r) +
µ0

4π

∑

ij

(σi − σj)

∫

Sij

V (r′)
r− r′

||r− r′|| × dS′
ij . (12)
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Figure 7: Shell model of the head.This general equation states that the magneti
 �eld 
an be 
al
ulated if weknow the primary 
urrent distribution and the potential V (r′) on all the surfa
es
Sij . We 
an 
reate a similar equation for the potential itself, yielding

(σi + σj)V (r) = 2σ0V0(r)−
1

2π

∑

ij

(σi − σj)

∫

Sij

V (r′)
r− r′

||r− r′|| × dS′
ij, (13)where V0(r) is the potential at r due to the primary 
urrent distribution.If we spe
ify a primary 
urrent distribution Jp(r′), we 
an 
al
ulate a primarypotential and a primary magneti
 �eld as follows

V0(r) =
1

4πσ0

∫

Jp(r′) · r− r′

||r− r′|| × dS′
ij , (14)

B0(r) =
µ0

4π

∫

Jp(r′) · r− r′

||r− r′|| × dS′
ij. (15)The primary potential is then used to solve (13) for the potentials on all thesurfa
es, and therefore 
ompletes the resolution of the forward problem. Thesesurfa
e potentials V (r) and the primary magneti
 �eld B0(r) are then used to
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 �elds. Unfortunately, the solution to (13) isanalyti
 only in a spe
ial shapes and ellipti
 volume 
ondu
tor and must otherwisebe solved numeri
ally. This thesis will 
onsider using spheri
al head models only.In the next two se
tions, models for neural 
urrent distribution will be intro-du
ed and subsequently models for volume 
ondu
tor will be dis
ussed.Modeling primary 
urrentsConsider a small pat
h of a
tive 
ortex S(r′) 
entered at r′ and an observationpoint r at some distan
e from this pat
h. The primary 
urrent distribution inthis 
ase 
an be well represented by the multipolar representation Ωn
S((r′)) givenby

Ωn
S((r′)) =

1

n!

∫

r′⊂S((r′))
(r′ − l)nJp(r′)dr′, (16)where l is the point of expansion for multipoles.It is important to note that the brain a
tivity does not a
tually 
onsist ofdis
rete sets of physi
al 
urrent dipoles, but rather that the dipole is a 
onve-nient representation for 
oherent a
tivation of a large number of pyramidal 
ells,possibly extending over a few square 
entimeters of gray matter.If the primary 
urrent distribution is very fo
al then it 
an be well approxi-mated by an equivalent 
urrent dipole (ECD) de�ned as:

Ω0 = q ≡
∫

Jp(r′)dr′. (17)The ECD 
an be represented as a point sour
e
Jp(r′) = qδ(r′ − l), (18)where δ(r) is the Dira
 delta distribution. Note that an ECD is a multipolarexpansion of order 0.If the 
urrent distribution is not fo
al, then multipolar expansions are bettersuited for the modeling of neural sour
es. The 
ontributions reported [74, 54, 53℄des
ribe this issue in great details.Multipolar expansions will be explained in detail in Chapter 2 of this thesis.
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Figure 8: Current Distribution S(r′) 
entered at r
′ and measured at r.Adapted from [54℄.Head modelingSpheri
al head modelHead modeling using as spheri
al approximation of its geometry has been widelyused in the MEG 
ommunity, the reason for its popular use is the simpli
ity ito�ers with respe
t to 
omputation requirements. Computing s
alp potentials andindu
ed magneti
 �elds require solving the forward equations (13) and (12) respe
-tively for a parti
ular sour
e model. We have seen above that when the surfa
eintegrals are 
omputed over realisti
 head shapes, these equations must be solvednumeri
ally. However, analyti
 solutions exist for simpli�ed geometries, su
h aswhen the head is assumed to 
onsist of a set of nested 
on
entri
 homogeneousspheri
al shells representing brain, skull, and s
alp respe
tively. These modelsare routinely used in most 
lini
al and resear
h appli
ations to E/MEG sour
elo
alization. Figure 9 des
ribes a spheri
al head model approximation. Considerthe spe
ial 
ase of a 
urrent dipole, with moment q, lo
ated at rq in a multi-shell
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al head, and a MEG system in whi
h we only measure the radial 
ompo-nent of the external magneti
 �eld, i.e., the 
oil surfa
e of the magnetometer isoriented orthogonally to a radial line from the 
enter of the sphere through the
enter of the 
oil. It is relatively straightforward to show that the 
ontributionsof the volume 
urrents vanish in this 
ase, and we are left with only the primaryterm. Taking the radial 
omponent of this �eld for the 
urrent dipole redu
es tothe remarkably simple form:
Br(r) =

r

r
·B(r) =

r

r
·B0(r)+

µ0

4π
·
∑

ij

(σi−σj)

∫

Sij

V (r′)
r

r

r− r′

||r− r′|| ×dS′
ij . (19)

Figure 9: Spheri
al head model, where a sphere is �tted to the head geom-etry.In this same 
ase, it is very simple to show that the 
ontribution of volume
urrents will also redu
e to zero. Hen
e the se
ond term in 19 vanishes and thisequation write the following simpler form:
Br(r) =

r

r
·B0(r) =

µ0

4π

r× r′

r||r− r′||3 · q. (20)
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e here that the magneti
 �eld Br(r) is linear with respe
t to the dipolemoment q but highly nonlinear with respe
t to dipole lo
ation: rq.In nutshell, Br(r) is zero everywhere outside the head if q points towardsthe radial dire
tion rq. A more general result is that radially-oriented dipoles donot produ
e any external magneti
 �eld outside a spheri
ally symmetri
 volume
ondu
tor, regardless of the sensor orientation [89℄.Importantly, this is not the 
ase for EEG whi
h is sensitive to radial sour
es,whi
h demonstrates one of the 
omplementary di�eren
es between MEG and EEGprin
iples.Realisti
 head modelIn reality, the head has anisotropi
 tissue properties, is inhomogeneous and notspheri
al but surprisingly, the spheri
al approximation works reasonably well, par-ti
ularly for MEG, whi
h is less sensitive than EEG to volume 
urrents. Theselatter are more a�e
ted than primary 
urrents by deviations from the idealizedmodel. By using the individual MRI data from the subje
t, it is possible to 
on-stru
t a more detailed head model by isolating di�erent regions of interest usingfully-automati
 segmentation te
hniques [16℄. Figure 10 shows typi
al surfa
e andvolume tessellations for use with BEM and FEM (see [33℄ for a 
omplete reviewof the head geometries used in MEG).Two types of approa
hes are available for realisti
 head modeling:1. Boundary Element Method (BEM) BEM is a numeri
al te
hnique of solvinglinear partial di�erential equations whi
h have been formulated in a bound-ary integral form. Normally in MEG, single-shell and three-shell BEMmethods are used. BEM methods still assume homogeneity and isotropywithin ea
h region of the head. It therefore ignores, for example, the 
on-du
tivity anisotropy indu
ed by white matter tra
ts, where 
ondu
tion ishigher along axonal �bers 
ompared to a transverse dire
tion. Similarly,the sinuses and diploi
 spa
es in the skull make it very inhomogeneous, afa
tor that is typi
ally ignored in BEM 
al
ulations.



30 BACKGROUND2. Finite Element Method (FEM)) FEM is a numeri
al te
hnique for �ndingapproximate solutions of partial di�erential equations (PDE). In FEM, dis-
retization of the PDE is performed in the entire head volume. Anisotropyand heterogeneity in di�erent tissue types 
an therefore be modeled andtherefore represents a very 
omprehensive approa
h to solving the MEEGforward problem.Typi
ally, BEM and FEM 
al
ulations are very time 
onsuming and their usemay be 
onsidered as impra
ti
al when in
orporated as part of an iterative in-verse solver for 
urrent sour
es. In fa
t, through use of fast numeri
al methods,pre-
al
ulation, and look-up tables and interpolation of pre-
al
ulated �elds, bothFEM and BEM 
an be made quite pra
ti
al for appli
ations in MEG and EEG[31℄. One problem remains: these methods reauire the 
ondu
tivity properties ofhead tissues be known. Most of head models used in the bio-ele
tromagnetism
ommunity 
onsider typi
al values for the 
ondu
tivity of the brain, skull andskin. Skull is typi
ally assumed to be 40 to 90 times more resistive than brainand s
alp, whi
h are assumed to have similar 
ondu
tive properties. These val-ues were measured in vitro from postmortem tissue samples, with 
ondu
tivityvalues that may be signi�
antly altered from those in in vivo tissues however.Consequently, some re
ent resear
h e�orts have fo
used on in vivo measurementsof tissue 
ondu
tivity. Ele
tri
al Impedan
e Tomography (EIT) pro
eeds by in-je
ting a small 
urrent (1-10 mi
roA) between pairs of EEG ele
trodes and bymeasuring the resulting potentials at all ele
trodes. Given a model for the headgeometry, EIT solves an inverse problem by minimizing the error between themeasured potentials on the rest of the EEG leads and the model-based 
omputedpotentials, in terms of parameters of the 
ondu
tivity pro�le. Simulation resultswith three or four-shell spheri
al head models have demonstrated the feasibilityof this approa
h though the asso
iated inverse problem is also fundamentally ill-posed [32℄. These methods are readily extendible to realisti
 surfa
e models asused in BEM 
al
ulations in whi
h ea
h region is assumed homogeneous, but itis unlikely that the EIT approa
h will be able to produ
e high-resolution images
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ondu
tivity. A se
ond approa
h to imaging 
on-du
tivity is to use magneti
 resonan
e. One te
hnique uses the shielding e�e
tsof indu
ed eddy 
urrents on spin pre
ession and 
ould in prin
iple help deter-mine the 
ondu
tivity pro�le at any frequen
y [113℄. The se
ond te
hnique usesdi�usion-tensor imaging with MRI (DT-MRI) that probes the mi
ros
opi
 di�u-sion properties of water mole
ules within the tissues of the brain. The di�usionvalues 
an then be tentatively related to the 
ondu
tivity of these tissues [100℄.None of these MR-based te
hniques have rea
hed 
ommon pra
tise by far . Fur-ther, given the poor signal-to-noise ratio (SNR) of the MR in bone regions, whi
his of 
riti
al importan
e for the forward EEG problem, the potential for fully 3Dimpedan
e tomography with MR remains spe
ulative.

Figure 10: (a) FEM modeling of the forward model; (b) BEM modeling ofthe forward model.



32 BACKGROUNDLinear formulationThe forward problem now 
an be explained using the models for sour
es and headgeometry dis
ussed above. The magneti
 �eld and s
alp potential measurementsare linear with respe
t to the dipole moment q and nonlinear with respe
t toits lo
ation r′. For 
larity, it is 
onvenient to separate the dipole magnitude
q = ||q|| from its orientation u = q/||q||, whi
h we write in spheri
al 
oordinatesby Θ = [φ, ρ]. Let b(r) denote the magneti
 �eld generated by a dipole having�xed orientation Θ:

b(r) = g(r, rq,Θ)q, (21)where g(r, rq,Θ) is a lead �eld solution of the magneti
 �eld for a dipole havingunit amplitude and orientation Θ.For N dipoles lo
ated at rqi
, their 
ombined magneti
 �elds 
an be expressedusing linear superposition of Maxwell's equations as

b(r) =

N
∑

i=1

g(r, rqi ,Θi)qi. (22)The simultaneous MEG measurements made at m sensors for N dipoles, 
an beexpressed asB =











B(r1)...
B(rm)











=











G(r1, rq1,Θ1) . . . G(r1, rqN ,ΘN )... . . . ...
G(rm, rq1,Θ1) . . . G(rm, rqN ,ΘN )





















q1...
qp











.(23)It 
an be written in a matrix form as
B = G({rqi,Θi})J, (24)where G({rqi,Θi}) is the m×N gain matrix relating N dipoles to the m sensors.Ea
h 
olumn 
ontains the 
ontribution of one dipole to ea
h sensor in the array.The matrix J 
ontains the set of instantaneous amplitudes of all the dipoles.In this model, the orientation of the dipole is not a fun
tion of time. This typeof model is often referred to as a "�xed" dipole model. Alternative models thatallow these dipoles to "rotate" as a fun
tion of time are known as "un
onstrained"dipole model [75℄.



INVERSE PROBLEM 33Inverse problemTo produ
e estimates of the neural 
urrent sour
es that generated the observedMEG signals, we must solve the asso
iated quasi-stati
 ele
tromagnetism inverseproblem. The inherent ill-posedness of this problem, 
oupled with the limitednumber of spatial measurements available with 
urrent MEG and EEG systems,(150-300 measurements) and signal-to-noise ratio (SNR) make this estimationvery 
hallenging [44℄.The solutions to the neuromagneti
 inverse problem will depend on whi
hforward model is used. In fa
t, a given inverse algorithm will yield slightly di�erentresults if di�erent forward models are used; hen
e, the importan
e of using ana

urate realisti
 forward model. However, these two problems are relativelyindependent of one another. In the forward problem, we attempt to model the
lassi
al physi
s of MEG and EEG as realisti
ally as possible. In 
ontrast, in theinverse problem, we often deal with purely mathemati
al 
on
epts and a prioriassumptions that are in
orporated in a sour
e model. The independen
e of theinverse problem from the model's physi
s allows one to use the same inversealgorithm for MEG or EEG. On the other hand, many di�erent estimates ofa
tivity 
an be obtained for a parti
ular data set using di�erent inverse algorithmsbut sharing the same forward model. This brings us to the main issue withneuromagneti
 inverse estimation: nonuniqueness. There is no unique solution tothe physi
ally and mathemati
ally ill-posed neuromagneti
 inverse problem. Infa
t, an in�nite number of 
urrent sour
e distributions 
an in theory generate anyparti
ular magneti
 �eld measurement ve
tor due to the existen
e of magneti
silent sour
es [47, 44, 89℄.In both MEG and EEG, silent sour
es 
an be added to any given inversesolution without 
hanging the forward �eld and/or potential that the 
ombinedsour
e generates. Thus, there are indeed an in�nite number of solutions thatexplain any given MEG/EEG data set equally well. Therefore, a priori assump-tions about the sour
es are impli
itly or expli
itly formulated to �nd solutionswith spe
i�
 properties [5, 19, 23, 25, 79, 83℄. It should be emphasized that even
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ally unique solutions 
an be obtained by postulating spe
ialsour
e properties, physi
al non-uniqueness is intrinsi
 to the neuromagneti
 in-verse problem.The two major approa
hes to the estimation of neural 
urrent sour
es are"imaging" and "parametri
/lo
alization" methods.Imaging methods typi
ally 
onstrain sour
es to a tessellated surfa
e represen-tation of the 
ortex, assume an elemental 
urrent sour
e in ea
h area element(vertex) normal to the 
ortex surfa
e, and solve the linear inverse problem thatrelates these 
urrent sour
es to the measured data. A

urate tessellation of the
ortex requires on the order of 105 elements. Sin
e the maximum number of MEGsensors is about 300, the problem is highly under-determined. By using regular-ized linear methods based on minimizing a weighted l2-norm on the image, we
an produ
e unique stable solutions.Parametri
/lo
alization methods assume a spe
i�
 parametri
 form for thesour
es. By far the most widely used models in MEG are multiple-
urrent-dipoleapproa
hes [112, 90℄. These assume that the number of neural sour
es is relativelysmall and ea
h su�
iently fo
al that they 
an be represented by a few equivalent
urrent dipoles with unknown lo
ations and orientations. In both imaging andparametri
 methods, the MEG/EEG forward problem 
an be written as
B = G(θ)J+ ǫ, (25)whereB is theM×time ve
tor representing MEGmeasurements, J is theN×timeve
tor representing the distribution 
urrents. For imaging methods, it is the am-plitude of elementary 
urrents at ea
h 
orti
al vertex. In parametri
 methods, itis the values of amplitude parameters for ea
h 
urrent model element. G(θ) is the

M×N lead �eld matrix relating additional parameters of the 
urrent distributionto the magneti
 �eld measured by M sensors. θ gathers the parameters whi
hthe lead �elds depend uppon, i.e., 
urrent sour
es, lo
ations rqi , orientations Θiand their amplitudes qi. The M × time noise ve
tor ǫ represents a 
ombination ofsystem noise and far-�eld ele
tromagneti
 perturbations (power lines, elevators,
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tivity of heart and eyes, et
) on sensors.Parametri
 methodsParametri
 methods 
an be broadly 
lassi�ed into "Dipole �tting" and "Beam-forming".Dipole �ttingThe �rst inverse method for equation (25) is based on the assumption that neurala
tivity 
an be modeled by a few sparse, elementary sour
es α. The problemredu
es to the estimation from the data of the parameters θ for α sour
es, whi
hare des
ribed as their positions rqi , their orientations Θi and their amplitudes
qi (with i ∈ [1, α]). This may be written as an optimization problem of a 
ostfun
tion to be minimized.The estimate in the least-squares (LS) sense writes:

J(θ)LS = argmin
J

||B−G(θ)J||2F (26)where ||.||F denotes the Frobenius norm. Let G+(θ) be the pseudo-inverse of
G(θ):

G+(θ) = US+Vt, (27)where USVt is the singular value de
omposition (SVD) of G(θ) and S+ is thediagonal matrix 
ontaining inverse of singular values of G(θ) [39℄. Equation (26)
an be written in the form:
J(θ)LS = ||B−G(θ)[G+(θ)B]||2F = ||(I −G(θ)G+(θ))B||2F , (28)where I is the identity matrix of rank α. Thus, the LS problem 
an be optimallysolved in the limited set of nonlinear parameters rqi ,Θi with an iterative minimiza-tion pro
edure. The linear parameters in qi are then optimally estimated from26; see [75℄. Minimization methods range from Marquardt-Levenberg and Nelder-Meade downhill simplex sear
hes to global optimization s
hemes using multistartmethods, geneti
 algorithms and simulated annealing [101℄.
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Figure 11: (a) Dipole Fitting in axial view; (b) Dipole Fitting in 
oronalview (
) Dipole �tting in sagittal view.This least-squares model 
an either be estimated from data from a single timesnapshot or a time window. When applied sequentially to a set of time samples,this results in a "moving dipole" model, sin
e the lo
ation is not 
onstrained [112℄.Alternatively, by using a 
ontiguous time blo
k of data in the least-squares �t,the dipole lo
ations 
an optionally be �xed over the entire interval. The �xedand moving dipole models have both proven useful in both EEG and MEG andremain the most widely used approa
hes to pro
essing experimental and 
lini
aldata. A key problem with the LS method is that the number of sour
es to beused must be de
ided a priori. Estimates 
an be obtained by looking at thee�e
tive rank of the data using a SVD or through information-theoreti
 
riteria,but in pra
ti
e expert data analysts often run several model orders and sele
tresults based on physiologi
al plausibility. Caution is obviously required sin
e a
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iently large number of sour
es 
an be made to �t any data set, regardless ofits quality. Furthermore, as the number of sour
es in
reases, the non-
onvexityof the 
ost fun
tion results in in
reased 
han
es of trapping in undesirable lo
alminima. This latter problem 
an be approa
hed using sto
hasti
 or multistartsear
h strategies [50℄. The alternatives to LS des
ribed below avoid the non-
onvexity issue by s
anning a region of interest that 
an range from a singlelo
ation to the whole brain volume for possible sour
es. An estimator of the
ontribution of ea
h putative sour
e lo
ation to the data 
an be derived either viaspatial �ltering te
hniques or signal 
lassi�
ation indi
es. An attra
tive featureof these methods is that they do not require a prior estimate of the number ofunderlying sour
es.Beamforming approa
hesA beamformer performs spatial �ltering on data from a sensor array to dis
rim-inate between signals arriving from a lo
ation of interest and those originatingelsewhere. Beamforming originated in radar and sonar signal pro
essing but hassin
e found appli
ations in diverse �elds ranging from astronomy to biomedi
alsignal pro
essing [103℄.Mat
h �lterThe simplest spatial �lter, a mat
hed �lter, is obtained by normalizing the 
olumnsof the lead �eld matrix and transposing this normalized di
tionary. The spatial�lter for lo
ation ri is given by
W

(T )
i =

GT
: i

‖G: i‖F
. (29)This approa
h essentially proje
ts the data onto the 
olumn ve
tors of the di
tio-nary. Although this guarantees that when only one sour
e is a
tive, the absolutemaximum of the estimate 
orresponds to the true maximum, this �lter is notre
ommended sin
e this single-sour
e assumption is usually not valid, and sin
e



38 BACKGROUNDthe spatial resolution of the �lter is so low given the high 
orrelation betweendi
tionary 
olumns. This approa
h 
an be extended to fast re
ursive algorithms,su
h as mat
hing pursuit and its variants, whi
h sequentially proje
t the dataor residual to the non-used di
tionary 
olumns to obtain fast suboptimal sparseestimates.Multiple signal 
lassi�
ation (MUSIC)The MUSIC algorithm was adopted from spe
tral analysis, Dire
tion of Ar-rival(DOA) estimation te
hniques and modi�ed for spatial �ltering of MEG data[75, 73℄. The MUSIC 
ost fun
tion is given by
W

(T )
i =

∥

∥

(

I−UsU
T
s

)

G: i

∥

∥

2

2

‖G: i‖22
=

∥

∥P⊥
Us

G: i

∥

∥

2

2

‖G: i‖22
, (30)where B = USVT is the singular value de
omposition of the data, Us is a matrixwith the �rst ds right singular ve
tors that form the signal subspa
e, and G: i isthe gain ve
tor for the dipole lo
ated at ri and with orientation θi (obtained fromanatomy or using the generalized eigenvalue de
omposition). The operator P⊥

Usis an orthogonal proje
tion operator onto the data noise subspa
e. The MUSICmap is the re
ipro
al of the 
ost fun
tion at all lo
ations s
anned. This map 
anbe used to guide a re
ursive parametri
 dipole �tting algorithm. The number dsis usually set by an expert user.For more 
omplete explanation of subspa
e methods like MUSIC see [55℄.Linearly 
onstrained minimum-varian
e (LCMV)Beamformers, as used in the �eld of brain imaging, are spatial �ltering algorithmsthat s
an ea
h sour
e-point independently to pass sour
e signals at a lo
ation ofinterest while suppressing interferen
e from other regions using only the lo
al gainve
tors and the measured 
ovarian
e matrix. One of the most basi
 and oftenused linear beamformers is the linearly 
onstrained minimum varian
e (LCMV)beamformer, whi
h attempts to minimize the beamformer output power subje
t
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Figure 12: A typi
al MUSIC s
an for epilepti
 spikes.to a unity gain 
onstraint:
min
Wi :

tr
(

Wi :ΣBW
T
i :

) subje
t to Wi :G: i = I, (31)where ΣB is the data 
ovarian
e matrix, G: i is the db by 3 gain matrix of the ithsour
e point, and Wi : is the 3 by db spatial �ltering matrix [104℄. The solutionto this problem is given by
W

(T )
i =

(

GT
: iΣB

−1G: i

)−1
GT

: iΣB
−1. (32)The parametri
 sour
e a
tivity at the ith sour
e point is given by Si : = Wi :B.This 
an be performed at ea
h sour
e-point of interest to yield a s
ore map of
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tivity. This beamforming approa
h 
an be extended to a more general Bayesiangraphi
al model that uses event timing information to model evoked responses,while suppressing interferen
e and noise sour
es [115℄. This approa
h uses a vari-ational Bayesian EM algorithm to 
ompute the likelihood of a dipole at ea
h gridlo
ation.Imaging methodsImaging approa
hes to the MEG inverse problem 
onsist of methods for estimatingthe amplitudes of a dense set of dipoles distributed at �xed lo
ations and orien-tation within the head volume. In this 
ase, sin
e the lo
ations and orientationare �xed, only the linear parameters need to be estimated and the inverse prob-lem redu
es to a linear one with strong similarities to those en
ountered in imagerestoration and re
onstru
tion. By putting lo
ations and orientation 
onstraintthe equation (25) be
omes
B = GJ+ ǫ. (33)Here the gain matrixG is �xed and only dipole amplitudes J have to be estimated.The most basi
 approa
h 
onsists of distributing dipoles over a prede�nedvolumetri
 grid similar to the ones used in s
anning approa
hes. However, sin
eprimary sour
es are essentially restri
ted to 
ortex, the image 
an be plausibly
onstrained to sour
es lying on the 
orti
al surfa
e, as extra
ted from an anatom-i
al MR images of the subje
t [22℄. Following segmentation of the MR volume,dipolar sour
es are pla
ed at ea
h node of a triangular tessellation of the surfa
eof the 
orti
al mantle. Sin
e the pyramidal 
ells that produ
e the measured �eldsare oriented normal to the surfa
e, we 
an further 
onstrain ea
h of these elemen-tal dipolar sour
es to be normal to the surfa
e. The highly 
onvoluted nature ofthe human 
ortex requires that a high-resolution representation 
ontains of theorder of ten to one hundred thousand dipole "pixels". The inverse problem istherefore hugely under-determined and imaging requires the use of either expli
itor impli
it 
onstraints on the expe
ted 
urrent sour
e distributions. Typi
ally,
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omplished through the use of regularization or Bayesian imageestimation methods.Bayesian formulationBayesian approa
h to neuronmagneti
 inverse problem was �rst introdu
ed byClarke in 1989 [14℄. In the Bayesian formalism, the neuromagneti
 inverse problemis de�ned as the problem of estimating the matrix J of dipole amplitudes at ea
htessellation element from the spatio-temporal data matrix B , whi
h are relatedin the noiseless 
ase by B = GJ. The i-th row of J 
ontains the amplitude imagea
ross the 
ortex at time i. From Bayes theorem, the posterior probability p(J|B)for the amplitude matrix J 
onditioned on the data B is given by
p(J|B) =

p(B|J)p(J)
p(B)

, (34)where p(B|J) gives the forward probability density of getting magneti
 �eld B
onditioned on J. p(J) is a prior distribution re�e
ting our knowledge of thestatisti
al properties of the unknown image. While Bayesian inferen
e o�ers thepotential for a full statisti
al 
hara
terization of the sour
es through the posteriorprobability, images are typi
ally estimated in pra
ti
e by maximization of theposterior or log-posterior probability.The estimation of J in the maximum a posteriori (MAP) sense is given by
ĴMAP = argmax

J
p(B|J)p(J). (35)The log-likelihood of (35) is given by

ĴMAP = argmax
J

(log[p(B|J)] + log[p(J)]). (36)Typi
ally, MEG and EEG data are assumed to be 
orrupted with additiveGaussian noise that we assume here to be spatially identi
ally distributed overall sensors (generalization is straightforward). The log-likelihood is then simplygiven, within a 
onstant, by
ln[p(B|J)] = − 1√

2σ2
||B−GJ||2F . (37)



42 BACKGROUNDThe prior is a probabilisti
 model that des
ribes our expe
tations 
on
erning thestatisti
al properties of the sour
e for whi
h we will assume an exponential density
p(J) =

1

z
exp[−βf(J)], (38)where z and β and f(J) depends on the image J. This form en
ompasses bothmultivariate Gaussian models and the 
lass of Gibbs distributions or Markovrandom �eld models [13℄. Combining the log-likelihood and log-prior gives thegeneral form of the negative log-posterior whose minimization yields the maximuma posteriori estimate:

ĴMAP = argmin
J

||B−GJ||2F + λf(J), (39)where λ = 2βσ2. λ is the regularization parameter. The parameter λ shouldbe 
onsidered as a regularization parameter tuning between the prior f(J) and�t to the data. If λ = 0 estimation of the 
urrent distribution be
omes simplyleast squares. This type of solution to the inverse problems was introdu
ed byTikhonov in [97℄.Choi
e of the regularization parameter λThere are many approa
hes to estimate the value of λ. We summarize a few asexplained below:1.L-Curve: When plotted on a log-log s
ale, the parametri
 
urve of optimalvalues of ||W|| and data �t ||B−GJ|| often takes on an L shape. For this reason,the 
urve is 
alled an L-
urve [45℄. The value of λ in the L-
urve 
riterion is thevalue of λ that gives the solution 
losest to the 
orner of the L-
urve, as shownin Figure 13.2. Generalized 
ross validation (GCV) is an alternative method forestimating the regularization parameter λ [107℄, that has a number of desirablestatisti
al properties. Consider
f(λ) =

||B−GJ||
Trace(I −GG†)

=
V (λ)

T (λ)
(40)
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Figure 13: Typi
al L-
urve for 
lassi
 shaw inverse problem.The numerator in (14) is the data mis�t in the least squares sense and thedominator measures the 
loseness of the data resolution matrix to the identitymatrix. In the GCV method, we pi
k the value of λ that minimizes (14), asshown in Figure 14.Linear estimatorsThe simplest approa
h to (39) is to 
onsider prior distribution of sour
e ammpli-tudes J to be Gaussian with zero mean. Introdu
e
f(J) = tr[JC−1

J Jt], (41)where C−1
J is the inverse 
ovarian
e matrix of sour
es. If we break this inversematrix as, C−1

J = WWt, then (39) 
an be written in the following manner:
ĴMAP = argmin

J
||B−GJ||2F + λ2||WJ||2F . (42)
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Figure 14: Typi
al GCV-
urve for 
lassi
 shaw inverse problem.The MAP estimator now takes the following simple linear form:
Ĵt
MAP = WWtGt(GWWtGt + λI)−1B. (43)In this 
ase, ĴMAP also follows a Gaussian distribution. (39) is normally known aszeroth order Tikhonov regularized solution of J [97, 26℄, where the regularizationparameter λ 
an be estimated from any of the te
hniques explained in the previousse
tion.Properties of the sour
e 
ovarian
e matrixSour
e 
ovarian
e is the last parameter of the model whi
h will 
ondition the�nal form taken by (42). The forms of sour
e 
ovarian
e matri
es that are most
ommonly used in MEG are:



INVERSE PROBLEM 451. The identity matrix, whi
h yields 
lassi
al minimum-norm estimators [97℄.The major assumption in using the identity matrix is that sour
e amplitudes
J are independent and identi
ally distributed.In Figure 15, a 
omparison is shown between LCMV beamformer and theminimum-norm solution to the inverse problem, showing that though theminimum-norm solution is widespread, the peak of maximum intensity isin the right pla
e in this median nerve stimulation experiment, where weexpe
t a
tivity within primary somatosensory areas.

Figure 15: Comparison of LCMV and minimum norm.2. A diagonal matrix whose elements are given by the norm of the elementsof the 
orresponding 
olumn in the lead-�eld matrix (i.e., Wii = ||gi||2with gi the ith 
olumn of G). This solution is a forward-�eld normalizedsolution.3. W whi
h is based on the relationship between sour
e neighbors [108℄. Thematrix W is given by
Wij =



















1 if i = j,

− 1
n

if j ∈ N (i),

0 otherwise,



46 BACKGROUNDwhereN (i) de�nes the �rst order neighbor of ith sour
e and n = Card[N (i)].4. W is diagonal with elements equal to some estimate of the sour
e powerat that lo
ation, whi
h may be 
omputed from the output of a beamformeror MUSIC s
an evaluated for ea
h dipole pixel [69℄ or weighted from otherfun
tional imaging modalities su
h as fMRI, PET, or SPECT [64, 21℄.These methods have the advantage to be fast and overall robust towards noise[106℄. They provide estimates where the 
enter of gravity of the a
tivity is very
lose to the true sour
e. However, results are often very smooth spatially anddo not allow for estimation of the spatial extent of the a
tivity. This problem ofspatial extent and its solution will be addressed in details in Chapter 2.Nonlinear estimators of sour
e amplitudesIt is possible to obtain sparser image estimates of the 
urrent distribution by usingalternative (non-quadrati
) 
ost fun
tions f(J) in (39). Norms and semi-normson sour
e amplitude priors with values p ≤ 2 in (42) have been investigated.Solutions will be
ome in
reasingly sparse as p is redu
ed. For the spe
ial 
aseof p = 1, the problem 
an be slightly modi�ed to be re
ast as a linear program.This is a
hieved by repla
ing the quadrati
 log-likelihood term with a set of under-determined linear inequality 
onstraints, where the inequalities re�e
t expe
tedmismat
hes in the �t to the data due to noise. The l1-
ost 
an then be minimizedover these 
onstraints using a linear simplex algorithm. Properties of linear pro-gramming problems guarantee that there exists an optimal solution for whi
h thenumber of non-zero pixels does not ex
eed the number of 
onstraints, or equiv-alently the number of measurements. Sin
e the number of pixels far outweighsthe number of measurements, the solutions are therefore guaranteed to be sparse.This idea 
an be taken even further by using the quasi-norm for values of p < 1.In this 
ase, it is possible to show that there exists a value 0 < p < 1 for whi
hthe resulting solution is maximally sparse [4, 34℄.



CONCLUSION 47Another approa
h de�ned 
liquish relationships between neighborhood sour
es.The whole network of sour
es may be des
ribed as distributed within a MarkovRandom Field (MRF), this relationship was exploited in [5, 84℄. A key propertyof MRFs is that their joint statisti
al distribution 
an be 
onstru
ted from a set ofpotential fun
tions de�ned on a lo
al neighborhood system [83℄. Thus, the energyfun
tion f(J) for the prior 
an be expressed as
f(J) = L

N
∑

i=1

[αiJ(i) + γi[
∑

j∈N (i)

(J(i)− J(j))2]Q] (44)where L is the number of time samples, αi and γi determines the weighting fa
torsbetween neighborhood sour
es. Q is the index of the amplitude of the neighbor-hood group. N (i) neighborhood of the sour
e i is de�ned as the 9 
losest neighborsto the sour
e. The �rst term in equation (44) expresses sparsity while the se
ondone favors fo
al sour
es distributions.The MRF-based image priors lead to non-
onvex [5℄ and integer [83℄ program-ming problems in 
omputing the MAP estimate. Computational 
osts 
an be veryhigh for these methods sin
e although the priors have 
omputationally attra
tiveneighborhood stru
tures, the posteriors be
ome fully 
oupled through the likeli-hood term. Furthermore, to deal with non-
onvexity and integer programmingissues, some form of deterministi
 or sto
hasti
 annealing algorithms must be used[35℄.Con
lusionThe ex
ellent time resolution of MEG provides us a unique window on the dynam-i
s of human brain fun
tions. Though the limited spatial resolution remains theproblem for this modality, adequate modeling and modern signal pro
essing meth-ods prove MEG as a dependable fun
tional imaging modality. Potential advan
esin forward modeling in
lude better 
hara
terization of the skull, s
alp and braintissues from MRI and in vivo estimation of the inhomogeneous and anisotropi

ondu
tivity properties of the head. Progress in inverse methods in
lude meth-
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ombining MEG with other fun
tional modalities and exploiting signalanalysis methodologies to better lo
alize the brain a
tivity.
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MEG SOURCE IMAGING





Multipolar Corti
al Remapping
Introdu
tionThe equivalent 
urrent dipole model is dire
tly interpretable as a 
urrent elementrestri
ted to the 
orti
al surfa
e representing a point sour
e. However, one of theper
eived key limitations of this model is that, distributed sour
es may not beadequately represented. This problem was one of the prime motivations to thedevelopment of imaging approa
hes. An alternative solution is to remain withinthe model-based framework but to broaden the model to allow parametri
 rep-resentations of distributed sour
es. The multipolar expansion provides a naturalframework for generating these models [79, 36℄. Multipolar expansions are de-rived from spheri
al harmoni
s of the magneti
 s
alar potential. If the expansionpoint is 
hosen near the 
enter of a distributed sour
e, then the 
ontribution ofhigher-order terms will drop o� rapidly as the distan
e from sour
es to the sensorsin
reases. Using this framework we expand the set of sour
es to in
lude 
urrentdipoles and �rst-order 
urrent multipoles. These sour
es are able to representthe �eld from a distributed sour
e more a

urately than by 
urrent dipole model,though still bene�ting from a 
ompa
t, low-dimensional form [78℄. Multipolar ex-pansions of magneti
 s
alar potentials originate from general spheri
al harmoni
ssolution of the Poisson equation.In this thesis, we proposed an approa
h for estimating the spatial extent of
orti
al 
urrent sour
es using a hybrid methodology 
alled Multipole Corti
alRemapping (MCR). It takes the best of imaging and parametri
 approa
hes as51



52 MULTIPOLAR CORTICAL REMAPPINGexplained in the previous 
hapter.We will �rst detail the spheri
al harmoni
 expansions of s
alar potentials, thenintrodu
e a general treatment of the spheri
al harmoni
 multipole expansion. Thiswill be followed by the multipolar expansion of distributed dipole sour
es. Thesetreatments are adapted from the 
lassi
 paper by Wikswo et al. [111℄. We willthen pro
eed to the more spe
i�
 treatment of magneti
 s
alar potentials in termsof 
urrent multipolar moments.Finally, following this theoreti
al ba
kground, the Multipolar Corti
al Remap-ping (MCR) method will be introdu
ed, followed by results on simulated andexperimental MEG data.Multipolar expansions of a s
alar potentialA ve
tor �eld with zero 
url, termed 
onservative or irrotational, 
an be des
ribedas the negative gradient of a s
alar potential Vm(r) whi
h satis�es the Poissonequation:
∇2Vm(r) = −s(r′), (45)where s(r′) des
ribes the sour
e distribution produ
ing the s
alar �eld Vm. Thesolution to (45) is known to have the following form:

Vm(r) =
1

4π

∫

s(r′)

r − r′
d3r′, (46)where the integral must be evaluated over the region where s(r′) is non zero. Ifthe sour
e distribution is bounded by a 
losed surfa
e S, then a s
alar potential
an be des
ribed by Lapla
e equation:

∇2Vm(r) = 0, r outside of S. (47)Spheri
al multipolar expansionsSpheri
al multipolar expansion for a harmoni
 s
alar potential, i.e.,satisfying (47),
an be written in odd and even unit potentials, V e
mn(r) and V o

mn(r), with their



INTRODUCTION 53multipole strengths amn and bmn respe
tively,
Vm(r) =

∞
∑

n=o

∞
∑

m=o

[anmV e
mn(r)+bmnV

o
mn(r)], r > a, outside the volume of the 
ondu
tor,(48)where

V e
mn(r) =

1

4π
r(−n− 1)Y e

mn(θ, φ), (49)
V o
mn(r) =

1

4π
r(−n− 1)Y o

mn(θ, φ) (50)are the unit potentials for the even and odd nm-th multipoles respe
tively, a isthe radius of the sphere, and θ and φ are azimuth and elevation angles, respe
-tively. The even and odd spheri
al harmoni
s with Pm
n (cosθ) being the asso
iatedLegendre fun
tion of the �rst kind are given by

Y e
mn(θ, φ) = cos(mφ)Pm

n (cosθ), (51)
Y o
mn(θ, φ) = sin(mφ)Pm

n (cosθ)m 6= 0 , m ≤ n. (52)The �rst term V e
00 
orresponds to the monopole (n = 0), There are three dipole

(n = 1) 
omponents, V e
10, V

e
11, V

o
10 and �ve quadruple (n = 2) 
omponents,

V e
20, V

e
21, V

o
21, V

e
22, V

o
22 and the n-th order multipole has 2n+ 1 
omponents. Themultipole strengths are given by

amn = ǫm
(n −m)!

(n +m)!

∫ 2π

0
cos(mφ′)dφ′

∫ π

0
Pm
n (cosθ′)sin(θ′)dθ′

∫ a

0
s(r′)r′(n+2)dr′ (53)

bmn = ǫm
(n−m)!

(n+m)!

∫ 2π

0
sin(mφ′)dφ′

∫ π

0
Pm
n (cosθ′)sin(θ′)dθ′

∫ a

0
s(r′)r′(n+2)dr′, (54)where ǫm is the Neumann fa
tor

ǫm = 1 for m = 0,

ǫm = 2 for m 6= 0. (55)The illustration of spheri
al harmoni
 multipole 
omponents are shown in Figure16.
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Figure 16: Sour
e-sink illustration of spheri
al harmoni
 multipole 
ompo-nents, adapted from [110, 67℄. The �gure shows the physi
al sour
e-sink
on�gurations 
orresponding to the multipole 
omponents of the dipole(three 
omponents), quadrupole (�ve 
omponents), and o
tupole (seven
omponents).Multipole expansions of a distributed dipole sour
eIf the 
urrent distribution 
onsists of a set D of n elementary 
urrent dipoles
D = {di, i ≤ n}, then it is straightforward to relate it its multipolar expansion[111℄. The equations below provide the dipole to quadrupole moments for a singledipole q (qx, qy, qz) at the point (xo, yo, zo).
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Dipole

a10 = qz (56)
a11 = qx (57)
b11 = qy (58)

quadrupole

a20 = 2zoqz − xoqx − yoqy (59)
a21 = zoqx + xoqz (60)
b21 = zoqy + yoqz (61)

a22 =
1

2
(xoqx − yoqy) (62)

b22 =
1

2
(xoqy − yoqx) (63)For example 
onsider a simple 
urrent distribution 
onsisting of two dipole,as shown in Figure 17, su
h that

qa = (qx, qy, qz) at ra = (xo, yo, zo) (64)
qb = (qx, qy, qz) at rb = (xo, yo, zo) (65)The spheri
al harmoni
 multipole expansion for ea
h dipole 
an be determinedusing equations (56) to (63). The multipole expansion for this 
urrent distributionis the sum of these two expansions and given:
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Figure 17: Distributed dipole model.
a10 = a11 = b11 = 0

a20 = −2xoqx

a21 = −2xoqz

b21 = 0

a22 = xoqx

b22 = xoqy (66)Equation (66) has an important impli
ation. Two opposed dipoles on oppositesides of the origin produ
e a �eld that has no dipole moments. This kind of
urrent distribution 
an only be 
aptured using a quadrupole model.



MULTIPOLE MOMENTS OF CURRENT DISTRIBUTIONS 57Multipole moments of 
urrent distribu-tionsThe neural 
urrent distribution is zero outside the head. Thus the magneti
 �eld
B 
an be represented as the negative gradient of a magneti
 s
alar potential Vm[43, 37, 52℄:

B(r) = −µo∇Vm(r), r outside the head. (67)By taking the divergen
e of (67), Vm satis�es the following Lapla
e equation:
∇2Vm(r) = 0. (68)The solution of (68), i.e., the magneti
 s
alar potential 
aused by a lo
alized
urrent distribution, was stated by Bronzan in [11℄ as follows:

Vm(r) =
1

4π

∫

J(r′) · r× r′

|r− r′|(r|r− r′|+ r2 − r · r′)d
3r′, (69)where r′ is the lo
al point at whi
h 
urrent distribution is present and r is a �eldpoint at whi
h the magneti
 �eld is measured. As noted by Bronzan, (69) is validfor any arbitrary 
oordinate system and lo
alized sour
e, where the observationpoint r is outside the sour
e and does not lie on a line between the origin and thesour
e (see Figure 18). Therefore, if we pla
e the origin inside the sour
e body,these equations hold for all points outside of the body.As in previous 
hapter, a 
onvenient substitution in MEG is to divide the
urrent density into primary 
urrent density Jp(r′) and a volume 
urrent Jv(r′)as follows:

J(r′) = Jp(r′) + Jv(r′). (70)Suppose that the head 
onsists of spheri
ally symmetri
 regions of homo-geneous 
ondu
tivity, whi
h means that all surfa
es are radial and therefore the
ontribution from volume 
urrent vanishes. The magneti
 s
alar potential outsidea spheri
al symmetri
 volume 
ondu
tor is given by
Vm(r) =

1

4π

∫

r× r′

F (r, r′)
· Jp(r′)d3r′. (71)
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Figure 18: MEG sensor measure the magneti
 �eld 
aused by lo
al 
urrentdistribution J(r′) (adapted from [53℄).
Equation (71) 
an also be represented using a multipole expansion [54℄. Amultipole expansion is the series expansion of the �eld produ
ed by the sour
e inwhi
h su

essive terms de
rease in amplitude. An important fa
tor to 
onsider isthe expansion point for this multipole series. In most of the available literature,multipole expansions are presented as expansions about the origin of the 
oor-dinate system. Sin
e it is advantageous to expand the �eld about the 
entroidof the sour
e, whi
h is not ne
essarily at the origin of a �xed 
oordinate system,some authors (e.g., [79℄) use a 
oordinate system with a variable origin. Here,we will expli
itly give the equations for the general 
ase of a multipole expansionabout an arbitrary lo
ation l for a �xed 
oordinate system.The magneti
 s
alar potential for a spheri
al head model (extension to arealisti
 head model is straightforward [76℄) in terms of multipole moments (withrespe
t to an arbitrary expansion point l) 
an be expressed as follows (for moredetails see [54℄):
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Vm(r) =

1

4π

∞
∑

n=0

∇n
l (

r× l

F (r, l)
)‖Ωn, (72)where F (r, l) = |r − l|(r|r − l| + r2 − l · r) is a s
alar fun
tion. Here, r′ is thelo
al point at whi
h the 
urrent distribution is present and r is the �eld point atwhi
h the magneti
 �eld is measured.The double verti
al in (72) represents an n-fold 
ontra
tion between the twopolyads∇n

l (the nth 
onse
utive derivative w.r.t l) and Ωn the nth order multipolemoment of the neural 
urrent distribution [54℄. Ωn 
ompletely des
ribes thespatial 
hara
teristi
s of the 
urrent distribution and is de�ned by
Ωn =

1

n!

∫

(r′ − l)nJ(r′)dr′, (73)where J(r′) represents the primary 
urrent produ
ing a magneti
 �eld outside thevolume 
ondu
tor.The magnitude of the su

essive terms of the multipole expansion de
reases,hen
e our study will be limited to orders 0 (dipoles) and 1 (quadrupoles), for pra
-ti
al SNR 
onsiderations. The �rst-order approximation of the magneti
 s
alarpotential de�ned by (72) is stated as
Vm(r) =

1

4π
[(

r× l

F (r, l)
) ·D+∇l(

r× l

F (r, l)
) : Q], (74)where D =

∫

J(r′)dr′ is the 
urrent dipole moment and Q =
∫

(r′ − l)J(r′)dr′ isthe 
urrent quadruple moment.Dipole and quadrupole moments depend on the spatial distribution of 
urrents[111℄. First-order approximation of the magneti
 �eld produ
ed by the neural
urrent distribution is given by
B(r) = −µo

4π
(∇(

r× l

F (r, l)
) ·D+∇l[∇(

r× l

F (r, l)
)] : Q). (75)Multipolar 
orti
al remappingMultipole Corti
al Remapping (MCR) is an hybrid method that takes the bestof imaging and parametri
 approa
hes to the MEG inverse problem. Preliminaryresults for this te
hnique were presented in [56, 57℄.



60 MULTIPOLAR CORTICAL REMAPPINGIn MCR we �rst use an imaging approa
h and estimate the zero-order Tikhonovregularized image of the 
urrent distribution on the 
ortex. We then thresholdthis image using histogram-based thresholding prin
iples. This thresholded imageis then 
onverted into groups of a
tivity using a labeling algorithm, [46℄ depend-ing upon their spatial 
onne
tivity. We then estimate multipole moments at thegravity 
enter for ea
h group. The multipole moments are not dire
tly relatedto the a
tual physiologi
al pro
esses that produ
e the MEG signals, so we de-s
ribe a remapping te
hnique to map these moments ba
k onto the 
ortex usinga Bayesian formalism.One of the main advantages of MCR is the use of a Tikhonov regularizationfor the estimation of multipole moments and 
orti
al remapping by mat
hingthe multipole moments (only eight moments) of the original parametri
 sour
eand the equivalent 
orti
al pat
h, rather than their forward �elds. Hen
e wea
hieve a signi�
ant redu
tion in the 
omputational 
omplexity of the inverseproblem. Most importantly, we introdu
e physiologi
al priors in the momentmat
hing 
riterion.We will present the performan
e of MCR by its appli
ation on simulated singleand two sour
e s
enarios. The robustness of the method against thresholding valuewill also be presented. We will also present the results of the appli
ation of MCRon somatosensory data using stimulation of four �ngers from the right hand.MCR takes advantage of both the 
ompa
t parametri
 modeling of distributed
urrents using equivalent 
urrent multipoles (ECM) and sparse-fo
al image mod-els on restri
ted spatial supports. It yields a workable estimation of the surfa
eextent of regional brain a
tivations. The MCR pro
eeds as follows: �rst, para-metri
 modeling of 
orti
al 
urrents is obtained by �tting a series of 
ompa
tequivalent 
urrent multipole (ECM) model elements to a low-resolution regular-ized image of the 
orti
ally-
onstrained 
urrent distribution. The se
ond step
onsists in e�
iently adjusting a sparse-fo
al image model to ea
h ECM elementusing a maximum a posteriori (MAP) Bayesian estimation framework. Hen
ethe ECM de
omposition a
ts as an intermediary between two image models of
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orti
al 
urrents, for the sake of 
onsiderable redu
tion in the dimensions of theparameter subspa
es.Compa
t parametri
 de
omposition of 
orti
al
urrentsThe motivation is to redu
e the dimension of the subspa
e in whi
h a sparsefo
al image model may be �tted to the data. One approa
h 
ould 
onsist indire
tly adjusting equivalent 
urrent dipole (ECD) or ECM models to the data.The nonlinear sear
h for their optimal lo
ations though has proven to be hardlytra
table in pra
ti
e without strong priors on the number and the expe
ted lo
iof a
tivations when multiple regions are simultaneously a
tive.Here the de
omposition of 
orti
al 
urrents in a 
ompa
t form using ECMmodel elements relays a smooth, low-resolution image model of neural 
urrentsto their �nal higher-resolution sparse-fo
al estimate in a two-step pro
edure.The basi
 image support 
onsists of a set D of n elementary 
urrent dipoles
D = {di, i ≤ n}, densely distributed over the MRI-extra
ted 
ortex of the subje
tthat forms a surfa
e manifold Γ of R3. The orientations oi of all the dipolesfollow the 
ir
umvolutions of the 
orti
al mantle. Hen
e the estimation of 
orti
al
urrents redu
es to that of their amplitude distribution y = {yi, i ≤ n}.The low-resolution image model was obtained from the Tikhonov-regularizedweighted minimum-norm estimator (WMNE) [2℄:

y = argmin
y

{‖b−Gy‖2 + λytC−1y}, (76)where b is a ve
tor of m instantaneous measurements on the MEG sensor array;
G is the 
orresponding forward gain matrix and C is the expe
ted 
ovarian
ematrix of the elementary sour
es; λ is a s
alar regularization parameter.The solution to (76) is unique and takes the following form:

y = Gt(GGt + λI)−1b, (77)



62 MULTIPOLAR CORTICAL REMAPPINGwhere Gt denotes the transposed G matrix and we have assumed that C = I,without loss of generality. Note that y may either be estimated at a single timeinstant or over a larger time frame with no di�eren
e in the approa
h.The low-resolution image model y was thresholded using for instan
e an ab-solute amplitude 
riterion based on the analysis of the histogram of the |yi|'s.Dipole elements in D with absolute amplitude under the 85th per
entile of thehistogram were set to zero. The remaining set of a
tive elementary dipoles wasarranged in a set of nC spatially-
ontiguous dipole 
lusters {Cj , j ≤ nC} [46℄.Let xi be the 
oordinates of dipole di in R3. We de�ne as Xj , the 
urrent-weighted 
entroid of 
luster Cj , that is,
Xj =

∑

i,di⊂Cj

|yi|xi.

Xj serves as the expansion point of the ECMmodelmCj � up to the quadrupole� of the 
urrents sustained by 
luster Cj . All the ECM moments from all 
lustersare gathered in mC and are adjusted in the least-squares sense:
mC = Gt

m(GmGt
m)−1b, (78)where Gm is the ECM gain matrix of all the Cj (j ≤ nc) 
lusters, whi
h 
ompu-tation is detailed in [54℄.

Sparse-fo
al imaging modelThe se
ond step in the MCR pro
edure 
onsists of estimating an equivalent 
or-ti
al 
urrent distribution to ea
h of the ECM elements mCj using expli
it sparse-fo
al priors.The quadrupolar ECM expansion mi ∈ R8 of any dipole di ⊂ Cj about
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Xi = [Xi,1,Xi,2,Xi,3] ∈ R3, as introdu
ed in Se
tion writes [111℄:

mi =










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oi· yi = gm
i yi. (79)

The equivalent sparse-fo
al image model of ea
h mCj de�ned in Se
tion 
onsistsof a subset of 
orti
al dipoles ζj ⊂ D whi
h amplitudes yj verify
mCj =

∑

i,di∈ζj

gm
i yi + n = Gm

j yj + n, (80)where Mζ
j is the equivalent 
orti
al ECM moments and n is the residuals betweenthe ECM element mCj and its 
orti
ally-distributed 
ounterpart.We are able to estimate y as follows

ŷ = argmin
y

{‖Jo − Jζy‖+ λ‖y‖}. (81)Studies of fun
tional a
tivation, su
h as somatosensory mapping using PETand fMRI, reveal the sparse and fo
alized nature of the a
tivation of neural 
ur-rents. Our prior is therefore spe
i�
ally designed to re�e
t the expe
tation thatthe 
urrent sour
es tend to a sparse and fo
al representation. y is estimated us-ing expli
it sparse-fo
al priors, whi
h 
an readily be ins
ribed in a Bayesian MAPestimator of 
orti
al 
urrent amplitudes exempli�ed in [84℄. This has been demon-strated for instan
e in the 
ontext of Markovian Random Field (MRF) modelsof the 
orti
al 
urrent distribution. Here, we revisit this approa
h and make ittra
table by running MAP estimates restri
ted to the lo
al 
urrent distributionsabout ea
h ECM element and by mat
hing their respe
tive multipolar moments.This latter point further redu
es the dimension of the quantities under 
onsid-eration as we are interested in adjusting moments in a subspa
e of dimension 8



64 MULTIPOLAR CORTICAL REMAPPINGrather than in the subspa
e of MEG sensors whi
h is m ∼ 100. The 
orti
al
urrent density is modeled as a random pro
ess using extensions of the modelsdes
ribed in [84℄. We 
hara
terize the 
urrent density yi at every vertex throughthe asso
iation of a 
ontinuous, normally-distributed, random variable of dipoleamplitude zi and a binary indi
ator pro
ess xi of whether sour
e i is on or o�.Thus yi = xizi, and globally y = x ∗ z, with x and z assumed to be twoindependent pro
esses.The 
onditional posterior probability of neural 
urrent distribution knowing
urrent multipole moments mCj is given by
p(x, z|mCj) =

p(mCj |x, z)p(x)p(z)
p(mCj)

. (82)The MAP estimate of the set of dipole amplitudes that will mat
h the ECMmoments of mCj writes:
yj = {xizi,di ∈ ζj} = argmax

x, z
p(x, z|mCj). (83)The underlying MRF of the indi
ator pro
ess x follows a Gibbs distribution whi
henergy fun
tion V (x) writes:

V (x) =
∑

i,di∈ζj

(αixi + βi
∑

k∈νi

(xi − xk)
2

γik
), (84)where αi > 0 and βi > 0 determine the sparseness and 
lustering relative weights;

νi is the set of nearest neighbors of vertex i, and γik is proportional to the geodesi
distan
e between di and dk and to the dis
repan
y between their orientations.Sour
e amplitudes z are assumed to be 
entered and normally-distributedwith 
ovarian
e Cz. Assuming the perturbation pro
ess in (80) to be zero-meanGaussian with 
ovarian
e matrix Cn, we 
an write
p(x, z|mCj) =

1

D
exp{−U(x, z|mCj )}, (85)where D is the posterior partition fun
tion.



MULTIPOLAR CORTICAL REMAPPING 65The MAP estimation from (83) redu
es to the minimization of the energyfun
tional asso
iated to the posterior distribution of yj :
U(x, z|mCj ) =

1

2
[mCj −Gm

j x ∗ z]tC−1
n [mCj −Gm

j x ∗ z]

+
1

2
zTC−1

z z+ V (x). (86)Minimization of U(x, z|mCj) is di�
ult sin
e the optimization pro
edure mustbe performed over a mixture of dis
rete and 
ontinuous variables. We will use amodi�ed version of the optimization pro
edure given in [84℄ based on Mean FieldAnnealing.This method works as follows. Sin
e the fun
tion is quadrati
 in 
ontinuousvariable z, we 
an derive 
losed form of expression for the optimal z∗ as a fun
tionof parti
ular indi
ator pro
ess x:
z∗(x) = Czx(G

m
j )T(Gm

j xCzx(G
m
j )T +Cn)

−1mCj . (87)Substituting z∗(x) into U(x, z|mCj) result in
Ũ(x|mCj) = U(x, z|mCj)|z=z∗(x), (88)whi
h is a Gibbs energy fun
tion for the binary density
p̃(x|mCj) =

1

K̃
{−Ũ (x|mCj)}. (89)We 
an therefore �rst �nd the optimal indi
ator pro
ess x by minimizing

Ũ(|mCj), and then substituting this result in (87) to get the optimal amplitudepro
ess.Identifying the elements of ζj is a
hieved through a re
ursive and iterativesurfa
e region-growing pro
ess. The pro
ess is re
ursive and 
onsiders ea
h dipolarsour
e in Cj as a seed to a pat
h growing pro
ess. This latter 
onsists of a re
ursiveestimation of the lo
al 
urrent density on a growing number of sour
e 
andidatesin the vi
inity of every seed until U(x, z|mCj) is minimized. At ea
h iteration,this latter is minimized with the iterated 
onditional mode (ICM) optimizationof the binary indi
ator pro
ess.For every seed di ∈ Cj :



66 MULTIPOLAR CORTICAL REMAPPING1. Initialization: set k = 1, the pat
h around the sour
e i to νik = {i} and
U i
0 = 0;2. Estimate yj and 
ompute U i

k from (86);3. If |U i
k − U i

k−1| > ǫU i
k−1a) Grow the pat
h by in
luding the verti
es 
onne
ted to the sour
e(s)in νik = {i};b) Set k = k + 1 and move to next seed in Cj .4. else:a) De�ne U i = U i
k−1;b) De�ne the best pat
h obtained from seed i, Πi = νk−1

i ;
) Pro
eed to next seed.We de�ne the optimal sparse fo
al equivalent image support to mCj as follows
ζj = ∪i∈IΠ

i, (90)with
I = {i, U i ≤ U

i − 3σU i}, (91)where U
i (resp. σU i) is the sample mean (resp. standard deviation) of the U i'sobtained for ea
h seed at step 4a.This pro
ess is repeated for the nc 
lusters.ResultsWe will present MCR �rst through simulated datasets in two s
enarios. Then wewill present performan
es of MCR on real somaestheti
 data of four right hand�ngers.Data pro
essing, forward modeling and visualization is a
hieved through Brain-storm Matlab ToolBox. Experimental data was a
quired by Sabine Meunier usinga 151-
hannel axial gradiometer CTF system.



RESULTS 67Simulated dataWe tested the method on simulated data in single sour
e and two sour
e s
enarios,to obtain a quantitative analysis of MCR.A high resolution tessellation of the grey/white matter boundary was obtainedfrom the segmentation of the MRI data set with the BrainSuite software. Toensure high spatial resolution we used a tessellation of 37,723 verti
es and 76,952fa
es, with an average triangle area of 2.59mm2.At every MC trial, an equivalent pat
h was estimated. Cn was 
hosen as α2Iwith α2 = 10−2 (SNR), and Cz as α2
zI with α2

z = 100[nA.m]2 (to approximatea
tual 
urrent distribution of 
ortex and real SNR 
onditions in a typi
al MEGexperiment). αi and βj were set to 10−5 for every sour
e, and no priors besides
onne
tivity were taken into a

ount and hen
e γi,j = 1 for all pairs of neighbors.
ǫ was set to 10−6. Values of parameters were 
hosen following [84℄.An a
tive area of 
ortex was modeled by �rst randomly sele
ting a vertex andthen adding its nearby verti
es until the desired pat
h size a
hieved.A

ura
y 
riteriaPerforman
e evaluation 
riteria 
onsisted of uniformly weighted sums of (i) dis-tan
e between the original and remapped pat
h 
entroid; (ii) di�eren
e betweenthe area of the original and remapped pat
h; (iii) the subspa
e 
orrelation be-tween original and remapped pat
h (subspa
e 
orrelation is explained in the nextse
tion).These 
riteria take their values between 0% (no mat
h) and 100% (perfe
tmat
h).Single sour
e 
aseMonte-Carlo (MC) simulations were performed by growing about 2500 
orti
alpat
hes at randomly sele
ted lo
ations on the 
orti
al surfa
e with areas ranging



68 MULTIPOLAR CORTICAL REMAPPINGfrom 5cm2 to 30cm2 (mean 17.27cm2). Uniform illumination was assigned tothe 
orti
al dipoles within a pat
h using a 100-time-sample waveform for a
tivedipoles. MEG signals were simulated on 151 axial gradiometers (5cm baseline)uniformly distributed about the upper hemisphere of a spheri
al head. Gaussianwhite noise was added to the signals with a uniform level a
ross all the 
hannelsof 10% of the peak of maximum amplitude. To a

ount for the performan
e, thepat
hes generated in the MC simulations were gathered in 5 
lasses a

ording totheir areas. Ea
h 
lass was labeled by the average value of the pat
h areas withinthat 
lass: Class1= 6.31Cm2; Class2= 12.00Cm2; Class3= 17.46Cm2; Class4=
22.75Cm2; Class5=27.84Cm2.Figure 22 in blue legend shows that there is no signi�
ant degradation of themethod with in
reasing area (average a

ura
y 89% with verti
al bar showingstandard errors). MCR performs well with pat
hes belonging to all area 
lasses.
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Figure 19: A

ura
y of 
lasses with verti
al bar showing standard errors.The subspa
e 
orrelation between original and remapped pat
hes is shown in



RESULTS 69Figure 20. The subspa
e 
orrelation is obtained from the ordered set of 
osines ofthe prin
iples angle de�ned in [38℄. The subspa
e 
orrelation is the 
osine of thesmallest prin
ipal angle and will be unity if the two matri
es have at least onedimensional subspa
e in 
ommon. In fa
t,
cos(θ) = UtV, (92)where U and V are subspa
es spanned by original and remapped pat
hes, respe
-tively.Results show high degree of subspa
e 
orrelation between original and remappedpat
hes.
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al bar showing stan-dard errors.



70 MULTIPOLAR CORTICAL REMAPPINGThe performan
e of the method in determining area of the pat
h is shown inFigure 21. Results are presented in the form of linear regression between originaland estimated area and the best linear line through s
atter plot is estimatedthrough quadrati
 minimization. It is very 
lear from the �gure that the methodperforms with good a

ura
y and the original surfa
e area is restored with a highpre
ision. The estimator re
overs quantitatively the area of the original surfa
ewith a 
orrelation of 0.98 for 2500 pat
hes at an average error of 0.2cm2.
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Figure 21: S
atter plot showing original area vs estimated area with straightline representing linear �t.
Robustness of MCR against 
hanges in the thresh-oldRobustness of MCR against threshold value is presented by de
reasing thresh-old value 4 fold and performing 2500 Monte Carlo simulations, as stated in the



RESULTS 71previous se
tions.It is 
lear in Figure 22 (red legend) that the average a

ura
y in
reases foralmost all 
lasses (average a

ura
y is more than 90%). However by de
reasing 4fold the threshold the 
omputation time in
reases manyfold, as now more seedsneed to be evaluated to �nd the best equivalent pat
h.
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Figure 22: A
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y of 
lasses with verti
al bar showing standard errorsunder normal MCR parameters (in blue) and smaller threshold parameters(in red).



72 MULTIPOLAR CORTICAL REMAPPINGTwo-sour
e 
aseFor the two sour
e s
enario we performed simulations by generating two randompat
hes of about 5cm2 and 10cm2 on the 
ortex. This time we evaluated repeata-bility of the performan
e of MCR by repeating the pro
ess of estimation 200 timesfor these two pat
hes.The di�eren
e in area between original and remapped pat
hes, and a

ura
yof MCR as des
ribed in Se
tion for the pat
h of 10cm2 were 
al
ulated. Abootstrap based 
on�den
e interval for the repeatability of these two statisti
swas also 
omputed [27℄. This bootstrapping was performed as shown in Figure23 in whi
h n = 200 and B = 5000.

Figure 23: Illustration of the bootstrap estimate of 
on�den
e intervals.To obtain the 95% 
on�den
e interval of repeatability, we took 2.5 % and
97.5% quantities of the B repli
ation T1, T2, . . . , TB as the lower and upper bounds,respe
tively.



RESULTS 73Table 1 presents the repeatability of MCR at 95% 
on�den
e interval in a twosour
e 
on�guration for a pat
h of size 10cm2. It is 
learly visible from the tablethat repeatability of MCR is very good and remains within a very narrow limit.Con�den
e interval 95%Lower bound Upper boundAverage a

ura
y 81.1% 90.8%Di�eren
e area 0.14cm2 0.93cm2Table 1: Con�den
e interval for repeatability of MCR.The re
onstru
tion of these two pat
hes by MCR is presented in Figure 24,whi
h shows that MCR works a

urately in determining the spatial extent of thepat
hes.

Figure 24: Re
onstru
tion by MCR in two sour
e s
enario.



74 MULTIPOLAR CORTICAL REMAPPINGExperimental dataThe fun
tional mapping of limbs and �ngers is a matter of great interest in MEG
ommunity and it is widely known as somaestheti
 mapping. The early neuralresponses at about 40ms following stimulation of hand �ngers, follows a somaes-theti
 organization along the post-
entral sul
us. Somatosensory sour
e modelsare mostly 
onsidered as ECD models for these early responses. However, datafrom animal models indi
ates that even though there is some somaestheti
 orga-nization of �nger areas, these latter might be larger than expe
ted and overlap
onsiderably. These �ndings indi
ate that ECD based model are not very use-ful for somaestheti
 mapping as they 
annot des
ribe the spatial extent of thesomaestheti
 sour
es.The data for somaestheti
 mapping were gathered for one healthy right-handed male [71℄. The somatosensory stimulation was an ele
tri
al square-wavepulse delivered separately to four �ngers of ea
h hand: thumb, index, middle,and pinky �nger. The stimulation was applied between the middle and distalphalanxes of ea
h �nger. The stimulation order was randomized. The pulse dura-tion was 0.2 ms and the amplitude was set to twi
e the per
eptual threshold. Theinterstimulus interval (ISI) was varied randomly from 350 to 550 ms to minimizehabituation and anti
ipation e�e
ts. The magneti
 �elds were re
orded with aCTF Systems In
. Omega 151 system with 151 
hannels. For ea
h �nger, a 300-ms interval, in
luding a 50-ms prestimulus interval, was re
orded at a samplingrate of 1250Hz. The number of single trials per �nger after removal of those 
or-rupted by artifa
ts ranged from 386 to 415. The DC o�set of the gradiometerswas removed from all single trials based on the prestimulus interval. Data forea
h �nger were averaged and bandpassed between 3Hz-90Hz.



RESULTS 75We applied MCR on this data at 40ms laten
y. Results revealed the expe
tedsomaestheti
 organization of the �nger primary 
orti
al proje
tions, with a largedegree of overlap between �ngers, the thumb having the largest area (see Figure.)

Figure 25: (a) Color-en
oding of the four �ngers stimulated in the study, asused in subsequent �gures; (b) Estimation of the respe
tive spatial extentof the 
orti
al responses; (
) Zoom view of the 
orti
al responses.Table 2 presents the area of a
tive 
ortex in response to stimulus for righthand four �ngers. Right hand �ngersThumb 9.29cm2Index 3.58cm2Middle 5.23cm2Pinky 4.71cm2Table 2: Estimated a
tivated 
orti
al surfa
e areas in response to stimulation ofea
h of the right hand �ngers.We also used MCR to evaluate the area of the a
tive 
ortex in the primaryand se
ondary sensory areas. The results presented in Figure 26 are for the righthand index �nger.



76 MULTIPOLAR CORTICAL REMAPPING

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(msec)

A
re

a(
cm

2 )

S1 vs S2 area

 

 

S1
S2

Figure 26: A
tive surfa
e areas in S1 and S2 regions.These results are in a

ordan
e with the existing neurologi
al data for thisexperiment [18℄ and demonstrate e�e
tiveness of MCR on real data.Con
lusionWe have presented a fast and robust method for estimating the spatial extent of
orti
al 
urrents from MEG data. Results from extensive Monte-Carlo simulationsshow ex
ellent performan
es in terms of spatial 
hara
terization even for verylarge pat
hes of 30cm2. The estimation of the surfa
e area of a
tive regions isvery a

urate. Average error is only 0.2cm2 for 2500 pat
hes. The results for twosour
es show that the method reveals the repeatability of MCR. Good results forsomaestheti
 data prove that the method works adequately with real data.



Part 3
MEG SOURCECHARACTERIZATION





Helmholtz-HodgeDe
omposition
Introdu
tionThe Helmholtz-Hodge De
omposition (HHD) is a te
hnique used to de
ompose a2D (resp. 3D) 
ontinuous ve
tor �eld into a sum of three parts:

• a non-rotational part deriving from the gradient of a s
alar potential U ;
• a non-diverging part deriving from the rotational of a s
alar potential A(resp. ve
torial potential);
• a harmoni
 part, i.e., whose Lapla
ian vanishes.The non-rotational 
omponent 
orresponds to the diverging 
omponents su
has sour
es and sink in the ve
tor �eld. The non-diverging part 
ontains informa-tion about rotating 
omponents of motion �elds su
h as vorti
es. The harmoni
ve
torial 
omponent is both divergen
e- and 
url-free revealing travelling obje
tsin the ve
tor �eld. So by identifying these 
omponents, di�erent features in theve
tor �eld may be extra
ted.Features of a ve
tor �eld are des
ribed as patterns or stru
tures of interestlike sour
es, sinks and vorti
es. All these features must be dete
ted and analyzedin order to understand the physi
al behavior of a �ow. Although feature analysis79



80 HELMHOLTZ-HODGE DECOMPOSITIONis an important area, only a few te
hni
al tools are available for their dete
tionand visualization in the 
ontext of ve
tor �elds [91℄.HHD is used to dete
t features in ve
tor �elds, but in most of the 
urrentliterature it is des
ribed on �at 2D surfa
es [41℄ or on 3D spa
e [98℄. Even ifsome authors des
ribe it on polyhedral surfa
es [86℄ 
omputation are performedlo
ally on the Eu
lidean spa
e. As shown in [59℄, the surfa
e 
urvature has tobe taken into a

ount for a proper estimation of ve
tor �elds on the tangentspa
es. Moreover, results on 
onvergen
e are sensitively modi�ed by non-�atnessproperties. In this 
hapter, we rede�ne HHD on Riemannian spa
e whi
h enablesto dete
t features in motion �elds even on highly 
urved surfa
es su
h as the
ortex.The dete
tion of features in motion �eld is important in a wide variety of�elds: [82, 42℄. In airplane wind tunnel testing, identi�
ation of vorti
es on wingsare 
ru
ial for identifying lift of the plane [1℄ (Figure 27 (a)). This problemhas appli
ations in meteorology also, for instan
e, to identify hurri
anes on thesurfa
e of the earth [17℄ (Figure 27 (a)). In 
ardia
 motion analysis heart beatsare represented as sour
es and sinks [42℄. The identi�
ation of all these pointsis thus pre
ious to understand and predi
t the phenomena of interest. Moreover,feature identi�
ation also allow a 
ompa
t representation of the ve
tor �eld [91℄.This feature dete
tion takes pla
e in three steps. First we estimate opti
al�ow on 2-Riemannian Manifold. We then apply Helmholtz-Hodge de
ompositionto de
ompose opti
al �ow in non-rotational s
alar potential, rotational (solenoid)s
alar potential and harmoni
 ve
tor �eld. Now the task of identifying featuressimpli�es to identifying 
riti
al points of two s
alar potentials, and moving obje
t
an be identi�ed by lo
ating highest norm ve
tors of the harmoni
 
omponent.The aim of this 
hapter is twofold: �rst rede�nition of HHD on 2-Riemannianmanifold and se
ondly its appli
ation to feature dete
tion in opti
al �ow on gen-eral surfa
es.In subsequent se
tions we will �rst explain the Riemannian framework forVe
torial PDE; this framework is adapted from [59℄. We then revisit the opti
al
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Figure 27: (a) Strength of vorti
es on wings of the plane; (b) Identi�
ationof hurri
anes eye.�ow on non �at surfa
es. A new framework of HHD on 2-Riemannian manifoldwill be de�ned next. Lastly, we will present results on an appli
ation of HHD ondi�erent kinds of surfa
es.Ve
tor �elds on manifoldsWe �rst re
all some ne
essary ba
kground about di�erential geometry. For a moredetailed introdu
tion, see [28℄.Let M be a 2-Riemannian manifold representing an imaging support (forexample the surfa
e of a planet or the highly 
ir
umvoluted brain envelope),parameterized by the lo
al 
oordinate system φ : p ∈ M 7→ (x1, x2) ∈ R
2.We introdu
e a s
alar quantity de�ned in time on a 2-dimensional surfa
e (e.g.,weather data or time-evolving estimates of brain a
tivation) as a fun
tion

I : (p, t) ∈ M× R 7−→ R.As for Eu
lidean spa
es, it is possible to de�ne ve
tors on manifolds and we



82 HELMHOLTZ-HODGE DECOMPOSITIONprovide the most intuitive approa
h to this question.

Figure 28: Basis ve
tors (in blue and green) are de�ned on lo
ally tangentplanes at ea
h node of a triangulation of the 
orti
al surfa
e (in purple).Considering a 
urve γ(t) de�ned on M su
h as γ(0) = p, we note that γ′(0)does not depend on the lo
al 
oordinate system. For any 
urve γ(t), the tangentve
tor γ′(0) engenders a tangent spa
e TpM at point p. The 
anoni
al basis ofthis ve
torial spa
e is
eα = γ′α(0) :=

∂

∂xα
,where xβ

(

γα(t)
)

= tδα,β.Pro
eeding identi
ally at any point of the manifold, we de�ne TM =
⋃

p TpM,the tangent bundle of M. Thus a ve
tor �eld V is naturally de�ned as an appli-
ation
V : M −→ TM.We further pro
eed by suggesting adaptations to the 
on
epts of angle anddistan
e as de�ned on a manifold. Mmay be equipped with a Riemannian metri
.



INTRODUCTION 83Hen
e at ea
h point p of M, there exists a positive-de�nite form:
gp : TpM× TpM −→ R,whi
h is di�erentiable with respe
t to p. Hereafter, we note (gp)α,β = gp

(

eα, eβ
).A natural 
hoi
e for gp is the restri
tion of the Eu
lidean metri
 to TpM, whi
hwe have adopted for subsequent 
omputations. Next, we will only refer to gp as

g. Integrating on a manifold now be
omes possible using a volume form, i.e., adi�erential 2-form:
dµM : TM× TM −→ R.The most 
onvenient volume form may be asso
iated to the metri
 g via:

√

det(gα,β)dx1dx2.Opti
al �ow on a Riemannian manifoldThis se
tion summarizes results from Lefèvre and Baillet on whi
h we have basedthe HHD extension [59℄.As in 
lassi
al 
omputation approa
hes to opti
al �ow, we now assume thatthe a
tivity of a point moving on a 
urve p(t) in M is 
onstant along time. The
ondition
d

dt

[

I
(

p(t), t
)

]

= 0yields
∂tI +Dp(t)I(ṗ) = 0, (93)where DpI is the di�erential of I at point p, that is, the tangent linear appli
ationgiven by
DpI : TM −→ R.

ṗ = V = (V 1, V 2) stands for the unknown motion �eld we aim at 
omputing.However, mathemati
ally speaking, the notion of di�erential is not intuitive whenmanipulating ve
tor �elds. In this regard, we adopt an opposite approa
h to theone exposed in [10℄ for Maxwell's equations where di�erential forms are preferred



84 HELMHOLTZ-HODGE DECOMPOSITIONto ve
tor �elds. We will 
ome ba
k to this point at the dis
retization step. That iswhy we express the linear appli
ation DpI as a s
alar produ
t and thus introdu
e
∇MI, the gradient of I whi
h is de�ned as the ve
tor �eld satisfying at ea
h point
p the following:

∀V ∈ TpM, g(∇MI,V) = DpI
(

V
)

.(93) 
an thereby be transformed into an opti
al-�ow type of equation:
∂tI + g(V,∇MI) = 0. (94)We note that (94) takes the same form as general 
onservation laws de�nedon manifolds in [88℄. Here, only the 
omponent of the �ow V in the dire
tionof the gradient is a

essible to estimation. This 
orresponds to the well-knownaperture problem [49℄, whi
h requires additional 
onstraints on the �ow to yield aunique solution.RegularizationThe previous approa
h 
lassi
ally redu
es to minimizing an energy fun
tional su
has the one in [49℄:

E(V) =

∫

M

[

∂I

∂t
+ g(V,∇MI)

]2

dµM + λ

∫

M
C(V)dµM. (95)The �rst term is a measure of �t of the opti
al �ow model to the data, whilethe se
ond one a
ts as a spatial regularizer of the �ow. The s
alar parameter λtunes the respe
tive 
ontribution of these two terms in the net energy 
ost E(V).Here we rewrite the smoothness term from [49℄, whi
h 
an be expressed as aFrobenius norm:

C(V) = Tr(t∇V · ∇V), (96)where
(

∇V
)β

α
= ∂αV

β +
∑

γ

Γβ
αγV

γis the 
ovariant derivative of V, a generalization of ve
torial gradient. ∂αV
β isthe 
lassi
al Eu
lidian expression of the gradient, and ∑γ Γ

β
αγV γ re�e
ts lo
al



INTRODUCTION 85deformations of the tangent spa
e basis sin
e the Christo�el symbols Γβ
αγ arethe 
oordinates of ∂βeα along eγ . This rather 
omplex expression ensures thetensoriality property of V, i.e., invarian
e with parametrization 
hanges.This 
onstraint will tend to generate a regularized ve
tor �eld with smallspatial derivatives, that is a �eld with weak lo
al variations. Su
h a regularizations
heme may be problemati
 in situations where spatial dis
ontinuities o

ur inthe image sequen
es. For example, in the 
ase of a moving obje
t on a stati
ba
kground, the severe velo
ity dis
ontinuities around the obje
t 
ontours areeventually blurred in the regularized �ow �eld (see [109℄ for a taxonomy of otherpossible terms).Variational formulationVariational formulation of 2D-opti
al �ow equation has been �rst proposed byS
hnörr in [92℄. The advantage of su
h formulation is twofold. Theoreti
ally, itensures that the problem is well-posed, that is, there exists a unique solution ina spe
i�
 and 
onvenient fun
tion spa
e, e.g., a Sobolev spa
e [92℄, or a spa
e offun
tions with bounded variations [3℄. Numeri
ally, it allows to solve the problemon dis
rete irregular surfa
e tessellations and to yield dis
rete solutions belongingto the 
hosen fun
tion spa
e. A possible restri
tion 
an be done when dealing withnon-quadrati
 regularizing terms where iterative methods must repla
e matrixinversions. We derive a variational formulation in the 
ase of Horn & S
hunkisotropi
 smoothness priors, but the general framework remains the same forNagel's anisotropi
 image-driven regularization approa
h [77℄.Considering M, we need to de�ne a working spa
e of ve
tor �elds Γ1(M) onwhi
h fun
tional E(V) will be minimized. Let us �rst denote the Sobolev spa
e

H1(M) de�ned in [29℄ as the 
ompletion of C1(M) (the spa
e of di�erentiablefun
tions on the manifold) with respe
t to ‖ · ‖H1 derived from the followings
alar produ
t
< u, v >H1=

∫

M
uv dµM +

∫

M
g(∇u,∇v) dµM.



86 HELMHOLTZ-HODGE DECOMPOSITIONWe 
hoose a spa
e of ve
tor �elds in whi
h the 
oordinates of ea
h elementare lo
ated in a 
lassi
al Sobolev spa
e:
Γ1(M) =

{

V : M → TM / V =
2
∑

α=1

V αeα, V α ∈ H1(M)
}

, (97)with the s
alar produ
t given by
< U,V >Γ1(M)=

∫

M
g(U,V) dµM +

∫

M
Tr(t∇U∇V) dµM.

E(V) 
an be simpli�ed from (95) as a 
ombination of the following 
onstant, linearand bilinear forms:
K(t) =

∫

M

(

∂tI
)2
dµM ,

f(U) = −
∫

M
g(U,∇MI)∂tI dµM,

a1(U,V) =

∫

M

g(U,∇MI)g(V,∇MI)dµM

a2(U,V) =

∫

M
Tr(t∇U∇V) dµM

a(U,V) = a1(U,V) + λa2(U,V).Minimizing E(V) on Γ1(M) is then equivalent to the following problem :
min

V∈Γ1(M)

(

a(V,V) − 2f(V) +K(t)
)

. (98)Lax-Milgram theorem ensures uniqueness of the solution with the following as-sumptions:1. a and f are 
ontinuous forms;2. Γ1(M) is 
omplete, the bilinear form a(., .) is symmetri
 and 
oer
ive (el-lipti
), that is, there exists a 
onstant C su
h that
∀ V ∈ Γ1(M), a(V,V) ≥ C ‖ V ‖2Γ1(M) .Moreover, the solution V to (98) satis�es:
a(V,U) = f(U),∀ U ∈ Γ1(M). (99)



HELMHOLTZ HODGE DECOMPOSITION ON 2-RIEMANNIAN MANIFOLD87Continuity of f and a are straightforward. Completeness of Γ1(M) is ensuredbe
ause any Cau
hy sequen
e has 
omponents in H1(M) whi
h are also Cau
hysequen
es sin
e ‖ · ‖H1 is bounded by ‖ . ‖Γ1(M).Proof of 
oer
ivity 
an be adapted � analogously to �at domains [92℄ � thanksto isothermal 
oordinates. Indeed, the Korn�Li
htenstein theorem (1914) allowsto �nd a system of 
oordinates for whi
h the two basis ve
tors of tangent spa
eare orthogonal. In this basis, 
al
ulus are similar to those in Eu
lidian 
ase byintrodu
ing a multipli
ative 
oe�
ient equal to the norm of the basis ve
tors.A big di�eren
e with [92℄ is that the 
oer
ivity and therefore well-posednessdoes not require an assumption about linear independen
y of the two 
omponentsof the gradient ∇MI (see [59℄).
Helmholtz Hodge de
omposition on 2-Riemannian manifoldWe will now present an extended framework to perform HHD on Riemanniansurfa
es and show that it 
an be applied for any ve
tor �eld de�ned on a 2-Riemannian manifold M.TheoryDe�nitionsIn our framework M is a surfa
e (or manifold) parameterized by lo
al 
harts
(x1, x2). Thus, it is possible to get a normal ve
tor at ea
h point

np =
∂

∂x1
∧ ∂

∂x2
.It is important to see that the normal does not depend on the 
hoi
e of theparametrization (x1, x2). Then we de�ne the gradient and divergen
e operators



88 HELMHOLTZ-HODGE DECOMPOSITIONthrough duality: dU(V) = g(∇MU,V),
∫

M
UdivMH = −

∫

M
g(H,∇MU).

S
alar and ve
torial 
url are at last given by
CurlMA = ∇MA ∧ n,
urlMH = divM(H ∧ n).With these formulas we have intrinsi
 expressions whi
h do not depend on theparametrization of the surfa
e.TheoremWe start by reformulating results established in [86℄. Given V a ve
tor �eld in

Γ1(M), there exists unique fun
tions U and A in L2(M) and a ve
tor �eld H in
Γ1(M) su
h that

V = ∇MU +CurlMA+H, (100)where 
urlM(∇MU) = 0,divM(CurlMA) = 0,divMH = 0,
urlMH = 0.In pra
ti
e, few divergen
e 
omponents and a few rotational 
omponents areto be found in the �eld H. To 
ounter this problem, we 
an further de
omposethe "harmoni
" remainder, H, into three 
omponents su
h that more a

urate
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an be obtained. This iterative s
heme 
an be formulated as below:
V = ∇MU1 +CurlMA1 +H1,

= ∇MU1 +CurlMA1 + [∇MU2 +CurlMA2 +H2],

= ∇MU1 +CurlMA1 +∇MU2 +CurlMA2

+ . . .+ [∇MUn +CurlMAn +Hn],

= [∇MU1 +∇MU2 + . . .+∇MUn]

+[CurlMA1 +CurlMA2 + . . . +CurlMAn] +Hn.If the number of iterations is large enough, the �nal 
url-free 
omponent andthe �nal divergen
e-free 
omponent will be very 
lose to the respe
tive true value.In pra
ti
e, one iteration is enough to extra
t useful features of a ve
tor �eld.Dis
retizationIn this part we show how to 
onstru
t the fun
tions U and A starting fromtheoreti
al 
onsiderations before addressing more pra
ti
al aspe
ts.Following 
lassi
al 
onstru
tions, U and A will minimize the two fun
tionals:
∫

M

||V −∇MU ||2,
∫

M
||V −CurlMA||2,where ||.|| is the norm asso
iated to the Riemannian metri
 g(., ·).These two fun
tionals are 
onvex. Therefore, they 
arry a minimum on L2(M)whi
h satis�es:

∀φ ∈ L2(M),

∫

M
g(V,∇Mφ) =

∫

M
g(∇MU,∇Mφ), (101)

∀φ ∈ L2(M),

∫

M
g(V,CurlMφ) =

∫

M
g(CurlMA,CurlMφ). (102)These two equations are very important sin
e they provide the path to numeri-
al 
omputations when the spa
e L2(M) is approximated by a �nite dimensionsubspa
e (e.g., 
ontinuous linear pie
ewise fun
tions).



90 HELMHOLTZ-HODGE DECOMPOSITIONIndeed if we have basis fun
tions (φ1, . . . , φn), then we 
an writeU = (U1, . . . , Un)
T ,

A = (A1, . . . , An)
T , and equations (101) and (102) reads in a metri
al way:

[

∫

M
g(∇Mφi,∇Mφj)

]

i,j

U =

[

∫

M
g(V,∇Mφi)

]

i

(103)
[

∫

M
g(CurlMφi,CurlMφj)

]

i,j

A =

[

∫

M
g(V,CurlMφi)

]

i

. (104)The harmoni
 
omponent H of the ve
tor �eld V is obtained simply as
H = V−∇MU −CurlMA. (105)We provide some details about the numeri
al implementation of (103) and(104), whi
h are de�ned on a tessellation M̂ approximating the manifold. Thistessellation 
onsists of N nodes and T triangles, as shown in Figure 29.

Figure 29: Illustration of lo
al 
omputations and asso
iated de�nitions fromFEM on a triangular surfa
e mesh.Following the �nite element method (FEM), we de�ne N fun
tions, whi
h are
ontinuous pie
ewise a�ne, with the property to be equal to 1 at node i and 0 at



HELMHOLTZ HODGE DECOMPOSITION ON 2-RIEMANNIAN MANIFOLD91all other triangle nodes. They are the basis fun
tions for the approximation. So(103) reads:
[

∑

T∋i,j

hi

‖ hi ‖2
· hj

‖ hj ‖2
A(T )

]

U =

[

∑

T∋i

A(T )V · hi

‖ hi ‖2

]

, (106)where hi is the height taken from i in the triangle T , A(T ) is the area of thetriangle T .In the same spirit, (104) is dis
retized as follows:
[

∑

T∋i,j

(

hi

‖ hi ‖2
∧ n

)

·
(

hj

‖ hj ‖2
∧ n

)

A(T )

]

A =

[

∑

T∋i

A(T )V ·
(

hi

‖ hi ‖2
∧ n

)]

,(107)where n is the normal to the triangle T .



92 HELMHOLTZ-HODGE DECOMPOSITIONFeature dete
tion as 
riti
al points of potentialsThe 
riti
al points of a ve
tor �eld are often 
lassi�ed depending on the eigen-values of the Ja
obian matrix at a point in a ve
tor �eld. In our 
ase, however,
riti
al points of the �ow 
an be found as lo
al extrema of the divergen
e-freepotential A (representing rotation) and 
url-free potential U (representing diver-gen
e). Finding features as 
riti
al points on global potential �elds is mu
h lesssensitive to noise in the data and therefore be less likely to get false positives, in
omparison to lo
al Ja
obian eigenvalues based methods [68℄.A sink 
orresponds to a lo
al maximum of the potential U , whereas a sour
e
orresponds to its lo
al minimum. In Figure 30, a diverging ve
tor �eld on �at2D manifold is shown for illustration purposes, it is 
learly visible from Figure30 (b), sour
e and sink of ve
tor �elds 
an easily be dete
ted from the 
url freepotential U .

Figure 30: (a) Ve
tor �eld having sour
e and sink on a �at 2D manifold;(b) Curl-free potential U of ve
tor �eld.Figure 31 shows diverging ve
tor �eld overlap on a spheri
al manifold (Rie-mannian manifold), the magnitude of the potential U is shown in 
olor. In Figure31 (a), a sour
e in the ve
tor �eld is dete
ted through minima (blue) of U , whereasa sink is identi�ed by maxima (red) in U ; see Figure 31 (b).
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Figure 31: (a) Sour
e ve
tor �eld overlapped with U on spheri
al manifold;(b) Sink ve
tor �eld overlapped with U .Similarly, 
ounter
lo
kwise and 
lo
kwise vorti
es are represented as lo
alminima and maxima of A, respe
tively. In Figure 32 (a), a rotating ve
tor �eldon a �at 2D manifold is shown for illustration purposes. It is 
learly visible fromFigure 32 (b) that rotating ve
tor �eld 
an easily be dete
ted from the divergen
efree potential A.

Figure 32: (a) Ve
tor �eld with vortex on a �at 2D manifold; (b) Divergen
e-free potential A of a ve
tor �eld.Figure 33 shows that a rotating ve
tor �eld on a spheri
al manifold, 
olorshows magnitude of the potential A. In Figure 33 (a) 
ounter
lo
kwise vortex



94 HELMHOLTZ-HODGE DECOMPOSITIONin the ve
tor �eld is dete
ted by maxima (red) in A, whereas 
lo
kwise vortex isidenti�ed by minima (blue) in A, Figure 33 (b).

Figure 33: (a) Counter
lo
kwise vortex ve
tor �eld overlap with A on spher-i
al manifold. (b) Clo
kwise vortex ve
tor �eld overlap with A.To dete
t traveling obje
t on a Riemannian surfa
e, one has to dete
t ve
torswith highest norms in the ve
tor �eld H and thus one is able to follow the pathof the moving obje
t. This ability of HHD will be demonstrated in Figure 36.



SIMULATIONS AND RESULTS 95Simulations and resultsIn order to test the new framework, we evaluate its performan
e in real andsimulated environments on four types of Riemannian manifolds (rabbit, elephant,sphere and human brain).First, we evaluate this methodology in dete
ting sour
es and sinks on thesurfa
e of a bunny mesh. In this test ben
h, �rst we generate a ve
tor �eldwith sour
es and sinks whi
h mimi
 the opti
al �ow of obje
ts of in
reasing andde
reasing in size. Se
ondly we generate rotating ve
tor �elds whi
h mimi
 theopti
al �ow of a tornado. We then performed HHD on these ve
tor �elds.In Figure 34 (a), A on the surfa
e of the rabbit is represented in 
olor, whilearrows in green represent the ve
tor �eld. It is 
learly visible in the �gure thatour framework identi�ed vorti
es of the ve
tor �eld. In Figure 34 (b), U on thesurfa
e of the rabbit is represented in 
olor.Our framework reveals sour
es and sinks of the ve
tor �eld, as shown bythis �gure. The sour
e is represented in blue while sink is in red. In Figure 34(
) and Figure 34 (d), rotating and diverging ve
tor �elds are shown, and their
orresponding A and U 
omponents are shown in 
olors on the surfa
e.
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Figure 34: Examples of di�erent types of ve
tor �eld and their U and A
omponents. (a) Rotating ve
tor �eld and its A 
omponent; (b) Divergingve
tor �eld and its U 
omponent; (
) Rotating and diverging ve
tor �eldand its A 
omponent; (d) Rotating and diverging ve
tor �eld and its U
omponent.HHD de
omposition is shown on the surfa
e of an elephant obje
t. In Figure35, ve
tor �elds 
ontaining both rotating and diverging 
omponents are shown.It is 
learly seen in Figure 35 (b) that HHD dete
ts the sour
e (minima of U),sink (maxima of U), 
lo
kwise vortex (minima of A) and 
ounter 
lo
kwise vortex(maxima of A).
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Figure 35: Ve
tor �eld and its U and A 
omponents; (a) Ve
tor �eld onelephant surfa
e; (b) Close-up view of ve
tor �eld with U and A superim-posed; (
) Rotating ve
tor �eld dete
ted by A Component; (d) Divergingve
tor �eld identi�ed by U .In a se
ond set of simulations, we �rst tra
ked a sour
e and vortex on thesurfa
e of a rabbit obje
t by �nding 
riti
al points of s
alar �elds U and A, asshown in Figure 36 (a). Se
ondly, we tra
ked a 
onstant intensity pat
h, whi
h ismoving a

ording to the adve
tion equation [59℄ by tra
king highest norm ve
tor
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tor �eld H, as shown in Figure 36.

Figure 36: Tra
king of Sink, vortex and 
onstant intensity pat
h on thesurfa
e of a rabbit. Symbols have been assigned for sour
e vortex and
onstant intensity pat
h while arrows show the tra
k, and snapshots oftra
king are superimposed in �gures; (a) Tra
king of 
omplete paths of asour
e and a vortex; (b) Tra
king of a 
omplete path of 
onstant intensity.We further tested the HHD in a real s
enario using experimental MEG data.We �rst obtained the opti
al �ow from MEG sour
e images representing motion�elds of neural 
urrent on the surfa
e of the brain and then applied HHD to dete
tsour
es and sinks.



CONCLUSION 99As the majority of the neural ele
tri
al a
tivity is predominantly diverging, wepresent results for the U part only in Figure 37, whi
h shows a diverging sour
ein the primary somatosensory part of the brain, whi
h is 
learly related to thesomatosensory experiment (brain response to the ele
tri
al impulse on the �nger)undertaken to get this data.

Figure 37: (a) U 
omponent of HHD on the surfa
e of the brain; (b) Zoomview of a
tivation.
Con
lusionIn this 
hapter, we have developed a framework for the de
omposition of a ve
tor�eld on 2-Riemannian manifolds. The 
omputations involved are simple, and tookless than 2 se
onds to 
ompute all HHD 
omponents for 1500 node tessellationon a 
onventional workstation. Evaluation of this framework under real andstimulated environments were presented.In the next 
hapter, appli
ations of HHD in fun
tional and stru
tural brainimaging will be suggested.



Part 4
HHD IN PRACTICE



Appli
ations of HHD
Introdu
tion
In the subsequent se
tions of this 
hapter we will present several appli
ations ofHHD in stru
tural and fun
tional brain imaging. We start from the de
ompositionof data from a study in di�erent feature sets. Then we show the ability of HHD in
hara
terizing epilepti
 a
tivity. We also present how divergen
e representation isdi�erent from normal 
urrent density. Lastly, we present two examples of HHD instru
tural brain imaging: Firstly, we dete
t growth seeds in the neonate brain andse
ondly, we 
hara
terize brain tumor growth. In the following appli
ations, wewill also apply HHD on Ele
tro
orti
ography(ECoG) data so before pro
eedingfurther, we present brief des
ription of ECoG.ECoG is a method in whi
h ele
trodes are pla
ed dire
tly on the surfa
e ofthe dura or of the brain. ECoG signals are 
omposed of mixtures of lo
al �eldpotentials. Ele
trodes 
onsist of grids or strips. Grid ele
trodes are arranged inan re
tangular array, whereas strip ele
trodes are arranged along a line. A typi
alECoG setup is shown in Figure 38.In order to run HHD on ECoG grids, we �rst need to generate a surfa
erepresentation of the re
ording grid, whi
h follows the envelope of the 
ortex. Thepro
ess of grid generation and 
o-ordinate alignment are explained in Appendix1. 101
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Figure 38: (a) Left view of grid and strips on a 
ortex; (b) Bottom view ofgrid and strips on a 
ortex.HDD of MEG experimental dataMEG, EEG and E
OG sour
e imaging reveal spatially-distributed and dense infor-mation 
ontents in the temporal dimension. The extra
tion of patterns of interestfrom the data has been the expertise of 
lini
ians and investigators but remainsproblemati
 when dealing with respe
t to reprodu
ibility and expert-dependen
y,espe
ially when 
onsidering the 
omplex geometry of the 
ortex.



CHARACTERIZING EPILEPTIC ACTIVITY 103A �rst appli
ation of HHD aims at suggesting a prin
ipled approa
h to theautomati
 extra
tion of salient dynami
al features from 
orti
al a
tivity imageseries, thereby fa
ilitating the reprodu
ible analysis of the experimental data. Toillustrate this appli
ation of HHD, we used a dataset from an MEG experimentthat 
onsisted in mapping the primary somatosensory response to repeated ele
-tri
al stimulations of the hand �ngers [71℄. The trial duration was 300-ms thatin
luded a 50-ms prestimulus interval; sampling rate was 1250Hz on all 151 MEG
hannels (VSM/CTF MedTe
h).In order to test this appli
ation we �rst obtained opti
al �ow from the minimum-norm sour
e estimates we used them to 
al
ulate opti
al �ow of neural 
urrentson the surfa
e of the brain. HHD of this opti
al �ow was applied to dete
t sour
esand sink. As the majority of the neural ele
tri
al a
tivity is predominantly di-verging, and travelling, we present results for the U and H HHD parts only inFigure 37, whi
h shows diverging sour
es and travelling obje
ts in the primarysomatosensory part of the brain.In Figure 39, we extra
ted features of the 
orti
al 
urrent a
tivity between30ms and 45 ms after stimulus delivery for the 
ompa
t representation of ele
tro-physiologi
al patterns in the data.The 
urrent a
tivity during this period is de
omposed in only three features:two sour
es and one travelling obje
t. Hen
e we obtain a 
ompa
t representationof 
orti
al a
tivity during the early somatosensory a
tivity.The 
omputations involved took less than 5 minutes over the 55, 000 nodes ofa 
ortex mesh using a 
onventional desktop 
omputer running Matlab.The results for this appli
ation are presented in [58℄.
Chara
terizing epilepti
 a
tivityIn the se
ond set of appli
ations, we will present the automati
 
hara
terizationof epilepti
 a
tivity using HHD using ECoG and MEG.This appli
ation of HHD �nds its roots from typi
al �ow dynami
 problems.
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Figure 39: De
omposition of 
orti
al a
tivity in feature sets.The vast amount of motion �ow data has to be pro
essed in su
h a way thatimportant �ow features 
an be automati
ally dete
ted. In ECoG/MEG duringepilepsy study, we fa
e the same problem and an automati
 me
hanism is neededto dete
t important features in epilepti
 data, e.g.: spikes and seizure onsets.Let us �rst emphasize how a divergen
e representation of a 
urrent densityis di�erent from the original 
urrent density. In 
omparison to 
urrent density,its divergent U 
omponent yields a more fo
al and 
ompa
t representation of the
orti
al a
tivity due to the fa
t that U is sensitive only to sour
es or sinks in the
urrent density.A fo
al and 
ompa
t representation of epilepti
 a
tivity 
an be used in iden-tifying and lo
alizing the epilepti
 fo
i.Figure 40 shows 
omparison between two types of representation. Figure40(a) shows divergen
e representation side by side with a normal 
orti
al 
urrent
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tivity. It is 
lear that divergen
e representation is very fo
al and 
an easilyindi
ate the epilepti
 fo
i.

Figure 40: (a) Divergen
e on a 
ortex during epilepti
 spikes; (b) Currentdensity on a 
ortex during epilepti
 spikes.High divergen
e in the 
orti
al 
urrent a
tivity 
an 
hara
terize an epilepti
a
tivity sin
e it 
an easily be represented by sour
es and sinks.Another important parameter we use is Kineti
 Energy (KE) of a ve
tor �eld andit is de�ned as:
KE(t) =

∫

M
‖(V )‖2 dM. (108)

Chara
terizing of epilepti
 a
tivity in ECoGFor HHD appli
ation on ECoG we used ele
trode data provided by Dr. M.Raghavan (MCW Neurology). In total, 64 ele
trodes are pla
ed on the rightmotor-somatosensory 
ortex. Sampling rate for was set at 1 KHz. CT s
ans werea
quired to lo
alize the ele
trodes and were aligned with the post-surgi
al MRIimage volume.The result of the appli
ation of HHD on ECoG is summarized in Figure 41.An epilepti
 spike is dete
ted in time through maximum in KE of diverging 
om-ponent Vdiv = ∇MU of opti
al �ow V. Figure 41(a) shows the kineti
 energy. For



106 APPLICATIONS OF HHDspatial lo
alization of the epilepti
 spike, we seek singularities in diverging U 
om-ponent of HHD at the time instants dete
ted through KE. In Figures 41 (b) and(
), the diverging 
omponent U is shown on the surfa
e of the grid. The sour
esand sink represent points of high divergen
e in the data and indi
ate the epilepti
network 
ausing epilepti
 a
tivity. These results for this epilepti
 network wassubsequently 
on�rmed by the neurologist.

Figure 41: (a) Kineti
 energy diverging 
omponent of opti
al �ow; (b) HHDsour
e on the ECoG grid; (
) HHD sink on the ECoG grid.



CHARACTERIZING EPILEPTIC ACTIVITY 107Chara
terizing epilepti
 a
tivity with MEG sour
eimagingWe used a dataset 
ontaining a rare o

urren
e of seizure during MEG re
ording.We �rst 
al
ulate the Kineti
 energy (KE) Vdiv = ∇MU on the opti
al �owve
tor �eld of the minimum-norm estimate of 
orti
al 
urrents. The highest peakin KE as shown in Figure 42 (b) 
orre
tly points at the start of the epilepti
seizure. Figures 42 (a), (d) and (
) show magneti
 �elds re
orded at the left o
-
ipital region, telling the story of the seizure. Seizure starts with a high frequen
yos
illatory (HFO) burst (Figure 42 (d)) and moves later to a 
ontinuous buzzingmode, as shown in Figure 42 (
).To 
orre
tly 
hara
terize the epilepti
 network, we fo
ussed the analysis on thestart of the seizure. In Figures 41 (e) and (f), the diverging 
omponent U is shownin 
olor on the surfa
e of the 
ortex. Figure 42 (e) shows the sour
e from wherethe a
tual epilepti
 a
tivity started (the sour
e is represented in blue). After
5ms, this sour
e 
onverted into the sink (the sink is represented in red) with anew sour
e nearby (Figure 42 (f)). This pattern of a
tivity, dete
ted throughHHD, 
hara
terizes the early epilepti
 network en route to seizure. The resultsfor this appli
ation are presented in [58℄.
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Figure 42: Epilepti
 seizure as seen by opti
al �ow and HHD; (a) MEGmagneti
 �eld at left o

ipital region in middle of seizure; (b) KE of Vdiv =
∇MU during re
ording; (
) MEG magneti
 �eld at left o

ipital region atthe start of seizure; (e) Epilepti
 sour
e in blue; (f) Epilepti
 sour
e (inblue) and sink (in red).



IDENTIFICATION OF CORTICAL DEVELOPMENT IN THE NEONATEBRAIN 109Identi�
ation of 
orti
al development inthe neonate brainThis is a possible appli
ation of HHD to stru
tural brain imaging. Using MRI [30℄it is possible to follow pre
isely the ontogenesis of the 
orti
al folding during earlyphases of development. Appli
ations are numerous from the dete
tion of potentiallesions [30℄ to the de
iphering of sul
i formation pro
esses whose physiologi
alorigins are yet not well understood [102, 99℄. In this appli
ation, we report on anew framework to 
hara
terize the rapid brain development of newborns.The set of data 
onsists of 4 healthy newborns with 2 MRI T2 a
quisitionsfor ea
h at birth and around 3 weeks later. The white and gray matters aresegmented through a dedi
ated algorithm to over
ome the inhomogeneity of the
ontrast [63℄. On
e the 
orti
al surfa
es have been extra
ted we 
ompute theirdepth maps from a geodesi
 distan
e of the surfa
e to a binary mask of the brain.Then for ea
h subje
t we registered the less mature 
orti
al surfa
e on themore mature one and interpolate the depth maps by a nearest neighbors method[12℄. We obtained therefore two depth maps, in red on Figure 43, proje
ted onthe same surfa
e at two di�erent time steps so it is possible to tra
k the evolutionof those maps. For this, we 
omputed a displa
ement �eld estimated by a surfa
e

Figure 43: (a) Less mature 
orti
al surfa
e; (b) More mature 
orti
al sur-fa
e.opti
al �ow method exposed in part 3 of this thesis. This displa
ement �eld, in



110 APPLICATIONS OF HHDgreen on Figure 44, re�e
ted lo
al evolution of sul
i dire
tly on the 
orti
al surfa
e(smoothed out here for a better visualization).

Figure 44: Surfa
e opti
al �ow method a

ounting for the displa
ement �eldbetween two 
orti
al surfa
es.



IDENTIFICATION OF CORTICAL DEVELOPMENT IN THE NEONATEBRAIN 111We further dete
ted the 
riti
al points of the displa
ement �eld, i.e.: lo
a-tions of points with high divergen
e using HHD. Minima of s
alar divergen
e Upotential, revealed putative sour
es of fundamental folding during the develop-mental pro
ess. We 
an see qualitatively on Figure 44 the radial stru
ture ofthe ve
tor �eld in green. More quantitatively, Figure 45 reveals sour
es pointsin yellow (minima of the U in red/blue) of the displa
ement �eld. The sour
es
an be viewed as growth seeds or in other terms points around whi
h the sul
algrowth organizes itself. We show the reprodu
ibility of these growth seeds on Fig-

Figure 45: Dete
tion of growth seed through s
alar divergen
e U of HHD.ure 46 where the 
olors of the points 
orrespond to 4 di�erent neonates surfa
es,registered on the same template [9℄. The numbers 
an be linked to a sul
al rootstaxonomy that we 
an �nd in the literature [87℄.
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Figure 46: The reprodu
ibility of these growth seeds in four subje
ts.The main originality of this appli
ation is the use of the Helmholtz de
ompo-sition to 
hara
terize the brain folding of human newborns. We 
an note a goodreprodu
ibility of these growth 
enters or growth seeds among 4 neonates. Wehypothesize a possible link between this new 
on
ept and the "sul
al roots" [87℄or sul
al pits [66℄ proposed to explain the variability of human brain anatomy.The results for this appli
ation were published in [60, 61℄.



CHARACTERIZING TUMOR GROWTH PATTERNS 113Chara
terizing tumor growth patternsPrimary brain tumors in
lude any tumor that starts in the brain. Tumors may be
on�ned to a small area, invasive (spread to nearby areas), benign (not 
an
erous),or malignant (
an
erous).In the last appli
ation of HHD, we fo
us on 
hara
terizing growth pattern ofinvasive brain tumors. Here we used simple two-dimensional version of HHD toshow a proof of 
on
ept but it 
an be evolved in full appli
ation by extra
tingtumor surfa
es and by using the methods explained in neonate brain appli
ation,to 
hara
terize tumor growth on Riemannian manifolds.We used two sets of FLAIR MRI images 
olle
ted on two di�erent o

asionsfor the same tumor patient, both the MRI sequen
es were aligned in the same
oordinate system using FSL pa
kage [94℄. We also normalized the 
ontrast ofthe two sets of images. We sele
ted sli
e 84 on whi
h tumor growth is mostprominent on both slides (Figure 47 (a) and (b)) and 
omputed the opti
al �owbetween these two sli
es (Figure 47 (
)) with arrows showing opti
al �ow. Wethen 
omputed the HHD on tumor portion of the sli
e; see Figure 47 (d).In Figure 47 (e), 
olor shown divergen
e 
omponent U with minima in whitedots. The ve
tor �eld shown here is the diverging 
omponent of opti
al �ow
∇MU .It is shown that the minima of U 
orre
tly identify the growth seeds of tumor,with ∇MU , revealing their relative spreading dire
tions. Hen
e, this may be aninitial blo
k of a tool that 
an automati
ally 
hara
terize growth patterns of braintumors.
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Figure 47: (a) Sli
e 84 of FLAIR MRI at time instant 1; (b) Sli
e 84 ofFLAIR MRI at time instant 2; (
) Opti
al �ow of two sli
es; (d) Zoom viewof opti
al �ow; (e) HHD on opti
al �ow.



CONCLUSION 115Con
lusionWe have presented four appli
ations of HHD in stru
tural and fun
tional brainimaging appli
ations. The results are very en
ouraging and show promise HHDo�ers in a wide variety of appli
ations. We believe that HHD has probably manyother appli
ations in all kind of spatiotemporal phenomena that o

ur in thebrain.
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Con
lusion and Future A
tions
We introdu
ed a new multipole moment based approa
h to the MEG sour
e 
har-a
terization in whi
h we have shown that MCR 
an a

urately 
hara
terize spa-tially extended neural 
urrent sour
es by mat
hing 
urrent multipole moments.The pro
edure is based on zero-order Tikhonov regularized image but the method
an be initialized using any other imaging based method.The MCR approa
h solves the lo
al imaging problem, hen
e redu
ing 
om-putational load to very large extent. Moreover, in multipole mat
hing, we aremat
hing only 8 moments instead of ve
tors equal to the dimension of the origi-nal data (the number of sensors), whi
h for 
urrent MEG system is around 300,hen
e again redu
ing 
omputational load. The algorithm is therefore tra
tableand reasonably fast (about 20se
 for a 37723-node 
orti
al tessellation).Another important fa
tor is the modi�ed Gibbs priors we used for mat
hing.Hen
e we may in
orporate physiologi
al information from other modalities su
has PET or fMRI. By doing so, we redu
ed the non triviality of the ele
tromagneti
inverse problem by restri
ting possible solutions.Results from extensive Monte-Carlo simulations show ex
ellent performan
esin terms of spatial 
hara
terization even for very large pat
hes of 30cm2. Theestimation of the surfa
e area of a
tive regions is very a

urate, the average errorin area is only 0.2cm2 for 2500 pat
hes. The results for two sour
es show that themethod reveals the repeatability of MCR.Good results for somaestheti
 data shows the method works well for real data.Using MCR we 
an 
learly lo
ate the somatotopy of �nger responses.117



118 CONCLUSION AND FUTURE ACTIONSThe future upgrade of this method is to use magneti
 multipole momentsinstead of 
urrent multipole moments for remapping and to 
ompare their 
orre-sponding results. (For a detail des
ription of the 
urrent and magneti
 multipolemoments see [54℄.)On the MEG sour
e dynami
 
hara
terization front, we have developed aframework for the de
omposition of ve
tor �eld on 2-Riemannian manifolds. The
omputations involved are simple and it took less than 2 se
onds to 
omputeall the HHD 
omponents for 1500 node tessellation on a 
onventional desktop.Evaluation of this framework under real and stimulated environment gives veryen
ouraging results. The appli
ations for this formulation are emerging, withmore and more three-dimensional imaging evolving in real world.Future path for this framework is its modi�
ation in dis
retization to higher-order �nite element analysis, and its evaluation in more real world s
enarios.We have presented some appli
ations of HHD in fun
tional and brain imagingbut we feel that HHD has more promise in biomedi
al imaging and more appli-
ations need to be dis
overed in biomedi
al as well as in other �elds. The tumorgrowth 
hara
terization needs to be more mature in a way that the tumor surfa
esneed to be extra
ted and HHD is applied on them in the same spirit as in theneonate brain appli
ation.
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Grid Generation
To generate the grid on whi
h HHD 
an be applied, subje
ts MRI and CT s
anare needed. In a �rst step CT and MRI of subje
t are aligned, using FSL pa
kage[94℄. After alignment we manually extra
t grid 
oordinates from the CT s
an.Grid ele
trodes are very 
oarse and ele
trode positions need to be dete
ted to
reate dense virtual ele
trode systems before HHD 
an be applied on it. Weused multidimensional s
aling to interpolate between ele
trode positions andVORONOI diagram is then used to generate the interpolated surfa
e whi
h fol-lows the 
orti
al envelope and on whi
h virtual ele
trodes are lo
ated (see �gure48).To interpolate between potential values for the virtual ele
trodes system weused an interpolation s
heme that is 
onstrained by a minimal norm of the Lapla-
ian (see [81℄ for details), as shown in Figure 49.

121
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Figure 48: (a) Original grid; (b) Interpolated grid.

Figure 49: (a) Data on original grid; (b) Interpolated data on interpolatedgrid.



123The 
orti
al surfa
e (the 
orti
al surfa
e is extra
ted fromMRI using freesurferpa
kage [20℄) and interpolated grid along with strips ele
trode are shown in Figure50.

Figure 50: Overlapped interpolated grid and the 
orti
al surfa
e.





MEG-ECoG sour
e lo
alizationand dynami
s 
omparison
In this appendix we will 
ompare MEG sour
e lo
alization and dynami
s withECoG.The MEG data set that has been used for this 
omparison was re
orded on theElekta Neuromag 306 system at the Medi
al College of Wis
onsin. This data isre
orded at 2KHz sampling rate with 204 gradiometers and 102 magnetometers.Single sphere head model was used for forward 
omputation minimumnorm isused for inverse modeling.ECoG data were also re
orded at the Medi
al College of Wis
onsin. In total,
73 ele
trodes were pla
ed over the frontal, parietal and temporal 
orti
es. Sam-pling rate for a
quisition was 1KHz. CT s
ans were a
quired post-surgery andaligned with a presurgi
al MRI image volume.The data set in both methods 
onsisted of an epilepti
 HFO burst, lastingabout 1s. First we will show sour
e lo
alization of HFO using MEG and se
ondlywe will show sour
e dynami
s using Granger 
ausality.Granger 
ausality is a statisti
al 
on
ept of 
ausality that is based on pre-di
tion. A

ording to Granger 
ausality, if a signal X1 "Granger-
auses" (or"G-
auses") a signal X2, then past values of X1 should 
ontain information thathelps predi
t X2 above and beyond the information 
ontained in past values of
X2 alone. Its mathemati
al formulation is based on linear regression modeling of125



126MEG-ECOG SOURCE LOCALIZATION AND DYNAMICS COMPARISONsto
hasti
 pro
esses [40℄.Figure 51 a. shows the epilepti
 HFO during MEG re
ording. Figure 51 b.disaplys sour
e lo
alization for this HFO burst, when summed a
ross whole 1sduration. This sour
e lo
alization reveals the bifo
al nature of the epilepsy. Toinvestigate further we extra
t the 
urrent density waveforms at the two epilepti
fo
i (see �gure 51 
.). We then need to understand whi
h epilepti
 fo
us is drivingother brain areas, so we estimated Granger 
ausality between these regions, �gure51 d. whi
h 
learly reveals fo
us 1 is driving fo
us 2.
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Figure 51: (a) HFO re
orded during MEG re
ording. (b) Sour
e lo
alizationfor HFO sum a
ross all time. (
) Current density waveform 
orrespondingto two epilepti
 fo
i. (d) Granger 
ausality between epilepti
 fo
i.



128MEG-ECOG SOURCE LOCALIZATION AND DYNAMICS COMPARISONTo 
on�rm our MEG �nding, we look at the ECoG data re
orded indepen-dently. HFO burst in ECoG data were found on ele
trodes 36 and 72. One sampleof this burst is shown in �gure 52 b. We investigated the lo
alization of thesebursting ele
trodes, after alignment of ECoG with MRI extra
ted surfa
e usingthe methods exposed in Appendix 1, we found that they were lo
ated above theregions identi�ed by MEG �gure 52 a., whi
h 
on�rms MEG as an e�
ient for
lini
al investigation of epilepsy.

Figure 52: (a) Position of ele
trode 36 and 72 (b) Ele
tri
 potential wave-forms for ECoG ele
trode during epilepti
 HFO burst



129We also 
omputed the Granger 
ausality between ele
trode 36 and 72 andresults 
on�rmed the 
ausal relation revealed by MEG �gure 53, whi
h 
on�rmsthat MEG is not only good at lo
alizing epilepti
 a
tivity but also for revelingdynami
s of its a
tivity.

Figure 53: Granger 
ausality between ele
trodes 36 and 72



130MEG-ECOG SOURCE LOCALIZATION AND DYNAMICS COMPARISONAnother study we did to 
on�rm �ndings for this patient, was to look for slowwaves under 0.1Hz. These slow waves may pre
ede the epilepti
 seizure. Thedata was re
orded using 23 
hannel standard montage used at Medi
al College ofWis
onsin. Sampling rate was 200Hz. We used a 3-shell Sphere (Berg) model forforward model 
al
ulation and Brainstorm minimum-norm for inverse 
al
ulation.The results were in agreement with MEG and ECoG. Figure 54 a. shows slowwave 
omponents pre
eding the epilepti
 seizure. An autoregressive model wasused to 
lean blinking and heartbeat artifa
ts, and data was low passed at 0.1Hz.A EEG slow wave is shown in �gure 54 b. We then performed sour
e lo
alizationon this data and results were summed between 5 and 25 se
s. Figure 54 
. further
on�rmed the results obtained from ECoG and MEG.These slow waves were hardly been investigated in the literature, and thesepreliminary results may 
on�rm their e�e
tiveness for lo
alizing epilepti
 fo
i.
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Figure 54: (a) EEG Slow wave with artifa
ts. (b) Clean EEG slow wave.(
) Sour
e Lo
alization for EEG.





Brainstorm's HHD-Opti
al�owplug-in Tutorial
Sheraz KHANshkhan�m
w.eduMedi
al College of Wis
onsin-2009

This tutorial explains GUI of HHD-Opti
al�ow plug-in developed using Matlab.This plug-in implements the methods introdu
ed in this thesis.HHD-Opti
al�ow plug-in along with Brainstorm (MEG/EEG data pro
essingsoftware) 
an be downloaded from:http://neuroimage.us
.edu/brainstorm

133



134 BRAINSTORM'S HHD-OPTICALFLOW PLUG-IN TUTORIAL1) From Brainstorm

Figure 55: Laun
hing from brainstorm



1352) Plug-in GUIWhen HHD-Opti
al�ow plug-in start, following window pops up 
ome havingthree TABs, Opti
al Flow, HHD and Visualization, Opti
al �ow needs to be
al
ulated before 
al
ulating HHD.Cal
ulating Opti
al �ow or HHD is memory intensive, so for large data sets, itsometimes gives error "out of memory", to resolve this there are two solutions:1) Run brainstorm in 64 bit operating system.2) Use less time points for 
al
ulating opti
al �ow or HHD.Moreover HHD and opti
al �ow are implemented in multi-threaded fashion, sothere is no progress bar, but at the end of 
al
ulation msgbox indi
ates end of
al
ulations.

Figure 56: Plug-in GUI



136 BRAINSTORM'S HHD-OPTICALFLOW PLUG-IN TUTORIAL3) Opti
al Flow TabSele
t time points on whi
h opti
al �ow needs to be 
al
ulated and 
li
k 
al
ulateopti
al �ow. Save data 
an be used to save 
al
ulated opti
al �ow stru
ture.

Figure 57: Opti
al Flow Tab



1374) HHD TabSele
t time points on whi
h HHD needs to be 
al
ulated, re
ursion depth setsnumber of times HHD is repeated, to re�ne Lapla
ian ve
tor �eld (H) 
omponentof HHD. Save data 
an be used to save 
al
ulated HHD stru
ture.

Figure 58: HHD Tab



138 BRAINSTORM'S HHD-OPTICALFLOW PLUG-IN TUTORIAL5) Visualization TabSele
t s
alar �eld and ve
tor �eld needed to be display, browse through all the timepoints on whi
h HHD and opti
al �ow is 
al
ulated. Figure 59. shows overlappeds
alar and ve
tor �elds on the 
orti
al manifold at a single time instant.

Figure 59: Visualization Tab
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