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Summary
My thesis has addressed two omplementary aspets of magneti soure imagingusing Magnetoenephalography:1. Imaging of neural urrent soures from MEG surfae reordings;2. Dynami haraterization of neural urrent patterns at the surfae of theortex.MEG Soure ImagingAurate estimation of the loal spatial extent of neural urrent ativity isvery important for the quantitative analysis of neural urrent soures, as esti-mated from Magnetoenephalography (MEG) surfae reordings. In assoiationwith the exellent time resolution o�ered by MEG, this would represent a majoradvanement in non invasive, time-resolved funtional brain imaging.We addressed this issue through a new method � alled Multipole CortialRemapping (MCR) � to aurately speify the spatial extent of neural urrentsoures.In MCR, the zeroth-order Tikhonov regularized image of the urrent distribu-tion on the ortex is �rst estimated from MEG surfae data for whih we soughtfor a realisti model of neural generators. Then the resulting funtional imageis thresholded using a simple histogram-based priniple. This thresholded imageis then deomposed into groups of ativation patterns following an automati la-beling algorithm based on the geometrial properties of the ortial surfae. The3



4equivalent multipolar deomposition of eah urrent path is then obtained. Bydefault, the multipolar moments are not readily related to the atual anatomialsupport of the atual neural urrents deteted using MEG. Hene we introdued animage remapping tehniques of the multipolar parameters bak onto the originalortial manifold, in a Bayesian framework inluding physiologial and anatomi-al priors.Charaterization of MEG Soure DynamisFor dynami haraterization of neural urrent patterns at the surfae of theortex, we used a modi�ed Helmholtz-Hodge Deomposition (HHD), whih wasapplied on vetor �elds desribing the �ow of neural urrent soures. This motion�eld stems from a generalized approah to optial �ow estimation, developedearlier in our team.Optial �ow is the apparent motion due to variations in the pattern of bright-ness and, under spei� onditions, may mimi the veloity �eld of an objet.Normally, the optial �ow is obtained in a two-dimensional domain, whih mayprevent aess to some essential features of the objet's motion with respet tothe topology or geometry of the domain onto whih it is evolving. A new vari-ational method to represent optial �ow on non �at surfaes using Riemannianformulation was previously introdued by our group to overome this issue.We broadened this framework and introdued a new formalism to detet fea-tures in the resulting optial �ow model using a modi�ed and extended frameworkto the HHD on 2-Riemannian manifolds, whih we used to haraterize neuralurrent soures.HHD is a tehnique used to deompose a two-dimensional (resp. three-dimensional) ontinuous vetor �eld into the sum of 3 distint omponents: (1)a non-rotational element, deriving from the gradient of a salar potential U ; (2)a non-diverging omponent, deriving from the rotational of a salar potential A(resp. vetorial potential); (3) a harmoni vetorial part, i.e., whose Laplaian



5vanishes.We showed how HHD enables the deomposition and traking of time-resolvedneural urrent �ows as obtained from MEG soure imaging as soures and sinkse.g., by deteting relative maxima of the non-rotational salar potential. Weheneforth suggest to extend the analysis of brain ativity in terms of trakingtravelling objets onto the ortial manifold by deteting vetors of largest am-plitudes in zero Laplaian harmoni vetor �elds.We also onsidered HHD through a series of strutural and funtional brainimaging appliations, with very enouraging preliminary results.The methods disussed in the HHD setion of the thesis were implemented inMatlab as plug-in to the Brainstorm (MEG/EEG data proessing software) andan be downloaded from: http://neuroimage.us.edu/brainstorm. A shorttutorial for this plug-in is presented in Appendix 3.
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Part 1
Introdution





Bakground
Tehniques for the observation of the Hu-man brainExploration of the Human brain is of utmost intelletual interest: deipheringbrain using brain is a hallenging task. Although a great deal has been learntabout brain anatomy and physiology, the fundamental questions how brain store,retrieve and proesses information is still largely unknown and full disovery ofthese mehanisms is the foundational purpose of neurosiene.When brain proesses information, eletrophysiologial urrents �ow withinand outside neural ells, thus produing eletri and magneti �elds that are a-essible to external measurements. Indeed, signs of this eletrial neural ativityin the brain an be measured with eletrodes at the salp or with very sensi-tive magneti detetors plaed very near the salp. The tehnique of eletrialmeasurements from the salp is alled eletroenephalography (EEG) [8℄. His-torial and reent EEG setups are shown in Figure 1. The tehnique measuringmagneti signals generated by neural urrents is alled Magnetoenephalography(MEG) [15℄.The magneti �eld produed by neural urrent soures are very weak and areat least 8 orders of magnitude smaller than the earth stati magneti �eld, asshown Figure 2. These �elds are urrently piked using series of magnetometersoupled with super-onduting quantum interferene devies (SQUID). A SQUID15



16 BACKGROUND

Figure 1: (a) EEG setup in 1970's. (b) Modern EEG setup with quik-�xap.is a sensitive detetor of magneti �ux, whih was developed by James Zimmerman[114℄ in the late 1960's.The seminal, original MEG measurements were performed at MIT in May,1971 by Cohen. Alpha waves (eletromagneti brain osillations in the frequenyrange of [8,12℄ Hz) were reorded as shown Figure 3.a. A typial, state-of-the-artMEG setup using 151 hannels is shown Figure 3.b.Brain imaging tehniques an be divided into two ategories: strutural andfuntional. Anatomial strutures an be investigated using omputer-aided to-mography (CT) sans and better so using more reent magneti resonane imagingapproahes (MRI). For funtional imaging beside neural eletromagneti signals,brain metabolism, blood �ow and volume (hemodynamis) an be aessed usingradioatively-labeled organi probes that are involved in the proesses of interestsuh as gluose metabolism or dopamine synthesis. Images of dynami hanges



TECHNIQUES FOR THE OBSERVATION OF THE HUMAN BRAIN 17

Figure 2: Comparison of brain signals with other soures of eletromagnetiwaves.

Figure 3: (a)First MEG reording at MIT inside a spaeship like magnetishielded room using single hannel SQUID. (b) MEG Setup at La Pitié-Salpêtrière Hospital, Paris inside modern multilayer shielded room using151 SQUIDs overing whole brain.in the spatial distribution of these probes, as they are transported and hemiallymodi�ed within the brain, an be imaged using positron emission tomography(PET). These images an reah a spatial resolutions as high as 3mm. However,temporal resolution is limited to minutes by the dynamis of the physiologial pro-esses generating the signal of interest, and by photon-ounting noise. For morediret studies of neural ativity, one an investigate loal hemodynami hanges.



18 BACKGROUNDAs neurons beome ative, they indue very loalized hanges in blood �ow andoxygenation levels that an be imaged as a orrelate of neural ativity [65℄.Hemodynami hanges an be deteted using PET, funtional Magneti Res-onane Imaging (fMRI), and transranial optial imaging methods. Of these,fMRI is urrently the most widely used and an be readily performed using astandard 1.5T linial MRI magnet although an inreasing fration of studies arenow performed on higher �eld (3-7T) mahines for improved SNR and resolu-tion. Funtional MRI studies are apable of produing spatial resolutions as highas 2-4mm; however, temporal resolution is again limited by the relatively slowhemodynami response, when ompared to eletrial neural ativity, to approxi-mately one seond. In addition to limited temporal resolution, interpretation offMRI data is hampered by the rather omplex relationship between the bloodoxygenation level dependent (BOLD) hanges that are deteted by fMRI and theunderlying neural ativity. Regions of BOLD hanges in fMRI images do notneessarily orrespond one-to-one with regions of eletrial neural ativity [62℄.

Figure 4: Spatial and temporal resolution of di�erent brain imaging meth-ods.



INTRODUCTION TO MEG AND EEG: 19Introdution to MEG and EEG:EEG and MEG measure the ombined ativity of multiple areas of the brainas a mixture of omplex signal patterns. A primary objetive is to interpret theomplex patterns of the measured eletri potentials and magneti �elds, in termsof the respetive loations and time-ourses of their underlying soures. The keyto this task is to design a physial and numerial model to aount for the originof the �eld patterns aptured by MEG/EEG surfae reordings. Estimation ofthe eletri and magneti �eld patterns for a given model of the volume ondutoris a forward problem, following the nomenlature of modeling data formation asenountered in a large variety of appliations (from geophysis to medial imaging)[96℄.The estimation of neural urrents from measured �eld patterns is a typialinverse problem. In EEG or MEG studies, the simplest way to model the geometryof the head is to use a single sphere approximation or onentri spherial shellseah with homogeneous isotropi ondutivity [76℄.The main reason why onsidering spherial geometry is the availability of an-alytial solutions, and therefore fast implementations, to solve the forward mod-eling problem. However a spherial approximation of the head omplex geometryis likely to indue large soure loalization errors [72℄.Using MRI, it is possible to provide more realisti geometrial models of thehead. Numerial tehniques suh as the Boundary Element Method (BEM) andFinite Element Method (FEM) provide the �exibility of utilizing a realisti ge-ometry [51℄.EEG and MEG salp patterns are qualitatively orthogonal to eah other (see�gure 5), providing distintive information about the underlying neural urrentdistributions. They therefore might be viewed as omplementary rather thanas ompeting modalities [24℄. Most state-of-the-art MEG failities are equippedfor simultaneous aquisition of EEG and MEG data. Inverse methods for thetwo imaging tehniques are very losely related and an even be ombined andoptimized for joint soure loalization [93, 6℄.



20 BACKGROUND

Figure 5: Left hand side �gure represent the topographi sensitivity mapsof MEG and EEG for radial and tangential dipoles. Figure on right handside shows the orthogonality of MEG and EEG �eld patterns. patternsNeural bases of brain eletromagneti signatureMEG and EEG (MEEG) are two tehniques based on what Galvani, at the end ofthe 18th entury, alled "animal eletriity", today better known as eletrophys-iology [85℄. Despite the apparent simpliity in the struture of the neural ell,the biophysis of neural urrent �ow relies on omplex models of ioni urrentgeneration and ondution [48℄. Roughly, when a neuron is exited by other neu-rons via an a�erent volley of ation potentials, postsynapti potentials (PSPs)are generated at its apial dendriti tree. When the exitatory PSP's beomelarger than inhibitory PSP's, the apial dendriti membrane beomes transientlydepolarized and onsequently extraellularly eletronegative with respet to theell soma and the basal dendrites. This potential di�erene auses a urrent to�ow through the volume ondutor from the non-exited membrane of the somaand basal dendrites to the apial dendriti tree sustaining the PSP's. Some ofthe urrent takes the shortest route between the soure and the sink by travel-ling within the dendriti trunk (see �gure 6). Conservation of eletri hargesimposes that the urrent loop be losed with extraellular urrents �owing eventhrough the most distant part of the volume ondutor. Intraellular urrents areommonly alled primary urrent, while extraellular urrents are also known as



INTRODUCTION TO MEG AND EEG: 21seondary, return, or volume urrents.

Figure 6: The orientation of pyramidal neurons is normal to the ortexsurfae. MEG signals preferentially re�et the urrent �ow from pyramidalells oriented tangential to the skull surfae.Both primary and seondary urrents ontribute to magneti �elds outside thehead and to eletri salp potentials, but spatially strutured arrangements of ellsare of ruial importane to the superposition of neural urrents suh that theyprodue measurable �elds. Maro-olumns of tens of thousands of synhronouslyativated large pyramidal ortial neurons are thus believed to be the main MEGand EEG generators beause of the oherent distribution of their large dendrititrunks loally oriented in parallel, and pointing perpendiularly to the ortialsurfae. The PSPs generated among their dendrites are believed to be at thesoure of most of the signals deteted in MEG and EEG beause they typiallylast longer than the rapidly �ring ation potentials travelling along the axons ofexited neurons. Indeed, alulations suh as those shown in [44℄ suggest eahsynapse along a dendrite may ontribute as little as a 20 fA.m urrent soure,probably too small to measure in MEEG. Empirial observations instead suggestwe are seeing soures on the order of 10 nA.m, hene the umulative summationof millions of synapti juntions in a relatively small region. Nominal alulations



22 BACKGROUNDof neuronal density and ortial thikness suggest that the ortex has a maro-ellular urrent density of the order of 100nA.mm−2 [44℄. If we assume that theortex is about 4 mm thik, then a small path of size 5 mm x 5 mm would yielda net urrent of 10 nA.m, onsistent with empirial observations and invasivestudies [44℄.In MEEG studies, one is usually onerned with the uppermost layer of thebrain; the erebral ortex, whih is a 2 to 6 mm thik sheet of gray tissue wheremost of the measured neural ativity takes plae. The setion of ortex is illus-trated in Figure 6. At least 10 billion neurons reside in the whole ortex tissue.The total surfae area of the ortex is about 2500 cm2 , folded in a ompliatedway, so that it �ts within the innerskull volume. The true spatial extent of realis-ti urrent soures assoiated with brain ativation varies aording to the auseof the ativation. Typially sensory stimuli ativate ortial areas starting froma few mm2 up to a few cm2, whereas for spontaneous ativity and epilepti foian involve an ativation area up to tens of cm2 [95℄.At a larger sale, distributed networks of ollaborating and synhronouslyativated ortial maro-olumns are major ontributors to MEG and EEG signals[80℄. This is ompatible with neuro-sienti� theories that model basi ognitiveproesses in terms of dynamially interating ell assemblies [105℄.Most regions of the ortex are mapped funtionally. For example, the primarysomatosensory ortex reeives tatile stimuli from the skin. Areas of the frontallobe are onerned with the integration of musular ativity. Primary motorortex is involved in the movement of a spei� part of the body. Large areas ofortex are devoted to body parts, whih are most sensitive to touh (e.g., lips) orto the parts where aurate ontrol of musles is needed (e.g., �ngers).
Forward problemIn order to analyze the eletri and magneti data obtained from EEG and MEGmeasurements, we need to mathematially model the relationship between mea-



FORWARD PROBLEM 23sured eletri/magneti �elds and the urrent distribution whih produe it. Thisrelationship is known as forward modeling whih translates as a lead-�eld matrixor a gain matrix that binds the amplitude of soure urrents to the sensor dataas we shall detail below. If the primary soure and the surrounding ondutiv-ity pro�le of tissues are known, the eletri potential and magneti �eld an bealulated from Maxwell's equations (see [7℄ for a omprehensive review of MEGforward and inverse modeling).Maxwell's equationsIn 1873, Maxwell showed that eletromagneti �elds an be desribed using only4 vetor di�erential equations [70℄:
∇×E+

∂B

∂t
= 0, (1)

∇ ·B = 0, (2)
∇ · E =

ρ

ǫ0
, (3)

∇×B = µ0(J+ ǫ0
∂E

∂t
), (4)where E is the eletri �eld, B the magneti �eld, ρ the harge density, and ǫ0 and

µ0 represent the permittivity and the permeability of the empty spae with values8.85 10−12 Fm−1 and 4π10−7Hm−1, respetively (the magneti permeability µ0of brain tissues is onsidered idential to that of the free spae).Negleting the e�ets of the time-dependent terms is the quasi-stati approx-imation of Maxwell's equations. This depends on the typial frequeny range ofthe signals of interest and the properties of the medium. The frequeny of thesignals obtained from bio-eletromagneti measurements in MEG and EEG aretypially below 1 KHz. It has therefore been veri�ed that the physis of MEGand EEG are well desribed using the quasi-stati approximation of Maxwell'sequations [44℄. Quasi-stati Maxwell's equations an be written as:
∇×E = 0, (5)
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∇ ·B = 0, (6)
∇ ·E =

ρ

ǫ0
, (7)

∇×B = µ0J. (8)Equation (5) an further be satis�ed by representing the eletri �eld E asthe gradient of a salar funtion V :
E = −∇V. (9)From (8), we obtain the relation between the urrent distribution J(r′) atpoint r′ and the magneti �eld B(r) measured at r whih reads:

B(r) =
µ0

4π

∫

J(r′)× r− r′

||r− r′||3dv
′, (10)where ||.|| represents the Eulidean norm.This relationship (10) is popularly known as Biot-Savart Law.The urrent distribution J(r) an be divided into two parts:1. Primary urrent Jp(r) produed by the neural urrent ativity;2. Volume urrent Jv(r) produed in all the volume to prevent harge buildup.Primary and seondary urrents are shown in Figure 5.b. The urrent distribution

J(r) now an be represented as
J(r′) = Jp(r′) + Jv(r′) = Jp(r′) + σ(r′)E(r′) = Jp(r′)− σ(r′)∇V (r′), (11)where σ(r′) is the eletrial ondutivity of the tissue at loation r′, whih wewill onsider to be isotropi throughout this thesis. See Figure 7) where the headonsists of regions of onstant ondutivities σi, i = 1, 2, . . . , N + 1.Now we an rewrite the Biot-Savart equation (10) and use (11) to divide itinto two parts: the �rst part onsists of B0(r), the magneti �eld due to primaryurrents only while the seond term is due to the ontribution of volume urrents,formed as a sum of surfae integrals over the brain-skull, skull-salp and salp-airboundaries. In fat, we have

B(r) = B0(r) +
µ0

4π

∑

ij

(σi − σj)

∫

Sij

V (r′)
r− r′

||r− r′|| × dS′
ij . (12)
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Figure 7: Shell model of the head.This general equation states that the magneti �eld an be alulated if weknow the primary urrent distribution and the potential V (r′) on all the surfaes
Sij . We an reate a similar equation for the potential itself, yielding

(σi + σj)V (r) = 2σ0V0(r)−
1

2π

∑

ij

(σi − σj)

∫

Sij

V (r′)
r− r′

||r− r′|| × dS′
ij, (13)where V0(r) is the potential at r due to the primary urrent distribution.If we speify a primary urrent distribution Jp(r′), we an alulate a primarypotential and a primary magneti �eld as follows

V0(r) =
1

4πσ0

∫

Jp(r′) · r− r′

||r− r′|| × dS′
ij , (14)

B0(r) =
µ0

4π

∫

Jp(r′) · r− r′

||r− r′|| × dS′
ij. (15)The primary potential is then used to solve (13) for the potentials on all thesurfaes, and therefore ompletes the resolution of the forward problem. Thesesurfae potentials V (r) and the primary magneti �eld B0(r) are then used to



26 BACKGROUNDsolve (12) for the external magneti �elds. Unfortunately, the solution to (13) isanalyti only in a speial shapes and ellipti volume ondutor and must otherwisebe solved numerially. This thesis will onsider using spherial head models only.In the next two setions, models for neural urrent distribution will be intro-dued and subsequently models for volume ondutor will be disussed.Modeling primary urrentsConsider a small path of ative ortex S(r′) entered at r′ and an observationpoint r at some distane from this path. The primary urrent distribution inthis ase an be well represented by the multipolar representation Ωn
S((r′)) givenby

Ωn
S((r′)) =

1

n!

∫

r′⊂S((r′))
(r′ − l)nJp(r′)dr′, (16)where l is the point of expansion for multipoles.It is important to note that the brain ativity does not atually onsist ofdisrete sets of physial urrent dipoles, but rather that the dipole is a onve-nient representation for oherent ativation of a large number of pyramidal ells,possibly extending over a few square entimeters of gray matter.If the primary urrent distribution is very foal then it an be well approxi-mated by an equivalent urrent dipole (ECD) de�ned as:

Ω0 = q ≡
∫

Jp(r′)dr′. (17)The ECD an be represented as a point soure
Jp(r′) = qδ(r′ − l), (18)where δ(r) is the Dira delta distribution. Note that an ECD is a multipolarexpansion of order 0.If the urrent distribution is not foal, then multipolar expansions are bettersuited for the modeling of neural soures. The ontributions reported [74, 54, 53℄desribe this issue in great details.Multipolar expansions will be explained in detail in Chapter 2 of this thesis.
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Figure 8: Current Distribution S(r′) entered at r
′ and measured at r.Adapted from [54℄.Head modelingSpherial head modelHead modeling using as spherial approximation of its geometry has been widelyused in the MEG ommunity, the reason for its popular use is the simpliity ito�ers with respet to omputation requirements. Computing salp potentials andindued magneti �elds require solving the forward equations (13) and (12) respe-tively for a partiular soure model. We have seen above that when the surfaeintegrals are omputed over realisti head shapes, these equations must be solvednumerially. However, analyti solutions exist for simpli�ed geometries, suh aswhen the head is assumed to onsist of a set of nested onentri homogeneousspherial shells representing brain, skull, and salp respetively. These modelsare routinely used in most linial and researh appliations to E/MEG soureloalization. Figure 9 desribes a spherial head model approximation. Considerthe speial ase of a urrent dipole, with moment q, loated at rq in a multi-shell



28 BACKGROUNDspherial head, and a MEG system in whih we only measure the radial ompo-nent of the external magneti �eld, i.e., the oil surfae of the magnetometer isoriented orthogonally to a radial line from the enter of the sphere through theenter of the oil. It is relatively straightforward to show that the ontributionsof the volume urrents vanish in this ase, and we are left with only the primaryterm. Taking the radial omponent of this �eld for the urrent dipole redues tothe remarkably simple form:
Br(r) =

r

r
·B(r) =

r

r
·B0(r)+

µ0

4π
·
∑

ij

(σi−σj)

∫

Sij

V (r′)
r

r

r− r′

||r− r′|| ×dS′
ij . (19)

Figure 9: Spherial head model, where a sphere is �tted to the head geom-etry.In this same ase, it is very simple to show that the ontribution of volumeurrents will also redue to zero. Hene the seond term in 19 vanishes and thisequation write the following simpler form:
Br(r) =

r

r
·B0(r) =

µ0

4π

r× r′

r||r− r′||3 · q. (20)



FORWARD PROBLEM 29Notie here that the magneti �eld Br(r) is linear with respet to the dipolemoment q but highly nonlinear with respet to dipole loation: rq.In nutshell, Br(r) is zero everywhere outside the head if q points towardsthe radial diretion rq. A more general result is that radially-oriented dipoles donot produe any external magneti �eld outside a spherially symmetri volumeondutor, regardless of the sensor orientation [89℄.Importantly, this is not the ase for EEG whih is sensitive to radial soures,whih demonstrates one of the omplementary di�erenes between MEG and EEGpriniples.Realisti head modelIn reality, the head has anisotropi tissue properties, is inhomogeneous and notspherial but surprisingly, the spherial approximation works reasonably well, par-tiularly for MEG, whih is less sensitive than EEG to volume urrents. Theselatter are more a�eted than primary urrents by deviations from the idealizedmodel. By using the individual MRI data from the subjet, it is possible to on-strut a more detailed head model by isolating di�erent regions of interest usingfully-automati segmentation tehniques [16℄. Figure 10 shows typial surfae andvolume tessellations for use with BEM and FEM (see [33℄ for a omplete reviewof the head geometries used in MEG).Two types of approahes are available for realisti head modeling:1. Boundary Element Method (BEM) BEM is a numerial tehnique of solvinglinear partial di�erential equations whih have been formulated in a bound-ary integral form. Normally in MEG, single-shell and three-shell BEMmethods are used. BEM methods still assume homogeneity and isotropywithin eah region of the head. It therefore ignores, for example, the on-dutivity anisotropy indued by white matter trats, where ondution ishigher along axonal �bers ompared to a transverse diretion. Similarly,the sinuses and diploi spaes in the skull make it very inhomogeneous, afator that is typially ignored in BEM alulations.



30 BACKGROUND2. Finite Element Method (FEM)) FEM is a numerial tehnique for �ndingapproximate solutions of partial di�erential equations (PDE). In FEM, dis-retization of the PDE is performed in the entire head volume. Anisotropyand heterogeneity in di�erent tissue types an therefore be modeled andtherefore represents a very omprehensive approah to solving the MEEGforward problem.Typially, BEM and FEM alulations are very time onsuming and their usemay be onsidered as impratial when inorporated as part of an iterative in-verse solver for urrent soures. In fat, through use of fast numerial methods,pre-alulation, and look-up tables and interpolation of pre-alulated �elds, bothFEM and BEM an be made quite pratial for appliations in MEG and EEG[31℄. One problem remains: these methods reauire the ondutivity properties ofhead tissues be known. Most of head models used in the bio-eletromagnetismommunity onsider typial values for the ondutivity of the brain, skull andskin. Skull is typially assumed to be 40 to 90 times more resistive than brainand salp, whih are assumed to have similar ondutive properties. These val-ues were measured in vitro from postmortem tissue samples, with ondutivityvalues that may be signi�antly altered from those in in vivo tissues however.Consequently, some reent researh e�orts have foused on in vivo measurementsof tissue ondutivity. Eletrial Impedane Tomography (EIT) proeeds by in-jeting a small urrent (1-10 miroA) between pairs of EEG eletrodes and bymeasuring the resulting potentials at all eletrodes. Given a model for the headgeometry, EIT solves an inverse problem by minimizing the error between themeasured potentials on the rest of the EEG leads and the model-based omputedpotentials, in terms of parameters of the ondutivity pro�le. Simulation resultswith three or four-shell spherial head models have demonstrated the feasibilityof this approah though the assoiated inverse problem is also fundamentally ill-posed [32℄. These methods are readily extendible to realisti surfae models asused in BEM alulations in whih eah region is assumed homogeneous, but itis unlikely that the EIT approah will be able to produe high-resolution images



FORWARD PROBLEM 31of spatially varying anisotropi ondutivity. A seond approah to imaging on-dutivity is to use magneti resonane. One tehnique uses the shielding e�etsof indued eddy urrents on spin preession and ould in priniple help deter-mine the ondutivity pro�le at any frequeny [113℄. The seond tehnique usesdi�usion-tensor imaging with MRI (DT-MRI) that probes the mirosopi di�u-sion properties of water moleules within the tissues of the brain. The di�usionvalues an then be tentatively related to the ondutivity of these tissues [100℄.None of these MR-based tehniques have reahed ommon pratise by far . Fur-ther, given the poor signal-to-noise ratio (SNR) of the MR in bone regions, whihis of ritial importane for the forward EEG problem, the potential for fully 3Dimpedane tomography with MR remains speulative.

Figure 10: (a) FEM modeling of the forward model; (b) BEM modeling ofthe forward model.



32 BACKGROUNDLinear formulationThe forward problem now an be explained using the models for soures and headgeometry disussed above. The magneti �eld and salp potential measurementsare linear with respet to the dipole moment q and nonlinear with respet toits loation r′. For larity, it is onvenient to separate the dipole magnitude
q = ||q|| from its orientation u = q/||q||, whih we write in spherial oordinatesby Θ = [φ, ρ]. Let b(r) denote the magneti �eld generated by a dipole having�xed orientation Θ:

b(r) = g(r, rq,Θ)q, (21)where g(r, rq,Θ) is a lead �eld solution of the magneti �eld for a dipole havingunit amplitude and orientation Θ.For N dipoles loated at rqi
, their ombined magneti �elds an be expressedusing linear superposition of Maxwell's equations as

b(r) =

N
∑

i=1

g(r, rqi ,Θi)qi. (22)The simultaneous MEG measurements made at m sensors for N dipoles, an beexpressed asB =











B(r1)...
B(rm)











=











G(r1, rq1,Θ1) . . . G(r1, rqN ,ΘN )... . . . ...
G(rm, rq1,Θ1) . . . G(rm, rqN ,ΘN )





















q1...
qp











.(23)It an be written in a matrix form as
B = G({rqi,Θi})J, (24)where G({rqi,Θi}) is the m×N gain matrix relating N dipoles to the m sensors.Eah olumn ontains the ontribution of one dipole to eah sensor in the array.The matrix J ontains the set of instantaneous amplitudes of all the dipoles.In this model, the orientation of the dipole is not a funtion of time. This typeof model is often referred to as a "�xed" dipole model. Alternative models thatallow these dipoles to "rotate" as a funtion of time are known as "unonstrained"dipole model [75℄.



INVERSE PROBLEM 33Inverse problemTo produe estimates of the neural urrent soures that generated the observedMEG signals, we must solve the assoiated quasi-stati eletromagnetism inverseproblem. The inherent ill-posedness of this problem, oupled with the limitednumber of spatial measurements available with urrent MEG and EEG systems,(150-300 measurements) and signal-to-noise ratio (SNR) make this estimationvery hallenging [44℄.The solutions to the neuromagneti inverse problem will depend on whihforward model is used. In fat, a given inverse algorithm will yield slightly di�erentresults if di�erent forward models are used; hene, the importane of using anaurate realisti forward model. However, these two problems are relativelyindependent of one another. In the forward problem, we attempt to model thelassial physis of MEG and EEG as realistially as possible. In ontrast, in theinverse problem, we often deal with purely mathematial onepts and a prioriassumptions that are inorporated in a soure model. The independene of theinverse problem from the model's physis allows one to use the same inversealgorithm for MEG or EEG. On the other hand, many di�erent estimates ofativity an be obtained for a partiular data set using di�erent inverse algorithmsbut sharing the same forward model. This brings us to the main issue withneuromagneti inverse estimation: nonuniqueness. There is no unique solution tothe physially and mathematially ill-posed neuromagneti inverse problem. Infat, an in�nite number of urrent soure distributions an in theory generate anypartiular magneti �eld measurement vetor due to the existene of magnetisilent soures [47, 44, 89℄.In both MEG and EEG, silent soures an be added to any given inversesolution without hanging the forward �eld and/or potential that the ombinedsoure generates. Thus, there are indeed an in�nite number of solutions thatexplain any given MEG/EEG data set equally well. Therefore, a priori assump-tions about the soures are impliitly or expliitly formulated to �nd solutionswith spei� properties [5, 19, 23, 25, 79, 83℄. It should be emphasized that even



34 BACKGROUNDthough mathematially unique solutions an be obtained by postulating speialsoure properties, physial non-uniqueness is intrinsi to the neuromagneti in-verse problem.The two major approahes to the estimation of neural urrent soures are"imaging" and "parametri/loalization" methods.Imaging methods typially onstrain soures to a tessellated surfae represen-tation of the ortex, assume an elemental urrent soure in eah area element(vertex) normal to the ortex surfae, and solve the linear inverse problem thatrelates these urrent soures to the measured data. Aurate tessellation of theortex requires on the order of 105 elements. Sine the maximum number of MEGsensors is about 300, the problem is highly under-determined. By using regular-ized linear methods based on minimizing a weighted l2-norm on the image, wean produe unique stable solutions.Parametri/loalization methods assume a spei� parametri form for thesoures. By far the most widely used models in MEG are multiple-urrent-dipoleapproahes [112, 90℄. These assume that the number of neural soures is relativelysmall and eah su�iently foal that they an be represented by a few equivalenturrent dipoles with unknown loations and orientations. In both imaging andparametri methods, the MEG/EEG forward problem an be written as
B = G(θ)J+ ǫ, (25)whereB is theM×time vetor representing MEGmeasurements, J is theN×timevetor representing the distribution urrents. For imaging methods, it is the am-plitude of elementary urrents at eah ortial vertex. In parametri methods, itis the values of amplitude parameters for eah urrent model element. G(θ) is the

M×N lead �eld matrix relating additional parameters of the urrent distributionto the magneti �eld measured by M sensors. θ gathers the parameters whihthe lead �elds depend uppon, i.e., urrent soures, loations rqi , orientations Θiand their amplitudes qi. The M × time noise vetor ǫ represents a ombination ofsystem noise and far-�eld eletromagneti perturbations (power lines, elevators,



INVERSE PROBLEM 35ativity of heart and eyes, et) on sensors.Parametri methodsParametri methods an be broadly lassi�ed into "Dipole �tting" and "Beam-forming".Dipole �ttingThe �rst inverse method for equation (25) is based on the assumption that neuralativity an be modeled by a few sparse, elementary soures α. The problemredues to the estimation from the data of the parameters θ for α soures, whihare desribed as their positions rqi , their orientations Θi and their amplitudes
qi (with i ∈ [1, α]). This may be written as an optimization problem of a ostfuntion to be minimized.The estimate in the least-squares (LS) sense writes:

J(θ)LS = argmin
J

||B−G(θ)J||2F (26)where ||.||F denotes the Frobenius norm. Let G+(θ) be the pseudo-inverse of
G(θ):

G+(θ) = US+Vt, (27)where USVt is the singular value deomposition (SVD) of G(θ) and S+ is thediagonal matrix ontaining inverse of singular values of G(θ) [39℄. Equation (26)an be written in the form:
J(θ)LS = ||B−G(θ)[G+(θ)B]||2F = ||(I −G(θ)G+(θ))B||2F , (28)where I is the identity matrix of rank α. Thus, the LS problem an be optimallysolved in the limited set of nonlinear parameters rqi ,Θi with an iterative minimiza-tion proedure. The linear parameters in qi are then optimally estimated from26; see [75℄. Minimization methods range from Marquardt-Levenberg and Nelder-Meade downhill simplex searhes to global optimization shemes using multistartmethods, geneti algorithms and simulated annealing [101℄.



36 BACKGROUND

Figure 11: (a) Dipole Fitting in axial view; (b) Dipole Fitting in oronalview () Dipole �tting in sagittal view.This least-squares model an either be estimated from data from a single timesnapshot or a time window. When applied sequentially to a set of time samples,this results in a "moving dipole" model, sine the loation is not onstrained [112℄.Alternatively, by using a ontiguous time blok of data in the least-squares �t,the dipole loations an optionally be �xed over the entire interval. The �xedand moving dipole models have both proven useful in both EEG and MEG andremain the most widely used approahes to proessing experimental and linialdata. A key problem with the LS method is that the number of soures to beused must be deided a priori. Estimates an be obtained by looking at thee�etive rank of the data using a SVD or through information-theoreti riteria,but in pratie expert data analysts often run several model orders and seletresults based on physiologial plausibility. Caution is obviously required sine a



INVERSE PROBLEM 37su�iently large number of soures an be made to �t any data set, regardless ofits quality. Furthermore, as the number of soures inreases, the non-onvexityof the ost funtion results in inreased hanes of trapping in undesirable loalminima. This latter problem an be approahed using stohasti or multistartsearh strategies [50℄. The alternatives to LS desribed below avoid the non-onvexity issue by sanning a region of interest that an range from a singleloation to the whole brain volume for possible soures. An estimator of theontribution of eah putative soure loation to the data an be derived either viaspatial �ltering tehniques or signal lassi�ation indies. An attrative featureof these methods is that they do not require a prior estimate of the number ofunderlying soures.Beamforming approahesA beamformer performs spatial �ltering on data from a sensor array to disrim-inate between signals arriving from a loation of interest and those originatingelsewhere. Beamforming originated in radar and sonar signal proessing but hassine found appliations in diverse �elds ranging from astronomy to biomedialsignal proessing [103℄.Math �lterThe simplest spatial �lter, a mathed �lter, is obtained by normalizing the olumnsof the lead �eld matrix and transposing this normalized ditionary. The spatial�lter for loation ri is given by
W

(T )
i =

GT
: i

‖G: i‖F
. (29)This approah essentially projets the data onto the olumn vetors of the ditio-nary. Although this guarantees that when only one soure is ative, the absolutemaximum of the estimate orresponds to the true maximum, this �lter is notreommended sine this single-soure assumption is usually not valid, and sine



38 BACKGROUNDthe spatial resolution of the �lter is so low given the high orrelation betweenditionary olumns. This approah an be extended to fast reursive algorithms,suh as mathing pursuit and its variants, whih sequentially projet the dataor residual to the non-used ditionary olumns to obtain fast suboptimal sparseestimates.Multiple signal lassi�ation (MUSIC)The MUSIC algorithm was adopted from spetral analysis, Diretion of Ar-rival(DOA) estimation tehniques and modi�ed for spatial �ltering of MEG data[75, 73℄. The MUSIC ost funtion is given by
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, (30)where B = USVT is the singular value deomposition of the data, Us is a matrixwith the �rst ds right singular vetors that form the signal subspae, and G: i isthe gain vetor for the dipole loated at ri and with orientation θi (obtained fromanatomy or using the generalized eigenvalue deomposition). The operator P⊥

Usis an orthogonal projetion operator onto the data noise subspae. The MUSICmap is the reiproal of the ost funtion at all loations sanned. This map anbe used to guide a reursive parametri dipole �tting algorithm. The number dsis usually set by an expert user.For more omplete explanation of subspae methods like MUSIC see [55℄.Linearly onstrained minimum-variane (LCMV)Beamformers, as used in the �eld of brain imaging, are spatial �ltering algorithmsthat san eah soure-point independently to pass soure signals at a loation ofinterest while suppressing interferene from other regions using only the loal gainvetors and the measured ovariane matrix. One of the most basi and oftenused linear beamformers is the linearly onstrained minimum variane (LCMV)beamformer, whih attempts to minimize the beamformer output power subjet
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Figure 12: A typial MUSIC san for epilepti spikes.to a unity gain onstraint:
min
Wi :

tr
(

Wi :ΣBW
T
i :

) subjet to Wi :G: i = I, (31)where ΣB is the data ovariane matrix, G: i is the db by 3 gain matrix of the ithsoure point, and Wi : is the 3 by db spatial �ltering matrix [104℄. The solutionto this problem is given by
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)−1
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: iΣB
−1. (32)The parametri soure ativity at the ith soure point is given by Si : = Wi :B.This an be performed at eah soure-point of interest to yield a sore map of



40 BACKGROUNDativity. This beamforming approah an be extended to a more general Bayesiangraphial model that uses event timing information to model evoked responses,while suppressing interferene and noise soures [115℄. This approah uses a vari-ational Bayesian EM algorithm to ompute the likelihood of a dipole at eah gridloation.Imaging methodsImaging approahes to the MEG inverse problem onsist of methods for estimatingthe amplitudes of a dense set of dipoles distributed at �xed loations and orien-tation within the head volume. In this ase, sine the loations and orientationare �xed, only the linear parameters need to be estimated and the inverse prob-lem redues to a linear one with strong similarities to those enountered in imagerestoration and reonstrution. By putting loations and orientation onstraintthe equation (25) beomes
B = GJ+ ǫ. (33)Here the gain matrixG is �xed and only dipole amplitudes J have to be estimated.The most basi approah onsists of distributing dipoles over a prede�nedvolumetri grid similar to the ones used in sanning approahes. However, sineprimary soures are essentially restrited to ortex, the image an be plausiblyonstrained to soures lying on the ortial surfae, as extrated from an anatom-ial MR images of the subjet [22℄. Following segmentation of the MR volume,dipolar soures are plaed at eah node of a triangular tessellation of the surfaeof the ortial mantle. Sine the pyramidal ells that produe the measured �eldsare oriented normal to the surfae, we an further onstrain eah of these elemen-tal dipolar soures to be normal to the surfae. The highly onvoluted nature ofthe human ortex requires that a high-resolution representation ontains of theorder of ten to one hundred thousand dipole "pixels". The inverse problem istherefore hugely under-determined and imaging requires the use of either expliitor impliit onstraints on the expeted urrent soure distributions. Typially,



INVERSE PROBLEM 41this has been aomplished through the use of regularization or Bayesian imageestimation methods.Bayesian formulationBayesian approah to neuronmagneti inverse problem was �rst introdued byClarke in 1989 [14℄. In the Bayesian formalism, the neuromagneti inverse problemis de�ned as the problem of estimating the matrix J of dipole amplitudes at eahtessellation element from the spatio-temporal data matrix B , whih are relatedin the noiseless ase by B = GJ. The i-th row of J ontains the amplitude imageaross the ortex at time i. From Bayes theorem, the posterior probability p(J|B)for the amplitude matrix J onditioned on the data B is given by
p(J|B) =

p(B|J)p(J)
p(B)

, (34)where p(B|J) gives the forward probability density of getting magneti �eld Bonditioned on J. p(J) is a prior distribution re�eting our knowledge of thestatistial properties of the unknown image. While Bayesian inferene o�ers thepotential for a full statistial haraterization of the soures through the posteriorprobability, images are typially estimated in pratie by maximization of theposterior or log-posterior probability.The estimation of J in the maximum a posteriori (MAP) sense is given by
ĴMAP = argmax

J
p(B|J)p(J). (35)The log-likelihood of (35) is given by

ĴMAP = argmax
J

(log[p(B|J)] + log[p(J)]). (36)Typially, MEG and EEG data are assumed to be orrupted with additiveGaussian noise that we assume here to be spatially identially distributed overall sensors (generalization is straightforward). The log-likelihood is then simplygiven, within a onstant, by
ln[p(B|J)] = − 1√

2σ2
||B−GJ||2F . (37)



42 BACKGROUNDThe prior is a probabilisti model that desribes our expetations onerning thestatistial properties of the soure for whih we will assume an exponential density
p(J) =

1

z
exp[−βf(J)], (38)where z and β and f(J) depends on the image J. This form enompasses bothmultivariate Gaussian models and the lass of Gibbs distributions or Markovrandom �eld models [13℄. Combining the log-likelihood and log-prior gives thegeneral form of the negative log-posterior whose minimization yields the maximuma posteriori estimate:

ĴMAP = argmin
J

||B−GJ||2F + λf(J), (39)where λ = 2βσ2. λ is the regularization parameter. The parameter λ shouldbe onsidered as a regularization parameter tuning between the prior f(J) and�t to the data. If λ = 0 estimation of the urrent distribution beomes simplyleast squares. This type of solution to the inverse problems was introdued byTikhonov in [97℄.Choie of the regularization parameter λThere are many approahes to estimate the value of λ. We summarize a few asexplained below:1.L-Curve: When plotted on a log-log sale, the parametri urve of optimalvalues of ||W|| and data �t ||B−GJ|| often takes on an L shape. For this reason,the urve is alled an L-urve [45℄. The value of λ in the L-urve riterion is thevalue of λ that gives the solution losest to the orner of the L-urve, as shownin Figure 13.2. Generalized ross validation (GCV) is an alternative method forestimating the regularization parameter λ [107℄, that has a number of desirablestatistial properties. Consider
f(λ) =

||B−GJ||
Trace(I −GG†)

=
V (λ)

T (λ)
(40)
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Figure 13: Typial L-urve for lassi shaw inverse problem.The numerator in (14) is the data mis�t in the least squares sense and thedominator measures the loseness of the data resolution matrix to the identitymatrix. In the GCV method, we pik the value of λ that minimizes (14), asshown in Figure 14.Linear estimatorsThe simplest approah to (39) is to onsider prior distribution of soure ammpli-tudes J to be Gaussian with zero mean. Introdue
f(J) = tr[JC−1

J Jt], (41)where C−1
J is the inverse ovariane matrix of soures. If we break this inversematrix as, C−1

J = WWt, then (39) an be written in the following manner:
ĴMAP = argmin

J
||B−GJ||2F + λ2||WJ||2F . (42)



44 BACKGROUND

Figure 14: Typial GCV-urve for lassi shaw inverse problem.The MAP estimator now takes the following simple linear form:
Ĵt
MAP = WWtGt(GWWtGt + λI)−1B. (43)In this ase, ĴMAP also follows a Gaussian distribution. (39) is normally known aszeroth order Tikhonov regularized solution of J [97, 26℄, where the regularizationparameter λ an be estimated from any of the tehniques explained in the previoussetion.Properties of the soure ovariane matrixSoure ovariane is the last parameter of the model whih will ondition the�nal form taken by (42). The forms of soure ovariane matries that are mostommonly used in MEG are:



INVERSE PROBLEM 451. The identity matrix, whih yields lassial minimum-norm estimators [97℄.The major assumption in using the identity matrix is that soure amplitudes
J are independent and identially distributed.In Figure 15, a omparison is shown between LCMV beamformer and theminimum-norm solution to the inverse problem, showing that though theminimum-norm solution is widespread, the peak of maximum intensity isin the right plae in this median nerve stimulation experiment, where weexpet ativity within primary somatosensory areas.

Figure 15: Comparison of LCMV and minimum norm.2. A diagonal matrix whose elements are given by the norm of the elementsof the orresponding olumn in the lead-�eld matrix (i.e., Wii = ||gi||2with gi the ith olumn of G). This solution is a forward-�eld normalizedsolution.3. W whih is based on the relationship between soure neighbors [108℄. Thematrix W is given by
Wij =



















1 if i = j,

− 1
n

if j ∈ N (i),

0 otherwise,



46 BACKGROUNDwhereN (i) de�nes the �rst order neighbor of ith soure and n = Card[N (i)].4. W is diagonal with elements equal to some estimate of the soure powerat that loation, whih may be omputed from the output of a beamformeror MUSIC san evaluated for eah dipole pixel [69℄ or weighted from otherfuntional imaging modalities suh as fMRI, PET, or SPECT [64, 21℄.These methods have the advantage to be fast and overall robust towards noise[106℄. They provide estimates where the enter of gravity of the ativity is verylose to the true soure. However, results are often very smooth spatially anddo not allow for estimation of the spatial extent of the ativity. This problem ofspatial extent and its solution will be addressed in details in Chapter 2.Nonlinear estimators of soure amplitudesIt is possible to obtain sparser image estimates of the urrent distribution by usingalternative (non-quadrati) ost funtions f(J) in (39). Norms and semi-normson soure amplitude priors with values p ≤ 2 in (42) have been investigated.Solutions will beome inreasingly sparse as p is redued. For the speial aseof p = 1, the problem an be slightly modi�ed to be reast as a linear program.This is ahieved by replaing the quadrati log-likelihood term with a set of under-determined linear inequality onstraints, where the inequalities re�et expetedmismathes in the �t to the data due to noise. The l1-ost an then be minimizedover these onstraints using a linear simplex algorithm. Properties of linear pro-gramming problems guarantee that there exists an optimal solution for whih thenumber of non-zero pixels does not exeed the number of onstraints, or equiv-alently the number of measurements. Sine the number of pixels far outweighsthe number of measurements, the solutions are therefore guaranteed to be sparse.This idea an be taken even further by using the quasi-norm for values of p < 1.In this ase, it is possible to show that there exists a value 0 < p < 1 for whihthe resulting solution is maximally sparse [4, 34℄.



CONCLUSION 47Another approah de�ned liquish relationships between neighborhood soures.The whole network of soures may be desribed as distributed within a MarkovRandom Field (MRF), this relationship was exploited in [5, 84℄. A key propertyof MRFs is that their joint statistial distribution an be onstruted from a set ofpotential funtions de�ned on a loal neighborhood system [83℄. Thus, the energyfuntion f(J) for the prior an be expressed as
f(J) = L

N
∑

i=1

[αiJ(i) + γi[
∑

j∈N (i)

(J(i)− J(j))2]Q] (44)where L is the number of time samples, αi and γi determines the weighting fatorsbetween neighborhood soures. Q is the index of the amplitude of the neighbor-hood group. N (i) neighborhood of the soure i is de�ned as the 9 losest neighborsto the soure. The �rst term in equation (44) expresses sparsity while the seondone favors foal soures distributions.The MRF-based image priors lead to non-onvex [5℄ and integer [83℄ program-ming problems in omputing the MAP estimate. Computational osts an be veryhigh for these methods sine although the priors have omputationally attrativeneighborhood strutures, the posteriors beome fully oupled through the likeli-hood term. Furthermore, to deal with non-onvexity and integer programmingissues, some form of deterministi or stohasti annealing algorithms must be used[35℄.ConlusionThe exellent time resolution of MEG provides us a unique window on the dynam-is of human brain funtions. Though the limited spatial resolution remains theproblem for this modality, adequate modeling and modern signal proessing meth-ods prove MEG as a dependable funtional imaging modality. Potential advanesin forward modeling inlude better haraterization of the skull, salp and braintissues from MRI and in vivo estimation of the inhomogeneous and anisotropiondutivity properties of the head. Progress in inverse methods inlude meth-



48 BACKGROUNDods for ombining MEG with other funtional modalities and exploiting signalanalysis methodologies to better loalize the brain ativity.



Part 2
MEG SOURCE IMAGING





Multipolar Cortial Remapping
IntrodutionThe equivalent urrent dipole model is diretly interpretable as a urrent elementrestrited to the ortial surfae representing a point soure. However, one of thepereived key limitations of this model is that, distributed soures may not beadequately represented. This problem was one of the prime motivations to thedevelopment of imaging approahes. An alternative solution is to remain withinthe model-based framework but to broaden the model to allow parametri rep-resentations of distributed soures. The multipolar expansion provides a naturalframework for generating these models [79, 36℄. Multipolar expansions are de-rived from spherial harmonis of the magneti salar potential. If the expansionpoint is hosen near the enter of a distributed soure, then the ontribution ofhigher-order terms will drop o� rapidly as the distane from soures to the sensorsinreases. Using this framework we expand the set of soures to inlude urrentdipoles and �rst-order urrent multipoles. These soures are able to representthe �eld from a distributed soure more aurately than by urrent dipole model,though still bene�ting from a ompat, low-dimensional form [78℄. Multipolar ex-pansions of magneti salar potentials originate from general spherial harmonissolution of the Poisson equation.In this thesis, we proposed an approah for estimating the spatial extent ofortial urrent soures using a hybrid methodology alled Multipole CortialRemapping (MCR). It takes the best of imaging and parametri approahes as51



52 MULTIPOLAR CORTICAL REMAPPINGexplained in the previous hapter.We will �rst detail the spherial harmoni expansions of salar potentials, thenintrodue a general treatment of the spherial harmoni multipole expansion. Thiswill be followed by the multipolar expansion of distributed dipole soures. Thesetreatments are adapted from the lassi paper by Wikswo et al. [111℄. We willthen proeed to the more spei� treatment of magneti salar potentials in termsof urrent multipolar moments.Finally, following this theoretial bakground, the Multipolar Cortial Remap-ping (MCR) method will be introdued, followed by results on simulated andexperimental MEG data.Multipolar expansions of a salar potentialA vetor �eld with zero url, termed onservative or irrotational, an be desribedas the negative gradient of a salar potential Vm(r) whih satis�es the Poissonequation:
∇2Vm(r) = −s(r′), (45)where s(r′) desribes the soure distribution produing the salar �eld Vm. Thesolution to (45) is known to have the following form:

Vm(r) =
1

4π

∫

s(r′)

r − r′
d3r′, (46)where the integral must be evaluated over the region where s(r′) is non zero. Ifthe soure distribution is bounded by a losed surfae S, then a salar potentialan be desribed by Laplae equation:

∇2Vm(r) = 0, r outside of S. (47)Spherial multipolar expansionsSpherial multipolar expansion for a harmoni salar potential, i.e.,satisfying (47),an be written in odd and even unit potentials, V e
mn(r) and V o

mn(r), with their



INTRODUCTION 53multipole strengths amn and bmn respetively,
Vm(r) =

∞
∑

n=o

∞
∑

m=o

[anmV e
mn(r)+bmnV

o
mn(r)], r > a, outside the volume of the ondutor,(48)where

V e
mn(r) =

1

4π
r(−n− 1)Y e

mn(θ, φ), (49)
V o
mn(r) =

1

4π
r(−n− 1)Y o

mn(θ, φ) (50)are the unit potentials for the even and odd nm-th multipoles respetively, a isthe radius of the sphere, and θ and φ are azimuth and elevation angles, respe-tively. The even and odd spherial harmonis with Pm
n (cosθ) being the assoiatedLegendre funtion of the �rst kind are given by

Y e
mn(θ, φ) = cos(mφ)Pm

n (cosθ), (51)
Y o
mn(θ, φ) = sin(mφ)Pm

n (cosθ)m 6= 0 , m ≤ n. (52)The �rst term V e
00 orresponds to the monopole (n = 0), There are three dipole

(n = 1) omponents, V e
10, V

e
11, V

o
10 and �ve quadruple (n = 2) omponents,

V e
20, V

e
21, V

o
21, V

e
22, V

o
22 and the n-th order multipole has 2n+ 1 omponents. Themultipole strengths are given by

amn = ǫm
(n −m)!

(n +m)!

∫ 2π

0
cos(mφ′)dφ′

∫ π

0
Pm
n (cosθ′)sin(θ′)dθ′

∫ a

0
s(r′)r′(n+2)dr′ (53)

bmn = ǫm
(n−m)!

(n+m)!

∫ 2π

0
sin(mφ′)dφ′

∫ π

0
Pm
n (cosθ′)sin(θ′)dθ′

∫ a

0
s(r′)r′(n+2)dr′, (54)where ǫm is the Neumann fator

ǫm = 1 for m = 0,

ǫm = 2 for m 6= 0. (55)The illustration of spherial harmoni multipole omponents are shown in Figure16.
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Figure 16: Soure-sink illustration of spherial harmoni multipole ompo-nents, adapted from [110, 67℄. The �gure shows the physial soure-sinkon�gurations orresponding to the multipole omponents of the dipole(three omponents), quadrupole (�ve omponents), and otupole (sevenomponents).Multipole expansions of a distributed dipole soureIf the urrent distribution onsists of a set D of n elementary urrent dipoles
D = {di, i ≤ n}, then it is straightforward to relate it its multipolar expansion[111℄. The equations below provide the dipole to quadrupole moments for a singledipole q (qx, qy, qz) at the point (xo, yo, zo).
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Dipole

a10 = qz (56)
a11 = qx (57)
b11 = qy (58)

quadrupole

a20 = 2zoqz − xoqx − yoqy (59)
a21 = zoqx + xoqz (60)
b21 = zoqy + yoqz (61)

a22 =
1

2
(xoqx − yoqy) (62)

b22 =
1

2
(xoqy − yoqx) (63)For example onsider a simple urrent distribution onsisting of two dipole,as shown in Figure 17, suh that

qa = (qx, qy, qz) at ra = (xo, yo, zo) (64)
qb = (qx, qy, qz) at rb = (xo, yo, zo) (65)The spherial harmoni multipole expansion for eah dipole an be determinedusing equations (56) to (63). The multipole expansion for this urrent distributionis the sum of these two expansions and given:
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Figure 17: Distributed dipole model.
a10 = a11 = b11 = 0

a20 = −2xoqx

a21 = −2xoqz

b21 = 0

a22 = xoqx

b22 = xoqy (66)Equation (66) has an important impliation. Two opposed dipoles on oppositesides of the origin produe a �eld that has no dipole moments. This kind ofurrent distribution an only be aptured using a quadrupole model.



MULTIPOLE MOMENTS OF CURRENT DISTRIBUTIONS 57Multipole moments of urrent distribu-tionsThe neural urrent distribution is zero outside the head. Thus the magneti �eld
B an be represented as the negative gradient of a magneti salar potential Vm[43, 37, 52℄:

B(r) = −µo∇Vm(r), r outside the head. (67)By taking the divergene of (67), Vm satis�es the following Laplae equation:
∇2Vm(r) = 0. (68)The solution of (68), i.e., the magneti salar potential aused by a loalizedurrent distribution, was stated by Bronzan in [11℄ as follows:

Vm(r) =
1

4π

∫

J(r′) · r× r′

|r− r′|(r|r− r′|+ r2 − r · r′)d
3r′, (69)where r′ is the loal point at whih urrent distribution is present and r is a �eldpoint at whih the magneti �eld is measured. As noted by Bronzan, (69) is validfor any arbitrary oordinate system and loalized soure, where the observationpoint r is outside the soure and does not lie on a line between the origin and thesoure (see Figure 18). Therefore, if we plae the origin inside the soure body,these equations hold for all points outside of the body.As in previous hapter, a onvenient substitution in MEG is to divide theurrent density into primary urrent density Jp(r′) and a volume urrent Jv(r′)as follows:

J(r′) = Jp(r′) + Jv(r′). (70)Suppose that the head onsists of spherially symmetri regions of homo-geneous ondutivity, whih means that all surfaes are radial and therefore theontribution from volume urrent vanishes. The magneti salar potential outsidea spherial symmetri volume ondutor is given by
Vm(r) =

1

4π

∫

r× r′

F (r, r′)
· Jp(r′)d3r′. (71)
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Figure 18: MEG sensor measure the magneti �eld aused by loal urrentdistribution J(r′) (adapted from [53℄).
Equation (71) an also be represented using a multipole expansion [54℄. Amultipole expansion is the series expansion of the �eld produed by the soure inwhih suessive terms derease in amplitude. An important fator to onsider isthe expansion point for this multipole series. In most of the available literature,multipole expansions are presented as expansions about the origin of the oor-dinate system. Sine it is advantageous to expand the �eld about the entroidof the soure, whih is not neessarily at the origin of a �xed oordinate system,some authors (e.g., [79℄) use a oordinate system with a variable origin. Here,we will expliitly give the equations for the general ase of a multipole expansionabout an arbitrary loation l for a �xed oordinate system.The magneti salar potential for a spherial head model (extension to arealisti head model is straightforward [76℄) in terms of multipole moments (withrespet to an arbitrary expansion point l) an be expressed as follows (for moredetails see [54℄):
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Vm(r) =

1

4π

∞
∑

n=0

∇n
l (

r× l

F (r, l)
)‖Ωn, (72)where F (r, l) = |r − l|(r|r − l| + r2 − l · r) is a salar funtion. Here, r′ is theloal point at whih the urrent distribution is present and r is the �eld point atwhih the magneti �eld is measured.The double vertial in (72) represents an n-fold ontration between the twopolyads∇n

l (the nth onseutive derivative w.r.t l) and Ωn the nth order multipolemoment of the neural urrent distribution [54℄. Ωn ompletely desribes thespatial harateristis of the urrent distribution and is de�ned by
Ωn =

1

n!

∫

(r′ − l)nJ(r′)dr′, (73)where J(r′) represents the primary urrent produing a magneti �eld outside thevolume ondutor.The magnitude of the suessive terms of the multipole expansion dereases,hene our study will be limited to orders 0 (dipoles) and 1 (quadrupoles), for pra-tial SNR onsiderations. The �rst-order approximation of the magneti salarpotential de�ned by (72) is stated as
Vm(r) =

1

4π
[(

r× l

F (r, l)
) ·D+∇l(

r× l

F (r, l)
) : Q], (74)where D =

∫

J(r′)dr′ is the urrent dipole moment and Q =
∫

(r′ − l)J(r′)dr′ isthe urrent quadruple moment.Dipole and quadrupole moments depend on the spatial distribution of urrents[111℄. First-order approximation of the magneti �eld produed by the neuralurrent distribution is given by
B(r) = −µo

4π
(∇(

r× l

F (r, l)
) ·D+∇l[∇(

r× l

F (r, l)
)] : Q). (75)Multipolar ortial remappingMultipole Cortial Remapping (MCR) is an hybrid method that takes the bestof imaging and parametri approahes to the MEG inverse problem. Preliminaryresults for this tehnique were presented in [56, 57℄.



60 MULTIPOLAR CORTICAL REMAPPINGIn MCR we �rst use an imaging approah and estimate the zero-order Tikhonovregularized image of the urrent distribution on the ortex. We then thresholdthis image using histogram-based thresholding priniples. This thresholded imageis then onverted into groups of ativity using a labeling algorithm, [46℄ depend-ing upon their spatial onnetivity. We then estimate multipole moments at thegravity enter for eah group. The multipole moments are not diretly relatedto the atual physiologial proesses that produe the MEG signals, so we de-sribe a remapping tehnique to map these moments bak onto the ortex usinga Bayesian formalism.One of the main advantages of MCR is the use of a Tikhonov regularizationfor the estimation of multipole moments and ortial remapping by mathingthe multipole moments (only eight moments) of the original parametri soureand the equivalent ortial path, rather than their forward �elds. Hene weahieve a signi�ant redution in the omputational omplexity of the inverseproblem. Most importantly, we introdue physiologial priors in the momentmathing riterion.We will present the performane of MCR by its appliation on simulated singleand two soure senarios. The robustness of the method against thresholding valuewill also be presented. We will also present the results of the appliation of MCRon somatosensory data using stimulation of four �ngers from the right hand.MCR takes advantage of both the ompat parametri modeling of distributedurrents using equivalent urrent multipoles (ECM) and sparse-foal image mod-els on restrited spatial supports. It yields a workable estimation of the surfaeextent of regional brain ativations. The MCR proeeds as follows: �rst, para-metri modeling of ortial urrents is obtained by �tting a series of ompatequivalent urrent multipole (ECM) model elements to a low-resolution regular-ized image of the ortially-onstrained urrent distribution. The seond steponsists in e�iently adjusting a sparse-foal image model to eah ECM elementusing a maximum a posteriori (MAP) Bayesian estimation framework. Henethe ECM deomposition ats as an intermediary between two image models of



MULTIPOLAR CORTICAL REMAPPING 61ortial urrents, for the sake of onsiderable redution in the dimensions of theparameter subspaes.Compat parametri deomposition of ortialurrentsThe motivation is to redue the dimension of the subspae in whih a sparsefoal image model may be �tted to the data. One approah ould onsist indiretly adjusting equivalent urrent dipole (ECD) or ECM models to the data.The nonlinear searh for their optimal loations though has proven to be hardlytratable in pratie without strong priors on the number and the expeted loiof ativations when multiple regions are simultaneously ative.Here the deomposition of ortial urrents in a ompat form using ECMmodel elements relays a smooth, low-resolution image model of neural urrentsto their �nal higher-resolution sparse-foal estimate in a two-step proedure.The basi image support onsists of a set D of n elementary urrent dipoles
D = {di, i ≤ n}, densely distributed over the MRI-extrated ortex of the subjetthat forms a surfae manifold Γ of R3. The orientations oi of all the dipolesfollow the irumvolutions of the ortial mantle. Hene the estimation of ortialurrents redues to that of their amplitude distribution y = {yi, i ≤ n}.The low-resolution image model was obtained from the Tikhonov-regularizedweighted minimum-norm estimator (WMNE) [2℄:

y = argmin
y

{‖b−Gy‖2 + λytC−1y}, (76)where b is a vetor of m instantaneous measurements on the MEG sensor array;
G is the orresponding forward gain matrix and C is the expeted ovarianematrix of the elementary soures; λ is a salar regularization parameter.The solution to (76) is unique and takes the following form:

y = Gt(GGt + λI)−1b, (77)



62 MULTIPOLAR CORTICAL REMAPPINGwhere Gt denotes the transposed G matrix and we have assumed that C = I,without loss of generality. Note that y may either be estimated at a single timeinstant or over a larger time frame with no di�erene in the approah.The low-resolution image model y was thresholded using for instane an ab-solute amplitude riterion based on the analysis of the histogram of the |yi|'s.Dipole elements in D with absolute amplitude under the 85th perentile of thehistogram were set to zero. The remaining set of ative elementary dipoles wasarranged in a set of nC spatially-ontiguous dipole lusters {Cj , j ≤ nC} [46℄.Let xi be the oordinates of dipole di in R3. We de�ne as Xj , the urrent-weighted entroid of luster Cj , that is,
Xj =

∑

i,di⊂Cj

|yi|xi.

Xj serves as the expansion point of the ECMmodelmCj � up to the quadrupole� of the urrents sustained by luster Cj . All the ECM moments from all lustersare gathered in mC and are adjusted in the least-squares sense:
mC = Gt

m(GmGt
m)−1b, (78)where Gm is the ECM gain matrix of all the Cj (j ≤ nc) lusters, whih ompu-tation is detailed in [54℄.

Sparse-foal imaging modelThe seond step in the MCR proedure onsists of estimating an equivalent or-tial urrent distribution to eah of the ECM elements mCj using expliit sparse-foal priors.The quadrupolar ECM expansion mi ∈ R8 of any dipole di ⊂ Cj about
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Xi = [Xi,1,Xi,2,Xi,3] ∈ R3, as introdued in Setion writes [111℄:

mi =
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oi· yi = gm
i yi. (79)

The equivalent sparse-foal image model of eah mCj de�ned in Setion onsistsof a subset of ortial dipoles ζj ⊂ D whih amplitudes yj verify
mCj =

∑

i,di∈ζj

gm
i yi + n = Gm

j yj + n, (80)where Mζ
j is the equivalent ortial ECM moments and n is the residuals betweenthe ECM element mCj and its ortially-distributed ounterpart.We are able to estimate y as follows

ŷ = argmin
y

{‖Jo − Jζy‖+ λ‖y‖}. (81)Studies of funtional ativation, suh as somatosensory mapping using PETand fMRI, reveal the sparse and foalized nature of the ativation of neural ur-rents. Our prior is therefore spei�ally designed to re�et the expetation thatthe urrent soures tend to a sparse and foal representation. y is estimated us-ing expliit sparse-foal priors, whih an readily be insribed in a Bayesian MAPestimator of ortial urrent amplitudes exempli�ed in [84℄. This has been demon-strated for instane in the ontext of Markovian Random Field (MRF) modelsof the ortial urrent distribution. Here, we revisit this approah and make ittratable by running MAP estimates restrited to the loal urrent distributionsabout eah ECM element and by mathing their respetive multipolar moments.This latter point further redues the dimension of the quantities under onsid-eration as we are interested in adjusting moments in a subspae of dimension 8



64 MULTIPOLAR CORTICAL REMAPPINGrather than in the subspae of MEG sensors whih is m ∼ 100. The ortialurrent density is modeled as a random proess using extensions of the modelsdesribed in [84℄. We haraterize the urrent density yi at every vertex throughthe assoiation of a ontinuous, normally-distributed, random variable of dipoleamplitude zi and a binary indiator proess xi of whether soure i is on or o�.Thus yi = xizi, and globally y = x ∗ z, with x and z assumed to be twoindependent proesses.The onditional posterior probability of neural urrent distribution knowingurrent multipole moments mCj is given by
p(x, z|mCj) =

p(mCj |x, z)p(x)p(z)
p(mCj)

. (82)The MAP estimate of the set of dipole amplitudes that will math the ECMmoments of mCj writes:
yj = {xizi,di ∈ ζj} = argmax

x, z
p(x, z|mCj). (83)The underlying MRF of the indiator proess x follows a Gibbs distribution whihenergy funtion V (x) writes:

V (x) =
∑

i,di∈ζj

(αixi + βi
∑

k∈νi

(xi − xk)
2

γik
), (84)where αi > 0 and βi > 0 determine the sparseness and lustering relative weights;

νi is the set of nearest neighbors of vertex i, and γik is proportional to the geodesidistane between di and dk and to the disrepany between their orientations.Soure amplitudes z are assumed to be entered and normally-distributedwith ovariane Cz. Assuming the perturbation proess in (80) to be zero-meanGaussian with ovariane matrix Cn, we an write
p(x, z|mCj) =

1

D
exp{−U(x, z|mCj )}, (85)where D is the posterior partition funtion.



MULTIPOLAR CORTICAL REMAPPING 65The MAP estimation from (83) redues to the minimization of the energyfuntional assoiated to the posterior distribution of yj :
U(x, z|mCj ) =

1

2
[mCj −Gm

j x ∗ z]tC−1
n [mCj −Gm

j x ∗ z]

+
1

2
zTC−1

z z+ V (x). (86)Minimization of U(x, z|mCj) is di�ult sine the optimization proedure mustbe performed over a mixture of disrete and ontinuous variables. We will use amodi�ed version of the optimization proedure given in [84℄ based on Mean FieldAnnealing.This method works as follows. Sine the funtion is quadrati in ontinuousvariable z, we an derive losed form of expression for the optimal z∗ as a funtionof partiular indiator proess x:
z∗(x) = Czx(G

m
j )T(Gm

j xCzx(G
m
j )T +Cn)

−1mCj . (87)Substituting z∗(x) into U(x, z|mCj) result in
Ũ(x|mCj) = U(x, z|mCj)|z=z∗(x), (88)whih is a Gibbs energy funtion for the binary density
p̃(x|mCj) =

1

K̃
{−Ũ (x|mCj)}. (89)We an therefore �rst �nd the optimal indiator proess x by minimizing

Ũ(|mCj), and then substituting this result in (87) to get the optimal amplitudeproess.Identifying the elements of ζj is ahieved through a reursive and iterativesurfae region-growing proess. The proess is reursive and onsiders eah dipolarsoure in Cj as a seed to a path growing proess. This latter onsists of a reursiveestimation of the loal urrent density on a growing number of soure andidatesin the viinity of every seed until U(x, z|mCj) is minimized. At eah iteration,this latter is minimized with the iterated onditional mode (ICM) optimizationof the binary indiator proess.For every seed di ∈ Cj :



66 MULTIPOLAR CORTICAL REMAPPING1. Initialization: set k = 1, the path around the soure i to νik = {i} and
U i
0 = 0;2. Estimate yj and ompute U i

k from (86);3. If |U i
k − U i

k−1| > ǫU i
k−1a) Grow the path by inluding the verties onneted to the soure(s)in νik = {i};b) Set k = k + 1 and move to next seed in Cj .4. else:a) De�ne U i = U i
k−1;b) De�ne the best path obtained from seed i, Πi = νk−1

i ;) Proeed to next seed.We de�ne the optimal sparse foal equivalent image support to mCj as follows
ζj = ∪i∈IΠ

i, (90)with
I = {i, U i ≤ U

i − 3σU i}, (91)where U
i (resp. σU i) is the sample mean (resp. standard deviation) of the U i'sobtained for eah seed at step 4a.This proess is repeated for the nc lusters.ResultsWe will present MCR �rst through simulated datasets in two senarios. Then wewill present performanes of MCR on real somaestheti data of four right hand�ngers.Data proessing, forward modeling and visualization is ahieved through Brain-storm Matlab ToolBox. Experimental data was aquired by Sabine Meunier usinga 151-hannel axial gradiometer CTF system.



RESULTS 67Simulated dataWe tested the method on simulated data in single soure and two soure senarios,to obtain a quantitative analysis of MCR.A high resolution tessellation of the grey/white matter boundary was obtainedfrom the segmentation of the MRI data set with the BrainSuite software. Toensure high spatial resolution we used a tessellation of 37,723 verties and 76,952faes, with an average triangle area of 2.59mm2.At every MC trial, an equivalent path was estimated. Cn was hosen as α2Iwith α2 = 10−2 (SNR), and Cz as α2
zI with α2

z = 100[nA.m]2 (to approximateatual urrent distribution of ortex and real SNR onditions in a typial MEGexperiment). αi and βj were set to 10−5 for every soure, and no priors besidesonnetivity were taken into aount and hene γi,j = 1 for all pairs of neighbors.
ǫ was set to 10−6. Values of parameters were hosen following [84℄.An ative area of ortex was modeled by �rst randomly seleting a vertex andthen adding its nearby verties until the desired path size ahieved.Auray riteriaPerformane evaluation riteria onsisted of uniformly weighted sums of (i) dis-tane between the original and remapped path entroid; (ii) di�erene betweenthe area of the original and remapped path; (iii) the subspae orrelation be-tween original and remapped path (subspae orrelation is explained in the nextsetion).These riteria take their values between 0% (no math) and 100% (perfetmath).Single soure aseMonte-Carlo (MC) simulations were performed by growing about 2500 ortialpathes at randomly seleted loations on the ortial surfae with areas ranging



68 MULTIPOLAR CORTICAL REMAPPINGfrom 5cm2 to 30cm2 (mean 17.27cm2). Uniform illumination was assigned tothe ortial dipoles within a path using a 100-time-sample waveform for ativedipoles. MEG signals were simulated on 151 axial gradiometers (5cm baseline)uniformly distributed about the upper hemisphere of a spherial head. Gaussianwhite noise was added to the signals with a uniform level aross all the hannelsof 10% of the peak of maximum amplitude. To aount for the performane, thepathes generated in the MC simulations were gathered in 5 lasses aording totheir areas. Eah lass was labeled by the average value of the path areas withinthat lass: Class1= 6.31Cm2; Class2= 12.00Cm2; Class3= 17.46Cm2; Class4=
22.75Cm2; Class5=27.84Cm2.Figure 22 in blue legend shows that there is no signi�ant degradation of themethod with inreasing area (average auray 89% with vertial bar showingstandard errors). MCR performs well with pathes belonging to all area lasses.
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Figure 19: Auray of lasses with vertial bar showing standard errors.The subspae orrelation between original and remapped pathes is shown in



RESULTS 69Figure 20. The subspae orrelation is obtained from the ordered set of osines ofthe priniples angle de�ned in [38℄. The subspae orrelation is the osine of thesmallest prinipal angle and will be unity if the two matries have at least onedimensional subspae in ommon. In fat,
cos(θ) = UtV, (92)where U and V are subspaes spanned by original and remapped pathes, respe-tively.Results show high degree of subspae orrelation between original and remappedpathes.
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Figure 20: Subspae orrelation of Classes with vertial bar showing stan-dard errors.



70 MULTIPOLAR CORTICAL REMAPPINGThe performane of the method in determining area of the path is shown inFigure 21. Results are presented in the form of linear regression between originaland estimated area and the best linear line through satter plot is estimatedthrough quadrati minimization. It is very lear from the �gure that the methodperforms with good auray and the original surfae area is restored with a highpreision. The estimator reovers quantitatively the area of the original surfaewith a orrelation of 0.98 for 2500 pathes at an average error of 0.2cm2.
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Figure 21: Satter plot showing original area vs estimated area with straightline representing linear �t.
Robustness of MCR against hanges in the thresh-oldRobustness of MCR against threshold value is presented by dereasing thresh-old value 4 fold and performing 2500 Monte Carlo simulations, as stated in the



RESULTS 71previous setions.It is lear in Figure 22 (red legend) that the average auray inreases foralmost all lasses (average auray is more than 90%). However by dereasing 4fold the threshold the omputation time inreases manyfold, as now more seedsneed to be evaluated to �nd the best equivalent path.
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Figure 22: Auray of lasses with vertial bar showing standard errorsunder normal MCR parameters (in blue) and smaller threshold parameters(in red).



72 MULTIPOLAR CORTICAL REMAPPINGTwo-soure aseFor the two soure senario we performed simulations by generating two randompathes of about 5cm2 and 10cm2 on the ortex. This time we evaluated repeata-bility of the performane of MCR by repeating the proess of estimation 200 timesfor these two pathes.The di�erene in area between original and remapped pathes, and aurayof MCR as desribed in Setion for the path of 10cm2 were alulated. Abootstrap based on�dene interval for the repeatability of these two statistiswas also omputed [27℄. This bootstrapping was performed as shown in Figure23 in whih n = 200 and B = 5000.

Figure 23: Illustration of the bootstrap estimate of on�dene intervals.To obtain the 95% on�dene interval of repeatability, we took 2.5 % and
97.5% quantities of the B repliation T1, T2, . . . , TB as the lower and upper bounds,respetively.



RESULTS 73Table 1 presents the repeatability of MCR at 95% on�dene interval in a twosoure on�guration for a path of size 10cm2. It is learly visible from the tablethat repeatability of MCR is very good and remains within a very narrow limit.Con�dene interval 95%Lower bound Upper boundAverage auray 81.1% 90.8%Di�erene area 0.14cm2 0.93cm2Table 1: Con�dene interval for repeatability of MCR.The reonstrution of these two pathes by MCR is presented in Figure 24,whih shows that MCR works aurately in determining the spatial extent of thepathes.

Figure 24: Reonstrution by MCR in two soure senario.



74 MULTIPOLAR CORTICAL REMAPPINGExperimental dataThe funtional mapping of limbs and �ngers is a matter of great interest in MEGommunity and it is widely known as somaestheti mapping. The early neuralresponses at about 40ms following stimulation of hand �ngers, follows a somaes-theti organization along the post-entral sulus. Somatosensory soure modelsare mostly onsidered as ECD models for these early responses. However, datafrom animal models indiates that even though there is some somaestheti orga-nization of �nger areas, these latter might be larger than expeted and overlaponsiderably. These �ndings indiate that ECD based model are not very use-ful for somaestheti mapping as they annot desribe the spatial extent of thesomaestheti soures.The data for somaestheti mapping were gathered for one healthy right-handed male [71℄. The somatosensory stimulation was an eletrial square-wavepulse delivered separately to four �ngers of eah hand: thumb, index, middle,and pinky �nger. The stimulation was applied between the middle and distalphalanxes of eah �nger. The stimulation order was randomized. The pulse dura-tion was 0.2 ms and the amplitude was set to twie the pereptual threshold. Theinterstimulus interval (ISI) was varied randomly from 350 to 550 ms to minimizehabituation and antiipation e�ets. The magneti �elds were reorded with aCTF Systems In. Omega 151 system with 151 hannels. For eah �nger, a 300-ms interval, inluding a 50-ms prestimulus interval, was reorded at a samplingrate of 1250Hz. The number of single trials per �nger after removal of those or-rupted by artifats ranged from 386 to 415. The DC o�set of the gradiometerswas removed from all single trials based on the prestimulus interval. Data foreah �nger were averaged and bandpassed between 3Hz-90Hz.



RESULTS 75We applied MCR on this data at 40ms lateny. Results revealed the expetedsomaestheti organization of the �nger primary ortial projetions, with a largedegree of overlap between �ngers, the thumb having the largest area (see Figure.)

Figure 25: (a) Color-enoding of the four �ngers stimulated in the study, asused in subsequent �gures; (b) Estimation of the respetive spatial extentof the ortial responses; () Zoom view of the ortial responses.Table 2 presents the area of ative ortex in response to stimulus for righthand four �ngers. Right hand �ngersThumb 9.29cm2Index 3.58cm2Middle 5.23cm2Pinky 4.71cm2Table 2: Estimated ativated ortial surfae areas in response to stimulation ofeah of the right hand �ngers.We also used MCR to evaluate the area of the ative ortex in the primaryand seondary sensory areas. The results presented in Figure 26 are for the righthand index �nger.
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Figure 26: Ative surfae areas in S1 and S2 regions.These results are in aordane with the existing neurologial data for thisexperiment [18℄ and demonstrate e�etiveness of MCR on real data.ConlusionWe have presented a fast and robust method for estimating the spatial extent ofortial urrents from MEG data. Results from extensive Monte-Carlo simulationsshow exellent performanes in terms of spatial haraterization even for verylarge pathes of 30cm2. The estimation of the surfae area of ative regions isvery aurate. Average error is only 0.2cm2 for 2500 pathes. The results for twosoures show that the method reveals the repeatability of MCR. Good results forsomaestheti data prove that the method works adequately with real data.



Part 3
MEG SOURCECHARACTERIZATION





Helmholtz-HodgeDeomposition
IntrodutionThe Helmholtz-Hodge Deomposition (HHD) is a tehnique used to deompose a2D (resp. 3D) ontinuous vetor �eld into a sum of three parts:

• a non-rotational part deriving from the gradient of a salar potential U ;
• a non-diverging part deriving from the rotational of a salar potential A(resp. vetorial potential);
• a harmoni part, i.e., whose Laplaian vanishes.The non-rotational omponent orresponds to the diverging omponents suhas soures and sink in the vetor �eld. The non-diverging part ontains informa-tion about rotating omponents of motion �elds suh as vorties. The harmonivetorial omponent is both divergene- and url-free revealing travelling objetsin the vetor �eld. So by identifying these omponents, di�erent features in thevetor �eld may be extrated.Features of a vetor �eld are desribed as patterns or strutures of interestlike soures, sinks and vorties. All these features must be deteted and analyzedin order to understand the physial behavior of a �ow. Although feature analysis79



80 HELMHOLTZ-HODGE DECOMPOSITIONis an important area, only a few tehnial tools are available for their detetionand visualization in the ontext of vetor �elds [91℄.HHD is used to detet features in vetor �elds, but in most of the urrentliterature it is desribed on �at 2D surfaes [41℄ or on 3D spae [98℄. Even ifsome authors desribe it on polyhedral surfaes [86℄ omputation are performedloally on the Eulidean spae. As shown in [59℄, the surfae urvature has tobe taken into aount for a proper estimation of vetor �elds on the tangentspaes. Moreover, results on onvergene are sensitively modi�ed by non-�atnessproperties. In this hapter, we rede�ne HHD on Riemannian spae whih enablesto detet features in motion �elds even on highly urved surfaes suh as theortex.The detetion of features in motion �eld is important in a wide variety of�elds: [82, 42℄. In airplane wind tunnel testing, identi�ation of vorties on wingsare ruial for identifying lift of the plane [1℄ (Figure 27 (a)). This problemhas appliations in meteorology also, for instane, to identify hurrianes on thesurfae of the earth [17℄ (Figure 27 (a)). In ardia motion analysis heart beatsare represented as soures and sinks [42℄. The identi�ation of all these pointsis thus preious to understand and predit the phenomena of interest. Moreover,feature identi�ation also allow a ompat representation of the vetor �eld [91℄.This feature detetion takes plae in three steps. First we estimate optial�ow on 2-Riemannian Manifold. We then apply Helmholtz-Hodge deompositionto deompose optial �ow in non-rotational salar potential, rotational (solenoid)salar potential and harmoni vetor �eld. Now the task of identifying featuressimpli�es to identifying ritial points of two salar potentials, and moving objetan be identi�ed by loating highest norm vetors of the harmoni omponent.The aim of this hapter is twofold: �rst rede�nition of HHD on 2-Riemannianmanifold and seondly its appliation to feature detetion in optial �ow on gen-eral surfaes.In subsequent setions we will �rst explain the Riemannian framework forVetorial PDE; this framework is adapted from [59℄. We then revisit the optial
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Figure 27: (a) Strength of vorties on wings of the plane; (b) Identi�ationof hurrianes eye.�ow on non �at surfaes. A new framework of HHD on 2-Riemannian manifoldwill be de�ned next. Lastly, we will present results on an appliation of HHD ondi�erent kinds of surfaes.Vetor �elds on manifoldsWe �rst reall some neessary bakground about di�erential geometry. For a moredetailed introdution, see [28℄.Let M be a 2-Riemannian manifold representing an imaging support (forexample the surfae of a planet or the highly irumvoluted brain envelope),parameterized by the loal oordinate system φ : p ∈ M 7→ (x1, x2) ∈ R
2.We introdue a salar quantity de�ned in time on a 2-dimensional surfae (e.g.,weather data or time-evolving estimates of brain ativation) as a funtion

I : (p, t) ∈ M× R 7−→ R.As for Eulidean spaes, it is possible to de�ne vetors on manifolds and we



82 HELMHOLTZ-HODGE DECOMPOSITIONprovide the most intuitive approah to this question.

Figure 28: Basis vetors (in blue and green) are de�ned on loally tangentplanes at eah node of a triangulation of the ortial surfae (in purple).Considering a urve γ(t) de�ned on M suh as γ(0) = p, we note that γ′(0)does not depend on the loal oordinate system. For any urve γ(t), the tangentvetor γ′(0) engenders a tangent spae TpM at point p. The anonial basis ofthis vetorial spae is
eα = γ′α(0) :=

∂

∂xα
,where xβ

(

γα(t)
)

= tδα,β.Proeeding identially at any point of the manifold, we de�ne TM =
⋃

p TpM,the tangent bundle of M. Thus a vetor �eld V is naturally de�ned as an appli-ation
V : M −→ TM.We further proeed by suggesting adaptations to the onepts of angle anddistane as de�ned on a manifold. Mmay be equipped with a Riemannian metri.



INTRODUCTION 83Hene at eah point p of M, there exists a positive-de�nite form:
gp : TpM× TpM −→ R,whih is di�erentiable with respet to p. Hereafter, we note (gp)α,β = gp

(

eα, eβ
).A natural hoie for gp is the restrition of the Eulidean metri to TpM, whihwe have adopted for subsequent omputations. Next, we will only refer to gp as

g. Integrating on a manifold now beomes possible using a volume form, i.e., adi�erential 2-form:
dµM : TM× TM −→ R.The most onvenient volume form may be assoiated to the metri g via:

√

det(gα,β)dx1dx2.Optial �ow on a Riemannian manifoldThis setion summarizes results from Lefèvre and Baillet on whih we have basedthe HHD extension [59℄.As in lassial omputation approahes to optial �ow, we now assume thatthe ativity of a point moving on a urve p(t) in M is onstant along time. Theondition
d

dt

[

I
(

p(t), t
)

]

= 0yields
∂tI +Dp(t)I(ṗ) = 0, (93)where DpI is the di�erential of I at point p, that is, the tangent linear appliationgiven by
DpI : TM −→ R.

ṗ = V = (V 1, V 2) stands for the unknown motion �eld we aim at omputing.However, mathematially speaking, the notion of di�erential is not intuitive whenmanipulating vetor �elds. In this regard, we adopt an opposite approah to theone exposed in [10℄ for Maxwell's equations where di�erential forms are preferred



84 HELMHOLTZ-HODGE DECOMPOSITIONto vetor �elds. We will ome bak to this point at the disretization step. That iswhy we express the linear appliation DpI as a salar produt and thus introdue
∇MI, the gradient of I whih is de�ned as the vetor �eld satisfying at eah point
p the following:

∀V ∈ TpM, g(∇MI,V) = DpI
(

V
)

.(93) an thereby be transformed into an optial-�ow type of equation:
∂tI + g(V,∇MI) = 0. (94)We note that (94) takes the same form as general onservation laws de�nedon manifolds in [88℄. Here, only the omponent of the �ow V in the diretionof the gradient is aessible to estimation. This orresponds to the well-knownaperture problem [49℄, whih requires additional onstraints on the �ow to yield aunique solution.RegularizationThe previous approah lassially redues to minimizing an energy funtional suhas the one in [49℄:

E(V) =

∫

M

[

∂I

∂t
+ g(V,∇MI)

]2

dµM + λ

∫

M
C(V)dµM. (95)The �rst term is a measure of �t of the optial �ow model to the data, whilethe seond one ats as a spatial regularizer of the �ow. The salar parameter λtunes the respetive ontribution of these two terms in the net energy ost E(V).Here we rewrite the smoothness term from [49℄, whih an be expressed as aFrobenius norm:

C(V) = Tr(t∇V · ∇V), (96)where
(

∇V
)β

α
= ∂αV

β +
∑

γ

Γβ
αγV

γis the ovariant derivative of V, a generalization of vetorial gradient. ∂αV
β isthe lassial Eulidian expression of the gradient, and ∑γ Γ

β
αγV γ re�ets loal



INTRODUCTION 85deformations of the tangent spae basis sine the Christo�el symbols Γβ
αγ arethe oordinates of ∂βeα along eγ . This rather omplex expression ensures thetensoriality property of V, i.e., invariane with parametrization hanges.This onstraint will tend to generate a regularized vetor �eld with smallspatial derivatives, that is a �eld with weak loal variations. Suh a regularizationsheme may be problemati in situations where spatial disontinuities our inthe image sequenes. For example, in the ase of a moving objet on a statibakground, the severe veloity disontinuities around the objet ontours areeventually blurred in the regularized �ow �eld (see [109℄ for a taxonomy of otherpossible terms).Variational formulationVariational formulation of 2D-optial �ow equation has been �rst proposed byShnörr in [92℄. The advantage of suh formulation is twofold. Theoretially, itensures that the problem is well-posed, that is, there exists a unique solution ina spei� and onvenient funtion spae, e.g., a Sobolev spae [92℄, or a spae offuntions with bounded variations [3℄. Numerially, it allows to solve the problemon disrete irregular surfae tessellations and to yield disrete solutions belongingto the hosen funtion spae. A possible restrition an be done when dealing withnon-quadrati regularizing terms where iterative methods must replae matrixinversions. We derive a variational formulation in the ase of Horn & Shunkisotropi smoothness priors, but the general framework remains the same forNagel's anisotropi image-driven regularization approah [77℄.Considering M, we need to de�ne a working spae of vetor �elds Γ1(M) onwhih funtional E(V) will be minimized. Let us �rst denote the Sobolev spae

H1(M) de�ned in [29℄ as the ompletion of C1(M) (the spae of di�erentiablefuntions on the manifold) with respet to ‖ · ‖H1 derived from the followingsalar produt
< u, v >H1=

∫

M
uv dµM +

∫

M
g(∇u,∇v) dµM.



86 HELMHOLTZ-HODGE DECOMPOSITIONWe hoose a spae of vetor �elds in whih the oordinates of eah elementare loated in a lassial Sobolev spae:
Γ1(M) =

{

V : M → TM / V =
2
∑

α=1

V αeα, V α ∈ H1(M)
}

, (97)with the salar produt given by
< U,V >Γ1(M)=

∫

M
g(U,V) dµM +

∫

M
Tr(t∇U∇V) dµM.

E(V) an be simpli�ed from (95) as a ombination of the following onstant, linearand bilinear forms:
K(t) =

∫

M

(

∂tI
)2
dµM ,

f(U) = −
∫

M
g(U,∇MI)∂tI dµM,

a1(U,V) =

∫

M

g(U,∇MI)g(V,∇MI)dµM

a2(U,V) =

∫

M
Tr(t∇U∇V) dµM

a(U,V) = a1(U,V) + λa2(U,V).Minimizing E(V) on Γ1(M) is then equivalent to the following problem :
min

V∈Γ1(M)

(

a(V,V) − 2f(V) +K(t)
)

. (98)Lax-Milgram theorem ensures uniqueness of the solution with the following as-sumptions:1. a and f are ontinuous forms;2. Γ1(M) is omplete, the bilinear form a(., .) is symmetri and oerive (el-lipti), that is, there exists a onstant C suh that
∀ V ∈ Γ1(M), a(V,V) ≥ C ‖ V ‖2Γ1(M) .Moreover, the solution V to (98) satis�es:
a(V,U) = f(U),∀ U ∈ Γ1(M). (99)



HELMHOLTZ HODGE DECOMPOSITION ON 2-RIEMANNIAN MANIFOLD87Continuity of f and a are straightforward. Completeness of Γ1(M) is ensuredbeause any Cauhy sequene has omponents in H1(M) whih are also Cauhysequenes sine ‖ · ‖H1 is bounded by ‖ . ‖Γ1(M).Proof of oerivity an be adapted � analogously to �at domains [92℄ � thanksto isothermal oordinates. Indeed, the Korn�Lihtenstein theorem (1914) allowsto �nd a system of oordinates for whih the two basis vetors of tangent spaeare orthogonal. In this basis, alulus are similar to those in Eulidian ase byintroduing a multipliative oe�ient equal to the norm of the basis vetors.A big di�erene with [92℄ is that the oerivity and therefore well-posednessdoes not require an assumption about linear independeny of the two omponentsof the gradient ∇MI (see [59℄).
Helmholtz Hodge deomposition on 2-Riemannian manifoldWe will now present an extended framework to perform HHD on Riemanniansurfaes and show that it an be applied for any vetor �eld de�ned on a 2-Riemannian manifold M.TheoryDe�nitionsIn our framework M is a surfae (or manifold) parameterized by loal harts
(x1, x2). Thus, it is possible to get a normal vetor at eah point

np =
∂

∂x1
∧ ∂

∂x2
.It is important to see that the normal does not depend on the hoie of theparametrization (x1, x2). Then we de�ne the gradient and divergene operators



88 HELMHOLTZ-HODGE DECOMPOSITIONthrough duality: dU(V) = g(∇MU,V),
∫

M
UdivMH = −

∫

M
g(H,∇MU).

Salar and vetorial url are at last given by
CurlMA = ∇MA ∧ n,urlMH = divM(H ∧ n).With these formulas we have intrinsi expressions whih do not depend on theparametrization of the surfae.TheoremWe start by reformulating results established in [86℄. Given V a vetor �eld in

Γ1(M), there exists unique funtions U and A in L2(M) and a vetor �eld H in
Γ1(M) suh that

V = ∇MU +CurlMA+H, (100)where urlM(∇MU) = 0,divM(CurlMA) = 0,divMH = 0,urlMH = 0.In pratie, few divergene omponents and a few rotational omponents areto be found in the �eld H. To ounter this problem, we an further deomposethe "harmoni" remainder, H, into three omponents suh that more aurate



HELMHOLTZ HODGE DECOMPOSITION ON 2-RIEMANNIAN MANIFOLD89results an be obtained. This iterative sheme an be formulated as below:
V = ∇MU1 +CurlMA1 +H1,

= ∇MU1 +CurlMA1 + [∇MU2 +CurlMA2 +H2],

= ∇MU1 +CurlMA1 +∇MU2 +CurlMA2

+ . . .+ [∇MUn +CurlMAn +Hn],

= [∇MU1 +∇MU2 + . . .+∇MUn]

+[CurlMA1 +CurlMA2 + . . . +CurlMAn] +Hn.If the number of iterations is large enough, the �nal url-free omponent andthe �nal divergene-free omponent will be very lose to the respetive true value.In pratie, one iteration is enough to extrat useful features of a vetor �eld.DisretizationIn this part we show how to onstrut the funtions U and A starting fromtheoretial onsiderations before addressing more pratial aspets.Following lassial onstrutions, U and A will minimize the two funtionals:
∫

M

||V −∇MU ||2,
∫

M
||V −CurlMA||2,where ||.|| is the norm assoiated to the Riemannian metri g(., ·).These two funtionals are onvex. Therefore, they arry a minimum on L2(M)whih satis�es:

∀φ ∈ L2(M),

∫

M
g(V,∇Mφ) =

∫

M
g(∇MU,∇Mφ), (101)

∀φ ∈ L2(M),

∫

M
g(V,CurlMφ) =

∫

M
g(CurlMA,CurlMφ). (102)These two equations are very important sine they provide the path to numeri-al omputations when the spae L2(M) is approximated by a �nite dimensionsubspae (e.g., ontinuous linear pieewise funtions).



90 HELMHOLTZ-HODGE DECOMPOSITIONIndeed if we have basis funtions (φ1, . . . , φn), then we an writeU = (U1, . . . , Un)
T ,

A = (A1, . . . , An)
T , and equations (101) and (102) reads in a metrial way:

[

∫

M
g(∇Mφi,∇Mφj)

]

i,j

U =

[

∫

M
g(V,∇Mφi)

]

i

(103)
[

∫

M
g(CurlMφi,CurlMφj)

]

i,j

A =

[

∫

M
g(V,CurlMφi)

]

i

. (104)The harmoni omponent H of the vetor �eld V is obtained simply as
H = V−∇MU −CurlMA. (105)We provide some details about the numerial implementation of (103) and(104), whih are de�ned on a tessellation M̂ approximating the manifold. Thistessellation onsists of N nodes and T triangles, as shown in Figure 29.

Figure 29: Illustration of loal omputations and assoiated de�nitions fromFEM on a triangular surfae mesh.Following the �nite element method (FEM), we de�ne N funtions, whih areontinuous pieewise a�ne, with the property to be equal to 1 at node i and 0 at



HELMHOLTZ HODGE DECOMPOSITION ON 2-RIEMANNIAN MANIFOLD91all other triangle nodes. They are the basis funtions for the approximation. So(103) reads:
[

∑

T∋i,j

hi

‖ hi ‖2
· hj

‖ hj ‖2
A(T )

]

U =

[

∑

T∋i

A(T )V · hi

‖ hi ‖2

]

, (106)where hi is the height taken from i in the triangle T , A(T ) is the area of thetriangle T .In the same spirit, (104) is disretized as follows:
[

∑

T∋i,j

(

hi

‖ hi ‖2
∧ n

)

·
(

hj

‖ hj ‖2
∧ n

)

A(T )

]

A =

[

∑

T∋i

A(T )V ·
(

hi

‖ hi ‖2
∧ n

)]

,(107)where n is the normal to the triangle T .



92 HELMHOLTZ-HODGE DECOMPOSITIONFeature detetion as ritial points of potentialsThe ritial points of a vetor �eld are often lassi�ed depending on the eigen-values of the Jaobian matrix at a point in a vetor �eld. In our ase, however,ritial points of the �ow an be found as loal extrema of the divergene-freepotential A (representing rotation) and url-free potential U (representing diver-gene). Finding features as ritial points on global potential �elds is muh lesssensitive to noise in the data and therefore be less likely to get false positives, inomparison to loal Jaobian eigenvalues based methods [68℄.A sink orresponds to a loal maximum of the potential U , whereas a soureorresponds to its loal minimum. In Figure 30, a diverging vetor �eld on �at2D manifold is shown for illustration purposes, it is learly visible from Figure30 (b), soure and sink of vetor �elds an easily be deteted from the url freepotential U .

Figure 30: (a) Vetor �eld having soure and sink on a �at 2D manifold;(b) Curl-free potential U of vetor �eld.Figure 31 shows diverging vetor �eld overlap on a spherial manifold (Rie-mannian manifold), the magnitude of the potential U is shown in olor. In Figure31 (a), a soure in the vetor �eld is deteted through minima (blue) of U , whereasa sink is identi�ed by maxima (red) in U ; see Figure 31 (b).



HELMHOLTZ HODGE DECOMPOSITION ON 2-RIEMANNIAN MANIFOLD93

Figure 31: (a) Soure vetor �eld overlapped with U on spherial manifold;(b) Sink vetor �eld overlapped with U .Similarly, ounterlokwise and lokwise vorties are represented as loalminima and maxima of A, respetively. In Figure 32 (a), a rotating vetor �eldon a �at 2D manifold is shown for illustration purposes. It is learly visible fromFigure 32 (b) that rotating vetor �eld an easily be deteted from the divergenefree potential A.

Figure 32: (a) Vetor �eld with vortex on a �at 2D manifold; (b) Divergene-free potential A of a vetor �eld.Figure 33 shows that a rotating vetor �eld on a spherial manifold, olorshows magnitude of the potential A. In Figure 33 (a) ounterlokwise vortex



94 HELMHOLTZ-HODGE DECOMPOSITIONin the vetor �eld is deteted by maxima (red) in A, whereas lokwise vortex isidenti�ed by minima (blue) in A, Figure 33 (b).

Figure 33: (a) Counterlokwise vortex vetor �eld overlap with A on spher-ial manifold. (b) Clokwise vortex vetor �eld overlap with A.To detet traveling objet on a Riemannian surfae, one has to detet vetorswith highest norms in the vetor �eld H and thus one is able to follow the pathof the moving objet. This ability of HHD will be demonstrated in Figure 36.



SIMULATIONS AND RESULTS 95Simulations and resultsIn order to test the new framework, we evaluate its performane in real andsimulated environments on four types of Riemannian manifolds (rabbit, elephant,sphere and human brain).First, we evaluate this methodology in deteting soures and sinks on thesurfae of a bunny mesh. In this test benh, �rst we generate a vetor �eldwith soures and sinks whih mimi the optial �ow of objets of inreasing anddereasing in size. Seondly we generate rotating vetor �elds whih mimi theoptial �ow of a tornado. We then performed HHD on these vetor �elds.In Figure 34 (a), A on the surfae of the rabbit is represented in olor, whilearrows in green represent the vetor �eld. It is learly visible in the �gure thatour framework identi�ed vorties of the vetor �eld. In Figure 34 (b), U on thesurfae of the rabbit is represented in olor.Our framework reveals soures and sinks of the vetor �eld, as shown bythis �gure. The soure is represented in blue while sink is in red. In Figure 34() and Figure 34 (d), rotating and diverging vetor �elds are shown, and theirorresponding A and U omponents are shown in olors on the surfae.
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Figure 34: Examples of di�erent types of vetor �eld and their U and Aomponents. (a) Rotating vetor �eld and its A omponent; (b) Divergingvetor �eld and its U omponent; () Rotating and diverging vetor �eldand its A omponent; (d) Rotating and diverging vetor �eld and its Uomponent.HHD deomposition is shown on the surfae of an elephant objet. In Figure35, vetor �elds ontaining both rotating and diverging omponents are shown.It is learly seen in Figure 35 (b) that HHD detets the soure (minima of U),sink (maxima of U), lokwise vortex (minima of A) and ounter lokwise vortex(maxima of A).
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Figure 35: Vetor �eld and its U and A omponents; (a) Vetor �eld onelephant surfae; (b) Close-up view of vetor �eld with U and A superim-posed; () Rotating vetor �eld deteted by A Component; (d) Divergingvetor �eld identi�ed by U .In a seond set of simulations, we �rst traked a soure and vortex on thesurfae of a rabbit objet by �nding ritial points of salar �elds U and A, asshown in Figure 36 (a). Seondly, we traked a onstant intensity path, whih ismoving aording to the advetion equation [59℄ by traking highest norm vetor



98 HELMHOLTZ-HODGE DECOMPOSITIONin vetor �eld H, as shown in Figure 36.

Figure 36: Traking of Sink, vortex and onstant intensity path on thesurfae of a rabbit. Symbols have been assigned for soure vortex andonstant intensity path while arrows show the trak, and snapshots oftraking are superimposed in �gures; (a) Traking of omplete paths of asoure and a vortex; (b) Traking of a omplete path of onstant intensity.We further tested the HHD in a real senario using experimental MEG data.We �rst obtained the optial �ow from MEG soure images representing motion�elds of neural urrent on the surfae of the brain and then applied HHD to detetsoures and sinks.



CONCLUSION 99As the majority of the neural eletrial ativity is predominantly diverging, wepresent results for the U part only in Figure 37, whih shows a diverging sourein the primary somatosensory part of the brain, whih is learly related to thesomatosensory experiment (brain response to the eletrial impulse on the �nger)undertaken to get this data.

Figure 37: (a) U omponent of HHD on the surfae of the brain; (b) Zoomview of ativation.
ConlusionIn this hapter, we have developed a framework for the deomposition of a vetor�eld on 2-Riemannian manifolds. The omputations involved are simple, and tookless than 2 seonds to ompute all HHD omponents for 1500 node tessellationon a onventional workstation. Evaluation of this framework under real andstimulated environments were presented.In the next hapter, appliations of HHD in funtional and strutural brainimaging will be suggested.



Part 4
HHD IN PRACTICE



Appliations of HHD
Introdution
In the subsequent setions of this hapter we will present several appliations ofHHD in strutural and funtional brain imaging. We start from the deompositionof data from a study in di�erent feature sets. Then we show the ability of HHD inharaterizing epilepti ativity. We also present how divergene representation isdi�erent from normal urrent density. Lastly, we present two examples of HHD instrutural brain imaging: Firstly, we detet growth seeds in the neonate brain andseondly, we haraterize brain tumor growth. In the following appliations, wewill also apply HHD on Eletroortiography(ECoG) data so before proeedingfurther, we present brief desription of ECoG.ECoG is a method in whih eletrodes are plaed diretly on the surfae ofthe dura or of the brain. ECoG signals are omposed of mixtures of loal �eldpotentials. Eletrodes onsist of grids or strips. Grid eletrodes are arranged inan retangular array, whereas strip eletrodes are arranged along a line. A typialECoG setup is shown in Figure 38.In order to run HHD on ECoG grids, we �rst need to generate a surfaerepresentation of the reording grid, whih follows the envelope of the ortex. Theproess of grid generation and o-ordinate alignment are explained in Appendix1. 101
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Figure 38: (a) Left view of grid and strips on a ortex; (b) Bottom view ofgrid and strips on a ortex.HDD of MEG experimental dataMEG, EEG and EOG soure imaging reveal spatially-distributed and dense infor-mation ontents in the temporal dimension. The extration of patterns of interestfrom the data has been the expertise of liniians and investigators but remainsproblemati when dealing with respet to reproduibility and expert-dependeny,espeially when onsidering the omplex geometry of the ortex.



CHARACTERIZING EPILEPTIC ACTIVITY 103A �rst appliation of HHD aims at suggesting a prinipled approah to theautomati extration of salient dynamial features from ortial ativity imageseries, thereby failitating the reproduible analysis of the experimental data. Toillustrate this appliation of HHD, we used a dataset from an MEG experimentthat onsisted in mapping the primary somatosensory response to repeated ele-trial stimulations of the hand �ngers [71℄. The trial duration was 300-ms thatinluded a 50-ms prestimulus interval; sampling rate was 1250Hz on all 151 MEGhannels (VSM/CTF MedTeh).In order to test this appliation we �rst obtained optial �ow from the minimum-norm soure estimates we used them to alulate optial �ow of neural urrentson the surfae of the brain. HHD of this optial �ow was applied to detet souresand sink. As the majority of the neural eletrial ativity is predominantly di-verging, and travelling, we present results for the U and H HHD parts only inFigure 37, whih shows diverging soures and travelling objets in the primarysomatosensory part of the brain.In Figure 39, we extrated features of the ortial urrent ativity between30ms and 45 ms after stimulus delivery for the ompat representation of eletro-physiologial patterns in the data.The urrent ativity during this period is deomposed in only three features:two soures and one travelling objet. Hene we obtain a ompat representationof ortial ativity during the early somatosensory ativity.The omputations involved took less than 5 minutes over the 55, 000 nodes ofa ortex mesh using a onventional desktop omputer running Matlab.The results for this appliation are presented in [58℄.
Charaterizing epilepti ativityIn the seond set of appliations, we will present the automati haraterizationof epilepti ativity using HHD using ECoG and MEG.This appliation of HHD �nds its roots from typial �ow dynami problems.
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Figure 39: Deomposition of ortial ativity in feature sets.The vast amount of motion �ow data has to be proessed in suh a way thatimportant �ow features an be automatially deteted. In ECoG/MEG duringepilepsy study, we fae the same problem and an automati mehanism is neededto detet important features in epilepti data, e.g.: spikes and seizure onsets.Let us �rst emphasize how a divergene representation of a urrent densityis di�erent from the original urrent density. In omparison to urrent density,its divergent U omponent yields a more foal and ompat representation of theortial ativity due to the fat that U is sensitive only to soures or sinks in theurrent density.A foal and ompat representation of epilepti ativity an be used in iden-tifying and loalizing the epilepti foi.Figure 40 shows omparison between two types of representation. Figure40(a) shows divergene representation side by side with a normal ortial urrent



CHARACTERIZING EPILEPTIC ACTIVITY 105ativity. It is lear that divergene representation is very foal and an easilyindiate the epilepti foi.

Figure 40: (a) Divergene on a ortex during epilepti spikes; (b) Currentdensity on a ortex during epilepti spikes.High divergene in the ortial urrent ativity an haraterize an epileptiativity sine it an easily be represented by soures and sinks.Another important parameter we use is Kineti Energy (KE) of a vetor �eld andit is de�ned as:
KE(t) =

∫

M
‖(V )‖2 dM. (108)

Charaterizing of epilepti ativity in ECoGFor HHD appliation on ECoG we used eletrode data provided by Dr. M.Raghavan (MCW Neurology). In total, 64 eletrodes are plaed on the rightmotor-somatosensory ortex. Sampling rate for was set at 1 KHz. CT sans wereaquired to loalize the eletrodes and were aligned with the post-surgial MRIimage volume.The result of the appliation of HHD on ECoG is summarized in Figure 41.An epilepti spike is deteted in time through maximum in KE of diverging om-ponent Vdiv = ∇MU of optial �ow V. Figure 41(a) shows the kineti energy. For



106 APPLICATIONS OF HHDspatial loalization of the epilepti spike, we seek singularities in diverging U om-ponent of HHD at the time instants deteted through KE. In Figures 41 (b) and(), the diverging omponent U is shown on the surfae of the grid. The souresand sink represent points of high divergene in the data and indiate the epileptinetwork ausing epilepti ativity. These results for this epilepti network wassubsequently on�rmed by the neurologist.

Figure 41: (a) Kineti energy diverging omponent of optial �ow; (b) HHDsoure on the ECoG grid; () HHD sink on the ECoG grid.



CHARACTERIZING EPILEPTIC ACTIVITY 107Charaterizing epilepti ativity with MEG soureimagingWe used a dataset ontaining a rare ourrene of seizure during MEG reording.We �rst alulate the Kineti energy (KE) Vdiv = ∇MU on the optial �owvetor �eld of the minimum-norm estimate of ortial urrents. The highest peakin KE as shown in Figure 42 (b) orretly points at the start of the epileptiseizure. Figures 42 (a), (d) and () show magneti �elds reorded at the left o-ipital region, telling the story of the seizure. Seizure starts with a high frequenyosillatory (HFO) burst (Figure 42 (d)) and moves later to a ontinuous buzzingmode, as shown in Figure 42 ().To orretly haraterize the epilepti network, we foussed the analysis on thestart of the seizure. In Figures 41 (e) and (f), the diverging omponent U is shownin olor on the surfae of the ortex. Figure 42 (e) shows the soure from wherethe atual epilepti ativity started (the soure is represented in blue). After
5ms, this soure onverted into the sink (the sink is represented in red) with anew soure nearby (Figure 42 (f)). This pattern of ativity, deteted throughHHD, haraterizes the early epilepti network en route to seizure. The resultsfor this appliation are presented in [58℄.
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Figure 42: Epilepti seizure as seen by optial �ow and HHD; (a) MEGmagneti �eld at left oipital region in middle of seizure; (b) KE of Vdiv =
∇MU during reording; () MEG magneti �eld at left oipital region atthe start of seizure; (e) Epilepti soure in blue; (f) Epilepti soure (inblue) and sink (in red).



IDENTIFICATION OF CORTICAL DEVELOPMENT IN THE NEONATEBRAIN 109Identi�ation of ortial development inthe neonate brainThis is a possible appliation of HHD to strutural brain imaging. Using MRI [30℄it is possible to follow preisely the ontogenesis of the ortial folding during earlyphases of development. Appliations are numerous from the detetion of potentiallesions [30℄ to the deiphering of suli formation proesses whose physiologialorigins are yet not well understood [102, 99℄. In this appliation, we report on anew framework to haraterize the rapid brain development of newborns.The set of data onsists of 4 healthy newborns with 2 MRI T2 aquisitionsfor eah at birth and around 3 weeks later. The white and gray matters aresegmented through a dediated algorithm to overome the inhomogeneity of theontrast [63℄. One the ortial surfaes have been extrated we ompute theirdepth maps from a geodesi distane of the surfae to a binary mask of the brain.Then for eah subjet we registered the less mature ortial surfae on themore mature one and interpolate the depth maps by a nearest neighbors method[12℄. We obtained therefore two depth maps, in red on Figure 43, projeted onthe same surfae at two di�erent time steps so it is possible to trak the evolutionof those maps. For this, we omputed a displaement �eld estimated by a surfae

Figure 43: (a) Less mature ortial surfae; (b) More mature ortial sur-fae.optial �ow method exposed in part 3 of this thesis. This displaement �eld, in



110 APPLICATIONS OF HHDgreen on Figure 44, re�eted loal evolution of suli diretly on the ortial surfae(smoothed out here for a better visualization).

Figure 44: Surfae optial �ow method aounting for the displaement �eldbetween two ortial surfaes.



IDENTIFICATION OF CORTICAL DEVELOPMENT IN THE NEONATEBRAIN 111We further deteted the ritial points of the displaement �eld, i.e.: loa-tions of points with high divergene using HHD. Minima of salar divergene Upotential, revealed putative soures of fundamental folding during the develop-mental proess. We an see qualitatively on Figure 44 the radial struture ofthe vetor �eld in green. More quantitatively, Figure 45 reveals soures pointsin yellow (minima of the U in red/blue) of the displaement �eld. The souresan be viewed as growth seeds or in other terms points around whih the sulalgrowth organizes itself. We show the reproduibility of these growth seeds on Fig-

Figure 45: Detetion of growth seed through salar divergene U of HHD.ure 46 where the olors of the points orrespond to 4 di�erent neonates surfaes,registered on the same template [9℄. The numbers an be linked to a sulal rootstaxonomy that we an �nd in the literature [87℄.
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Figure 46: The reproduibility of these growth seeds in four subjets.The main originality of this appliation is the use of the Helmholtz deompo-sition to haraterize the brain folding of human newborns. We an note a goodreproduibility of these growth enters or growth seeds among 4 neonates. Wehypothesize a possible link between this new onept and the "sulal roots" [87℄or sulal pits [66℄ proposed to explain the variability of human brain anatomy.The results for this appliation were published in [60, 61℄.



CHARACTERIZING TUMOR GROWTH PATTERNS 113Charaterizing tumor growth patternsPrimary brain tumors inlude any tumor that starts in the brain. Tumors may beon�ned to a small area, invasive (spread to nearby areas), benign (not anerous),or malignant (anerous).In the last appliation of HHD, we fous on haraterizing growth pattern ofinvasive brain tumors. Here we used simple two-dimensional version of HHD toshow a proof of onept but it an be evolved in full appliation by extratingtumor surfaes and by using the methods explained in neonate brain appliation,to haraterize tumor growth on Riemannian manifolds.We used two sets of FLAIR MRI images olleted on two di�erent oasionsfor the same tumor patient, both the MRI sequenes were aligned in the sameoordinate system using FSL pakage [94℄. We also normalized the ontrast ofthe two sets of images. We seleted slie 84 on whih tumor growth is mostprominent on both slides (Figure 47 (a) and (b)) and omputed the optial �owbetween these two slies (Figure 47 ()) with arrows showing optial �ow. Wethen omputed the HHD on tumor portion of the slie; see Figure 47 (d).In Figure 47 (e), olor shown divergene omponent U with minima in whitedots. The vetor �eld shown here is the diverging omponent of optial �ow
∇MU .It is shown that the minima of U orretly identify the growth seeds of tumor,with ∇MU , revealing their relative spreading diretions. Hene, this may be aninitial blok of a tool that an automatially haraterize growth patterns of braintumors.



114 APPLICATIONS OF HHD

Figure 47: (a) Slie 84 of FLAIR MRI at time instant 1; (b) Slie 84 ofFLAIR MRI at time instant 2; () Optial �ow of two slies; (d) Zoom viewof optial �ow; (e) HHD on optial �ow.



CONCLUSION 115ConlusionWe have presented four appliations of HHD in strutural and funtional brainimaging appliations. The results are very enouraging and show promise HHDo�ers in a wide variety of appliations. We believe that HHD has probably manyother appliations in all kind of spatiotemporal phenomena that our in thebrain.



Part 5
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Conlusion and Future Ations
We introdued a new multipole moment based approah to the MEG soure har-aterization in whih we have shown that MCR an aurately haraterize spa-tially extended neural urrent soures by mathing urrent multipole moments.The proedure is based on zero-order Tikhonov regularized image but the methodan be initialized using any other imaging based method.The MCR approah solves the loal imaging problem, hene reduing om-putational load to very large extent. Moreover, in multipole mathing, we aremathing only 8 moments instead of vetors equal to the dimension of the origi-nal data (the number of sensors), whih for urrent MEG system is around 300,hene again reduing omputational load. The algorithm is therefore tratableand reasonably fast (about 20se for a 37723-node ortial tessellation).Another important fator is the modi�ed Gibbs priors we used for mathing.Hene we may inorporate physiologial information from other modalities suhas PET or fMRI. By doing so, we redued the non triviality of the eletromagnetiinverse problem by restriting possible solutions.Results from extensive Monte-Carlo simulations show exellent performanesin terms of spatial haraterization even for very large pathes of 30cm2. Theestimation of the surfae area of ative regions is very aurate, the average errorin area is only 0.2cm2 for 2500 pathes. The results for two soures show that themethod reveals the repeatability of MCR.Good results for somaestheti data shows the method works well for real data.Using MCR we an learly loate the somatotopy of �nger responses.117



118 CONCLUSION AND FUTURE ACTIONSThe future upgrade of this method is to use magneti multipole momentsinstead of urrent multipole moments for remapping and to ompare their orre-sponding results. (For a detail desription of the urrent and magneti multipolemoments see [54℄.)On the MEG soure dynami haraterization front, we have developed aframework for the deomposition of vetor �eld on 2-Riemannian manifolds. Theomputations involved are simple and it took less than 2 seonds to omputeall the HHD omponents for 1500 node tessellation on a onventional desktop.Evaluation of this framework under real and stimulated environment gives veryenouraging results. The appliations for this formulation are emerging, withmore and more three-dimensional imaging evolving in real world.Future path for this framework is its modi�ation in disretization to higher-order �nite element analysis, and its evaluation in more real world senarios.We have presented some appliations of HHD in funtional and brain imagingbut we feel that HHD has more promise in biomedial imaging and more appli-ations need to be disovered in biomedial as well as in other �elds. The tumorgrowth haraterization needs to be more mature in a way that the tumor surfaesneed to be extrated and HHD is applied on them in the same spirit as in theneonate brain appliation.
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Grid Generation
To generate the grid on whih HHD an be applied, subjets MRI and CT sanare needed. In a �rst step CT and MRI of subjet are aligned, using FSL pakage[94℄. After alignment we manually extrat grid oordinates from the CT san.Grid eletrodes are very oarse and eletrode positions need to be deteted toreate dense virtual eletrode systems before HHD an be applied on it. Weused multidimensional saling to interpolate between eletrode positions andVORONOI diagram is then used to generate the interpolated surfae whih fol-lows the ortial envelope and on whih virtual eletrodes are loated (see �gure48).To interpolate between potential values for the virtual eletrodes system weused an interpolation sheme that is onstrained by a minimal norm of the Lapla-ian (see [81℄ for details), as shown in Figure 49.
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122 GRID GENERATION

Figure 48: (a) Original grid; (b) Interpolated grid.

Figure 49: (a) Data on original grid; (b) Interpolated data on interpolatedgrid.



123The ortial surfae (the ortial surfae is extrated fromMRI using freesurferpakage [20℄) and interpolated grid along with strips eletrode are shown in Figure50.

Figure 50: Overlapped interpolated grid and the ortial surfae.





MEG-ECoG soure loalizationand dynamis omparison
In this appendix we will ompare MEG soure loalization and dynamis withECoG.The MEG data set that has been used for this omparison was reorded on theElekta Neuromag 306 system at the Medial College of Wisonsin. This data isreorded at 2KHz sampling rate with 204 gradiometers and 102 magnetometers.Single sphere head model was used for forward omputation minimumnorm isused for inverse modeling.ECoG data were also reorded at the Medial College of Wisonsin. In total,
73 eletrodes were plaed over the frontal, parietal and temporal orties. Sam-pling rate for aquisition was 1KHz. CT sans were aquired post-surgery andaligned with a presurgial MRI image volume.The data set in both methods onsisted of an epilepti HFO burst, lastingabout 1s. First we will show soure loalization of HFO using MEG and seondlywe will show soure dynamis using Granger ausality.Granger ausality is a statistial onept of ausality that is based on pre-dition. Aording to Granger ausality, if a signal X1 "Granger-auses" (or"G-auses") a signal X2, then past values of X1 should ontain information thathelps predit X2 above and beyond the information ontained in past values of
X2 alone. Its mathematial formulation is based on linear regression modeling of125



126MEG-ECOG SOURCE LOCALIZATION AND DYNAMICS COMPARISONstohasti proesses [40℄.Figure 51 a. shows the epilepti HFO during MEG reording. Figure 51 b.disaplys soure loalization for this HFO burst, when summed aross whole 1sduration. This soure loalization reveals the bifoal nature of the epilepsy. Toinvestigate further we extrat the urrent density waveforms at the two epileptifoi (see �gure 51 .). We then need to understand whih epilepti fous is drivingother brain areas, so we estimated Granger ausality between these regions, �gure51 d. whih learly reveals fous 1 is driving fous 2.
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Figure 51: (a) HFO reorded during MEG reording. (b) Soure loalizationfor HFO sum aross all time. () Current density waveform orrespondingto two epilepti foi. (d) Granger ausality between epilepti foi.



128MEG-ECOG SOURCE LOCALIZATION AND DYNAMICS COMPARISONTo on�rm our MEG �nding, we look at the ECoG data reorded indepen-dently. HFO burst in ECoG data were found on eletrodes 36 and 72. One sampleof this burst is shown in �gure 52 b. We investigated the loalization of thesebursting eletrodes, after alignment of ECoG with MRI extrated surfae usingthe methods exposed in Appendix 1, we found that they were loated above theregions identi�ed by MEG �gure 52 a., whih on�rms MEG as an e�ient forlinial investigation of epilepsy.

Figure 52: (a) Position of eletrode 36 and 72 (b) Eletri potential wave-forms for ECoG eletrode during epilepti HFO burst



129We also omputed the Granger ausality between eletrode 36 and 72 andresults on�rmed the ausal relation revealed by MEG �gure 53, whih on�rmsthat MEG is not only good at loalizing epilepti ativity but also for revelingdynamis of its ativity.

Figure 53: Granger ausality between eletrodes 36 and 72



130MEG-ECOG SOURCE LOCALIZATION AND DYNAMICS COMPARISONAnother study we did to on�rm �ndings for this patient, was to look for slowwaves under 0.1Hz. These slow waves may preede the epilepti seizure. Thedata was reorded using 23 hannel standard montage used at Medial College ofWisonsin. Sampling rate was 200Hz. We used a 3-shell Sphere (Berg) model forforward model alulation and Brainstorm minimum-norm for inverse alulation.The results were in agreement with MEG and ECoG. Figure 54 a. shows slowwave omponents preeding the epilepti seizure. An autoregressive model wasused to lean blinking and heartbeat artifats, and data was low passed at 0.1Hz.A EEG slow wave is shown in �gure 54 b. We then performed soure loalizationon this data and results were summed between 5 and 25 ses. Figure 54 . furtheron�rmed the results obtained from ECoG and MEG.These slow waves were hardly been investigated in the literature, and thesepreliminary results may on�rm their e�etiveness for loalizing epilepti foi.
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Figure 54: (a) EEG Slow wave with artifats. (b) Clean EEG slow wave.() Soure Loalization for EEG.





Brainstorm's HHD-Optial�owplug-in Tutorial
Sheraz KHANshkhan�mw.eduMedial College of Wisonsin-2009

This tutorial explains GUI of HHD-Optial�ow plug-in developed using Matlab.This plug-in implements the methods introdued in this thesis.HHD-Optial�ow plug-in along with Brainstorm (MEG/EEG data proessingsoftware) an be downloaded from:http://neuroimage.us.edu/brainstorm
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134 BRAINSTORM'S HHD-OPTICALFLOW PLUG-IN TUTORIAL1) From Brainstorm

Figure 55: Launhing from brainstorm



1352) Plug-in GUIWhen HHD-Optial�ow plug-in start, following window pops up ome havingthree TABs, Optial Flow, HHD and Visualization, Optial �ow needs to bealulated before alulating HHD.Calulating Optial �ow or HHD is memory intensive, so for large data sets, itsometimes gives error "out of memory", to resolve this there are two solutions:1) Run brainstorm in 64 bit operating system.2) Use less time points for alulating optial �ow or HHD.Moreover HHD and optial �ow are implemented in multi-threaded fashion, sothere is no progress bar, but at the end of alulation msgbox indiates end ofalulations.

Figure 56: Plug-in GUI



136 BRAINSTORM'S HHD-OPTICALFLOW PLUG-IN TUTORIAL3) Optial Flow TabSelet time points on whih optial �ow needs to be alulated and lik alulateoptial �ow. Save data an be used to save alulated optial �ow struture.

Figure 57: Optial Flow Tab



1374) HHD TabSelet time points on whih HHD needs to be alulated, reursion depth setsnumber of times HHD is repeated, to re�ne Laplaian vetor �eld (H) omponentof HHD. Save data an be used to save alulated HHD struture.

Figure 58: HHD Tab



138 BRAINSTORM'S HHD-OPTICALFLOW PLUG-IN TUTORIAL5) Visualization TabSelet salar �eld and vetor �eld needed to be display, browse through all the timepoints on whih HHD and optial �ow is alulated. Figure 59. shows overlappedsalar and vetor �elds on the ortial manifold at a single time instant.

Figure 59: Visualization Tab
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