Agricultural price instability and optimal stabilisation policies PhD Defence

Christophe Gouel

INRA - CEPII - École Polytechnique

April 8, 2011

Context

Agricultural price instability is costly:

- For producers in developed countries,
- And for both producers and consumers in developing countries.

Context

Agricultural price instability is costly:

- For producers in developed countries,
- And for both producers and consumers in developing countries.

To mitigate these effects most countries pursue some kind of stabilisation policies:

- Countercyclical agricultural trade policies (Andersen & Nelgen, 2010),
- Self-sufficiency in major cereals (China, India),
- Staple food subsidies (MENA),
- Insurance subsidies or commodity price policies in developed countries,

Are these policies justified and properly designed?

- 2 economic questions:
 - Is it possible to improve the situation through public intervention?
 - In developed countries, the answer is ambiguous since producers have many ways to insure against their risk.
 - In developing countries, insurance possibilities are extremely limited, and the risk for consumers may be very high given their important food budget share.
 - If it is the case, what is the best way to do it?

Inspiration from modern macroeconomics

Modern macroeconomics synthesis

- Built around the neoclassical stochastic growth model.
- Study agents' interactions based on their microeconomic behaviour.
- Acknowledge the importance of consistent intertemporal decisions and the endogeneity of expectations.
- Monetary policies are effective in improving welfare since there are many market imperfections (e.g., prices or wages rigidity).

The storage model as workhorse

The literature on the storage model is consistent with most of previous principles.

The storage model as workhorse

The literature on the storage model is consistent with most of previous principles.

Except that its dynamic is optimal.

The storage model as workhorse

The literature on the storage model is consistent with most of previous principles.

Except that its dynamic is optimal.

Introducing a relevant market imperfection

Price instability matters because agents (farmers, middlemen, consumers) are unable to insure against it.

For simplicity, I consider in the thesis only the effect on consumers and assume other agents to be risk-neutral.

Market incompleteness and risk-averse consumers

- Consistent with the literature on the welfare cost of price instability (Waugh, 1944; Turnovsky et al., 1980; Wright & Williams, 1988), which assumes that consumers are unable to insure.
- In line also with Newbery & Stiglitz (1981) approach, which uses market incompleteness as a justification for public intervention.

Which policies?

Considering this market imperfection, there are many ways for government to improve welfare:

- Staple food subsidies,
- Food rations,
- Conditional cash transfers,
- Food-for-work schemes,
- Storage policies,
- Trade policies.

Which policies?

Considering this market imperfection, there are many ways for government to improve welfare:

- Staple food subsidies,
- Food rations,
- Conditional cash transfers,
- Food-for-work schemes,
- Storage policies,
- Trade policies.

Here: focus on price stabilisation policies.

Which policies?

Considering this market imperfection, there are many ways for government to improve welfare:

- Staple food subsidies,
- Food rations,
- Conditional cash transfers,
- Food-for-work schemes,
- Storage policies,
- Trade policies.

Here: focus on price stabilisation policies.

Policies directly targeting consumers would require heterogeneous consumers to be properly designed.

Methodological challenges I

Defining a consistent welfare objective in partial equilibrium

- $\bullet\,$ Partial equilibrium $\Rightarrow\,$ Need to carefully account for each agent welfare,
- Usual practice: sum of surpluses, but fails to account for risk-aversion,
- Here definition of a social welfare function weighting the welfare of each agent and valuing risk-neutral agents' welfare to the average marginal value of consumer's utility.

Methodological challenges II

Designing optimal policies with occasionally binding constraints

- Need for recognising the importance of complementarity conditions and the way we can handle them.
- Policy design following the literature on optimal dynamic policies (Kydland & Prescott, 1980; Marcet & Marimon, 1999).
- Development of a Matlab solver for dynamic stochastic equilibrium models with occasionally binding constraints.

Optimal price stabilisation policy

 In a closed economy, an optimal storage policy consists in shifting the storage curve to higher storage level to account for consumers' risk-aversion. ⇒ Crowding out of speculative storage.

Optimal price stabilisation policy

- In a closed economy, an optimal storage policy consists in shifting the storage curve to higher storage level to account for consumers' risk-aversion. ⇒ Crowding out of speculative storage.
- Stabilisation can also be provided by a countercyclical production policy: tax production in periods of glut and subsidise it when scarcity prevails.
 Problem: create large distributive effects and destabilise producers' income.

Optimal price stabilisation policy

- In a closed economy, an optimal storage policy consists in shifting the storage curve to higher storage level to account for consumers' risk-aversion. ⇒ Crowding out of speculative storage.
- Stabilisation can also be provided by a countercyclical production policy: tax production in periods of glut and subsidise it when scarcity prevails.
 Problem: create large distributive effects and destabilise producers' income.
- Optimal policies show limited problems of time-inconsistency.

Simple rules of storage

Simple rules of storage can generate welfare gains close to fully optimal rules:

- An optimal constant subsidy to private storage is equivalent to a discretionary rule.
- An optimal price-band achieves 4/5 of maximum welfare gains by being designed in a very peculiar way: the optimal price-band is a price peg.

Alternative choice of bands may lead to welfare loss.

Trade and storage policy

Some results are reversed in open economy:

- An optimal storage policy may decrease consumers' welfare because it increases mean price.
- Trade policy is the most efficient way to stabilise domestic prices. It consists of:
 - Import subsidies.
 - Export taxes.
- Distributive effects are very important and dwarfs efficiency gains.
- Export restrictions are essential to render the stabilisation policy beneficial to consumers.

Conclusion

This thesis has set up a framework for designing optimal food price policies.

Price stabilisation policies can improve welfare, but:

- they create large distributive effects,
- they may lead to non-cooperative international behaviour.

Conclusion

This thesis has set up a framework for designing optimal food price policies.

Price stabilisation policies can improve welfare, but:

- they create large distributive effects,
- they may lead to non-cooperative international behaviour.

The results should be seen as benchmark, not as policy recommendations.

Welfare gains are small (never exceed 0.3% of the commodity budget share).

Welfare gains are small (never exceed 0.3% of the commodity budget share).

This is a small fraction of what we expect as being the cost of food price volatility:

Welfare gains are small (never exceed 0.3% of the commodity budget share).

This is a small fraction of what we expect as being the cost of food price volatility:

• The risk-premium from an EU framework accounts for static effects, but neglects dynamic effects and peculiarities of food consumption.

Welfare gains are small (never exceed 0.3% of the commodity budget share).

This is a small fraction of what we expect as being the cost of food price volatility:

- The risk-premium from an EU framework accounts for static effects, but neglects dynamic effects and peculiarities of food consumption.
- Dynamics:
 - Decrease investment in health and in children education.
 - Lower food consumption entails long-run health problems and a lower productivity.

The most efficient way to protect an open economy from food price instability is to use non-cooperative trade policy.

The most efficient way to protect an open economy from food price instability is to use non-cooperative trade policy. \Rightarrow Create a coordination problem exemplified by the recent crisis.

The most efficient way to protect an open economy from food price instability is to use non-cooperative trade policy. \Rightarrow Create a coordination problem exemplified by the recent crisis.

Anticipating this behaviour other countries may specialise less than under a commitment to free trade.

The most efficient way to protect an open economy from food price instability is to use non-cooperative trade policy. \Rightarrow Create a coordination problem exemplified by the recent crisis.

Anticipating this behaviour other countries may specialise less than under a commitment to free trade.

Problem which can be analysed as a two-sided lack of commitment problem: what is the trade equilibrium when the countries cannot commit to not restricting export?

Thank you for your attention.