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PREFACE 

 

Sports biomechanics uses the scientific methods of mechanics to study the 

internal and external forces acting on a human body and the effects produced by 

these forces in sports activities. It is, therefore, concerned, with the ways in which 

sports movements are performed, often referred to as sports techniques.  

With this respect, sports biomechanics has an applicative nature and it has 

an ultimate objective: the achievement of an effective technique. Indeed, while it is 

often believed that the main goal of sports biomechanists and coaches is to obtain 

the best athlete’s performance, it must be kept in mind that performance 

enhancement and injury risk are strictly related. If improving the athlete’s 

performance would entail increasing the risk of injury, no actual effective 

improvement would be obtained. This is the reason why sports biomechanics is 

often described as having two aims that may be perceived as incompatible: the 

reduction of the risk of injury (such as identification of the causes of back injuries 

in cricket, or the causes of knee joint injuries in sprint running) and the 

improvement of performance (such as optimising gymnastics performance 

through simulation of in-flight movements, or studying the effects of tennis racquet 

stiffness on the performance of young athletes). 

 Although sports biomechanists and coaches, as well as athletes and 

physicians, share exactly the same objectives, there is still a gap between 

researchers and practitioners. Coaches commonly base their evaluation of athletes’ 

performance and of the efficacy of their training program on competition results, 

field tests and qualitative visual inspection. Such evaluations are often readable, 

easy to use and they provide information about the global performance. 

Nevertheless, they are often not able to establish an understanding of causal 

mechanisms for the selected movements (such as the role of internal rotation of 

the upper arm in hitting or striking, or the influence of elastic energy and muscle 

pre-stretch in stretch-shorten-cycle actions). On the other hand, biomechanists, 

accused to be over-concerned with methodology, often lack of pragmatism. 



 x 

 In order to bridge the gap between the two worlds, the establishment of a 

common and understandable language is crucial. The importance of quantitative 

assessment of athletes’ motor skills needs to be well perceived by coaches, as well 

as by athletes and sports physicians. At the same time, biomechanists must be able 

to fully understand the actual needs of practitioners and find the appropriate way 

to communicate and propose their results.  

There are two main limitations that have to be overcome in order to achieve 

these goals: first, the difficulties in performing in-field athlete evaluation and in 

obtaining data in a natural setting such as competition, without influencing or 

constraining athletes’ activities. To date, in fact, sports biomechanical analysis is 

typically performed by means of stereophotogrammetry, force platforms, high-

speed cameras, or optical contact time meters. Such solutions, however, are 

expensive, characterized by a cumbersome and time-consuming experimental set 

up and tend to constrain the subject and the analysed motor task. Second, there is 

a lack of methods specifically designed for sports applications, even when dealing 

with marker-based motion analysis. Protocols commonly developed for clinical 

biomechanical assessment, in fact, could hardly be transposed to the analysis of 

sports motor acts, which are characterized by higher accelerations and 

explosiveness with respect to the former. 

 In this framework, the present thesis aims at providing a contribution in 

these directions, focusing on the development of methodologies which could help 

in overcoming the above mentioned limitations, filling the gap between 

researchers and practitioners. 
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ABSTRACT 

 

ENGLISH VERSION 

Sports biomechanics describes human movement from a performance 

enhancement and an injury reduction perspective. In this respect, the purpose of 

sports scientists is to support coaches and physicians with reliable information 

about athletes’ technique. The lack of methods allowing for in-field athlete 

evaluation as well as for accurate joint force estimates represents, to date, the 

main limitation to this purpose. The investigations illustrated in the present thesis 

aimed at providing a contribution towards the development of the above 

mentioned methods.  

Two complementary approaches were adopted: a Low Resolution Approach 

– related to performance assessment – where the use of wearable inertial 

measurement units is exploited during different phases of sprint running, and a 

High Resolution Approach – related to joint kinetics estimate for injury prevention 

– where subject-specific, non-rigid constraints for knee joint kinematic modelling 

used in multi-body optimization techniques are defined. 

Results obtained using the Low Resolution Approach indicated that, due to 

their portability and inexpensiveness, inertial measurement systems are a valid 

alternative to laboratory-based instrumentation for in-field performance 

evaluation of sprint running. Using acceleration and angular velocity data, the 

following quantities were estimated: trunk inclination and angular velocity, 

instantaneous horizontal velocity and displacement of a point approximating the 

centre of mass, and stride and support phase durations. 

As concerns the High Resolution Approach, results indicated that the length 

of the anterior cruciate and lateral collateral ligaments decreased, while that of the 

deep bundle of the medial collateral ligament increased significantly during 

flexion. Variations of the posterior cruciate and the superficial bundle of the medial 

collateral ligament lengths were concealed by the experimental indeterminacy. A 

mathematical model was provided that allowed the estimate of subject-specific 

ligament lengths as a function of knee flexion and that can be integrated in a multi-

body optimization procedure. 
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ITALIAN VERSION 

La biomeccanica dello sport descrive il movimento umano con l’obiettivo di 

migliorare la prestazione atletica e di ridurre l’incidenza di infortuni. In questo 

contesto, lo scopo degli esperti di scienze dello sport è quello di fornire ad 

allenatori e medici informazioni affidabili sulla tecnica di esecuzione del gesto 

sportivo in esame. La mancanza di metodi che consentano la valutazione dell’atleta 

direttamente sul campo e la stima accurata della dinamica articolare costituisce, ad 

oggi, il principale limite nel raggiungimento di questo scopo. La presente tesi si 

propone di fornire un contributo allo sviluppo di tali metodi. 

Il lavoro si articola secondo due approcci complementari: un Approccio a 

Bassa Risoluzione - legato alla valutazione della prestazione – attraverso il quale è 

stato esplorato l'uso di sensori inerziali indossabili durante diverse fasi della corsa 

di velocità, e un Approccio ad Alta Risoluzione - relativo alla stima della dinamica 

articolare per la prevenzione degli infortuni - dove sono stati definiti vincoli non 

rigidi per un modello cinematico del ginocchio da integrare in tecniche di 

ottimizzazione multi-segmento per la stima della posizione e dell’orientamento 

delle ossa durante il movimento. 

I risultati ottenuti con l’Approccio a Bassa Risoluzione indicano che, in virtù 

della loro portabilità ed economicità, i sensori inerziali rappresentano una valida 

alternativa alla tradizionale strumentazione di laboratorio per la valutazione della 

prestazione durante la corsa. Utilizzando i dati di accelerazione e velocità angolare 

provenienti dai sensori, sono stati stimati l’inclinazione e la velocità angolare del 

tronco, la velocità lineare istantanea e lo spostamento di un punto che approssima 

il centro di massa, e le durate della fase di appoggio e del ciclo del passo. 

Per quanto riguarda l'Approccio ad Alta Risoluzione, i risultati indicano che 

le lunghezze del legamento crociato anteriore e del collaterale laterale 

diminuiscono, mentre quella del fascio profondo del legamento collaterale mediale 

aumenta durante la flessione. Le variazioni di lunghezza del legamento crociato 

posteriore e del fascio superficiale del legamento collaterale mediale sono risultate 

dello stesso ordine dell’errore sperimentale. Al fine di integrare tali informazioni in 

una procedura di ottimizzazione multi-segmento, è stato definito un modello 

matematico del ginocchio che fornisce le lunghezze plausibili dei legamenti in 

funzione dell’angolo di flessione. 
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FRENCH VERSION 

La biomécanique du sport décrit le mouvement humain dans le but 

d’améliorer la performance et de réduire les blessures. Dans ce contexte, le but des 

experts des sciences sportives est de fournir aux entraîneurs et médecins des 

informations fiables sur la technique des athlètes. Le manque de méthodes 

permettant l'évaluation des athlètes sur le terrain ainsi que l'estimation précise 

des efforts articulaires représente, à ce jour, une limitation majeure pour atteindre 

ces objectifs. Les travaux effectués dans la thèse vise à contribuer au 

développement des ces méthodes. 

Deux approches complémentaires ont été adoptées: une Approche à Basse 

Résolution – relative à l'évaluation de la performance – où l'utilisation de capteurs 

inertiels portables est exploitée au cours des différentes phases de la course de 

vitesse, et une Approche à Haute Résolution – lié à l’estimation des efforts 

articulaires pour la prévention des blessures – où des contraintes personnalisées 

pour la modélisation cinématique du genou dans le contexte des techniques 

d'optimisation multi-corps ont été définies. 

Les résultats obtenus par l'Approche à Basse Résolution indiquent que, en 

raison de leur portabilité et leur faible coût, les capteurs inertiels sont une 

alternative valable aux instrumentations de laboratoire pour l'évaluation de la 

performance pendant la course de vitesse. En utilisant les données d'accélération 

et de vitesse angulaire, l’inclinaison et la vitesse angulaire du tronc, la vitesse 

horizontale instantanée et le déplacement du centre de masse, ainsi que la durée 

de la phase d’appui et du pas ont été estimés. 

En ce qui concerne l'Approche à Haute Résolution, les résultats ont montré 

que les longueurs du ligament antérieur croisé et du latéral externe diminuaient, 

alors que celle du faisceau profond du ligament latéral interne augmentait de 

manière significative lors de la flexion. Les variations de longueur du ligament 

croisé postérieur et du faisceau superficiel du ligament latéral médial étaient de 

l’ordre de l'indétermination expérimentale. Un modèle mathématique a été fourni 

qui a permis l'estimation des longueurs ligamentaires personnalisées en fonction 

de la flexion du genou et qui peuvent être intégrées dans une procédure 

d'optimisation multi-corps. 
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EXTENDED SUMMARY 

 
INTRODUCTION AND AIM OF THE THESIS 

Sports biomechanics describes the human movement from a performance 

enhancement and an injury reduction perspective. In this respect, the purpose of 

sports scientists is to support coaches and physicians with reliable and usable 

information related to the athletes’ correct or incorrect technique. 

Biomechanical research in sports has usually produced interesting 

descriptions of the basic kinematic and kinetic features of specific athletic 

movements, in order to find possible solutions for performance enhancement and, 

to a lesser extent, for injury prevention. Unfortunately, these surveys have often 

lacked either in providing a theoretical rationale or in presenting results that could 

be directly understood and practically used by trainers and athletes. The lack of 

methods and protocols allowing for in-field athlete evaluation as well as for 

accurate joint forces estimate represents, to date, the main reasons of this failure. 

 The main purpose of the present thesis is to provide a contribution towards 

the development of such methods, focusing, in particular, on sprint running 

evaluation. Two complementary approaches are adopted: a Low Resolution 

Approach, where the use of wearable inertial measurement units are exploited 

during different phases of sprint running, and a High Resolution Approach, where 

subject-specific, non-rigid constraints for knee joint kinematic modelling used in 

multi-body optimization techniques are defined. 

 

LOW RESOLUTION APPROACH 

The evaluation of athlete’s performance is one of the main issues of 

coaching, as well as of sports biomechanical analysis. To this aim, in-field 

assessment of the athlete performance, without influencing or constraining 

athletes’ activities, is now becoming mandatory.  

Among the new wearable and lightweight technologies allowing for such 

assessment, inertial measurement units (IMUs) appear to be a good compromise 

between practicality and accuracy. These sensors combine three-axial 

accelerometers and gyroscopes, and, when a measure of a global reference frame is 

required, a magnetometer is also implemented. They allow data collection during 
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unconstrained continuous movement over prolonged periods of time, potentially 

even during training and competition. Nevertheless, the extraction of movement-

related information from the signal derived from IMUs can be strongly jeopardized 

by offset errors that rapidly accumulate over time (Woodman, 2007) and sensor 

wide oscillations caused by the inertia of soft tissues (de Leva & Cappozzo, 2006; 

Forner-Cordero et al., 2008). 

The use of such sensors was explored in three studies aiming at estimating 

performance-correlated biomechanical variables during the different phases of 

sprint running (block-start, pick-up or acceleration, and maintenance phases). Ad-

hoc methods aimed at reducing the above mentioned sources of error were 

defined. In particular, the trunk inclination and angular velocity, as well as the 

instantaneous horizontal velocity and displacement of the center of mass will be 

estimated during in-lab sprint running. The stride and stance durations will be 

assessed on-the-field during the maintenance phase. 

 

Study one – Trunk inclination during the sprint start 

The execution of the start is crucial in determining the performance during 

sprint running. Although trunk inclination is acknowledged to be a key element in 

moving from the crouch to the upright position, only few study focused on this 

parameter during the block start and the pick-up phases (Mero, Luhtanen, & Komi, 

1983; Čoh, Jošt, Škof, Tomažin, & Dolenec, 1998; Slawinski, Bonnefoy, & Levêque, 

2010). 

The purpose of this study was to provide coaches with an instrument able 

to reliably estimate such parameter in-field. To this aim, the accuracy of an inertial 

measurement unit (IMU) in estimating its rotation about a local axis (referred to as 

“quality”) and the relationship between this rotation and trunk inclination in the 

progression plane (referred to as “consistency”) were assessed during block start 

and pick-up phases. 

Five male sprinters performed four in-lab sprint starts. The block start 

phase and the first three steps of the pick-up phase were analysed. Data provided 

by an IMU (FreeSense, Sensorize Ltd, Italy) positioned on the trunk at L2 level 

were compared to reference stereophotogrammetric measurements. To reduce 

soft tissue oscillations, a memory foam material and an elastic belt were used. The 
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trunk was modeled as a rigid segment joining C7 and the midpoint between the 

posterior superior iliac spines. The inclination of the unit (pitch angle: β) was 

estimated by combining the information provided by both the accelerometer, 

during the static phases of the movement, and the gyroscope, during the non-static 

phases. To improve the accuracy of such estimate, a Kalman algorithm (Kalman, 

1960; Jurman, Jankovec, Kamnik, & Topic, 2007) was designed to automatically 

identify these static and non-static phases and to use a proper combination of the 

information provided by the two sensors. Root Mean Squared Errors, Pearson’s 

correlation coefficient and Bland and Altman method (Nevill & Atkinson, 1997) 

were used to assess the quality and consistency of the estimates. 

 

 

Figure 1: Typical pitch angles (β) for one trial as obtained from the IMU (solid line) and 
from the stereophotogrammetric system: IMU reference frame (dotted line) and trunk 
reference frame (dashed line). The different phases of the start are also indicated: OYM: 
“on your marks” position; TNS: transition phase; SET: “set” position, and PICK-UP: pick-up 
phase. The pitch angular displacement was considered to be zero when the unit was in a 
horizontal position; positive angles correspond to clockwise rotations. 

 

The quality of the IMU estimates and their consistency with trunk 

inclination were high both in terms of curve similarity (correlation r>0.99) and 

bias (lower than 1 and 4 deg, respectively) (Fig. 1). The agreement between the 

unit and the trunk inclination, moreover, seems to support track and field coaches’ 

approach in considering the trunk as a rigid segment. These results open a 
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promising scenario for an accurate in-field use of IMUs for sprint start 

performance assessment. 

 

Study two – Center of mass instantaneous velocity and displacement during the 

acceleration phase 

 When the focus is on sprint running performance determinants and limiting 

factors, biomechanical parameters as the stance duration, the step length and the 

center of mass (CoM) instantaneous velocity are crucial. Although these variables 

should be obtained by numerically integrating the acceleration signal provided, for 

instance, by inertial measurement units, in practice, offset errors that rapidly 

accumulate over time (Woodman, 2007) yield to unreliable velocity and, therefore, 

displacement. 

The purpose of the study was to estimate the instantaneous horizontal 

velocity and displacement of a point approximating the CoM during sprint running 

by using a single inertial sensor. To this aim, a methodology for reducing the 

effects of the above mentioned errors was developed. Low frequency errors were 

compensated by reducing the numerical integration interval to the stance phase 

and by predicting the kinematics of the sensor during the flight phase. The initial 

conditions of the integration process were, then, cyclically determined. 

Six sprinters performed three in-lab sprint runs, starting from a standing 

position. Due to limited laboratory volume only the first three steps were analysed. 

An IMU (MTx, Xsens, Netherlands) was positioned on the back trunk. 

Stereophotogrammetry and force platforms were used to validate final results. 

Reference and inertial sensors data were collected simultaneously at 100 samples 

per second. The instantaneous progression velocity and displacement were 

computed by numerical integration of the acceleration. The integration was limited 

to the stance phase only, to avoid the drift typical of the integration process. 

During the flight phase, the horizontal kinematics of the IMU was predicted using 

the ballistic law of motion; the velocity at the instant of take-off was the last value 

of the previously integrated acceleration. This procedure was reiterated for each 

step. The stance time (ST), CoM progression displacement (d) and the mean 

progression velocity (v) were estimated and compared with reference data. The 
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method reliability was assessed by mean of multiple statistical tests (Multivariate 

ANOVA, Pearson’s correlation coefficient, two-tailed paired t-test). 

Results showed a high correlation (r>0.9) between IMU and reference 

estimates for each parameter (Fig. 2). No statistical differences were found 

between IMU and reference for v and ST. 

 
Figure 2: Instantaneous progression velocity as obtained by the reference measurements 
(solid line), computed by numerical integration of the acceleration for the whole duration 
of the task (dashed line) and with the algorithm proposed in this study (dashed line). 
Vertical dashed lines identify the flight phases (f1, f2 and f3). 

 

The methodology proved to successfully compensate the numerical 

integration errors during in-lab non steady-state running. In-field validation is 

binding in order to provide track and field coaches with reliable and accurate 

information. 

 

Study three – Temporal parameters during the maintenance phase 

In the literature, walking and distance running temporal parameters have 

been generally determined by identifying mechanically-related features in the 

acceleration signal waveforms (Auvinet, Gloria, Renault, & Barrey, 2002; Kavanagh 

& Menz, 2008; Wixted, Billing, & James, 2010). Robustness and reliability of these 

temporal estimates, however, highly depends on the signal to noise ratio, 

especially unfavourable during sprint running analysis as the explosiveness of the 

task causes greater movements of the IMU relative to the underlying skeleton 

(Pain & Challis, 2006). For this reason, sprint running analysis is more challenging 

than walking or distance running. 
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The aim of the study was to identify recognizable and consistent features in 

the waveform of the signals supplied by a trunk mounted IMU, or thereof derived, 

for the estimation of stance duration during in-field sprint running. 

Six amateur (group A) and five elite (group B) athletes performed three 60 

m sprint runs on-the-track, starting from a standing position. Four steps at each 

athlete maximal speed were analysed. An IMU (FreeSense, Sensorize Ltd, Italy) 

containing a 3D accelerometer and gyroscope was positioned on the lower back 

trunk at L2 level with an ad-hoc elastic belt. To limit the unit oscillations relative to 

the underlying bone, a memory foam material was placed between the 

paravertebral muscles and the IMU (Fig. 3). Data provided by the IMU, acquired at 

200 samples per second, were compared to reference forceplate and high-speed 

camera measurements. The magnitude of the acceleration (a) and angular velocity 

(ω) vectors as well as their 1st ( a&  and ω& ) and 2nd ( a&&  and ω&& ) wavelet-mediated 

derivatives were computed (Jianwen, Jing, & Jinhua, 2006). Features adequate for 

automatic detection of Foot-Strike (FS) and Foot-Off (FO) instants were identified 

and, thereafter, used to estimate the stance (dstance) and stride (dstride) durations. 

Repeated-measure ANOVA tests and Bland and Altman method (Nevill & Atkinson, 

1997) were used to assess the accuracy of the estimates. 

 

  

 

No repeatable and quantifiable features, adequate for automatic detection, 

were identified in either a or its derivatives. Conversely, the magnitude of the 

angular velocity signal was characterized by a consistent positive peak which 

occurred approximately at the end of each step cycle in both groups of athletes. 

This peak was clearly visible even by simple visual inspection of the signal and 

could be used to estimate dstride (Fig. 4).  

Figure 3: Belt and sensor unit location on 
the lower back trunk of an elite athlete of 
group B. Indication of the memory foam 
material location is also provided. 
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Figure 4: ω (grey dotted line), ω&  (dashed line) and ω&&  (solid line) with reference to a 
randomly chosen subject of amateur athletes (group A). Grey sections represent three 
consecutive stance phases. 

 

The beginning and end of the stance were identified from positive and 

negative peaks on ω&&  waveform (Fig. 4). These peaks were found to be consistently 

synchronized with FS and FO across steps, trials, subjects and groups. The mean of 

the absolute bias between the reference and the IMU estimates was found to be in 

the order of the temporal resolution of the IMU (0.005 s). It can be speculated that 

increasing that resolution may improve the final results. As track and field coaches’ 

requirement is to obtain the stance time profile over time and during the whole 

race, future works will concern the validation of the method on different phases of 

the sprint run. 

 

HIGH RESOLUTION APPROACH 

A clear understanding of the definitive relationships between 

biomechanical measures and injury onset in sprint running would lead to better 

injury prevention strategies and would help track and field coaches to define 

effective training programs. In this respect, forces and force-related factors appear 

to be the prime agents that determine the likelihood and severity of injury. 

Epidemiological studies of sprint running injuries, in particular, found the knee to 

be the most frequent site of injuries (Brunet, Cook, Brinker, & Dickinson, 1990). 
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The estimate of knee joint forces during running would be, therefore, of great help 

for athletes, coaches and physicians. 

The accuracy of inverse dynamics methods, often used in sports 

biomechanics to estimate internal and external forces, is affected by several 

sources of error. Among them, the motion of soft tissues relative to the underlying 

bones (soft tissue artefact – STA) is considered as the most important, particularly 

in sports applications. Different techniques have been proposed to compensate for 

STA. The multi-body optimization (MBO) method, in particular, aims at optimally 

estimating the location in space of a chain of bones interconnected in joints. Each 

joint is modelled by embedding specified constraints. To date, MBO has been 

performed using spherical, revolute or universal joint constraints (Lu & O'Connor, 

1999; Andersen, Damsgaard, & Rasmussen, 2009), as well as using a parallel 

mechanisms (Duprey, Cheze, & Dumas, 2010). In light of recent results reported in 

the literature (Andersen, Damsgaard, & Rasmussen, 2009; Duprey, Cheze, & 

Dumas, 2010), the choice of joint constraints appears to be crucial.  

 

Study four - Tibio-femoral joint constraints for multi-body optimization 

To further improve the quality of knee joint models used in the MBO 

approach, the definition of non-rigid constraints which take into account the 

anatomy of the subject appear to be ideal. The aim of the study was to provide 

plausible, subject-specific values for the distances between the origin and insertion 

landmarks of the main knee ligaments (referred to as “ligament lengths”), during 

loaded continuous knee flexion-extension.  

Two orthogonal digital radiographs of six knee specimens (femur, tibia, 

patella and fibula) were acquired using a low dosage X-ray system (EOS®, EOS-

imaging, France). The 3D geometry of each specimen was then obtained by means 

of a reconstruction algorithm (Chaibi et al., 2011). The areas of origin and insertion 

of the anterior and posterior cruciate, lateral collateral, and deep and superficial 

bundles of the medial collateral ligaments (ACL, PCL, LCL, MCLdeep, MCLsup) were 

identified on femur and tibia templates using the mouse pointer by three expert 

orthopaedic surgeons (virtual palpation). Attachments sites were estimated for the 

six reconstructed knees by matching the bone templates to the low dosage 

stereoradiography images. Movement data of the specimens were obtained by 
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means of a stereophotogrammetric system (Polaris, Nothern Digital Inc., Canada), 

using pins carrying a cluster of markers and inserted into the femur and the tibia. 

Data were, therefore, free from skin movement artefacts. For each knee, the 

centroids of the attachment areas of each ligament were determined and the 

Euclidean distance between the origin and insertion centroids computed (dc). The 

impact of the inaccuracies associated with the virtual palpation was assessed 

performing a Monte Carlo simulation. The Euclidean distance between each 

possible couple of the points thus generated (100*100 couples) was also computed 

during knee motion (dMC) (Fig. 5). Ligament length variations (∆dMC) were then 

calculated relative to the distances at knee full extension and expressed as 

percentage of the latter value for each sampled knee flexion angle. 

 

Figure 5: 3D digital model of one knee specimen: the ligament attachment areas and the 
tibio-femoral distances between the centroids (dc) (yellow lines) as well as between 
selected Monte Carlo pairs (dMC) (red lines) are depicted. 

 

The mean and standard deviation (SD) curves of ∆dMC are shown in Fig. 6 

for each ligament. To facilitate embedding this information in the knee kinematic 

model to be used in the MBO process, the mean of the ∆dMC curves vs flexion angle 

thus obtained, plus and minus one standard deviation, were fitted with a 

polynomial regression function of the fifth order. The ACL and LCL lengths were 

found to decrease, and the MCLdeep length to increase significantly during flexion, 

while PCL and MCLsup length trend of variation was concealed by the 
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experimental indeterminacy. A mathematical model was provided that allowed the 

estimate of subject-specific ligament lengths as a function of knee flexion and that 

can be integrated in a multi-body optimization procedure. The efficacy of this 

model, as opposed to those already implemented, must be evaluated in terms of 

consequences on the estimate of joint kinetics, particularly when the inertial 

effects of soft tissue masses are involved. 

 

Figure 6: Distance variation 
patterns (mean ± 1SD) vs the 
knee flexion angle as obtained 
through the Monte Carlo 
simulation for each ligament, 
∆dMC. Each variation is 
expressed as a percentage of 
the distance at knee maximal 
extension. 
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CONCLUSIONS 

In the framework of sports biomechanics analysis, the results and the 

considerations carried out in the present thesis aim at providing a contribution 

towards the development of methods for in-field athlete evaluation as well as for 

accurate joint forces estimate. 

Results about the Low Resolution Approach indicate that, due to their 

portability and inexpensiveness, inertial measurement units are a valid alternative 

to traditional laboratory-based instrumentations for in-field performance 

evaluation of sprint running. Using acceleration and angular velocity data, the 

following quantities were estimated: trunk inclination and angular velocity, 

instantaneous horizontal velocity and displacement of a point approximating the 

CoM, and stride and stance durations. In order to limit the motion of the soft tissue 

masses relative to the underlying bones, careful attention has to be paid to the 

location and method of fixation of the sensor. The use of memory foam materials 

and elastic belts appears to be effective. To limit the errors yielded by the unstable 

bias of the signal, the integration interval should be reduced, and boundary 

conditions used to cyclically correct the drift errors explored. 

 Results about the High Resolution Approach indicate that, in a kinematic 

model of the knee based on joint constraints, the length of the ACL, LCL and 

MCLdeep should be considered as variable during knee flexion. The length of the 

PCL and of the MCLsup was found to be highly dependent from the selected 

attachment sites. These ligaments could be, therefore, considered isometric during 

knee flexion. These results represent a first contribution to the definition of 

methods aiming at improving the accuracy of inverse dynamic estimates. On the 

other hand, as the MBO approach aims at providing an optimal estimate of the 3D 

position of a bone-chain, the reconstruction of the soft tissue movements may be 

attempted. A biodynamic model of the human body based on the reconstructed 

movement could then be developed. The combination of subject-specific 

constraint-based joint models with such biodynamic model appears to justify the 

investment of resources aimed at improving the MBO approach. 
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CHAPTER 1 

 

 

 

THEORETICAL BACKGROUND: 

SPRINT RUNNING BIOMECHANICS 
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ABSTRACT 

 

The continued increase in running popularity has prompted a comparable 

explosion of research in the last decades. This has been further potentiated by 

recent technical and technological advancements. The current state of knowledge 

about the major findings in sprint running biomechanics is presented and a brief 

overview of the current technologies used in the assessment of running is 

provided. 

Many variables have been studied pertaining to the different phases of 

sprint running. Significant factors include: technique, electromyographic activity, 

kinematics and kinetics. Sprint technique has been analysed during the block start, 

acceleration and maintenance phases. The EMG activity pattern of the main 

muscles is described in the literature, but there is a need of further investigation, 

particularly for highly skilled sprinters. The reaction time of good athletes is short, 

but it does not correlate with performance levels. The force-power production and 

the force impulse during the block start phase are key factors in order to generate 

high velocity. Nevertheless, they proved to correlate with the incidence of knee-

related injuries. During acceleration and maintenance phases, the reduction of the 

horizontal braking forces and the maximisation of the propulsive forces are crucial 

in order not to decrease velocity. Leg and vertical stiffness are sensitive 

parameters for the optimization of performance and, at the same time, for the 

reduction of injury risk. Several external factors, as footwear, ground reaction 

surface and air resistance, may influence the athlete’s technique and performance. 

Efficient sprint running requires an optimal combination between the examined 

biomechanical variables and such factors. 

Interestingly, while a large number of studies focused the determinants of 

the performance, there is a general paucity of scientific works showing definitive 

relationships between either anatomical factors and injury, or biomechanical 

measures and injury during sprint running. 

As concerns technologies and methods for sprint running analysis, although 

traditional measurement devices such as motion capture systems, force plates, and 

electromyography are considered as the most accurate methods, they suffer from 
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limitations, such as expense and lack of portability. Recent technological advances 

have made available more viable options such as accelerometers, 

electrogoniometers, gyroscopes, and in-shoe pressure sensors. Combined with 

wireless technology and/or data loggers, they appear to be an affordable, 

lightweight alternative to running analysis, allowing data collection over 

prolonged periods of time in almost any environment. 

 

KEYWORDS: Sprint running; Biomechanical variables; Methods; Technology; State 

of the art. 
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1.1 INTRODUCTION 

 

It is mandatory to start an issue about running biomechanics in the 

following classical way: human running is characterised by a phase of the 

locomotor activity during which the body is not in contact with the ground. This 

means that the demarcation between walking and running occurs when periods of 

double support during the foot-ground contact phase (or stance phase) of the gait 

cycle (both feet are simultaneously in contact with the ground) give way to two 

periods of double float at the beginning and the end of the swing phase of gait 

(neither foot is touching the ground) (Fig. 1). This is, in broad terms, the definition 

provided by E. J. Marey following his experimental acquisitions with his “chassure 

dynamographique”. 

 

 

Figure 1 (1.1): Left and right foot temporal parameters (foot-strike: LFS, RFS, and toe-off: 
LFO, RFO) during running (from Zernicke & Whiting, 2000). 

 
It is evident that running, referred to as a specific motor paradigm, is 

legitimated by the fact that it allows for higher progression speed with respect to 

walking and race-walking. Generally, as speed further increases, initial contact 

changes from being on the hindfoot to the forefoot. This typically marks the 

distinction between running and sprinting. The higher the progression speed, the 

shorter the duration of the stance phase and the longer the flight phase time. 

Novacheck et al. (1998) reported that, during running, stance and flight phase 

durations are respectively about 40% and 60% of the step cycle, while in elite 
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sprinters, duration can reach 20% and 80% respectively. For distance running the 

body is moved at a controlled rate in relation to the energy demand of the race. For 

sprinting, on the other hand, the body and its segments are moved as rapidly as 

possible throughout the entire race. As an example of the different movement 

strategies adopted during running and sprinting, ankle, knee and hip joint 

kinematics at different progression speed are reported in Fig. 2. 

The difference between running and sprinting is in the goal to be achieved 

(Novacheck, 1998). Running is performed over longer distances, for endurance, 

and primarily with aerobic metabolism. Jogging, road racing, and marathons are 

examples. Sprinting activities are done over shorter distances and at faster speeds, 

with the goal of covering a relatively short distance in the shortest period of time 

possible without the need to preserve aerobic metabolism (Novacheck, 1998). 

 

Figure 2 (1.1): Ankle, knee and hip motion time-curve throughout a running cycle at four 
different running speeds: an example runner. Angle conventions are also indicated 
(adapted from Zernicke & Whiting, 2000). 
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  Rapid movements of the body from one place to another are required in 

many sports activities and, particularly, in track and field sprinting events, where 

athletes’ objective is simply to cover a given distance (either on the flat or over 

obstacles) in the least possible time (Hay, 1993). Among running track sprinting 

events, the most studied and considered is the 100 m race. It is the shortest 

outdoor sprint race distance in athletics and it is often used as a paradigm to 

describe and analyse the different phases characterising sprint running and the 

relevant biomechanical factors influencing the athlete performance.   

 

 

1.2 SPRINT RUNNING BIOMECHANICS: PERFORMANCE AND INJURY-RELATED 

VARIABLES 

 

 Early studies on the velocity-time curve in sprint running were concluded 

by Hill (1927). Since then, there has been a great deal of research (Volkov & Lapin, 

1979; Tellez & Doolittle, 1984), including the mathematical representation of such 

curve (Henry, 1954; Morton, 1985). A typical speed-time curve, as measured and 

modelled by Morin et al. (2006), is reported in Fig. 3. 

 

 

Figure 3 (1.2): Typical speed-time curve measured by the radar (bold line) and modelled 
by the biexponential equation (gray line). In this example, vmax =7.98m·s–1, tvmax = 7.71 
s, and the time constants for acceleration and deceleration are respectively τ1 = 2.32 s and 
τ2 =107s (from Morin, Jeannin, Chevallier, & Belli, 2006). 
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Although no general consensus has still been reached by the scientific 

community, as well as by track and field coaches, about the number and type of 

phases in which a 100 m sprint race should be divided (Jones, Bezodis, & 

Thompson, 2009), in the present review four different phases will be considered: 

the block-start, the acceleration or pick-up phase, the maintenance and the final 

deceleration. There are many factors that affect the duration of each of theses 

phases. Internal or personal factors, such as motivation, technique, fitness and 

fatigue, as well as external aspects, like strength and direction of wind, air 

temperature, and texture or hardness of the track surface (Nigg & Yeadon, 1987; 

Stafilidis & Arampatzis, 2007). Their time-duration is, therefore, highly variable 

even when considering multiple races of the same athlete and should not be used 

as a criterion in the identification of different phases. From Jones et al., (2009), the 

most used criterion appears to be the effectiveness of the coaching activity, in 

terms of giving to the athletes the necessary level of specificity in the instruction 

and feedback. In this respect, the start phase is defined as ranging from when the 

athlete obtained a “Set” position in the blocks to the point when the front foot 

broke contact with the block. The acceleration/pick-up phase is defined as being 

from when the athlete’s front foot left the block to the point when he/she attained 

an upright sprinting position. The maintenance phase is seen as the phase in which 

the athlete is able to maintain his/her velocity almost constant. Finally, the 

deceleration phase is defined as the remainder of the race; that is, from when the 

athlete’s velocity starts to decrease to when the finishing line is crossed (Mero, 

Komi, & Gregor, 1992). 

In the following sections, the execution technique, the pattern of muscular 

activation (electromyography – EMG) as well as the main kinematic and kinetic 

variables for each of the four identified phases will be discussed.  

 

1.2.1 Block start phase 

 The block start phase refers to the time when the sprinter is in contact with 

the starting blocks. Blocks have been regularly used in track competitions under 

the International Amateur Athletic Federation (IAAF) rules since 1948, the year of 

London Olympic Games.  
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The block start phase starts when the track judge gives the “On your marks” 

command and ends with the athlete block clearing. After the “On your marks” 

command, the judge gives the “Set” order and finally a gun is fired (or else there is 

a final “Go” command by the judge) (Fig. 4). When the athlete hears the initial 

command, "On your marks", he/she moves forward and adopts a position with the 

hands shoulder width apart and just behind the starting line. The feet are in 

contact with the starting blocks and the knee of the rear leg is in contact with the 

track. On hearing the command "Set" the athlete raises the knee of the rear leg off 

the ground and thereby elevates the hips and shifts the body centre of mass (CoM) 

up and out. Then on the command "Go" or when the gun is fired the athlete reacts 

by lifting the hands from the track, swinging the arms vigorously and driving with 

both legs off the blocks and into the first running strides (Fig. 4).  

 

 

 
Figure 4 (1.2): The action sequence during the block start phase (adapted from Hay, 
1993). 
 

  

 The purpose of the block start is to facilitate an efficient displacement of the 

athlete in the direction of the run. The main objectives of the athlete during this 

phase can be summarised as follows (Tellez & Doolittle, 1984):  

• To establish a balanced position on the blocks. 

• To obtain a body position with the CoM as high as it is practical and slightly 

forward of the base of support. 

• To apply a force against the blocks whose line of action goes through the ankle, 

knee and hip joints, the centre of the trunk and of the head. 

• To apply this force against the blocks and through the body at an angle of 

approximately 45°. 

• To clear the blocks with the greatest possible velocity. 
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EMG activity 

The first aspect to be considered when analysing the block start phase is the 

reaction time. It has been defined as the time that elapses between the sound of the 

starter’s gun and the moment the athlete is able to exert a certain pressure against 

the starting blocks. Reaction time measurement currently includes the time that it 

takes for the sound of the gun to reach the athlete, the time it takes for the athlete 

to react to the gunshot and the mechanical delay of measurements inherent in the 

starting blocks.  

An attempt has been made to separate premotor time and motor time 

components in the block start phase (Mero & Komi, 1990). The former is defined 

as the time from the gun signal until the onset of EMG activity in skeletal muscle. 

Motor time is the delay between the onset of electrical activity and force 

production by the muscles. EMG results (Mero & Komi, 1990) showed that total 

reaction time can be effectively divided into premotor and motor time. However, 

electrical activity in some muscles started to increase after total reaction time as a 

result of the multi-joint nature of the sprint start movement. It is clear that, after 

the gun signal, leg extensor muscles must contribute maximally to the production 

of force and ultimately to the running velocity. The faster the electrical activity 

begins in every muscle, the faster the athlete can be in maximising the 

neuromuscular performance. For improving the start action, it is desirable that all 

extensor muscles are activated before any force can be detected against the blocks. 

Mero and Komi (1990) used a force threshold of 10% from the maximal 

horizontal force production as a measure of reaction time. Total reaction time was 

on average 120 ms, which was the minimal reaction time for a valid start in the 

Rome World Championships in 1987. In fact, no definitive study exists which could 

be used to establish a minimum reaction time to define a false start. For 

comparison of reaction times to be used, uniform conditions for measurement 

must be established. 

The main conclusions regarding reaction time during the block start phase 

are (Moravec et al., 1988): 

1. In identical events the average reaction times of women are longer than those 

of men; 

2. Reaction times grow in proportion to the length of race distance; 
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3. Reaction time does not correlate with the performance levels, thus meaning 

that other parameters, as acceleration or maximum speed, may be more 

important than reaction time to final race performance.  

General muscle activation patterns during the block start phase showed 

considerable individual variances (Mero & Komi, 1990) (Fig. 5). Results provided 

support for the concept that the gluteus maximus muscle is very active at the 

beginning of force production, while the gastroctemio muscle is the first muscle to 

become activated. The biceps femoris, as well, proved to be a very important 

muscle during the early stages of the sprint start. The duration of the force 

production by the front leg is nearly the same as that during the total block phase, 

because the front leg produces force from the beginning of the total force 

production to the end of the block phase (Baumann, 1976). 

 

 

Figure 5 (1.2): Raw electromyographs of selected muscles in front and rear legs during 
maximal block start of one subject. TRT = total reaction time; FP = flight phase. The ground 
reaction force (horizontal and vertical components) is also displayed (from Mero & Komi, 
1990).  
 

Kinematics and kinetics 

 Many kinematic and kinetic variables have been studied pertaining the 

block start phase, over the past decades (Payne & Blader, 1971; Baumann, 1976; 
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Mero, Luhtanen, & Komi, 1983; Cappozzo, Gazzani, & Massacesi, 1989; Schot & 

Knutzen, 1992; Fortier, Basset, Mbourou, Faverial, & Teasdale, 2005; Čoh, et al., 

2006; Slawinski, Bonnefoy, & Levêque, 2010; Slawinski et al., 2010). Different 

biomechanical variables were obtained and were shown to contribute to a fast 

start technique (Harland & Steele, 1997). In the following section, the main results 

about biomechanical variables are discussed. 

• Inter-block distance: a medium block spacing (as opposed to the bunched or the 

elongated one), combined with the hips raised high in the set position, was 

theorised to enable sprinters to utilise more completely an extensor reflex of 

the muscle groups relevant to sprint starting (Schot & Knutzen, 1992). 

Furthermore, the medium starting position produced the fastest acceleration 

than enables both a powerful and quick recovery of the rear lower extremity 

(Čoh, et al., 2006). 

• Block inclination: sprint start performance was shown to improve when 

decreasing block inclination. This improvement was attributed to an increased 

contribution of the medial gastrocnemius muscle during the eccentric and 

concentric phases of calf muscle contraction due to an earlier onset. This 

increased contribution appeared to be the result of progressive lengthening of 

the soleus and gastrocnemius muscles in the set position as the front block 

inclination decreased. Therefore, during the subsequent stretch-shorten cycle, 

force production was improved, more effectively providing and elastic 

contribution to the speed of muscle shortening (Mero, & Komi, 1990). 

• Trunk and knee alignment during the “Set” position: an optimal “Set” position 

was shown to exist for highly skilled sprinters irrespective of variations in body 

structure. In particular, the stronger the sprinter, the more acute the joint 

angles can become. That is, stronger sprinters can use a greater range of joint 

extension to gain greater velocity when leaving the blocks (Mero, Luhtanen, & 

Komi, 1983; Slawinski, Bonnefoy, & Levêque, 2010). Knee angles during the 

“Set” position for elite and non-elite athletes are reported in Tab. 1. 

• Hip joint alignment during the “Set” position: hip joint angles in the “Set” 

position have been found to significantly differ between good and average 

sprinters. In particular, skilled athletes reported lower joint angle values both 

for the front and the rear legs (41 and 80 deg respectively, against 52 and 89 
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deg for average athletes) (Mero, Luhtanen, & Komi, 1983; Slawinski, Bonnefoy, 

& Levêque, 2010). These findings suggested that more skilled sprinters placed 

their hip extensors muscles on a greater stretch than their less skilled 

counterparts.  

• CoM position during the “Set” position: positioning the CoM as close as possible 

to the start line in the antero-posterior direction was suggested to be important 

in creating a good start, as it contributes to reach a position of maximum 

instability and it moves the athlete prospectively closer to the finish line, thus 

reducing the distance the sprinter must accomplish (Slawinski, Bonnefoy, & 

Levêque, 2010). However, too pronounced forward trunk lean in the “Set” 

position has to be avoided, as it excessively loads the hands (Tellez & Doolittle, 

1984).  

 

 

 
Table 1 (1.2): Front and rear knee angles for elite and well-trained sprinters during the 
“Set” position. The antero-posterior (XCM) and vertical (VCM) components of the CoM 
position with respect to the start line, together with the antero-posterior position of the 
shoulders (Xshoulder: midpoint of the line joining the right and the left acromions) are 
also provided (from Slawinski, Bonnefoy, & Levêque, 2010). 
 
 

• Block time, velocity and acceleration: block time is defined as the time from the 

beginning of force production, with either foot, to the point where no further 

force production occurs against the blocks (i.e. block clearing) (Mero, Luhtanen, 

& Komi, 1983). From published data (Harland & Steele, 1997), it appears that 

more skilled sprinters exhibited shorter block times compared with their less 

skilled counterparts. As concerns resultant velocity and acceleration of the 

sprinter at loss of foot contact with the block (usually referred to as block or 

leaving velocity and acceleration), it is well documented how the ability of an 

athlete to leave the blocks at a high velocity generally increases with an increase 

in his/her force application on the blocks (Baumann, 1976; Cousins & Dyson, 
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2004; Mero & Komi, 1990; Slawinski, Bonnefoy, & Levêque, 2010; Čoh, et al., 

2006). 

• Peak-force production: faster sprinters have been characterised as being 

capable of more adequate propulsion on the rear block during their starts 

compared with slower sprinters (Slawinski, Bonnefoy, & Levêque, 2010). 

Moreover, skilled sprinters generally apply lower peak force on the rear block 

compared to the front block, with the rear block forces being exerted more 

rapidly. Fig. 6 reported the force time-curves measured on the rear and front 

blocks during the sprint start of a middle-level athlete (Payne & Blader, 1971).  

 

 

 
Figure 6 (1.2): Resultant forces measured on the front (ant.) and on the rear (post.) 
starting blocks, as well as measured on both blocks (total) (adapted from Payne & Blader, 
1971). 
 

• Direction of force application: it has been claimed that a good start is 

characterised by the exertion of high forces in the horizontal direction 

(Baumann, 1976). The angle between the horizontal and the line joining the 

CoM to the front toe at the loss of front contact has been reported to range from 

32 to 42 deg for skilled sprinters (Mero, Luhtanen, & Komi, 1983). Angles of 

force application relative to the horizontal have been reported to vary form 43 

deg at loss of block contact to 50 deg at toe-off of the first step (Mero, Luhtanen, 

& Komi, 1983).  
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• Force impulse: impulse incorporates both block force and block time and it is 

representative of the average amount of force serving to propel the sprinter and 

the time over which this force acts. For skilled sprinters horizontal and vertical 

impulses have been reported to range from 233 to 234 Ns and 172 to 231 Ns, 

respectively (Mero, Luhtanen, & Komi, 1983; Slawinski, Bonnefoy, & Levêque, 

2010). Baumann et al. (1976) also reported that faster sprinters were able to 

exert a greater impulse in the horizontal direction (263 Ns) than less skilled 

sprinters (214 Ns). As block time was not significantly different between these 

groups, the greater impulse exhibited by the elite sprinters was created by a 

greater average force production. Similar results have been reported recently 

by Slawinski et al. (2010). 

 

1.2.2 Acceleration or pick-up phase 

 After the block clearing, the runner accelerates by increasing stride length 

and stride rate. The pick-up phase ranges from the block clearing to the instant of 

time in which the athlete attains an upright sprinting position. Its length is about 

30 to 50 m in top sprinters during a 100 m race (Volkov & Lapin, 1979; Moravec et 

al., 1988). Two key aspects have been identified in the acceleration phase: arm 

action and leg extension (Jones, et al., 2009). As concerns the arm action, Thomson 

et al. (2009) identified how previous research (Hinrichs, Cavenagh, & Williams, 

1987; Mann, Kotmel, & Herman, 2008) documented the arms’ balancing function in 

relation to the motion of the legs while sprinting. Nevertheless, up to now, no 

general consensus has been displayed about the amount of elbow and shoulder 

flexion and extension and no work seems to have specifically analysed the action of 

the arms within the pick-up phase. Leg extension refers to the hip and knee joints 

being fully extended prior to the athlete taking-off from each step in order to 

maximise the force exerted onto the running track. With this respect, it is 

necessary for both legs to have the same behaviour, symmetrical but alternate 

(Collier, 2002; Hunter, et al., 2004b). Two more aspects have been reported to be 

important during the acceleration phase: first contact times: Coh and Tomazin 

(2006) noted that contact phases become shorter and flight phases longer as the 

athlete progresses from the starting blocks; second the athlete’s posture: due to 

the development of running velocity and the subsequent dynamic changes in 
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running technique, the athletes’ ability to maintain their dynamic posture as 

opposed to the static posture of the sprint start appears to be crucial (Jones, et al., 

2009). 

 

EMG activity 

 Integrated EMG activity during acceleration has been reported by Mero and 

Peltola (1989). In that study two male sprinters ran a 100 m simulated race and, in 

the acceleration phase, there was a 4.8% higher maximal integrated EMG activity 

during contact than in the maximum constant speed phase. This may imply that 

neural activation of sprinters achieves its maximum in the acceleration phase. 

 

Kinematics and kinetics 

 The main kinematic and kinetic parameters which have been investigated 

during the pick-up phases are hereafter discussed. 

• Stance and flight phase duration: mean stance times during the acceleration 

phase for elite male sprinters have been shown to range from 0.160 s to 0.194 s 

for the first ground contact out of the blocks (Atwater, 1982; Mero & Komi, 

1990; Čoh, et al., 2006), and from 0.150 to 0.181 s for the second ground contact 

(Atwater, 1982; Čoh, et al., 2006). Flight phases are characterised by lower 

durations: from 0.06 to 0.07 s for the first flight and from 0.044 to 0.090 s for 

the second flight phase (Atwater, 1982; Čoh, et al., 2006). Conversely, after the 

first steps, stance times tend to decrease while accelerating, and flight times to 

increase (Zernicke & Whiting, 2000). 

• Step length: this is defined as the distance between the first contact point of one 

foot to the first contact point of the controlateral foot (differently to “stride 

length”, which is the distance between the first contact point of one foot to the 

first contact point of the same foot, like for example: right-left-right foot 

contacts). Increasing the length of the first step out of the blocks has been 

advocated as part of an optimal start (Čoh, et al., 2006). Nevertheless, anterior 

braking forces associated with the CoM being ahead of the first ground contact 

point were not significantly higher that that created with shorter steps (Schot & 

Knutzen, 1992). Moreover, an overly long first step may retard progress of the 



 - 16 - 

sprinter. It has also been shown how the degree of forward lean in the “Set” 

position had a varying effect on first step length (Schot & Knutzen, 1992). Tab. 2 

reports the step length, as well as the stance and flight times for the first ten 

steps of an elite sprinter during the acceleration phase (Čoh, et al., 2006). 

 

Table 2 (1.2): Step length and ground contact and flight times of a professional sprinter 
during the first ten steps of the acceleration phase (from Čoh, et al., 2006). 
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• Center of gravity (CoG) position: once the sprinter has started to leave the 

blocks, his/her task is to prepare for the subsequent ground contacts that 

he/she will make to assume maximal sprint velocity. If the horizontal position of 

the first foot to contact the ground after block clearing is posterior to the CoG 

along the antero-posterior direction, the sprinter is immediately able to 

maximize horizontal force production. Coh and Tomazin (2006) identified the 

position of the foot contact as being crucial to the successful execution of the 

pick-up phase, specifically minimizing braking forces during the first step. 

Indeed, the position of the CoG with respect to the first contact point on the 

ground changes during the first few strides. At the beginning of the first two 

stance phases, it is ahead of the foot-ground contact point. By the beginning of 

the third stance phase, the CoG is already behind the contact point (Mero, 

Luhtanen, & Komi, 1983; Slawinski, Bonnefoy, & Levêque, 2010). 

• CoM vertical displacement: during the initial ground contact phases following 

block clearance, the CoM falls vertically. This vertical displacement reduces the 

step rate because of increasing ground contact time and, in turn, reduces the 

running velocity (Mero, Luhtanen, & Komi, 1983). Elite sprinters have been 

found to exhibit a reduced CoM negative vertical displacement (0.017 ± 0.016 

m) during the eccentric phase of the first stance phase compared with slower 

sprinters (0.027 ± 0.014 m). 

• CoM horizontal velocity: Fig. 7 reports the time-curve of the CoM horizontal 

velocity of elite and well-trained sprinters during the first two steps of the 

acceleration phase (Slawinski, Bonnefoy, & Levêque, 2010). Similarly, Mero et 

al. (1983) reported a mean horizontal velocity of the CoM of 5.7 m·s-1 at toe-off 

of the second post-block step for skilled male sprinters. 

• Trunk alignment: it has been reported to be approximately 45 deg relative to 

the horizontal at loss of contact with the front block (Atwater, 1982; Van 

Coppenolle, et al., 1990; Slawinski, Bonnefoy, & Levêque, 2010). As concerns the 

trunk orientation during the pick-up phase, however, no general consensus on 

the best technique has been reached yet and no work seems to have specifically 

analysed such variables within this phase. 
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Figure 7 (1.2): Evolution of the CoM horizontal velocity of elite and well-trained athletes 
during the pushing phase and the first two steps of the acceleration phase (from Slawinski, 
Bonnefoy, & Levêque, 2010). 
 

• Force production: despite the forward position of the CoG with respect to the 

first ground-contact point, a negative horizontal force is observed during the 

first step, probably caused by the leg moving forwards (Schot & Knutzen, 1992). 

This suggests that in sprint running, all stance phases are characterised by 

braking and propulsive components of the ground reaction force (GRF) (Hunter, 

et al., 2005), although the ratios are different according to the race phase. In 

particular, average horizontal forces in the first portion of the race are 

considerably larger (526 N) with respect to their braking counterparts (153 N) 

(Mero, Komi, & Gregor, 1992). Interestingly, Mero et al. (1992) reported that the 

horizontal propulsive force exerted during the first step after block clearing was 

46% greater than the same force generated during contact at maximum 

velocity. This result highlights the need for the athlete to use a high level of 

concentric strength during the acceleration phase. 

 

1.2.3 Maintenance phase 

 Professional track and field coaches describe a good running technique as 

the sum of four crucial aspects. First, the ability of the athlete in maintaining a 

relatively high CoM, with a slight anterior tilt of the pelvis during the maintenance 

phase of the race. Second, the needs of performing a wide hip flexion during each 
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flight phase, trying to reach what coaches call “the high hip position” (Collier, 

2002). Third, the importance of arm action, with the athlete swinging the arms 

exclusively in the progression plane, not across the body and with the elbow angle 

maintained close to 90 deg of flexion. The movements of both arms should be the 

same, although opposite in direction and they should be corresponding and 

complementary (Čoh, et al., 2006; Jones, et al., 2009). During the maintenance 

phase, the arms should work as ‘balancing factor’, by providing lift and promoting 

a more constant horizontal velocity for the runner (Hinrichs, Cavenagh, & 

Williams, 1987; Jones, et al., 2009). Finally, shoulder, neck and facial muscles 

should be relaxed once reached the upright position and full speed (Jones, et al., 

2009). 

 

EMG activity 

 Running requires a complex sequencing of body muscle activation. EMG 

activity has generally been found to increase with increased running speed (Mero, 

Komi, & Gregor, 1992). In the propulsion phase, EMG activity is markedly lower 

than during the braking phase. This may be partly related to increase recoil of 

elastic energy during the propulsion phase (Cavagna, et al., 1971). An example of 

muscle activation pattern during maximal speed running is presented in Fig. 8. 

There is high activity in the leg musculature before contact (Mero & Komi, 1987), 

as at the beginning of the contact phase, large impact forces occur. It is important, 

therefore, that the leg extensors muscles are highly activated and stiff prior to as 

well as at the moment of impact. Energy is transferred by the elastic elements of 

the musculo-tendinous complex from the braking to the propulsion phase, and 

utilisation of such elastic properties has been shown to be important in increasing 

explosive force production during contact (Cavagna, et al., 1971; Hunter, et al., 

2005).  
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Figure 8 (1.2): Raw electromyographs of selected muscles during stride at maximal speed 
of one subject. Ground reaction forces measured by a force platform are also reported 
(from Mero, Komi, & Gregor, 1992). 
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Peak activity of the leg extensor muscles occurs during the braking phase of 

ipsilateral contact (leg on the ground). Thereafter, integrated EMG begins to 

decrease towards the end of the propulsion phase. The rectus femoris muscle 

seems to be more important as hip flexor than as knee extensor (Mero & Komi, 

1987). Finally, the biceps femoris and gastrocnemius muscles are fairly active 

during the ipsilateral propulsion phase, and seem to play a primary role in the 

propulsion phase itself (Mero & Komi, 1987). 

 

Kinematics and kinetics 

Due to the difficulty of accurately reproduce a real sprint run in a laboratory 

environment, there are still many open issues about the kinematics and kinetics of 

sprint running during the maintenance phase. Nevertheless, a number of 

biomechanical variables have been identified as correlated with this phase 

performance. 

 

Figure 9 (1.2): Determinants of step rate (GRI: Ground reaction force Impulse) (from Hay, 
1993). 
 

• Step rate and step length: running velocity is the product of step rate and step 

length. Fig. 9 and Fig. 10 show the determinants of both parameters and how 

those determinants influence each others. In studies where the same subject ran 
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at different speeds, both step rate and step length increased with speed 

(Luthanen, & Komi, 1978). This increase is linear for speeds up to 7 ms-1. At 

higher speeds there is a smaller increment in step length and a greater 

increment in step rate for a given increase in velocity. This means that high 

speed runners tend to increase their velocity by augmenting step rate to a 

relatively greater extent than step length. At maximal velocities, in fact, it is 

suggested that step rate has a more decisive role than step length (Mero, Komi, 

& Gregor, 1992). 

 

 

Figure 10 (1.2): Determinants of step length (from Hay, 1993). 
 

 

Hunter et al. (2004b) investigated the relative influence of step length and step 

rate on race performance during the acceleration phase and determined the 

sources of negative interaction between these two parameters. Leg length, CoM 

height of takeoff, and CoM vertical velocity of takeoff proved to be all possible 

sources of a negative interaction between step length and step rate. The very 

high step lengths and step rates achieved by elite sprinters appeared to be 

possible only by a technique that involved high horizontal and low vertical 

velocity of takeoff. However, a greater vertical velocity of takeoff might be of 

advantage when an athlete is fatigued and struggling to maintain a high step 
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rate. Mean step rate and step length values showed to be 4.26 samples per 

second and 1.91 m respectively (Hunter, et al., 2004b). 

• Stance and flight times: stance time has been reported to decrease significantly 

as running velocity increases (Luthanen, & Komi, 1978), while flight time has 

the opposite behaviour. In the maintenance phase flight time ranges from 

approximately 0.120 to 0.140 s (Moravec et al., 1988; Hobara et al., 2009). In 

Fig. 11, stance and flight times of an elite sprinter performing a 100 m run are 

plotted against time. The relevant decreasing and increasing pattern of the two 

parameters is visible. Times were obtained by using a high-speed camera 

(Bergamini E., unpublished personal observations).  

 

 

 

Figure 11 (1.2): Stance (solid line) and flight (dashed line) duration time-curve during a 
100 m sprint run of an elite sprinter (Bergamini E., unpublished personal observations). 
 

• Vertical displacement of the CoM: vertical peak-to-peak displacement of the 

CoM within the step duration has been shown to decrease with increased 

running speed (Cavagna, et al., 1971; Luthanen, & Komi, 1978). Mero et al. 

(1992) observed vertical displacements of 0.047, 0.050 and 0.062 m for “good”, 

“average” and “low level” male sprinters, respectively. Similar results were 

found by Hobara et al. (2009). 

• CoM velocity: a number of studies found that at constant speed there is a 

decrease in the CoM horizontal velocity following initial foot contact. Then, 
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during the propulsion phase, the CoM velocity increases. Cavenagh and 

Lafortune (1980) found a decrease of 0.18 m·s-1 in running velocity during the 

braking phase at 4.47 ms-1, which was followed by an increase of 0.27 m·s-1 

during the propulsion phase. Velocity at toe-off was greater than that at touch-

down. Probably due to the air resistance, during the flight phase the horizontal 

velocity of the CoM was found to decrease.  

 

 

 
Figure 12 (1.2): GRF impulses are shown as areas under the horizontal and vertical GRF 
curves. p (green) is the propulsive impulse, b (red) is the braking impulse. Propulsive 
impulse was based on horizontal positive force data during stance, and braking impulse 
was based on horizontal negative force data during stance. Horizontal impulse was 
calculated as propulsive impulse minus the absolute value of braking impulse. v (grey) is 
the area under the vertical GRF curve. When horizontal, braking, propulsive, and vertical 
impulses are expressed relative to body mass, they reflect the change in velocity of the 
center of mass (ignoring the effects of wind resistance) during the respective periods and 
in the respective directions (adapted from Zernicke & Whiting, 2000, and from Hunter, et 
al., 2005). 

 

• Force production: as during the previously analysed phases of the sprint run, 

force production has a key role during the maintenance phase as well. It has 

been reported that faster top running speeds are achieved with greater GRFs, 

rather than with rapid leg movements (Weyand, Sternlight, Bellizzi, & Wright, 

2000). However, it has also been reported that large GRFs as well as high 

vertical and horizontal propulsive impulses are involved in stress fractures and 

knee-related injuries (Ferber, Kingma, Bruijn, & van Dieen, 2002; Grimston, 

Nigg, Fisher, & Ajemian, 1994). The ability of the sprinter to reduce the braking 

horizontal forces and to maximise the propulsion forces is crucial for the race 
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performance (Hunter, et al., 2005). The braking horizontal force and braking 

time should be very small to avoid loss of velocity during the impact phase. 

Significant correlations were found between the average net resultant force in 

the propulsion phase and velocity, as well as between the propulsive force and 

the step length. Fig. 12 shows typical horizontal and vertical GRF curves, with 

relevant force impulses, for a well-trained sprinter (Hunter, et al., 2005). 

 

 

 
Figure 13 (1.2): Spring-mass model using in running to estimate vertical stiffness. The leg 
spring is compressed during the first half of the stance phase and rebounds during the 
second half. Maximal vertical displacement of the CoM during ground contact is 
represented by ΔyC (from Hobara, et al., 2010). 
 

• Stiffness: The concept of stiffness has its origin in physics, as part of Hooke’s 

Law. Objects that obey this law are deformable bodies which store and return 

elastic energy. Hooke’s Law, defined as F=k·Δy, states that the force (F) required 

to deform a material is related to a proportionality constant (k) and the distance 

(y) the material is deformed, provided that its shape is not permanently 

changed. The proportionality constant, k, is referred to as the spring constant, 

and it describes the stiffness of an ideal spring and mass system. The leg is often 

modelled as a spring supporting the mass of the body (Fig. 13). Lower extremity 

stiffness was proved to be an important and sensitive factor in musculoskeletal 

performance (Latash & Zatsiorsky, 1993; Butler, et al., 2003; Brughelli & Cronin, 

2008). It appears, indeed, that increased stiffness is beneficial to performance. 

At the same time, too little or too much stiffness may increase the risk of 

musculoskeletal injury (Butler, et al., 2003). Although there is not a general 

consensus about the effect of increased or decreased stiffness on the risk of 

injuries, there is some evidence that increased stiffness may be related to bony 
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injuries and decreased stiffness may be associated with soft tissue injuries 

(Burr, Martin, Schaffler, & Radin, 1985; Grimston, Nigg, Fisher, & Ajemian, 1994; 

Williams, McClay, & Hamill, 2001; Williams, Davis, Scholz, Hamill, & Buchanan, 

2004). It appears to exists, however, an optimal amount of stiffness that allows 

for injury-free performance (Butler, et al., 2003). Moreover, it has been 

suggested that stiffness can be modified in response to the external 

environment or verbal cues (Hewett, Stroupe, Nance, & Noyes, 1996; Smith, & 

Watanatada, 2002). 

 

1.2.4 Deceleration phase 

 Concerning the deceleration phase technique, no particular or specific 

aspects have been underlined in the literature. Athletes’ aim and instruction is to 

limit as much as possible the speed decrease. This is particularly true in the 200 

and 400 m races, where the athlete’s endurance characteristics and anaerobic 

metabolism are crucial. 

 Very few studies focused on the deceleration phase of sprint running from 

both a physiological and biomechanical point of view. Recent progress as concerns 

technology and methodology will hopefully contribute in enriching the literature 

about physiological and biomechanical variables which influence and determine 

this phase performance. 

 

EMG activity 

 EMG activity pattern during the deceleration phase was found to be similar 

with respect to that in the maintenance phase (Mero & Peltola, 1989). The average 

maximal activity of the muscles during the deceleration phase decreased of 6.8% 

with respect to that estimated during the maintenance phase of a simulated 100 m 

race.  

 

Kinematics and kinetics 

The deceleration phase is characterised by a decrease of velocity and by a 

slight increase in the stance times, and, in turn, a slight decrease in the flight times. 

In short sprint running events (especially in the 100 m race), the deceleration 
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phase is usually visible on the time-velocity curve. The loss of velocity from the 

peak during a 100 m race ranges from 0.9 to 7% (Moravec et al., 1988). Step rate 

decreases, and step length slightly increases during deceleration (Moravec et al., 

1988; Mero & Peltola, 1989). The CoM vertical displacement was also found to 

increase during this phase (Moravec et al., 1988; Mero & Peltola, 1989). No 

research data are available concerning the force production and the GRF patterns 

during the deceleration phase. 

 

 

1.3 METHODS FOR SPRINT RUNNING ANALYSIS 

This section was written on the basis of a recent review article by Higginson, 2009, on 

methods currently used for running gait evaluation. The author’s work is gratefully 

acknowledged. 

 

The remarkable increase in the number of recreational and competitive 

runners in recent years has obvious implications to professionals such as 

clinicians, physical therapists, and coaches who offer services aimed at the 

evaluation and rehabilitation of running-related injuries and performance 

enhancement strategies. Recent technological advancements now facilitate a 

greater range of individuals able to provide these services. With this increased 

demand comes an increase in the need to be knowledgeable of the technology 

currently available to provide these services. 

Many tools have been developed to assist in the assessment of running gait. 

These include the more traditional motion capture systems used to describe 

motion of the body, force plates that quantify the forces acting on the body, and 

electromyography (EMG) used to estimate the level of muscle activity during 

motion. 

More recently, smaller portable sensors have been developed and 

successfully used to measure running gait parameters. These include 

accelerometers, electrogoniometers, gyroscopes, and in-sole pressure sensors. 

These tools have been successfully used to investigate shoe (Verdejo & Mills, 2004; 

Butler, Davis, & Hamill, 2006; Clinghan, Arnold, Drew, Cochrane, & Abboud, 2008; 
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Dixon, 2008) and orthotic (Mündermann, Nigg, Humble, & Stefanyshyn, 2003) 

performance, risk factors for injury (Milner, Davis, & Hamill, 2006), running 

performance (Stafilidis & Arampatzis, 2007), fatigue effects (Derrick, Dereu, & 

McLean, 2002; Le Bris et al., 2006), and gait adaptations to various running 

techniques (Karamanidis, Arampatzis, & Brüggemann, 2004). For a summary of the 

specific gait parameters measured by each system and sensor, refer to the Tab. 3. 

 

 

 
Table 3 (1.3): Summary of running gait parameters measured by currently used systems 
or sensors (from Higginson, 2009). 
 
 
 In the next section a brief overview of the current technologies used in the 

assessment of running gait will be provided, with a focus upon the latest 

developments and equipment. 

 

1.3.1 Electromyography 

 Electromyography (EMG) is a technique commonly used to measure levels 

of muscle activity during walking or running gait. Typically, timing of muscle 

activation and relative intensity are the primary measures of interest and can be 

collected through the use of surface or indwelling (fine-wire) electrodes. This 

technique can be used to detect abnormal gait behavior and assess the 

neuromuscular control of a runner (Dugan & Bhat, 2005). 
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Normal muscle activation during the stride and stance phases of running 

(Cavenagh, 1990; Novacheck, 1998) and sprinting (Mero, et al., 1992) have been 

reported (see also § 1.2), as well as how muscle activation and timing patterns are 

influenced by changes in walking and running speeds (Cappellini, Ivanenko, 

Poppele, & Lacquaniti, 2006). In addition to providing information about muscle 

activation levels and timing, the frequency content of the EMG signal can be 

analyzed to determine relative muscle fatigue (Wakeling, Pascual, Nigg, & von 

Tscharner, 2001), which may be used in the early detection of potential running 

injuries. There are also data to suggest that EMG parameters may be a more 

sensitive measure than force measures in explaining differences in shoe/orthotic 

comfort ratings (Mündermann, et al., 2003).  

EMG parameters have been found to be highly reproducible between step 

cycles when compared across different running techniques (running velocity and 

stride frequency), but tend to be less reproducible when compared across 

individual muscles, with distal leg muscles showing more reproducibility than 

proximal leg muscles during running (Karamanidis, et al., 2004). Depending upon 

the particular muscle of interest, this information may influence selection of gait 

analysis protocols by decreasing (or increasing) the number of stride cycles 

needing to be analyzed.  

One major drawback of older EMG systems is that data were transmitted via 

cable, potentially limiting the motion of the subject. Newer systems incorporate 

technology that allow for the data to be transmitted wirelessly or stored in a data 

logger worn by the subject, vastly increasing the functionality of these systems. 

Other limitations include crosstalk between muscles and electrical noise from 

external sources (Harris, & Wertsch, 1994). The incorporation of in-line 

preamplification devices has greatly reduced ambient noise in the underlying 

myographic signal, allowing for greater signal-to-noise ratio. Although selection of 

appropriate signal processing and normalization techniques, selection of muscle 

onset-offset determination algorithms, and data interpretation are a quite intricate 

task to inexperienced operators, many current systems are designed to 

accommodate various levels of user proficiency.  
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1.3.2 Motion analysis (Stereophotogrammetry) 

 The most common method for collecting information about position and 

orientation of body segments in two- or three-dimensional space is the use of 

motion capture technology (often referred to as stereophotogrammetry), in which 

markers are affixed to the subject and tracked throughout the motion of interest. 

These systems typically use passive markers that reflect ambient or infrared light. 

Through manual or automatic digitization techniques, the coordinate location 

(two- or three-dimensional) of the markers can be determined. From these 

position data, the velocity and acceleration can then be calculated by taking the 

time derivative of the position and velocity, respectively.  

Limitations inherent in both optical systems include the need of skilled 

operators and the fact that they can be prohibitively expensive, have a relatively 

small capture volume, and require a controlled environment in which to operate 

(Sabatini, Martelloni, Scapellato, & Cavallo, 2005). Moreover, even when the motor 

task of interest can be performed and analysed in a human movement laboratory, 

sports motor acts are particularly problematic, being characterized by high 

accelerations and forces. The movement of the soft tissues, and in turn of the skin-

mounted markers, relative to the underlying bones (soft tissue artefact - STA) 

appears to be one of the major sources of error in the estimation of kinematic and, 

particularly, kinetic parameters in the analysis of sports techniques (de Leva & 

Cappozzo, 2006). In this respect, there is a need for research in the development of 

new methodologies specifically designed for sports applications. 

Edge detection technology recently has shown promise in allowing gait 

parameters to be quantified directly from video sources alone, allowing the same 

information to be extracted as that from marker-based systems, without the 

associated limitations or need for markers.  

As concerns the use of  treadmills, although they are often used in the 

analysis of walking and running gait to overcome issues surrounding small capture 

volumes, their use is believed to induce gait adaptations, such as increased time in 

stance phase, that normally would not be observed in over-ground running (Dugan 

& Bhat, 2005). These changes appear to be speed dependent (Nigg, De Boer, & 

Fisher, 1995). Moreover, sprint running can be hardly reproduced on treadmills. 
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To overcome problems related to the small capture volume, the use of new small 

and portable technologies seems to be effectively ideal. 

 

1.3.3 Force plates 

Force plates are commonly used to measure contact forces between foot 

and ground (ground reaction force – GRF). This information can be used to 

quantify impact forces, loading rates, as well as propulsive and breaking forces, 

and to track changes in the center of pressure (CoP) over time.  

Because of their relatively small size, however, they impose constraints on 

foot placement, which may result in subjects adopting a “targeting” strategy while 

running, altering natural gait mechanics (Paolini, Della Croce, Riley, Newton, & 

Casey Kerrigan, 2007). This targeting strategy can lead to increased step length 

variability (Wearing, Urry, & Smeathers, 2000) and often results in exclusion of the 

trial (Milner, Ferber, Pollard, Hamill, & Davis, 2006), resulting in prolonged data 

collection periods and subject fatigue. Although the influence of targeting shows 

little effect upon GRFs during walking gait (Wearing, et al., 2000), greater approach 

velocities associated with running and larger changes in relative stride length to 

contact the force platform may result in more significant differences observed in 

GRFs at these higher speeds. 

Recently, the development of instrumented treadmills have allowed for the 

quick collection of GRFs over repeated gait cycles, allowing for highly controlled 

gait speed, while eliminating potential error introduced by targeting strategies. 

One of the major drawbacks of these systems, however, is that treadmills using 

force plates beneath the belt can be susceptible to noise because of friction of the 

belt moving over the plate. Moreover, as above mentioned, sprint running can be 

hardly reproduced on treadmills. 

 

1.3.4 Pressure sensors 

The use of in-shoe pressure sensors provides a lightweight, portable, and 

easy-to-use alternative in which to analyze running gait. Unlike force platforms, 

they are capable of quantifying the distribution of force over the plantar surface of 

the foot, providing more detailed information on the loading of the foot during gait 
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than force measures alone. Because this device is placed in the shoe, the loads 

acting on the foot surface can be measured directly, as opposed to the force acting 

on the bottom of the shoe with a standard force platform (Dixon, 2008). For this 

reason, in-shoe pressure sensors are commonly used to quantify the effect of shoe 

design upon foot loading and have been used to compare loading of the foot 

between similar shoe types (Clinghan, et al., 2008) and between shoes of different 

midsole designs (Dixon, 2008), as well as changes in the impact absorbing 

capabilities of a shoe over repeated impact cycles (Verdejo & Mills, 2004). 

In-shoe pressure sensors also provide the ability to measure vertical forces 

experienced by the foot during prolonged running (Karamanidis, et al., 2004) and 

detect typical gait parameters required for gait analysis, such as heel strike and 

toe-off needed to define the stance phase of gait (Catalfamo, Moser, Ghoussayni, & 

Ewins, 2008). Although force platforms are considered to be the gold standard 

method by which these measurements typically are collected, as mentioned 

previously, they are limited in the number of steps that can be sampled and 

typically their use is restricted to a laboratory setting. In-shoe pressure sensors 

give the researcher or clinician the flexibility to collect data from repeated foot 

strikes in an environment that facilitates normal running gait. 

Plantar loading parameters obtained from in-shoe pressure sensors have 

shown high reliability across multiple trials of the same subject, with low 

variability between steps (Murphy, Beynnon, Michelson, & Vacek, 2005), and are 

repeatable between testing days (Putti, Arnold, Cochrane, & Abboud, 2007). 

Analysis of GRF parameters indicates that these measures are reliable, over a 

range of running speeds and stride frequencies (Karamanidis, et al., 2004), also 

when collected using pressure sensors. However, comparison of the two most 

popular in-shoe pressure measurement systems indicates that the accuracy and 

precision of these systems may be sensitive to the levels of pressure applied, 

calibration procedure, duration of pressure application, and insole age of use 

(Hsiao, Guan, & Weatherly, 2002). 

 

1.3.5 Accelerometers 

The use of body-fixed sensors such as accelerometers are rapidly becoming 

a viable alternative to more traditional gait analysis techniques for use in the 
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assessment of human motion. Accelerometers are inertial sensors that provide a 

direct measurement of acceleration along single or multiple axes, effectively 

reducing the error associated with differentiation of displacement and velocity 

data derived from sources such as motion capture systems.  

Accelerometer-based systems have been used successfully to quantify the 

shock experienced by the lower extremity during walking and running (Lafortune, 

Henning, & Valiant, 1995; Butler, et al., 2006; Milner, Davis, et al., 2006), evaluate 

the effect of footwear (Butler, et al., 2006) and insoles (O'Leary, Vorpahl, & 

Heiderscheit, 2008) upon tibial shock during running, evaluate shock attenuation 

between body segments during running (Mercer, Bates, Dufek, & Hreljac, 2003), 

and investigate the effects of fatigue upon running gait patterns (Le Bris, et al., 

2006).  

Perhaps the most appealing advantage is the ability of accelerometers to be 

used in the estimation of spatio-temporal gait parameters (Sabatini, et al., 2005), 

which until recently required the use of a force plate, motion analysis systems, or 

footswitches. As addressed in previous sections, a primary limitation of 

stereophotogrammetric systems and force plates in the analysis of running gait is 

their limited ability to measure successive strides. Because of their light weight 

and portability, accelerometers are capable of recording data that can be collected 

continuously over many stride cycles for a prolonged period of time. This 

technology has been used effectively to detect alterations in running patterns after 

the onset of fatigue in middle-distance runners while running on a track, without 

altering the running patterns of the runner (Le Bris, et al., 2006).  

Although mechanical testing has confirmed the validity and reliability of 

accelerometers in the measurement of accelerations within the frequency and 

amplitude range of human body motion (Bouten, Koekkoek, Verduin, Kodde, & 

Janssen, 1997), evidence indicates that they are sensitive to the site and method of 

attachment, with skin-mounted accelerometers resulting in significantly greater 

peak accelerations than bone mounted accelerometers (Lafortune, 1991). 

Moreover, direct comparison of axial acceleration of the tibia during running found 

that the disparity in results between attachment methods is largely subject-

dependent (Lafortune, et al., 1995). Another drawback of these sensors is that the 

acceleration signal is affected by a fluctuating offset (bias) and random white 
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noise, which may jeopardise the result of the numerical integration process 

necessary when velocity or displacement has to be estimated (Woodman, 2007). 

 

1.3.6 Gyroscopes 

Gyroscopes are miniature angular rate sensors that can be attached to 

individual body segments, providing a direct measure of segment angular velocity. 

This sensing technology is an inexpensive alternative to motion analysis systems 

(Mayagoitia, Nene, & Veltink, 2002), and methods recently have been developed to 

calculate spatio-temporal gait parameters based upon the angular velocity 

measures provided by these sensors (Aminian, Najafi, Büla, Leyvraz, & Robert, 

2002; Sabatini, et al., 2005). Little measurement error is entailed in estimating 

these parameters, in comparison with measurements based on foot pressure 

sensors (Aminian, et al., 2002).  

In addition to allowing the direct measurement of segmental angular 

velocity and calculation of spatio-temporal gait parameters, other benefits of using 

gyroscopes include their small size and portability, lower power requirement 

(Wong, Wong, & Lo, 2007), and insensitivity to gravitation influence (Sabatini, et 

al., 2005). However, as with accelerometers, signal integrity is compromised by 

unwanted sensor motion resulting from poor fixation or site selection and from the 

bias and random white noise. When integrating the angular velocity signal in order 

to estimate the angular displacement, therefore, drift errors can be crucial. 

Gyroscopes and accelerometers utility can be further enhanced through the 

concurrent use of the two sensors. Sensor fusion theory, borrowed from the 

aerospace field, has been applied for estimating sensor orientation, with 

accelerometers used for compensating the drift which affects the angular 

displacement obtained by numerical integration of noisy gyroscope signals, by 

using gravity as an absolute reference direction. The latter assembly is commonly 

referred to as inertial measurement units (IMU) (further details are reported in § 

3.1.2). When combined with rate gyroscopes, accelerometers have been found to 

produce joint angle, angular velocity, and angular acceleration similar to that 

derived from motion capture systems under dynamic conditions (Mayagoitia, et al., 

2002), and have been used effectively to estimate walking speed and surface 

inclination angles (Sabatini, et al., 2005). 
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1.3.7 Electrogoniometers 

Electrogoniometers allow for the direct measurement of joint angles during 

continuous dynamic activities. They offer a simple, affordable alternative to motion 

capture systems and allow joint angle data to be collected and viewed 

instantaneously. The end blocks of the electrogoniometers typically are affixed to 

the skin on either side of the joint axis of rotation using double-sided adhesive 

tape, as specified by the manufacturer. This method has been found to result in 

excessive sensor motion (Rowe, Myles, Hillman, & Hazelwood, 2001), which 

potentially could be magnified during the high-speed changes in joint angle 

commonly experienced during running. This unwanted sensor motion can be 

effectively reduced through the use of additional adhesive tape (Piriyaprasarth, 

Morris, Winter, & Bialocerkowski, 2008) or application of pre-wrap and athletic 

tape (Dierick, Penta, Renaut, & Detrembleur, 2004). For prolonged periods of data 

collection, special suits have been fabricated, which facilitates attachment of the 

electrogoniometers using hook and loop fasteners (Pierre et al., 2006). Failure to 

prevent sensor motion and improper alignment of the sensor during the 

application procedure has been found to be the greatest potential contributor to 

measurement error (Rowe, Myles, Hillman, & Hazelwood, 2001; Wong, et al., 2007; 

Piriyaprasarth, et al., 2008). 

Measurement error from electrogoniometers has been shown to be as small 

as 0.04 degrees (Piriyaprasarth, et al., 2008) and has been validated using both 

human (Rowe, Myles, Hillman, & Hazelwood, 2001) and mechanical 

(Piriyaprasarth, et al., 2008) testing protocols, with results comparable to those 

obtained using motion capture systems (Rowe, Myles, Hillman, & Hazelwood, 

2001). Although studies have shown inter- and intra-tester reliability to be 

relatively high, it has been suggested that the same tester be used when possible to 

ensure the highest repeatability (Piriyaprasarth, et al., 2008). When applied 

correctly, electrogoniometers have proven to be highly accurate and highly 

sensitive for detecting changes in joint angles over time, providing a simple, small, 

portable, and affordable alternative to motion capture systems (Rowe, Myles, 

Hillman, & Hazelwood, 2001). 
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1.4 THEORETICAL BACKGROUND: DISCUSSION 

In the last decades, due to the increase in running popularity, biomechanical 

variables influencing sprint running performance have been widely studied. In 

particular, the block start phase together with the first steps of the acceleration 

phase have been performed and analysed both in traditional human movement 

analysis laboratory and on instrumented tracks. The evaluation of the maintenance 

phase, however, requires the use of treadmills, thus inducing running technique 

adaptations that would not be observed in in-field running. This is particularly true 

at high speeds. 

The lack of portability and the small acquisition volume characterising 

traditional laboratory-based instrumentations used for the analysis of human 

movement, therefore, still represent the main limitation to in-field evaluation of 

sprint running. Thanks to recent technological advances accelerometers, 

electrogoniometers, gyroscopes, inertial measurement units and in-shoe pressure 

sensors have been made available. Combined with wireless technology and/or 

data loggers, they provide an affordable, lightweight alternative to in-field running 

analysis, allowing data collection over prolonged periods of time in almost any 

environment. Investing resources in the development and validation of methods 

and protocols that exploit the use of such technologies, appears, therefore, fully 

appropriate. 

On the other hand, only very few studies focuses on determining definitive 

relationships between either anatomical factors and injury, or biomechanical 

measures and injury in sprint running. The main result concerns the relationship 

between the amount of forces applied to the lower extremities and the incidence of 

knee injuries. Being the forces and accelerations involved in sports motor acts 

considerably higher with respect to those implicated in clinical contexts, the 

development of methods specifically designed for the estimation of internal and 

external forces in sports applications is, therefore, desirable. 
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CHAPTER 2 

 

 

 

AIM OF THE THESIS 
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The present work is part of a co-tutoring PhD program developed by the 

University of Bologna, the Locomotor Apparatus Bioengineering LABoratory 

(LabLAB) of the University of Rome “Foro Italico” and the Laboratoire de 

Biomécanique (LBM) of the Arts et Métiers ParisTech of Paris, France. 

 

 

 

The general purpose of the present thesis is to contribute overcoming the 

main limitations concerning the biomechanical analysis of sports motor tasks 

focusing, in particular, on sprint running evaluation. To this aim, two 

complementary approaches have been adopted:  

 

• LOW RESOLUTION APPROACH: the necessity of performing in-field athlete 

evaluation without influencing or constraining athletes’ activities will be coped 

by exploring the use of wearable inertial measurement units during sprint 

running. Relevant biomechanical variables affecting sprint running performance 

will be estimated. 

 

• HIGH RESOLUTION APPROACH: the lack of methods specifically designed for 

sports applications will be coped by focusing on constraint-based knee joint 

models commonly used to enhance the accuracy of joint kinetic estimates, being 

the latter particularly crucial in sports injury prevention. To further improve 

such models, subject-specific non-rigid constraints for the knee joint will be 

defined. 

 

 

 

 

 

 

Note: The term “Resolution” refers to the level of detail relative to the specific 

framework of analysis. Hence, the Low Resolution Approach entails a global 

assessment of the performance by using inertial sensors and a less detailed analysis is 

necessary. Conversely, the High Resolution Approach, focusing on the internal forces 

and joint kinematics, entails a more detailed observation. 
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CHAPTER 3 

 

 

 

LOW RESOLUTION APPROACH 
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ABSTRACT 

 

Athlete’s performance evaluation is one of the main issues of coaching, as 

well as of sports biomechanical analysis. An optimised performance is obtained 

when accurate, useful, and timely feedback about athlete proficiency is provided. 

To this aim, the main goal of sport biomechanists is to provide information to 

coaches and athletes about sports skill technique. 

As the majority of sports motor acts are hardly repeatable in laboratory 

environments, in-field evaluation of the athlete performance, without influencing 

or constraining athletes’ activities, is now becoming mandatory in order to provide 

coaches with reliable and realistic information. Sprint running is not an exception. 

Thanks to their portability and weightlessness, inertial measurement units 

allow for data collection during unconstrained continuous movement over 

prolonged periods of time. Accelerometer and gyroscope signals measured by 

these sensors, however, are affected by two main sources of errors: an unstable 

drift that accumulates when numerical integration is performed and the effects of 

soft tissue wobbling relative to the underlying bones. 

Three studies will be presented aiming at estimating reliable performance-

related parameters by using inertial sensors and at developing methods able to 

reduce the effects of the above mentioned sources of errors. In particular, the 

trunk inclination and angular velocity, as well as the instantaneous horizontal 

velocity and displacement of a point approximating the center of mass will be 

provided during in-lab sprint running. The stride and stance durations will be 

estimated on-the-field during the maintenance phase.   

The fixation of the sensor proved to be a crucial aspect in reducing soft tissue 

oscillations. The use of memory foam materials and of ad-hoc elastic belt appears 

effective. Reducing the integration interval and cyclically determining the initial 

conditions of the acceleration integration process proved to yield reliable 

instantaneous velocity as well as spatio-temporal parameters. 

 

KEYWORDS: Performance evaluation; Sprint running; Sprint start; Inertial 

sensors; Spatio-temporal parameters. 
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3.1 INTRODUCTION 

 

3.1.1 Sports biomechanics and in-field performance evaluation 

Athlete’s performance evaluation is one of the main issues of coaching. An 

optimised performance is obtained when accurate, useful, and timely feedback 

about athlete proficiency is provided. A successful coaching outcome is related to 

the ability of coaches and trainers to correctly analyse all the deterministic details 

of the performance. In this way, training programs can be organized to specifically 

target performance defects. Failure in providing such feedback implies a reduction 

of chances of improvement (Carling & Williams, 2005). Therefore, athlete 

monitoring, evaluation and training planning should be based on systematic, 

objective and reliable approaches to improve data acquisition and information 

processing. In this respect, a gap exists between sport science research and 

coaching practice (Goldsmith, 2000). The link between research and coaching 

practice needs to be reinforced, especially in élite sports, where coaches are 

progressively going to incorporate the outcomes of sports science research in their 

in-field activity (Williams & Kendall, 2007).  

Sport coaches aim naturally at improving athlete’s performance and at 

reducing injury risk. These two objectives are also shared by sport biomechanists. 

The science of biomechanics is concerned with the forces that act on human body 

and the effects these forces produce. Physical education teachers and coaches of 

athletic teams, whether they recognise it or not, are likewise concerned with 

causes (forces) and effects (movement). In fact, a sport technique can be defined as 

the way in which body segments move in relation to each other during a 

movement task. Coaches’ ability to teach sport techniques depends largely upon 

their understanding of both the effects they are trying to produce and the forces 

that cause them. Thus, the main goal of sport biomechanists should be to provide 

information to coaches and athletes about sports skill technique that will assist 

them in obtaining a good technique, characterised by effective performance (the 

purpose of the movement) and decreased risk of injury (distribution of forces in 

muscles, bones, and joints so that no part is excessively overloaded). Poor 



 - 43 - 

techniques are characterised by increased risk of injury, even though performance 

may be effective, at least for a while. 

Sport scientists basically use two approaches to analyse athletes’ technique: 

qualitative and quantitative. A qualitative analysis is based on the systematic 

observation of the motor task, directly and/or via film or video (Knudson, 2007). 

The effectiveness of this approach depends on the operator ability to observe 

accurately the task and to know what to look for, i.e. on the operator knowledge 

and experience and, in particular, his/her ability to identify the mechanical 

requirements of the movement under analysis. Since human observation is 

generally not sufficient to provide accurate and objective information, the use of 

objective data, specific measuring tools, and correct interpretation and application 

of the findings are required to optimise the coaching process. This circumstance 

calls, therefore, for the use of quantitative analysis. A quantitative analysis is based 

on measurements of the kinematic (displacement, velocity, acceleration) and 

kinetic (force, moment, power) variables that determine performance. As regards 

the mechanical determinants of performance, relevant assessments have been, so 

far, typically constrained into laboratory settings. Laboratory-based 

instrumentations are accurate, but the volume of capture is limited and may even 

vitiate the execution of the motor task under analysis. Here is where sports 

biomechanics fails in providing useful and exploitable information to coaches and 

trainers.  

A perfect example of the “breakpoint” between sports biomechanics and 

performance evaluation is represented by Mr. Pistorius with his emblematic 400 m 

race during the 2007 Golden League in Rome. After his brilliant vamp in the last 

200 m, a group of researcher was requested (by the International Association of 

Athletics Federations, IAAF) to investigate about his sprint performance ability and 

determine whether or not he could have had mechanical advantages from his 

prostheses. Two groups of researchers performed different mechanical and 

physiological tests on Mr. Pistorius. The first expressed its positive opinion 

regarding the advantages coming from the prostheses, while the second group 

expressed the opposite attitude. This report was then followed by the sentence 

emitted by the Court of Arbitration for Sport (Lausanne, May 2008) which stated 

“Having viewed the Rome Observations [...] the IAAF's officials must have known that 
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[...] the results would create a distorted view of Mr. Pistorius' advantages and/or 

disadvantages by not considering the effect of the device on the performance of Mr. 

Pistorius over the entire race”. In fact, the researchers’ investigation was performed 

using lab-based instrumentations and, thus, was limited to few steps. Conversely, 

in cases like this, a mechanical characterisation of the motor task must be carried 

out for the entire race. The abovementioned circumstance might be overcome 

when adequate technological advancements are made available. 

Technological advances and improvement of procedures have been and 

continue to be an important issue in sport and exercise science (Winter, et al., 

2007). To cope with the fast development of new technological advancements, 

sports scientists and coaches are asked to continuously account for new 

developments and include them in the everyday assessment of training and 

competition. Specifically, technologies used to measure performance are moving 

forward and improved methods based on “state of the art” computer technology 

and robotic automation are being continually developed and commercialised to 

support the pursuit of success in elite sports (Carling, Reilly, & Williams, 2009). 

Systems of measurement benefitted of such trend with a progressive device 

miniaturisation, increased reliability and cost reduction. Simultaneously, data 

processing took advantages of greater calculation power, speed and interactivity. 

Last but not least, the development in the use of expert systems such as, for 

example, Artificial Neural Networks, as diagnostic tools for evaluating faults in 

sports techniques is advocated as promising in the near future (Bartlett, 2006). 

Professionals from computer science and engineering fields cooperate with 

sports biomechanists and physiologists to define and implement performance 

indices that can be used by trainers and coaches during the performance 

evaluation exercise. From the same multidisciplinary interaction, further 

improvements were attained, such as instrumented sports equipments or portable 

systems that use telemetry for data transmission. These ones are particularly 

useful for in-field performance evaluation being not bound to laboratory 

conditions.  
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3.1.2 Wearable inertial sensors 

An alternative to laboratory based techniques is the use of inertial sensors 

that can measure movement-related data without any space limitation and no 

cumbersome setup. Their measure is based on the reluctance (inertia) of a portion 

of the sensor to accelerate linearly (accelerometer, inertia to linear motion) or 

about an axis (gyroscope, inertia to angular motion) as a response to forces and 

torques impressed to them, respectively. The vestibular system, located in the 

inner ear, is a biological 3D inertial sensor. It can sense angular motion as well as 

linear acceleration of the head. 

The measured quantities are expressed with respect to a moving reference 

frame defined by the sensitive axes of the sensors. The sensitive axis is the axis 

along which the acceleration is “sensed” and about which the rotational velocity is 

“sensed”. Accelerometers and gyroscopes may become triaxial when three uniaxial 

sensors are mounted mutually orthogonal to each other. When a measure of a 

global (inertial) reference frame is required, the measure of the direction and of 

the intensity of a local magnetic field is also used. 

Only recently advances in micro-electro-mechanical systems (MEMS) 

technologies have led to the development of a new generation of inertial sensors, 

the specifications of which - in terms of encumbrance, robustness, power 

consumption, measuring performance and cost - seem to be appropriate for 

applications in the biomedical field. Sensor fusion theory, borrowed from the 

aerospace field, was applied for estimating sensor orientation: accelerometers are 

used for compensating the drift which affects the angular displacement obtained 

by numerical integration of noisy gyroscope signals, using gravity as an absolute 

reference direction. The latter assembly is commonly referred to as inertial 

measurement units (IMU). Sensor fusion algorithms are then enhanced with the 

magnetic sense furnished by MEMS magnetometers, using the magnetic North as 

an absolute reference direction on the horizontal plane. With the latter assembly, 

also known as a magnetic field angular rate gravity (MARG) sensors (Bachmann, 

1999), an absolute Earth-fixed reference frame is provided.  

Currently, the major disadvantage of MEMS is the reduced performance in 

terms of accuracy and bias stability. Signals measured by MEMS sensors are, 

indeed, affected by a fluctuating offset (bias) and random white noise. Size and 
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performance of an inertial sensor seem to be linearly dependent parameters, thus 

the smaller the sensor, the lower the performance expected. On the other side, 

MEMS technology transforms inertial sensors into body-fixed sensors. MEMS 

sensors are highly transportable and do not need any stationary units such as 

transmitters, receivers or cameras. All detected signals can be recorded by a 

portable data logger, allowing the subject to perform his/her activity in a real 

situation. There are no restrictions in the capturing volume and data can be 

recorded for long periods of time depending on the performance and capacity of 

the data logger. All these features allow mobile and outdoor motion capture. In 

addition, these sensors are much cheaper than sonic, magnetic and optical motion 

capture systems and present a high ecological validity: being worn by the subject, 

they can be used in non-standardized environments and on any surface (for e.g. 

grass, sand, balance beam, springboard, etc.). Moreover, little time is needed to set 

up the system and a large number of athletes can be evaluated in a short time in 

agreement with trainers’ requirement.  

For all these reasons, the availability of wearable motion sensors has 

opened new perspectives in sport sciences and, in particular, in the field of human 

movement analysis. In few years a large number of applications have appeared 

both in the literature and on the market. For example, vertical jump performance 

has been analysed using triaxial or uniaxial accelerometers either placed on the 

ankle (Quagliarella, Sasanelli, Belgiovine, Moretti, & Moretti, 2010) or on the 

sacrum (Innocenti, Facchielli, Torti, & Verza, 2006; Palma, Silva, Gamboa & Mil-

Homens, 2008). However, all these assessments suffered from the limits of 

accelerometers and did not take advantage of the presence of gyroscopes that 

could greatly enhance the evaluation (Mazzà, Iosa, Picerno, & Cappozzo, 2009).  

Strength and power measures can contribute in devising methods to 

improve power output and to support its transference to athletic performance 

(Cronin & Sleivert, 2005). Although it is still debatable whether training at 

maximal power improves functional performance, maximal power needs to be 

constantly monitored and adjusted. Isokinetic and isometric assessment bear little 

resemblance to the accelerative/decelerative motion implicit in limb movement 

during resistance training and sporting performance (Cronin & Sleivert, 2005), 
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while measures performed using inertial sensors seem ideal to perform power 

assessment (Jidovtseff, et al., 2006). 

Kinetic information derived from acceleration measures gain increased 

value when obtained directly on the field. A well fitting example is the system, 

constructed by Baca and colleagues, for recording and presenting relevant kinetic 

information during on-water and ergometer rowing (Baca, 2006). Similarly, IMUs 

have been used as training aid for hammer throw (Otha, Umegaki, Murofushi, 

Komine, & Miyaji, 2008), or, on the tennis court, as a tool to perform a motor 

strategy analysis, investigating the translational and rotational motion of the swing 

(Ahmadi, Rowlands, & James, 2006) or highlighting differences in the forehand 

stroke according to aim and direction (Camomilla, Lupi, & Picerno, 2008). Coupling 

accelerometers with other monitoring techniques could enhance their potential as 

a means to assess performance over the entire course. This approach was used, for 

example, by competition rowers to improve performance at national and 

international competitions, monitoring impeller velocity (James, Davey, & Rice, 

2004). Moreover, foot-ground contact times (Auvinet, et al., 2002; Purcell, et al., 

2005; Lee, Mellifont, & Burkett, 2010; Wixted, et al., 2010), lower leg rotational 

kinematics (Channells, et al., 2005), vertical stiffness (Hobara, et al., 2009) and 

running gait symmetry (Lee, Sutter, Askew, & Burkett, 2010) have been assessed 

using accelerometers on the tibia or on the lower-back trunk during distance and 

sprint running. 

It must be kept in mind, however, that the extraction of movement-related 

information content from the signal derived from MEMS sensor can be strongly 

jeopardized by the unstable bias that characterises the signal of such sensors and 

by soft tissue vibrations. In the case of sport performance assessment, during the 

execution of explosive sport manoeuvres, the former plays a secondary role 

compared to the devastating effects of soft tissue vibration. For this reason, prior 

to perform any measurement, good practice rules recommend to mitigate this 

source of error for the benefit of the further signal processing. Developing 

algorithms that can minimise the detrimental effects of these errors, while 

transforming this data into well-known parameters suitable for use by coaches and 

athletes, remains the main challenge. Novel derivative techniques, pattern 

recognition of specific activities, and characterisation of specific phases of the task 
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can greatly improve sensor data interpretation. This data reduction can lead to 

valuable information that can be made available to coaches and trainers directly on 

the field and during real scenarios, such as training sessions or race simulations. 
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3.2 STUDY 1: TRUNK INCLINATION DURING THE SPRINT START USING AN 

INERTIAL MEASUREMENT UNIT 

 

Abstract 

The execution of the start is crucial in determining the performance during 

sprint running. In this respect, trunk inclination is a key element in moving from 

the crouch to the upright position. The purpose of this study was to provide 

coaches with an instrument able to reliably estimate such parameter in-field. To 

this aim, the accuracy of an inertial measurement unit (IMU) in estimating its 

rotation about a local axis and the relationship between this rotation and trunk 

inclination in the progression plane were assessed during block start and pick-up 

phases. 

Sprint starts were performed by five sprinters and data provided by an IMU 

positioned on the trunk at L2 level were compared to reference 

stereophotogrammetric measurements. An attachment that limited soft tissue 

oscillations and Kalman filtering were used to reduce errors. The trunk was 

modeled as a rigid segment joining the midpoint between C7 and the posterior 

superior iliac spines. 

The accuracy of the IMU in estimating its orientation about a local axis was 

high both in terms of curve similarity (correlation r>0.99) and of bias (lower than 

1 deg). Similar results were obtained concerning the relationship between the IMU 

estimates and the trunk inclination in the progression plane (r>0.99; bias lower 

than 4 deg). Results open a promising scenario for an accurate in-field use of IMUs 

for sprint start performance assessment. 

 

Keywords: Inertial sensor; Kalman filter; Performance indicator; Sprint start; 

Biomechanics. 
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3.2.1 Introduction  

The proper execution of the sprint start is crucial in determining the 

performance during the 100, 200 and 400 m track sprint runs (Harland & Steele, 

1997; Ostarello, 2001; Čoh, et al., 2006). The main outcome of the sprint start is to 

move from a static crouched position to a cyclic upright one, by generating 

sufficient upward vertical velocity and, at the same time, by creating maximal 

forward horizontal velocity to improve the sprint performance. To reach high 

horizontal velocities, sprinters have to exert high horizontal forces through the 

blocks in a short time period (Harland & Steele, 1997; Čoh, et al., 1998; Kraan, van 

Veen, Snijders, & Storm, 2001). 

Different parameters were obtained and were shown to be correlated with 

the athlete time at 20 m, divided in the block start phase, ranging from when the 

athlete obtains the “on your marks” position to block clearing, and pick-up phase, 

ranging from the block clearing to the instant of time in which the athlete attains 

an upright sprinting position: 

• the relative position and the inclination of the blocks (Schot & Knutzen, 1992; 

Cousins & Dyson, 2004; Čoh, et al., 2006); 

• the vertical and horizontal trajectory and velocity components of the athlete’s 

centre of mass (Natta & Breniere, 1997; Cousins & Dyson, 2004; Čoh, et al., 

2006; Kugler & Janshen, 2010); 

• the force impulse exerted on the blocks during the block phase (Kugler & 

Janshen, 2010; Slawinski, Bonnefoy, & Levêque, 2010); 

• the reaction time, i.e. the time from the gun signal to the first detectable change 

of pressure on instrumented blocks, and the block time, i.e. the total time the 

athlete spends on the blocks, from the first detectable change of pressure to the 

front block clearing (Mero, et al., 1992; Fortier, et al., 2005; Čoh, et al., 2006); 

• the time between the onset of leg muscle activity and that of force production 

(Mero & Komi, 1990). 

All these parameters, however, are related entirely or mainly to the lower 

part of the body. Only recently, Slawinski et al. (Slawinski, Bonnefoy, Ontanon, et 

al., 2010) reported that, since the upper body kinetic energy contributes 

significantly to the total body kinetic energy, the coordination between the upper 

and the lower part of the body is a key factor in the block start performance. From 
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coaches’ perspective, it is acknowledged that the upper part of the body is also 

important. In fact, expert track and field coaches focus primarily on the inclination 

of the trunk in the progression plane described as the line joining the shoulder and 

the hip joint centers (Jones, Bezodis, & Thompson, 2009). 

Only a few quantitative studies have focused on the trunk during the sprint 

start (Mero, Luhtanen, & Komi, 1983; Čoh, et al., 1998; Natta, Decker, & Boisnoir, 

2006; Slawinski, Bonnefoy, Ontanon, et al., 2010). Trunk inclination in the 

progression plane was analysed during the set position (Mero, Luhtanen, & Komi, 

1983; Čoh, et al., 1998; Natta, Decker, & Boisnoir, 2006) and, on a sample of female 

athletes, was found to correlate with the athletes’ time to 10 and 20 m from the 

starting line (Čoh, et al., 1998). Natta and colleagues (Natta, Decker, & Boisnoir, 

2006) reported that the trunk angular velocity, analysed during the block start, 

discriminates between high and medium level sprinters. None of these studies 

monitored the trunk inclination and angular velocity during both block start and 

pick-up phase. Moreover, data acquisition was performed using motion capture or 

video analysis technologies, both limited in terms of acquisition volume, post-

processing time, and cost. 

As an alternative to video-based techniques, wearable inertial measurement 

units (IMUs) have recently gained momentum as a suitable solution for low cost in-

the-field biomechanical analysis of running performance. They provide, without 

any space limitation and cumbersome setup, 3D linear acceleration and 3D angular 

velocity with respect to a local unit-embedded system of reference. So far, IMUs 

have been used to estimate foot-ground contact times (Purcell, et al., 2005) and 

lower leg rotational kinematics (Channells, et al., 2005) during sprint, and to 

estimate runners’ speed (Vetter, Onillon, & Bertschi, 2009), symmetry between 

right and left lower limb (Lee, Sutter, Askew, & Burkett, 2010), and stride, step, or 

stance durations during jogging (Lee, Mellifont, & Burkett, 2010) and running 

(Auvinet, Gloria, Renault, & Barrey, 2002; Wixted, Billing, & James, 2010). To the 

authors’ knowledge, no study has focused on using an IMU to estimate trunk 

inclination during the sprint start. 

The quality of trunk motion estimates provided by inertial sensors has been 

assessed for clinical applications only during daily-life activities or under 

controlled flexion-extension, lateral bending and torsion (Lee, 2003; Goodvin, 
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Park, Huang, & Sakaki, 2006; Plamondon, et al., 2007; Wong, & Wong, 2008; Faber, 

Kingma, Bruijn, & van Dieen, 2009). The results of these studies cannot be directly 

extended to sprint start, since the quality of the IMU estimates strictly depends on 

the amount and variation of acceleration entailed in the analysed motor task for 

the following reasons. First, skin-mounted sensors result in significantly greater 

peak accelerations than bone mounted sensors (Lafortune, 1991; Forner-Cordero, 

et al., 2008) and this is particularly true for movements characterised by high 

accelerations and in areas where soft tissues may undergo increased wobbling (Liu 

& Nigg, 2000; Pain & Challis, 2006). Second, it is known that the accuracy of sensor 

orientation estimate can be improved using adaptive algorithms for weighting the 

acceleration or the angular velocity signal (Sabatini, 2006), with the former 

prevailing during static or quasi-static phases and the latter during jerked phases, 

typical of sprint start. Last but not least, such prevalence of angular velocity signals 

entails dealing with the relevant drift which causes errors that accumulate over 

time when estimating the angular displacement through numerical integration 

(Woodman, 2007). 

Within this framework, the purpose of this study was to provide coaches with 

an instrument that can be reliably used in the field and that is able to provide 

information about the inclination of the trunk, through a three step approach: 

1. to minimize problems related to IMU fixing, data fusion, and drift;  

2. to assess the accuracy that characterises the estimate of the rotation about a 

local axis of an IMU; 

3. to quantify the relationship between the latter rotation and the instantaneous 

inclination of the trunk in the plane of progression during both the block start 

and the pick-up phase.  

To these aims, sprint starts were performed in a laboratory. Data provided by 

an IMU fixed on the lower part of the trunk were compared to reference 

measurements provided by a stereophotogrammetric system. 

 

3.2.2 Materials and methods 

Experimental set up and data acquisition 

After institutional approval of the protocol, five male sprinters (age: 

23.8±0.8 years; body mass: 72.4±3.8 kg; stature: 1.79±0.07 m) were recruited to 
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take part in the study and gave their written informed consent. The subjects were 

currently competing over 100 m or 200 m and their best time for 100 m was 

11.35±0.15 s. These times are representative of trained college level athletes.  

Each sprinter was asked to perform four starts from the starting blocks. All 

sprint runs were performed in an indoor lab (12x9x4m). The blocks were directly 

fixed to a wooden tile, which replaced one of the regular floor tiles, and were 

individually set by the athletes. The two main body positions during the block start 

phase, “on your marks” and “set” positions, and the first three steps of each start 

were analysed. To avoid fatigue, a five minutes rest period was given between 

trials. Each subject was equipped with an IMU (FreeSense, Sensorize Ltd, Italy) 

containing a 3D accelerometer (±6 g of full range) and a 3D gyroscope (±500 deg·s-

1 of full range) providing 3D accelerations and angular velocities with respect to a 

local sensor-embedded system of reference coinciding with the geometrical axes of 

the IMU case. IMU data, whose sampling frequency was set at 100 frames per 

second, were sent via Bluetooth® to a laptop computer and low-pass filtered using 

a moving local regression on windows of 40 samples based on weighted linear 

least squares and a second degree polynomial model (smooth function with the 

loess method, v7.9, MathWorks®, USA). An IMU was positioned with an elastic belt 

on the lower back trunk (L2 level). In order to limit the wobbling of muscular and 

soft tissue masses (Forner-Cordero, et al., 2008), a memory foam material placed 

between the paravertebral muscles and the elastic belt (Fig. 1). The IMU x and y 

axes (Fig. 2) were aligned with the spine and with the line joining the posterior 

superior iliac spines, respectively.  

To validate the use of the IMU, a nine camera stereophotogrammetric 

system (Vicon MX3, Oxford, UK) was used. Four retro-reflective markers (LI, LS, RI, 

RS) were attached to the IMU to determine the unit orientation in space (Fig. 1). 

Ten markers were positioned on the trunk (right and left shoulder, RSHO and 

LSHO, spinous process of the 7th Cervical Vertebrae, C7, 10th Thoracic Vertebrae, 

T10) and on the pelvis (right and left posterior superior iliac spine, RPSIS and 

LPSIS, and anterior superior iliac spine, RASIS and LASIS) (Fig. 1).  
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Figure 1 (3.2): Markers and IMU placement. Four retro reflective markers (LI, LS, RI, RS) 
were attached on the IMU. Ten markers were positioned on the trunk: right and left 
shoulder (RSHO, LSHO), spinous processes of the 7th Cervical Vertebrae (C7), 10th Thoracic 
Vertebrae (T10), right and left posterior superior (RPSIS, LPSIS), and anterior superior 
iliac spines (RASIS, LASIS). Further markers were placed to ease the reconstruction and 
labeling procedure. Indication of the memory foam material location is provided. 
 

 

Data processing 

IMU angular velocity and acceleration were measured in the IMU Technical 

reference frame (TIMU). An inertial reference frame was defined in a static phase 

preliminary to the acquisition aligning the x-axis of the TIMU with the gravity vector 

(IMU Global reference frame – GIMU). The 3 by 3 rotation matrix, which expressed 

the orientation of TIMU with respect to GIMU ( IMU

IMU
T

G R
), was then computed (Fig. 2). 

To improve the accuracy of the IMU

IMU
T

G R
 estimate, a Kalman algorithm 

(Kalman, 1960; Jurman, et al., 2007) was designed to automatically identify the 

static and non-static phases of the movement and to use a proper combination of 

the information provided by the accelerometer and gyroscope sensors. Briefly, the 

filter works as follows:  

• when the unit does not move or moves at constant velocity, i.e. the norm of the 

acceleration vector measured by the unit is below a defined threshold (s), its 

inclination relative to the gravitational acceleration is computed through a 

quaternion based approach (Favre, Jolles, Siegrist, & Aminian, 2006); 
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• in all other circumstances the inclination of the IMU relative to gravitational 

acceleration is estimated by integrating the angular velocity signal, with the 

initial conditions obtained by accelerometer-based estimates. 

Since the analysed movement was supposed to occur in the average plane of 

progression, only angular velocities measured around the medio-lateral axis were 

integrated. The importance of correctly selecting the Kalman algorithm parameters 

has been recently underlined in the literature (Luinge, Veltnik, & Baten, 1999; 

Donati, Mazzà, McCamley, Picerno, & Cappozzo, 2010). On the basis of pilot trials 

and of the electronic characteristics of the unit sensors, the following filter 

parameters were defined for the threshold (s) and for static noises (n) both for the 

accelerometer and the gyroscope: s = 0.5·g m·s2 and nGYRO = 1e-008 deg·s-1, nACC = 1e-

009 m·s-2, where g is the norm of the gravitational acceleration. 

 

 

 

Figure 2 (3.2): Technical (T) and Global (G) frames for the inertial sensor (IMU) and the 
stereophotogrammetric system (S).  

S

S
T

G R
: orientation of the four marker frame with respect to the Stereophotogrammetric 

Global reference frame;  

IMU

IMU
T

G R
: orientation of the technical IMU frame with respect to the IMU Global 

reference frame;  

IMU

S
G

G R
: orientation of the IMU Global reference frame with respect to the 

Stereophotogrammetric Global reference frame. 
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In order to assess the accuracy with which the orientation of the IMU 

technical frame in the global frame was estimated using the above-described 

procedure, the same orientation was determined using stereophotogrammetric 

data. A stereophotogrammetric technical reference frame was defined from the 

four markers placed on the unit (TS). This frame was assumed to be coincident 

with TIMU in the first instant of the trial (
IR =

S

IMU
T

T

). The orientation of TS with 

respect to the stereophotogrammetric global reference frame (GS) ( S

S
T

G R
) was 

then obtained in each instant of time. The time invariant rotation matrix relating 

the two global reference frames, GIMU with respect to GS, was calculated as follows: 

IMU

S

S

S

IMU

S
G

T
T

G
G

G RRR ⋅=
 (1) 

The orientation of the unit in the stereophotogrammetric global reference frame, 

TIMU with respect to GS, in each instant of time was then obtained: 

IMU

IMU

IMU

S

IMU

S
T

G
G

G
T

G RRR ⋅=
                (2) 

 

Finally, Tait–Bryant angles were calculated for the orientation of the unit in 

the reference global frame as measured from stereophotogrammetry and IMU 

( S

S
T

G R
 and IMU

S
T

G R
, respectively), using the axis mobile rotation sequence yxz 

(see Fig. 2 for axes orientation). This rotation sequence was motivated by the fact 

that the largest rotations occurred about the y-axis. Only the rotation about this 

axis, here referred to as “pitch angular displacement”, was further considered. 

In order to synchronize the IMU with the stereophotogrammetric data, a 

trunk flexion-extension was performed by each subject before each trial. The 

angular velocity around the y-axis obtained by the stereophotogrammetric data 

(de Leva, 2008) as well as by the IMU measurements were compared for each trial. 

The instant corresponding to the peak of angular velocity during the trunk flexion-

extension was considered as the first frame of the trial for both systems. 

To compare the IMU inclination to the whole trunk inclination, a trunk 

anatomical frame (ATR) was defined as follows: O: midpoint between LPSIS and 

RPSIS, x-axis joining C7 and O, positive downward, z-axis directed as the vector 

product between the x-vector and the vector LASIS-RASIS, y-axis orthogonal to the 

x-z plane positive towards the left.  
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The pitch angular displacement relative to GS (β) was obtained from the IMU, 

IMU

S
T

G R
, from the unit markers, S

S
T

G R
 and from the whole trunk, TR

S
A

G R
. Four 

phases were identified on the pitch angular displacement (on your marks = OYM, 

transition = TNS, set = SET, pick-up = PICK-UP phases) separating static and non-

static phases (Fig. 3). The following parameters were computed for each curve:  

• βOYM and βSET: average values during OYM and SET phases, respectively;  

• Δβ: difference between βSET and βOYM;  

• ωTNS: peak angular velocity during the TNS phase; 

• ωPICK-UP: peak angular velocity during the PICK-UP phase.  

The offset between the pitch angular displacements calculated using IMU

S
T

G R
 and 

TR

S
A

G R
 was calculated in the OYM position (βOFF). 

 

 

Figure 3 (3.2): Typical pitch angles (β) for one trial as obtained from the IMU technical 
frame (solid line), from the stereophotogrammetric technical frame (dotted line) and from 
the trunk anatomical reference frame (dashed line). The angular displacement parameters 
estimated for each phase (OYM: on your marks, TNS: transition, SET: set, PICK-UP: pick-
up) are indicated: βOYM and βSET: average values of the pitch angular displacement during 
the OYM and SET positions, respectively; Δβ: peak to peak difference between βSET and 
βOYM. The pitch angular displacement was considered to be zero when the unit was in a 
horizontal position; positive angles correspond to clockwise rotations. 
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Statistical analysis 

To assess the accuracy of the parameters provided by the IMU against the 

TS reference measurements, as well as the relationship between the information 

provided by the IMU and the trunk considered as a rigid segment (ATR), a two steps 

statistical analysis was performed.  

First, curve similarity was evaluated between pitch angular displacements 

obtained from TIMU and TS, for IMU accuracy assessment, and from TIMU and ATR, 

for IMU-trunk rotation consistency, computing the root mean square difference 

(RMSD) and the Pearson’s product-moment correlation coefficient (r). It has to be 

underlined that, when dealing with IMU accuracy, the RMSD between the unit 

estimates and reference measurements can be interpreted as root mean square 

error. The same coefficients were also assessed for only the PICK-UP phase, 

potentially the most affected by inertial factors. 

Second, for each computed parameter, the following statistical analysis was 

performed:  

1. Descriptive statistics (mean±standard deviation);  

2. Mean bias analysis: difference between the stereophotogrammetric system 

parameters (S) and IMU measurements (IMU);  

3. Investigation of the presence of a linear trend between the amount of random 

error and the measured values (heteroscedasticity) through inspection of 

Bland and Altman plots and correlation analysis (Nevill & Atkinson, 1997). 

 

3.2.3 Results 

The comparison of pitch curves, obtained from TIMU and TS when assessing 

the accuracy of the IMU, resulted in a low root mean square difference (RMSD) and 

a very high correlation (r) during block and pick-up phases (Tab. 1). Similar results 

were obtained for IMU-trunk rotation consistency, comparing pitch curves 

obtained from TIMU and ATR (Tab. 1). 
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 IMU TR 

r 0.994 ± 0.013 0.998 ± 0.002 

rPICK-UP 0.995 ± 0.015 0.998 ± 0.001 

RMSD [deg] 3 ± 2 3 ± 2 

RMSDPICK-UP [deg] 3 ± 3 3 ± 2 
 

Table 1 (3.2): Curve similarity: Mean ± one standard deviation of the Root Mean Square 
Difference (RMSD) and the correlation coefficient (r) computed to assess unit accuracy 
(IMU) and IMU-trunk rotation consistency (TR), relative to the whole task and to the PICK-
UP phase. 
 

For all pitch parameters, bias was lower than 1 deg, for the IMU accuracy 

(biasIMU), and than 4 deg, for IMU-trunk rotation consistency (biasTR). The offset of 

the pitch angle between the unit and the trunk reference frame, computed in the 

OYM phase, showed a low variability among subjects and trials (βOFF = 18±4 deg). 

The peak bias of the angular velocity, during both the TNS and the PICK-UP phases, 

was found to be lower than 9 and 6 deg·s-1 for IMU accuracy and IMU-trunk 

rotation consistency, respectively (Tab. 2).  

 

 TS TIMU ATR TS vs TIMU ATR vs TIMU 

  biasIMU biasTR 

βOYM [deg] -29±6 -29±6 -29±6 1 ± 1 0 ± 1 

βSET [deg] 12±6 12±7 9±6 1 ± 1 4 ± 4 

Δβ [deg] 43±7 43±8 39±5 1 ± 1 4 ± 4 

ωTNS [deg·s-1] 106±19 98±18 93±18 8 ± 4 4 ± 6 

ωPICK-UP [deg·s-1] -201±25 -192±29 -198±31 9 ± 6 6 ± 13 

 

Table 2 (3.2): Parameter analysis: Descriptive statistics (mean ± standard deviation) of 
each estimated parameter and of the errors between the estimates of technical 
stereophotogrammetric frame (TS), the IMU frame (TIMU), and the anatomical trunk frame 
(ATR). βOYM and βSET: average values of the pitch angular displacement during the OYM and 
SET positions, respectively; Δβ: peak to peak difference between βSET and βOYM; ωTNS: peak 
angular velocity during the TNS phase; ωPICK-UP: peak angular velocity during the PICK-UP 
phase. 
 

Symmetry of the confidence interval of the bias was observed for all 

parameters listed in Tab. 2, during visual inspection of the Bland and Altman plots 

entailing that no systematic error was present. No linear trend between the 

amount of bias and the measured values was found (average correlation = 0.09). 
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3.2.4 Discussion 

The accuracy of an IMU positioned on the lower part of the trunk in 

estimating its rotation about a local axis during sprint start, as well as the 

relationship between the IMU estimates and the athletes’ trunk inclination were 

assessed. The results show that problems associated with the IMU can be 

overcome so that coaches can be provided with an instrument that can be reliably 

used in the field to characterise the inclination of the trunk considered as a rigid 

body. 

The accuracy of the IMU is shown by the high agreement between the IMU 

and the reference measures, during the whole trial as well as during the PICK-UP 

phase, for both curve similarity and parameter analysis. Such agreement proves 

that the main errors entailed in using IMUs to estimate inclination during dynamic 

exercises did not have a disruptive effect on the final results. First, the proper 

identification of static and non-static phases, as well as the selection of the 

weighting on the accelerometer and the gyroscope measurements, are critical to 

estimate the unit orientation using Kalman filtering (Sabatini, 2006). The efficacy 

of the used filter is attested by the high curve similarity obtained during a 

combination of static and non-static phases, as well as during the pick-up phase. 

Curve similarity allows hypothesizing that the unit fixing site and method (elastic 

belt plus memory foam material placed at L2 level) are a good solution in order to 

limit the artefact introduced by soft tissue oscillations. Last but not least, the drift 

errors entailed in the numerical integration process of the angular velocity signals 

(Woodman, 2007) proved to be negligible, given the short duration of the 

integration interval (from the SET end to the upright position there was less than 1 

s). 

The trunk inclination, considered as a rigid segment, and the IMU 

inclination were in high agreement during the whole curve and the PICK-UP phase. 

The trunk average peak angular velocity (ATR: ωPICK-UP = 198 ± 31 deg·s-1) agrees 

with previous literature results, although slightly higher (186 ± 48 deg·s-1 in Natta 

et al., (2006), and about 150 deg·s-1 in Slawinski et al., (2010). This difference can 

be explained considering that both studies analysed the task on a real track, where 

it is plausible that athletes tended to reach an upright position more gradually with 

respect to the athletes tested in the present study, who were forced to complete 
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the task before reaching the end of the lab. The sensor and the trunk pitch angles 

in the OYM phase presented an offset due to a different alignment of the IMU and 

the trunk, depending on subjects’ anatomy and due to the athletes’ kyphosis. The 

low values of RMSE and the relevant high correlation indicate, consistently 

between subjects, that the initial offset does not change during all phases. It could 

be speculated that a calibration between the unit and the athlete trunk should not 

be necessary, whenever the attention is focused on the variation of the angular 

displacement, as it is often the case in coaches’ perspective. 

The agreement between the unit and the trunk inclination seems to support 

track and field coaches’ approach in considering the trunk as a rigid segment. From 

the expert coaches’ perspective, the orientation of the trunk is usually observed 

only in the progression plane, as the angular displacement is preponderant in this 

plane, and it is considered as a rigid segment (Jones, et al., 2009). Although it is 

well known that the trunk has a complex behaviour during the sprint, in the light 

of the previous considerations, it is questionable whether a more complex analysis 

would be of any use to a coach used to qualitatively observing the task. 

In conclusion, the study shows that a single IMU positioned on the lower 

back trunk provides reliable angular displacements in the plane of progression 

during a sprint start from blocks. Moreover, from these estimates, it is possible to 

quantify the inclination of the trunk considered as a rigid segment. The inclination 

of the trunk could be particularly helpful for trainers, being one of the key 

elements in block start and pick-up performances. Future works, will therefore, 

concern the validation of the method in-field, in order to analyse professional 

sprinters and all-out sprint starts, exploring, in particular, the correlation between 

the estimated parameters and the whole race performance.  
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3.3 STUDY 2: INSTANTANEOUS VELOCITY AND CENTER OF MASS 

DISPLACEMENT OF IN-LAB SPRINT RUNNING USING AN INERTIAL 

MEASUREMENT UNIT 

 

Abstract 

The biomechanical analysis of sprint running during in-field training 

provides valuable information regarding athlete motor strategies, helping in 

preventing injuries and achieving higher athletic performance. Wearable inertial 

sensing units (IMUs) providing movement-related data without any space 

limitation or cumbersome set up can be proficiently used to perform such analysis. 

Nevertheless the noise characterizing these sensor signals exacerbates the process 

of determining velocity and position by numerical integration of acceleration.  

This study aims at compensating these errors by cyclically determining the 

initial conditions of the integration process to yield reliable instantaneous velocity 

as well as spatio-temporal parameters during sprint running.  

Six sprinters performed three in-lab sprint runs, starting from a standing 

position. The stance time (ST), and the progression displacement (d) and mean 

progression velocity (v) of a point approximating the centre of mass were 

estimated and compared with reference data (force platform and 

stereophotogrammetric measurements).  

Preliminary results showed a high correlation (r > 0.9) between IMU and 

reference estimates for each parameter. No statistical differences were found 

between IMU and reference for v and ST. 

These results proved that the methodology successfully compensate the 

numerical integration errors during non steady-state running. Future 

developments will concern in-field sprint running experimental sessions. 

 

Keywords: Sprint running; Velocity; Displacement; Inertial sensors; Biomechanics. 
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3.3.1 Introduction 

Field performance analysis of sprint running can be carried out using 

several approaches, according to the inquired resolution. Total running time and 

step frequency are basic yet very useful information for a global assessment of the 

athlete’s performance (Mehrikadze & Tabatschnik, 1982).  

Inertial sensors have been used to determine these or similar simple 

parameters. Foot-ground contact times (Auvinet, et al., 2002; Purcell, et al., 2005; 

Wixted, et al., 2010) and lower leg rotational kinematics (Channells, et al., 2005) 

have been assessed using accelerometers on the tibia. Displacement 

measurements and running speed have been estimated placing IMUs on the foot 

(Fyfe & Gildenhuys, 2004) and, during steady-state running, in a chest-belt (Vetter, 

Onillon, & Bertschi, 2009), respectively. 

However, when the focus is on performance determinants and limiting 

factors, a deeper analysis could be necessary, so that to provide track and field 

coaches with detailed information about the athlete’s technique. Stance duration, 

step length and center of mass (CoM) instantaneous velocity are key quantities in 

such analysis. Theoretically, the numerical integration of the sensor-measured 

acceleration yields to the instantaneous velocity and displacement of the segment 

where the IMU is attached. In practice, the numerical integration process remains 

challenging due to two sources of error. First, accelerometers are characterised by 

offset errors that rapidly accumulate over time and yields to unreliable velocity 

and displacement (Woodman, 2007). Although in constant speed running, the drift 

of the velocity is linear and can be removed with a filtering procedure (Pfau, Witte, 

& Wilson, 2005; Pereira, et al., 2008), during non steady-state running, like 

sprinting is, this drift is no longer linear. Second, when dealing with explosive 

movements, sensor wide oscillations caused by the inertia of soft tissues (de Leva 

& Cappozzo, 2006) and by the fixing device (Forner-Cordero, et al., 2008) lead to 

sudden velocity increase/decrease that could highly under/overestimate the 

actual velocity.  

In this pilot work, a methodology for estimating instantaneous velocity and 

displacement of a point approximating the CoM from trunk accelerometry during 

non steady-state running is illustrated. Low frequency errors are compensated by 

reducing the numerical integration interval to the duration of the stance phase and 
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by predicting the kinematics of the sensor during the flight phase. The initial 

conditions of the integration process are, then, cyclically determined. 

 

3.3.2 Materials and methods 

Experimental set up and data acquisition 

Six sprinters (five males: age = 27±2 yrs, stature = 1.78±0.07 m, mass = 

72±7 kg; one female: age = 27 yrs, stature = 1.65 m, mass = 65 kg) gave their 

written consent to participate in this study. After 20 minutes warm up, each 

athlete was asked to perform three sprint runs, starting from a standing position. 

To avoid fatigue, a 10 minutes rest period was given between trials.  

Due to limited laboratory volume (12x9x4m) only the first three steps were 

analysed. Subjects were equipped with 39 markers to determine the instantaneous 

3D position of the CoM (Plug-in Gait protocol - Davis et al., 1991) using a nine-

cameras stereophotogrammetric system (Vicon Mx, Oxford, UK). Two six-

component force plates (Bertec) were used to measure ground reaction forces at 

the second and the third steps.  

According to preliminary tests, an IMU (MTx, Xsens, Netherlands) was 

positioned using a specifically designed shoulder-belt on the upper back trunk (C7 

level). This sensor embedded 3D accelerometer, 3D gyroscope and a 

magnetometer. Through the combination of the information provided by these 

sensors, the orientation of the IMU relative to the magnetic North and to the 

gravity line could be obtained. Stereophotogrammetry, force platforms, and 

inertial sensors data were collected simultaneously at 100 samples per second. 

 

Data processing 

Before estimating velocity and displacement, accelerations were expressed 

with respect to an inertial reference frame (M), aligned with the sprinting direction 

(Ma) (Cappozzo, della Croce, Leardini, & Chiari, 2005). Assuming the trunk as a 

rigid segment, the acceleration of the IMU was translated along the longitudinal 

axis to the mid point between posterior superior iliac spines (midPSIS), closer to 

the CoM. Thereafter, the instantaneous progression velocity and displacement 

were computed by numerical integration of the acceleration. The integration was 

limited to the stance phase only, to avoid the drift typical of the integration 
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process. During the flight phase, the horizontal kinematics of midPSIS was 

predicted using the ballistic law of motion; the velocity at the instant of take-off 

was set to the last value of the previously integrated acceleration. This procedure 

was reiterated for each step. 

Foot contact times were determined using the vertical component of Ma. 

Once having identified the highest high-frequency peaks in the time-derivative of 

the acceleration signal, the beginning and the end of the flight phase were 

determined moving downward through the signal until the acceleration 

approached ≅ -9 m·s-2. 

The following parameters were estimated over each step: 1) stance time 

(STe); 2) CoM progression displacement (de); 3) mean progression velocity (ve) 

computed as the arithmetic mean of the instantaneous progression velocity 

between two consecutive foot strikes. Reference data were obtained as follows: 

STr from force plates (steps 2-3); dr and vr from the CoM trajectory obtained by 

stereophotogrammetry. The average percentage difference (e%) between IMU and 

reference estimates, referred to as error, was calculated for each parameter. 

 

Statistical analysis 

Statistical analysis was performed using SPSS (version 17.0), with α set to 

0.05. Multivariate ANOVA was performed across the three performed trials on the 

estimated parameters to establish whether significant differences existed among 

trials. Two-tailed paired t-test was performed to establish whether significant 

differences existed between methods (reference and estimate). Pearson’s 

correlation coefficient was computed on reference and estimated d and v values. 

Least significant difference post hoc comparisons with Bonferroni adjustments 

were used for multiple comparisons. 

 

3.3.3 Results 

The methodology developed in this study yielded to more reliable 

instantaneous progression velocity with respect to that obtained by standard 

numerical integration of the acceleration (Fig. 1). No differences were found for ST, 

d and v values across the three trials (p > 0.05). No differences (p > 0.05) and high 

correlation (r = 0.957) were found between the sensor and the reference estimates 
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of the velocity (ve and vr). Similarly, no differences (p > 0.05) were found between 

STe and STr over the first and the second stance phases. Despite statistical 

differences were found between de and dr (e% = 10%), a high correlation was 

found between these parameters (r = 0.967).  Correlation between sensor and 

reference estimates for d and v is shown in Fig. 2. 

 

 

Figure 1 (3.3): Instantaneous progression velocity as obtained by the reference 
measurements (solid line), computed by numerical integration of the acceleration for the 
whole duration of the task (dashed line) and with the algorithm proposed in this study 
(dashed line). Vertical dashed lines identify the flight phases (f1, f2 and f3). 
 

 

Figure 2 (3.3): Reference and estimated progression displacement and mean velocity of 
the CM for all the collected trials. 
 

3.3.4 Discussion 

The investigation of performance determinants and limiting factors of 

sprint running requires the estimate of the linear kinematics of the CoM of the 
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subject. When the analysis is performed using inertial sensors, the kinematics of 

the CoM can be estimated only through assumptions and simplified models. In the 

present study, errors introduced by the numerical integration of the acceleration 

were compensated by limiting the integration to the stance phase and by 

predicting the kinematics of the sensor during the flight phase using the ballistic 

law of motion. The initial conditions of the integration process were, then, 

cyclically determined. The instantaneous horizontal velocity and displacement of 

the CoM were estimated. 

Results concerning the reliability of the estimates showed a high agreement 

between the sensor and the reference measurements for each estimated 

parameters, and a high accuracy for v and ST. Significant differences were found 

between reference and IMU estimates only for d. This is probably due to the 

double integration process necessary to obtain d from the acceleration. Despite 

such differences, the mean error was found to be lower than 10% with respect to 

the reference measurements. Moreover, as above mentioned, a high correlation 

between reference and IMU d estimates was found (Fig. 2). It has to be noted that d 

is strictly related to the athlete’s step length, a very important parameter in 

performance assessment which is of great interest for track and field coaches. 

However, further research dealing with this correlation is necessary. 

Results concerning the estimates of the instantaneous velocity (v) proved 

that the drift error entailed in the numerical integration of the acceleration signal 

was minimised. The shoulder belt used for the fixation of the IMU, aiming at 

reducing the movement of the soft tissues relative to the skeleton with respect to 

the pelvic area, appears to be a reasonable compromise between methodological 

and practical requirements. Nevertheless, athletes’ arms oscillation during the 

acceleration phase was partially disturbed by the underarm stripes. Therefore, 

further investigations about the inertial unit fixation have to be performed. 

In conclusion, the proposed methodology proved to compensate numerical 

integration errors during non steady-state running. The agreement found between 

the measured and estimated parameters showed that the methodology is sensitive 

to the variations of these parameters. Aside from the encouraging results obtained 

in this study, in-field validation of the proposed method is necessary. 
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3.4 STUDY 3: TEMPORAL PARAMETERS OF IN-FIELD SPRINT RUNNING USING 

AN INERTIAL MEASUREMENT UNIT 

 

Abstract 

Sprint running temporal parameters are useful information for track and 

field coaches. Using wearable inertial measurement units (IMUs) to perform an in-

field analysis of these variables requires being able to temporally locate events 

correlated with foot-ground contacts by identifying consistent and repeatable 

features on the signal waveforms measured by the IMU. Feature-identification, 

however, highly depends on the signal to noise ratio, especially unfavourable 

during sprint running analysis because of the explosiveness of the task and of the 

oscillations of the IMU relative to the underlying skeleton. 

The aim of this study was to identify recognizable and consistent features in 

the waveform of the signals supplied by a trunk mounted IMU, or thereof derived, 

for the estimation of the stance duration during sprint running. 

Eleven subjects (six amateur and five elite athletes) performed three 60 m 

sprint runs and data provided by an IMU positioned on the trunk at L2 level were 

compared to reference forceplate and high-speed camera measurements. Feature 

identification was performed on the magnitude of the acceleration (a) and angular 

velocity (ω) vectors and on their 1st ( a&  and ω& ) and 2nd ( a&&  and ω&& ) wavelet-

mediated derivatives. 

Repeatable features were not identified in either a or its derivatives, while 

ω was characterized by a consistent positive peak that allows for the identification 

of the stride cycle duration. The beginning and end of the stance were identified 

from positive and negative peaks on ω&& , consistently across subjects and trials. 

Mean errors in the estimate of the stance and stride phase duration were found to 

be of the same order than the temporal resolution of the IMU (0.005 s). 

 

Keywords: Sprint running; Contact times; Inertial sensor; Feature-identification; 

Biomechanics. 
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3.4.1 Introduction 

Temporal parameters, such as flight and stance duration, are basic yet very 

useful information for track and field coaches. The influence on sprint running 

performance of these durations and of related parameters, such as stiffness and 

ground reaction force impulse, has been widely investigated in the literature 

(Butler, Crowell, & Davis, 2003; Hunter, Marshall, & McNair, 2004a; Hunter, 

Marshall, & McNair, 2004b; Hunter, Marshall, & McNair, 2005; Morin, Dalleau, 

Kyrolainen, Jeannin, & Belli, 2005; Čoh, Tomažin, & Štuhec, 2006; Ito, Ishikawa, 

Isolehto, & Komi, 2006; Ciacci, Di Michele, & Merni, 2010). 

Commonly, to compute or estimate temporal parameters during sprint 

running, force platforms (Hunter, et al., 2004b, 2005), stereophotogrammetric 

systems (Ciacci, et al., 2010), optical bars (Čoh, et al., 2006) or video analysis (Ito, 

et al., 2006) have been used. The first two instruments, however, allow for the 

analysis of few steps, being all limited in terms of acquisition volume. Moreover, as 

a real sprint run can not be entirely reproduced in a laboratory, it is necessary to 

bring these instruments on the track, which results to be laborious and time-

consuming. Video analysis, which may allow for the analysis of a wider portion of 

the track, still requires a non automatic post-processing that might be time-

consuming as well. 

As an alternative to the above mentioned instruments, inertial 

measurement units (IMUs) have been widely used to measure temporal 

parameters, particularly during walking (Jasiewicz et al., 2006; Kavanagh & Menz, 

2008; Hanlon & Anderson, 2009). Such parameters have been generally 

determined by identifying mechanically-related features in the acceleration and 

angular velocity signal waveforms. It is well known, for example, that during 

walking, the peak forward acceleration coincides with the instant of foot contact 

(Verkerke, Hof, Zijlstra, Ament, & Rakhorst, 2005) or that a repeatable trunk 

rotation about the trunk longitudinal axis occurs, during walking as well as during 

running, prior to foot contact (Schache, Blanch, Rath, Wrigley, & Bennell, 2002; 

Saunders, Schache, Rath, & Hodges, 2005).  

Due to their portability and weightlessness, IMUs have recently gained 

momentum as a suitable solution for low cost in-the-field biomechanical analysis 

of running performance as well. So far, only two studies focused on the estimate of 
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foot-ground contact times during sprint running using accelerometer-based 

systems. Hobara et al. (2009) estimated stance and flight times using a heel-

mounted bi-axial accelerometer, for a model-based estimate of the vertical 

stiffness over a 400 m sprint run. The stance durations were measured from the 

output waveform of the accelerometer, but no validation was presented nor 

previously published by the authors. Purcell et al. (2006) validated with a force 

platform the estimates of stance durations based on a shank-mounted tri-axial 

accelerometer during the first three steps of the acceleration phase, as well as 

during the steady-state phase of a sprint running. However, mounting sensors on 

lower legs, aside from requiring two devices, does not provide information on the 

body center of mass (CoM) and on trunk kinematics.  

These drawbacks may be overcome using a single device on the trunk, 

which can be reasonably acceptable by runners. Trunk-mounted devices have been 

used to estimate temporal parameters only during distance running (Auvinet, 

Gloria, Renault, & Barrey, 2002; Wixted, Billing, & James, 2010). Both authors 

concluded, on a qualitative level, that the acceleration signals agreed with the 

waveforms of force platforms (Auvinet, et al., 2002) or of in-shoe pressure sensors 

(Wixted, et al., 2010), but neither clearly identified mechanically-related features 

in the signal waveforms nor provided quantitative information on the accuracy of 

their estimates.  

Robustness and reliability of these temporal estimates rely on the accurate 

and consistent identification of the above-mentioned features within and across 

subjects which, in turn, highly depends on the signal to noise ratio. In this respect, 

sprint running analysis is more challenging than walking and distance running 

because the explosiveness of the task causes greater movements of the IMU 

relative to the underlying skeleton (Liu & Nigg, 2000; Pain & Challis, 2006; 

Wakeling & Nigg, 2001). As this artefact was shown to be both subject-dependent 

(Lafortune, Henning, & Valiant, 1995) and sensitive to the site and method of the 

unit attachment (Forner-Cordero et al., 2008; Lafortune, 1991), it may jeopardize 

the consistency of the feature identification approach (Higginson, 2009). 

The purpose of this study was, therefore, to identify recognizable and 

consistent features in the waveform of the signals supplied by a trunk-mounted 

IMU, or thereof derived, for the estimation of the stride and stance durations 
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during sprint running. To this aim, maximal sprint runs were performed on regular 

tartan tracks by elite and amateur athletes. Data provided by an IMU fixed on the 

lower part of the trunk were validated against reference measurements provided 

by force platforms and a high-speed video camera. 

 

3.4.2 Materials and methods 

Experimental set up and data acquisition 

Two groups of subjects took part in the study and gave their written 

informed consent after institutional approval of the protocol. The first group (A) 

was composed of six amateur athletes: two females and four males. None of them 

was specialized in track and field disciplines. The second group (B) included five 

professional sprinters: two women and three men. All of them were currently 

training and competing in the Italian National Track and Field Team. 

Anthropometric data of each athlete involved in the study is reported in Tab. 1. 

 

 GROUP A GROUP B 

 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 

mass [kg] 56 45 72 60 73 75 56 54 70 73 72 
stature [m] 1.71 1.48 1.72 1.83 1.78 1.80 1.70 1.74 1.74 1.80 1.86 

personal best 

[s] (100m)  
# # # # # # 11.51 11.52 10.17 10.63 10.49 

 

Table 1 (3.3): Mass [kg], stature [m] and personal best (100 m) [s] of the eleven subjects 
involved in the study. 
 

Two different acquisition sessions were performed: group A was tested on 

an in-door track at the Institut National du Sport de l'Expertise et de la 

Performance (Paris, France); while the Italian National Track and Field Team 

(group B) was tested during one of the scheduled training session for the European 

Track and Field Championship of Barcelona at the Centro Sportivo Aeronautica 

Militare (Vigna di Valle, Bracciano, Rome, Italy). The same experimental protocol 

was used for both groups: after 20 minutes warm up, each athlete was asked to 

perform three sprint runs of 60 m, starting from a standing position. Four steps at 

the athlete maximal speed were then analysed. To avoid fatigue, a 10 min rest 

period was given between trials.  
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Each subject was equipped with an IMU (FreeSense, Sensorize Ltd, Italy) 

containing a 3D accelerometer (±6 g of full range) and a 3D gyroscope (±500 deg·s-

1 of full range) providing 3D accelerations and angular velocities with respect to a 

local sensor-embedded system of reference coinciding with the geometrical axes of 

the IMU case. IMU data, whose sampling frequency was set at 200 frames per 

second, were sent via Bluetooth® to a laptop computer (MathWorks® v7.9, USA). 

Careful attention was paid to the fixation of the IMU to the athletes’ body (Forner-

Cordero, et al., 2008) to limit the unit oscillations relative to the underlying bone. 

The IMU was positioned on the lower back trunk (L2 level) with an ad-hoc elastic 

belt, not limiting the athlete’s movements. This location was chosen in order to 

avoid the low lumbar area, more affected by the wobbling of muscular and soft 

tissue masses. To further limit the unit oscillations due to the paravertebral 

muscular mass, a memory foam material was placed between the paravertebral 

muscles and the unit (see Fig. 1 (3.2), § 3.2.2). 

To validate IMU results, two different instruments were used: group A data 

were validated using six force platforms (AMTI, USA) directly embedded in the 

track and covered with a layer of tartan, not to influence or disturb the athletes 

while running. The total platform surface was about 6.6 m length per 0.6 m wide. 

Sampling frequency was set at 200 frames per second. To collect at least four steps 

on the platform area at the athlete’s maximal speed, the starting line was set at 40 

m from the beginning of the first platform. Group B data were validated using a 

high-speed video camera (Casio Exilim EX-F1, Japan) whose sampling frequency 

was set at 300 frames per second. The camera was positioned at 40 m from the 

starting line and registered at least four steps for each athlete. For group A, force 

platforms and IMU data were synchronised with a small hammer by hitting the 

platform upon which the IMU was positioned. As, above mentioned, data for elite 

athletes were collected during an official training session, for practical time 

reasons no accurate synchronisation between the camera and the IMU signals was 

possible. 

 

Data processing 

IMU angular velocity and acceleration were measured in the local IMU 

reference frame. As the actual orientation of the unit was not known, the norm of 



 - 73 - 

both the acceleration (a) and the angular velocity (ω) vectors was computed and 

further considered. This was done in order to avoid any source of variability which 

may arise from different sensor positioning or running technique (particularly as 

concerns trunk orientation) (Patterson & Caulfield, 2010). 

The first ( a&  and ω& ) and second ( a&&  and ω&& ) derivatives of a and ω were 

calculated using a wavelet-based approach (Jianwen, et al., 2006). 

a, a&  and a&& , as well as ω, ω&  and ω&&  signal waveforms of group A were 

synchronized with the vertical ground reaction force (GRF), and repeatable 

quantifiable events that could be related with the mechanics of the task, such as 

maxima, minima, or slopes were identified in correspondence with foot-strike (FS) 

and foot-off (FO) instants. Features adequate for automatic detection of FS and FO 

were then identified on both group A and B data and, thereafter, used to estimate 

stance ( d
~

stance) and stride ( d
~

stride) durations. 

Validation of results thus obtained was performed by comparing the 

estimates with reference measurements. Reference dstance and dstride values were 

obtained for group A setting a threshold of 10 N on rising edges and of 25 N on 

descending edges of the vertical component of the GRF. These thresholds were set 

as criteria measures for identifying FS and FO instants respectively (Hunter, et al., 

2005). As concerns group B, a frame by frame video-analysis was performed and 

FS and FO instants were visually identified to measure dstance and dstride. 

 

Statistical analysis 

 To assess the accuracy of d
~

stance and d
~

stride the following statistical analysis 

was performed separately on group A and group B results: 

1. A repeated-measures analysis of variance (ANOVA) was used to verify the 

effect of the factors groups, subject and trial on the estimated parameters, both 

for the reference and the IMU values. 

2. Descriptive statistics (mean ± standard deviation (SD)) of both d
~

stance and 

d
~

stride; 

3. Bland and Altman plots, corrected for the effect of repeated measurement error 

(Bland & Altman, 2007), were used to assess the agreement between methods 

(reference and IMU estimates) with multiple observations (Atkinson & Nevill, 
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1998). The absence of a linear trend between the amount of random bias and 

the measured values (heteroscedasticity) was investigated through inspection 

of Bland and Altman plots and correlation exploration (Nevill & Atkinson, 

1997). 

4. Finally, for each parameter a repeated-measures analysis of variance (ANOVA) 

was used to verify the effect of the factors group, subject and trial on the bias 

between reference and IMU estimates. 

Statistical analysis was performed using SPSS (version 17.0). The alpha level of 

significance was set to 0.05.  

 

3.4.3 Results 

The mean ± one standard deviation of a (upper panel) and ω (lower panel) 

signals for group A are presented in Fig. 1. Stride cycles were segmented through 

the force platform signals and expressed in percentage of the total cycle duration.  

No repeatable and quantifiable features, adequate for automatic detection, 

were identified on a, neither in group A nor in group B. Conversely, the magnitude 

of the angular velocity signal was characterized by a consistent positive peak 

(ωpeak) which occurred approximately at the end of each step cycle in both groups. 

This peak was clearly visible even by simple visual inspection of the signal and was 

used to segment the stride cycle of Group B data. 

As concerns the stance phase duration, no repeatable features related to the 

FS and FO instants were recognizable in either the derivatives of a or in ω (Fig. 2). 

FS and FO events, indeed, did not occur at consistent maxima, minima, or even 

slope across different subjects (Fig. 2). 

Fig. 3 shows ω inter-subject variability for three selected subjects of both 

group A and group B. 
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Figure 1 (3.4): Mean ± 1SD of 6 subjects x 3 trials x 4 strides of Group A for a (upper 
panel) and ω (lower panel). The positive peak of the angular velocity, ωpeak, is indicated. 
 

ωpeak ωpeak 
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Figure 2 (3.4): Acceleration and angular velocity signals for three randomly selected 
subjects of group A, with reference to a randomly chosen stride cycle. Stride time is 
expressed in percentage of the total cycle duration. FS and FO events are indicated 
respectively with a circle and a square symbol. 
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Figure 3 (3.4): ω for three subjects of group A (left panel) and of group B (right panel), 
with reference to three randomly chosen stride cycles (blue, red and green curves). ωpeak 
was used to segment stride periods for both group A and B. Each period is expressed in 
percentage of the total cycle duration. 
 
 

FS and FO instants were identified from positive and negative peaks on the 

ω&&  waveform (Fig. 4). These peaks were found to be consistently synchronized 

with FS and FO across steps, trials, subjects and groups. 

No repeatable and consistent features, adequate for automatic detection of 

FS and FO related events, were identified on the two derivatives of a, neither in 

group A nor in group B. 

Repeated-measures ANOVA performed on the estimated parameters d
~

stance 

and d
~

stride showed that no statistical differences across subjects (p > 0.05) and 

trial (p > 0.05) was present in both groups A and B. Conversely, as expected, 

statistical difference were found between groups (p < 0.05) for both d
~

stance and 
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d
~

stride. Tab. 2 reports the mean ± one standard deviation values of d
~

stance and 

d
~

stride for both group A and group B. 

 

 

Figure 4 (3.4): ω (grey dotted line), ω&  (dashed line) and ω&&  (solid line) with reference to 
a randomly chosen subject of group A. Grey sections represent three consecutive stance 
phases. 

 

 GROUP A GROUP B 
 mean SD mean SD 

d
~

stance 0.125 ±  0.015 0.105 ±  0.010 

d
~

stride 0.495 ±  0.040 0.455 ±  0.015 
 

Table 2 (3.4): Mean ± 1SD of d
~

stance and d
~

stride across of all the subjects, trials and steps 
is provided for both group A and group B. 
 

Bland and Altman plots illustrating the results about the accuracy of the 

stance duration estimates ( d
~

stance) are shown in Fig. 5 for both group A (upper 

panel) and group B (lower panel). The mean of the absolute bias between the 

reference and the IMU estimates was 0.005 for both group A and B, as well as for 

both d
~

stance and d
~

stride. The 95% of the limits of agreements was lower than 0.02 s 

for both groups. Symmetry of the bias limits of agreement (LOA) interval was 

observed, thus demonstrating that no systematic differences were present 
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between reference and IMU estimates. No linear trend between the amount of bias 

and the measured values was found (average correlation = 0.02). 

 

 

Figure 5 (3.4): Bland and Altman plots for group A and group B, corrected for the effect of 
repeated measurement error, representing comparisons between reference stance times 
and those estimated with IMU. Mean bias (solid line) and random error lines representing 
95% limits of agreement (dashed lines) are included. 
 

No differences were found across groups (p > 0.05), subjects (p > 0.05), and 

trials (p > 0.05) for each parameter bias. 
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3.4.4 Discussion 

The feasibility of using a trunk-mounted IMU for estimating the stance 

duration during sprint running was assessed, and the accuracy of the IMU 

estimates quantified against reference measurements. The results show that 

neither the magnitude of the measured acceleration, nor its first and second 

derivatives provide any consistent and well identifiable feature correlated with FS 

and FO events. Conversely, the magnitude of the angular velocity vector, as well as 

its wavelet-mediated second derivative, are characterised by repeatable and 

consistent events correlated to stride and stance duration, respectively. 

The identification on the acceleration time-series of features adequate for 

automatic detection and related to the FS and FO events was thwarted mainly by 

the low signal to noise ratio. The accelerometer signals, in fact, proved to be more 

subjected to the movement of the soft tissue masses relative to the underlying 

bones, with respect to the angular velocity measurements. Although each foot-

ground impact was visible on the time history of the acceleration magnitude, 

neither FS nor FO events occurred at consistent maxima, minima, or even slope 

across different subjects. This seems to be in contrast with previous studies using 

trunk-mounted accelerometers during distance running. Wixted et al. (2010) 

reported, on a qualitative level, that the vertical, medio-lateral and antero-

posterior acceleration curves of two professional middle-distance athletes have 

significant features that can be used in analysis of athletes’ running style. Similarly, 

Auvinet et al. (2002) qualitatively showed a substantial consistency among the 

cranio-caudal, medio-lateral, and antero-posterior acceleration signals of seven 

professional middle-distance runners. However, neither study provides validation 

about the features consistency or about FS and FO event detection. In addition, 

each component of the accelerometer is subjected to the variability entailed in the 

sensor positioning. Using the magnitude of the acceleration vector means that the 

user can fix the sensor unit in any orientation, thus requiring no anatomical 

calibration or aligning protocols. This could be crucial in sports contexts, where 

the acquisition procedures must not interfere with the training session schedule. 

Finally, as distance running is characterised by a lower explosiveness with respect 

to sprint running, the amount of IMU oscillations relative to the underlying 

skeleton are lower, and the signal to noise ratio reasonably higher. This 
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consideration makes the above mentioned study conclusions hardly applicable to 

sprint running. 

The magnitude of the angular velocity signal presented a repeatable peak 

that proved to be consistent across groups, subject, and trials. As reported in the 

literature, this peak is associated to a trunk rotation about its longitudinal axis 

(Schache, et al., 2002). Such rotation occurs during walking as well as during 

running, and it is proved to be repeatable and to increase its amplitude with speed 

(Saunders, et al., 2005). Our results confirm the presence of this rotation during 

sprint running and prove that it is consistent among subjects with different 

expertise. Although this event can be used to identify the stride duration, it does 

not provide any information about the FS instant of time, thus about the stance 

duration. 

Such parameter was consistently identified only when using a wavelet-

mediated differentiation of ω that allowed for the identification on the ω&&  

waveform of positive and negative peaks associated to the FS and FO events. From 

a mechanical perspective, the local maxima associated to the FS is related to the 

maximal variation of the angular acceleration of the trunk, while the local minima 

associated to the FO is related to the trunk rotation about its longitudinal axis. 

Both features proved to be repeatable and consistent among all subjects and trials. 

The absolute bias between the IMU estimates and the reference 

measurements was lower than 0.01 s for both d
~

stride (< 2% stride duration) and 

d
~

stance (< 8% stance duration). These results are consistent with those obtained by 

Purcell et al. (2006) as concerns the stance duration during sprint running using a 

shank-mounted accelerometer. 

It has to be noted that the mean stance durations for both group A and B 

were higher than 0.1 s and that the mean difference of dstance between the two 

groups of athletes involved in the present study was about 0.02 s, thus higher with 

respect to such bias. An error lower than 0.01 s appears to be acceptable also when 

considering the stance profile over time and during the whole race. Fig. 6 shows 

such profile for both the stance and the flight phases as obtained from a high-speed 

camera positioned behind the start line during one 80 m runs of an elite athlete of 

group B. The stance duration decreases of about 0.07 s during the acceleration 
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phase of the run (0 to about 4 s). During this phase, the mean difference between 

one stance time and the following is 0.007 s, i.e. higher than the above mentioned 

mean bias between the IMU and the reference estimates (0.005 s). Furthermore, as 

such bias is of the same order than the temporal resolution of the IMU, it can be 

speculated that increasing that resolution may improve the final results. 

 

 

Figure 6 (3.4): Stance (solid line) and flight (dashed line) duration time-curve during a 80 
m sprint run of an elite sprinter of group B. 

 

In conclusion, stride and stance durations were estimated by using an IMU 

positioned on the lower-back trunk during the maximal speed phase of sprint 

running. In contrast to what expected, no consistent features were identified on 

the acceleration signal and on its first and second derivatives. Conversely, wavelet-

mediated double differentiation of the angular velocity signal allowed for the 

identification of consistent and repeatable events correlated with FS and FO 

occurrences. Information about stance and stride durations could be particularly 

helpful for track and field trainers, being one of the key elements in sprint running 

performances. In order to provide coaches with an instrument that can be reliably 

and automatically used in the field, future works will concern the validation of the 

method on different phases of the sprint run. 
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3.5 LOW RESOLUTION APPROACH: DISCUSSION 

 

The purpose of the Low Resolution Approach section was to develop 

methods for the assessment of performance-related biomechanical variables in 

sports applications. To this aim, the use of wearable inertial sensors for in-field 

performance evaluation of sprint running was discussed.  

Results confirmed the agreement between the estimated quantities 

(instantaneous horizontal velocity, center of mass displacement, stride and stance 

durations, trunk inclination and angular velocity), and the reference data provided 

by stereophotogrammetry, force plates or high–speed cameras. 

Two major sources of error proved to be crucial in the estimation of the 

above mentioned parameters: the movement of soft tissue masses relative to the 

underlying skeleton (soft tissue artefact) and the unstable bias characterising the 

sensors signals. The latter, in particular, rapidly accumulates over time when 

numerical integration of the measured signals is performed (for instance, to 

estimate instantaneous velocity or displacement from the acceleration, or angular 

displacement from the angular velocity). The explosiveness and high acceleration 

generated during sprint running and, in general, during sports activities emphasise 

the contribution of both sources of error. 

The use of memory foam materials and elastic belts appears to be effective in 

limiting the soft tissues movement, while reducing the integration interval and 

exploring boundary conditions proved to cyclically correct the errors yielded by 

the unstable bias of the signal. 

During sprint running, the acceleration signal was found to be more 

influenced by the soft tissue artefact with respect to the angular velocity signal, as 

attested by the impossibility to identify in the former repeatable and consistent 

features. This can be explained by considering that the soft tissue masses tend to 

move mainly along cranio-caudal and medio-lateral direction. Skin-mounted 

sensors measuring linear quantities seem, therefore, more sensitive to such 

artefact with respect to sensor measuring angular quantities. 

It is worthwhile to underline that each new proposed method needs to be 

validated before being considered reliable and accurate. To this aim, the use of 

reference technologies characterised by higher accuracy with respect to the 
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proposed method is necessary. As largely emphasised, traditional motion analysis 

instrumentations are limited in terms of portability and acquisition volume. 

Therefore, to perform in-field validations of methods involving inertial sensors, the 

currently available and used technologies are essentially photocells, laser-gun, in-

shoe pressure sensors and high-speed cameras. Depending on the variable of 

interest, however, the accuracy of these technologies could be lower with respect 

to the accuracy of stereophotogrammetry or force plates, and sometimes could be 

inadequate. As a result, a step-by-step approach including in-lab validation could 

be, in some cases, mandatory. In particular, when the considered motor act could 

hardly be repeatable in a laboratory environment, the choice of analysing an 

equivalent motor paradigm could be a valid alternative. Such motor paradigm 

would be characterised by the same peak-to-peak values and rate of variation of 

acceleration than the motor act of interest (or angular velocity, or force depending 

on the aim of the study), with the advantage to be suitable for in-lab analysis. 

That being said, inertial measurement units proved to be a valid alternative 

to traditional laboratory-based instrumentations when performing in-field 

evaluation of sprint running. Guidelines about the unit fixation appear particularly 

helpful and suitable for sports application. The development of algorithms that can 

minimise the detrimental effects of the above mentioned sources of error, while 

transforming this data into reliable parameters suitable for use by coaches and 

athletes continues to be a challenging exercise. 
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CHAPTER 4 

 

 

 

HIGH RESOLUTION APPROACH 
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ABSTRACT 

 

Musculoskeletal injuries are an undeniable facet of sports life of each 

athlete. A clear understanding of the mechanisms of musculoskeletal injury can aid 

in the effective diagnosis and treatment of the athlete. 

Sprint running is characterised by the application of relatively high impact 

forces and large force impulses. Epidemiological studies of sprint running injuries 

found the knee to be the most frequent site of injuries. In this respect, forces and 

force-related factors appear to be the prime agents that determine the likelihood 

and severity of such injuries. 

The estimate of external and internal forces in sports biomechanics often 

requires the use of inverse dynamics methods. The accuracy of these methods is 

affected by several sources of error. Among them, the motion of soft tissues 

relative to the underlying bones (soft tissue artefact – STA) is considered as the 

most important, particularly in sports applications where high acceleration and 

forces involved may be cause of even larger soft tissue motion. 

In order to compensate for STA, several analytical techniques have been 

proposed. The so called multi-body optimization (MBO), in particular, aims at 

optimally estimating the location in space of a chain of bones interconnected in 

joints embedding specified constraints. To further improve the quality of 

constraint-based models of the joints, the definition of subject-specific, non-rigid 

constraints is desirable. 

In this framework, the subject-specific plausible range of values of the 

lengths of the four major knee ligaments have been assessed during continuous 

loaded knee flexion. The inaccuracies associated with the estimation of both the 

subject-specific bone-models and ligament attachment locations have also been 

considered. Such plausible range of values are aimed at being incorporated, as 

non-rigid constraints, in a subject-specific kinematic model of the human knee 

which, hopefully, will allow for the improvement of the inverse dynamics method 

accuracy. 

 

KEYWORDS: Injury risk factors; Running; Joint dynamics; Soft tissue artefact; 

Knee joint constraints. 
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4.1 INTRODUCTION 

 

4.1.1 Sport biomechanics and injury prevention 

This section was written on the basis of a book chapter by Zernicke, R.F., & Whiting, 

W.C. (2000). Mechanisms of musculoskeletal injury in biomechanics in sport: 

performance enhancement and injury prevention. In: Zatsiorsky, V.M. (Ed.), IOC 

Medical Commission, International Federation of Sports. The authors’ work is 

gratefully acknowledged. 

 

Injury is an undeniable facet of athletic life. Individuals across the spectrum 

of competitive levels, from recreational athletes to Olympic competitors, are 

subject to the limitations and disappointments imposed by musculoskeletal injury. 

Elite athletes, in particular, are highly susceptible to the physical, emotional, and 

economic costs that injury exacts. Though these costs are inconsequential for 

minor injuries, they can be overwhelming in cases of devastating injury that make 

it impossible, either temporarily or permanently, for an athlete to train and 

compete.  

Lessening the chance of injury and facilitating the treatment and recovery of 

injured athletes requires an interdisciplinary approach that includes consideration 

of the anatomical, physiological, medical, kinesiological, psychological, and 

mechanical aspects of athletes and their competitive environments. Unfortunately, 

injury-related problems of athletes are not addressed optimally by each discipline 

acting in isolation, especially for elite athletes whose performances are too often 

considered more important than their health. An interdisciplinary team, including 

medical professionals, physical therapists, athletic trainers, sport scientists, 

psychologists, and coaches, is essential to bring a specific perspective to the 

challenges of dealing with injuries to athletes. In addition to these individual 

perspectives, musculoskeletal injury can be viewed from many different general 

perspectives, including historical, epidemiological, economic, psychological and 

biomechanical. 

Of all scientific disciplines, physics and its sub-discipline, mechanics, are 

undeniably most central to the study of injury, since most injuries have 

mechanically related causes. The nature of an injury and its treatment rests on the 

effective integration of biological and mechanical knowledge. Interdisciplinary 
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biomechanics (i.e. the application of mechanical principles to biological problems) 

is ideally positioned to provide this integrated perspective. In the case of 

musculoskeletal injury to athletes, the problems include those related to the 

prevention, diagnosis, and treatment of injuries so as to minimize their incidence 

and severity. The goal is to mitigate the negative effects of injury and allow athletes 

at all levels to maximise their performance potential. 

As above mentioned, a comprehensive analysis of a movement pattern or 

skill requires not only the assessment of movement from a descriptive point of 

view (kinematics), but also knowledge of the causes that produce the movement 

(dynamics or kinetics). The word “cause” in mechanics, is always associated with 

the concept of force, defined as the mechanical action applied to a body that tends 

to produce acceleration. 

Body movements are produced and controlled by forces acting both within 

the body (e.g. muscle forces) and upon the body from external sources (e.g. gravity, 

impact). These forces, in addition to modulating movement patterns, also act on 

tissues in the body. Under most conditions, these forces are well tolerated by the 

body’s tissues. Indeed, force is central to optimal growth and development of 

tissues, especially those such as bone that provide structural support. But when 

forces exceed a tissue’s ability to withstand the load, injury occurs. Forces and 

force-related factors (e.g. energy), therefore, are the most fundamental element in 

injuries and the prime agents that determine the likelihood and severity of a 

specific injury (Zernicke & Whiting, 2000). 

Forces pertinent to injury analysis include those that act in or upon the 

human body, and include gravity, impact (e.g. a runner’s foot contact with the 

ground), musculo-tendinous forces, ligamentous forces that stabilize joints, and 

forces applied to bones. For all injury-related forces, different factors combine to 

determine the nature and severity of the injury (Zernicke & Whiting, 2000): the 

magnitude, application point, line of action and duration of the applied force, as 

well as its frequency and rate of variability.  

During athletic activities, body tissues are continuously subjected to forces 

that vary in magnitude, location, direction, duration, frequency, variability and 

rate. In most cases, the body tolerates these forces well, but when loads exceed the 

normal physiological range, a not uncommon occurrence in elite athletes, tissues 
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can experience overload and sustain injury. Injuries resulting from a single or a 

few overload episodes are called acute injuries. These injuries often happen with a 

violent impact, such as when an object such as a ball contacts an athlete, or when 

an athlete impact on the ground, like a runner at the foot-ground contact 

followiong the flight phase, or a gymnast landing after a somersault. In general, as 

the area of force application increases, thus decreasing the pressure, the likelihood 

of injury decreases. When repeated loading leads to tissue damage, the injury is 

called an overuse or chronic injury. Calcaneal (Achilles) tendonitis in a long-

distance runner provides one example of a chronic, overuse injury (Zernicke & 

Whiting, 2000). 

 

Sprint running injuries: epidemiology 

Epidemiological studies of running injuries found the knee to be the most 

frequent site of injuries (Clement, Taunton, Smart, & McNicol, 1981; Maughan & 

Miller, 1983; Brunet, Cook, Brinker, & Dickinson, 1990) with chondromalacia 

patella, pain on the undersurface of the patella, as one of the most frequent knee 

injuries. Tab. 1 summarises the results from four epidemiological studies (James, 

Bates, & Osternig, 1978; Clement, Taunton, Smart, & McNicol, 1981; Bennell & 

Crossley, 1996; Ballas, Tytko, & Cookson, 1997) that attempted to identify the 

source of lower-extremity injuries in running. It should be noted that the methods 

used to collect injury statistics and the specific population sampled can have a 

major effect on results, and such factors may account for some of the large 

differences seen in the reported studies.  

There is in general a paucity of scientific studies showing definitive 

relationships between either anatomical factors and injury, or biomechanical 

measures and injury. Nevertheless, kinetic factors that are thought to cause knee 

injuries in runners include ground reaction and knee joint forces and moments 

(Ferber, Kingma, Bruijn, & van Dieen, 2002).  

Grimston et al. (1994) and Ferber et al. (2002) found greater ground 

reaction forces in runners with stress fractures than in healthy runners. The 

vertical impulse and propulsive forces, moreover, were found to be greater in 

injured versus non-injured runners, but maximum vertical impact forces and 

loading rates were lower in the injured groups (Messier & Pittala, 1988; Messier, 
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Davis, Curl, Lowery, & Pack, 1991; Messier et al., 1995; McCrory et al., 1999; 

Duffey, Martin, Cannon, Craven, & Messier, 2000). Flynn and Soutas-Little (1995) 

estimated that patellofemoral compressive forces ranged between 4.3 and 6.9 BW 

(Body Weight). Studies on lower extremity loads and overuse injury have shown 

that impact forces at commonly injured sites are extremely high (Scott & Winter, 

1990), and previously injured runners have higher lower extremity loads (Milner, 

Davis, et al., 2006; Milner, Ferber, et al., 2006) and greater hip joint range of 

motion than non-injured runners (Noehren, Davis, & Hamill, 2007). Hreljac (2004) 

suggests that the repeated application of relatively high-impact forces, as happens 

in sprint running, without sufficient time between them to allow positive 

remodelling, ultimately results in an overuse injury. 

 

 

Table 1 (4.1): Common injury sites in running (from Zernicke & Whiting, 2000). 

 

Although these data do not provide unequivocal support, it appears that 

high forces applied to the lower extremity tissues during running are associated 

with running-related injuries and therefore may be mechanisms of knee injuries. 

An accurate estimate of such forces appears to be crucial in improving injury 

prevention strategies and athlete effective treatment. 
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4.1.2 Joint dynamics estimation 

Different techniques can be used to determine joint dynamics variables 

(forces, moments and powers): 

• Dynamometry: measurement of all or part of the scalar quantities that describe 

a force system. Force platforms, based on strain-gauge or piezoelectric force 

transducers are among the most used dynamometer in human movement 

analysis.  

• Inverse dynamics: estimation of the forces based on their observed effects on 

the kinematics of the athlete’s body, i.e. on the time histories of the position and 

orientation of the athlete’s body segments. Kinematic data are collected by 

means of stereophotogrammetric motion capture systems. It has to be noted 

that this approach allows for the determination of the resultant rather than 

individual forces acting on the selected body part. 

Although inverse dynamics is typically less accurate than direct 

measurement, in some cases it is mandatory because the letter technique is not 

applicable. When dealing with joint dynamics, for instance, it is often impossible to 

directly measure internal forces such as those transmitted by muscles, tendons or 

bones. This, indeed, would require the surgical implantation of a dynamometer in 

the above mentioned intra or periarticular structures. In sports biomechanics, 

moreover, it is even very difficult to measure external forces: dynamometers can 

hardly be placed in fields, tracks, boards, gymnasium floors or equipment used for 

sport competitions. On the other hand, as widely discussed in previous sections, 

the majority of sports motor tasks can not be easily repeated in a motion analysis 

laboratory, not mentioning athletes’ performances during competitions. 

The accuracy of inverse dynamics is limited by several different sources of 

error, including the simplifying assumptions used to define the mathematical 

model of the human body. Among them, errors affecting the estimation of body 

segment inertia parameters and those derived from the movement of soft tissues 

(essentially muscles, fat tissue and skin) relative to the underlying bones are the 

most critical in sports biomechanics.   

 While methods for accurately estimate inertial parameters have been 

proposed and showed to be effective and relatively easy to be applied (de Leva, 

1996), the errors associated to the soft tissue artefacts are much more difficult to 
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minimise and compensate for (Cappozzo, 1991; Leardini, Chiari, Della Croce, & 

Cappozzo, 2005; de Leva & Cappozzo, 2006; Peters, Galna, Sangeux, Morris, & 

Baker, 2010). 

 Different methods have been proposed to model the motion of the soft 

tissue masses and of the bones separately, in order to obtain accurate estimates of 

the resultant force applied on the body (Gruber, Ruder, Denoth, & Schneider, 1998; 

Pain & Challis, 2006). De Leva and Cappozzo (2006) reported a peak error value of 

-0.9 BW between measured and estimated vertical GRF of a volleyball player 

performing four consecutive counter movement jumps with free arms. Their 

results confirm that the difference between sports activities and daily motor tasks 

considerably amplify the magnitude of STA and of its consequence on the estimate 

of dynamic variables. 

 In order to compensate for STA, several analytical techniques have also 

been proposed (Leardini, Chiari, Della Croce, & Cappozzo, 2005). All of them 

exploit redundancy of measured information and embed a model of the artefact 

(Soderkvist & Wedin, 1993; Cappello, Cappozzo, LaPalombara, Lucchetti, & 

Leardini, 1997; Lucchetti, Cappozzo, Cappello, & Della Croce, 1998; Alexander & 

Andriacchi, 2001). These techniques are either used to optimally estimate the pose 

of one bony segment at a time (single-body optimization – SBO), and deal with all 

of its six degrees of freedom, or aim at optimally estimating the location in space of 

a chain of bones interconnected in joints embedding specified constraints (multi-

body optimization – MBO; in the literature often referred to as global 

optimization). In the latter case, indeed, the available information about the 

predictable behaviour of the main human joints, which imposes constraints to the 

motion of the bones relative to each other, is aimed to be exploited. Recent studies 

argue that more advanced joint models could actually reduce the errors associated 

with skin marker-based measurement of joint (Andersen et al., 2009; Duprey, et 

al., 2010). In this respect, the definition of proper joint constraints is crucial. To 

this aim, the anatomy constitutes an ideal candidate to define subject-specific, 

realistic and non-rigid constraints for models of the joint of interest. 
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4.2 STUDY 4: TIBIO-FEMORAL JOINT CONSTRAINTS FOR BONE POSE 

ESTIMATION DURING MOVEMENT USING MULTI-BODY OPTIMIZATION 

 

Abstract 

When using skin markers and stereophotogrammetry for movement analysis, 

bone pose estimation may be performed using multi-body optimization with the 

intent of reducing the effect of soft tissue artefacts. When the joint of interest is the 

knee, improvement of this approach requires defining subject-specific relevant 

kinematic constraints. The aim of this work was to provide these constraints in the 

form of plausible values for the distances between origin and insertion of the main 

ligaments (ligament lengths), during loaded healthy knee flexion, taking into 

account the indeterminacies associated with landmark identification during 

anatomical calibration. 

Ligament attachment sites were identified through virtual palpation on 

digital bone templates. Attachments sites were estimated for six knee specimens 

by matching the femur and tibia templates to low-dose stereoradiography images. 

Movement data were obtained using stereophotogrammetry and pin markers. 

Relevant ligament lengths for the anterior and posterior cruciate, lateral collateral, 

and deep and superficial bundles of the medial collateral ligaments (ACL, PCL, LCL, 

MCLdeep, MCLsup) were calculated. The effect of landmark identification 

variability was evaluated performing a Monte Carlo simulation on the coordinates 

of the origin-insertion centroids. The ACL and LCL lengths were found to decrease, 

and the MCLdeep length to increase significantly during flexion, while variations in 

PCL and MCLsup length was concealed by the experimental indeterminacy. 

An analytical model is given that provides subject-specific plausible ligament 

length variations as functions of the knee flexion angle and that can be 

incorporated in a multi-body optimization procedure. 

 

Keywords: Knee ligament length; Joint constraints; Soft tissue artefact; Global 

optimization; Biomechanics. 
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4.2.1 Introduction 

Human movement analysis is largely based on the use of skin markers and 

stereophotogrammetry. Since markers are not rigidly associated with the 

underlying bone, bone pose reconstruction is affected by a soft tissue artefact 

(STA). The magnitude of this artefact and its disruptive consequences on the 

accuracy of the mechanical analysis of a motor act are well described in the 

literature (Peters, et al., 2010). 

In order to compensate for STA, several techniques have been proposed. All of 

them exploit redundancy of measured information and embed a model of the 

artefact (Soderkvist & Wedin, 1993; Chèze, Fregly, & Dimnet, 1995; Alexander & 

Andriacchi, 2001). These techniques are either used to optimally estimate the pose 

of one bony segment at a time (single-body optimization – SBO), and deal with all 

of its six degrees of freedom, or aim at optimally estimating the location in space of 

a chain of bones interconnected in joints embedding specified constraints (multi-

body optimization – MBO; often referred to as global optimization).  

As opposed to the SBO, which deals only with the artefact deformation of 

the cluster of markers, the MBO compensates also for its overall displacement 

relative to the skeleton. In addition, the MBO may provide more realistic joint 

kinematics by, for instance, preventing bones from appearing to macroscopically 

pierce into each other. It should be noted however, that more realistic does not 

necessarily mean more accurate and that, when using the MBO, the joint degrees of 

freedom that are not embedded in the model are sacrificed.  

Thus, MBO should not be expected to improve the estimate of joint 

kinematics (Andersen, Benoit, Damsgaard, Ramsey, & Rasmussen, 2010), but to 

provide an optimal reconstruction of the instantaneous location in space of the 

entire chain of bones being analyzed. Therefore, a more accurate kinetic analysis is 

made possible and the reconstruction of the movement of the soft tissue masses 

relative to the underlying bone may be attempted. The latter movement may be fed 

into a biodynamic model of the human body, the kinetic analysis of which would 

incorporate the relevant inertial effects that are known to significantly affect the 

forces involved in motor acts characterized by high accelerations (de Leva & 

Cappozzo, 2006). These considerations justify investing resources aimed at 

improving the MBO approach. 
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MBO has been performed mainly using joint constraints which prevent 

translation, such as spherical, revolute or universal couplings (Lu & O'Connor, 

1999; Andersen, et al., 2009). The knee has also been modelled using a parallel 

mechanism incorporating articular surfaces, as sphere-on-plane contacts, and 

isometric pseudo ligamentous structures, and allowing for both translations and 

rotations (Duprey, et al., 2010).  

To further improve the quality of these models, it is desirable to develop a 

subject-specific kinematic model of the human knee which, during movement, 

incorporates more realistic non-rigid constraints to the distances between the 

origin and insertion landmarks (for simplicity referred to as lengths) of the four 

major ligaments: anterior and posterior cruciate, and lateral and medial collateral 

ligaments (ACL, PCL, LCL, MCL). These constraints can be represented by the 

subject-specific plausible range of values of the ligament lengths for any given 

flexion angle of the knee. It should be noted that these ranges of values, in order to 

be incorporated in the above-mentioned knee model, must account for the 

indeterminacies associated with the estimation of the subject-specific digital 

models of the bones involved and of the location of the ligament origin and 

insertion landmarks (anatomical calibration). 

Several authors have focused on ligament kinematic behaviour with the aim 

to support ligament injury treatment: ACL and PCL elongation was investigated ex-

vivo (Grood, Hefzy, & Lindenfield, 1989; Hollis, Takai, Adams, Horibe, & Woo, 

1991) and in-vivo (Li, DeFrate, Sun, & Gill, 2004; Hosseini, Gill, & Li, 2009; Yoo et 

al., 2010). Fewer studies have dealt with the MCL and LCL (Van de Velde et al., 

2007). However, most of these studies provide ligament lengths only for a few 

knee flexion angles and do not display a general consensus about the amount and 

direction of ligament length variation during flexion. In addition, the errors 

associated with origin and insertion landmark identification have not been 

accounted for. Thus, no general boundary conditions, as required in constraint-

based knee modelling, can be derived for the ligament lengths during continuous 

flexion-extension.  

The purpose of this study was to determine the above-mentioned plausible 

values for the ligament lengths during loaded continuous healthy knee flexion. To 

this aim, ex-vivo tibio-femoral joints were used to avoid soft tissue artefacts. Three-
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dimensional digital models of tibias and femura were reconstructed and ligament 

attachment areas identified on them together with the associated intra- and inter-

operator indeterminacies. The bone models were made to move in-silico using 

experimental data obtained on the joint specimens. Ligament lengths were 

thereafter estimated as a function of the joint flexion angle and submitted to 

statistical analysis in order to provide a knee joint model that could be embedded 

in the MBO procedure. 

 

4.2.2 Materials and methods 

Six knee specimens, consisting of femur, patella, fibula and tibia and intact 

joint passive structures, were harvested from subjects aged 75 to 96 years old and 

fresh frozen. They exhibited no advanced osteoarthritis or ligament laxity and 

presented no recurvatum. 

The knee specimens were set in motion using a device described in Azmy et 

al. (Azmy, Guérard, Bonnet, Gabrielli, & Skalli, 2010). The femur was fixed to the 

experimental jig and the tibia caused to move by a servo-actuator that applied a 

force to the quadriceps tendon that simulated a contraction of this muscle group. A 

flexion resistive moment was applied to the knee through two cables fixed to the 

distal end of the tibia and passing through two pulleys coaxial with the centre of 

the femoral head and located laterally and medially to it. The force transmitted by 

these cables to the tibia was equal to 30 N and maintained bone coaptation. 

Clusters made of three retro-reflective markers, with a minimal separation 

of 50 mm, were secured to the femur and to the tibia, each using two pins (Fig. 1a, 

1b). The marker-cluster 3D positions and orientations were reconstructed during 

movement using a stereophotogrammetric system (Polaris, Nothern Digital Inc., 

Canada) at a rate of 60 samples per second. 

3D digital template models of femur and tibia were obtained from CT-scan 

images. The perimeters of the areas of origin and insertion of the ACL, PCL, LCL, as 

well as of the deep and superficial bundles of the MCL (MCLdeep, MCLsup), were 

identified and traced on the bone templates using the mouse pointer. This 

procedure was performed seven times by one operator and once by three different 

operators for a total of ten virtual palpations. The professionals involved were 

orthopaedic surgeons and underwent a specific and meticulous training. 
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Figure 1 (4.2): (a) 2D images acquired with the stereoradiographic system. (b) 
Reconstruction of the femur and tibia 3D digital models together with the 
photogrammetric markers. (c) Femur system of reference [18]: OF (origin): mid point of 
the segment joining the centers of the two condylar spheres, obtained by least squares 
approximation of the posterior portion of the medial and lateral epicondyles; YF: axis going 
from OF to the centre of the femoral head; ZF: projection onto the plane orthogonal to YF of 
the segment joining the centres of the two condylar spheres (dashed line); XF: cross 
product between YF and ZF. (d) Tibia system of reference [18]: OT (origin): centroid of the 
tibial plateaux; YT: axis going from the centroid of the tibial pilon surface to the 
intersection between the principal inertial axis of the tibial diaphysis (dashed line) and the 
tibial plateaux surface; ZT: projection onto the plane orthogonal to YT of the segment 
joining the most posterior points of the tibial plateaux (dashed line); XT: cross product 
between YT and ZT. 
 

 

Two orthogonal digital radiographs of each knee specimen were 

simultaneously obtained using a low dosage X-ray system (EOS®, EOS-imaging, 

France) (Fig. 1a). The 3D bone-models were obtained through a reconstruction 

algorithm based on three steps: 1. identification and labelling of anatomical 

landmarks on the radiographic images in order to set a parametric simplified 

subject-specific model; 2. pre-morphing of the bone template to get an initial 

estimate of the bone; 3. iterative deformation of the latter estimate, based on 

parametric models and statistical inferences, until the best estimate of the subject-

specific bone-model, carrying marks indicating the selected ligament attachment 

areas, was obtained (Fig. 1b) (Chaibi, et al., 2011). The root mean square 

discrepancy between a digital model of a femur or tibia, as obtained using this 
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procedure, and the relevant CT-scan model, was assessed in a previous study and 

found to be on average less than 1 mm (Chaibi, et al., 2011). Each subject-specific 

bone-model was reconstructed twice by three operators. 

Each specimen was subjected to six flexion-extension cycles during which 

marker trajectories were recorded. 

Anatomical frames of femur and tibia (Fig. 1c, 1d) were defined as 

suggested in Schlatterer et al. (2009). 

Using the marker coordinates in the EOS® frame, the subject-specific bone-

models and the relevant anatomical axes were registered with respect to the 

movement data given in the stereophotogrammetric (global) frame. The knee joint 

kinematics was then estimated using the Cardan convention and the sequence ZT, 

XT, YT.  

For each of the six knees, each knee-model reconstruction, each flexion-

extension cycle, and each virtual palpation, the centroids of the attachment areas 

of each ligament were determined. The mean values and standard deviations (SDs) 

of these centroid coordinates, as represented in the global frame, were calculated. 

It must be noted that virtual palpation did not display any significant difference 

between inter and intra-operator variability. 

The Euclidean distances between the mean origin and insertion centroids, 

obtained averaging the ten virtual palpations, were then computed during the knee 

movement (dc) (Fig. 2). 

A similarity analysis of dc vs. flexion angle curves, as obtained from the six 

flexion-extension cycles, was performed (r = 0.98±0.01; RMSE = 0.15±0.01 mm). 

Results showed that no significant hysteresis occurred, thus, only mean curves 

were considered for further analysis. 

At this point, for each knee the data set was made of six curves, one for each 

knee-model reconstruction. 

In order to assess the impact of the inaccuracies associated with the 

subject-specific bone-model reconstruction procedure on the estimation of 

ligament length, a parametric statistical analysis was carried out by making 

reference to the values of dc at full knee extension (de). To this purpose the 

intraclass correlation coefficient (ICC) (McGraw & Wong, 1996) was calculated and 
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the Bland and Altman plots with correlation analysis of the bias between each 

couple of operators inspected (Bland & Altman, 2010). 

The propagation to the dc values of the errors associated with the variability 

of the virtual palpation was assessed using a Monte Carlo simulation. Origin and 

insertion points were randomly generated, using a normally distributed 

mislocation from the mean centroid. The ligament length between each possible 

pair of the generated origin and insertion points (100*100 pairs) was computed 

during knee motion (dMC) (Fig.2). 

 

 

Figure 2 (4.2): Digital model of a randomly chosen knee specimen: the ligament 
attachment areas and the tibio-femoral distances between the centroids (dc) (yellow lines) 
as well as between selected Monte Carlo pairs (dMC) (red lines) are depicted. 
 

For the sake of generalization, ligament length variations (∆dMC) were then 

calculated relative to de and expressed as percentage of the latter value for each 

sampled knee flexion angle. The mean value and standard deviation of ∆dMC were 

then calculated for each Monte Carlo pair over the six knees and the six digital 

model reconstructions. To facilitate embedding this information in the knee 

kinematic model to be used in the MBO process, the mean of the curves ∆dMC vs 
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flexion angle thus obtained, plus and minus one SD, were fitted with a polynomial 

regression function of the fifth order. 

 

4.2.3 Results 

Both the intra- and inter-operator variability displayed a SD lower than 2 

mm for all ligaments with regard to the ligament origin and insertion coordinates 

on subject-specific knee models. Thus, this value was conservatively used as the SD 

of the normal distribution used in the Monte Carlo simulation. 

With respect to the effect of the indeterminacies associated with the 

subject-specific bone-model reconstruction on the estimate of de, a high intra-

operator (ICC = 0.936; Confidence Interval (CI) [0.894;0.961]) and inter-operator 

(ICC = 0.974; CI [0.960;0.983]) repeatability was found. Bland and Altman plots 

and correlation analysis on the residuals confirmed these results. The mean bias 

and the bias correlation computed between each pair of operators were low, with 

both CIs spanning the zero value, thus demonstrating that no systematic 

differences were present among the operators (bias = 0.11 mm; CI [-0.309;0.530]; 

corr = 0.13; CI [-0.116;0.373]). Given the resulting repeatability, multiple 

reconstructions from different operators were considered as repeated measures. 

The variability of de over the six observations and averaged over the six knees was 

measured by a SD equal to 2.3 mm for ACL, 1.9 mm for PCL, 2.4 mm for MCLdeep, 

2.1 mm for MCLsup, and 1.7 mm for LCL. 

In Fig. 3, the distance dc is represented against the knee flexion angle with 

reference to a randomly chosen knee. The ACL, LCL, and MCLdeep displayed 

consistent trends in all knees, while the PCL and the MCLsup did not. In Fig. 3, the 

selected knee internal-external rotation and the ab-adduction angles are also 

depicted vs the flexion angle. The other knees displayed virtually identical curves. 

The mean and SD curves of ∆dMC are shown in Fig. 4 for each ligament. The 

coefficients of the regression functions used to fit the displayed curves are 

reported in Tab. 1. The mean of the residual error norm between the fitting 

function and the original curve was lower than 0.7±0.4%.  
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Figure 3 (4.2): For one randomly selected knee specimen, the ligament lengths are 
depicted as a function of the knee flexion angle: mean of three operators times two 
reconstructions ± 1SD. The kinematics of the same knee is also shown in the bottom right 
panel. 
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Figure 4 (4.2): Distance variation patterns (mean ± 1SD) vs the knee flexion angle as 
obtained through the Monte Carlo simulation for each ligament, ∆dMC. Each variation is 
expressed as a percentage of the distance at knee maximal extension. 
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  a0 a1 a2 a3 a4 a5 

Mean -4.3 -7.4 -3.9 -0.1 0.5 0.1 

+ 1SD -0.4 -4.1 -3.5 -0.6 0.4 0.2 ACL 

- 1SD -8.2 -10.7 -4.3 0.4 0.7 0.1 

Mean -4.1 0.1 2.4 0.0 -0.3 0.0 

+ 1SD 0.2 2.9 2.1 0.0 -0.2 -0.1 PCL 

- 1SD -8.5 -2.7 2.7 -0.1 -0.4 0.1 

Mean 4.8 3.6 -0.8 -0.9 0.1 0.1 

+ 1SD 10.4 6.8 -0.7 -0.9 -0.1 0.1 MCLdeep 

- 1SD -0.9 0.4 -0.9 -1.0 0.2 0.1 

Mean 0.8 1.3 -0.3 -0.7 0.0 0.1 

+ 1SD 2.4 2.6 -0.2 -0.9 0.0 0.1 MCLsup 

- 1SD -0.8 0.0 -0.4 -0.5 0.1 0.1 

Mean -5.4 -1.9 -0.2 -1.2 0.1 0.2 

+ 1SD -2.4 -0.4 -0.1 -1.1 0.0 0.2 LCL 

- 1SD -8.5 -3.4 -0.3 -1.2 0.2 0.3 

 

Table 1 (4.2): Coefficients of the fifth-order polynomial regression function used to fit the 
mean and SD distance curves obtained from the Monte Carlo pairs (see Fig. 4): d 
(dependent variable): percentage ligament length variation [%]; β (independent variable): 
knee flexion angle [deg]. In order to improve the fitting model accuracy and to reduce the 
influence of random errors on the regression coefficients, the independent variable β was 
standardized by computing its z-score, using its mean (μ) and the corresponding standard 
deviation (σ): 

( )
σ

µ
z

−= β
, where µ = 45 deg and σ = 26 deg. 

The following regression equation was then used: 
5

5
4

4
3

3
2

210 zazazazazaad ⋅+⋅+⋅+⋅+⋅+= . 
 

4.2.4 Discussion 

To appropriately define knee joint constraints related to ligament geometry, 

the subject-specific plausible values of the lengths of the four major ligaments 

were assessed during continuous loaded knee flexion, while considering the 

inaccuracies associated with the estimation of both the subject-specific bone-

models and ligament attachment locations. 
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The ACL and LCL were found to shorten during knee flexion reaching, on 

average, 22% and 11% of their length at full extension, respectively. This is in 

agreement with works reporting in-vivo behaviour of the ACL (Beynnon et al., 

2001; Li, et al., 2004; Hosseini, et al., 2009; Yoo, et al., 2010), ex-vivo behaviour of 

the LCL (Harfe, Chuinard, Espinoza, Thomas, & Solomonow, 1998) and with a 

simulation study involving both ligaments (Amiri, Cooke, Kim, & Wyss, 2007). 

PCL length increased or decreased depending on the selected origin and 

insertion location within the plausible area. This dependency has been already 

evidenced ex-vivo (Grood, et al., 1989; Ahmad et al., 2003) and by using a 

simulation approach (Amiri, et al., 2007). Conversely, in-vivo studies showed an 

elongation of the central bundle of the PCL (DeFrate, Gill, & Li, 2004), as well as of 

the antero-medial and postero-lateral ligament bundles (Li, et al., 2004). Since the 

patterns of ligament length variation depend on the kinematics of the joint (Woo, 

Debski, Withrow, & Janaushek, 1999; Amiri, et al., 2007), the lack of agreement 

between in-vivo and ex-vivo, as well as simulation results might be attributed to 

different amounts of tibial internal rotation during knee flexion, which the 

referenced papers do not report. In-vivo knee kinematics was acquired during 

quasi-static weight-bearing flexion (single-legged lunge using the free leg for 

stability). Conversely, during ex-vivo studies, loaded knee flexion was obtained by 

applying a force on the fixed femur (to the quadriceps tendon or to the patella, 

when the patellar ligament was intact) and leaving the tibia free to move and 

rotate, or similarly, fixing the tibia and allowing femur rotation. 

Results on the deep and superficial bundle of the MCL must be interpreted 

in the light of the following considerations. First, typical of the MCL is the critical 

identification of its tibial origin, due to the lack of clear-cut bony prominences (Liu 

et al., 2010). Second, most of the previous studies describe the length of the 

ligament by a broken line wrapping around the most prominent edge of the tibial 

plateau (Van de Velde, et al., 2007). Conversely, in the present work, consistently 

with the proposed kinematic knee model, the length was computed as a Euclidean 

distance. The MCLsup length increased or decreased depending on the selected 

Monte Carlo pairs. This behaviour matches the results obtained in-vivo by Van de 

Velde et al. (2007) who showed that, during knee flexion, the central, anterior, and 

posterior bundles exhibited a nearly constant, increasing and decreasing length, 
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respectively. The average tendency of the MCLdeep length to increase during knee 

flexion, accompanied by a maximal 10% shortening and 20% lengthening of 

certain Monte Carlo pairs, is in partial in agreement with the results reported by 

Van de Velde et al. (2007). These authors showed that the central bundle does not 

change significantly its length, while the anterior bundle, on average, has a 10% 

lengthening and the posterior bundle a 10% shortening. 

The expertise and experience of the operators involved in this study is 

supported by the low intra- and inter-operator variability in the identification of 

the ligament attachment points, which was less than 2 mm. The Monte Carlo 

simulation included a wide range of origin-insertion pairs and confirmed the 

important effects of ligament attachment sites location on ligament length 

variation. This has been shown previously, however, using fewer origin-insertion 

points. Feeley et al. (2009) considered, for the MCLsup, five points on the femur 

and four on the tibia, and others (Grood, et al., 1989; Schutzer, Christen, & Jakob, 

1989) included less than ten combinations for the ACL and PCL. 

Limitations of this study were that the ligaments involved belonged to 

elderly individuals, with biased mechanical properties, and that an ex-vivo 

experimental model was used. It may be assumed however, that in-vivo joint 

kinematics of healthy subjects, under whatever external loading, is not different 

from the kinematics obtained in this study to an extent that would cause a 

significant change in ligament length behaviour. In both cases, in fact, stability or 

coaptation of the joint should be guaranteed, although in a different manner, by a 

synergic activity of both passive and active intra- and periarticular structures. This 

hypothesis is supported by recent findings that, during a highly dynamic motion 

such as the landing phase of a jump, showed that the ACL length decreases during 

flexion by an amount similar to that obtained in the present study (Taylor, et al., 

2011).  

In conclusion, the results of this study indicate that, in the framework of the 

MBO approach, a kinematic model of the knee based on joint constraints should 

consider the length of ACL, LCL and MCLdeep variable as a function of knee flexion. 

Given the dependence of PCL and MCLsup length variation from the selected 

attachment sites, these ligaments could be considered isometric. The efficacy of 

this kinematic model, as opposed to those already implemented, must be evaluated 
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in terms of consequences on the estimate of joint kinetics, particularly when the 

inertial effects of soft tissue masses are involved. 

 

 

4.3 HIGH RESOLUTION APPROACH: DISCUSSION 

 

The purpose of the High Resolution Approach section was to contribute 

improving the accuracy of inverse dynamics methods for the estimation of joint 

forces. The latter, in fact, are considered to be crucial in the assessment of injury-

related biomechanical variables in sports contexts. The evaluation of knee joint 

forces, in particular, is very important during sprint running, being the knee the 

most frequent site of injuries in this sports discipline. 

In the framework of the multi-body optimization approach and to further 

improve the quality of constraint-based kinematic models of the knee, subject-

specific, non-rigid constraints to the distances between the origin and insertion 

landmarks of the four major knee ligaments were defined. The inaccuracies 

associated with the estimation of the ligament attachment locations were also 

considered. 

Results indicated that, in a kinematic model of the knee based on joint 

constraints, the length of the ACL, LCL and MCLdeep should be considered as 

variable during knee flexion, while the length of the PCL and of the MCLsup proved 

to be highly dependent from the selected attachment sites. These ligaments could 

be, therefore, considered isometric during knee flexion. 

The efficacy of this kinematic model, as opposed to those already 

implemented, must be evaluated in terms of consequences on the estimate of joint 

kinetics, particularly when the inertial effects of soft tissue masses are involved. 

In addition, considering that the MBO technique aims at providing an 

optimal estimation of the 3D position of the entire chain of bones in analysis, the 

reconstruction of the movement of the soft tissue masses relative to the underlying 

bone may also be attempted. It is worthwhile to underline, in fact, that such 

movement is not an artefact in itself, but that it produces artefacts when it is used 

to estimate the motion of the underlying bones. From a different perspective, it can 
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give unbiased information regarding the motion of some portions of soft tissues 

and may be fed into a biodynamic model of the human body. The kinetic analysis of 

this model would incorporate the relevant inertial effects that are known to 

significantly affect the forces involved in motor acts characterized by high 

accelerations, typical of sports applications. Preliminary tests showed that using a 

large number of floating markers positioned on ad-hoc portions of the soft tissue 

masses, thus exploiting redundancy of the measured information, appears to be 

promising. 
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CHAPTER 5 

 

 

 

CONCLUSIONS 
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Sports biomechanics describes the human movement from a performance 

enhancement and an injury reduction perspective. In this respect, the purpose of 

sports scientists is to support coaches and physicians with reliable and usable 

information about athletes’ technique. 

The lack of methods and protocols allowing for in-field athlete evaluation as 

well as for accurate joint forces estimate represents, to date, the main limitation to 

this purpose. 

The results and the considerations carried out in the present thesis aim at 

providing a contribution towards the development of the above mentioned 

methods. 

 

Results obtained from the Low Resolution Approach indicate that, due to 

their portability and inexpensiveness, inertial measurement units proved to be a 

valid alternative to traditional laboratory-based instrumentations, such as motion 

analysis systems and force platforms. Their usability, moreover, contributes to 

broaden the scope of application, allowing even coaches and runners to access 

information regarding the influence of running mechanics on performance and 

injuries.  

Using acceleration and angular velocity measurements provided by the 

inertial units, the following quantities were estimated: trunk inclination and 

angular velocity, instantaneous horizontal velocity and displacement of a point 

approximating the centre of mass, and stride and support phase durations.  

The extraction of movement-related information from the measured 

signals, however, is still demanding due to the movement of soft tissues relative to 

the underlying skeleton and to the unstable bias characterising the sensors signals. 

The latter proved to be relevant when numerical integration of the measured 

signals is necessary. To mitigate these sources of error, particularly relevant when 

dealing with sports motor acts, good-practice rules are recommended for the 

benefit of signal processing. In particular, careful attention has to be paid to the 

location and method of fixation of the sensor for limiting the motion of the soft 

tissue masses. The use of memory foam materials and elastic belts appears to be 

effective. To limit the errors yielded by the unstable bias of the signal, two 

approaches can be used: reducing the integration interval, so that to limit the 
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amount of time in which errors accumulate, and exploring boundary conditions 

which can be used to cyclically correct the drift errors, particularly, in non steady-

state movements. 

  

 In the framework of the multi-body optimization, High Resolution Approach 

results indicate that, in a kinematic model of the knee based on joint constraints, 

the length of the anterior cruciate, the lateral collateral and the deep bundle of the 

medial collateral ligaments should be considered as variable during knee flexion. 

The length of the posterior cruciate and of the superficial bundle of the medial 

collateral ligaments was found to be highly dependent from the selected 

attachment sites, and could be, therefore, considered isometric during knee 

flexion.  

 These results represent a first contribution to the definition of methods 

aiming at improving the accuracy of inverse dynamic estimates. The efficacy of a 

kinematic knee model, as obtained by implementing constraints that are anatomy-

based, non-rigid and subject-specific must be evaluated, indeed, in terms of 

consequences on the estimate of joint kinetics, particularly when the inertial 

effects of soft tissue masses are involved. 

 The investment of resources aimed at improving the MBO approach, 

however, is justified also by the following considerations: as the MBO techniques 

aims at providing an optimal estimation of the 3D position of an entire chain of 

bones (for instance pelvis, femur and tibia), the reconstruction of the movement of 

the soft tissue masses relative to the underlying bone may be attempted. Such 

movement may be then used to develop a biodynamic model of the human body, 

which would incorporate the inertial effects known to significantly affect the forces 

involved in motor acts characterized by high accelerations, typical of sports 

applications. In this respect, using a large number of floating markers positioned 

on ad-hoc areas of the soft tissue masses, thus exploiting redundancy of measured 

information appears to be promising. 



 - 112 - 



 - 113 - 

AKNOWLEDGEMENTS 

The present thesis was developed in the framework of a co-tutoring agreement 

between the Università degli Studi di Bologna and the Arts et Métiers ParisTech. The 

financial support of the Università Italo-Francese (Call Vinci – Chapter II) is 

gratefully acknowledged. 

 

 
What I like the most of every “long trip”, is the opportunity to share it with other 

people.  
It is with great pleasure and great pride that I thank all of you…for your scientific 

and, especially, for your human contribution to my personal growth. 

 

 

GRAZIE DI CUORE… 

Al prof. Aurelio Cappozzo, per il suo grande carisma, per avermi mostrato 
cosa è il “rigore”, dal punto di vista scientifico ed umano, e per avermi insegnato 

come forma e contenuto possano, e debbano, sempre coincidere. 

 

A Valentina, per tutto ciò che abbiamo condiviso…con la speranza che 
questo viaggio abbia rappresentato, anche per lei, una proficua occasione di 

crescita. 

 

A Pietro (come avrei fatto senza di lui!), Mounir (per la sua inesauribile 
positività), Ilaria (la mia “roman dialect coach”), Marco D. (per la sua saggezza, 
informatica e non solo), Marco I. (per il suo humour romano), Luca (per la sua 

sicula solarità), Marco F. (“er prinscipà”), Giuseppe (grande papà), Claudia 
(bignami di ottimi ristoranti romani), Paolo (“multiprod”), Elif e Alper (per la loro 

sincera amicizia), Andrea (per i suoi preziosi consigli), Flaminia (per la sua 
spontaneità), i nuovi colleghi Eleni, Delia, John e Vincent...e naturalmente a Giorgio 

(esempio di vita): è grazie a tutti voi che è sempre valsa la pena di affrontare i 
lunghi viaggi quotidiani. 

 

A coach Filippo di Mulo, ai velocisti della Nazionale Italiana e agli atleti dello 
IUSM, per aver corso anche per noi. 

 

 

MERCI BEAUCOUP… 

A Mme Wafa Skalli, pour m’avoir accueillie dans son laboratoire à Paris, en 
contribuant à ma formation scientifique et culturelle. 

 

A Hélène, pour m’avoir montré comment vie professionnelle et vie 
personnelle peuvent trouver un équilibre harmonieux et productif ; pour son aide, 



 - 114 - 

son affection et sa proximité. Naturellement, merci à Guillaume et à la petite Lucie, 
pour toutes les fois où j’ai pu loger chez eux et, surtout, pour leur amitié… 

 

A Pélagie, pour sa détermination, sa force et sa bonne humeur et parce que 
cela a été vraiment amusante de travailler ensemble ! Merci à ses parents, à 

Mathilde et à Karim aussi, pour leur immense et inépuisable gentillesse et 
hospitalité. 

 

A touts les collègues du LBM et, en particulier, à Xavier B., Elizabeth, Jérôme, 
Céline, Nicholas, Sandra, Xavier D., Aurélien, Amine, Marine, parce que si mes 

séjours parisiens ont été autant agréables c’est aussi grâce à eux. 

 

A Mme Patricia Thoreux, pour sa gentillesse et son aide dans la recherche 
scientifique et du logement à Paris. Et merci à Mme Véronique Digan, pour sa 

disponibilité et gentillesse pendant mon séjour à Paris XIII. 

 

A M. Lavaste, pour sa, toujours agréable, cordialité. 

 

A toutes les personnes du CERAH de Paris, à Adrien Michel, à Mme 
Françoise Natta et à tous les athlètes qui ont participé aux expérimentations 

parisiennes, pour leur collaboration et leur disponibilité. 

 

 

E NATURALMENTE GRAZIE… 

A Sara (la mia compagna di viaggio ideale…n’importe quel voyage), Chiara, 
Simone, Francesca e a tutti gli amici “del nord”, per non avermi mai fatto sentire la 

loro mancanza, nonostante la distanza Bergamo-Roma. 

 

A mamma Lucia, papà Giacomo, i miei fratelli Filippo, Paolo e Marco, ad 
Anna, la piccola Clara, Grazia e Franco, per l’esempio che da sempre rappresentano 

e perché la loro vicinanza è stata, come sempre, determinante. 

 
Ed infine ad Alberto. A lui, anche questa volta, spetta il mio “grazie” più 

grande. Perché, più di tutti, ha condiviso con me ogni momento di questo viaggio.  
Per avermi sostenuto, consigliato, spronato, supportato e aspettato…anche 

quando era difficile farlo. Per tutto questo…e per molto molto di più, GRAZIE. 



 - 115 - 



 - 116 - 



 - 117 - 

REFERENCES 

 

• Ahmad, C.S., Cohen, Z.A., Levine, W.N., Gardner, T.R., Ateshian, G.A., & Mow, V.C. 
(2003). Codominance of the individual posterior cruciate ligament bundles - An 
analysis of bundle lengths and orientation. American Journal of Sports Medicine, 
31(2), 221-225. 

• Ahmadi, A., Rowlands, D.D., & James, D.A. (2006). Investigating the translational 
and rotational motion of the swing using accelerometers for athlete skill 
assessment. IEEE Conference on Sensors, 5, 980-983. 

• Alexander, E.J., & Andriacchi, T.P. (2001). Correcting for deformation in skin-
based marker systems. Journal of Biomechanics, 34(3), 355-361. 

• Aminian, K., Najafi, B., Büla, C., Leyvraz, P.F., & Robert, P. (2002). Spatio-
temporal parameters of gait measured by an ambulatory system using 
miniature gyroscopes. Journal of Biomechanics, 35(5), 689-699. 

• Amiri, S., Cooke, D., Kim, I.Y., & Wyss, U. (2007). Mechanics of the passive knee 
joint. Part 2: interaction between the ligaments and the articular surfaces in 
guiding the joint motion. Proceedings of the Institution of Mechanical Engineers 
Part H-Journal of Engineering in Medicine, 221(H8), 821-832. 

• Andersen, M.S., Benoit, D.L., Damsgaard, M., Ramsey, D.K., & Rasmussen, J. 
(2010). Do kinematic models reduce the effects of soft tissue artefacts in skin 
marker-based motion analysis? An in vivo study of knee kinematics. Journal of 
Biomechanics, 43(2), 268-273. 

• Andersen, M.S., Damsgaard, M., & Rasmussen, J. (2009). Kinematic analysis of 
over-determinate biomechanical systems. Computer Methods in Biomechanics 
and Biomedical Engineering, 12(4), 371-384. 

• Atkinson, G., & Nevill, A.M. (1998). Statistical methods for assessing 
measurement error (reliability) in variables relevant to sports medicine. Sports 
Med, 26(4), 217-238. 

• Atwater, A.E. (1982). Kinematic analysis of spinting. Track and Field Q Rev, 
82(2), 12-16. 

• Auvinet, B., Gloria, E., Renault, G., & Barrey, E. (2002). Runner’s stride analysis: 
comparison of kinematic and kinetic analyses under field conditions. Science & 
Sports, 17, 92-94. 

• Azmy, C., Guérard, S., Bonnet, X., Gabrielli, F., & Skalli, W. (2010). EOS® 
orthopaedic imaging system to study patellofemoral kinematics: Assessment of 
uncertainty. Orthopaedics & Traumatology: Surgery & Research, 96(1), 28-36. 

• Baca, A. (2006). Innovative diagnostic methods in elite sport. International 
Journal of Performance Analysis in Sport, 6, 148-156. 

• Bachmann, E.R. (1999). Orientation tracking for humans and robots using 
inertial sensors. Proceedings of the 3rd International Symposium on 
Computational Intelligence in Robotics & Automation, Monterey, CA (USA). 



 - 118 - 

• Ballas, M.T., Tytko, J., & Cookson, D. (1997). Common overuse running injuries: 
diagnosis and management. Am Fam Physician, 55(7), 2473-2484. 

• Bartlett, R. (2006). Artificial intelligence in sports biomechanics: new dawn or 
false hope? Journal of Sports Science and Medicine, 5, 474-479. 

• Baumann, W. (1976). Kinematic and dynamic characteristics of the sprint start. 
In Komi P.V., Biomechanics, University Park Press, Baltimore. 

• Bennell, K.L., & Crossley, K. (1996). Musculoskeletal injuries in track and field: 
incidence, distribution and risk factors. Aust J Sci Med Sport, 28(3), 69-75. 

• Beynnon, B.D., Uh, B.S., Johnson, R.J., Fleming, B.C., Renstrom, P.A., & Nichols, C.E. 
(2001). The elongation behavior of the anterior cruciate ligament graft in vivo - 
A long-term follow-up study. American Journal of Sports Medicine, 29(2), 161-
166. 

• Bland, J.M., & Altman, D.G. (2007). Agreement between methods of 
measurement with multiple observations per individual. J Biopharm Stat, 17(4), 
571-582. 

• Bland, J.M., & Altman, D.G. (2010). Statistical methods for assessing agreement 
between two methods of clinical measurement. International Journal of Nursing 
Studies, 47(8), 931-936. 

• Bouten, C.V., Koekkoek, K.T., Verduin, M., Kodde, R., & Janssen, J.D. (1997). A 
triaxial accelerometer and portable data processing unit for the assessment of 
daily physical activity. IEEE Trans Biomed Eng, 44(3), 136-147. 

• Brughelli, M., & Cronin, J. (2008). A review of research on the mechanical 
stiffness in running and jumping : methodology and implications. Scandinavian 
Journal of Medicine & Science in Sports, 417-426. 

• Brunet, M.E., Cook, S.D., Brinker, M.R., & Dickinson, J.A. (1990). A survey of 
running injuries in 1505 competitive and recreational runners. J Sports Med 
Phys Fitness, 30(3), 307-315. 

• Butler, R.J., Crowell, H.P., & Davis, I.M. (2003). Lower extremity stiffness: 
implications for performance and injury. Clin Biomech (Bristol, Avon), 18(6), 
511-517. 

• Butler, R.J., Davis, I.S., & Hamill, J. (2006). Interaction of arch type and footwear 
on running mechanics. Am J Sports Med, 34(12), 1998-2005. 

• Burr, D.B., Martin, R.B., Schaffler, M.B., & Radin, E.L. (1985). Bone remodeling in 
response to in vivo fatigue microdamage. Journal of Biomechanics, 18, 189-200. 

• Camomilla V., Lupi, C., & Picerno, P. (2008). An in field forehand stroke 
evaluation using wearable inertial sensors. Coaching and Sport Science Journal, 
3(2), 23-24. 

• Cappellini, G., Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2006). Motor 
patterns in human walking and running. J Neurophysiol, 95(6), 3426-3437. 

• Cappello, A., Cappozzo, A., LaPalombara, P.F., Lucchetti, L., & Leardini, A. (1997). 
Multiple anatomical landmark calibration for optimal bone pose estimation. 
Human Movement Science, 16(2-3), 259-274. 



 - 119 - 

• Cappozzo, A. (1991). Three-dimensional analysis of human walking - 
Experimental methods and associated artefacts. Human Movement Science, 
10(5), 589-602. 

• Cappozzo, A., De Vito, G., Gazzani, F., & Massacesi, R. (1989). Analisi 
biomeccanica della partenza dai blocchi. Atleticastudi, 347-375. 

• Cappozzo, A., Della Croce, U., Leardini, A., & Chiari, L. (2005). Human movement 
analysis using stereophotogrammetry. Part 1: theoretical background. Gait & 
posture, 21(2), 186-196. 

• Carling, C., & Williams, R. (2005). Handbook of soccer match analysis. A 
systematic approach. Routledge, Abingdom, UK. 

• Carling, C., Reilly, T., & Williams, A.M. (2009). Performance Assessment for Field 
Sports: Physiological, Psychological and Match Notational Assessment in 
Practice. Routledge, Abingdom, UK 

• Catalfamo, P., Moser, D., Ghoussayni, S., & Ewins, D. (2008). Detection of gait 
events using an F-Scan in-shoe pressure measurement system. Gait & Posture, 
28(3), 420-426. 

• Cavagna, G.A., Komarek, L., & Mazzoleni, S. (1971). The mechanics of sprint 
running. The Journal of Physiology Online, 217, 709-721. 

• Cavanagh P.R. (1990). Biomechanics of distance running. Human Kinetics, 
Champaign, IL. 

• Chaibi, Y., Cresson, T., Aubert, B., Hausselle, J., Neyret, P., Hauger, O., et al. 
(2011). Fast 3D reconstruction of the lower limb using a parametric model and 
statistical inferences and clinical measurements calculation from biplanar X-
rays. Computer methods in biomechanics and biomedical engineering, in press. 

• Channells, J., Purcell, B., Barrett, R., & James, D. (2005). Determination of 
rotational kinematics of the lower leg during sprint running using 
accelerometers. Proceedings of SPIE, 6036. 

• Chèze, L., Fregly, B.J., & Dimnet, J. (1995). A solidification procedure to facilitate 
kinematic analyses based on video system data. Journal of Biomechanics, 28(7): 
879-884.  

• Ciacci, S., Di Michele, R., & Merni, F. (2010). Kinematic analysis of the braking 
and propulsion phases during the support time in sprint running. Gait & 
Posture, 31(2), 209-212. 

• Clement, D.B., Taunton, J.E., Smart, G.W., & McNicol, K.L. (1981). A survey of 
overuse running injuries. Phys Sports Med, 9, 47-58. 

• Clinghan, R., Arnold, G.P., Drew, T.S., Cochrane, L.A., & Abboud, R.J. (2008). Do 
you get value for money when you buy an expensive pair of running shoes? Br J 
Sports Med, 42(3), 189-193. 

• Čoh, M., Jošt, B., Škof, B., Tomažin, K., & Dolenec, A. (1998). Kinematic and kinetic 
parameters of the sprint start and start acceleration model of top sprinters. 
Gymnica, 28, 33-42. 



 - 120 - 

• Čoh, M., Tomažin, K., & Štuhec, S. (2006). The biomechanical model of the sprint 
start and block acceleration. Physical Education and Sport, 4, 103-114. 

• Collier, C. (2002). Foundational Concepts of Sprinting: Spatial and Movement 
Perspectives. Track Coach, 5071-5077. 

• Cousins, S., & Dyson, R. (2004). Forces at the front and rear blocks during the 
sprint start. Proceedings for the ISBS Conference, Ottawa, Canada, 198-201. 

• Cronin, J., & Sleivert, G. (2005). Challenges in understanding the influence of 
maximal power training on improving athletic performance. Sports Med, 35(3), 
213-234. 

• de Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov's segment inertia 
parameters. Journal of Biomechanics 29(9), 1223-1230. 

• de Leva, P., & Cappozzo, A. (2006). Estimating forces in sports biomechanics. In 
A. Rainoldi, M. A. Minetto & R. Merletti (Eds.), Turin (IT), 71-88.  

• DeFrate, L.E., Gill, T.J., & Li, G. (2004). In vivo function of the posterior cruciate 
ligament during weightbearing knee flexion. American Journal of Sports 
Medicine, 32(8), 1923-1928. 

• Derrick, T.R., Dereu, D., & McLean, S.P. (2002). Impacts and kinematic 
adjustments during an exhaustive run. Med Sci Sports Exerc, 34(6), 998-1002. 

• Dierick, F., Penta, M., Renaut, D., & Detrembleur, C. (2004). A force measuring 
treadmill in clinical gait analysis. Gait and Posture, 20(3), 299-303. 

• Dixon, S.J. (2008). Use of pressure insoles to compare in-shoe loading for 
modern running shoes. Ergonomics, 51(10), 1503-1514. 

• Donati, M., Camomilla, V., Vannozzi, G., & Cappozzo, A. (2008). Anatomical frame 
identification and reconstruction for repeatable lower limb joint kinematics 
estimates. Journal of Biomechanics, 41(10), 2219-2226. 

• Duffey, M.J., Martin, D.F., Cannon, D.W., Craven, T., & Messier, S.P. (2000). 
Etiologic factors associated with anterior knee pain in distance runners. Med Sci 
Sports Exerc, 32(11), 1825-1832. 

• Dugan, S.A., & Bhat, K.P. (2005). Biomechanics and analysis of running gait. Phys 
Med Rehabil Clin N Am, 16(3), 603-621. 

• Duprey, S., Cheze, L., & Dumas, R. (2010). Influence of joint constraints on lower 
limb kinematics estimation from skin markers using global optimization. 
Journal of Biomechanics, 43(14), 2858-2862. 

• Faber, G.S., Kingma, I., Bruijn, S.M., & van Dieen, J.H. (2009). Optimal inertial 
sensor location for ambulatory measurement of trunk inclination. Journal of 
Biomechanics, 42(14), 2406-2409. 

• Favre, J., Jolles, B.M., Siegrist, O., & Aminian, K. (2006). Quaternion-based fusion 
of gyroscopes and accelerometers to improve 3D angle measurement. 
Electronics Letters, 42(11), 612-614. 

• Feeley, B.T., Muller, M.S., Allen, A.A., Granchi, C.C., & Pearle, A.D. (2009). 
Isometry of medial collateral ligament reconstruction. Knee Surgery, Sports 
Traumatology, Arthroscopy, 17(9): 1078-1082.  



 - 121 - 

• Ferber, R.I., McClay-Davis, I., Hamill, J., Pollard, C.D., & McKeown, K.A. (2002). 
Kinetic variables in subjects with previous lower extremity stress fractures. Med 
Sci Sports Exerc, 34(S5).  

• Flynn, T.W., & Soutas-Little, R.W. (1995). Patellofemoral joint compressive 
forces in forward and backward running. Journal of Orthopaedic & Sports 
Physical Therapy, 21(5), 277-282. 

• Forner-Cordero, A., Mateu-Arce, M., Forner-Cordero, I., Alcántara, E., Moreno, J. 
C., & Pons, J. L. (2008). Study of the motion artefacts of skin-mounted inertial 
sensors under different attachment conditions. Physiological measurement, 
29(4), N21-31. 

• Fortier, S., Basset, F.A., Mbourou, G.A., Faverial, J., & Teasdale, N. (2005). Starting 
block performance in sprinters: A statistical method for identifying 
discriminative parameters of the performance and an analysis of the effect of 
providing feedback over a 6-week period. Journal of Sports Science and 
Medicine, 4(2), 134-143. 

• Fyfe, K.R., & Gildenhuys, A.H. (2004). Foot path measurement using 
accelerometry. Proceedings of the ASB, 294. 

• Goldsmith, W. (2000). Bridging the gap? Now there is a gap in the bridge! 
A.S.C.A. Newsletter, 3, 2-4. 

• Goodvin, C., Park, E. J., Huang, K., & Sakaki, K. (2006). Development of a real-time 
three-dimensional spinal motion measurement system for clinical practice. 
Medical & Biological Engineering & Computing, 44(12), 1061-1075. 

• Grimston, S.K., Nigg, B.M., Fisher, V., & Ajemian, S.V. (1994). External loads 
throughout a 45 minute run in stress fracture and non-stress fracture runners. 
Journal of Biomechanics, 27, 668. 

• Grood, E.S., Hefzy, M.S., & Lindenfield, T.N. (1989). Factors affecting the region of 
most isometric femoral attachments: Part I: The posterior cruciate ligament. 
The American Journal of Sports Medicine, 17(2), 197-207. 

• Gruber, K., Ruder, H., Denoth, J., & Schneider, K. (1998). A comparative study of 
impact dynamics: wobbling mass model versus rigid body models. Journal of 
Biomechanics, 31(5), 439-444. 

• Hanlon, M., & Anderson, R. (2009). Real-time gait event detection using 
wearable sensors. Gait & posture, 30(4), 523-527. 

• Harfe, D.T., Chuinard, C.R., Espinoza, L.M., Thomas, K.A., & Solomonow, M. 
(1998). Elongation patterns of the collateral ligaments of the human knee. 
Clinical Biomechanics, 13(3), 163-175. 

• Harland, M.J., & Steele, J.R. (1997). Biomechanics of the sprint start. Sports 
Medicine, 23(1), 11-20. 

• Harris, G.F., & Wertsch, J.J. (1994). Procedures for gait analysis. Arch. Phys. Med. 
Rehabil., 75, 216-225. 

• Hay, J.G. (1993). The Biomechanics of Sports Techniques. 4th ed. London, 
Benjamin-Cummings Pub Co. 



 - 122 - 

• Henry, F.M. (1954). Time-velocity equations and oxygen requirements of “all-
out” and “steadypace” running. Res Q Exerc Sport, 25, 164-177. 

• Hewett, T.E., Stroupe, A.L., Nance, T.A., & Noyes, F.R. (1996). Polymetric training 
in female athletes: decreased impact forces and decreased hamstring torques. 
Am. J. Sports Med., 24, 765-773. 

• Higginson, B.K. (2009). Methods of running gait analysis. Curr Sports Med Rep, 
8(3), 136-141. 

• Hill, A.V. (1927). Muscular movement in man. McGraw-Hill Book Co., New York.  

• Hinrichs, R.N., Cavanagh, P.R., & Williams, K.R. (1987). Upper extremity function 
in running: centre of mass and propulsion considerations. International Journal 
of Sports Biomechanics, 3, 222-241. 

• Hobara, H., Inoue, K., Gomi, K., Sakamoto, M., Muraoka, T., Iso, S., et al. (2009). 
Continuous change in spring-mass characteristics during a 400 m sprint. J Sci 
Med Sport, 13(2), 256-261. 

• Hollis, J.M., Takai, S., Adams, D.J., Horibe, S., & Woo, S.L.Y. (1991). The effects of 
knee motion and external loading on the length of the anterior cruciate ligament 
(ACL) - A kinematic study. Journal of Biomechanical Engineering, 113(2), 208-
214. 

• Hosseini, A., Gill, T.J., & Li, G.A. (2009). In vivo anterior cruciate ligament 
elongation in response to axial tibial loads. Journal of Orthopaedic Science, 
14(3), 298-306. 

• Hsiao, H., Guan, J., & Weatherly, M. (2002). Accuracy and precision of two in-
shoe pressure measurement systems. Ergonomics, 45(8), 537-555. 

• Hsich, Y. (1997). Knee kinematics and ligament lengths during physiologic levels 
of isometric quadriceps loads. The Knee, 4(3), 145-154. 

• Hunter, J.P., Marshall, R.N., & McNair, P. (2004a). Reliability of biomechanical 
variables of sprint running. Medicine & Science in Sports & Exercise, 36(5), 850-
850. 

• Hunter, J.P., Marshall, R.N., & McNair, P.J. (2004b). Interaction of step length and 
step rate during sprint running. Med Sci Sports Exerc, 36(2), 261-271. 

• Hunter, J.P., Marshall, R.N., & McNair, P.J. (2005). Relationships between ground 
reaction force impulse and kinematics of sprint-running acceleration. J Appl 
Biomech, 21(1), 31-43. 

• Innocenti, B., Facchielli, D., Torti, S., & Verza, A. (2006). Analysis of 
biomechanical quantities during a squat jump: evaluation of a performance 
index. J Strength Cond Res, 20(3), 709-715. 

• Ito, A., Ishikawa, M., Isolehto, J., & Komi, P.V. (2006). Changes in the step width, 
step length, and step frequency of the world’s top sprinters during a 100 m race. 
New Studies in Athletics, 21(3), 35-39. 

• James, S.L., Bates, B.T., & Osternig, L.R. (1978). Injuries to runners. Am J Sports 
Med, 6(2), 40-50. 



 - 123 - 

• James, D.A., Davey, N. & Rice, T., 2004. An accelerometer based sensor platform 
for insitu elite athlete performance analysis. IEEE Conference on Sensors, 3, 
1373-1376. 

• Jasiewicz, J.M., Allum, J.H., Middleton, J.W., Barriskill, A., Condie, P., Purcell, B., et 
al. (2006). Gait event detection using linear accelerometers or angular velocity 
transducers in able-bodied and spinal-cord injured individuals. Gait & Posture, 
24(4), 502-509. 

• Jianwen, L., Jing, B., & Jinhua, S. (2006). Application of the wavelet transforms on 
axial strain calculation in ultrasound elastography. Progress in Natural Science, 
16(9), 942-947. 

• Jidovtseff, B., Croisier, J.L., Lhermerout, C., Serre, L., Sac, D. and Crielaard, J.M. 
(2006). The concept of iso-inertial assessment: Reproducibility analysis and 
descriptive data. Isokinetics and Exercise Science, 14(1), 53-62. 

• Jones, R., Bezodis, I., & Thompson, A. (2009). Coaching Sprinting: Expert 
Coaches' Perception of Race Phases and Technical Constructs. International 
Journal of Sports Science & Coaching, 4(3), 385-396. 

• Jurman, D., Jankovec, M., Kamnik, R., & Topic, M. (2007). Calibration and data 
fusion solution for the miniature attitude and heading reference system. Sensors 
and Actuators a-Physical, 138(2), 411-420. 

• Kalman, R.E. (1960). A new approach to linear filtering and prediction 
problems. Journal of basic Engineering, 82(1), 35-45. 

• Karamanidis, K., Arampatzis, A., & Brüggemann, G.P. (2004). Reproducibility of 
electromyography and ground reaction force during various running 
techniques. Gait & Posture, 19(2), 115-123. 

• Kavanagh, J.J., & Menz, H.B. (2008). Accelerometry: a technique for quantifying 
movement patterns during walking. Gait & Posture, 28(1), 1-15. 

• Knudson, D. (2007). Qualitative biomechanical principles for application in 
coaching. Sports Biomech, 6(1), 109-118. 

• Kraan, G.A., van Veen, J., Snijders, C.J., & Storm, J. (2001). Starting from standing; 
why step backwards? Journal of Biomechanics, 34(2), 211-215. 

• Kugler, F., & Janshen, L. (2010). Body position determines propulsive forces in 
accelerated running. Journal of Biomechanics, 43(2), 343-348. 

• Lafortune, M.A. (1991). Three-dimensional acceleration of the tibia during 
walking and running. Journal of Biomechanics, 24(10), 877-886. 

• Lafortune, M.A., Henning, E., & Valiant, G.A. (1995). Tibial shock measured with 
bone and skin mounted transducers. Journal of Biomechanics, 28(8), 989-993. 

• Latash, M.L., & Zatsiorsky, V.M. (1993). Joint stiffness: myth or reality?. Hum. 
Movement Sci. 12, 653–692. 

• Le Bris, R., Billat, V., Auvinet, B., Chaleil, D., Hamard, L., & Barrey, E. (2006). 
Effect of fatigue on stride pattern continuously measured by an accelerometric 
gait recorder in middle distance runners. J Sports Med Phys Fitness, 46(2), 227-
231. 



 - 124 - 

• Leardini, A., Chiari, L., Della Croce, U., & Cappozzo, A. (2005). Human movement 
analysis using stereophotogrammetry - Part 3. Soft tissue artifact assessment 
and compensation. Gait & Posture, 21(2), 212-225. 

• Lee, J.B., Mellifont, R.B., & Burkett, B.J. (2010). The use of a single inertial sensor 
to identify stride, step, and stance durations of running gait. Journal of Science 
and Medicine in Sport, 13(2), 270-273. 

• Lee, J.B., Sutter, K.J., Askew, C.D., & Burkett, B.J. (2010). Identifying symmetry in 
running gait using a single inertial sensor. Journal of Science and Medicine in 
Sport, 13(5), 559-563. 

• Lee, R. (2003). A real-time gyroscopic system for three-dimensional 
measurement of lumbar spine motion. Medical Engineering & Physics, 25(10), 
817-824. 

• Li, G., DeFrate, L.E., Sun, H., & Gill, T.J. (2004). In vivo elongation of the anterior 
cruciate ligament and posterior cruciate ligament during knee flexion. American 
Journal of Sports Medicine, 32(6), 1415-1420. 

• Liu, F., Yue, B., Gadikota, H.R., Kozanek, M., Liu, W., Gill, T.J., et al. (2010). 
Morphology of the medial collateral ligament of the knee. J Orthop Surg Res, 5, 
69. 

• Liu, W., & Nigg, B.M. (2000). A mechanical model to determine the influence of 
masses and mass distribution on the impact force during running. Journal of 
Biomechanics, 33(2), 219-224. 

• Lu, T.W., & O'Connor, J.J. (1999). Bone position estimation from skin marker co-
ordinates using global optimisation with joint constraints. Journal of 
Biomechanics, 32(2), 129-134. 

• Lucchetti, L., Cappozzo, A., Cappello, A., & Della Croce, U. (1998). Skin movement 
artefact assessment and compensation in the estimation of knee-joint 
kinematics. Journal of Biomechanics, 31(11), 977-984. 

• Luinge, H.J., Veltink, P.H., & Baten, C.T. (1999). Estimating orientation with 
gyroscopes and accelerometers. Technology and Health Care, 7(6), 455-459. 

• Luthanen, P., & Komi, P.V. (1978). Mechanical factors influencing running speed. 
In Asmussen, E., Jorgensen, K. (Eds). Biomechanics VI-B, Baltimore University 
Park Press, 23-29. 

• Mann, R., Kotmel, J., & Herman, J. (2008). Kinematic trends in elite sprinters. 
Proccedings for the ISBS Conference, Seoul (Korea). 

• Maughan, R.J., & Miller, J.D. (1983). Incidence of training-related injuries among 
marathon runners. Br J Sports Med, 17(3), 162-165. 

• Mayagoitia, R.E., Nene, A.V., & Veltink, P.H. (2002). Accelerometer and rate 
gyroscope measurement of kinematics: an inexpensive alternative to optical 
motion analysis systems. Journal of Biomechanics, 35(4), 537-542. 

• Mazzà, C., Iosa, M., Picerno, P., & Cappozzo, A. (2009). Gender differences in the 
control of the upper body accelerations during level walking. Gait & posture, 
29(2), 300-303. 



 - 125 - 

• McCrory, J.L., Martin, D.F., Lowery, R.B., Cannon, D.W., Curl, W.W., Read, H.M., et 
al. (1999). Etiologic factors associated with Achilles tendinitis in runners. Med 
Sci Sports Exerc, 31(10), 1374-1381. 

• McGraw, K.O., & Wong, S.P. (1996). Forming inferences about some intraclass 
correlation coefficients. Psychological Methods, 1(1), 30-46. 

• Mehrikadze, V., & Tabatschnik B. (1982). An Analysis of sprinting. Legkaja 
Atletika, 3, 8-10. 

• Mercer, J.A., Bates, B.T., Dufek, J.S., & Hreljac, A. (2003). Characteristics of shock 
attenuation during fatigued running. J Sports Sci, 21(11), 911-919. 

• Mero, A., & Komi, P.V. (1987). Electromyographic activity in sprinting at speeds 
ranging from sub-maximal to supra-maximal. Med Sci Sports Exerc, 19(3), 266-
274. 

• Mero, A., & Komi, P.V. (1990). Reaction time and electromyographic activity 
during a sprint start. Eur J Appl Physiol Occup Physiol, 61(1-2), 73-80. 

• Mero, A., Komi, P.V., & Gregor, R.J. (1992). Biomechanics of sprint running. A 
review. Sports medicine (Auckland, NZ), 13(6), 376-376. 

• Mero, A., Luhtanen, P., & Komi, P. (1983). A Biomechanical Study of the Sprint 
Start. Scandinavian Journal of Sports Science, 5(1), 20-28. 

• Mero, A., & Peltola, E. (1989). Neural activation in fatigued and non-fatigued 
conditions of short and long sprint running. Biology of Sport, 6(1), 43-57. 

• Messier, S.P., Edwards, D.G., Martin, D.F., Lowery, R.B., Cannon, D.W., James, M.K., 
et al. (1995). Etiology of iliotibial band friction syndrome in distance runners. 
Med Sci Sports Exerc, 27(7), 951-960. 

• Messier, S.P., Davis, S.E., Curl, W.W., Lowery, R.B., & Pack, R.J. (1991). Etiologic 
factors associated with patellofemoral pain in runners. Med Sci Sports Exerc, 
23(9), 1008-1015. 

• Messier, S.P., & Pittala, K.A. (1988). Etiologic factors associated with selected 
running injuries. Med Sci Sports Exerc, 20(5), 501-505. 

• Milner, C.E., Davis, I.S., & Hamill, J. (2006). Free moment as a predictor of tibial 
stress fracture in distance runners. Journal of Biomechanics, 39(15), 2819-2825. 

• Milner, C.E., Ferber, R., Pollard, C.D., Hamill, J., & Davis, I.S. (2006). 
Biomechanical factors associated with tibial stress fracture in female runners. 
Med Sci Sports Exerc, 38(2), 323-328. 

• Moravec, P., Ruzicka, J., Susanka, P., Dostal, E., Kodejs, M., & Nosek, M. (1988). 
The 1987 International Athletic Foundation/IAAF Scientific Project Report: time 
analysis of the 100 meters events at the II World Championships in Athletics. 
New Studies in Atheletics, 3, 61-96. 

• Morin, J.B., Dalleau, G., Kyrolainen, H., Jeannin, T., & Belli, A. (2005). A simple 
method for measuring stiffness during running. Journal of Applied 
Biomechanics, 21, 167-180. 



 - 126 - 

• Morin, J.B., Jeannin, T., Chevallier, B., & Belli, A. (2006). Spring-mass model 
characteristics during sprint running: correlation with performance and fatigue-
induced changes. International Journal of Sports Medicine, 27, 158-165. 

• Morton, R.H. (1985). Mathematical representation of the velocity curve of sprint 
running. Canadian Journal of Applied Sports Sciences, 10(4), 166-170. 

• Murphy, D.F., Beynnon, B.D., Michelson, J.D., & Vacek, P.M. (2005). Efficacy of 
plantar loading parameters during gait in terms of reliability, variability, effect 
of gender and relationship between contact area and plantar pressure. Foot 
Ankle Int, 26(2), 171-179. 

• Mündermann, A., Nigg, B.M., Humble, R.N., & Stefanyshyn, D.J. (2003). Orthotic 
comfort is related to kinematics, kinetics, and EMG in recreational runners. Med 
Sci Sports Exerc, 35(10), 1710-1719. 

• Natta, F., & Breniere, Y. (1997). Effets de la posture initiale dans le départ du 
sprint chez les athlètes féminines de haut niveau. Science & Sports, 12, 27s. 

• Natta, F., Decker, L., & Boisnoir, A. (2006). Caracterisation des comportements 
posturo-cinetiques en sprint . Rapport du projet de recherche MJSVA N° 03-006. 

• Nevill, A.M., & Atkinson, G. (1997). Assessing agreement between measurements 
recorded on a ratio scale in sports medicine and sports science. Br J Sports Med, 
31(4), 314-318. 

• Nigg, B.M., De Boer, R.W., & Fisher, V. (1995). A kinematic comparison of 
overground and treadmill running. Med Sci Sports Exerc, 27(1), 98-105. 

• Nigg, B.M., & Yeadon, M.R. (1987). Biomechanical aspects of playing surfaces. J 
Sports Sci, 5(2), 117-145. 

• Noehren, B., Davis, I., & Hamill, J. (2007). ASB clinical biomechanics award 
winner 2006 prospective study of the biomechanical factors associated with 
iliotibial band syndrome. Clin Biomech (Bristol, Avon), 22(9), 951-956. 

• Novacheck, T. (1998). The biomechanics of running. Gait & posture, 7(1), 77-95. 

• O'Leary, K., Vorpahl, K.A., & Heiderscheit, B. (2008). Effect of cushioned insoles 
on impact forces during running. J Am Podiatr Med Assoc, 98(1), 36-41. 

• Ohta, K., Umegaki, K., Murofushi, K., Komine, A., & Miyaji, C. (2008). Dynamics-
based force sensor using accelerometers-application of hammer-throw training 
aid. The Engineering of Sport 7, 1, Springer Pub., 207-213. 

• Ostarello, A.G. (2001). Effectiveness of three sprint starts: a longitudinal case 
study. Proc Biomechanics Symposia, San Francisco, USA, 83-86. 

• Pain, M.T.G., & Challis, J.H. (2006). The influence of soft tissue movement on 
ground reaction forces, joint torques and joint reaction forces in drop landings. 
Journal of Biomechanics, 39(1), 119-124. 

• Palma, S., Silva, H., Gamboa, H., & Mil-Homens, P. (2008). Standing jump loft time 
measurement: an acceleration based method. Biosignals, 2, 393-396. 

• Paolini, G., Della Croce, U., Riley, P.O., Newton, F.K., & Casey Kerrigan, D. (2007). 
Testing of a tri-instrumented-treadmill unit for kinetic analysis of locomotion 
tasks in static and dynamic loading conditions. Med Eng Phys, 29(3), 404-411. 



 - 127 - 

• Patterson, M., & Caulfield, B. (2010). A method for monitoring reactive strength 
index. Procedia Engineering, 2(2), 3115-3120. 

• Payne, A.H., & Blader, F.B. (1971). The mechanics of the sprint start. In 
Vredenbreg, J., Warteweiler, J. (Eds). Biomechanics II, University of Baltimore 
Park Press, pp. 225-231. 

• Pereira, S., Vilar, S., Goncaves, P., Figueiredo, P., Fernandes, R., Roesler, H., & 
Vilas-Boas, J.P. (2008). A combined biomechanical analysis of the flip turn 
technique. Proceedings of the 26th ISBS Conference, 699-702. 

• Peters, A., Galna, B., Sangeux, M., Morris, M., & Baker, R. (2010). Quantification of 
soft tissue artifact in lower limb human motion analysis: A systematic review. 
Gait & Posture, 31(1), 1-8. 

• Pfau, T., Witte, T.H., & Wilson, A.M. (2005). A method for deriving displacement 
data during cyclical movement using an inertial sensor. The Journal of 
experimental biology, 208(13), 2503-2514. 

• Pierre, M.C., Genc, K.O., Litow, M., Humphreys, B., Rice, A.J., Maender, C.C., et al. 
(2006). Comparison of knee motion on Earth and in space: an observational 
study. J Neuroeng Rehabil, 3, 8. 

• Piriyaprasarth, P., Morris, M.E., Winter, A., & Bialocerkowski, A.E. (2008). The 
reliability of knee joint position testing using electrogoniometry. BMC 
Musculoskelet Disord, 9, 6. 

• Plamondon, A., Delisle, A., Larue, C., Brouillette, D., McFadden, D., Desjardins, P., 
et al. (2007). Evaluation of a hybrid system for three-dimensional measurement 
of trunk posture in motion. Applied Ergonomics, 38(6), 697-712. 

• Purcell, B., Channells, J., James, D., & Barrett, R. (2005). Use of accelerometers for 
detecting foot-ground contact time during running. Proceedings of SPIE, 6036. 

• Putti, A.B., Arnold, G.P., Cochrane, L., & Abboud, R.J. (2007). The Pedar in-shoe 
system: repeatability and normal pressure values. Gait & Posture, 25(3), 401-
405. 

• Quagliarella, L., Sasanelli, N., Belgiovine, G., Moretti, L., & Moretti, B. (2010). 
Evaluation of standing vertical jump by ankles acceleration measurement. J 
Strength Cond Res, 24(5), 1229-1236. 

• Rowe, P.J., Myles, C.M., Hillman, S.J., & Hazelwood, M.E. (2001). Validation of 
flexible electrogoniometry as a measure of joint kinematics. Physiotherapy, 
87(9), 479-488. 

• Sabatini, A.M. (2006). Quaternion-based extended Kalman filter for determining 
orientation by inertial and magnetic sensing. Ieee Transactions on Biomedical 
Engineering, 53(7), 1346-1356. 

• Sabatini, A.M., Martelloni, C., Scapellato, S., & Cavallo, F. (2005). Assessment of 
walking features from foot inertial sensing. IEEE Trans Biomed Eng, 52(3), 486-
494. 

• Saunders, S.W., Schache, A., Rath, D., & Hodges, P.W. (2005). Changes in three 
dimensional lumbo-pelvic kinematics and trunk muscle activity with speed and 
mode of locomotion. Clin Biomech (Bristol, Avon), 20(8), 784-793. 



 - 128 - 

• Schache, A.G., Blanch, P.D., Rath, D.A., Wrigley, T.V., Starr, R., & Bennell, K.L. 
(2002). Intra-subject repeatability of the three dimensional angular kinematics 
within the lumbo-pelvic-hip complex during running. Gait & Posture, 15(2), 
136-145. 

• Schlatterer, B., Suedhoff, I., Bonnet, X., Catonne, Y., Maestro, M., & Skalli, W. 
(2009). Skeletal landmarks for TKR implantations: Evaluation of their accuracy 
using EOS imaging acquisition system. Orthopaedics & Traumatology-Surgery & 
Research, 95(1), 2-11. 

• Schot, P.K., & Knutzen, K.M. (1992). A biomechanical analysis of four sprint start 
positions. Research quarterly for exercise and sport, 63(2), 137-147. 

• Schutzer, S.F., Christen, S., & Jakob, R.P. (1989). Further observations on the 
isometricity of the anterior cruciate ligament - An anatomical study using a 6 
mm diameter replacement. Clinical Orthopaedics and Related Research(242), 
247-255. 

• Scott, S.H., & Winter, D.A. (1990). Internal forces of chronic running injury sites. 
Med Sci Sports Exerc, 22(3), 357-369. 

• Slawinski, J., Bonnefoy, A., & Levêque, J.M. (2010). Kinematic and Kinetic 
Comparisons of Elite and Well-Trained Sprinters During Sprint Start. The 
Journal of Strength and Conditioning Research, 24(4), 896-905. 

• Slawinski, J., Bonnefoy, A., Ontanon, G., Leveque, J. M., Miller, C., Riquet, A., et al. 
(2010). Segment-interaction in sprint start: analysis of 3D angular velocity and 
kinetic energy in elite sprinters. Journal of Biomechanics, 43(8), 1494-1502. 

• Smith, G., & Watanatada, P. (2002). Adjustment to vertical displacement and 
stiffness with changes to running footwear stiffness. Med. Sci. Sports, 34, S179. 

• Soderkvist, I., & Wedin, P.A. (1993). Determining the movements of the skeleton 
using well-configured markers. Journal of Biomechanics, 26(12), 1473-1477. 

• Stafilidis, S., & Arampatzis, A. (2007). Track compliance does not affect sprinting 
performance. J Sports Sci, 25(13), 1479-1490. 

• Taylor, K.A., Terry, M.E., Utturkar, G.M., Spritzer, C.E., Queen, R.M., Irribarra, L.A., 
Garrett, W.E., & DeFrate, L.E. (2011). Measurement of in vivo anterior cruciate 
ligament strain during dynamic jump landing. Journal of Biomechanics, 44, 365-
371. 

• Tellez, T., & Doolittle, D. (1984). Sprinting from start to finish. Track Technique, 
88, 2802-2805. 

• Thomson, A., Bezodis, I.N. & Jones, R.L. (2009). An in-depth assessment of expert 
sprint coaches’ technical knowledge. Journal of Sports Sciences, 27(8), 855-861. 

• Van Copponelle, H., Delecluse, C., Goris, M., Diels, R., Seagrave, L., & Kraayenhoff, 
H. (1990). Evaluation of the start action of world class female sprinters. Track 
Technique, 112, 3581-3582. 

• Van de Velde, S.K., DeFrate, L.E., Gill, T.J., Moses, J.M., Papannagari, R., & Li, G.A. 
(2007). The effect of anterior cruciate ligament deficiency on the in vivo 
elongation of the medial and lateral collateral ligaments. American Journal of 
Sports Medicine, 35(2), 294-300. 



 - 129 - 

• Verdejo, R., & Mills, N.J. (2004). Heel-shoe interactions and the durability of EVA 
foam running-shoe midsoles. Journal of Biomechanics, 37(9), 1379-1386. 

• Vetter, R., Onillon, E., & Bertschi, M. (2009). Estimation of a runner’s speed 
based on chest-belt integrated inertial sensors The Engineering for Sport 7 - Vol. 
1. Springer Pub., 151-159. 

• Volkov, N.I., & Lapin, V.I. (1979). Analysis of the velocity curve in sprint running. 
Med Sci Sports, 11(4), 332-337. 

• Wakeling, J.M., & Nigg, B.M. (2001). Soft-tissue vibrations in the quadriceps 
measured with skin mounted transducers. Journal of Biomechanics, 34(4), 539-
543. 

• Wakeling, J.M., Pascual, S.A., Nigg, B.M., & von Tscharner, V. (2001). Surface EMG 
shows distinct populations of muscle activity when measured during sustained 
sub-maximal exercise. Eur J Appl Physiol, 86(1), 40-47. 

• Wearing, S.C., Urry, S.R., & Smeathers, J.E. (2000). The effect of visual targeting 
on ground reaction force and temporospatial parameters of gait. Clin Biomech 
(Bristol, Avon), 15(8), 583-591. 

• Weyand, P.G., Sternlight, D.B., Bellizzi, M.J., & Wright, S. (2000). Faster top 
running speeds are achieved with greater ground forces not more rapid leg 
movements. Journal of applied physiology (Bethesda, Md. : 1985), 89(5), 1991-
1999. 

• Williams, D.S., Davis, I.M., Scholz, J.P., Hamill, J., & Buchanan, T.S. (2004). High-
arched runners exhibit increased leg stiffness compared to low-arched runners. 
Gait & Posture, 19(3), 263-269. 

• Williams, D.S., McClay, I.S., & Hamill, J. (2001). Arch structure and injury 
patterns in runners. Clin. Biomech., 16, 341-347. 

• Williams, S.J., & Kendall, L. (2007). Perceptions of elite coaches and sports 
scientists of the research needs for elite coaching practice. J Sports Sci, 25(14), 
1577-1586. 

• Winter, E.M., Andrew, M.J., Davison, R.C.R., Bromley, P.D., & Mercer, T.H. (Eds.) 
(2007). Sport and Exercise Physiology Testing Guidelines, Volume 1: Sport 
Testing. Routledge, Abingdom, UK. 

• Wixted, A. J., Billing, D. C., & James, D. A. (2010). Validation of trunk mounted 
inertial sensors for analysing running biomechanics under field conditions, 
using synchronously collected foot contact data. Sports Engineering, 12, 207-
212. 

• Wong, W.Y., & Wong, M.S. (2008). Trunk posture monitoring with inertial 
sensors. European Spine Journal, 17(5), 743-753. 

• Wong, W.Y., Wong, M.S., & Lo, K.H. (2007). Clinical applications of sensors for 
human posture and movement analysis: a review. Prosthet Orthot Int, 31(1), 62-
75. 

• Woo, S.L.Y., Debski, R.E., Withrow, J.D., & Janaushek, M.A. (1999). Biomechanics 
of knee ligaments. American Journal of Sports Medicine, 27(4), 533-543. 



 - 130 - 

• Woodman, O.J. (2007). Introduction to Inertial Navigation. Journal of Navigation, 
9(03), 3-37. 

• Yoo, Y.S., Jeong, W.S., Shetty, N.S., Ingham, S.J.M., Smolinski, P., & Fu, F. (2010). 
Changes in ACL length at different knee flexion angles: an in vivo biomechanical 
study. Knee Surgery Sports Traumatology Arthroscopy, 18(3), 292-297. 

• Zernicke, R.F., & Whiting, W.C. (2000). Mechanisms of musculoskeletal injury in 
biomechanics in sport: performance enhancement and injury prevention. In: 
Zatsiorsky, V.M. (Ed.), IOC Medical Commission, International Federation of 
Sports. 

 
 


