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Développements statistiques et algorithmiques pour l’analyse

des cancers du sein de type triple négatif

Résumé

Dans le monde, le cancer du sein est le cancer le plus fréquent de la femme. Plusieurs types de cancer

du sein ont été mis en évidence. Les carcinomes infiltrants triple négatif (TNBC) sont l’un de ces types.

Les TNBC sont parmi les plus agressifs cancers du sein et sont associés à un mauvais pronostique. Il

n’y a pas encore de traitement dédié pour ces cancers. Cette thèse avait pour but d’identifier des gènes

et des voies de signalisation dé-régulés dans les cancers de types TNBC en s’appuyant sur les profils

transcriptomiques et génomiques de tumeurs TNBC bien caractérisées, obtenues par la technique des

biopuces.

Mon travail comporte deux volets. D’abord, j’ai développé des méthodes pour l’analyse des données

génomiques. J’ai proposé une méthode (ITALICS) pour la normalisation des données Affymetrix SNP

100K et 500K. J’ai travaillé sur la segmentation des profils génomiques. J’ai développé de nouveaux

outils statistiques pour étudier la stabilité de la segmentation et j’ai obtenu des formules exactes pour

des critères de sélection de modèle. Enfin, j’ai proposé un algorithme de programmation dynamique

rapide qui retrouve la meilleure segmentation au sens de la norme euclidienne.

Dans un second temps, j’ai analysé les données omiques du projet. J’ai conçu le plan d’expérience.

J’ai analysé les données transcriptomiques avec des méthodes déjà disponibles. J’ai comparé les classifi-

cations transcriptomique et immunohistochimique des TNBC. L’analyse des données transcriptomiques

m’a permis d’identifier des gènes et des voies de signalisation dé-régulés dans les TNBC. Enfin, j’ai

analysé les données génomiques avec les outils que j’ai développés.

Mots-clés Cancer du sein, Triple Negatif, biostatiques, profil transcriptomique, profil génomique
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Statistical and algorithmic developments for the analysis of

Triple Negative Breast Cancers

Abstract

Throughout the world and among the different types of cancer, breast cancer is one of the most

prevalent ones. It can be subdivided in several types among which the triple negative invasive ductal

breast carcinoma (TNBC). TNBC is one of the most aggressive types of breast cancer: it is associated

to a poor prognosis and there is still no targeted therapy for this type of tumor. In this context, we aim

to discover deregulated genes and signaling pathways in human TNBC using high-throughput omic

data of well-characterized breast tumors to identify potential therapeutic targets.

My work can be divided in two main parts. First, I developed methods for the analysis of genomic

data: I proposed a method (ITALICS) for the normalization of Affymetrix SNP 100K and 500K arrays,

worked on the segmentation of DNA copy number profiles, proposed new algorithms and new statistical

tools to assess the stability of segmentation and derive exact formulation of several model selection

criteria and proposed an improved and faster dynamic programming algorithm that recovers the best

segmentation exactly with respect to the quadratic loss.

Next, I worked on the analysis of the omic data. The first step of my analysis was to plan the

experimental design of the omic experiments. I then analyzed the transcriptomic data using already

developed and available tools. I sought to better characterize the distinctness of TNBC at the tran-

scriptomic level and its overlap with immunohistochemistry data. I worked at the gene and pathway

level to identify genes and pathways of interest. Finally, I analyzed the genomic data using the tools

and methods that I have developed.

Keywords Breast cancer, Triple Negative, Gene expression profiling, DNA copy number profiling
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Résumé substantiel

Le cancer du sein est l’un des cancers les plus répandus qui soit dans le monde occidental, 1 femme

sur 8 se voit un jour diagnostiquée d’un cancer du sein. Cette maladie est aussi très hétérogène. Elle

peut être divisée entre : les tumeurs qui expriment les récepteurs aux œstrogènes (ER+ : estrogen

receptor positive) et celles qui n’expriment pas ces récepteurs (ER-, voir figure 1). Les tumeurs ER+

comprennent les tumeurs Luminal A et Luminal B. Les tumeurs ER- comprennent les tumeurs ER-

/ HER2+ qui surexpriment le récepteur du facteur de croissance épidermique humain 2 (récepteur

HER2), ainsi que les tumeurs triple négatives (TNBC) qui sont également négatives pour les récepteurs

à la progestérone (PR) et ne surexpriment pas le gène de HER2. Les tumeurs TNBC ont un taux

important de pertes et de gains chromosomiques mais présentent moins d’amplifications d’ADN que

les autres sous-types de cancer du sein. Les tumeurs TNBC souffrent d’un très mauvais pronostic. Des

thérapies ciblées, innovantes et prometteuses sont actuellement en train d’être étudiées. Un exemple

est l’inhibition de la polymérase poly ADP-ribose (PARP). Malheureusement, il n’y a pas encore de

thérapies ciblées pour les TNBC qui soient utilisées en routine comme il en existe pour les tumeurs

surexprimant HER2 (des anticorps monoclonaux anti-HER2) et pour les tumeurs Luminal (thérapie

endocrine). A travers le monde, de nombreuses équipes scientifiques composées à la fois de cliniciens

et de biologistes cherchent à mieux comprendre les aspects cliniques et la biologie des TNBC dans le

but d’appliquer leurs résultats en clinique et de proposer des thérapies innovantes et sur mesure.

Mon projet de thèse faisait partie d’une collaboration entre l’Institut Curie et le groupe pharma-

ceutique Servier. Le but de cette collaboration est de découvrir des gènes et des voies de signalisation

dérégulés dans les TNBC humains, afin d’identifier de nouvelles cibles thérapeutiques (résumé sur la

figure 2).
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Fig. 1 – Classification des cancers du sein entre les tumeurs qui expriment les récepteurs aux œstrogènes

(ER+) et celles qui ne les expriment pas ces récepteurs (ER-). Les tumeurs ER+ contiennent les tumeurs

Luminal A et Luminal B. Les tumeurs ER- comprennent les tumeurs ER- / HER2+ et TNBC.
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Fig. 2 – Des tumeurs de type Luminal A, Luminal B, ER- / HER2+ et TNBC ont été choisies et caractérisées

par une pathologiste (Anne Vincent Salomon, MD/Ph.D.) de l’Institut Curie (IC) par immunohistochimie

(IHC). Des lignées cellulaires de TNBC et des tissus mammaires sains ont également été collectés. Des profils

de biopuces transcriptomiques, génomiques, microARN et protéomiques ont été générés par le département

de transfert de l’Institut Curie. Cette importante quantité de données a été analysée par l’équipe de bioin-

formatique de l’Institut Curie et l’équipe de biostatistiques de l’AgroParisTech (Agro) à l’aide d’outils de

biostatistiques et de biologie des systèmes. Ces analyses ont généré des listes de cibles potentielles. Certaines

de ces cibles ont déjà été caractérisées et leurs fonctions validées dans des lignées cellulaires par une équipe

de biologistes du département de transfert de l’Institut Curie. Dans ce projet, j’ai été responsable de

l’analyse biostatistique des données omiques représentées en rouge.
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Mon travail peut être divisé en deux parties. J’ai développé des méthodes statistiques et des algo-

rithmes pour analyser les données génomiques et j’ai en parallèle analysé les données transcriptomiques

avec des méthodes biostatistiques et bioinformatiques déjà disponibles.

Analyse des données génomiques J’ai travaillé sur la normalisation de profils de nombre de copies

d’ADN et j’ai proposé une méthode (appelée ITALICS) pour la normalisation des puces Affymetrix

SNP 100K et 500K (Rigaill et al. (2008)). Nous avons montré qu’ITALICS était plus performant que

les autres méthodes existantes à l’époque de notre étude en termes de rapport signal sur bruit et qu’il

permet une meilleure classification entre les nouvelles tumeurs primaires et les récurrences de tumeurs

dans un jeu de données de cancers du sein (Bollet et al. (2008), en collaboration avec Marc Bollet,

MD/Ph.D.).

J’ai également travaillé sur la segmentation de profils de nombre de copies d’ADN. Avec Emilie

Lebarbier (Ph.D.) et Stéphane Robin (Ph.D.), j’ai proposé de nouveaux algorithmes et de nouveaux

outils statistiques pour déterminer la stabilité des segmentations et la formulation exacte de plusieurs

critères de sélection de modèles (Rigaill et al. (2010), ce travaill a été séléctionné pour les actes de

la conférence COMPSTAT 2010). J’ai aussi conçu et implémenté un algorithme de programmation

dynamique plus rapide que les précédents qui permet de trouver la meilleure segmentation au sens de

la norme Euclidienne (Rigaill (2010), ce travail a été soumis dans un journal d’algorithmique et de

mathématiques appliquées).

J’ai appliqué ces différents outils statistiques et algorithmiques aux données génomiques de cancers

du sein Curie-Servier. Cela m’a permis en particulier d’identifier la perte de PTEN dans plus de 50%

des tumeurs TNBC en collaboration avec Bérengère Marty (Marty et al. (2008)). Plusieurs autres

régions du génome ont ainsi été identifiées. J’ai ensuite extrait (de la base de données Ensembl) les

gènes de ces régions pour fournir une liste de gènes candidats.

Analyse des données transcriptomiques Ensuite, j’ai travaillé sur l’analyse des données Curie-

Servier transcriptomiques. La première étape de cette analyse a été de concevoir le plan d’expérience.

Une étape presque évidente et pourtant souvent négligée. Sans surprise, la réalisation de ce plan

d’expérience a permis de rendre l’expérience plus robuste et d’améliorer notre capacité à détecter les

« véritables » différences entre les tumeurs TNBC et les autres types de tumeurs.
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Après cela, j’ai analysé les données transcriptomiques à l’aide d’outils biostatistiques et bioinfor-

matiques déjà disponibles. Le but était de mieux caractériser les particularités transcriptomiques des

TNBC et leur recoupement avec les données immunohistochimiques (IHC) (Rigaill et al. (2011), en

préparation en collaboration avec Anne Vincent Salomon, MD/Ph.D). J’ai réalisé l’analyse statistique

des profils transcriptomiques tumoraux à l’échelle du gène et à celle de la voie de signalisation, afin

d’identifier des gènes et des voies de signalisation candidats. Le rôle de certains de ces candidats

dans le développement tumoral a pu être confirmé in vitro ; en particulier dans le cas des tumeurs

TNBC le rôle des formines liées aux diaphanes (DRF, Lizárraga et al. (2009)) en collaboration avec

l’équipe de Philippe Chavrier (Ph.D.) et l’implication des voies du stress oxidatif dans les tumeurs du

sein ER- / HER2+ (Toullec et al. (2010)) en collaboration avec l’équipe de Fatima Mechta Grigoriou

(Ph.D.).

L’analyse des données omiques à haut-débit est au croisement de la biologie, des sciences cliniques,

de la biotechnologie, des statistiques et de l’informatique. Afin d’appréhender ces différents aspects,

cette thèse a été réalisée entre 3 laboratoires : un laboratoire de biologie travaillant sur les TNBC et

dirigé par Thierry Dubois (Ph.D.), un laboratoire de bioinformatique travaillant sur les données liées

au cancer et dirigé par Emmanuel Barillot (Ph.D.) et un laboratoire de statistique travaillant sur les

données biologiques à haute densité et dirigé par Stéphane Robin (Ph.D.). De plus, à travers cette

thèse, j’ai collaboré avec plusieurs autres groupes de biologistes, de cliniciens et de scientifiques du

groupe pharmaceutique Servier.

Idéalement, les biostatistiques cherchent à répondre à des questions d’intérêt biologique et/ou cli-

nique, à l’aide de techniques statistiques robustes et d’algorithmes efficaces. En réalité, il est extrêmement

difficile, voire impossible, d’accomplir tout cela en même temps, sans doute à cause de la com-

plexité intrinsèque de la biologie. Ainsi, il est important d’accepter certaines simplifications biolo-

giques nécessaires, certaines limitations statistiques et certains imperfections algorithmiques. Prendre

en compte toutes ces incertitudes permet de mieux analyser et mieux comprendre les résultats bioin-

formatiques et biostatistiques. Une bonne façon d’atteindre un équilibre entre tous ces éléments est le

concept de modèle biostatistique. Un modèle biostatistique est conçu pour répondre à une question

biologique spécifique. On peut le percevoir comme une collection de règles mathématiques qui sont
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idéalement justifiées et compréhensibles biologiquement, prennent en compte les aléas pour permettre

leur étude statistique, et enfin justifient les algorithmes (et si nécessaire les méthodes heuristiques)

utilisées. Tout au long de ma thèse, j’ai essayé d’utiliser ce concept de modèle aussi souvent que

possible afin de permettre une meilleure intégration des différents aspects (biologique, statistique et

informatique) et finalement répondre aux questions biologiques ou cliniques de départ.

Conclusion

Cette thèse fait partie d’un projet plus large qui tente d’identifier de nouvelles cibles thérapeutiques

pour les cancers du sein. Je me suis concentré sur l’analyse des données génomiques et transcripto-

miques. J’ai conçu les plans d’expérience, j’ai ensuite analysé les données transcriptomiques avec des

méthodes déjà disponibles et enfin j’ai proposé de nouveaux outils biostatistiques et des algorithmes

efficace pour l’analyse des données génomiques. Mes analyses ont conduit à des listes de gènes et de

voies de signalisation candidats. Le rôle de certains de ces candidats dans le développement tumoral a

pu être confirmé in vitro.

Au-delà du cadre de cette thèse, en tant que partie intégrante d’un projet plus large, l’analyse

omique va se poursuivre. En particulier, les données micro ARN et protéomiques n’ont pas encore

été analysées (voir la figure 2). De plus, il sera important d’intégrer les informations apportées par

ces différentes sources (ADN, ARN, microARN et protéines) pour chaque échantillon afin de mieux

comprendre la pathologie moléculaire des TNBC, dans l’espoir d’identifier ainsi de nouvelles cibles

thérapeutiques.
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Chapter 1

Overview

1.1 Introduction

Breast cancer is one of the most prevalent types of cancers and 1 woman out of 8 is diagnosed with

breast cancer at some time in her life in the western world. Breast cancer is a very heterogeneous

disease and can be divided into estrogen receptor (ER) positive and ER negative tumors (see Figure

1.1). ER positive tumors comprise Luminal A and Luminal B tumors. ER negative tumors include

ER- / HER2+ tumors, which overexpress the Human Epidermal growth factor Receptor 2 (HER2)

gene, and Triple negative (TNBC) tumors, that are ER negative, progesterone receptor (PR) negative

and do not overexpress HER2. TNBC have a very high rate of chromosomal loss and gain, harbor less

DNA amplifications than other breast cancer subtypes and have a very poor prognosis. Innovative and

promising targeted therapies are currently explored for TNBC, such as poly ADP-ribose polymerase

(PARP) inhibition, but there is still no targeted therapy for TNBC in routine clinical practice as

there is for both HER2+ tumors (HER2 monoclonal antibodies) and for Luminal tumors (endocrine

therapy). Many scientific teams throughout the world, both of clinicians and biologists, are working to

understand better the clinical aspects and the biology of TNBC and would like to apply their research

to clinical prospects and to suggest innovative and tailored, therapy.

The project I have been involved in is a collaboration between the Institut Curie (IC) and the
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Figure 1.1: Classification of breast cancers between estrogen receptor (ER) positive and ER negative

tumors. ER positive tumors comprise Luminal A and Luminal B tumors. ER negative tumors include

ER- / HER2+ tumors and TNBC tumors

Servier pharmaceutical group. The goal of the project was to discover deregulated genes and signaling

pathways in human TNBC to identify new therapeutic targets. This project is summarized in Figure

1.2.

My work can be subdivided in two main parts. First, I developed methods for the analysis of

genomic data. I worked on the normalization of DNA copy number profiles and I proposed a method

(ITALICS) for the normalization of Affymetrix SNP 100K and 250K arrays. I also worked on the

segmentation of DNA copy number profiles. With Emilie Lebarbier (Ph.D.) and Stéphane Robin

(Ph.D.), I proposed new algorithms and new statistical tools to assess the stability of segmentation and

derive exact formulation of several model selection criteria. I developed and implemented an improved

and faster dynamic programming algorithm that recovers the best segmentation with respect to the

Euclidean norm. I applied these tools to the analysis of the Curie-Servier dataset.

Next, I worked on the analysis of the Curie-Servier transcriptomic data. The first step of my

analysis was to plan the experimental design of the transcriptomic, genomic and miRNA experiments.

It is a very standard problem yet it is often overlooked and unsurprisingly it resulted in an improved

power to detect true differences between TNBC and other sample types and a more robust design. I
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Figure 1.2: Both breast tumors of Luminal A, Luminal B, ER- / HER2+ and TNBC subtypes were

selected and characterized by a pathologist from the IC using immunohistochemistry (IHC, Anne Vincent

Salomon, MD/Ph.D.). TNBC cell lines and normal breast tissues were also collected. Transcriptomic,

genomic, miRNA and proteomic microarray profiles were generated at the translational department of the

IC. This huge amount of data has been analyzed in the IC bioinformatics team and the biostatistics team

of Agroparistech (Agro) using biostatistical and system biology tools. This analysis has generated lists of

potential targets. Some of these potential targets have already been further characterized and functionally

validated in cell lines by a team of biologists at the translational department of the IC. In this project, I

have been in charge of the biostatistical analysis of the omic data represented in red.
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then analyzed the transcriptomic data using already available biostatistical and bioinformatical tools.

I sought to characterize better the distinctness of TNBC at the transcriptomic level and its overlap

with the immunohistochemistry (IHC) data. I worked at the gene and pathway level to identify genes

or pathways that are deregulated in TNBC and propose lists of genes and lists of pathways of interest.

The analysis of high-throughput omics data is at the crossroad between biology, clinic, biotechnol-

ogy, statistics and computer science. To achieve a balance between these different aspects, this thesis

has been realized through a close collaboration between three main laboratories: a laboratory of biolo-

gists working on TNBC headed by Thierry Dubois (Ph.D.), a laboratory of bioinformaticians working

on cancer data headed by Emmanuel Barillot (Ph.D.) and a laboratory of statisticians working on

high-throughput biological data headed by Stéphane Robin (Ph.D.). Moreover throughout the thesis

I have collaborated with several other groups of both biologists and clinicians and with scientists from

the pharmaceutical group Servier.

Ideally biostatistics aim at answering biologically and/or clinically relevant questions, using well

grounded statistical techniques and efficient computational schemes or algorithms. Probably due to

the intrinsic complexity of biology it is extremely difficult, perhaps impossible, to achieve all these goals

simultaneously, thus it is important to acknowledge the necessary biological simplifications, statistical

limitations and algorithmic mishaps and account for all these uncertainties to better analyze and

understand bioinformatical and biostatistical results. A good way to achieve this balance is the concept

of a biostatistical model. A biostatistical model is made to answer a specific biological question. It

can be viewed as a collection of mathematical rules that ideally should be biologically understandable

and justified, account for randomness and enable its statistical study, and finally justify algorithmic

computations and if necessary heuristics methods. Throughout the thesis I have tried to use this

concept of a model as often as possible to enable a better understanding between biology, statistics

and computer science and in the end answer the initial biological or clinical questions.
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1.2 Methods for the analysis of DNA copy number profiles

TNBC have a very high rate of chromosomal gain and loss. These genomic alterations can be measured

using various technologies such as CGH and SNP arrays and next-generation sequencing. The correct

detection of these numerous alterations is important as we hope to identify tumor suppressor genes

in frequently lost regions and oncogenes in frequently gained regions. The biostatistical analysis and

biological interpretation of this kind of data is difficult for several reasons.

As for all microarray technologies, measurements are influenced by various non-relevant factors

(for example the probes GC-content) and there is a need for efficient normalization methods. In

collaboration with Philippe Hupé (Ph.D.), I worked on the normalization of Affymetrix SNP arrays

and proposed a new method: ITALICS (Rigaill et al. (2008, 2007)). We have shown, at the time of

the study, that ITALICS outperforms existing methods in terms of signal to noise ratio and enable a

better classification of true recurrence and primary on a breast cancer data set (Bollet et al. (2008)).

Moreover, for TNBC due to the many genomic rearrangements, recovering the ploidy of tumors is an

important and difficult issue that we took into account in collaboration with Tatiana Popova (Ph.D.,

Popova et al. (2009)) from the group of Marc-Henri Stern (MD/Ph.D., IC).

Both CGH and SNP profiles are modeled as a succession of regions sharing the same copy num-

ber or LOH status. These regions are delimited by change-points or breakpoints corresponding to

chromosome rearrangements. These profiles are usually analyzed using multiple change-points and

segmentation methods. Most segmentation methods return a single segmentation, characterized by a

set of breakpoints. Their qualities are rarely questioned. However, for an n-point profile there are 2n−1

possible segmentations, thus picking one segmentation out of so many is obviously a difficult task. To

make a valid biological interpretation we would like to be sure that the best segmentation is by far

the best fit to the data. If it is not the case we would like to check that the second best, third best

and more generally other good segmentations do not have a completely different set of change-points.

I have been working on this problem with Emilie Lebarbier (Ph.D.) and Stéphane Robin (Ph.D.) and

proposed new algorithms and statistical tools (Rigaill et al. (2010c,d)) to assess and take into account

the uncertainty of change-point estimation. From these algorithms and statistical tools we derive
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exact formulation of model selection criteria (to select the number of breakpoints) that used to be

asymptotically approximated.

The Affymetrix SNP 6.0 technology scans around 2.106 million positions along the human genome

and thus around 2.105 probes per chromosome. For these very dense and large profiles even recovering

the most likely segmentation is a very difficult task and the fastest algorithm had a runtime quadratic

in the size of the data and it took several days to analyze one SNP 6.0 profile. Thus most methods

rely on heuristics to reduce the computation time. However, this is done at the price of some errors

as heuristics do not recover the best segmentation but rather a good candidate segmentation. This is

clearly a problem for biological interpretation as we cannot guarantee that there is not a better way

to segment the data. I proposed a new algorithm that recovers the best segmentation in an almost

linear runtime and it takes a few minutes only to analyze an SNP 6.0 profile (Rigaill (2010a,b)).

All these statistical and algorithmic developments were applied to the Curie-Servier breast cancer

genomic data and allowed us to identify in particular the loss of PTEN (Marty et al. (2008)) in more

than 50% of TNBC tumors. Several other regions of the genome were identified and resulted in a list

of candidate genes.

1.3 Biostatistical analysis of the transcriptomic Curie-Servier

dataset

Experimental design

From my experience and the experience of others, the most critical step by far in any data analysis

is the experiment itself and a bad experiment will always lead to bad analyses and poor results.

The goal of experimental design is to ensure that the way the experiment is conducted will actually

enable us to answer the main biological question. Omic experiments, as others, must therefore be

carefully planned to take into account various, identified and unsuspected, non-relevant factors. From

a statistical perspective, it is possible without any data but with some biostatistical model in mind to

compare two experimental designs and assess their respective power to detect some biological pattern
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of interest.

The biostatistical model I designed for the project is relatively simple, yet it helped us to clarify

commonly made assumptions. First we expect that samples of the same histological type will have

similar mRNA measurements. Unfortunately, on the day of the experiment, the temperature during

the experiment and many other non-relevant factors influence these measurements. However, hopefully,

these non-relevant effects are relatively independent of the biological signal and they can be corrected

with a good experimental design. The main biological question of the transcriptomic experiments was

what are the mRNA differences between TNBC and normal samples but we were also interested in

detecting differences between TNBC and other tumor types.

Keeping all this in mind I constructed experimental designs to answer these questions. The objective

was to maximize our ability to detect true differences between TNBC and other histological types.

The main issue is that the set of possible designs is large even for computers. For the transcriptomic,

genomic and miRNA experiments, I explored either exhaustively when it was possible or stochastically

the set of all possible designs to choose one with a powerful ability to detect differences between TNBC

and other sample types. Moreover, I randomized samples of the same type to account for unsuspected

non-relevant factors.

Transcriptomic data analysis

One of the main problems when analyzing TNBC is that they are a very distinct subgroup of tumors

and harbor many genetic, genomic and transcriptomic alterations. Therefore, it is easy to find genes

or/and pathways that are differentially expressed in TNBC. For example, from our transcriptomic

data I found that almost half of the analyzed genes were differentially expressed in TNBC compared to

normal samples. However, the goal is to find driver alterations or key events in the TNBC tumorigenesis

and it seems biologically reasonable to think that most differences between TNBC and other sample

types are passenger alterations and will not necessarily lead to potential therapeutic targets.

Thus, in collaboration with Anne Vincent Salomon (MD/Ph.D., pathologist), we sought to charac-

terize better the distinctness of TNBC at the transcriptomic level and understand the transcriptomic
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classification of our tumors using unsupervised classification methods. In particular, I compared the

transcriptomic-based classification with the IHC-based classification and found that they were in rel-

atively good concordance (less than 15% discordance). Moreover, I assessed the influence of the set of

genes used for the transcriptomic classification. Interestingly, the transcriptomic classification and in

particular the TNBC cluster seems relatively independent of the set of genes used for the classification

(Rigaill et al. (2010b), in preparation). This independence also suggests that identifying a small robust

set of genes characteristic of the TNBC is intrinsically difficult.

Once we had acknowledged the specificity of TNBC, we decided to refine our search for genes of

interest using biological or clinical information. First, I focused on specific sets of drugable genes such

as kinases, and in a collaboration with the team of Philippe Chavrier (Ph.D.), on the Diaphanous-

Related Formins (Lizárraga et al. (2009)). This mechanically increased our statistical power to detect

differences in these sets of genes and thus our chances of detecting interesting transcriptomic modifi-

cations. I also used pathway/genesets analysis using the globaltest software and the KEGG and GO

databases. However, at the pathway level the distinctness of TNBC is even more of a critical issue

because in a list containing a lot of differentially expressed genes it is extremely easy to find a gene-

set with many deregulated genes. Thus, I focused on some highly significant pathways of biological

interest to characterize and understand better their expression pattern. These in-depth analyses of

smaller sets of genes also mechanically increased our statistical power and allowed us to identify some

key transcriptomic patterns and/or regulation events, more specifically in the Wnt pathway (Rigaill

et al. (2010a), in preparation) and in oxidative stress pathways (Toullec et al. (2010)) in collaboration

with the team of Fatima Mechta Grigoriou (Ph.D.).

These analyses generated different lists of genes. These genes of interest were validated on other

publicly available transcriptomic datasets and some have been experimentally validated using TNBC

cell lines (using for example clonogenic, survival and apoptosis assays).



1.4. CONCLUSION 27

1.4 Conclusion

This thesis is part of a larger project aiming at identifying new therapeutic targets for TNBC. I focused

on the analysis of transcriptomic and genomic data. I designed the experiments, used already available

methods for the transcriptomic data and proposed new biostatistical methods and algorithms for the

genomic data. These analyses resulted in lists of genes or pathways that are deregulated in TNBC,

some of which have been further validated in vitro.

As part of a larger project the omic analysis will continue after this thesis. In particular the

miRNA and proteomic data have not yet been analyzed and obviously all these different sources of

information (DNA, RNA, miRNA, proteins) generated for each sample will have to be integrated to

understand better the molecular pathology of TNBC and hopefully this will lead to the identification

of new therapeutic targets.
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Chapter 2

A small introduction to Triple

Negative Breast Cancers

This section is a short introduction to the biology of breast cancer and more specifically of TNBC

(Triple Negative Breast Cancers).

2.1 Breast cancers

Epidemiology and risk factors of breast cancers

Throughout the world, breast cancer is the most prevalent type of cancer among women and there are

approximately 1.1 million new cases of breast cancer every year. Breast cancer is also the leading cause

of cancer deaths in women with 410 000 deaths every year (Vincent-Salomon (2008)). The incidence

of breast cancers has regularly increased. In the USA and Europe, this is partly due to the setting

up of mammography screenings. Breast cancer survival rates are around 73% in occidental countries

and 57% in under-developed countries. The prevalence and incidence of breast cancers greatly differ

from one country to another one. Developed countries tend to have higher incidences (Parkin (2004)).

Yet, socio-economical factors are not the only ones that should be taken into account. For example,

Japan has a very low incidence of breast cancer. Apart from socio-economical factors, biological factors
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such as genetic background and environmental factors are important to explain this variation between

countries.

Indeed, some genetic factors have been known to be related to breast cancers: the Collabora-

tive Group on Hormonal Factors in Breast Cancer (2001) reported that the relative risk of breast

cancer significantly increases with the number of first degree relatives that have been affected. Sev-

eral genetic factors have been clearly identified. They are discriminated between the following groups

(Mavaddat et al., 2010):

• High penetrance mutations. In this case a single allele conferring a high risk is responsible for

the disease. Typical examples are mutations occurring in BRCA1 and BRCA2 genes.

• Moderate penetrance mutations. They regroup uncommon variants associated to moderate risk

increase. CHEK2 and ATM are two examples.

• Low penetrance variants. They encompass variants associated to a very small risk. Yet, it is

likely that most of the unexplained fraction of familial risk could be explained by these low

penetrance variants assuming they are sufficiently numerous.

To conclude on genetic factors, only a minority of familial risk factors are explained by known genetic

variants. It is hoped that large sequencing projects and high-density SNP arrays will enable us to

discover new variants.

Various environmental factors have been correlated to the development of breast cancer and they

might account for 75% of all cases of breast cancer (Ellsworth et al., 2004). Instability in genes that

maintain genomic integrity, as well as exogenous chemicals and environmental pollutants are involved.

For example, long estrogen exposure (e.g. caused by early puberty, late menopause or hormonal

replacement therapy) increases the risk of breast cancer through increased cell proliferation and/or

DNA destabilization through depurination (Yager and Davidson, 2006).

Heterogeneity of breast cancers

An important feature of breast cancers is their heterogeneity. This heterogeneity can be seen at many

levels. First, breast cancers can be segregated in subgroups according to their histological grade. The
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ductal medullary micropapillary

tubular mucinous lobular

Figure 2.1: Morphological heterogeneity of breast tumors. Six histological sections of six invasive breast

cancers stained with Hematoxilin Eosin Saffron (HES) representing six of the histological types defined by

the WHO (Tavassoli et al., 2003). Images provided by Anne Vincent-Salomon (MD/Ph.D., Institut Curie).

histological grade takes into account both tumor differentiation and proliferation and it is a validated

prognostic factor to determine breast cancer therapy. For example, it is used in the Nottingham

prognostic index (Galea et al., 1992; Blamey et al., 2007). Breast cancers can also be classified according

to their histological type. These types correspond to specific morphological and cytological patterns

(see Figure 2.1). The most common of these types is the Invasive Ductal Carcinomas of No Special

Type (IDC-NST). These IDC-NST represent approximately 75% of all breast cancers and correspond

to cancers that do not exhibit any characteristic of the special histological types (Weigelt et al., 2010b).

Overall, the WHO (World Health Organization) defined at least 17 different histological types of breast

cancer (Tavassoli et al., 2003).

The heterogeneity of breast cancers can be further decomposed using immunohistochemical fea-

tures. For example, breast cancers are subdivided according to the estrogen receptor (ER) status
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and/or the Human Epidermal growth factor Receptor 2 (HER2) status.

IDC-NST breast tumors can also be classified according to their transcription profile (Perou et al.,

2000; Sørlie et al., 2001a; Sørlie, 2003; Chin et al., 2006). This classification is called the molecular

classification (see Figure 2.2). Hierarchical clustering of breast cancer transcription profiles segregates

ER+ from ER- tumors. The ER+ class is further subdivided in Luminal A and B. Luminal A tumors

have high levels of expression of ER-activated genes and low proliferation signature. Luminal B cancers

usually have a higher histological grade and proliferation rates, and a worse prognosis. Some Luminal

B tumors overexpress the HER2 gene and thus are ER+ / HER2+. The ER- group is subdivided in

Normal-like, ER- / HER2+ and Basal-like (ER- and absence of HER2 overexpression). The Normal-

like group might be an artifact due to normal tissue contamination (Parker et al. (2009); Peppercorn

et al. (2008)). ER- / HER2+ tumors over-express the HER2 gene. Basal-like tumors usually have

a high histological grade, high mitotic index, central necrosis and pushing borders. The molecular

analyses of breast cancers has revealed and brought to the forefront various types of breast cancers

and provide new insights on the biology of breast cancers. Nevertheless, as we will see (in section 10.2),

the stability, reproducibility and clinical use of this classification have been questioned. In the last

years, other ER- groups have been identified: the apocrine (Farmer et al., 2005; Doane et al., 2006),

interferon (Hu et al., 2006) and claudin-low groups (Herschkowitz et al., 2007; Hennessy et al., 2009).

To conclude, all these various classifications (molecular, histological...) suggest that breast cancer

is, in fact, a collection of different diseases affecting the same organ. This heterogeneity of breast

cancer raises one obvious question: what is at the origin of these different types? This is a debated

question. One hypothesis is that molecular groups of breast cancer correspond to different cell types

originally becoming cancerous (Polyak, 2007; Vargo-Gogola and Rosen, 2007). More specifically, the

cells from which the tumor originates could either be breast stem cell (Stingl, 2009) or their progenies,

which would be the cause of the heterogeneity. Breast stem cells have the ability to renew themselves

through mitotic division and differentiate into any specialized breast cell type.
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Figure 2.2: Molecular classification of breast cancer from mRNA expression profiles - Gene expression

patterns of 85 experimental samples representing 78 carcinomas, 3 benign tumors, and 4 normal tissues,

analyzed by hierarchical clustering using the 476 cDNA intrinsic clone set. (A) The tumor specimens were

divided into 6 subtypes based on differences in gene expression. The cluster dendrogram showing the 6

tumor subtypes are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype

C, light blue; Normal-like, green; Basal-like, red; ERBB2+, pink. (B) The full cluster diagram scaled down.

The colored bars on the right represent the inserts presented in C-G. (C) ERBB2 amplicon cluster. (D)

Novel unknown cluster. (E) Basal epithelial cell-enriched cluster. (F) Normal-like cluster. (G) Luminal

epithelial gene cluster containing ER. (images and legend from Sørlie et al. (2001b)).
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2.2 Triple Negative and Basal-like breast cancers

Triple Negative Breast Cancers (TNBC) are immunohistochemically characterized by the absence of

ER and progesterone receptors (PR) and the lack of HER2 overexpression. Due to its aggressiveness,

poor prognosis and lack of targeted therapy, these particular tumors are the focus of many research

studies. Although the match is not perfect, there is a good correspondence between TNBC and basal-

like tumors. Basal-like tumors were identified based on the hierarchical clustering of IDC-NST gene

expression profiles while TNBC can be either IDC-NST or one of the special histological types. Overall,

the exact definition of Basal-like tumors in comparison to TNBC and the use of the term “basal” is

still subject to debate (Gusterson et al., 2005; Gusterson, 2009; Moinfar, 2008). Indeed, no consensus

has been reached to identify this group using immunohistochemistry (Rakha et al., 2008; Reis-Filho

and Tutt, 2008). In the Curie-Servier dataset, Basal-like tumors were identified as ER-, PR-, lack

of HER2 overexpression IDC-NST tumors that express either cytokeratin 5/6 and/or cytokeratin 14

and/or Epidermial Growth Factor Receptor (EGFR). In the following, I will use both “TNBC” and

“Basal-like” names, even though they are not strictly equivalent, to describe IDC-NST breast tumors

that have a basal or TNBC related pattern.

Overall TNBC have high histological grades with a high mitotic index and they frequently harbor

central tumor necrosis. These tumors are characterized by an impaired DNA repair process and harbor

complex genomic rearrangements and more gains and losses than the luminal subtypes (Chin et al.,

2006; Vincent-Salomon et al., 2007). It has also been shown that 85 % of the tumors of patients

with BRCA1 mutations have a TNBC immunophenotype (Foulkes et al., 2003). Moreover, TNBC are

associated to high levels of various proliferation genes such as Ki-67, and very frequent p-53 mutation

(Manié et al., 2009).

From a clinical point of view, TNBC are relatively chemo-sensitive. Indeed, these tumors show

more pathological complete response to neoadjuvant chemotherapy than other types of tumor (Rouzier

et al., 2005). Showing pathological complete response means that the tumor is no longer detectable.

The poor overall survival rate of patients with TNBC is explained by the fact that among those

patients that do not show a complete response, there is a very high number of relapses (Podo et al.
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(2010) and references therein). Alternative approaches to chemotherapy are currently explored such as

targeting the EGFR, the topoisomerase 2A (TOP2A), c-MYC and vascular endothelial growth factor

(VEGF) receptor (Podo et al. (2010) and reference therein). One of the most promising treatments at

the moment is poly ADP-ribose polymerase (PARP) inhibition. In BRCA1-defective cells, inhibition

of PARP leads to the accumulation of DNA double-strand breaks that are not correctly repaired

due to the lack of functional BRCA1. This leads to tumor cell death (McCabe et al., 2006). In

normal cells PARP inhibition has a limited effect due to active BRCA1. The general principal behind

PARP inhibition is synthetic lethality (Tucker and Fields, 2003). Synthetic lethality occurs when

two otherwise non-lethal changes result in cell death when present together. PARP inhibition showed

promising results in BRCA1-mutation carriers (Fong et al., 2009). As mentioned earlier, many BRCA1-

mutation carriers present TNBC and it has been hypothesized that at least a fraction of TNBC are

BRCA1 deficient (Turner et al., 2006) due to the expression of ID4 (a negative regulator of BRCA1)

or the epigenetic silencing of BRCA1 (Veeck et al., 2010; Evers et al., 2010). To conclude there is still

no targeted therapy for TNBC available in routine clinical practice. Hopefully a better understanding

of the biology of these tumors and their links to BRCA1 mutations will lead to the development of

new treatments for these cancers.

2.3 Breast tumors of the Curie-Servier cohort

For the Curie-Servier project breast tumors of Luminal A, Luminal B, ER- / HER2+ and TNBC

subtypes were selected and characterized by a pathologist (Anne Vincent Salomon, M.D./Ph.D.) of the

IC using immunohistochemistry (IHC, Anne Vincent Salomon and Marion Richardson, M.Sc.). These

tumors were obtained from patients treated at the IC (Biological Resource Center) and contain between

50% and 90% tumor cells. Many features of these tumors were collected such as the size of the tumor

and the overall survival of the patients. Additionally normal tissues from mammoplastic surgery were

collected by Anne Vincent Salomon and Fabien Reyal (M.D./Ph.D.). Finally, cell-lines characterized

as TNBC in Neve et al. (2006) were obtained: 184B5, MDA-MB-436, HCC1143, HCC1187, BT20,

HCC1937, MCF-12A, HCC38, Hs 578T, MCF-10A, MDA-MB-468, BT-549, HCC70, MDA-MB-157,
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Figure 2.3: Summary of the samples of the Curie-Servier dataset and their Histological and Immunohis-

tochemical characterization.

MDA-MB-231. All the information on the samples are summarized on Figure 2.3.

This means that the different subtypes are known before any of our analyses. This information

can be used to confirm the groups we find, and also earlier for experimental design, in particular

the information can be taken into account to determine batches and make sure batch effects are not

responsible for the differences we observe between subtypes.
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Chapter 3

Chromosome aberrations

A B

Figure 3.1: Karyotype of two cells. (A) The karyotype of a normal cell, which contains two copies of each

autosome. (B) The karyotype of a colon cancer cell, which typically shows many aberrations in chromosome

number and structure. (From Alberts et al. (2002))

In a normal human cell, chromosomes go by pairs, excluding sex-determining chromosomes (see

Figure 3.1 A). Thus, most regions of the genome are present in two copies, one coming from the

mother and the other one coming from the father. This balanced state is called euploidy. Deviation

from this normal state is called aneuploidy and is often observed in cancer cells (see Figure 3.1 B).

This aneuploidy is often the consequence of the genomic instability of tumor cells. More precisely,

due to an accumulation of defects in DNA repair pathways, in cell cycle check-points and in mitotic
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segregation pathways, tumor cells often fail to properly carry out the duplication and segregation of

chromosomes and accumulate chromosome aberrations (Aguilera and Gomez-Gonzalez, 2008).

Figure 3.2: Schematic view of typical chromosome aberrations that are found in cancer cells. Based on

Albertson et al. (2003)

Typical tumoral alterations are described below and schematically represented in Figure 3.2:

Polyploidy A number of chromosomes have p copies with p greater than 2.

Euploidy At least one chromosome has an abnormal number of copies.

Translocation A chromosome translocation is a rearrangement of parts between chromosomes, whether

or not they are from the same original pair. Translocations can be reciprocal, i.e. there is an

exchange between the chromosomes and no regions are lost or gained. But translocations can be

non-reciprocal, i.e. a part is gained and/or lost during the rearrangement. Translocations might

create fusion genes or truncated genes.

Amplification A small contiguous portion of the genome is present in a high number of copies

(from 4 to over 50 copies). These copies can be isolated fragments without centromeres and are

called double minutes. Otherwise, they can be incorporated into chromosomes, either in nearly
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contiguous homogeneously staining regions (HSR) or interspersed in the genome.

Figure 3.3: Schematic view of LOH aberrations that are found in cancer cells. Based on Albertson et al.

(2003)

Moreover, chromosomal aberrations do not necessarily produce abnormal karyotypes. Indeed, it

has been observed in cancer cells that both chromosomes of a given pair come from the same parent.

One of the chromosomes has been lost and the other one has been duplicated. This is called Loss of

Heterozygosity (LOH) without DNA copy number change (see Figure 3.3). When the LOH rearrange-

ment concerns a whole chromosome, it is called isodisomy and when it impacts only a portion of the

chromosome, it is called partial isodisomy or somatic recombination.

Some of these alterations are responsible for the development of cancer. For example, in ER-

/ HER2+ breast tumors, an amplicon around the ERBB2 gene (also called HER2 gene) on chromosome

17 leads to the over-expression of the ERBB2 protein and this over-expression in turn induces the

activation of the PI3K / AKT pathway, a pathway which is known to affect tumor development. This

particular case is well known and the ERBB2 protein is now targeted by therapy. More generally,

it is thought that lost regions harbor tumor suppressor genes while gained regions harbor oncogenes.

Thus, the study of chromosome aberrations in tumor cells, and more specifically the identification of
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frequent aberrations, is a way to identify new oncogenes or tumor suppressor genes.

3.1 Some technologies to study genomic rearrangements

There are many different technologies to study these events such as Comparative Genomic Hybridiza-

tion (CGH) arrays and Single Nucleotides Polymorphism (SNP) arrays. Historically, the genome-wide

study of DNA copy number changes was performed using the CGH technique, which was developed in

the early 1990s. In this technique, total genomic DNA is isolated from tumor and normal control cells,

labeled with different fluorochromes and hybridized to normal metaphase chromosomes (Kallioniemi

et al., 1992). This technique is therefore called chromosomal CGH. Differences in the tumor fluores-

cence with respect to the control fluorescence along the metaphase chromosomes are then quantified

to reflect changes in the DNA copy number of the tumor genome. Subsequently, array CGH, where

arrays of genomic sequences replaced the metaphase chromosomes as hybridization reporters, was es-

tablished (Solinas-Toldo et al., 1997; Pinkel et al., 1998) and solved many of the technical difficulties

and problems caused by working with cytogenetic chromosome preparations. The main advantage of

array CGH is its ability to perform copy number analyses with a much higher resolution compared to

chromosomal CGH (resolution smaller than a megabase compare to several megabases for chromoso-

mal CGH). Array CGH has already been widely used in oncology for many purposes such as global

analysis of copy number aberrations, identification of putative target genes, tumor classification or

assessment of clinical significance of copy number changes (Kallioniemi, 2008). Pinkel and Albertson

(2005) give details in their review about the technology and its application in oncology. Here, we will

present only the general outline of the protocol (see Figure 3.4):

1. Total genomic DNA is isolated from a tumor sample (i.e. the test DNA) and from a normal

sample (i.e. the reference DNA). Genomic DNA is then digested with a restriction enzyme

and the obtained DNA fragments are labeled. The tumoral DNA is usually labeled with a red

fluorochrome and the normal DNA with a green fluorochrome.

2. Both the tumoral and normal DNA are hybridized on the same chip. For each spot, there is
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Figure 3.4: Schematic view of the CGH protocol (From Philippe Hupé).

a competitive hybridization between the tumoral DNA target sequences and the normal DNA

target sequences.

3. After hybridization, the chip is scanned and the signal intensity is quantified for both the red

and green wavelengths. Image files are created in which each pixel is given a red and a green

intensity.

4. An image analysis software reconstructs the signal intensity for each spot.

In the case of SNP arrays, the protocol is quite similar except that there is no normal DNA reference.

3.2 DNA copy number profiles of SNP and CGH arrays

In CGH arrays, the DNA copy number is obtained by comparing the test sample with a normal

reference sample. This is often done with the ratio of the measured intensity of the test sample and

reference. For example, a ratio of 1 means that the usual 2 copies of DNA are present in the test



44 CHAPTER 3. CHROMOSOME ABERRATIONS

sample (see Figure 3.5). While doing this, one assumes that the DNA copy number of the reference is

2. However, it is not necessarily the case as copy number polymorphisms are common in the healthy

population.

Figure 3.5: Illustration of chromosomes and the corresponding CGH profiles. Using CGH arrays, a test

sample is compared to a reference. (Left) If the two samples have the same DNA copy number, the profile

should be a set of points on the 2/2 ratio line. (Right) If there are differences between the samples, points

in gained regions appear above the 2/2 ratio and points in lost regions appear below the 2/2 ratio.

The main difference between CGH and SNP arrays is that SNP arrays usually do not use a reference

(see Figure 3.6). Moreover, the DNA copy number is not measured directly but rather computed as

the sum of the intensities of both alleles. In this way, one observes differences between regions of the

genome but it is not necessarily easy to determine the intensity that corresponds to 2 DNA copies.

This is all the more true for TNBC as they harbor many rearrangements and one cannot assume that

the mean or median intensity of all probes corresponds to the intensity of 2 DNA copies.

Studying SNP arrays also gives information about LOH. This is valuable information to recover
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the reference intensity of 2 DNA copies in TNBC (Popova et al., 2009).

Figure 3.6: Illustration of chromosomes and the corresponding SNP profiles. Using SNP arrays, a test

sample is analyzed without any references. The level corresponding to 2 DNA copies is usually chosen as

the mean or median intensity of the whole profile. (Left) If there is no DNA copy number changes, the

profile should be a set of points on the same line. (Right) If there is some changes, points in gained regions

appear above others and points in lost regions appear below others.

For both CGH and SNP arrays, we expect a limited number of possible values for the measured

intensity. If we could measure the copy number almost continuously along the genome, we would

expect a constant signal, except for a few abrupt changes corresponding to gains and losses. However,

there are measurement errors and noise is observed around the signal, which complicates the analyses.

3.3 An overview of CGH data analysis

Many methods have been developed specifically to analyze CGH arrays (see the review by van de Wiel

et al. (2010)). They can be divided into two categories: pre-processing and downstream methods.

Pre-processing methods are a critical step because their results affect any following analyses and

their biological interpretation. Pre-processing usually consists in the following steps:
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Control Assess the quality of the experiment via a number of checkpoints.

Normalization Remove artifacts that hamper our ability to extract the biological signal.

Segmentation Divide the genome into regions sharing the same DNA copy number.

Calling Recover the DNA copy number (0, 1, 2, 3...) or at least try to make the difference between

normal, gained and lost regions.

Once these different steps have been performed, many different types of downstream analyses can

be performed depending on the biological or clinical questions. Many specific methodologies have been

proposed to identify:

• recurrently aberrant regions (across tumors);

• new subgroups of cancer (unsupervised classification);

• markers associated to prognosis, diagnosis or other clinical variables of interest (supervised clas-

sification or regression).

In the following chapters, I will highlight some of my contributions to the normalization (Rigaill

et al., 2008) and segmentation (Rigaill et al., 2010c; Rigaill, 2010b) of these DNA copy number profiles.



Chapter 4

Normalization of DNA copy

number profiles

In microarray experiments, as in many experimental protocols, measurements are influenced by non-

relevant factors that hamper our ability to extract the signal of interest. The intensity of a probe is

affected by three elements:

• the biological signal, which is the level of the fragment of interest (either mRNA or DNA);

• some systematic biases such as the probe GC content or spatial artifacts;

• some random factors that take into account the inevitable variability between repeated measure-

ments.

In this context, normalization aims to remove the systematic biases while preserving the biological

signal, namely the biological signal. The random factors cannot specifically be taken into account

because they are random.

In this section, I will first give a short overview of current issues regarding microarray normalization.

Then I will pinpoint some of the normalization specificities for tumor DNA copy number array. Finally,

I will present the ITALICS method (Rigaill et al. (2008), the article is provided in subsection 4.4) that

I developed to normalize Affymetrix 50K and 250K SNP arrays.

47
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4.1 Short overview of microarray normalization

Microarray normalization is often referred to as a preprocessing step. Indeed, it is the first step of

many microarray analysis pipelines. Therefore it influences the results of all further analyses and more

importantly the biological interpretation of these results. Thus, it is a critical issue and an extensively

studied problem. Many normalization methods have been proposed, especially for one-color gene

expression microarrays, see Binder et al. (2010) for a review. There are two main reasons which make

it difficult to find an efficient and understandable normalization method:

• knowledge about the underlying hybridization mechanisms is incomplete;

• tools to assess the quality of a given normalization procedure are unsatisfactory.

These two issues are further detailed below.

First, any microarray normalization procedure relies on a model that describes the relationship

between the probe intensity, the level of the mRNA or DNA fragment of interest and some non-relevant

phenomena. Some of the phenomena are relatively well understood, such as probe duplex formation

in solutions which depends on the probe sequence. This can be described using a nearest neighbor

thermodynamic model (SantaLucia, 1998) and seems to work quite well on microarrays (Binder et al.

(2009) and reference therein). Moreover, quite recently, it has been shown that surface hybridization

could be modeled using an adsorption model such as the Langmuir adsorption equation (Binder et al.,

2008). Many other phenomena are less known and they control the specificity and sensitivity of a

given probe such as steric hindrance, RNA or DNA secondary structure formation and probe-probe

interactions (Zhang et al., 2003). Therefore, many normalization models are based on (sometimes

questionable) statistical considerations rather than physical or thermodynamical considerations. For

example, for mRNA expression arrays, it is generally assumed that the majority of genes are not

differentially expressed and that the proportions of down-regulated and up-regulated genes are similar.

Similarly, in the ITALICS method (Rigaill et al., 2008), the “mean intensity” of a given quartet (PM

probe of the A and B allele) across a reference dataset was used to correct the measured intensity (see

subsection 2.1 paragraph “Non-relevant sources of variation” on page 2 and subsection 2.2 paragraph
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“Non-relevant effect estimation” on page 3 of the ITALICS paper). We have empirically shown that this

correction dramatically increases the quality of the data (see subsection 3.2 on page 4 of the ITALICS

paper). This “mean intensity” is a very good surrogate of the sensitivity and specificity of the probe, yet

we poorly understand what non-relevant effects it takes into account. Overall, normalizing microarrays

is based on correcting their signal using two complementary types of information: biological and

physical knowledge of the mechanisms and empirically validated normalization tricks.

The second issue, is the way to assess the quality of a given normalization procedure. Indeed,

one would like to know which normalization method is the best or which method should be used in

a given context. For two-color microarrays this is relatively easy and one can assess the performance

of a given normalization method using an Anova (Kerr et al., 2000; Cui et al., 2003). That is not the

case for one-color microarrays. To assess the performances of a one-color microarray normalization

method one can use a benchmark dataset. In the case of expression profiling arrays, there are several,

e.g. spike-in studies (Irizarry et al., 2003b) and dilution series (Bolstad et al., 2003). Based on these

datasets, it is possible to compare the precision and accuracy of different methods or in other words

their ability to reduce the variance without introducing any biases. These benchmark datasets are

certainly not perfect to assess the quality of normalization methods and several other strategies and

statistical criteria have been proposed (Galfalvy et al., 2003; Harr and Schlötterer, 2006; Jiang et al.,

2008; Ploner et al., 2005). Note that these other strategies are certainly not perfect either. Like

the benchmark datasets, they should be considered with caution. For example Ploner et al. (2005)

proposed an interesting criteria based on the overall correlation of random sets of genes and argued

that on average the correlation should be 0. However, this criterion cannot be used alone because

it is quite clear that to achieve this goal it is enough to normalize all intensities to 1 and thus one

removes simultaneously all non-relevant and relevant effects. An alternative approach is the use of

quantitative real-time PCR as a gold standard technique. Unfortunately, it can be used for only a few

measurements. Overall, assessing the quality of a normalization procedure is a complex question and

subject to many controversies.
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4.2 Specificities of tumor DNA copy number profile normal-

ization

For gene expression profiling normalization, it is usually assumed that the majority of genes are not

differentially expressed and that the proportions of down-regulated and up-regulated genes are similar.

This hypothesis is questionable, but normalization methods relying on this assumption were shown

to be quite efficient (Do and Choi, 2006). However, for DNA copy number profiling of tumors, this

is clearly not the case. Indeed, some tumor samples, especially TNBC, are genomically unstable

and harbor many genomic rearrangements. For these tumors, there is no reason to think that the

number of gains equals the number of losses. Moreover, it has been empirically shown that not taking

into account DNA copy number alterations in CGH arrays of tumor samples causes problems for

conventional normalization methods (Staaf et al., 2007). More specifically, it leads to over-fitting and

a decreased signal to noise ratio. We confirmed this result for Affymetrix SNP array 50K and 250K

(data not shown).

Another specificity of tumor DNA copy number profile normalization is the possibility to assess

(without knowing the true DNA copy number) the signal to noise ratio of a given normalization

procedure (Neuvial et al., 2006). The idea is that, after using a given normalization procedure, it is

possible to identify gained, lost and normal regions of the genome. This is the “calling” step. It is

then possible to compute:

• the “signal” as the difference between the mean gain intensity and the mean normal intensity;

• the “noise” as the residual error of the signal.

When comparing two different normalization methods, it is important to compute their “signal” and

“noise” with the same definition of gained and normal regions. Indeed, a method detecting more gained

regions would not be favored. This is because some of these extra gained regions would necessarily

correspond to small differences between normality and gain, resulting in a smaller signal to noise ratio.

Therefore, only consensus gained and normal regions should be used (see Figure 4.1). Overall this is

certainly not an unbiased estimation of the signal to noise ratio as it heavily relies on the calling step.
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However, for a given calling procedure, it seems a good way to assess the relative advantages of various

normalization procedures.

In conclusion, when normalizing tumor DNA copy number profiles, it is important to take into

account both the non-relevant factors and the DNA copy number alterations. Moreover, without

knowing the true signal it is possible to evaluate and compare the signal to noise ratio of two different

normalization methods. Keeping all this in mind, we worked on the normalization of Affymetrix

Genechip 50K and 250K SNP arrays.

4.3 Normalization of Affymetrix Genechip 50K and 250K SNP

arrays

In this section, I will give an overview of the ITALICS normalization method that I proposed to

normalize Affymetrix Genechip 50K and 250K SNP arrays (Rigaill et al. (2008), the article is provided

in the following section: 4.4). Besides normalization, ITALICS performs the analysis of the DNA

copy number profiles using the GLAD methodology (Hupé et al. (2004)). GLAD performs both the

segmentation and calling step. The ITALICS method is available as an R package in Bioconductor.

As in any microarray, Affymetrix Genechip 50K and 250K SNP arrays are influenced by non-relevant

factors such as the probe GC content, spatial artifacts and others (see Figure 4.2 for an overview of

the experimental protocol). To take into account both the non-relevant factors and the DNA copy

number as suggested by Staaf et al. (2007), ITALICS iteratively and alternatively segments the DNA

copy number profile and estimates the influence of the non-relevant factors (see Figure 4.3). Having

a rough first estimation of the DNA copy number profile, it is possible to correct for non-relevant

factors using a multiple linear regression. Continuing from this corrected profile, we then re-iterate

the segmentation and correction steps to improve their qualities (see subsection 2.2 and Table 1 on

page 2-3 of the paper for a more detailed description). We have empirically shown that two iterations

are required to achieve a good signal to noise ratio (see subsection 3.1 and Figure 2 on page 4 of the

ITALICS paper).
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Figure 4.1: Comparing the signal to noise ratio of two normalization methods. For all graphs, the x-axis is

the position along the genome and the y-axis is the normalized intensity except for the leftmost graph where

it is the raw intensity. The raw data (leftmost graph) is normalized using either the A method (top) or B

method (bottom). Then the calling step of normal and gained regions is done on the two normalized profiles

with the same method. Gained regions are in red and normal regions are in yellow. Ambiguous regions

(gained in A and normal in B or normal in A and gained in B) are then discarded to obtain a consensus

calling and compute the signal to noise ratio. In this example, method A (signal to noise ratio of 4/1 = 4)

is found to be better than B (signal to noise ratio of 4/2 = 2).
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Figure 4.2: Affymetrix SNP 50K and 250K experimental protocol

We assessed ITALICS performances by various means. First, we showed that ITALICS outperforms

other available methods in terms of signal to noise ratio. The ratio was measured using the dyn criteria

proposed by Neuvial et al. (2006) (see subsection 3.2 and Figure 3 on page 4-5 of the ITALICS paper).

Second, in collaboration with Anna Almeida (Ph.D.), we used quantitative real-time PCR to assess

the performance of ITALICS compared to other normalization methods. In particular we showed for a

few examples that ITALICS was able to lead to a better assessment of breakpoint positions compared

(see paragraph “Quantative PCR validation” and Figure 4 in subsection 3.5 on page 5-6 of the paper).

Third, in collaboration with Marc Bollet (MD/Ph.D.) and Nicolas Servant (M.Sc.) we showed that

using ITALICS allows to identify breakpoints at the exact same position between primary and true

recurrence (see paragraph “Patients with breast cancer relapses” and Figure 5 in subsection 3.5 on page

5-6 of the paper). It was not the case with other available methods. With ITALICS the breakpoint

positions can be used to classify new tumors between new primary and true recurrence (Bollet et al.

(2008), the article is provided in Appendix). We also applied the ITALICS methodology to a pilot
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Figure 4.3: Outline of the ITALICS normalization method. The raw profile is iteratively segmented and

then corrected based on this segmentation. The signal to noise ratio is improved with every iteration of

these two steps. After two or three iterations, a normalized profile is obtained.

study of the Curie-Servier project that included 14 TNBC and 11 ER- / HER2+ tumors. We showed

that the PTEN gene was lost in more than 50% of all TNBC samples (Marty et al. (2008), the article

is provided in subsection 11.1.3). Interestingly, it was not possible to recover such a high percentage

with other available normalization procedures.

At the time of the study, we used the GLAD methodology (Hupé et al., 2004) to perform the

segmentation of DNA copy number profiles. However, in principle any efficient segmentation procedure

should work. To conclude, ITALICS is hopefully a sound methodology, it has given good empirical

results and we have shown that ITALICS outperformed other available methods.

4.4 Paper: ITALICS

In this section is the Bioinformatics paper describing ITALICS.
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ABSTRACT

Motivation: Affymetrix SNP arrays can be used to determine the

DNA copy number measurement of 11 000–500000 SNPs along the

genome. Their high density facilitates the precise localization of

genomic alterations and makes them a powerful tool for studies

of cancers and copy number polymorphism. Like other microarray

technologies it is influenced by non-relevant sources of variation,

requiring correction. Moreover, the amplitude of variation induced by

non-relevant effects is similar or greater than the biologically

relevant effect (i.e. true copy number), making it difficult to estimate

non-relevant effects accurately without including the biologically

relevant effect.

Results: We addressed this problem by developing ITALICS,

a normalization method that estimates both biological and non-

relevant effects in an alternate, iterative manner, accurately eliminat-

ing irrelevant effects. We compared our normalization method

with other existing and available methods, and found that ITALICS

outperformed these methods for several in-house datasets and

one public dataset. These results were validated biologically by

quantitative PCR.

Availability: The R package ITALICS (ITerative and Alternative

normaLIzation and Copy number calling for affymetrix Snp arrays)

has been submitted to Bioconductor.

Contact: italics@curie.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The development of high-throughput technologies, and of

microarrays in particular, has made it possible to analyze

DNA copy number throughout the entire genome, with ever-

increasing resolution. Various techniques for detecting DNA

copy number alterations are available (for a review, see Ylstra

et al., 2006). Affymetrix SNP arrays, such as the Affymetrix

GeneChip Human Mapping 100K Set (Kennedy et al., 2003),

seem to be one of the most widely used tools. These chips

can be used for simultaneous genotyping and copy number

determination for single nucleotide polymorphism (SNP),

at high resolution. This technology has various uses, including

studies of copy number variations in populations and the

identification of genomic alterations in developmental genetics

or cancer (for a review, see Pinkel and Albertson, 2005).

In cancer studies, Affymetrix SNP arrays provide new insight

into the mechanisms of tumor progression; they can be used

to pinpoint new candidate genes for tumor-suppressor genes

(Liu et al., 2007) and oncogenes (thought to be present in loss

and gain regions, respectively), and to classify tumors,

improving diagnosis for new patients and the evaluation of

prognosis.
Like all microarrays, Affymetrix SNP arrays are affected

by systematic non-relevant sources of experimental variation.

For accurate extraction of the biologically relevant effect

(i.e. the true DNA copy number of each SNP in the genome,

corresponding to the biological signal), the raw data must

be corrected, taking these different effects into account. We

present here a normalization algorithm for this purpose, which

can be used for the simultaneous correction of different sources

of experimental variation and biological signal estimation when

trying to infer DNA copy number.
Several methods have already been developed for correcting

non-relevant sources of variation. These methods include

CNAG (Nannya et al., 2005), GIM (Komura et al., 2006)

and CARAT (Huang et al., 2006). However, none of these

methods take into account that the range of variation due to

the non-relevant effects is similar or higher than the biologically

relevant effect. Therefore, the impacts of the biologically rele-

vant effect and non-relevant effects may easily be confused.

Correct estimation of the non-relevant effects also depends on

the correct estimation of copy number. We therefore propose

an alternative, iterative method for estimating the biologically

relevant effect and non-relevant effects, to improve biological

signal estimation. We will begin by briefly presenting

Affymetrix SNP arrays. We will then describe our algorithm

(ITerative and Alternative normaLIzation and Copy number

calling for affymetrix Snp arrays: ITALICS) for data normal-

ization in detail. We then discuss the results obtained with this

algorithm, comparing them with those obtained with other

algorithms. Finally, we discuss the advantages of ITALICS and

possible improvements to this method.

†The authors wish to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.

*To whom correspondence should be addressed.
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2 MATERIALS AND METHODS

2.1 Affymetrix SNP arrays

Technology: Affymetrix SNP arrays can be used to detect DNA

copy number alterations at a resolution of 6–210 kb, using around

11 000–500 000 human SNPs. The Affymetrix GeneChip Human Map-

ping 100K and 500K Sets are comprised of two arrays. Each array

is based on specific restriction enzymes: XbaI and HindIII for the 100K

set and StyI and NspI for the 500K set. The Affymetrix 50K XbaI and

HindIII arrays contain no common SNPs and their combination

provides the DNA copy numbers of more than 115 000 SNPs.

Each allele of each SNP is represented by ni perfect match (PM)

probes and ni mismatch (MM) probes. Reverse or forward probes may

be used and these probes may be centered on the SNP position or offset

by �4 to þ4 base pairs. Thus, all the PM probes of an SNP allele have

different DNA sequences. Probes are grouped into probe quartets of

four probes: one PM and one MM probe for each of alleles A and B.

All four probes have the same orientation and offset.

The Affymetrix SNP arrays assay is carried out as follows. Genomic

DNA is digested with a restriction endonuclease. Adaptors are ligated

to all fragments. These fragments are amplified by PCR and then

fragmented, labeled with biotin and hybridized with the chip. The chip

is then washed and scanned to generate the cell intensity file (.CEL)

which is used as input to the proposed algorithm.

Hereafter, the raw signal Yi. of a given SNP i is given by:

Yi: ¼

Pni
j¼1 Yij

ni
with Yij ¼ YA

ij þ YB
ij

where YA
ij and YB

ij are the log-intensity of the PM probe A and B of the

j-th probe quartet for the SNP i, and Yij is the sum of PM log-intensities

for the j-th quartet. Yi. is the mean PM log-intensity of the ni quartets

for the SNP i. MM probes are not taken into account in our algorithm.

The two PM probes defining the entity Yij are referred subsequently as

QuartetPM, the subscript i is referred to as SNP i, and the subscript j

as one of the ni quartets.

Non-relevant sources of variation: ITALICS deals with known

systematic sources of variation, such as the GC-content of the

QuartetsPM (QGCij), the length of the PCR-amplified fragment (FLi)

and the GC-content of the fragment amplified by PCR (FGCi) (Nannya

et al., 2005; Komura et al., 2006). It also takes into account the

QuartetPM effect (Qij), resulting from the systematically low intensity of

some QuartetsPM and the systematically high intensity of others.

We also found that some Affymetrix SNP arrays suffer from spatial

artifacts, as reported by Neuvial et al. (2006) for CGH array data.

A spatial artifact is illustrated in Figure 1A: neighboring QuartetsPM on

the chip present abnormal intensities. The corresponding SNPs which

appear as outliers in the genomic profile, as shown in Figure 1C, D and

E, and should be removed. We have addressed this issue using a filtering

criterion, making it possible to discard bad probes, as described

subsequently.

2.2 The ITALICS algorithm

Overview: In Affymetrix SNP arrays, non-relevant sources of variation

(NonRelij) have comparable or greater influence on the raw signal

variability than the biological signal (CopyNbi) (see Section 3.2 to

compare the type III sum of squares of the different effects in a multiple

linear model). We therefore propose an iterative, alternative normal-

ization method, making it possible to estimate the biological signal and

non-relevant effects and, therefore, to eliminate most of the non-

relevant effects while preserving most of the biological information.

During each iteration, ITALICS:

(1) Estimates the biological signal CopyNbi using the GLAD algo-

rithm (Hupé et al., 2004),

(2) Assuming the biological signal to be known, it estimates the

non-relevant effects NonRelij on raw data, by multiple linear

regression.

After the last iteration, the QuartetsPM for which multiple linear

regression predicts the signal poorly are flagged. They correspond to

QuartetsPM with abnormal values and are excluded from the final step,

in which ITALICS uses GLAD to estimate the biological effect

CopyNbi on the remaining normalized QuartetsPM. The algorithm is

presented in more detail below.

Biological signal estimation (CopyNb_step): ITALICS applies the

GLAD algorithm to Yi. values to estimate the biological signal. The

GLAD algorithm segments the genomic profile, defining regions of

homogeneous DNA copy number. For each of these regions, it provides

a smoothing value and a status (gain, normal or loss). The smoothing

(A) Before ITALICS (B) After ITALICS

(C) CNAT3.0 (D) CNAG

(E) GIM (F) ITALICS

Fig. 1. Impact of spatial artifacts on genomic profiles. Image of an

XbaI 100K Set chip (HF0844_Xba, Kotliarov et al. (2006)) before

(A) and after normalization with ITALICS (B) (flagged QuartetsPM
in white). The Yij value of each QuartetPM is represented, using

a gradient from green to red. (C), (D), (E) and (F) are the genomic

profiles normalized with CNAT 3.0, CNAG, GIM and ITALICS.

Vertical dashed red lines represent the breakpoints detected with

GLAD and the assigned statuses are indicated by a color code: green

for loss, yellow for normal and red for gain. Two stains of abnormally

high QuartetsPM values (in red) are visible in (A) and their corre-

sponding SNP values correspond to outliers (colored in red) in the

genomic profiles (C), (D) and (E), for which 1661, 1818 and 2331

outliers respectively, were detected. ITALICS flagged most of these

QuartetsPM (B) but evaluated the signals for their SNPs using

the QuartetsPM from the rest of the chip, resulting in the removal of

only 13 of the 57 500 SNPs. ITALICS eventually identified only 88

outliers (F).
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value is the median of the Yi. values within the region concerned, and

corresponds to the inferred copy number CopyNbi.

Non-relevant effect estimation (NonRel_step): After estimating the

biological effect CopyNbi, ITALICS infers the non-relevant effects by

multiple linear regression. The model used is as follows:

Yij ¼ �þ �CopyNbi þ fðNonRelijÞ þ "ij

fðNonRelijÞ ¼ P1ðFLiÞ þ P2ðFGCiÞ þ P3ðQGCijÞ þ �Qij

with:

i ¼ 1, . . . ,N (the number of SNPs)

j ¼ 1, . . . , ni (the number of QuartetsPM per SNP)

PkðxÞ ¼
Xl¼3

l¼1

�klx
l; k ¼ 1, . . . , 3

"ij �Nð0; �2Þ

The multiple linear regression can also be expressed in classical

matrix notation:

Y ¼ X� þ "

with:

� ¼ ð�; �; �11; �12; �13; �21; �22; �23; �31; �32; �33; �Þ

The parameter � is estimated using the ordinary least-squares

method. The degrees of the polynomial functions Pk were chosen

using the BIC criterion (Schwarz, 1978) on a training data set of 128

reference diploid chips (Matsuzaki et al., 2004).

The QuartetPM effect is dealt with by calculating Qij as the mean of

each QuartetPM on the 64 female chips of the same Affymetrix reference

data set (Matsuzaki et al., 2004).

Once the non-relevant effects have been estimated, the Yij values are

corrected as follows:

Ycor
ij ¼ Yij � f̂ðNonRelijÞ;

where f̂ðNonRelijÞ corresponds to the estimate of non-relevant

effects based on multiple linear regression. The corrected

Y cor
i: ¼ ð

Pj¼ni
j¼1 Y cor

ij =niÞ is used in the next step of the GLAD procedure,

to re-estimate the biological effect. This algorithm is repeated until the

number of iterations reaches the predetermined fixed number of

iterations itermax.

ITALICS uses GLAD and therefore we investigate if the normal-

ization was influenced by the choice of GLAD parameters. In Supple-

mentary information, we give guidelines for choosing parameters and

expose the result of sensitivity analysis that shows a large robustness of

ITALICS to parameter settings.

Elimination of poorly predicted QuartetsPM: After the last iteration,

QuartetsPM Yij poorly predicted by multiple linear regression are

flagged out. This is achieved by calculating the 95% prediction interval.

All Yij outside this interval are flagged. SNPs with less than three non-

flagged QuartetsPM in a total of ni are then discarded. If more than

three Yij are not flagged, Ycor
i: is recalculated as:

Ycor
i: ¼

P
j =2Fi

Ycor
ij

ni �NbFi
;

with Fi the set of flagged QuartetsPM for the SNPi and NbFi the number

of flagged QuartetsPM for the SNPi.

Data scaling: The data are scaled to allow between-chip comparison.

After the first GLAD step, the biological signal is subtracted and the

standard deviation s of (Yi.�CopyNbi) is calculated for each chip using

all SNPs i of the chip. The data are then scaled as follows:

Yscaled
ij ¼

Yij

s

The ITALICS procedure is summarized in Table 1.

2.3 Comparison with other methods

Other methods: Several other methods have already been developed.

Most use linear regression to estimate and correct for non-relevant

effects. They differ in the effects taken into account and in their pre-

and post-processing steps.

CNAG: Copy Number Analysis for GeneChip (Nannya et al., 2005).

CNAG corrects the raw signal intensity of a sample, by introducing the

notion of averaged best fit, corresponding to a pseudochip constructed

from the five samples most similar to the reference samples. CNAG

subtracts this averaged best fit from the raw signal and then corrects for

the length of the PCR-amplified fragment and GC-content effects by

linear regression. This method is available within CNAG 2.0 and is also

used in CNAT 4.0 (Copy Number Analysis Tool, see below).

CNAT 3.0: Chromosome Copy Number Analysis Tool 3.0. Affymetrix

developed this method for the extraction of DNA copy number. No

specific step for the correction of non-relevant effects is included. This

method uses samples with varying chromosome X copy number for

intensity calibration and transforms SNP intensity into copy number

values.

CNAT 4.0: Chromosome Copy Number Analysis Tool 4.0. This tool

uses CNAG to normalize the data and then smoothes the data with a

user-defined window. This step artificially reduces the variance of the

data and visibly improves the quality of the profile.

CARAT: Copy Number Analysis with Regression And Tree (Huang

et al., 2006). CARAT uses a reference data set to select probes showing

a high-allelic response and to remove those with no such response. For

each new sample, it first standardizes the probe signal, based on

mismatch probe information. It then corrects for probe GC-content

and PCR fragment length effects, by linear regression. Finally, each

SNP intensity is regressed against the average intensity of the reference

samples with the same genotype.

GIM: Genomic Imbalance Map (Komura et al., 2006). GIM roughly

estimates the biological effect and subtracts it from the raw signal, using

a simpler version of ChARM (Myers et al., 2004). It removes defective

probes with a high local GC-content and then re-estimates the bio-

logical effect without using the defective probes and subtracts this effect

from the raw signal. It takes into account probe GC-content, the length

of the PCR-amplified fragment and its GC-content, and mean SNP

intensity for the reference dataset, by linear regression. GIM is imple-

mented in Matlab and is freely available.

We compared ITALICS with CNAG, CNAT 3.0 and GIM. We did

not compare ITALICS with CARAT, because no software was

Table 1. ITALICS algorithm overview

iter: ¼ 0

while iter5itermax do

CopyNb_step()

if iter¼ 0 then

Data_Scaling()

end if

NonRel_step()

iter: ¼ iterþ 1

end while

elimination_of_poorly_predicted_quartetPM( )

CopyNb_step()
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available for CARAT at the time of the study, or with CNAT 4.0,

which presents no improvement over CNAG. For the CNAG,

CNAT 3.0 and GIM genomic profiles, copy number and the status of

the genomic regions were inferred with the GLAD algorithm, using the

same parameters as for the ITALICS algorithm.

Quality criteria: As described by Neuvial et al. (2006), we used several

quality criteria to compare the various normalization algorithms.

As defined by Neuvial et al. (2006), the dyn criterion estimates the

dynamics of the DNA copy number signal. Its value is:

dynðaÞ ¼
ðmedianðYcor;a

i: Þi2G �medianðYcor;a
i: Þi2NÞ

smt

with G and N the regions considered to correspond to Gain and

Normal and Ycor;a
i: the corrected signal of SNP i using the normalization

method a. smt ¼ medianðjYcor;a
i: � Ycor;a

ði�1Þ:jÞ for ordered Ycor;a
i: throughout

the genome. smt quantifies the smoothness of the signal over the

genome, and dyn assesses the dynamics of the signal, as defined by the

signal-to-noise ratio (SNR). If no gain region have been identified,

the dyn criteria is computed over loss regions. A high dyn should be

obtained with good normalization methods.

The criterion out is the number of outliers detected by GLAD.

GLAD defines regions of homogeneous DNA copy number and

outliers are SNPs with values different from those of other SNPs in the

same region. These abnormal values may be accounted for by point

mutations in the genome. However, a large number of such changes is

unlikely, so the total number of outliers should be relatively low and the

out parameter close to zero.

The criterion flag is the number of flagged SNPs. We introduced this

criterion for the comparison of methods that remove SNPs, such as

GIM and ITALICS. These methods may artificially improve the quality

of the signal (as measured by dyn and out), by removing SNPs with

abnormal behavior. The number of flagged SNPs should, therefore, not

be too high. When faced with a choice between two methods with equal

SNR, the method with the lowest flag should be preferred.

Comparison of two normalization methods: These three criteria can

be used to determine which of the two normalization methods gives the

best results for a given array. In this pairwise comparison context,

dyn must be calculated with the same definition of gain, normal and

loss regions for both normalized arrays. We therefore define consensus

gain, normal and loss regions associated with an array processed with

two different normalization methods, as the intersection of the two

corresponding gain, normal and loss regions obtained with the two

different normalization methods [see also Neuvial et al. (2006) for

details].

For the comparison of two different methods, a and b, in terms of

a certain criterion, we calculate relative performances as follows:

RPdynða; bÞ ¼ ðdynðaÞ � dynðbÞÞ=dynðaÞ

RPoutða; bÞ ¼ �ðoutðaÞ � outðbÞÞ=outðaÞ

RPflagða; bÞ ¼ �ðflagðaÞ � flagðbÞÞ=flagðaÞ

RP measures the percentage improvement observed with method a,

with respect to method b. The minus signs for the out and flag criteria

ensure that a positive RPcri(a,b) always means that method a is better

than method b for criterion cri.

2.4 Datasets

We carried out our study on two public datasets: a dataset for 128

reference diploid chips (Matsuzaki et al., 2004) and a glioma dataset

corresponding to 356 chips (Kotliarov et al., 2006). We also used

datasets produced by the Affymetrix platform of the Institut Curie

obtained with 22 uveal melanoma samples, 40 ovarian cancer samples

and 26 breast cancer samples.

3 RESULTS

3.1 Choosing the number of iterations

We assessed the extent to which each iteration within the

ITALICS algorithm improved the SNR, by calculating the dyn
criteria for different values of itermax (0, 1, 2, 3 and 5) for each

chip of the 356-glioma chips dataset. The percentage improve-
ment RPdyn for different values of itermax (1, 2, 3 and 5) with

respect to no iteration was then calculated (Fig. 2). One
iteration gave 53.8% improvement, two gave 56.1% improve-

ment and three and five gave 56.3% improvement. As the third
and subsequent iterations gave only a very slight improvement,

we set itermax to two in the ITALICS algorithm.

3.2 Importance of each effect on the signal

For each chip of the glioma dataset, we calculated the type III
sum of squares for each effect in our multiple linear regression

model. A low type III sum of squares indicates that the

difference between the full model and the model excluding
the studied effect is very small. The QuartetsPM effect gave the

highest type III sum of squares, with a mean of 550� 103 versus
10.4� 103, 16� 103 and 14� 103 for QuartetsPM GC-content,

fragment length and fragment GC-content. The biological
effect was the second most important effect, with a mean of

24� 103.

3.3 ITALICS outperformed the other methods

We calculated dyn and out with ITALICS, GIM, CNAT 3.0
and CNAG, using three different cancer datasets: two in-house

datasets corresponding to 22 choroidal melanoma chips and

Fig. 2. Improvement in SNR with the number of ITALICS iterations

The improvement in SNR obtained with each iteration was assessed

by calculating the percentage improvement RPdyn for 1, 2, 3, and 5

iterations with respect to no iterations. The results are summarized in

this graph, showing RPdyn as a function of the number of iterations.

The SNR improved with the first two iterations, with no major

improvement observed for subsequent iterations.
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40 ovarian cancer chips and one public data set of 356 glioma

chips. All methods were used with their default parameters.
We calculated the percentage improvement (RP) for

CNAT 3.0, CNAG and GIM, in terms of dyn and out, with

respect to ITALICS (Fig. 3). For the three competitors

RPcri(competitor,ITALICS) is calculated and we performed

t-tests to assess the significance of the improvement. We found

that ITALICS outperformed CNAT 3.0, CNAG and GIM, in

terms of dyn and out, with t-test P-values below 10�5 for all

three data sets. For GIM, RPdyn ranged from �10.9% to

�6.5%, for CNAG, it ranged from �23.9% to �16.0% and for

CNAT 3.0 it ranged from �33.4% to �26.0%. RPout ranged

from �98.1% to �89.0% for all three methods. Chip data

normalized with ITALICS therefore had a significantly better

SNR than those normalized with CNAT, CNAG and GIM,

with fewer outliers.

Both ITALICS and GIM flag certain SNPs for elimination.

The improvement in SNR obtained with these methods may

therefore be partially due to the mechanical effect of this

removal. We compared the number of SNPs flagged between

GIM and ITALICS and found that ITALICS flagged

significantly fewer SNPs than GIM, with a mean of 300

SNPs per chip for ITALICS versus 3000 for GIM. The

RPflag(GIM,ITALICS) is �90%.

3.4 Spatial artifact correction

Some Affymetrix SNP arrays suffer from spatial artifacts. The

step flagging poorly predicted QuartetsPM removes most

QuartetsPM with abnormal intensity detected by visual

inspection, as shown in Figures 1A and B. To our knowledge,

ITALICS is the only method capable of doing this. Moreover,

the removal of these abnormal QuartetsPM increases the quality

of the signal, by removing many outliers from the genomic

profile: 1661, 1818 and 2331 outliers were detected for

CNAT 3.0, CNAG and GIM (Figure 1C, D and E). With

ITALICS, there were only 88 outliers (Figure 1F), but only

13 of the 56 000 SNPs were removed because they had less than

three non-flagged QuartetsPM.

3.5 Biological validation

Quantitative PCR validation: We used QPCR (see Supplemen-

tary Material for more detail) to validate our method with

a different technology. As a test case, we used a set of paired

breast cancer samples (primary tumor and relapse, Bollet et al.

2008) and tried to identify a breakpoint in chromosome 20.

We compared the results obtained with QPCR with those

obtained with ITALICS, CNAG, GIM and CNAT, for the

XbaI and HindIII arrays. We also carried out QPCR on two

breast cancer tumors, each with a normal chromosome 20

(white and striped bars in Fig. 4) to assess noise for QPCR and

to validate the significance of copy number change. As shown

in Figure 4, ITALICS was more accurate than CNAG, GIM

and CNAT 3.0 for comparisons of copy numbers, based on the

estimates obtained with PCR. ITALICS, CNAG, GIM and

CNAT 3.0 detected changes in copy number in this region of

chromosome 20. However, ITALICS breakpoints were closer

to QPCR breakpoints than CNAT breakpoints (see Fig. 4A, C

and D) and CNAG and GIM breakpoints (see Figure 4A).

In Figure 4A, QPCR and ITALICS breakpoints are found at

identical positions (between P14 and P15). In Figure 4C and D,

CNAG, GIM and ITALICS detect a copy number change

between P12 and P13, close to that detected by QPCR between

P14 and P15, whereas CNAT detects this breakpoint further

away, between P06 and P07 in Figure 4C and between P08 and

P09 in Figure 4D. In Figure 4B, QPCR, CNAT, GIM, CNAG

and ITALICS found the same breakpoint.
Patients with breast cancer relapses: The problem tackled was

determining whether the second cancer was a true recurrence of

the first cancer or a new primary tumor, based on the two

Affymetrix SNP array profiles (Bollet et al., 2008). We tried to

identify common breakpoints between the cancer chips for

the two tumors. The breakpoints detected with CNAT 3.0 or

ITALICS normalization are represented in Figure 5A and B for

chromosome 6 and 9, respectively, for one patient. GIM and

CNAG results are similar to ITALICS for chromosome 6

and similar to CNAT for chromosome 9 (data not shown).

ITALICS identified breakpoints at identical locations for both

cancers and this is true for the two chromosomes presented in

Figure 5A and B. It is important to notice that this was not

possible with CNAT 3.0, CNAG and GIM. The precise match

between the breakpoints mapped in the two cancers with

ITALICS suggests that the second cancer is a true recurrence,

whereas the opposite conclusion would have been drawn with

CNAT 3.0. As CNAG and GIM detect less precise matches,

they lead to the same conclusion as ITALICS, but the evidences

for this conclusion are weaker. Expert assessment based on

clinical data also indicated that this was a true recurrence, and
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Fig. 3. Comparison of ITALICS with other normalization methods.

We compared ITALICS with CNAT 3.0, CNAG and GIM for two

quality criteria—dyn and out—using three different cancer datasets: two

in-house data sets corresponding to 22 choroidal melanoma chips and

40 ovarian cancer chips and one public dataset corresponding to 356

glioma chips (Kotliarov et al., 2006). Each color corresponds to the

comparison of ITALICS with a different method or data set. ITALICS

is taken as the reference [red point 0 at (0, 0)]. For each method, the

cross indicates the mean relative performance on the data set con-

cerned, for the dyn and out criteria, and the lines give the corresponding

95% quantile for relative performance. ITALICS significantly outper-

forms all methods for both quality criteria, dyn and out.
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was therefore consistent with the results obtained with

ITALICS. Similar conclusions were drawn for the rest of the

data set (13 first and second cancer pairs). Thus, ITALICS

improves the classification of true recurrences and new primary

tumors.

4 DISCUSSION AND PERSPECTIVES

We present here a new method for normalizing Affymetrix

SNP arrays: ITALICS. This method is highly efficient and

Fig. 4. Affymetrix SNP arrays and QPCR DNA copy number profiles

for a patient with breast cancer relapse. CNAT 3.0 (dashed line) and

ITALICS (solid line) DNA copy number determination along chromo-

some 20, from position 17453432 (P01) to position 49386812 (P22), for

the primary tumor (A, C) and the relapse (B,D) using theHindIII (C,D)

and XbaI (A, B) Affymetrix SNP arrays. CNAG and GIM results are

identical to CNAT for (A) and identical to ITALICS for (B, C and D).

We performed QPCR on two breast cancer tumors with a normal

chromosome 20, to estimate the noise associated with QPCR and to

validate the significance of copy number change. The bar charts

generated show the QPCR estimation of DNA copy number in two

breast cancer tissues with a normal chromosome 20 (white and striped

bars, A, B, C andD), the primary breast tumor (black bars, A andC) and

the corresponding relapse (black bars, B and D). In (A), both ITALICS

and QPCR detect a copy number change between P14 and P15, whereas

GIM, CNAG and CNAT detects a change between P21 and P22. In (C)

and (D), ITALICS detects a copy number change between P12 and P13,

close to that detected by QPCR between P14 and P15, whereas CNAT

detects a breakpoint further away, between P06 and P07 in (C), and

between P08 and P09 in (D). In (B) QPCR, CNAT and ITALICS found

the same breakpoints.

Fig. 5. Detection of breakpoints common to first and second cancers,

using ITALICS. We present part of the chromosome 6 (A) and 9 (B)

profiles obtained with VAMP (La Rosa et al., 2006) for a patient with

two breast tumors. For both (A) and (B), the first two profiles are

CNAT 3.0 profiles of the first and second cancers and the last two

profiles are ITALICS profiles of the first and second cancers. GIM and

CNAG results are similar to ITALICS for chromosome 6 and similar to

CNAT for chromosome 9 (data not shown). CNAT 3.0 identified no

breakpoints (red dashed lines) common to the two cancers, whereas

ITALICS did (red arrows), strongly suggesting that the second cancer

was a true recurrence. Moreover, the results obtained with ITALICS

are supported by an expert classification based on clinical data.
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outperforms other normalization methods, such as CNAT 3.0,
CNAG and GIM, in terms of SNR, giving a more accurate
localization of breakpoints validated by QPCR. This improve-
ment may be due to various features of the ITALICS algorithm.

This algorithm estimates alternatively and iteratively both
non-relevant and biologically relevant effects. The correct
estimation of relevant effects depends on correct estimation of

the biological signal and vice versa, as the relevant effects induce
similar or higher ranges of variation than the biologically
relevant effect. By estimating both the non-relevant and

biologically relevant effects in an iterative manner, we avoid
overestimation of the non-relevant effects and a loss of
biological signal. The first estimation on raw data is necessarily

rough, but improves the subsequent estimation of non-relevant
effects. Each new estimation of the biological or non-relevant
effects leads to a better estimation of the other effects. In
practice we iterate our algorithm twice, as additional iterations

were found to lead to no significant improvement in the SNR.
This algorithm also includes a flagging step, making it possible
to remove aberrant SNPs. Indeed, some PM intensity values are

subject to spatial artifacts. The PM intensity of theirQuartetsPM
is therefore abnormal, poorly predicted by the regression model
and flagged. The discarding of poorly predicted QuartetsPM
does not necessarily lead to the discarding of the corresponding
SNP, provided that enoughQuartetsPM remain elsewhere on the
chip. As a result, very few SNPs are removed from the final
genomic profile. This filtering step detects spatial artifacts only

indirectly, but nevertheless gives good results in practice.
Methods for the precise detection of spatial artifacts and
the removal of all probes within spatial artifacts have already

been developed (Neuvial et al., 2006). However, their direct
application to SNP chips is impossible due to the very high
density of these chips (more than 2 million probes per chip).

Computing QuartetsPM effect on an in-house reference dataset
would certainly improve the quality of the normalization.
Nevertheless, the QuartetsPM effect is the most important effect

and ignoring it would decrease the efficiency of the
normalization.
We normalized XbaI and HindIII chips separately. The same

major changes were detected with both chips. However, it is

difficult to merge XbaI andHindIII data due to the difference in
signal amplitude for consecutive alterations between the two
chips. The merging of the XbaI and HindIII genomic profiles

would result in a higher resolution profile, but also in a lower
SNR. The ITALICS algorithm could be improved by taking
into account the enzyme effect (XbaI and HindIII) to overcome

this problem.
Technically, the ITALICS algorithm could be applied to

higher density chips, such as the Affymetrix GeneChip Human
Mapping 500K Set and even the Genome Wide SNP array 5.0

and 6.0, which do not have MM probes, as ITALICS is based
solely on PM probes. Of course, we would have to check
whether the non-relevant effects in our model are also observed

with these higher density chips. We would also need to obtain a
reference dataset for calculating the quartet effect.

5 CONCLUSION

We developed ITALICS, a new normalization algorithm for

Affymetrix SNP arrays. This method was designed for the
normalization and analysis of DNA copy number and signif-

icantly outperformed other methods, such as CNAT 3.0, CNAT

4.0, CNAG and GIM, in terms of SNR and can also be used to

correct for experimental artifacts due to spatial effects. This
method was validated by QPCR and accurately detected the

breakpoints in genomic profiles. It could therefore be used to

improve the characterization of samples in genomic studies.
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62 CHAPTER 4. NORMALIZATION OF DNA COPY NUMBER PROFILES



Chapter 5

Segmentation of DNA copy number

profiles

From a biological point of view, the segmentation of DNA copy number profiles into segments of equal

copy number is an obvious task. Indeed, using such profiles greatly reduces the dimensionality of the

problem. However, both from a statistical and a computational point of view, we will see that, perhaps

counter-intuitively, segmentation is not a simple problem.

A simple way to grasp the complexity of this problem is to count the number of possible segmen-

tations of a small DNA copy number profile of n = 1000 points. Each segmentation is completely

defined by its set of breakpoints and one can put a breakpoint in between any two points. Overall

there are n − 1 = 999 possible positions for any breakpoint and thus there are 2n−1 = 2999 possible

segmentations of the data. Thus, the goal of any segmentation method is to choose one segmentation

out of over 2999 possibilities for a profile of n = 1000 points. From a computational point of view,

the difficult aspect is to find an efficient way of exploring this exponentially large set of possibilities.

Meanwhile, from a statistical point of view, the difficulty lies in the selection of one solution when the

number of possibilities to choose from is exponentially bigger than the amount of data available. All

this means that this procedure is complex and can also be rather hazardous.

Nonetheless, many segmentation methodologies have been proposed, among which:
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• Jong et al. (2003) used a Genetic Algorithm (GA) that tried to maximize a likelihood with a

penalty term containing the number of breakpoints;

• Hupé et al. (2004) used a Gaussian model-based approach;

• Fridlyand et al. (2004) used Hidden Markov Model (HMM) in which the underlying DNA copy

numbers are the hidden states with certain transition probabilities;

• Olshen et al. (2004) used the Circular Binary Segmentation (CBS), where the maximum of a

likelihood ratio statistic is used recursively to detect narrower segments of aberration;

• Wang et al. (2005) used hierarchical tree-style clustering (Clustering Along Chromosomes);

• Picard et al. (2005) used a dynamic programming algorithm with a penalized likelihood in order

to choose the most appropriate number of breakpoints;

• Engler et al. (2006); Broet and Richardson (2006); Guha et al. (2008) used latent variable ap-

proaches with Gaussian mixture models;

• Ben-Yaacov and Eldar (2008) used wavelet decomposition and thresholding;

• Lai et al. (2008) used Bayesian segmentation models.

The relative performances of some of these methods have been assessed empirically (Willenbrock and

Fridlyand, 2005; Lai et al., 2005).

In any segmentation method for DNA copy number profiles, there are fundamentally three different

problems that are often considered as a whole:

• the modeling problem is: defining a biologically relevant model or a collection of relevant (bio-

statistical) models;

• the statistical problem is: developing valid statistical criteria to select one model out of this

collection and estimate the parameters of the model;
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• the computational problem is: defining an efficient strategy to compute these statistical criteria

and to explore the set of models to recover a good one with respect to these criteria (if possible,

the best one).

If a particular methodology fails, the question is obviously: which of these three elements is to blame?

As we have seen, the segmentation problem is a very difficult problem from a computational perspective,

especially for very large profiles. Thus, many segmentation methods leave no choice but to rely on a

non-optimal computational scheme or heuristic which might sometimes explain some erratic behaviors.

In this respect, CGHseg (Picard et al., 2005) is the only method to have an optimal computational

strategy, i.e. it explores the full set of possible segmentations to recover the best model according to

its definition.

In the following section, I will first explain why a segmentation model is well justified from a biolog-

ical point of view. I will then briefly describe the CGHseg methodology (Picard et al. (2005), modeling,

statistical and algorithmic strategies) that has been shown to be one of the best methods available to

analyze CGH arrays (Lai et al., 2005) but was limited to the analysis of relatively small profiles (less

than 10000 points). I will then describe two of my contributions to improve this methodology (Rigaill

et al. (2010c); Rigaill (2010b)), these two papers are provided in subsection 5.4 and 5.6). The first

one tackles the problem of assessing the quality of a given segmentation or a given breakpoint. The

second extends the optimal computational scheme of CGHseg for the analysis of very large DNA copy

number profiles such as Affymetrix SNP 6.0 (with more than 105 points).

5.1 A piecewise constant model for the analysis of DNA copy

number profiles

Among other things, CGH and SNP arrays both enable us to measure the DNA copy number of tumoral

cells along the genome. In theory, only a few values are possible DNA copy numbers (0, 1, 2, 3, 4, . . . )

and the signal is piecewise constant. In practice, due to some stochasticity in the measurements, it is

not the case. Thus, the signal is often modeled as a piecewise constant signal affected by some noise.
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This piecewise constant model seems rather simple but is well adapted. Indeed, if we consider a clonal

population and put aside technical biases, we expect the DNA copy number to be piecewise constant.

Some data shows smoother transitions that might be due to cell heterogeneity (Huang et al.,

2007). Indeed, in the case of tumor samples procured through a surgical procedure, there are often

several types of cells: normal cells, peritumoral cells and tumoral cells with possibly several subclones

(Kronenwett et al., 2004). Note that, in that case, we still expect the true signal to be piecewise

constant because a finite sum of piecewise constant functions is piecewise constant. Nonetheless, if

there are several cell populations with breakpoints at almost the same position (but not exactly the

same), we can get the impression of a smooth transition because of the low probe density of the

microarray and/or the variability of the data (see Figure 5.1). However, it seems unlikely for this

phenomenon to be frequent.

Wave patterns have been identified in both SNP and CGH arrays. These waves are likely due

to technical artifacts and appear to correlate with GC content. Various methodologies have been

specifically proposed to normalize these waves (Marioni et al., 2007; Diskin et al., 2008; van de Wiel

et al., 2009). To conclude, it seems reasonable to assume that the underlying DNA copy number profile

is a succession of segments or regions sharing the same DNA copy number and this justifies the use of

a segmentation model.

5.2 The CGHseg methodology

The model The CGHseg methodology (Picard et al., 2005) relies on piecewise constant models.

It considers all possible segmentations of the data up to a user-defined maximum of K segments.

CGHseg makes several common statistical hypotheses, namely that the residual errors are independent

from each other, that they follow normal distributions centered on 0 and that the variance of these

distributions is at least constant by segment. These hypotheses are rather technical, as they simplify

both the statistical inference and the computational analysis. From a modeling point of view, none of

these hypotheses are well justified. In particular, the empirical distributions of residual errors do not

seem to be normal (van de Wiel et al., 2010), though one can hope they are not too far from normality.
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Figure 5.1: Impact of cell-to-cell variability if there are several cell populations with close breakpoints.

In all graphs, the x-axis is the position along the chromosome and the y-axis is the intensity. (A) In this

example, we consider three different cell populations with three very close breakpoints, each represented in

a graph. (B) The average of these three signals is still piecewise constant. (C) If we consider some noise

around the mean signal (black dots), we get the impression of a relatively smooth signal. However, it seems

unlikely for this phenomenon to be frequent.
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To conclude, these hypotheses are commonly made in many applications, including DNA copy number

profile analysis, and give good results empirically. Two major issues arise from this model:

• a statistical one, the estimation of the number of segments;

• a computational one, the localization of the segments on the genome.

The statistical criteria Having defined these possible segmentations, it is possible to derive mea-

sures of adequacy between a segmentation in k segments and the data. Here, using the maximum

likelihood method, one unsurprisingly obtains the classical Mean Square Error (MSE) as a measure

of adequacy. The MSE is the sum of all squared distances between observed and predicted values.

However, segmentations with more segments tend to better fit the data and based only on the MSE,

one would over-fit the data and always retrieve a maximum number of breakpoints. This is a typical

issue in statistics and one of the solutions is to penalize the MSE increasingly with the number of

breakpoints. For CGHseg, two penalization schemes adapted to segmentation issues were proposed

(Lebarbier, 2005; Lavielle, 2005).

The computational strategy Having defined these criteria, the goal becomes quite clear. The

objective is to recover the best segmentation, i.e. the one with the smallest mean squared error, for

each number of segments up to K. Knowing these “best” segmentations, it would then be possible to

select the best one according to the penalty term. Recovering the best segmentations with respect to

the MSE for each number of segments up to K is possible using a dynamic programming algorithm

(Bellman, 1961). This algorithm is well adapted for profiles up to 10000 points but cannot be applied

to larger profiles with a modern computer.

The computational and statistical issues are tightly connected. For a given statistical criteria there

is a need for an efficient algorithm. Reversely, given an algorithm to explore the segmentation space

it becomes possible to access new quantities and then study their statistical properties.

To conclude on CGHseg, it relies on a simple piecewise constant model, uses model selection criteria

to select the number of breakpoints and uses an optimal computational scheme to recover the best
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segmentation. Interestingly, it has been shown to be one of the best performing methods for the

analysis of CGH data (Lai et al., 2005). I think there are two reasons for this:

• it relies on an optimal computational scheme;

• there is only one, easy-to-calibrate parameter: the maximum number of breakpoint K.

5.3 Assessing the quality of a given segmentation

This section highlights a contribution I made with Emilie Lebarbier and Stéphane Robin (Rigaill et al.

(2010c)) to assess the quality of a given segmentation. From here on I will refer to the said paper as the

“exploration paper”. Most segmentation methods give as an output a particular segmentation. This

segmentation has been selected using some defined statistical criteria and identified using a particular

computational scheme out of 2n−1 possible segmentations (with n the number of points in the DNA

copy number profiles). From a statistical point of view, two obvious questions arise:

• If the computational scheme is a heuristic, how confident are we that we have indeed found a

good segmentation?

• Can we assess the confidence we have in a given breakpoint or segment?

For a valid biological interpretation, we would like to be sure that the best segmentation is by far the

best fit to the data. If not, we would like to check that the second best, third best and more generally

other good segmentations do not have a completely different set of change-points. Thus, assessing the

quality of a given segmentation is an important issue (Lai et al., 2008).

These questions have already been studied from a statistical point of view, e.g. Yao (1984); Fearn-

head (2005); Guédon (2008); Lai et al. (2008). The main idea behind the existing methodologies is

the use of an algorithm (most of the time a forward-backward-like algorithm) to fully explore the

segmentation space (computational issue). From this exploration, it is possible to derive quantities of

statistical interest such as the probability of a breakpoint (statistical issue).

From a model selection point of view, the segmentation problem is a difficult one. To choose

the number of breakpoints one usually considers the set of all segmentations with k segments (Mk)
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for any k in between 1 and a user specified maximum. Within those sets, a segmentation is further

defined by the exact position of its breakpoints. Breakpoints are discrete parameters and many of

the often-used model selection criteria fail to accommodate this discrete status. In particular, the

Bayesian Information Criteria (BIC) is not theoretically justified due to this discrete status. Recently

a modified BIC was proposed (Zhang and Siegmund (2007)). This modified BIC was derived from

an asymptotic approximation of the Bayes Factor. We recently proposed an exact formulation of this

criterion. The key idea behind this result is to consider one given segmentation in k segments instead

of all possible segmentations in k (see section 3 page 7 of the exploration paper).

From a computational point of view, we showed that exploring the segmentation space can be viewed

as a simple vector-matrix product (see Theorem 2.1 page 3 of the exploration paper). This exploration

enables us to compute exactly the following quantities: the posterior probability of a breakpoint, the

posterior probability of a segment, the posterior probability of the number of breakpoints and the

entropy of the segmentation space (see Proposition 2.5 page 6 of the paper). The entropy is a key

quantity to assess the quality of the segmentation. Intuitively, a small entropy means that the best

segmentation is by far the best. Thus, if the entropy is small it is possible to interpret the best

segmentation with confidence because it stands out. Using this entropy information to assess the

quality of the chosen segmentation is interesting, but it would actually be more interesting to use this

criterion earlier in the process, to select the number of breakpoints. We followed this line of thought

more rigorously and adapted the Integrated Completed Likelihood (ICL) criteria first developed in the

mixture model context (Biernacki et al., 2000). As described in subsection 3.2 page 7 of the exploration

paper, the ICL for segmentation takes into account three elements to select the number of breakpoints:

• how well it fits to the data;

• a penalty for large numbers of segments;

• a penalty for large entropies.

An important remaining issue is the application of this assessment methodology to very large

DNA copy number profiles. No optimal computational scheme is available. But several approximate
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procedures have been proposed (Fearnhead, 2005; Lai et al., 2008). Another strategy would be to

restrict the exploration to some good candidates or to the m best candidates as proposed by Guédon

(2008).

5.4 Paper: Exploration of the segmentation space

This paper is available on arxiv: 1004.4347 and it is under consideration for publication in a journal in

the field of Computational Statistics. A shorter version of the paper has been accepted in COMPSTAT

2010 and published in the proceedings of the conference (Rigaill et al., 2010d).
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Abstract

In segmentation problems, inference on change-point position and model selection are two difficult
issues due to the discrete nature of change-points. In a Bayesian context, we derive exact, non-
asymptotic, explicit and tractable formulae for the posterior distribution of variables such as the
number of change-points or their positions. We also derive a new selection criterion that accounts for
the reliability of the results. All these results are based on an efficient strategy to explore the whole
segmentation space, which is very large. We illustrate our methodology on both simulated data and
a comparative genomic hybridisation profile.

Keywords: BIC, change-point detection, ICL, model selection, posterior distribution of change-points

Short title: Posterior distribution over the segmentation space

1 Introduction

Segmentation and change-point detection problems arise in many scientific domains such as econometrics,
climatology, agronomy or molecular biology. The general problem can be written as follows. It is assumed
that the observed data {yt}t=1,...,n is a realization of an independent random process Y = {Yt}t=1,...,n.
This process is drawn from a probability distribution G, which depends on a set of parameters denoted
by θ. These parameters are assumed to be affected by K − 1 abrupt changes, called change-points,
at some unknown positions τ2, . . . , τK(with the convention τ1 = 1 and τK+1 = n + 1). Thus, the
change-points delimit a partition m of {1, . . . , n}, called here a segmentation, into K segments r(k) such
that r(k) = Jτk, τk+1J= {τk, τk + 1, . . . , τk+1 − 1} and

m = {r(k)}k=1,...,K

The segmentation model has the following general form for a given m:

Yt ∼ G(θr) if t ∈ r and r ∈ m

where θr stands for the parameters of segment r. In this study, all the change-points are detected
simultaneously, a strategy called off-line detection (as opposed to on-line detection). With this strategy,
the question of finding the best segmentation in a given number of segments has already been largely
studied (see for example Lavielle (2005), Braun and Müller (2000), Bai and Perron (2003)). But two
important issues remain: assessing the quality of the proposed segmentation and selecting the number
of segments (also called dimension). In both cases, the main problem is the discrete nature of the
change-points, which prevents the use of routine statistical inference.
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On the one hand, the quality of a given segmentation can be assessed by studying the uncer-
tainty of the change-point positions. From a non-asymptotic and non-parametric point of view, the
standard likelihood-based inference is very intricate, since the required regularity conditions for the
change-point parameters are not satisfied (Feder (1975)). Different methods to obtain change-point
confidence intervals have been proposed. Most of them are based on the limit distribution of the
change-point estimators (Feder (1975), Bai and Perron (2003)) or the asymptotic use of a likelihood-ratio
statistic (Muggeo (2003)). Others proposed confidence intervals are based on bootstrap techniques
(Husková and Kirch (2008) and references therein). A practical comparison of these methods can be
found in Toms and Lesperance (2003).

On the other hand, choosing the number of segments is also a critical issue. This is usually done by
minimising a penalised contrast function and the problem is to find a good penalty. General penalized
criteria have been developed, such as AIC (Akaike (1973)) and BIC (Schwarz (1978)). In the segmen-
tation framework, these criteria are not adapted since an exponential model collection is considered
(Birgé and Massart (2007), Baraud et al. (2009)) and these criteria tend to overestimate the number
of segments (see for example Lavielle (2005)). Recently, some penalised criteria have been proposed
specially for the segmentation framework. Some depend on constants to be calibrated (Lavielle (2005) and
Lebarbier (2005)), but others do not (Zhang and Siegmund (2007)). More precisely, Zhang and Siegmund (2007)
discussed the fact that the classical BIC was not theoretically justified in the segmentation context.
Indeed, the BIC criterion is derived from an asymptotic approximation of the posterior model probabilities
and requires the likelihood function to be three times differentiable with respect to the parameters of the
model (Kass and Raftery (1995), Lebarbier and Mary-Huard (2006)). As the change-points are discrete
parameters, the previous condition is not satisfied. A modified BIC criterion has thus been developed by
Zhang and Siegmund (2007) by considering a continuous-time version of the problem.

The purpose of our work is to provide exact, non-asymptotic, explicit and tractable formulae for both
the posterior probability of a segmentation and that of a change-point occurring at a given position.
More specifically, we consider the segmentation problem in a Bayesian framework so that the posterior
probability of a segmentation is well defined. To tackle the discrete nature of change-points, we work
at the segment level, where statistical inference is straightforward. From these segments, the issue is to
get back to the segmentation or dimension level. Provided that the segments are independent, it will be
necessary to calculate quantities such as:∑

m∈M⋆

P (Y |m)P (m) =
∑

m∈M⋆

P (m)
∏
r∈m

P (Y r|r) (1)

where Y r stands for all observations in segment r and M⋆ is usually a very large set of segmentations.
We propose a close-form (in terms of matrix products) and tractable formulation of such quantities.
Some similar quantities were computed by Guédon (2008) in a non-Bayesian context, using a forward-
backward-like algorithm. However, this author computes all these quantities for fixed values of the
segment parameters, which are the maximum likelihood estimators. From our formula, we derive key
quantities to assess the quality of a segmentation and select the number of segments.

On the one hand, we obtain the exact formulae for both the posterior probability of a segmentation
and that of a change-point occurring at a given position. This enables the construction of credibility
intervals for change-points. Moreover, we retrieve the exact posterior probability of a segment within
a given dimension, the exact entropy of the posterior distribution of the segmentations within a given
dimension and the exact posterior mean of the signal.

On the other hand, we derive a so-called ’exact’ BIC criterion for choosing the number of segments
K, taking M⋆ = MK which is the set of all possible segmentations with K segments. In the same way,
we derive the ICL criterion of Biernacki et al. (2000) in the segmentation framework. This last criterion
takes into account the reliability of the results.

In Section 2, we give some exact formulae to explore the segmentation space and assess the quality of
a segmentation. In Section 3, we focus on the model selection problem: we derive an exact BIC criterion
and propose a new ICL criterion. In the last section, we illustrate our results first on Poisson simulated
data and second on comparative genomic hybridization (CGH) data in a Gaussian framework.
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2 Exploring the segmentation space

A naive computation of (1) is impossible when M⋆ is large, which is usually the case. For example, if
M⋆ = MK , there are

(
n−1
K−1

)
segmentations of n data into K segments. In this section we propose a

tractable and close-form formula of (1). The following assumption enables us to derive an exact matrix
product formulation of (1) enabling its straightforward computation in O(Kn2) time.

Factorability assumption: A model satisfies the factorability assumption if

(H) : P (Y, m) = C
∏
r∈m

arP (Y r|r) (2)

where P (Y r|r) =
∫

P (Y r|θr)P (θr)dθr. In the following, for the sake of clarity, we will simply denote
P (Y r). This is true when all segment parameters are different but this is false, for example, for the
normal homoscedastic model G(θr) = N (µr, 1/τ) with unknown precision τ .

We denote by MK(Ji, jJ) the set of all possible segmentations of Ji, jJ into K segments. The simplified
notation MK refers to MK(J1, n + 1J).
Theorem 2.1 Consider a function F such that, for all k ∈ J1, KK and for all segmentation m ∈
Mk(J1, jJ) (for 1 ≤ j ≤ n + 1), there exists a function f such that: F (m) =

∏
r∈m f(r). Let A be

a square matrix with n + 1 columns such that

Aij = f(Ji, jJ) if 1 ≤ i < j ≤ n + 1
= 0 otherwise.

Then, ∑
m∈Mk(J1,jJ) F (m) = (Ak)1,j

and the K × (n + 1) elements of ∑
m∈Mk(J1,jJ) F (m)


k ∈ J1,KK ∩ j ∈ J1,n+1K

can all be computed in O(Kn2)

The proof is given in Appendix A.1. It is based on a linear algebra lemma. The lower triangular part of
matrix A is set to 0 to fit the segmentation context. Note that, similarly, we have

∑
m∈Mk(Ji,jJ) F (m) =

(Ak)i,j for all 1 ≤ i ≤ j ≤ n + 1. Theorem 2.1 will be used many times in the following sections, using a
specific function f(r) for each quantity of interest.

2.1 Joint distribution of the data and the segmentation or the dimension

P (Y, m) and P (Y, K) are key ingredients to calculate various quantities of interest, such as (1). To
calculate P (Y, m) and

P (Y, K) =
∑

m∈MK

P (Y, m), (3)

we first need to define priors for the segmentation m. We consider here two typical priors.

Uniform conditional on the dimension: For any prior on the dimension P (K), we define a uniform
prior distribution for m given its dimension K:

P (m|K(m)) =
(

n− 1
K(m)− 1

)−1

⇒ P (m) = P (K(m))
/(

n− 1
K(m)− 1

)
(4)

that is ar = 1 in (2), denoting K(m) the number of segments (i.. the dimension) of the segmentation
m.
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Homogeneous segment lengths: Segmentation with balanced segment lengths are sometimes desir-
able. They are favoured by the following prior:

P (m) = C
∏
r∈m

n−1
r , where C ensures that

∑
m∈M

P (m) = 1. (5)

that is ar = n−1
r in (2), where nr denotes the length of segment r and M the set of all considered

segmentations. In this case, the prior distribution of m is directly defined and the prior distribution
of the dimension P (K) is not explicit. Determining the constant C requires summing over all
possible segmentations. This sum can be handled using the properties given below.

Proposition 2.2 Under assumption (H), for prior distributions (4) and (5), P (Y, K) can be computed
in O(Kn2) as P (Y, K) = C(Ak)1,n+1 with Ai,j = 0 for j ≤ i and, for j > i, for prior distribution (4):

Ai,j = P (Y Ji,jJ) and C−1 =
(

n− 1
K − 1

)
;

and for prior distribution (5):

Ai,j = n−1Ji,jJP (Y Ji,jJ) and C−1 =
∑

m∈MK

∏
r∈m

n−1
r .

Proof. For prior distribution (4), we use Theorem 2.1 with f(r) = P (Y r), implying Ai,j = f(Ji, jJ) =
P (Y Ji,jJ).
For prior distribution (5), we first retrieve C using Theorem 2.1 with f(r) = nr. The result follows, using
Theorem 2.1 again, taking f(r) = n−1

r P (Y r).�

The preceding results require the calculation of P (Y r). Hence, n(n − 1)/2 integrals need to be
evaluated, corresponding to each possible segment. For general priors, they can be evaluated numerically
or via any stochastic algorithm. A close form can be obtained if conjugate priors are used.

Poisson and Gaussian models. We recall classical results for two models that will be used later.
First is the segmentation problem of a piecewise constant Poisson rate model:

{µr} i.i.d., µr ∼ Gam(αr, βr);
{Yt} independent, Yt ∼ P(µr) if t ∈ r. (6)

Second is the segmentation of a Gaussian signal where both the mean and the variance are affected by
the change-points:

{τr} i.i.d., τr ∼ Gam(ν0/2, 2/s0);
{µr} independent, µr|τr ∼ N (µ0, (n0τr)−1);

{Yt} independent, Yt ∼ N (µr, 1/τr) if t ∈ r. (7)

For the Poisson model, we get

P (Y r) =
Γ(α +

∑
t∈r Y r

t ) βαr
r

(βr + nr)αr+
∑

t∈r Y r
t Γ(αr)

∏
t∈r(Y

r
t !)

.

For the Gaussian heteroscedastic model, we get

P (Y r) =
n0

1/2 (s0/2)ν0/2 Γ((ν0 + nr)/2)
(2π)nr/2 Γ(ν0/2)

√
nr + n0

θ(ν0+nr)/2 (8)

where θ = 2(nrS
2
r + s0 + nrn0(ȳr−µ0)

2

nr+n0
)−1, S2

r =
∑

t∈r(Yt − ȳr)2/nr and ȳr is the empirical mean of the
signal within segment r.
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2.2 Posterior distribution of the change-points and segments

We now give explicit formulae for the posterior distribution of change-points and segments. We first
define the corresponding segmentation subsets:

BK,k(t) is the subset of segmentations from MK such that the k-th segment starts at position t, i.e. that
the (k − 1)-th change-point is at t:

BK,k(t) = {m ∈MK : τk = t};

BK(t) is the subset of segmentations having a change-point at position t:

BK(t) =
⋃
k

BK,k(t);

SK,k(Jt1, t2J) is the subset of segmentations having segment r = Jt1, t2J as their k-th segment:

SK,k(Jt1, t2J) = {m ∈MK(J1, n + 1J) : τk = t1, τk+1 = t2};

SK(Jt1, t2J) is the subset of segmentations including segment Jt1, t2J:
SK(Jt1, t2J) =

⋃
k

SK,k(Jt1, t2J).
We denote the conditional probability given the data Y and the dimension K of each of these subsets by
the corresponding capital letters with same indices, e.g.

BK,k(t) = Pr{m ∈ BK,k(t)|Y, K}.
BK(t), SK,k(t) and SK(t) are defined similarly. The following proposition gives explicit formulae for
these probabilities.

Proposition 2.3 For all Jt1, t2J such that t1 < t2, we define, for K ≥ 1,

Ft1,t2(K) =
∑

m∈MK(Jt1,t2J) P (Y Jt1,t2J|m)P (m|K),

and we set Ft1,t2(K) = 0 if t1 ≥ t2. Under assumption (H), the probabilities BK,k(t), BK(t), SK,k(t)
and SK(t) are

BK,k(t) =
F1,t(k − 1)Ft,n+1(K − k + 1)

P (Y |K)
,

SK,k(t1, t2) =
F1,t1(k − 1)Ft1,t2(1)Ft2,n+1(K − k)

P (Y |K)

BK(t) =
∑K

k=1 BK,k(t) and SK(t1, t2) =
∑

k SK,k(t1, t2).

The proof is given in Appendix A.2. It is mainly based on set decompositions, such as

BK,k(t) = Mk−1(J1, tJ) ×MK−k+1(Jt, n + 1J) (9)

and all sums over Mk−1(J1, tJ) and MK−k+1(Jt, n + 1J) can be obtained with Theorem 2.1.
{BK,k(t)}t provides the exact posterior distribution of the starting point of the k-th segment, given

dimension K. From that, we get the exact credibility of interval Jt1, t2K for change-point τk:

CK,k(Jt1, t2K) = Pr{τk ∈ Jt1, t2K|Y, K} =
t2∑

t=t1

BK,k(t).
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2.3 Retrieving the mean signal

In many applications, the mean value µt of the signal at a given position can also provide some insight
about the phenomenon under study. This mean signal can be retrieved via model averaging over the
segmentation space. The posterior mean of the signal is

s̄K(t) =
∑

m∈MK

P (m|Y, K)ŝm(t), (10)

where ŝm(t) = E[µt|m, Y ].

Proposition 2.4 The posterior mean of the signal given the dimension is

s̄K(t) =
∑
r∋t

SK(r)µ̂r ,

where µ̂r = E[µr|Y r]. Under assumption (H), it can be computed with a quadratic complexity.

Proof. If a segment r belongs to a segmentation m and if position t lies in segment r then ŝm(t) = µ̂r.
The rest of the formula is straightforward. Assumption (H) ensures that the SK(r) can be computed in
O(Kn2). �

2.4 Posterior entropy

Segmentation problems are often reduced to choosing m̂K , the best segmentation (i.e. the one with
maximal posterior probability) with dimension K. The other segmentations with dimension K are rarely
considered. The entropy of the distribution P (m|Y, K)

H(K) = −
∑

m∈MK

P (m|Y, K) log P (m|Y, K)

measures how the posterior distribution is concentrated around the best segmentation. Intuitively, a
small entropy H(K) means that the best segmentation is a much better fit to the data than any other
segmentation. We use this information in Section 3 for model selection.

Proposition 2.5 Under assumption (H), the posterior entropy H(K) is

H(K) = −
∑

r

SK(r) log f(r) + log AK

where f(r) = arP (Y r) and AK =
∑

m∈MK

∏
r∈m f(r), which can be computed using Proposition 2.2.

Proof. Since all distributions can be factorized, we have

H(K) = −
∑

m∈MK

∑
r∈m

P (m|Y, K) log f(r) +
∑

m∈MK

P (m|Y, K) logAK

= −
∑

r

log f(r)
∑

m∈MK ,m∋r

P (m|Y, K) + log AK

∑
m∈MK

P (m|Y, K)

and the result follows. �
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3 Model selection

In a Bayesian framework, the BIC criterion aims to choose the model which maximises P (M |Y ), where M
is the model. To calculate the BIC criterion, one needs to know P (Y |M) =

∫
P (Y |θM , M)P (θM |M)dθM ,

where θM is the set of parameters of the model M . Similar quantities are involved in the Bayes factor
for model comparison (Kass and Raftery (1995)).

In our case, the word ’model’ is too broad and we have to distinguish between the selection of the
dimension K and the selection of the segmentation m. When considering the choice of K, a direct appli-
cation of the Laplace approximation is not theoretically justified to calculate the previous integral because
the required differentiability condition is not satisfied for change-points (Zhang and Siegmund (2007)).
However, we can bypass the problem by working at the segment level and then going back at the
dimension level using Proposition 2.2. Thus, the derivation of BIC criteria only requires the calculation
of P (Y r) =

∫
P (Y r|θr)P (θr)dθr, which can be obtained in a close form for the Poisson model and the

heteroscedastic Gaussian model as shown in Section 2.1. Moreover, we derive an adaptation of the ICL
criterion, first proposed for mixture models, to the segmentation context (Biernacki et al. (2000)).

3.1 Exact BIC criterion for dimension and segmentation selection

Choice of the dimension. In segmentation problems, the selection of the ’best’ number of segments
K can be addressed per se, or as a first step toward the selection of the ’best’ segmentation. The Bayesian
framework suggests to choose

K̂ = argmin
K

BIC(K), where BIC(K) = − log P (Y, K). (11)

BIC(K) can be computed in a quadratic time, using Proposition 2.2.

Choice of the segmentation. The best segmentation can be chosen in two ways.

Two-step strategy: The ’best’ segmentation m can be chosen, conditionally to the pre-selected dimension
K̂ as

m̂(K̂) = arg min
m∈M

K̂

BIC(m|K̂), where BIC(m|K̂) = − logP (Y, m|K̂). (12)

One-step strategy: The ’best’ segmentation m can also be directly chosen among a larger collection
M =

⋃K
k=1Mk as

m̂ = argmin
m∈M

BIC(m), where BIC(m) = − log P (Y, m). (13)

Both BIC(m|K) and BIC(m) can be computed efficiently thanks to Proposition 2.2.

3.2 ICL criterion for dimension selection

In the framework of incomplete data models (e.g. mixture models), Biernacki et al. (2000) suggest to
use the criterion ICL(M), which is an estimate of E[log P (Y, Z, M)|Y ] where Z stands for the unobserved
variables. Based on the equation

E[log P (Y, Z|M)|Y ] = log P (Y |M) + E[log P (Z|Y, M)|Y ],

they argue that the entropy H(Z|Y, M) = −E[log P (Z|Y, M)|Y ] is an intrinsic penalty term. The ICL
criterion will tend to select models that provide a reliable prediction of Z, i.e. with a small entropy. This
may be desirable, for example in the classification context.

In the segmentation context, the segmentation m can be considered as an unobserved variable. The
dimension K can then be chosen according to the ICL as

K̂ = argmin
K

ICL(K) where ICL(K) = − log P (Y, K) + H(m|Y, K).
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Biernacki et al. (2000) We expect ICL to favour the dimension K where the best segmentation m̂(K)
clearly outperforms the other segmentations in K segments, so that m̂(K) is more reliable.

3.3 Comparison with other penalized criteria

Many model selection criteria have the following form:

log P (Y |θ̂, m)− pen(m)

and use a two-step strategy. Interestingly, since the penalty generally depends only on the dimension
(Lebarbier (2005), Lavielle (2005)), the best segmentation m̂(K) does not actually depend on the penalty.

The calculation of the exact BIC does not provide any explicit penalty enabling a direct comparison
with such criteria. For such comparison, we derive two approximations of log P (Y r) = log

∫
P (Y r|θr)P (θr)dθr

in the heteroscedastic Gaussian case. The first one is based on a Laplace approximation:

log P (Y r) ≈ log P (Y r|θ̂r)− D

2
log nr

where D stands for the number of parameters involved in each segment (here, D = 2). This approximation
is valid only for large segments, i.e. where P (Y r|θr) satisfies regularity conditions. For the second
approximation, we let the hyperparameters n0, ν0 and S0 go to 0 in (8) and we obtain

log P (Y r) ≈ −nr

2
log S2

r −
D

2
log nr ≈ log P (Y r|θ̂r)− D

2
log nr.

We emphasize that these approximations are both questionable since the asymptotic framework of the
Laplace approximation is not correct for small segments and because the priors are improper for null
hyperparameters. Our purpose is only to show that they both provide the same penalty form:

log P (m|Y ) ≈ log P (m) + log P (Y |θ̂, m)− D

2

∑
r∈m

log nr.

Using uniform prior (4), we get

pen(m) = log P (K(m))− log
(

n− 1
K(m)− 1

)
− D

2

∑
r∈m

log nr.

A similar form is obtained in the Poisson case. The complexity term, log
(

n−1
K−1

)
, is similar to the one of

Lebarbier (2005). The regularity term,
∑

r∈m log nr, favours segments with equal lengths and is similar
to the one of Zhang and Siegmund (2007). Using the alternative prior (5) reinforces the regularity term.
Due to this term, the best segmentation m̂(K) within MK does depend on the penalty.

4 Applications

In this section, we first present a simulation study to assess the ability of the exact BIC and ICL criteria
to select the dimension and the ability of model averaging to retrieve the mean signal. We then analyse
a real CGH profile and use our formulae to assess the quality of the segmentation.

4.1 Simulations

Simulation design. We performed the simulation study in the Poisson model (6) so that only one
parameter had to be chosen. We simulated a sequence of 150 observations affected by six change-points
at the following positions: 21, 29, 68, 82, 115, 135. Odd segments had a mean of 1, while even segments
had a mean of 1+λ, where lambda varies from 0 to 10. The higher λ is, the easier it should be to recover
the true number of change-points. The hyperparameters α and β were set to be equal and we considered
three values for them: 0.01, 0.1 and 1. For each configuration, we simulated 300 sequences.
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Figure 1: Percentage of true dimension recoveries as a function of λ. Left panel: for the three criteria.
BIC(m̂K) : �−, BIC(K) : • − − and ICL(K) : N · · · . Right panel: for the BIC criteria; •: uniform
prior over all segmentations, �: uniform prior over all segmentations of a dimension, − : α = β = 1,
−− : α = β = 0.1, · · · : α = β = 0.01.

4.2 Recovering the number of change-points

4.2.1 The ICL criterion performed better than the BIC criterion

Model selection. The BIC criterion for dimension selection, BIC(K), almost never returned the true
dimension, even for high values of λ (Figure 1, where α and β were set to 1). On the other hand, both
the BIC criterion for model selection, BIC(m), and the ICL criterion, ICL(K), tend to recover the true
dimension more often when λ became larger. ICL(K) even increased to a maximum of 99% true recoveries
compared to a maximum of 91% for the BIC(m) criterion for model selection.

Influence of the priors. The ability of BIC(m) to retrieve the true dimension was greatly affected
by the prior distribution of the segmentation (Figure 1). To illustrate this effect, we considered a prior
that gave equal probability to all segmentations, whatever their dimension: P (m) = cst. This led to a
90% decrease in the ability to return the true dimension compared to a conditional uniform prior given
the dimension (4) (with P (K(m)) = cst whatever m). The impact of the two hyperparameters α and
β seemed relatively limited in comparison: less than 10% difference in the ability to return the true
dimension (Figure 1).

Estimation of the mean signal. We then compared the ability of the maximum likelihood estimators
(MLE) and that of the posterior mean signal to recover the true signal in terms of the Kullback-Leibler
distance. For each simulation, we computed the following:

d(µ̂, µ) =
∑

t

KL[P(µ̂t);P(µt)]

for both the MLE estimate µ̂ = µ̂MLE and the posterior mean µ̂ = s̄K(t) (see equation (10)).
When K was lower than the true dimension (7 segments), the two estimates were almost equivalent

(Figure 2). However, for larger dimensions, the distance of the MLE to the true signal increased whereas
the distance of the posterior mean did not (Figure 2). The posterior mean seemed less prone to over-fitting.
Moreover, for a very small signal-to-noise ratio (λ = 1), the distance between the posterior mean of the
signal and the true signal still decreased when K was higher than the true dimension. Therefore, when
the signal was of poor quality and led to a poor assessment of the true dimension, the posterior mean of
the signal led to better results. Moreover, the standard deviation of d for the posterior mean is almost
always smaller than the one of the MLE (not shown).
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Figure 2: Kullblack-Leibler-based distance d to the true signal as a function of the dimension. �:
d(µ̂MLE, µ), N: d(µ, µ) for three value of λ 1: −, 2: −− and 6: · · · . The true number of segments was 7.

Figure 3: Left panel: Chromosome 10 profile of cell line BT474. The DNA copy number logratio is
represented as a function of its position along the chromosome. Right panel: (Left axis) BIC(m): N,
BIC(K): • and ICL(K): � as a function of the dimension. (Right axis) H(K)−H(K−1): ◦ as a function
of the dimension.

4.3 Analysis of a CGH profile

In the following subsection, we used a comparative genomic hybridation (CGH) profile to illustrate
our methodology. CGH enables the study of DNA copy number gains and losses along the genome
(Pinkel et al. (1998)). We used the Gaussian segmentation model defined in (7) that is often used for
this type of data (Picard et al. (2005)). The profile shown in Figure 3 represents the copy number logratio
of cell line BT474 to a normal reference sample, along chromosome 10.

Model selection. Since the true dimension was unknown, the first issue was to choose one. The
ICL(K) criterion selected 4 segments whereas BIC(m) selected a segmentation with 3 segments (Figure
3). The additional penalty term involved in ICL does not necessarily penalise larger dimensions. In our
example, ICL selected a segmentation with a larger dimension because it was more reliable. The choice
of ICL was motivated by the relatively small gain of entropy between dimensions 3 and 4. This choice
was also supported by the posterior distributions of the change-points and that of the segments shown
below. The best segmentations for 3 and 4 segments are shown on Figure 4 (i).
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Posterior probability of the change-point positions. The distribution of the successive change-
points for dimensions 3 and 4 are shown on Figure 4 (ii). For dimension 3, the exact intervals with
credibility 95% were J64, 78K and J92, 97K for τ2 and τ3, respectively. For dimension 4, the intervals wereJ66, 78K, J78, 97K and J91, 112K for τ2, τ3 and τ4, respectively.

The existence of a change-point at a given position t is assessed by posterior probability BK(t). Note
that, contrarily to BK,k(t), BK(t) is not a probability distribution over the positions, because its sum is
the number of change-points: K − 1. In our example, the posterior probabilities B4(t) presented sharper
peaks than B3(t) (see Figure 4 (iii)), which was consistent with the choice of the ICL criterion that
favours reliable segmentations.

Posterior probability of a segment. Similar conclusions were drawn from the posterior probability
of the segments. In Figure 4 (iv) each point corresponds to a segment. A reliable dimension should
display K sharp peaks. The position of the first two segments are very uncertain for K = 3, due to
the uncertainty of τ2. Their position were much more certain with K = 4. In particular, the smallest
segment from K = 4 at positions J78, 79K had a relatively high probability of 0.34.

Posterior mean of the signal. Similarly, the posterior mean for 3 segments was different from the
one for 4 segments (Figure 5); the former failed to capture the small deletion at J78, 79K. As soon as
K exceeded 4, the posterior mean of the signal was very stable, see the example for K = 5 segments in
Figure 5.

All presented results show that, the segmentation in 4 segments selected by the ICL(K) is more reliable
than the segmentation in 3 segments selected by the BIC(m).

Acknowledgements. We thank Marie-Pierre Etienne (AgroParisTech, UMR 518, Paris) for her helpful
advice for the writing of this paper. We also thank Thierry Dubois (Institut Curie, dpt de Transfert)
and Emmanuel Barillot (Institut Curie, MinesParisTech, INSERM, unité U900) for their support.
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au critère BIC : fondements théoriques et interprétation. J. Soc. Française Statis. 147 (1)
39–57.

[Muggeo (2003)] Muggeo, V. M. (2003). Estimating regression models with unknown break-points.
Stat. Med. 22 (19) 3055–3071.

[Picard et al. (2005)] Picard, F., Robin, S., Lavielle, M., Vaisse, C. and Daudin, J.-J. (2005).
A statistical approach for array CGH data analysis. BMC Bioinformatics. 6 (27) 1.
www.biomedcentral.com/1471-2105/6/27.

[Pinkel et al. (1998)] Pinkel, D., Segraves, R., Sudar, D., S.Clark, Poole, I., D.Kowbel,
C.Collins, Kuo, W., C.Chen, Zhai, Y., Dairkee, S., Ljung, B. and Gray, J. (1998). High
resolution analysis of DNA copy number variation using comparative genomic hybridization to
microarrays. Nature Genetics. (20) 207–211.

[Schwarz (1978)] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 (2) 461–4.

[Toms and Lesperance (2003)] Toms, J. D. and Lesperance, M. L. (2003). Piecewise regression: A
tool for identifying ecological thresholds. Ecology. 84 (8) 2034–2041.

[Zhang and Siegmund (2007)] Zhang, N. R. and Siegmund, D. O. (2007). A modified Bayes
information criterion with applications to the analysis of comparative genomic hybridization
data. Biometrics. 63 (1) 22–32.

A Lemma and Proofs

A.1 Proof of Theorem 2.1

The proof of the theorem relies on the following lemma.

Lemma A.1 Let A be a square matrix with n columns. For all k ∈ N, we define the function fA,k as:

∀(i, j) ∈ J1, nK2 fA,k(i, j) =
t1=i, tk+1=j∑

(t2···tk) ∈ J1,nKk−1

k∏
i=1

Ati,ti+1

The n elements of {fA,k(i, j)}{i ∈ J1,nK} for 1 ≤ k ≤ K can all be computed in O(Kn2) as

fA,k(i, j) = (Ak)i,j

.
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Proof of the Lemma. fA,k(i, j) = A1
i,j holds for k = 1. Suppose that fA(k, i, j) = Ak

i,j holds for a
given k ∈ N. For k + 1, we have:

fA,k+1(i, j) =
t1=i,tk+2=j∑

(t2···tk+1)∈J1,nKk

k+1∏
i=1

Ati,ti+1 =
n∑

t=1

t1=i,tk+1=t∑
(t2···tk)∈J1,nKk−1

k∏
i=1

Ati,ti+1 . At,j =
n∑

t=1

fA,k(i, t). At,j

Using our induction hypothesis and by definition of the matrix product, we obtain:

fA,k+1(i, j) =
n∑

t=1

Ak
i,tAt,j = Ak+1

i,j

Thus, the K × n elements of the form

{fA,k(t1, tk+1)}{k ∈ J1,KK ∩ tk+1 ∈ J1,nK}
can be computed in O(Kn2) as the t1-th line of matrices A, A2 · · · , AK respectively. �

Proof of the Theorem. For any (t1, ..., tk+1) in J1, n + 1Kk+1 such that we do not have t1 < t2 · · · <
tk+1,

∏k
i=1 Ati,ti+1 = 0. Therefore, for all k ∈ J1, KK and for all j in J1, nK:

∑
m∈Mk(J1,jJ) F (m) =

t1=1,tk+1=j∑
t1<t2···<tk+1

k∏
i=1

Ati,ti+1 =
t1=1,tk+1=j∑

(t2,...tk) ∈ J1,n+1Kk−1

k∏
i=1

Ati,ti+1

Using Lemma A.1 on matrix A and integer K, we see that the K × (n + 1) terms of the form ∑
m∈Mk(J1,jJ) F (m)


k ∈ J1,KK ∩ j∈J1,n+1K

can be computed as
∑

m∈Mk(J1,jJ) F (m) = (Ak)1,j and that therefore they can all be computed in
O(Kn2) as the first line of the successive powers of matrix A.

A.2 Proof of Proposition 2.3

Proof. We first consider the posterior distribution of the change-points. With Equation (9), we obtain

BK,k(t) =

∑
m∈BK,k(t) P (Y |m)P (m|K)

P (Y |K)
=

F1,t(k − 1)Ft,n+1(K − k + 1)
P (Y |K)

.

Using Theorem 2.1, we see that all the F functions can be computed in O(Kn2). O(K2n) products
and divisions remain to be done to compute all BK,k(t), so the overall complexity is in O(Kn2). The
probability BK(t) follows straightforwardly.

We now consider the posterior distribution of the segments. We first quote that if t1 = 1, then
SK,1(1, t2) = BK,2(t2). Similarly, when t2 = n + 1, we have SK,K(t1, t2) = BK,K(t1). So we only have to
consider the case where 1 < t1 ≤ t2 < n + 1. Since SK,k(Jt1, t2J) can be decomposed as

SK,k(Jt1, t2J) = Mk−1(J1, t1J)× {Jt1, t2J} ×MK−k(Jt2, n + 1J),
we have

SK,k(t1, t2) =

∑
m∈SK,k(Jt1,t2J) P (Y |m)P (m|k)

P (Y |K)
=

F1,t1(k − 1)Ft1,t2(1)Ft2,n+1(K − k)
P (Y |K)

.

Again using Theorem 2.1, we see that all the F functions can be computed in O(Kn2). We then need to
compute O(n2) products and divisions to get the SK,k(t1, t2), thus the overall complexity is in O(Kn2).
The last probability comes from the definition of SK(t1, t2). O(Kn2) additions remain to be done the
overall complexity is therefore in O(Kn2). �
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(i)

(ii)

(iii)

(iv)

Figure 4: (i): Best segmentation of the profile in 3 (left) and 4 (right) segments. • represent the logratio
as a function of the position along the chromosome. −: averaged signal of the segment. · · · : change-point
positions. (ii): Posterior probability that the k-th change-point is at position t knowing that there is
either 3 (left) or 4 (right) segments. Probability of the first change-point: −, probability of the second
change-point: −− and probability of the third change-point: · · · . (iii): Posterior probability that there
is a change-point at position t knowing that there is 3 (right) or 4 (left) segments. (iv) : 3D plot of the
probability of all segments. Left panel: K = 3 segments; right panel: K = 4 segments. x-axis: t1, y-axis:
t2, z-axis: S(Jt1, t2J).
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Figure 5: Posterior mean of the signal; Left: K = 3 segments; Center: K = 4 segments; Right: K = 5
segments. •: logratio as a function of the position along the chromosome. −: posterior mean of the
signal. · · · : change-point positions of the best segmentation.
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5.5. OPTIMAL COMPUTATIONAL SCHEME FOR LARGE DNA COPY NUMBER PROFILES89

5.5 Optimal computational scheme for large DNA copy num-

ber profiles

This section highlights the pruned Dynamic Programming Algorithm (DPA) I developed to enable

the analysis of very large DNA copy number profiles (at least up to 106 points) with respect to the

MSE criterion on a regular computer (Rigaill (2010b), the paper is provided in the next section 5.6).

I will refer to this paper as the “pruned DPA” paper). The computational strategy has become one

of the major problems regarding CGH and SNP profile data analysis, due to the increasing size of

this data (Venkatraman and Olshen, 2007; Ben-Yaacov and Eldar, 2008; Lai et al., 2008; Tibshirani

and Wang, 2008). Execution time of the strategy is now one of the foremost issues when developing

new methods. Indeed, several methods developed for CGH arrays cannot be used for large profiles

because their execution time is too long (several days). For example, it is the case of CGHseg. Indeed

the original DPA used in CGHseg to recover the best segmentation with respect to the MSE is too

complex.

There are two reasons for this complexity: a space complexity and a time complexity problem. For

large (more than 10000 points) DNA copy number profiles, it requires too much memory (RAM) to

run on a regular computer. This problem has been solved quite recently (Guédon, 2008) by adapting

a forward-backward dynamic programming algorithm proposed by (Auger and Lawrence, 1989). I

implemented this trick in the case of the CGHseg methodology enabling the analysis of larger profiles,

up to 105 points (unpublished results).

However, this trick does not solve the time issue. It does enable the analysis of profiles up to 105

points but it takes several hours to do so with a modern computer. Still, when compared to the time

needed to collect the tumor sample and perform the experiments (usually several months), it does not

seem that long. The relationship between the time and the size of the profile is quadratic, i.e. the

time is proportional to the square of the size. Overall, the time required to analyze a single Affymetrix

SNP 6.0 on one computer should be several days.

Thus this time problem is still an issue and recovering the best segmentation with respect to the

MSE is a known problem not only for DNA copy number profile analysis but for other fields as well
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(see Harchaoui and Levy-Leduc (2008); Gey and Lebarbier (2008) and references therein). Several

strategies have been proposed to avoid this problem, e.g.:

• changing the optimization problem slightly (Harchaoui and Levy-Leduc, 2008);

• using a heuristic (Gey and Lebarbier, 2008).

It is important to note that, these methods do not recover the optimal solution with respect to the

MSE. Using them allows faster run-times, but at the cost of some errors. With some luck, one would

hope to recover a solution that is not too far from the best solution, or even the best solution . In

relatively simple examples, it can be the case, but it cannot be guaranteed. When it comes to biological

interpretation, this is big issue, as you cannot be sure that the identified breakpoints are the best, and

can have no idea how close or how far you are from them.

I will now give an example to show that segmentation is not a simple computational problem,

though it intuitively seems to be so. One of the usual ideas to recover a good segmentation of the data

is to use a recursive scheme. The simplest recursive scheme is the following. First you cut the signal

optimally into two pieces. Then you iterate the process on each of the two pieces. This seems like a

sound idea, but it is not optimal. Indeed, to cut a cake in three equal pieces, you should not start by

cutting the cake into two equal pieces. But, we all know, that cutting a cake is a problematic issue! As

illustrated by this seemingly simple example, as well as by Figure 5.2, this procedure is bound to fail.

Indeed, choosing where to cut before knowing how many pieces will be needed is hazardous. While

these are specific counterexamples, there are some more robust recursive segmentation methodologies.

Still, many of these need to rely on a post-processing step to discard irrelevantly identified breakpoints

(Olshen et al., 2004; Harchaoui and Levy-Leduc, 2008; Gey and Lebarbier, 2008) and it seems unlikely

for these errors not to have influenced the following decisions. Overall, and if possible, one should

always prefer an optimal computational scheme (an algorithm strictu senso) over a heuristic.

In the piecewise constant segmentation problem there are two types of parameters the positions

of the breakpoints and the mean level in between each of these breakpoints. The original DPA first

optimize the level within each segment. Then knowing these optimal values, it searches for the optimal

breakpoint positions. The key idea of the pruned DPA is to work the other way around. First, the
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Figure 5.2: Cutting a signal into two segments based on a recursive methodology. The x-axis is the position

along the genome and the y-axis is the intensity. The measured signal is represented by black dots. The

true signal is represented as a red dotted line. The position of the best cut in two pieces of the signal is

represented by the vertical blue line. Here, the signal is small and the noise is relatively low so it should be

quite easy to recover the true position of breakpoints manually. The best segmentation in 7 segments with

respect to the MSE is indeed the true signal.
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pruned DPA optimizes the position of the breakpoints for any possible values of the signal. Then

knowing these solutions it optimizes the mean level within each segment. For a more complete intuition

of the algorithm see section 2 on page 2 of the pruned DPA paper. For a full description see section

3 on page 3 of the paper. The overall run-time to scan an Affymetrix SNP 6.0 array chromosome by

chromosome with this algorithm is about 3 minutes with a regular computer (see subsection 5.2 at

page 8 of the paper). To my knowledge, the only other optimal schemes available to optimize the MSE

are:

• the original DP algorithm (Bellman, 1961), which cannot be run due to the RAM space issue;

• the linear space DP algorithm (Guédon, 2008), which would take several days to scan the previous

array.

The pruned DPA is faster than the original one and obtains exactly the same results. Since the

original DPA has been validated for small CGH profiles (less than 10000 points), one can assume that

the results obtained by the pruned version are also valid for such values as well as larger ones. Also,

for larger values, the results are based on more points and therefore, might actually be even more

reliable. To conclude, using the pruned DPA I have developed, it is now possible to recover the best

segmentation of the data with respect to the MSE in a reasonable amount of time. We have seen

that this MSE criteria is relatively well adapted for the analysis of SNP or CGH arrays (Lai et al.,

2005), though sometimes SNP and CGH arrays are plagued by outliers. In such cases, it would be

interesting to use criteria more robust to outliers such as the L1 loss. It can be hoped that adapting

the pruned DP algorithm to the L1 loss is possible with only a few more computational tricks. Also,

note that a very efficient algorithm was proposed to recover the best segmentation with respect to

the L∞ loss (Fournier and Vigneron, 2008). Finally, the pruned DP algorithm has been implemented

in an R package and will soon be made available. It has already been used for the analysis of the

Curie-Servier dataset and was made available for several collaborators of the Institut Curie.
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5.6 Paper: Pruned dynamic programming for segmentation

This paper is available on arxiv: 1004.0887.



Pruned dynamic programming for optimal multiple

change-point detection

Guillem Rigaill
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Abstract

Change-point detection problems are a common occurrence, and therefore have been exten-

sively studied. Yet, finding the best change-points w.r.t. the quadratic loss of a one dimensional

piecewise-constant signal remains a major computational bottleneck, especially for large datasets.

Indeed, the complexity of the Dynamic Programming Algorithm (DPA) that is generally used

is far too important to analyze large datasets. Faster methods exits, but they do not recover

the optimal solution. We propose a pruned DPA that recovers the best change-points w.r.t. the

quadratic loss, and prove that its complexity is at worst equivalent to the original DPA. Moreover,

we show empirically, both with simulated and real data of up to a million points, that the pruned

DPA can actually be used to analyse large datasets. The algorithm is proposed for an entire class

of loss functions, including the quadratic and Poisson functions. Moreover, seeing that it processes

one point after the other, it could be adapted to on-line data.

1 Introduction

Segmentation and change-point detection problems are a common occurrence in various fields of re-
search, such as econometrics [1], audio [2] and molecular biology [3]. The task consists in splitting the
signal in K homogeneous and contiguous segments of variable length. These segments are delimited
by K − 1 change-points and can be identified on-line (sequentially) or off-line (retrospectively) [4].
It is well known that for the off-line detection problem, a Dynamic Programming Algorithm (DPA)
recovers the optimal solution w.r.t. the quadratic loss of an n-point signal in Θ(Kn2) time ([5], [6],
[7]) and Θ(Kn) space ([8]). In practice, the quadratic time complexity in n restricts the use of such
an algorithm to small or intermediate values of n.

In order to handle large datasets and get around the problem of complexity, several approaches were
proposed, relying on efficient heuristics (see [9]) or on small modifications of the optimization problem
(see [10], [11]). However these methods do not recover the optimal solution w.r.t. the quadratic loss.
Using them allows faster run-times, but at the cost of some errors. Many other fast methods exist, for
example wavelets denoising (see for example [12]), or particle filters (see [13], [14]) but they were not
developed to optimize the same criteria.

Our contribution In this paper, we will present a pruned DPA that efficiently recovers the optimal
K − 1 change-points w.r.t. the quadratic loss of a one-dimensional piecewise-constant signal. We will
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prove that its complexity is at worst equivalent to the original DPA both in time (O(Kn2)) and space
(O(Kn), [8]). Moreover, we will show empirically that the pruned DPA is in many cases faster than
the original DPA, especially for large datasets. For example, the pruned DPA processes large SNP
(Single Nucleotide Polymorphism) profiles of a million points in a few minutes while the original DPA
would take several days. The pruned DPA algorithm works for a whole class of convex loss functions,
including the quadratic and Poisson functions. The algorithm processes one observation after the
other, and therefore could be adapted to on-line data.

Outline In Section 2, we will describe our framework, give a brief overview of the original DPA ([5],
[6], [7]) and outline the key principle of the algorithm we worked on. In Section 3, we will describe
this pruned DPA, in Section 4 we will demonstrate its worst case complexity and in Section 5 we will
empirically compare the runtime of our pruned DPA and the original DPA on both simulated and real
data. In the last section we will give a detailed proof of the algorithm’s complexity.

2 From the original to the pruned DPA

In this section we first outline the original DPA. We then propose a linear time dynamic programming
heuristic as a first step towards the exact pruned DPA.

2.1 Framework and original DPA

We consider a sequence of n observations {Yi}i∈J1,nK in a set A (e.g. N, R, . . . ). We call MK,t the
set of all possible segmentations in K segments up to point t. The number of possible segmentations,
card(MK,t), is

(
t−1
K−1

)
. We denote rk(m) = Jτk(m), τk+1(m)J = {τk(m), . . . , τk+1(m) − 1} the k-th

segment of segmentation m delimited by change-points τk(m) and τk+1(m). With the convention that
τ1(m) = 1 and τK+1(m) = t+ 1, any segmentation m ofMK,t is defined as {r1(m), . . . , rK(m)}. Both
the original and proposed pruned DPA recover:

argmin{m ∈ MK,n}{
∑
r ∈ m

min{µ ∈ R}{
∑
i ∈ r γ(Yi, µ)}}

where γ : A × R → R is a convex function of µ. Throughout the paper we will take the quadratic
loss, γ(Yi, µ) = (Yi − µ)2, as a leading example.

For any segment r, we define its cost as gr(µ) =
∑
i ∈ r γ(Yi, µ) and its optimal cost as cr =

minµ{gr(µ)}. We define Ck,t = min{m ∈ Mk,t}{
∑
r ∈ m cr }. As Ck,t is segment-additive, it is easy

to prove for k ≥ 2 the following update equation:

∀ t ≥ k Ck,t = min
k−1≤j<t

{ Ck−1,j + cJj+1,t+1J} (1)

Using update equation (1), the original DPA performs t comparisons at each step and therefore retrieves
CK,n in exactly Θ(Kn2) runtime.
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2.2 A simple linear-time dynamic programming heuristic

If we know the value of the last segment, the optimization problem becomes much simpler. Indeed,
the task consist in minimizing for a given µ, Hk,t(µ):

Hk,t(µ) = min{m ∈ Mk,t}{
rk−1(m)∑
r=r1(m)

cr + grk(m)(µ)},

Note that grk(m)(µ) is point-additive and, similarly to CK,t, Hk,t(µ) is segment-additive. This way we
retrieve in a straightforward way the update equation:

∀ t ≥ k Hk,t+1(µ) = min ( Hk,t(µ), Ck−1,t ) + γ(Yt+1, µ) (2)

Using update equation (2), only one comparison is done at each step and Hk,n(µ) is retrieved in
linear-time. Unfortunately, in most cases we do not know the value of µ. A basic heuristic method
is to test a large but finite set of possible values for µ denoted here {µp}p∈J1,P K and use equation
(2) repeatedly to recover all HK,n(µp) in Θ(KPn) runtime and retrieve an upper bound of CK,n as
minp∈J1,P K{HK,n(µp)}.

However, this method is heuristic based and therefore does not necessarily retrieve the optimal
solution. If we want to get a solution that is closer to the optimal one, we simply increase the number
of tested values µp. For each of these tested µp the proposed heuristic method stores an optimal
last change-point. Intuitively, two very close tested values of µ probably share the same optimal last
change-point. In other words, the heuristic probably stores several times the same information and it
seems that only critical values of µ, corresponding to a change in the last optimal change-point, are
needed. The pruned DPA is built on this idea and updates at each step the set of critical values.

3 Pruned DP algorithm for segmentation

In this section, we describe the pruned DPA. Briefly, for each total number of segments, k, from 2
to K, the algorithm works on a list of candidate last change-points, Candidatesk. For each of these
change-points, t′, the algorithm stores:

• its cost, Costk,t′ , as a function of µ which is the mean of the last segment;

• its set of µ winning intervals, Setk,t′ , for which the change-point t′ is optimal.

The bounds of these winning intervals are the critical values of µ described in subsection 2.2. With
every new data point, the pruned DPA efficiently updates and prunes the list of candidates and their
associated costs and winning intervals.

3.1 The algorithm

More precisely, we define hk,t,t′(µ) as the cost of the best candidate segmentation in k segments with
a last change-point at position t′ and a last segment mean value of µ:

∀ t′ < t hk,t,t′(µ) = Ck−1,t′ +
t∑

i=t′+1

γ(Yi, µ),
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We have: Hk,t(µ) = min{t′ ∈ Jk−1,t−1K}{ hk,t,t′(µ) }. We define Sk,t,t′ as the set of µ values such that
a last change-point at t′ is optimal:

Sk,t,t′ = {µ | hk,t,t′(µ) = Hk,t(µ)}.

We denote Ik,t,t′ as the set of µ values such that a last change at t′ is better than a change at t:

Ik,t,t′ = { µ | hk,t,t′(µ) ≤ Ck−1,t }.

As γ is convex, hk,t,t′ is convex and thus Ik,t,t′ is an interval.
Here we review the key properties of hk,t,t′ and Sk,t,t′ that allow, in the course of the pruned DPA,

to simply update the cost functions (Costk,t′) and the winning intervals (Setk,t′) and to efficiently
prune the candidate last change-points.

Proposition 3.1
Cost ∀ t > t′ hk,t+1,t′(µ) = hk,t,t′(µ) + γ(Yt+1, µ)

Interval
∀ t > t′ ≥ k, Sk,t+1,t′ = Sk,t,t′ ∩ Ik,t,t′
∀ t′ ≥ k, Sk,t′,t′ , = {R(∪t∈Jk−1,t′−1KIk,t,t′)

Pruning Sk,t,t′ = ∅ ⇒ ∀ t∗ ≥ t Sk,t∗,t′ = ∅
The Cost property is obvious. The proofs of the other properties rely on the Cost property and are left
to the reader. Interestingly, using the interval property we see that, as all Ik,t,t′ are intervals, all Sk,t,t′
are finite union of intervals. In other words the pruning rule says that, if at observation t candidate t′

is beaten for every possible µ then whatever the observations after t the best segmentation does not
change at t′.

In the DPA, Costk,t′ and Setk,t′ store respectively the successive hk,t,t′ and Sk,t,t′ using the Cost
and Interval properties (see Proposition 3.1). As soon as Setk,t′ is empty t′ is discarded from the list of
candidates using the Pruning property (see Proposition 3.1). Importantly, in the case of the quadratic
loss, γ(Yi, µ) = (Yi − µ)2, cost functions, Costk,t′ , are stored as a second degree polynomial function
of µ and sets of winning intervals, Setk,t′ , are all initialized as [mini(Yi),maxi(Yi)].

For each possible number of segments, k, from 2 to K the DPA proceeds schematically as follows.
First the list of candidates is initialized as {k− 1} because the first possible last change-point is k− 1.
Then for every new data point t:

1. a new candidate change-point t is initialized ;

2. all previous candidate cost functions are updated ;

3. these cost functions are compared to the new one to update the winning intervals ;

4. all candidates with an empty set are discarded ;

5. the best candidate at point t is retrieved.

The pruned DPA is described in more details in Algorithm 1 for a given k ≥ 2. For k = 1, all
C1,t are computed in Θ(n) as in the original DPA. Importantly, the algorithm gradually includes the
observed data points and therefore is suitable for the detection of change-points in on-line data.
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Algorithm 1 Pruned DPA
Candidatesk := {k − 1}
Costk,k−1 := Ck−1,k−1 ; Setk,k−1 := D

for t from k to n− 1 do
Costk,t := Ck−1,t ; Setk,t := D

for l ∈ Candidatesk do
Costk,l := Costk,l + γ(Yt, .)
I = {µ | Costk,l(µ) ≤ Costk,t}
Setk,l := Setk,l ∩ I
if Setk,l = ∅ then

Candidatesk := Candidatesk \ {l}
end if
Setk,t := Setk,t \ I

end for
if Setk,t 6= ∅ then

Candidatesk := Candidatesk ∪ {t}
end if
Ck,t = min{l∈Candidatesk}{minµ (Costk,l)}

end for
for l ∈ Candidatesk do
Costk,l := Costk,l + γ(Yt, .)

end for
Ck,n = min{l∈Candidatesk}{minµ (Costk,l)}
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3.2 An example

In this subsection, we illustrate the proposed pruned DPA with a four-point signal for k = 2 segments.
These four points are respectively 0, 0.5, 0.4,−0.5 (see Figure 1-A).

Step 1 The algorithm initializes the candidate t′ = 1. It is represented in Figure 1-B and stored as:

Candidate Cost function Set of Intervals

t′ = 1 Cost2,1 = C1,1 = 0 Set2,1 = [−0.5, 0.5 ]

Step 2 Then, the pruned DPA initializes candidate t′ = 2. It adds (Y2−µ)2 = (0.5−µ)2 to the cost
function of t′ = 1. Next, it compares candidate t′ = 1 and t′ = 2 and updates their winning intervals.
These two candidates are represented in Figure 1-C and stored as:

Candidate Cost function Set of Intervals

t′ = 1 Cost2,1 = 0.25− µ+ µ2 Set2,1 = [ 0.146 , 0.5 ]

t′ = 2 Cost2,2 = C1,2 = 0.125 Set2,2 = [−0.5, 0.146 ]

Step 3 Then, the pruned DPA initializes a new candidate t′ = 3. It adds (Y3 − µ)2 = (0.4− µ)2 to
the cost functions of both candidate t′ = 1 and t′ = 2. Next, it compares these two candidates to the
new candidate t′ = 3 and updates their winning intervals. Figure 1-D shows that candidate t′ = 2 is
beaten for all possible µ and thus is discarded by the algorithm. In the end, the algorithm stores:

Candidate Cost function Set of Intervals

t′ = 1 Cost2,1 = 0.41− 1.8µ+ 2µ2 Set2,1 = [ 0.190 , 0.5 ]

t′ = 3 Cost2,3 = C1,3 = 0.14 Set2,3 = [−0.5, 0.190 ]

Step 4 Finally, the algorithm adds (Y4 − µ)2 = (−0.5− µ)2 to all candidates and retrieves :

Candidate Cost function Set of Intervals

t′ = 1 Cost2,1 = 0.66− 0.8µ+ 3µ2 Set2,1 = [ 0.190 , 0.5 ]

t′ = 3 Cost2,3 = 0.39 + µ+ µ2 Set2,3 = [−0.5, 0.190 ]

Figure 1-E shows that the best segmentation in 2 segments for the four-point signal is obtained for
µ = −0.5 and a last change-point t′ = 3.

4 Worst case complexity

In this section, we prove that, if the loss function γ is convex, the complexity of the pruned DPA is at
worst in O(Kn2) time and in O(Kn) space. We obtain this complexity by bounding the total number
of intervals stored by the algorithm (see section 7).

More precisely, for a given number of segments k and a given point i of the algorithm at most i−k+2
change-point candidates need to be updated. For each candidate change-point t the algorithm will first
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Figure 1: A: Four point signal, with Yi as a function of i. B, C, D, E: Cost as functions of µ and the
last change-point. Successive candidate functions stored by the pruned DPA are represented: Cost2,1
in straight line, Cost2,2 in dashed line and Cost2,3 in dotted line. The four graphs correspond to the
different steps described in subsection 3.2, B: Step 1, C: Step 2, bottom D: Step 3, E: Step 4.

update the cost function Costk,t, compute its minimum value and the roots of Costk,t(µ) = Ck−1,i.
All these steps are of complexity O(1), at least for the quadratic loss. Then, the algorithm updates
the set of winning intervals Setk,t. One would think the number of intervals to update would increase
too fast. But, in fact, it doesn’t. Indeed, theorem 7.3, demonstrated in the section 7, shows that if γ
is convex and if there are i candidates then the total number of intervals is at most 2i− 1 and thus at
each step there are at most O(i) intervals to update. Thus at point i the time complexity is of O(i)
and we retrieve an overall K

∑n
i=1O(i) = O(Kn2) time complexity. Similarly, at point i the DPA

stores O(i) cost functions, O(i) intervals and, as in the original DPA, the best segmentation in k up
to point t (Ck,t). Thus we retrieve an overall Θ(Kn) space complexity.

In the case of the quadratic loss, the worst bound O(Kn2) is reached with the sequence Yi = i.
Indeed, in this case, all new candidate change-points are kept so that at step i there are at least
i−k+ 2 candidates and intervals to update and we can retrieve a lower bound on the time complexity
of Ω(Kn2). However, most interestingly, for a constant signal with no noise, it is easy to see that the
complexity is in exactly Θ(Kn) as the algorithm will keep only one candidate change-point at each
step. Therefore we can expect that for more or less piecewise-constant signal the complexity will be
closer to O(Kn) than to O(Kn2).

5 Empirical complexity

For this section, we assessed, in the case of the quadratic loss, the efficiency of the pruned DPA to
analyze both simulated and real data. The algorithm was implemented in C++ and was run on a
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3.16GHz Intel(R) Xeon X5460.

5.1 Simulated data

Using a constant, sinusoid or rectangular signal we have simulated a series of sequences. For the sinusoid
and rectangular waves we consider various amplitudes and frequencies. We considered a Gaussian noise
of variance 1, a uniform noise of variance 1, a chi-square noise of variance 1 and a Cauchy noise. We
compared the pruned DPA to the original one for rather small sample sizes, n ≤ 214. We checked that
the two algorithms retrieved the same result and compared their runtimes. We evaluated the runtime
of the pruned DPA to process signals of a million points. Finally, we computed at each step of the
pruned DPA the maximum number of intervals stored. For all these tests we set K = 50.

Figure 2-A shows that the pruned DPA was clearly faster than the original DPA for a constant
signals with a normal noise as soon as n = 4000. Similar results were obtained for other simulated
signals. For million-point signals, the pruned DPA had a runtime around 80-250 seconds depending on
the nature of the signal and the type of noise. Figures 3-A and 3-B show, for constant and sine wave
signals, the limited number of intervals stored by the pruned DPA and thus demonstrates the efficiency
of pruning candidate change-points. For all simulated signals, the maximum number of intervals stored
by the pruned DPA was 87 instead of a theoretical maximum of 2× 106 − 1 (see section 4).

5.2 Real data

We use the publicly available GSE17359 project from GEO (http://www.ncbi.nlm.nih.gov/geo/). This
data set is made of 18 SNP (Single Nucleotide Polymorphism) array experiments. SNP arrays enable
the study of DNA copy number gains and losses along the genome. For this kind of data a multiple
change-point detection procedure based on the quadratic loss is often used [3]. For each SNP array
experiment, there are two signals of almost a million points each (SNP and CNV: Copy Number
Variant). These two signals correspond to 24 chromosomes that were analyzed separately and together
with K = 50.

As shown on Figure 2-B, the 18×2×24 profiles of up to 8.104 points could be analyzed in less than
20 seconds by the DPA. The maximum runtimes to analyze the million-point CNV profiles and SNP
profiles were respectively 113 and 109. The maximum number of intervals stored by the algorithm
never exceeded 50 and is summarized in Figure 3-C for the CNV profiles.

Given the nature of these results on both synthetic and real data, we believe the pruned DPA we
presented performs an efficient pruning of the candidate change-points and can actually be used to
recover the best change-points w.r.t. the quadratic loss of large datasets.

6 Conclusion

Using the quadratic loss for off-line multiple change-point estimation is something various fields of
research have in common, from econometrics [1] to molecular biology [3]. It has been extensively studied
from a theoretical point of view, in both an asymptotic [15] and a non-asymptotic [16] setting. However
retrieving the best set of K-1 change points w.r.t. quadratic loss remained a major computation
bottleneck due to the very large number of possible segmentations:

(
n−1
K−1

)
. Until now, the best

algorithm in use was a DPA with a quadratic complexity of O(Kn2) , therefore hard to use for large

8



A B

Figure 2: A: Mean runtime in seconds of the original (◦) and pruned DPA (•) for simulated constant
signal with a normal noise for sequences up to 214 points, B: Runtime in seconds of the pruned DPA
for the 18× 2× 24 profiles of the GSE17359 dataset.

A B C

Figure 3: Maximum number of intervals stored by the pruned DPA at each point of the signal for
k = 2. A: For 100 simulated constant signals of 106 points with a normal noise of variance 1. B: for
100 simulated sine wave signals of 106 points with a normal noise of variance 1. C: for 18 CNV profiles
of almost 106 points.
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datasets. Faster methods were proposed ([9], [10] and [11]) to cope with large datasets but they do
not recover the best solution. In this paper we have presented a pruned DPA that recovers the best
change-points w.r.t. the quadratic loss. We have proved that it is at least as efficient as the original
DPA. Moreover, we have shown empirically, both with simulated and real datasets, this algorithm’s
ability to process large datasets of up to a million points in only a few seconds or a few minutes.
These results lead us to think that the pruned DPA we presented overcomes the quadratic complexity
bottleneck, and provides an efficient way to recover the best change-points w.r.t. the quadratic loss
for large piecewise-constant signals.

7 Bound on the number of intervals

In this section, we study a special class of function that we denote B and demonstrate theorem 7.3.
A direct application of this theorem shows that if there are t candidate change-points, then there are
at most 2t− 1 intervals. We used this theorem in section 4 to prove the worst case complexity of the
pruned DPA.

7.1 B functions

Definition 7.1.1 Let Bn denote the set of all functions B : R→ R such that

∀ µ ∈ R, B(µ) = min{t ∈ J1,nK} {uB,t +
n+1∑
j=t+1

fB,j(µ)}

where all uB,t are real numbers and all fB,j are convex functions of µ. Note that Bn ⊂ Bn+1. Let B
=
⋃Bn.

Definition 7.1.2 For any B in Bn and A a subset of J1, nK we define the function BA as

BA(µ) = min{t ∈ A} {uB,t +
n+1∑
j=t+1

fB,j(µ)}

Proposition 7.1 BA ∈ Bcard(A)

It is easily shown for A = J1, nK \ {i} with i in J1, nK and thus by induction it is true for any A.

Definition 7.1.3 The rank of a function B ∈ B is R(B) = min{n ∈ N∗ |B ∈ Bn}

7.2 Decomposition in intervals and order of B
Definition 7.2.1 Let I be a partition of R in a finite set of intervals I = {Ij}{j∈J1,kK}. I is a
k-decomposition of a function B ∈ B if

∀ Ij , ∃ i, ∀x ∈ Ij Bi(x) = B(x)

The set of all B functions with a k-decomposition is denoted Bk. Similarly the set of all Bn functions
with a k-decomposition is denoted Bkn.

Proposition 7.2 If B is B then there exists a k-decomposition of B.

Definition 7.2.2 The order O(B) of a B function is min{k ∈ N∗|B ∈ Bk }
Theorem 7.3 For all B ∈ B, we have O(B) ≤ 2×R(B)− 1.

10



Proof We demonstrate this theorem by induction. It is true if O(B) = 1. Assume it is true for any
B with O(B) = n. Let B ∈ B with O(B) = n+ 1. We have:

∀µ ∈ R, B(µ) = min{BJ1,nK(µ), B{n+1}(µ)}
B(µ) = min{C(µ), uB,n+1}+ fB,n+2(µ),

where C ∈ Bn:

C(µ) = {uB,t +
n+1∑
j=t+1

fB,j(µ)}

Let I =
⋃
j∈J1,kK Ij be the smallest set of intervals such that:

∀ Ij ∈ I, ∀ µ ∈ Ij uB,n+1 > C(µ)

Let Ak be the subset of J1, nK defined as {i | ∃ x ∈ Ik C{i}(x) < uB,n+1}. As R(B) = n + 1
and as for all i in J1, nK C{i} is convex, there exists a unique j such that i ∈ Aj and therefore∑k
j=1 card(Aj) = n.
In each interval Ik, we have C(µ) = CAk

(µ). By induction, O(CAk
) ≤ 2× card(Ak)− 1.

Overall, for any B with O(B) = n+ 1, we have:

O(B) ≤ ∑k
j=1O(CAk

) + (k + 1) ≤ 2
k∑
j=1

card(Ak) + 1 ≤ 2n+ 1 ≤ 2R(B) + 1 �
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Chapter 6

Analysis of the Curie-Servier

Genomic dataset

In this chapter, I give a review of genomic alterations in breast tumors. Then I present the first results

of my analysis of the genomic dataset gathered by the Curie-Servier alliance.

6.1 Genomic alterations in breast cancers and in TNBC

The genomic alterations of breast cancer cells as well as the clinical implications of recurrently alter-

ated regions have been studied for a long time (Gray et al., 1994). Several recurrently alterated regions

were identified using cytogenetics, Fluorescence In Situ Hybridisation (FISH) and chromosome-based

CGH. Two well-known features are the gain of 8q24 (including the MYC gene) and the gain of 17q12

(including the ERBB2 gene). It was observed that some of these alterations often occur together (see

Bärlund et al. (1997); Courjal et al. (1997)). Courjal et al. (1997) analyzed 15 different positions along

the genome in 1875 breast tumors. This very high number of samples undoubtedly gave them remark-

able statistical power to detect recurrent alterations at those positions and to analyze correlations

between those 15 positions or between those positions and other clinical parameters.

The development of CGH arrays allowed the analysis of individual breast tumor genomic rear-
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rangements with a much higher resolution (Pinkel et al., 1998). CGH arrays and SNP arrays contain

from 10 thousand up to 1 million probes. Many groups have studied the complexity of breast cancer

DNA copy number and LOH rearrangements using this technology (see for example Loo et al. (2004);

Wang et al. (2004); Naylor et al. (2005); Bergamaschi et al. (2006); Chin et al. (2006); Stange et al.

(2006); Hicks et al. (2006); Fridlyand et al. (2006) and more recently Chin et al. (2007); Haverty et al.

(2008); Han et al. (2008); Loo et al. (2008); Argos et al. (2008); Andre et al. (2009); Jönsson et al.

(2010); Staaf et al. (2010)). These analyses have successively revealed ever more refined lists of genomic

rearrangements. They also revealed the existence of different types of genomic rearrangement patterns

known as “sawtooth”, “firestorm” and “simple”.

Sawtooth Sawtooth profiles are characterized by a very complex pattern with many small rearrange-

ments of low amplitude. This pattern is very common in TNBC. This type of profile recurrently

gains 10p and losses 3p, 4p and 4q, 5q, 14q and 15q. This pattern is illustrated in the genomic

Curie-Servier dataset on Figure 6.1 A.

Firestorm Firestorm patterns harbor focal DNA copy number amplifications of high amplitudes. It

is typical of both Luminal B and ER- / HER2+ tumors. Among the recurrent focal amplification

sites are: 8q24 (that includes MYC), 17q12 (ERBB2), 8p12 (FGFR1), 11q13 (CCND1). This

pattern is illustrated in the genomic Curie-Servier dataset on Figure 6.1 B.

Simple Simple profiles harbor very few rearrangements except for a recurrent gain of 1q and 16p and

loss of 16q. This type of profile is often found in Luminal A tumors and a typical example is

shown on Figure 6.1 C.

To conclude this quick review of genomic rearrangements in breast tumors (for more information,

see the review by Kwei et al. (2010)), I will highlight some of the insight brought by high-throughput

sequencing and more specifically by the paired-end sequencing strategy (Volik et al., 2003). Briefly, in

this technique, pieces of the tumoral genome are retrieved and the ends of these pieces are sequenced.

Using paired-end sequencing, it is possible to measure DNA copy number and assess rearrangements.

The DNA copy number is measured by counting the number of reads in each region of the genome.
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A

B

C

Figure 6.1: Breast genomic patterns. Three examples using the Curie-Servier genomic dataset. (A) A

sawtooth profile of a TNBC sample with many low-amplitude alterations. (B) A firestorm profile of a

Luminal B tumor with sharp high-amplitude alterations. (C) A simple profile of a Luminal A tumor with

very few alterations except the gain of 1q, 16p and loss of 16q. The x-axis is the position along the genome

with the 22 autosomes separated by dashed vertical lines. The y-axis is the intensity. The segmented profiles

are represented as red piecewise-constant lines.
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Rearrangements are detected when two sequenced ends match conflicting regions of the reference

genome (for example two different chromosomes). This technique has revealed yet another level of

complexity (Campbell et al., 2008; Stephens et al., 2009). It showed that rearrangements are much

more frequent than what was previously thought. Moreover, various patterns of rearrangements have

been identified, more or less matching the genomic patterns identified with CGH. In the case of TNBC,

it also revealed the existence of relatively small rearrangements ranging from a few kilobases to a few

megabases that could not be detected using CGH arrays.

While many TNBC samples present a sawtooth genomic profile, the mechanisms underlying these

numerous rearrangements are not yet understood. The number of these rearrangements nonetheless

hints at a problem in terms of DNA repair mechanisms. As previously mentioned, sporadic TNBC are

similar to BRCA1-associated tumors in terms of their histology (Foulkes et al., 2003). Interestingly,

BRCA1-associated tumors also have sawtooth genomic patterns (Fridlyand et al., 2006) and similarly

to TNBC they lack markers of an inactive X chromosome (Richardson et al., 2006). All this lead to

the hypothesis that BRCA1 is defective in sporadic TNBC (Turner et al., 2006). A defective BRCA1

induces a defect in homologous recombination (HR) that favors error-prone repairs of DNA and in the

end leads to chromosome rearrangements. This defect in BRCA1 would thus explain the very complex

DNA profile patterns of both sporadic TNBC and BRCA1-associated tumors. Yet, other phenomena

can explain the similarity between TNBC and BRCA1-related tumors. For example, the very frequent

mutation of TP53 (Manié et al., 2009) in both types of tumor or the loss of PTEN (Marty et al., 2008;

Saal et al., 2008). Indeed, both TP53 and PTEN have been shown to modulate defects in HR (see

Ralhan et al. (2007); Mendes-Pereira et al. (2009); Kwei et al. (2010)).

6.2 Analysis of the genomic Curie-Servier dataset

In this subsection, I present the first results of my analysis of the genomic Curie-Servier dataset. The

experimental design was carefully planned. The goal of experimental design is to ensure that the way

the experiment is conducted will actually enable us to answer our question of interest. Here, the design

was simple to do and thus I will not describe it in detail (see Chapter 8 for a short introduction to
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Figure 6.2: Summary of the samples in the genomic Curie-Servier dataset and their histological and

immunohistochemical characterization.

experimental design and the design of the transcriptomic experiment). Briefly, a total of 193 samples

were processed in 5 batches and the different sample types were balanced across these five batches.

The characteristics of the samples processed in this experiment are summarized in Figure 6.2.

Affymetrix SNP 6.0 arrays contain almost 1 million Copy Number Variant (CNV) probes and 1

million Single Nucleotide Polymorphism (SNP) probes. CNV probes directly measure the DNA copy

number. SNP probes make is possible to measure the DNA copy number as the sum of allele A and

allele B. It is also possible to measure the allelic difference of Loss of Heterozygosity (LOH). In the

following, I will focus on the analysis of DNA copy number profiles. Overall, for each sample, we have

twice one million measurements of the DNA copy number. These measurements are scattered across

the 22 autosomes and the 2 sexual chromosomes. The measurements of the 2 sexual chromosomes are

quite different from the autosomes and they were removed from this analysis.

To study these 193 samples, I integrated the pruned Dynamic Programming Algorithm (DPA) in

the CGHseg methodology. I analyzed CNV and SNP profiles separately. The DNA copy number
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profiles for each of the 22 autosomes were processed by the pruned DPA. For each chromosome, the

pruned DPA recovered the best segmentations (with respect to the Mean Square Error, MSE) with

0, 1, 2, . . . 99, 100 breakpoints. We assume that 100 breakpoints is a gross over-estimation of the

likely number of breakpoints on a chromosome so this method should enable us to be quite confident

that no breakpoints are being left out. Once we have the 100 best segmentations for each of the 22

autosomes, we can recover with a dedicated algorithm the best segmentation across all chromosomes

in 22, 23, . . . , 2200 segments. At the genome level, there are at least 22 segments, corresponding to

the 22 autosomes. Then, we need to select the number of breakpoints for the whole genome of a given

sample. This number is selected as in the CGHseg methodology and in this case the maximum number

of breakpoints per sample (Kmax) is 1000. The influence of this parameter has been assessed (see the

next paragraph). The largest chromosome profiles have 200 000 points and the total runtime for one

sample is approximatively 3 minutes. In the end, we retrieved 193 segmented profiles. A simple look

at those segmented profiles is enough to distinguish between sawtooth, firestorm and simple profiles

(as shown on Figure 6.1).

The pruned DPA is fast and recovers the best segmentation with respect to the MSE. The only

uncertainty lies in the selection of the number of breakpoints. The only two parameters of the method

are the maximum number of breakpoints per chromosome and the maximum number of breakpoints

per sample. They have a simple biological interpretation and are quite easy to calibrate. It is possible

to assess the influence of the maximum number of breakpoints (Kmax) for a very limited additional

computational cost (a few seconds). For all possible Kmax between 50 and 2200, I launched the CGH

breakpoint selection procedure and stored the selected number of breakpoints. Overall the selection is

stable and the selected number of breakpoints is constant for large ranges of Kmax values (data not

shown).

The next step of the analysis is the calling step, which consists in identifying gained, lost and

normal regions of the genome. But here we have the segmented DNA copy number profiles of 17

normal breast tissues. Based on their profiles, it is possible to devise a data-driven threshold for gains

and losses. For example, we can choose a gain threshold so that the probability of a normal genome
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to be above is smaller than p = 5% (by taking the 95% percentile). In the end, we would like to

retrieve the percentage of gains in each tumor subtype for each position of the genome. To obtain

conservative estimates, I considered a probability of p = 2.5%/43 for both gains and losses. 43 is the

number of TNBC samples, which form the largest group of the Curie-Servier genomic dataset. The

probability of p = 2.5%/43 ensures that for any subtype and at any considered position of the genome

the probability of attributing more than one gain or loss by mistake is smaller than 5%. I used this

threshold across all samples. It is important to realise that across the whole genome we are bound to

make errors. I did not control the probability of attributing more than one gain or loss by mistake

across the whole genome because it would result in a too stringent threshold.

The results are summarized per subtype in Figure 6.3. We identify a number of elements that were

previously known:

• for TNBC, the frequent gain of 10p and loss of 3p, 4p and 4q, 5q, 14q and 15q;

• for both ER- / HER2+ and Luminal B tumors, the frequent gain of the ERBB2 gene (17q12);

• for Luminal A (simple profiles), the recurrent gain of 1p and 16p and the loss of 16q.

Peaks in these graphs also identify some interesting positions along the genome. For example, the

amplification of the HER2 gene is detected in all ER- / HER2+ tumor samples and in 80% of Luminal

B tumor samples. This is not surprising since 75% of our Luminal B tumor samples were selected

as ER+ and HER2+. This peak is relatively sharp and delimits a small region of the genome. The

genomic view of this region in the Ensembl database (http://www.ensembl.org/index.html) is depicted

in Figure 6.4 A. Similarly, there is a very sharp peak pinpointing a 86% recurrent amplification around

MYC in TNBC (see a genomic view on Figure 6.4 B) and there is a wider peak on chromosome 10

corresponding to a 51% recurrent loss around PTEN in TNBC (see a genomic view on Figure 6.4

C). The importance of such recurrent alterations can be confirmed by looking at individual profiles.

Continuing on our MYC and PTEN examples, it is possible to identify alterations precisely on MYC

and alterations centered on PTEN for some TNBC samples (see Figure 6.5)

More generally, it is possible to identify all such peaks of recurrent amplifications or deletions. For

example, I considered all such peaks with a percentage of alteration larger than 50%. There are not
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A

B

C

D

Figure 6.3: Proportions of detected gains (red) and losses (green) across the 22 autosomes per subtype of

breast tumors. (A) TNBC. (B) ER- / HER2+ tumors. (C) Luminal B tumors. (D) Luminal A tumors.

The x-axis is the position along the genome with the 22 autosomes separated by dashed vertical lines. The

y-axis is the proportion of gains in red and losses in green.
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A

B

C

Figure 6.4: Genomic view of three frequently aberrant regions. These views were retrieved using the

Ensembl database (http://www.ensembl.org/index.html). (A) Region amplified in 100% of ER- / HER2+

tumors and that includes the ERBB2 gene. (B) Region amplified in 86% of TNBC and that includes the

MYC gene. (C) Region lost in 51% of TNBC and that includes the PTEN gene. On these views, one can

see the chromosome bands and the position of known genes.
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(A) PTEN (B) MYC

Figure 6.5: Example of focal amplifications of PTEN and MYC in TNBC. (A) Chromosome 10 profiles of

two TNBC samples. (B) Chromosome 8 profiles of two TNBC samples. The x-axis is the position along the

genome. The measured DNA copy numbers are represented by dots. Gained regions are in red. Lost regions

are in green. Normal regions are in gray. The segmented profiles are represented as black piecewise-constant

lines.
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A

B

Figure 6.6: Peaks of losses and gains in TNBC with more than 50% alterations. (A) Gained regions. (B)

Lost regions.

many of them and they can easily be recovered by hand. A short list of these peaks and their positions

along the genome is shown on Figure 6.6.

To conclude, this analysis is undoubtedly simple and straightforward, but it relies on few and simple

hypotheses and there are very few parameters: only the maximum number of breakpoints considered

for the segmentation space and the threshold for detecting gains and losses. This analysis does not

take into account the LOH information, even though this information should be very useful in the

case of TNBC. T. Popova (Ph.D.) recently proposed a methodology named GAP (Genomic Alteration

Print) for the joint analysis of DNA copy number profiles and LOH profiles of complex genomes like
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those of TNBC (Popova et al. (2009), the paper is provided in Appendix A.2). I worked with her on

this methodology. Briefly, based on the segmented DNA copy number and LOH profiles (provided by

the pruned DPA), GAP recovers the copy number vs. LOH pattern of the tumor. Using this pattern

allows us to distinguish between tetraploid and diploid tumors and to attribute to each segment a

precise DNA copy number and an allelic count. In other words, for each segment, GAP predicts an

integer value for allele A and for allele B (SNP-A and SNP-B). I must admit that this method is at a

heuristic stage and there is no clear model yet, in a biostatistical sense. Indeed, from a biostatistical

point of view, it is difficult to summarize and ponder the different hypotheses, to precisely understand

the meaning of the different parameters involved in this methodology and to assess the predictive

power of GAP even in very simple cases such as simulations. Nevertheless, GAP empirically shows

very good results. Using it, I hope to identify more precisely regions of the genome involved in the

development of TNBC and this could lead to the identification of new targets.
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Transcriptomic Analysis
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Chapter 7

Introduction

Ten years ago, with the first microarray-based classification of breast tumors (Perou et al., 2000), it was

hoped that transcriptionnal analysis of breast cancer and the possibility of looking at many genes at

the same time would rapidly change our understanding of the disease and make conventional diagnostic

techniques, such as histopathology, obsolete (Aparicio et al., 2000). Today, the scope of microarray gene

expression profiling has been somewhat reduced. However, it has clearly contributed to our general

understanding of breast cancer pathology (see Weigelt et al. (2010a) for a review). Briefly, much

profiling of breast tumors has been done with more than 400 gene expression datasets of breast cancer

studies publicly available on the ArrayExpress database (http://www.ebi.ac.uk/microarray-as/ae/).

These different studies can be subdivided into three main categories:

Class discovery aims at unraveling the heterogeneity of breast tumors at the molecular level. It

tries to decompose tumors into homogeneous subgroups that are hopefully biologically and/or

clinically relevant.

Class comparison is a supervised approach that aims at deciphering the key molecular differences

between two or more previously identified subgroups of tumors.

Class prediction is also a supervised approach that looks for a ”gene signature” or ”classifier” able to

correctly predict the class membership of a new sample based on previously identified subgroups
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of tumors.

All these studies have undeniably brought new insights into the biology of breast tumors, but the

validity of these analyses has been questioned (Ein-Dor et al., 2005; Michiels et al., 2005; Ioannidis

et al., 2009). In particular, it seems that it is difficult to reproduce the results of these analyses.

This highlights the importance of assessing the quality of experiments and explaining the various

bioinformatical and biostatistical steps.

From chapter 8 to 11, I will describe some of the biological and/or clinical questions that I have

addressed using our Curie-Servier dataset of gene expression profiling on breast cancer. The analyses

I made were a multi-step process, which can be viewed as a pipeline. The validity and importance of

each step is rarely questioned. The choice of a given methodology is often a subtle decision and there

rarely is a definite answer. In addition to time and money constraints, there are at least three different

decision-making criteria that should not be confused: biological and clinical ones, statistical ones and

computational ones. I will thus try to bring forward these different aspects and explain as much as

possible the methodologies I used and the necessary concessions I made.

This part also illustrates my day-to-day life as a biostatistician working with biologists and medical

doctors of the Institut Curie. It was an important part of my work during my PhD candidacy (two

to three days a week). The analysis of high-throughput biological data is a long process that requires

some knowledge of biology, computer science and statistics. To understand all these aspects as much

as possible, I worked in three laboratories: a biology lab, a bioinformatics lab and a statistics lab.

It was a very enriching experience.

This work is presented in the following order. I will first give an overview of the pre-processing

step of the analysis, namely the experimental design, and then the normalization and the exploratory

analysis of the data. Second, I will describe some of my work in collaboration with Anne Vincent

Salomon (MD/Ph.D., Institut Curie) to compare the immunohistochemistry-based classification of

breast tumors and the gene expression profiling-based classification. Third, I will describe the gene-by-

gene and pathway-by-pathway comparisons of the different breast tumor subtypes. These comparisons

have led to collaborations with the group of Philippe Chavrier (Ph.D., Institut Curie) and the group
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Chapter 8

Experimental Design

In this chapter, I will briefly describe how I constructed the experimental design of the transcriptomic

experiment of the Curie-Servier project. First, I will give a very short introduction to experimental

design. For a more thorough “non-mathematical” introduction to experimental design, see Cox (1992).

Its mathematical counterpart is Cochran and Cox (1992).

8.1 A small introduction to experimental design

The goal of experimental design is to ensure that the way the experiment is conducted will actually

enable us to answer our question of interest. The main idea behind experimental design is that it

is possible to assess the relative power of two different designs (with a model but without any data)

to answer a well-defined question. This might come as a surprise, but in fact it is quite natural: for

example, in architecture, one does not need to build two houses to know which one looks better, one

judges from the blueprints.

Importantly, with a carefully planned design you can improve your ability to detect some patterns

of interest or the robustness to experimental problems. Reversely, if the design is not well planned

it can lead to useless experiments, from which no information can be obtained. From a statistical

perspective, there are two successive problems. First, can we estimate the parameters of interest from
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the data? Next, if we can, how precisely can we estimate them? To further illustrate these two points,

I will use two simple examples.

Estimability, pitfalls of experimental design: an example

In this subsection, I will describe a bad experimental design. Suppose I want to compare the growth

of two plant species A and B. I plant a thousand seeds of A in field number 1 and a thousand seeds

of B in field number 2. Ten days later, I measure the size of the plants in field 1. Because it is quite

a long process, I barely manage to finish measuring all these plants in one day. On the next day, I go

to field 2 and measure the size of the plants there. In the end, I compare the measurements of species

A and species B. Since I have many measurements for each species, I get a very good estimate of the

size of species A after 10 days in field 1 and of species B after 11 days in field 2. From a mathematical

point of view, I could compute the difference between those two estimates. However, it does not make

much sense to compare the size of two different plants that have grown in two different fields for a

different period of time especially if you want to compare their growth.

I would agree that it is improbable to choose such a poor experimental design to compare species

A and B. However, this example is very simple. In more complex cases, such pitfalls are not so easy

to detect.

Improving the precision: an example

Imagine that you have one object of mass µA. To get an estimate of this mass, you weigh the object

using scales. You measure a mass m1. Due to some randomness in the measurement and the precision

of the scales, m1 is not exactly equal to µA and we have µA = m1 + ε1. ε1 is the error. It is a random

variable. If there is no bias, the variance σ2 of ε1 is related to the precision of the scales. The smaller

it is, the more precise are the scales.

Suppose you have three objects A, B and C of mass µA, µB and µC respectively. A simple way to

estimate these three masses is to weigh each object one at a time (as illustrated in Figure 8.1 (top)).

In the end, you get an estimate for each of the three masses. Each estimate has an error of variance
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Figure 8.1: Weighing three objects A, B and C. (Top) First method: A, B and C are weighed one after

the other. (Bottom) Second method: The three objects are weighed in pairs.

σ2. It is an obvious experimental design.

However, if one assumes that masses are additive, i.e. that the mass of two objects is the sum of

their mass and that the errors are independent, one can obtain better precision for the mass estimates.

A simple way to do so is to weigh the objects in pairs as illustrated in Figure 8.1 (bottom). Retrieving

an estimate of the three masses is less obvious. However, the simple calculations described below show

that the variance is reduced to 3
4σ

2. Thus, with exactly the same number of measurements, we get a

smaller variance. However, this second experimental design is less robust. Indeed if any of the three

measurements fails, it is impossible to get an estimate for any of the three masses. The first design is

more robust because in such a situation, one still obtains 2 estimates out of the 3.

Quick proof If we assume that masses are additive and using the design described in Figure 8.1

(bottom), we get the following system of equations:

µA + µB = m1 + ε1, (L1)

µA + µC = m2 + ε2, (L2)

µB + µC = m3 + ε3, (L3)
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where each line corresponds to one measurement, m1, m2, m3 are the three measurements and ε1, ε2,

ε3 are the random errors associated to these three measurements. Combining the three equations as

follows (L1) + (L2)− (L3) we get:

2µA = m1 +m2 −m3 + ε1 + ε2 − ε3

Thus, we estimate µA as 1
2 (m1+m2−m3). If the errors are independent, the variance of this estimation

is:

V [
1
2

(ε1 + ε2 − ε3)] =
1
4
V (ε1 + ε2 + ε3) =

1
4

[V (ε1) + V (ε2) + V (ε3)] =
3
4
σ2.

To conclude, although it is time consuming to design an experiment correctly, the design has a

dramatic impact on the rest of the analysis and it should be done carefully.

8.2 Design of the transcriptomic experiment

The main question of the Curie-Servier project was to identify therapeutic targets for TNBC. To do

so, one usually looks for genes that are overexpressed in TNBC compared to normal tissue. More

generally, we were interested in comparing any two subtypes of samples. Thus, we looked for a design

that enabled an efficient comparison between TNBC and normal tissue but also to a lesser degree

between any two subtypes.

Choosing the number of replicates

Prior to my arrival in the project, two pilot studies had already been carried out. The first pilot study

was carried out on 13 TNBC and 11 ER- / HER2+ tumors. The second study was carried out on

24 TNBC and 16 ER- / HER2+ tumors. It was decided to make a last transcriptomic experiment

including Luminal tumors, TNBC cell-lines and normal samples. We decided to include several TNBC

and ER- / HER2+ replicates of the first two studies in this last experiment to easily compare and

aggregate the three studies (estimability problem see subsection 8.1). Due to various constraints, only

24 TNBC and ER- / HER2+ samples could be reprocessed in the last experiment. At that time, we

had very little information on the number of Luminal, ER- / HER2+, TNBC and normal samples
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that we would be able to obtain. We expected around 40 Luminal A, 40 Luminal B, 15 normal and

15 TNBC cell-lines. To choose how many of the 24 replicates should be TNBC, I proposed to examine

different possible designs.

The statistical model

In order to aggregate the three studies, I considered a simple mixed linear model. In statistics, using a

mixed linear model is a common way to take into account the existence of replicates. While building

such a model is a tedious process for those not used to it, it is nevertheless necessary to have a well-

defined model to compare different possible experimental designs. Moreover, without a well-defined

model, the hypotheses we need usually remain ill-defined or even undefined and it is thus very difficult

to test them or grasp their importance.

The linear model takes into account 3 things:

Type The measured intensity depends on the sample types (t). Each sample type (TNBC, Luminal

A, . . . ) has a different mean level. In the model the effect of being of type t is associated to a

fixed parameter αt. While this is certainly not true for every gene, it is a practical hypothesis

and it is precisely the existence of such a sample type effect that we want to test.

Study The measured intensity is also explained by the study (s: first study, second study and last

study). Each study is associated to a different mean level. In the model, the effect of being

in study s is associated to a fixed parameter βs. This might be a false assumption. However,

we want to be absolutely certain that differences observed between sample types are not a mere

artifact of differences between studies.

Biological sample To take into account the existence of some variability between samples of the

same type t, each biological sample b of this type is associated to a random variable Atb. To a

given tb corresponds a unique biological sample namely the b-th sample of type t. Atb takes into

account the biological variability.

Residual error To take into account the existence of some variability between replicates of the same

sample tb, we add a residual error εtbs. The index is tbs because a given replicate of sample tb is
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perfectly characterized by its study. Indeed, for a given sample tb there is at most one replicate

per study. εtbs takes into account the technical variability.

All these effects are combined additively. This means that the influence of a sample being both

Luminal A and from pilot study 1 is the same as the sum of the effect of a sample being Luminal

A and the effect of a sample belonging to pilot study 1. One might have considered a non-additive

model with interactions, meaning for example that some special combinations of study and type have

an erratic behavior. However, including interactions in the model would have resulted in a significant

increase in the number of parameters and in the complexity of the model. From previous analyses of

the two pilot studies, the additive model seemed a reasonable assumption.

In a statistical framework, the model can be written in the format that follows:

Ytsb = µ+ αt + βs +Atb + εtbs, V (εtbs) = σ2, V (Atb) = γ2

The parameter with a capital letter (Atb) is random while the others (µ, αt, βs) are fixed parameters.

Testing the difference between any two types of sample

Now that we have a model, we need to characterize our question in terms of our model. We want to

aggregate the three experiments. We want to efficiently compare the TNBC or ER- / HER2+ types

from the first two studies to Luminal tumors, normal and TNBC cell-lines from the final study. For

example, we want to assess the differences between the effect of being TNBC and normal or between

the effect of being TNBC and Luminal A. From a statistical perspective, we want to estimate all these

differences with a maximum precision, i.e. a minimum variance. It is possible to compute this variance

(up to a factor of proportionality) given the ratio between the biological and the technical variability.

From a more technical point of view, given an experimental design, the biostatistical model can be

described in matrix formulation:

y = Xθ + E, V ((E)) = σ2I + γ2ZZ′,

where y is the vector of all measurements, the matrix X represents the experimental design for fixed

parameters, the vector θ represents the fixed parameters of the model, E is the vector of all residual
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errors and Z takes into account the presence of replicates. The set of all differences that we want to

estimate (for example TNBC vs. normal) can be described using a matrix usually called C for contrast

matrix.

Given all these matrices, it is possible to assess the covariance matrix of all the comparisons as a

matrix V(X) for the design X: V(X) = C′(X′(I + γ2

σ2ZZ
′)X)−1C. Suppose now that we have two

experimental designs described by the matrices X1 and X2. For these two designs, we can compute

V(X1) and V(X2) and compare the efficiency of the designs by comparing the two matrices. For

example, if the element in the first column and first line of V(X1) is bigger than the one in V(X2), it

means that for the first comparison the second design has a smaller variance.

To illustrate these matters, let us return to the simple problem of the three weights previously

described in section 8.1. The vector y is the column vector with values (m1,m2,m3) and the vector θ

is the column vector (µA, µB , µC). For the simple design described in Figure 8.1 (top), the matrix X1

is the identity matrix:

X1 = I =


1 0 0

0 1 0

0 0 1

 .

For the more complex design described in Figure 8.1 (bottom), we obtain:

X2 =


1 1 0

1 0 1

0 1 1

 .

To estimate the three weights (µA, µB , µC), the contrast matrix C is the identity. In this example,

there is no need to include the matrix Z because there are no replicates. Thus, for the simple design

we recover:

V(X1) = C′(X1
′(I)X1)−1C = I′(I′I)−1I = I.

For the complex design, we retrieve after a few matrix products:

V(X2) = C′(X2
′X2)−1C =

1
4


3 1 1

1 3 1

1 1 3

 .
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We recover, in the diagonal of this matrix, that the three weights are estimated with a variance of 3
4σ

2.

Exploring the set of possible designs

Having this model and a clear definition of which quantities we want to test, I explore the set of possible

designs. In this case, the set of all possible designs is relatively limited. First, you need to consider

the number of TNBC samples out of the 24 replicates. There are only 25 possibilities. For a given

number of TNBC samples, the number of ER- / HER2+ samples is fixed. For example, if there are

13 TNBC then there are 24− 13 = 11 ER- / HER2+ replicates. Then, you just need to consider how

many of these 13 TNBC samples are to be taken from the first study (there are only 14 possibilities)

and how many of the 11 ER- / HER2+ samples are to be taken from the first study (there are only 12

possibilities). After that, the experimental design is perfectly defined. Thus, it is possible to explore

all possible designs, with the help of a computer. This is what I did. For each possible number of

TNBC replicates, I selected the design such that the sum of all variances associated to all comparisons

was minimal. Results are represented in Figure 8.2. Based on this graph, we decided to pick 15 TNBC

and 9 HER2+ samples corresponding to a good balance between the variance of all comparisons.

Experimental design of the last experiment

The design of the last experiment was developed to enable the simple correction of various known

technical artifacts such as batch and hybridization effects. The correction of batch and hybridization

effects is an important matter. Indeed, as can be seen on Figure 8.3 differences in samples of different

batches can be much more important than what one would expect. To estimate and correct these

effects, one can use a linear model.

The model

A few months after we selected the number of TNBC and ER- / HER2+ replicates needed, all the

biological samples were retrieved. There were 132 samples including: 37 Luminal A tumors, 42 Luminal

B tumors, 14 normal samples and 15 TNBC cell-lines, as well as 15 TNBC and 9 ER- / HER2+ tumors.

At the time of the experimental design of this final experiment, there were two technical constraints to
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Figure 8.2: Variance of the TNBC vs. ER- / HER2+ (red solid line), TNBC vs. Luminal (green solid

line), TNBC vs. Normal (black solid line), ER- / HER2+ vs. Luminal (green dashed line), ER- / HER2+

vs. Normal (black dashed line) as a function of the number of TNBC replicates in the design. Given that

the variance of the ER- / HER2+ vs. Normal comparison is equal to that of the ER- / HER2+ vs. Cell-line

comparison, the latter comparison is not plotted on the graph. Similarly, the variance of the TNBC vs.

Normal comparison is equal to that of the TNBC vs. Cell-line comparison, the latter comparison is not

plotted on the graph.
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Figure 8.3: Example of batch effect. Each point represents a sample of the first or second experiment in the

space of the two principal components. Samples of the first and second study were processed in two different

batches. The first axis separates TNBC and ER- / HER2+ tumors. The second axis separates tumors from

the first and second study. This is a batch effect that hampers our ability to detect true differences in

between TNBC and ER- / HER2+. Importantly in terms of variability, this batch effect represents 6.64%

of the variability, almost as much as the biological signal which accounts for 9.08% of the variability.
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take into account for the design. First, the preparation of the mRNA samples before hybridization on

the microarray is a difficult task and only 30 samples are processed in one batch. Furthermore only 45

samples are hybridized at the same time. Thus, the 132 samples were processed in 5 different batches

and 3 different hybridization steps making for a total of 3× 5 = 15 batch-hybridization configurations.

Having all this in mind, I proposed a linear model to explain for a given gene the differences

observed between any two samples of this final experiment. The linear model takes into account 4

things:

Type The measured intensity depends on the sample types (t). Each sample type (TNBC, Luminal

A, . . . ) has a different mean level. In the model, the effect of being of type t is associated to a

fixed parameter αt. While this is certainly not true for every gene, it is a practical hypothesis

and it is precisely the existence of such a sample type effect that we want to test.

Batch The measured intensity is also explained by the batch (b). Each sample batch is associated to a

different mean level. In the model, the effect of being in batch b is associated to a fixed parameter

βb. This is certainly not true for every batch. However, we want to be absolutely certain that

differences observed between sample types are not mere artifacts of differences between batches.

Hybridization The measured intensity is also explained by the hybridization (h). Each hybridization

step is associated to a different mean level. In the model, the effect of being in hybridization

step h is associated to a fixed parameter δh. Again, it is a working hypothesis but we want to

be absolutely certain that differences observed between sample types are not mere artifacts of

differences between hybridization steps.

Residual error Each biological sample is associated to a given random variable εtbhi that takes into

account the variability that exists even between samples of the same type, batch and hybridization

step. εtbhi is the residual error of both the biological and technical variability.

All these effects are combined in an additive fashion. In a statistical framework, it can be written in

the format that follows:

ytbhi = µ+ αt + βb + δh + εtbhi, V (εtbhi) = σ2
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Testing

The idea is now to recover genes that are overexpressed in TNBC compared to normal samples and

other subtypes of tumors. In terms of our model, we want to assess the difference between any two

subtypes. As we have seen in the previous subsection, it is possible to compute the variance associated

to the difference between any two subtypes.

Exploring the set of possible designs

Having this model and a clear definition of which quantities we want to test, I explore the set of

possible designs. Importantly, I restricted the search to balanced designs. Here, “balanced” means

that if you consider one sample type, there should be little variation in the number of these samples

per batch, per hybridization and per batch-hybridization configuration. To illustrate this point, I will

take two examples. In the case of cell-lines, there are exactly 15 samples, matching the 15 batch-

hybridization configurations, thus there is only one balanced design for this type: one cell-line sample

per batch-hybridization configuration. In the case of Luminal A, it is a bit trickier. There are 37

samples. To obtain a balanced design, 3 batches should have 7 Luminal A samples and the two others

batches should have 8. There should be 2 hybridization steps with 12 Luminal A and the third one

with 13. Finally, there should be 8 batch-hybridization configurations with 2 Luminal A and 7 with 3

Luminal A. This greatly reduces the set of possible designs. In fact, the main point of this restriction

is to have a design robust to problems. Indeed, suppose for example that for whatever reason one of

the batches had failed to work properly, in the four remaining batches all sample types would have

been well represented and it would still have been possible to compare all the types.

In the end, the number of balanced designs is relatively limited. Indeed, there are only four

sample types to consider as there is exactly 15 TNBC and 15 TNBC cell-lines matching the 15 batch-

hybridization configurations. For the remaining types (Luminal A, Luminal B, ER- / HER2+ and

Normal), there are 7, 12, 9 and 14 samples to consider respectively. For each of these subtypes, it

is possible to construct almost by hand the set of configurations that are balanced. For example, for

Normal samples a balanced configuration is perfectly determined by the position of the one batch-
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hybridization position that does not include a Normal sample. The ordering of the five batches and

three hybridization steps is of no importance, which further reduces the number of possible designs.

Thus, one can arbitrarily decide that the position that does not include a Normal sample is batch 1

and hybridization step 1. Overall, there are 930, 60, 180 and 15 balanced configurations for Luminal

A, Luminal B, ER- / HER2+ and Normal samples respectively. As we have seen, we can consider only

one configuration for the Normal sample and thus we obtain 930×60×180 = 10 044 000 combinations.

Using a computer, it is possible to construct all the configurations for each type and combine them

to recover all possible suitable experimental designs. Having these designs, it is possible to compare

them in terms of their power to estimate some comparisons of interest as explained in the previous

subsection. Overall, there was no great difference between all these designs. Thus, as long as the

design was balanced, the choice was not critical and I picked a design with a slightly better ability to

compare Normal and TNBC samples.
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Chapter 9

Pre-processing

After the transcriptomic experiment, after the removal of bad-quality RNA samples and the incorpora-

tion of the two pilot studies, we were able to recover a total of 177 good-quality microarray experiments

described in Figure 9.1. For each of these 177 experiments we retrieved a CEL files containing the

measured intensity for each probes of the Affymetrix HGU133-plus2 microarray.

9.1 Probe annotation

Once the 177 CEL files were obtained, the first question was how to aggregate the information from the

probes into probesets (the annotation problem). Each probeset hopefully groups probes corresponding

to the same gene. Various solutions exist:

• The usual one is the annotation provided by Affymetrix. The problem with this method is that

one gene can be found on several probesets while one probeset can be associated to several genes,

this makes interpreting the data more difficult.

• Alternative annotations have been proposed (such as AffyProbeMiner (Liu et al., 2007) or

Ballester et al. (2010)) that provide more robust annotations. But, with these annotations

the information for some genes is lost.

139
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Figure 9.1: Summary of good quality transcriptomic samples of the Curie-Servier dataset and their histo-

logical and immunohistochemical characterizations. 15 TNBC and 9 ER- / HER2+ samples of the first and

second studies were replicated in the last study.
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I choose to carry out the analysis both with the AffyProbeMiner annotation and the Affymetrix

annotation. Indeed, the AffyProbeMiner annotation is a robust method which was publicly available

at the beginning of the study while the Affymetrix annotation is useful for comparisons with other

studies because it has been widely used.

9.2 Normalization

Once the probes are grouped into probesets, one needs to correct various non-relevant effects that

hamper our ability to extract the biological signal. This is called normalization. As we have seen in

the chapter 4 for DNA copy number, normalizing is a difficult issue. Here I chose to use a three-step

method. The first step normalizes the measurements using the GC-RMA methodology (Wu et al.,

2004). The second step removes low level measurements. Finally the third step corrects batch and

hybridization effects using a mixed linear model. I chose to use the GC-RMA methodology which

takes into account the probe sequence information to obtain more accurate measurements of the

specific hybridization. This method has been shown to be efficient (Binder et al., 2010). For some of

the analyses I also used the RMA methodology (Irizarry et al., 2003b) to compare the results with

publicly available ones.

After the GC-RMA normalization of the data, we recover corrected measurements of the expression

of all the genes present on the microarrays. From a biological point of view, it is likely that many of

these genes are not expressed in the sample under consideration. These genes should have very low

measurements for most probes. I thus decided to discard those genes that have very low measurements

in most samples, since they do not inform us regarding differences between subtypes or with the normal

samples. Removing these genes makes the remainder of the analysis easier and gives us a better chance

to identify some relevant genes, if not all of them.

Using the GC-RMA normalization method, this discarding step is simple and well justified. Indeed,

a typical histogram of log2 measurements of all genes across all tumors will always be bi-modal with

a sharp peak around 2.5 log2-intensity and a flatter mode covering values between 3 and 15 log2-

intensities (see Figure 9.2). The sharp peak can be interpreted as measurements that do not exceed
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the background noise detection level while the flatter mode can be interpreted as measurements of genes

for which expression is detected. Given the sharpness of the peak around 2.5 log2-intensity, it is quite

easy with usual statistical techniques to identify a threshold to distinguish between the foreground and

background level. Overall, in the case of the AffyProbeMiner annotation, approximately 104 probesets

out of 2.104 were discarded. One can be surprised by the high number of probesets that are discarded

(50%) but from a biological perspective it makes sense that only a fraction of the genes are expressed

in a given cell type.

The experimental design I proposed allowed for the simple assessment and efficient correction of

batch and hybridization effects. To correct these effects we used a mixed linear model. This model is

similar to those described in chapter 8. It explains the differences in expression levels between the 177

samples for every gene by taking into account:

Type The measured intensity depends on the sample types (t). In the model the effect of being of

type t is associated to a fixed parameter αt. Note that this is certainly not true for every gene.

Yet it is a practical hypothesis and it is precisely the existence of such a sample type effect that

we want to test.

Batch The measured intensity is explained by the batch (b). In the model the effect of being in batch

b is associated to a fixed parameter βb.

Hybridization The measured intensity is also explained by the hybridization (h). In the model the

effect of being in hybridization step h is associated to a fixed parameter δh.

Biological sample Some biological samples of the pilot studies are replicated in the last experiment.

This is accounted for as random effect (as opposed to fixed). Each biological sample s of type t

is associated to a given random variable Ats.

Technical sample Finally, even in between replicate of the same biological sample, even after cor-

rection of the batch and hybridization step, there is some disparity. This is the residual error

εtsbh which models the technical variability.
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Figure 9.2: Histograms of log2-intensities after the GC-RMA normalization. The histogram is plotted so

that the histogram has a total area of one. The height of a rectangle is proportional to the number of points

falling into the cell. The histogram has a sharp peak around 2.5 log2-intensity.
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All these effects are combined in an additive fashion without interactions. In a statistical framework

all this can be written as follow:

Ytsbh = µ+ αt + βb + δh +Ats + εtsbh, V (Ats) = γ2 and V (εtsbh) = σ2

Having defined this model, it is possible to estimate from the data the influence of each molecular

subtype, batch and hybridization set. Then using those estimations, it is straightforward to correct

batch and hybridization effects. The result of this correction are shown in Figure 10.4 (in the next

chapter) for the samples of the first two studies.



Chapter 10

Exploratory Analysis

10.1 Validation of the pre-processing step

Once I had carried out all these pre-processing steps, to validate them I checked three important

points:

• replicates should be similar;

• there should be no visible differences between batches or hybridization steps;

• it should be relatively easy to identify the different molecular subtypes.

To acheive that, I used two exploratory methods, hierarchical clustering and Principal Component

Analysis (PCA). In the following I will summarize the results obtained with both approaches. One

difficulty when analyzing gene expression profiles is that you get measurements for thousands of genes.

It is therefore impossible to visualize such an amount of data in a 2D or 3D plot. Thus one needs to

reduce the dimension of the problem (dimension reduction). To get a good view one can use hierarchical

clustering. In hierarchical clustering methods, samples are represented by a tree-like structure. The

root of the tree corresponds to the whole dataset. The leaves of the tree correspond to samples.

Starting from n samples or clusters a usual way to build such tree is to compute the distance between

any two clusters and then aggregate the two closest clusters together. In the tree structure these two

145
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clusters are branched together. This aggregation process is iterated until only one cluster is left. In

the end, the recovered tree hopefully provides valuable information about the underlying structure of

the data and it might be possible to identify well separated clusters.

A key issue with hierarchical clustering is to define the distance between two clusters. Most of the

time one has to choose a linkage rule and a measure. The distance between two clusters can be the

Euclidean distance (measure) between the two closest samples in the two clusters (simple linkage).

One could also choose the City-block distance between the two furthest samples of the two clusters

(complete linkage).

In all that follow, I have used the Ward’s method. The Ward’s method can be viewed as an analysis

of variance approach to clustering. It considers the cost of a cluster as the sum of square distances

between any sample of the cluster and the mean of the cluster. The distance between two clusters is

defined as the cost of the two clusters taken as a whole minus the cost of the first and second cluster

taken separately. In a more mathematical formulation, the distance between two clusters C1 and C2

is D(C1, C2) = Cost(C1 ∪ C2) − Cost(C1) − Cost(C2). The Ward’s methods tends to minimize the

loss of information associated to each grouping.

Using hierarchical clustering on our normalized data, I observed that, due to the correction of batch

and hybridization effects, samples from similar batches did not cluster all together (data not shown,

see results for PCA in Figure 10.4) and that replicates were always next to each other (see Figure

10.2). Moreover it was possible to identify visually six main branches in the structure corresponding

to the TNBC, ER- / HER2+, Luminal A and Luminal B subtypes, the TNBC cell lines and the

normal population. This means that there is a very good concordance between this classification and

the immunohistochemistry-based classification (see Figure 10.1).

All these results were very comforting. However, there are three issues with hierarchical clustering

that should not be forgotten. First, there is not a unique representation of the tree. The tree can be

rotated around any of its branches. This means that, using tree-like representation, it is impossible to

infer the geometric configuration of three different clusters. For example (in Figure 10.1), the TNBC

cell line cluster appear in between the TNBC cluster and the ER- / HER2+ tumor cluster, but in fact
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Figure 10.1: Validation of the pre-processing steps using hierarchical clustering of all 177 transcriptomic

samples. The hierarchical clustering was done using the gene expression profiles of the thousand genes with

the highest variance using the ward methods. The results are represented using a dendrogram.



148 CHAPTER 10. EXPLORATORY ANALYSIS

Figure 10.2: Good quality of the replicated samples after normalization. Zoom on TNBC on the clustering

of all transcriptomic sample in Figure 10.1. TNBC replicates are joined by red U. All TNBC replicates are

visibly close to each other in the dendrogram.
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Figure 10.3: Validation of the pre-processing steps using principal component analysis of the 177 tran-

scriptomic samples. Each point represents a sample in the two principal components.

this position is arbitrary and if one used this information, one would jump to false conclusions. In

fact, the ER- / HER2+ tumor cluster is closer to the TNBC cluster than to the TNBC cell line cluster

as suggested by the principal component analysis in Figure 10.3. The second issue is that hierarchical

clustering is a heuristic. Indeed, the only guarantee is that each recursive step of the hierarchical

clustering is optimal. As we have seen for the segmentation problem, this is not an overall optimal

strategy. Third I have chosen a particular aggregation scheme (the Ward’s method). There are many

others. It is cautious to check these results with a completely different approach.
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Here, I have chosen principal component analysis (PCA) as a complementary approach. Principal

components aim at representing all samples in a given number of dimensions, usually 2 or 3. More

precisely, it recovers the optimal representation of the dataset in a given number of dimensions. This

representation is optimal in the sense that all the variability that it is possible to capture in so little

dimensions is retrieved. This representation is unique and one can interpret the relative position of

more than two points.

Using PCA on our normalized data, I confirmed the results of the hierarchical clustering that

samples from similar batches do not appear to be close (see Figure 10.4) and that replicates were next

to each other using the two principal components (data not shown). Moreover it was also possible to

identify that the different tumor subtypes were relatively well separated even using only the first two

principal components which represented 21% of the variability (see Figure 10.3). To conclude, that

shows that the normalization process was efficient in removing non-relevant effects from our dataset.

10.2 A robust classification of breast tumors, but no intrinsic

gene list?

Overall, conventional diagnostic techniques such as histopathology are still considered as the gold stan-

dard for tumor classification (Weigelt et al., 2010a). Indeed, as we have mentioned before, the quality

of gene expression-based classification and prediction has been questioned and quite importantly it

has been shown that some studies did not classify patients better than chance (Ein-Dor et al., 2005;

Michiels et al., 2005). In the case of tumor subtypes the classification problem is (probably) easier yet

the stability of each cluster is limited and many different list of genes have been proposed to classify

tumors (Pusztai et al., 2006; Weigelt et al., 2010a). One might wonder why that is. A first possibility

to explain unstable classification results might be the intrinsic complexity of the classification prob-

lem. Another possibility would be that the information to classify tumors exists but that looking for

a given gene list to perform the classification and summarize the information may not be efficient. We

have previously used hierarchical clustering for the analysis of the Curie-Servier dataset. This type
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Figure 10.4: Correction of batch effects. This figure matches Figure 8.3 but after correction of batch and

hybridization effects (using the mixed linear model described in the text). Each point represents a sample

of the first and second study in the two principal components. Samples of the first and second study were

processed in two different batches. The first axis still discriminates in between TNBC and ER- / HER2+

tumors. The second axis no longer discriminates between tumors of the first and second study (see Figure

8.3).



152 CHAPTER 10. EXPLORATORY ANALYSIS

of classification is unsupervised, which means that it does not specifically try to recover the different

subtypes. Nevertheless, we have found a very good correspondence between the unsupervised classifi-

cation of our tumors and the immunohistochemistry (IHC) based classification. Thus the classification

problem seems relatively simple. Looking for a specific gene list to perform the classification, might be

responsible for the instability of the results. To further investigate these points, I set up the following

simple experiment.

I assessed the ability of randomly selected lists of genes to segregate the four different tumor

subtypes in an unsupervised setting. I used an unsupervised classification method because the goal

was to assess the influence of the list of genes on the classification and to test whether the classification

truly depends on the list. There was 685 genes in the list corresponding to the number of Affymetrix

HGU133plus2 probeset matching the intrinsic gene list from Perou et al. (2000). For each of these lists,

I classify all the tumors into four groups using an unsupervised model based clustering approach. I

used a Gaussian mixture model for four groups. The Gaussian mixture model aims at identifying four

groups based on the level of expression of the genes in the list. It returns a group number between 1 and

4 for each sample. Having identified those 4 groups, I compared them with the known groups identified

by IHC. On average there was around 17% discrepancy between the reference IHC classification and

the model-based classification (see Figure 10.5). This 17% discrepancy is much less than what would

be expected from a completely random classification (66%).

The conclusion of this experiment is that there is, at least on our dataset, a very good concordance

between the IHC information and gene expression information. The gene expression information is

robust and not specific to a given gene list but is rather spread across many different genes. Finding a

gene list that segregates correctly the different tumor subtypes is easy. Indeed, even randomly selected

gene lists, without any specific training (unsupervised classification), have very good performances. In

view of the nature of these results, it appears that looking for a unique and well-defined gene list that

explains the differences between tumor subtypes is hazardous. These results and a detailed description

of the IHC data on the Curie-Servier cohort are in preparation for publication in collaboration with

Anne Vincent Salomon (MD/Ph.D., Institut Curie, Rigaill et al. (2010b)).



10.2. A ROBUST CLASSIFICATION OF BREAST TUMORS, BUT NO INTRINSIC GENE LIST?153

Figure 10.5: Correspondence between the IHC classification and an unsupervised classification in four

groups using a Gaussian mixture model based on random lists of genes. The classification error is the

proportion of samples that are not classified in the same group by the IHC-based and the Gaussian mixture

classification. This classification error was measured for 300 000 randomly selected 685-long gene lists and

represented as a histogram. The histogram is plotted so that the histogram has a total area of one. The

height of a rectangle is proportional to the number of points falling into the cell. The classification error

between the IHC classification and a completely random classification in four groups is on average 0.66.
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Chapter 11

Comparison of TNBC with other

tumor types

As we have seen in the experimental design chapter (8), the main question of the project was to

identify key gene expression deregulations in TNBC that might explain the phenotype and be used as

therapeutic targets. To this end, TNBC samples were compared to samples of other subtypes (class

comparison). As we have seen in the previous section (10.2), it is extremely easy to find a gene list

that explains the differences between subtypes. Thus, differential analysis alone will not reduce the list

of candidate targets sufficiently and we need other filters. In the following, I will describe the strategy

I have set up to propose candidate genes and identify pathways of interest.

11.1 Gene by gene differential analysis

11.1.1 Statistical testing

It was decided to look first for genes over-expressed in TNBC compared with either normal or Luminal

A tumors. Many statistical methods have been proposed and some were specifically designed for

microarray gene expression differential analysis (Tusher et al. (2001); Smyth (2004); Delmar et al.

(2005)). These three methods were designed to accommodate very small sample sizes (less than 10

155
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or even 5). Here I decided to use none of these 3 specific methodologies but rather the mixed linear

model that I used for the estimation of batch and hybridization effects (see subsection 9.2). The

reason for this choice is that the Curie-Servier dataset is a large one, with more than 30 samples for

the four tumor subtypes considered. This is a rather favorable case and we will hopefully retrieve a

good estimation of the variance using the 177 samples of the dataset simultaneously.

As we have seen previously, the mixed linear model leads to very good corrections of both batch

and hybridization effects. The mixed linear model takes into account the existence of replicates and

the fact that batch and hybridization effects have to be estimated. Thus, using this model, I computed

a p-value for every gene. These p-values are close to 0 when there is a significant difference between

the two types of sample compared.

In order to try to validate the use of a mixed linear model, it is usual to look at the empirical

distribution of the p-values obtained for each gene. The results are shown in Figure 11.1. It can be

seen on this figure that the distribution takes the shape we expected: there is a peak for small p-values

corresponding to genes that are truly differently expressed in TNBC. The rest of the distribution is

relatively flat and corresponds to genes that are not expressed differently in TNBC and thus have

p-values distributed uniformly between 0 and 1. Looking at this distribution, it can be seen that there

are lots of genes with a small p-value. It indicates a very high proportion of genes that are differentially

expressed. This result is not surprising given that unsupervised classification clearly segregates TNBC

from Luminal A and normal tissues (as we have seen earlier in section 10.1).

For any given gene, the computed p-value represents the chance or risk that we wrongly declared

it as over-expressed in TNBC if, in fact, it is not. We can determine the difference between the mean

level of a given gene in the TNBC samples and the mean level of the same gene in the normal samples.

The p-value of this gene is the probability of observing such a difference for this gene if in fact there

are no differences between the 2 types overall. Thus, p-values can be used as a decision-making tool

to answer the question: “Is the gene up-regulated in TNBC?”. It is important to see that it is not

because the p-value is close to 1 that the gene is not differentially expressed. This only means that

there is no evidence in our data to support this possibility. Similarly, it is not because the p-value is
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close to 0 that the gene is differentially expressed. It only means that the observed difference is highly

unlikely if the gene is not differentially expressed.

Very often, a p-value or risk of less than 5% is considered to be acceptable. There is no particular

reason for that choice. Here, we simultaneously look at thousands of genes. Taking a risk of 5% for each

of them would necessarily lead to many errors. This is a major problem in statistics, which is known as

the multiple-testing issue. A basic idea to reduce the overall risk is to take a much smaller risk for each

gene, though various less drastic methodologies have been proposed. Here, we used the Benjamini-

Hochberg FDR (False Discovery Rate) strategy. This strategy is very popular and straightforward. It

orders genes by increasing p-values and for each successive gene it returns the expected percentage of

false positives up to this point.

Based on this estimation, one selects the size of the list (and thus a set of genes) such that the

FDR is sufficiently small, typically once again about 5% so that the expected number of false postives

in the list is 5%. Using this FDR methodology, we determined that almost half of the tested genes

were differentially expressed with an FDR of 5%. This is not surprising as we already know that many

genes segregate TNBC from the other tumor types.

Overall, statistical testing is a valid and sound strategy to discriminate between genes for which

over-expression in TNBC is supported by our data and genes for which no difference is detected in our

data. In other words, it is used as a filter. Here, in the case of TNBC, even with a relatively small

FDR, many genes are classified as over-expressed. It would not be realistic to try to look through a

list of 1000 or 2000 genes. So, we need additional filters to narrow down the list of candidate targets.

11.1.2 Other filters

To narrow down our list of candidate targets, we considered additional filters. A filter discards genes for

which the difference between the mean level in the TNBC samples and the mean level in the normal

samples is too small. Such a filter is rather controversial, at least from a statistical point of view.

Using a statistical test, we identified significantly over-expressed genes with small differences. In those

cases, the difference is found to be significant because the variance of the signal is small within each
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Figure 11.1: Histogram of p-values for all the genes tested in the TNBC vs. normal comparison. The

histogram is plotted so that the histogram has a total area of one. The height of a rectangle is proportional

to the number of points falling into the cell. There is a peak for very small p-values that indicates a high

proportion of differentially expressed genes
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type, which corresponds to a very high reproducibility. Nevertheless, those genes are usually discarded

because it is thought that the difference is too small compared to the resolution of the technology.

In fact, if presented with two genes found to be significantly over-expressed in TNBC with the same

p-value and without any other information, one would probably choose the one with the highest mean

difference. Usually, because the data uses the log2 scale, a threshold of 1 is used because it corresponds

to a ratio between the mean levels of 2. It is an arbitrary choice which undoubtedly leads to the loss

of interesting targets. For example, if I had to choose between a gene with a mean difference of 0.988

and a p-value of 1.2710−11 (DNTB in our dataset for the TNBC vs. normal comparison) compared to

a gene with a mean difference of 1.02 and a p-value of 0.03 (TNXIP in our dataset), I would choose the

first gene. Nonetheless, as part of the Curie-Servier collaboration, it was decided to keep the threshold

at 1. A large proportion of genes are discarded with this threshold even though a number of them

have very significant p-values (see Figure 11.2).

Not all genes are potentially interesting target genes and lists of drugable genes have been published

(Hopkins and Groom, 2002), which limit potential targets to about 2000 genes. Within this list, one

can also consider the list of kinases (see Figure 11.3) to further reduce the size of the list.

Finally, using the different comparisons (TNBC vs. normal, TNBC vs. Luminal A . . . ), it is

possible to filter down those lists of genes as illustrated in Figure 11.4. In this example, we looked

for genes that were specifically expressed in TNBC and retrieved 218 genes. Inside this list, it can be

interesting to look for genes that are also over-expressed in TNBC cell-lines. Indeed, if genes are over-

expressed both in TNBC biopsy samples and in TNBC cell-lines, it would be likely that these genes

are over-expressed in the TNBC cells themselves and not in the stromal cells that were also sampled

during the biopsy. Another advantage of these particular genes is that they are more amenable to

experiments because cell-lines could be used as a model for the tumor.

From my transcriptomic and genomic analysis and also from some experimental data in TNBC cell

lines, some candidate targets were subjected to a target assessment procedure. Its main objective was

to classify the targets for further experimental validation programs. Target assessment is a manual

procedure: it attributes an ad hoc score to each target in terms of drugability, competition with
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Figure 11.2: Volcano plot: −log(p-values) as a function of the mean differences. Only genes with a positive

mean difference are considered. It can be seen that 963 genes with a p-value smaller than 10−5 are discarded

because the mean difference is smaller than 1.
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A

B C

Figure 11.3: (A) Kinase Top 10 for the TNBC vs. normal, vs. Luminal A and vs. Luminal B comparisons.

(B) Boxplot of the level of expression of the RIPK2 gene (first hit of the TNBC vs. normal comparison). (C)

Boxplot of the level of expression of the PLK1 gene (first hit of the TNBC vs. ER- / HER2+ comparison).

From left to right: TNBC are in blue, TNBC cell lines in cyan, ER- / HER2+ tumors in red, Luminal A

tumors in green, Luminal B tumors in orange and normal samples in grey.
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Figure 11.4: Successive filters. (A) Starting from the 10032 genes always above the background level, we

first looked for genes over-expressed in TNBC vs. Luminal A and normal tissue and retrieved 834 genes.

Out of the 834, 218 are over-expressed in TNBC vs. Luminal B and ER- / HER2+. Among those 218, we

retrieved 102 that are also over-expressed in TNBC cell-lines. (B) The top 13 genes of this list of 102 genes.

(C) Boxplot for the topmost gene of this list (CDC20). From left to right: TNBC are in blue, TNBC cell

lines in cyan, ER- / HER2+ tumors in red, Luminal A tumors in green, Luminal B tumors in orange and

normal samples in grey.
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other pharmaceutical groups, easiness of validation. This scoring results from an intense search in the

literature with the PubMed search engine. It sums up all the knowledge on the mechanism, structure,

involvement in cancer and breast cancer of the considered potential target. The scoring is also based on

the knowledge of registered patents that are accessible through various specialized search engines, such

as Google patent. Once all this information is collected, targets are prioritized for further experimental

validation in cell-lines before potential drug discovery programs.

Apart from target assessment, some results of this analysis have been studied more precisely in

collaboration with various groups of the Institut Curie and some have already been published (Marty

et al. (2008); Lizárraga et al. (2009), see subsection 11.1.3 and 11.1.4 respectively).

11.1.3 Paper: Frequent PTEN genomic alterations

We analyzed the oncogenic phosphatidylinositol 3-kinase (PI3K) pathway in 13 TNBC samples, and

compared this pathway with a control series of 11 ER- / HER2+ carcinoma samples. These samples

come from the first study of the Curie-Servier collaboration (see subsection 8.2). We analyzed the

DNA copy number profiles, the gene expression profiles and the proteomic data generated using both

Reverse Phase Protein Arrays (RPPA) and immunohistochemistry. The effect of the PI3K pathway

inhibition on proliferation and apoptosis was further analyzed in several TNBC cell lines.

The PI3K pathway was found to be activated in TNBC and up-regulated compared to ER-

/ HER2+ tumors as shown by a significantly increased activation of the downstream targets Akt

and mTOR (mammalian target of rapamycin). We linked this activation to a decrease in PTEN pro-

tein expression and the loss of the PTEN gene at the DNA copy number level. Interestingly, both PI3K

and mTOR inhibitors led to TNBC cell growth arrest but only PI3K inhibition lead to cell death.

For this paper, I mainly took part in the transcriptomic and genomic analysis of the data. For

the transcriptomic data, one of the questions was whether it was possible to distinguish between

ER- / HER2+ and TNBC based on their transcription profiles. Using hierarchical clustering on the

gene expression profiles of these 24 tumors, I showed that ER- / HER2+ tumors and TNBC were

segregated in two different clusters (see Figure 1 (c) on page 4 of the paper). Thus, the two breast



164 CHAPTER 11. COMPARISON OF TNBC WITH OTHER TUMOR TYPES

cancer populations were accurately characterized and the subtypes identified by immunohistochemistry

corresponded to the gene expression classification.

Using RPPA, it was shown that PTEN expression was low in TNBC compared to HER2+ carci-

nomas. We thus examined whether variations in PTEN protein expression could arise from genomic

alterations in our TNBC samples. Genomic DNA isolated from tumors was analyzed on SNP arrays.

Using those data and ITALICS (Rigaill et al., 2008), I showed that PTEN is lost in 50% of TNBC

(see the paragraph “DNA and RNA microarray analysis” at page 5, paragraph “Genomic alterations

at the PTEN tumor suppressor [..]” at page 6 and Figure 4 page 9 of the paper). Moreover, the

measured copy number for PTEN correlated with PTEN protein level in a significant manner (with a

p-value of 0.028, see page 7). These results suggest that genomic alterations at the PTEN locus are

directly responsible for low PTEN protein expression in about 50% of TNBC (see Figure 4b page 9).

Altogether, our data demonstrated a PTEN-dependent activation of Akt in TNBC.
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Abstract

Introduction Basal-like carcinomas (BLCs) and human epidermal
growth factor receptor 2 overexpressing (HER2+) carcinomas are
the subgroups of breast cancers that have the most aggressive
clinical behaviour. In contrast to HER2+ carcinomas, no targeted
therapy is currently available for the treatment of patients with BLCs.
In order to discover potential therapeutic targets, we aimed to
discover deregulated signalling pathways in human BLCs.

Methods In this study, we focused on the oncogenic
phosphatidylinositol 3-kinase (PI3K) pathway in 13 BLCs, and
compared it with a control series of 11 hormonal receptor negative-
and grade III-matched HER2+ carcinomas. The two tumour
populations were first characterised by immunohistochemistry and
gene expression. The PI3K pathway was then investigated by gene
copy-number analysis, gene expression profiling and at a proteomic
level using reverse-phase protein array technology and tissue
microarray. The effects of the PI3K inhibition pathway on
proliferation and apoptosis was further analysed in three human
basal-like cell lines.

Results The PI3K pathway was found to be activated in BLCs and
up-regulated compared with HER2+ tumours as shown by a
significantly increased activation of the downstream targets Akt and
mTOR (mammalian target of rapamycin). BLCs expressed
significantly lower levels of the tumour suppressor PTEN and PTEN
levels were significantly negatively correlated with Akt activity within
that population. PTEN protein expression correlated significantly
with PTEN DNA copy number and more importantly, reduced PTEN
DNA copy numbers were observed specifically in BLCs. Similar to
human samples, basal-like cell lines exhibited an activation of PI3K/
Akt pathway and low/lack PTEN expression. Both PI3K and mTOR
inhibitors led to basal-like cell growth arrest. However, apoptosis
was specifically observed after PI3K inhibition.
Conclusions These data provide insight into the molecular
pathogenesis of BLCs and implicate the PTEN-dependent activated
Akt signalling pathway as a potential therapeutic target for the
management of patients with poor prognosis BLCs.

AFA: alcohol, formalin and acetic acid; BLC: basal-like breast carcinoma; BSA: bovine serum albumin; CK: cytokeratin; CN: DNA copy number; 
EGFR: epidermal growth factor receptor; ER: oestrogen receptor; HER2: human epidermal growth factor receptor 2; HER2+ carcinomas: HER2 
overexpressing carcinomas; HES: haematoxylin-eosin-safran; IC50: inhibition concentration 50%; mTOR: mammalian target of rapamycin; MTT: 3-
(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide; PBS: phosphate buffered saline; PI3K: phosphatidylinositol 3-kinase; PIK3CA: PI3K p110 
subunit alpha; PIP3: phosphatidylinositol-3,4,5-trisphosphate; PR: progesterone receptor; PTEN: phosphatase and tensin homolog deleted on chro-
mosome 10; RPPA: reverse phase protein array; SNP: single nucleotide polymorphism; TBS: tris buffer saline; TBST: TBS + 0.1% tween-20; TBST-
BSA: TBST + 5% BSA; TMA: tissue microarray.
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Introduction
Gene expression profiling has enabled the identification of five
subgroups of breast cancer characterised by different clinical
outcomes and responses to therapy [1-10]. Among them,
basal-like carcinomas (BLC) and human epidermal growth fac-
tor receptor 2 overexpressing (HER2+) carcinomas are asso-
ciated with the worst prognosis [6,10,11]. BLCs are highly
proliferative, genetically unstable, poorly differentiated, often
grade III carcinomas [12,13] and preferentially metastase in
the brain and lungs [14]. They are identified by immunohisto-
chemistry as triple negative (lack of HER2 and oestrogen/pro-
gesterone receptor (ER/PR) expression) and positive for basal
cytokeratins (CK5/6 and/or CK14) and/or epidermal growth
factor receptor (EGFR) expression [8,15]. BLCs represent
about 15% of cases of breast cancer and appear to be preva-
lent in pre-menopausal African American woman (39%) [16].

Patients with BLCs are treated exclusively with conventional
therapy. Although they show high rates of objective initial
response, the majority of patients do not have a complete, pro-
longed response, and they have a poorer prognosis than those
within other breast tumour subgroups [12,13]. In contrast to
HER2+ carcinomas treated with targeted therapy such as
anti-HER2 [17], there is no available targeted therapy for
BLCs. However, in patients with triple-negative breast cancer,
some treatments are in preclinical trials, such as Dasatinib, a
Src tyrosine kinase inhibitor, Cetuximab or Bevacizumab,
which target EGFR and vascular endothelial growth factor,
respectively [18]. Little is known about the pathogenesis of
BLCs in spite of the recent genome and transcriptome micro-
array profiling [14,15,19,20]. Proteomics in tandem with
genomic/transcriptomic analysis is essential to clarify the
molecular pathology of BLCs and to discover druggable tar-
gets [21,22].

In order to identify such targets, we are exploring the phospho-
proteome of BLCs to highlight deregulated signalling path-
ways. In this report, we have investigated the oncogenic
phosphatidylinositol 3-kinase (PI3K) pathway in BLCs and
compared it with that of HER2+ carcinomas in which it is
known to be up-regulated [23-25]. Phosphatidylinositol-3,4,5-
trisphosphate (PIP3) is an important lipid second messenger
in tumourigenesis, in particular by activating Akt, which binds
to membrane-associated PIP3 through its plekstrin homology
domain, and other signalling molecules involved in a variety of
cellular events, such as survival, proliferation, cell motility and
invasion [26]. PI3K is activated downstream of extracellular
signals and phosphorylates phosphatidylinositol-4,5-bisphos-
phate to generate PIP3. The tumour suppressor PTEN (phos-
phatase and tensin homologue deleted on chromosome 10)
catalyses the opposite reaction, thereby reducing the pool of
PIP3, inhibiting growth and survival signals, and suppressing
tumour formation [27,28]. The PI3K signalling pathway is fre-
quently deregulated in human solid tumours including breast
cancers through Akt1 or PIK3CA (catalytic subunit of PI3K)

mutations, HER2 overexpression and PTEN loss or mutation
[24,25,29-34].

In this report, we demonstrate that the PI3K pathway is acti-
vated in BLCs. The PI3K pathway was up-regulated in BLCs
compared with HER2+ carcinomas as shown by a significant
increased activation of downstream targets such as Akt and
mTOR (mammalian target of rapamycin). We also describe the
molecular mechanism leading to this PI3K pathway activation,
which occurs through a low PTEN protein expression that was
found to be associated with genomic alterations at the PTEN
locus, specifically in BLCs. In addition, we observed that
basal-like cell lines exhibited an activation of Akt and a low/lack
of PTEN expression. The exposure of basal-like cell lines to
PI3K or mTOR inhibitors led to cell growth arrest. However,
apoptosis was detected when PI3K, but not mTOR, was inhib-
ited. Altogether, our data demonstrate a PTEN-dependent up-
regulated PI3K pathway in BLCs and suggest this pathway as
a therapeutic target for patients with poor prognosis BLCs.

Materials and methods
Immunohistochemistry
Twenty-four tumours were obtained from patients treated at
the Curie Institute (Biological Resource Centre, Paris, France).
Immunohistochemistry was performed as previously
described [35]. Tumours contained between 50% and 90%
tumour cells revealed by haematoxylin-eosin-safran (HES)
staining.

For phospho-Akt (S473) staining, tissue microarrays (TMA)
containing alcohol, formalin and acetic acid (AFA)-fixed paraf-
fin-embedded tissue were made. For each biopsy, three repre-
sentative tumour areas and one peritumoural tissue were
carefully selected from a HES-stained section of a donor
block. Using a specific arraying device (Manual Tissue Arrayer;
Beecher Instruments, Sun Prairie, WI, USA) core cylinders of
1 mm in diameter were punched from each of those four areas
and placed into recipient paraffin blocks. Sections of 3 μm
were cut, placed onto positively charged slides (capillary gap
microscope slides, Dako REAL, Dako, Trappes, France) and
dried at 58°C for one hour. Sections were deparaffinised in tol-
uene and hydrated in graded alcohol. Antigen retrieval was
performed in 10 mM sodium citrate (pH 6.10) for 20 minutes
at 95°C. Sections were then cooled for 20 minutes at room
temperature. Endogenous biotins were blocked by Biotin
blocking system (Dako, Trappes, France).

After washes in PBS-Tween buffer, endogenous peroxidase
activity was quenched with 3% hydrogen peroxide for 5 min-
utes then rinsed in distilled water. Each tissue section was
blocked with a solution of PBS (pH 7.4) containing 1% of BSA
and 1.4% of normal horse serum for 5 minutes, followed by an
overnight incubation at 4°C with primary antibody against
phospho-Akt (S473). After washes, slides were incubated
with rabbit biotinylated antibody (Jackson Immunoresearch,



Available online http://breast-cancer-research.com/content/10/6/R101

Page 3 of 15
(page number not for citation purposes)

Interchim, Clichy, France) for 30 minutes. Immunostaining was
revealed using the Vectastain ABC peroxidase system (Vector
Laboratories, Abcys, Paris, France) using diaminobenzidine as
a chromogen. Slides were counter-stained with haematoxylin
before mounting. The reactions were carried out using an
automated stainer (LabVision, Thermo Scientific, Microm
France, Francheville, France) except for the primary antibody.
Omission of the primary antibody was used as a negative con-
trol. Immunohistochemistry conditions were first optimised
using cell pellets from cell lines known to be positive or nega-
tive for phospho-Akt staining.

Positive nuclear staining for ER and PR were recorded in
accordance with standardised guidelines, using 10% as the
cut-off for ER- and PR-positive cells. For HER2, only staining
of membranes was considered with a 30% cut-off as recom-
mended [36]. The cut-off for CK5/6, CK14 and EGFR positiv-
ity was 10% of stained cells (weak or strong) for the results
shown in Figure 1a.

EGFR (clone 31G7, 1:40 dilution, Zymed, Invitrogen, Cergy-
Pontoise, France), CK5/6 (clone D5/16B4, 1:50 dilution,
Dako, Trappes, France), CK14 (clone LL002, prediluted, Bio-
genex, San Ramon, CA, USA) and phospho-Akt (S473) (clone
736E11, 1:50 dilution, Cell Signaling Technology, Ozyme,
Saint Quentin en Yveline, France) antibodies were used.

Tumour lysis
Frozen tumours were incubated with a lysis buffer containing
50 mM Tris (pH 6.8), 2% sodium dodecyl sulfate (SDS), 5%
glycerol, 2 mM 1,4-dithio-DL-threitol (DTT), 2.5 mM ethylene-
diaminetetraacetic acid, 2.5 mM ethylene glycol tetraacetic
acid, 2 mM sodium orthovanadate, 10 mM sodium fluoride and
a cocktail of protease (Roche, Meylan, France) and phos-
phatase (Pierce, Perbio, Brebières, France) inhibitors. Homog-
enisation was obtained using a TissueLyser (Qiagen,
Courtaboeuf, France) with stainless steel beads 5 mm in diam-
eter (Qiagen, Courtaboeuf, France) for two to three minutes at
30 Hz. Lysates were boiled at 100°C for 10 minutes to inacti-
vate proteases and phosphatases. Protein concentration was
determined using the BCA Protein Assay Kit-Reducing Agent
Compatible (Pierce, Perbio, Brebières, France). Lysates were
then stored at -80°C.

Reverse phase protein array
We developed a robust reverse phase protein array (RPPA)
technology allowing the printing of very small quantities of pro-
tein (about 1 ng per spot) convenient for the analysis of mini-
mal quantities of biopsy material. This miniaturised dot-blot
technology is based on robotic printing of a large number of
different cell/tissue lysates onto nitrocellulose bound to histol-
ogy slides and the analysis of proteins of interest with highly
specific antibodies [37,38]. Five two-fold serial dilutions were
made from each lysate in 96-well plates (conical bottom, 50
μl/well) and spotted in triplicates onto nitrocellulose-coated

glass slides (FAST slides, Whatman, Schleicher & Schuell,
Maidstone, Kent, UK) by using a MicroGrid Compact arrayer
(BioRobotics, Dutscher Scientific Instrumentation, Brumath,
France) with SMP3XB pins (Tip diameter = 75 μm, volume-
spot = 1.2 nl; Telechem, Proteigene, Saint Marcel, France).

To avoid evaporation during spotting, the humidity was kept at
about 50% to 60% in the array chamber with a humidification
control unit. After printing, slides coated with two nitrocellu-
lose pads were incubated with avidin, biotin and peroxydase
blocking reagents (Dako, Trappes, France) before saturation
with TBS containing 0.1% Tween-20 and 5% BSA (TBST-
BSA). Each pad was then probed overnight at 4°C with pri-
mary antibodies (or without primary antibodies, for negative
controls) at the appropriate dilution in TBST-BSA. After
washes with TBST, arrays were probed with horseradish per-
oxidase secondary antibodies (Jackson ImmunoResearch Lab-
oratories, Interchim, Clichy, France) diluted in TBST-BSA for
one hour at room temperature. To amplify the signal, slides
were incubated with Bio-Rad Amplification Reagent (BAR
solution) supplied in the Western blot amplification module
(Bio-Rad, Marnes la Coquette, France) for 10 minutes at room
temperature. The arrays were washed with TBST containing
10% dimethyl sulfoxide (DMSO) for two minutes, then with
TBST. To detect the bound biotin, slides were probed with
Cy5-Streptavidin (Jackson ImmunoResearch Laboratories,
Interchim, Clichy, France) diluted in TBST-BSA for one hour at
room temperature. The processed slides were scanned using
a GenePix 4000B microarray scanner (Molecular Devices,
Saint Grégoire, France). Double staining was performed to
quantify actin expression for the normalisation between sam-
ples using anti-beta-actin primary antibodies (Sigma-Aldrich,
Saint Quentin Fallavier, France) and Cy3 secondary antibod-
ies (Jackson ImmunoResearch Laboratories, Interchim, Clichy,
France).

Specificity of each primary antibody used in this study was first
validated by Western blotting on several cell and tumour
lysates (not shown). Optimal dilution was determined for each
antibody with different cell lysates using specific software
developed at the Curie Institute with the following criteria: sig-
nal away from the negative control without saturation and cor-
relation with Western blotting. Spot detection and
quantification were determined with MicroVigene software
(VigeneTech Inc, Carlisle, MA). Akt phospho-Akt (S473),
PTEN and stathmin antibodies (Cell Signaling Technology,
Ozyme, Saint Quentin en Yveline, France) were utilised at a
dilution of 1:1000, 1:250, 1:200 and 1:100, respectively.
HER2 antibodies (clone MS-432-P1, Ab11) used at 1:500
dilution were from Lab Vision (Interchim, Clichy, France).
mTOR expression and phosphorylation was not examined by
RPPA due to the poor specificity of mTOR antibodies.
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Western-blotting
Tissue lysates (10 μg/lane) were loaded onto 10% or four
12% Bis-Tris Criterion XT gels (Bio-Rad, Marnes la Coquette,
France) and migration was performed using MOPS buffer
(Bio-Rad, Marnes la Coquette, France). Proteins were then
transferred to nitrocellulose (Bio-Rad, Marnes la Coquette,
France). Membranes were saturated with TBST-BSA and then
incubated overnight at 4°C with primary antibodies at the
appropriate dilution in TBST-BSA. After washes, membranes
were incubated with horseradish peroxidase secondary anti-

bodies (Jackson ImmunoResearch Laboratories, Interchim,
Clichy, France) for one hour at room temperature. Bound anti-
bodies on immunoblots were visualised on membranes with a
chemoluminescent detection system (ECL; Amersham Phar-
macia Biotech, Orsay, France). Quantification was performed
using a LAS-3000 Luminescent Image analyser and Image
Gauge software (Fuji, FSVT, Courbevoie, France). Actin was
detected for normalisation between samples using anti-beta-
actin primary antibodies at the dilution of 1:5000 (Sigma-
Aldrich, Saint Quentin Fallavier, France). Akt, phospho-Akt

Figure 1

Characterisation of basal-like carcinomas (BLCs) and human epidermal growth factor receptor overexpressing (HER2+) carcinomas from human biopsiesCharacterisation of basal-like carcinomas (BLCs) and human epidermal growth factor receptor overexpressing (HER2+) carcinomas from 
human biopsies. (a) Selection and characterisation of human samples by immunohistochemistry (IHC). Thirteen BLCs were first selected as grade 
III triple-negative ductal carcinomas (negative for oestrogen receptor (ER), progesterone receptor (PR) and HER2 expression) and then character-
ised for cytokeratin 5/6 (CK5/6), CK14 and epidermal growth factor receptor (EGFR) staining. The control series was composed of 11 hormone 
receptor negative- and grade III-matched HER2+ carcinomas. Tumours contained between 50% and 90% tumour cells revealed by haematoxylin-
eosin-safran staining. (b) Higher HER2 protein expression in HER2+ carcinomas compared with BLCs. The box plot illustrates the expression of 
total HER2 protein expression measured by reverse phase protein array (RPPA) in human BLCs and HER2+ carcinomas. An outlier is present within 
the HER2+ population (open circle). The y axis represents logarithmic transformed HER2 relative quantification. The p value (*** p < 0.001) is repre-
sented (Mann-Whitney test). Data are representative of three separate RPPA experiments. (c) Tumours selected by immunohistochemistry clustered 
according to their gene expression signature. A hierarchical clustering was performed on the intrinsic/UNC genes as described [46]. (i) Overview of 
complete cluster diagram. Each row represents a gene and each column a human tumour. Black is for no change, red for up-regulation and green for 
down-regulation of gene expression. (ii) Experimental sample-associated dendrogram. Red dendrogram branch represents HER2+ carcinomas and 
blue designs basal-like carcinomas. (iii) HER2+ signature. A HER2+ expression cluster was observed and contained multiples genes from the 
17q11 amplicon including HER2 and growth factor receptor-bound protein 7 (GRB7) (typed in red) as previously described [46]. (iv) Basal-like sig-
nature. A basal-like expression cluster was found and contained genes previously identified to be characteristic of basal epithelial cells such as v-kit, 
FOXC1 and P-cadherin (written in red) [46].
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(S473), mTOR, phospho-mTOR (S2448), PTEN and cleaved-
PARP antibodies (Cell Signaling Technology, Ozyme, Saint
Quentin en Yveline, France) were used at 1:1000 dilution.
HER2 antibodies (clone MS-432-P1, Ab11) were used at a
1:500 dilution (Lab Vision, Interchim, Clichy, France).

DNA and RNA microarray analysis
DNA and RNA were purified as described [20]. For genomic
arrays, Affymetrix GeneChip Human Mapping 100 K was nor-
malised and analysed using ITALICS (ITerative and Alternative
normaLIzation and Copy number calling for affymetrix Snp
arrays) algorithm [39]. The segmentation of the genomic pro-
file was performed using GLAD (Gain and Loss Analysis of
DNA) software [40]. The forceGL parameter was set to 0.28.
Single nucleotide polymorphisms with smoothing value lower
and greater than 2 ± 0.28 were considered as loss and gain,
respectively. After RNA quality control, 12 of the 13 BLCs and
the 11 HER2+ carcinomas were hybridised onto U133 plus
2.0 Affymetrix chips. Transcriptomic data were normalised
using GC-RMA [41]. Raw and normalised transcriptomic data
are publically available at Gene Expression Omnibus (Acces-
sion number: [GSE13787]) and at the Curie Institute microar-
ray dataset repositories [42].

Cell culture
The cell lines were obtained from the American Type Culture
Collection (LGC Promochem, Molsheim, France) and from the
European Collection of Animal Cell Cultures (Sigma-Aldrich,
Saint Quentin Fallavier, France). HCC38 and HCC1937 were
maintained in RPMI-1640 with 10% FBS, 1.5 g/L sodium
bicarbonate, 10 mM Hepes and 1 mM sodium pyruvate. BT20
were cultured in Eagle's minimal essential medium containing
10% FBS, 1.5 g/L sodium bicarbonate, 0.1 mM non-essential
amino acids and 1 mM sodium pyruvate. MDA-MB-468 were
grown with RPMI with 10% FBS. MDA-MB-453 were cultured
without carbon dioxide in Leibovitz's L-15 medium containing
10% FBS and 10 mM HEPES. SKBr3 were grown with
McCoy5a containing 10% FBS and A431 with Eagle's mini-
mal essential medium containing 10% FBS and 0.1 mM non-
essential amino acids. A431 cells were either or not stimulated
with 50 ng/ml EGF for five minutes after overnight serum star-
vation. Lysates were prepared at 60% to 90% cell confluency
and analysed by Western blotting.

Cell proliferation assay
To test the effect of LY294002 and rapamycin on cell prolifer-
ation, cells were seeded into 96-well plates at a density deter-
mined on the basis of the growth characteristics of each cell
line (750 cells/well for MDA-MB-468 and HCC1937; 1500
cells/well for BT20). Forty-eight hours later, cells (triplicate
wells) were treated for seven days with varying concentration
of LY294002 (Sigma-Aldrich, Saint Quentin Fallavier, France),
rapamycin (Cell Signaling Technology, Ozyme, Saint Quentin
en Yveline, France) or DMSO (Sigma-Aldrich, Saint Quentin
Fallavier, France) as a control. LY094002 concentrations

tested were 0.39, 0.78, 1.56, 3.12, 6.25, 12.5, 25 and 50 μM.
Rapamycin concentrations analysed were 0.49, 0.98, 1.95,
3.91, 7.81, 15.62, 31.25, 62.5, 125 and 250 nM.

The relative percentages of metabolically active cells com-
pared with untreated controls were determined on the basis of
mitochondrial conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5
diphenyltetrazolium bromide (MTT) to formazine using a MTT
assay. To each well, 15 μL of MTT (5 mg/mL in PBS) was
added. After four hours incubation at 37°C, floating plus
adherent cells were lysed by the addition of 10% SDS in 10
mM hydrochloric acid. The absorbance was measured at the
wavelength of 540 nm (Infinite 200, Tecan, Lyon, France) and
results are presented as the percentage of control cell growth
inhibition obtained from no treated cells grown in the same cul-
ture plate. The IC50s were determined on the basis of the
dose-response curves.

Apoptosis assays
Cells were harvested and seeded in 96-well plates (10 000
cells/well). After overnight growth, cells were treated in tripli-
cate with various concentrations of LY294002, rapamycin or
DMSO as a control. Twenty-four hours later, apoptosis was
determined by caspase 3/7 activation and by the detection of
PARP cleavage that serves as a marker of cells undergoing
apoptosis. Caspase activity was determined using Caspase-
Glo 3/7 luminescent assay (Promega, Charbonnières-les-
bains, France) according to the manufacturer's instructions.
Results are presented as caspase 3/7 activity normalised by
caspase 3/7 activity from vehicle-treated cells. For PARP
cleavage, Western blot was performed using whole protein
lysates of floating plus adherent cells. Blots were incubated
with a specific cleaved-PARP antibody (Cell Signaling Tech-
nology, Saint Quentin en Yveline, France).

Statistical analysis
As data did not display a normal distribution, a non-parametric
test was performed. Mann-Whitney test was used to assess
differential expression of a protein between the two groups
(BLCs and HER2+). The R software v2.4.0 was used for sta-
tistical analyses [43]. A Spearman correlation test was per-
formed to estimate a rank-based measure of association
between two parameters. Values were log transformed. p val-
ues under 5% were considered significant. For the apoptosis
assays, p values were calculated using Student's t test.

Results and discussion
Tumour selection and characterisation
The PI3K pathway was examined in two populations of highly
proliferative, grade III, hormone receptor-negative invasive
breast carcinomas. We chose this comparison, rather than
that of BLCs with normal tissue, to compare two types of pro-
liferating cells, avoiding a comparison with a largely differenti-
ated, quiescent population. Thirteen BLCs were selected by
immunohistochemistry as triple-negative ductal carcinomas
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(lack of ER, PR and HER2 staining) that expressed CK5/6
and/or CK14 and/or EGFR (Figure 1a). The comparison series
was composed of 11 patients with ER-negative/PR-negative
and HER2+ tumours (Figure 1a). CK5/6 was expressed in
61.5% BLCs (8 of 13) and 9.1% HER2+ (1 of 11) (Figure 1a).
Similarly, CK14 was expressed more in the same BLCs
(61.5%) than in HER2+ (9.1%) (Figure 1a). EGFR was
detected in 92.3% BLCs (12 of 13) and 36.4% HER2+ (4 of
11) (Figure 1a), in agreement with previous studies showing
EGFR expression in most BLCs and in HER2+ carcinomas
[8,44,45]. Expectedly, RPPA analysis confirmed a significantly
higher HER2 protein expression in HER2+ carcinomas com-
pared with BLCs (p = 1.6 × 10-6) (Figure 1b). Similar results
were observed by Western blotting and significantly corre-
lated with those obtained by RPPA [see Additional data file 1].
Of note, some BLCs carcinomas expressed HER2 protein but
at lower levels than those observed in HER2+ carcinomas. In
addition, these data indicated that RPPA technology could be
useful to measure in a quantitative manner the expression of
HER2 protein in human samples. Gene expression microarray
analysis confirmed that the tumours clustered according to
basal-like and HER2+ signatures [46] (Figure 1c). Therefore,
the two breast cancer populations were accurately character-
ised and the subtypes identified by immunohistochemistry cor-
responded to the gene expression classification.

Activated PI3K pathway in basal-like breast cancer
Proteomic analysis was then continued by RPPA allowing
analysis of a very limited amount of sample from biopsies
[33,37,38]. Akt was expressed at similar levels in BLCs and
HER2 carcinomas (Figure 2a) whereas the phosphorylated
and active form of Akt (S473) tended to be expressed more in
BLCs although not in a significant manner (Figure 2b). Akt
activity, defined as the phospho/total ratio, was significantly
increased in BLCs compared with HER2+ population (p =
0.026) (Figure 2c). Similar data, significantly correlated with
RPPA data, were obtained by Western blotting [see Additional
data file 2] and were in agreement with those showing an acti-
vation of Akt within a population of eight triple-negative carci-
nomas [47].

Our data further revealed that Akt was more active in BLCs
compared with HER2+ carcinomas where Akt is known to be
activated through HER2 overexpression [23-25]. We verified
by immunohistochemistry of both BLCs and HER2+ carcino-
mas that the active form of Akt was expressed in tumour cells,
with a plasma membrane localisation observed in tumours
showing strong phospho-Akt immunoreactivity [see Additional
data file 3]. We also examined the phosphorylation status of
the target of rapamycin, mTOR, particularly at the S2448 res-
idue known to be phosphorylated through PI3K/Akt signalling
pathway activation. mTOR was expressed at similar levels in
the two breast populations but was significantly more active
(phospho/total ratio) in BLCs than in HER2+ carcinomas (p =
0.015) (Figure 2d,e,f), where mTOR has been shown to be

activated [48]. The PI3K pathway was up-regulated in BLCs
compared with HER2+ as shown by the significant activation
of downstream targets such as Akt and mTOR.

Lower PTEN expression in basal-like breast cancer 
compared to HER2+ carcinomas
We then attempted to characterise the molecular mecha-
nism(s) leading to Akt activation in BLCs. We evaluated PTEN
expression because its loss has been associated with ER neg-
ative [24,49,50] and CK5/14-positive breast cancer [34].
RPPA analysis highlighted a lower expression of PTEN protein
in BLCs compared with HER2+ carcinomas in a significant
manner (p = 0.002) (Figure 3a). Similar data were obtained
when PTEN was detected by Western blotting and signifi-
cantly correlated with RPPA data [see Figures a and b in Addi-
tional data file 4]. So far, we failed to estimate PTEN level by
immunohistochemistry, possibly because of the PTEN anti-
bodies we tested and/or the AFA fixation of tissues. Lower
PTEN expression in BLCs was also detected at the mRNA
level (p = 0.0002) (Figure 3b).

In agreement with a previous report with PTEN protein levels
measured by immunohistochemistry [49], PTEN mRNA and
protein levels were well correlated (p = 0.0002) (Figure 3c)
[see Figure c in Additional data file 4], indicating that we could
estimate PTEN protein levels from transcriptomic analysis. Our
analysis of published data [51] showed that lower PTEN
mRNA levels in BLCs compared with normal samples (p =
0.003, Mann-Whitney test, data not shown), suggesting lower
PTEN protein levels in BLCs compared with normal tissues.
We examined the expression of stathmin, which has recently
been shown to be overexpressed in low PTEN expressing
breast cancers [49]. In accordance with these published
observations, stathmin protein was overexpressed in BLCs
compared with HER2+ carcinomas (p = 0.018) (Figure 3d).
Stathmin therefore represents a potential marker for PTEN-
dependent PI3K pathway activation [49]. Altogether, tran-
scriptomic and proteomic analyses highlighted low expression
of PTEN in BLCs.

Genomic alterations at the PTEN tumour suppressor 
gene in basal-like breast cancer
We then examined whether variations in PTEN protein expres-
sion could arise from genomic alterations in our BLC popula-
tion. Genomic DNA isolated from tumours was analysed on
SNP arrays. The two populations behaved differently for PTEN
DNA copy-number (CN) in a significant manner (p = 0.005)
(Figure 4a) [see Additional data file 5]. In contrast to the entire
HER2+ population exhibiting normal PTEN CN, loss of PTEN
CN was observed in 46.1% (6 of 13) BLCs (Figure 4a) [see
Additional data file 5]. Of note is that our BLC population
included one BRCA1 tumour (c.2501delG BRCA1 mutation)
which also presented a loss of PTEN CN. We noticed that the
only double deletion of the PTEN gene was observed in a BLC
patient with a normal status of BRCA1 with the exception of
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the c.4039A>G polymorphism. We also observed a gain of
PTEN CN in 2 of 13 BLCs (15.4%) (Figure 4a) [see Additional
data file 5] but these two tumours expressed PTEN protein at
a level similar to that one in BLCs with normal PTEN CN (Fig-
ure 4b).

Importantly, PTEN CN correlated with PTEN protein level in a
significant manner (p = 0.028) in the whole population (Figure
4b). These results suggest that genomic alterations at the
PTEN locus are directly responsible for low PTEN protein
expression in about 50% of BLCs (Figure 4b). Low PTEN pro-
tein expression in the other half of BLCs may result from PTEN
promoter methylation and/or PTEN mutation. Although coding
mutations of PTEN were thought to be rare in breast cancer,
PTEN nucleotide sequence mutations have recently been
detected exclusively in PTEN-null non-hereditary breast can-
cer [34]. However, we did not detect any PTEN mutation in

our series of 13 BLCs (data not shown), in agreement with a
recent report showing that the rare PTEN mutations observed
in breast cancer (2.3%) were restricted to hormone receptor-
positive carcinomas [33]. Therefore, low PTEN protein expres-
sion in the 50% BLCs with no PTEN CN loss may arise from
epigenetic modifications.

In addition, by analysing a public data set generated from 42
BLCs and 32 hormone receptors-positive luminal A breast
carcinomas [52], we also found a loss of PTEN CN, mainly in
BLCs, and a correlation between PTEN CN and PTEN mRNA
in the entire population (p = 3.25 × 10-7, c = 0.614, Spearman
correlation, data not shown). In conclusion, we demonstrate
the presence of genomic alterations at the PTEN locus specif-
ically in BLCs. Our findings indicate that alteration of PTEN
gene is not restricted to BRCA1-associated hereditary
tumours (mostly corresponding to a specific basal-like sub-

Figure 2

Up-regulated phosphatidylinositol 3-kinase (PI3K) signalling pathway in human basal-like breast cancersUp-regulated phosphatidylinositol 3-kinase (PI3K) signalling pathway in human basal-like breast cancers. Akt is activated in basal-like carci-
nomas (BLCs). The expression of (a) total Akt and (b) phosphorylated/active form of Akt (phospho-Akt (S473)) were measured by reverse phase 
protein array (RPPA) as well as Akt activity determined as the (c) ratio 'phospho/total' in human BLCs and human epidermal growth factor receptor 
overexpressing (HER2+) carcinomas. mTOR is activated in BLCs. Box plots show the (d) expression of mTOR and (e) its form phosphorylated via 
the PI3 kinase/Akt signalling pathway (phospho-mTOR (S2448)) determined by Western blotting as well as (f) mTOR activity (phospho/total ratio) in 
human BLCs and HER2+ carcinomas. Outliers are shown for BLCs (solid circles) and HER2+ carcinomas (open circles). The y axes represent log-
arithmic transformed relative quantifications. p values (* p < 0.05) are represented (Mann-Whitney test). Data are representative of four and two sep-
arate experiments for RPPA and Western-blot, respectively.
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group) as recently suggested [34], but could be extended to
the entire BLC population. These genetic modifications may
drive to an aberrant PTEN-dependent signalling pathway in the
whole BLC population.

PTEN-dependent activation of Akt in basal-like breast 
cancer
Low PTEN expression may therefore be responsible for Akt
activation in BLCs. Indeed, data obtained by RPPA demon-
strated that Akt activity correlated negatively with PTEN
expression levels in BLCs (p = 0.036) (Figure 5) but not in
HER2+ carcinomas (not shown). Similar conclusions arose
from Western blot analysis [see Figure d in Additional data file
4]. Altogether, our data demonstrated a PTEN-dependent acti-
vation of Akt in BLCs, consistent with recent work showing
higher phospho-Akt levels in PTEN-low compared with PTEN-
high breast cancers [33].

We can not rule out the hypothesis that Akt could be activated
through multiple mechanisms in BLCs, and not only through
low PTEN expression. For example, transcriptomic microarray
analysis revealed that the type II inositol polyphosphate-4-
phosphatase mRNAs were expressed at significantly lower
levels in BLCs compared with HER2+ human tumours
(INPP4B reporter 205376_at from Affymetrix; p = 0.0001,
data not shown). As INPP4B has been shown to negatively
regulate Akt activity [53], its lower expression may represent
an alternative pathway for Akt activation in BLCs. However, we
could not test this hypothesis at a proteomic level because of
the poor quality of the INPP4B antibody available. Mutations of
PIK3CA, although more frequent in hormone receptor-positive
tumours (34.5%) and HER2+ carcinomas (22.7%) occurs in
BLCs (8.3%) and could represent another way to activate the
PI3K signalling pathway in these tumours [33].

Figure 3

Lower phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression in human basal-like cancers (BLCs) compared with human epidermal growth factor receptor overexpressing (HER2+) carcinomasLower phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression in human basal-like cancers (BLCs) compared 
with human epidermal growth factor receptor overexpressing (HER2+) carcinomas. (a) Lower PTEN protein levels in BLCs compared with 
HER2+ carcinomas. PTEN protein level was quantified by reverse phase protein array (RPPA). Outliers are shown for BLCs (solid circles) and 
HER2+ carcinomas (open circles). Data are representative of four separate experiments. (b) Lower mRNA PTEN level (probeset 225363_at) in 
BLCs compared with HER2+ carcinomas. An outlier is present in BLC population (solid circles). (c) Correlation between PTEN protein measured by 
RPPA and PTEN messenger in the entire tumour population. Linear regression, Spearman correlation c and p value are presented. BLCs (solid cir-
cles) and HER2+ carcinomas (open circles) are shown. (d) Stathmin is overexpressed in BLCs compared with HER2+ carcinomas. Box plots indi-
cate the levels of stathmin protein measured by RPPA within the two populations. Data are representative of four separate experiments. P values are 
shown (a,b,d: Mann-Whitney test). * p < 0.05, ** p < 0.01, *** p < 0.001. Protein and mRNA relative quantifications were logarithmic transformed.
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Figure 4

Loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) DNA copy-number (CN) in human basal-like breast cancersLoss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) DNA copy-number (CN) in human basal-like breast cancers. 
(a) Basal-like carcinomas (BLCs) and human epidermal growth factor receptor overexpressing (HER2+) carcinomas behaved differently for PTEN 
CN in a significant manner. Recurrent DNA CN alterations were observed around the PTEN gene (between 72,260,000 and 93,93,000 bp of chro-
mosome 10) in BLCs compared with HER2+ carcinomas. Frequencies of genome CN gain (red) and loss (green) were calculated using the FrAGL 
(Frequency of Amplicon, Gain and Loss) option of VAMP software (Visualisation and Analysis of array-CGH, transcriptome and other Molecular Pro-
files) [63]. The vertical blue bar represents PTEN position from 89,613,175 to 89,718,511 bp. Percentages of tumours with loss, normal or gain of 
PTEN CN are presented within the two populations in the table. p value is shown (** p < 0.01, fisher exact test). (b) Correlation between PTEN pro-
tein level and PTEN DNA CN. PTEN protein level was quantified as in Figure 3a. Linear regression, Spearman correlation c and p value (* p < 0.05) 
are presented. BLCs (solid circles) and HER2+ carcinomas (open circles) are shown. The two vertical black lines (X = 2 ± 0.28) separate loss/nor-
mal/gain PTEN CN (forceGL parameter: 0.28).
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PI3K but not mTOR inhibition induces apoptosis in 
basal-like cell lines
Akt activity was examined by Western blotting in four human
basal-like cell lines (BT20, HCC38, HCC1937 and MDA-MB-
468), one HER2+ (SKBr3) and one luminal (MDA-MB-453)
human breast cell lines as well as in an epidermoid carcinoma
cell line (A431) for a control (Figure 6a). Akt was phosphor-
ylated indicating that PI3K pathway was activated in all breast
cell lines analyzed (Figure 6a). PTEN was weakly expressed
(BT20) or not detectable specifically in basal-like cell lines
(Figure 6a). We noticed highest levels of Akt phosphorylation
in MDA-MB-453 and BT20 (Figure 6a), and this may result
from the mutation of the PI3K catalytic subunit (PIK3CA)
reported in these two cell lines [24,33]. PTEN has been
shown to be mutated in MDA-MB-468 [33]. Therefore, similar
results were obtained from human biopsies and cell lines
revealing an activation of Akt associated with a low/lack
expression of PTEN in the basal-like population.

We then investigated whether the inhibition of the PI3K path-
way altered proliferation and apoptosis of basal-like cell lines.
First, we examined the growth inhibition response of three
basal-like cell lines (BT20, HCC1937 and MDA-MB-468)
treated with the PI3K inhibitor LY294002 or the mTOR inhibi-
tor rapamycin. Exposure to LY294002 induced an inhibition of
the proliferation for all three cell lines with a lower IC50 for
MDA-MB-468 (IC50 = 7.6 ± 1.4 μM) compared with
HCC1937 (IC50 = 14.5 ± 3.8 μM) and BT20 (IC50 = 13.3 ±
2.8 μM) (Figure 6b). The IC50 were in the same range than
those obtained previously for MDA-MB-468 (IC50 = 9.5 μM)
[54] and for other breast cell lines (2 to 20 μM LY294002)
[55]. MDA-MB-468 cells were the most sensitive cells to

LY294002 in agreement with the idea that PTEN mutation
render cells more sensitive to growth inhibition by that inhibitor
[33]. Exposure to rapamycin led to a growth inhibition that was
not complete. The IC50 for rapamycin were not reached for
HCC1937 and BT20 cell lines. MDA-MB-468 cells were the
most sensitive cells to rapamycin with an IC50 = 1.2 ± 0.5 nM
(Figure 6b). Similar data have been published previously for
MDA-MB-468 cells (IC50 = 1 nM) [56,57].

We next evaluated whether the growth inhibition resulted from
apoptosis. Basal-like cell lines were treated with concentra-
tions of inhibitors used to induce apoptosis, that is 50 to 100
μM LY294002 or 100 nM rapamycin [55-57]. Apoptosis was
analysed 24 hours later by measuring casapase 3/7 activity
(Figure 6c) and PARP cleavage (Figure 6d). In contrast to
rapamycin, LY294002 treatment-induced apoptosis in all
basal-like cell lines as judged by a rapamycin dose-dependent
increased of caspase 3/7 activity (Figure 6c) and PARP cleav-
age (Figure 6d). These data are in agreement with a recent
paper showing that LY294002 treatment, but not rapamycin,
induced apoptosis in other breast cell lines [55]. It is likely that
rapamycin inhibited basal-like cell proliferation by arresting the
cell cycle in the G1 phase as reported for other breast cell
lines [56].

In conclusion, exposure of basal-like cell lines to PI3K or
mTOR inhibitors led to cell growth arrest but apoptosis was
only observed in cells treated with LY294002. The inhibition
of PI3K will directly affect Akt activity, which is involved in cell
death and survival through several targets such as Bad,
whereas the inhibition of mTOR, which acts downstream of
Akt, is expected to inhibit proliferation but not apoptosis [28].
Moreover, the inhibition of mTOR may contribute to an unex-
pected activation of Akt through a negative feedback loop
[58,59]. In order to bypass feedback loops, it may be more effi-
cient to target PI3K or Akt than inhibiting mTOR. In contrast to
LY294002, which broadly acts on the majority of PI3Ks and
other related kinases [60], inhibitors of specific PI3K isoforms
were recently identified [61]. In breast cell lines, PTEN loss
was shown to sensitise to p110 beta inhibitors, a ubiquitously
expressed class IA PI3K isoform [61]. Moreover, the inhibition
of p110 beta was shown to block the tumourigenesis caused
by PTEN loss in prostate [62]. Although further work is
needed, these observations suggest that p110 beta may rep-
resent an attractive target for the treatment of patients with low
PTEN expressing carcinomas such as BLCs.

Conclusion
Significant differences of protein expression patterns were
observed between BLCs and HER2+ carcinomas, two types
of highly proliferative breast cancers. Our data demonstrate
that: the PI3K pathway is activated in BLCs and, to a higher
extent than in HER2+ carcinomas, is known to have up-regu-
lated Akt and mTOR activities; BLCs express less PTEN com-
pared with HER2+ carcinomas and normal tissues; genomic

Figure 5

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-dependent activation of Akt in human basal-like breast cancersPhosphatase and tensin homolog deleted on chromosome 10 
(PTEN)-dependent activation of Akt in human basal-like breast 
cancers. PTEN protein levels are correlated negatively with Akt activity 
in human basal-like cancer (BLC). Akt activity and PTEN protein levels 
were measured as in Figures 2c and 3a, respectively. BLCs (solid cir-
cles), linear regression, Spearman correlation c and p value (* p < 0.05) 
are shown.
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alterations at the PTEN locus are specifically found in BLCs;
low PTEN expression in BLCs is associated with lost of PTEN
DNA CN; Akt activity is dependent of PTEN expression in
BLCs; similarly to human biopsies, basal-like breast cell lines
exhibit low PTEN expression and activated Akt; PI3K or mTOR
inhibition induced growth arrest in basal-like cell lines; PI3K
inhibition, but not mTOR inhibition, induced apoptosis of
basal-like cell lines; and finally that RPPA is a powerful quanti-

tative tool for proteomic analysis and to examine signalling
pathways in human tumours. Our study provides insight into
the molecular pathology of BLCs with therapeutic implications
and encourages the targeting of key players within the PI3K
pathway, such as specific PI3K/Akt isoforms for the manage-
ment of patients with poor prognosis BLC.

Figure 6

Phosphatidylinositol 3-kinase (PI3K) and mTOR inhibitors inhibit basal-like cell line proliferation whereas apoptosis is induced only by PI3K inhibitionPhosphatidylinositol 3-kinase (PI3K) and mTOR inhibitors inhibit basal-like cell line proliferation whereas apoptosis is induced only by 
PI3K inhibition. (a) Akt activation is associated with low/lack of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression in 
human basal-like cell lines. The expression of Akt, phospho-Akt (S473) and PTEN were analysed by Western blotting in four basal-like (BT20, 
HCC38, HCC1937 and MDA-MB-468), one human epidermal growth factor receptor overexpressing (HER2+) (SKBr3) and one luminal (MDA-MB-
453) human breast cell lines as well as in epidermal growth factor stimulated (EGF) or not (-) A431 cells. (b) PI3K and mTOR inhibition induce cell 
growth arrest of basal-like cell lines. BT20 (blue triangle), HCC1937 (red square) and MDA-MB-468 (green diamond) cells were exposed continu-
ously for seven days to increasing concentrations of LY294002 (upper panel) or rapamycin (lower panel). Growth was assessed by 3-(4,5-dimethyl-
thiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) dye conversion and presented as the percentage of control cell growth inhibition obtained from 
DMSO-treated cells. The x axes represent logarithmic transformed concentration of drugs. (c,d) The inhibition of PI3K, but not mTOR, induces apop-
tosis in basal-like cell lines. BT20, HCC1937 and MDA-MB-468 were exposed to varying concentrations of LY294002 (0 to 100 μM) or rapamycin 
(0 to 100 nM) for 24 hours and apoptosis was detected by measuring (c) caspase3/7 activity and the (d) cleavage of PARP (cPARP). (c) Caspase 
3/7 activity was normalised by caspase 3/7 activity from vehicle-treated cells. (d) Actin was used as a loading control. The data represented the (b,c) 
average of three separate experiments performed in triplicates or are representative of (a,d) three separate experiments. Error bars represent stand-
ard deviation and p values (** p < 0.01, *** p < 0.001) were calculated by using Student's t test.
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Additional file 2
A PDF containing figures showing Akt activation in basal-
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represented by stars (* p < 0.05, ** p < 0.01, *** p < 
0.001).
See http://www.biomedcentral.com/content/
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Additional file 3
A PDF containing a figure showing that the active form of 
Akt is detected in tumour cells within the biopsies by 
immunohistochemistry. Expression and localisation of 
phospho-Akt (S473), and hence activated Akt, was 
analysed on TMA in BLCs and HER2+ carcinomas. 
Phospho-Akt showed low, medium and high expression 
depending on the tumour samples. Phospho-Akt is 
preferentially expressed in tumour cells. It is located in 
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in tumour cells with strong staining. All 
photomicrographs are of the same 40× magnification 
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11.1.4 Paper: Formins regulate tumor cell invasion

This work was done in collaboration with the group of Philippe Chavrier (Ph.D., Institut Curie). We

investigated the role of Diaphanous-related formins (DRF) in invadopodia formation and breast tumor

cell invasion. Using small interfering RNA (siRNA) on highly-invasive MDA-MB-231 TNBC cell-line,

it was shown that some members of the DRF family are required for invadopodia formation and two-

dimensional matrix proteolysis. It was also shown that invasion of a three-dimensional Matrigel matrix

involves filopodia-like protrusions and the formation of these filopodia depends on DRF. Overall, we

show that DRF are critical components of the invasive apparatus of tumor cells in two-dimensional

and three-dimensional matrices.

I participated in the transcriptomic analysis of the data. An important question was whether DRF

are overexpressed in TNBC. My statistical analysis of the Curie-Servier dataset and another public

dataset revealed a 2 to 2.5-fold over-expression of DRF2 and DRF3 transcripts in TNBC compared

with normal human breast tissues (see page 9 of the paper). This result suggests that DRF do play a

role in the invasion of real TNBC.
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1,3
Renaud Poincloux,

1,3
Maryse Romao,

1,4
Guillaume Montagnac,

1,3
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Abstract

Proteolytic degradation of the extracellular matrix by
metastatic tumor cells is initiated by the formation of
invadopodia, i.e., actin-driven filopodia-like membrane pro-
trusions endowed with matrix-degradative activity. A signal-
ing cascade involving neural Wiskott-Aldrich syndrome
protein and the Arp2/3 actin nucleating complex is involved
in actin assembly at invadopodia. Yet, the mechanism of
invadopodia formation is poorly understood. Based on their
role as actin nucleators in cytoskeletal rearrangements,
including filopodia formation, we examined the function of
Diaphanous-related formins (DRF) in invadopodia formation
and invasion by breast tumor cells. Using small interfering
RNA silencing of protein expression in highly invasive MDA-
MB-231 breast adenocarcinoma cells, we show that three
members of the DRF family (DRF1–DRF3) are required for
invadopodia formation and two-dimensional matrix proteo-
lysis. We also report that invasion of a three-dimensional
Matrigel matrix involves filopodia-like protrusions enriched
for invadopodial proteins, including membrane type 1 matrix
metalloproteinase, which depend on DRFs for their forma-
tion. These data identify DRFs as critical components of the
invasive apparatus of tumor cells in two-dimensional and
three-dimensional matrices and suggest that different types
of actin nucleators cooperate during the formation of inva-
dopodia. [Cancer Res 2009;69(7):2792–800]

Introduction

Tumor cell invasion across tissue boundaries and metastasis
are dependent on the capacity of invasive cancer cells to breach
the basement membrane (BM) and migrate through the three-
dimensional interstitial collagen network (1, 2). One major route of
invasion requires tumor cells to proteolytically cleave extracellular
matrix (ECM) components via a mechanism involving matrix-
degrading proteases (3). In particular, extracellular proteases
belonging to the matrix metalloproteinase (MMP) family, including
transmembrane membrane type 1 MMP (MT1-MMP), play a crucial
role in cancer dissemination by degrading and remodeling ECM
components (4–8).

Intriguingly, when invasive cancer cells are grown on a two-
dimensional ECM substratum layered on glass, matrix proteolytic
activity is restricted to invadopodia, which correspond to actin-
rich finger-like structures protruding into the matrix and enriched
in MT1-MMP (9–13). Neural Wiskott-Aldrich syndrome protein
(N-WASP) and the Arp2/3 complex, both components of the actin
polymerization machinery, are required for invadopodia formation
and thus have been proposed to assemble actin filaments at
invadopodia (14, 15). The cytoskeletal protein cortactin is also
enriched at invadopodia and is critical for the formation and
activity of these structures possibly through stabilization of the
actin network and, as recently suggested, by controlling delivery/
recruitment of MMPs at invadopodia (10, 11, 16–18). Furthermore,
members of the Rho family of small GTPases are required for
invadopodia formation (12, 15, 19). In particular, Cdc42 was shown
to control the formation of invadopodia in human melanoma and
rat mammary adenocarcinoma tumor cell lines through activa-
tion of the N-WASP/Arp2/3 complex cascade (14, 15), whereas
we recently implicated Cdc42 and RhoA in the mechanism of
invadopodia formation and MT1-MMP delivery in breast adeno-
carcinoma MDA-MB-231 cells (12). However, the complete
machinery of invadopodia formation in cancer cells remains
poorly understood. Based on the filopodia-like morphology of
invadopodia (16, 20), it was postulated that formins might
elongate actin filaments in invadopodia (14, 21).

Formins are filamentous actin (F-actin) nucleators that poly-
merize linear filaments through conserved formin homology
domains (22). Among the formin family, Diaphanous-related
formins (DRF) produce linear actin filaments that are the
hallmarks of stress fibers and filopodia (23–27). In addition, DRFs
are downstream effectors of active Rho GTPases, RhoA, and Cdc42
(22). Roles for DRF1 during formation of membrane protrusions by
tumor cells and invasion have been recently reported (28, 29).
However, the function of DRF proteins in invadopodia formation
and in the acquisition of invasive phenotypes by cancer cells has
not been thoroughly explored.

In this study, we assessed the contribution of DRF1, DRF2, and
DRF3 to the invasion capacity of human MDA-MB-231 cells, a
highly invasive cell line of basal-like breast tumor phenotype, the
most aggressive form of breast cancers (30). Our data show a
pivotal role of DRF proteins during invadopodia formation in two-
dimensional and three-dimensional matrices for BM degradation
and invasion by breast cancer cells.

Materials and Methods

Antibodies. Mouse monoclonal antibody for DRF1 was obtained from

BD Biosciences. Goat polyclonal anti-DRF2 was purchased from Santa Cruz
Biotechnology. Mouse MT1-MMP monoclonal antibody was a gift from

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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Dr. M.C. Rio (Institut de Génétique et de Biologie Moléculaire et Cellulaire).
Monoclonal mouse anti–h-actin antibody (clone AC15) was from Sigma-

Aldrich. Monoclonal anti-RhoA was provided by Dr. J. Bertoglio (Institut

National de la Sante et de la Recherche Medicale U461). Monoclonal

anti-cortactin (Clone 4F11) and anti-phosphotyrosine (pY; Clone 4G10)
antibodies were obtained from Millipore. AlexaFluor-phalloidin, rabbit

polyclonal anti-pY antibody, and antimouse IgG Alexa488 antibody

were from Invitrogen. Horseradish peroxidase–conjugated and fluorescently

conjugated secondary antibodies were from Jackson ImmunoResearch
Laboratories.

Constructs. EGFP-mDia2 and cSRC-Y527F expression constructs were

kind gifts of Drs. T. Svitkina (University of Pennsylvania) and M. Arpin

(Institut Curie), respectively. MT1-MMP with internal pHLuorin was
generated by PCR resulting in the insertion of pHLuorin (super ecliptic

variant, a gift from Dr. T. Galli) between amino acids 534 and 535, NH2

terminally to the transmembrane region. The sequence of Lifeact (31),
kindly provided by Dr. R. Wedlich-Söldner (MPI Biochem), was fused to the

aminoterminus of mCherry by PCR (mCh-Lifeact) with a GDPPVAT spacer

and subcloned in pIRESpuro3 (Clontech).

Cell culture, transfections, and stable cell lines. Human breast
adenocarcinoma cells MDA-MB-231 (American Type Culture Collection)

were maintained in L-15 culture medium (Sigma-Aldrich) with 2 mmol/L

glutamine and 15% FCS at 37jC in 1% CO2.

For small interfering RNA (siRNA) treatment, MDA-MB-231 cells
were treated with 10 to 100 nmol/L of specific siRNA (see Supplementary

Table S1) with Oligofectamine (Invitrogen). Cells were analyzed after 72 h of

treatment. MDA-MB-231 cells were transfected with expression constructs
using Lipofectamine (Invitrogen). Cells were analyzed after 24 h of

transfection. Stable lines of MDA-MB-231 cells expressing mCh-Lifeact

alone or together with pHLuorin-MT1-MMP were selected with 1 Ag/mL

puromycin or 1 Ag/mL puromycin, together with 0.5 mg/mL G418,
respectively.

Reverse transcription–PCR. Total RNA was obtained using the RNeasy

Mini kit from QIAGEN (Hilden). cDNA synthesis was carried out using

SuperScript III Reverse Transcriptase enzyme (Invitrogen). PCR reactions
were performed using Platinum Taq DNA Polymerase (Invitrogen). Primers

are listed in Supplementary Table S2.

Fluorescent-gelatin degradation assay and quantification of
invadopodia. MDA-MB-231 cells were incubated for 5 h on FITC-

conjugated or AlexaFluor 594–conjugated gelatin (Invitrogen) to quantify

gelatin degradation and were stained for F-actin and cortactin to identify

invadopodia positive cells as described (12, 13). Statistical analysis was
carried out using SigmaStat 3.5.

Indirect immunofluorescence analysis. MDA-MB-231 cells were

cultured on gelatin-coated coverslip (Figs. 1 and 2) or on top of Matrigel

(10 mg/mL, BD Biosciences; Fig. 4 and Supplementary Figs. S4 and S5). Cells
were preextracted with 0.3% Triton-X100 in 4% PFA and processed for

immunofluorescence analysis as described (12, 13). Cells were imaged with

a DM6000 B/M microscope (Leica Microsystems; Figs. 1 and 2), or with a

Leica DMRA2 microscope with 100� PL APO HCX, 1.4 NA objective
equipped with a piezoelectric driver (0.2-Am increment, Physik Instrumente;

Fig. 4 and Supplementary Figs. S4 and S5). Microscopes were equipped with

a CoolSnapHQ camera (Roper Scientific) and steered by Metamorph 6
(Molecular Devices Corporation).

Live cell imaging. MDA-MB-231 cells expressing mCh-Lifeact were

plated on FITC-gelatin coated glass-base dishes (Iwaki) and kept in a

humidified atmosphere at 37jC and 1% CO2. For Supplementary Videos S1

and S6, images were recorded using the 100� objective of a Leica DMIRE2

microscope equipped with a Cascade II camera (Roper Scientific). For

Supplementary Videos S2 to S4, images of mCh-Lifeact and FITC-gelatin

were recorded with the 60� objective of an automated Nikon TE2000-E

microscope equipped with a CoolSnapHQ camera. To allow representative

sampling of mock and siRNA-treated cell populations, six fields per

condition were recorded simultaneously.
Scanning and transmission electron microscopy. The upper chamber

of a Transwell cell culture insert (BD Biosciences) was filled with 100 AL of

Matrigel, and cells were added in serum-free L15 medium. The lower

chamber contained L15 medium with 15% FCS. For scanning electron
microscopy, cells were prefixed in 2.5% glutaraldehyde/0.1 mol/L sodium

cacodylate (pH 7.4). After postfixation in 1% osmium tetraoxide (in 0.2 mol/L

cacodylate buffer), cells were dehydrated in a series of increasing ethanol

concentrations and critical point dried using carbon dioxide. After coating
with gold, cells were examined with a JEOL JSM-6700F scanning electron

microscope. For transmission electron microscopy, 5 h after contact with

Matrigel, cells were fixed overnight in 2.5% glutaraldehyde and 2%

paraformaldehyde in 0.1 mol/L cacodylate buffer, postfixed with 2% OsO4,
dehydrated in ethanol, and embedded in Epon. Ultrathin sections were

prepared with a Reichert Ultracut-E Microtome (Leica), counterstained with

2% uranyl acetate in 70% methanol, and viewed with a Philips CM120

Transmission Electron Microscope (FEI Company) equipped with a
KeenView camera (Olympus).

Results

DRFs are required for invadopodia formation and matrix
degradation. Western blotting and semiquantitative reverse
transcription–PCR analysis showed that MDA-MB-231 cells express
all three members of the DRF family (Fig. 1A). To characterize the
function of DRF proteins in matrix degradation and invadopodia
activity in MDA-MB-231 cells, we silenced each DRF protein
individually by using two independent siRNAs (Fig. 1A).

Mock and siRNA-treated cells were plated on a thin layer of
fluorescently labeled gelatin for 5 hours in an assay monitoring
matrix degradation (10, 12). We observed that f20% of mock-
treated cells degraded the fluorescent matrix (Fig. 1B ; data not
shown) and silencing of MT1-MMP reduced matrix proteolysis of
MDA-MB-231 cells to f10% of control (Fig. 1D), confirming
recent reports (10, 12, 17). Next, we analyzed matrix proteolysis
by DRF-depleted cells. Silencing of DRF1 to DRF3 with two
independent siRNAs resulted in 70% to 80% reduction of
degradation compared with mock-treated cells without significant
perturbation of cell and actin cytoskeleton morphology or
spreading on gelatin (Fig. 1B and D).

As described (9, 10, 16), proteolysis of the matrix by MDA-MB-231
cells was mainly focal and coincided with the presence of F-actin/
cortactin-positive invadopodia at the ventral cell surface (Fig. 1C).
Consistent with the proportion of cells able to degrade the matrix,
invadopodia were observed inf20% of mock-treated MDA-MB-231
cells plated on gelatin (6.0 F 0.7 invadopodia per cell, n = 95 cells;
Fig. 1D). Interestingly, this proportion dropped to 8% to 11% in cells
depleted for each individual DRF (Fig. 1D). When cells were
incubated on gelatin for a longer time (15 h), inhibition of matrix
degradation and invadopodia formation was still observed in DRF-
depleted cells compared with controls, indicating that loss of DRF
function does not delay but rather inhibits invadopodia formation
(not shown). No additional effect of simultaneously knocking down
two DRF proteins was observed, suggesting that the availability
of each DRF is limiting and that they are functionally linked
(not shown). Of note, triple knockdown was inefficient for individual
protein suppression (not shown). Altogether, these data show that
DRF proteins are required for invadopodia formation and subse-
quent matrix degradation in MDA-MB-231 breast cancer cells.

To specify at which step of invadopodia formation DRF proteins
are implicated, we performed live cell imaging of mock-depleted,
DRF3-depleted, and MT1-MMP–depleted MDA-MB-231 cells stably
expressing mCh-Lifeact (F-actin–binding peptide of Saccharomyces
cerevisiae Abp140p fused to mCherry; ref. 31). MDA-MB-231 cells
plated on gelatin displayed lamellipodial and membrane ruffling
activities and exhibited random motility irrespective of siRNA
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treatment. In mock-treated degrading cells, invadopodia appeared
as bright, static, and long-lived F-actin puncta, some being stable
for at least 2 hours (Supplementary Fig. S1A ; Supplementary Videos
S1 and S2). Newly formed invadopodia appeared either as single
isolated puncta (Supplementary Fig. S1A and B ; Supplementary
Videos S1 and S2) or formed collectively as a group of puncta
originating from a wave of actin assembly (Supplementary Fig. S1A ;
Supplementary Video S1). Highly dynamic small actin dots could
also be observed at the rear of extending lamellipodia that did not
coincide nor precede matrix degradation and were not related to
invadopodia (Supplementary Fig. S1B ; Supplementary Video S2).
These small actin dots were also present in cells depleted for DRF3

(Supplementary Fig. S1C ; Supplementary Video S3). In contrast,
long-lived degradative invadopodia were rarely observed in DRF3-
ablated cells (Supplementary Video S3). Finally, F-actin recruitment
or aggregation was virtually absent in MT1-MMP depleted cells
(Supplementary Video S4). Altogether, these observations suggest
that DRF3, as well as other DRF-family members, are important for
the early stage of invadopodia formation.
DRF localization at invadopodia. Endogenous DRF1 was

distributed throughout the cytoplasm of MDA-MB-231 cells plated
on gelatin as observed in many different cell types (29, 32), with
some dotty accumulations at the cell edge but no obvious
localization at invadopodia (not shown). This distribution was

Figure 1. DRF knockdown results in
decreased gelatin degradation and
invadopodia formation. A, protein
expression levels of DRF1, DRF2, and
mRNA expression levels of DRF3 in
MDA-MB-231 cells treated with two
independent siRNAs as indicated.
MT1-MMP expression was analyzed by
immunoblotting. h-Actin immunoblotting
or mRNA levels were used as a loading
control. Molecular weight markers are
indicated in kDa and bp. B, cells
transfected with the indicated siRNA
were incubated on fluorescent gelatin for
5 h, fixed, and stained for F-actin and
cortactin. Scale bar, 20 Am. C, higher
magnification of MDA-MB-231 cell showing
F-actin and cortactin-positive invadopodia
lying on degraded gelatin (arrows ). Scale
bar, 2 Am. D, graph depicting gelatin
degradation (black columns ) and the
presence of invadopodia (white columns )
in MDA-MB-231 cells treated with the
indicated siRNA. Black columns, mean
degradation area setting mock to 100;
white columns, percentage of cells with
invadopodia as defined in C in the different
cell populations; bars, SE. Quantifications
were obtained from five independent
experiments. *, siRNA-treated cell
populations are significantly different
compared with mock-treated cells (see
Supplementary Tables S3 and S4).
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lost in cells silenced for DRF1 (not shown). GFP-mDia2, the mouse
orthologue of human DRF3, was similarly diffuse (not shown). As
invadopodia are generally present at the center of cells where
cytoplasmic signal was strongest, we analyzed DRF localization in
MDA-MB-231 cells transiently expressing an active form of c-Src
(Y527F) that triggers appearance of large peripheral invadopodia
(10, 12). In these cells, endogenous DRF1 was detected into small
dots. Some DRF1 dots were closely apposed to and surrounded
F-actin–positive and pY-positive invadopodia (Fig. 2A and B). In
addition, GFP-mDia2 also colocalized with F-actin and pY at
invadopodia under these conditions (Fig. 2C and D). This
association of DRF1 and mDia2/DRF3 to invadopodia argues for
a direct role for DRFs in the formation of these structures.
DRFs are required for invasion through a three-dimensional

reconstituted BM. As MT1-MMP–mediated proteolysis is

critical for breaching of the BM by carcinoma cells (3, 5), we
evaluated the role of DRFs during remodeling and invasion of
Matrigel, a reconstituted matrix mimicking BM. For this purpose,
MDA-MB-231 cells were plated on top of a thick layer of
Matrigel (f3.5 mm) and were observed by scanning electron
microscopy (SEM) after 2 to 14 hours on the matrix. MDA-
MB-231 cells rapidly adhered to Matrigel and adopted a rounded
morphology (Fig. 3A , 2 hours). Cells progressively invaded the
matrix and were completely embedded in Matrigel after 12 to
14 hours (Fig. 3A and C). Of note, gel retraction during sample
preparation created domes of Matrigel around invading cells
(Fig. 3A). Plasma membrane folds, filopodia-like protrusions, and
some membrane blebs were observed at the free surface of
invading cells (see Figs. 3A and 5A). In contrast to mock-treated
cells that invaded into the BM, cells silenced for MT1-MMP

Figure 2. DRF formins localize at
invadopodia. A and B, MDA-MB-231
cells transiently transfected with
Y527F-cSrc were incubated 5 h on
fluorescent gelatin. After fixation, cells
were stained for F-actin (A ), pY (B),
and DRF1 (A and B). Merged images
show DRF1 accumulations (green )
adjacent to F-actin (red) or pY-positive
invadopodia (red ). Bottom, enlargement
of boxed region in A. C and
D , MDA-MB-231 cells transiently
transfected with Y527F-cSrc and
mDia2-GFP constructs incubated for 5 h on
fluorescent-gelatin and stained for F-actin
(C ) or pY (D ). Merged images show
mDia2-GFP (green ) colocalization with
F-actin (red) or pY (red) with underlying
gelatin degradation. Bottom, enlargement
of boxed region in C . Arrowheads point to
colocalization of DRF1 or mDia2-GFP with
F-actin or pY and degradation of the
gelatin. Scale bars, 20 Am (A, C ) and 5 Am
(B, D , and insets in A and C ).
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remained spread and formed chains on the surface of Matrigel
(Fig. 3B and C).

SEM micrographs (Fig. 3C) allowed a precise quantification of
cells completely buried within Matrigel after 14 hours and, hence,
of the invasion capacity of the different cell populations (Fig. 3D).
Strikingly, the invasion capacity of MT1-MMP–depleted and DRF1/
DRF3–depleted cells in Matrigel dropped to 18% to 37% compared
with mock-treated cells (Fig. 3D). Invasion capacity of DRF-
depleted or MT1-MMP–depleted cells was also significantly
reduced compared with mock when assessed with commercial
Matrigel invasion chambers (47–66% of control value; Supplemen-
tary Fig. S2). Interestingly, silencing of RhoA, a common regulator
of the three DRF proteins also known to be necessary for gelatin
degradation (12), phenocopied the effect of MT1-MMP and DRF
depletion (Fig. 3B–D). Together, these data indicate that, similar to
the effect observed on two-dimensional gelatin (Fig. 1), RhoA and
each one of the DRF family members are required for invasion
through Matrigel.
Invadopodia-like membrane protrusions are present during

invasion of three-dimensional BM. Whether invadopodia are
present in tumor cells invading three-dimensional ECM and share

characteristics with those defined on a two-dimensional rigid
matrix are critical issues still awaiting more detailed analysis (7, 16,
20). As an attempt to characterize mechanisms underlying three-
dimensional matrix invasion and, in particular, requirement of
DRFs, MDA-MB-231 cells either mock-treated or treated with
siRNAs specific for DRF proteins were plated on Matrigel for
6 hours and the distribution of key invadopodial markers, i.e.,
F-actin, cortactin, and pY, was analyzed by indirect immunofluo-
rescence and three-dimensional microscopy.

MDA-MB-231 cells labeled for F-actin and cortactin displayed
the rounded morphology typical of invading cells in Matrigel
(Supplementary Video S5). Focusing at the invasive surface of cells
in contact with the matrix revealed a higher number of F-actin–
rich protrusions compared with invadopodia in cells grown on
two-dimensional gelatin (55.4 F 7.0 protrusions per cell, n = 35
cells; see Fig. 4A ; Supplementary Video S5). These structures were
positive for cortactin and pY, with visible enrichment of both
markers at the basis of the protrusions (Fig. 4B). In addition,
examination of SEM micrographs of partially invading MDA-
MB-231 cells revealed the presence of thin filopodia-like protru-
sions at the free dorsal side of cells partially embedded in Matrigel

Figure 3. Depletion of RhoA and DRF
impairs cell invasion through Matrigel.
A-C, scanning electron micrographs of
MDA-MB-231 cells invading a thick layer
of Matrigel. A, mock MDA-MB-231 cells
were plated on top of Matrigel and fixed
at the indicated time points. Arrowheads
point to the limit between cells and the
matrix. B, MDA-MB-231 cells treated
with the indicated siRNA were fixed after
4 h on Matrigel. C, low-magnification
micrographs of siRNA-treated cells fixed
14 h after plating. Mock-treated cells
display a rounded morphology and are
partially or completely embedded within
the matrix (arrow ), whereas cells depleted
for MT1-MMP, RhoA, or DRF proteins
are spread and often form chains at the
surface of Matrigel (arrowheads ). Scale
bar, 5 Am (A and B) and 100 Am (C ).
D, quantification of cell invasion through
Matrigel from low-magnification SEM
micrographs. Columns, mean invasion
setting mock to 100%; bars, SE. *, all
siRNA-treated cell populations are
significantly different compared with
mock-treated cells (see Supplementary
Table S5).
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(Fig. 5A and Supplementary Fig. S3). Some of these structures
breaching through Matrigel likely represent proteolytically active
structures. Consistent with this assumption, a fusion of MT1-MMP
with pHLuorin, a pH-sensitive GFP-emitting fluorescence only in
the external milieu, colocalized with F-actin–positive protrusions
labeled with mCh-Lifeact at the surface of MDA-MB-231 cells
embedded in Matrigel (Supplementary Video S6).

The invasive interface of MDA-MB-231 cells with Matrigel was
analyzed by transmission electron microscopy (TEM) on cross-
sections perpendicular to the matrix. At an early time point
(5 hours), cells that partially entered the matrix presented
numerous short protrusions heterogeneous both in length and

diameter (Fig. 5B). Furthermore, protrusions visible at the cell-
matrix interface extending into Matrigel (Fig. 5B) were often
surrounded by an electroluscent zone devoid of Matrigel, probably
as a result of matrix degradation (Fig. 5B). At higher magnification,
electron-dense regions of the cytoplasm devoid of organelles were
visible at the cell cortex in contact with Matrigel (Fig. 5B). This
cortical material consisting of fibrous structures extending within
the protrusions (see Fig. 5B) is likely to correspond to cortical actin
filament bundles. Altogether, these findings indicate that invado-
podia-like structures are present at the invasive surface of MDA-
MB-231 cells, invading a three-dimensional reconstituted BM and
likely represent the sites of matrix proteolysis.

Figure 4. MDA-MB-231 cells display
invadopodia-like protrusions in Matrigel
that require DRF proteins for their
formation. MDA-MB-231 cells either
mock-treated (A and B) or treated with
siRNA specific for DRF3 (C and D )
were added on top of Matrigel, fixed
after 6 h, and labeled for F-actin and
cortactin or pY as indicated. Pictures are
three-dimensional reconstructions from
several planes corresponding to the
ventral half of cells in contact with the
matrix. Enlargements of boxed regions
in A and C are shown in B (inset 1)
and D (inset 3), respectively. For
F-actin/pY double-labeling, only enlarged
insets are shown (B, inset 2 and D,
inset 4), corresponding to full-size
pictures in Supplementary Fig. S4A
(box 2 ) and B (box 4). In overlaid
images, F-actin is pseudocolored in
green and cortactin or pY is in red.
Arrowheads in insets point to F-actin–rich
invadopodia-like protrusions at the
surface of mock-treated cells with their
base enriched for cortactin (B, inset 1 )
or pY (B, inset 2). Arrows in D point to
cytoplasmic aggregates of cortactin
(inset 3) or pY (inset 4), with weak or
no F-actin enrichment in cells silenced
for DRF3. Scale bar, 10 Am (A and C )
and 2 Am (B and D ).
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Three-dimensional invadopodia require DRFs. Cells depleted
for each one of the DRF proteins remained elongated on Matrigel
with some sparsely distributed F-actin and cortactin–positive or
pY-positive protrusions at their surface (Fig. 4C and D and
Supplementary Figs. S4B and S5B–D ; Supplementary Video S7),
corroborating results of SEM (Fig. 3). Numerous bright cortactin
aggregates with little or no F-actin were observed in DRF-depleted
cells. These seemed to be cytoplasmic on three-dimensional
reconstruction of Z-stack of images (Supplementary Video S7;
Fig. 4D, inset 3 and Supplementary Fig. S4B, inset 4). Similar
observations were made in MDA-MB-231 cells silenced for RhoA or
MT1-MMP (Supplementary Figs. S4C and S5A). In addition, the flat

morphology of DRF3-depleted cells was also clearly visible on TEM
analysis of cross-sections (Fig. 5C). More strikingly, although these
cells developed some microvilli-like extensions on their free dorsal
surface, they were almost devoid of membrane protrusions at the
interface with Matrigel (Fig. 5C). DRF3 knocked-down cells
remained closely apposed to the matrix, this being indicative of
the absence of Matrigel proteolysis and remodeling, and a dense
cortex was hardly visible underneath the plasma membrane
(Fig. 5C). Therefore, as shown previously for two-dimensional
invadopodia, three-dimensional invadopodia did not form in the
absence of DRF1 to DRF3, further establishing the critical role of
DRFs for invadopodia formation.

Figure 5. Ultrastructural analysis of
invadopodia in Matrigel. A, SEM
micrographs of MDA-MB-231 cells invading
through Matrigel. Red, cells; green,
Matrigel. Arrowheads point to finger-like
cellular protrusions going through the
matrix. B and C, TEM micrographs of
thin sections across mock-treated (B ) or
DRF3-depleted cells. C, assembly of
several individual micrographs. Higher
magnifications of regions boxed in
1 and 2 are shown in adjacent panels.
White arrows in B and C point to the
limit between cells and Matrigel. White
arrowheads point to cell protrusions
extending within the matrix. Black arrows in
B point to regions of matrix degradation.
Dashed line in B, inset 1, limit of an
organelle-free zone of the cytoplasm at the
invasive edge of the cell. Black arrowheads
in B point to some fibrous material
underneath the invasive surface extending
within cell protrusions. Scale bar, 1 Am
(A and B, bottom ) and 2 Am (B, top and C ).
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Discussion

We investigated the contributions of three members of the DRF
family (DRF1–DRF3) to the mechanism of invadopodia formation
and invasion of human breast cancer cells. Each of the three DRF
proteins is required for the formation and activity of invadopodia
when MDA-MB-231 cells are plated on a two-dimensional matrix.
Similarly, DRF1 to DRF3 are required for invasion of breast tumor
cells through a thick three-dimensional layer of Matrigel with
a composition resembling BM matrix. Remodeling of the three-
dimensional matrix occurs at the level of submicrometric finger-
like actin-based protrusions possessing a composition similar to
invadopodia, i.e., enriched in F-actin, cortactin, pY, and MT1-MMP,
and depending on DRFs for their formation. Hence, our work adds
DRFs to the list of proteins required for invasion by tumor cells and
brings new insight into the mechanism of invasion in a three-
dimensional matrix environment.

Invadopodia are viewed as dynamic filopodia-like extensions of
the plasma membrane, wherein signaling components and cellular
machineries involved in actin-driven membrane protrusion and
exocytosis cooperate for delivering and concentrating active MMPs
at sites of matrix degradation (10–13, 16, 20, 33, 34). The present
data clearly implicate DRF proteins in the regulation of actin
assembly during invadopodia formation as silencing of each DRF
led to (a) a drastic reduction in cells with F-actin/cortactin–rich
invadopodia in two-dimensional and three-dimensional matrices
and (b) decreased matrix degradation and invasion capacity. Of
note, no additional effect of knocking down simultaneously two
DRF proteins was observed. One possibility is that DRF proteins
may be functionally linked in the mechanism of invadopodia
formation, which is supported by the observation that DRFs can
form heterodimers (35, 36). Alternatively, each formin may be
individually required for the induction of actin nucleation at
invadopodia or for other individual roles. In this respect, DRF
proteins are implicated in various cellular functions, including
regulation of endosome motility, which could contribute to the
delivery of MT1-MMP at invadopodia (13, 17). We did not find
colocalization of GFP-mDia2 with endocytic markers at invadopo-
dia. However, some association of mDia2 with transferrin-positive
early endosomes was visible (not shown). Therefore, a role for DRF
in membrane trafficking events related to invadopodia function
cannot be excluded (37, 38). In addition, the known function of DRF
proteins in the regulation of microtubule stability may be poten-
tially relevant for the mechanism of invadopodia formation (37–39).

A signaling cascade based on N-WASP/Arp2/3 complex activa-
tion downstream of the Rho-GTP-binding protein Cdc42 is
required for actin assembly during invadopodia formation in
metastatic rat mammary adenocarcinoma cells (15). We confirmed
that the Arp2/3 complex is required for invadopodia formation in
two-dimensional and three-dimensional matrices in MDA-MB-231
cells.7 The Arp2/3 complex nucleates actin filaments and forms
branched dendritic filament arrays, whereas formins produce
unbranched actin filaments (22). Therefore, two types of actin-
nucleating machineries cooperate during invadopodia formation in
invasive cells. Using a FRET biosensor, N-WASP activation was
visualized at the base of invadopodia, suggesting that Arp2/3–
mediated actin nucleation is constrained to the base of invadopo-
dia (14). In addition, the F-actin binding protein cortactin, which
is recruited early at invadopodia concomitantly with F-actin

assembly, is also essential for invadopodia formation and may
act by stabilizing newly formed branches within the dendritic
filament network (10, 16–18). Noticeably, cortactin and pY are
enriched at the base of invadopodia that protrude from the
invasive surface of MDA-MB-231 cells in a thick layer of Matrigel
(see Fig. 4). Cells silenced for the Arp2/3 complex (15), cortactin
(10, 17, 18), or DRFs are similarly impaired for invadopodia
formation, indicating that both pathways of actin nucleation are
required for invadopodia formation and cannot compensate for
each other. Convergent extension of filopodia from an Arp2/3
complex–induced lamellipodial actin meshwork has been proposed
as a mechanism for filopodia emergence (40), although this model
is debated (41). In addition, transition from Arp2/3 to formin-
mediated actin assembly may occur during actin dynamics
associated with integrin-based adhesion sites (42). Invadopodia,
which are enriched in adhesion proteins, including integrins
and focal adhesion components, also correspond to cell-matrix
adhesion sites (16, 43). Therefore, it is plausible that DRFs take
over from N-WASP/Arp2/3/cortactin dendritic array at the base
of invadopodia and elongate actin filaments into an invadopodial
protrusion. DRF3/mDia2 and DRF1/mDia1 localize to filopodial
tips and are involved in actin filament elongation during filopodia
and membrane protrusion formation in mammalian cells including
invasive tumor cells (23, 25, 27, 29, 44). In accordance, we observed
endogenous DRF1 and mDia2-GFP at invadopodia in MDA-MB-
231 cells. Although more work will be necessary to understand
the cooperation between Arp2/3 complex and DRFs and unravel
the ultrastructural architecture of invadopodial organization, the
present study clearly identifies DRFs as important components
involved in breast cancer cell invasion.

Rho GTP-binding proteins act as regulators of actin organization
and membrane trafficking events in cells under physiologic
conditions and have also been shown to contribute to various
aspects of tumorigenesis including invasion of carcinoma cells (45).
Several groups, including ours, found that Rho proteins control the
formation of invadopodia in tumor-derived cell lines of diverse
origins (15, 19). In particular, we recently reported that silencing of
RhoA or Cdc42 abolishes invadopodia formation and matrix
degradation by MDA-MB-231 cells cultured on a two-dimensional
matrix (12). DRF proteins are downstream effectors of Rho
GTPases (22). Our finding that RhoA and Cdc42 are required
for invadopodia formation in both two-dimensional and three-
dimensional matrices (ref. 12, and this study), suggests that beside
the aforementioned regulation of Arp2/3 complex by Cdc42 (15),
Cdc42/RhoA GTPases may regulate the function of DRFs in
actin polymerization at invadopodia in invasive MDA-MB-231
cells. Along the same line, the formation of cellular protrusions
associated with migration of rat mammary carcinoma cells
involves a RhoA/DRF1 pathway acting in a coordinated network
together with WASP family proteins and Arp2/3 complex (29).
Interestingly, invasion of MDA-MB-435 human cancer cells in
Matrigel is dependent on a RhoA/DRF1 pathway, but not DRF2
(DRF3 was not tested; ref. 28). The reason for this discrepancy with
our findings is unclear and may involve the different origin of these
two cell lines (30). It is worth noticing that, at a mechanistic level,
MDA-MB-435 cells in Matrigel use a bleb-associated mode of
invasion and lose the ability to form membrane blebbing when
silenced for DRF1 (28). In contrast, invasion of MDA-MB-231 cells
involves filopodia-like membrane protrusions that are enriched for
MT1-MMP (see Supplementary Video S6) and require RhoA and
DRFs for their formation.7 Our unpublished observations.
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In conclusion, this study highlights structural composition and
mechanistic similarities between classic invadopodia, degradative
structures of invasive cells cultured on two-dimensional matrix,
and filopodial-like protrusions forming at sites of matrix degrada-
tion at the surface of breast tumor cells invading through three-
dimensional Matrigel. It also reveals a new role for DRF proteins as
essential components of the invasive machinery of metastatic cells
through the regulation of actin assembly underlying the mecha-
nism of invadopodia formation. Along this line, it is quite remark-
able that analysis of gene expression array data (46) revealed a
significant 2-fold to 2.5-fold overexpression of DRF2-encoding
and DRF3-encoding transcripts in highly invasive basal-like
breast tumors compared with normal human breast tissues (see
Supplementary Materials). Understanding whether and how the
multiple activities of DRF proteins contribute to the acquisition of
specific invadopodial functions and to the invasive phenotype of
cancer cells will be a challenge for future studies.
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11.2 Pathway by pathway differential analysis

As we have seen in the previous subsection, the gene-by-gene analysis revealed many over-expressed

genes in TNBC. It may be easier to understand the disease at the pathway level and one would hope

that only a few pathways are deregulated. An idea is to consider sets of genes which are somehow

related (a “geneset”). For example, one can consider the set of all genes involved in proliferation

(which is a very large set). Of course, this definition fails to capture the fact that in some cases we

know how the different proteins or genes of the pathway interact with each other. Various pathway

databases are available, such as the GO (Ashburner et al., 2000) and KEGG databases (Kanehisa and

Goto, 2000) (see Figure 11.5).

Various methods have been proposed to identify links between pathways and a biological or clinical

variable based on gene expression levels (see for example Goeman et al. (2004); Subramanian et al.

(2005); Efron and Tibshirani (2007); Beissbarth and Speed (2004)). Here, I have decided to use the

global test method (Goeman et al., 2004) rather than the GSEA, GSA or Gostat methods (respectively

described in Subramanian et al. (2005); Efron and Tibshirani (2007); Beissbarth and Speed (2004)).

The main reason for my choice is a modeling one. The three last methods work after the gene-by-gene

differential analysis and model the resulting p-values. These methods look for pathways which have

many genes with small p-values. On the contrary, the global test directly describes the relationship

between the gene expression levels and the tumor subtypes. More precisely, the dependence between

the tumor subtype and the gene expression levels is modeled using the framework of generalized linear

model. Using this model, it is possible to detect pathways with gene levels related to the tumor

subtypes. From a biological perspective, the global test model is rather natural, whereas modeling a

pathway through gene p-values appears less intuitive.

Using the global test methodology, I retrieved a list of pathways sorted by p-values (see Figure

11.6). As we have seen at the gene level, identifying targets is a difficult issue. One would hope

that looking at the pathway level would simplify the problem and that identifying candidate target

pathways would be easier. But it is not the case and actually, it is probably the opposite. Indeed,

many genes are differentially expressed between TNBC and other subtypes. Moreover, as we have seen
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Figure 11.5: Example of a KEGG pathway: the Wnt pathway. Each box represents a protein.
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Figure 11.6: Top 21 deregulated KEGG pathways between TNBC and normal tissue according to the

global test (Goeman et al., 2004). The global test tries to detect pathways with gene levels related to the

tumor subtypes. All p-values are smaller than 2.10−16.

previously, even randomly selected sets of genes show differences between different tumor subtypes.

Overall, almost all possible pathways should be detected as related to all tumor subtypes. Indeed, it

would be very unlikely to recover a pathway without any genes differentially expressed between TNBC

and normal samples. In fact, this is what we observed and most pathways are found to have small

p-values: out of the 205 KEGG pathways we tested, only five had a p-value bigger than 5% in the

TNBC versus normal comparison. Similar results were obtained for the comparison between TNBC

and other tumor subtypes.

Moreover, pathways are not sufficient and one needs to go back to the gene level in the pathway in
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order to better interpret the results. In a collaboration with Fatima Mechta-Grigoriou (Ph.D., Institut

Curie), we have studied more in depth the oxidative stress pathways in ER- / HER2+ tumors (as

published in Toullec et al. (2010)).

11.2.1 Paper: Reactive oxygen species (ROS) control myofibroblast and

metastases

This work was done in collaboration with the group of Fatima Mechta-Grigoriou (Ph.D., Institut

Curie). In a model of mammary carcinogenesis (junD-/- mice were crossed with an MMTV v-Ha-ras

transgenic strain), it was shown that junD inactivation increased tumor incidence. Moreover, junD

inactivation in the stroma was sufficient to shorten tumor-free survival rate and enhance metastatic

spread. ROS promoted conversion of fibroblasts into highly migrating myofibroblasts through accu-

mulation of the Hypoxia-Inducible Factor (HIF)-1a and the CXCL12 chemokine. It was demonstrated

that CXCL12 accumulated in the stroma of ER- / HER2+ human breast tumors. Moreover, ER-

/ HER2+ tumors exhibited a high proportion of myofibroblasts, a significant nuclear exclusion of

JunD and an associated oxido-reduction signature. Collectively, these data uncover a new mechanism

by which oxidative stress increases the migratory properties of stromal fibroblasts and these properties

in turn favor tumor dissemination.

For this paper, I participated in the transcriptomic analysis. Our data indicate that accumulation

of CXCL12 in the stroma of ER- / HER2+ tumors is associated with high myofibroblast content, which

impacts tumor spreading in lymph nodes. We then wondered whether genes regulating oxidative stress

could be abnormally expressed in this set of tumors. To address this question, I used the Curie-Servier

transcritpomic dataset, the GO Ontology terms and the global test methods. I showed that the GO

terms “oxidation-reduction” (GO : 0055114) and “oxido-reductase” activity (GO : 0016491) appeared

among the 100 most significantly deregulated pathways (at the 36th and 83th positions, respectively)

with p-values smaller than 2.10−16 (numerical precision). I confirmed this difference using hierarchical

clustering and principal component analysis (PCA). Both techniques showed that using the gene

expression level of these 2 pathways it is possible to discriminate ER- / HER2+, TNBC and Luminal
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A tumors. This result suggests that ER- / HER2+ tumors have a gene expression profile characteristic

of an oxidative-stress response.
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JunD regulates genes involved in antioxidant defence. We took advantage of the

chronic oxidative stress resulting from junD deletion to examine the role of

reactive oxygen species (ROS) in tumour development. In a model of mammary

carcinogenesis, junD inactivation increased tumour incidence and revealed an

associated reactive stroma. junD-inactivation in the stroma was sufficient to

shorten tumour-free survival rate and enhance metastatic spread. ROS promoted

conversion of fibroblasts into highly migrating myofibroblasts through accumu-

lation of the hypoxia-inducible factor (HIF)-1a transcription factor and the

CXCL12 chemokine. Accordingly, treatment with an antioxidant reduced the

levels of HIF and CXCL12 and numerous myofibroblast features. CXCL12 accu-

mulated in the stroma of HER2-human breast adenocarcinomas. Moreover, HER2

tumours exhibited a high proportion of myofibroblasts, which was significantly

correlated to nodal metastases. Interestingly, this subset of tumours exhibited a

significant nuclear exclusion of JunD and revealed an associated oxido-reduction

signature, further demonstrating the relevance of our findings in human cancers.

Collectively, our data uncover a new mechanism by which oxidative stress

increases the migratory properties of stromal fibroblasts, which in turn potenti-

ate tumour dissemination.

INTRODUCTION

Carcinomas are highly complex tissues composed of neoplastic

and stromal cells, including mesenchymal cells, fibroblasts or

myofibroblasts, endothelial cells, pericytes and inflammatory

cells (Bissell & Radisky, 2001; Mueller & Fusenig, 2004). In past

decades, the major focus of cancer research has been the

transformed cell itself. However, new clinical data have shown

that the stroma contributes significantly to the development of a

wide variety of tumours. Tissues exhibiting chronically in-

flamed stroma or those suffering from repetitive wound healings

display a higher incidence of tumour formation (Joyce & Pollard,

2009; Tlsty & Coussens, 2006). Fibroblasts are themost common

type of stromal cells in various human carcinomas, yet their

specific contributions to tumour growth have only recently been

clarified (Erez et al, 2010; Orimo et al, 2005). Stromal fibro-

blasts, named carcinoma-associated fibroblasts (CAFs), have

been extracted from a number of invasive human breast

carcinomas. CAFs are more competent in promoting growth of

mammary carcinoma cells and enhancing tumour angiogenesis

than fibroblasts derived from outside tumour masses (Olumi

et al, 1999; Orimo et al, 2005). CAFs also mediate tumour-

enhancing inflammation (Erez et al, 2010). CAFs isolated from

the stroma of invasive human breast cancers include large

populations of myofibroblasts (Eyden et al, 2008). Myofibro-

blasts are often referred to as activated fibroblasts that play key
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roles in wound repair (Hinz et al, 2007). The myofibroblastic

properties of CAFs are believed to increase tumour growth and

enhance vascular remodelling. Myofibroblasts are characterized

by high de novo expression of smooth muscle a-actin (SM-a-

actin), the actin isoform typically found in vascular smooth

muscle cells, and possess greatly enhanced contractile ability.

Recent work has shown that CAFs secrete elevated levels of

CXCL12, also called stromal cell-derived factor 1 (SDF-1) (Orimo

et al, 2005). CXCL12 is a homeostatic chemokine that mediates

homing of stem cells to bone marrow by binding to its receptor

(CXCR4) on circulating cells (Rossi & Zlotnik, 2000). CXCL12

not only stimulates carcinoma cell growth but also helps in

recruiting endothelial progenitor cells to tumours, thereby

furthering neo-angiogenesis (Orimo et al, 2005). The impor-

tance of this CXCL12–CXCR4 signalling pathway in the tumour

microenvironment has already been addressed but, to our

knowledge, its role in CAFs remains unexplored.

The AP-1 (activator protein-1) transcription factor plays a

critical role in regulating environmental stress responses

(Mechta-Grigoriou et al, 2001). Recently, we discovered a

new function of JunD, a member of the AP-1 family, in

controlling oxidative stress and angiogenic switch (Gerald et al,

2004; Laurent et al, 2008). JunD protects cells against oxidative

stress by regulating genes involved in antioxidant defence and

H2O2 production. Subsequently, inactivation of junD leads to a

persistent accumulation of reactive oxygen species (ROS) in

cells and tissues. Thus, junD-deficient mice and junD�/�

derived-fibroblasts constitute good models for investigating

the physiological consequences of chronic oxidative stress.

Using these systems, we uncovered a molecular mechanism

linking oxidative stress to angiogenesis and ageing (Gerald et al,

2004; Laurent et al, 2008). Accumulation of H2O2 reduces the

activity of hypoxia-inducible factor (HIF)-prolyl-hydroxylases

(PHDs), which signal HIF-a subunits for proteosomal degrada-

tion. In consequence, HIF-a proteins accumulate and enhance

transcription of specific target genes such as VEGF-A (Pouysse-

gur & Mechta-Grigoriou, 2006).

In this paper, we take advantage of the persistent oxidative

stress due to junD inactivation to examine the role of ROS in

tumour development. In a model of ras-mediated mammary

carcinogenesis, junD deletion increases tumour growth and

revealed extensively modified stroma. Moreover, dissemination

of junDþ/þ neoplastic cells was enhanced when grafted into

junD�/� mice. Since JunD expression is detected in stromal

fibroblasts, these data suggest that inactivation of junD in these

cells, and consecutive oxidative stress, may affect the fibro-

blastic properties and potentiate tumour spread. Using junD-

deficient fibroblasts, we demonstrated that oxidative stress

promotes conversion of fibroblasts into myofibroblasts in an

HIF-1a and CXCL12-dependent pathway. Conversely, long-term

antioxidant treatment partially reverses myofibroblast differ-

entiation. In agreement with our observations on mice, HER2-

amplified tumours exhibit the highest expression levels of

CXCL12 in the stroma and the highest correlated proportion of

myofibroblasts, when compared to aggressive basal-like breast

cancers (BLC) or to good prognosis luminal-A (Lum-A) breast

carcinomas. Interestingly, HER2-subtype of tumours display a

molecular signature characteristic of stress–response and a

nuclear exclusion of the JunD protein. Since breast tumours

which overexpress HER2 exhibit one of the poorest prognosis of

all molecular classes of breast carcinomas and show a high rate

of axillary lymph node metastases (Bartlett et al, 2007), these

observations underline the role of oxidative stress and

myofibroblasts in cancer metastases.

RESULTS

junD inactivation results in a reactive stroma and promotes

tumour metastasis

We have previously shown that inactivation of the junD gene

leads to constitutive oxidative stress (Gerald et al, 2004; Laurent

et al, 2008). To further investigate the role of such stress in

tumour development, we crossed junD�/� mice with anMMTV-

v-Ha-ras transgenic strain; a model for breast cancer (Sinn et al,

1987). Tumour-free survival rates were significantly lower in

junD-deficient females compared to ras junDþ/þ (referred to as

ras) ones (Fig 1A). Moreover, the number and volume of

tumours were higher in ras junD�/� mice compared to control

animals (Fig 1B and C). To better understand the underlying

mechanism, we compared histological properties of ras junD�/�

and ras tumours when they reached the same size (Fig 1D;

Fig S1). Inactivation of junD generally affected characteristics of

the tumours, as well as features of the associated stroma. When

compared to ras tumours (Fig 1Da,c; Fig S1Aa), deletion of junD

in ras-mediated tumours resulted in an increased proportion of

polycystic carcinomas (Fig 1Db; Fig S1Ac) and massive fibrosis

(Fig 1Dd), indicated by the accumulation of various forms of

collagen. Moreover, the number and the size of blood vessels

increased in ras junD�/� tumours compared to ras (Fig 1De,f),

confirming our previous results that junD deletion increased

angiogenesis in vivo (Gerald et al, 2004; Laurent et al, 2008). We

quantified each cell type composing the tumours by specific

immunohistochemistry staining. Epithelial cells, fibroblasts,

myofibroblasts, macrophages and haematopoietic cells were

specifically stained using E-cadherin, vimentin, SM-a-actin, F4/

80 and CD45-specific antibodies, respectively (Fig 1D and E;

Fig S1B). In both genotypes, epithelial cells remained highly

differentiated, as evaluated by expression of E-cadherin

at cellular surface (Fig 1Dg,h; Fig S1B), further indicating

that junD inactivation did not promote massive epithelial

to mesenchymal transition (EMT). In contrast, the tumour

surrounding stroma was quantitatively and qualitatively

modified by junD deletion. The proportion of CAF was

significantly higher in ras junD�/� tumours compared to ras

ones (Fig 1Di,j and E; Fig S1B). Moreover, ras junD�/� fibroblasts

expressed higher levels of vimentin, a type III intermediate

filament, than controls (Fig 1Di,j; Fig S1B) and accumulated

podoplanin, a glycoprotein characteristic of reactive stroma

(Fig 1Dm,n). Furthermore, ras junD�/� tumours exhibited

significant increase in myofibroblasts content, evaluated by the

number of SM-a-actin-positive fibroblasts (Fig 1Do,p). Finally, the

stroma of ras junD�/� tumours overproduced the CXCL12

chemokine (Fig 1Dq,r; Fig S1D) and exhibited increased
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Figure 1. junD inactivation promotes appearance of a reactive stroma and tumour progression.

A. Kaplan–Meyer tumour-free survival curve of ras junDþ/þ (referred to as ras) animals (n¼12) and ras junD�/�mice (n¼12) (p¼ 0.0092, log-rank test).

B. Number of tumours per animal in ras (n¼12) and ras junD�/� (n¼ 12) mice.

C. Tumour volumes in ras (n¼ 10) and ras junD�/� (n¼ 9) mice.

D. Sections and histological analysis of epithelial tumours (a–h) and immediate adjacent stroma (i–t) from ras or ras junD�/� animals. Sections have been coloured

with HES (haematoxylin-eosin-saffranin) (a,b,k,l), Masson’s trichrome (c,d) or immunostained with specific antibodies, as indicated (e–j,m–t).

E. Percentage of epithelial and fibroblastic compartments in the tumours has been evaluated using E-cadherin and Vimentin-specific staining, respectively. Are

also indicated intensity (Int), percentage of positive cells (%) and H scoring (Int�%) for E-cadherin, Vimentin and SM-a-actin-staining as well as the number of

F4/80- or CD45-positive cells per mm2. n represents the number of animals analysed per genotype; n represents the number of tumours analysed per genotype.

Data are means� SEM. �p< 0.05 by student’s test. Scale bars¼ 20mm in (Da,b,k,l) and 40mm in (Dc–j,Dm–t).
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recruitment of inflammatory cells (Fig 1Dk,l). Staining with

specific markers for macrophages (Fig 1Ds,t and E) and

haematopoietic cells (data not shown) indicated that both cell

types were recruited more efficiently in ras junD�/� tumours

compared to ras. All these observations reveal highly vascularized

tumours with reactive stroma in junD-deficient ras-mediated

tumours, features that are not seen in ras tumours alone strongly

arguing that JunD is involved in these processes.

To further define the function of JunD, we monitored its

pattern of expression in ras-derived tumours. JunD expression

was detected in neoplastic epithelial cells (Fig S1Ca,e) and

in stromal fibroblasts (Fig S1Cb,f), suggesting that its deletion

can directly impact both compartments. In order to explore the

role of JunD only in stromal fibroblasts, we performed

transplant experiments by injecting B16F10, a transformed cell

line of the same immunotype as our immunocompetent wt and

junD�/� mice. Resulting tumours developed in either a wt or a

junD�/� host. Although junD-deficient mice showed earlier

tumour onset than wt animals (Fig 2A), both types of tumours

reached the same mean volume (data not shown) and did not

display obvious accumulation of inflammatory cells (Fig S1E).

In contrast, tumours developed in junD-deficient environment

accumulated significantly both SM-a-actin and CXCL-12 (Fig 2B

and C). In addition, stromal inactivation of junD notably

increased the incidence and size of metastases in lungs (Fig 2D

and E). To confirm the role of CXCL12 in junD-mediated

tumourigenesis, we have treated daily grafted junD�/� mice by

specific CXCL12 siRNA (Fig 2F). Interestingly, silencing of

CXCL12 decreased significantly tumour size and prevented lung

metastases. Taken together, these results indicate that inactiva-

tion of junD in the tumour environment is sufficient to modify

tumour properties, increase the content in SM-a-actin-expres-

sing cells and promote tumour growth and spread, in a CXCL12-

dependent manner.

junD-deficient fibroblasts exhibit features of CAFs

Since junD expression has been detected in tumour-associated

fibroblasts, we next investigated whether inactivation of junD,

followed by oxidative stress, was sufficient to alter the

properties of fibroblasts. We investigated the gene expression

profile andmorphology of immortalized junD�/� fibroblasts in a

tumour-free context and compared them with the already

reported characteristics of CAFs (Fig 3). We first identified a

subset of 1934 genes that were significantly up-regulated

(p< 0.05) in junD-deficient fibroblasts compared to wt cells.

We next compared this list (referred to as junD�/�) with two

partially overlapping lists of CAF-specific genes (Allinen et al,

2004; Farmer et al, 2009), set of genes that is also up-regulated in

desmoid-type fibromatosis, further underscoring their tumour-

associated fibroblastic molecular signature (West et al, 2005)

(Fig 3A). The Allinen’ and Farmer’s lists were composed of

201 and 161 genes, respectively. Among these genes, 44

from Allinen’s list and 17 from Farmer’s were up-regulated in

junD�/� versus wt fibroblasts (Table S1). This is significantly

more than would be expected by chance (namely, p¼ 10�20 for

Allinen versus junD�/� and p¼ 10�4 for Farmer versus junD�/�,

using Fisher Exact test). Genes encoding extracellular matrix

proteins (including collagens I, III, IV, fibronectin, sparc),

components of the cytoskeleton (myosin) and matrix metallo-

proteases (MMP2, MMP14) were up-regulated in the three

lists (Fig 3A). These data argue that expression profiles of

junD�/� fibroblasts are related to the expression signature of

CAFs. junD inactivation is thus sufficient to confer CAF

properties, even in a tumour-free context.

Since CAFs contain a high proportion of myofibroblasts,

we analysed whether junD deletion caused fibroblasts to adopt

myofibroblastic features. Compared to wt cells, junD�/�

fibroblasts exhibited significant accumulation of SM-a-actin

(Fig 3Ba,b), increased assembly of F-actin containing stress

fibres (Fig 3Bc,d) and recruitment of SM-a-actin into those

stress fibres (Fig S2A). Moreover, just as in differentiated

myofibroblasts, junD�/� fibroblasts differed from wt cells in

having a significantly higher number of adherens junctions

(AJ) (Fig 3Be,f) and an enhanced assembly of mature focal

adhesions (FA), characterized by an increase in vinculin,

tensin and focal adhesion kinase (FAK) content (Fig 3Bg-l,

Fig S2B for quantitative analyses). SM-a-actin protein (Fig 3C)

andmRNA (Fig S2C) were increased in junD�/� cells compared

to wt. In contrast, total amounts of all other tested proteins

remained similar between the two cell types (Fig 3C), further

suggesting that inactivation of junD modulated the polymer-

ization of F-actin, the recruitment of N-cadherin to AJ and

the association of vinculin or tensin to FA but had only a

marginal effect on their total levels. Finally, cellular migration

assessed by transwell assays was increased in junD�/�

fibroblasts as compared to wt cells (Fig 3D). Hence, these

data show that inactivation of junD in fibroblasts converts

them into myofibroblasts and increases their cellular migration

potential.

CXCL12 plays a key role in acquisition of myofibroblast

properties

Since expression of SM-a-actin inmyofibroblasts is coordinately

regulated by transforming growth factor b1 (TGF-b1) (Hinz

et al, 2007; Ronnov-Jessen et al, 1995), we analysed the role of

TGF-b1 in acquisition of junD�/� myofibroblast properties.

Treatment of junD�/� cells with an inhibitory drug targeting the

TGF-b1 pathway did not alter their myofibroblast properties

(such as accumulation of SM-a-actin containing stress fibres),

despite clearly decreasing phosphorylation of key TGF-b

effector Smad3 (Fig S2D). These observations indicate that

the myofibroblast properties of junD�/� cells do not result from

activation of the TGF-b pathway and strongly suggest that JunD

regulates another process, which contributes to the phenotype.

wt fibroblasts incubated with conditioned medium from

junD�/� cells exhibited accumulation of SM-a-actin containing

stress fibres (Fig 4A), further arguing for the role of a secreted

factor. The expression of the chemokine CXCL12 was increased

in junD�/� fibroblasts (Fig S2E). Since we observed that junD-

dependent CXCL12 accumulation in the stroma was critical for

tumour growth and spread, we next investigated if the

myofibroblastic phenotype detected in junD-deficient cells

may be dependent upon CXCL12. Addition of exogenous

CXCL12 into the culture medium of wt cells was sufficient to
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Figure 2. junD inactivation in the stroma potentiates tumour metastasis.

A. Kaplan–Meyer tumour-free survival curve of wt (n¼ 10) and junD�/� mice (n¼ 10) in graft experiments using B16F10 cells (p¼0.041, log-rank test).

B, C. Representative immunohistochemistry of tumours from injected wt (a,c) and junD�/� mice (b,d) using SM-a-actin and CXCL12-specific antibodies.

D. Typical HES views of lungs from injected mice. Sections show large (b) and medium (d) sizes of metastatic nodules in junD�/� mice compared to wt

animals (a,c).

E. Number of total, small-sized (<10 cells), medium-sized (10 cells<�< 50 cells) and large-sized (>50 cells) metastasis in wt and junD�/� mice. Numbers

below indicate the percentage of large-, medium- and small-sized metastasis in the respective populations.

F. Tumour volumes in junD�/� mice treated daily either with control siRNA (black) or with specific CXCL12-directed siRNA. Data are means� SEM. �p<0.05

and ���p< 0.005 by student’s test. n represents the number of tumours analysed per genotype. Scale bars¼ 40mm.
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Figure 3. junD�/� fibroblasts exhibit features of carcinoma-associated myofibroblasts.

A. Venn’s diagram showing the number of common up-regulated genes in CAF (from Allinen’s and Farmer’s studies) and junD�/� fibroblasts. On the right panel,

the 14 genes common to the three lists are listed.

B. Representative immunofluorescence staining from wt and junD�/� cells using specific antibodies, as indicated. Arrows indicate typical staining. Inserted

section in (f) shows a higher magnification (100�) image of a representative AJ co-stained with SM-a-actin (in green) and N-cadherin (in red).

C. Western blots of whole cell extracts from wt and junD�/� fibroblasts. Ponceau colouration was used as an internal control for each protein loading; a

representative gel is shown.

D. Migration assay of wt compare with junD�/� fibroblasts. �p< 0.05 by student test. Scale bars¼10mm (Ba–d,g–l) and 5mm in (Be,f).
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Figure 4. CXCL12 is necessary and sufficient for promoting myofibroblast properties.

A. SM-a-actin staining in wt fibroblasts after incubation in wt or junD�/�-conditioned medium. At the bottom is the corresponding Western blot.

B. SM-a-actin staining in wt fibroblasts after addition of exogenous CXCL12 protein. At the bottom is the corresponding Western blot.

C. Representative immunofluorescence of myofibroblast markers in junD�/� fibroblasts after transfection with a scramble siRNA (si control) (a,c,e,g) or with a

CXCL12-directed siRNA (si CXCL12) (b,d,f,h).

D. Western blots from wt and junD�/� whole cell extracts showing p44 and p42 MAPK (Erk1/2) and their phosphorylated forms.

E. Representative GST pull-down assays on wt and junD�/� fibroblasts for RhoA (left panel) and Rac (right panel). GTP-bound form and total amount (input) of

each protein are shown. Histograms show relative Rho- or Rac-GTP levels normalized to their respective total protein amounts.

F. Representative immunofluorescence of myofibroblast markers in junD�/� fibroblasts either untreated (a,c,e,g) or incubated with exoenzyme C3 transferase

(b,d,f,h). Scale bars¼ 10mm.
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increase the proportion of SM-a-actin containing stress fibres

(Fig 4B). Conversely, silencing of CXCL12 decreased the level of

SM-a-actin, the formation of stress fibres, the number of AJ and

the proportion of mature FA in junD�/� cells, while the control

siRNA had no effect (Fig 4C; Fig S2F). To further validate the

CXCL12-dependent autocrine loop in fibroblasts, we confirmed

that the CXCR4 receptor was expressed in fibroblasts and

detected at the cellular surface (Fig S2G). Moreover, as expected

from elevated CXCR4 activity, junD-deficient fibroblasts

accumulated phosphorylated forms of ERK1/2, a typical

response elicited by this G-protein coupled receptor (Fig 4D).

Because small Guanosine triphosphate (GTP)-binding proteins

of the Rho family play a central role in regulation of the actin-

based cytoskeleton and cell movement, we looked at their

activation status by pull-down assays (Fig 4E). Although RhoA

and Rac protein levels were comparable between wt and junD�/

� fibroblasts (input, Fig 4E and data not shown), junD-deficient

cells exhibited higher levels of the GTP-bound form of RhoA as

compared to wt fibroblasts (Fig 4E, left part). However, in

parallel experiments, we did not detect accumulation of GTP-

Rac in junD�/� cells (Fig 4E, right part). Furthermore, treatment

of junD�/� fibroblasts with exoenzyme C3 transferase (CT03), a

drug that inhibits RhoA Guanosine diphosphate (GDP)/GTP

exchange activity, severely affected SM-a-actin polymerization,

the formation of F-actin containing stress fibres, the number

of AJ and the assembly of FA (Fig 4F). Taken as a whole,

these data strongly suggest that the CXCL12/CXCR4 pathway

activates the RhoA-GTPase and in turn promotes myofibro-

blastic properties.

HIF-1 is necessary and sufficient for converting fibroblasts

into myofibroblasts

It has been shown that hypoxic gradients regulate CXCL12

through HIF induction (Ceradini et al, 2004). Since we

demonstrated that HIF-1a protein accumulates in junD�/�

fibroblasts and mice (Gerald et al, 2004; Laurent et al, 2008), the

up-regulation of CXCL12 in junD�/� fibroblasts could be

mediated, at least partly, through HIF. Specific inhibition of

HIF-1a by siRNA strongly reduced HIF-1a mRNA levels (Fig

S3A) and decreased the expression of its target gene, CXCL12

(Fig S2E). Moreover, HIF-1a inhibition reduced the proportion

of SM-a actin- and F-actin-containing stress fibres in junD�/�

fibroblasts, as well as the number and size of AJ and mature FA

(Fig 5A; Fig S3B). These observations indicate that HIF-1a is a

key regulator of the contractile features of junD�/� fibroblasts.

To further establish whether HIF was sufficient to establish

myofibroblast properties, we treated wt fibroblasts with

desferrioxamine (DFO), an iron chelator that mimicked hypoxia

and promoted accumulation of HIF-1a (Fig S3C). Accumulation

of HIF-1a in wt cells stimulated polymerization of SM-a-actin

and F-actin-containing stress fibres, as well as formation of AJ

and mature FA (Fig 5B; Fig S3D). Moreover, DFO treatment also

increased RhoA activity in wt cells (Fig 5C, left part), whilst the

same treatment had no effect on Rac activity (Fig 5C, right part).

Therefore, treatment of fibroblasts with hypoxia-mimetic DFO

was sufficient for activation of RhoA and differentiation into

myofibroblasts.

Finally, to investigate if myofibroblast properties detected in

junD�/� cells were dependent upon chronic oxidative stress, we

subjected them to long-term antioxidant treatment. Culturing

junD�/� fibroblasts with N-acetylcysteine (NAC) has been

shown to decrease ROS content and HIF protein levels (Gerald

et al, 2004). This treatment collectively decreased the contractile

features of junD-deficient cells (Fig 5D; Fig S3E), further

demonstrating the role of ROS inmyofibroblastic differentiation.

These results suggest redox-dependent accumulation of HIF

stimulates the CXCL12/CXCR4 signalling pathway, triggers

activation of RhoA and thereby elicits myofibroblast features.

Human HER2-amplified tumours accumulate CXCL12 and

myofibroblasts in their stroma

Having established that myofibroblast content correlated

with an increased risk of tumour cell dissemination and that

stress-induced CXCL12-dependent signalling played a key role

in acquisition of myofibroblast properties, we next investigated

the potential relevance of these findings in humans. In that

purpose, we analysed the pattern of expression of CXCL12/

CXCR4, the myofibroblast content and the possible link with

oxidative stress in three classes of human breast cancers, chosen

according to their distinct invasive properties and clinical

outcomes. We compared the stromal properties of (1) Lum-A

breast carcinomas, a subtype associated with a good prognosis,

(2) HER2-amplified adenocarcinomas, a subset of aggressive

tumours characterized by amplification of the HER2/ERBB2

oncogene and high rate of nodal metastases and (3) basal-like

cancers (BLC), another type of aggressive and highly prolif-

erative tumours, albeit less prone to lymph node metastases

than HER2 ones. We first investigated the expression pattern of

CXCL12/CXCR4 in both stromal and tumour compartments by

performing immunohistochemical staining using tissue micro-

arrays (TMA) from HER2, BLC and Lum-A primary tumours

(Fig 6; Table S2). Expression of CXCL12 was significantly

increased in HER2-neoplasic cells (Fig 6Aa–c) compared to BLC

(Fig 6Ad–f) or Lum-A (Fig 6Ag–i) tumour cells. CXCR4 was also

strongly expressed in HER2 (Fig 6Ba–c) and BLC (Fig 6Bd–f)

epithelial compartment but to a lesser extent in Lum-A (Fig 6Bg–

i), as it has been previously reported (Li et al, 2004; Muller et al,

2001). Interestingly, HER2-amplified tumours exhibited the

highest expression levels of both CXCL12 and CXCR4 in the

fibroblastic compartment (Fig 6Aa–c and Ba–c), compared to

BLC (Fig 6Ad–f and Bd–f) or Lum-A (Fig 6Ag–i and Bg–i; Table

S2).

We next evaluated the proliferation rate and myofibroblastic

content in these three classes of human breast cancers. In

agreement with the previously known characteristics of these

tumours, Ki67 nuclear staining showed that the proliferation

rate—as detected in both tumour and stromal compartments—

was higher in BLC (Fig S4Ad–f), than HER2 (Fig S4Aa–c), itself

significantly higher than in Lum-A (Fig S4Ag–i). These

observations suggest that the high rate of lymph nodemetastasis

in HER2-derived tumours compared to BLC is not strictly

correlated to the proliferation rate. We also evaluated the

recruitment of macrophages in each type of breast cancer using

CD68-specific marker (Fig S4B). Both forms of aggressive breast
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Figure 5. Oxidative stress-mediated HIF-1a accumulation promotes myofibroblast properties.

A. Representative immunofluorescence of myofibroblast markers in junD�/� fibroblasts after transfection with a scramble siRNA (si control) (a,c,e,g) or with an

HIF-1a-directed siRNA (si HIF) (b,d,f,h).

B. Representative immunofluorescence of myofibroblast markers in wt fibroblasts either untreated (a,c,e,g) or incubated with DFO (b,d,f,h).

C. Representative GST pull-down assays for RhoA (left panel) and Rac (right panel) on wt fibroblasts with or without DFO.

D. Representative immunofluorescence of myofibroblast markers in junD�/� fibroblasts either untreated (a,c,e,g) or incubated with NAC (b,d,f,h). Scale

bars¼10mm.
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cancers (HER2 and BLC) exhibited a clear enhanced immune

response, when compared to the non-aggressive one (Lum-A)

(Fig S4B). In contrast, there was no significant difference in

macrophages recruitment between HER2 and BLC, suggesting

that immune response does not drive increased metastatic

potential into lymph nodes in HER2 tumours. To further

evaluate the influence of the fibroblastic component of the

stroma in each tumour type, we analysed the proportion of

myofibroblasts using an SM-a-actin marker (Fig 7A). Among the

total population of CAFs, the percentage of SM-a-actin-positive
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Figure 6. CXCL12 and CXCR4 levels are increased in the stroma of HER2-driven breast cancer.

A. Sections and histological analysis of HER2 (a–c), BLC (d.f) and Lum-A (g–i) human breast tumours using CXCL12-specific antibody.

B. Sections and histological analysis of HER2 (a–c), BLC (d.f) and Lum-A (g–i) human breast tumours using CXCL4-specific antibody. Scale bars¼40mm.
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cells and the intensity of SM-a-actin staining were significantly

higher in HER2- and BLC-derived stroma (Fig 7Aa–c; Fig 7Ad–f)

than in Lum-A (Fig 7Ag–i). Moreover, we detected a clear

difference in the general fibroblasts content in these three

subtypes of tumours (Fig 7B). For each tumour, analysis was

based on percentage of fibroblasts compared to total cells

forming the tumour. The maximum proportion of stromal

fibroblasts in BLC was evaluated at 40–45%, while it reached

60–65% in HER2 or Lum-A tumours. Thus, there were

qualitative and quantitative differences in CAFs properties in

HER2, BLC and Lum-A tumours. Lum-A tumours exhibited high

fibroblasts content but low expression of SM-a-actin; BLC

tumours showed high expression of SM-a-actin but low

fibroblasts content; HER2-amplified tumours exhibited both

high fibroblasts content and high expression of SM-a-actin,

indicating that this subtype of breast cancers accumulate the

highest proportion of myofibroblasts.

Interestingly, in HER2-driven tumours, the myofibroblastic

content was significantly correlated with the stromal expression

levels of CXCL12 (Pearson correlation coefficient: r¼ 0.56;

p¼ 5� 10�4). Even more importantly, the myofibroblastic

content of HER2-amplified tumours was also significantly

correlated with the metastatic rate in lymph nodes (r¼ 0.76;

p¼ 0.01), further indicating that myofibroblasts promote

migration of tumour cells in lymph nodes. Taken together,

these data indicate that accumulation of CXCL12 in the stroma of

HER2-amplified tumours is associated with high myofibroblasts

content, which impacts tumour spreading in lymph nodes.

HER2-amplified tumours display a gene expression profile

involved in oxido-reduction

Since HER2-tumours demonstrated correlated metastatic rate,

myofibroblasts content and CXCL12 staining, we next wondered

whether genes regulating oxidative stress could be abnormally

expressed in this set of tumours. We first performed unsuper-

vised analysis and pathway enrichment studies using all Gene

Ontology (GO) terms and the global test methods to examine the

predominant signatures in HER2, BLC and Lum-A tumours. The

GO terms oxidation–reduction (GO: 0055114) (Fig S5A) and

oxido-reductase activity (GO: 0016491) (Fig S6A) appeared

among the 100 most significantly deregulated pathways (at the

36th and 83th positions, respectively) with p-value smaller than

2� 10�16. We confirmed this difference using hierarchical

clustering and principal component analysis (Fig S5B–D; Fig

S6B–D), further highlighting that these pathways were able to

discriminate HER2, BLC and Lum-A tumours. In order to better

characterize HER2-specific expression pattern, we next per-

formed supervised clustering according to the tumour subtypes.

We defined significantly up-regulated genes in HER2 versus

Lum-A, BLC versus Lum-A and HER2 versus BLC and submitted

the identified set of genes to GO analysis (Fig 7C). As expected

according to the clinical outcomes of the tumours, the up-

regulated genes in BLC versus Lum-A or HER2 versus Lum-A

were involved in cell cycle regulation or associated with specific

signatures known to denote estrogen-negative tumours or poor

prognosis. Interestingly, when comparing up-regulated genes in

HER2 versus BLC, the first identified statistically relevant GO

signature was involved in oxido-reduction (Fig 7C). This

confirmed the global test analysis and indicated that one of

the major differences identified between these two aggressive

breast cancer subtypes—HER2 and BLC—was dependent upon

oxido-reduction. Genes that are up-regulated in HER2 tumours

when compared to BLC have been directly linked to H2O2

generation (NADPH oxidase, Nox4), production of fatty acid

hydroxyperoxides (lipoxygenases), oxidative deamination of

collagens and elastin (lysyl oxidases), metabolism of xenobio-

tics (cytochromes P450) (Table S3). Moreover, genes known to

be induced upon oxidative stress (such as NQO1) or hypoxia

(LOX) were up-regulated in HER2 versus BLC tumours. Thus,

these data indicate that HER2-amplifying tumours exhibit an

expression profile characteristic of a stress response, when

compared to BLC. Finally, in order to reconcile parts of this

study based on mouse and human analyses, we have tested

JunD expression pattern in breast cancers. We did not observe

any difference in junD mRNA levels in Lum-A, BLC and HER2

tumours. In contrast, we detected significant variations in the

subcellular localization of the protein (Fig 8A). Although high

levels of JunD were detected in the nucleus of Lum-A tumours,

this nuclear localization was reduced in BLC and almost

undetectable in HER2-amplified tumours (Fig 8A). Although the

involvedmechanism remains unknown, exclusion of JunD from

the nucleus can efficiently inactivate it and suggests that JunD is

far less active in HER2 than in BLC or Lum-A, further correlating

with the oxidative stress signature of this breast cancer subtype.

In conclusion, HER2-amplified tumours were characterized

by high expression of CXCL12 and accumulation of myofibro-

blasts and revealed an associated stress response signature, all

features that may correlate with their high tendency to

metastasize in lymph nodes. Taking both mouse and human

studies, our data underline the role of persistent oxidative stress

on metastatic spread through the conversion of fibroblasts into

myofibroblasts. We have used our data to establish a proposed

model, as described in Fig 8B.

DISCUSSION

An initial step in understanding the mechanisms of stromal

reaction in tumour progression is to fully define the reactive

stroma phenotype and its formation. In the present study, by

combining mouse models and studies on human materials, we

uncover a new ROS-dependent mechanism that impacts on

tumourigenesis. Collectively, our data indicate that the

oxidative stress-mediated accumulation of HIF-1a stimulates

the CXCL12/CXCR4 signalling axis that converts fibroblasts into

myofibroblasts and is associated with a high rate of metastases

in both mouse and human adenocarcinomas.

Role of myofibroblasts in metastatic spread

The current evidence considers the surrounding tumour

microenvironment as an important determinant in the final

outcome of cancer. It has been clearly established that CAFs, one

of the most abundant stromal components, promote tumour cell

proliferation and angiogenesis (Allinen et al, 2004; Bhowmick
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Figure 7. HER2 tumours exhibit high content of myofibroblasts and display a stress response signature.

A. Representative staining of SM-a-actin in HER2 (a–c), BLC (d–f) and Lum-A (g–i) human breast tumours. Arrowheads indicate SM-a-actin staining in epithelial

cells in BLC (f). p-values are as in Fig 6.

B. Representative graph of the percentage of fibroblasts compared to total cells forming the tumour in each breast cancer subtype. p-values by x2 test are highly

significant between BLC and HER2 or Lum-A (�0.001) and non-significant between HER2 and Lum-A.

C. Gene Ontology pathways significantly at least 2-fold up-regulated in HER2 versus Lum-A, BLC versus Lum-A and HER2 versus BLC, as indicated. p-values by

Fisher Exact test adjusted using the Benjamini–Hochberg correction are indicated.
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et al, 2004; Kalluri & Zeisberg, 2006; Littlepage et al, 2005; Olumi

et al, 1999; Orimo et al, 2005; Tlsty & Coussens, 2006).

Moreover, CAFs have been recently shown to orchestrate

tumour inflammation (Erez et al, 2010), further highlighting a

new interaction between fibroblasts and immune cells. The link

between inflammation and cancer has also been well demon-

strated. Indeed, inflammatory immune cells are highly recruited

in carcinomas and promote tumour growth and metastases

Research Article
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Figure 8. JunD nuclear exclusion in HER2-tumours and model describing ROS, as key players in the reciprocal cross-talk between tumour cells and

surrounding fibroblasts.

A. Representative staining of JunD in HER2 (a–c), BLC (d–f) and Lum-A (g–i) human breast tumours. p-values by x2 test are highly significant between BLC and

HER2 or Lum-A.

B. Model: In carcinoma, chronic oxidative stress promotes the conversion of fibroblasts into myofibroblasts, contractile cells with high migration properties

capacity. Pro-invasive myofibroblast properties result from ROS-mediated accumulation of the pro-angiogenic HIF-1a factor and the CXCL12 chemokine. The

origin of oxidative stress can be either intrinsic or extrinsic to fibroblasts. Indeed, fibroblasts may acquire genetic alteration, such as junD inactivation, which

will intrinsically increase ROS contents. Since genetic alteration in stromal fibroblasts may be rare events, stress may also more often originate from tumour

cells themselves. Accordingly, we identified a signature characteristic of stress–response in HER2-amplified tumours. In this set of tumours, stress can originate

from non-exclusive mechanisms, such as JunD nuclear exclusion, up-regulation of Nox4 or HER2/ERBB2 amplification per se, since it has been previously

demonstrated that growth factor-stimulated RTKs enhance H2O2 levels through activation of Nox. H2O2 is highly diffusible and can easily cross-cellular

membranes to act on surrounding fibroblasts. Acute stress in fibroblasts increases levels of HIF and CXCL12 that, in turn, convert fibroblasts into

myofibroblasts. These highly contractile SM-a-actin-expressing cells would subsequently promote migration and dissemination of neoplastic cells.
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(Condeelis & Pollard, 2006; Coussens & Werb, 2002; de Visser

et al, 2006; Erez et al, 2010; Grivennikov & Karin, 2010; Joyce &

Pollard, 2009; Karin & Greten, 2005; Mantovani et al, 2008;

Radisky & Radisky, 2007; van Kempen et al, 2006). Our work

complements these views and assigns to CAFs an essential role

in increasing the risk of metastatic dissemination by modulating

SM-a-actin expression in a CXCL12-dependent manner. Indeed,

the myofibroblast-enriched junD-deficient stroma accelerates

tumour onset and increases the number and the size of

metastases. Moreover, the HER2 class of human breast cancers,

which displays a high rate of lymph node metastases, exhibits a

significantly correlated high proportion of SM-a-actin-expres-

sing fibroblasts. In contrast, increased rate of metastasis was not

correlated with enhanced immune response, suggesting that

other mechanism exists. Similar to our findings, experimental

and clinical data support the notion that stromal myofibroblasts

participate in tumour development. Moreover, recent data show

that genetic inactivation of Pten in stromal fibroblasts of mouse

mammary glands accelerates tumour initiation and progression

by massive remodelling of extracellular matrix (ECM) and

increased angiogenesis (Trimboli et al, 2009). In xenograft

mouse models, myofibroblasts were shown to stimulate growth

of human breast cancer cells (Olumi et al, 1999; Orimo et al,

2005). Moreover, in vitro co-cultures of myofibroblasts and

tumour epithelial cells demonstrated that myofibroblasts

promote invasion of breast, colon, pancreas and squamous

carcinoma cells (Casey et al, 2008; De Wever et al, 2004;

Hwang et al, 2008; Lewis et al, 2004). Similarly, progression of

in situ to invasive breast carcinoma is promoted by

fibroblasts and inhibited by normal myoepithelial cells (Hu

et al, 2008). Furthermore, mesenchymal stem cells and

derivatives within tumours promote breast cancer metastasis

(Karnoub et al, 2007). In clinical studies, the abundance of

stromal myofibroblasts predicts human disease recurrence.

Tumours with abundant myofibroblasts are associated with

significantly shorter event-free survival rates for stages II and III

human colorectal cancers (Tsujino et al, 2007). In addition, in

lung and breast adenocarcinomas, myofibroblast content is

significantly correlated with lymph node metastasis and

shortened patient survival (Tokunou et al, 2001; Yazhou

et al, 2004). Accordingly, we show here that HER2-amplifying

invasive adenocarcinomas, human breast cancers that display

high rate of lymph node metastasis, are associated with the

highest proportion of myofibroblasts, when compared to BLC or

Lum-A. Taken together, these data emphasize that tumour

spreading could be facilitated by themyofibroblastic component

of the stroma.

Myofibroblasts express genes that encode invasion asso-

ciated-secreted factors, ECM proteins and ECM remodelling

proteases, which may facilitate tumour cell dissemination. The

transcriptome of CAFs, as well as junD-deficient fibroblasts,

shows abundant expression of collagens, cytoskeleton compo-

nents, cell adhesion molecules and MMPs. Moreover, we

observe that HER2-breast tumours reveal a high content of

various collagens, when compared to BLC. Interestingly,

imaging of invading co-cultures of squamous cell carcinoma

with stromal fibroblasts revealed that the leading cell is

always a fibroblast (Gaggioli et al, 2007). In this study, tumour

cells migrate within tracks of ECM molecules, secreted by the

leading fibroblasts, whose migration is dependent on Rho-

GTPase. Thus, myofibroblasts trigger both deposition and

proteolysis of ECM molecules that promote migration of cancer

cells. Accordingly, collagen density in mammary tissue

significantly increases tumour formation and results in an

invasive phenotype with high numbers of lung metastases

(Provenzano et al, 2008). In accordance with the prevalent role

of tumour microenvironment in cancer cell dissemination, a

stromal gene expression signature, similar to that observed

during wound healing, predicts human breast and prostate

cancer progression and patient survival (Bacac et al, 2006;

Chang et al, 2004, 2005; West et al, 2005). All these data

strongly suggest that stromal myofibroblasts impact tumour

aggressiveness.

Oxidative stress-dependent origin of myofibroblasts

Although the importance of CAFs in tumour development is

becoming clear, their origin is still controversial and the basis of

their myofibroblast characteristics debated (Haviv et al, 2009;

Hinz et al, 2007; Ostman &Augsten, 2009). In adenocarcinomas,

it has been suggested that myofibroblasts derive from epithelial

cells throughout EMT (Kalluri &Weinberg, 2009; Neilson, 2006;

Radisky et al, 2007; Zavadil et al, 2008). Although some data

indicate that the stromal compartment, when microdissected

from human breast cancers, exhibits genetic alterations (Eng

et al, 2009), the proportion of karyotypic alterations in fibroblasts

remain less frequent than in cancer cells (Qiu et al, 2008). In

addition to EMT, recent data from human breast cancer and

animal models established that tumour-associated myofibro-

blasts can also derive from haematopoietic or mesenchymal stem

cells from the bone marrow (Direkze et al, 2004; Ishii et al, 2003;

LaRue et al, 2006; Mishra et al, 2008; Mori et al, 2005; Studeny

et al, 2004). Local resident fibroblasts or fibroblasts stimulated by

members of the TGF-b family have also been considered as a

major source of CAFs (Kalluri & Zeisberg, 2006; Mueller et al,

2007; Ostman & Augsten, 2009). Consistently, we demonstrate

here that fibroblasts can differentiate into myofibroblasts upon

stress in vitro, effect which is reversed by long-term antioxidant

treatment. Moreover, our study shows different patho-physiolo-

gical conditions (junD-deficient animals, HER2-amplified breast

adenocarcinomas), in which stress response is associated with

myofibroblast accumulation. Thus, our data are consistent with

previous published data and further argue that myofibroblasts

can originate from stress-exposed fibroblasts.

Many distinct biological circumstances can stimulate oxida-

tive stress in tumours. The origin of oxidative stress in tumours

can be either intrinsic or extrinsic to fibroblasts. Acquisition of

genetic alterations (e.g. p53 loss) in the stroma, either induced

by cancer cells or by chemotherapy, may allow a local

production of ROS that would further promote the appearance

of myofibroblasts. In addition, MMPs, such as MMP3, a

remodelling enzyme that is up-regulated in the earliest stage

of human breast cancer, have been shown to modulate activity

of the mitochondrial respiratory chain, subsequently enhancing

ROS content and stimulating tumour progression (Radisky et al,
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2005). MMP3 was also defined as a major factor secreted from

senescent fibroblasts (Parrinello et al, 2005), which constitute

an inflammatory environment that compromises the structure

and the functions of the surrounding tissue (Coppe et al, 2008).

Interestingly, genotoxic stress and persistent DNA damage

signalling promote the development of senescent fibroblasts

that resemble reactive stroma and stimulate tumour growth

(Rodier et al, 2009). Thus, stress-signalling originating from

tumour epithelial cells may modulate local environment. In that

respect, the stress–response signature that we detect in HER2-

amplified tumours, expressing high levels of ERBB2 receptor, is

interesting. It has been shown that stimulation of receptor

tyrosine kinase (RTK) by growth factors, such as epidermal

growth factor (EGF), is associated with ROS generation (mainly

H2O2) through activation of non-phagocytic Nox (Aslan &

Ozben, 2003). ROS production is crucial for RTK-downstream

signalling pathways and stimulation of proliferation. Applica-

tion of an antioxidant treatment to HER2-transformed cells

demonstrates that ROS are important for their proliferation and

survival (Preston et al, 2001; Wang et al, 2005). In agreement

with these data, the present study shows that genes that are

directly linked to H2O2 synthesis, such as Nox4, are significantly

up-regulated in HER2-amplifying tumours. Interestingly, HER2-

amplified tumours display significant exclusion of JunD from

the nuclear compartment, when compared to BLC and Lum-A.

Nox4 has been already shown to be up-regulated in junD-

deficient cells (Gerald et al, 2004). Taken together, these data

suggest that amplification and constitutive activation of ERBB2

is associated with reduced JunD activity and massive ROS

production, potentially through Nox activation. Since H2O2,

despite short half-life, can easily diffuse among cellular mem-

branes, H2O2 production by HER2-neoplasic cells may have an

impact on surrounding fibroblasts and promote their conversion

into myofibroblasts. Accordingly, HER2-amplified tumours

exhibit high content in myofibroblasts, which is significantly

correlated with lymph node metastases. Thus, oncogene-

mediated hyperplasia may trigger a stress-mediated stromal

reaction that initiates a vicious cycle promoting tumour

invasion.

Role of HIF and CXCR4/CXCL12 signalling pathways in

myofibroblast differentiation and metastases

We uncover a novel cell autonomous HIF-mediated mechanism

that regulates differentiation of fibroblasts into myofibroblasts

and may enhance tumour spreading. Previously, a stroma-

derived predictor of poor prognosis, consisting of angiogenic

and hypoxic gene expression, was discovered (Finak et al,

2008). Similarly, it has been suggested that a hypoxia-induced

HIF-mediated response reflects metastatic potential in soft tissue

sarcomas (Francis et al, 2007). Finally, HIF-1a expression was

correlated to aggressiveness in breast cancers, especially in node

positive HER2-driven carcinomas (Giatromanolaki et al, 2004;

Gruber et al, 2004; Vleugel et al, 2005; Yamamoto et al, 2008).

Consistently, we identified a hypoxia-related signature

among the genes that are significantly up-regulated in HER2

tumours, when compared to BLC. Thus, HIF-dependent

signature has been closely linked to aggressive phenotype in

human cancers, further arguing for the deleterious effect of

chronic stress.

In addition to HIF, we identified the chemokine CXCL12 as a

new mediator for the formation of contractile features in

myofibroblasts. CXCL12 has already been involved in tumour

growth and metastatic spread, mostly through its role in

chemoattraction (Muller et al, 2001; Ostman & Augsten, 2009).

Indeed, CXCL12 stimulates carcinoma cell proliferation and

recruitment of endothelial precursor cells (Littlepage et al,

2005). Moreover, CXCR4-positive tumour cells are attracted to

CXCL12-expressing metastatic organs, through a chemotactic

gradient (Zlotnik, 2008). Furthermore, CXCL12 has been

defined as a master regulator of trafficking of haematopoietic-

and cancer-stem cells (Gelmini et al, 2008). Finally, CXCL12-

dependent tumour cell migration has also been associated with

macrophages and their cross-talk with tumour cells (Joyce &

Pollard, 2009). In agreement with this previously identified

chemoattractive function, we detected a significant increase in

recruitment of inflammatory cells in our mouse model of

mammary adenocarcinomas. In contrast, this chemoattractive

effect was not detected in the transplanted tumour model,

despite clear accumulation of CXCL12. Similarly, HER2-human

breast cancers did not show enhanced rate of CD68-positive cells

when compared to BLC, while CXCL12 accumulated. In

contrast, SM-a-actin-expressing fibroblasts accumulated in

the stroma of the two mouse models used in this study. Thus,

our study complements previous published data about CXCL12

by deciphering a new function for this chemokine in stromal

fibroblasts and acquisition of contractile properties. Indeed, we

show here that CXCL12 is necessary and sufficient to convert

normal fibroblasts into myofibroblasts. Accordingly, CXCL12

has been previously shown to induce intracellular actin

polymerization in lymphocytes (Bleul et al, 1996). We show

here also that HER2 human breast cancers, which are associated

with increased risk of nodal metastasis, exhibit a statistically

significant increase in CXCL12 and CXCR4 expression in the

stroma. Similarly, CXCR4 expression in breast cancers has been

correlated with survival and metastatic development (Kang

et al, 2005; Li et al, 2004; Muller et al, 2001). This suggests that

there may be some value in developing CXCR4-blocking

antibodies for lymph node-positive HER2 patients, in addition

to the already existing treatments (Baselga & Swain, 2009).

Many reports have associated stromal CXCL12-positive staining

with increased aggressive metastatic foci in human cancers

(Kryczek et al, 2007). Fibroblast-derived CXCL12 stimulates the

invasion of oral squamous cell carcinoma and CXCL12 blocking

antibodies reduce the level of invasion (Daly et al, 2008). In our

model of fibroblasts, CXCL12 triggers activation of the Rho

family of GTPases and increases migratory properties, as it has

been shown in melanoma cells and inflammatory cells

(Bartolome et al, 2004; Tan et al, 2006). Moreover, previous

studies on the pro-invasive capacity of myofibroblasts revealed

an essential role of the RhoA/Rho-kinase axis in cancer cell

invasion (DeWever et al, 2004; Nguyen et al, 2005). Altogether,

these data suggest that activation of RhoA triggered by CXCL12/

CXCR4 signalling in stressed fibroblasts could contribute to

dissemination of tumour cells.
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In conclusion, our data support the conclusion that produc-

tion of CXCL12 by stromal fibroblasts is tightly regulated by

oxidative stress in an HIF-dependent manner. Most probably,

this enhances metastatic spread by increasing the migratory

potential of both tumour cells and their associated stroma.

These data provides new insights into the contribution of

oxidative stress to the tumour-associated microenvironment

and may contribute to a better knowledge of mechanisms

stimulating cell dissemination.

MATERIALS AND METHODS

Cell culture and siRNA

Independent immortalized cell lines derived from wt or junD�/�

embryos were generated using a conventional 3T3 protocol as

previously described in Gerald et al (2004). Experiments

were performed at least in triplicate on three independent cell lines

of each genotype. Treatments of cells were performed for 16 h by

addition of exogenous CXCL12 (100nM), a kind gift of Arenzana-

Seistedos, for 4 h with DFO (100mM) (D9533-Sigma) and 3 h

with exoenzyme C3 transferase (1mg/ml) (CT03A-cytoskeleton).

Long-term antioxidant treatment, using NAC (500mM) (A9165-

Sigma), was applied for 20 days, with addition of the product

every 2 days. For siRNA experiments, cells were transfected with

25–50 nM siRNA using Dharmafect1 reagent (Dharmacon).

siRNA sequences targeting mouse HIF-1a and CXCL12 were,

respectively, 5 0-CCCUAUAUCCCAAUGGAUG-30 and 50-CAACG-

UCAAGCAUCUGAAA-30 .

Mouse strains and graft experiments

Due to male sterility, the junD-deficient mice were maintained

through the breeding of heterozygous animals. Ras junDþ/þ and Ras

junD�/� mice have been obtained by crossing junDþ/� mice with

MMTV-Ha-Ras mouse mammary tumour model (Sinn et al, 1987).

Mice were checked weekly for tumour growth. On average, tumours

appeared in 15-month-old animals. Tumour volume was determined

by the use of a call iper and the following equation:

0.5� [length� (width)2]. For immunohistochemistry, tumours were

fixed in 4% paraformaldehyde (PFA) for 1 h 30min at room

temperature and then embedded in gelatin 15%/sucrose 7.5%. Ten

micrometre sections were incubated with antibody against SM-a-

actin (A2547, clone1A4, Sigma), CXCL12 (MAB350, R&D system), CD31

(7388-50, Abcam), E-cadherin (4065, Cell Signaling), Vimentin

(RV202, Abcam), Podoplanin (Abcam, ab11936), F4/80 (ab6640,

Abcam) or coloured with Masson’s trichrome or haematoxyline-

eosin-saffranin (HES). Fibroblasts, myofibroblasts, epithelial cells,

macrophages and haematopoietic cells were specifically stained using

vimentin, SM-actin, E-cadherin, F4/80 and CD45-specific antibodies,

respectively. For quantification, three different tumours of each

genotype were analysed and three sections from distinct areas of

each tumour were evaluated. Staining intensity and percentage of

labelled cells were scored for SM-actin, vimentin and E-cadherin

positive cells. Numbers of CD45- or F4/80-positive cells per tumour

surface were also quantified. Statistical analysis were done using

student test. Graft experiments were performed using 10-month-old

mice. Single cell suspensions containing 2�106 B16F10 cells in

200ml were injected subcutaneously. The mice were checked daily for

tumour growth and tumours were measured using callipers. Tumours

and lungs were collected when tumours reach appreciatively 2 cm3.

Removals were fixed in 10% formol, sectioned in paraffin (5mm) and

coloured. When required, mice have been treated daily with 3mg of

control- or CXCL12-specific siRNA (sequence above), previously

validated on cells. The Institut Curie ethical committee approved all

experiments.

Gene expression analysis

Whole genome expression profiling of wt and junD�/� fibroblasts

were performed using mouse expression beadchip (Sentrix

Mouse-6 v1.1) from Illumina (see Supporting Information). Three

RNA samples were pooled according to their genotype. Pooled

RNA were used to synthesize cRNA and hybridized to Illumina

mouse-6 expression arrays (version 1). Detected probe sets

were selected (n¼46,673) and further analysed using beadstudio

software. The background was subtracted and intensities

normalized using cubic spline algorithm. Only at least 2-fold up-

regulated genes with a significant p-value (p<0.05) (n¼1934)

in junD�/� versus wt cells were taken into account. The

comparison between lists of genes obtained in independent

gene expression analyses was carried out using the hypergeometric

law via Fisher’s Exact test in R (The R development Core Team,

R: A Language and Environment for Statistical Computing, Version

2.8.1, 2008).

Gene expression profiling and pathway enrichment analysis

in human breast cancers

Only human tumours with a high content in epithelial tissue (at least

65%) have been used. Total RNA were extracted from frozen

tumours with TRIzol reagent (Life Technology, Inc.) and purified

using the RNeasy MinElute Cleanup kit (Qiagen). RNA quality

was checked on an Agilent 2100 bioanalyser. Samples were

analysed on Human Genome U133 Plus 2.0 array (Affymetrix),

according to manufacturer’s procedures. Log-intensity values were

normalized using the GC-RMA algorithm. Probes, with log-intensity

value smaller than 3.5, were discarded. A linear model was then fitted

to detect and correct any batch and hybridization effects. All GO

pathways were retrieved using the R software and Bioconductor. We

first applied the global test method proposed by Goeman et al (2004),

investigating whether the expression pattern of a group of genes is

significantly related to a clinical outcome of interest. We also

performed supervised comparative analysis using Welch test and

adjusted p-values using Benjamini–Hochberg procedure (R-Multitest

package).

Immunofluorescence and immunoblotting

Fluorescence microscopy was performed as previously described

with few modifications (Mechta et al, 1997). In brief, cells were

fixed in 4% PFA for 30min, permeabilized in 0.01% sodium dodecyl

sulphate (SDS) for 10min, rinsed twice in phosphate buffered

saline (PBS) solutions and blocked for 30min in 10% foetal calf

serum (FCS). Cells were stained with 4,6-diamidino-2-phenylindole

(DAPI) (50mg/ml, Roche) for DNA detection, together with specific

antibody recognizing SM-a-actin (A2547 clone 1A4, Sigma 1/400),

vinculin (V9131 clone hVIN-1, Sigma 1/1000), N-cadherin (SC-7939,
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Santa Cruz 1/250), tensin (610064, BD Biosciences 1/500) or FAK

(F2918, Sigma 1/1000), followed by either fluorescein isothiocyanate

(FITC)-coupled or texas red-coupled secondary antibody (Amersham). F-

actin was visualized with FITC-phalloidine (P5282, Sigma 1/1000).

Slides were examined using a Zeiss Axioplan 2 and images were

acquired with identical exposure times and settings using a digital

camera (Photometrix Quantix). Fluorescence image analysis was

performed using the ImageJ software (Rasband, WS., ImageJ, U.S

National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.-

nih.gov/ij/, 1997–2008). After background subtraction, the mean

fluorescence intensity of SM-a-actin and F-actin was measured

considering all cells per field per condition (n�20 cells), from at least

three independent experiments. In order to count the FA and the

adherent junctions and measure their size, we used the ‘analysis

particle’ tool of ImageJ (n�50 per condition). The FA size was measured

as the length of the FA in the direction perpendicular to the cell

boundary. For immunoblotting analysis, whole cell extracts and Western

blotting was performed as in Gerald et al (2004) using antibodies

described above. Blots were incubated with horseradish peroxidase-

conjugated secondary antibody (Amersham) followed by detection with

enhanced chemoluminescence and exposed to autoradiography.

Immunohistochemistry on human breast carcinomas

Sections of paraffin-embedded tissue (3mm) were stained using

streptavidin-peroxidase protocol, immunostainer Benchmark,

Ventana, Illkirch, France with specific antibodies recognizing

CXCR4 (1/50; ab2074, Abcam), CXCL12 (1/100; ab9797, Abcam),

Ki67 (1/200; MIB-1, Dakocytomation), SM-a actin (1/400; A2547,

Sigma), CD68 (clone KP1 M081401-2, Dako) and JunD (1/100;

sc-74, Santa Cruz) (see also Fig S7). TMA from 36 HER2, 44 BLC and

23 Lum-A tumours were composed using three cores of tumour

tissue per case and one core of normal tissue (1mm of diameter

each) and hybridized simultaneously. Invasive HER2-amplified

carcinomas have been defined according to ERBB2 immunostaining

using ASCO’s guideline. Among invasive ductal carcinomas, the BLC

immunophenotype was defined as follows: ERPR ERBB2 with the

expression of at least one of the following markers: KRT5/6þ, EGF-Rþ,

kitþ. Lum-A tumours were ERþ. For quantification, three sections

from distinct areas of each tumour were evaluated independently

by at least two different investigators. A score, associated with a colour

code, was given as a function of the percentage of positive cells and

the staining intensity. The colour code is as the following: white¼no

or weak signal; yellow¼moderate; orange¼ high; red¼ intense.

Experiments were approved by the ethics committee of the Institut

Curie and informed consent was obtained from all included patients

prior to inclusion in the study.

Migration assay

Migration assays were performed by using Corning polycarbonate

Transwell 24-well plates. Cells (7�105) were seeded to the upper

chamber of each well (6.5mm in diameter, 8mm pore size). Medium

containing 7% FCS was placed in the lower compartment of the

chamber. After 24 h at 378C, any remaining cells on the upper

membrane surface were removed by careful wiping with a cotton

swab, and the filters were fixed and stained with 0.2% crystal violet

solution in 20% methanol for 15min. The colouration was removed

using acetic acid (10%) and absorbance at 530nm was used to

measure the proportion of migrating cells adhering to the under

surface of the filter. The number of total cells was evaluated by using

unwrapped chambers.

RhoA- and Rac-pull-down assay

RhoA and Rac activity were quantified by measuring the amounts

of RhoA-GTP and Rac-GTP precipitated in a pull-down assay from

cell lysates, using the GTPase-binding domain of Rhotekin (RBD) or

p21-activated kinase, PAK, (PBD), fused to the glutathione-S-

transferase (GST-RBD or GST-PBD, respectively). Briefly, 107 cells were

lysed in lysis buffer (200mM NaCl, 0.5% NP-40, 1mM ethylenedia-
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The paper explained

PROBLEM:

While the tumour microenvironment is known to contribute to

tumour progression, the role of carcinoma-associated fibroblasts

(CAFs) remains controversial and their origin unclear. This study

addresses the hypothesis that chronic oxidative stress can

modulate tumour growth and spread by modulating surrounding

tumour fibroblasts.

RESULTS:

We took advantage of the chronic oxidative stress resulting from

junD deletion to examine the role of reactive oxygen species

(ROS) in tumour development. In this model, CAFs derive from

stress-exposed fibroblasts and promote metastatic dissemina-

tion of neoplastic cells. Pro-invasive myofibroblast properties

resulted from ROS-mediated accumulation of the pro-angiogenic

HIF-1a and the pro-inflammatory chemokine CXCL12 that

activated the RhoA-GTPase. Invasive HER2-human breast

adenocarcinomas, characterized by high rate of lymph node

metastases, exhibit a correlated stromal accumulation of both

CXCL12 and myofibroblasts and display an associated oxido-

reduction signature, indicating the relevance of our findings in

human cancers.

IMPACT:
HER2-amplifying human breast adenocarcinomas, a breast

cancer molecular subtype associated with a very poor prognosis

and lymph node metastases, express high levels of CXCL12 in the

stroma. Our study raises the intriguing possibility that, in

addition to current treatments, CXCR4-blocking antibodies may

be effective in combating tumour metastasis in lymph

node-positive HER2 patients.
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minetetraacetic acid (EDTA) pH 8.0, 20mM Tris–HCl pH 8.0). Whole

cell extracts (500mg) were added to GST-RBD or GST-PBD beads. The

pull-down reaction mixtures were incubated for 45min at 48C

with gentle agitation. The supernatants were removed by brief

centrifugation and the precipitated proteins were subjected to

immunoblot analysis using monoclonal antibody to RhoA (2117, Cell

Signaling) or to Rac1/2/3 (2465, Cell Signaling). The intensities of the

bands of GTP-bound RhoA and Rac were quantified by ImageJ and

normalized to the total amount of the corresponding protein in whole

lysates.

Statistical analysis

All experiments were performed at least three times. Differences were

considered to be statistically significant at values of p�0.05 by

Student’s t-test and Mann Whitney test. Graphs show mean and

standard error of mean using Student’s t-test. Single, double and triple

asterisks indicate statistically significant differences: �p�0.05;
��p�0.01; ���p�0.005. All survival analyses were carried out using

Kaplan–Meier method and log-rank test in R (refer above).
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11.2.2 An overview of the Wnt pathway in breast cancers

In our global test analysis the Wnt pathway appears as the 14th most significantly associated pathway

(see Figure 11.6) with a p-value smaller than 2.10−16. We performed an in-depth analysis of the Wnt

pathway: looking at the gene expression patterns for the different Wnt genes and identifying genes that

are robustly over-expressed in several datasets (Rigaill et al. (2010a)). This paper is still in preparation

and a first draft is proposed in the following pages.

The Wnt signaling pathway is highly conserved in evolution and is essential during the embryoge-

nesis and morphogenesis of many organs (Clevers, 2006) in particular the morphogenesis of the breast

(see Boras-Granic and Wysolmerski (2008) for a review). Moreover, it remains critical in regenerat-

ing adult tissues, such as colon, skin, hair follicles, lymphoid tissues and bone (Clevers, 2006). This

regeneration relies on a tight regulation of the Wnt pathway to maintain a balance between prolif-

eration and differentiation. The Wnt signaling pathway is composed of two distinct signaling arms:

the canonical and the non-canonical pathways. The non-canonical pathway modulates cytoskeletal

organization, controls cell movement and tissue polarity, and can directly antagonize the canonical sig-

naling pathway. The canonical pathway promotes cell proliferation, fate determination and survival.

In the canonical pathway, the secreted Wnt proteins bind the cell-surface receptor Frizzled and the

LRP5/6 co-receptors. This interaction can be inhibited by secreted Frizzled-related proteins (SFRP),

Dickkopfs (DKK) and Wnt inhibitory factor 1 (WIF1). On the first hand, in the absence of Wnt

ligands, cytoplasmic β-catenin is recruited into a destruction complex. In this complex, it interacts

with adenomatosis polyposis coli (APC) and axins, and is phosphorylated by casein kinase I alpha

(CKI-α) and GSK3-β. Following its phosphorylation, β-catenin is targeted for proteosome-dependent

degradation. On the other hand, in the presence of canonical Wnt ligands, LRP5 and 6 are phospho-

rylated by CKI-γ and GSK3-β. Dishevelled is recruited to the plasma membrane and interacts with

Frizzled receptors. LRP5/6 phosphorylation and the formation of Dishevelled complexes mediate the

translocation of axin to the plasma membrane and lead to the inactivation of the destruction complex.

It induces the stabilization of cytoplasmic β-catenin and its translocation to the nucleus. Once in

the nucleus, β-catenin forms a transcriptionally active complex with the LEF and TCF transcription
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factors, leading to the expression of a plethora of so-called Wnt target genes (indicative of Wnt activa-

tion). Overall, the Wnt network is very complex: there are 19 Wnt ligands, 10 Frizzled receptors, two

LRP co-receptors (LRP5 and LRP6) and several TCF/LEF DNA-binding proteins. This large amount

of diverse proteins enables many signaling interactions and the transduction of complex signals (see

Clevers (2006) for a review).

Mutations in genes or deregulated expression of components leading to Wnt pathway hyperactivity

have been shown to be involved in cancer progression, for example in the colon cancer (Polakis, 2007).

There is also some evidence that deregulations of the Wnt signaling pathway leads to mammary

carcinomas (Howe and Brown, 2004; Zardawi et al., 2009). Analysis from mouse model systems strongly

involves Wnt signaling in both mammary development and tumorigenesis (Nusse and Varmus, 1982;

Turashvili et al., 2006). In addition, an elevation of cytoplasmic and/or nuclear β-catenin has been

observed in human breast carcinomas suggesting that the Wnt pathway was activated (Lin et al., 2000;

Ryo et al., 2001; Johannsdottir et al., 2006) and more recently (Khramtsov et al., 2010). Moreover,

many Wnt ligands were shown to be often over-expressed in breast tumors (Lejeune et al., 1995; Huguet

et al., 1994; Bui et al., 1997; Kirikoshi et al., 2001) and many Wnt pathway actors were found to be

often deregulated in breast tumors, such as WIF-1, sFRP1, DVL-1, DKK-3 (Cowling et al., 2007; Ai

et al., 2006; Nagahata et al., 2003; Veeck et al., 2008). Some of these were also shown to be repressed

by epigenetic silencing (Suzuki et al., 2008; Veeck et al., 2008; Klarmann et al., 2008). However, the

way the Wnt signaling pathway is deregulated in breast cancer remains to be elucidated.

Several recent publications link TNBC and Wnt pathway deregulation (Smid et al., 2008; Matsuda

et al., 2009; DiMeo et al., 2009; Liu et al., 2010; Khramtsov et al., 2010). Using TNBC cell-line models,

both Matsuda et al. (2009) and DiMeo et al. (2009) have thoroughly shown that the Wnt pathway

was activated and involved in tumor migratory ability and metastasis formation. In humans, at the

transcriptomic level, it seems that Wnt pathway genes or Wnt-related genes are more specifically

deregulated in TNBC (Smid et al., 2008; DiMeo et al., 2009). Moreover, recent publications have more

directly shown that the Wnt pathway is activated in TNBC (Liu et al., 2010; Khramtsov et al., 2010).

Liu et al. (2010) showed that LRP6 was over-expressed in TNBC, and that this over-expression could
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be responsible for the activation of the Wnt pathway.

In light of all these results, there is little doubt that the Wnt pathway is involved in breast cancer

development and more specifically in TNBC. However, as highlighted by Collu et al. (2009), contrary

to colorectal cancer, the mechanisms of activation and the role of the Wnt pathway in breast cancer

remain to be elucidated. In colorectal cancer, the Wnt signaling pathway is known to be activated by

mutations in APC, axin or β-catenin and tumor progression is driven by β-catenin stabilization.

In this study, our initial goal was to validate the deregulation of the Wnt pathway in TNBC

compared to other subtypes. We aimed to better understand the Wnt pathway gene pattern in

TNBC and identify the key gene deregulations characteristic of this pattern. The reproducibility

of such differential analysis is very often limited (Subramanian et al., 2005), so I chose to use three

different datasets simultaneously (further described below). One of our hypotheses was that if the Wnt

pathway is indeed involved in the TNBC phenotype then these tumors should exhibit a reproducible

Wnt pathway gene expression pattern.

11.2.3 Transcriptomic statistical analysis of the Wnt pathway

For this analysis, three different datasets were used (Own, Chin and Adeläıde described below). All

datasets used the Affymetrix HGU133plus2 technology to enable an easy comparison of the results. The

expression profiling data of Chin et al. (2006) were collected from ArrayExpress. This dataset comprises

Luminal A and B, HER2+, TNBC and normal-like tumors. The data from Adéläıde et al. (2007) were

retrieved from their website. This dataset comprises Luminal A and TNBC. Data from the Adeläıde

dataset were already normalized with RMA (Irizarry et al., 2003a) and they used the Affymetrix

annotation (see section 9.1). Thus, specifically for this study, I used the Affymetrix annotation and

the RMA normalization for both the Chin and our own datasets to allow an easy comparison of the

three datasets. As previously described in section 9.2, a threshold was implemented to discard probes

with intensities in the background level. In the case of the RMA normalization, this threshold is much

more arbitrary than with the GC-RMA analysis. Indeed, the histogram of log2 measurements is not

bi-modal (as described in section 9.2) and there is no sharp peak corresponding to the background
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noise (see Figure 11.7). For all datasets, probesets were discarded if at least 95% of all samples had a

probeset log-intensity smaller than 5.

As the link between the Wnt gene mRNA expression and the tumor subtypes is still unclear, I first

tried to confirm the deregulation of the Wnt pathway shown by Smid et al. (2008) and DiMeo et al.

(2009) on other datasets (see Figure 11.8). Using the global test method (Goeman et al., 2004) on

our own data set, I tested for an association between tumor subtypes and KEGG pathways (Kanehisa

and Goto, 2000). To be more specific, it can be determined using this global test whether the global

expression pattern of a group of genes or genesets is significantly related to tumor subtype. Moreover,

the test allows genesets of different sizes to be compared, and gives one p-value per geneset. The Wnt

pathway appears as the 14th most significantly associated pathway (see Figure 11.6) with a p-value

smaller than 2.10−16.

This association was further validated using the Chin dataset and the Adeläıde datasets. For both

datasets, the Wnt pathway was significantly associated with tumor subtype with a p-value smaller

than 2.10−16.

To further confirm that the Wnt pathway mRNA levels segregate the different tumor subtypes at

least to a certain extent, we sought to better characterize the Wnt molecular pattern of breast tumors.

Because the number of genes of the Wnt pathway (as defined by KEGG) is important, I used three

exploratory methods to describe the Wnt pathway expression profile: Hierarchical clustering, Principal

Component Analysis (previously described in section 10.1) and model-based clustering (Yeung et al.,

2001). Model-based clustering is an unsupervised clustering method that aims at determining both

the number of clusters and the structure of these clusters. To be more specific, I used a Gaussian

mixture model to identify groups of tumors based on the gene expression pattern of the Wnt pathway.

This second classification methodology was used to confirm the partitioning of the data obtained

with hierarchical clustering. Figure 11.9 shows that both hierarchical clustering and model-based

clustering segregate all tumor subtypes into two very distinct groups, one of which clearly corresponds

to TNBC. The robustness of this classification is assessed by the tight agreement between hierarchical

clustering and model-based clustering (see Figure 11.9) and the clear difference between these two
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A

B

Figure 11.7: Histograms of log2 intensities after (A) GC-RMA normalization and (B) RMA-normalization

for the Curie-Servier transcriptomic dataset. The histograms are plotted so that they have a total area of

one. The height of a rectangle is proportional to the number of points falling into the cell. The GC-RMA

histogram has a sharp peak around 2.5 log2 intensity. The RMA histogram does not. The threshold used

to discard probes in the background level is shown: 3.5 for GC-RMA and 5 for RMA.



222 CHAPTER 11. COMPARISON OF TNBC WITH OTHER TUMOR TYPES

Figure 11.8: Selected genes of WNT signaling. Important molecules of the WNT signaling pathway that

are involved in the TNBC and Luminal B subtypes and in tumors from bone and brain relapse patients.

Capped lines, inhibitory effect on the protein-protein interaction. The bottom graph depicts z-score values.

The z-scores is a measure of the unlikelihood of the null hypothesis that the gene is not associated with

the clinical attribute. Positive and negative z-values indicate genes expressed significantly higher or lower

in the corresponding group, respectively. Orange bar, TNBC subtype; maroon, brain relapse patient; blue,

Luminal B subtype; light blue, bone relapse patient. (Figure and legend from Smid et al. (2008).)
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Figure 11.9: Classification of tumors based on the gene expression levels of the KEGG Wnt pathway for our

own, the Adeläıde and the Chin datasets. On top is the hierarchical clustering, below is the corresponding

immunohistological classification of the tumors in subtypes (blue: TNBC, red: ER- / HER2+, green:

Luminal A, orange: Luminal B, green: normal-like). The last lane is the model-based classification in two

groups (blue and grey groups).

groups on the first two principal components in the PCA (see Figure 11.10). In conclusion, the Wnt

mRNA levels clearly segregate TNBC from all other subtypes. Once again, many genesets are able to

segregate between the different subtypes. Thus, this unsupervised analysis is not by itself a proof of

the importance of the Wnt pathway in TNBC.

Having shown that TNBC have a very distinct Wnt pathway gene mRNA pattern, we wanted to

identify which of these genes best segregated TNBC from other tumors and are therefore characteristic

of the TNBC Wnt pathway pattern. Indeed, if the Wnt pathway is involved in the TNBC phenotype,

the expression pattern in TNBC of the Wnt pathway genes should be reproducible. Thus I looked

for genes of the Wnt pathway (as defined by KEGG) over-expressed in TNBC. To be more precise,

I compared TNBC to all other tumors using a two sample t-test. Probesets with a mean difference

between TNBC less than log2(1.5) corresponding to a 150% over-expression were discarded. Multiple-

testing issues were accounted for using the Bonferonni correction. In the end, we obtained a list of 28
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Figure 11.10: PCA individual plot based on the gene expression levels of the KEGG Wnt pathway for

our own, the Adeläıde and the Chin datasets. Representation of the tumors using the first two principal

components (blue: TNBC, red: ER- / HER2+, green: Luminal A, orange: Luminal B, green: normal-like).

Individuals in the blue group (model-based clustering) are circled in blue.
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probesets corresponding to 23 genes significantly over-expressed in TNBC compared to other subtypes.

The reproducibility of such a differential analysis is very often limited (Subramanian et al., 2005).

Thus, to validate this list, I replicated the same analysis on the Adeläıde and the Chin datasets. To

ensure a valid comparison, we kept only the 211 probesets that were present in the three datasets.

First, TNBC samples were compared to Luminal A samples, as Luminal A was the only subtype

present in all datasets. Using the previously described t-test and Bonferonni correction, I obtained

a restricted list of respectively 30, 20 and 28 probesets for the Adeläıde, Chin and our own datasets

(see supplementary table) corresponding to respectively 21, 14 and 23 genes. The intersection of those

three lists of genes is a list of 9 Wnt pathway genes over-expressed in TNBC compared to Luminal A:

MMP7, SFRP1, MYC , FZD7, EN1, TCF7L1, PRKX, PRKCA, PLCB4. To check that those genes

were not specific of the TNBC/Luminal A comparison, I then compared TNBC samples to all subtypes

available in the datasets. Restricted lists of respectively 30, 15 and 21 probesets were obtained for the

Adeläıde, Chin and our own datasets respectively. The intersection was the same except for PLCB4.

We decided to call this list of 8 genes (MMP7, SFRP1, MYC , FZD7, EN1, TCF7L1, PRKX, PRKCA)

“WOTNBC” for Wnt pathway genes Over-expressed in TNBC.

I then assessed how significant it was to recover an intersection of more than 8 genes to validate

the reproducibility of this WOTNBC gene expression pattern. To be precise, we quantified how easy

it is to obtain an intersection of 8 genes by picking at random 30, 15 and 21 probesets out of the

211 of the Wnt pathway present on the microarrays. If there was a one-to-one relation between

genes and probesets, a hypergeometric test with three classes could have been used. But here some

genes correspond to several probesets (Affymetrix annotation). I used a re-sampling strategy and

computationally picked at random 30, 15 and 21 probesets out of the 211, and then intersected those

three probeset lists and counted how many genes were retrieved. This process was repeated 10 million

times. I recovered more than 8 genes only 7 times out of 107. This result comforts the fact that it

is very unlikely to obtain such a large intersection at random and thus that these 8 core WOTNBC

genes are most probably linked to TNBC. In conclusion, we identified a reproducible and robust set

of over-expressed Wnt pathway genes in TNBC. Interestingly, a good proportion of these genes are
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known to be up-regulated by Wnt activation, in particular MMP-7, SFRP1, FZD7 and MYC (see

the Wnt home page: http://www.stanford.edu/ rnusse/wntwindow.html). These over-expressed Wnt

target genes may reflect the activation of the Wnt pathway in TNBC.

To validate the importance of this over-expression between TNBC and other tumor types, we

compared the expression of the WOTNBC genes in tumors with their expression in normal samples.

Figure 11.11 shows that TCF7L1, FZD7 and PRKCA have levels similar to normal (they are not

significantly different, p-values of 0.22, 0.51 and 0.72 respectively). For all other WOTNBC genes, the

difference between normal samples and TNBC is significant. Interestingly, sFRP1 is down-regulated in

TNBC compared to normal (see Figure 11.11) and it is well documented that sFRP1 down-regulation

can lead to Wnt activation. All these results, over-expression in TNBC and presence of known Wnt

target genes, strongly suggest that these WOTNBC genes are co-regulated and lead us to believe that

the Wnt pathway is activated in TNBC.

To conclude, using gene expression profiling of breast tumors and bioinformatic tools, we demon-

strated that the Wnt pathway mRNA levels clearly segregate TNBC from all other subtypes. Moreover,

using our own and several publicly available datasets, we identified a consistent and reproducible set

of Wnt genes over-expressed in TNBC. The reproducibility of this set of genes is remarkable given

that in general reproducibility is very often limited (Subramanian et al., 2005). It indicates that the

Wnt pathway might indeed be involved in the TNBC phenotype as it exhibits a reproducible gene ex-

pression pattern. Moreover, many of the identified genes are known to be Wnt pathway target genes,

suggesting an activation of the Wnt pathway.

Following these statistical analyses, the activation of the Wnt pathway in TNBC was further inves-

tigated by our group, in collaboration with Anne Vincent-Salomon (MD/Ph.D.) and Marion Richard-

son (M.Sc.). They looked for the localization of the β-catenin in TNBC using immunohistochemistry

(IHC). They detected nuclear β-catenin (indicative of Wnt activation) in only 2 TNBC samples of the

Curie-Servier cohort in contrast to a recent report (Khramtsov et al., 2010). In addition, we look for

potential causes leading to Wnt pathway activation in TNBC. One possibility is the activation of the

PI3K/AKT pathway in TNBC (Stemke-Hale et al., 2008; Marty et al., 2008). Indeed, AKT can phos-
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Figure 11.11: Gene expression of the different TNBC and normal samples for the Wnt pathway genes

over-expressed in TNBC (WOTNBC) in our own dataset. Log-intensities on this graph are centered on the

mean log-intensity of Luminal A samples. TNBC are in blue, ER- / HER2+ in red, Luminal A in green,

Luminal B in orange and normal samples in grey.
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phorylate and inhibit GSK3. Another possibility is the frequent loss in TNBC of APC on chromosome

5q (see Chapter 6). A third possibility is the over-expression of the co-receptor LRP6. Indeed, we

found using RPPA that LRP6 was over-expressed in TNBC compared to other subtypes (data not

shown), in agreement with the recent study of Liu et al. (2010) showing by immunohistochemistry a

higher level of LRP6 in TNBC compared to other subtypes. It has been shown in cell-lines that the

over-expression of LRP6 is sufficient to induce the activation of the Wnt pathway (Li et al., 2004; Liu

et al., 2010). Of course, this does not exclude other causes leading to Wnt pathway activation. The

experimental analyses of this pathway are still under investigation in our laboratory.
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My PhD project was part of a collaboration between the Institut Curie and the Servier pharma-

ceutical group. The goal of this collaboration is to discover deregulated genes and signaling pathways

in human TNBC to identify new therapeutic targets. In this manuscript, I present my work on the

biostatistical analysis of the Curie-Servier transcriptomic and genomic datasets. I developed statistical

tools and algorithms for the analysis of DNA copy number profiles. I developed ITALICS to normalize

Affymetrix SNP 50K and 250K arrays (Rigaill et al., 2008). ITALICS identified a 50% loss of PTEN

in TNBC (Marty et al., 2008) and it helped to define true recurrence among ipsilateral breast cancers

(Bollet et al., 2008). I also worked on the segmentation of DNA copy number profiles. Most segmen-

tation methods return a single segmentation, characterized by a set of breakpoints. The quality of

this segmentation is rarely questioned. To answer this problem, I proposed algorithms to explore the

segmentation space and derived from this exploration new statistical criteria to assess the stability

of the segmentation and select the number of breakpoints (Rigaill et al., 2010c,d). Moreover, most

segmentation methods rely on heuristics and computation time is an issue for the analysis of large SNP

profiles with more than 105 probes. I proposed an algorithm to recover the best segmentation of very

large DNA copy number profiles with respect to the quadratic loss (Rigaill, 2010b). This algorithm

is able to process Affymetrix SNP 6.0 profiles (containing a million points) in a matter of minutes

compared to several days for other optimal computational schemes. To my knowledge this algorithm

is by far the fastest optimal computational scheme available to recover the best segmentation (with

respect to the MSE) of large profiles. I applied this algorithm to the Curie-Servier genomic dataset.

The analysis of the Curie-Servier transcriptomic dataset was carried out using already available

biostatistical and bioinformatical tools. The analyses I made were a multi-step process, which are

often viewed as a simple pipeline. The validity and importance of each step is rarely questioned. Yet,

the choice of a given methodology is often a subtle decision and there rarely is a definitive answer. In

my opinion the work of the biostatistician is to justify these choices with at least three things in mind,

first and foremost the biological question, second the statistical inference and third the computational

strategy. In my analysis of the transcriptomic data, I justified (as much as possible) my choices and

overall this analysis answered precise and well-defined biological questions. I recovered lists of drugable
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genes that are significantly overexpressed in TNBC. In collaboration with groups of the Institut Curie

I identified interesting genes (Lizárraga et al., 2009) and pathway deregulations (Toullec et al., 2010).

Importantly, my work is part of a much larger project between Institut Curie and Institut Servier.

The goal of the project is to discover deregulated genes and signaling pathways in human TNBC to

identify new therapeutic targets. To do so breast, tumors of Luminal A, Luminal B, HER2 and TNBC

were selected and characterized by a pathologist from Institut Curie. Transcriptomic, genomic, miRNA

and proteomic microarray profiles were generated at the Institut Curie translational department. This

huge amount of data has been analyzed in the Institut Curie bioinformatics team and the biostatistics

team of Agroparistech. I have been responsible for the analysis of the genomic and transcriptomic

data. This analysis led to some interesting potential targets. Some of these potential targets have

been further characterized and functionally validated in cell lines by a team of biologists at the Institut

Curie translational department. The analysis of the RPPA and omic data will continue. Indeed the

analysis of the miRNA and proteomic data will provide valuable information about the biology of these

tumors and hopefully lead to new therapeutic targets.

In the end, the Curie-Servier dataset will include well-characterized tumors at many different levels

(clinical, histology, DNA, mRNA, miRNA, proteomic). It will be necessary to integrate or at least to

compare these different levels of information to distinguish between what is common to these different

levels and what is specific to one or several of these. On top of that, it might be interesting to integrate

the already-acquired biological knowledge, such as how proteins interact (interaction network) or how

proteins regulate the transcription of other genes (regulation network). Using this prior information,

one would hope to simplify the problem at hand. As part of the Curie-Servier collaboration the

integration of these different levels of information will be done and, in fact, a system biology integration

of these data is ongoing.

Biostatistics and bioinformatics certainly aim to integrate all these different layers of information.

But, this integration raises a number of questions. What is the purpose of this integration? Is it

possible to integrate this information with the data we have? We are looking at thousands of genes,

millions of sequences along the genome, hundreds of proteins and hundreds of miRNA. But we look
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at all these on a very limited number of biological or clinical samples. Moreover, a cell is much more

than a simple collection of gene transcription levels, DNA alterations and protein expression levels. In

the case of cancer study, we are looking at several cells that interact with one another and these cells

are part of a whole organism made of billions of cells. This is of course a very pessimistic view of the

problem. But it also shows that a lot of work and numerous investigations need to be done. If we

truly want to know whether it is possible to model “biology”, we have to try.

To conclude, I feel that the true challenge of biostatistics and bioinformatics is to understand what

are the biological or clinical questions of interest and out of these questions to distinguish between those

that can be answered using the following: the biotechnology at our disposal, an efficient experimental

design, and our statistical and computational expertise.
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A.1 DNA Breakpoints to Define True Recurrences Among Ip-
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                   Breast-conserving therapy is the preferred treatment for patients 
with early-stage breast cancer ( 1 ). It offers equal local control 
and overall survival ( 2 ) and superior psychosocial outcomes ( 3 , 4 ) 
compared with modified radical mastectomy. However, an ipsilat-
eral breast cancer recurrence can be traumatizing and can lead to 
death ( 2 ). 

 When an ipsilateral breast cancer develops, the new tumor can 
either be a true recurrence — that is, a regrowth of clonogenic cells 
that were not removed by surgery or killed by radiotherapy — or a 
new primary tumor that arises from the remaining breast tissue ( 5 ). 
Several defi nitions have been used to distinguish true recurrences 
from new primary tumors. Initially, these distinctions were based 
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  ARTICLE  

     High-Resolution Mapping of DNA Breakpoints to 
Define True Recurrences Among Ipsilateral 
Breast Cancers  
    Marc A.      Bollet   ,      Nicolas     Servant   ,      Pierre     Neuvial   ,      Charles     Decraene   ,      Ingrid     Lebigot   ,      Jean-Philippe     Meyniel   , 
     Yann     De Rycke   ,      Alexia     Savignoni   ,      Guillem     Rigaill   ,      Philippe     Hupé   ,      Alain     Fourquet   ,      Brigitte     Sigal-Zafrani   , 
     Emmanuel     Barillot   ,      Jean-Paul     Thiery                  

   Background   To distinguish new primary breast cancers from true recurrences, pangenomic analyses of DNA copy 
number alterations (CNAs) using single-nucleotide polymorphism arrays have proven useful.  

   Methods   The pangenomic profiles of 22 pairs of primary breast carcinoma (ductal or lobular) and ipsilateral breast 
cancers from the same patients were analyzed. Hierarchical clustering was performed using CNAs and 
DNA breakpoint information. A partial identity score developed using DNA breakpoint information was 
used to quantify partial identities between two tumors. The nature of ipsilateral breast cancers (true recur-
rence vs new primary tumor) as defined using the clustering methods and the partial identity score was 
compared with that based on clinical characteristics. Metastasis-free survival was compared among 
patients with primary tumors and true recurrences as defined using the partial identity score and by clini-
cal characteristics. All statistical tests were two-sided.  

   Results   All methods agreed on the nature of ipsilateral breast cancers for 14 pairs of samples. For five pairs, the 
clinical definition disagreed with both clustering methods. For three pairs, the two clustering methods 
were discordant and the one using DNA breakpoints agreed with the clinical definition. The partial identity 
score confirmed the nature of ipsilateral breast cancers as defined by clustering of DNA breakpoints in 21 
of 22 pairs. The difference in metastasis-free survival of patients with new primary tumors and those with 
true recurrences was not statistically significant when tumors were defined based on clinical and histo-
logic characteristics (5-year metastasis-free survival: 76%, 95% confidence interval [CI] = 52% to 100% for 
new primary tumors and 38%, 95% CI = 17% to 83% for true recurrences;  P  = .18; new primary tumor vs 
true recurrence, hazard ratio = 2.8, 95% CI = 0.6 to 13.7), but the difference was statistically significant 
when tumors were defined using the partial identity score (5-year metastasis-free survival: 100% for new 
primary tumors and 29%, 95% CI = 11% to 78% for true recurrences;  P  = .01).  

   Conclusions   DNA breakpoint information more often agreed with the clinical determination than CNAs in this popula-
tion. The partial identity score, which was calculated based on DNA breakpoints, allows statistical discrim-
ination between new primary tumors and true recurrences that could outperform the clinical determination 
in terms of prognosis.  

   J Natl Cancer Inst 2008;100: 48  –  58   
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on the location of the ipsilateral breast cancer (ie, the farther from 
the initial primary tumor, the more likely it is to be a new primary 
tumor) and on shared common histopathologic criteria (eg, type, 
grade, and hormone receptor status) ( 6  –  10 ). In the quest for addi-
tional ways to distinguish new primary breast tumors from true 
breast cancer recurrences, biologic studies of clonal relationships 
between the new and original tumor have also been performed. 
These studies have relied on ploidy ( 5 , 11 ), loss of heterozygosity 
( 12  –  14 ), p53 analysis ( 15 ), or X chromosome inactivation ( 16 ) or 
have been based on DNA copy number alterations (CNAs) ( 17  –
  19 ). CNA data can be obtained by high-resolution techniques, 
such as array-based comparative genomic hybridization or single- 
nucleotide polymorphism (SNP) arrays ( 20 ). One of the most 
commonly used ways to look at clonal relatedness using pange-
nomic data is to perform an unsupervised hierarchical clustering 
that organizes primary breast tumors and ipsilateral breast cancers 
on the basis of their overall genomic similarity ( 18 , 19 ). These 
measures of similarity are summarized in a dendrogram, in which 
the pattern and length of the branches refl ect the relatedness of the 
samples in terms of DNA CNAs. 

 Changes in DNA copy numbers occur at chromosomal loca-
tions called breakpoints. We hypothesized that the precise loca-
tions of these breakpoints could serve as markers for clonal 
relatedness and that we could distinguish true recurrences from 
new primary tumors by the number of common breakpoints in the 
ipsilateral breast cancer and the primary tumor. In this study, we 
fi rst aimed to test the added value of examining the clustering of 
breakpoints (over CNAs) when determining the nature of the 
ipsilateral breast cancer. Second, we aimed to develop a score to 
quantify the partial identity between two tumors according to their 
clonal relatedness (determination of the partial identity score). 
Third, we examined prognosis in terms of metastasis-free survival. 
In each case, these methods were compared with the clinical deter-
mination of the nature of the ipsilateral breast cancer. 

  Subjects and Methods 
  Selection of Patients 

 Specimens from patients with primary breast cancers and ipsilateral 
breast cancers were selected from freshly frozen samples of the 
Institut Curie tissue bank according to the following criteria: the 
primary tumor was either ductal or lobular invasive breast carci-
noma; the patient was 49 years or younger at diagnosis of the initial 
tumor; all patients were premenopausal; and there was no previous 
history of cancer, except for one nonmelanoma skin cancer. All 
patients had been treated at the Institut Curie by breast-conserving 
surgery, including dissection of the axillary lymph nodes in most 
patients, followed by radiotherapy to the breast with or without a 
boost to the tumor bed (external beam radiotherapy or brachyther-
apy) and/or to the regional lymph node – bearing areas if indicated 
and, when required, systemic treatment as part of their initial man-
agement. For all tumors, histopathologic characteristics were 
reviewed by one pathologist (B. Sigal-Zafrani). 

 To ensure that the data would be informative, we restricted 
genomic analyses to tumors (primary and recurrences) in which at 
least 50% of cancer cells had been assessed by hematoxylin, eosin, 
and saffron staining of sections from snap-frozen samples. This 

study reports a series of 22 patients with assessable pairs of primary 
breast tumors and ipsilateral breast cancers. 

 To evaluate the genomic features of a population with similar 
breast cancers, 44 control patients from the pool of patients with 
primary tumors who met the above selection criteria were matched 
to the case patients in accordance with their age at diagnosis 
and adjuvant treatment. The control patients had not experienced 
an ipsilateral breast recurrence within the time span of the local 
recurrence of the index patient. 

 This research was approved by the institutional review boards 
of the Institut Curie. No patient refused the use of her tumor 
specimens for research purposes.  

  Clinical and Histologic Studies 

 The histologic/biologic properties of the breast cancers were 
determined by subjecting tissue sections to immunohistochemical 
analysis for the estrogen receptor (clone 6F11, 1   :   200 dilution; 
Novocastra, Newcastle Upon Tyne, England) and progesterone 
receptor (clone 1A6, 1   :   200 dilution; Novocastra) antibodies. 
Tumors were considered to be positive for these receptors if at 
least 10% of the invasive tumor cells in a section showed nuclear 
staining ( 21 ). 

 In accordance with theories of the clonal evolution of tumor 
cell populations, ipsilateral breast cancers were clinically defi ned as 
true recurrences if they had the same histologic subtype (ductal or 

  CONTEXT AND CAVEATS 

  Prior knowledge 

 Detecting changes in DNA copy number using single nucleotide 
polymorphism arrays has been a useful tool in distinguishing new 
primary breast tumors from recurrences.  

  Study design 

 Comparison of hierarchical clustering of DNA copy number and 
DNA breakpoints, an identity score based on the DNA breakpoint 
information, and clinical characteristics to accurately designate 
ipsilateral breast tumors as new primary tumors or true recur-
rences in breast tumor pairs from 22 patients.  

  Contributions 

 For 14 of the pairs, all methods agreed on the designation of the 
ipsilateral breast cancer as a new primary tumor or a true recur-
rence; however, for five pairs and three pairs, both clustering meth-
ods and clustering by DNA breakpoints, respectively, agreed with 
the clinical definition. For 21 pairs, the partial identity score con-
firmed the designation of the tumor as defined by both clustering 
methods. Patients with recurrences had poorer metastasis-free 
survival than patients with new primary tumors, according to the 
partial identity score, but this difference was not statistically signifi-
cant using the clinical definition.  

  Implications 

 The partial identity score may outperform clinical determination 
for the prognosis of ipsilateral breast cancers.  

  Limitations 

 Freshly frozen tissue samples that contain a large number of cells 
from both the initial primary tumor and the ipsilateral tumor are 
needed to perform the DNA breakpoint analyses.   
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lobular) and a similar or increased growth rate, similar or loss of 
dependence on either estradiol or progesterone, and similar or 
decreased differentiation as the initial tumor ( 22 ).True recurrences 
also had to share with their primary tumors the same breast quad-
rant. Thus, new primary tumors were clinically defi ned as such 
when the ipsilateral breast cancer had occurred in a different loca-
tion, had a distinct histologic type, or had less aggressiveness fea-
tures (lower grade, appearance of hormonal receptors) than the 
initial tumor.  

  Genomic Studies 

 Total genomic DNA was extracted from tissue samples using a 
variation of the standard phenol   :   chloroform protocol ( 23 ). Genomic 
DNA was quantified by spectrophotometry using a ND-1000 
Spectrophotometer (NanoDrop, Wilmington, DE), and quality 
was assessed by 0.8% agarose gel electrophoresis. 

 Genomic DNA from each sample was prepared for microarray 
hybridization using the GeneChips Mapping 50K Xba Assay Kit 
(Affymetrix Inc., Santa Clara, CA). Briefl y, 250 ng of total genomic 
DNA was digested with the restriction enzyme XbaI and ligated to 
an adaptor sequence (XbaI adaptator: 5 ′ -ATTATGAGCACGAC
AGACGCCTGATCT-3 ′  and 5 ′ -CTAGAGATCAGGCGTCTG
TCGTGCTCATAA-3 ′ ) that recognizes the cohesive four base 
pair (bp) region (3 ′ -GATC-5 ′ ). A generic primer (5 ′ -ATT ATG 
AGC ACG ACA GAC GCC TGA TCT-3 ′ ) that recognizes the 
adaptor sequence was used to preferentially amplify adaptor-
ligated DNA fragments 250 – 2000 bp in size by the optimized 
polymerase chain reaction (PCR) conditions, according to the 
manufacturer’s instructions. The amplifi ed DNA was then frag-
mented by DNase treatment and hybridized to the Affymetrix 
GeneChips Human Mapping 50K array Xba 240 (Affymetrix), 
according to the manufacturer’s instructions. Washing, staining, 
and scanning of chips were performed using materials and methods 
provided by the manufacturer. The pangenomic profi les of the 22 
pairs of primary tumors/ipsilateral breast cancers are available on 
ACTuDB ( 24 ) ( http://bioinfo.curie.fr/actudb/ ). Human mapping 
50K array Xba 240 annotations and sequence fi les are available on 
the Affymetrix website ( http://www.affymetrix.com/support/
technical/byproduct.affx?product=100k ).  

  Metastasis-Free Survival 

 Metastasis-free survival was estimated by the Kaplan – Meier method 
( 25 ) and compared between the groups of patients defined as having 
been diagnosed with either a true recurrence or a new primary 
tumor using the log-rank test. The confidence interval (CI) of the 
hazard ratio was obtained using a semiparametric Cox model ( 26 ).  

  Statistical Methods 

  Copy Number Alteration Determination.       SNP data were gath-
ered from the pangenomic profile and analyzed using the iterative 
and alternative normalization of copy number SNP array 
(ITALICS) algorithm with default parameters, which simultane-
ously normalizes the genomic profile and detects the biologic sig-
nal. Briefly, ITALICS alternatively estimates the biologic signal 
(ie, the DNA copy number at each SNP locus) with the gain and 
loss analysis of DNA algorithm ( 27 ) and normalizes the data to 

 correct the nonrelevant effects (CG content and fragment length of 
PCR products, oligonucleotide CG content, and SNP effect). 
These two steps are repeated iteratively to improve the biologic 
signal estimation until no more improvement is seen. ITALICS 
outperforms other methods of normalization. The result of this 
process is a segmented genomic profile that consists of regions of 
homogeneous DNA and information on their corresponding copy 
numbers. Each region is given a smoothing value (ie, the median of 
the SNP copy numbers within the region) and a status (ie, gain, 
normal, or loss). 

 We defi ned a breakpoint as 1) a SNP locus located at a change 
of status (eg, normal/gain or gain/loss) or as 2) a SNP locus located 
at a change of smoothing value that occurred within a region 
of gain or loss, thus defi ning different levels of gain or loss among 
these regions. Additional breakpoints were also added at the 
extremities of the chromosome to take into account their gain or 
loss whenever applicable. Because some breakpoints could be due 
to copy number variations that occur in healthy individuals, break-
points arising in the copy number variable regions in the HapMap 
collection ( 28 ) were excluded. The visualization and further analy-
sis of the data was performed through a graphic user interface, 
Visualization and analysis of array CGH, transcriptome and other 
molecular profi les ( 29 ).  

  Hierarchical Clustering.    Similarity between genomic profiles.     We 
considered two measures of similarity among the genomic profiles 
of a primary tumor and ipsilateral breast cancer. First, we used 
the Pearson correlation between their CNA profiles. Second, we 
used a measure  M  that is derived from the percent concordance 
proposed by Waldman et al. ( 18 ) and adapted from Dice’s formula 
( 30 ) and corresponds to the number of common breakpoints divided 
by the mean number of breakpoints in either a primary tumor or an 
ipsilateral breast cancer.  M  is computed as follows, for a ( i , j ) pair.
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in which  Si  and  S    j    are the subsets of breakpoints present in the SNP 
arrays of the primary tumor,  i , and ispilateral breast cancer,  j . An 
example of  M  is given in Supplementary Fig. 1 (available online). 

 Two tumors had common breakpoints if the following condi-
tions were fulfi lled: 1) the changes in copy number occurred at 
the exact same locus and 2) the changes in copy number were of the 
same nature (ie, either an increase or a decrease in numbers) 
in the two tumors.  

  Assessing clonal relatedness from a dendrogram.       We assumed 
that clonal unrelatedness was revealed by the clustering apart of 
the two tumors (primary tumor and ipsilateral breast tumor) from 
the same patient, reflecting that they were more similar to carcino-
mas of other patients than to each other. In contrast, the clustering 
together of two tumors from the same patient indicated clonal 
relatedness among them. For both measures of similarity (Pearson 
coefficient and  M  measure), we used Ward’s criteria ( 31 ) as an 
agglomerative method in the hierarchical clustering.   

  Partial Identity Score.    Score definition.     To distinguish true recur-
rences from new primary tumors, we developed a partial identity score 
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that is based on the  M  measure of similarity described above. The 
score reflects the number of common breakpoints among the ipsilateral 
breast cancer and the primary tumor. In addition, because very frequent 
breakpoints may be less informative than frequent ones in estimating 
the clonal relatedness between two tumors, the added value of each 
breakpoint was weighted according to its frequency among the samples 
of 44 control patients. The partial identity score (PS) was thus
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in which  Fk  represents the frequency of appearance of the break-
point  k  calculated in the series of the 44 control breast cancers. An 
example of a partial identity score is given in Supplementary Fig. 1 
(available online).  

  Statistical testing for partial identity.       The partial identity score 
was calculated for all 462 possible “artificial pairs” (462 = 22 × 21, 
because each of the 22 primary tumors could be artificially paired 
with the ipsilateral breast cancer of the 21 other patients,  see   Table 3  
notes). The distribution under the null hypothesis, H0, of no par-
tial identity between the two tumors was estimated using all 462 
possible artificial pairs. We rejected H0 with a type I error fixed at 
5%, that is, we considered that a local recurrence shared partial 
identity with a primary tumor when the score was higher than the 
upper 5th percentile in the distribution of artificial pairs. The score 
was then calculated for the “natural pairs,” that is, a primary tumor 

and its ipsilateral breast cancer occurring in the same patients ( see  
 Table 3  notes). Ipsilateral breast cancers from pairs with scores 
higher than this cutoff, that is, with shared partial identity, were 
considered to be true recurrences.  

  Robustness of the score.       The robustness of the partial identity 
score was assessed by randomly selecting two subgroups of 15 and 7 
patients from the population of 22 breast cancer patients. The first 
subgroup of 15 patients was used to compute the scores of the artifi-
cial pairs and to record the cutoff score corresponding to the 95th 
percentile. This score was then used to determine the status of each 
of the natural pairs in the seven patients of the other subgroup. To 
make the comparison statistically sound, each process was repeated 
1000 times. The variation of the cutoff scores was assessed by box plot 
representation. The consistency of the ipsilateral breast cancer status 
was calculated as the percentage of extractions when the status of this 
pair was respectively a true recurrence or a new primary tumor. 

 All statistical tests were two-sided.  P  values less than .05 were 
considered to be statistically signifi cant.     

  Results 
  Clinical and Histologic Features 

 The clinical and tumor characteristics of 22 patients whose tumors 
had exploitable SNP arrays were analyzed ( Tables 1  and  2 ). 
According to clinical and histologic criteria ( Table 2 ), nine of the 
22 ipsilateral breast cancers were new primary tumors and the other 

 Table 1.      Patient and tumor characteristics of the 22 patients whose tumors (both PT and IBC) had exploitable SNP arrays *   

  Pair Age, y Family Prob BRCA1 BRCA2 pT pN

Surgical 

margin, 

mm

Radiotherapy dose, Gy
No. of 

cycles of 

chemotherapy  †   

 Whole 

breast

Tumorectomy 

bed  

  P1 23.1 0 20 0 2 1 0  ≥ 4 54 54 4 
 P2 42.1 1 NA NA NA 1 0  ≥ 4 50 50 0 
 P3 42.6 0 NA NA NA 1 0  ≥ 4 54 54 0 
 P4 48.2 1 44 0 0 1 0  ≥ 4 50 50 0 
 P5 45.5 0 NA NA NA 1 1  ≥ 4 50 60 4 
 P6 35.7 0 8 0 0 2 0  ≥ 4 51 66 4 
 P10 46.2 0 NA NA NA 2 0 0 – 3 50 70 0 
 P11 49.0 1 95 0 1 2 0  ≥ 4 50 64 0 
 P12 48.9 1 NA NA NA 1 0  ≥ 4 52 52 0 
 P13 45.0 0 NA NA NA 2 0  ≥ 4 51 67 6 
 P14 43.6 0 NA NA NA 1 0 0 – 3 50 50 0 
 P15 46.1 0 NA NA NA 1 0  ≥ 4 50 65 0 
 P16 48.4 0 NA NA NA 1 0  ≥ 4 50 66 0 
 P18 27.9 1 82 0 0 2 0 0 – 3 50 70 4 
 P19 49.1 0 NA NA NA 2 0 0 – 3 51 65 4 
 P20 47.1 0 NA NA NA 2 1 0 – 3 45 65 4 
 P21 46.3 0 NA NA NA 1 0 DCIS 50 70 0  ‡   
 P22 35.0 0 NA NA NA 2 2  ≥ 4 50 75 6  ‡   
 P23 30.8 0 NA NA NA 2 0  ≥ 4 50 66 4 
 P24 47.7 0 NA NA NA 1 1  ≥ 4 50 60 6 
 P25 43.0 0 NA NA NA 1 0 0 – 3 45 60 0  ‡   
 P26 30.5 0 NA NA NA NA 1  ≥ 4 52 70 4  ‡    

  *   PT = primary tumor; IBC = ipsilateral breast cancer; SNP = single nucleotide polymorphism; Family = family history of breast cancer in the first two degrees 
(0 = no, 1 = yes); Prob = age-specific risk estimates of breast cancer according to the Claus Model  (32) ; BRCA1 and BRCA2 = mutation found in BRCA1 and 
BRCA2 (0 = not found, 1 = deleterious, 2 = possibly deleterious, NA = not available); pT = histologic tumor classification according to Union Internationale 
Contre le Cancer (UICC) ( 33 ); pN = histologic lymph node classification according to UICC; DCIS = ductal carcinoma in situ.  

   †    Chemotherapy consisted of 5-fluorouracil, anthracyclines, and cyclophosphamide.  

   ‡    Patients were treated with tamoxifen for 5 years.   
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13 were true recurrences. Ipsilateral breast cancers occurred at a 
median time of 3.1 years after the initial breast cancer diagnosis 
(range = 0.8 – 6.5 years). In three of 22 (14%) patients, ipsilateral 
breast cancers occurred in a different quadrant than the initial 
tumor; all of these were defined clinically as new primary tumors.          

  Genomic Studies 

 The pangenomic profiles of a primary tumor and its ipsilateral 
breast cancer revealed common breakpoints, with a precision 
within a SNP that can be used as markers of their clonal related-
ness. Pair 5 is given as an illustration ( Fig. 1 ).     

 The median number of breakpoints per array was statistically 
signifi cantly higher for ipsilateral breast cancers (median = 71, 
range = 21 – 433) than for primary tumors (median = 52, range = 
4 – 646) ( P  = .001) ( Table 3 ). The mean number of common break-
points per pair was also statistically signifi cantly higher for natural 
pairs (mean = 18.8, SD = 18.8) than for artifi cial pairs (mean = 4.1, 
SD = 3.1) ( P  = 0.5 × 10  � 6 ).      

  Clustering by Copy Number Alterations or Breakpoints 

 According to hierarchical clustering by DNA CNAs ( Fig. 2 ) and by 
breakpoints ( Fig. 3 ), five and six ipsilateral breast cancers, respec-
tively, were new primary tumors. The two clustering methods and 
the clinical definition agreed for 14 pairs ( Table 2 ). However, for five 
pairs (P6, P12, P16, P20, P22), the clinical definition disagreed with 

both clustering methods and, for three others (P1, P2, P15), the 
clustering by breakpoints disagreed with that by CNAs but agreed 
with the clinical definition. The recurrences in pairs 1 and 2 were 
identified as true recurrences by the CNA clustering but as new pri-
mary tumors by the clinical definitions because of the reappearance 
of estrogen receptors in the pair 1 ipsilateral breast cancer and differ-
ent histologic type (ductal instead of lobular carcinoma) in pair 2. In 
pair 15, CNA clustering did not find a true recurrence, whereas the 
clinical definition did. No statistically significant differences in clini-
cal and histologic characteristics between the patients diagnosed with 
new primary tumors or true recurrences were observed by break-
point information, apart from a suggestion for patients with new pri-
mary tumors to be younger and to have a more frequent family 
history of breast cancer (Supplementary Table 1, available online).          

  Partial Identity Score 

 According to the partial identity score reported for each pair in 
 Table 2 , 15 ipsilateral breast cancers were true recurrences and 
seven were new primary tumors ( Fig. 4 ). With a type I error set at 
5%, the partial identity score disagreed with clustering by break-
points in pair 12 only; the clinical definition was new primary tumor 
because of a change in tumor location. When the score was deter-
mined according to Waldman’s percent of concordance without 
either weighing the influence of the coexistence of breakpoints 
according to their frequency in a similar population or excluding 

 Table 2 .     Histologic characteristics of the primary tumors and their ipsilateral breast cancers: distinctions between new primary tumors 
and true recurrences according to clinical criteria or clustering methods *   

  Pair

Primary tumors

Time, y

Ipsilateral breast cancers

New primary tumors or 

true recurrences

Score  Type Grade ER PR Location Type Grade ER PR CNA BKP Clinical Divergence  

  P1 D 3 0 40 6.5 1 D 2 90 15 TR NP  ‡  NP CNA 0.020 
 P2 D 2 90 40 5.3 1 L 1 90 70 TR NP  ‡  NP CNA 0.000 
 P3 D 3 30 80 3.1 1 D 3 60 90 TR TR  ‡  TR No 0.465 
 P4 L 1 90 80 3.5 1 L 2 90 80 TR TR  ‡  TR No 0.278 
 P5 D 2 90 40 2.0 1 D 2 80 90 TR TR  ‡  TR No 0.555 
 P6 L 1 90 100 3.1 1 L 2 70 70 NP NP  ‡  TR Clinical 0.104 
 P10 L 3 80 95 5.0 0 D 2 70 40 NP NP  ‡  NP No 0.059 
 P11 L 3 0 0 6.3 1 D 3 0 0 NP NP  ‡  NP No 0.029 
 P12 L 2 90 50 2.9 0 L 2 90 0 TR TR † NP Clinical 0.116 
 P13 D 2 20 85 4.6 1 D 2 95 20 TR TR  ‡  TR No 0.240 
 P14 L 2 90 60 2.5 1 L 2 0 100 TR TR  ‡  TR No 0.310 
 P15 D 2 100 80 3.3 1 D 2 70 100 NP TR  ‡  TR CNA 0.127 
 P16 D 2 80 30 3.8 1 D 1 20 70 TR TR  ‡  NP Clinical 0.317 
 P18 D 3 0 0 2.2 1 D 2 80 50 NP NP  ‡  NP No 0.004 
 P19 § D 3 0 0 3.0 1 D 3 0 0 TR TR  ‡  TR No 0.325 
 P20 D 3 0 0 1.4 0 D 3 0 0 TR TR  ‡  NP Clinical 0.139 
 P21 D 2 80 0 4.2 1 D 2 70 TR TR  ‡  TR No 0.360 
 P22 § D 2 20 50 3.5 1 M 3 15 0 TR TR  ‡  NP Clinical 0.394 
 P23 D 3 0 0 0.8 1 D 3 0 0 TR TR  ‡  TR No 0.341 
 P24 § D 3 0 0 1.0 1 D 3 0 0 TR TR  ‡  TR No 0.311 
 P25 § D 3 75 70 2.2 1 D 3 70 15 TR TR  ‡  TR No 0.375 
 P26 D 3 0 0 1.8 1 D 3 0 0 TR TR  ‡  TR No 0.519  

  *   Type = histologic type (D = ductal, L = lobular, M = micropapillary); Grade = histologic grade; ER = estrogen receptor; PR = progesterone receptor; Location 
(1 = IBC at the index quadrant, 0 = IBC at a different quadrant); CNA = cluster according to copy number alterations; BKP = cluster according to breakpoints; 
Clinical = definition according to clinical criteria; NP = new primary tumor; TR = true recurrence.  

   †    NP according to the partial identity score.  

   ‡    Agreement with the definition by the partial identity score.  

  §   The ipsilateral breast cancers of these pairs received chemotherapy before surgery.   
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the breakpoints that occur in the copy number variable regions in 
the HapMap collection, the attribution of the status of three pairs 
(20 changed from a true recurrence to a new primary, whereas 
6 and 12 became true recurrences) and two pairs (10 and 12 changed 
from new primaries to true recurrences) changed, respectively.     

 The status of all pairs was confi rmed by the 1000 random 
extractions (Supplementary Table 2, available online). The mean 
cutoff value was 0.1203 (SD = 0.0102) (Supplementary Fig. 2, 
available online). The cutoff used to determine the status of the 22 
ipsilateral breast cancers, which was defi ned using all 462 artifi cial 
pairs, was 0.1212.  

  Prognostic Value of the Determination of the Nature of 

the Ipsilateral Breast Cancer 

 Patients who were diagnosed with true recurrences had lower 
 metastasis-free survival than those diagnosed with new primary 
tumors (Supplementary Fig. 3, available online). The difference in 
metastasis-free survival in the two groups was not statistically signifi-
cant when they were defined based on clinical and histologic charac-
teristics (5-year metastasis-free survival: 76%, 95% CI = 52% to 
100% for new primary tumors and 38%, 95% CI = 17% to 83% for 
true recurrences;  P  = .18; primary tumors vs true recurrences, hazard 
ratio = 2.8, 95% CI = 0.6 to 13.7). However, metastasis-free survival 
was different when the groups were defined according to the partial 
identity score (5-year metastasis-free survival: 100% for new primary 
tumors and 29%, 95% CI = 11% to 78% for true recurrences;  P  = .01).   

  Discussion 
 DNA breakpoint information was more often in agreement with the 
clinical definition than that from CNAs to define true recurrences 

among ipsilateral breast cancers in this population. We developed a 
partial identity score that is based on DNA breakpoints, which 
allowed statistical discrimination between new primary tumors and 
true recurrences. This score outperformed the clinical prognosis 
determination in terms of metastasis-free survival. 

 We chose to base our study on a series of young (<50 years old) 
premenopausal women not only because young age is recognized as 
one of the most important independent prognostic factors for ipsi-
lateral breast recurrence ( 34  –  40 ) but also to ensure a very high level 
of homogeneity. In addition, all patients had undergone breast-
conserving surgery followed by whole-breast radiotherapy for their 
initial breast cancers, which were selected as either ductal or lobular 
invasive carcinomas, and were treated at the same cancer center. 

 Our results show that some ipsilateral breast cancers share with 
their primary tumors many DNA CNA breakpoints at the same 
locations (precision to within a SNP, as illustrated in  Fig. 1 ). From 
these observations, we produced a method of determining true 
recurrences that relies on a number of assumptions. The fi rst and 
most obvious is that the vast majority of breast cancers are of clonal 
origin. The second is that a tumor retains a substantial number of 
genomic alterations throughout its evolution. The third assump-
tion, which is key to the method that we have developed, is that the 
exact locations of the breakpoints that are on the edge of a given 
change in DNA copy numbers are better hallmarks of a given 
tumor than the magnitude or width of the genomic alteration 
itself. For example, because the deletion that causes the loss of 
Phosphatase and TENsin homolog (PTEN) alters regulatory 
pathways that lead to precocious development and neoplasia in the 
mammary gland ( 41 ), it can be found in many breast cancers ( 42  –
  44 ); however, the exact location of the breakpoints bordering this 
deletion can be specifi c to a given tumor. We provide as an 

 Fig. 1.      Genomic profi les of tumors of pair 5 to illustrate the fi nding of 
common breakpoints within a single nucleotide polymorphism (SNP). 
A genomic profi le represents the ordered values of the DNA copy num-
bers obtained as described in “Subjects and Methods”. Each  dot  repre-
sents the number of DNA copies at each SNP position. Regions with 

gains are in  red , with losses in  green , with no DNA copy number altera-
tions in  yellow .  A ) Pangenomic profi les.  B ) Profi les of chromosomes 20, 
21, and 22. Top primary tumor of pair 5; bottom, ipsilateral breast can-
cer of pair 5. The  blue horizontal line  represents the smoothing line and 
the  dotted vertical line  the breakpoint position.    
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 example (Supplementary Fig. 4, available online) the prototype case 
of PTEN deletion in which the breakpoints are identical between 
the primary tumor and ipsilateral breast cancer of pair 5 and yet 
differ in all the other tumors that also harbor a loss of PTEN. 

 Because clustering is commonly used to determine whether two 
tumors are clonally related and because it performs better than 
previously developed similarity scores ( 18 , 19 ), we addressed the 
issue of whether there was added value in looking at breakpoints 
rather than at CNAs by comparing clustering by CNAs and by 
breakpoints to determine the nature of the ipsilateral breast can-
cer. We concluded from the comparison of clusterings of CNAs 
and of breakpoints that breakpoint information is more valid than 
CNA information because when they were discordant, the defi ni-
tion by breakpoints always agreed with the clinical defi nition, 
which is routinely used in clinical practice. 

 A second issue was whether a method could be found to quantify 
the partial identity between two tumors. We chose to use a partial 
identity score rather than the results of clustering for a number of 
reasons. 1) Clustering methods have been designed for exploratory 
data analysis, so that using a score is more appropriate for a dis-
crimination purpose. 2) A score induces a natural ordering of the 
pairs from the most dissimilar to the most similar, which is not the 
case for clustering. 3) The assessment of clonal relatedness by a 
score can be statistically motivated through the choice of a thresh-
old, as we have demonstrated in the present work. For clustering, 
clonal relatedness of two tumors depends only on their being clus-
tered apart on the dendrogram, which leads to inconsistent deci-

sions over time. As illustrated by Fig. 3, if pair 2 had not been 
included in the study, the ipsilateral breast cancer from pair 6 would 
have been considered as a true recurrence rather than a new primary 
tumor. Conversely, the assessment of the partial identity score 
robustness was satisfactory with a narrow range of the cutoff 
(Supplementary Fig. 2, available online) and with the consistency of 
the ipsilateral breast cancer status (Supplementary Table 2, avail-
able online). Moreover, a score allows one to choose the cutoff that 
best distinguishes new primary tumors from true recurrences. In 
this study, we chose a type I error rate at 5% to favor sensitivity for 
diagnosing true recurrences over the specifi city. Further studies will 
be needed to verify the biologic validity of this choice (Supplementary 
Fig. 3, available online). 

 In addition, we chose to weigh the infl uence of a common 
breakpoint between the ipsilateral breast cancer and its primary 
tumor by a factor that takes into account the frequency of this 
given breakpoint in a population of similar tumors. This weighting 
changed the determination of three of 22 pairs. 

 The clinical defi nition considered an ipsilateral breast cancer as 
a new primary tumor when the partial identity score did not in 
three instances. In the fi rst because of a change in location for pairs 
12 and 20, in the second because of a lesser degree of differentia-
tion for pair 16, and in the third because of a change in histology 
for pair 22. The fi rst example illustrates the possibility that a true 
recurrence can occur at a distance from the fi rst cancer. The sec-
ond exemplifi es the possibility for a true recurrence to have many 
but not all of the striking alterations present in the primary tumor. 

 Table 3 .     Number of common breakpoints in natural (same patient) and artificial (two different patients) pairs of primary tumors 
(vertically) and ipsilateral breast cancers (horizontally)  

  No. of 

BKPs 

in 

IBC *  Pair

No. of BKPs in PT * 

77 11 46 16 94 8 22 4 31 55 12 11 58 646 89 69 127 49 60 57 41 72 

P1 P2 P3 P4 P5 P6 P10 P11 P12 P13 P14 P15 P16 P18 P19 P20 P21 P22 P23 P24 P25 P26  

  433 P1 6  †  3 12  ‡  3 8 5 § 5 1 4 5 6 1 1 7 § 8 6 7 3 8 8 5 12  ‡   
 25 P2 0 0  †  1 0 1 0 0 0 3  ‡  0 1 0 0 0 1 0 2 1 0 1 0 0 
 43 P3 3 2 23  †    ‡   § 5 5 2 10 § 2 § 4 6 5 4 3 4 11 5 7 6 4 8 4 9 
 26 P4 5 3 7 9  †    ‡   § 5 2 7 0 6 § 4 4 3 2 0 9  ‡  3 4 5 3 6 3 5 

 128 P5 3 3 11 4 64  †    ‡   § 1 7 0 4 4 5 2 2 2 8 4 3 8 3 2 3 10 
 21 P6 3 3 4  ‡  3 3 3  †  4  ‡  0 4  ‡  1 4  ‡  2 0 0 3 1 2 1 1 2 4  ‡  2 
 23 P10 3 2 4 3 3 1 3  †  1 2 2 1 1 1 3 5  ‡  1 1 2 1 1 5  ‡  3 
 97 P11 5 2 19  ‡  6 9 1 9 2  †   § 6 § 9 7 6 § 5 7 § 14 7 10 9 4 12 4 13 
 35 P12 6  ‡  3 4 5 4 2 3 0 6  †    ‡   § 2 2 3 2 0 4 3 3 3 1 4 4 4 
 74 P13 3 2 7 3 6 1 5 1 3 18  †    ‡   § 4 3 2 2 7 3 3 4 2 2 5 2 
 35 P14 1 2 7 3 7 3 5 0 3 5 10  †    ‡   § 2 1 3 6 3 4 3 2 3 5 4 
 49 P15 5 2 5 3 4 2 3 0 6  ‡   § 4 1 5  †  4 2 3 2 4 3 1 1 2 2 
 84 P16 2 2 3 2 3 0 2 0 4 2 0 3 23  †    ‡   § 1 1 1 3 2 0 3 3 4 
 53 P18 2 2 9  ‡  3 3 1 5 1 3 2 3 2 0 2  †  7 5 3 2 3 2 3 5 

 150 P19 9 § 4 § 18 5 8 2 10 § 2 § 3 10 5 5 5 7 § 42  †    ‡   § 13  †  11 6 11 10 6 10 
 93 P20 4 1 6 1 5 0 3 1 2 4 1 2 1 5 7 12  †    ‡  3 4 6 3 3 6 

 219 P21 2 1 12 3 6 1 5 2 § 2 5 3 4 4 6 8 7 63  †    ‡   § 6 7 8 3 5 
 100 P22 5 2 17 5 8 1 10 § 1 5 5 5 4 5 3 13 9 10 31  †    ‡   § 6 10 5 9 

 73 P23 7 1 10 3 6 1 7 2 § 3 5 5 2 1 5 12 10 6 6 25  †    ‡   § 6 3 10 
 69 P24 6 2 11 5 3 2 6 1 4 5 3 2 3 5 9 5 5 3 7 23  †    ‡   § 1 11 
 42 P25 4 3 9 5 5 2 7 2 § 4 5 5 2 2 2 5 4 4 6 1 2 18  †    ‡   § 3 
 88 P26 5 3 11 7 7 1 9 1 6 § 5 3 2 4 3 17 5 2 8 5 9 3 43  †    ‡   §   

  *   Number of BKPs per tumor. BKP = breakpoint; PT = primary tumor; IBC = ipsilateral breast cancer.  

   †    Numbers correspond to the 22 natural pairs of PTs and their IBCs arising in the same patient; numbers in the other cells correspond to the 462 (22 × 21) artificial 
pairs of each PT with all other possible IBCs arising in other patients.  

   ‡    Pairs with the most common BKPs per PT.  

  §   Pairs with the most common BKPs per IBC.   



jnci.oxfordjournals.org   JNCI | Articles 55

A criticism that can be made of the clinical defi nition is that it 
assumes that a true recurrence is derived from its primary tumor 
instead of only being related to it. A true recurrence, according to 
some clinical defi nitions ( 5 , 6 , 11 ), cannot be more differentiated 
than its primary tumor. Usual classifi cations defi ne differentiation 
according to histologic grading, DNA ploidy, or the presence of 
ductal carcinoma in situ. They are based on the assumption that 
tumors accumulate genetic alterations with time ( 22 , 45 , 46 ) and 
that the chronologic order of these alterations refl ects the develop-
ment of a tumor clone. This assumption is, however, challenged by 
the fact that the ipsilateral breast cancers are neither more aggres-
sive nor more undifferentiated than their primary tumors ( 47 ). 

 The situation with pair 22 illustrates another possible limitation 
of histologic determination. Here, the clinical status of the ipsilat-
eral breast cancer was of a new primary tumor because its histo-
logic type was a micropapillary carcinoma, whereas the initial 
tumor was a ductal carcinoma. However, after further histologic 
analysis, a minor component of micropapillary carcinoma was 
revealed in the initial carcinoma that otherwise would have been 
overlooked (Supplementary Fig. 5, available online). This fi nding 
implies that, in some instances, the current histologic taxonomy, 
which is based more on architectural features than on biologic 
ones, could become obsolete and that some ipsilateral breast can-
cers could qualify as true recurrences without sharing the same 
histologic type as their primary tumors. 

 We observed that patients with true recurrences had lower 
metastasis-free survival than patients with new primary tumors 

and that this difference became statistically signifi cant when the 
partial identity score, instead of clinical defi nition, was used to 
defi ne ipsilateral breast cancer types. This observation has been 
shared by many authors ( 5 , 6 , 10 , 12 ). Possible explanations are, 

 Fig. 3  .    Dendogram of hierarchical clustering by breakpoints (Ward – Dice) 
of 22 available pairs of primary tumors (TP) and their ipsilateral breast 
cancer (RL).  Boxes  represent natural pairs with a true recurrence, that 
is, a pair of tumors from one patient clustered together.    

 Fig. 4  .    Partial identity score. Histogram performed on 462 artifi cial pairs 
(two different patients) of tumors and representation of the 22 natural 
(same patient) pairs of primary tumors (PT)/ipsilateral breast cancer 
(IBC). x-axis: partial identity score (the higher the score, the more likely 
the IBC is a true recurrence), y-axis: number of artifi cial pairs in  boxes . 
The  vertical dashed bar  represents the upper 5th percentile of the artifi -
cial pairs distribution and the threshold above which true recurrences 
were defi ned (rejection of the null hypothesis). Each  dot  represents one 
of the 22 natural pairs (its identifi er is written above it).    

 Fig. 2  .    Dendogram of hierarchical clustering by DNA copy number altera-
tions (Ward – Pearson) of 22 available pairs of primary tumors (TP) and 
their ipsilateral breast cancer (RL).  Boxes  represent natural pairs with a 
true recurrence, that is, a pair of tumors from one patient clustered 
together.    
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fi rst, that a true recurrence is the expression of clones that are 
resistant to adjuvant treatment and therefore could be more diffi -
cult to eradicate and, second, that it could be the tip of the iceberg, 
that is, distant metastases. Conversely, new primary tumors have a 
prognosis similar to de novo primary cancers but can also refl ect a 
genetic predisposition to develop breast cancer, in the contralat-
eral breast in particular. The clinical implication should therefore 
be to advocate the use of a systemic treatment in the case of true 
recurrences and the use of either chemoprevention, such as hor-
mone therapies ( 48  –  50 ) or screening with magnetic resonance 
imaging ( 51  –  53 ), for patients who are diagnosed with new primary 
tumors. Here, using breakpoint information led to a better dis-
crimination between new primary tumors and true recurrences in 
terms of metastasis-free prognosis than the clinical defi nition. 

 We also hope that a better distinction among ipsilateral breast 
cancers of tumors that are genetically related to their primary 
tumors, that is, true recurrences, will help reveal genetic differ-
ences that would provide new information on radioresistance and 
tumor aggressiveness. To date, little is known about the differen-
tial or similarity of the pangenomic expression or the nature of 
both new primary tumors and ipsilateral breast cancers. Kreike 
et al. ( 54 ) performed a gene expression analysis of 18   000 cDNAs in 
nine pairs of primary breast cancer with their ipsilateral breast 
recurrences among women who were younger than 51 years at the 
time of their initial breast-conserving therapy. Paired data analysis 
showed no set of genes that had consistently different levels of 
expression in primary tumors and local recurrences. Another route 
that has still scarcely been explored is the search for a biologic sig-
nature to predict the risk of local recurrence, especially after 
breast-conserving treatment ( 54  –  56 ). A better distinction between 
new primary tumors and true recurrences is needed to perform a 
supervised study based on the occurrence of true recurrences only 
and not of all ipsilateral breast cancers. 

 However, our scoring method, which is based on the DNA 
breakpoint partial identity, has two shortcomings. First, it suf-
fers from the need to conserve unaltered, freshly frozen tissue 
samples of both the primary tumor and the ipsilateral breast 
recurrence. This problem should, however, be resolved in time 
with the possibility of performing the same genomic studies on 
formalin-fi xed paraffi n-embedded tissue samples ( 57 – 61 ) or 
when cryoconservation of either biopsies or fi ne-needle aspira-
tions (because only 250 ng of DNA is needed, ie, less than 
50   000 cells) become standard practice and will make it possible 
to perform SNP arrays on many more patients. Second, it 
requires selecting tumors with a cancer cellularity of more than 
50%, discarding in the process a number of potentially analyz-
able tumors. This loss should be diminished in time with both 
a better selection of frozen tissue material due to the increased 
experience of the pathologist and the possibility of performing 
laser capture microdissection.    
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Mining SNP arrays<p>GAP, a method for analyzing complex cancer genome profiles from SNP arrays, performs well even with poor quality data and rear-ranged genomes</p>

Abstract

We describe a method for automatic detection of absolute segmental copy numbers and genotype
status in complex cancer genome profiles measured with single-nucleotide polymorphism (SNP)
arrays. The method is based on pattern recognition of segmented and smoothed copy number and
allelic imbalance profiles. Assignments were verified by DNA indexes of primary tumors and
karyotypes of cell lines. The method performs well even for poor-quality data, low tumor content,
and highly rearranged tumor genomes.

Background
Alterations of genomic DNA are hallmarks of cancer [1].
These genetic alterations include point mutations and small
insertion/deletion events, translocations, copy-number
changes, amplifications, and losses of heterozygosity. Chro-
mosome copy-number alterations and homozygosities (uni-
parental disomies) acquired during cancer evolution are
believed to be selected as the result of the loss of function of
tumor-suppressor genes and the gain of function of onco-
genes. Recurrent copy-number variations (CNVs) or loss of
heterozygosity (LOH) are therefore critical indicators of pos-
sible localization of cancer-related genes [1]. Both recurrent
regions of alteration and patterns of genomic instability con-
tribute to tumor classification [2]. Single-nucleotide poly-
morphism (SNP) arrays are presently one of the most
efficient technologies for the identification of such alterations
[3,4]. SNP arrays simultaneously define copy-number

changes and allelic imbalances (including LOH) occurring in
a tumor, at high resolution and throughout the whole genome
[5].

Genome-wide SNP arrays are available mainly for Affymetrix
[6] and Illumina [7] platforms. On both platforms, SNP gen-
otypes are extracted from allele-specific signal intensities
after array hybridization. Arbitrarily, the two alleles are des-
ignated as A and B, and the ratio of allele-specific signal
intensities (A/B, A/(A+B), and so on, depending on the
method used) provides an allelic-imbalance value. Chromo-
somal aberrations are identified by (a) relative copy-number
changes and (b) allelic imbalances. Both platforms were orig-
inally designed for high-throughput genotyping of normal
genomes, and they require specific normalization and data-
mining strategies to study alterations in cancer genomes [8].
Two characteristics of genetic alterations are essential to

Published: 11 November 2009

Genome Biology 2009, 10:R128 (doi:10.1186/gb-2009-10-11-r128)

Received: 2 February 2009
Revised: 24 September 2009
Accepted: 11 November 2009

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2009/10/11/R128



http://genomebiology.com/2009/10/11/R128 Genome Biology 2009,     Volume 10, Issue 11, Article R128       Popova et al. R128.2

Genome Biology 2009, 10:R128

extract from SNP data: (a) breakpoints corresponding to the
boundaries of the altered regions of genomic DNA, and (b)
copy number and genotype status of each such alteration.

Accurate determination of breakpoints has been addressed
from many aspects, starting from reduction of nonrelevant
variation to optimal breakpoint counts and positioning [9-
14]. As compromises between sensitivity and specificity, these
methods will perform variably, depending on the specific set-
ting used, the quality of the primary data set, and the com-
plexity of the tumor genomes.

Determination of copy numbers and genotype status of each
alteration is more complicated, and no general solution has
yet been proposed. Attempts to address this question include
a manual interpretation of Affymetrix 500K SNP-array
results for glioblastomas presented in [15] and an automatic
copy-number recognition method based on allelic imbalances
for the Illumina platform, proposed in [16]. Other methods
attribute relative gain, loss, or allelic-imbalance status with-
out addressing the determination of absolute copy number
and genotype (cnvPartition from Illumina, [17-23]).

Three major sources of problems complicate the estimation of
genome-wide copy number in cancer cells with SNP-array
technology. The first concerns the determination of the refer-
ence point for copy-number variation (the level correspond-
ing to the unaltered status of the tumor genome), which is not
trivial for aneuploid cancer genomes with unknown underly-
ing ploidies (diploid, tetraploid, and so on). Eventually, the
reference point for a near-diploid cancer genome should cor-
respond to normal genome status: a balanced genotype (AB
status) and two copies. In the case of near-tetraploid tumors,
a balanced genotype (AABB) and four copies could be pro-
posed as the reference point. Setting the correct reference
point thus depends on recognition of the underlying ploidy.
This issue is considered in Attiyeh and colleagues [16], in
which an aneuploidy correction factor was determined based
on intensity-distribution modes in regions with balanced gen-
otypes. Gardina and co-workers [15] directly estimated the
chromosome copy-number status by using theoretic allelic
ratios indicative of higher ploidy levels and then inferred
tumor ploidy.

The second problem arises from the frequent contamination
of cancer samples by normal stromal cells. The presence of a
significant proportion of normal DNA in a sample diminishes
the amplitude of measured signal changes reflecting rear-
rangements in the tumor DNA. Any fixed threshold-based
method of copy-number variation recognition may fail to dis-
tinguish the proper regions. A number of publications have
addressed this issue [17,18,24]. Staaf and colleagues [17] pro-
posed a strategy for copy-number and LOH recognition based
on adjusted thresholds, inferred from their study of dilution
series. A model for estimation of normal DNA inclusion on
the basis of measured allelic imbalances is considered in [18].

These authors also mentioned that, in addition to negative
effects, a small degree of contamination could help in distin-
guishing somatically acquired homozygosity from germline
homozygous regions.

The third problem in mining cancer SNP-array profiles is
coming from intratumoral heterogeneity [25]. Although gen-
erally arising from a single cell (monoclonal proliferation),
cancer progression leads to subpopulations bearing different
genomic alterations (subclones) coexisting in most tumor
samples. The tumor genomic profile is thus due to (a)
genomic alterations shared by all tumor cells and producing
few discrete steps of gains and losses, and (b) subclonal
events shared by only certain subpopulations of tumor cells
and producing a number of intermediate steps in the "main"
copy-number profile. CNV and LOH status of an alteration
specific for subclones is generally indefinable, as the meas-
ured signal reflects the sum of unknown subclonal signals in
unknown proportions. An algorithm estimating the propor-
tion of cancer cells harboring the particular alteration event
was proposed in [18] and confirmed on known genetic events
from a serial dilution of cancer cells with normal matched
cells.

In this article, we propose a method for segmental copy-
number and genotype detection from SNP arrays that takes
advantage of previous findings and addresses the aforemen-
tioned issues. This method is based on SNP-array data for-
malization that we have called the Genome Alteration Print
(GAP). The GAP of a tumor sample summarizes segmented
CNV and allelic imbalance profiles into a list of segments,
characterized by two corresponding averages. GAP visualiza-
tion reveals the overall genomic ploidy of tumors, pinpoints
the possible normal status (reference point for gain and loss),
shows the level of contamination, indicates subclones, and
generally characterizes the tumor genome. The model GAP
built on theoretic distribution of CNV and allelic imbalances
provides interpretation for a tumor GAP and serves as a basis
for automatic recognition of the copy number and genotype of
each segment.

Results and discussion
Generation of complex cancer genome data sets
The 300K Illumina SNP-arrays (Human Hap300-Duo) were
used to study breast cancer genomes in a series of primary
breast carcinomas (40 cases) and two cell lines. This series
includes basal-like carcinomas (BLCs) arising in the general
population (sporadic BLCs) and in BRCA1 mutation carriers,
who are especially predisposed to BLCs [26]. Both hereditary
(in BRCA1 carriers) and sporadic BLCs are associated with
inactivation of BRCA1 [27], a key protein for DNA repair [28].
Analysis of breast carcinomas by SNP-arrays is complicated
by the numerous genomic rearrangements associated with
these tumors [29], their high stromal cell content [30], and
intratumoral heterogeneity [31].
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Figure 1a and 1b shows the whole genome profiles of the
BLC_B1_T45 sample measured on a 300K Illumina SNP-
array. The copy-number variation (CNV) profile is repre-
sented by the Log R ratios (LRRs), which are the log-trans-
formed ratios of experimental and normal reference SNP
intensities, centered at zero for each sample. Allelic imbal-
ances are represented by the B-allele frequencies (BAFs),
which are the normalized proportions of the B alleles in two
allele mixtures. Complexity of the profile is characterized by
(a) the number of breakpoints in both profiles, and (b) the
number of levels in smoothed LRRs and BAFs corresponding
to the alteration states in the genomic DNA. The amplitude of
both LRR and BAF changes depends on the purity of the
tumor sample [17,18,24]. The main challenge is to interpret
both segmental LRR and BAF values correctly in terms of

absolute DNA copy number and LOH status, provided vari-
ous amplitudes of changes, unknown underlying tumor
genome ploidy, and disturbing subclonal intermediates. Spe-
cifically, DNA segments including at least 10 SNPs (~40 kb on
average) were analyzed, which decreased resolution but min-
imized the effects of both experimental variations and short
CNVs observed in population studies [32,33].

Genome alteration print (GAP)
The method for segmental copy-number and genotypes attri-
bution presented here is based on the structure denoted by
GAP. To build the GAP, breakpoints in LRR and BAF profiles
are determined separately by the circular binary segmenta-
tion (CBS) algorithm (see Materials and methods for details)
[12]. Any contiguous region in both LRR and BAF profiles

The whole-genome single-nucleotide polymorphism (SNP) array profile and genome alteration print (GAP)Figure 1
The whole-genome single-nucleotide polymorphism (SNP) array profile and genome alteration print (GAP). The whole-genome profile of genomic 
rearrangements in the BLC_B1_T45 sample measured by 300K Illumina SNP-array and corresponding GAP. (a) Allelic imbalances are represented by B-
allele frequency (BAF). (b) Copy-number variation profile is represented by log R ratio (LRR), centered at zero. (c) The GAP of the sample is a combined 
sideview projection of segmented LRR and BAF. Each region of the genome is represented by two symmetric circles in the case of allelic imbalance and by 
one circle centered at BAF = 0.5 in the case of a balanced genotype. Attribution of copy numbers and genotypes corresponds to a near-diploid model of 
rearrangements. (d) "Reading" GAP pattern: the degree of stromal contamination, acquired and germline homozygosities, and subclones are indicated. (e) 
The best-fitting model GAP allows interpretation of the cluster structure and estimates contamination by normal DNA and contraction of the pattern on 
the LRR scale. Clusters are designated by the ratio of copy number to B (or major allele) counts.
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(region between two consecutive breakpoints from LRR and
BAF breakpoints mixture) is considered to be an alteration
unit (possibly unaltered) and characterized by (a) the median
of LRR, (b) the modes of BAF distribution, and (c) the length
of the corresponding region (in SNP counts). The list and two-
dimensional visualization of all alteration units of a measured
sample is denoted the GAP.

The GAP of the BLC_B1_T45 sample is shown in Figure 1c.
Each alteration unit is represented by a circle, with the center
coordinates equal to its BAF (x-axis) and LRR (y-axis)
smoothed values. The circle radius is scaled to the relative size
of the corresponding chromosome region. In other words, the
structure in Figure 1c represents a combined side-view pro-
jection of segmented and smoothed profiles of LRR and BAF
shown earlier in Figure 1ab. The pattern in Figure 1c has a reg-
ular structure: circles corresponding to genomic regions with
similar alteration status are assembled in clusters, forming
discrete steps in their projection on the LRR scale, and sym-
metrically disposed on the BAF scale. As "A" and "B" allele
names are set arbitrarily, the BAF profile is symmetric rela-
tive to 0.5 axis, and one alteration unit is represented by two
symmetric circles away from the 0.5 axis on the BAF scale.
Clusters centered at BAF = 0.5 present the genome regions
with balanced (heterozygous) genotype; that is, an equal rep-
resentation of both (maternal and paternal) alleles.

According to standard mining of SNP-array results, the GAP
pattern shows (a) normal regions, which correspond to the
balanced cluster; (b) losses, which are below the level of the
balanced cluster; (c) gains, which are above this level; and (d)
loss of heterozygosity without copy-number change (unipa-
rental disomy), which are the side clusters of the reference
balanced cluster (Figure 1d). The overall pattern of GAP cor-
responds to rearrangements in a near-diploid tumor.

The balanced cluster representing the normal status is gener-
ally not centered at zero on the LRR scale, which is set by nor-
malization. For example, in Figure 1, the functional center
(the diploid balanced cluster that represents unaltered
regions) is shifted up from the formal center of the LRR pro-
file (zero on LRR scale) because of the prevailing losses versus
gains observed in the tumor.

Small germline homozygous regions, detected when more
than 50 successive SNPs have a homozygous call (the 50-SNP
length was set arbitrarily), form side clusters at the 0 and 1
boundaries of BAF scale. These germline homozygous regions
can be easily distinguished from acquired LOH (see Figure
1d). Distances between germline and acquired homozygous
clusters reflect the degree of tumor-sample purity [17].
Acquired and germline homozygosities cannot be distin-
guished in the case of pure tumor sample or (more often) cell
line.

It is worth mentioning that (a) allelic imbalance is often
treated as LOH, whereas here only single allelic genotypes (A,
AA, AAA...) were considered to have an LOH status; (b)
although mirrored BAF (see Materials and methods) is used
for all computational evaluations, the GAP structure is shown
in a complete (symmetric) view for easier association with the
initial SNP-array measurement (with symmetric BAF bands).

Influence of tumor dilution and heterogeneity on GAP 
pattern
Breast carcinomas frequently show a high degree of stromal
contamination and heterogeneity seen on the GAP pattern
(Figure 1d). The triangle-like figure formed by homozygous
clusters has the following interpretation. P% of normal DNA
adds some proportion of normal (AA, AB, or BB) signal to any
measured value. However, (a) this proportion depends on the
corresponding copy-number status of a region and, (b) germ-
line homozygous regions would show a pure homozygous sig-
nal, whereas cancer homozygous regions (LOH) would show
a shift caused by normal heterozygous signal addition. Cancer
BAF is modeled depending on the proportion of normal DNA
inclusion (p) as the weighted sum of B-allele counts in cancer
and normal genotypes related to maximal possible B allele
counts at current copy-number level (see Materials and meth-
ods). For example, the calculated level of normal stromal
DNA in the BLC_B1_T45 sample is approximately 30%. Such
BAF dynamics also were illustrated by Nancarrow and col-
leagues [24] by using computer simulations. The clear linear
relation between the measured mirrored BAF (mBAF) and
the level of contamination by normal tissue of the tumor sam-
ple was demonstrated in [17] in dilution series.

The few isolated circles situated between one- and two-copy
levels in Figure 1d could be attributed to losses occurring only
in a fraction of the tumor cells (subclones). Following the
logic of [18] and using our model of BAF, the proportion of
cancer cells harboring this event is approximately 26%. More
complicated subclonal mixtures could produce various inter-
mediates in LRR and BAF scales.

The dynamics of change in LRR scale depend on numerous
uncontrolled factors and show a high degree of variation from
sample to sample. The significant dilution of a cancer sample
by normal DNA clearly decreases the contrast (the amplitude
of change in LRR corresponding to a copy-number change)
[17]. However, universal linear dependence between LRR and
contamination, similar to that for BAF, has not yet been
described. The observed amplitude of LRR changes is usually
smaller than expected by the initial model (log2(CN/2)), but
the proportion between copy-number steps seems to be pre-
served for well-represented copy-number layers around the
mean. LRR is therefore modeled by applying a simple coeffi-
cient of contraction q to the standard log ratio, which pro-
duces the sequence of LRR values: -q, 0, 0.58q, q, 1.32q, 2q,...
for corresponding copy-number levels: 1, 2, 3, 4, 5,...
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Model GAP that follows theoretic values for BAF and LRR
with estimated contamination p = 0.3 and coefficient of con-
traction q = 0.3 is superimposed onto the experimental GAP
of BLC_B1_T45 sample in Figure 1e.

Diploid and tetraploid GAP patterns
The 40 SNP-array profiles of breast carcinomas and cell lines
presented two main types of GAP pattern named "near-dip-
loid" and "near-tetraploid" patterns (Figure 2a and 2b; for
more examples, see Additional data file 1). The near-diploid
pattern is characterized by a single balanced cluster with one
layer of losses (Figures 1 and 2a). The typical near-tetraploid
pattern shown in Figure 2b has (a) two balanced modes rep-
resenting a balanced heterozygous genotype on two- and
four-copy levels (AB and AABB); (b) three-copy level
(between balanced modes) with the full spectrum of allelic
imbalances, including LOH (AAA, AAB, ABB, BBB); (c) few
levels higher than four copies accounting for possible five, six,
seven... copies.

The near-diploid pattern has genomic DNA mainly presented
in one, two, and three copies, whereas the near-tetraploid
pattern has the well-represented two-, three-, four-, and five-
copy layers. These patterns appeared to be easily distin-
guished in the case of the high density of alteration events
observed in the current series of the breast carcinomas. A
unique type of GAP pattern in the series was observed in
BLC_T10 (Figure 2c). This pattern is characterized by sparse
balanced cluster (due to a single chromosome with balanced
genotype) and very strong homozygous clusters on the 3-copy
level. This may be interpreted as an almost pure triplication

of a haploid genome, possibly similar to the triploid glioblas-
toma cases described in [15].

DNA index and karyotype were used to verify correspondence
between the interpretation of GAP pattern and the actual
tumor genomic status. In silico DNA indexes inferred from
SNP arrays were very close to actual tumor DNA indexes
measured with flow cytometry (FCM) analysis for 16 of the 18
breast carcinoma samples tested (Table 1, Additional data file
1). The DNA index provided by FCM characterizes DNA con-
tent of tumor genome relative to normal diploid genome,
which has a DNA index defined as 1. In silico DNA indexes
were estimated by averaging segmental copy numbers
(divided by 2), inferred from the GAP pattern. For 11 cases,
the difference between actual and in silico DNA index was less
than 0.1; for five cases, it was less than 0.3. With the exception
of two outliers, this difference was always less than 0.5, which
is the minimal absolute error in the case of wrong assignment
of the overall copy-number scale (pattern shift on +1 or -1
copy). For the two outliers (BLC_B1_T22 and BLC_T34),
GAP patterns were perfectly near-diploid with a clear con-
trast, making cluster misattribution unlikely. The discrep-
ancy in DNA index estimation requires further biologic
verification (for example, in the case of BLC_B1_T22, there
might be a pure and possibly recent duplication of the diploid
tumor cells as the in silico DNA index was equal to half of the
experimental index).

Breast cancer cell lines with known karyotypes were used for
another validation of GAP interpretation. The tetraploid
breast cancer cell line MDA-MB-175-VII (MDA_175; [34])
has a clear near-tetraploid pattern of GAP (Figure 3a). The

Characteristic genome alteration print (GAP) patternsFigure 2
Characteristic genome alteration print (GAP) patterns. Two characteristic (a, b) and one unique (c) GAP patterns obtained in the analysis of a breast 
carcinoma series: (a) near-diploid pattern, sample BLC_ T34; (b) near-tetraploid pattern, sample BLC_T09; and (c) possible near-triploid pattern, sample 
BLC_T10. Attribution of genotypes is based on the type of pattern; best-fitting models are shown.
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unique balanced cluster must be attributed to a four-copy
level because two levels of losses visible below it could not
account for 1 and 0 copies, but rather for 3 and 2 copies
because of their positions and the absence of a normal contin-
gent in the cell line. Circles on each side of the balanced clus-
ter fit with AAAA and AAAB, and ABBB and BBBB genotypes,
respectively, also implying a two-copy level. It is noteworthy
that two-copy regions are represented exclusively by
homozygous genotypes.

A near-tetraploid genome implies the number of chromo-
somes to be close to 92 (88 autosomes = two sets of diploid
genomes). Copy-number summary for centromeric regions
was considered a surrogate measure of chromosome number.
As no SNP measurements can be performed at centromeres
because of their highly repetitive DNA structure, pericentric
regions were used to estimate the copy-number status of the
chromosomes. The status of 39 pericentric regions (two for
each of the 17 metacentric autosomes and one for each of the
five acrocentric autosomes) was determined according to
GAP. The number of autosomes in MDA_175 was estimated
to be 86.5, which is close to the description in [34] (model
number was 84 chromosomes; range, 82 to 89; verified on the
cell line used for the SNP-array). Table 2 shows the frequency
of occurrence of the inferred copy number of pericentric
regions (also for other tumor samples considered in this
study, with more-detailed information presented in Addi-
tional data file 2). A similar analysis was performed with the
MDA-MB-468 (MDA_468) cell line; this hypotetraploid
breast cancer cell line (modal number, 64; range, 60 to 67)

[34] showed a typical tetraploid GAP pattern (Figure 3b).
Estimated autosome number (71.5) matched the description,
and the slight overestimation was likely due to segmental
amplification in one pericentric region (Table 2 and Addi-
tional data file 2). Taken together, these results indicate cor-
rect local assignment with our approach.

It should be noted that determination of the reference point
for gain and loss attribution for complex highly rearranged
cancer genomes is not always obvious, even with known pat-
terns of rearrangements and absolute copy numbers. Samples
displaying a near-diploid GAP pattern (as in Figure 2a) repre-
sent a simple situation, as their unique balanced cluster cor-
responding to 2-copy indicates the reference point. Near-
tetraploid patterns with a unique balanced cluster at four cop-
ies (such as that of the cell line in Figure 3a) and inferred
autosome numbers close to 88 indicate underlying tetra-
ploidy, and it is logical to set the reference point to four copies
in these cases. Underlying ploidy is less clear for intermediate
DNA index or autosome number (between one and two, or 44
and 88, respectively), and the GAP shows a tetraploid pattern
with two balanced clusters (as for BLC_B1_T19 and
BLC_B1_T20 samples). Correct interpretation of gains and
losses in such cases requires further biologic validation.

Automatic recognition of segmental copy numbers and 
genotypes
The GAP pattern can be easily mined by automatic proce-
dures. This procedure includes (a) recognition of a GAP pat-
tern and (b) assignment of segmental copy numbers and

Table 1

Experimental and in silico DNA indexes and parameters of GAP model

Sample ID DNA index FCM DNA index GAP DNA index OverUnder Tumor content 1-pBAF Contraction qLRR

BLC_B1_T14 1.14 0.85 0.98 0.85 0.37

BLC_B1_T17 0.84 0.82 0.97 0.77 0.17

BLC_B1_T19 1.6 1.63 2.93 0.4 0.27

BLC_B1_T20 1.41 1.48 3.06 0.4 0.2

BLC_B1_T22a 1.98 0.94 1.02 0.87 0.44

BLC_T07 1.68 1.49 3.12 0.44 0.28

BLC_T09 2.02 1.85 1.89 0.92 0.47

BLC_T10 1.88 1.9 1.07 0.95 0.47

BLC_T12 1.51 1.54 2.56 0.65 0.35

BLC_T15 1.11 0.89 0.99 0.74 0.27

BLC_T23 1.32 1.39 2.72 0.41 0.21

BLC_T31 1.91 1.84 1.48 0.84 0.45

BLC_T34a 1.55 0.99 1.04 0.87 0.42

BLC_T37 1.51 1.53 1.44 0.89 0.44

L_B1_T24B 1.84 1.64 2.61 0.59 0.29

L_B1_T25A 1.00 1.04 3.03 0.39 0.17

L_B1_T30 1.84 1.83 1.53 0.78 0.42

L_B1_T47 1.00 1.03 1.47 0.45 0.17

aTwo samples with clear near-diploid pattern of GAP and discordant experimental DNA indexes.
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genotypes to a corresponding tumor genome based on this
pattern. As described earlier, the GAP is characterized by two
parameters: p, which is the proportion of tumor contamina-
tion by normal DNA affecting BAF values, and q, which is a
coefficient of contraction of LRR values. The automatic recog-
nition procedure searches for parameters and position of a
model GAP that best fits to the experimental GAP. Quality of
fitness is assessed by genome coverage in terms of number of
SNPs that are explained by the model (see Material and meth-
ods for details). In other words, the model GAP template that
most closely corresponds to the experimental GAP is selected.
In the second round, the model GAP is used as the basis for
interpretation of the experimental GAP, and segmental copy
numbers and genotypes are assigned accordingly.

The quality of pattern recognition was tested on 42 in-house
samples, including the samples validated by DNA index. The
procedure performed 41 correct and one erroneous recogni-
tions, as compared with manual assessment. The problematic
sample presented a high variance and low contrast, and the
correct solution had a high but not the highest score. In gen-
eral, the method tolerates contamination of tumor samples by
normal DNA and experimental variations, as shown by cor-
rect recognition of our validated series with up to 60% of nor-

mal contamination and up to 0.17 contraction of LRR scale
(see Table 1).

We considered subclones as segments located essentially
between designated clusters. They could be artefacts from
incorrect segmentation, or true tumor heterogeneity. An
interesting case is represented by sample BLC_T31. Its first
interpretation was that of a near-tetraploid pattern, but its
second interpretation with a very similar score was that of a
near-diploid pattern because of poor representation of the
three-copy level interpreted as subclones in the latter case.
The DNA index determined by FCM indicated near-tetra-
ploidy, supporting the first interpretation (see Additional
data file 1).

It should be stressed that (a) correct recognition requires
good contrast between clusters and multiplicity of genetic
events (for example, patterns consisting of AB and A∅ geno-
types versus AABB and AA cannot be distinguished when no
other evidence of a four-copy pattern exists); (b) the robust-
ness of the quality criterion used in our method is not always
satisfactory: the correct solution often differs from incorrect
solutions by less than 1%; (c) the linear models used in the
method diverge from experimental data in both the LRR and
BAF scales when copy numbers were higher than 6-copy.

Genome alteration prints (GAPs) for breast cancer cell linesFigure 3
Genome alteration prints (GAPs) for breast cancer cell lines. GAPs for breast cancer cell lines: (a) MDA_175; and (b) MDA_468. Both GAPs show a 
near-tetraploid pattern, and genotypes were assigned accordingly.

B Allele frequency

L
o
g
 R

 r
a
ti
o

-1
.0

-0
.5

0
.0

0
.5

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

L
o
g
 R

 r
a
ti
o

-1
.0

-0
.5

0
.0

0
.5

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

B Allele frequency

MDA_175 MDA_468

AA AB

AAB

AABB

ABB

BB

ABBB

AABBBAAABB

AAAB

AA

A

AB BB

B

AAAB AABB ABBB

BBBAAA AAB ABB



http://genomebiology.com/2009/10/11/R128 Genome Biology 2009,     Volume 10, Issue 11, Article R128       Popova et al. R128.8

Genome Biology 2009, 10:R128

However, no universal rule to correct this effect was identified
on the basis of the 41 tumors examined.

Comparative testing of GAP recognition
When characterizing rearrangements in tumor genome
measured by SNP array, it is essential to extract from data (a)
the degree of genomic instability displayed by the number
and distribution of breakpoints, and (b) the type of each alter-
ation. The GAP method is based on both LRR and BAF break-
points and is therefore not directly suitable for breakpoint
counting. To minimize double counting of a single break-
point, LRR and BAF breakpoints separated by a small region
(arbitrary defined as 10 SNPs) were simply merged. More
complicated pooling of LRR and BAF breakpoints could allow
more accurate breakpoint counting, and this would not be
expected to influence the performance of the GAP method.
Another way to address breakpoint detection in highly rear-
ranged cancer genomes with possible low tumor content and
noisy profiles is to use the GAP pattern as a source for second-
ary optimization.

The GAP method is elaborated for determination of alteration
events in complex, highly rearranged cancer genomes (in con-
trast, it would be of little help for interpretation of a stable
genome with few amplifications). The methods specifically

developed for analysis of cancer genomes include SOMATICS
[18] and BAFsegmentation [17], which reveal segments with
allelic imbalances based on various models but do not pro-
duce copy numbers and genotypes. The OverUnder algorithm
presented by Attiyeh and associates [16] estimates ploidy, as
well as copy numbers and genotypes, and has been shown to
outperform PennCNV, IlluminaCN Estimate, and CBS for the
analysis of cancer genomes. We compared our automatic GAP
fitting method with the OverUnder algorithm in terms of
quality and consistency of recognition.

The OverUnder algorithm (available as Illumina Beadstudio
plug-in) was initially applied to our validated series of breast
carcinomas to estimate the DNA indexes (Table 1). Over-
Under results for seven samples clearly deviate from experi-
mental data (Figure 4). These samples are characterized by
high levels of normal DNA contamination, as estimated by the
GAP model. The GAP method tolerated normal contamina-
tion, demonstrating better overall performance.

The self-consistency of the methods was tested on the basis of
dilution series available in the GEO database
(GEO:GSE11976) [17]. The HCC1395/CRL2324 cell line [34]
measured in this series is genetically complex and poorly
defined. However, estimated copy numbers and LOH regions

Table 2

Frequency of inferred copy numbers at pericentric regions and deduced autosome numbers

Copy numbera

Sample ID 1 2 3 4 5 6 7 8 Autosome number Patternb

MDA_175 5 9 16 4 4 1 86.5 2

MDA_468c 17 8 8 3 2 1 71.5 2

BLC_B1_T14 12 25 2 38 1

BLC_B1_T17 14 21 3 1 38.5 1

BLC_B1_T19 7 10 16 4 2 76.5 2

BLC_B1_T20 1 16 9 8 3 1 1 66.5 2

BLC_B1_T22 12 24 3 37.5 1

BLC_T07 15 13 8 1 1 1 70 2

BLC_T09 3 16 13 3 2 2 85.5 2

BLC_T10 21 9 2 3 3 1 87 1.5

BLC_T12 11 10 12 4 1 1 73.5 2

BLC_T15 10 27 2 40 1

BLC_T23 3 13 11 6 2 4 68.5 2

BLC_T31 5 4 25 1 2 1 1 84.5 2

BLC_T34 3 36 42 1

BLC_T37 1 16 9 6 1 4 2 70.5 2

L_B1_T24B 1 11 12 7 6 2 72 2

L_B1_T25A 37 2 46 1

L_B1_T30 3 11 23 1 1 79 2

L_B1_T47 1 34 2 1 1 47 1

aFrequency of inferred copy numbers (1 to 8 are indicated) at pericentric regions. b1, 2, 1.5 indicates a near-diploid, near-tetraploid, and near-triploid 
patterns of Genome Alteration Print (GAP), respectively (Figure 2, Additional data file 1). cEstimated high chromosome copy number (= 8) is likely 
to result from a segmental amplification in one pericentric region, leading to overestimation of the autosome number in MDA_468.
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must be consistent for all CRL2324 samples with various pro-
portions of tumor DNA. The results of the self-consistency
test are presented in Table 3 (more details in Additional data
file 3). The better self-consistency of the GAP method is obvi-
ous in terms of copy numbers and LOH. Structural reproduc-
ibility of tumor GAP pattern with various proportions of
normal DNA is illustrated in Additional data file 4.

GAP for Affymetrix SNP platform
Affymetrix GeneChip SNP 6.0 array was used to generate SNP
profiles of the BLC_B1_T45 sample. The GAP was obtained
according to the same strategy as for Illumina SNP data but
by using the profile-recognition method described in [14].

Comparison of the data generated on these two platforms is
shown in Figure 5. Affymetrix SNP measurements are repre-
sented by Log Copy Number Ratio and Allelic Differences as
compared with Illumina LRR and BAF, respectively. Germ-
line homozygous SNPs were omitted if fewer than 50 in a row,
and are therefore represented by small clusters along two par-
allel lines at 0 and 1 limits of the BAF scale in an Illumina plot.
Homozygous SNPs were always included in Affymetrix GAP
and therefore formed large clusters represented along diver-
gent diagonal lines (as allelic differences are dependent on
copy-number levels) in the Affymetrix plot. Genome regions
localized and attributed to a specific copy number in an Illu-

Comparison of genome alteration print (GAP) and OverUnder-based in silico DNA indexes with experimental DNA indexesFigure 4
Comparison of genome alteration print (GAP) and OverUnder-based in 
silico DNA indexes with experimental DNA indexes. GAP indexes (blue 
circles) show excellent correspondence with experimental DNA indexes. 
OverUnder indexes (red triangles) show more outliers with 
overestimation of the DNA index. Both methods show consistent results, 
but not corresponding to the experimental DNA indexes (1.98 and 1.5) 
for two samples, designated by enlarged markers.

DNA index of a tumor sample
2.5

2

1.5

1

0.5

0

D
N

A
 i
n
d
e
x
 b

y
 F

C
M

0 0.5 1 1.5 2 2.5 3 3.5

In silico DNA index by SNP array

DNAi_GAP DNAi_OU

Table 3

Self-consistency of copy numbers and LOH in dilution series by using GAP and OverUnder analyses

GAP CN LOH DNA index Tumor DNA 1-p BAF q LRR

CRL2324 1 1 1.45 1 1 0.45

CRL2324_79 0.93 0.98 1.46 0.79 0.8 0.35

CRL2324_50 0.9 0.97 1.44 0.5 0.42 0.22

CRL2324_47 0.78 0.96 1.49 0.47 0.42 0.24

CRL2324_45 0.81 0.96 1.5 0.45 0.35 0.18

CRL2324_34 0.69 0.93 1.53 0.34 0.27 0.16

CRL2324_30 0.73 0.93 1.52 0.3 0.25 0.12

CRL2324_23 0.72 0.93 1.59 0.23 0.26 0.14

CRL2324_21 0.7 0.92 1.64 0.21 0.14 0.12

OverUnder CN LOH CN ± 1 CN CBS DNA index Tumor DNA

CRL2324 1 1 1 1 2.48 1

CRL2324_79 0.36 0.94 0.74 0.46 2.16 0.79

CRL2324_50 0.21 0.45 0.65 0.1 2.64 0.5

CRL2324_47 0.22 0.45 0.68 0.1 2.5 0.47

CRL2324_45 0.34 0.45 0.71 0.11 2.85 0.45

CRL2324_34 0.24 0.44 0.56 0.19 2.57 0.34

CRL2324_30 0.14 0.45 0.48 0.23 2.54 0.3

CRL2324_23 0.31 0.45 0.68 0.23 2.51 0.23

CRL2324_21 0.07 0.47 0.12 0.05 1.11 0.21

CN = copy number; LOH = loss of heterozygosity; tumor DNA = proportion of tumor DNA in the dilution; DNA index = in silico DNA index with 
each algorithm; 1-p BAF and q LRR are parameters of the model GAP; CN ± 1, copy numbers are considered to be consistent when the difference 
is less than or equal to 1; CN CBS, consistency is calculated on averaged (by median) and rounded copy-number assignments in CBS determined 
segments.
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mina-profiled genome were used to color code the regions in
the Affymetrix SNP profile. Excellent concordance was
observed between Affymetrix and Illumina patterns, as
shown by relevant Illumina-derived color gradation on
Affymetrix GAP. Visible differences in relative cluster sizes
are due to different distributions of measured SNPs along the
genome in Illumina and Affymetrix chips. The main conclu-
sions from this comparison are (a) excellent correspondence
between the two technologies in terms of copy-number varia-
tion; and (b) GAP can be used for analysis of complex cancer
genomes on Affymetrix platforms.

Conclusions
We present a method to mine complex genome alteration
profiles measured with SNP-arrays. We introduce genome
alteration print (GAP), a combined side-view projection of
LRR and BAF segmented and smoothed profiles. The
method, based on GAP pattern recognition, is fully automatic
and provides segmental copy numbers and genotypes. It also
estimates tumor-sample contamination by normal DNA. The

method performs well, even for poor-quality data, low tumor
content, and highly rearranged tumor genomes. Visualization
of the GAP recognition pattern characterizes overall rear-
rangements in a tumor sample and can be used to verify the
results. The GAP method is designed for Illumina SNP-array,
but can be easily applied to Affymetrix SNP-arrays. This
method could be a valuable tool to identify recurrent altera-
tions in complex tumor-genome profiles.

Materials and methods
Illumina arrays
A series of 40 breast carcinomas, including cases described in
[35], was analyzed, as well as the breast cancer cell lines
MDA-MB-175-VII (MDA_175) and MDA-MB-468
(MDA_468) [34]. DNA was extracted from samples, and
genomic profiling of the tumor samples was performed at
Integragen [36] on 300K Illumina SNP-arrays (Human
Hap300-Duo). SNP-array data are available through Gene
Expression Omnibus [37] [GEO:GSE18799].

Genome alteration print (GAP) for Affymetrix single-nucleotide polymorphism (SNP) GeneChip SNP 6.0 arrayFigure 5
Genome alteration print (GAP) for Affymetrix single-nucleotide polymorphism (SNP) GeneChip SNP 6.0 array. BLC_B1_T45 tumor sample measured on 
two SNP-array platforms, analyzed by using GAP, and superimposed by color code: (a) GAP for Affymetrix; and (b) GAP for Illumina. Copy numbers 
obtained from the Illumina GAP were coded by colors indicated at the bottom of the Figure. Concordance between Affymetrix and Illumina patterns is 
illustrated by the relevant Illumina-derived color gradation on Affymetrix GAP. Germline homozygous regions are boxed. The main cluster patterns are 
indicated by hexagonal frames. The differences in relative cluster sizes are due to different distributions of SNPs measured along the genome in Illumina 
and Affymetrix chips.
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Data processing
Normalization of raw data was performed with Illumina
Beadstudio software version 3.3 by using standard settings
(all supporting files are provided by Illumina [7]). The nor-
malization procedure tQN proposed in [9] also was used to
make BAF symmetric.

LRR and BAF segmentation and construction of the 
GAP
The circular binary segmentation (CBS) algorithm (DNAcopy
package, Bioconductor) [12,38] was applied to LRR and fil-
tered BAF data separately to define breakpoints (the minimal
level of significance was defined as 10-2 for LRR and 10-3 for
BAF profiles). Smoothing of outliers was performed in both
cases. LRR was smoothed by the median between break-
points. To obtain one banded BAF profile, (a) non-informa-
tive homozygous SNPs were filtered out, based on the
threshold (mBAF > 0.97), as suggested in [17]; (b) tQN nor-
malized and reflected relative to the 0.5 axis version of BAF,
named mirrored BAF (mBAF) [17], was segmented. In addi-
tion, the boundaries of germline homozygous regions,
detected when more than 50 successive SNPs had a
homozygous call (the number of SNPs was set arbitrarily),
were included into the set of breakpoints. The mode estima-
tion (dip-test package, [38]) was used for smoothing of the
mBAF profile to maintain the contrast between balanced and
slightly shifted imbalances.

Any region between two consecutive breakpoints from the
LRR and BAF breakpoint mixture was considered to be an
alteration unit (possibly unaltered) and characterized by (a)
the averaged LRR, (b) the mode of mBAF distribution, and (c)
the length of the corresponding region (in SNP counts). The
list and the two-dimensional visualization of all alteration
units of a measured sample were denoted the genome altera-
tion print (GAP). For GAP visualization, each alteration unit
was represented by a circle centered on BAF (x-axis) and LRR
(y-axis) smoothed values, and the radius was scaled to the rel-
ative size of the corresponding chromosome region.

Comments on stability of GAP
The CBS algorithm was used to favor sensitivity over specifi-
city in the breakpoint-detection process, as "false" break-
points do not significantly change the overall GAP pattern.
False alteration units often appeared as artefacts at joining
LRR and BAF breakpoints, but were not visible, provided the
true alteration units were significantly longer. More problems
were observed when the robust profile estimators were
applied to poor-quality data: the absence of true breakpoints
could significantly alter the GAP pattern.

Model GAP
The model GAP was determined by the independent combi-
nation of BAF and LRR models. The BAF model was used to
determine the position of clusters on the horizontal scale, and

the LRR model was used to determine the relative position of
clusters on the vertical scale.

The cancer BAF was modeled as the weighted sum of B-allele
counts in cancer and normal genotypes, as a ratio of the max-
imal possible B allele counts at the current copy-number
level:

where p is normal DNA proportion (and hence (1 - p) is tumor

DNA proportion);  and  are the B and A allele counts

in the tumor genotype; (  + ) is considered to be the

copy-number level; and  is the B allele count in normal

genome (  = 0, 1, 2). A similar model was described in

[17,24]; a model proposed in [18] could also be used for GAP-

method settings.

To estimate normal DNA contamination in a measured tumor
sample, at least one cluster annotation (copy number and
genotype) and its position on the BAF scale must be known.
For example, projections of cluster centers in the experimen-
tal GAP pattern (Figure 1e) were assessed to be as follows:
BAFM = 0.765 for the B cluster, BAFM = 0.845 for the BB clus-
ter, BAFM = 0.885 for the BBB cluster, and BAFM = 0.628 for
the ABB cluster. Substitution of BAFM, B allele counts, and
copy numbers in the model provides an estimation of the con-
tamination coefficient p = 0.307, 0.31, 0.309, and 0.312,
respectively. As expected, inferred coefficients were very
close to each other and estimated the normal DNA contami-
nation around 30% for this sample.

The same method was used to estimate the proportion of

tumor cells bearing a given rearrangement (subclone); in the

case shown in Figure 1d: BAFM = 0.575,  = 1, +  = 1,

 = 1 gave the normal content estimation p ≈ 0.74 and

hence the tumor content was 1 - p ≈ 0.26.

LRR was modeled by applying a simple coefficient of contrac-

tion q to the standard log ratio: ; n is the

copy number, which produces the sequence of LRR values: -

q, 0, 0.58q, q, 1.32q, 2q,... for corresponding copy number

levels: 1, 2, 3, 4, 5... The LRR of zero copy (homozygous dele-

tion) was arbitrarily set at -3q (log20 = - ∞, variation in real

LRR is usually very large and not followed by the model).
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Fitting model GAP and copy number and genotype 
recognition
Automatic recognition of the tumor GAP pattern consisted of
an exhaustive search for (a) the best centering of the model
GAP on the LRR scale for each pair of contamination propor-
tion (p) and coefficient of contraction (q), and (b) the best (p,
q) couple satisfying a few necessary conditions. The genome
coverage in terms of the number of SNPs explained by the
model was used as the quality criterion. The necessary condi-
tions were used to filter unusual interpretations.

GAP pattern-recognition algorithm: 1) Initiation of a grid

with 0.005 cell dimension on the BAF × LRR plane and defi-

nition of the densities of alteration units in SNP counts on the

grid; 2) Smoothing of the densities by averaging adjacent cells

and filtering of low densities to enhance the contrast (densi-

ties were set to 0 in 95 to 98% of cells in the grid); 3) Choosing

model parameters (p, p ∈ {0,0.02, 0.04, ...,

0.86};q, ) and setting of the GAP template

with one to five copies by determining the centers and sizes of

model clusters on the grid; 4) For a given pair (p, q), search-

ing for the best centering of the GAP template on the grid in

terms of maximal density falling into designated clusters; 5)

Checking all possible combinations of p and q and ranking

templates; 6) Filtering of templates according to necessary

conditions. This removes from further consideration redun-

dant interpretations with many empty clusters; 7) Choosing

the best interpretation, superimposing the model GAP to the

experimental one, and ascribing copy number and genotype

to each alteration unit after the annotation of its closest clus-

ter on the template.

In the case of low contrast between clusters, additional
adjustments of recognition are necessary to attribute cor-
rectly the alteration units located between designated clus-
ters. A confidence score is attributed to all alteration units
(depending on the distance to the nearest model cluster(s)),
and the linear copy number and genotype profiles are
adjusted by keeping confident assignments and correcting
less-confident assignments.

Experimental estimation of ploidy and karyotyping
The DNA content of tumor samples was obtained with flow
cytometry (FCM) analysis after propidium iodine staining, as
described in [39]. The DNA index is equal to 1 for normal dip-
loid cells. A karyotype of MDA_175 was obtained by a routine
procedure [40].

Estimation of DNA content and chromosome number 
based on SNP data
The inferred copy-number profile was averaged along the
genome, providing the DNA content of the corresponding
cancer sample.

Chromosome copy numbers were characterized by the status
of pericentric regions, defined as the alteration units directly
before or after the centromeric part of the chromosome
(which has no SNP measurement per se). The definition of
pericentric region therefore depends on the SNP chip used for
genotyping. Regions less than 10 SNPs were ignored. If the
pericentric alteration unit is a small region (less than 100
SNPs), setting the chromosome copy number on the basis of
this alteration unit could be erroneous and could therefore
interfere with karyotype assessment.

Dilution series
The dilution series described in [17], measured by Illumina
370 K array and available in the GEO database [37]
[GEO:GSE11976], were processed in a similar way to in-house
tumor samples: (a) normalization by the method proposed in
[9]; (b) segmentation of LRR and BAF profiles by CBS, in the
same way as described in subsection 3 of the Materials and
Methods; (c) construction of GAP, GAP pattern recognition,
and copy-number assignment.

Results of the OverUnder [16] algorithm
The OverUnder plug-in was applied to the data normalized in
BeadStudio 3.3, with window length equal to 51. OverUnder
produces continuous copy-number values, which were
rounded to discrete values and then summarized in compari-
son tables. As rounding can introduce artificial discrepancies,
the procedure was slightly modified so that copy numbers
were considered to be equal when they differed by no more
than 1 unit (column CN ± 1, Table 3). CBS sections also were
used to average (by median) and to round copy-number
assignments (column CN CBS, Table 3).

Affymetrix SNP data
One BLC sample also was analyzed on the Genome-Wide
Human SNP-array 6.0, according to the manufacturer's
instructions (Affymetrix Inc., Santa Clara, CA). Normaliza-
tion was performed by using the Genotyping Console™
(Affymetrix), and profile recognition was performed by using
the method described in [14].

Availability
An implementation of the proposed GAP pattern recognition
and detection of copy numbers and genotypes based on seg-
mented profiles is available, together with the supporting
data [41]. SNP array data for the 19 primary tumors and the
two cell lines shown here are available through Gene Expres-
sion Omnibus [37] [GEO:GSE18799].

Abbreviations
BAF: B allele frequency; BLC: basal-like breast carcinoma;
CBS: circular binary segmentation; CN: copy number; CNV:
copy-number variation; FCM: flow cytometry; LOH: loss of
heterozygosity; LRR: Log R ratios; mBAF: mirrored BAF;
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MDA_175: MDA-MB-175-VII breast cancer cell line;
MDA_468: MDA-MB-468 breast cancer cell line; SNP: sin-
gle-nucleotide polymorphism.

Additional data files
The following additional data are included with the online
version of this article.

A table of images of GAP patterns and copy-number recogni-
tion templates for a series of breast carcinomas with available
DNA indexes (Additional data file 1), a table listing copy-
number status of pericentric regions inferred on the basis of
GAP pattern for a series of breast carcinomas and cell lines
(Additional data file 2), two tables indicating self-consistency
in copy-number attribution in dilution series calculated for
two methods of recognition: GAP method and OverUnder
algorithm (Additional data file 3), and GAP patterns and
copy-number recognition templates for the dilution series of
cell line CRL2324 (Additional data file 4).

Additional data file 1GAP patterns and copy-number recognition templatesA table of images of GAP patterns and copy-number recognition templates for a series of breast carcinomas with available DNA indexesClick here for fileAdditional data file 2Copy-number status of pericentric regionsA table listing copy-number status of pericentric regions inferred on the basis of GAP pattern for a series of breast carcinomas and cell linesClick here for fileAdditional data file 3Self-consistency in copy-number attribution in dilution seriestwo tables indicating self-consistency in copy-number attribution in dilution series calculated for two methods of recognition: GAP method and OverUnder algorithmClick here for fileAdditional data file 4Cell line CRL2324GAP patterns and copy-number recognition templates for the dilu-tion series of cell line CRL2324Click here for file
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and Akslen, L. A. (2003), “Germline BRCA1 mutations and a basal epithelial phenotype in breast
cancer,” Journal of the National Cancer Institute, 95, 1482–1485, PMID: 14519755.

Fournier, H. and Vigneron, A. (2008), “Fitting a Step Function to a Point Set,” in Proceedings of
the 16th annual European symposium on Algorithms, Karlsruhe, Germany: Springer-Verlag, pp.
442–453.

Fridlyand, J., Snijders, A., Ylstra, B., Li, H., Olshen, A., Segraves, R., Dairkee, S., Tokuyasu, T.,
Ljung, B., Jain, A., McLennan, J., Ziegler, J., Chin, K., Devries, S., Feiler, H., Gray, J., Waldman,
F., Pinkel, D., and Albertson, D. (2006), “Breast tumor copy number aberration phenotypes and
genomic instability,” BMC Cancer, 6, 96.

Fridlyand, J., Snijders, A. M., Pinkel, D., Albertson, D. G., and Jain, A. N. (2004), “Hidden Markov
models approach to the analysis of array CGH data,” J. Multivar. Anal., 90, 132–153.

Galea, M. H., Blamey, R. W., Elston, C. E., and Ellis, I. O. (1992), “The Nottingham prognostic index
in primary breast cancer,” Breast Cancer Research and Treatment, 22, 207–219.

Galfalvy, H. C., Erraji-Benchekroun, L., Smyrniotopoulos, P., Pavlidis, P., Ellis, S. P., Mann, J. J.,
Sibille, E., and Arango, V. (2003), “Sex genes for genomic analysis in human brain: internal controls
for comparison of probe level data extraction,” BMC Bioinformatics, 4, 37, PMID: 12962547.

Gey, S. and Lebarbier, E. (2008), “Using CART to Detect Multiple Change Points in the Mean for
Large Sample,” http://hal.archives-ouvertes.fr/hal-00327146 v1/.



BIBLIOGRAPHY 267

Goeman, J. J., van de Geer, S. A., de Kort, F., and van Houwelingen, H. C. (2004), “A global test for
groups of genes: testing association with a clinical outcome,” Bioinformatics (Oxford, England), 20,
93–99, PMID: 14693814.

Gray, J. W., Collins, C., Henderson, I. C., Isola, J., Kallioniemi, A., Kallioniemi, O. P., Nakamura, H.,
Pinkel, D., Stokke, T., and Tanner, M. (1994), “Molecular cytogenetics of human breast cancer,”
Cold Spring Harbor Symposia on Quantitative Biology, 59, 645–652, PMID: 7587125.
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(2007), “Breaking the waves: improved detection of copy number variation from microarray-based
comparative genomic hybridization,” Genome Biology, 8, R228.

Marty, B., Maire, V., Gravier, E., Rigaill, G., Vincent-Salomon, A., Kappler, M., Lebigot, I., Djelti, F.,
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