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Résumé de la these

I Introduction

Une grande partie de la théorie des communications numériques a été développée pour des transmis-
sions point-a-point. Dans de tels transmissions, il y a une seule source d’information a chaque extrémité
du canal, le message ou information a transmettre a I’émetteur et le signal ou séquence recue au récepteur.
Avec cela comme scénario conventionnel, d’autres sources potentielles d’information & I’émetteur ou au
récepteur sont appelées “informations adjacentes”. Une information adjacente peut étre disponible seule-
ment a ’émetteur, seulement au récepteur, ou aux deux extrémités du canal.

La théorie des canaux avec information adjacente disponible seulement & I’émetteur a commencé avec
les travaux de Shannon [1] dans le cas ou cette information est connue de maniere causale seulement
& Pémetteur, et puis de Gel’fand et Pinsker [2] dans le cas ou elle est connue de maniére noncausale
seulement & 1’émetteur. Au début des années quatre-vingts, Heegard et El Gamal [3] traitérent le probleme
du stockage de données dans une mémoire défectueuse (writing on computer memory with defective cells).
Ces résultats, bien que non constructifs, démontrerent les performances optimales escomptées quand
la communication est controlée par un état aléatoire qui modélise I'information adjacente. Aussi, cela
mit une assise pour I’étude de cette branche des communications. Pour les trente années qui suivirent,
beaucoup d’ingénieurs et chercheurs s’attechérent a concevoir des codes et systémes qui approchent au
mieux les performances optimales promises par la théorie, et ce pour diverses applications. Un diagramme
bloc d'un canal point-a-point avec information adjacente diponible, de maniere non-causale, seulement
a I’encodeur est représenté par Figure 2.

Sn

WeM ——s xrw,5m)  ——= plyle,s) =Y —= WeM

F1GURE 1 — Canal avec information adjacente disponible de maniére non-causale seulement a I’émetteur.

Les applications du codage avec information adjacente couvrent beaucoup de domaines de transmis-
sion et de compression de données. Les modeles de transmission de données trouvent utilité, par exemple,
dans les communications sans fils ou le coefficient d’évanouissement du canal représente 'information ad-
jacente, dans les lignes DSL ou le ”cross-talk” crée par différentes lignes regroupées ensemble représente

information adjacente a 1’émetteur n naux iffusion (br nn u nné
I'information adjacente a 1’émetteur, dans les canaux de diffusion (broadcast channel) ot les données
destinées a un utilisateur particulier peuvent consitituer une information adjacente d’un point de vue
de la transmission vers un autre utilisateur. Les modeles de compression de données trouvent utilité,
par exemple, dans le domaine de codage distribué de sources ou une observation bruitée de la source au
décodeur représente 'information adjacente, dans les réseaux de capteurs ou une information commune
)
qui est partagée par différents terminaux est 'information adjacente, et dans la télévision numérique



haute définition ou le signal analogue est 'information adjacente au décodeur. L’utilisation du codage
avec information adjacente en transmission et en compression de données sera élaborée plus-bas.

Dans cette these, 'accent sera mis sur un autre probléeme qui, comme on le montrera, peut étre vu a la
fois comme un probléme de transmission de données et un probleme de compression de données. Il s’agit
du probléeme du marquage de 'information. La beauté du probleme du marquage de I'information réside
dans plusieurs aspects. D’abord, parcequ’il connecte, de fagon assez élégante, la théorie de 'information
aux deux problemes riches de codage et de communications numériques. Et puis, parcequ’il épouse
de facon quasi-immédiate le probleme de communication avec information adjacente a 1’émetteur. Et,
finalement, parceque des solutions implémentables pour le probléme de codage avec information adjacente
fournissent des idées et des intuitions pour le probleme dual de codage de source avec information
adjacente disponible au récepteur.

1 Marquage d’information et applications

Le marquage d’information traite le probleme de transmission d’'un signal, généralement faible, en
Iencodant au sein d’un autre, généralement fort. Le mot de code ou signal congu pour la transmission
est appelé “marque”. L’utilisation de tels codes possede de nombreuses applications, dont celle de la
sécurisation de la transmission multimédia dans les réseaux. Transmettre des signaux en les insérant
dans d’autres, plus forts, est un probleme “non-conventionnel”, mais qui, comme on le montrera, aide a
mieux comprendre certain problemes conventionnels.

1.1 Transmission de données

L’utilisation des techniques de marquage d’information n’est pas limitée au contexte de sécurisation
de signaux multimédia. Elle comprend aussi des applications plus conventionnelles dans le domaine de la
théorie d’information et de communications. Par exemple, il a été récemment trouvé [4-6] que les codes
construits sur base de techniques de marquage d’information constituent une alternative intéressante au
codage par superposition bien connu en théorie de I'information pour le canal de diffusion (broadcast
channel, BC). Aussi, le marquage d’information peut étre utilisé pour concevoir des codes pour le canal
a acces multiple (multiple access channel, MAC) [6]. Les communications utilisant des systemes multi-
antennes en général, et plus spécialement dans des réseaux de diffusion, promettent une large utilisation
des techniques de "dirty paper coding” (DPC) [7] qui sont liées de fagon inhérente au marquage d’in-
formation [8-10]. Par ailleurs, les transmissions hybrides, analague et numérique, peuvent utiliser des
techniques de marquage de l'information pour permettre une réutilisation ou un partage du spectre et
bande passante.

En réalité, les codes de marquage d’information peuvent avoir beaucoup d’avantages, mais aussi
quelques inconvénients liés essentiellement & leur complexité, par rapport a d’autres types de codes qui
sont plus connus et plus généralement utilisés en transmission de données.

1.2 Compression de données

Comme il est bien connu qu’il existe une dualité entre les problemes de transmission de données et
les problémes de compression de données [11], le marquage d’information joue en compression un roéle
au moins aussi important que celui qu’il joue en transmission. C’est sous cet angle de dualité que le
probleme de codage de source avec information adjacente disponible au décodeur mais pas a l’encodeur
est souvent traité dans la littérature [12,13].

Les codes de marquage d’information illuminent beaucoup d’aspects de codage pour la transmission
multimédia dans les réseaux. En particulier, le probleme d’encodage d’un flux source en vue de sa
reconstruction avec une certaine fidelité & un point distant ou le décodeur a acces a une version bruité de
ce méme flux est fondamentalement un probleme de codage de source avec information adjacente connue
au décodeur ; et, de ce fait, peut donc étre traité avec une approche de type marquage d’information. Il



en est de méme pour le probleme d’encoder séparément des flux de sources distinctes, de les transmettre
et de les reconstruire de fagon jointe au niveau d’un décodeur distant [14].

2 Motivations

Cette these traite le probleme de codage avec information adjacente disponible seulement & 1’émetteur,
de maniere non-causale. Vu le contexte applicatif, on réferera plus souvent au probleme de sécurisation de
flux multimédia dans un environnement cellulaire comme cadre illustratif. Mais les résultats developpés
dans ce travail sont suffisamment généraux et devraient s’appliquer dans bien d’autres contextes. Les
spécificités du marquage d’information pour la sécurisation du transfert multimédia en milieu cellulaire
seront mis en avant quand pertinent.

De part sa relative jeunesse somme sujet de recherche, le marquage d’information pose de nom-
breuse problématiques. L’essentiel de cette these est voué a trouver des solutions a certaines de ces
problématiques. On traitera en particulier les aspects suivants.

— Conception de nouvelles techniques de transmission pour les canaux avec information adjacente
disponible a I’encodeur dans un contexte mono-utilisateur ; les techniques classiques basées, par
exemple, sur les codes turbo ou LDPC n’étant pas adaptées a cette situation.

— Etude des performances optimales et conception de codes efficaces, a complexité réduite, pour deux
canaux multi-utilisateurs contrdlés par un état aléatoire, le canal de diffusion (BC) et le canal a
acces multiple (MAC).

— Etude de la sensibilité des techniques proposées a la connaissance du canal. En particulier, on
étudiera comment les performances obtenues se dégradent en présence d’'une connaissance partielle
de I’état du canal.

Le probleme de marquage d’information peut étre traité sous divers angles, parmi lesquels la théorie de
I'information, les communications numériques, le traitement de signaux multimédia, I’estimation statis-
tique et les mathématiques. Dans ce travail, nous suivrons principalement des approches théorie de
I'information et communications. D’autres approches seront parfois évoquées, mais seulement de fagon
succinte. Ce choix est motivé par les raisons suivantes.

— Bien que maintenant reconnue comme telle, ’analogie avec la transmission conventionnelle n’a été
jusqu’a nos jours exploitée que rarement. Le probleme de marquage d’information devrait pour-
tant s’appuyer sur les avancées récentes des communications conventionnelles. Cela est vrai pour
la conception de codes et allocation de ressources, par exemple. D’autres problématiques, comme
celle d’annulation d’interférences, nécessiteront d’autres techniques. Par ailleurs, le marquage d’in-
formation en contexte multi-utilisateurs devrait s’inspirer des nouvelles avancées en theorie de
I'information pour les réseaux.

— De facon duale, le marquage d’information, par le moyen de son modele de communication sim-
plifié (canal gaussien, information adjacente gaussienne, précodage plus simple, ...) aide & mieux
appréhender des problemes plus complexes.

— Comme les domaines d’application, la richesse de la théorie et les interconnections avec d’autres
problémes continuent a croitre, les résultats obtenus dans cette these devraient trouver utilité dans
un certain nombre de problemes liés.

2.1 Contributions dans cette thése

Dans cette these, on s’attache a I’étude de performances et la conception de codes pour une trans-
mission fiable sur un canal controlé avec un état aléatoire connu de maniére non-causale seulement a
lencodeur. Le canal peut étre (i) mono-utilisateur ou (ii) multi-utilisateurs, (iii) connu de fagon parfaite
ou (iv) seulement partielle. Les stratégies de codage développées dans ce travail s’appuient sur la tech-
nique de ”dirty paper coding” (DPC) développé by Costa [7] et de nombreux travaux traitant les canaux
controlés par états aléatoires, d’'un point de vue étude de performances, constructions et dualités. Une
revue de littérature est diponible & [15]. Le détail de ces contributions est résumé dans les chapitres qui



suivent.

II Canal avec Information Adjacente

1 Canal discret sans mémoire

On considére le modele représenté par Figure 2. On souhaite transmettre un message W € {1,..., M}
au récepteur en n utilisations du canal. La sequence S™ = (S1, ..., Sy) représente une séquence aléatoire
qui controle le canal, dans le sens o, a 'instant 4, la probabilité de transition du canal dépend de S = s;.
On suppose que les éléments S;, i = 1,...,n, de S™ sont indépendents entre eux et sont tous générés
avec la méme probabilité de distribution Q)g.

Sn

WeM —e xrw,5m)  ——= Pyl s) Y We M

FIGURE 2 — Canal avec information adjacente disponible de maniére non-causale seulement & I’émétteur.

Lorsque I’émetteur et le récepteur ne connaissent pas 1’état aléatoire S™, la capacité du canal est
obtenue [11] en maximisant 'information mutuelle entre l'entrée et la sortie du canal, sur toutes les
distributions de probabilités p(z) possibles de l'entrée X,

Coo = maxI(X;Y), (1)
p(z)
ou l'indice 00 refere & la non-connaissance de 1’état du canal ni & émetteur ni au récepteur, et I(-;-)
est 'information mutuelle de Shannon. Si, au contraire, ’émetteur et le récepteur connaissent I’état du
canal, la capacité est donnée par
Cy1 = max I(X;Y]9). (2)
p(x]s)

Dans le cas ou seul I’émetteur ou seul le récepteur connait I’état du canal, il se crée une assymétrie
qui rend le probléeme moins conventionnel. On parle alors d’une information adjacente ou latérale. On
dit que l'information adjacente est connue de maniere causale si, a tout instant i, elle est connue pour
tous les instants antérieurs j < i. On dit que 'information adjacente est connue de maniere non-causale
si la séquence complete S™ est connue avant le début de la transmission.

Lorsque seul le récepteur connait 1’état du canal, avec ou sans délai, la capacité du canal est donnée
par (2) mais en restreignant la maximisation aux distributions de probabilités dans lesquelles 'entrée du
canal est indépendante de 1’état aléatoire S, ¢-a-d,

Co1 = rn(a))(I(X;Y|S). (3)
p(x

Il est & noter que (3) est moins large que (2), a cause de la restriction qui est faite au niveau du choix
des distributions de probabilités de ’entrée X qui sont admissibles.
Parmi les situations assymétriques, celles ou seul I’émetteur connait ’état du canal sont plus difficiles
a analyser. La capacité du canal avec information adjacente connue seulement & I’émetteur de maniere
causale est donnée par [1]
Coo = max I(T;Y). (4)
p(t)
L’ensemble des distributions admissibles pour (4) est plus large que celui pour (1), et la capacité est donc
plus grande dans ce cas [1]. Dans le cas ot U'information adjacente S™ est connue seulement & 1’émetteur,



mais de maniere non-causale, le probleme est plus difficile, et la capacité de ce canal a été établie par
Gel’fand et Pisnker [2] en 1980. Le résultat peut étre énoncé comme suit.

Theorem 1 (Gel’fand and Pinsker [2]) La capacité du canal discret sans mémoire Wy |x g avec
entrée X et sortie Y et information adjacente S™ connue seulement a l'émetteur, de maniére non-
causale, est donnée par

Cio = max){I(U;Y)—I(U;S)}, (5)

p(u,z|s

ot la mazximisation est par rapport a toutes les distributions jointes de la forme

p(s,u,z,y) = p(s)p(u, z|s)p(y|z, s) (6)

et U est une variable auziliaire prenant des valeurs dans un alphabet de taille bornée (|U| < |X| + |S])
et telle que U — (X,8) = Y est une chaine de Markov.

Preuve : La preuve du Theorem 1 peut étre trouvée dans [2].

Figure 3 représente I'opération d’encodage pour le probleme de Gel'fand-Pinsker. L’encodeur et le
décodeur partagent la connaissance d’un dictionnaire composé de |U| =~ e"I(UY) =€) mots de codes u™.

en(C72e)

Les mots de code de ce disctionnaire sont répartis, de fagon aléatoire, en =~ sous-dictionnaire

(I(UiS)+€) mots de codes. Etant donnée une séquence S™ = s, et un message

contenant chacun =~ e”
W=iell: e”(C*QC)] a transmettre, ’encodeur cherche, dans le sous-dictionnaire d’indice ¢, une sequence
U™ qui est conjointement typique avec s. Les propriétés du codage aléatoire garantient 1’existence d’un
tel mot de code [16]. Ensuite, ’encodeur transmet une séquence x obtenue en utilisant s et u, ¢-a-d,

x = f(s,u) ou f est une fonction déterministe.

Ug such that
(U, So) jointly typical

I '{ i (I (U,S)+e)
So . H - U = »9)+2) codewords
- H in each bin
& H
=2 =
ER H
Il E
|| = e WY)=2) §id codewords U

F1GURE 3 — Illustration de la procédure d’encodage pour le probleme de Gel’fand-Pinsker.

2 Canal gaussien sans mémoire

Nous décrivons maintenant le probleme de marquage d’information comme une instance particuliere
du probleme de Gel’fand-Pinsker. Le systéme de marquage d’information mono-utilisateur auquel nous
nous intéressons peut étre représenté par le diagramme de la Figure 4. On souhaite transmettre un
message m, pris dans un certain alphabet M = {1,--- | M}, ¢-a-d, m € M. Le message est encodé en un
signal x et puis transmis sur le canal. La transmission sur le canal est corrompue par un état aléatoire s
additif qui est connu au niveau de ’émetteur au moment de I’encodage.

Dans un contexte de transmission multimédia, I'information adjacente s peut représenter un contenu
multimédia dans lequel on voudrait insérer une marque m qui pourra alors servir comme tampon pour
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FIGURE 4 — Marquage d’information vu comme un probleme de codage avec information adjacente a
I’émetteur.

la vérification de I'intégrité du contenu par exemple. L’insertion de cette marque ne devrait pas dégrader
sérieusement la qualité du contenu multimédia, et cela peut se traduire par une contrainte sur la puissance
de type

Ex[X? < P. (7)

Le récepteur regoit
y=X+s+vV (8)

ou v représente le bruit ambiant et devra alors estimer le message transmis. En général, ’encodage et
le décodage peuvent aussi dépendre d’une clé secrete k qui accroitra le niveau de sécurité. Soit W() la
fonction de décodage au récepteur. Une erreur de décodage se produit si W(y, k) # m. On désigne par
Pr(le) la probabilité d’erreur moyenne

P & % Z Pr{W(y,k) + m|m}. (9)
meM

D’un point de vue de la transmission de ce message ou marque m, le contenu héte s constitue une
interférence qu’il faudra alors combattre par des techniques de précodage. L’encodage et le décodage
devront donc étre congus conformément.

La relation d’entrée/sortie (8) peut étre vue comme une instance particuliere du probléme de Gel’fand-
Pinsker — I'étant S étant additive et i.i.d. gaussienne dans ce cas. La capacité du canal a été obtenue par
Costa dans citeC83.

Theorem 2 (Max H. M. Costa [7]) La capacité du canal Y™ = X™ + S™" + V™, ot V™ est un bruit

blanc gaussien de variance N, S™ est une information adjacente additive i.i.d gaussienne de variance Q et
n

connue de maniére non-causale seulement a I’émetteur et l'entrée X™ € R™ du canal vérifie — E Xi2 <
n
i=1
P, est donnée par

1 P
= -1 1+—. 1
Cho 2Og(+N) (10)

Preuve : La preuve du Theorem 2 peut étre trouvée dans [7].

III Codage algébrique et codage conjoint

Le resultat de Costa [7] pour le probleme de Gel’fand-Pinsker dans le cas gaussien n’est pas constructif,
dans le sens ot il est basé sur un codage aléatoire généralement non faisable en pratique. Dans ce chapitre,
nous examinons la construction de codes de complexité réduite, et donc implémentable en pratique, pour
le probleme de Costa. Nous nous basons sur les réseaux de points [17], codes & structures algébriques et
de complexité réduite.



1 Codes strcuturés pour le probléeme de Costa

En 2002, il a été démontré [18] que, pour le probleme de Costa, des codes & structure permettent
d’atteindre asymptotiquement les performances optimales prédites par la théorie. Le schéma de codage
est représenté sur la Figure 5, ot A est un réseau de points de dimension n.

X
a

me M
=

1\( s v k
o) &1’@—’@_—’ mod A X ( ) @Y_’G?OC j_ mod A meM
a

Fi1GURE 5 — Codage algébrique pour le probleme de Costa.

L’encodeur et le décodeur ont acces & une clé aléatoire commune k. La fonction ¢(-) associe, un-a-un, les
indices m € {1,..., M} & un ensemble de vecteurs C,, = {¢,, : m = 1,..., M}. L’ensemble C,, forme
un dictionnaire ou constellation qui sera spécifié dans la suite. La clé k peut servir comme dither, une
technique de maximisation de capacité qui est bien connue [18]. Dans la suite, on considére des signaux
(ou trames) de taille n, la dimension du réseau de points utilisé. Nous utiliserons la reduction modulo la
cellule de Voronoi V du réseau de points, définie de la facon suivante : t mod A = t — QA (t) € V(A) ot
le quantificateur Qx(+) est telque la quantification de t € R™ résulte en le point du réseau de points le
plus proche de t. Le signal recu est donné par

y=x+s+v, (11)

somme du signal émis, de I’état du canal qui joue le role d’une interférence connue da fagon noncausale
a I’émetteur et du bruit du canal.
Les opérations d’encodage et de décodage sont définies par

x(s;m,A) = (¢, + k — as) mod A, (12a)
m = argmin min [Jay —k — A (12b)
mem A€Am

Notons que la contrainte de puissance moyenne
1
~Ex[X?S=5,C,, =cy,] =P (13)
n

est vérifiée indépendemment des valeurs individuelles de c,, et s.

Le schéma de codage décrit par (12) s’appelle “modulation indexée par la quantification” ou Quan-
tization index modulation (QIM) [19]. Le parametre a peut étre interprété comme étant le coeffient de
Wyner. Le choix optimal de ce parametre dépend du réseau de points A utilisé. Le cas o = 1 correspond
a un précodage de type “Zéro-Forcing” et est appelé ZF-QIM. Le cas a # 1 correspond a une forme
améliorée de la ZF-QIM est est appelé “Distortion-Compensated QIM” (DC-QIM).

Principalement, le récepteur calcule y’ = (oy — k) mod A. En utilisant le spropriétés de la réduction
modulo et en écrivant ay =y — (1 — )y, ¥’ peut étre réecrite sous la forme [5]

Y = (cm +av—(1—a)x) mod A. (14)

Lemma 1 (Inflated Lattice Lemma [20]) Le canal de C,,, o Y', defined by (11), (12a) and (14) est
équivalent en distribution au canal

Y' = (C,, + V') mod A, (15)
ot V' est indépendent de C,, et est donné par
V' = (aV — (1 — a)U) mod A, (16)

et U est une variable aléatoire uniforme sur V(A) et indépendente de V.



2 Capacité

La transmission sur le canal de la Figure 5 est équivalente & celle sur un canal modulo (modulo A)
avec entrée C,,, et bruit V'; et la capacité du canal est donnée par

C(A) = max (g, V(1) ~ h(V)) < 3 log (1 + %) . (17)

Lorsque n — oo, le bruit C(A) tend vers la

Pour une valeur finie n de la dimension du réseau de points, le bruit V' n’est pas gaussien. Cela rend
Pintegration sur la région de Voronoi dans (17) pas évidente. Les courbes de Figure 6 montrent la capacité
du canal pour différents choix du réseau de points. Ces réseaus de points, de dimensions 1, 2, 4 et 8, sont
choisis pour leurs efficacité en terme de codage de source (gain de forme) et de canal (gain de cana). Les
courbes, obtenues par intégration numérique de (17), montrent le débit maximal en bit par dimension
obtenu avec chacun des réseaux de points.

3

Capacity in bit per transmission

WNR [dB]

FIGURE 6 — Courbes de capacité en fonction du rapport signal-a-bruit WNR = 101log;,(P/N) obtenues,
de bas en haut, avec les réseau de points Z, As, D, et Fs. En lignes pleines : courbes de capacité
correspondants & DC-QIM. En lignes interrompues : capacité AWGN et capacité asymptotique lorsque
n — oo. En lignes pointillées : courbes de capacité correspondants a 'approche Zero-Forcing.

Nous observons que :

i) A cause de son gain de forme minimal, le réseau de points cubique offre le débit le plus faible.
I’écart par rapport a la capacité AWGN est particulierement important pour les faibles valeurs
de WNR. A des débits faibles (en dessous de 0.1 bit/dimension), un écart d’a peu pres 4 dB est
observé. A fort rapport signal a bruit WNR, cet écart est déja comblé partiellement par 'utilisation
des réseaux de points Ay, Dy et FEg.

il) L’amélioration apportée par le gain de forme v5(A) du réseau de points est particulierement
visible & des débits élevés. A des débits faibles, parcontre, le gain de forme est faible lui aussi et
Pamélioration observée est marginale. Cela est en accord avec l'approximation [21]

s (A) & %(1 — 9728y, (18)

pour des constellations finies. La convergence envers la débit optimal, c-a-d. la capicité C™8X d’un



canal point-a-point gaussien est telle que
1
0<CMaX _ 0y < 3 log, (2meG(A)). (19)

iii) L’approche DC-QIM offre des débits qui sont meilleurs que ceux avec 'approche ZF-QIM, surtout
a faible rapport signal & bruit WNR. Pour des débits plus grands que 2 bits/dimension, le gain n’est
pas significatif. Notons aussi que plus la dimension n du réseau de points est grande, meilleures
sont les deux approximations suivantes (bornes inférieures),

1/1 1
Op =~ — (5 log(1+ P/N) — 3 log 27T€G(A))
n

~ max {0, %10&%}. (20)

3 Probabilité d’erreur et codage conjoint

Le gain en débit obtenu en utilisant des réseaux de points de dimensions de plus en plus élevées
est observée surtout a fort rapport signal-a-bruit. A faible rapport signal-a-bruit, la probabilité d’erreur
est un critere plus pertinent. Comme nous le montrerons dans cette these, la conception de codes qui
minimisent la probabilité d’erreur pour le probleme de Costa est principalement un probleme de codage
source-canal conjoint. Avec un codage basé sur des réseaus de points tel que celui que nous avons présenté
succintement dans la section précédente, cette d’erreur dépend principalement de la distance minimale
entre les cosets du réseau de points, définie par

L 3 A
dmzn - 1§i,_]n§n]\r}:i7ﬁj HAZ AJ ||’
= min min [IAs — Ajll- (21)

(1,9)i#3] (A, X)EA; XA

Cette probabilité d’erreur peut étre exprimée en utilisant la borne de I'union. Une bonne approximation
est obtenue en tenant compte que des deux cosets les plus proches et peut se mettre sous la forme

daz . 1 2 .
P o~ ® min - _ Zmin 29
: ( 4N><2exp( ). (22)

—+o0
1
ou ®(u) = / \/—2_71_6_“2/2du.

Nous considérons le probleme de conception de codes pour la transmission sur le canal de la figure 5.
Nous choisissons le dictionnaire C,,, = {c1, co, ..., cpr} de maniere & offrir un bon compromis fiabilité de la
transmission et débit de transmission. Ce probleme, de maniére générale, n’est pas facile a résoudre. Nous
nous attachons & le résoudre dans certains cas particuliers, en nous basant sur la structure géométrique
du réseau de points. Un critere simple permettant de quantifier jusqu’a quel point un codage satisfait les
contraintes de fiabilité et de débit est

1 dpn; dmi
U= min — 2—nR/2 min ) 23
VM nP vnP (23)

Notons qu’aussi bien d,,;, que R = %1og2 M dépendent du choix du dictionnaire ou constellation C,,.
Considérons, par exemple, le réseau de points hexagonal visible dans Figure 7. La constellation C,,
peut étre construite a partir des deep holes du réseau de points ou de ses kissing points. Notons que
seulement un sous ensemble des deep holes et kissing points peut étre utilisé comme cosets leaders car
des translations du méme réseau par différents cosets leaders peuvent engendrer le méme coset.
L’utilisation de deep holes pour la construction de cosets du réseau de points est mieux adapté aux
situations ou le débit souhaité est faible. Dans ce cas, la probabilité d’erreur est la meilleure possible si
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FIGURE 7 — Le réseau de points hexagonal As dans le plan. Les points de A, sont les centres des cercles
(de rayon p). Les deep holes - situés a une distance 7., de Ag- sont indiqués par les carreaux bleux et les
cercles rouges (Np, N,*) = (6,2). Les kissing points sont indiqués par des fleches (K (A), Ni*) = (6, 3).

on utilise un réseau de points, puisque la distance entre les cosets est maximisée dans ce cas. L’utilisation
de kissing points est, quant a elle, plutdt adaptée aux situations ou le débit souhaité est légérement plus
élevé, sans pour autant qu’il soit important. Pour un débit plus élevé, une méthode plus générale consiste
que nous proposons consiste a utiliser la Construction A. Construction A [17] est un moyen de concevoir
un réseau de points A = C(n, k) + 2Z™ de distance minimale

dpmin = min(2, Vd), (24)

a partir d’un code linéaire C'(n, k) de distance de Hamming d.
Notre approche que nous exposerons en détails dans le chapitre 3 peut étre résumée comme suit :
i) Choisir vecteurs binaires ay, ..., ay- situés a I'intérieur de la sphere de Hamming centré a I'origine
0 et de rayon d. Ces vecteurs sont tels que

dH(a;,c¢) < d, Y(i,c) € {1,..., N} x C(n, k)

ou dH dénote la distance de Hamming.

ii) Associer les vecteurs ay, ... ,ans 2 N} vecteurs cq, .. .;cnx de normes minimales et situés a
Pintérieur la région de Voroni V(A) du réseau de points, avec ¢; = a; + 2z,z € Z"™. Finalement,
choisir C,,, = {cy,...,cn+} comme constellation pour la construction des cosets.

4 Codage source-canal conjoint et réseaux imbriqués

Le probleme de Costa est en premier lieu un probleme de codage canal, ¢-a-d, pour la transmission
de données. Par contre, étant donné un message W = i, '’encodeur doit trouver un mot de code U; qui
est conjointement typique [16] avec I'information adjacente s. Fondamentalement, ceci est un probléme
de codage de source. La conception de bons codes pour le probleme de Costa est donc principalement
un probleme de codage source-canal conjoint.

Dauns le chapitre 3, nous montrons que des codes ayant de bons gain de codage (codage canal) et gain
de forme (codage de source) peuvent étre congus en utilisant des réseaux de points imbriqués. La structure
utilisée est représentée par Figure 8. Ensuite, nous utilisons la Construction A pour concevoir des codes
imbriqués ayant de bonnes propriétes de codage et de quantification. Notamment, nous exposons une
approche basée sur des codes Reed Solomon, qui sont mazimum distance separable (MDS). En évaluant
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FIGURE 8 — Schéma d’encodage/décodage pour le probleme de Costa utilisant deux réseaux de points

imbriqués. Le réseau de points externe (coarse lattice) Ao doit étre un bon code source et le réseau de
points interne doit étre un bon code canal. A; should be a good channel code.

les performances de ce schéma de codage, nous démontrons sa supériorité par rapport aux schémas
existants dans la littérature.

IV Marquage Multiple et Théorie de I'Information

Dans ce chapitre, nous traiterons le probleme d’encodage de plusieurs marques dans le méme signal
hote avec différentes constraintes de distorsion. Nous revelerons un lien étroit avec la théorie de 'informa-
tion pour les canaux multi-utilisateurs dépendants de parametres aléatoires. Nous montrons notamment
que la recherche dans le domaine de conception de bons codes pour marquage multiple de I'information
peut bénéficier des avancées toutes récentes dans le domaine de la théorie de I'information pour canaux
canaux multi-utilisateurs dépendants de parametres aléatoires. Par exemple, le probleme de 'insertion de
deux marques, une marque robuste et une marque fragile, dans un méme signal multimédia de maniere a
ce qu’elles soient extrainte par un méme décodeur mais avec des contraintes de distorsion différentes est
prinicpalement un probleme de transmission de données sur un canal de diffusion dépendant d’un état
aléatoire connue seulement a ’émetteur. De maniere analogue, le probleme de 'insertion de deux mar-
ques dans le méme signal héte par deux utilisateurs différents, avec ou sans des contraintes de distorsion
différentes, est prinicpalement un probleme de transmission de données sur un canal & acces multiple
dépendant d’un état aléatoire connue seulement a I’émetteur.

Nous montrons les limites théoriques de marquage d’information dans le cas gaussien. Ensuite, nous
montrons que ces limites théoriques peuvent étre atteintes a ’aide de codes structurés. Nous traitons
d’abord le cas de deux marques et puis nous généralisons notre anlyse au cas de plusieurs marques.

1 Marquage de I'information sur un canal de diffusion

Nous voulons insérer deux marques différentes dans le méme signal hoste S. Les deux marques devront
étre vérifiées séparément par deux entités différentes. La deuxieme marque doit étre robuste et survivre a
toute atténuation pouvant étre modélisée par un ajout de bruit i.i.d. gaussien de variance N». La premiere
marque doit étre d’une robustesse moindre, voire fragile, et survivre a toute atténuation pouvant étre
modélisée par un ajout de bruit i.i.d. gaussien de variance Nj, avec N; < N,. L’insertion des deux
marques ne doit pas induire une distorsion supérieure a P. La premiere marque est encodée en un signal
X de puissance vP et la deuxieme marque est encodée en un signal de Xs, indépendent de X; et de
puissance (1 —v)P avec 0 <y < 1.

Considérant des bruits additifs i.i.d. gaussiens, le modele de marquage décrit plus haut peut étre
modélisé par la transmission sur un canal de diffusion additif gaussien dégradé avec information adjacente
connue de fagon noncausale seulement a ’émetteur comme représenté par la figure 9. Le décodeur ¢,
i = 1,2, décode 171\/1 a partir du signal recu Y; = X; + X3 + S 4+ Z; & un taux de transmission R; et
déclare une erreur si V/[Z = W;.

Région de capacité : Les débit maximaux auquels les deux marques peuvent étre insérées sont
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S~ N(0,Q) Z1 ~ N(0,Ny)
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FIGURE 9 — Modele de marquage multiple (deux marques) vu comme un probléme de transmission sur
un canal de diffusion avec information adjacente connue, de fagon noncausale, seulement a I’émetteur.

contenues dans I'enveloppe complexe de toutes les paires (R1, Ro) vérifiant

< = _)
Ry 2log2 (1 + 1) , (25a)
1 (1-~)P
Ry < =1 14+ —. 25b
2_20g2( z N2) (25b)

La région de capacité (25) peut étre atteinte en utilisant les deux dirty paper coding (DPCs) suivants :
1. Canal Yo (DPC1) : X5 = Uy — a8, ou

1—~y)P
Us ~ N (a2S, (1 —7)P), avec ag = % (26)
2. Canal Yy (DPCQ) Xy =U; —o (S + Xg), ou
Up ~ N (a1(S + X3),vP) - P (27)
1 aq 2),7Y ,avecal—rijLNl.

DPCs scalaires et région de capacité : Nous évaluons les performances obtenues en utilisant des
codes structués pour réaliser le codage décrit ci-dessus. Nous montrons aussi (voir Chapitre 4) que la
région de capacité (25) peut étre atteinte a 'aide d’un codage utilisant des réseaux de points de bonnes
propriétés.

Soit y'; = y1 — uz2. Dans le cas d’un codage scalaire, nous montrons que les débits offerts sont contenus
dans ’enveloppe convexe de toutes les paires (]/%;, ]TE;) vérifiant

Ry <max I(rj; W), avec iy = Qa, (y}) - ¥} (28a)
[e3]

]/%; < max I(rq;Wa), avec ro = Qa,(y2) — y2. (28b)

De bonnes approximations des valeurs des paramétres a; et as permettant de maximiser (28) sont

R P (L-—7)P
(a1, a2) = <\/7P 271N, \/(1 — )P +2.71(vP + N2)> ' (29)

Dans chapitre 4, nous montrons ces résultats rigoureusement et nous les étendons aux cas de plusieurs

données par

utilisateurs et de réseaux de points de dimensions plus élevées. Aussi, nous évaluons les probabilités
d’erreur obtenues

2 Marquage de l’information sur un canal a acces multiple

Nous voulons & présent insérer deux marques différentes dans le méme signal hoste S. Mais, cette
fois-ci, l'insertion est faite par deux entités physiques différentes et le décodage est réalisé par le méme
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récepteur. Les deux marques, insérées avec des puissances différentes, subissent donc la méme atténuation
modélisée par un ajout de bruit i.i.d. gaussien Z de variance N. Nous ne supposons aucune forme
de coopération entre les deux encodeurs, c’est & dire que X; (de puissance P;) et Xy (de puissance
Py)sont statistiquement indépendants. La distorsion totale induite par le marquage ne doit cependant
pas dépasser un certain seuil P, ¢-a-d., P; + P, < P. Le récepteur re(;01t Y =X;+X3+S+Z et forme
une estimation (Wl, Wg) de (Wy, W3). 11 déclare une erreur lorsque (Wl, Wg) # (W, Wa).

S~ N(0,Q) Z ~ N(0,N)

X1 EXi3 <Py S+X Y o
Wi — =4 Encoder 1 -+ -+ Decoder = (W1,W2)

?

W2 ——=1 Encoder 2

X, : E[X2% < P

FIGURE 10 — Modele de marquage multiple (deux marques) vu comme un probléeme de transmission
sur un canal a acces multuple avec information adjacente connue, de fagon noncausale, seulement a
I’émetteur.

Le modele de marquage décrit plus haut peut étre modélisé par la transmission sur un canal & acces
multiple additif gaussien avec information adjacente connue de facon noncausale seulement a I’émetteur
comme représenté par la figure 10.

Région de capacité : Les débit maximaux auquels les deux marques peuvent étre insérées sont
contenues dans I'enveloppe complexe de toutes les paires (Rq, Ro) vérifiant

1 P
Rl < 510g2 (1 + N) 5 (303“)
1 P
1 P+ P
Ry + Ry < 3log (1 + %) : (30c)

Cette région est délimitée par les points (A), (B), (C) and (D) sur la figure 30. Le point (B) par
exemple peut étre atteint en utilisant un codage successif approprié a 1’aide de deux DPCs, comme suit :
1. DPC1: X1 = U1 — als, ou

P NP
U; ~ S, P, =(1-— = . 31
1~ N (18, Py), avec ag = ( a2)P1+N CESES (31)
2. DPC2:X2:U27OAQS, ou
Uy ~ N (28, P) , avec i (32)
~ 38, ,avecag = ———————————,
2 2 p) 2 Pt (P +N)

DPCs scalaires et région de capacité : Nous évaluons les performances obtenues en utilisant des
codes structués pour réaliser le codage décrit ci-dessus. Nous montrons aussi (voir Chapitre 4) que la
région de capacité (30) peut étre atteinte a 'aide d’un codage utilisant des réseaux de points de bonnes
propriétés. Pour un réseau de points A de dimension n et de région de Voronoi de volume V(A), nous
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FIGURE 11 — Région atteignable obtenue avec un codage idéal (ligne continue) et en utilisant un réseau
cubique (ligne interrompue). Pour chacun des deux codages, les deux courbes montrent I’amélioration
en débit obtenue avec une conception jointe par rapport a une supersposition de DPCs congus
indépendemment.

montrons que toute paire (R1(A), Ra2(A)) contenue dans I'enveloppe complexe de la région définie par

Ri(4) < masx = (logs (V/(4)) — h(V1)), (33a)
Ro(4) < max - (log, (V(A)) = h(V2)). (330)
Ri(4) + Ra() < max - (logy(V(A)) = (V1)) + max 3 (logy (V) = h(V)).  (330)

ol Vi = (wZ — (1 — ;)X;) mod A, i = 1,2 et V = (a2(Z + X1) — (1 — a2)X5) mod A, est atteignable.

Figure 11 montre un exmple de région atteignable obtenu avec le réseau cubique A = Z". Dans
chapitre 4, nous montrons ces résultats rigoureusement et nous les étendons aux cas de plusieurs utilisa-
teurs. Aussi, nous évaluons les probabilités d’erreur obtenues

V Sensibilité a la Connaissance du Canal

Dans le contexte du codage avec information adjacente, I’émetteur peut dans certaines situations
avoir seulement une connaissance imparfaite du canal. Dans ce cas, et a cause des imprécisions sur
la connaissance du canal, les performances globales du codage se dégradent par rapport au cas ou
I'information adjacente est connue parfaitement. Dans cette partie de la these nous établissons des bornes
sur la perte en performance occasionnée en fonction de 'information de Fisher. Aussi, nous développons
un schéma de codage qui tient compte d’une petite perturbation additive (de variance connue).

1 Modele

Nous considérons le modéle représentée par la figure 12. Le canal est charactérisé par Y = X + Sh+
Sy + V. Le canal est contrdlé par (~?, 53), une paire d’états sans mémoire, en plus d’un bruit blanc V.
L’émetteur a acces, de facon noncausale, seulement & une version bruitée /Svl = 51 4+ 61Z; de 'état du
canal. Le récepteur connait une version bruitée de Sy donnée par Sy = So + 0575. Soient 6 = (61,02)T
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FIGURE 12 — Canal dépendant d’un état aléatoire qui est connue seulement partiellement a I’émetteur
et au récepteur.

et Z = (Z1,Z3)T. Sans pertes de généralités, nous supposons que E[Z;] = E[Z3] = 0. En présence de la
perturbation, c’est & dire 6 # (0,0)7, le signal regu peut donc s’écrire Y =Y + 67 Z.
2 Coefficient de sensibilité et capacité
Soient C™¢(0) la capacité du canal en I'absence de la perturbation et C™¢() celle en sa présence.
Nous montrons le résultat suivant :
C"e(0) = C°(0) — 7E[(07 2)] + o([|6]%). (34)

ou v est un coefficient qui ne dépend pas de I'intensité de la perturbation et ainsi charactérise la sensibilité
intrinséque du codage aux petites perturbations additive. De plus, v vérifie

[nin )TY{J(Y; U,S2) = J(Y,82)} < 27, (35a)

p(u,x|s1

2y < (ma|x )Tr{J(Y; U,S3) — J(Y,S2)}. (35b)
p(u,x|s1

ou J(-) dénote I'information de Fisher.

Dans le chapitre 5, nous montrons aussi que ces quantités peuvent étre calculées dans le cas gaussien,
et que cela permet notamment de concevoir un codage plus robuste a ce type de perturbations. Nous
montrons aussi que la robustesse d’un codage a la Costa diminue avec le taux de transmission : plus le
schéma de codage permet un taux de transmission élevé plus il est sensible a la connaissance de I’état
du canal.

VI Marquage de I'Information sur Canal AWGN&J

Dans ce chapitre, nous étudions l'effet d’'une désynchronization sur le marquage d’information. Nous
modélisons cela par la transmission sur un canal avec jitter. Le jitter peut introduire une gigue tem-
porelle qui peut étre constante mais inconnue ou aléatoire. Ce modele est représenté par Figure 13. Nous
introduisons un modele scale plus noise pour modéliser ce type d’attaque et nous montrons sa pertinence
en le cmparant & une autre approche basée sur une analyse utilisant interférences entre symboles (ISI).
Aussi, nous montrons que ce modele est mieux adapté pour la mesure de distorsions perceptibles sur un
signal.

Ensuite nous formulons le probleme de marquage d’information sur un canal AWGN&J comme un
jeux entre 'encodeur qui souhaite maximiser la probabilité de détection (& taux de transmission fixé) et
une attaque dont le but est, au contraire, de la minimiser. L’attaque peut consister en un ajout de bruit
blanc gaussien, une désynchronization ou une combinaison des deux. A un niveau de distortion percep-
tible donné, nous montrons qu’il est plus judicieux pour I'attquant de commencer par désynchroniser le
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FIGURE 13 — Canal AWGN en présence d’un gigue temporelle (jitter).

message

signal et d’utiliser apres le budget de distorsion restant pour ajouter du bruit blanc. Par ailleurs, nous

développons aussi la stratégie optimale de la défense & mettre en ouvre par I’encodeur et le décodeur, en

utilisant la théorie des jeux.
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Chapter 1

Introduction

1.1 Information Embedding and Related Problems
1.2 Motivations

1.3 Thesis Summary

Much of communication theory has been developed for point-to-point communications. In these scenarios,
there is only a single source of information at each processing stage: the message at the encoder, and the
received signal at the decoder. With this as the default scenario, other sources of useful information available
at either the encoder and/or the decoder are called State Information or more commonly ”Side” Information
(SI). The central characteristic differentiating communication with side information from more conventional
communication is the causal or non-causal presence of this interference-like information. The modern theory
of communication over channels with causal or non-causal side information started in 1980 with Gel’fand and
Pinsker [GP80]. Slightly later, in 1983, Heegard and El Gamal published their relevant work [HG83]. This
result, though non-constructive, revealed the fundamental performance limit in a communication channel
subject to a state information-like interference. Further, it laid down a foundation for the modern science of
this new branch of digital communications. For the next twenty years, a prime goal of both communication
researchers and engineers has been to devise practical methods to approach these ultimate limits, in a variety

of applications fields.

Side information related systems cover a wide range of data transmission and data compression applications.
Data transmission models have found practical usefulness, for example, in wireless communication where the
fading coefficient is the state information at the transmitter, in capacity calculation for defective memory

where the defective memory cell is the state information at the encoder, in Digital Subscriber lines (DSL)



2 Introduction

where the cross-talk created by different telephone lines bundled together on the way to the central office
is the state information at the transmitter. Data compression models have found practical usefulness, for
example, in Distributed Source Coding (DSC) where the noisy version of the source is the state information
at the decoder, in sensor networking where a common information shared by different nodes is the state
information at the decoder and in high-definition television (HDTV) systems where the noisy analog version
of the TV signal is the state information at the decoder. The use of side information in data transmission

and data compression is highlighted below.

The focus in this thesis is on another problem, somehow related to data transmission and data compression:
Information Embedding. The beauty of information embedding lies in several aspects. First, it elegantly
connects information theory to the two rich areas of coding and communication theories. Second, it readily
embodies the problem of communication with state information at the encoder. Third, implementable
solutions for the problem of information embedding provide useful insights into the dual problem of source

coding with state information at the decoder.

1.1 Information Embedding and Related Problems

Information Embedding deals with the problem of transmitting one signal, generally weak, within another,
generally strong. The code or signal designed for the transmission is called "embedded code” or "embedded
signal”. The use of embedded codes has a number of important multimedia applications. The most important
is digital watermarking. Transmission of signals by embedding them into other signals is a "non-conventional”
transmission problem. However, it uses guidelines from, and also provides insights on, more conventional

data transmission and data compression.

1.1.1 Digital Watermarking

Digital watermarking is a major branch of information embedding. It can be defined as the imperceptible,
robust, secure communication of information by embedding it in, and retrieving it from, the original cover
signal. The imperceptibility requirement refers to the fact that embedding should not (and must not) cause
perceptible damage or distortion to the host signal. The robustness requirement refers to the ability of the
embedded signal to survive intentional or non-intentional channel degradations. The basic idea is that the
embedded information, i.e., the watermark message, travels with the multimedia data wherever the water-
marked data goes. The security requirement refers to the ability for this embedded information to convey
to the receiver personal or private information about the embedder, with no possibility of being replaced,
falsified or altered by a non-authorized third party. A straightforward application strongly linked to digital
watermarking is that of ownership proof and copyright protection. In this application, the "weak signal”
(embedded signal” or "watermark”) notifies and enforces the "strong signal” ("host or cover” signal) against
unauthorized copying or duplication. This problem arises due to the relative ease with which multimedia

contents can be created and distributed. Typically, the digital watermark is embedded into the multimedia
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content- an audio signal, a video signal, or an image, for example- and (i) identifies the content owner or
producer, (ii) identifies the recipient or purchaser, (iii) enables a standards-compliant device to either play or
duplicate the content, or (iv) prevents a standards-compliant device from playing or duplicating the content.
The problem of ensuring copyright of multimedia at the client side lies in the fact that traditional data
protection technologies such as encryption or scrambling cannot be applied exclusively as they are prone
to digital copying or analog-re-recording (this is the commonly referred to as “analog hole”!!). In addition
to being easily duplicated, digital multimedia signals are also easily altered. Thus, authentication of, or
detection of tampering with, multimedia signals is another application of digital watermarking methods.
So-called "fragile” watermarks change whenever the composite signal is ”sufficiently” altered, thus providing
a means of detecting tampering. Other applications, also based on information embedding principles ans
sometimes stated as alternative resorts for security purposes and data integrity issues, include covert com-
munication (called also ”steganography”) and, more generally, low probability of detection communications
[CWO01, Ram98].

1.1.2 Conventional Data Transmission

The use of information embedding techniques is not limited to digital watermarking and security applications.
Other applications from more conventional communication borrow the same principles, though applied in
a slightly different manner. For instance, it has recently been recognized [CDWO01, BBCS05, KSS04] that
codes based on information embedding can be used as scalable alternatives to superposition codes for the
Broadcast Channel (BC). Also, information embedding codes have potential applications in Multiple Access
Channel (MAC) problems [KSS04]. Yet, multiple-antenna communication systems in general, and especially
in a multi-user network environment, promise an intensive use of Dirty-Paper-Coding techniques (which are
inherently linked to information embedding) [CS03, VT03, VJIG03]. Moreover, though not always recognized
as such, bandwidth-conserving hybrid transmission relies on information embedding techniques so as to
make possible the re-use and sharing of existing spectrum and bandwidth. The aim is to either backwards-
compatibly increase the capacity of an existing communication network, i.e. a "legacy” network, or allow a
new network to be backwards-compatibly overlayed on top of the legacy network [CDWO01]. In this case, the
host signal, being the signal corresponding to the legacy network, and the embedded signal are two different
signals that are multiplexed, i.e., transmitted simultaneously over the same channel in the same bandwidth.
In fact, embedded codes can have significant advantages over other codes from other classes, already recog-

nized as being "good enough”, in many other scenarios of interest.

1.1.3 Conventional Data Compression

As an important information-theoretic duality between data transmission and data compression do exist,
information embedding techniques have also promising potential use in data compression and source cod-
ing, with side information at the decoder. Embedded codes shed light on a great variety of challenging
information-theoretic source-coding problems. For instance, the problem of optimally encoding (maximally

compressing) one source flow so as to be reliably reconstructed (i.e, with sufficient quality) at a certain
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distant decoder where a "noisy version” of the source is made available has found in information embedding
codes "potential” good candidates for coding. Also, the problem of separately encoding different flows from
different sources and transmitting them so as to be gathered and jointly decoded at a single remote source
has potential solutions in embedded codes [DW04].

In fact, data compression and data transmission being "two extreme points of communication theory”, or
equivalently somewhat dual, as Cover asserted in [CT91], embedded codes play, in data compression, the

role they play in data transmission.

1.2 Motivations

This thesis deals with the design of information embedding techniques, tailored so as to be used in a digital
watermarking and data hiding context. Apart from some of its additional requirements (imperceptibility,
for example), information embedding shares the same principles, goals, strengths and weaknesses with con-
ventional communication. It also, thereby, faces the same trade-offs between, for example, the rate at which
information can be transmitted and the probability of error in recovering it, or also, between the optimality
and feasibility of codes designed for. The solutions for the problems encountered, however, are not usually

the same, or more precisely, not exactly the same.

As a recent research topic, information embedding has lack of solutions to a great number of new problems.

The essential of this work is devoted to finding solutions to some of these. We concentrate on the following;:

1. Design efficient constructions and provide new insights into the conception of high-rate/low-error data
embedding techniques. Maximizing the amount of information that one could transmit within a given
signal, with sufficiently low probability of error, is currently hard to achieve by straightforward appli-

cation of the already existing techniques.

2. Conceive efficient coding strategies so as to reliably transmit different embedded signals within the
same cover signal. Transmitting different signals within the same host naturally raises in, for example,
situations where different watermarks are either directed to different usages (tampering, identification,

authentication) and/or encoded separately, by different entities.

3. Show how these techniques, designed so as to be efficient in the situations where the channel is perfectly
known, should adapt in case of a certain channel uncertainty. In a context of information embedding,
uncertainties on the channel may be caused, for example, by some imperfect knowledge of the host

signal itself and/or some (intentional or non-intentional) channel variations.

Due to its connections to a variety of research areas, among them information theory, communication theory,
multimedia signal processing, statistical estimation and mathematics, different approaches are possible to
address the above mentioned problems. In this work, we principally follow information theoretic and commu-
nication points-of-view. Some aspects from other approaches are sometimes considered, but only partially.

Such line of work is motivated by the following reasons.
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(i) Though recognized as such, the analogy with conventional transmission has, until now, been exploited
only little. Information embedding, which is a new research topic, should however rely on the strong
background of standard communication. This is true for code design, power allocation and interference
subtraction, for example. Furthermore, multi-user information embedding which is still a new research

topic should get benefit from recent advances in network information theory.

(ii) Conversely, information embedding, by means of its simple communication model (Gaussian channel,
non-causal state, no precoder, single channel instead of parallel channels, ...) should provide basic

coding principles to more conventional, but more complex, communication scenarios.

(iii) As the array of applications, richness of the theory and interconnections to other problems continue to

grow, the results in this thesis may find practical usefulness in a number of related problems.

1.3 Thesis Summary

In this work, we concentrate on the design of coding strategies for reliable transmission of large amount of
information over an information embedding channel. The channel can be (i) single-user, i.e., one "water-
mark” or "embedded signal” transmitted from one point to another (ii) multi-user, i.e, different watermarks
or embedded signals directed to different usages, (iii) known perfectly, i.e., the transmitter has full knowl-
edge of the channel or (iv) known imperfectly, i.e., the transmitter knows the channel, only with a certain
uncertainty. The coding strategies developed for these situations are built in part upon Costa’s famous
Dirty-Paper Coding (DPC) [Cos83] and tie in with a growing body of work focusing on side-information

coding fundamentals, constructions and dualities.

Chapter 2: This chapter states the general problem of coding with state information together with its Gaus-
sian version, equivalently known as Costa problem, DPC or "Writing on Dirty Paper” [Cos83]. We also give
a short review of the application of interest, with a particular emphasis on information embedding. Also, we
provide in this chapter a parallel between binning-based codes, usually used for information-theoretic analy-
sis, and low-complexity algebraic codes, suboptimal but more feasible in practice. In particular, two feasible
schemes referred to as Scalar Costa Scheme (SCS) and Quantization Index Modulation (QIM), respectively,
are reviewed in details. These schemes will be used as baseline for performance comparison throughout this

thesis.

Chapter 3: This chapter is composed of two parts. In the first part, we heavily rely on the work in [ESZ00]
to extend scalar-codebook based techniques (SCS and QIM) to the case of lattice codebooks. Lattice-based
codebooks should be regarded as "Multidimensional constellation” with respect to scalar codebooks, which
can be viewed as Pulse Amplitude Modulation (PAM) constellations. However, by opposition to infinite
dimensional lattice coding considered in [ESZ00], we are interested in finite dimensional implementable solu-

tions. In particular, we address the problem of finding good trade-offs between the amounts of information
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one signal can carry (payload or transmission rate) and the reliability by which this information can be
recovered at the receiver. This naturally leads to the problem of codebook selection which we address, first
through some examples, based on the algebraic structure of the lattice and then, through a more general
approach. The total gain provided by the resulting codebook, over scalar codebooks (cubic lattice), is mea-
sured by both coding and shaping gains. We show in this part of the chapter that these quantities are not
decoupled in finite dimensional embedding, but rather interacting. In the second part of this chapter, we
first argue that the problem of information embedding is indeed a joint source-channel coding problem. We

then provide means (through an example) of constructing good practical nested codes.

Chapter 4: While emphasizing the tight relationship with conventional multiple user information theory, we
present in this chapter several implementable DPC-based schemes for multiple user information embedding.
We first show that depending on the targeted application and on whether the different messages are required
to have different robustness and transparency requirements or not, multiple user information embedding
parallels one of the multi-user channels with state information available at the transmitter, for which recent
theory is well developed. The focus is on the physically degraded Gaussian Broadcast Channel (BC) and the
Gaussian Multiple Access Channel (MAC). For each of these channels, two practically feasible transmission
schemes are compared. The first approach consists in a straightforward- rather intuitive- superimposition
of DPC schemes. The second consists in a joint design of these DPC schemes. The joint approach is based
on the ideal DPC for the corresponding channel. These results extend the practical implementations QIM,
DC-QIM and SCS that have been originally conceived for one user to the multiple user case. After pre-
senting the key features of joint design within the context of structured scalar codebooks, we broaden our
view to discuss the framework of more general lattice-based (vector) codebooks and show that the gap to
full performances can be bridged up using finite dimensional lattice codebooks. Performance evaluations,
including Bit Error Rates (BER) and capacity region curves are provided for both methods, illustrating the

improvements brought by a joint design.

Chapter 5: This chapter is concerned with evaluating channel capacity sensitivity to the imperfect knowl-
edge of the state information. In coding with state information applications, this may occur in the situations
where there is a certain mismatch between the true state information taken into account at the encoder
and that seen by the decoder. In information embedding applications, noisy host signals connect Data
Hiding coding strategies to the problem at hand. In general, this leads to a performance degradation. In
this chapter, we consider the general case of channel sensitivity to two-sided noisy state information: S1
known at the encoder and S2 known at the decoder. The problem of information embedding specializes
to the case where S2 is null. We first consider the Gaussian case and show that closed form expressions
for channel capacity degradation, due to some unknown perturbing noise, do exist. We then address the
case of arbitrarily distributed signals and we show that (under appropriate assumptions), both lower and
upper bounds on channel capacity decrease can be found. This is made possible by using De Bruijn Iden-

tity which connects Entropy to Fisher Information. The tightness of these bounds is discussed. Coding
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with a nominal state information slightly perturbed by a weak noise finds applications in many practical
situations. Examples include watermark channels subject to time delay desynchronization, where the re-
ceiver may not be fully synchronized with the transmitter. Another example concerns the situations where

the encoder has access to only a short description (a quantized version, for example) of the state information.

Chapter 6: In this chapter, we consider an alternative definition of channel capacity, using a game theory
approach. This involves a min-max optimization problem between the embedder (encoder/decoder) and an
eventual attacker (channel). The set of parameters over which the payoff function is optimized are the in-
duced distortions. These distortions have then to be properly measured so as to lead to accurate solutions of
the optimization problem. In this chapter, we first provide means of evaluating these channel distortions. We
then evaluate the capacity loss of common information embedding systems when facing an important class
of channel attacks, amplitude scaling plus additive noise. Analysis is specialized to the situation when com-
munication can be modeled by transmission over an Additive White Gaussian Noise and Jitter (AWGN&J)
channel. The second part of this chapter concentrates on finding optimal embedder (encoder) and attacker
(channel) strategies. The payoff function is the detection probability and embedding is based on Spread
Spectrum. The embedder wants to reliably transmit information, under any distortion constrained channel
attack strategy. Conversely, the attacker wants to impair this transmission for any power constrained infor-

mation embedding strategy.

Chapter 7: This chapter presents a practical information embedding application, treated within the context
of Secured Diffusion of audio contents (Music) in a mObile cellular network, (SDMO). Of special interest are

the following problems.
1. Transmission Rate evaluation. The results in this part heavily rely on the materials in Chapter 3.

2. Embedding two different watermarks within the same host signal. The two watermarks are intended
to two different usages. The robust watermark aims at ownership identification whereas the fragile
watermark aims at identifying tempering. The results in this part heavily rely on the materials in

Chapter 4.

3. Channel capacity sensitivity to jitter-like attacks. The results in this part heavily rely on the materials

in Chapter 5.

Chapter 8: We conclude this thesis in Chapter 8, where we also discuss some possible directions for future

work.
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Chapter 2

Information Embedding and Coding
With State Information at the

Encoder

2.1 Information Embedding

2.2 Channel Coding with State Information at the Encoder
2.3 Binning Coding v.s. Algebraic Coding

2.4 Sub-optimal Algebraic-based Coding Techniques.

2.5 Summary

In this chapter, we first present a communication model for information embedding. We also discuss its tight
relationship with conventional communication. It is shown that information embedding can be viewed as an
instance of communication over channels with state information (SI) non-causally available at the transmitter,
a situation which is commonly known as ”"Gel’fand-Pinsker problem”. More precisely, coding for information
embedding amounts to the Gaussian version of Gel’fand-Pinsker setting, also known as ”"Costa problem”.
Both theoretical techniques, optimal but computationally non feasible, and practical implementations, sub-

optimal but computationally feasible, are discussed.
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2.1 Information Embedding

Consider a host signal vector s € R” into which we want to embed some information m. In typical information
embedding applications (digital watermarking, for example), this host signal could be a vector of pixel
values, text, audio or speech samples. Alternatively, it could be the representation of the host signal in
some transform domain (such as discrete cosine transform coefficients and wavelet coefficients). Typically,
the message m can be a watermark or an authentication signal, as in classical ownership-proof applications.
In most recent applications, the host signal s can be any block of data from a given host data set and the
message m can be any information one would want to transmit within this data. In our attempt to emphasize
the very general framework, we only ask the cover signal s to be strong “enough” so as to be able to "carry”
the message m, with no particular assumption regarding the nature of signals, their statistical distributions
and/or their use. We assume that the samples of the host signal s take values into a finite cardinality set S,

i.e., |S| < o0, and that the message m is an integer, taking values into a certain alphabet
M={1,2,... .M},

of cardinality M = |M|. We wish to embed at rate R bits per dimension (i.e, bits per host sample) so that,

if each index (or message) is embedded into a n-length vector of the host, the embedding rate is given by
1
R= - log, (M). (2.1)

The transmitter wants to embed m into the cover signal s, with, hopefully, no ”serious” degradation caused
to the host itself. The receiver wants to reliably recover the transmitted message, hopefully, even if the
signal was altered in the channel. The received signal may be altered either by non-intentional channel
degradations (e.g., ambient noise) and/or by deliberate manipulations due to some malicious attacker in
the channel. The aim of this eventual attacker may depend on the application. In ownership applications
for example, a possible attack may consist in falsifying the watermarked content, seriously corrupting it
or even completely destroying it. Alternatively, degradations to the watermarked content may be due to
legal signal manipulations such as compression, conversion A/D, etc... Intentional attacks concern digital
watermarking applications, mainly. In almost all other information embedding applications, degradations
that the embedded signal encounters are most of the times non-intentional, i.e, simply due to the ambient
noise. The impairment caused to the composite signal, in the channel, may be measured, qualitatively, by

the difference in quality between the received and the transmitted signals.

2.1.1 Mathematical Model for Information Embedding

An information embedding system may be represented by the block diagram shown in Fig.2.1. The message
m to be embedded is chosen from the alphabet M, ie., m € {1,2,...,M}. The composite signal ¢ =
x + s transmitted over the channel is subject to a variety of channel degradations. Given some received
signal y, possibly corrupted, the decoder outputs an estimate 7 of the transmitted message m. Basically,

the information embedding system consists in an encoding (i.e., embedding) function and a decoding (i.e.,
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v=y—c

message i Decoded
i Encoder | o @_,@_, Decoder | m

m X ¢ -1y message

Host signal s

Figure 2.1: An abstract communication model for blind (solid line) and non-blind (dashed line) information

embedding.

recovering) function. Embedding an index m € M into (a vector of) the cover signal s € 8™ amounts to
mapping m and s to a certain, properly chosen, composite signal ¢ € C". A cryptographic key k € K", not
shown in Fig.2.1, can be used as a source of common randomness that is known to the decoder, in order to

secure the transmission. We denote by X"(-,-) the encoding function,

X" S"xMxK"— X" (2.2)

(s,m,k) — x.

The receiver receives the signal y, sum of the composite signal ¢ and some perturbation vector v due to
channel degradations. Two different situations arise. If the receiver has access to the original host signal s,
acting as channel interference, it first subtracts this interference and then estimates m, from the remaining
signal. Decoding with knowledge of the original host at the receiver is referred to as “non-blind” information
embedding. Non-blind information embedding is of practical usefulness in only some few specific applications
where only some "authorized” or ”privileged” receivers should successfully decode the transmitted message.
A most common (but alas more complex!!) situation is when the receiver has no access to the original host
signal s and is referred to as "blind” information embedding. In an unifying approach, we denote by y € Y™
the sequence from which the message m is decoded and, loosely, continue to refer to it as “received signal”.
Thus, this received signal y is either the output of the channel (blind case), or the output of the channel
from which the host is already removed (non-blind case). The role of the decoder is to reliably recover the

transmitted message m , even in presence of channel perturbations v. The decoding (or recovering) function
W @ YV'xK"— M (2.3)
(y,k) — 1

is such that /= W (y;-) is the best estimate of m.

2.1.2 A Non-Conventional Power-limited Channel

In point-to-point communication, a conventional communication channel has one input and one output.
The degradation represents the distortion due to this channel. The channel model shown in Fig.2.1 is non

conventional, for at least four reasons.
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(i) First, the channel has two inputs: the message m to be transmitted and the host signal s, as it is
noticeable from (2.3). The second input (i.e., the host s) plays also the role of interference in the

channel.

(ii) Second, the model of channel degradations is sufficiently general to include both random and deter-
ministic perturbation vectors and both signal-dependent and signal-independent perturbation vectors.
This makes the set of admissible channel perturbations larger than that in classical communication.
The ability of the receiver to recover the transmitted message, even under severe channel conditions,
characterizes the system robustness to channel degradations. Channel degradations are measured by,

for example, the well known squared distortion-measure
Da 2 By {lly —c|l?}. (2.4)

(iii) Third, embedding the message m into the host s should not cause serious degradations to the cover
signal. This means that, while carrying m, this cover signal should remain ™useful”. The distortion

introduced by the encoding process is measured by, for example,
Dr £ Ex {[Ix[I*}. (2.5)

That the embedding should cause no perceptible distortion to the host is sometimes called the trans-
parency requirement. The imperceptibility of the embedded signal x should be guaranteed by means
of some perceptual analysis previous to the embedding operation, something which is intrinsically

dependent on the type of host signal in question.

(iv) Fourth, by opposition to conventional communication where recovering the signal s at the receiver
is not required, one may be interested, in information embedding, in both reliably transmitting the
message m and also recovering the cover signal s. This branch of information embedding is sometimes

called "reversible information embedding”.

The transparency requirement means that the composite signal should look like the original. One way to
express this concept of "resemblance” is to bound the energy (or equivalently the variance) of the embedded

signal x. Denoting by P the maximal tolerable embedding distortion, this implies that
Ex {||x]|*} < P. (2.6)

Of course the bound P on tolerable distortions is host-signal dependent. Intuitively, one can expect that
”strong” host signals can carry much information, thus allowing larger P. The aim of an information embedder
(the encoder) is to reliably transmit the maximum amount of information, for a given distortion budget.
Equivalently, it can be viewed as minimizing the incurred distortion, for a given amount of information
to transmit. Hence, one can view information embedding problems as “non-conventional” power-limited
communication. Obviously, this non-conformity makes information embedding somewhat non-common and
imposes additional constraints on system design. However, information embedding can also be viewed as

being conventional.
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2.1.3 A Conventional Communication Channel

We mentioned above that an information embedding system can be "blind” or "non-blind”. In the “non-blind”
case, the overall system amounts to transmitting an index (message) or an ensemble of indexes through a
noisy channel. For that, the encoder devises an appropriate embedded signal x and transmits it through
the channel. The receiver tries to recover the transmitted message from the noisy (possibly deliberately
corrupted) signal, as in classical communication. In the blind case, the situation is different, in that the
host signal (which is a part of the channel) carries the transmitted message but, at the same time, may
inhibit its retrieval. Of course, simply ignoring the presence of the host signal and designing the embedded
signal independently (i.e., based only on the bounded-energy constraint) would make the system seem more

“conventional”. However, this is not preferred as it will be shown later in this chapter.

Host signal s Noise v
M ! Ex}i<P
m € X x| S+Xx i S
| Encoder L @_»@—y"> Decoder | . ™€ M
! Channel *

Figure 2.2: Blind information embedding viewed as communication over a channel with side information at

the encoder.

Recently, Cox et Al. [CMM99] have recognized that one may view blind information embedding as commu-
nication with state information known at the encoder. In such a description, it is the host signal itself which
is considered as side information. Communication with state information, either at the encoder and/or at
the decoder, had already strong background and had already captured a vast amount of attention when Cox
made his statement. However, in information embedding, one can consider Cox work as the starting point.
Considering the cover signal as state information at the encoder makes the information embedding problem
equivalent to communication over a channel, a part of which is known at the transmitter. With this view,
the model in Fig.2.1 simplifies to that in Fig.2.2. In this model, the channel comprises both the noise v
due to intentional and/or non-intentional degradations and the host itself, viewed as interference. Of course,
even when considered as communication with state information available at the transmitter, information
embedding remains somehow specific, by its additional requirements stated above. However, some of these
simply translate to constraints (generally upper bounds) on the communication parameters. For instance,
the transparency requirement is just a channel-input power constraint. The robustness requirement, as for
it, states a bound on the strength of admissible channel degradations.

Considered as this, information embedding turns to be a conventional communication problem. Hence, the
performance of a system designed for embedding information may be measured by that of the equivalent
(conventional) system, viewed as a system for transmitting information. Common performance criteria are

channel capacity and probability of error. These are classically defined as follows.
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1. Following Shannon original work [Sha49], and more precisely his "channel coding theorem”, the "in-
formation” channel capacity is defined as the supremum of all achievable rates. A rate R subject to
distortion Dpg is said to be achievable if there exists a sequence of codes (M, X", W), n > 1, subject

)

to distortion D, with rate R such that the maximal probability of error Pe(" tends to 0 as n — +00.

2. The probability of error Pe(") is defined as the average (over the index m) probability of decoding some
index m' # m given that m € M was transmitted. Assuming uniform distribution of the messages

over the set M, this is given by

PO 2 S Pe{W(y, k) # mim} (2.7)

meM

where W (-;-) is the decoding function defined above.

Now that connection with communication with side information is established, performance of information
embedding systems can be studied within this framework. We will first consider the basic concept of coding
for channels with state information at the encoder, with a particular emphasis on its Gaussian version,
commonly known as "Costa problem”. Also, throughout the rest of this thesis, we will interchangeably use
the terms ”transmission”, "embedding” and ”"communication”. When dealing with transmission, the term
“reliable” or "reliably”; extensively used in this work, can mean either that one can guarantee that m = m

or that the probability of error Pe(") is small enough.

2.2 Channel Coding with State Information at the Encoder

In the context of coding and transmission, the terms ”channel state”, ”state information” and ”side infor-

mation” equivalently refer to the situation when, apart from the message at the encoder and the received
signal at the decoder, there is an additional source of information, available either at the transmitter or at
the receiver. The use of this state information depends on whether this information is made available at
the encoder or at the decoder. For instance, whereas the receiver generally observes the channel state in
a non-causal manner (for it can always wait until the end of the transmission before decoding), the trans-
mitter can observe the Channel State Information (CSI) causally or non-causally. In the causal case, the
transmitter at time n knows the CSI sequence from time 1 to n only. In the non-causal case, the transmitter
observes the entire CSI sequence before the transmission of any symbol begins. The prime works on cod-
ing for channels with non-causal CSI began with Gel’fand and Pinsker [GP80], in the case where the state
information is known to the transmitter and with Heegard and El Gamal [HG83], in the case where the
state information is known to the receiver. Earlier, in 1958, Shannon [Sha58] suggested optimal coding for
channels with causal state information at the encoder. As mentioned before, information embedding is an
instance of channel coding with CSI non-causally known to the transmitter, a situation which is commonly

known as "Gel’fand-Pinsker problem”.
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2.2.1 Gel’fand-Pinsker Problem

Consider the channel model shown in Fig.2.3. We wish to send an index W € {1,2,..., M} to the receiver,
in n uses of the channel. When neither the sender nor the receiver knows the state information S™ =

Sn

W € M —_— X”(W Srl) _— p(y‘xs) Y’n, W c M

Figure 2.3: Channel with non-causal state information at the transmitter (Gel’fand-Pinsker Problem).

(51,852, ...,5n), channel capacity is provided by the Shannon mutual information [CT91] that the channel

output Y™ conveys about its input X", i.e.,
p(z)

where, as in the rest of this chapter, the first subscript under capacity C' denotes the availability of state
information to the sender, and the second subscript that to the receiver. I(-;-) denotes Shannon mutual
information. When only the sender non-causally knows the state information S™ = (S, Sa,...,S,), channel
capacity has been established by Gel’fand and Pinsker in [GP80] and can be formalized as in the following

theorem.

Theorem 1 (Gel’fand and Pinsker [GP80]) The capacity of a Discrete Memoryless Channel (DMC)
with input X and output Y = X + S +V, where S is non-causally known to the transmitter is given by
Cio = max {I(U;Y)—I(U;S)}, (2.9)
p(u,z|s)
where the mazimum is over all joint distributions of the form p(s)p(u, z|s)p(y|z, s) and U is a random variable
taking values in a bounded cardinality set U (U| < |X| + |S|) and chosen such that U — (X,S) = Y form
a Markov Chain.

The proof of this result can be found in [GP80]. Only the direct coding theorem (achievability) is briefly
reviewed below for it uses a random binning argument that outlines the key ideas behind the code construction
undertaken in this thesis. The ingredients needed for the proof such as typicality and joint typicality notions

are briefly defined in Appendix A. The general form of (2.9) inspires the following comments.

1. Channel capacity (2.9) can be understood in light of the following rough argument. The main idea is
to transfer the information conveying role of the channel input X to some fictitious input U so that the
channel behaves like a discrete memoryless channel U — Y. The capacity of this fictitious channel is
obtained by maximizing the Shannon mutual information I(U;Y") which represents the total number
of bits, per channel use, that can be transmitted through the channel. However, there is a cost for
such a transfer: I(U;S) bits, per channel use, have to be allocated to the state itself. The difference

I(U;Y) — I(U; S) is the number of bits, per channel use, that can be allocated to the index W.
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2. The joint distribution p(u,z,s,y) can be restricted to the form p(s)p(u|s)p(z|u,s). The marginal
distribution p(z|u,s) can be taken as a deterministic function z = f(u,s) without loss of capacity
[GP80], i-e.,

p(s)p(uls)p(yle,s) ifz = f(u,s)
p(u,z,s,y) = : (2.10)

0 otherwise

3. The conditional distribution p(u,z|s) describes the coding strategy that achieves all rates less than
I(U;Y)—I(U;S). The marginal distribution p(u) is used to create the codewords and the conditional
distribution p(z|u, s) is used to form the input sequence x from the codeword u and the known noise

sequence s.

4. Though initially established for discrete memoryless channels (DMC), Gel’fand-Pinsker capacity ex-
pression (2.9) can be extended to memoryless channels with discrete time and continuous alphabets
[Gal68] by considering the supremum of I(Ug;Y,) — I(Uqg; Sy) over all finite alphabet variables Uy and
all partitions Y, and S, of the channel output and state alphabets.

2.2.1.1 Direct Coding Theorem and Random Binning

The idea of binning is inherent to coding theory, especially for theoretical analysis and represents a key
element in the solutions of information network problems. This section provides a brief overview. The
basic principle consists in partitioning a given set of sequences or codewords, drawn according to a certain
probability mass function, into different sub-sets. Each sub-set is then used to identify either a message
(index) to be transmitted (in data transmission applications) or a source vector to be quantized (in data
compression applications). However, dividing a set of codewords into smaller sub-sets (called also bins) must
obey some combinatorial requirements, so as to be efficient in binning for coding. For instance, the overall
codewords as well as the codewords collapsed inside each bin must not only have the appropriate probability
mass function, but also the appropriate cardinality (number of codewords). A brief description can be found

in Appendix A and a thorough focus is available in [CT91].

Proof 1 (Gel’fand and Pinsker [GP80]) We wish to show that, for any € > 0 and sufficiently large n,
there exists an (n,M)-code with probability of error P, < e and M > 2"UUY)-LUS)—ed  The rigorous
proof is rather lengthy. The main idea can be shortly exposed as follows. For any message m € M, choose
J = 2l (5 > 0 is small) words U, € U, indezed by j, j = 1,2,...,J, with distribution p(U).
Then with probability close to 1 for any typical word S € 8™ and for any m € M, one can find at least one
word X, such that S and Uj , are jointly typical, for the joint distribution pys.

An illustration of the binning-based generation of the codes that achieve channel capacity (2.9) is shown in
Fig.2.4. Note that in general, there is some loss in performance in not knowing the state information S at
the decoder as well, meaning that the one side transmitter state information capacity Cig is inferior to the

two-sided state information capacity Ciy, i.e.,

Cio < Cq1. (2.11)



2.2 Channel Coding with State Information at the Encoder 17

Ug such that
(U§, Sp) jointly typical

. I Lo , (I (U,5)4€)
So o H —- U =™ »2)*e) codewords
= H in each bin
R i
=) H
=, i
Il H
|U| = e W¥)=2) §id codewords U

Figure 2.4: Nllustration of the generation of probabilistic codes U for the solution of Gel’fand-Pinsker problem.

The term "two-sided” state information refers to the case where the state information is available at both
the transmitter and the receiver. The situations in which equality holds in (2.11) are referred to as having
a “public-private equivalence” (PPE) property. PPE refers to the non-decrease of channel capacity if the
decoder has or not access to the state S in the model shown in Fig.2.2. Situations with PPE are relevant
for practical usefulness. An example of such situations, "Costa problem”, has been addressed by Costa in
[Cos83].

2.2.2 Gaussian Channel: Costa Problem

Costa problem is an instance of Gel’fand-Pinsker problem. It corresponds to the situation when (i) both the
state information S and the channel noise V' are independent identically distributed (i.i.d.) Gaussian and,
(ii) the input X is power-constrained, i.e.,

E[X?] < P. (2.12)

Costa problem focuses on both the theoretical capacity limit and coding strategies to achieve it. Several
obvious encoding schemes to communicate over Costa channel can be considered. These schemes may be
justified by the temptation to reduce the problem to a classic one. For instance, the following coding strategies

can be envisaged.

1. The transmitter could attempt to pre-subtract the interference S at the transmitter and transmit X' =
X — S. The received signal would then be Y’ = X'+ 54V = X -S4+ S+V = X +V, thus eliminating
the interference. However, the problem with this naive approach stems from the power constraint:
assuming X and S to be independent, the average transmit power would be E[X"?] = E[X?] + E[S?].
As the interference S may be arbitrarily strong, this would entail a severe power penalty, and hence a

reduced transmission rate.

2. Similarly, the transmitter could attempt to use a fraction 0 < a < min{1,Q/P} of the transmission

power P to partially cancel S, i.e., transmit X' = X — %S . The received signal would be Y/ = X +



18 Information Embedding and Coding With State Information at the Encoder

P 1 1—-a)P
(1— a—)S+V. This approach would yield a transmission rate of only 3 log (1 + (1-a) ) .

@ N+ (/Q - VaPy

In fact, these two schemes are two forms of one single intuitive procedure which consists in erasing (a part

of) the interference prior to transmitting. Surprisingly, Costa showed in [Cos83] that the optimal encoder
should not fight against the side interference S by pre-subtracting it. Instead, it should use it constructively.
Further, Costa showed that, by doing this, the power constrained encoder can reliably transmit all rates less
than 1log(1 + %) bits/symbol, independently on the strength of the interfering signal S. Costa result can

be formalized as in the following theorem.

Theorem 2 (Max H. M. Costa [Cos83]) The capacity of the channel Y = X + S +V, where S ~

N(0,QI), non-causally known to the transmitter, and V ~ N(0,NI) are multivariate Gaussian random

1 n
variables (I is the identity matriz) and the input X € R™ satisfies the power constraint — E Xf <P, is
n
i=1

given by

1 P
010 = 5 10g (1 + N) . (213)

Prior to dealing with the proof, note that the capacity (2.13) is that of an Additive White Gaussian Noise
(AWGN) channel with Signal-to-Noise Ratio (SNR) of P/N [dB]. Also, note the surprising fact that this
capacity depends on the variance of the known noise S. Hence, the achievable rates would not change if
the state information, acting as noise, were not present or were also known at the decoder and could be
subtracted off. This means that Costa model has PPE. The proof for Costa capacity (2.13) involves two

parts, the achievability proof and the converse. These basic steps can be summarized as follows.

Proof 2 As special case of Gelfand-Pinsker setting, the achievability part can be proved in a similar way.
First generate 2"I(UiY)=¢) 4 d sequences U, according to the uniform distribution over the set of typical U.
Next, distribute these sequences uniformly over 2"% bins. For each sequence U, let 1(U) be the index of the
bin containing U. For encoding, given the state vector s and the message W, look in the bin W for a sequence
U such that (U, S) is jointly typical. Declare an error if no such U can be found. If the number of sequences
in bin W is larger than 201WUsY)H0) " the probability of finding no such U decreases to zero exponentially as
n increases. Next, choose X such that (X,U,S) is jointly typical and send it through the channel. At the
decoder, look for the unique sequence U such that (U,Y) is jointly typical. Declare an error if more than
one or no such sequence exist. Then set the estimate 114 of W equal to the index of the bin containing the
obtained sequence U. If the transmission rate satisfies R < I(U,Y) — I(U, S) — € — 8, the probability of error
averaged over all codes decreases exponentially to zero as n — +00. This shows the existence of a code that
achieves rate R with arbitrarily small probability of error.

The converse is shown using a simple argument. From (2.10), we see that the optimal codebook for mazimizing
the mutual interference difference I(U,Y) — I(U;S) is a function of both the transmitted codeword X and
the state S. In [Cos83], Costa considered a codebook U of the form

U=X+as, (2.14)
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where a is a parameter to be determined in the sequel. Using straightforward calculation, the information

that the received signal Y = X + S + V' conveys about the codebook U, at the receiver, can be written as

I(U;Y) = H(Y)-H(®Y|U)
= HX+S+V)+HX+aS)—HX+S+V;X+al5)

1 (P+Q+ N)(P+a?Q)
ék%(PQu—aV+Nul+MQD‘

(2.15)

Similarly, the information that the state information S conveys about the codebook U, at the transmitter,

1(U;S) = %log (fiiingE). (2.16)

Combining (2.15) and (2.16), we get the transmission rate R(a) = I(U;Y) — I(U; S) as

B (P+Q+N)
R(a) = EIOg (PQ(l —a)2+N(P +0¢2Q))-

writes

(2.17)
Mazimizing over p(u,z|s) in (2.10) reduces, in this case, to a mazimization over the parameter a and gives
Clo 2 maxR(a)
[e%

1 P
= 3 log (1 + N) , (2.18)

attained with the parameter o set to its optimal value (Costa parameter)

P
" P+ N’

o (2.19)

Now, since the capacity of the channel cannot ezceed C11 = maxy(,s [(X;Y|S) = tlog (1+ &), for this
is the capacity (in the Gaussian case) when both the encoder and the decoder know the sequence S, the

optimality of Costa scheme is established.

Costa result is more commonly known as ”Dirty Paper Coding” (DPC) or, equivalently, as "Writing on
Dirty Paper” (WDP). The design of the codebook together with the input distribution p(u,z|s) according

to Costa’s DPC can be summarized in the form

X ~ N(0,P) independent of S, (2.20a)
U=X+aS with a=P/(P+N). (2.20b)
The denomination WDP refers to a famous analogy between transmitting information over a channel with

part of channel interference non-causally known to the encoder, and writing on a sheet of paper, with dirty

spots on it.

2.2.2.1 Writing on Dirty Paper

Consider a sheet of paper covered with independent dirt spots of normally distributed intensity. We wish to

write a message, directed to some reader, on this sheet of paper. This seemingly insignificant problem has
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tight relationship with the problem of coding with SI available at the encoder. Costa noticed this: ”in some
sense, the probability of writing a message on this sheet of paper is analogous to that of sending information
through the channel of Fig.2.3”. Similarly to the transmitter who has full knowledge of channel SI, the writer
knows the location and intensity of the dirt spots. Also, similarly to the receiver who has to recover the
transmitted message without having access to the channel SI, the reader can not distinguish the ink marks

applied by the writer from the dirty spots. Paralleling the discussion stated above and denoting by ”b” and

blind approach
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Figure 2.5: Writing on Dirty Paper (WDP) metaphor: a non-informed or blind encoder writes the message on
top of the dirt spots, thus causing a certain "ambiguity” for the receiver to distinguish the being transmitted
message. By opposition, an informed encoder, writes the message in the direction of the dirt spots, thus

leading to decodable (readable) information at the receiver

”c¢” the message to be written and the dirty sheet of paper, respectively, two different scenarios are possible.

1. A non-informed writer writes the message ”b” on top of the dirt spots ”c”, thus causing the corresponding

reader to not distinguish the message from the dirty spots. This is a blind or non-informed approach.
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The writer (wearing bad glasses, probably) does not see non-dirty parts of the sheet of paper where

the message should be written, as one could expect intuitively.

2. An informed writer (wearing good glasses, this time) first observes the non-dirty parts of the dirty
paper (i.e., blanks in ”c”) and then writes down on these "clean” parts the message "b”. The reader,
knowing the exact location of the dirt spots in the sheet of paper, looks for the message ”b” in those

“clean” parts. This is the informed approach.

2.2.2.2 Geometrical interpretation

There is an interesting interpretation of random binning as sphere covering at the encoder and sphere packing
at the decoder. In this section, we reexamine the code generation and the encoding-decoding procedures
given above to provide a brief geometrical interpretation of Costa’s DPC. A detailed interpretation is given
in [SEG00a]. This geometrical description is made possible by representing random vectors by points in
R™, where orthogonality between Gaussian random vectors stand for their independence. A random vector
of length n is represented by a point in the n-dimensional space R™. Hence, the host signal S of power @
and the embedded signal X of power P lie on the surface of the spheres Sg and Sx centered at the origin
and of radii v/nQ and vnP, respectively. The codebook U, formed by codewords U = X + aS of power
P + a2Q, where a = P/(P + N), can be represented by points on the surface of the n-dimensional sphere
Su centered at the origin and of radius v/n(P + a2Q). In addition, the codebook U contains 2(*(Z(UsY) =)
code-vectors U, each drawn according to U ~ N(0, (P + o?Q)I). These code-vectors are randomly and
equiprobably assigned to 2"(¢~2¢) distinct bins, denoted by Uy, where W is the bin index. Each bin Uy
contains 2" (UsS)+€) code-vectors. By means of the geometrical sphere representation introduced above, the

encoder and the decoder can be viewed as performing sphere covering and sphere packing, respectively.

(i) Sphere covering at the encoder : Given an index W = W, and a state vector Sg, the encoder
looks in the bin identified by Wy (i.e., Uw, ) for a code-vector Uy such that the pair (Ug, Sg) is jointly typical.

This is equivalent to searching for the code-vector Uy that satisfies

Up = argmin  [[U—aSo- (2.21)

UEUWO

Next, the encoder transmits Xy = Uy — aSg over the channel. Since aSy lies within distance vnP of Uy,
the encoder chooses the correct code-vector Uy if the state aSg lies in the bin-encoding sphere centered at
Uy and of radius v/nP. Moreover, the composite signal Xo + Sg = Ug + (1 — a)Sy can be put in the form
Xo + So = BUg + Z, where Z is orthogonal to U and E[Z?] = (1 — a)Q%. Hence, by transmitting
Xy = Uy — aSyp, the encoder steers the state Sg towards fUyg. This explains why we mentioned above that
the optimal encoder should not erase the state, but designs codewords in the direction of the state. If we think
of the encoder as being quantization-based (this will be justified in Section 2.4), this is equivalent to steer the

state Sg toward its quantizer representative Q(Sg) by transmitting the quantization error Xo = Q(So) — Se.
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Now, since aSq lies near the surface of a sphere of radius v/na2Q and since Uy lies near the surface of a
sphere of radius v/n(P + o2Q), fulfilling the power constraint can be viewed as covering the hull between
spheres of radii \/n(P + a2@Q) and y/na?Q with bin-encoding spheres of radius v/nP. The required number

of bin-encoding spheres is lower bounded by the ratio of the hull volume to the volume of the bin-encoding

sphere, i.e.,
Ap(n(P +a2Q))™? — 9n(I(U3S)+¢)
An(nP)"/2 ’

where A, is a constant that depends on n [CT91].

(2.22)

(i) Sphere packing at the decoder: Given a received sequence Y = Y, search in the entire codebook

U= U Uy for the (unique) code-vector U such that the pair (U,Y)) is jointly typical. This is equivalent
w
to search for the (unique) code-vector U that satisfies

U= argmin Yo — 8U|, (2.23)
Ueu
where
EUTY,] P+aQ

b= E[UTU]  P+a2Q

Next, return the estimated index W as the index of the bin Uy, containing U. Since Yo=Xp+Sg+V can
be put in the form Yy = fUg + Z + V, the probability of error in decoding the appropriate index depends
mainly on the radius of the decoding sphere centered at U, and of radius \/n(E[Z2] + N). Since the received
sequence Y lies near the surface of a sphere of radius \/m, the number of distinguishable
(reliably decodable) code-vectors is upper bounded by the number of decoding spheres that can be packed
into a sphere of radius /n(P + @ + N), i.e.,

An(n(P + Q + N))n/Z — 2n(I(U;Y)7e)‘

A, (n(E[Z2] + N))n/2 (2.24)

Combining (2.22) and (2.24), we get the number of different messages (indexes) that can be reliably com-
municated as LU¥)—0)
on ;Y)—e

_ on(C—2¢)
on(I(U;S)+e) 2 : (225)

This is because all 27/(UiS)+€) code-vectors gathered in the same bin Uyyconvey the same index W.

2.2.3 Extensions

As mentioned before, the initial Costa’s DPC scheme is derived under the assumption that both the non-
causally known noise S and the unknown noise V' are independent and white Gaussian. Also, the encoder
is assumed to be power-constrained. This result has since been extended to different distributions on the
two noise sources. For instance, it has been shown in [YSJT01] that the known noise S does not affect the

capacity as long as both noise sources are Gaussian, but not necessarily identically distributed. The resulting
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coding scheme is named "Writing on Colored Paper”, by reference to the possibility for the two noise sources
to be non white. Also, a sufficient condition for the so called Public Private Equivalence (PPE) property to
hold is provided in [CLO2b]. The resulting coding scheme is equivalently referred to as either "Generalized
Writing on Dirty Paper” (GWDP) or "Writing on non Gaussian paper”, for it allows the state information
to have any distribution, not necessarily deterministic as stated in [ESZ00]. These two extensions are briefly

discussed, below.

2.2.3.1 Colored Gaussian Channel with Side Information

In this section, we consider the channel model shown in Fig.2.2. We look at a single block of n transmissions
Yyr=X"4+8"+Vv", (2.26)

where S™ and V™ are independent Gaussian sequences (not necessarily identically distributed) with arbitrary
finite-dimensional covariance matrices K, and K, respectively. The sequence S™ is entirely known non-
causally to the transmitter, but not to the receiver. The encoder maps a codeword index W € {1,...,2"%}
and a side information S™ to a block of n transmissions. The decoder maps the channel output to a codeword

index. The capacity of such a channel has been provided in [YSJ*01].

Theorem 3 (Wei Yu et al. [YSJ101]) Consider a block of n transmissions in a Gaussian channel Y™ =
X" 4+ 8"+ V™, where S™ and V" are independent Gaussian sequences, with S™ known non-causally to the
transmitter. Suppose |Kss| > 0. The capacity of the channel under a power constraint P is

1 K K
Cp = max — log Koo + K|

2.2
Kaz 20 |Kypo| 7 (2:27)

provided that the mazimization is over covariance matrices K, such that % Tr(Kyz) < P, and the mazimizing

K, is such that |Ky;| > 0 (|A| denotes the determinant of matriz A).

The proof of the achievability can be found in [YSJT01, Yu02] where it is shown that all rates of the form
1

Ry =~ (IU%Y") = 1(U™5%)) — €, (2.28)

are achievable for all joint Gaussian distributions p(u™|z™, s™)p(z™)p(s™). The converse closely follows that
of Costa’s original DPC. Consider a codebook U” in the form U™ = X™ + F'S™, where F' is an nxn matrix.
The mutual information I(U™;Y™) that the received sequence Y conveys about the codebook U™ is given

by a straightforward generalization of (2.15), as

nw~yn)

HU")+ HY™) - HU";Y")
|Kzz + FKssFT|-|Kzz + Kss + Kv'u|
|Cov(Y,U)| '

(2.29)

Cov(Y,U) is the covariance matrix of (Y;U), given by

K.’E.’E + FKSSFT K$.’E + FKSS

Cov(Y,U) = .
K(E.’E +KSSF KZ(E+KSS +K’U’U
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Similarly, the mutual information I(U™;S™) that the known sequence S™ conveys about the codebook U™
at the transmitter generalizes that given by (2.16), as

1 | Ky + FKs FT|

n.§m) = = : 2.
no";sm) 2log o (2.30)
The transmission rate can be obtained by combining (2.29) and (2.30) to get an explicit expression for
1
Ra(F) = = (IU";Y™) ~ I(U"; 5) (2.31)

The optimal matrix F' that maximizes R, (F) has a similar expression to that of Costa’s parameter a =

P/(P + N) (which is optimal in the scalar case) and writes
F =Ky (Kop + Kyo)™ ' (2.32)

independently on the covariance matrix K, of the known noise sequence S™. Thus, the maximal transmission

rate is given by

1 | Kol
oo 1 2.33
mgXRn( ) 2n Og |Kzz - Kzz(Kzz + K’uv)ilKZ'El’ ( )
1 |Kzz + KU‘U|
= Ly Kan K| 2.34
2n 8 | Ko ( |
1
n

Equation (2.34) results from the use of Shur’s complement formula for matrices determinant, i.e.,

A B

= |D|.|A-BD-'C|=|A||D — CA~'B|.
C D

Equation (2.35) holds because this is the mutual information formula for a vector Gaussian channel without

interfering signal S™ [CT91]. If the channel Y™ = X™ + S™ + V™ is a memoryless channel, i.e.,

n
py"lz",s") = [ pluelor, se), (2.36)
k=1

where each use of the channel involves a vector input and a vector output and coding is done over many uses
of the channel, channel capacity is given by (2.35). The reason is that a memoryless vector channel can be
transformed into n parallel sub-channels through a diagonalization of the noise covariance, as pointed out in
[YSJt01]. If the channel works on a single block of n transmissions, an additional maximization of (2.35)
over p(z™) is needed. The reason is that I(X™;Y™|S™) depends on the p(z™) (and not on p(u™|z™, s™)).

Maximization over p(z™) amounts to that over K,, and gives

1 1
max —R,(F) = max—log———
p(zn) N n( ) K., 2n & |va|

(2.37)
Finally, since the capacity of the Gaussian vector channel without interference is given by (2.37) and since
the capacity of the channel with interference cannot exceed that of the channel without interference, (2.37)
is indeed the required capacity of the vector channel. Hence, the assumption that (U™, S™) takes the form
U™ = X"+ FS™ is without loss of generality. Further, just as in the i.i.d case, neither optimal F' nor capacity
depend on the distribution of the non-causal state information S™. Curiously enough, the optimal F' takes

the form of the optimal non-causal Wiener filter for estimating X™ from the noisy observation X™ + V™.
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2.2.3.2 Writing on non-Gaussian paper

We now consider a more generalized extension of Costa initial WDP to the situation where only the unknown
noise is Gaussian (the known noise S can have any distribution and the unknown noise is not necessarily
ii.d). Coding for such channel, sometimes referred to as "Generalized Writing on Dirty Paper” (GWDP) or
equivalently as "Writing on non Gaussian paper”, has been reported in [CL0O2b]. It is shown that there is
no loss in capacity in having non-Gaussian state S and non i.i.d. channel noise V. The proof relies on the

following two assertions.

X —a(X+V) and X +V are independent. (2.38a)
X —a(X+V) and S are independent. (2.38b)

Assertion (2.38a) follows since X — a(X + V) and X + V are jointly Gaussian and uncorrelated. The
uncorrelation between X — a(X + V) and X + V' will always hold as long as the parameter « is set to its

optimal value, i.e., o = P/(P + N), and can be simply seen from
E(X —a(X+V)(X+V)]=P—a(P+N).

Assertion (2.38b) follows since S is independent of both X and V. Now, using (2.38), the following equalities

follow.

H(UI|S)
HUY)

H(X +a8|S) = H(X|S) = H(X).
H(X +aS|Y),

= HX+aS—-aYl|Y),

= HX -—a(X+V)|Y),

(
(
(
(
(X — (X +V)|Y),
(
(
(

Il
T

)
= H(X —a(X +V)), (2.39)
= H(X —a(X +V)|[(X +V)),

= H(X|X +V). (2.40)
Egs. (2.39) and (2.40) hold because of (2.38). Maximizing the transmission rate R = I(U;Y) — (U; S) =
H(U|S) — H(U|Y) over p(z), capacity writes
c = m(a§<H(U|S) — H(UY),
p(z
= m(aic[H(X) - H(X|X + V)],
p(z

= maxI(X;X+V),

p(z)

1 P
= Elog(l + N)

Hence, the AWGN capacity can be (theoretically) attained even with non Gaussian state, a situation which

is current in practice.
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2.3 Binning Coding v.s. Algebraic Coding

In section 2.2, we provided a quick view of the general setup of coding with SI non-causally known to the
transmitter, which represents the theoretical foundation for the problem of information embedding. However,
performance limits therein are shown to be achievable by use of random codes. These are probabilistic in
nature, and thus computationally prohibitive to be implemented in practice. Hence, simplifications are
required to make this approach feasible in real life. Recently, adhering to Costa setting, Chen and Wornell
[CWO01] and Eggers and al. [EBTGO3] designed practical quantization-based schemes to achieve the side-
information capacity for watermarking applications. A similar work on quantized projections appeared
earlier in 19978 in [SZTB98]. The codebook entries are chosen to be quantizers representatives. These two
sample-wise schemes are referred to as "Quantization Index Modulation” (QIM) and ”Scalar Costa Scheme”
(SCS), respectively. By opposition to random codes, these quantization-based codes can be viewed as being
algebraic. By algebraic, it is meant that there is some structure in the codebook entries (broadly, a group
structure). Such a structure not only simplifies the sharing (between the encoder and the decoder) of a
huge number of codewords, but also simplifies the search and storing procedures of the codebook entries at
both the encoder and the decoder. For instance, the encoder (and/or the decoder) does not need store all
the codebook entries. Only a subset of these, together with some codebook parameters, are sufficient to
generate the remaining codewords. Also, the search can be made easier. However, there is a cost to pay for
such a simplification: algebraic codes are not optimal, in that they do not achieve the ultimate performance
provided by random codes. Ignoring the relative computational complexity, the efficiency of an algebraic
code can be measured by the extent by which it approaches these ultimate performance or, equivalently, by

the gap between the two.

2.4 Sub-optimal Algebraic-based Coding Techniques.

Broadly, information embedding schemes can be divided into two main classes: (i) host-interference non-
rejecting methods and (ii) host-interference rejecting methods. Host interference non-rejecting methods do
not allow the encoder to exploit the knowledge of the host signal in the design of the transmitted codewords
and are consequently interference limited by construction. The simplest methods consist in adding a pseudo-
noise sequence to the host signal and are often referred to as Spread-Spectrum Modulations (SSM). When
the knowledge of the host signal at the encoder is adequately exploited in system design, the resulting

information embedding system can be made host interference free.

2.4.1 Spread-Spectrum Modulations (SSM)

So far, we have argued that information embedding can be viewed as communication over a very noisy
channel. Motivated by the observation that digital communication systems for transmission over very noisy
channels, possibly subject to intentional disturbs (such as jamming or interferences) are almost usually

build upon Spread Spectrum (SS) technology, early approaches for information embedding were based on
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spread spectrum. However, while the term ”spread spectrum” (SS) refers to expanding the bandwidth of the
transmitted signal with comparison to that of the source [Pro01] in conventional communication, it has a
slightly different translation in information embedding. It refers to spreading the message to be transmitted
over many samples of the original cover signal, using some pseudo-random spreading sequence. A simplified

diagram of the simplest (additive) SS-based information embedding is depicted in Fig.2.6.

_ WeM
Correlation |
detector

A

Figure 2.6: Blind (solid line) and non-blind (dashed line) additive spread-spectrum-based information em-
bedding.

Here, we consider bipolar transmission of binary messages, i.e., M = {—=1,1}. Extension to non-binary
alphabets is straightforward. Taking the index W as input, the encoder forms the codeword x of length n
as x = Wu and transmits it over the channel. The sequence u is produced by a Pseudo Random Number
generator (PRN) using a secret key k € K. In principle, the sequence u can be drawn according to any given
probability mass function. Upon reception, the decoder computes the cross-correlation between the received
signal y = x + s 4+ v and the sequence u. In this case, this is given by the ratio of their normalized inner
product |
A
<y, u>= ” ;yzuz

to the normalized Euclidean norm ||u|| of the sequence u, i.e.,

y a <y,u>
[full
- W4 <s,u> <v,u>
[[ull [full
= W+s+w. (2.41)

The two quantities s and v denote the (normalized) projection of the host s and the noise v upon the sequence
u. Additive spread spectrum relies on the assumption that the pseudo-random sequence u is uncorrelated
with both the host signal s and the unknown channel noise v, i.e., s = v = 0. Hence, the receiver can
recover the transmitted message W by simply computing the correlation (2.41). However, the accuracy of
the measure (2.41) depends on the length n of the involved signals. Very large n lead to more accurate

correlation evaluation. For finite-length signals, a hypothesis test is needed. The larger n, the more precise
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this hypothesis test. Very long sequences are not preferred in practice however, because the interfering signals
s and v are strengthened also, thereby.

The maximum rate of spread-spectrum information embedding can be easily determined in the case of an
i.i.d Gaussian host signal s ~ A(0,Q) and an i.i.d Gaussian channel noise v ~ N (0, N). In this case, the
channel in Fig.2.6 is equivalent to an AWGN channel having the same SNR, i.e., P/N [dB] in non-blind
communication and P/(N + Q) [dB] in blind communication. In non-blind reception, the decoder subtracts
the cover signal s from the received signal y prior to decoding, thus making the scheme interference-free.
Blind SS, as for it, has poor performance because of strong host interference. Blind and non-blind SS-based

channel capacities are given by

1 P
CBlind S = 5 108 (1 N Q) ; (2.42a)

1 P
CNon-blind SS = B log (1 + N) . (2.42Db)

Note that (2.42a) and (2.42b) can be only achieved with ideal coding and signal shaping. Also, due to
information embedding requirements and especially the transparency requirement, we have () > P and
@ > N in common information embedding scenarios. Thus blind SS suffers significantly from original
signal interference and its efficiency is mainly determined by the Document-to-Watermark Ratio DWR =
10log(Q/P) [dB]. Capacities curves of blind and non-blind SS, shown in Fig.2.7, are depicted for DWR = 20

dB. It can be seen that the non-knowledge of the host signal at the receiver in blind SS significantly reduces its
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Figure 2.7: Channel capacity, in bit per transmission, for both non-blind and blind Spread Spectrum v.s
SNR = P/N [dB]. The depicted curves are for DWR = 20 dB. Blind SS suffers great performance loss due

the host interference.

achievable rates. A more general approach to spread the information to be transmitted over many elements

of the cover signal is called Spread-Transform (ST).
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2.4.1.1 Spread-Transform Information Embedding

ST-information embedding has been proposed by Swanson et al. in [SZT96], and later by Chen and Wornell
in [CW99]. A detailed description of this approach can be found in [CW99, Egg01]. Here, only the principle
is examined. In ST information embedding, the message is not embedded into the original signal s, but onto
the projection s of s onto a properly chosen random sequence t. Denoting the spreading factor by 7, the
number of original data elements belonging to one element in the transform domain ST, each 7 consecutive

elements of the host signal s are transformed into one element of s according to

Thk+7—1
Se= ) siti, k=12, (2.43)

i=Tk
Similarly, the same transformation applied to the embedded signal x yields a shorter signal X. Due to
information embedding requirements stated above, especially that related to the transparency requirement,
the inverse spread transform operation must be applied to the composite signal in the transform domain

s + x. This gives a composite signal ¢ = s + x such that
Ty = Tptn, k= [n/T], (2.44)

where ”[.]” denotes rounding to the next larger integer value. At the receiver, decoding must be performed

in the same transform domain. Hence, the received sequence y has to be projected onto t, too. This provides

Tk4+7—1
I = Z yiti, k=1,2,... (2.45)

i=Tk
Note that the denomination ”spread transform” stems from the fact that the information to be embedded
into § is spread into 7 original elements by the inverse transform. A part from security issues, the major
advantage of ST, is that of canceling any component of the unknown channel noise that is orthogonal to the
spreading direction t. The latter observation is the key idea behind the enhancement in SNR observed in
the transform domain,

SNR, = SNR + 10log;, 7 [dB], (2.46)

where SNR; denotes the SNR in the transform domain.

2.4.2 Side Information Quantization and QIM

We begin this section by showing, with qualitative arguments, why quantization is a basic operation, specif-
ically in information embedding and more generally, in all coding with state information systems. We then
give a brief description of the basic principle of Quantization Index Modulation [CW01] followed by two
typical applications: first as a class of powerful embedding functions in the context of information em-
bedding and then, as an alternative understanding of the famous Tomlinson Harashima Precoding (THP)
[Tom71, MH69, HM72], in the context of inter-symbol interference (ISI) mitigation in classical communica-
tion. Other forms of indexed-quantization-based schemes are briefly reviewed, with particular emphasis on
the famous Scalar Costa Scheme (SCS) [EBTGO03] described in Section 2.4.4.
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2.4.2.1 Quantization-based coding for SI systems

Quantization satisfies the requirements needed by the optimal encoder and the optimal decoder stated in
Section 2.2.2, as it will be argued below. Of course, this is not a rigorous proof of why it is precisely
quantization that should be considered for practical implementation of the optimal coding. However, this
(at least) justifies the high interest quantization is gaining each time coding for SI systems is of concern.

The suitability of quantization for such systems can be explained as follows.

1. We mentioned in Section 2.2.2 that, for encoding, the optimal encoder steers the host signal s toward the
nearest code-vector u in the bin Uy identified by the index W to be transmitted. This is precisely what
a quantizer does. Given some quantizer Q(.), each vector r € R" to be quantized is steered toward
its reconstruction point (vector) ¥ = Q(r) by adding to it its quantization error Q(r) — r. Hence,
quantization has already, in it, the fundamental concept of steering codewords in a given direction. To
have the arrangement in bins stated required by the optimal coding, one need simply choose a set of
quantizers, and index them by the set of indexes to be transmitted (this fixes the number of quantizers

to be exactly | M|).

2. Paralleling the optimal encoding stated in Section 2.2.2, each reconstruction point of each quantizer
(bin) is the center of a bin-quantization cell V(Q) which can be viewed as a bin-encoding sphere.
Similarly, paralleling the optimal decoding stated in Section 2.2.2, each received sequence y is quantized

to the center of the nearest decoding quantization cell, which can be viewed as a decoding sphere.

3. In addition, fulfilling the power constraint in the optimal encoding has a sphere covering interpretation,
as mentioned before. Quantizing at the encoder has a similar sphere covering interpretation. When
quantizing a signal r with power @) under the (distortion) constraint that the quantization error Q(r)—r
has variance P, the (volume of the) quantization cell has to be properly designed. Satisfying the
distortion constraint P can be viewed as covering the hull between the positions of r and those of
its representative ¢ = Q(r) with bin-quantization cells V(Q). A similar interpretation applies for the
decoder. Further, quantization cells for the same quantizer do not intersect and those for different

quantizers may intersect, exactly as for the optimal probabilistic coding stated above.

The beauty of quantization in coding for information embedding systems lies on the above features. An
additional argument that suggests quantization as an ideal suitable tool in coding for embedding information
stems from the embedding-specific requirements stated above. For instance, the transparency requirement,
which expresses some kind of closeness of the composite signal to the original, may be ideally fulfilled by
properly designing the quantizers. Under certain assumptions', the quantizer representative # = Q(r) of a
signal r is close, in the sense of the Euclidean distance, to this signal itself. Note that Chen and Wornell
differently (but qualitatively, too) argue in [CWO01] why quantization is well suited for information embedding

systems. The resulting scheme is named as "Quantization Index Modulation” (QIM).

IThis is the case when, for example, the high resolution quantization assumption is satisfied.
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2.4.2.2 Indexed quantization for IE: principle and optimality

Quantization Index Modulation (QIM) refers to embedding information by first modulating an index or
sequence of indexes with the embedded information and then quantizing the host signal with the associated
quantizer or sequence of quantizers. The optimality of QIM for embedding information is assessed in two
steps, first through an example (so as to illustrate the basic principle) and then, through a more rigorous

development.

(i) QIM through an example Consider the case where we wish to embed one bit of information per
host sample. So, the index W is in {1, 2}, meaning that we need two quantizers. Their corresponding sets
of reconstruction points in R are indicated in Fig.2.8 by O for the first quantizer and by U for the second
quantizer. The denomination QIM stems from modulating the quantization by the index to be transmitted.
Namely, if W = 1, the host signal s is quantized with the O-quantizer to the nearest O point if W =1 and
with the Chquantizer to the nearest 0 point if W = 2. Denoting by Q(s) the reconstruction point of s, the
embedded codeword x is set to the quantization error Q(s) —s. Hence, the composite signal ¢ = x + s is

represented by an O point if W = 1 and by an O point if W = 2. The basic principle of QIM relies on the

o
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Figure 2.8: QIM information embedding. The points marked with O’s and [Ts are the reconstruction points
of two different quantizers: the O-quantizer, associated with index W = 1, and the O-quantizer, associated

with the index W = 2. The minimum distance d,,;, determines the system immunity to channel noise.

following property: as the host signal s varies, the composite signal ¢ varies from one O point (if the message
to be embedded is W = 1) to another or from one O point (if the message to be embedded is W = 2)
to another, but it never varies between an O point and an [ point. If we assume no perturbation in the
channel (i.e., v = 0), the latter property means that, for the same transmitted message, the receiver sees a
received signal y which is always in the same set of reconstruction points, independently on the host signal.
For instance, the receiver would see always an O point if W = 1 is transmitted, independently on the host
signal s. Similarly, the receiver would see an U point if W = 2 is transmitted, independently on the host
signal s. That the index of the quantizer (1 for the O-quantizer and 2 for the [Fquantizer) does not vary
with the host signal allows to identify the transmitted message with no error, even in presence of infinite
energy host signal. Hence, if the unknown channel noise v is zero, QIM would allow to completely reject

the interference due the host, exactly as the more complex optimal coding does. If channel perturbations
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are not zero but are not too severe so as to move an O point to an [ point or vice versa, the decoder would
still decode the correct message. This would be performed by rounding the received signal to the nearest
reconstruction point in the set of reconstruction points formed by the union of O points and U points. In
fact, it is the minimum distance between the set of the reconstruction points of different quantizers that
effectively determines the performance of the QIM embedding system. Considering that M = | M| indexes
are to be transmitted, and thus M different quantizers denoted by {Q;(.)},7 = 1,2,..., M, this minimum
distance is defined as

in = mi i (@) _ (@
dmin = min,  min et =<, (2.47)

where s() is the composite signal obtained by use of the quantizer Q;(.). For equiprobable indexes W in the

set M, the minimum-distance decoder makes decision according to the rule

N

W= argmin |ly — Qw (@)l (2.48)

wWeMm

Intuitively, the minimum distance measures the strength of the perturbations that are tolerated by the
system. For example, if the unknown channel noise v is Gaussian and has power (per-sample) N, then the
minimum distance decoder will make the correct decision as long as (dmin/2)> > nN. Thus, at high SNR,

the probability of error P, £ Pr(W # W) can be approximated by

a2 .
P.r® —mn 24
e min ) (2.49)
+oo 1 U2
where ®(u) = \/? exp — 7du is the tail probability of the Gaussian PDF. In addition to the reliability
u s

of transmission, measured by the probability of error (2.49), QIM is characterized by the encoding distortion
Dg induced to the host by the embedding process. Chen and Wornell [CW01] remarkably noticed that
the initial QIM scheme, also sometimes referred to as reqular QIM, can be improved so as to have better
rate-distortion-robustness rates by appropriately scaling the quantizers. The resulting scheme is named
"Distortion Compensation QIM” (DC-QIM).

(i) Optimality of DC-QIM Consider a quantizer Q;, ¢ € M. Scaling this quantizer by a factor
a € [0,1] means that all its reconstruction points have to be scaled by 1/a. Likewise, two points separated
by a distance d before scaling are separated by d/a after scaling. Thus, scaling increases the minimum
distance (2.47) and thus, reduces the probability of error (2.49) by a factor of 1/a. However, scaling also
introduces an additional distortion by increasing the distortion Dg by a factor 1/a?. DC-QIM relies on
the idea that compensating this additional distortion is possible by adding back a fraction (1 — @) of the

quantization error. This results in an embedding function in the form
x(s; W) = Qw(as) — as. (2.50)

However, while removing the additional distortion, the quantization error added back represents a source of

interference at the receiver. If the quantization error x should satisfy a power constraint of P, the power of



2.4 Sub-optimal Algebraic-based Coding Techniques. 33

the distortion-compensation term is (1 — a)2§. Hence, the signal-to-noise ratio at the receiver writes

SNR(@) = 7= Ofl)@g//; — (2.51)

Since decreasing the parameter «, increases the minimum distance d,,,;;, but also strengthens this interference
term, one optimality criterion for choosing « is to maximize (2.51). The solution for this simple optimization

problem is given by
P

*=PrN’

which is nothing but the initial optimal Costa’s parameter.

(2.52)

2.4.3 Indexed quantization for precoding for ISI channels

In this section, we go one step further in illustrating the use of (indexed) quantization in side information
systems, by viewing the famous Tomlinson-Harashima Precoding (THP) [Tom?71, HM72] scheme for inter-
symbol interference (ISI) channels as a form of indexed quantization. Of course, there are other precoding
schemes [EF92, LTF93, Lor93], but this section is concerned primarily with THP. The reason is that many of
these are simply advanced forms of THP (Zero Forcing THP (ZF-THP), Minimum Mean-Square Error THP
(MMSE-THP)). While this understanding of THP shows that the idea of indexed quantization is not new,
this establishes a strong link between the very "mature” coding for ISI channels and the very new, but yet
well developed, coding for information embedding. Alternatively, this also shows that the results provided

in the rest of this work have potential use in classical communication.

2.4.3.1 Precoding for ISI channels

Inter-symbol interference (ISI) is a significant obstacle against reliable digital communication through band-
limited channels. A classical situation where IST occurs is that of communication over channels where different
symbols directed to the same user interfere. Another more involved situation is that in which different symbols
directed to different users interfere. In both situations, the role of precoding is to make the channel ISI-free.
The channel model is shown in Fig.2.9(a) where x is the channel input and y = Hx + v is its output. The
degradations that the transmitted signal may encounter in the channel are represented by the channel matrix
H and the Gaussian noise v. We want to output an optimal estimation z of x. Obviously, this can be given
by the MMSE estimation of x given the observation y. The MMSE estimation is the one that minimizes
the squared power of the error e = x — z. The optimal MMSE filter W can be divided into two parts:
(i) a feed-forward filter Ky = HTH corresponding to the fordward channel x — w = Hy = K;x + v/
where v/ = H''v and, (ii) a backward filter K, = (H"H + K,,) ™! corresponding to the backward channel
w — x = Kyw + e, where K, is the covariance matrix of the signal x. In practice the backward channel
involves a decision-based feedback equalizer. The block labeled D(-) in Fig.2.9(a) represents a symbol decision

device.
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(a) Channel model and MMSE-DFE
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Figure 2.9: Communication system using Tomlinson-Harashima Precoding (THP).

2.4.3.2 Decision-Feedback Equalizer (DFE)

Using a Cholesky factorization, the channel matrix K (which is also the covariance matrix of the error e) can
be diagonalized as Kb_1 = BTAB. This diagonalization forms a Decision-Feedback Equalizer (DFE). The
feed-forward filter is is formed by the concatenation of the two filters A~"'B~7 and H”. The feedback filter
is the filter I — B. The DFE process is also shown in Fig.2.9(a). The finite-length minimum mean-square
error decision-feedback equalizer (MMSE-DFE) has proven to be an effective structure for combating ISI.
The design of the MMSE-DFE filters requires the (full) knowledge of the ISI term, treated as channel state
information (CSI) at the receiver (this CSI is most of the times obtained through training). In practice,
the CSI at the receiver is noisy. Potential noise sources include estimation and/or channel time variations.
Also, a phenomenon that might significantly degrade the MMSE-DFE performance is catastrophic error
propagation. A means of circumventing this problem is to assign this task to the transmitter. If the CSI is
available at the transmitter, then the feedback portion of MMSE-DFE can be designed and implemented at

the transmitter. This structure is also known as the MMSE-Tomlinson-Harashima precoder.

2.4.3.3 Tomlinson-Harashima Precoding (THP)

Tomlinson [Tom71] and Harashima [MH69, HM72] independently introduced precoding as a technique for
inter-symbol interference mitigation. The structure that they presented is referred to as the Tomlinson-
Harashima Precoder (THP). The general THP system is shown in Fig.2.9. F and B are the two feed-forward
and feed-backward filters, respectively. The THP precoder output zy is filtered by H and Gaussian noise ny

is added producing the sequence seen at the receiver. As shown in Fig.2.9, the signal xj, transmitted over
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the channel is formed by modulo-reducing the s;. The modulo-t function I'; is used for mapping the real
numbers R to (—t/2,t/2] where ¢ is any positive real number. This modulo-operation can be viewed as the
signal-dependent addition I';(sg) = s + ag, where ay, is the integer multiple of ¢ for which =, € (—t/2,t/2].
Alternatively, I';(-) can be viewed as a real-valued quantizer. This quantization is message-indexed (through
wy). In fact, by moving the channel knowledge from the receiver to the encoder (which reduces computational
complexity in a variety of situations as in broadcast situations) the channel in Fig.2.9 is made equivalent
to that in Fig.2.3 for which we argued, in the previous section, that QIM is well suited. Hence, THP relies
basically on a form of indexed quantization. Of course, this does not mean that THP has been somehow
inspired by the way in which QIM is designed, simply because it has been proposed in 1972, i.e., earlier
than QIM. However, this means that, naturally, the two solutions of the two related problems (information
embedding and communication over ISI channels) bear resemblance to each other. While not surprising,
this understanding of THP as QIM has, nevertheless, not been recognized as such until very recently. More
precisely, this analogy between THP and QIM can be further extended. For instance, like QIM, THP has
two forms: its simplest form ZF-THP and its more involved form MMSE-THP. Broadly speaking, MMSE-
THP has the same advantages, over ZF-THP, that DC-QIM has over regular (or ZF-)QIM. Also, consistent
with this analogy, the MMSE choice of the optimal filter in MMSE-THP resembles the optimal choice of
parameter a in DC-QIM. In fact, the influence of the inflation parameter « itself can be understood as

filtering as mentioned above.

2.4.4 The Scalar Costa Scheme (SCS)

In section 2.2.2, we mentioned that the optimal dirty paper coding, DPC, is largely impractical for it relies on
random codes and requires an exhaustive search strategy for selecting the appropriate codeword. In Costa’s

DPC, the codebook U™ is constructed as

U = {wy=xp+as; | ke{l,2,...,L,},
x ~ N(0, PL,), s ~ N(0,QIL)}, (2.53)

where x and s are realizations of two n-dimensional independent random processes x and s with Gaussian
PDF, I,, denotes the n-dimensional identity matrix and a = P/(P + N) is the optimal Costa parameter.
The codebook U™ has cardinality L, = [2"T(UY)=97 (¢ is an arbitrary small positive number), and is
partitioned into Ljs disjoint sub-codebooks {U}, i = 1,2,..., Ly, in such a way that the total codebook
U™ writes

UM =UPOURU... U, U... DU, (2.54)

The size L, of the codebook U™ can become very large, even for small values of the length n and the size M
of the alphabet M, thus making the problem of storing and searching the codebook difficult. While leaving
the main concept of Costa’s DPC unchanged, Eggers and al. [EBTGO3] proposed the use of a structured
codebook. This is chosen to be a product of dithered uniform scalar quantizers, thus the denomination

”Scalar Costa Scheme” (SCS). With respect to the optimal DPC, the codebook U™ can be written in the
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form .
n times

~

U"=illoulo”-ou1, (2.55)
where U! is a one-dimensional component codebook. U! is separated into M disjoint sub-codebooks so that
U =US VU U UUy U---UU - (2.56)

The entries of codebook U are formed with the reconstruction points (vectors) of the uniform scalar quantizer

QAa(.) of constant step size A, i.e.,
1 alA
and the W-th sub-codebook of U is given by
1 alA

Note that, as in the previous sections, a secure pseudo-random sequence {k,} can be introduced as an
additional shift in the codebook U*, for security purposes. This encryption procedure does not modify the
codebook properties and for instance the minimum distance d,,;, between the M different sub-codebooks

remains unchanged.

2.4.4.1 SCS encoder

The encoder designs the codeword x to be a scaled version of the quantization error of the host signal s, i.e.,

X = u — as = aq. The quantization is performed in a sample-wise operation, i.e.,

weofafs(en) (oahen)) e

Under the well known high resolution quantization assumption ¢ > P, this encoding process incurs no

noticeable distortion to the host.

2.4.4.2 SCS decoder

Decoding is also based on uniform scalar quantization of the received signal y = x + s 4+ v followed by a

thresholding procedure. For instance, the decoder first computes the quantization error
Tn = QA{yn - knA} - (yn - k'nA) (2'60)

R T
and then sets the estimate W of the transmitted index W as the closest integer to —kM They are precisely

A/
the same principles of QIM that make the SCS independent on the characteristics of the host signal s, at

least when the channel noise v is not too strong.
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2.4.5 Channel capacity

We begin this section by the following note. In this section, as well as in the rest of this work, we will loosely
use the term “channel capacity” to refer to the maximum transmission rate achievable with a given scheme.
Of course, strictly speaking this is not the information capacity originally considered by Shannon. While
Shannon’s information capacity is independent on the choice of the encoder and/or the decoder, both of
these are fixed here by fixing the scheme. Instead, one should rather speak of the feasible capacity, for this
is the best transmission rate that the use of the scheme would allow. Shannon’s information capacity can
then be viewed as the maximum feasible capacity. The maximization is over all possible encoders and all
possible decoders. However, we will ignore the discrepancy between the two in the following, as it is usual
in classical communication.

We consider the channel capacity obtained by use of the suboptimal schemes QIM and SCS. We first notice
that the above referred to as regular QIM is a special case of the coding process in the SCS, obtained with
the choice @ = 1 in (2.59). Capacity of the SCS is obtained by numerically maximizing, over «, the mutual
information I(r; W) between the encoder input W and the decoder output r. Capacity of regular QIM

follows straightforwardly, i.e.,
Cgos = max I(r; W), (2.61a)
CQmm = I(r; W)la=1. (2.61b)

The mutual information I(r; W) has no closed form expression since the conditional distributions p(r|k)
and p(r|W, k) can be obtained only numerically. That the maximization must be performed over « follows

the same reason as for the optimal DPC coding. The optimum scale parameter « that achieves the scalar

P
Y=V Pr2TIN (2.62)

which is, as for the optimal DPC scheme, independent of the host signal s. The performance of both scalar
QIM and SCS are depicted in Fig.2.10.

capacity in (2.61a) is

2.4.6 Gaps to Capacity

Capacity and BER curves are depicted in Fig.2.10. Observe that, with respect to the performance of blind
SS depicted in Fig.2.7, the binary SCS performs close to the ideal DPC at low SNR. Further, the important
gap visible at high SNR can be bridged up by use of M-ary transmissions. The same observation is valid for
the BER: small BERs are possible at large SNR. However, there is a relatively important gap to full AWGN
performance, even with infinite alphabet size and for both low and high SNR ranges. This means that even
asymptotically (in both SNR and alphabet size), both SCS and QIM are suboptimal. Observe for instance
the poor error rates at low to medium SNRs, with SNR = 101og;,(P/N). For example we have BER ~ 107!
at SNR =~ 4 dB. Such error rates are of course too high to enable reliable transmission. This sub-optimality
is precisely the one mentioned above when comparing algebraic coding to random coding. For instance, this

gap is due to the use of a uniform scalar quantizer codebook U = A{+a/2,+3w/2,...,£(M — 1)a/2}, from
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Figure 2.10: Performance of Scalar Costa Scheme (SCS), regular and Distortion-Compensated QIM in terms
of both (a) Capacity in bit per transmission and (b) Bit Error Rate, BER. Left, M-ary SCS capacity (dashed)
approaches the full AWGN capacity (solid) as M — +o0. Right, SCS outperforms -by far- regular QIM in
terms of BER. A slight improvement over DC-QIM is observed at very low SNR = 10log;,(P/N).
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an information theoretic point of view. From a communication point of view, such a codebook amounts to
the use of an M-point Pulse Amplitude Modulation (PAM) signal, which is non-optimal as it is well known
from classical digital communication theory. In Chapter 3, we will concentrate on the design of appropriate
codebooks that partially bridge up the gap mentioned above. We will see that a certain shaping gain can
be obtained at low SNR. Also, a certain coding gain can be obtained at high SNR, when the codebook is
properly designed.

2.5 Summary

In this chapter, we provided a brief description of the problem of Channel Coding with Side Information
(CCSI) non-causally available at the transmitter, also commonly known as "Gel’fand-Pinsker problem”. We
also addressed its Gaussian version, or Costa problem, together with the optimal Dirty Paper Coding (DPC).
Though theoretically optimal, DPC is unfeasible in practice due to the huge size of the involved random
codebook. However, DPC represents the theoretical foundation for the suboptimal low-complexity techniques
which are relevant for practical implementation. As quantization is a key element in the design of algebraic
implementable codebooks for the solutions of side-information systems, most relevant coding techniques are
quantization-based. We also provided in this chapter a brief analysis of the most important information
embedding methods, that are Quantization Index Modulation (QIM) and the Scalar Costa Scheme (SCS).
QIM and SCS, which are two forms of one single coding strategy based on dithered quantizers, outperform,
by-far, Spread Spectrum Modulations (SSM) techniques. SSM methods are among the earliest embedding
functions considered in information embedding, but they greatly suffer from the interference due to the host

signal (the side information).
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Chapter 3

Lattices and Nested Lattices for
Source-Channel Coding in

Information Embedding

3.1 Preliminaries on Lattices
3.2 Lattice-based Information Embedding
3.3 Joint source-channel coding through nested-lattices

3.4 Summary

The content of this chapter has been partially published in [ZD05a, ZD05d, ZD06a].

In the previous chapter, we studied the performance of both the famous Scalar Costa Scheme (SCS) and
Quantization Index Modulation (QIM), with comparison to the optimal Dirty Paper Coding (DPC). We also
mentioned that, due to the sample-wise quantization, a certain gap to the ultimate DPC performance exists.
Finite-dimensional lattice quantization, which is an important class of structured Vector Quantization (VQ),
should improve reachable rates [EZ04] and hence, partially reduce this gap. In the first part of this chapter,
coset-based codes, which are often proposed as an alternative to the theoretical probabilistic random binning
in network coding, are used to devise a structured high dimensional Costa scheme for information embedding.
Both asymptotic and finite-dimensional performance are considered within the context of communication
over a Modulo Lattice Additive Noise (MLAN) channel. Next, we address the problem of optimal codebook
selection by exploiting the appealing algebraic structure of the lattice. Three possible choices for channel

codewords are compared, raising the question of an unavoidable trade-off between reliable transmission (low
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error rates) and payload (high transmission rates). Then, guidelines taken from shaping of multidimensional
constellations [FW89, GDF89] are used to re-formulate the problem of codebook selection as the search
for a good lattice support region from which codebook elements should be selected. In the second part of
this chapter, we use a binning interpretation to argue that information embedding can also be understood
as a source-channel coding problem and that nesting of lattices provides means of constructing efficient
low complexity good source-channel codes. By emphasizing the interaction between shaping (provided by
the coarse lattice) and coding (provided by the fine lattice) we give insight -through an example- into the

construction of efficient fine/coarse lattices.

3.1 Preliminaries on Lattices

This section provides a brief introduction to lattices. Only the ingredients required in the rest of this chapter

are reviewed. An extensive focus can be found in [CS88].

3.1.1 Lattices

Algebraically, an n-dimensional real lattice A is a discrete additive subgroup of R” defined as A = {G.u :
u € Z"}, where G is an nxn full-rank generator matrix. Geometrically, a lattice A is an infinite regular
array that covers n-space uniformly. For example (a) the simplest n-dimensional lattice is the integer lattice
Z™ which consists of all n-vectors with integer coordinates, (b) the lattice family A,, n € N, is defined
as A, = {(z0,71,---,2n) € Z"' : x5+ ...+ 2, = 0} and (c) the lattice family D,, is defined as
D, = {(z1,...,24) € Z™ : 1 + ...+ x, = even}. The fundamental Voronoi region V of A is the set of
points x € R™ that are closer to 0 than to any other lattice point A € A, i.e,

V(A) 2 {x ¢ [Ixl| <Ilx = Al YA €A}

For example, the Voronoi region of Z™ consists of all n-vectors that lie within a cubic region of unit volume,

centered at the origin. The fundamental volume of A is the volume of its Voronoi region, i.e,

V(A) £ Vol (V(A)) = /V(A) dx = 1/det(GTG).

The second moment of V(A), or simply of A, is defined as

1
a(A) 2 / x||?dx
W2 iy [

and its normalized second moment is the dimensionless quantity G(A) £ V(A)_%a2(A). G(A) is a dimen-

sionless measure of the covering efficiency of A. The normalized second moment of the integer lattice Z™ is
G(Z™) = 1/12. The covering radius 7o, (A) is the radius of the smallest n-dimensional ball centered at the
origin that contains V(A). The packing radius p(A) is the radius of the biggest n-dimensional ball centered
at the origin and contained in V(A). The points of R” located at the vertices of V(A) are called lattice holes.
Kissing points are points in V(A) that are at distance p(A) from A. The kissing number K (A) is the number
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of kissing points, or equivalently, the number of neighbors of any lattice point A € A. Finally, the minimum
distance of a lattice A is defined -as in coding theory- as the distance between the two points of this lattice
that are closest, i.e,

dmin = min min  ||A; — Al

(4,4):1#7 (AeAz)EAXA

3.1.2 Lattice Codebooks and Nesting of Lattices

A lattice codebook is a finite subset of a lattice or of a translated lattice, and may be specified as follows.
Let A = a+ A be a translated n-dimensional lattice, and R be an n-dimensional support region of non-zero

volume. Then the lattice codebook C(A¢,R) is defined as
C(Ac,R) = AcNR.

That is, C(Ac,R) consists of M points {y1,¥2,-..,¥m} of Ac that lie in R. If M is large enough, the size
of the high-rate lattice codebook C(Ac,R) is well approximated by

IC(Ae, R)| = V(R)/V (Ae),
and its coding rate R is well approximated by
R = %logz [V(R)/V(Ac)] bits per dimension.

Consider now a pair of lattices (A1, A2) with Ay being a subgroup of Ap, algebraically. Geometrically, Ay
is a sub-lattice of A;. The pair (A1, As) is called nested (or more precisely As is nested in A1) in the sense
that each point of A5 is also a point of A; but not vice versa, i.e., Ay C A;. A nested lattice then consists
of an n-dimensional lattice partition A1/A2 where the lattices A; and Ay are respectively referred to as fine
lattice and coarse lattice. In this case, there exist an nxn integer matrix J such that their corresponding
generator matrices G1 and Gg satisfy Ga = G1.J with det(J) > 1. An important parameter is the nesting
ratio p1(A1, As) defined as (A1, Az) £ /det(J) = /V(A2)/V(A1). The set of points of A; that are inside
the Voronoi region of Ay forms a lattice codebook C(A1, V(A2)) = {A1NV(A2)}. The elements of this lattice

codebook are coset leaders (minimum-norm points) of the coarse lattice As relative to the fine lattice Aj.
For each ¢ € C the translated lattice Ac = ¢ + Ay is called a coset of A, relative to Aj. Algebraically, Ay /A

forms a quotient group ! whose order is related to the coding rate R of the nested lattice code,

1 1
R 2 —log,|C| = ~log,|Ar /Aal = —log, (u(Ar, A2) (3.

1
n
3.2 Lattice-based Information Embedding

The performance of the sample-wise transmission schemes considered in the previous chapter can be enhanced

using structured low-complexity lattice-based codebooks. In Section 3.2.2 the corresponding capacity is

1We may view each coset as an equivalence class for this quotient group and the leader of the coset as a representative of

this equivalence class.
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derived using important insights from [ESZ00, ZSE02]. Error probability and the problem of codebook
selection are addressed in Sections 3.2.3 and 3.2.4, respectively. Results are supported by some realistic

finite-dimensional lattice implementations together with their capacity and probability of error curves.

3.2.1 Lattice coding for QIM Information Embedding

Consider the transmission scheme depicted in Fig.3.1 where A is some n-dimensional lattice. Assume that
the encoder and the decoder share common randomness so that the key K is available to both of them.

Apart from obvious security purposes this key will turn to be particularly useful to achieve capacity. Also,

S
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- l
o

k
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Figure 3.1: Information embedding based on modulo-reduction.

consider a certain mapping or indexing function ¢(.) between the set of indexes m € {1,..., M} and a set
of vectors Cp, = {¢ : m =1,..., M} to be specified in the sequel. Mapping is performed in an arbitrary
manner. Loosely speaking, C,, may be viewed as a lattice codebook in the sense given in Section 3.1. For
each m € M, the vector «(m) = ¢, is the coset leader of the coset A, = ¢,, + A of the lattice A. The set of
coset leaders is shared between the encoder and the decoder and is assumed to be uniformly distributed over
the fundamental cell V(A) of the lattice A. The key k may be used as a dither. Dithering is a well known
capacity-maximizing technique [ESZ00] the usefulness of which will be outlined hereafter. Also, we may view
a coset A, as a codebook bin in the original random binning coding argument in [Cos83]. In the following,
we consider host signal vectors (frames) of length n, i.e. the same as the dimension of the lattice A. Also,
we use the modulo reduction operation mod A with respect to the Voronoi region V of the lattice A. This
modulo operation is defined as x mod A £ x — Q4 (x) € V(A) where the n-dimensional quantizer operator
QA (.) is such that quantization of x € R™ results in the closest lattice point A € A to x. The received signal
is

y=xtstv, (3.2)

sum of the watermark x, the host signal s and some extra channel noise v.

3.2.1.1 Outline of lattice-based structured binning

Prior to dealing with optimal coding for communication over the channel depicted in Fig.3.1, we establish
a brief parallel with the original random binning technique used for channels with state information. Such
a parallel helps the understanding of lattice quantization as a search for (distortion) joint-typical sequences
and makes the encoding/decoding process (3.3) straightforward. In [Cos83], the encoder first partitions the

codebook entries uniformly into M = 2" bins and then, given a sequence S and an index m € M, searches
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in bin m for a sequence U such that (U, S) is jointly typical. Next, the encoder chooses a sequence X such
that (X, U, S) is jointly typical and sends it through the channel. Upon reception of Y = X + S + V, the
decoder searches in the entire codebook (union of bins) for the (unique) sequence U such that (U,Y) is jointly
typical and then sets the estimate m of m as the index of the bin containing the obtained sequence U. In the
structured lattice-based algebraic scheme in Fig.3.1, we may view the M = 2"E cosets A,,,m =1,..., M as
bins. Given m € M, the encoder quantizes as—k to the nearest point in A,,, obtaining u = Q,, (as—k). It
then transmits x = (as — k) — u = (as — k) mod A,,,. Note that loosely speaking, U is Dg-distortion typical
with S, meaning that (U, S) is jointly typical and that, in addition, the norm of the quantization error X is
inferior to Dg. A good lattice for quantization would be one that minimizes the norm of this error. Upon
reception, the receiver, not knowing the exact bin A, that has been used in the encoding process, quantizes

the scaled received signal ay — k to the nearest point in the structure formed by the union of all cosets
U Am,
meM

and sets the estimate 7 as the index of the coset (bin) containing the obtained point. Encoding and decoding

are given by

x(s;m, A) = (¢, + k — as) mod A, (3.3a)
m = argmin min [lay —k — Al (3.3b)
meM A€AR

It is important to note that by the properties of dithered quantization, the input constraint
1 2
E]EK [X?|S =58,C,, =] = P, (3.4)

is fulfilled, independently on the individual values of ¢,, and s. Note also that the one-dimensional SCS is
obtained with the particular case of an integer lattice A = Z where signals are scaled according to s’ = s/a,
x' = x/a and v/ = v/a. The optimum value o = PJFLN of DC-QIM inflation parameter a € (0,1] is
chosen such that it increases the inter-quantizers (cosets) minimum distance, keeps the embedding distortion
unchanged and minimizes the channel noise interference at the decoder. In this lattice scheme, regular QIM
corresponds -as for the scalar case- to @ = 1 and Dither Modulation (DM) with constant step size A proposed

in [CWO01] is obtained with the cubic lattice A = AZY.

3.2.2 Capacity analysis

First, recall the following two important properties of the mod-A operation defined above. These properties

will be extensively used throughout this chapter.

(P1) (a+v+A)modA =(a+v)modA, V(Aa)eAxR. (3.5a)
(P2) ((xmodA)+y)modA = (x+y)modA, V(x,y) € R™. (3.5b)
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cm €V(A) : y od A u= (¢ +v)modA

<

Cp € V(A) L y u= (Cm + V) mod A
XeEA dy mod A ——

(b)

Figure 3.2: (a) The typical mod-A channel. (b) Equivalent channel: adding a lattice point A € A at the

channel input does not change its output.

Consider now the mod-A channel depicted in Fig.3.2(a). This channel has been first considered in [FTC00]
where it has been shown that, assuming a channel noise V independent of the input C,,, capacity is achieved
if C,, is uniformly distributed over V(A). In this case, the capacity C'(A) of the channel satisfies (in bits
per-dimension)

C(A) = % (lo82(V(4) — h(V)) < %log2 (1 + %) , (3.6)

where h(.) denotes differential entropy and the noise term V = V mod A € V(A) is the quantization error,
with respect to A, of the WGN noise V. The right hand side term of (3.6) is the full capacity C™@X of
an AWGN channel with Signal-to-Noise Ratio P/N. A key idea in deriving the capacity of the channel in
Fig.3.1 is that the output of a mod-A channel does not change if a lattice point A € A is added at its input
as shown in Fig.3.2(b). This is due to the property (P1) of mod-A reduction. Consider now the case a = 1
(regular lattice QIM). This case clearly shows an important property of mod-A channels. Generalization to
a # 1 is undertaken in what follows. Using the distributive property (P2) of the modulo operation, equation

(3.3b) can be re-written as

3
Il

argmin [[(y¥ — k — ¢,) mod Al|,
m=1...,M

with
(y—k—cp)modA = ((cp+k—s)modA+s+v—-—k—c,) modA,
= vmodA. (3.7
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Then the modulo decoder sees the signal y —k = Qa(y — ¢,y — k) + ¢ + V, with ¥ = v mod A being the
equivalent channel noise. Hence the channel input is QA (y — ¢,y — k) + ¢, which is the sum of one lattice
point Q4 (y —¢,,) and the vector ¢,, uniformly distributed over V(A)2. The communication channel depicted
in Fig.3.1 is thus equivalent to that in Fig.3.2(b), which is itself equivalent to that in Fig.3.2(a). The channel
noise v has a probability density function (PDF) given by the restriction of a Gaussian PDF over V(A),

. 19—
2rN) /2 exp | — , ifveVA
(2mN) E:AGA P 2N () (3.8)

0, if v ¢ V(A).

(@) =

Therefore, lattice (regular) QIM capacity is also given by (3.6) and the lattice watermarking scheme is
equivalent to communicating over an MLAN channel. However, in general no closed form for (3.6) can be
derived and numerical integration is needed to evaluate the differential entropy.

We now turn to the general case a # 1. The receiver computes y' = (ay —k) mod A. Using (P2) and writing

ay =y — (1 —a)y, y' can be rewritten [ZSE02] as
v = (cm +av —(1—a)x) modA. (3.9)

The equivalent channel noise v = (av — (1 — a)x) mod A generalizes that corresponding to the Zero-Forcing
(ZF) approach. However, in order to satisfy the MLAN channel requirements, the noise V has to be
statistically independent of the input C,,. This is ensured by the following Inflated Lattice Lemma reported
in [ESZ00].

Lemma 1 (Inflated Lattice Lemma [ESZ00]) The channel from C,, to Y', defined by (3.2), (3.3a) and

(8.9) is equivalent in distribution to the channel
Y' = (C,, + V') mod A, (3.10)
where V' is independent of C,, and is given by
V' =(aV - (1 -a)U) mod A, (3.11)
and U is a random variable uniformly distributed over V(A) and is statistically independent of V.

Note that the independence is achieved even if the high resolution quantization assumption @ > P is
violated. The key idea for the proof is based on the fact that dithering (by the use of the key K) makes
X (almost) uniform over V(A). Thus, transmission over the channel in Fig.3.1 is equivalent to that over
an MLAN channel (modulo A) with input ¢, and noise ¥v. However, due to the inflation parameter «, the
equivalent noise v is no longer the restriction of a Gaussian noise over V(A), but the convolution of a uniform
self noise (1 — a)x and the ambient Gaussian noise av. Consequently, equation (3.6) is slightly modified and
capacity is given by the supremum of (3.6) over all values of parameter o € (0,1]. This capacity is attained
with a uniform input and it satisfies (in bits per dimension)

C(A) = mgx% <log2(V(A)) - h(V)) < %mg2 (1 + %) . (3.12)

2Tt now should become clear why we made such an assumption in Section 3.2.1
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Note that with respect to the ZF approach, the optimal inflation parameter in (3.12) enables the receiver
to pull down the noise v before lattice decoding. By this operation, lattice decoding achieves close to

Maximum-Likelihood (ML) decoding which corresponds to the right hand side term of (3.12).

3.2.2.1 Asymptotes and approximations

In general no closed form of (3.12) can be derived and numerical integration is needed to evaluate the

differential entropy h(V) . However, several special cases are worthy of some discussion.

(i) In the ZF-approach (a = 1), as WNR = 10log;,(P/N) becomes large (N — 0), the probability that
the noise V falls outside V(A) decreases, the A-aliased noise V becomes approximately equal to V
and the capacity C(A) tends to (1/n)log,(V(A)) — ilogy(2meN). On the other hand, as the (per-
dimension) noise variance N becomes large, the mod-A channel becomes very noisy and its capacity

tends to zero. Consequently, C'(A) can be asymptotically approximated by the piece-wise linear-curve

CAPPTOX — max {0, %log2 (@ﬂm%v%)} for both low and high WNRs.

(ii) As the dimensionality n of the lattice goes to infinity, the PDF of the noise V tends to a Gaussian
distribution. Thus, the optimal choice for parameter « is the one that minimizes the variance of V,

that is « = P/(P + N). With such a choice, the ultimate capacity C™" is attained.

(iii) For finite-dimensional lattice reduction, the PDF fg, (V) of the noise V is not strictly Gaussian. The
optimal inflation parameter a has to be computed numerically. An approximation of the solution can be
obtained by minimizing the variance of V and leads to a = P/(P+N), for which E¢, [V?] = Ii—]\]fv =aN.
In this case, we have

h(V) < h(aV — (1 — a)X) < log(2reaN).

The first inequality follows since the modulo operation can only decrease the entropy. The second
follows since for a given second moment a Gaussian random variable has the largest entropy. Conse-

quently, a lower bound on C(A) is

CA) 2

S

(% log(1 + P/N) — %10g(27reG(A))) , (3.13)

Cmax

meaning that for a given lattice A the theoretical gap to the full capacity may be made smaller

than log(2reG(A)). Good lattices for quantization (G(A) — 5=) even nullify this gap.

3.2.2.2 Capacity and Shaping Gain

The volume V(A) in (3.12) characterizes the average transmit power 6%(A) = P needed to transmit the set
of indexes m € M. With respect to the baseline cubic lattice Z™, the reduction in this transmission power is
given by the shaping gain v5(A) = 1/12G(A) of the lattice A. Substituting V(A) in (3.12) by its expression

as a function of v5(A), equation (3.12) becomes

) = mgx%lo& (1202(A)75(A))—%h(\7). (3.14)
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me
6 b

capacity gain provided by lattice coding over scalar coding approaches is 1.53 dB (i.e., 0.255 bit per dimen-

Since the ultimate shaping gain (as the dimensionality of the lattice goes to infinity) is the ultimate
sion). Here also, the parallel with digital communications is strong. This shaping gain is the same as the
one provided by multidimensional constellations over PAM constellations. However the limit of 1.53 dB can
never be attained with finite dimensional lattice embedding. According to [KP93] the shaping gain of finite
constellations is approximately given by

vs(A) & %6(1 — 972Ry, (3.15)

Thus, asymptotically, the capacity curve of (3.14) corresponding to the use of the lattice A can be viewed as
the translation to the left (lower WNRs) of that corresponding to the cubic lattice Z™ by a factor equal to
the shaping gain (3.15). This is supported by the finite dimensional capacity curves shown in Fig.3.3. These

curves are obtained through Monte-Carlo integration.

3.2.2.3 Simulations and discussion

The n-dimensional lattices considered for Monte-Carlo capacity integration are summarized in Table 3.1,

together with their most important parameters.

‘ Lattice ‘ Name ‘ n ‘ G(A) ‘ vs(A) [dB] ‘ ~s(A) [bit per dimension] H
7 Integer Lattice 1 L 0.00 0.000
Ay Hexagonal Lattice | 2 ﬁg 0.17 0.028
Dy 4D Checkerboard L. | 4 | 0.0766 0.37 0.061
E; 7-dimensional E; L. | 7 | 0.0732 0.56 0.093
Ey Gosset Lattice 8 | 0.0717 0.65 0.108

Table 3.1: Some finite-dimensional lattices with their important parameters

For a given lattice A, the feasible capacity (3.6) is obtained by minimizing (over @) the entropy h(V) of the
equivalent noise V = aV — (1 — a)X which is not strictly Gaussian as already mentioned above. Ignoring
the non-Gaussianity of this equivalent noise, an approximation is obtained by considering the entropy of the
equivalent Gaussian noise with the same variance. Computing the entropy of the restriction of this Gaussian
noise to the Voronoi region V(A) is not straightforward, because it requires the computation of (3.8). One
crucial point in computing (3.8) is to generate a sufficiently long random sequence (in the n-dimensional

space) uniformly distributed over V(A). One possible solution is as follows:

(a) Generate n uniform random variables (in [0,1) ) and map them via a generator matrix G(A) of the

lattice to the fundamental region V(A).

(b) Take a lattice quantizer Q(A) and find the nearest lattice point to each generated vector. The quanti-

zation error is in the Voronoi region V(A) and is uniformly distributed over it.

The resulting capacity curves (in bits per dimension) are plotted in Fig.3.3. We observe that:
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Capacity in bit per transmission

WNR [dB]

Figure 3.3: Capacity curves of lattice based transmission for some finite-dimensional lattices over the
Watermark-to-Noise Ratio WNR = 10log,o(P/N). Bottom to top: Z, As, D4 and Eg lattices. Solid:
Capacity curves of DC-QIM. Dashed: AWGN capacity and asymptotic-limit. Dashed-dotted: Capacity

curves of the Zero-Forcing approach.

(i)

(iii)

Due to its small shaping gain, the integer lattice Z provides the lowest capacity. The gap to AWGN
capacity is particularly large for low WNR. At low rates (below 0.1 bit/dimension), a gap of about 4
dB is observed. At high WNR, this gap is already partially bridged up using lattices A5, Dy and Es.

The improvement due to the shaping gain v,;(A) of the lattice is particularly visible at high rates where
the shaping gain (3.15) becomes significant. At low rates however, the shaping gain (3.15) is very small
and the increase in capacity is marginal. Convergence toward the full AWGN capacity C™3% is such
that

0< oM _ oy < %log2 (2meG(A)).

DC-QIM with optimal lattice encoding/decoding outperforms -as expected- the ZF approach. The gain
is particularly large for low WNR. For rates above 2 bits/dimension, this gain is not significant. Also,

the higher the lattice dimension n, the tighter are both the lower bound (3.13) and the approximation
(aPprox

3.2.3 Error Probability Analysis

The analysis above has shown that increase in capacity due to high dimensional embedding is especially

observed at high WNR. At low WNR however, the payload (capacity) does not matter much. Most important

is the probability of error. In this section, this probability of error is discussed in the case of a ZF embedding

approach. We will concentrate on the design of an efficient lattice codebook C,;, that minimizes P,.
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3.2.3.1 An approximation

According to the binning interpretation given in Section 3.2.1, the decoder looks for the appropriate codeword
among all possible codewords in the union of all cosets A,,, m € M. Hence the error probability depends

mainly on the minimum distance between these cosets, given by

A .
A As — A
min 151’,;‘1211\1/1111'# 1A ill
= min min Ai — A5l 3.16
min, i = Al (3.16)

(Ai,Aj)EA xA;
Suppose without loss of generality that ¢; = 0 (m = 0) is embedded into the cover signal s, resulting in
a received signal y = Qa(s — ¢1) + ¢; + v (the key k is assumed to be null here). The decoder (3.3b)
makes the correct decision if the nearest lattice point -among the set of all reconstruction points of all cosets-
belongs to A;. The error probability P, can be expressed using the union bound. But noticing that this

error probability is dominated by the two nearest cosets, P, reads

d2.,

P, ~ @ —mn 1

¢ 4N )’ (3.17)
1 d?mn

= — —min 1

< 2exp< SN )’ (3.18)
te g A
where ®(u) = —26_"2/ 2du is the tail probability of the Gaussian PDF. We consider the problem of
T

selecting the opt?fima,l codebook Cp, = {e1,¢2,...,cp} for transmission over the channel in Fig.3.1. In a gen-

eral setting, this problem is difficult. The optimal codebook should achieve very low error probability along
with high transmission rates. Error probability and transmission rate are obviously conflicting requirements.
The resulting problem can be formulated as a constrained optimization problem:

Given a certain minimum required transmission rate Ry, = %log2 (M pin) and a per-dimension distortion
couple (P, N ), select a lattice A of dimensionality n and a codebook C,, = {ec1,...,cp} with ¢; € R™ so0 as

to satisfy the following constraints:

R > Rpin, (i-e., a minimum guaranteed transmission rate),

P, as small as possible, (i.e., reliable transmission).

A simple measure of the extent by which a certain coding scheme {n,A,C,,} satisfies these conflicting

requirements can be obtained using the parameter v defined as

1 dmz’n —-nR/2 dmz’n
v=—e = g—ni/27min
vM\nP vnP

Inequality (3.18) shows that minimizing P, is equivalent to maximizing d,,;,, which amounts to maximizing
v. Satisfying the transmission rate requirement would require, as for it, to minimize v. As a result, a proper
choice of v is based on a certain trade-off between rate transmission and reliability. Note that both d,,;, and
R = %log2 M depend on the choice of the codebook C,,. Based on the geometrical structure of the lattice,
we first address this problem through three examples. These examples correspond to different choices for
coset leaders ¢,,,, m € M. A more general and stringent approach will be given in Section 3.3 within the

context of source-channel coding.
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(i) Lattice holes: Lattice holes have been introduced in Section 3.1. Two types of holes can be distin-
guished, deep holes and shallow holes. The former are the points of R™ that are furthest away from A, i.e.,
at a distance 7., from it (see Fig.3.4). Moreover, it can be seen (as remarkably noticed in [MGKO04]) that
dmin < Teop- Thus, in order to maximize the inter-coset minimum distance d,,;,, these deep holes may be
ideally used as coset leaders. However, two or more of these deep holes can generate the same coset, thus
causing a decoding ambiguity at the receiver. Let N} denote the number of these deep holes. To resolve
any ties when a coset of A has more than one minimum-norm element, we choose a set of minimal vectors

(somehow a basis, mathematically) hy, ..., hys (Nj < Ny) such that

Ny, Np
th’+A= Uhi—FA. (3.19)
i=1 =1

In the following the lattice deep holes satisfying (3.19) are called relevant deep holes. The use of these
relevant deep holes as codebook elements, i.e Cp, = {hy, ... s hye }, is optimal from a minimum distance dpin
point-of-view, but not from a payload point-of-view, since it requires that M < N,* + 1, or equivalently
that R < Llogy(N,* + 1). Note that one could combine (relevant) deep holes and (relevant) shallow holes
to form the codebook C,,. However, while this surely increases the transmission rate, it inevitably leads to

larger error probabilities. This is because the shallow holes are not as far away from A as are the deep holes.

(ii) Kissing Points: Kissing points defined in Section 3.1 are located at a distance equal to the packing

radius p(A) from the lattice A (see Fig.3.4). When used as coset leaders, ties can be resolved in exactly the

same manner as for lattice holes. There exist then a set of minimum-norm vectors ki, ..., kns (N < Ni)
such that
Ni K(A)
Uki+a=J ki+A (3.20)
i=1 i=1

Similarly to deep holes, the lattice kissing points satisfying (3.20) are called relevant kissing points in the
following. Also, the choice Cp, = {k1,...,kn+} gives a transmission rate R such that R < tlog,(Ny + 1).

(#t) Construction A A quite low complexity efficient method for increasing the transmission rate
R with respect to the use of relevant lattice holes and relevant kissing points is Construction A [CS88].

Construction A provides means of constructing a lattice A = C'(n, k) + 2Z™ with minimum distance
dpmin = min(2, Vd), (3.21)

from an appropriate linear code C'(n, k) of minimum Hamming distance d. In this chapter, design of trans-

mission schemes based on Construction A consists in the following two steps:

(i) Choose N; binary vectors ai,...,an inside the Hamming ball centered at the origin 0 and of radius

d. These vectors satisfy
dH(a;,c) <d, V(i,c) € {1,...,N;} x C(n, k),

where dH denotes the Hamming distance.
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Figure 3.4: The hexagonal lattice As in the plane. Lattice points are the centers of circles (of radius
p). Deep holes- located at a distance 7., from A,- are indicated by (small) blue squares and red circles
(Np, Np*) = (6,2). Kissing points are pointed out with solid and dashed arrows (K (A), N*) = (6,3).

(ii) Map these vectors to N; minimum-norm points ci,...,cy= located inside V(A) by ¢; = a;+2z,z € Z"

and set the codebook Cy, as C = {c1,...,cN: }.

As we mentioned before, the use of Construction A enables transmission at larger rates R, with comparison
to deep holes and kissing points. However the minimum distance d,,;,, as for it, is in general smaller, since
it must satisfy (3.21). Several lattices with good packing and quantizing properties can be obtained with
Construction A. For example, the lattice 7 and the Gosset lattice Eg, which are the densest lattices in
dimensions 7 and 8 respectively, can be obtained as E7y = (7,3,4) + 2Z" and Eg = (8,4,4) + 2Z8. The binary
linear code (7, 3,4) is the dual of the Hamming code (7,4, 3) and (8,4, 4) is the first order Reed-Muller code of
length 8. Note that the goodness of these lattices inherits from that of the linear codes (7, 3,4) and (8,4, 4),
which perform efficient error correction in their respective dimensions. The design of a good linear code to

be used as a baseline for Construction A will be further discussed in Section 3.3.

3.2.3.2 Simulations

In the following, we provide Monte Carlo based simulation results corresponding to different choices of the
codebook C,, taken from the examples discussed above. We retain deep holes and Construction A. Though
Ni > Ny for most of the lattices, deep holes are preferred to kissing points for low rate applications.
Due to their large inter-cosets minimum distance (r¢o,(A) > p(A)), the former are optimal for "Zero-Rate”
embedding as remarkably noticed in [MGKO04]. The latter, however, are more suitable for medium to high
transmission rate applications. Also, the problem of resolving ties becoming too hard to solve when the
dimensionality n of the lattice becomes large, we consider small dimensional lattices taken from Table 3.1.

As a toy example, note that (N}, Nj) = (2,1) for the square lattice Z? and (Nj,N;) = (3,2) for the
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hexagonal lattice As. The BER curves provided in the rest of this chapter correspond to embedding one
symbol (index) per host sample. Fig.3.5 shows the per-dimension bit error probability® obtained with the
coset leaders ¢,,, m € {1,...,N; + 1}, mapped to the relevant deep holes of the lattices Z, As and Dj.
The comparison of the different lattice-based transmissions is carried out as follows. In Fig.3.5(a), we are
interested in comparing the error correction capability of the relevant holes of the different lattices. In
Fig.3.5(b), we are interested in illustrating the trade-off between the transmission rate R and the bit-error
probability P., by comparing Construction A to deep holes. However, since the number of relevant deep holes
(and thereby the transmission rate) as well as the per-dimension energy used for this transmission (given
by G(A)V(A)?/™) vary from lattice to lattice, a fair comparison of these lattices should assume the same
energy used to transmit one bit of information per-dimension, in both Fig.3.5(a) and Fig.3.5(b) . Lattices
must then be scaled accordingly. This (per-bit per-dimension) energy is given by
G(A)V(A)*/m

B = o,

(3.22)

where M = N 41 for simulations using relevant deep holes and M = N/ for simulations using Construction
A. In Fig.3.5(a), we use relevant deep holes of the lattices Z, A and D4s. We observe that the hexagonal
lattice A, already provides significant improvements (bit error reductions) over the baseline cubic lattice
Z™. Further enhancement is allowed by the use of the Checkerboard lattice D4, which provides a gain of
approximately 2.5 dB over the integer lattice (equivalent to SCS) at a bit error rate of about P, = 4 x 1073
bit per dimension. In the following (see section 6.5), it will be argued that this gain has two components: (i)
a first component measuring the strength of the lattice holes as specific channel codewords and, (ii) a second
component intrinsic to the lattice itself, not to the specific design of the channel codebook C,,. Intrinsic
refers to the reduction in the error probability due to the reduction in the second moment G(A) of the
lattice. The curves depicted in Fig.3.5(b) correspond to the use of the lattices E; and Eg. For each of them,
two different transmission schemes are compared: (i) low rate transmission using the relevant deep holes of
E;, =AU ((—%4, %4) + A7) and Eg = Dg U (%8 + Ds) and (ii) high rate transmission using Construction
A. In (ii) the lattices E; and Eg are obtained from the Hamming code (7,4,3) and the Reed-Muller code
(8,4,4) as mentioned before. The codewords ¢, are chosen among the rows of the generator matrices of
the binary linear codes (7,3,4) and (8,4,4). Geometrically, they correspond to the vertices of the quarter
positive part of the unit cube at the origin. We observe that at P, ~ 3 x 10~ bit/dimension, the use of
Construction A provides a gain of about 4 dB over deep holes. This is due to the fact that deep holes are
optimal for the transmission of little information, only. Construction A however allow transmission at higher
rates, more reliably. In addition, we observe from Fig.3.5(b) that the gain of Construction A over deep holes
increases with the per-bit per-dimension SNR. This is due to the fact that at high SNR, channel noise is not
strong enough to cause the transmitted signal to change from one coset to another. Hence, the need to have
the different cosets far away from each other, something for which relevant deep holes are best suited, is of

less importance.

3This per-dimension bit error probability can be approximated by the symbol error rate divided by n logy (V. » 4 1), for high

signal-to-noise ratio.
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(b) The gain component due to the reduction in G(A)

Figure 3.5: Bit Error Probability v.s. the (per dimension per bit) Signal-to-Noise ratio Ey(A) /N for DC-QIM
based information embedding. (a) The curves correspond to use of the relevant deep holes of the lattices Z
(plus sign), Ao (asterisk) and D4 (diamond). (b) BER using lattices E; (diamond) and Eg (asterisk). The
codebook Cy, is obtained using relevant lattice holes (solid) and Construction A (dashed). The lattices Er
and Fg are obtained through construction A as E; = (7,3,4) + 2Z7) and Fg = (8,4,4) + 2Z®). For deep

holes, we considered the constructions E; = A7 U ((—%4, %4) + A7) and Eg = Dg U (%8 + DS).
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3.2.4 Shaping for lattice bounded codebook

The problem of codebook selection partially addressed in Section 3.2.3 can be addressed through a more
general approach. Let R denote the region from which the codebook elements c,,,m € M, should be
selected. R may be viewed as a support region (see definition in Section 3.1) for the union of all cosets
Ay = UA,,. Finding the optimal lattice codebook C,, amounts to finding the best support region R(A;) since
Cm = A1 NR. Note that, the deep holes and kissing points considered above correspond to the particular
choice of coset leaders as specific points from the set of points lying on the surface of the corresponding
support regions. These support regions are given by the fundamental Voronoi region V(A) of the lattice for
deep holes and the biggest ball centered at the origin and contained in V(A) for kissing points. The codebook
C,» is bounded because the codewords are chosen inside the support region R. In general A; does not need
to have a lattice structure. However, the lattice structure makes modulo-reduction more feasible and it is
preferred that Ay = UA,, be a lattice. In the examples considered above, this is the case. A slightly different
approach consists in considering some (fine) lattice A; and finding the appropriate support region for it. An
interesting choice for R is the Voronoi region of a larger scale shaping lattice Az, i.e., R = V(A2). In this
case the codebook C,, is a Voronoi lattice codebook* and the inter-cosets minimum distance (3.16) reduces

to that of the lattice A;. Hence the error probability (3.18) can be written as

- V(A2)2/n
Pe ~ ¢ <\/ C(Al)T) )

Ey(A
~ @(\/S%(Al)%mz)fz%), (3.23)
where v.(A1) = % is the packing (coding) gain of the lattice A1, vs(A2) = v5(R) is the shaping

gain of the support region R and Ep(A) is the energy (per-dimension) needed to transmit one bit. From
(3.23) we see that the total improvement (reduction) in the error probability is measured by the product
Y(A) = ~:.(A1)vs(A2). Thus, the lattice bounded codebook C,, = A; N V(Ay) achieves about the same
error probability as a scalar codebook at an SNR that is smaller by a factor of v(A). Equivalently, the rate
R = Llog,|Cp| can be increased by a factor of 1logyy(A) at the same SNR, without increasing P.. The
strength of C,, is measured by the efficiency of A; in packing and that of A in shaping.

In the following section, we give an interpretation of the shaping gain vs(A2) in terms of source-coding and
argue that Costa-based lattice watermarking problem may be viewed as a Source-Channel coding problem.

We also (partially) address the difficult problem of designing efficient practical codes.

3.3 Joint source-channel coding through nested-lattices

Consider the channel depicted in Fig.3.6 where two nested lattices (fine, A; and coarse, As) replace the
single lattice in Fig.3.1. The lattices A; and A, are nested in the sense given in Section 3.1.2, with nesting

ratio p(A1, A2) = {/V(A2)/V (A1) and transmission rate R = tlog,u(A1, A2). The codebook Cy, is given by

4This denomination was first introduced by Forney in the context of lattice shaping for multidimensional constellations
[GDF89].
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Figure 3.6: Nested encoding and decoding scheme for watermarking. The coarse lattice Ay should be a good

source-code and the fine lattice Ay should be a good channel code.

Cm = {A1 mod Ay} 2 AN V(Az). For each ¢, € Cppy AS™ = ¢y + Ao is a coset of Ag relative to A;. The
indexes m € M to be transmitted are arbitrarily associated by a one-to-one mapping function ¢(.) to the
cosets ¢, in the set C,,,. The union of these cosets forms the fine lattice A;. According to [ZSE02], encoding

and decoding for the channel in Fig.3.6 are given by

x(s;m, A1, As) = (¢, + k — as) mod As, (3.24a)
e (y;m, A, A2) = Oy, (ay — k) mod As. (3.24b)

Note that the transmitted signal X satisfies the average power constraint (3.4) and that the overall process
resembles the one in (3.3), with the coarse lattice Ay playing the role of the lattice A in (3.3). Besides,
(3.24a) means that the transmitted signal is the error quantization between as — k and the selected coset
AS™. Equation (3.24b), as for it, means that the overall decoding is performed through successive (layered)
decoding: first use the fine lattice A; to find the quantizer representative Qa, (ay — k) of ay — k. Next use
the coarse lattice Ay to quantize Qa, (ay — k) and reconstruct the message as the index of the unique coset

containing Qx, (ay — k).

3.3.1 Performance

Noticing that the leader of the unique coset containing Qx, (ay—k) can be computed as ¢;,, = O, (y')modAa,
with y' = (¢, + av — (1 — a)x) mod Az, we can easily show -in a straightforward manner to that in Section
3.2.2- that capacity is given by

C(Ar/As) = mo?x% (1og2(v2) ~ h(\”f)) < %mg2 (1 + %) , (3.25)

where the folded noise v = (av — (1 — a)x) mod A has, as we mentioned before, two components: a weighted
Gaussian noise component av and a self-noise component (1 — a)x.

Concentrate now on the error probability P.. Here, this error probability is addressed with qualitative
arguments in the case of finite dimension embedding. A more involved development about error exponents
and asymptotic performance can be found in [LMKO04]. From (3.24b) we see that decoding fails if either
(i) reduction modulo A; fails to find the appropriate quantizer representative or (ii) reduction modulo As
fails to find the appropriate index. We denote the error probability related to the event (i) by Pe(l) and that
related to the event (ii) by P®. P is measured by the coding gain «.(A1) of the fine lattice A; whereas
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Pe(z) is measured by the shaping gain 7,(A2) of the coarse lattice Ay. Thus, minimizing P, would require
minimizing the probability of these two error events. Hence the problem amounts to finding lattices (or

codes) with good shaping and packing (coding) properties. Two special regimes can be distinguished:

(i) At high coding rates (high nesting ratios), the self-noise tends to zero and the total equivalent noise
becomes Gaussian. In this case, Pe(z) is negligible and the error probability P, is principally determined
by the channel code strength, i.e. the coding gain ~y.(A;) expressing the channel correction capability
of the fine lattice A;. This explains why such choices as Hamming, (7,4,3) and Reed-Muller (8,4,4)
linear codes are quite efficient as basis for building fine lattices in Fig.3.5(b). This is also inline with the
remark made in Section 3.2.3 regarding the non-influence of the second moment reduction (connected
to the shaping gain through v,(A) = 1/12G(A) at high SNR.

(ii) At low coding rates (low nesting ratios) however, the self-noise becomes a significant component of the
total noise ¥. The decoding error probability Pe(z) cannot be neglected and the error probability P,
is determined by both coding and shaping properties. Also in this case a good approximation for P,
is given by (3.23). This explains why lattice holes are appropriate for such rate range as previously

mentioned.

3.3.2 Source-Channel coding in lattice watermarking

From a strict functional viewpoint, the watermarking problem depicted in Fig.3.6 is primarily a channel-
coding problem, that is, for transmitting messages. However, the "power constraint” of the input of the
communication channel is the quantization error of the side information. Hence from this point of view, side
information S necessitates a good source coding in order to satisfy efficiently this power constraint. In other
words, the encoding process (3.24a) satisfying the power constraint Ex [X?] = P is basically a source coding
problem. The only minor difference with respect to classic source coding quantization is that quantization
is message-based (through a binning scheme). In addition, given that the power constraint P is equal to
the norm of the quantization error of the side information s, a good quantizer would be one that, for the
same transmission rate R, minimizes this quantization error (thus allowing more information at the channel
input for the same input power). So, in the watermarking problem shown in Fig.3.6, and broadly in the
more general “Costa problem”, source coding is used to design channel codewords that have the appropriate
energy at the input of the channel. This is ensured by grouping channel codewords into (appropriate) cosets

of (appropriate) source codes.

3.3.2.1 Binning interpretation

The basic concept of combined source-channel coding in lattice-based watermarking is inherently implicit in
the original random binning coding argument for channels with state information [GP80]. ”Binning” consists
in randomly dividing the codebook entries into subsets (cosets or bins) such that the codewords are far apart
as possible. Hence, the set of codewords in all cosets may be viewed as a set of channel codewords. The

efficiency of this channel code is measured, for example, by its minimum distance. Large minimum distances
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Figure 3.7: Algebraic binning based on 1-D lattice codes. The channel codewords represented by the set of all
the spheres are divided into subsets or cosets (spheres indicated by the same number) of a single source code
(2)

with larger minimum distance d,,;,, represented by the spheres indicated by the number 1. The minimum

distances d*)_and d®)

min min Characterize the channel and source codes strengths, respectively.

are preferred. Moreover, to transmit a message m € M, a codeword that is Dg-distortion jointly typical
with the state information S has to be found. This can be viewed as quantizing s to the nearest codeword in
the bin identified by m. The set of codewords collapsed into the same bin m may then be viewed as a set of
source codewords. The efficiency of this source code is measured by the distortion introduced in quantizing
s. If a linear code is used for source coding, this distortion translates to its minimum distance. Small
minimum distances are preferred. Thus the channel coding problem of Costa-based watermarking can also
be understood as a source-channel coding problem, when considering that the watermark signal is obtained
through message-depending quantization. In addition, the ratio of the minimum distance of the source code
to that of the channel code has the significance of "nesting ratio” which determines the transmission rate R

as in (3.1). An illustration of this principle based on one-dimensional scalar lattice codes is shown in Fig.3.7.

3.3.2.2 Nested lattices and source-channel coding

So far we have shown that the performance of nested lattices-based watermarking depend on channel coding
properties, which are both the coding (packing) gain 7.(A1) and the shaping gain v4(As). We also argued
that the watermarking problem can also be viewed as a source-channel coding problem. Moreover, similarly
to the coding gain and the shaping gain in channel coding, source coding is characterized by granular gain and
boundary gain [EF93]. Since the source code is nested inside the channel code (see the binning interpretation
above), we may use the granular gain of the source code for "shaping” the channel code®. More precisely, in
the nested lattices of Fig.3.6, the fine lattice A; should be used for channel coding and the coarse lattice Ag
should be used for source coding. This amounts to shaping A1 by (the Voronoi region of) Ay whose granular
gain v, (A2) = 1/12G(A») translates to a shaping gain for A;. The source and channel codes used for algebraic
binning illustration in Fig.3.7 can be viewed as two 1-D nested (scalar) lattices. The coding lattice A; and
the shaping lattice Ay are both scaled versions of the one-dimensional integer lattice Z. Namely, Ay = aZ
and Ay = aMZ with M = Ldsﬂn / dsrlbsz The coding cells are the translates of the interval (-, §], which
is the fundamental Voronoi region of A;. The support region R is the interval (—2£2 +Ma] which is the
fundamental Voronoi region of A,.

In this section, we first show, through simulations, that in finite dimensional embedding the two components

of the total gain v(A) (i.e., the coding gain ~.(A) and the shaping gain 7,(A)) are not decoupled but rather

5Tt should be mentioned that the shaping gain and the granular gain of a lattice are given by the same formula 1/12G(A).
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Figure 3.8: Shaping through nested lattices. The fine lattice code corresponds to the codewords represented
by the centers of all small hexagonal cells. The coarse lattice includes only the codewords represented by the
centers of big cells. All codewords having the same number correspond to a single coset code of this coarse

lattice code.

interacting, by opposition to the asymptotic case (in dimension n) where v(A) = 7.(A) + vs(A) [dB] as it
can be seen from (3.23). Next, we compare the importance of the two components in lowering the error
probability. This gives insights into the design of good source-channel codes addressed in Section 3.3.3.

In Fig.3.9(a), the probability of error P, is measured as in Fig.3.5(a), using the same codebooks too. However,
we are interested, this time, in extracting the reduction in P, due to the shaping gain ~, only. Since ~,(A)
depends only G(A), and since Ej(A) writes as in (3.22), the improvement due to the shaping gain v(A) can
be brought out by scaling the lattices so as to have the same volume (e.g., that, V(Z), of the lattice Z™).
Reduction modulo a scaled lattice A where 8 € R is some scale factor is such that

x
8
We observe that if the cubic lattice Z"™ is replaced by an hexagonal lattice A with the same volume, but
with smaller normalized second moment G(As) = 5/361/3 < G(Z™) = 1/12, the resulting error probability
is significantly reduced, at low SNR. Even lower BERs are obtained with the Checkerboard lattice D4 for

Qpa(x) = BQa(3), VX €R". (3.26)

which G(D4) = 13/120v/2. Because of its large normalized second moment, the cubic lattice Z™ suffers
performance loss mainly at low SNR. The reduction in the normalized second moment G(A) translates to
a reduction in the SNR by a factor equal to 1/12G(A). However, these gains (BER reductions) are visible
only for the SNR range below some lattice-dependent SNR, threshold SNR*(A). Upon this threshold, the
improvement brought by the reduction in the second moment of the lattice does not counterbalance the loss

caused by the decrease in the inter-cosets minimum distance d,,;, (at fixed volume). This is because, when
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scaled (with some scale factor B(A)) so as to have the same per-dimension volume V' (Z), a lattice A sees its
inter-coset minimum distance d,,;, scaled accordingly. Namely, d,,;, decreases to Sd,,;n, where

V(Z)

B = AN (3.27)

As n — +00, this loss in minimum distance (and thereby in coding gain) goes to zero. Thus, shaping and
coding gains 7,(A) and v.(A) are not decoupled but rather interacting. It is precisely this interaction that
explains why the threshold SNR* moves to the right as the shaping gain increases, in Fig.3.9(a).

Another important observation concerns the importance of shaping, depending on the SNR. More precisely,
note the following. With respect to the simulations corresponding to the results shown in Fig.3.5(a), what we
have done to get the curves in Fig.3.9(a) is nothing but fully exploiting the shaping gain (and hence, reducing
the coding gain . thereby). The resulting error probability is enlarged, mainly at high SNR, meaning that
we get poor performance by diminishing the gain coding component. Thus, at high SNR, it is the coding
gain 7v.(A) that best determines the BER. This phenomenon can also be observed from Fig.3.9(b) where the
BER corresponding to the 2-D nested hexagonal lattices in Fig.3.8 with 1 = 3 is depicted. At low SNR
shaping plays an important role. This explains why shaping with the larger scale coarse lattice A2 reduces
the BER for SNR < 1 dB. At high SNR however, it is the coding gain 7.(A) that matters.

3.3.3 Practical design of good nested codes

So far we considered the use of Construction A for high rate information embedding. However the efficiency of
a lattice issued from construction A naturally depends on that of the linear code used for the construction.
Hence, a method for designing good channel codes is needed. In [ZSE02], Zamir et al. proposed nested
lattices as means of achieving capacity for efficient structured binning multi-terminal coding and tune the
fine lattice to be Poltyrev-good and the coarse lattice to be at the same time Poltyrev-good and Roger-good
[EZ04]. Nesting of good lattices has also been recently addressed in the context of distributed source coding
for sensor networks as in [XLC04, XSC*04, Ser04, CPR03]. However, very often performance are studied
asymptotically, that is as the dimension of lattices goes to infinity. Thus, the resulting criteria are convenient
only for theoretical analysis, not for practical implementations. Here, we use a less stringent, but more feasible
approach. Namely, since shaping is important at low SNR only as explained in Section 6.5.3, we use a cubic
lattice Ay = Z™ as coarse lattice. With respect to the full shaping that would be obtained, asymptotically,
with infinite dimensional spheres, this leaves only %logz(%) = 0.255 bit per dimension unexploited. Also,

we ask the fine code to be ”good” enough in a minimum-distance sense.

3.3.3.1 RS codes and minimum distance criterion

The use of the minimum distance criterion is motivated by the fact that at high SNRs, the performance of
a channel code depend almost only on its minimum distance. The remaining weight distribution does not

much matter. So, we proceed as follows.

(a) Select a good fine code C; according to the minimum distance criterion.
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Figure 3.9: Interaction Shaping/coding. (a) At low SNR, reduction in BER (with comparison to the integer
lattice Z) is due to the increase in the shaping gain vs(A). At high SNR, the increase in shaping vs(A) does
not encompass the decrease in the coding gain 7.(A) caused by the decrease in the minimum distance dy, .
(b) The effect of shaping through nesting of lattices (coarse Ay = 34, fine Ay = A,) is observed at low
SNR. At high SNR reduction in error probability is principally determined by the coding gain 7.(A).
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(b) Use Construction A[CS88] to build the corresponding fine lattice A; as described in Section 3.2.3.
(c) Finally, use a cubic lattice, as coarse lattice Ao, to shape for the fine lattice A;.

An important class of codes having good (large) minimum-distances is that of Reed-Solomon (RS) codes
[Pro01]. An (RS) code RS(N, K,D), N = 2™ — 1, is Maximum-Distance-Separable (MDS), meaning that
it has the largest minimum-distance among all codes having the same length N. For instance, RS codes
attain the singleton bound [Pro01], ie. D = N — K + 1. However, an RS code being defined over a
Galois-Field GF(q) with ¢ = 2™, an equivalent binary representation (over GF(2)) should be found so as to
make it possible to use it in conjunction with construction A, in building the fine lattice A;. The RS code
RS(N, K, D) over GF(q) translates to the binary code C(n, k,d)=C(mN,mK,d). Thus, (binary versions of)

RS codes are good candidates for the fine lattice construction in the nested structure addressed above.

3.3.3.2 Example

We consider the RS code RS(7, 5, 3) over GF(8). We use the corresponding binary code C(21,15) to build the
fine lattice, by construction A. The way this binary code C(21, 15) is obtained from the RS code RS(7,5,3)
is undertaken below. We implemented a soft decision decoder based on the Euclidean distance. A sketch
of the overall process is as follows. Lattices are constructed as A; = C(21,15) + 4Z?! and A = Z?!. The
message to transmit is chosen from the alphabet M = {1,---,16}. The codebook C,, is chosen such that
the message m € M is associated to the mth row vector ¢, of the binary generator matrix Gy, (m = 16
is mapped to the zero vector, 0). Encoding and decoding functions are as follows.

Encoder: Given some index m € {1,---,16} to transmit, the encoder forms x as in (3.24a), (the key k is
chosen to be zero).

Decoder: Given some received sequence y, the decoder has to perform (3.24b). For that, he/she first
searches for the closest point of the lattice A; to ay — k. Since A; is obtained through construction A, this
amounts to decoding the binary code C(21,15) (see [CS88], Chapter 20, Section 5). The nearest codeword
of C(21,15) to some vector in the space R?! is the one that minimizes the Euclidean distance to that vector.
Hence, an exhaustive research in the set of all possible 2 = 25 codewords is required. To obtain the list
of these codewords, the binary generator matrix Gi,;;, of the code C(21,15) is needed. Gyy;y, is constructed
as the dual of the binary parity check matrix Hy;,. Hyy;, is the binary representation of the parity check
matrix H, over GF'(8), given by

In Fig.3.10, the per-dimension bit error probability reduction that results from the use of RS(7,5,3) in the
construction of the fine lattice A; is compared to that using the Gosset lattice Fg obtained from Construction
A and also transmission with deep holes of lattices Z, As and Dy. We observe that the gain is particularly
significant for low to medium SNR but may diminish for very high SNRs. The reason is that the minimum

distance of the fine lattice is bounded by (3.21). Note that in Fig.3.10, the nesting ratio is such that
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Figure 3.10: Bit Error Probability v.s. Ey(A)/N for DC-QIM information embedding. Dashed: from bottom
to top: lattices Eg obtained from Construction A, D4, A2 and Z. Solid: using the RS code (7,5, 3) for the

design of the fine lattice with Construction A.

the transmission rate corresponding to the use of the RS code (7,5, 3) (or, more precisely, its binary version
(21, 15)) is respectively 3.75 times and 5 times those enabled by the use of the lattice D4 and As. Further, the
use of the RS code (7, 5,3), would enable much reduction in error probability if one relaxes the transmission
rate. Hence, this example shows that reliable transmission, along with relatively high payload, is made
possible. In addition, following Zamir et al. construction of family of codes that are asymptotically “good”,
RS codes represent a good starting point for a class of asymptotically (in dimension n) good channel codes.
These are called Justesen codes. Justesen codes [Jus72] are good in the sense of both Gilbert- Varshamov and
McFliece- Rodemich-Rumsey- Welch bounds. These bounds characterize channel codes for which both R and

d/n remain bounded away from zero as n increases. These bounds are reminded here for information.

(a) Gilbert-Varshamov lower-bound: Let § € [0,%[. There exist linear codes C(n,k,d) over GF(q) with
minimum distance d and rate k/n such that d/n >0 and k/n > 1 — H,(d) — dlog,(¢ —1) Vn

(b) McEliece- Rodemich-Rumsey- Welch upper bound: For each linear code C(n, k,d) of minimum distance

d, the rate k/n is such that k/n < Hy (% — %(1 — %)) for n sufficiently large.

Note that the codes with both R and d/n bounded away from zero are (asymptotically) good candidates
for the problem of trade-off between transmission rate and reliability raised in Section 3.2.3. A Justesen
code C(2N,2K) may be obtained from the RS code RS(NV, K) as follows: let @ be a primitive element
of GF(q), i.e. & = 1. If ¢ = (c1,..-,¢N), ¢; € GF(q) is an arbitrary codeword of C(N, K), ¢’ =

N-lcn) and ¢” the corresponding binary m-tuple, the set of all codewords ¢ for

(c1,c1,62,009,...,cN,
¢ € C(N,K) forms a Justesen code C(2nN,mK). The minimum distance of this Justesen code satisfies
[CS88]

% >0.11(1 — 2R). (3.28)
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Note that, though obviously dependent on D, the minimum-distance d of the binary code C(n, k, d) is not
explicitly related to D. A loss in the relative distance may occur when transforming an RS code into its
binary representation. But in most of the cases, large minimum-distance D over GF(q) leads to sufficiently

large minimum-distance d over GF(2).

3.3.3.3 Discussion

In the example above, we considered an RS code as a starting point for building the fine lattice A;. This
choice may be non-optimal, but it already shows the gain achieved when channel codewords (fine lattice
points) are carefully designed. For instance, one possible weakness concerns the minimum distance d of the
binary representation of the RS code. Though obviously dependent on D, this minimum-distance d is not
explicitly related to D. Hence, a certain loss in the minimum distance may occur when transforming an
RS code into its binary equivalent code. Also, the use of construction A may be non-optimal for very high
embedding dimensions. In this case, other more efficient constructions (constructions C and D [CS88] for
instance) may be used instead. The principle described here remains unchanged however, at the cost of
relatively higher modulo-reduction complexity of course. Finally, note that the proposed RS-based coding
scheme is computationally simple. The performance shown in Fig.3.10 can be further enhanced by, for
example, efficiently coding the message m prior to encoding. Also, substantial gain would be possible by
changing the RS soft decoder so that it tales into account the ordered statistics of the bits at its input
as in [FL98]. More sophisticated linear/Trellis codes can be considered. Some of these have already been
used for the dual problem of distributed source coding. For example Low-Density-Parity-Check (LDPC)
codes have been considered in [YCXZ03, RMZGO03]. Also Turbo-based constructions have been proposed
as in [CPRO03, AG02, ZGF02, BM01]. In the context of data transmission, an important work is that of
Erez and ten Brink [EtB04]. In this work, lattice strategies are used in conjunction with MMSE scaling
in order to perform efficient precoding. To this end, the authors rely on vector quantization together with
iterative decoding techniques. They showed that a 2 dB improvement over scalar quantization techniques is
achieved. An interesting implementation of Erez’s scheme has been proposed in [CPGWO05] in the context of
information embedding. The schemes in [EtB04, CPGWO05] are however too complex. Here, our main goal is
to point out the source and channel coding problem in information embedding, to emphasize the interacting
property of two shaping and coding (packing) gains and to give insights -through an example- into the proper
design of the involved codes. The resulting construction has the advantage of enabling low error rates at
relatively high payloads, thus showing that the trade-off between error probability and transmission rate

mentioned above may have good solutions.

3.4 Summary

In this chapter we focused on lattice-based information embedding techniques for data hiding. Relying on
recent results on Modulo channels, the gain achieved over scalar approaches (SCS and QIM) is illustrated by

use of some finite dimensional lattices, with good quantizing and packing properties. Then we addressed the
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problem of codebook selection first through some relevant examples using the appealing algebraic structure of
the lattice and then, through a more general approach inspired by shaping for multidimensional constellations.
In the second part of the chapter, we used a binning interpretation to argue that the watermarking problem
can also be seen as a source-channel coding problem, with source coding providing means of shaping the
channel code. Interestingly enough a nested structure turns to be particularly useful for good source and
channel codes design. This problem, though already solved from a theoretical point of view, still suffers from
lack of feasible implementations. Here we proposed a simple minimum distance-based approach for selecting
the fine channel codes. We also emphasized the interaction between shaping and coding, thus identifying
the situations where shaping through nesting of lattices is most important. Analysis is supported by an
illustrative example showing that reliable high rate transmission is possible if source and channel codes are
carefully designed. Both Monte Carlo based integration (for capacity) and simulation (for BER) are provided

for illustrations.



Chapter 4

Broadcast and MAC Aware Coding
Strategies for Multiple User

Information Embedding

4.1 Multiple User Information Embedding: A Prelude

4.2 Broadcast and MAC Set-ups

4.3 Watermarking over a Gaussian Broadcast Channel: Performance analysis

4.4 Watermarking over a Gaussian Multiple Access Channel: Performance analysis

4.5 Summary

The content of this chapter has been partially published in [ZPD04, ZPD05, ZPD06].

Multiple user information embedding is concerned with embedding several messages into the same host signal.
While emphasizing the tight relationship with conventional multiple user information theory, this chapter
presents several implementable “Dirty Paper Coding” (DPC) based schemes for multiple user information
embedding. We first show that depending on the targeted application and on whether the different messages
are asked to have different robustness and transparency requirements or not, multiple user information
embedding parallels one of the multi-user channels with state information available at the transmitter, for
which recent theory is well developed. The focus is on the physically degraded Gaussian Broadcast Channel
(BC) [see Appendix B for a brief review of BC] and the Gaussian Multiple Access Channel (MAC) [see
Appendix C for a brief review of MAC]. For each of these channels, two practically feasible transmission

schemes are compared. The first approach consists in a straightforward- rather intuitive- superimposition of
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Dirty Paper Coding schemes. The second consists in a joint design of these Dirty Paper Coding schemes. The
joint approach is based on the ideal DPC for the corresponding channel. These results extend the practical
implementations QIM and SCS that have been originally conceived for one user to the multiple user case.
After presenting the key features of the joint design within the context of structured scalar codebooks, we
broaden our view to discuss the framework of more general lattice-based (vector) codebooks and show that
the gap to full performance can be bridged up using finite dimensional lattice codebooks. Performance
evaluations, including Bit Error Rates (BER) and capacity region curves are provided for both methods,

illustrating the improvements brought by a joint design.

4.1 Multiple User Information Embedding: A Prelude

During the last years, both QIM and SCS have been thoroughly studied and extended into different direc-
tions such as non-Gaussian channel noise [TBF*05], non uniform quantizers [LS04a] and lattice codebooks
[MKO04, ZD05d, ZD05a, ZD06a]. This chapter extends these schemes to another direction: multiuser infor-
mation embedding. Multiuser inforrmation embedding refers to the situation of embedding several messages
into the same host signal, with or without different robustness and transparency requirements. Of course
finding a single unifying mathematical analysis to general multiuser inforrmation embedding situations under
broad assumptions seems to be a hard task. Instead, this chapter addresses the very common situations of
multiple user information embedding, from an information theoretic point-of-view. The basic problem is to
find the set of rates at which the different messages can be simultaneously embedded. Interestingly enough,
this problem has tight relationship to conventional multiple user information theory. Consider for example
watermark applications such as copy control, transaction tracking, broadcast monitoring and temper detec-
tion. Obviously, each application has its own robustness requirement and its own targeted data hiding rate.
Thus, embedding different watermarks intended to different usages into the same host signal naturally has
strong links with transmitting different messages to different users in a conventional multi-user transmission
context. The design and the optimization of algorithms for multiple information embedding applications
should then benefit from recent advances and new findings in network information theory. For instance, in
this chapter, we first argue that many multiple information embedding situations can be modeled as com-
munication over either a degraded Broadcast Channel (BC) with state information at the transmitter or a
Multiple Access Channel (MAC) with state information at the transmitters. Next, we rely heavily on the
general theoretical solutions for these channels to devise efficient practical encoding schemes for the problem
of multiple user information embedding. The resulting schemes consist, in essence, of applying the initial
QIM or SCS as many times as the number of the watermarks to be embedded. While this is not surprising
given the close-to-optimal performance of both QIM and SCS in the single user case, we show in this chapter
that these schemes should be appropriately designed in the multi-user case. A joint design is required so
as to closely approach the theoretical performance limits. For instance, for both the resulting BC-based
and MAC-based schemes, the improvement brought by this joint design is pointed out by comparison to

the straightforward, rather intuitive, corresponding scheme obtained by super-imposing (i.e with no joint
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design) these SCSs (or DPCs for the ideal coding). This improvement is demonstrated through both ca-
pacity region and BER analysis. We finally show that these performance can further be made closer to the
theoretical limits by considering lattice-based codebooks. Some finite-dimensional lattice with good packing
and quantization properties are considered for illustrative purposes.

The rest of the chapter is organized as follows. Two mathematical models corresponding to the multiuser
inforrmation embedding problem viewed either as communication over a Broadcast Channel (BC) or as
communication over a Multiple Access Channel (MAC) are provided in Section 4.2. Performance analysis
corresponding to these two models are addressed in Sections 4.3 and 4.4, respectively. For each of them,
analysis is carried out within the context of two watermarks using scalar codebooks first, and then extended
to the more general case of an arbitrary number of watermarks and that of high dimensional lattice-based

codebooks. Finally we give some concluding remarks in Section 4.5.

4.2 Broadcast and MAC Set-ups

In an information embedding context, "multiple user” refers to the situation where several messages W; have
to be embedded into a common cover signal S. The embedding may or may not require different robustness
and transparency requirements. This means that each of these messages can be robust, semi-fragile or
fragile. Also, depending on the targeted application, the information embedding system may require either
a joint or separate decoding. For joint decoding, think of one single trusted authority checking for several
(say K) watermarks at once. For separate (or distributed) decoding, think of several (say L) authorities
each checking for its own watermark. In order to emphasize the very general case, one may even imagine
these decoders having access to different noisy versions of the same composite content. This is due to
the fact that this composite content could have experienced different channel degradations depending on the
receiver location (think of a watermarked image being transmitted over a mobile network, with watermarking
verification performed at different nodes of this network). As in the decoding process, we may wish that
the encoding of these messages be performed either jointly or separately. Some of the situations of concern
are given by the illustrative examples described above, with the receivers becoming the transmitters and
vice-versa. Of course, though intentionally kept in its very general form, this model may not include some
specific multiuser information embedding situations. This is due to the difficulty of finding a single unifying
approach to all possible multiple user information embedding situations. Nevertheless, the model that we
described is sufficiently general to involve the most important multiuser inforrmation embedding scenarios.
For instance two classes of such scenariis that we will recognize as being equivalent to communicating over
a degraded BC and a MAC in Sections 4.2.1 and 4.2.2 respectively, are worthy of deep investigations. To
simplify the exposition, we first restrict our attention to a two-watermark scenario. Extension to the general

case then follows.
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4.2.1 A mathematical model for BC-like multiuser information embedding

Consider a information embedding system aiming at embedding two messages W; and W,, assumed to be
Mji-ary and Ms-ary, respectively, into the same cover signal S. We suppose that one single trusted authority
(the same encoder) has to embed these two messages and that embedding should be performed in such a way
that the corresponding two watermarks correspond to two different usages (separate decoders). For example,
the watermark Xo, carrying Wa, should be very robust whereas the watermark X;, carrying Wi, should be
of lesser-robustness or even fragile. This means that the watermark X, must survive channel degradations
up to some level Ny larger than the level N1 up to which the watermark X; could survive, i.e. Na > Nj.
Furthermore, the previously mentioned transparency requirement implies that the two watermarks put to-
gether must satisfy the input power constraint P. This means that the composite watermark X = X; + X, is
constrained to have power P, i.e Ex [X?] = P. Assuming independent watermarks® X; and X, we suppose
with no loss of generality that Ex, [X%] = vP and Ex, [X%] = (1 — 7)P, where v € [0,1] may be arbitarily

chosen to trade off power between the two watermarks. In practice, this multiuser information embedding

S ~N(0,Q) Zy ~ N(0,Ny)
Y
W, - ,
Encoder X:EX) <P m\ Y, Decoder 1 W
We | ) —D " (fragile) |
@ Y, Decoder 2 W
(robust)
Z2 ~ N (0, N2)

Figure 4.1: Two users information embedding viewed as communication over a two users Gaussian Degraded
Broadcast Channel (GDBC).

scenario can be used to serve multiple purposes. In the scope of watermarking of medical images for example,
we may wish to store the patient information into the corresponding image, in a secure and private way.
This information is sometimes called the “annotation part” of the watermark and is hence required to be
sufficiently robust. Further, we may wish to use an additional, possibly fragile, "tamper detection part” to
detect tampering. Another example stems from proof-of-ownership applications: we may wish to use one
watermark to convey ownership information (should be robust) and a second watermark to check for content
integrity (should be semi-fragile or fragile). A third example concerns watermarking for distributed storage.
Data (think of software programs) should be watermarked so as it would be possible to reliably extract the
information stored in different magnetic recording media, and hence having faced different alteration levels.
The storage and the recording processes obviously introduce different alteration levels. Thus, the part of the
data stored in the media with much alteration should be more robust than the remaining data. Of course
many more examples and applications can be listed. We just mention here that the model at hand can be

applied every time one watermarking authority (i.e, one transmitter) has to simultaneously embed several

LA justification of this assumption will be given in Section 4.3.
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watermarks in such a way that these watermarks satisfy different robustness requirements.

Assuming Gaussian channel noises Z; ~ N (0, N;), with ¢ = 1,2, a simplified block diagram of the trans-
mission scheme of interest is shown in Fig.4.1. The decoder 7 decodes ﬁ\/} from the received signal Y; =
X; + X5 +S +Z; at rate R; and declares an error if 171\/', # W;. Functionally, this is the very transmission
diagram of a two users Gaussian Degraded Broadcast Channel (GDBC) with state information available at
the transmitter but not to the receivers. In addition, the watermark Xs having to be robust plays the role
of the message directed to the "degraded user” in a broadcast context. Conversely, the watermark X; plays
the role of the message directed to the "better user”. Also, here we have considered only two watermarks.
The similarity with a L-users degraded BC will be retained if, instead of just two watermarks, L watermarks

are to be simultaneously embedded by the same so-called trusted authority.

4.2.2 A mathematical model for M AC-like multiuser information embedding

We now consider another watermarking situation. Again, the information embedding system aims at em-
bedding two messages Wi and W5 into the same cover signal S. However, the present situation is different
in that, this time, (i) embedding is performed by two different authorities, each having to embed its own
message and (ii) at the receiver, a single trusted authority having to check for the two watermarks. We
assume no particular cooperation between the two embedding authorities, meaning that the watermarks X,
of power P; (carrying W) and Xo of power P, (carrying W) should be designed independently of each
other. The composite watermark signal X = X; + X, must however satisfy -as before- the input-power

constraint P, meaning that P, + P, < P. In practice, this multiuser information embedding scenario can

S~ N(0,Q) Z ~ N(0,N)

X::EX <P S+X Y o
Wi — =1 Encoder 1 + @ Decoder = (W1,72)
X

?

W2 ——= Encoder 2

X2 :E[X2*] < P,

Figure 4.2: Two users information embedding viewed as communication over a (two users) Multiple Access
Channel (MAC).

be used to serve multiple purposes. Broadly speaking, every information embedding system addressing the
same application multiple times is concerned. An example stemming from proof-of-ownership applications
is as follows. Consider two different creators independently watermarking the same original content S, as it
is common for large artistic works such as feature films and music recordings. Each of the two watermarks
may contain private information. A common trusted authority may have to check for the two watermarks.
This is the case when an authenticator agent needs to track down the initial owner of an illegally distributed
image, for example. A second example is the so-called hybrid in-band on-channel digital audio broadcasting

[CWO01]. In this application, we would like to simultaneously transmit two digital signals within the same
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existing analog (AM and/or FM) commercial broadcast radio without interfering with conventional analog
reception. Thus the analog signal is the cover signal and the two digital signals are the two watermarks.
These two digital signals may be designed independently. One digital signal may be used as an enhancement
to refine the analog signal and the other as supplemental information such as station identification.
Assuming a Gaussian channel noise Z ~ A (0, N) corrupting the composite signal S+ X, a simplified diagram
is shown in Fig.4.2. The encoder 4, i = 1,2, encodes W; into X; at rate R;. The decoder outputs (W/71, @)
and declares an error if (Wy, Ws) # (Wi, Ws). Functionally, this is the very transmission diagram of a two
users Gaussian Multiple Access Channel (MAC) with state information available at the transmitters but not
to the receiver. Note that here we have considered only two watermarks. The similarity with a K-users
MAC will be retained if, instead of just two authorities, K different embedding authorities, each encoding
its own message are considered.

The above discussion indicates that there are strong similarities between multiuser information embedding
and conventional multiple user communication. In Sections 4.3 and 4.4, we rely on recent findings in multi-
user information theory to devise efficient implementable multiuser inforrmation embedding schemes and
address their practical achievable performance. Also, in our attempt to further highlight the analogy with

” on

conventional multi-user communication, we will sometimes use the terms ”multiple users”, “degraded user”

and "better user” to loosely refer to "multiple watermarks”, "the receiver decoding the more noisy composite

content” and "the receiver decoding the less noisy composite content”, respectively.

4.3 Watermarking over a Gaussian Broadcast Channel: Perfor-

mance analysis

In this section, we are interested in designing efficient low-complexity multiuser information embedding
schemes for the situation described in Section 4.2.1. We first present a straightforward rather intuitive
method based on super-imposing two SCSs. This simple method can be thought as a broadcast-unaware
strategy. Next, we use the similarity with a Gaussian degraded BC recognized above to design a more efficient
multiuser inforrmation embedding scheme. The improvement brought by this broadcast-aware strategy is
illustrated through both achievable capacity region and achievable Bit Error Rates (BER) enhancement.
Finally, results are extended to both the L-watermark case and the high dimensional lattice-based codebooks

case.

4.3.1 Broadcast-unaware coding for multiuser information embedding

A simple approach for designing a watermark system for the two users watermarking problem considered in
Section 4.2.1 consists in using two independent single-user DPCs (or SCSs for the corresponding suboptimal
practical implementation). In essence, the ideal coding is based on successive encoding at the transmitter as

follows:

1. Use a first DPC (DPC1) taking into account the known state S and the unknown noise Z, to form the
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most robust watermark X, intended to the degraded user.

2. Use a second DPC (DPC2) taking into account the known state S + X5, sum of the cover signal S and
the already formed watermark X5, and the unknown noise Z; to form the less robust watermark X;

intended to the better user.

3. Finally, transmit the composite signal S + X over the watermark channel, with X = X; + X, being

the composite watermark.

Note that the watermark X, should be embedded first because of the following intuitive reason. When
considering the extreme case where the watermark X; is fragile, this watermark should be, by design,
damaged by any operation that alters the cover signal S. Since robust embedding is such an operation, the
fragile watermark should be embedded last. Using (2.20), the ideal DPCs corresponding to the above steps

are as follows.

1. Channel Yy (DPC1): X5 = Uy — @3S where

Uy ~ N (asS,(1 —v)P), with ay = ﬁ% (4.1)
2. Channel Y; (DPC2): X; = U; — a4 (S + X2) where
Uy ~ N (01(S + X3),7P) , with oy = —12— (4.2)
vP + Ny
The theoretical rates Ry and Ry achievable by DPC1 and DPC2 are given by

Ry = %log2 <1 + %) , (4.3a)

Ry = R(az, (1 =7)P,Q,7P + Ny), (4.3b)

P(P+Q+N)

where R(a, P,Q,N) = %log2 POU—aZ t NP+ azQ))' Using (2.59) and following the way a single
user SCS is derived from the theoretical single-user DPC, a suboptimal practical two-users scalar watermark-
ing scheme can be derived by independently superimposing two SCSs (denoted by SCS1 and SCS2) taken
as scalar versions of DPC1 and DPC2, respectively. This means that SCS1 and SCS2 should be applied
successively, starting with SCS1 for the design of the watermark x» as an appropriate scaled version of the
quantization error of the cover signal s. Then SCS2 designs the watermark x; as an appropriate scaled
version of the quantization error of the sum signal s + x3. The corresponding appropriate uniform scalar

quantizers Qa, and Qa, have step sizes A; = V2P oand Ay = 7“’12%_7)1), with

a1

. P 1-y)P
(a1, a2) = (\/’yP + 271N \/(1 — )P+ 2.71N2> ' (44)

We denote by (R~1, E;) the transmission rate pair practically achieved by this set-up. This pair has to be

computed numerically. Results are shown in Fig.4.3 together with the theoretical rate pair (R;, R2). The

performance of this first approach is worthy of some brief discussion.
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The upper curve corresponds to the rate pair (R, Rz) (4.3) of the double ideal DPC given by (4.1) and

(4.2). The lower curve corresponds to the rate pair (E , E) of the two superimposed SCSs with quantization

parameters given by (4.4). Dashed line corresponds to (2-ary,4-ary) and (4-ary,2-ary) transmissions. SNRs
are such that P/N; = 2P/N, = 16.
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From (4.3a), we see that DPC2 -as given by (4.2)- is optimal. The achievable rate R; corresponds to
that of a channel with not only no interfering cover signal S, but also no interference signal X5. Thus,
the message W1 can be sent at its maximal rate, as if it were embedded alone. From "Decoder 1” point
of view, the channel from W; to Y, is functionally equivalent to a single-user channel from W; to

1=Y1=U; =X + (1 —a2)S + Z1, having just (1 — az)S as state information, not S + X,. Yet, it
is not that Y; is a single-user channel, but rather that the amount of reliably decodable information
W, is exactly the same as if W were transmitted alone over Yi. DPC1 -as given by (4.2), as for
it, is non optimal. The reason is as follows. The achievable rate Ry given by (4.3a) is inferior to

1-y)P
3log, (1 + EyPJ;YI)VQ

both the cover signal S and the watermark X;.

), which is that of a watermark signal subject to the full interference penalty from

SCS2 performs close to optimality. The scalar channel having the message W; as input and the
quantization error as output is functionally equivalent to that from W; to rj = Qa, (y}) —¥y}, where y|
is the single-user channel suffering no interference from the watermark x,2. The practical transmission
rate over this channel is, as for a single-user SCS, given by the mutual information I(rj, W7), the
maximum of which (i.e EI) is obtained with the choice (4.4) of @;. However, SCS1 is non optimal,
simply because DPC1 is not. The inflation parameter as does not maximize the mutual information
I(re, W), with ry = Qa,(y2) —y2. The practical rate R, is the value of this mutual information taken

at ap = am, i.e ﬁ; = I(ro, Wa)|aw=az-

2Note that in the equivalent channel y’1 = x1 4+ (1 — a2)s + z1, the watermark x; is formed as a scaled version of the

quantization error of the channel state (1 — a2)s and not s 4+ x2 as before.
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In the following subsection we show that the encoding of W> can be improved so as to bring the rate R;

max)

close to R, = %log2 (1 + (I_V)P). The corresponding scheme, called ”Joint scalar DPC”, enhances the

YP+N2
performance by making multiuser information embedding coding broadcast-aware.

4.3.2 Broadcast-aware coding for multiuser information embedding

In subsection 4.3.1, we have shown that the communication scenario depicted in Fig.4.1 is basically that of
a degraded GBC with state information non-causally known to the transmitter but not to the receivers. In
[KSS04], it has been shown (see Appendix B for the proof of the achievability) that the capacity region of

this channel is given by

1 ~vP
<= — .
R, < 2log2 (1 + N1> , (4.5a)
1 1-7)P
<=1 1+ —— 4.
Ra < gog, (14 52000, (4.50)

which is that of a GBC with no interfering signal S. This region can be attained by an appropriate successive
encoding scheme that uses two well designed DPCs. The encoding of W; (DPC2) is still given by (4.2). For
the encoding of W5 however, the key point is to consider the unknown watermark X; as noise, the gaussianity
of which will be justified in Section 4.4.3. The resulting DPC (denoted by DPC1) uses the cover signal S as
channel state and Z> + X; as total channel noise:
1-7P

(1=7)P + (N2 ++P)’
X3 = Uz — asS. (4.6b)

U2 ~ N(OQS, (1 — ’y)P) with Q9 = (463)

Obviously, this encoding does not remove the interference due to X;. Nevertheless, DPC2 is optimal in that

it attains the maximal possible rate R7**® at which W> can be sent together with Wj.

4.3.2.1 Joint scalar DPC and capacity region

Consider now a scalar implementation of this Joint DPC scheme consisting in two successive SCSs. DPC1
can be implemented by a scalar scheme SCS1, quantizing the cover signal s and outputting the watermark
X, as an appropriate scaled version of the quantization error. We denote by a7 and A; the corresponding
scale factor and quantization step size, respectively. DPC2 can be implemented by a scalar scheme SCS2,
quantizing the newly made available signal s+x, and outputting the watermark x; as an appropriately scaled
version of the quantization error. We denote by a3 and A, the corresponding scale factor and quantization
step size, respectively. Let Y’y = Y; — U, be the channel functionally equivalent to Y, introduced above.
The set of the transmission rate pairs practically feasible by this practical coding is given by the convex hull

of all rate pairs (E, RNZ) simultaneously satisfying

Br < max I}, Wh), with v} = Qa, (1) — ¥4, (4.72)

R2 S max I(T’z,Wz), with Iro = QAZ (yz) —Ye. (47b)
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(a) Improvement brought by the joint design of DPCs (b) Capacity region for (M;-ary,Ms-ary) alphabets

Figure 4.4: Achievable rates for Broadcast-like multiple user information embedding. SNRs are such that
P/N; = 2P/N; = 16. (a): achievable rates of the Joint Scalar DPC with comparison to the two superimposed
DPCs approach. Solid line corresponds to the capacity region of the joint design for both ideal (upper) and
practical (lower) coding. Dashed line corresponds to the rate pair achieved by the Double DPC for both
ideal (upper) and practical (lower) coding. (b): achievable rates of the Joint Scalar DPC for M;-ary and
Ms-ary alphabets M7 and M.

The proof simply follows from the discussion above regarding the equivalent channels from W; to r} for the
message W, and from W5 to ry for the message W,. Each of these two channels conforms the single user
channel considered in the initial work [EBTGO3] and has hence a similar expression of the transmission rate.

The inflation parameters pair (a7, az) maximizing the right hand side terms of (4.7a) and (4.7b) is given by

S VP 1-nP
(a1, 02) = (\/yp + 271N’ \/(1 — )P +2.71(vP + N2)> ' (48)

In Fig.4.4(a) the binary feasible capacity region (4.7), obtained through a Monte-Carlo based integration,

is compared to the ideal DPC for BC given by (4.5). The (M;-ary, Ms-ary) feasible capacity region for
(My, M>) = (2,4) and (M, M2) = (4,2) is depicted in Fig.4.4(b). Note that we need to compute the condi-
tional probabilities p (r7|W1) and pr,(r2|W2). These are computed using the high resolution quantization
assumption @ > P, which is relevant in most watermarking applications. Also, the curves in Fig.4.4(a) are
obtained with the choice of the parameters P, Ny and Ny set to P/N; = 2P/Ny = 16. Improvement over
the "Double DPC” stated in Section 4.4.1 is made possible by increasing the rate R, at which the robust
watermark can be sent. Also, we observe that the larger the alphabet sizes, the larger the feasible capacity
region. For very large alphabet sizes M7 and M3, the practical joint Scalar DPC performs asymptotically

close to the theoretical DPC derived from the broadcast solution as it can be seen in Fig.4.4(b).
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4.3.2.2 Bit Error Rate analysis and discussion

Another performance analysis is based on measured BERs for hard decision based decoding of binary scalar
DPC. In Fig.4.5(a) BER curves are obtained with a Monte Carlo simulation. The signal-to-noise ratios are
given by SNR; = 10logy, (ﬂNﬁ) € [~8,12] dB and SNR, = 10log,, ((1—7”’) € [~15,9] dB. In principle, it

yP+N»
would be possible to use any provably efficient error correction code for each of the channels Y; and Y,

taken separately. However, at low SNR ranges, it is well known that repetition coding is almost optimal.
The curves in Fig.4.5(a) are obtained with (p1, p2) = (4,4), meaning that W; and W5 are being repeated 4
times each. We observe that as «y € [0, 1] increases, the power part of the signal X allocated to the watermark
carrying Wi becomes larger and that allocated to the watermark carrying W, becomes smaller. This causes
the corresponding BER curves to monotonously decrease and increase, respectively. Also, it can be checked
that when plotted separately, these curves are identical to those of a SCS with a signal-to-noise power ratio
equal to SNR; and SNRs, respectively. This conforms the assumption made above regarding the functionally

equivalent channels y] and y2. The curves in Fig.4.5 also motivate the following discussion.

(i) In practical situations, p; and ps should be chosen in light of the desired transmission rates and
robustness requirements. The choice (p1, p2) = (4,4) made above should be taken just as a baseline
example. Channel coding as a means of providing additional redundancy obviously strengthens the
watermark immunity to channel degradations. However, such a redundancy inevitably limits the
transmission rate. This means that for equal targeted transmissions rates Ry and Ra, the repetition

factors p1 and po should satisfy pa > p1.

(ii) The scalar DPC considered here for multiuser information embedding is constructed using insights
from coding for broadcast channels [Cov72, Cov88], as already mentioned above. Interestingly, in such
channels, the user who experiences the better channel (less noisy) has to reliably decode the message
assigned to the (degraded) user who experiences the worst channel (more noisy) [see Appendix B]. In
a data hiding context, this means that the robust watermark, which is supposed to survive channel
degradation levels up to Ny, should be reliably decodable if, actually, the channel noise is less-powerful.
However, this strategy, which is inherently related to the principle of superposition coding at the
transmitter combined with successive decoding or peeling off technique (see Appendix B and C) at
the "better user” (Decoder 1) [CT91], makes more sense in the situations where the "better user” is
unable to reliably decode its own message if it does not primarily subtract off the interference due to
the message assigned to the “degraded user”. The DPC-based scheme is fundamentally different in
that the interference is already subtracted off at the encoder. Thus, the "better user” does not need to

bother itself decoding the other message?.

(iii) There could, however, be advantages and disadvantages for the described DPC-based scheme to follow

such a strategy. An obvious disadvantage concerns security issues. In a transmission scheme where

3Note that in contrast to superposition coding, there is an important embedding ordering at the encoder. The benifit of such
oredering is a decoupling of the receivers and hence a more scalable system. Each receiver need only know its own codebook to

extract its message.
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Bit Error Rate
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Figure 4.5: Broadcast-like multiple user information embedding. (a): Bit Error Rates for binary transmission
using repetition coding. The messages W1 and W, are repeated 4 times each, i.e. (p1,p2) = (4,4). Plotted
curves correspond to P/N1 ~ 2P/N, = 16. (b): the "better user” performs significantly better than the
“degraded user” in decoding the information W5 for small values of 7, but only slightly better as v approaches

unity.
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security is a major issue, the ”better user” should not be able to reliably decode the message assigned to
the “degraded user”. On the other hand, an obvious advantage stems from the following observation.
If channel quality is improved, resulting in better SNR in the transmission of W5, the ”"degraded
user”, being at present a "better user”, should be able to reliably decode much more information W5
than it does with the old channel quality. For the DPC-based scheme described above, to fulfill this
additional requirement, one should focus on maximizing (over ay) the conditional mutual information
I(ry,W1|W>). This would however lead to a suboptimal choice E{ of the inflation parameter a; for the

transmission of W7, and consequently to a smaller transmission rate

Ry = I(ri, W) (4.9)

ar=al”
(iv) The present DPC-scheme, as is, partially satisfies this strategy. From Fig.4.5(b), we observe that the
"better user” significantly outperforms the ”degraded user” in the decoding of W» at small values of
the parameter v, but performs only slightly better as v approaches unity. The advantage the "better
user” has upon the ”degraded user” in the decoding of the message Ws depends mainly on the quotient
N3 /N;. This is due to the difference of SNR, 10 logm(%), which is clearly maximal at y = 0. As~y
increases, the power allocated to the transmission of W, diminishes and drops to zero for v approaching

unity, causing the two decoders to experience very bad SNRs lologlo(fyll;_zj)vlj) and 1010%10(5,11;11)\(1: ),

independently of the noise levels N; and N,.

4.3.3 Extensions: L-watermarks and structured lattice-based codebooks

4.3.3.1 The L-watermark case

The results above can be straightforwardly extended to the situation where, instead of just two messages, L

messages W;, i =1,2,..., L, have to be embedded into the same cover signal S. The composite watermark
L L

is X = Z X;. The watermark X; has power P; and carries the message W; and Z P; = P. We consider a

i=1 i=1
Gaussian degraded channel Z; ~ A'(0, N;) and assume without loss of generality that N; < Ny < ... < Ny.

This means that the watermarks should be designed in such a way that X; is less robust than X; for
1 < j. Following the joint DPC scheme above, the watermarks should be ordered according to their relative
strengths and put on top of each other. This means that the most robust (that is Xj,) should be embedded
first whereas the most fragile (that is X;) should be embedded last. For i ranging from L to 1, the watermark
signal X; is obtained by applying an (L-i+1)-th DPC (denoted here by DPCi) analogous to that in (2.20b).
L
The available state information to be used is S; = S+ Z X;, the sum of the cover signal S and the already
j=i+1
i—1
embedded watermarks X;, 7 > 4. The channel noise is Z; + Z X, the sum of the ambient noise Z; and the

j=1
not-yet embedded watermarks X;, j < ¢, accumulated and taken as an additional noise component. Note

that the gaussianity of this noise term and its statistic independence from both X; and S; as well as the

statistic independence of X; on S; conform to the statistical independence between the state information,
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the watermark and the noise in the original Costa set-up [Cos83]. Thus, the optimal inflation parameter for

K3
DPCiis a; = P;/(N; + Z P;) and the corresponding maximal achievable rate R; is given by

=1
1 P;
R; = 3 log, | 1+ 7;1 . (4.10)
Ni+> P
i=1
A scalar implementation of this broadcast-based joint DPC for embedding L watermarks, consists in L SCSs
L
jointly designed. Similarly to the 2-watermark case and using the equivalent channel y; =y; — Z u; for
j=i+1
SCSi, ¢ = 1,2,..., L, the corresponding practical capacity region is given by the union of all rate L-tuples
(E e R:) simultaneously satisfying
R; <max I(rl,W;), with r} = Qa,(y}) — ¥’ (4.11)
Qj
The union is taken over all power assignments {P;}, i =1,2,..., L, satisfying the average power constraint
L
Y P=P (4.12)
i=1
The inflation parameter maximizing the right hand side term of (4.11) is
~ P
a = ! . (4.13)
i—1
Pi+271 [ Ni+ > P
Jj=1

4.3.3.2 Lattice-based codebooks for BC-based watermarking

The gap to the ideal capacity region of the sample-wise joint scalar DPC practical capacity region shown
in Fig.4.4(a) can be partially bridged using structured finite-dimensional lattice-based codebooks. Lattices
have already been considered in the context of single-user watermarking [MK04, ZD05a, ZD05d, ZD06a]. In
the following, only the required ingredients are briefly reviewed. The reader may refer to [CS88] for a full
discussion. Consider the transmission scheme depicted in Fig.4.6 where A is some n-dimensional lattice. This
scheme is a generalization to the lattice codebook case of a slight variation of the one considered in Section
4.3.2%. The function 1 (.) is used for arbitrary mapping the set of indexes Wy € {1,..., M1} to a certain set
of vectors Cy, = {cw, : w1 =1,...,M;} to be specified in the sequel. The function t5(.) does similarly for
the set of indexes Wy € {1,..., M>}. With respect to the scalar codebook case considered in Section 4.3.2,
Cw;,® = 1,2, is alattice codebook whose entries must be appropriately chosen so as to maximize the encoding
performance. For each W; € M;, with i = 1,2, the codeword ¢;(W;) = ¢, is the coset leader of the coset

Aw; = ¢y, + A relative to the lattice A. The codebook C,, is shared between the encoder and the decoder

4More precisely, this is a generalization, to the lattice case, of a DC-QIM based two users watermarking scheme. DC-QIM

is considered because it is more convenient and also because it has very close performance to SCS as reported in Section 4.2.2.
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Figure 4.6: Lattice-based scheme for information embedding over a degraded Gaussian Broadcast Channel

(GBC).

i and is assumed to be uniformly distributed over the fundamental cell V(A) of the lattice A. Also, we as-
sume common randomness, meaning that the key k;, 7 = 1,2, is known to both the encoder and the decoder

i. Apart from obvious security purposes, these keys will turn out to be useful in attaining the capacity region.

In the following, we consider cover signal vectors (frames) of length n. Following (2.59), the encoding and

decoding functions for the lattice-based joint DPC given by (4.2) and (4.6) can be written as

X2 (8; Wa, A) = (cyy + ka — ans) mod A, (4.14a)

x1(s;W1,A) = (e, + k1 — a1(s + x2)) mod A, (4.14b)

W; = argmin [|(asy; — ki — ;) mod A||, i =1,2. (4.14¢)
Wi = ].7 ey J\lZ

The modulo reduction operation is defined as x mod A £ x — Q(x) € V(A) where the n-dimensional
quantization operator Qx (.) is such that quantization of x € R™ results in the closest lattice point A € A to
X.

We focus on the practically feasible capacity region achieved by (4.14). To this end, we rely on a previous
work relative to practical achievable rates with lattice codebooks in the context of a single-user watermark
[ZD05a, ZD05d]. Here, the situation is different since two watermarks are concerned, but the key ideas
remain the same. Thus details are skipped and we only only mention the key steps, in processing the
received signals y; and y». Each of the channels Y; and Y5 is similar to the one in [ZD05a, ZD05d, ZD05c]|,
with however a different state information and a different channel noise. The establishment of the results
below relies principally on the properties of a Modulo Lattice Additive Noise (MLAN) channel [FTC00] and

on the following two important properties of the mod-A operation.

(P1) V(A ,a) e AXR*,(a+v+A)modA = (a+v)modA. (4.15a)
(P2) V(x,y) € R?" ((xmod A) +y) mod A = (x +y) mod A. (4.15Db)
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Upon reception of y;, i = 1,2, "receiver i” computes the signal r; = (a;y; — k;) mod A. Using (P1) and (P2)

and straightforward algebra calculations, it can be shown that

r1 = (cy, + 0121 — (1 —a1)x;) mod A, (4.16a)
r2 = (Cyy + a2(z2 +x1) — (1 — az)x2) mod A. (4.16b)

Hence, the ”degraded user” (more noisy composite content) sees the equivalent channel noise \7; and the

"better user” (less noisy composite content) sees the equivalent channel noise \7'1, where

Vi =(1Z1 — (1 —a1)X;) mod A, (4.172)
Vs = (a2(Zs + X1) — (1 — a2)X5) mod A. (4.17b)

Now, using the important Inflated Lattice Lemma reported in [ESZ00], Y1 and Y5 turn to be two MLAN
channels with channel noises \7/1 and \7;, respectively. The MLAN channel has been first considered in
[FW89, GDF89]. It is shown that when modulo reduction is with respect to some lattice A and when the

channel noise V is i.i.d Gaussian, capacity in bits per dimension can be written as
1
C(A) =~ (logy(V(A)) = h(V)), (4.18)

where h(.) denotes differential entropy. Hence, the practically achievable rates R;(A) and R2(A) are given
by (4.18), with the channel noise V being replaced by V. and \’/:/2, respectively. The maximally achievable
rates are obtained by maximizing these expressions over a3 and as, respectively. The corresponding practical

capacity region is given by the convex hull of all rate pairs simultaneously satisfying

Ra(A) < max + (logy(V(A)) — A(V7)) < 1 log, (1 + }V—P) , (4.192)
Ry(A) < r%gx% <log2(V(A)) - h(\?;)) < %log2 (1 + %) . (4.19b)

The right hand side term of (4.19) is the full capacity region of a Gaussian degraded BC with state
information at the encoder, achievable by the theoretical joint DPC scheme described before. In general
no closed form of (4.19) can be derived and the optimal pair (a1, a2) has to be computed numerically to

evaluate the differential entropy h(V;), i = 1,2. However, closed form approximations can be found in some

special situations as shown hereafter.

(i) As the dimensionality n of the lattice goes to infinity, the PDFs of the noises V; and V3 tend to
Gaussian distributions as quantization errors with respect to this lattice. Consequently, the optimal
inflation parameters a; and as minimizing h(\z) and h(\?;) are those which minimize the variances
of V1 and V., respectively. These are a; = vP/(vP + N;) and ay = (1 — v)P/(P 4+ N). The ideal

capacity region is attained with such a choice.

(ii) For finite-dimension lattice reduction however, the PDFs of \7’1 and \7; are not strictly Gaussian,

but rather the convolution of a Gaussian with a uniform distribution. The equality (ai,a2) =

( yP_ (1-mP
yP+N1’ N2+P

) does not hold strictly but remains a quite accurate approximation. Considering
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—~ 2 —~ 2
this approximation leads to Eg; [V1 ] = a1V and Eg; [Va | = a2(N2+vP). Now, given that®
h(V1) < log(2mea; Ny) and h(Vs) < log2reas(N; + v P), we get

1/1 NP1

Ri(A) > - (5 log(1 + E) ~3 log 27reG(A)) , (4.20a)
11 A-mky 1

Ry(A) > - (2 log(1 + N> § 7P) 3 logQWeG(A)) . (4.20b)

This means that using appropriate lattices for modulo-reduction, we are able to make the gap to the
full theoretical capacity region smaller then log2meG(A). This can be achieved by selecting lattices
that have good quantization properties. These are those for which the normalized second moment

G(A) approaches 7.

The n-dimensional lattices considered for Monte-Carlo capacity region integration are summarized in table

4.1, together with their most important parameters. Capacity region curves in bits per dimension are plotted

| Lattice | Name | n | G(A) | 7.(4) [dB] | 7(A) [bit per dimension] |
Z Integer Lattice 1 L 0.00 0.000
A Hexagonal Lattice | 2 | 2~ 0.17 0.028
D, 4D Checkerboard L. | 4 | 0.0766 0.37 0.061

Table 4.1: The considered lattices for multiple user information embedding

in Fig.4.7(a) where we observe that the use of the hexagonal lattice A,, for example, enlarges the set of the
rate pairs practically feasible, with respect to the scalar lattice Z. That of the lattice D, further enlarges it.

Of course, this improvement goes along with a slight increase in computational cost.

4.4 Watermarking over a Gaussian Multiple Access Channel: Per-
formance analysis

In this section we are interested in designing implementable multiuser information embedding schemes for
the situation described in Section 4.4.2. Paralleling the development made in Section 4.3, we provide a
performance analysis for two MAC-aware and unaware multiuser inforrmation embedding strategies. The
former consists in super-imposing two SCSs. The latter uses the analogy with a Gaussian MAC with state
information available at the transmitters recognized above to bring up performance. This improvement is
illustrated through both achievable capacity region and achievable Bit Error Rates (BERs) enhancement.
Finally, results are extended to both the K-watermark case and the high dimensional lattice-based codebooks

case. Whenever the development closely follows the one we have stated in Section 4.3, details are skipped.

5This is because the normal distribution is the one that maximizes entropy for a given second moment.
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Figure 4.7: Performance improvement of broadcast-like multiple user information embedding due to the use
of lattice codebooks. (a): feasible capacity region obtained with lattices Z (dashed line) , A2 (solid point)
and infinite dimensional hypershere (bold). SNRs are such that P/N; = 2P/N> = 16. (b) Bit Error Rate in
decoding the first message W, obtained with lattices Z (plus sign), As (cross) D4 (diamond) and Gosset Eg
(circle). and (c) Bit Error Rate in decoding the second message W, obtained with lattices Z (plus sign), A,
(cross) Dy (diamond) and Gosset Eg (circle).
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4.4.1 MAC-unaware coding for multiuser information embedding

The situation described in Section 4.2.2 corresponds in essence to two "Dirty Paper” channels. A simple
approach for designing a watermark system for this situation consists in two single-user DPCs (or SCSs
for the corresponding practical implementation). Let Y = X; + X2 + S + Z denote the received signal.
Upon reception, the receiver should reliably decode the messages W1 and W, having been embedded into the
watermarks X; and Xa, respectively. However, since decoding is performed jointly, the successful decoding
of one of the two messages should benefit the other message. Suppose for example that encoder 2 uses a
DPC (DPC1) taking into account the known state S and the unknown noise Z to form the watermark X,
of power P, and carrying Wy as Xy = Uy — a3 S, where

P
P+ N’

At reception, the decoder first decodes W5 and then cleans up the channel by subtracting the interference

U, ~ N(OézS,Pz), with as = (421)

penalty U, that the transmission of W5 causes to that of W;. Thus the channel for W; is made equivalent to
Y: = YUy =X;+(1—a3)S+Z. This cleaning up” step is inherently associated with successive decoding
and is sometimes referred to as the peeling-off technique. Hence, Encoder 1 can reliably transmit W; over
the channel Y by using a second DPC (DPC2). For that, the watermark X; is formed as X; = U; — a3 S,

where

P NP,
Pi+N (Pi+N)(P,+N)
The rates theoretically achievable by these two DPCs are those corresponding to the corner point (B1) of

U1 ~ N(OqS,Pl), with o] = (1 — ag)

(4.22)

the diagram shown in Fig.4.8 and are given by

1 P
Ry (B1) = ;log, (1 + —1) , (4.23a)

N
P(P,+Q+ N+ Pp) )
1-0a3)2+ (N+P)(P+0a%2Q) )

Following the same principles, similar DPC schemes allowing to attain the corner points (A), (C1) and (D)

Ry(B1) = %log2 <P2Q( (4.23b)

can be designed. The corner point (A) corresponds to the watermark X; (i.e, the information W) being sent
at its maximum achievable rate whereas the watermark X5 (i.e, the information W5) not transmitted at all.
The two corner points (C1) and (D) correspond to the points (B1) and (A), respectively, with the roles of
the watermarks X; and X reversed. Any rate pair lying on the lines connecting these corner points can be
attained by time sharing. We concentrate on the corner point (B1) and consider a practical implementation

of this theoretical set-up. This can be performed by using two SCSs, SCS1 and SCS2, consisting of scalar

versions of DPC1 and DPC2. The uniform scalar quantizers Qa, and Qa, have step sizes A; = —Vlazlpl and
Ay = Y2P | with
—_ P Py
=1(1- . 4.24
(ar,a2) <( 0‘2)\/131 271N’ \/P2 ¥ 2.71N> (424)

The feasible transmission rate pair achieved by this practical coding corresponds to the corner point (B1’)
in the diagram shown in Fig.4.8. As stated before, the point (C1’) corresponds to the point (B1’) with the
roles of the watermarks X; and X, being reversed. The performance of this first approach, including both

its theoretical and its practical settings, can be summarized as follows.
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Figure 4.8: Theoretical and feasible transmission rates for MAC-like multiple user information embedding.
The frontier with corner points (A), (B1), (C1), and (D) corresponds to the theoretical rate pair (R;, R2) of
the double ideal DPC. The frontier with corner points (A’), (B1’), (C1’), and (D’) corresponds to the feasible
rate pair (E, E) of the two superimposed SCSs. Dashed line corresponds to practical rates obtained with

the use of quaternary alphabets. Numeric values are set to Q/P = 100, P, /Ny = P,/Ny = 2.

(i) From (4.23a), we see that DPC2 -as given by (4.22)- is optimal. The interference due to the cover
signal S and the second watermark X, is completely canceled. Hence, the watermark X; can be
sent at its maximal rate R;, as if it were alone over the watermark channel. The channel from W;
to Y is functionally equivalent to that from W; to Y; = Y — U,. However, DPC1 -as given by
(4.21)- is non optimal. The reason is as follows. The achievable rate Ry given by (4.23b) is inferior to
%log2 (1 + Plpﬁ), which is that of a watermark subject to the full interference penalty from both the

cover signal S and the watermark X;.

(if) SCS2 performs close to optimality. The scalar channel is equivalent to that from W; tor; = Qa, (y1) —
y1- The practical transmission rate over this channel is given by the mutual information I(ry, W7), the
maximum of which (i.e E) is obtained with the choice (4.24) of a;. However, SCS1 is non optimal,
simply because DPC1 is not. The inflation parameter a; does not maximize the mutual information
I(r,W>), with r = Qa,(y) —y. The practical rate R, is not maximal and corresponds to the value of

this mutual information taken at as = as, i.e Ry=1 (r, W2)|an=as3-

The encoding of W can be improved so as to bring the practical rate Rs(B1') close to

(maw)zll 1 P
R; 20g2(+P1+N .

The corresponding scheme, called ”joint scalar DPC”, enhances the performance by making multiuser infor-

mation embedding coding MAC-aware.
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4.4.2 Gaussian MAC-aware coding for multiuser information embedding

In subsection 4.2.2, we have argued that the communication scenario depicted in Fig.4.2 is basically that of a
Gaussian Multiple Access Channel (GMAC) with state information non-causally known to the transmitters
but not to the receiver. In [KSS04], it is reported (see Appendix C for the proof of the achievability) that

the capacity region of this channel is given by

1 P
R, < jlog, (1 + Wl) : (4.25a)
1 P.
R, < jlog, (1 + ﬁ) : (4.25b)
1 P, + P
Ry + Ry < 3log (1 + %) : (4.25¢)

which is that of a GMAC with no interfering signal S. This region, with corner points (A), (B), (C) and
(D), is shown in Fig.4.9(a) and can be attained by an appropriate successive encoding scheme that uses well
designed DPCs. Consider for example the corner point (B). The encoding of W; is again given by (4.22),
recognized above to be optimal®. The encoding DPC1 of W5 however should be changed so as to consider
the watermark X; as noise. The resulting DPC (again denoted by DPC1) uses the cover signal S as channel
state and the signal Z + X; as total channel noise:

P,

U ~ N (@28, P2), with az = P+ (P, + N)

(4.26)

Obviously the interference due to X; is not removed. However, this scheme is optimal in that it achieves

Rémam)

the maximum rate at which the message W5 can be sent as long as the message W, is sent at its

maximum rate.

4.4.2.1 Joint scalar DPC and Capacity region

We consider now as practical implementation of this joint scheme two jointly designed SCSs with parameters
(a1,A1) and (az, As), respectively. This results in a maximal feasible transmission rate R, given, as before,
by R, = max,, I(r,W:). However, the corresponding scale parameter as is set this time to its optimal
choice, i.e, az = 4/ ﬁm. The resulting transmission rate pair (R:, E;) is represented by the corner
point (B’) in Fig.4.9(a). Reversing the roles of the watermarks X; and X5, the joint design also pushes out
the corner point (C1’) to (C’). More generally any rate pair on the region frontier delimited by the corner
points (A’), (B’), (C’) and (D’) is made practically feasible by subsequent time-sharing. When the message W;
travels alone over the watermark channel, the equivalent channel is Y; =Y -Uj, (4,5) € {1,2} x{1,2},i # j.
Hence, W; can be sent at its maximum feasible rate, which is given by max,, I(r;, W;), withr; = O, (y:)—y:-
When the two messages travel together, the maximal sum of the two feasible rates corresponds to one of the
two (say W1) set to its maximal feasible rate and the other (W,) facing a total channel noise of z + x;. Of
course, we can reverse the roles of W7 and Ws. The maximal feasible sum rate remains unchanged, however.

Consequently, the practically feasible capacity region is given by the convex hull of all rate pairs (EI, E;)

6Note however that as a1 depends on a2, the optimal inflation parameter for DPC2 becomes a1 = P1/(P1+ P>+ N).
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Figure 4.9: MAC-like multiple user information embedding. (a): Achievable rates for the joint scalar DPC
with comparison to the two superimposed DPCs approach. Solid line delineates the capacity region of both
ideal (upper) and practical (lower) coding. Dashed line delineates the rate pair feasible with the Double
DPC for both ideal (upper) and practical (lower) coding. (b): achievable rates with the joint scalar DPCs
for M;-ary and Ms-ary alphabets M; and M;.
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simultaneously satisfying

E < max I(r17W1)7 with r; = QA1 (yl) - ¥ (427&)

Ry <max I(ry,Ws), with ry = Qa,(y2) — y2, (4.27D)

Ri + Ry <max I(ry,W;) +max I(r,Ws), with r = Qa,(y) — . (4.27¢)
a1 a2

Fig.4.9(a) shows the feasible capacity region gain brought by the joint design of the DPCs in approaching
the theoretical limit (4.25), with respect to the first method addressed above. Note that this improvement is
especially visible in the situations where W; and W, are both transmitted with non-zero rate. In this case,
for a given transmission rate R~2 of Wy, the maximal transmission rate at which W; can be sent is larger.
Equivalently, for a given transmission rate Ry of W1, the maximal transmission rate at which W5 can be sent
is larger. Note also that the gap to the theoretical limit (4.25) can be reduced by use of sufficiently large size
alphabets M; and M, as shown in Fig.4.9(b). Of course, this is achieved at the cost of a slight increase in

encoding and decoding complexities.

4.4.2.2 BER analysis and discussion

Consider the coding scheme given by (4.22) and (4.26). The key point is, as already mentioned, the peeling
off technique. This technique aims to clean up the channel before decoding W7, by subtracting the codeword
U,. However, the transmission of W5 suffers from the additional noise x;. The corresponding Signal-to-Noise
Ratios (per-bit) SNR1 and SNR2 are given by SNR1 = % [dB] and SNR2 = % [dB]. Thus, the
BER curve corresponding to the transmission of W5 can be obtained by translating to the right that of W7y,
by

RiP,N
B(Ra, R2) = P (N 1 P [dB]. (4.28)

The upper curve in Fig.4.12 depicts the error probability relative to the transmission of Wi using scalar
codewords. We now pause to discuss the efficiency of the peeling off technique in practice. Such a strategy
is good for performance evaluation and for theoretically proving the achievability of the corner point (B) of
the capacity region. However, in practice, the decoder does not know the exact codeword U, that "Encoder
2” had used. Instead, it has access to an estimation .[/.\]-2 of Uy. Theoretically, the 62 is determined as
the (unique) codeword being typically joint with the received signal Y. Of course, this is obtained by an
estimation prosedure in practice. The accuracy of this estimation, and hence that of the decoding of the
message Wi, depends on on SNR2. For instance, bad SNR2 will likely cause decoding of W5 to fail. Thus,
the estimate 62 does not resemble the exact Uy and it is rather seen as an additional noise source. Hence
in this SNR2 range, the peeling off technique does not “properly” clean up the channel, as it is supposed
to. Hence, decoding of W is not necessarily improved. However, at good (high) SNR2, the estimate ﬁg of
codeword Uj is accurate and the peeling off technique is efficient as shown in Fig.4.10. Note for instance that

at the same SNR, the decoding of the message W, is more accurate than that of W5, though P, = 10P;.
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Figure 4.10: MAC-like multiple user information embedding bit error rates. The two messages W, and W5
are sent at rates (EI , E) corresponding to the corner point (B’) in the capacity region diagram shown in
Fig.4.9. Upon reception, the decoder first cleans up the channel by decoding W> (b) and then decodes W

(a). Thus, the reliable the transmission of W5, the more accurate the decoding of Wj.
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4.4.3 Extensions: K-users and structured lattice-based codebooks
4.4.3.1 The K-watermark case

The results above can be straightforwardly extended to the situation where, instead of just two messages,
K messages W;, ¢ = 1,..., K, have to be independently encoded into the same cover signal S and jointly
decoded, by the same watermarking authority. We suppose that the watermark X;, carrying W;,i =1,..., K,
has power P;. Also we denote by Z ~ N(0, N) the channel noise, assumed to be i.i.d Gaussian. Functionally,
this is a K-user GMAC with state information available at the transmitters but not to the receiver, as argued
in Section 4.2.2. The capacity region of such a channel follows a straightforward generalization of (4.25).

This region is given by the union of all rate K-tuples simultaneously satisfying

1 P i
R; < 5log2 (1 + NZ> ,i=1,2,...,K, (4.29a)

K

K 1 Z b

=1

ZRj < Jlogy [ 145 |, (4.29D)
Jj=1

where the union is taken over all power assignments {F;}, ¢ = 1,..., K. Following the two-message case

considered above, any corner point of this region can be attained by applying K well designed DPCs. Consider

for example the corner point (B) corresponding to the message Wi transmitted at its maximum rate. Upon
K

reception of Y = Z X;+ S+ Z, the receiver should perform successive decoding so as to reliably decode the

i=1

K-tuple (W1, W, ...,Wk). In order to attain the corner point (B), decoding should be performed in such
a way that Wik is decoded first, W, is decoded last and W; is decoded before W; for j > i. Consequently,
coding consists in a set of K DPCs, denoted by {DPCi}, with i ranging from K to 1. At the receiver, the
decoder sees the equivalent channel Y — Z Uj; in the decoding of the message W;. Thus, an optimal DPCi

Jj>i

K
for this equivalent channel is given by: X; = U; — «;S where U; ~ N («;S, P;) and o; = P;/ (Z P; + N).

=1

With this theoretical set-up, it is possible to reliably transmit all the messages together, with W; sent at rate
i—1

R; = 1logy(1+ P;/ (Z P; + N)). This rate is the maximal rate at which W; can be transmitted as long as
j=1

the other messages W;, j # 4, are simultaneously transmitted at non zero rates. A scalar implementation

of this (K users) GMAC-based joint DPC scheme consists in successively applying K well designed SCSs.
K

Equivalent channel for SCSiis y;p =y — Z u;, which is the received signal assuming interference from
j=i+1
only the (i-1) before-hand watermarks x;, j < i and no post-hand interference from the remaining (K — 1)

watermarks x;, j > 4. We also denote by y; = Yio = X; + s + z the received signal assuming neither
beforehand nor post-hand interferences. The set of feasible rates achieved by this practical coding can be

obtained as a straightforward generalization of (4.27). The corresponding practically feasible capacity region
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is given by the convex hull of all rate K-tuples (E, e ,ﬁ;) simultaneously satisfying
Ei < max I(Ti;Wi)a with r; = QA;(YZ) —¥i, 1= 1a25"'7Ka (430&)
ai
K K
Y R; < max I(rj5, W), with rj5 = Qa,(¥jb) — Yjb- (4.30Db)
Jj=1 J=1
The maximum of the mutual information I(r;, W;) is attained with the optimal choice of a; given by
~ 1 . h
@i £ maf \/P+271N’ with ax = \/PK+271N

4.4.3.2 Lattice-based codebooks for M AC-like watermarking

The gap to the ideal capacity region of the practical capacity region (4.27) shown in Fig.4.9 and corre-
sponding to the sample-wise joint scalar DPC can be partially bridged using finite-dimensional lattice-based
codebooks. The resulting transmission scheme is depicted in Fig.4.11 where A is some n-dimensional lattice.
The functions ¢;(.), ¢ = 1,2 and the lattice codebooks C,,, i = 1,2 are defined in a similar way to that
in the broadcast case addressed in Section 4.4.3. We focus on the improvement of the feasible rate pair
(R1(A), R2(A)) brought by the use of the lattice codebooks C,,, i = 1,2, with comparison to the baseline

scalar codebooks considered in subsection 4.3.2. Consider for example the corner point (B’) of the capacity

s ~N(0,Q) z ~N(0,N)

X
J l T ki
Qg
- *0‘2 -
; , : 2 i
Wye My o 1(.) &»@—»G‘B—» mod A xa : Bpo) < PJr + y @—»@-» mod A L W

7, w (ERx{] < P it
WieMi u() o mod A n B < B mod A =M
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DECODER

ki

S

Figure 4.11: Lattice-based scheme for information embedding over a Gaussian Multiple Access Channel
(GMACQ).

region shown in Fig..4.9. The encoding and decoding of W and W5 are performed according to

x1(s; Wi, A) = (€, + k1 — a1 (1 — az)s) mod A (4.31a)

X2 (s; Wa, A) = (cy, + ko — ags) mod A, (4.31b)

W//i = argmin [[(a1y1 — k1 — €y, ) mod A|, (4.31¢)
W1 = ]., ey M1

Wy = argmin [[(aoy — ks — €4, ) mod A|, (4.31d)

Wa=1,..., M
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where in (4.31c) y1 =y — (X2 + ass). Upon reception, the receiver first computes the error signal r =
(ay — ko) mod A. In a similar way to that in subsection 4.3.3, it can be shown that the signal r is given
by r = (cy, + a2(z + x1) — (1 — a2)x2) mod A. Hence the equivalent channel for the transmission of W5 is
an MLAN channel with (Gaussian) channel noise Vs = (as(z + x1) — (1 — a@2)x2) mod A. Next, the receiver
computes r; = (ay1 — ki) mod A, which can be shown to equal (¢, + @12 — (1 — @1)x;) mod A, completely
independent of x2. Hence the equivalent channel for the transmission of W; is another MLAN channel with
(Gaussian) channel noise vi = (a1z — (1 — a1)x1) mod A. Consequently, the practical transmission rate pair

(R1(B"), R2(B")) corresponding to the corner point (B’) of the capacity region is given by

Ri(B) = n(l)gx% (lo82(V(4) = h(V1)) < %logQ (1 + %) , (4.32a)
Ry(B') = nﬁX% <log2(V(A)) - h(\?;)) < %log2 (1 + %) . (4.32Db)

Similarly to the development made in subsection 4.4.3, the capacity region practically feasible by using the
modulo reduction with respect to the lattice A straightforwardly generalizes (4.27) and is given by the set

of all rate pairs (R1(A), R2(A)) simultaneously satisfying

Ry(8) < max - (logy (V(A)) ~ (V1)) (4.33)
Ro(4) < max - (log, (V(4)) - h(V2)), (4.330)
Ri(A) + Ry(A) < max % (loga(V(4)) = h(V1) ) + max % (1082(V(4)) = h(¥)), (4.33¢)

where V; = (;Z — (1 — 2;)X;) mod A, i = 1,2 and V = (a2(Z + X;1) — (1 — a3)X5) mod A. The improve-
ment brought by lattice coding is illustrated in Fig.4.12 through the use of some finite dimensional lattices
with good coding and quantizing properties.

Lattice codebooks (equivalent to multidimensional constellations in conventional communication) provide
gains over scalar codebooks (equivalent to Pulse Amplitude Modulation (PAM) constellations) by improving
the coding (coding gain 7.(A)) and introducing the shaping (shaping gain v,(A) = 1/12G(A)). G(A) is the
second moment of the lattice. A full focus on lattices can be found in [CS88, FW89]. The n-dimensional
lattices considered for Monte-Carlo capacity region integration are summarized in Table 4.1, together with

their most important parameters.

4.5 Summary

In this chapter, we first investigated the tight relationship between multiple user information embedding
and conventional multi-user information theory. For instance, two different situations of embedding several
messages into one common cover signal are addressed. The first situation is recognized as being equivalent
to communication over a degraded Gaussian Broadcast Channel (BC) with state information known to the
transmitter but not the receivers. The second is argued as to be analog to communication over a Gaussian
Multiple Access Channel with state information known to the transmitters but not the receiver. Next,

based on this equivalence and relying on recent advances in network information theory, two practically
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Figure 4.12: Bit Error Probability v.s. the (per-dimension per-bit) Signal-to-Noise Ratio SNR1 = E3(A)/N
for QIM-embedding the message W;. From bottom to top: lattices Checkerboard D4, Hexagonal A, and
Cubic Z. Bit Error Probabilities (plotted v.s. SNR2) corresponding to transmitting Ws are obtained by
shifting these curves to the right according to (4.28).

feasible scalar schemes for simultaneously embedding two messages into the same host signal are proposed.
These schemes turn to carefully extend the initial QIM and SCS schemes, that were originally conceived for
embedding one watermark, to the two-watermark case. The careful design concerns the joint encoding as well
as the appropriate order needed so as to reliably embed the different watermarks. The improvement brought
by this joint design is shown through comparison to the corresponding rather intuitive schemes, obtained
through superimposition, as many times as needed, of the single user schemes QIM and SCS. Performance is
analyzed in terms of both achievable capacity region and Bit Error Rates. Finally, the proposed schemes are
straightforwardly extended to the arbitrary number of watermarks case and, also, to the vector case through
lattice-based codebooks. Results are supported by illustrative capacity region and BER curves obtained

through Monte-Carlo integration and Monte-Carlo-simulation, respectively.



Chapter 5

On Channel Sensitivity to Partially

Known Two-sided State Information

5.1 Channel with Two-sided State Information

5.2 Channel Sensitivity to Small Perturbation of the Two-Sided State Information
5.3 Gaussian Noise and Gaussian State

5.4 State Information at the Encoder

5.5 Extension: Causal State Information

5.6 Applications and Practical Usefulness

5.7 Summary

The content of this chapter has been partially published in [ZD05c, ZD05b, ZD06b).

In some information embedding situations, the encoder may not have perfect knowledge of the host signal.
This is the case when, for security purposes, the encoder observes only a short description (say a quantized
version) of the host signal, for example. In these situations, the overall transmission scheme is equivalent
to communication over a channel with partial knowledge of the channel state at the transmitter. This state
information may be viewed as the sum of a dominant (nominal) state information and a relatively weak
perturbation. Obviously, the "uncertainty” about the channel state leads to a certain performance loss. This
chapter is concerned with (i) evaluating capacity and rate losses and, (ii) providing insights into how efficiently
use the ”available knowledge” so as to increase system immunity to channel perturbations. As information
embedding is a special case of communication over a channel with two-sided state information (see Section
2.1.3), we broaden our view to consider the general case of channel with an arbitrary pair of independent

and identically distributed (i.i.d), possibly correlated, state information vector (Si,S2) available at the
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transmitter and at the receiver, respectively. We first analyze the decrease in capacity, or channel sensitivity
to this perturbing noise. Both lower and upper bounds on this channel sensitivity are provided, using Fisher
Information [CT91]. The lower bound turns out to be relatively tight, at low Signal-to-Noise-Ratio (SNR),
in the Gaussian case, for which we provide closed form expression for channel capacity degradation. Next,
we show that these results can be used to increase system immunity to noise, by adapting the encoder to

the channel uncertainty. Finally, for illustration purposes, two possible applications are discussed.

5.1 Channel with Two-sided State Information

Consider the channel model shown in Fig.5.1. The vector (S7*,S%) represents a pair of possibly correalted
two-sided state information. The side information ST is non-causally available at the transmitter and S%

is non-causally available at the receiver. This channel may model a variety of communications situations

Sp ~ (S},55) = 5

W(y™, S8 e M

WeM —s xnw,57) — p(ylz, 51, 52) yn

Figure 5.1: Channel with perfect knwoledge of a tow-sided state information pair (S7', S%). ST is non-causally

available at the transmitter and S7 is non-causally available at the receiver.

of practical usefulness. In the contex of information embedding, the blind embedding scheme considered
in Chapter 2, 3 and 4 corresponds to the special case where S7 = 0. Non-blind embedding, on the other
hand, corresponds to the special case where S7* = S7 = S™. In the context of multiple-input multiple-
output (MIMO) systems [Pro01], where the block-fading coefficients are usually obtained through a feedback
channel, the transmitter and the receiver may see two different state information, due to feedback errors.
When only the transmitter knows the state information, the channel capacity was provided by Gel’fand and
Pinsker [GP80] and is given by (2.9). When only the receiver knows the state information, channel capacity
was proved by Heegard and El Gamal in [HG83] to be

Cyf =m(a§cI(X;Y|S). (5.1)
p(z

When both the transmitter and the receiver have access to possibly correlated two state information S}* and
S%, channel capacity expression was provided by Cover and Chiang in [CC02], using a unifying approach.
They have shown that, in this case, channel capacity is given by a generalization of (2.9) and (5.1), as
C™ = max {I(U;Y,S:)—I(U;5)}. (5.2)
p(u,z[s1)
The auxiliary random variable U satisfies a Markov chain analog to that needed for establishing (2.9). Both

(2.9) and (5.1) assume perfect knowledge of the state information at the transmitter and/or at the receiver.
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In some applications however, this state information may be known only with some uncertainty. Examples
include partial state information at the encoder [RSS05]. This case received considerable attention recently
for its potential use, for example, in the context of multiuser systems (see for example [SHO5] and references
therein). In other situations, the uncertainty is located at the decoder [CDWO01]. Many works focus on
how partial state information, at the encoder [JSO02, LLCO03] or at the decoder [DW04], can be utilized
for improving system performance. In this chapter, we consider coding for communication over channels
where the transmitter and the receiver may observe different versions (estimates) of channel conditions.
This amounts to coding with noisy, or perturbed, state information at both sides of the channel. However,
rather than focusing on designing transmission algorithms, we are interested in evaluating the loss due to
the "uncertainty” or state information perturbation. Note that we also partially address the design of coding
algorithms for the situation at hand. We assume imperfect knowledge of the two-sided state information.
Namely, we consider the case where the sender has access to some part, ST, of a noisy state information
§;n = ST + 6:Z]. Similarly, we assume that the receiver has access to some part, S7, of a noisy state
information Sy = ST+ 6,Z%. The pair (ST, S%) can be viewed as the dominant (so-called nominal) part
of the two-sided state information (EI",EQ”) The term (0 Z7,0,7Z%) is an unknown perturbing noise,
independent of the two states ST and S%.

If 0 £ (01,62) # (0,0), the noise-like perturbation makes the nominal capacity C"¢(0), given by (5.2),
decrease to C™(#), thus incurring the capacity loss given by C™¢(0) — C™(). In the following, we focus on
this loss in channel capacity, or channel sensitivity to the perturbation. First, we use Fisher information to
provide lower and upper bounds on this capacity degradation. The key ingredient for deriving these bounds
is an expression of the entropy of a variable slightly contaminated by another, as provided in [Pha05]. We
also consider the Gaussian case, for which explicit expression of capacity loss exist, and show that the encoder
should adapt to the imperfect knowledge of the channel at the receiver. Finally two illustrative applications
in the causal and the non-causal case are discussed.

The remainder of this chapter is organized as follows. In Section 5.2, we address channel capacity degradation
in the presence of two-sided noisy state information. Section 5.3 considers the Gaussian case for which we
provide closed expressions for channel sensitivity and discuss the tightness as well as the usefulness of the
bounds on channel sensitivity, obtained in the general case. In Section 5.4, we reconsider the particular case
of channel sensitivity due to small perturbations of the state information available at the encoder only, and
re-establish the channel sensitivity expression. In Sections 5.5 and 5.6, we provide straightforward extension

of these results and illustrative applications, respectively. Final concluding remarks are given in Section 5.7.

5.2 Channel Sensitivity to Small Perturbation of the Two-Sided
State Information

Consider the channel ¥ = X + Sy + 8, +V depicted in Fig.5.2. The pair (S, S,) is a pair of strong (nominal)

two-sided state information. Variable S; is i.i.d, non-causally known to the transmitter and S» is i.i.d, non-
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causally known to the receiver. (Z1, Z») is a pair of noise perturbations to the nominal state information pair
(S1,52). These noise terms, Z; and Z», are assumed to be independent of each other and also, independent
of the two nominal states S; and Sy. We write SN', =S8;+6;Z;,i =1,2. Also, we suppose without loss of
generality that E[Z;] = E[Z>] = 0 and denote by 8 and Z the vectors § = (61,02)T and Z = (Z1, Z2)T, where
-T" denotes the transpose operation. With these notations, the receiver sees the signal Y =Y +67Z. In the

Sl SQ

p(s2]52)

Y

Y
@—>T—@—> Decoder | . WeEM
1%

Figure 5.2: Channel with a two-sided state information pair (§I,§;) §I is known only partially at the

W e M X

transmitter and §; is known only partially at the receiver.

classical case where the perturbation is zero, the received signal is Y = X 4+ 51 + S2 + V. In this case, the
capacity of the channel of input W and received signal Y, in presence of the two-sided state information pair
(S1,52), has been expressed by Cover et al. in [CC02]. They have shown that channel capacity is given by

C"(0) = max {I(U;S,Y)—I(U;S1)}, (5.3)

p(u,z|s1)

where the auxiliary variable U satisfies conditions of (5.2). If § # 0, channel capacity can be expressed by a
slight variation of (5.2),
C™(0) = max {I(U;S»,Y)—I(U;S)}. (5.4)

p(u,z|s1)
The state information perturbation §7Z results in a capacity loss, with respect to the nominal capacity
C™¢(0), which can be evaluated by C™¢(0) — C™(#). Since C™°(8) < C,.(0), it makes sense to consider the

sensitivity of channel capacity to the perturbation as

a Cnc(o) _ Cnc(e)
7= ||él||120 Var(6TZ) ° (5:5)

where Var(67 Z) is the variance of the perturbation. Note that equation (5.5) means that for small values of
[|6]], we have
Cme(8) = C™(0) — ~E[(6" Z)°] + o([|6]]*)- (5.6)

Note that a similar definition of sensitivity (5.5) has already been used in [PPV95b] to address the case

of non-Gaussian contaminating noise in an AWGN channel. Now, using standard properties of max(.) and
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min(.) functions, we obtain:

cme(0) — C™(0) < max {I(U;8,5,Y) = I(U; S2,Y) }, (5.7a)
plu,r|s1

cme(0) — C™(9) > (miln ) {I(U;82,Y) = I(U; 85,Y) }. (5.7b)
p(u,r|s1

Interestingly, the received signal being Y = Y + #7Z, the mutual information difference I(U;Ss,Y) —
I(U; S9,Y) = I(U,Y|S2) — I(U, Y|S>) characterizes the loss (due to the perturbation 8 Z) in the information
conveyed by the auxiliary random variable U about the received signal. This “information loss” can be related

to entropy using the “Information Chain Rule” and the "Entropy Chain Rule” [CT91], as follows:

I({U;5:,Y) = I(U;52,Y) = I(U,Y|S,) - I(U,Y|S,)

H(Y|S2) — H(Y|S2)
+H(Y|U,Ss) — H(Y|U, S). (5.8)

Noticing that H(Y|Ss) — H(Y|S2) = H(Y, Ss) — H(Y, S2) and that
H(Y|U,Sy) — H(Y|U,Ss) = H(Y;U,S,) — HY;U,Ss),
equation (5.8) can be rewritten as
I(U;82,Y) = I(U;S2,Y) = H(Y;8:) — H(Y;S2)+ H(Y;U,S:) — HY;U,S,). (5.9)

The idea in the following is to use the Taylor expansion formula so as to expand, as a function of 4, the
two differential entropy quantities H(Y,S) and H(Y;U,Ss). For that, we rely heavily on recent results
in [Pha05] where the author provides an informal derivation of the conditions under which this Taylor
expansion applies. In our case, we write (Y,S5) = (¥, S2) +672ZW) and (Y;U, Ss) = (Y;U,Ss) + 6723,
where Z) = ((Z1, Z2)%,(0,0)7) and Z® = (ZM,(0,0)%). Noticing that Z() and Z? are respectively
independent of (Y, S2) and (Y, U, S2), we only need the joint distributions p(y,s,) (v, s2) and p(v,u,s.) (¥, u, s2)
be "well behaved”. Namely, to expand H(Y,S;) in 0, we only need that D(Y,S5) lOgP(v,55) p’(Y’ S5) log p(y,ss)
and p’(Y, s,) converge to zero at infinity, where péx S2) denotes the derivative of p(y,g,). Similarly, to expand
H(Y;U,Ss) as a function of 8, we only need that p(y,u,s,)logp(v,v,s.), p’(Y’U752) log pv,u,s,) and pZY,U,Sz)

converge to zero at infinity. Assuming these reasonable assumptions to hold, we get
H(Y,S;) = H(Y,S:) + %Tr{J(Y, Ss)}Var(8” Z) + o(]|0]|%), (5.10a)
H(Y;U,S,) = H(Y;U,Ss) + %Tr{J(Y; U, S2)}Var(6T Z) + o(||0]|?)- (5.10b)
Tr(.) denotes the trace operator and J(.) the Fisher information. Combining (5.9) and (5.10), we come out
with the decrease in the transmission rate R(0) — R(6) = I(U; Ss,Y) — I(U; S,Y), due to the perturbation

0T Z, as
R(0) — R(6) = %Tr{J(Y; U,S5) — J(Y, S2)}Var(6” Z) + o(]|6]]%). (5.11)

This expression can be used to predict the decrease in the transmission rate that a variation of transmission

conditions of the channel in Fig.5.2 would cause, and thus, act accordingly. Further, lower and upper bounds
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on channel sensitivity to these state information variations, defined as in (5.5), can be obtained by using

(5.11) and inverting the limit and max-min operations, as

(miln )Tr{J(Y; U,Ss) — J(Y,S2)} < 27, (5.12a)

plu,r|s1

2v < (malx )Tr{J(Y; U,Ss) — J(Y,S2)}. (5.12b)
plu,r|s1

Note that these bounds on channel sensitivity v translate to lower and upper bounds on channel capacity
loss by equality (5.6), respectively. We now pause to briefly discuss the implications and usefulness of the
bounds in (5.12).

1. Generally speaking (though, not always, as we will see in the Gaussian case), channel sensitivity
depends on (i) the encoder strategy, through the codebook U, (ii) the nominal state information at the

transmitter, through both Y and U and (iii) the nominal state information at the receiver.

2. In the classical case, i.e., when the two-sided state information pair is known perfectly, the codebook
U is generally designed so as to maximize the transmission rate (or equivalently, channel capacity).
This is ensured by maximizing the ”information” conveyed about the received signal Y. However,
this unfortunately thereby increases the Fisher information in the left hand side term of (5.12a), thus
making the system more sensitive to noise. Hence, in the presence of channel state perturbations, the
optimal codebook should still maximize the transmission rate, on one hand, but should also minimize
channel sensitivity to these perturbations, on the other hand. In particular, one would, in some non-
demanding rate applications (as in information embedding), voluntarily lower the system requirements
in terms of transmission rate so as to increase its immunity to small state information perturbations.

This is particularly possible when closed form expression of the sensitivity v exists.

3. The bounds in (5.12), though may be not tight, are useful, especially in the situations where no closed
form expression of the channel sensitivity  is available. For instance, the upper bound shows how one
may (at least) limit the sensitivity by devising the codebook U so as to minimize the right hand side
term of (5.12b). On the other hand, the lower bound (5.12a) gives the "minimum unavoidable” loss in
the transmission rate, due to the uncertainty in both the encoder and the decoder, thus permitting to

predict the system performance in the "most favorable” channel condition case.

5.3 Gaussian Noise and GGaussian State

In this section we make the additional assumption that the state informations S; and Ss are i.i.d normally
distributed with zero means and variances (J; and @, respectively. We also assume that the ambient
Gaussian channel noise V' ~ N(0,N) is statistically independent of S; and Ss. Prior to dealing with
channel capacity loss, we pause to consider the non-noisy case, i.e., 8 = 0, and consider the nominal capacity
C™¢(0). Using straightforward algebra calculation, it can be easily shown that, in this case (i.i.d Gaussian
variables and channel input satisfying an average power constraint %E[X 2] < P), the AWGN capacity limit
C =1/2log(14 P/N) can be attained by choosing the auxiliary random variable U in the form U = X +a.5;,
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where @ = P/(P + N). Note that, as expected, both the optimal codebook U and the optimal inflation
parameter « have the same expressions as the Dirty Paper Codebook (DPC) and the "Costa parameter”,
provided in [Cos83] in the case where only the state information S; is available at the encoder, i.e., no state
information is available at the decoder (Ss = 0). This is because, if S, is non zero, the receiver should simply
subtract-off it before proceeding to decoding. We now turn to the case where the two-sided state information
pair is subject to small perturbation, i.e., (S1,S2) = (S1,S) + 67Z. In this case, channel capacity (5.4)
simplifies to

ne _ 1 P—
C™(0) = 5 log (1 TNT Var(aTZ)> ’ (5.13)

where Var(#7 Z) represents the additional (channel) noise due to the imperfect knowledge of the state infor-
mation. The optimal inflation parameter « that allows to attain this capacity is « = P/(P+ N + Var(§T Z)).
Also, channel sensitivity to the perturbation 7 Z can be obtained by a simple derivation of the Gaussian

capacity (5.13). We obtain
P

TAN(P+N)

Note that this sensitivity coefficient is, in this case, independent of the two-sided state information (S, S2).

7(C) (5.14)

However, the generation of the codebook U necessitates the knowledge of the deviation @, through «. In
some situations however, the encoder may not have access to 8, or may even completely ignore the presence
of the noise term 7 Z. This may occur, for example, in the situations where the channel is "upgraded” a
certain time after digital communication architecture deployment. Another example is provided in Section
5.5. In these situations, the codeword X, tailored for the classical case (perturbation-free channel), faces
state perturbations in the channel. Thus, in this case, it is more reasonable to evaluate the loss in the
transmission rate R(a,0) = I(U;Y + 67 Z,S,) — I(U, S1), due to the perturbing noise, instead of that of

capacity. Straightforward calculation gives

1 P(P+ Q1+ N + Var(61 2))
B(a,6) = Slog (PQ1(1 — 0P + (N + Var@T2) (P + 22Q1) ) (5:15)
Again, a simple derivative of R(a, ) yields R(a,8) = R(a,0) — 702 + 0(0?), where
2
V(R) = = (P+0Q1) (5.16)

T 2(P+ Q1+ N)(PQi(1—a)? + N(P +a2Q1))’

is, by opposition to v(C), naturally dependent on the state-information Sy (through @1). The non-dependence
on the decoder state-information Sy follows the same argument as for capacity achievement. Note however
that if @; > P and @, > N (which is relevant in applications such as information embedding), we have
Y(R) = P/2N(P + N) = «(C). Hence, the channel sensitivity is maximized for high SNR = P/N [dB] and
the degradation is of less importance for small SNR, as illustrated in Fig.5.3(b).

We now discuss the tightness of the bounds (5.12) by evaluating them in the Gaussian case and comparing
them to the explicit expressions (5.14) and (5.16). For that, we need the Fisher information matrices of the

vectors involved. Recall that the Fisher information matrix J(T') of a Gaussian vector T is given by the
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inverse of its covariance matrix, i.e., J(T) = Cov ! (T'). Hence, straightforward calculation gives
2(P+a?Q1)+P+Q@1+ N +L
(P+ Qi1+ N)(P+a?Q1) — (P+aQ1)* Q2

Tr{J(Y;S2)} = P-}—Qﬁ + é

Moreover, optimization over the joint distribution p(u, z|s1) in (5.12) reduces, in this case, to an optimization

Te{J(Y;U,S,)} = (5.17a)

(5.17b)

over the sole parameter a. In Fig.5.3(a), the capacity-achieving Costa parameter « = P/(P+ N) is compared

to the one that maximizes channel sensitivity. We observe that the Costa-parameter, which is the one that

0.9 -

08 . -

Inflation parameter o

0.6 -

o 2 4 6 8 10 12 14 16 18 20
P/N [dB]

(a) Encoding parameter a.

channel censitivity

o

o 5 10 15 20
P/N [dB]

(b) Channel sensitivity coefficient +.

Figure 5.3: (a) Capacity-achieving parameter « (Asterisk) compared to the encoding parameter « that max-
imizes sensitivity to noise (Diamond). (b) Gaussian channel sensitivity (5.14) compared to lower (Asterisk)
and upper (Diamond) bounds given by (5.12a): the lower bound is relatively tight at small SNR (SNR < 5
[dB]), but becomes coarse at high SNR.

the encoder may intentionally use (cf., the encoder is aware of the perturbation, but does not take it into
account) or non-intentionally use (cf., the encoder ignores the presence of the perturbation) in the generation

of the codebook U = X + a1, causes high sensitivity at large SNR. The sensitivity-maximizing parameter
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in Fig.5.3(a) is obtained by maximizing the right hand side term of (5.12b). Yet, it is not that, in general,
the optimal DPC strategy U = X + aS; and/or the optimal Costa-parameter a« = P/(P + N) should be
changed, but rather, that increasing the transmission rate by, for example, increasing the transmission power
P, inevitably increases sensitivity to state information perturbations. This (un)-avoidable "negative effect” is

illustrated in Fig.5.4 and Fig.5.5, where both the incurred capacity and rate losses are plotted v.s the SNR.
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Figure 5.4: Channel capacity loss, in the Gaussian case, due to a weak contaminating perturbation of the
two-sided state information. The curves represent the nominal capacity C™(0) with a perfect knowledge
of the two sided state information (Asterisk) and the capacity with imperfect knowledge of two sided state
information (Diamond). Perturbation parameters are set to E[Z2] = @;/100 and 6 = (0.1,0.1)T. Capacity

loss is independent of the two-sided state information.

We now discuss the usefulness of the bounds (5.12) in this special case, where channel sensitivity has closed
form expression. Suppose that the transmitter has some (partial) knowledge of the perturbation, obtained
using some “extra” mechanism (through estimation, for example). Assume, for example, that this mechanism
provides an upper bound on the deviation 6, e.g., E[#?] < Np. If the bound on E[#?] is tight enough, the
encoder should adapt its encoding strategy to the newly being available channel knowledge. In fact, it can
be easily shown that, with respect to the approach consisting in completely ignoring the perturbation 67,
adapting is better if and only if
Ny < 2E[6?].

In this case, substantial gain is provided by setting the inflation parameter « to its (new) optimal choice
aopt = P/(P + N + Np). Note that here we have assumed that Z has unit variance. Consequently, the

encoder may, likewise, limit the loss due the channel uncertainty.

5.4 State Information at the Encoder

In this section, we consider the case of one-sided state information S;, available at the transmitter. As
special case of the general channel model considered in Section 5.2, both channel capacity and transmission
rate sensitivities, considered earlier in [ZD05c], can be obtained by omitting the terms Sy and Q2 in (5.12)

and (5.17). Alternatively, the same results can be obtained through a different approach. The basic steps
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Figure 5.5: Transmission rate loss, in the Gaussian case, due to a weak contaminating perturbation of
the two-sided state information. The curves represent the transmission rate with perfect (Asterisk) and
imperfect (Diamond) knowledge of the two-sided state information. The stronger the state information Sy

at the encoder, the larger the loss in the transmission rate.

are outlined hereafter. The received signal is Y =X+5 +60Z+V =Y +6Z, where, in this case, the
parameter 6 is a scalar variable (§ = 0;) and Z = Z;. Also, we assume, for convenience, that the variance of
the perturbation Z is normalized to unity. Following the same principles as in Section 5.2 and defining the

channel sensitivity v as in (5.5), we get, after straightforward calculation,

, . HY)-HY) . HYU) -H®Y,U)
-7 @~ 7 < .
P(g,lwlﬁl) {‘;I_IR) 62 51—12) 62 =7 (5.182)
. H(Y)-H®Y) . HY,U)-H(®Y,U)
< Y s . .
T2 pwaisn) {35% 62 ) 62 (5-18b)

Now, recall De Bruijn identity which relates entropy H(.) to Fisher information J(.).

Lemma 2 (De Bruijn Identity [CT91])
Let X be any random variable with finite variance and density f(x). Let Z be an independent normally
distributed random variable with zero mean and unit variance. Then

%H(X +VtZ) = %J(X +V1Z). (5.19)

Using (5.19), bounds in (5.18) reduce to

(miln )Tr{J(Y, U)—JY)} <2y, (5.20a)

plu,r|s1

27y < (malx )Tr{J(Y, U)-J()}, (5.20b)
plu,r|s1

which is, as already mentioned, a special case of (5.12).

5.5 Extension: Causal State Information

In this section, we show that the results above can be extended to the case where the state information is

known only causally to the transmitter. This case is relevant for applications where the state information is
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obtained through a feedback strategy (e.g., fading coefficients), for example. In such situations, the capacity
(2.9) becomes [Shab8]

C5o(6) = 7). (5.21)

= max
p(u)p(x|u,s1)

I
The auxiliary random variable U satisfies |U/| < || and the joint distribution p(u, z, s1,§) is such that

p(s)pu)p(fglz, s1) ifz = f(u,s1)
p(u,z,81,§) = . (5.22)

0 otherwise

In order to see how the bounds (5.20) on channel sensitivity translate to the causal case, we first notice
that the random variables U and S; are independent (and hence I(U;S;) = 0) under the joint distribution
(5.22). Thus the expression to be maximized is the same as in the non-causal case (5.4). Namely, I(U,Y) =
I(U,Y) — I(U,S;). The only minor difference is that we are maximizing over a smaller set of distributions.
Consequently, defining the (causal) channel sensitivity as in (5.5) results in the same expressions for the
sensitivity bounds. Only the set of admissible distributions over which these expressions are minimized or
maximized is changed (reduced in the causal-case). The resulting bounds are given by

p(u)zrjr(liﬁm) Te{J(Y,U) - J(Y)} < 27, (5.23a)

max Tr{J(Y,U) - J(Y)}. (5.23b)

~ p(w)p(zlu,s1)

5.6 Applications and Practical Usefulness

We consider two applications. The first application is from conventional communication, not from informa-
tion embedding. However, this is considered here to strengthen the analogy between information embedding
and classical communication that has been followed up throughout this thesis. In this application, the state
information is known causally and the vector channel is equivalent (by nature) to an instance of that in
Fig.5.2 (no state information at the decoder). The second application is from information embedding. The
state information is known non-causally. These two applications are not deeply investigated. The aim is to

just illustrate the principles discussed in the sections above.

5.6.1 Communication over channels with fading

Consider the transmission from a base station (BS) with Np transmit antennas to K < Np users. Using
the vector/matrix notation, the received signal can be written as ¥ = Hx + v with x = [z1,...,zn,]7,
v =[v,...,on,]F and H = [hi,;]. Obviously, the channel coefficients h; ; are time-dependent. We suppose
that channel state variation is indicated by the superscript i. We write y = H()x + v to denote the received
signal under the channel state H(¥). Suppose that the receiver first performs an estimate I-E(\’) of the current
realization H® of channel state and then transmits it to the transmitter using some backward feedback

loop. The transmitter uses this newly available (partial) channel knowledge as state information to combat
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channel interference. If channel variation is slow, the nominal current state H(® can be written as the sum

of the estimation P/I(\’) and a noise-like estimation error HTI:I(i),
HO = HO 4+ 4THD.
Thus, the overall vector channel is equivalent to
= 0+ v + 07O

which is in the form discussed above, with nominal state information S; = HO and small perturbation §7 Z =
8THx. If, due to channel fluctuations or any other perturbing phenomenon at the receiver, the accuracy
of the estimation varies, the causal channel capacity varies accordingly as C¢(#) = C¢(0) — 02 + 0(#?), where
C¢(0) corresponds to the case where the estimation is error-free. If the perturbation 7 H(?)x is somehow
controlled, the encoder should adapt to the situation by changing its strategy, accordingly. The bounds
provided in (5.23) on the sensitivity v to the estimation error §7H() give, as already mentioned, means of

predicting system performance in the "most accurate” and the ”least accurate” channel estimation cases.

5.6.2 Information Embedding under channel desynchronization

Consider the channel in Fig.5.6 where a message m € M has to be sent to some receiver over a noisy channel
(a digital watermark channel, for example). In the classical case, the transmitter has full access to the
cover (called also host) signal and uses it as state information at the encoder. In some other situations of
interest, the transmitter has access to a simplified version of this state, only. This occurs, for example, in
high secure transmissions. Here, we consider the case where only a quantized version § of the cover signal
s is made available at the transmitter. In this situation, the encoder forms the channel codeword x, based
(only) on the nominal state §. The full state s can be viewed as the sum of § and some quantization error
e. In addition, we consider the general case where the composite signal x + s is subject to some time-

delay desynchronization, in the channel. The resulting desynchronized transmission may be modeled by

Host signal s

Q)
S T T T T T T T T T T T T N
! | : Vo Decoded
message ! Jitter i €Col R
Encoder | ! -@_;—> Decoder - m
— X B~ v 3
m ! 1 y message
| AWGN&.J channel J

Figure 5.6: Information embedding using quantized (version of) host signal over an AWGN and Jitter
(AWGN&J) channel.

transmission over an Additive White Gaussian Noise and Jitter channel (AWGN&J) [ZBD06]. An AWGN&J

channel is an AWGN channel in which the signal s +x and the i.i.d Gaussian noise v are randomly sampled.
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More precisely, the received signal at time nT is §[n] £ §[nT] = z[nT + 7] + s[nT + 7] + v[nT] where
the delay 7 = 6T is a fraction of the sampling period T. The deviation & € [0,1] is a realization of some
random process (jitter), assumed to be Gaussian J ~ N(0,J), at time nT. Writing the received signal as
gln] = z[n] + 8[n] + v[n] + e[n] + T4 (x + 5)(t)|t=n7, ¥ yields the form discussed above, with S| =§, 6 =1
and Z; = 2 + % + 8. These two phenomena (partial knowledge of the host signal at the transmitter and
perturbation of nominal sampling instants in the channel) lead then to a (total) capacity loss due to the
(total) contaminating noise-like term e + 7(x + §). The effect of the jitter in reducing channel capacity is
depicted in Fig.5.7 where the quantization error is not considered. Depending on the jitter strength, the
resulting information embedding capacity C™(J) decreases as C™(J) = C™°(0) — yVar(Z,) + o(J), where =y
is given by (5.14). Here again, if, by means of some process, the jitter is (partially) controlled, the encoder

should adapt to the situation.

10"
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Figure 5.7: Capacity loss of DPC-based information embedding under the influence of a time delay desyn-
chronization 7 = 6T and additive noise v. The variance of the embedded signal, 2, varies according to
02 = 10SNR/1052 " The upper curve represents the capacity C"¢(0) = 1/2log, (1 + P/N) of the perfectly

synchronized channel.

5.7 Summary

In this chapter, we studied the influence of a weak noise-like perturbation on a pair of two-sided nominal state
information (S, S2), made available at the transmitter and at the receiver, respectively. We first considered
the non-causal case and use Fisher information to provide both lower and upper bounds on channel sensitivity
to the weak contaminating noise. We also discussed the tightness and the usefulness of these bounds through
comparison with the Gaussian case, for which we gave closed form expression. In particular, we showed
that, in some situations, the encoder should adapt to the imperfect-knowledge of the channel, by changing
its encoding strategy, so as to increase system immunity to noise. Next, we extended these results the case
of channel with causal channel state at the transmitter. Finally, two illustrative applications have been

discussed.
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Chapter 6

Information Embedding over an

AWGN&J Channel

6.1 Min-max and Max-min in Classical Communication

6.2 Min-max and Max-min in Information Embedding

6.3 The Watermark Channel and Its Model

6.4 AWGN&J Channel Classical Model

6.5 Optimal and Suboptimal Information Embedding over an AWGN&J Channel
6.6 A Game Theory Approach to AWGN&J Channels

6.7 Summary

The content of this chapter has been partially published in [ZBD04, ZBD05, ZBD06].

In the previous chapters, we concentrate on the design of efficient coding and decoding strategies for the
problem of information embedding. Efficient coding techniques are those which approach channel capacity, in
a point-to-point (single user) communication, or capacity region frontier in a multi-user environment. Until
now, we used the classical definition of channel capacity, i.e., the supremum of all achievable rates. However,
channel capacity has an alternative definition based on a min-max optimization problem. As information
embedding is basically a communication problem, capacity can be defined in a similar way. Further, this
alternative definition of channel capacity makes more sense in this case, for the channel may comprises an
embedder (encoder) and an attacker (channel) whose goals are opposite, by nature. However, while the
distortion constraint involved in the min-max problem can be expressed simply by the norm of the channel
noise in classical transmissions situations, a more accurate distortion measure has to be found, in information

embedding. This is a perceived distortion measure, meaning a distortion measure that characterizes the
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perceptual loss in quality due to transmission over the channel. In this chapter, we first provide a simple
measure of this perceived distortion. Next, we use this perceived distortion measure in assessing the impact
that a scale plus additive noise channel attack, modeled by transmission over an AWGN&J channel, has
in reducing channel capacity. Channel capacity as well as optimal "embedder” and ”attacker” strategies are

provided in a min-max game theory context.

6.1 Min-max and Max-min in Classical Communication

Max-min and min-max optimization problems have large use in classical communication. This can be
seen by simply saying that, usually, the transmitter wants a guaranteed rate of reliable transmission under
any channel distortion. In fact, even in the simple situation where all signals are Gaussian, a max-min
optimization problem exists, but is somewhat implicit. Consider the vector channel depicted in Fig.6.1
where the input s, the output y and the channel noise z are vector-valued Gaussian signals with covariance
matrices K;,, Kyy and K,,. The input must satisfy a power constraint E[XXT] < P, which translates to a
constraint on the input covariance matrix

Tr(Ky) < P. (6.1)
Maximization is explicitly present, by virtue of Shannon’s noisy channel coding theorem for a discrete

Z

. |
X : E[XXT] <P -@ Y

Figure 6.1: An abstract communication model for constrained classical transmission

memoryless channel. This implies that C = maz I(X;Y), where maximization is over all input distributions
that satisfy the power constraint (6.1). The maximum mutual information is achieved with Gaussian inputs,
and in this case the channel capacity can be evaluated as

|Km:c + Kzz|

1
C= —log —— 6.2
X TR (6-2)
where | - | denotes matrix determinant and the covaiance matrix K, is such that (6.1) is satisfied. Now,

note that for any non Gaussian noise Z', I(X,X + Z) < I(X,X + Z’'). This means that channel capacity
(6.2) can be re-written as

C = maxI(X;X +7Z)

p(s)

= maxminI(X;X +Z'), (6.3)
p(s) p(z’)

where the problem of achieving capacity can be viewed as a game between the encoder (through the distribu-
tion of the input) and the channel (through the distribution of the noise). More involved use of game-theory
in traditional communication can be found in, for example, competitive and coopertative multi-user envi-
ronments. For instance, the search for saddlepoints in broadcast channels relies on game-theory [Yu02]. In

information embedding, the usage of game theory is more extensive, because of the nature of the channel.
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6.2 Min-max and Max-min in Information Embedding

Consider a generic information embedding system aiming at embedding a message m € M into a host signal

s = (81, -+, 8n) as shown in Fig.6.2. Based on the host signal s € 8", the message m € M and eventually

Figure 6.2: An abstract communication model for information embedding

some private key k € K™, the embedder designs an encoding function X" : ™ x M x K™ and a decoding
function W : Y™ x K™ such that:

1. The embedded signal x = X™(s,m, k) satisfies the embedding distortion

> 2 X —_d? (s, X"(s,m,k)) < D, (6.4)
(M|

seS™ kekK™ meM

where the non-negative function d, : § x X — R} denotes the distortion function for the embedder.

2. Embedding performance are maximized, meaning that a certain payoff function F(.) should be maxi-

mized.

Conversely, an eventual channel attacker, subject to distortion D,, processes the composite signal ¢ £ s + x
so as to fool the receiver. This amounts to designing a sequence of conditional probability mass functions

O"(y|x) from X™ to Y™ such that:

1. The induced distortion does not exceed D,, i.e.,

Y > drx,y) 0" (y[x)p(x) < D, (6.5)

XEX™ yeYn
2. Embedding performace are minimized, meaning that the payoff function should be minimized.

Hence, information embedding can be thought of as a game between two cooperative players (the encoder
and the decoder) and an opponent (the attacker). A natural choice for this payoff function would be the

probability of error P, (1 # m), averaged over m € M, i.e.,

1

Po=
M|

Z Pr[W (y, k) # m'|m = m']. (6.6)
m’'eM

Another classical choice would be the maximum achievable rate of reliable transmission R = < log|M|. A
Nash equilibrium [MOO03] (X*™, ©*™, W*) of the game is obtained if and only if

]—'(X",G)*”,W) < ]—'(X",G)",W) < ]—"(X*”,@",W*) 6.7)
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for all admissible strategies (X™, O™, W) Under some conditions, a Nash equilibrium is also a saddlepoint.
The falue of the game in this case is F (X *ne*n, W*) If however, which is more secure, the embedder
assumes that the decoder will be unable to learn the attack ©™(.), the value of the game is

f*= max minF (X",@",W) (6.8)

X (),Ww()er()

In the rest of this chapter, we first provide means of evaluating channel distortions involved in the optimization
problem. We then evaluate the capacity loss of common information embedding systems when facing an
important class of channel attaks, amplitude scaling plus additive noise. Analysis is specialized to the
situation when communication can be modeled by transmission over an Additive White Guassian Noise
and Jitter (AWGN&J) channel. The second part of this chapter concentrates on finding optimal embedder
(encoder) and attacker (channel) strategies. The payoff function is the detection probability and embedding
is based on Spread Spectrum. The embedder wants to reliably transmit information, under any distortion
constrained channel attack strategy. Conversely, the attacker wants to impair this transmission for any power

constrained information embedding strategy.

6.3 The Watermark Channel and Its Model

The classical communication channels (BSC, AWGN, Rayleigh,...) are not likely to accurately model a
watermark channel in real world scenarios. A better understanding of the watermark channel can be achieved
by considering attacks not through their nature but through their impact on the composite signal: attacks
on the cover signal can in general be modeled easily by filtering plus additive noise. In a general setting,
a straightforward model may involve a signal dependent noise. That is, the noise may be highly correlated
with the cover signal. This chapter studies a special case of this filtering plus noise channel, and provides
some tools for increasing its usefulness (through a noise decorrelation process). The proposed approach is
then used to focus on desynchronization attacks. Research to assess the impact of desynchronization attacks

in digital watermarking has been carried out in two different directions:

(i) Some watermarking methods attempt to overcome desynchronization attacks by embedding the water-

mark in an ”invariant domain” as in [OP97] and [Kut97],

(ii) Other schemes are based on an estimation of the attack parameters followed by a compensation as in
[KMO02b).

The AWGN&J channel was introduced by Baggen [Bag93] in the context of data storage applications to
study the effect of timing jitter in the capacity of magnetic recording media. Insights from this model are

used in this chapter to investigate the effect of desynchronization attacks on several watermarking schemes.

6.3.1 A distortion model for a watermark attack

Let m be the message to be transmitted. m is usually first encoded into a watermark x and then embedded

into the cover signal s. The resulting composite (composite) signal is ¢ = s + x. Consider then a general
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attack A over the watermark channel. In an attempt to fool the receiver, the attacker may use a set of
admissible attack parameters {61, 6>, ...,0,} from some finite domain ©. The attacker processes the signal ¢
in such a way that the received signal y is given by y = Ay, g,,....9,)(c). Equivalently, the received (attacked)
signal y can be written as the sum of the composite signal ¢ and an interfering signal z = y — ¢. Of course,

z is (61,02, ...,0p)- dependent and it fully characterizes the attack A, i.e,

z = A(gl,g%m’gp)(c) — C. (69)

Thus, the watermarking system can be modeled as depicted in Fig.6.3. The distortion resulting from the

channel attack is generally measured by
D, = |ly — ¢l = |lzl- (6.10)

After the channel attack, the composite signal must remain of sufficient quality. Thus, the channel attack
A(6:1,60,...,6p) has to be upper bounded by a maximum distortion Dg,,,,. Clearly, ”sufficient quality”

should correspond to a perceived distortion, but is often measured by (6.10). This results in

llzll < Dama- (6.11)

VAR A(ghgz,...ﬂp)(c) —C

message i Decoded |
__~_| Encoder @_, Decoder L m
m x ¢ y k- message
|
J

Host signal s

Figure 6.3: An abstract communication model for blind (solid line) and non-blind (dashed line) watermarking.

6.3.2 Outline of our approach

There are two problems with the classical channel description using the difference signal as given in Section
6.3.1. First, denoting this difference signal z as "noise” is not always accurate: z may contain parts of
the composite signal ¢. In such a situation, z should not be treated as independent noise. Also, "useful”
components of z, i.e those which are highly correlated with the desired signal ¢ must not be counted as noise
and should be considered as "useful”. Second, the distortion measure D, does not perceptually characterize
the attack A effect on the composite signal c¢. To cope with these problems, one can note that the attacker
effect, that is the additional signal z, can be decomposed into two parts: one which is correlated with the
desired signal ¢ and one which is not. The first part is somehow useful and should be "included” in the desired
signal ¢. The second being decorrelated with ¢ can be reasonably considered as noise and will be denoted

as "attacker noise” hereafter. The overall approach is equivalent to removing from the signal z the part that
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is correlated with the composite signal and characterizing the attack A by the remaining part only, i.e the
attacker noise. One straightforward advantage is that the attacker induced perceived distortion is, likewise,
readily measured by the energy (or power) of the ”noise” part. This decorrelation-based approach was used
previously to model quantization noise (when the high resolution assumption is not valid). More formally,
our proposal is to use a ”scale plus additive noise” channel model, and impose the noise to be uncorrelated

with the host signal:
y = k.c+ n, under the constraint that E(cn,) = 0. (6.12)

Coefficient k, is easily obtained by imposing E(n.¢) = k,E(cc) + E(n,c) = 0, which gives

_ E(yc)
k., = B(c)’ (6.13)
The residual noise n, is then given by
E(yc)
=y — . .14
=Y Bleo) € (614)

Note that, disregarding the value-metric scaling coefficient k,, the resulting model (6.12) is additive -just like
that given by (6.9), y = ¢ + z. The main difference however consists in the fact that unlike signal z, n, is
uncorrelated with c¢. Also, in contrast to some recent watermarking related works where specific attacks are
addressed as in [EBG02a], [MI03] and [CL02a], we proceed differently here: given a general attack A which
processes the signal c in such a way that the received signal is y = A, a,,....6,)(c), we begin writing this
received signal as y = ¢ +z. Next, we derive coefficient k, and signal n, according to (6.13) and (6.14) such
that the constraint in (6.12) is satisfied. As a result, the decorrelation process results in a model, (6.12), that
is apparently common at first glance (i.e. of the form y = Ac + v). However, important differences are that
(i) parameters k., and n, are not “explicit” in the channel attack and, (ii) they depend on the transmitted
signal c itself. Another fundamental difference comes from the fact that if ever the signal v involves a part
that is correlated with c, the communication model will remove it and include it with composite signal c.
The above model will be shown to be particularly useful with desynchronization attacks. Note also that the
subscript z in k, and n, is used to point out the model parameters dependency on the attack z as clearly
shown by (6.13) and (6.14). For convenience, we will simply use k and n to characterize the channel attack

every time no ambiguity is possible.

6.3.3 Objective and perceived distortion measure

A very simple computation allows the computation of the "error signal” variance in terms of the “noise signal”
variance, which in most circumstances is much smaller. Due to decorrelation between ¢ and n, the objective

distortion defined by (6.10) becomes
D, 2 |ly—c| =|k—1P0? +02. (6.15)

Thus, the communication model (6.12) shows a scale factor k¥ (a luminance change for images, a sound level

change for audio signals) and an additive noise n. Both the scaling and the noise inhibit reliable detection
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of the watermark at the receiver side. But only the noise n should be considered in evaluating host signal
quality loss. Consequently, we assume in this chapter that, for the perspective of a perceived distortion
measure, the scale factor does not contribute to the distortion. Hence, rather than assuming that the MSE
(the norm of the error signal) is a good model for the perceived distortion, we shall use o2 to cope with the
perceived distortion. Obviously, more accurate models exist, involving human perception models, but the
model (6.12) seems to be a good trade-off between accuracy and tractability. Simulation results based on

real audio signals in the presence of desynchronization attacks show its accuracy.

6.4 AWGN&J Channel Classical Model

In this section, after a short presentation of the AWGN&J channel, AWGN&J desynchronization effects are
investigated differently: (i) using common Inter Symbol Interference (ISI) assumptions commonly known the
communication theory in Section 6.4.1, and (ii) using the model (6.12) in Section 6.4.2. Both approaches
are finally compared. In other words, we will compare the distortions resulting from the two writings of the
jittered signall. This comparison will confirm the accuracy of the model (6.12) and underline its particular
usefulness for desynchronization attacks characterization.

An AWGN&J channel is an AWGN channel in which the signal c is, in addition so the i.i.d Gaussian noise
v, are sampled randomly. More precisely, the receiver has to decide on the presence of the watermark based
on c¢y[n] +v[n] = ¢[nT + 7] + v[n] rather than c[n] + v[n] = ¢[nT] + v[n]. The delay 7 can be larger than
one sampling period 7. But, in most cases, the receiver can compensate for any time shifts multiple of T
with relatively easy re-synchronization procedures. A very easy method will be described in Section 6.5.1.
In the following, we assume that 7 = §T is a fraction of the sampling period T, i.e. § € [0,1]. The deviation
d is a realization of the process J at time nT and J is assumed to be Gaussian, J ~ N(0,J). Depending on
the desynchronization (constant shift or random sampling), § can either be random or constant. Both cases

are addressed hereafter. The resulting watermarking communication over an AWGN&J channel is similar

Host signal s

v ! [
Jitter ‘ ! y Decoded

' |
message | L coder | o | @_ﬁ_»@_, Decoder | o
(%; I N©,g) [ |
m X c! y message
!
|

Figure 6.4: Additive White Gaussian Noise and Jitter channel AWGN&J.

to that described in Section 6.3 except that, this time, the composite signal ¢ is replaced by ¢; such that

INote that a plain comparison consists in comparing the distortions resulting from writing the received signal as (i) y = ¢ +v

and (ii) y = k¢ + n + v, which amounts to comparing ¢; to y = kc + n.



116 Information Embedding over an AWGN&J Channel

y = ¢y + v. The jittered signal c; will be denoted by ¢y in case of a constant scaling and by ¢, in case of
random sampling.

Some studies of desynchronization attacks using the AWGN&J channel model, [LOJPG03, LOJH03, PGD04]
or not [BEH02], already exist. However, in these works, the desynchronization noise is expressed using the
Inter-Symbol-Interference (ISI) term and is assumed to be uncorrelated with the composite signal. This
assumption, while valid in a traditional communication context, cannot hold in the context of watermarking
due to the correlation of signals. Instead, this ISI term must first be processed to remove from it the part
that is correlated with the composite signal c¢. Only after that, the remaining part can be assumed to be
noise-like. This is a straightforward application of the model (6.12) above. Using this model will shed light
on AWGN&J desynchronization and will highlight the inaccuracy of the classical ISI approach. The latter

approach is described in the following Section.

6.4.1 An IST approach to AWGN&J channel desynchronization

Under appropriate band-limited assumptions, the time-continuous signal ¢(¢) can be reconstructed without
error from the sequence {c[n]}nez according to Shannon-Nyquist interpolation :
o(t) = nze:zc[n]sinc(% ). (6.16)
This expression will be used to derive expressions for the desynchronization noise and induced distortions in
presence of a jitter. Whenever required, indexes f and y will refer respectively to fixed and random jitters.
Eq. (6.16) can be put in the form
cg[n] = sinc(d)e[n] + Z c[k]sinc(n — k + 9). (6.17)
kezZ\{n}
This equality shows that introducing a constant time shift is equivalent to filtering the composite signal or
alternatively, to first, attenuating the composite signal ¢(t) and then adding a signal dependent noise z¢(t)
given by
zf(t) = Z clk]sinc(n — k + 6). (6.18)
keZ\{n}
The signal z7(t) can be seen in the context of digital communication as the Inter-Symbol Interference (ISI)
term. Moreover, in case of a constant shift, scaling does not change the overall energy of the signal c(t).
Thus, under the uncorrelation hypothesis assumed in [BEH02] and using (6.17), the distortion due to adding
the signal z;(t) can be written as
o2 = (1 —sinc(6)?)o?. (6.19)

2f
In the case of random re-sampling, the variable § is random. The corresponding distortion can be expressed as
in (6.19) with an additional expectation over all possible values of §. A much simpler alternative expression
of s.[n] can be obtained by using the Taylor-Young series expansion around 7. At first order, ¢.(t) =
c(t) + T4c(t). The effect of the jitter can then be viewed as the introduction of an additional signal z,(t)
given by

zp(t) = Tac(t). (6.20)
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Clearly, the signal z,(t) depends on the compositesignal ¢(t). The corresponding distortion is given by

o: =JE ([as(t) + %x(t)]"’)). (6.21)

Note that the ISI signals z; and z, arise directly from interpolation in case of constant shift and random
re-sampling respectively. Hence, a priori, these terms are not necessarily decorrelated from c. An additional
decorrelation process (as described in the model (6.12)) is needed to extract the corresponding noise parts?.
However, in this section, we forget for a while the correlation with ¢ and derive insights into the AWGN&J
channel using conventional IST assumptions®. In this case, based on (6.19) and (6.21) one can already give

some specificities of watermarking channels including jitter:

(a) The influence of the jitter depends on the composite signal power 02 = 02 + ¢2. Hence, the well known
embedder strategy consisting in increasing the watermark power o2 to improve detector performance
in case of AWGN attacks is no longer the optimum strategy, since at the same time, it enforces the

impact of the desynchronization attack by increasing the attack distortion (see Fig.6.6).

(b) Since the jitter noise is somehow proportional to the original signal, embedding the watermark into a

transform domain where the original data is less powerful may alleviate the effect of the jitter.

In the following section, the AWGN&J channel is characterized using the model (6.12). The goal is, as
stated before, to compare the resulting distortions to those being derived using the ISI approach and given
by (6.19) and (6.21).

6.4.2 The AWGN&J channel in light of model (6.12)

Expressing differently the jittered signal c;, (i) using the model (6.12) and, (ii) using (6.17), we get: kc+n =

c;. Constant and random time shifts are treated separately.

6.4.2.1 Constant time shift

As mentioned before, the scaling does not change the overall energy of the signal ¢ in case of a constant
time shift. This can be shown to result in k € [—1,1] and 02 = (1 — k?)o2. Also, using the model (6.12), it
follows that

<zy,c>

llell

ny =2z — %c. (6.22b)
c

ks = sinc(d) + (6.22a)

Fig.6.5(a) depicts the dependency of the equivalent scaling factor ks on the sampling deviation J. It can be

seen that ky decreases with ¢, but has a much smaller dependency on ¢ than the factor sinc(d) corresponding

2These noise parts given by model (6.12) will be denoted by ns and n, respectively. Fig.6.5(b) shows that a%f < Ugf.
So, the signal z; contains parts of ¢ that have to be removed from it in order to get the noise part (i.e. ny). Note also that

simulation results with real audio signals support the fact that zy and c are highly correlated.
3The ISI term is uncorrelated with the signal c(t) being interpolated.
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Figure 6.5: The effect of a constant time scaling A = 6T is investigated differently (i) as an additional noise
of power o2 , resulting from the ISI term (diamond) as considered in [BEH02] and (ii) using the proposed
model (asterisk). Corresponding scale factors and desynchronization noises are compared. (a): diagram of
dependency of the scale factor k; on the deviation ¢ with respect to sinc(d). (b): the equivalent white noise
power o7, with respect to o2, stemming from the plain model. Results are obtained with DWR = 20 dB.

to the IST approach. Note that curves in Fig.6.5(a) correspond to a Document-to-Watermark Ratio (DWR =
10 logm(%)) of 20 dB and a Watermark-to-Noise Ratio (SNR = 1010g10(g—§)) of 0 dB, which are typical
values in watermarking systems. Smaller values of ky can be obtained wi;h stronger composite signals.

Noteworthy, the model parameter ks given by (6.22a) is larger than the scaling factor sinc(d) of expression
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(6.17) obtained with the ISI approach. In order to further outline the accuracy of the model (6.12), we
compare the power 0'72” of the noise ny to that of the ISI term z;. The result is depicted in Fig.6.5(b). We
see that o2 ; naturally increases with the shift §. However, unlike the scaling factor, o2 ; is smaller than o2 ;-
As stated before, writing the jittered signal c¢; as the sum of two signals, one which is proportional (highly
correlated) to it and another which is decorrelated from it, permits the extraction of the noise part ny. Since

2

02 is smaller than o2

s z, and aii is the power of the exact noise term in yy, it follows that z; should not be

2

totally accounted for as noise. The difference o2 , — 0y, corresponds to the power of the part of zy that is

falsely attributed to noise in the IST approach.

6.4.2.2 Random time shift

Consider now the random jitter case. Again, we have
c+2z, =k.c+n, (6.23)

with n, uncorrelated with ¢. Parameters k, and n, can be derived in a way similar to the constant shift case.
Intuitively however, unlike a constant shift, the random variable 7 in z,(t) ensures enough randomness, this
time, so that the objective error may be reasonably considered as uncorrelated with the composite signal
¢(t) (this is checked below by simulation, see Fig.6.6). z,-(t) can hence be assimilated to a signal-dependent

noise which is approximately decorrelated from c. Therefore, it follows that

ke m 1, (6.24a)
n, & z. (6.24b)

Desynchronization experiments including real audio signals sampled at f. = 44.1 kHz show that k. is most
of the time very close to unity and that for a jitter square deviation J € [0, 1], we have k, > 0.97. Also, these
tests show that the embedded watermark is inaudible as long as J < 0.04. Of course, this threshold depends
on the signal used and should not be taken for granted, but it already gives an idea about the jitter square
deviation range of interest. For this range, simulations show that k. > 0.99. The uncorrelation assumption
is, unlike the constant time shift, approximately valid for practically all relevant jitter attacks. The jitter

2 = o2 . However, this noise is dependent on the composite

2
T

That (02) of the watermark x varies according to DWR = 10log;(02/02) € {10,15,25,30} dB. Also, the

T

acts then as an additive noise of power o
signal ¢ = s + x. Fig.6.6 illustrates this dependency: here, the cover signal power ¢ is maintained fixed.
additive Gaussian noise power o> = 021073 is fixed. We see that: (i) the effect of the jitter (strength of

desynchronization noise n,) increases with the jitter square deviation J (the dependency is approximately

2

linear). In addition, (ii) as the power o3

increases (DWR decreases), the jitter becomes stronger. This
illustrates the remark above: increasing the watermark power for more reliable detection in an AWGN&J
channel, increases at the same time the effect of the jitter.

In light of the comparison stated above, we conclude that:

(a) The decorrelation hypothesis between z; and c is in general not accurate. The ISI term zy is highly

correlated with c.
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Figure 6.6: Diagram of dependency of the desynchronization noise o2 on the jitter square deviation J.

Dependency on the composite signal ¢ = s + x is illustrated through that on the Document-to-Watermark

Ratio DWR: the jitter becomes stronger with strong watermarks (lower DWRs).

(b) Removing from the IST term the signal-like term results in a more accurate characterization of the

attack where the real scaling factor ks is larger than sinc(d) and the real equivalent additive noise ny

is much weaker than the ISI term z;.

(c) The objective distortion induced by the scaling attack is

Doy = ks — 11?02 + o5 . (6.25)

The perceived distortion is given by o2 ;, Which is much smaller than that rising directly from the plain

model.

(d) The random jitter has an additive signal-dependent like behavior.

The AWGN&J channel has been characterized in terms of jitter induced distortions. Since the capacity of any

watermarking scheme depends mainly on these distortions

4. one important point is to evaluate the perfor-

mances of this scheme over an AWGN&J channel. The distortions expressed above will help estimate the real

performances loss. To that end, two watermarking schemes taken respectively from the interference-rejecting

and non-rejecting watermarking methods are considered. For the former, a brief overview of communication

with state information at the encoder is given.

41t also depends on the embedding distortion Dg = ag. In addition, for blind Spread-Spectrum embedding, the host signal

itself accounts for self noise and must be included in the channel distortion as shown by (6.32a).



6.5 Optimal and Suboptimal Information Embedding over an AWGN&J Channel 121

6.5 Optimal and Suboptimal Information Embedding over an

AWGN&J Channel

We assume watermarking of an independent identically distributed (IID) Gaussian original signal s ~
N(0,02) over a watermark channel characterized by its attack A such that y = kc + n. Such a channel
may represent the traditional AWGN channel, the SAWGN channel investigated in [EBG02a], the AWGN&J
depicted above or any other watermarking channel (attack). Only the pair (k,n) would vary accordingly.

The receiver compensates for the scaling by dividing y by k to produce the pre-processed signal

n
y =s+x+ % (6.26)
Thus, the watermark receiver sees an AWN channel with the effective noise n' = 2, with variance o7 /k*.

The watermark capacity for communicating over this effective channel depends only on the cover signal s

and the ratio of the embedding distortion Dg = ||c — s|| = o2 by the effective channel noise o2 /k*. The

noise power o2 is related to D, by (6.15) which enables the computation of the ratio k?; E as

n

KDp k2Dp 627)
02 Da—(k-1)%(0+Dp)’ '

6.5.1 The Ideal Costa Scheme ICS

Rather than considering watermarking as communication over a very noisy channel where the host signal s
acts as self-interference (as in SS), it has recently been realized [CW99, CMM99] that blind watermarking
can be viewed as communication with side information at the encoder. The relevant work is the initial
Costa "Writing on Dirty Paper” [Cos83]. Fig.6.7 depicts a block diagram of blind watermark communication

over the channel (6.12) where the encoder exploits the side-information about the host signal. The scheme

Host signal s

message Decoded
__—_| Encoder - @ Decoder - M
m x c message

Figure 6.7: Blind watermarking as Writing on Dirty Paper over channel (6.12).

originally conceived by Costa is called ”Ideal Costa Scheme” and emerges as a universally good encoding
strategy for coding with side information available at the encoder. Based on a huge random codebook, Costa
showed that optimal transmitter encodes its message ”in the direction” of the interfering signal s such that

the latter does not affect the capacity of the channel, achieving thus the standard Gaussian channel capacity.
2
o’m

In our case, the effective watermark-to-noise power ratio —2
"I

is given by (6.27). Hence, the communication
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rate under an attack of the form (6.12) can be written as

1 k2D
A _ E
RICS = ilogz (1 + —Ea — (k‘ _ 1)20_2) (628)

For given D, D, and o2, capacity is defined as the supremum of all achievable rates. Alternatively, Moulin
et al. showed in [MOO3] that the hiding capacity may be formulated as a min-max problem between the
information hider and the attacker. The information hider wants a guaranteed rate of reliable transmission
under any attack that satisfies a upper-bound constraint on D,. Conversely, the attacker wants to minimize
this rate for any information hiding strategy that satisfies an upper-bound constraint on the embedding
distortion Dg. Later, in [MMLOO], Moulin et al., using a different distortion measure, have shown that the
optimum attack over all possible attacks is a specific Scale plus Additive White Gaussian Noise (SAWGN).
For the channel (6.12) investigated here, capacity is then obtained by minimizing (6.28) over all possible

02+Dg’
the expression inside the function log(.) in (6.28) strictly larger than unity. Otherwise, capacity would be

attacks k € [1 — Do 14 \/ 724Dz . The constraint on the admissible scaling factor set corresponds to

negative and the watermarking system design becomes meaningless. Details of the resolution are skipped
here since a very similar game, where the objective function is the detection probability, will be throughly
studied in Section 6.5. The resolution gives kopr = 1 — agg—})E and

1 Dg(o® — D,) 1 D
A E a E
CICS = 510g2 (1 + W) < ilogz (]. + D_a> (629)

Note that in general D, < 02 + Dg such that kop €l—,/ 02 The 1+4/ 02 e ] is satisfied. Also, the term
on the right hand of (6.29) is the achievable capacity if there were no attack (which is that of an AWGN

channel with signal-to-noise ratio Dg/D,).

6.5.2 Traditional Spread-Spectrum

A simplified diagram of basic SS-based watermarking over the channel (6.12) is shown in Fig.6.8. Blind and

Host si‘gnal S )
Correlation | o

= C detector
=

- Il A

€ e

[72)

sp —(X

o A

= =

m

Figure 6.8: Blind (solid line) and non-blind (dashed line) spread-spectrum-based watermarking over channel
(6.12).
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non-blind reception refer to the fact of having or not access to the cover signal s at the receiver side. If
the decoder has access to s, the decoder subtracts the cover signal s from the received signal y' prior to
decoding. If not, the decoder performance suffers greatly from host signal interference. Blind and non-blind

communication rates under an attack of the form (6.12) can be written as

1 k2D
A _ E
RBhnd SS = 51082 (1 + k‘203 ¥ Da . (k‘ _ 1)202>a (630&)
1 k2D
A _ E
RNon-blind S$ = 51082 (1 + m) (6.30b)

Again, capacity is obtained through a min-max problem resolution. The set of admissible scaling factors for

the non-blind case is the same as before. For blind SS, it is given by

(07 + Dg) —\/(02 + D)2 = (62 + Dg — Do)D (03 + Dg) + /(02 + Dg)? — (02 + D — Do) Dg

k
€ _DE DE

(6.31)
The optimization results in the same saddle-point kypr = 1 — (725—3)19 as before which satisfies (6.31) and for

which transmission rates are given by

1 Dg(o? — D,)
A _ E\O, a
Bina ss = 5% (14 o2 (o~ Pyt ) (6:22)

Dg(o? —Da))

1
A _
CNon-blind S8 = 51082 (1 + 2D, (6.32Db)

Capacity loss for both ICS and SS is depicted in Fig.6.9. As shown by (6.29) and (6.32a), the attack
(6.12) results in significant capacity loss especially for very low watermark-to-noise ratios Dg/D,. As for
the AWGN channel, ICS outperforms SS for almost all values of Dg/D,. Note however that ICS-capacity
reduction is larger than that for SS: ICS is less robust than SS facing attacks of the form (6.12). This fact
will be supported by simulations over an AWGN&J channel (see Figs. 6.10(a) and 6.10(b) below). Also, in
case of very strong attacks, ICS and SS capacities fall to the same values and ICS presents no gain over SS.
These attacks are however sufficiently strong to practically impair any communication and are, consequently,
not relevant in real applications. For reasonable watermark-to-noise ratios (10log;,(Dg/D,) > —16 dB),
ICS remains more efficient.

Now, focus on the special case of an AWGN&:J channel. This channel has been shown to be a special case of
attacks of the form (6.12), with parameters k¥ and n given by (6.22a), (6.22b), (6.24a) and (6.24b). Hence,
ICS and blind SS capacities over an AWGN&J channel are readily given by (6.29) and (6.32a), respectively
and are shown in Fig.6.9. However, since these capacities are obtained through a min-max resolution, they
correspond to the achievable rate under the optimum attack (k,p:). More insights can be obtained using

achievable rates (6.28) and (6.30a) instead of capacities as stated below.

6.5.3 Application to AWGN&J channels

Here, unlike capacity which is derived analytically using k., we want to see how transmission rates

Rf%ngN&J and ’Rﬁl\g (d}_l\éXScJ degrade in presence of a jitter J. That is, we are interested in the observed
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Figure 6.9: Capacity loss of both Ideal Costa Scheme (ICS) and Blind Spread Spectrum Scheme under the
influence of an attack of the form (6.12). The result is depicted for DWR = 1010g10(g—i) = 20 dB. For

strong attacks, ICS and SS capacities fall to same values. ICS becomes more sensitive than SS.

jitter and not the optimal one as in capacity analysis. Simulations are required to compute parameter k
and noise n in (6.28) and (6.30a). We proceed as follows: given some jitter (shift §), the composite signal
c is interpolated resulting in c¢;. Next, the equivalent attack (scaling k and noise n) is derived and white
Gaussian noise v is added. The received signal is y = kc + v¢4, where v, = v 4+ n is the overall channel

noise.

6.5.3.1 Rate loss under constant time shift attacks

Fig.6.10(a) depicts transmission rates given by (6.28) and (6.30a) using expressions given by (6.22a) and
(6.22b) for the scaling factor k and the noise n. For both ICS and SS, these are shown for three values
of DWR = 10log,o(Dg/D,). We observe that ICS transmission rate drastically decreases if the sampling
deviation ¢ increases. This illustrates the loss in ICS-capacity already shown in Fig.6.9 and particularly
apparent for low SNR = 10log;,(Dg/D,): as d is close to unity, the jitter induced distortion D, is large and
SNR is low. Note that, ICS rate degradation reveals a more general setting: almost all quantization-based
embedding schemes are highly sensitive to scaling. When scaled, the received signal is rounded to a bad
quantization cell center. Blind SS, however, is almost insensitive to scaling, but performs far below ICS. This
is particularly useful for the design of watermarking systems in situations where the transmitted signal may
be scaled by the channel: ICS should be preferred to SS for applications where a great amount of information
is to be transmitted. However, SS may be used for applications where transmission rate is not the main issue
and where robustness against scaling is highly appreciated. The latter applications are referred to as “one

bit watermarking” problems in digital watermarking. Another important remark arises from comparing the
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transmission rates corresponding to the same shift ¢ but different values of DWR. It can be seen that the
higher the DWR, the larger the rate loss. This does not contradict (6.19) because the embedding distortion

Dg is reduced as well so that the transmission rate broadly decreases for large DWR?.

6.5.3.2 Rate loss under random jitter attacks

The effect of a random jitter J ~ N(0,J) combined with an additive white Gaussian noise v attack on
a composite signal ¢ = s + x is depicted in Fig.6.10(b). For the same reason as above, we concentrate
on attacks with jitter square deviation J < 0.04. Again, we use (6.28) and (6.30a) where k, and n, are
replaced by (6.24a) and (6.24b) respectively. As for the constant time shift case, we observe that ICS rate
reduction is larger than that of SS, which is almost insensitive to the jitter. Also, though large DWRSs result
in small distortions as previously shown by (6.21), the decrease in the embedding distortion Dg cause the
transmission rate to degrade.

Now compare the ICS rate loss to that which results from a constant shift attack. Note that, the rate loss
is larger when facing constant shifting. This is not completely surprising: remember that the random jitter
attack has been shown to behave like additive noise. With ICS, whose practical implementations are forms
of quantization, scaling is more harmful than adding noise. This fact will be supported by game theory
resolution in Section 6.5.

The remaining of the chapter is devoted to providing insights into both the optimum attack and the optimum
defense. By “optimum”, we mean “the best strategy” in a game theory context. The Watermarking Game
does not have universal solutions and both attacker and defender should adapt to each other . Here, the
game is first briefly reviewed and then solved in case of an AWGN&J attack and blind spread spectrum. We

also provide a simple means of circumventing constant time shift attacks.

6.6 A Game Theory Approach to AWGN&J Channels

In a robust watermarking transmission context, the embedder must design his embedding scheme so that the
watermark survives the worst possible attack. Conversely, the attacker has to perform the optimal attack
that best impairs the watermark, for a given distortion budget. The resulting optimization problem (game
theory problem) is often formulated as a max-min (or min-max) problem. The criterion to be optimized
is the detection (or equivalently, error) probability in case of one-bit watermarking and, the watermarking
capacity in case of data hiding. Since capacity has already been optimized in Section 6.4 and since for
many watermarking applications, the most significant criterion is reliable detection, we concentrate on the
one-bit watermarking. We consider the criterion of detection probability. The watermarking game has
been thoroughly studied in the case of an AWGN channel [CL02a, CL01, SA80]. In [MI03], Moulin and al.
discussed the case of attacks by filtering and additive noise. In [EBG02a], Eggers et al. considered attacks

by amplitude scaling and additive noise. But, in contrast to the following, only objective distortions were

5Note that small increasing the DWR is obtained through decreasing the embedding distortion Dg = o2. Cover signal and

Gaussian noise powers o2 and o2 are maintained fixed as above.
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Figure 6.10: Transmission rate loss of both Ideal Costa Scheme (solid line) and Blind Spread Spectrum
(dashed line) over an AWGN&J channel. Gaussian noise v is such that 02 = 107302. (a): the composite
signal c is scaled with A = §T. (b): ¢ is randomly re-sampled using the jitter J ~ N(0,J). With both
schemes and under both attacks, transmission rate degrade with DWR. From bottom to top: DWR = 25,20
and 15 dB.
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used and were evaluated with respect to the original host signal, not to the composite signal.
In an AWGN&J channel, the attacker can desynchronize the signal and add noise as well. In this section,

we answer the following three questions:

(i) If ever the attacker has a perceived distortion budget, with two ways of using it: either by introducing

jitter, or by using additive noise or any combination of both, what is his best strategy?
(ii) Conversely, what is the best tuning for the defender knowing the best potential attack?

(iii) Is there means for the defender to find countermeasures to the attacker strategy (put some limits to

the efficiency of its optimal strategy)?

We begin by answering (iii). The main difficulty in synchronizing a randomly scaled received signal stems,
as stated above, from the fact that random time scaling the composite signal broadly behaves like adding
noise (disregarding the fact that this noise is signal-dependent as given by (6.20)). In case of a constant
time-shift however, the receiver should be able to reverse the effect of scaling. The main solutions that
have been proposed can be divided into two categories: (i) embedding of a pilot sequence as classically
used in traditional communication and (ii) using a correlation-based alignment algorithm [SK04]. While
pilot sequences present an additional source of weakness if ever intercepted by an attacker, the algorithm
in [SK04], has good matching properties but requires the availability of (a copy of) the original signal at
the receiver side®. This algorithm consists in computing the maximum normalized correlation between the
pirated (attacked) signal and the original. Here, we propose a cross-correlation based matching process that
we denote by "multiple correlation test”. This procedure is similar to that in [SK04], but does not require
knowledge of the original content at the receiver. Blind re-synchronization is made possible by using the
watermark instead of the original signal for correlation computation. Having access to the watermark x at
the receiver side is commonly assumed in a ”one bit watermarking” context. The aim is to mark users specific

contents with the same small watermark.

6.6.1 Preventing constant shift

Suppose the attacker performs, in addition to the additive white Gaussian noise v, a time shift A = §T with
0 € [0,1]. The restriction d € [0,1] is due to the fact that, with a cross-correlation based re-synchronization
procedure, the defender can compensate for any T-multiple time shift: the receiver searches for the maximum
cross-correlation between the received (attacked) signal y and the watermark x and realign y before pro-
ceeding to detection so that he gets rid of any T-multiple scaling. We concentrate then on the case ¢ € [0, 1].
As stated above, the received composite (and attacked) signal is given by §(t) = y(t+ A) = §(t) + Z(t) + v(¢)
where 3(t), Z(t) and §(t) are respectively desynchronized signals s(t), z(t) and y(¢). The analysis below
shows that desynchronization is much more harmful than white noise. Therefore, it is very important for

the defender to maintain this part of the attack to a reasonable level. One possible way is to interpolate

6In [SK04], Schonberg et al. proposed this algorithm in the context of fingerprinting, which is indeed an application where
availability of the original signal is usually assumed. Here, we focus on detecting the same watermark embedded in several

different contents.
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the received signal, so that the receiver performs several shifts of the watermark z(¢) along the time axis,
and proceed to correlation tests with § for each of these shifted versions. Depending on the number of
correlation tests the decoder can perform, the receiver can maintain the maximum time shift to a desired
bounded value. A large number of tests at the receiver side, however, increases the computational complexity.
Therefore, there will be a trade-off between computational complexity and optimality. Suppose the receiver
is able to perform M (> 2) tests. Let (*) denote the watermark signal shifted by L' &k € [1 : M — 1],
that is ¥ [n] = #[nT + £L] and p¥) = —<3%Y>_ 4o correlation coefficient between the received signal

IFll=®

and ) (¢). p© 2 % In order to bound A within an interval of length -, the receiver determines
ylillx

ko € [1: M — 1] according to

ko= argmax p". (6.33)
ke[l: M -1]

ko represents the location index for which §(¢) optimally matches the signal y(t) when scaled back by
&OMZ. Next, the receiver proceeds to detection using the aligned signal §(t — EOMZ) Likewise, the residual
desynchronization is smaller than % and the attacker should not waste energy in further desynchronizing
the composite signal ¢(t). The cost the receiver has to pay in order to maintain the maximum time shift to a
(small) bounded value is the computation of M correlations. From the analysis outlined in the first part of the
chapter, this bounding (a parameter of the transmitter) is absolutely required, otherwise desynchronization

induced noise would increase to very large values, resulting in very poor detection performances.

6.6.2 Game theoretical formulation

We consider the embedding of one bit of information b € {0, 1} into an original data s of length N, assumed
to be Gaussian, s ~ N(0,02). The watermark signal is given by x = bu where chips z; are mutually
independent with respect to s. The sequence u is produced by a Pseudo Random Number generator (PRN)
using a secret key k € K. Its elements are equal to +o, or —o,, (see Fig.6.8). Also, according to Kerkhoff’s
principle, we suppose the attacker knows the watermarking scheme that we used. The embedder, however,
not having access to the attacker scale factor k£, does not normalize the received signal. In this context, the
attacker may either add white Gaussian noise, desynchronize the composite signal or perform both operations
as long as the overall attack distortion D, is upper bounded by a certain tolerance level D,,,q0,- On the
other side, the embedder chooses the appropriate length N of original data, the number M of correlations

to be performed, and watermark power o2 subject to a certain maximum embedding distortion Dg,,;-

6.6.2.1 Detection probability

<y,u>
[lall

Detection is based on the sign of y = where the received signal isy = ke+n+v and y = kb+ks+n+v,

with

2
— <s,u> Os
s=Sfr ~ N0 x52),

2

— <v,u> ay,
v==nr ~ N0 x2)

— <nu> [
n == ~ N0 x57)-
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So, the PDF of y is given by y ~ N (kb, LUHUEJFU‘Z’ . Natural performances measure for the one-bit water-
g No2
marking problem are probability of false positive (false alarm , false negative (miss detection

g A & D

and probability of detection Py. The watermark detection problem can be formulated as a hypothesis test:

Hj : b= 0= no watermark,

H; : b =1 = watermark found.

The detector decides that a watermark is present if y > v, where v is some detection threshold that controls

the trade-off between false positive and false negative decisions. These probabilities are given by

1 No?
Ppp = P(y > v|Hp) = ierfc v 0T + 0T 107 |’ (6.34a)
1 No?
Pyp =Py <v|Hy) = §erfc ((k - V)\/2(k2(73 = U%)>, (6.34b)
1 No?2
Py=P(y>v|H) = ierfc ((V - k)\/Z(kQ(fg = U%)>. (6.34¢)

The parameter k is unknown. Non coherent detection theory provides several techniques to solve detection
problems with unknown parameters. Below Neyman-Pearson approach is first reviewed and then applied to

derive consistent choice of parameter v. More details about such a choice can be found in [PBbC98].

(i) Neyman-Pearson criterion for threshold selection Subject to a constraint on the mazimum ac-

ceptable probability of false positive (false alarm), the test consists in minimizing the probability of false
negative (miss-detection).

For example, a maximum allowable probability of false alarm PFAmx = 1076 leads to a threshold v =
3.3,/202. In [OP97], it is stated that to improve the characteristics of robustness against attacks, the new

threshold should be evaluated directly on the composite and possibly attacked signal y. This results in the

2(k202+02+02 ) i
33 ——x =z for a constant shift
VR z

3.3 \/ 2o2+03+TFl(Fe(t)?)

following choice:

No? for a random shift.
(#) Max-min criterion Over an AWGN&J channel, the detection probability, denoted by PAW &N&J jig
given by (6.34c). Also, we assume as stated in [BEH02], that meaningful embedding and attack distortions
should satisfy

0 < DEmaz £ Damas < 5. (635)

S

Taking into account the defender ability to perform the multiple correlation test described above, the scaling
must satisfy § < % Due to the cost of computing the correlations, we assume that M < M,, .., where M
is a parameter of the defender. For the same reason (correlation based detection cost), very large values of
the signal length N are not allowed (N < Npyqz). As for the bound on M, that on N should ensure good

compromise between detection performance and computing complexity. The embedder wants to maximize
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PAWGN&T and the attacker wants to minimize it under constraints pair (Dgmmaz> Damaz)- The problem is

then naturally formulated as a game between the embedder and the attacker, and can be written as

max min PjWENET (6.36)
Dg<DEgmazDa<Damaz

This optimization problem is solved in the following section for both constant and random scalings.

6.6.3 Solving the watermarking game

The attack distortion has been shown above to be given by D, = |k — 1?02 + 62 + 02. Let us first determine
the part of the distortion budget that the attacker should allocate to noise and that to allocate to jitter,
so that the detection performance is maximally reduced. By considering the proposed model kc + n + v in
which n and ¢ are uncorrelated as required by model (6.12), there is a priori no difference in nature between
n and v (disregarding the dependency of n on the signal c¢). Hence, we divide the global attack distortion

D, into two parts: Dy due to scaling and D, due to the additive noise:

D, =02 +0. =aD,, (6.37a)
Dy, = (k—1)*(c2 +02) = (1 —a)D,, (6.37b)

where parameter « € [0, 1] characterizes the trade-off between the two components of the global distortion.
We will refer to the case a = 1 as the all noise case since the overall attack is equivalent to that of adding
the noise quantity n + v. Similarly, we will refer to the case a = 0 as the all desynchronization case since it
corresponds to a channel attack by time axis scaling only. Any other attack with « €]0, 1] will be termed as

mized since both adding noise and scaling are required.

6.6.3.1 Case of a constant time shift attack

Prior to revealing the optimum attacker and defender strategies, we assume that proper resynchronization
procedure investigated above is used and reformulate the optimization problem. The multiple correlation test
does not change the criterion to be optimized. However the ranges of the optimization variables M, N and
a are modified (as it will shown by (6.41)). Intuitively, this follows from the fact that counter-measurements
performed by the defender naturally reduce the set of admissible parameters for the attacker. In our case,
a lower bound on § can be shown to result in a lower bound on the attack scale factor k: let h(.) be the
function relating k; to 0. For an explicit expression of ky = h(J), we need to combine equations (6.22a) and
(6.18). Namely, we need invert (6.18) to get ¢ and replace it in (6.22a). Unfortunately, no explicit formula
for parameter § can be derived from (6.18). However, the dependence of parameter k on ¢ is depicted in
Fig.6.5(a). Using this curve will be shown to be sufficient to bypass the difficulty raised above’. Of course,
this results in an approximate solution but it is already enough to answer questions raised while formulating
the game. Also, the curve depicted in Fig.6.5(a) corresponds to specific values of SNR = 0 dB and DWR = 20

dB but this would not change the concluding remarks related to relative noise and desynchronization effects

7Tt will be shown that for the final solution, we need just bounds on the value-metric scaling parameter k. These can already
be obtained from Fig.6.5(a).
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and stated at the end of this section. In other words, not knowing the watermark power o2 does not matter
since we only use the monotonously decreasing property of A(.) in solving the game. This property implies a
lower-bound on the set of admissible values for the scaling factor k. The constraint A < - gives § in [0, &].
There exists then a lower bound on ky, say kmin € [0, 1] such that kmimn = h(3;) and kg > kyi, V6 € [0, 7).
Using (6.37b), we obtain:

(1-a)D,

kr=1-— .
f 02+ 02

(6.38)

Similarly, lower bound constraint kmin on ks implies a similar constraint on a: there exists amin € [0, 1] such

that & € [@min, 1]V 8 € [0, 27, which when combined with (6.38), gives

(1- kmm)z(f?? + Ug)
D, )

Furthermore, inequality o, > 0 gives Dy < Dy pnoe = (1 — @min)D,. The latter upper bound on Dy, can be

(6.39)

Omin = 1 —

understood this way: a part of the overall distortion D, must be allocated to noise. Noteworthy, scenarios

corresponding to @ = @i, and a = 1 are worthy of some discussion.

* a=anmin
With respect to cases a = 0 (all desynchronization) and o = 1 (all noise), this case corresponds to a
mixed situation where the attacker should both add noise and desynchronize the signal. The global
objective distortion D, results then from both (i) an attack by amplitude scaling causing an objective
distortion Dy = (kmin — 1)202 and (ii) an attack by additive noise of power D,, = D, — (kmin — 1)?02.

With regard to these distortions, one can remark that

(a) Increasing the composite signal power o2 enforces the distortion Dy due to the scaling factor with

respect to that of the equivalent noise vy = v +n,.

(b) Increasing the admissible set of correlations M causes the distortion Dy to decrease. Conversely,

the additive noise distortion D, increases.

Imposing a lower bound on «a gives Dy < (1 — @umin) D, and prevents the receiver from the all desyn-
chronization attack. However, this is achieved at the cost of a certain signal processing complexity at

the receiver side implicitly shown here through the defender parameter M.

e O = ]_
This is the case of an attenuating additive noise v. The attack is of type AWGN and traditional
watermarking game solutions apply. Most prominent examples of these can be found in [MI03] and
[CL02a].

We now rewrite the detection probability (6.34c) with k; and o + o5 expressed by (6.38) and (6.37a)
respectively. The resulting formula can be expressed as a function of both the setting of defender parameters
{N, M, 02} and that of the attacker {a, D,}, as

P} (IN,M,02),[a,D,)) = %erfc wv—ks) | = z , (6.40)
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k202+aD, .
where vy = 3.3 %% Note that PU{ depends on M through the admissible set values of parameter

Y

a. Consequently, the max-min problem (6.36) specializes as

in P/ ([N, M,02),[a, D 41
[Nl,l’lﬂ/?i{fg][frlr}bri] d ([ ’ ,Um],[(l, aD’ (6 )

where )
N S Nmam:
M e [OaMmaw]a

0< a':% < -DEma:m
(l_kmin)z(af+ai)
a2 1 — e

a

7

| D, <D

amax-*

We now turn to the attacker and defender optimum strategies.

(i) Optimum attack For a given set of defender parameters {N, M,c2}, the detection probability
PI (IN, M,02],[a, D,]) can be written as a function of the attacker parameters pair (Dg,a). A 2D plot of
this function is shown in Fig.6.11(a). We see that the detection probability decreases with D,. The optimal
attack corresponds, as intuitively expected, to a maximized global distortion, D, = Dg,,0-- Minimizing
then P({ over & € [@min, 1] for given values of N, M and o2 provides the optimal scaling attack. Fig.6.11(b)
clearly shows that the detection probability is maximally reduced for o = aui,- This corresponds to a
mized attack and refers to the fact that desynchronization is much more efficient than noise in impairing the
detection probability for a given distortion budget. Note that without the multiple correlation procedure,
the optimal solution would be o = 0, is the so called all desynchronization attack.

In summary :

When given the possibilities of adding white noise, desynchronizing the composite signal by constant scaling
or performing both operations, desynchronization turns out to be optimal. However, to cope with appropriate
defender counter-measurements (the multiple correlation test described above), the attacker is constrained to
a mazimum allowable attack distortion budget D,. Thus its best strategy is first to desynchronize the signal,
and then fulfill the remainder of the distortion budget by adding the appropriate noise amount.

As a result, the received signal corresponding to the worst attack can be expressed as

1 — amin)D
y=<1— %)C#Lveq, (6.42)

where v, is such that ageq = aminDa-
Recalling that in real world scenarios, the attacker choses the parameters A and o2 (not ks and «). The

optimal attack turns to correspond to the combination of the following single attacks:
e 3 time shift A = %,

e an additive noise of power 02 = D, — 02, where c;(t) = c(t + ;).
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(i) Optimized defense: We now turn to characterize the optimized defense that best prevents the
defender from the worst attack (o = @i, )- After replacing attacker parameters by corresponding optimum

values derived above, the detection probability (6.40), depending only on N, M and o2, can be wriiten as

2 K2, 02 +aD,

PI(IN,M,02)) = L erfe ((uf - kmin)\/N‘f—g) (6.43)
2 min

The aim of the defender is to maximize this worst detection probability (6.43). With qualitative consid-

erations, we can already determine the optimum value of M : the detection probability depends on M

through k.. Larger values of ki, corresponding to a tight range of §, are better for the defender. Then,

disregarding computational complexity, M should be maximized. An optimum defender choice would then

intuitively correspond to M = Mpax. The resulting PL{ depicted in Fig.6.12(a) shows that the watermark

2

zopt = DEmaz- Also, the parameter N should have the

embedding power should be maximized, namely o

largest possible value, i.e. N = Np,,. Hence, the optimum defense corresponds to the set of defender

2

2opt = DEmaz)- This is not surprising and

parameters chosen to be maximal (N = Nz, M = M4, and o
is rather consolidating. One important issue, however, is to compare the robustness of the optimized defense
against the mized attack (shown to be optimal) to that facing the all noise attack. Fig.6.12(b) depicts the

detection probability (6.43) for different values of the watermark power 2. We observe that:

(a) For the same watermark power o2, we have Pdf (@ = amin) < Pdf (a = 1), (the mized attack is stronger
than the all noise attack). In other words, to achieve the same detection probability, the embedding
distortion of a watermark facing the mixed attack must be larger than that of a watermark facing the

all noise attack.

(b) The slope of the detection probability curve in case of the all noise attack is larger than that of the
mixed attack: a part of the watermark power o2 enhances the attack impact in the latter case. This
fact has already been outlined in Section 6.4.1 with a non-optimized defense. Unfortunately, it remains

valid with an optimized defense too.

6.6.3.2 Case of random Jitter

This attack has been shown to be equivalent to an additive noise ve, = n, + v. Again, suppose D, = o2 =

aD, and Dy, =02 = (1— a)D,. The resulting detection probability is

2
Pr= %erfc ((ur SN R ) (6.44)

Eag-i-Da

: 2 024D,
with v, = 3.3/ % 2

. The threshold v, depends only on the global attack distortion D,. This would
suggest that, from a strict theoretical game-solving point of view, the situation is equivalent to that of the
Gaussian watermarking game [CL02a] (under the hypothesis of a Gaussian jitter noise n, ). One can see,
however, that from the defender point of view fighting against a random jitter attack is more difficult than
that of facing a Gaussian noise. At least, the perceived quality degradation will be greater with the jitter.

This means that jittering the composite signal ¢ would remain optimal from the attacker point of view. This
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Figure 6.12: Optimum defense: detection probability has to be maximized over the set of defender parameters
{N,Dg}. The 2D plot (top) shows that reliable detection is obtained with large embedding distortion
Dg = Dgpar and N = Np,4.. Bottom: the detection probability resulting from solving the game (mized
attack) is compared to that of the all noise attack. For the same embedding distortion, Pd(a = amip) is

smaller than Pd(a = 1).
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claim is enforced by the fact that, unlike the Gaussian noise v, the jitter noise n, depends on the composite
signal (as suggested by (6.21)) and is, consequently, significantly increased whenever the defender wants to
combat it by increasing the watermark power ¢2. In addition, the host signal contributes itself to enforce
the jitter effect through o2 in (6.21)). Then, attributing the hole distortion to the jitter noise (62 = D,)
and using (6.21), the optimal jitter square deviation J must satisfy J = m. The optimum defense,

again, corresponds to 02 = D qq-

6.6.3.3 Discussion

Results following from the analysis above can be summarized as follows:

(i) Facing AWGN attacks, increasing the watermark power is always positive from the embedder point-

of-view;

(ii) Under constant scaling attacks, two contradicting effects related to deliberately increasing the water-

mark power appear:

— a positive effect: increasing the watermark power results in a more reliable detection.

— a negative effect: increasing the watermark power enforces the desynchronization attack.

(iii) From the optimized defense analysis, one can see that even in the worst case, that is “the mixed attack”,
increasing the watermark power remains optimal. Expressed differently: the so called positive effect

always overcomes the negative effect under constant time shift attacks.

(iv) The multi-correlation test alleviates the impact of the (all desynchronization) attack (optimum when

no counter-measure is taken).

(v) Even if the random jitter behavior is noise-like, its dependency on both the host signal and the water-

mark makes it optimal from an attacker point of view.

6.7 Summary

In this chapter we first investigated the general watermarking channel \A. Our main motivation was to
evaluate the perceived impact an attacker has on a composite signal. Our approach consists in removing
from the equivalent additive signal z=y — ¢, very often assumed to be uncorrelated with the composite signal
¢, the part that is signal-like. The equivalent attack turns to be a particular case of well studied channel
attack: attacks by filtering and additive noise. This additive noise referred to as the desynchronization noise
has been shown to more accurately characterize the attack impact on the original composite signal quality
loss. Our approach has then been applied to the desynchronization attacks modeled by attacks by jitter plus
noise, the AWGN&J channel. Performance loss of the most common watermarking schemes in presence of
such attacks have then been derived. Finally, we investigated optimal attacker and defender strategies in a

game watermarking theory context. Results outline a somewhat intuitive result: desynchronization attacks
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is much more harmful than additive noise. This was the motivation for providing means to the defender to

limit this contribution. Finally, the best strategies for the defender and attacker were described.
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Chapter 7

Application: Secured Information
Embedding in a Cellular Network
System

7.1 SDMO Context

7.2 Proposed Framework

7.3 System Design

7.4 Embedding Using a Short Description of The Host

7.5 Summary

Some of the results in this chapter have been obtained within the context of the RNRT project SDMO:
Secured Diffusion of Music on mQObiles in a cellular network system. The author thanks the RNRT project
SDMO for funding.

In this chapter, we heavily rely on the materials stated in the previous chapters (mainly Chapter 3, 4 and
5) to efficiently implement a two-messages information embedding system. The first message is required to
be fragile and is used for tamper detection. The second message is required to be robust and is used to
convey ownership information. The host signal is chosen to be an audio content!. In the second part of this
chapter, we consider more stringent security constraints and assume that the encoder has access to only a

shorter description of this host (a quantized version) in analyzing system performance. The choice of the

I This however, does not restrict the results and principles herein to audio contents. Embedding information into still images,

text or video contents can be carried out in a straightforward manner.
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lattice, the design of the codebooks as well as the coding and decoding functions follow from the results in

Chapter 3 and Chapter 4.

7.1 SDMO Context

The project SDMO is concerned with Secured Diffusion of Music on mObiles in a cellular system. The
application targets third generation (3G)-like cellular system and aims at providing efficient tools for ensuring
ownership protection. In this section, we give a brief description of the system. The system is designed to
track any illegal use and/or distribution of audio contents in a mobile network. In addition, the system should
be able to resolve multiple ownership problems. Of course, copyright-protection using information embedding
techniques is not new, for it is historically the very first targeted application. However, the novelty of the
SDMO system treated in this Chapter is the use of embedded codes in a real time full industrial context. Of
course, this imposes additional constraints on the design of the system.

The global architecture of the SDMO system is relatively complex and involves a large variety of technical
and architectural issues such as networking, digital right management, encryption, information embedding
and compression. In the following, we restrict ourselves to the information embedding part. The underlying
strategy consists in embedding a watermark to identify the owner of the audio content. If, somewhere in the
network (at a checking node, for example), an illegal copy is found, the owner can prove his/her paternity
thanks to the embedded watermark and, potentially, can sue the illegal user in court. This perfect scenario
is however likely to be disturbed by malicious users in the real world. For instance, if an attacker removes
the watermark, he/she can either use or distribute the watermark-free audio signal, without any restriction.
Further, he/she can even add a second watermark into the audio content and therefore claim ownership,
exactly as the original owner does. Hence, in order to inhibit these malicious attackers to defeat the purpose
of using information embedding as means of ownership protection, two solutions are possible: (i) allow each
content owner to both embed and check for his/her own watermark and (ii) allow one single trusted authority
to track for the illegal use and/or distribution of all the audio contents involved in the network. While (i)
is potentially more secure since impairing or removing the watermark from the content of one user does not
weaken, by any means, those of the other users, it is more complex to put in practice, partially because of the
problem of multiple watermark claims. The problem with (ii) is that the single watermark used to mark the
different contents of the different users should be very robust. Otherwise, the overall process can be defeated
by (simply) breaking the system security at one point of the network. This very strong robustness is also
required for another reason: to discriminate the non-watermarked contents (i.e., not copyright-protected)
from the contents that have been originally protected but from which the watermark has been removed by a
malicious attacker. If the watermark is robust enough, the watermark can not be removed without impairing
the original content. This latter problem can be bypassed by assuming that all the contents involved in the
network traffic are copyright-protected. But, this assumption is somehow limiting,.

In this chapter, it is the solution (ii) which is retained. The very robust watermark is referred to as "SDMQO

label”. This denomination refers to the fact of identifying all the protected audio contents by the same
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watermark, specific to the so-called third-authority. The problem of multiple watermark claims is solved
by using an additional owner-specific watermark in conjunction with the so-called "SDMO label”. This is
because the "SDMO label”, by itself, does not (uniquely) identify the content owner. Also, this is because
any eventual attacker who, instead of removing the "SDMO label” adds his/her own watermark, can claim
ownership. By opposition to the "SDMO label”, this second watermark is asked to be fragile and carries
much more data. These data are used to convey information about the name, the affiliation of the owner
and possibly a short description of the content. Note that when taken separately, neither the robust "SDMO
label” nor the owner-identifying watermark could be self-sufficient in assessing security. It is precisely the

aggregation of the two that allows a reasonable level of security in the cellular network.

7.2 Proposed Framework

The transmission scheme of interest is depicted in Fig.7.1. We want to embed two messages m; and my into

the same cover signal, with different robustness requirements.

Host signal s Weak channel noise z1
Wi (fragile) S .
— Encoder Watermark x @ ‘P yi Decher 1 W
Wa (robust) | & U (fragile)
T Decoder2 |y,
d? (robust)

Strong channel noise zz2

Figure 7.1: Mathematical model of the considered information embedding system.

The message ma, representing the so-called "SDMO label”; is used for detecting tampering and carries little
information. Typically, ms comprises a few bits used to detect eventual attacks in the channel and/or to
identify the marked contents. Hence, the watermark x, associated with ms is embedded at low rate Ry and
is designed to be sufficiently robust to channel degradations. We denote by N» the per-dimension channel
distortion up to which the watermark x, could survive and by Z, the Gaussian noise of variance N, i.e.,
Zs ~ N(0, N3). Message m; carries the information used to identify the owner of the audio content. Hence,
my is generally embedded at high rate R; and the watermark x; associated with it is designed so as to be
fragile or semi-fragile. We denote by N; the per-dimension channel distortion above which the watermark
x; should be removed and by Z; ~ N(0,N7) the Gaussian noise of variance N;, with N < N,. In this
fragile/robust framework, the decoder aims at reliably recovering the two messages, if channel conditions
are not too severe. Otherwise, the decoder aims at (at least) recovering the sole message ms designed to be
robust.

Note that here we restrict ourselves to low-rate Ro. However, in the more general setting depicted in Fig.7.1,

meo can carry as much information as does the message m;. Only the channel conditions for transmitting
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the two messages differ. In the rest of this chapter, we assume that the channel noise Z, is stronger than Z;.
Under this assumption, the information embedding channel looks like a Degraded Broadcast Channel (DBC)
(see Chapter 4 for details). In the following, the system design is addressed in the very general framework
where the two messages can have arbitrary rates. Monte-Carlo simulations however, are (almost all) carried
out in the SDMO context, i.e., a low-rate very robust watermark x» along with a high-rate fragile watermark

X9.

7.3 System Design

Prior to encoding, the L;-length message m; and the Ly-length message mo are mapped to two sequences
of Mj-ary and My-ary indexes, respectively. We write my = WiW2 --- Wit and my = WiW3-- - W2, with
Wie My 2{1,2,...,M},i=1,2,...,L; and Wj € My £ {1,2,..., My}, j=1,2,...,Ly. Encoding and
decoding are lattice-based as shown in Fig.7.2. The choice of the n-dimensional lattice A is undertaken in the
sequel. One block transmission consists in transmitting L; indexes W7 and Ls indexes Wy within a L-length
sequence s of the host signal. Embedding is power-constrained, by virtue of the transparency requirement.
This means that the two watermarks x; and x5 put on top of each other must satisfy the per-dimension
power constraint P. Assuming independent watermarks, we can suppose without loss of generality that we

have (per-dimension)

EX}]=(1-7)P, (7.1a)
E[X3] = vP. (7.1b)

Decoder 1 receives y; = X +s + z; and outputs an estimate I/I//\l of W7. Decoder 2 receives yo = X + s + 2o
and outputs an estimate W//\z of Wy. Performance is measured by the set of the transmission rate pairs (in
bits per host sample per dimension) at which the pair of messages (m1,m2) (or equivalently, the pair of

indexes (W1, W5)) is reliably recovered. The transmission rate pair (R;, R») is given by

(Fa, ) = (2 Jogs (1), 2 o (1)) r2)

Reliable recovering means recovering with sufficiently low probabilities of error Pe(l) £ Pr(VI/Z # W1) and
6(2) = Pr(@ # Wa). Since my is required to be more robust than my, it is the watermark x, that must be

formed first. Encoding is performed according to

xa(s; Wa, A) = (cy, + ko — as) mod A, (7.3a)
x1(s; Wi, A) = (€, + k1 —a1(s + x2)) mod A. (7.3b)

Decoding is performed according to

W; = argmin [|[(c;ys — ki — €y,) mod Al|, 1 =1,2. (7.4)
Wi == 1, ey Mz
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Host signal s
Els’]=Q 7y ~ N (0, N2)
ko k;

X
T

W, € My 1a(.) Cos CB—>@—> mod A x2: Bl ﬁ —0P + Y2 ®—>®—> mod A —= W
ta,
k
X
b
WieM u(.) Cun (B—> + mod A xa : Blxi] <P N mod A = W
- o -
ENCODER >
\ ky
s 71 ~ N (0, Ny)

Figure 7.2: A two-users information embedding system. The message ma = {W>} should be more robust

than the message m;.

The set of codewords {cy;}, ¢ = 1,2, has cardinality M; = |M;| and forms the codebook C,,. The goal of
the following is to give insights into how efficiently design the system in Fig.7.2 such that the message ma,
which undergoes stronger channel noise, has the required robustness.

The overall problem can be formulated as follow. Given the channel conditions (N7, N2),
(i) select n and an n-dimensional lattice A with good coding and quantizing properties.

(ii) choose sequence length L;, alphabet size M; and a codebook C,, so as to maximize the transmission

rate R; at reasonable probability of error Pe(l).

(iii) choose sequence length Lo, alphabet size M> and a codebook C,,, so as to minimize the probability of

2 .
error Pe( ) at low transmission rate Rs.

We first address the choice of the lattice A, among the set of well known finite-dimensional lattices with

reasonable quantizing complexity. For this, the two messages are embedded at the same rate.

7.3.1 Choice of lattice A: Ry, = R;

In this section, we consider the integer lattice Z, the hexagonal lattice Ao, the checkerboard lattice Dy and
the Gosset lattice Eg. The lattice Eg is obtained through construction A using the first-order Reed-Muller
linear code (8,4,4) as Eg = (8,4,4) + 2Z8. For each of the lattices Z, Ay and Dy, the two codebooks C,,,
and C,, are formed by the relevant deep holes of each of these lattices (see Chapter 3). This makes the
transmission rate pair (R;, R2) vary from lattice to lattice. However, for a given lattice, the two messages
mq and my are sent at the same rate Ry = Ry = R = %logz(M), where M = N} +1 and Nj is the number
of relevant holes. This is ensured by setting My = My = M and Ly = Ly = L. For the Gosset lattice Fg,
the codewords {cy;}, ¢ = 1,2 are chosen among the vertices of the quarter positive part of the unit cube

at the origin. The curves in Fig.7.3 are obtained by setting the variance Ny of the i.i.d. channel noise Z,
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corrupting the transmission of ms to

G(A)V(A)Q/" 10—SNR/10

N, = =

where SNR = 7 dB. The channel noise Z; corrupting the transmission of m; is i.i.d Gaussian and has variance

N; = Ny /2. The host signal is an audio content of length L = 42572 elements sampled at F, = 22.05 KHz.

Bit Error Rate (per dimension)

A

(a) Error Probability P{") 2 Pr(W; # Wy).

10 T T

Bit Error Rate (per dimension)

(b) Error Probability P{*) £ Pr(iWy # W»).

Figure 7.3: Bit Error Probability v.s. the (per-bit per-dimension) SNR for 2-user information embedding.
The curves correspond to the use of the relevant deep holes of the lattices Z (plus sign), A, (asterisk), Dy
(diamond) and FEjg (circle). (a) Error probability PY in decoding the message m;. (b) Error probability

Pe(Q) in decoding the message mo.
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The values of SNR (in bit per dimension) seen respectively at "Decoder 2” (SNRs) and "Decoder 1” (SNR;)

are given by

(1-7P .
NRy = ———F—— B .
SNR» RN, =7 P) in [dB], (7.5a)
_yP .
SNR; = RN, in [dB]. (7.5Db)

As v increases from 0 to 1, SNRy decreases from SNR = 7 dB to —oo and SNR; increases from —oo to
SNR + 3 = 10 dB. The first observation is about the overall behavior of the curves in Fig.7.3. We observe
that in the range of small values of -y, the message my is more reliably decoded than the message m1, as it is
expected intuitively. This is because, in this case (R; = Rs), "Decoder 2” sees a larger SNR, than "Decoder
17 iff

—(N1 + N2) + /(N1 + N2)2 + 4N, P
2P '
As 7y increases, the power allocated to the transmission of m, increases and that allocated to the transmission

0<~<

of my decreases, causing SNR; to increase and SNR, to decrease. We want to assess the robustness of the
two messages m; and ms to channel degradations. First, note that even in this special case where my is
embedded at the same rate R as mq, the message mo is -by construction- more robust than mq, simply
because it is embedded first. Also, even in the extreme case where the channel is not degraded (i.e., when
N; = N, and v = 0.5), mg is slightly more robust than m;. This is a way of saying that ms can not be
removed without removing m; which is embedded on top of ms. This is illustrated by the simulation results
shown in Fig.7.3. We can see from the BER curves that the message ms can be decoded with the same error
probability as message m; at lower SNR. Consider for example the BER curve corresponding to the Gosset
lattice Eg: for v = 0.51, the message m; is decoded with probability of error Pe(l) ~ 2.8x1073 at SNR; ~ 7.1
dB. The message mo, on the other hand, is decoded with slightly lower error probability Pe(z) ~ 2.1x1073,
obtained at slightly smaller SNR (SNRy = 6.9 dB). Similarly, for v = 0.11, we have SNR; ~ 0.42 dB and
Pe(l) ~ 2.9x1072. In transmitting the message mo however, the same BER is obtained with SNR; ~ 0.15
dB, only.

Discussion:

The results above show that, even if ms is embedded at the same transmission rate as my, the message ms is,
by construction, more robust to channel degradations. In practice however, m; and my should be embedded
at different rates depending on their intended usage. For instance, since the message m; is required to carry
a large amount of information, the primary goal in designing the codebook C,,, is to maximize its cardinality
M, without increasing too much the error probability Pe(l). On the other hand, since the message ma
is required to survive strong channel degradations, the primary goal in designing the codebook C,, is to
sufficiently lower the error probability Pe(2), without completely nullifying the transmission rate Ry. An
interesting solution based on the algebraic structure of the lattice is as follows. Construct the codebook C,,
by one-to-one mapping the codewords in C,, to (all or a part of) the set of the relevant deep holes of the
lattice (see chapter 3 for details) and, construct the codebook C,, by one-to-one mapping the codewords in
Cw, to (all or a part of) the set of the relevant kissing points of the lattice. Of course, this simple solution

obtained by just exploiting the structure of the lattice may require few changes to allow large rate R;. For
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instance, if the number of relevant kissing points (denoted by Ny in Chapter 3) is such that
R A |
— 7

this simple solution can be improved by carefully choosing additional coset-leader codewords c,,, inside the

Voronoi region V(A). In general, the careful design of the two codebooks C,, and C,, must be such that:

1. The codewords (i.e., the coset leaders) are selected in such a way that (3.19) and (3.20) are satisfied.
This is a way of saying that each codeword must identify a unique coset of the lattice and, conversely,

that each coset is identified by a unique codeword in the codebook (see Chapter 3).
2. The inter-cosets minimum-distance dp;, defined as in (3.16) is large enough (see Chapter 3).

3. The targeted transmission rate pair (R;, R») is in the feasible capacity region?. Otherwise, the error
probability pair (Pe(l), Pe(2)) could not be sufficiently lowered, even if powerful channel coding techniques

are used.

The problem of codebook design briefly invoked here is an instance of the more general and more complex
problem of rate/power allocation in multiuser environments. A fundamental question is that of how opti-
mally partition the power budget P available at the transmitter so as to optimally allocate the amount of
information that could be reliably sent to each user. In a general setting, this is a very difficult task. In
practice, the optimal allocation depends on the targeted application. In the application considered in this
chapter, optimally allocating the power amounts to finding the optimal choice of the parameter v in (7.1).
Another important question is that of how efficiently allocate the different transmission rates, through for
example using different channel coding techniques. Here, appropriately allocating the two transmission rates
Ry and R, amounts to appropriately choosing the parameters Ly, Ly, M; and Ms. Basically, the problem of
rate/power allocation is closely related to the classical trade-off problem of transmission-rate/probability-of-
error or equivalently, to that of payload/robustness.

In order to be consistent with the SDMO context, we will restrict our attention in the following section to
the design of the codebook C,, so as to make the transmission of the message msy very robust. Also, we
will retain the Gosset lattice for the modulo-reduction, for it provides the smallest error probability pair
(Pe(l), Pe(2)) as it can be seen from Fig.7.3.

7.3.2 Design of codebook C,, for R, < R,

Since the codebook C,, must be designed such that the signal x» is very robust to channel degradations,
relevant lattice holes are good candidates for the choice of the coset leaders (see Chapter 3). However, in
order to lower the transmission rate R, only few holes among all lattice holes should be selected. Typically,
the codebook C,, contains just two elements (i.e., one single bit used to detect the presence/absence of

the watermark) chosen as far apart as possible. Fig.7.4(a) depicts the BER curve corresponding to the

2This has been taken into account in the simulations carried out in this chapter. Refer to Chapeter 4 for the feasible capacity

region of the resulting Degraded BC.
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uncoded binary transmission of the message mo using the most far-way (in a hamming distance sense)
relevant deep holes of the Gosset lattice Fg. This BER curve is plotted versus the parameter y. The values
of SNR; are not indicated but can be found using (7.5a). For example, observe that for v & 0.01, we have
SNR; = 10.5 dB and the probability of error is Pe(z) ~ 1.1x10~*, which is significantly lower than the values
that could be obtained by for example the integer lattice. However, for a transmission rate of Ry = % bit
per host-sample per dimension (n, M and Ly are set ton = 8 M = 2 and Ly = L in (7.2), this error
probability is not sufficiently low to ensure the required level of robustness. To further reduce this error
probability while keeping R, reasonable , one should select M > 2 appropriate codewords from the set of
relevant holes of the lattice and then rely on powerful channel coding techniques. However, powerful channel
coding techniques have high computing complexity in their non-binary form. For example, the attempt
to use powerful non-binary Turbo codes and non-binary LDPC codes is contrasted with their huge coding
and decoding complexities [BJDKO01] in their non-binary form. The simplest coding technique consists in
repeating each index Ws € {1,2,..., M>} several times (say p times, for example). Of course the transmission
rate is divided by p but the transmission is strengthened since each “symbol” is transmitted p times. Also,
repetition coding is retained due to its efficiency at very-low to low SNRs. BER curves corresponding to
non-binary transmission using different values of the repetition factor p are depicted in Fig.7.4(b) where
My = {1,2,...,5}. We observe that lower error probability Pe(2) (in comparison to the uncoded binary
transmission stated above) is made possible. For instance, for v = 0.01, we obtain Pe(z) A T7.5%x1075.

The problem of large coding complexity raised in the non-binary case is no longer of concern if a binary
alphabet My is used (but alas, the transmission rate R is maximally reduced). The curves depicted
in Fig.7.4(c) are obtained by combining turbo coding and repetition coding. The use of turbo coding is
motivated by the nature of the information embedding channel which may be modelled (under certain
circumstances) with a time-varying fading channel. For instance, ”localized” channel attacks where some
"parts” of the embedded signal may undergo more degradations than other parts of the same signal, are
fading-like. In Fig.7.4(c), we use a rate 1/4 Recursive Serial Concatenated (RSC) turbo code followed by
a repetition code with repetition factor p = 4. It can be seen that for v = 0.01, we have Pe(z) ~ 4.5x1076
which can be considered as sufficiently small to allow a high level of robustness against channel degradations.
Even smaller error probabilities can be obtained by means of stronger channel coding techniques. However,

this is in general achieved at the cost of higher coding complexity.

7.4 Embedding Using a Short Description of The Host

So far, we assumed that the encoder has full knowledge of the host signal in the encoding process. For
instance, we assumed that the so-called trusted authority has perfect knowledge of the host signal s while
embedding the "SDMO label”. Also, we assumed that the content owner has perfect knowledge of the
composite signal s + x» while embedding his/her specific identifying mark. While the first assumption
(regarding the embedding "SDMO label”) is reasonable, the second is not, simply because the so-called

trusted authority may not want the content owner to have full access to the watermark x5. In fact, in
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Figure 7.4: Error Probability Pe(2). The role of channel coding in strengthening the transmission of the

robust watermark. (a) uncoded binary transmission. (b) Non-binary transmission with repetition coding.

(c) Non-binary transmission with combined turbo-coding and repetition coding.
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applications where security is a central issue and where embedding is carried out by two different entities,
these two entities which (together) form the channel encoder, may not fully-cooperate. In the SDMO context
considered in this chapter, it is precisely the mobile phone operator which has to embed and check for the
robust watermark, to ensure that the transmission over its deployed network is not being illegally exploited
by any malicious attacker. The operator should perform this so as to ensure the content providers as for the

safety of the proposed service.
Host signal s

E’]=Q 25 ~ N(0, Ny)
ko k;

7 ”» y 5 B[x2 — )P 2 N
Wy € M, 1(.) ¢ @—»@—> mod A X2 : Bbg] ﬁ 7) —+ Y2 ®—>®—> mod A — W,
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Figure 7.5: A two-users information embedding system with partial host at the encoder.

The content owner, which embeds his/her watermark last, needs not (and must not) have access to the
“exact” composite signal ¢ = s + x2. Otherwise, he/she needs only subtract his/her host signal s to get
the watermark x,. Of course, even in the case where the content owner knows X2, he/she can not easily
get the message mo or the key ko. However, this may be possible under certain specific circumstances (by
processing collusion attacks, for example). Hence, one way to circumvent this problem is to assume that
the content owner (generally, the one who embeds last) has access to only a short description of the already
watermarked signal ¢ = s + x5. The term “short description” refers to the partial knowledge of the signal
x». This short description can be, for example, a quantized version Xz = Q(x3) of the watermark signal xs,
where Q(-) is some quantizer unknown to the content owner. From a transmission point-of-view, this partial
knowledge of the host (signal s 4+ x3) by the content owner can be interpreted as an additional noise-like
uncertainty upon the channel. From a side-information communication point-of-view, this uncertainty can
be interpreted as a partial knowledge of the state information at the encoder. Viewed as such, this causes
the system performance (mainly, the transmission rate R1) to decrease, as previously mentioned in Chapter
5. This is addressed in the next section, after a brief discussion of the general assumptions made above.
Discussion:

The problem raised above related to "who embeds what” or "who has access to what” is a problem of Digital
Right Management (DRM) and is, thus, outside the scope of this work. However, from a communication
point-of-view, it is important to take it into account in the design of the system. For example, it is precisely
based on this preliminary qualitative study that embedding is recognized either as being broadcast-like (BC-

like) or rather, as being MAC-like. The embedding and decoding functions are also designed based on that
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preliminary studies. In the situation at hand, taking into account the partial cooperation between the two
embedding entities at the encoder (for security purposes) has wrongly made the encoding process look as is
if it were MAC-like. This seemingly MAC-like transmission is in fact rather broadcast-like. The reason is as
follows. First, checking for the two watermarks (the decoding process) is not performed at the same "node
point” of the cellular network and hence, can not be performed in a joint manner as it is the case in MAC
scenarios. Second, even though the encoding procedure is carried out in two steps by two different entities,
it can always be viewed as a single ”big” encoder composed of two interacting sub-encoders, as it is common

in more conventional multi-antenna broadcast systems.

7.4.1 Performance analysis

The (new) communication model is depicted in Fig.7.5. We denote by X5 the short description (quantized
version) of the signal x5. This short description of x, is used in embedding the message m; = W} W} --- W,
where W} € My andi=1,2,...,M;. Let ez L x,— Q(x2) = x3 — X3 denote the error incurred in quantizing
the embedded signal x». Under appropriate assumptions (high resolution quantization), the error e, is
statistically independent of x, and can be viewed as a small perturbation to the true host® signal s + x, in

the sense mentioned in Chapter 5. Under this condition, the encoding functions (7.3) become

X2 (s; Wa, A) = (cy, + ko — ags) mod A, (7.6a)
x1(s; W1, A) = (€, + k1 — a1(s +X2)) mod A. (7.6b)
The decoding functions remain unchanged, i.e., given by (7.4). Due to the above mentioned channel

uncertainty, the theoretically maximal feasible transmission rate R in the rate pair (R (A), Ra(A)) given by
(4.19) drops to

1 — 1 P
(max) _ - — h(V - S
Ry (A) max -~ (log2(V(A)) h( 1)) <3 log, (1 + N+ o§2> , (7.7
where Vi = (a1Z1 + a1Es — (1 — a1)X1) mod A is the new equivalent noise in the equivalent modulo

channel. The maximal feasible transmission rate Rz, as for it, remains unchanged, i.e, given by (4.19).

In contrast to the previous section where we concentrated on the transmission of the message my and
evaluated both the transmission rate R and the error probability Pe(z), we concentrate in this section on the
transmission of the message m;. We want to analyze the decrease in the transmission rate R; or equivalently
the increase in the probability of error Pe(l), due to the new situation. Fig.7.6 depicts the increase in the
error probability caused by the partial knowledge of the host at the encoder for the encoding of m;, for the
cubic lattice Z™ and the Gosset lattice Eg. Naturally, the stronger the perturbation (i.e., the larger afz), the
worse the decoding capability. Conversely, the more accurate the host description provided to the encoder
(i.e., the smaller 032), the better the system performance. We observe also from Fig.7.6 that for a given
level of accuracy in the knowledge of the host (i.e., for given 032), the decrease in the error probability Pe(l)

(i.e, the gap to the performance obtained in the case where the encoder has perfect knowledge of the host)

3Note that the already watermarked signal s + x2 is considered as host (side information) in embedding the message m; .
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Figure 7.6: Decrease in the transmission rate R; due to the partial knowledge of the host at the encoder.
Error probabilities corresponding to the use of the cubic lattice Z™ (plus sign), the Hexagonal lattice A,
(Asterisk) and the Gosset lattice Eg (diamond) are measured in the case when the encoder has access to only
a quantized version of the host signal, in encoding the message m;. The error probability Pe(l) increases with
the strength of the perturbation: from bottom to top, o2, = 0, (1—+)P/1000, (1 —~)P/100 and (1 —~)P/10.

increases with SNR;. The reason is as follows. The influence of the so-called perturbation of the host can
be viewed as the introduction of an additional noise term e, as it can be seen from (7.7). As the parameter
v increases, SNR; increases and the power Nj of the ambient noise z; decreases. Thus, the contribution of

the perturbation term e, to the total noise e + z; increases, comparatively.

7.5 Summary

In this chapter, we provided a lattice implementation of a two-users information embedding scheme directed
to be used in a real-time digital watermarking system. The application that we considered consists is Secure
Diffusion of Music on mObiles (RNRT project SDMO) in a cellular network system. Two watermarks are
simultaneously embedded into the same host content. The first watermark carries much information and
is used for ownership identification. It is required to be fragile. The second watermark (referred to as
”SDMO label”) carries little information used for tamper detection and is required to be very robust. The
overall transmission scheme is broadcast like and guidelines from Chapters 3 and 4 are used for system
design. Monte-Carlo based BER simulations for the resulting scheme pointed out an interesting problem
of rate/power allocation that may be encountered in all broadcast situations, in real world scenarios. First,
there is the problem of rate assignment. This amounts to choosing the appropriate functioning ”point” in the
capacity region of the corresponding two-users broadcast scheme. Second, there is the problem of codebook
selection. In general, this is a difficult task. In the proposed framework, this is addressed through some
examples. Third, there is the problem of the choice of the appropriate channel coding strategy. Again, this

is addressed by applying some sub-optimal well known codes. This is because powerful codes like LDPC and
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Turbo codes have large complexity in their non-binary form. The fourth problem is information-embedding
specific. It concerns security issues: in security-demanding applications, the encoder should have access to

only a partial knowledge of the host.



Chapter 8

Conclusion and Future Work

8.1 Concluding Summary

8.2 Extensions and Future Work

We conclude this thesis by briefly summarizing some of the main results and commenting on several

promising directions for future research.

About ten years after its infancy, information embedding is still considered as a young technology. Also, as
any young technology, it still has its (many ?) own weaknesses. But, it also has its own strengths. The
primary goal of this thesis is to go one step further in solving some of these weaknesses. To this end, many
guidelines from data transmission and data compression are used to solve information embedding problems.
This highlights the potential use of the strong background of these well developed conventional area in
information embedding. The results obtained in this context are summarized in Section 8.1. The second
goal of this work was to illustrate the potential use of information embedding techniques and principles in
solving problems raised in conventional data transmission and data compression. This is summarized in

Section 8.2.

8.1 Concluding Summary

Information embedding plays a key role in addressing a major challenge that arose from the widespread
distribution of multimedia content over digital communication network: secure transmission of data. In this
two-sided challenge, two antagonist problems have to be solved: security and data transmission. Of course,

for data to be securely transmitted, there must be little information. Conversely, for these same data to
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be transmitted at high rate, the security level must be lowered. This thesis addresses these two problems
from the communication and information-theoretic point-of-views. It is shown that solutions to the security
problem can be found while dealing with the transmission problem, in the form of multiple-user information

embedding for example. The main results can be summarized as follows.

1. Based on the well known Quantization Index Modulation (QIM) technique as well as on the famous
Scalar Costa Scheme (SCS), the first part of this thesis focuses on the design of lattice-based algebraic
codes for the problem of information embedding. We designed the resulting codebooks to be modulo-
reduction-based and showed that these should be carefully designed. The careful design concerns the
lattice selection, the parameters setting as well as the choice of the codewords (i.e. coset leaders)
for the construction of the cosets. This problem is first addressed through some examples using the
appealing algebraic structure of the lattice and then, through a more general approach using insights
from shaping for multidimensional constellations in conventional communication. It is recognized that
Costa-based information embedding is a joint source-channel coding problem. We then used insights
from Erez, Shamai and Zamir’s work on nested lattices to design good source and channel codes. For
instance, we evaluated the system performance obtained with a finite-dimensional nested-lattices and
showed that in this nested structure, by opposition to infinite-dimensional coding, the two components
of the overall gain provided by lattice coding (the shaping gain and the coding gain) are not-decoupled
but rather interact. This was illustrated by some sub-optimal constructions of nested-codes using

important results from coding theory.

2. The second part of this thesis extended the initial QIM and SCS schemes to the multi-user case,
using guidelines from coding for Broadcast and MAC channels with side information at the encoder(s).
Multiple information embedding is recognized as being equivalent to one of two channels for which
recent theory is well developed: the Degraded Broadcast Channel (DBC) and Multiple Access Channel
(MAC). The problem is first addressed using scalar codebooks and then using more involved lattice-
based codebooks. For instance, it is shown that appropriately designed, embedded lattice codes allow
simultaneous reliable transmissions. The appropriate design involves the embedding order as well as

the construction of the codebooks.

3. The third part of this thesis deals with coding with partial side information. The general framework
of channel sensitivity to partially known two-sided state information is addressed by evaluating the
loss in channel capacity (or transmission rate) due to some small noise-like perturbation. Also, lower
and upper bounds on this channel sensitivity are provided using the famous De-Bruijn identity. Then,
particular emphasis is put on the special case of one-sided state information which is partially known
to the encoder. We showed that, in certain circumstances, the encoder should adapt to the situation
by, eventually, changing its coding strategy. The resulting scheme is more robust to noise and overall

performance is improved.

4. The fourth part of this thesis is more application-oriented and is concerned with side information coding

analysis when the encoder and the decoder are not fully synchronized. The situation is modelled
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with side-information transmission over an Additive White Gaussian Noise and Jitter (AWGN&J)
channel. Using a game theoretic analysis, it is shown that desynchronization is more harmful to
reliable transmission. From an encoder (embedder) point-of-view, this means that combating channel
desynchronization should be considered first. To this end, we provided a simple correlation-based
algorithm for enforcing Spread-Spectrum (SS) based information embedding against this type of channel

degradations.

8.2 Extensions and Future Work

In this section, we comment on several directions for extending the results of this thesis and discuss possible

approaches to tackling some remaining open problems.

8.2.1 Extensions

In both single-user and multi-user cases, the design of the codebook has assumed transmission over a Gaussian
channel. While this is widely assumed in communication theory, it is not likely to hold in certain practical
situations. In fact, in real life information embedding, channel noise is not strictly Gaussian. More involved
channel models already exist. For these, the design of the lattice-based codebook may be slightly changed.
Possible extensions may concern the study of the optimal strategy to adapt to this situation. For instance,
how do the system performance vary according to a non-Gaussian channel noise? and, how could the

encoding/decoding strategies be adapted accordingly?

8.2.2 TUse for conventional data transmission

The problems raised in this thesis, and specially those in the chapters 3, 4 and 5 are closely related to those
that may be encountered in real Broadcast and MAC situations. For these channels, the problems of power
allocation, rate allocation and codebook design are of primary concern. Different conventional techniques
have been used in the past, like the Decision-Feedback-Equalizer (DFE) presented in Chapter 2 for example.
However, some of the problems mentioned above have not been solved yet. Embedded codes (i.e., Dirty
Paper Codes, DPC) have the potential to cope with these situations. This is specially due to the DPC-based
successive encoding at the encoder in the BC and the DPC-based successive decoding or peeling-off technique
at the decoder in the MAC. Though slightly different (the state information is not strictly non-causal and
it is also possibly non-Gaussian), the lattice-based constructions designed in this thesis could be slightly

changed so as to be used in real conventional multi-user environments.

8.2.3 Use for conventional data compression

Another possible area of future exploration is the information-theoretic duality between information em-

bedding and so-called Wyner-Ziv source coding, which is lossy source coding with side information at the
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decoder. For example, the information-embedding capacity has a rate-distortion counterpart in the Wyner-
Ziv problem. Similarly, the lossless version of Wyner-Ziv source coding, called Slepian-Wolf source coding,
is the dual of the noise-free information embedding problem.

As a result of this duality, one can use insights from the design and analysis of information embedding
systems to better design and analyze Wyner-Ziv source coding systems, and vice versa. For instance, the
nested code structure provided in Chapter 3 has potential use in designing a good Wyner-Ziv system, by
swapping the roles of the encoder and the decoder. Also, the problem of multi-user transmission with side
information at the encoder considered in Chapter 4 has potential use in its counter-part problem of sensor-
networking where a single remote source has to jointly decode information gathered from separate encoding

source nodes.



Appendix A

Short Review of Strong Typical

Sequences

Let (X;,Y;) be drawn ii.d. according to a joint probability mass function p(z,y). Let X and ) the
corresponding sets and p(x) and p(y) the marginals of X and Y respectively.

Definition 1 (Typical and Strongly Typical Set) Let X be a finite set and px(x) a given probability
distribution over this set. Leta € X, i € {1,2,...,n} and 2" = (z1,%2,...,2n) € X" and N(a|z™) = |{i :
x; = a}|. The set T(0) of typical sequences is defined as:

T2(0) £ {z" € &A™ : [n"'N(a|z") — px(a)| < 5, for alla € X} . (A1)

If, in addition, for all a € X with px(a) = 0 we have N(a|z™) = 0, the sequences in T¢(5) are called
&-strongly typical.

Lemma 3 ( [CT91]) The typical set TZ(5) with respect to px () is the set of sequences (x1,22,...,%,) €
X™ with the following property

7N < plag, .., ) < 279

Lemma 3 is a way of saying that for sufficiently large n, all n-sequences are ”almost equally surprising”, each
with probability p(X1,Xo,...,X,) ~ exp—n(H=xe). Roughly, the number of these n-sequences in the set
A™ s |AE")| ~ exp —n(H¥e€). The typical sequences, with respect to p(z), can be understood as being
the most probable sequences, among all possible n-sequences. Most of the attention in information theory
is on such sequences. Any property that is proved for the typical sequences will then be true, with high

probability, and will determine the average behavior of a large sample.

Definition 2 (Strongly Typical Set of a Pair of Sequences) Let (a,b) € X x)), (i,j) € {1,...,n} %
{1,2,...,n} N(ablz"y™) = |{(3,]) : (zs,y;) = (a,b)}|. The set Ty (0) of jointly typical sequences is defined
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as:
TRy (0) 2 {(=",y") € X" x Y™ : |n"'N(ablz"y™) — pxy(a,b)| < &, for all (a,b) € X x V}. (A.2)

If, in addition, for all (a,b) € X x Y with pxy(a,b) = 0 we have N(ab|z"y™) = 0, ™ and y™ are called
jointly 6-strongly typical.

Lemma 4 ( [CT91]) The set Ty () of jointly typical sequences (z™,y™) with respect to the distribution

p(z,y) is the set of n-sequences with empirical entropies e-close to the true entropies, i.e.,

Te(®) = {G"y") € xmxy : (A3)
|~ - log pla™) — H(X)| < e (A.4)
|~ - log ply™) ~ H(Y)| < (A.5)
|~ - log pla”,y") ~ H(X, V)| <}, (A.6)

where p(a™,y") = [Ty p(xi, i)

Lemma 4 is a way of saying that the number of sequences X and Y that are jointly typical is about
exp{nH (X;Y)}. Hence, since there are about exp{nH (X)} typical X sequences, about exp{nH (Y)} typical
Y sequences and only about exp{nH (X;Y)} jointly typical sequences, the probability that any randomly
chosen pair is jointly typical is about

exp{nH(X;Y)}
exp{nH (X)}x exp{nH(Y)}

=exp{—nl(X;Y)}. (A7)

Definition 3 (Strongly Conditionally Typical Set) Let W : X — Y be a conditional distribution.
Let 2™ be 0-strongly typical sequence. For 61 > 6 > 0 the set Ty (z™,01) of conditionally typical sequences

given ™ is defined as:

T (2™, 81) £ {y" € Y" x Y™ : |n"'N(ablz"y") — n ' N(a|lz™)W (bla)| < 61, for all (a,b) € X x YV} .
(A.8)
If, in addition, for all for all (a,b) € X x Y with W (bla) = 0 we have N(ab|z™y™) =0, =" and y™ =™ and
y™ are called §-strongly conditionally typical.



Appendix B

Some Results on Broadcast Channels

This appendix provides a brief review of some results on the discrete memoryless Broadcast Channel (BC),
the Gaussian BC, the physically degraded BC and the the physically degraded BC with state information
at the encoder. The key ideas for establishing the capacity regions are outlined. The complete proof of the
capacity region of the Gaussian BC can be found in [CT91]. The capacity region of the Gaussian BC with

state information at the transmitter has been established in [KSS04].

B.1 Broadcast Channel (BC) and Degraded BC

A two-users broadcast channel is illustrated in Fig.B.1(a). The transmitter has power P and wishes to send
independent messages W, (at rate R;) and W (at rates Rs) to two distant receivers Y; and Y. The received
sequences are Y1 = X + Z; and Yy = X + Zs, where Z; (of power Ny) is the channel noise corrupting the
transmission of W; and Zs (of power Ns) is the channel noise corrupting the transmission of W,. Without
loss of generality, we assume that N; < N. Thus, receiver Y; is less noisy than receiver Y;. Formally, a

broadcast channel is defined as follows.

Definition 4 A broadcast channel consists of an input alphabet X, two output alphabets Vi1 and Y2 and a

probability transition function p(y1,y2|z). The broadcast channel will be said to be memoryless if p(y1,y2|x) =

07 p(y1s, y2ilzs), wherey; = (Yir,Yizs-- -, Yin), 4 = 1,2 and x = (21, T2,...,2y).
A ((2nF1 27F2) n) code for the broadcast channel with independent information consists of an encoder

X : ({1,2,...,2"F x{1,2,...,2"B2}) — &, (B.1)
and two decoders

g 0" —{1,2,... 2", (B.2a)
ga : ™ — {1,2,...,2"R2}, (B.2b)
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\

(a) A Broadcast Channel (BC).

Zo ~ N(0, Ny)
S~ N(0,Q) ‘

Y, — E/i/rg

(W, W) —— {Ec[(;] : W; S) Zy ~ N(0, Ny)
<

Y, —— (W, W)

(b) A Gaussian BC with State Information at the Transmitter.

The average probability of error is defined as

P{™ =Pr(gi(y1) # W1) or ga(y2) # Wa), (B.3)
where (Wy, W) are assumed to be uniformly distributed over {1,2,... 2"F1}x{1,2 ... 2nF2}.

Definition 5 A rate pair (R1, R2) is said to be achievable for the broadcast channel if there exists a sequence
of ((2"F1, 272 n) codes with P{™ —s 0.

Definition 6 The capacity region of the broadcast channel is the closure of the set of all achievable rates.

Definition 7 A broadcast channel is said to be physically degraded if p(y1,y2|z) = p(y1|z)p(ys|).

B.2 Capacity Region of a Degraded BC

We now consider sending independent information over a degraded BC at rate R; to Y; and at rate Rs to
Ys.

Theorem 1 ([CT91]) The capacity region for sending independent information over the degraded channel
X — Y7 — Y5 is the closure of the convex hull of the set of all rate pairs (R, Rs) satisfying

R, < I(U;Y2), (B.4a)
Ry < I(X;11|U), (B.4b)

for some joint distribution p(u)p(z|u)p(y, z|z), where the auziliary random variable U has cardinality bounded
by U] < min{|X|, [V, [Val}-
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Proof 3 (Achievability of the capacity region)

The cardinality bounds for the auziliary random variable U can be derived using standard methods from
convex set theory. A rough argument for the proof is as follows. The auziliary random variable U serves as

a cloud center that can be distinguished by both receivers Y1 and Ys. Each cloud consists in "B codewords

X" distinguishable by the receiver Yi. The worst receiver can only see the clouds, while the better receiver

can see the individual codewords within the clouds.

The formal proof of the achievability of this region uses a random coding argument. Fiz p(u) and p(z|u).
Random codebook generation: Generate 2" independent codewords of lengthn, U(ws), w2 € {1,2,...,2"F2}

n

", p(u;). For each codeword U(ws), generate 2"F1 independent codewords X(wy,ws) accord-

ing to II7_; p(w;|ui(ws))t.

and Ys, while x(i,7) is the j-th satellite codeword in the i-th cloud.

according to I1

The codeword u(i) plays the role of the cloud center understandable to both Yy

Encoding: To send the pair (W1, W), transmit the corresponding codeword X (W1, Ws).

Decoding: Receiver 2 determines the unique I/%/'g such that (U(foz),Yz) are jointly typical. If there are
none such or more than one such, an error is declared. Receiver 1 looks for the unique (Wl, WQ) such that
(U(Ws,), X(Wy,Wa), Y1) are jointly typical. If there are none such or more than one such, an error is
declared.

Analysis of the probability of error: Assume that the message (W1, Ws) = (1,1) was sent. Let P(-)
denote the conditional probability at an event given that (1,1) was sent and T"(e) the set of jointly typical
sequences. The channel from U to Yo is basically a single user channel. Hence, we will be able to decode the

U codewords with low probability of error if Re < I(U;Y>). Define the error events

EWy; £{(U(i), Y1) € T*(e)}, (B.5a)
EWyy; £{(U(i),X(i,4), Y1) € T"(e)}, (B.5b)
E®y; 2 {(U(4),Y2) € T"(e)}. (B.5c¢)

Then the probability of error at receiver 2 is

Pen(Q) = P (E_gl) U Ui¢1E(2)Yi) ,
< P(EY)) + Y P(E®)y),
i1
< €+ 2nR22—n(I(U;Y2)—2e)7

< 2e. (B.6)
(B.6) follows if n is large enough and Ry < I(U;Y5). Similarly, for decoding for receiver 1, we have
pPr1) = P(E%) UUi#lE(l)Yz'UUj#E(l)YU)’

P(E&)) + ZP(E(I)Yz') + ZP(E(I)nj). (B.7)
il £l

IN

The term P(E&)) is upper bounded by €. The second term can be bounded as 3, P(EMy,;) < 2nR29—n(I(U;¥1)—2¢)
and goes to 0 because Re < I(U;Y>) < I(U;Y1). The second inequality follows since the channel is degraded.

IThis is the superposition coding referred to in Chapter 4.
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The third term can be bounded as follows.

P(EWyy) = P((U1),X(1,5),Y1) € T"(),
= Z P(U(1)7X(17j)7Y1)7

(u,x,y1)€T™ (e)
= Y. P(UW)PX(L,5)[UL)P(Y:[U(),
(u,x,y1)€T™(¢)
27n(H(U)7e)27n(H(X|U)7e)2fn(H(Y1 |U)76),

IA

(u7x7y1)ETn (6)
2—n(H(U,X,Y1)+e)2—n(H(U)—e)2—n(H(X|U)—e)2—n(H(Y1 \U)—e)’

IA

—  9-n(I(X,Y1|U)—1e) (B.8)

Hence, we have ZP(E(l)Ylj) < g n(I(XWaU)=49) yyhich goes to 0 if Ry < I(X;Y1|U). Finally, the
71
probability of error P™(1) is bounded as

Pen(].) < €+2nR22—n(I(U,Y1)—3e) +2nR12—n(I(X,Y1|U)—4e)’ (Bg)

and goes to 0 if n is large enough and Ry < I(U,Y1) and Ry < I(X,Y1|U). Hence, there exists a sequence

of good ((2"f1 27E2) n) codes with probability of error going to zero as n becomes large enough.

B.3 The Gaussian BC

We begin this section by noticing that a Gaussian BC is degraded [CT91]. This is because a Gaussian BC
where Y; = X +Z; and Y3 = X + Zs, with Z; ~ N(0, N;), i = 1,2, is equivalent to the channel
Y1 =X + Zl, (BlOa)
Yy =X+Zy=Y; +7Z), (B.10b)

where Z}, ~ N (0, Ny — Ny).

Theorem 2 ([CT91]) The capacity region of the Gaussian broadcast channel defined by Y1 = X +7Z; and
Yo = X + Z is given by the convex hull of all rate pairs (Ry1, Rs) satisfying

Ry < Llog(1+ 31\,—113)

Ry < Llog(1+ Eyll;jj)\,}:)

(B.11)

where v may be arbitrarily chosen (0 <y <1).

Proof 4 (Achievability of capacity region of the Gaussian BC)

Encoder: To encode the messages, the encoder generates two codebooks, one with power vP at rate R, and
the other with power (1 — v)P at rate Ry. Then to send the pair (i,j) € {1,2,...,2"}x{1,2,...,2"R}
the transmitter transmits the sum X; (1) + X2(j), where X1 (i) belongs to the first codebook X; and X3 (j)
belongs to the second codebook X,.
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Decoder: The bad receiver (receiver 2) looks through the second codebook to find the closest codeword
to the received sequence Ya (i.e., the one that is jointly typical with Yo). He sees the effective SNRy =
(1 —4)P/(vP + Ns) since the codeword directed receiver 1 acts as noise. The good receiver first decodes
the message directed ti receiver 2 (he can accomplish this because his is less noisy?). He then subtracts the
codeword X from the received sequence Y1 and looks through the first codebook to the closest codeword to
Y — X,. Receiver 1 sees the an SNR of SNRy = yP/Ny).

Analysis of the probability of error: The channel can be divided into two fictitious channels: the one
from X5 to Yo and the one from X; to Y — X,. Hence, the resulting probability of error can be made as

low as desired.

B.4 The GBC With State Information at the Transmitter

The (physically Degraded) GBC with state information at the encoder is shown in Fig.B.1(b). Here we have

Y, :X+S+Z1, (B12a)
Yy =X +S + Zs. (B.12b)

When the state S is available everywhere -at the transmitter and at both receivers-, the receivers can simply
subtract S to reduce the channel to the case without additive state and attain the same region as given by
(B.11). When only the transmitter knows the state S, the capacity region can be obtained as in the following

theorem.

Theorem 3 ([KSS04]) The capacity region of the Gaussian BC (B.12) with state information non-causally

available at the transmitter is given by the standard capacity region (B.11).

Proceeding similarly to Costa’s approach, we need only proof the achievability of the region. We use the
following result on the discrete memoryless physically DBC with state information non-causally available at

the transmitter.

Lemma 5 The capacity region of a discrete memoryless physically DBC p(y1,yz2|x,s) = p(y1|z, 8)p(y2|y1)
with state information non-causally available at the transmitter contains the convex hull of all rate pairs
(Ry1, R») satisfying

R, < I(Uy; Y1|Uz) — I(Uy; S|Us) (B.13a)
Ry < I(Uz;Ya) — I(Us; S) (B.13b)

for some joint distribution p(s)p(u1,us, z|s)p(y1|z, )p(y2|y1) where Uy and Uy are auziliary random variables

with finite cardinality.

Proof 5 (Achievability of the region (B.11)) First note that that the optimality of (B.13) is yet to be proved

in general. But, "for the Gaussian BC with state information at the encoder, the region (B.13) turns out to

2This is a nice dividend for degraded BC in that the better receiver always knows the message intended for the worse receiver.
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be the capacity region” [KSS04]. This can be seen through evaluating the region (B.13) using the choice of

the joint distribution p(ui,us,x,s) given by

U1 ~ N(als,'yP) (B14a)
Uz ~ N(Otzs, (]. - ")/)P) (B14b)
X=U;+Uy — (011 + CMQ)S, (B14C)

where Uy and Uy are conditionally independent given S and

_(Q=yP
Qo = P—|—N2’ (B.15a)
on=(1—an)—E (B.15b)
1= 2 PN .

This evaluation results in the region (B.11). Since the capacity region of the GBC with state information
available at the transmitter (B.12) can not exceed (B.11), it turns out that (B.11) is indeed the required

capacity region.



Appendix C

Some Results on Multiple Access

Channels

This appendix provides a brief review of some results on the discrete memoryless Multiple Access Channel
(MAC), the Gaussian MAC, the GMAC with state information available at the transmitters. The key ideas
for establishing the capacity regions are outlined. The complete proof of the capacity region of the Gaussian
MAC can be found in [CT91]. The capacity region of the Gaussian MAC with state information known to
the transmitters has been established in [KSS04].

C.1 Multiple Access Channel (MAC)

A MAC channel consists in several transmitters sending information to one distant receiver. An example is
shown in Fig.C.1(c) where three ground stations wish to communicate with a common satellite. We assume
that two transmitters have average power P; and P, respectively and wish to send independent messages W,
(at rate Ry) and Ws (at rates Ry) to a distant receiver Y. This receiver sees the two transmitted sequences
X; and X, added together with the noise Z (of power N). The MAC can be formally defined as follows.

Definition 8 A discrete memoryless Multiple Access Channel consists of three alphabets X1, X5 and Y, and

a probability transition matriz p(y|x1,z2).

A ((27B1 27B2) p) code for the MAC with independent information consists of two sets of integers W; =

{1,2,...,2"% ) and Wy = {1,2,...,2"F2} called the message sets, two encoding functions
X1 : W1 — Xln, (Cla)
Xy : Wy — Xgn, (Clb)

and a decoding function
g : y" — Wi xWs. (CZ)
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b

(c) A Multiple Access Channel (MAC).

N(0,Q)

X ( m 1,S)
— (7, W)

(d) A Gaussian MAC with State Information at the Transmitters.

Wy

W,

Assuming the messages are independent and equally likely, the average probability of error is defined as

1
P = i) Z Pr{g(y) # (wi,w2) | (w1, wz) sent }. (C.3)
(w1,w2) EW1 X Wa

Definition 9 A rate pair (Ri,Rs) is said to be achievable for the MAC if there exists a sequence of
((2nBr 2nB2) ) codes with P{™ — 0.

Definition 10 The capacity region of the MAC is the closure of the set of achievable rates.

C.2 Capacity Region for the MAC

We state the capacity region of the MAC in the form of a theorem.

Theorem 1 ([CT91]) The capacity region of a MAC (X1 xXa, p(y|z1,22),Y) is the closure of the convex
hull of the set of all rate pairs (R1, R2) satisfying
Rl S I(Xl,Y|X2), (043,)
Rl +R2 S I(Xl,XQ;Y) (C4C)
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for some product distribution pi(z1)p2(z2) on X1 xXs.
We only give the proof of the achievability part of Theorem 1. The converse can be found in [CT91].

Proof 6 (Achievability of the capacity region (C.4))

Fig p(x1,2) = p1(w1)p2(2).

Random codebook generation: Generate 2"Ft independent codewords of lengthn, X4 (i),i € {1,2,..., 21}
according to I?_, py (z1;). Similarly, generate 2"F2 independent codewords of length n, Xa(j),j € {1,2,...,2"Ez2}
according to TI?_; p1(z1;). The set of all these codewords form the codebook which is revealed to the senders
and the receiver.

Encoding: To send index i, transmitter 1 sends the codeword Xy (i). Similarly, to send j, transmitter 2
sends the codeword X2 (j).

Decoding: The Receiver determines the pair (i,7) such that (x1(3),%x2(j),y) is jointly typical. If there are
none such or more than one such, an error is declared.

Analysis of the probability of error: Assume that the message (W1, Ws) = (1,1) was sent. Let P(-)
denote the conditional probability at an event given that (1,1) was sent and T"(€) the set of jointly typical

sequences. Define the error event

Eij 2 {(X1(i), X2(5), Y) € T"(e)}. (C.5)
Then
P} = P(BuUUajzanEi),
< PEn)+ Y, PEa)+ >, P(Ey)+ > P(E;). (C.6)
i#1,j=1 i=1,j#1 i#£1,j#£1
Or
P(Ei) = P{(Xi(3),X2(1),Y) € T"(e)},

> p(x1)p(x2,),
(xl ,x2,y)€7"n (6)
177 (e) |2~ H(X) =) g=n(H(X2,Y)—e),

IN

2—n(H(X1)+H(X2,Y)—H(X1 ,XQ,Y)—3€),

IN

27’(7/(1-(4X'1;)('2,}/)736)7

9—n(I(X1;Y | X2)—3€) (C.7)

(C.7) follows since X; and X are independent and hence I(X1;X2,Y) = I(X1;X2) + I(X1;Y|X2) =
I(X1;Y|X2). Similarly, we have

P(Ey;) < 27 MI(X2Y1X1)=3¢) for 5 £ 1, (C.8a)
P(By) <2 "X for £ 1,5 # 1. (C.8b)

It follows that
PP < ¢+ 27 g—n(I(X3Y|Xe)=3¢) | gnRag—n(I(Xas¥|X1)=3¢) | gn(Ra+Ra)g—n(I(Xy,Xsi¥)~4e) (C.9)

which tends to 0 under the conditions of the theorem.
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C.3 The Gaussian MAC

Consider two senders sending to a single receiver over an i.i.d Gaussian channel Z ~ N'(0, N). The receiver

sees the sequence Y = X + X3 + Z. Assume that there is a power constraint P; on sender j, j = 1,2.

Theorem 2 ([CT91]) The capacity region of the Gaussian MAC defined by Y1 = X1 + X2 + Z where the
channel noise Z ~ N'(0, N) is i.i.d. Gaussian, is given by the closure of the convex hull of the set of all rate
pairs (R1, R2) satisfying

Ry %log(l + %),

Ry < glog(1+ ), (C.10)

Ry + R, < Llog(1 + BitP2),

AN

Proof 7 The proof of the capacity region of the discrete memoryless MAC can be extended to the the Gaussian
MAC. The converse also can be extended similarly. So, the capacity region of the GMAC is also given by
(C.4), with, this time, an additional constraint on channel inputs in the form E[X3] < Pi and E[X2] < P,.
Nexzt, ezpanding the mutual information in terms of relative entropy we get: I(X;;Y|X;) < 3 logy (14 P;/N),
i,j=1,2andi#j.

C.4 GMAC with State Information at the Transmitters

The GMAC with state information S non-causally known to the transmitters is shown in Fig.C.1(d). Here
the channel output is given by Y = X; + X5 + S + Z. The channel state S is distributed according to
N(0,Q) and is independent of the channel noise Z. When the state S is available everywhere -at both
transmitters and at the receiver-, the receiver can simply subtract out S to reduce the channel to the case
without additive state and attain the same region as given by (C.10). When only the transmitters know the

state S, the capacity region can be obtained as in the following theorem.

Theorem 3 ([KSS04]) The capacity region of the Gaussian MAC with state information non-causally

available at the transmitters is given by the standard capacity region (C.10).

Proceeding similarly to Costa’s approach, we need only proof the achievability of the region. We use the
following result on the discrete memoryless MAC with state information non-causally available at the trans-

mitters.

Lemma 6 The capacity region of a discrete memoryless MAC p(y|z1,xa,s) with state information non-

causally available at the transmitters contains the convex hull of all rate pairs (R1, R2) satisfying

Rl S I(Ul,Y|U2) - I(U1;5|U2), (Clla)
R2 S I(UQ,YlUl) - I(U2;S|U1), (C].].b)
R1 +R2 SI(Ul,UQ;Y)_I(Ul,UQ;S) (C].lC)

for some joint distribution p(s)p(u1,x1|s)p(uz,x2|s)p(y|z1,x2,s) where Uy and Us are auziliary random

variables with finite cardinality.
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Proof 8 (Achievability of the region (C.10))

First note that that the optimality of (C.11) is yet to be proved in general. But, “for the Gaussian MAC with

state information at the transmitters, the region (C.11) turns out to be the capacity region” [KSS04]. This

can be seen through evaluating the region (C.11) using the choice of the joint distribution p(uy,us,,s) given

by

U; ~ N1 S, Py),

Us ~ N(asS, (1 —7)P)

X; =U; — a;8S,

Xo = Uy — asS,
X=U;+U; — (a1 + a2)S,

where Uy and Uy are conditionally independent given S and

P
e —
" P +P+N
a - h
TP +P+N’

(C.13a)

(C.13b)

This evaluation results in the region (C.10). Since the capacity region of the GMAC with state information

available at the transmitters can not exceed (C.10), it turns out that (C.10) is indeed the required capacity

T€gionN.
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Résumé Le probléme de codage avec information adjacente (CCSI) est une technique récente d’annulation d’interférences en

Mots

transmission et en compression de données. Ceci concerne les situations ol I’émetteur est informé (par une voie retour
par exemple) d’une partie de D'interférence canal. L’objectif est alors d’ utiliser cette connaissance afin de concevoir un
codage efficace. Une application étroitement liée a la transmission et & la compression de données est le ”marquage
de linformation” (information embedding). Potentiellement prometteur, le marquage d’information pose de nombreux
défis dans différents domaines de recherche, allant de I’étude des limites théoriques de performance d’un point de vue
théorie de I’information aux aspects liés a leurs implémentation d’un point de vue traitement de signal, en passant par

la conception de code d’un point de vue communication numérique et codage.

Dans cette thése nous considérons la problématique de marquage de l’information sous ses trois aspects: de théorie
de l’information, de codage et communication et de traitement de signal. Le travail effectué dans le cadre de cette
thése peut étre structurée en quatre parties. Dans la premiére partie, nous formalisons le probléeme de construction
de dictionnaire comme un probléme de conception de constellation. En particulier, nous montrons que le probleme de
codage avec information adjacente disponible a ’encodeur est fondamentalement un probléme de codage conjoint source-
canal. Ensuite, nous nous basons sur les réseaux de points imbriquées (nested lattices) pour la construction de bons
codes algebriques a complexité réduite. Dans la deuxiéme partie, nous considérons le probleme de marquage multiple
comme un probléeme de communication multi-utilisateurs et nous construisons des stratégies de codage qui permettent
d’approcher au mieux les limites théoriques de performances. La troisieme partie traite le probléme de sensibilité a
l’information adjacente. Nous y évaluons la dégradation des performances due a une petite perturbation additive de
l’information adjacente et nous y montrons que, dans certaines conditions, ’encodeur doit s’adapter a la perturbation
en, éventuellement, changer sa stratégie de codage. La quatriéme partie traite les performances du CCSI sur un canal
AWGN avec jitter (AWGN&J) d’un point de vue théorie de jeux.

clés Information adjacente, codage conjoint source-canal, canal de broadcast (BC), canaux & accés multiples (MAC),

capacité et région de capacité, réseaux de points, théorie des jeux.

Abstract The problem of coding with state information (CCSI) is a new interference cancellation technique for both data

transmission and data compression. It concerns all the situations where the transmitter knows a part of the interference
in the channel (via a feedback loop, for example). The goal is then to use this knowledge about the channel in order to
conceive an efficient coding scheme. One potentially promising application, at the cross-road of both data transmission
and data compression, is information embedding. The embedding of information poses many challenges in a variety of
reseach areas. This involves information theory for assessing the theoretic limits of performance, signal processing for

implementation issues and communication theory for code design.

In this thesis, we consider the problem of information embedding in its three aspects. The work can be structured into four
parts. In the first part, information embedding is mathematically formalized as a joint source-channel coding problem.
For instance, we show that the problem of CCSI available at the transmitter is basically a joint source-channel coding
probelem. Next, we use nested lattices for the design of good low-complexity algebraic-based codes. In the second part,
we consider the problem of multiple user information embedding (recognized as a multi-user communication problem) and
conceive structured codebooks and appropriate coding strategies that closely approache the theoretic limits. The third
part concerns channel sensitivity to little perturbations of the state information. We evaluate the loss in performance
due to a weak additive contaminating state information and show that, under certain circumstances, the transmitter
must adapt to the available knowledge about the channel, by (eventually) changing its coding strategy. The fourth part
determines the performance of CCSI over an AWGN channel with jitter (AWGN&J) in a game theory context.

Key words State information, joint source-channel coding, broadcast channel (BC), multiple access channel (MAC), capacity

and capacity region, lattices, game theory.



