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Jabberwocky

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

‘Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!’

He took his vorpal sword in hand:
Long time the manxome foe he sought—
So rested he by the Tumtum tree,
And stood awhile in thought.

And as in uffish thought he stood,
The Jabberwock, with eyes of flame,
Came whiffling through the tulgey wood,
And burbled as it came!

One, two! One, two! And through and through
The vorpal blade went snicker-snack!
He left it dead, and with its head
He went galumphing back.

‘And hast thou slain the Jabberwock?
Come to my arms, my beamish boy!
O frabjous day! Callooh! Callay!’
He chortled in his joy.

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

Lewis Caroll, Through the Looking-Glass and What
Alice Found There

The best book on programming for the layman is
“Alice in Wonderland”; but that’s because it’s the
best book on anything for the layman.

Alan Perlis
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Chapter Zero

Introduction

- Handbook for the recently diseased. . .

- Deceased.

Tim Burton & al., Beetle Juice

H
umans’ incredible ability to make mistakes is cosubstantial to our
ability to interact with and communicate in a very noisy environ-
ment. It is necessary for us to be able to ignore differences in voice,
and even accents. It contrasts strongly with computers’ stubborn

preciseness. Which is at the source of their ability to deal with extremely
complex computations as if it was child play. In that sense, computers are
really superhuman. But human are also supercomputer.

Communication between humans and computers is made hard because
of the friction between the impreciseness and robustness of humans and
the exactness and fragility of computers. However we can supplement one
another in the areas we fail to be efficient at. It has become a banality that
computers can help us in this communication process. In particular, we can
write type systems to prevent evidently bad programs from being written. We
could also mention many programmer-aiding tools like abstract interpretation
or model-checking. They all have one thing in common: they do not do
what we expect them to do. And there is a good reason for this: we expect
them to solve undecidable problems. Computers cannot do that – though
they can try to some extent – but humans somewhat can, by providing what
computers lack: insight. In other words, humans can help the computer help
them communicate with it.

Hence, to go further than fully automated tools, we need to lay out an
interface between the human and the computer to allow humans to participate
in the computing process. Mathematics is a good candidate to that purpose.
Indeed, mathematics is designed to reflect humans’ insight, yet they are
expressible as rules to be applied and checked mechanically – which can
be understood by a computer. Therefore, if mathematics is not, properly
speaking, a language, they are a communication construct which is common
to humans and computers. From that point of view, problems computers are
supposed to help solving are expressed as a mathematical statement, and the
human then provides a proof of it. This proof can be very fine grain, making
direct use of simple rules in the style of formal logic systems. Or it can be
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very coarse grain where the computer does most of the work and the human
only gives a few hints. Or anything in between.

As mathematical statement to solve become more elaborate, proofs get
typically more and more tedious. And “tedious” is the job of computers. So
we might consider desirable that the computer would help us help it help us
communicate with it.

Of course we can go on with this forever, there is some fixed point here.
Pursuing this idea leads – among other things – to dependent type theories,
where the activities of writing programs, mathematical statement and proofs
are equated to some degrees.

In this manuscript we describe how to rebuild part of the theory of effective
homology in the proof assistant Coq from this perspective. We have two
main motivation for this. First, effective homology is a constructive theory
which, in addition, has a mostly functional implementation as the computer
algebra tool Kenzo [49] – two things that Coq is made to deal with. Hence an
implementation in Coq ought to be quite feasible. This is a good opportunity
to try and understand and discuss its limitations.

The second motivation is actually twofold. First, most computer algebra
tools come packaged with their own programing language. These programing
language are usually fairly ad hoc and poorly designed. We could hope

Incidentally, Kenzo happens to
be a library for Common Lisp.
Hence follows the proposed
scheme.

that, instead, computer algebra tools could be embedded as libraries for
independently designed programming languages. Also, there is the issue
of trust. Not only are computer algebra tools often made of very complex
and subtle algorithms. But also, they do not necessarily guarantee anything,
sometimes producing wrong results with no warning – independently of the
correction of the implementation. To increase trust we can write a simple
program to check the correction of the result. Even better we can prove this
result-checking program correct by many a method. When the level of trust is
considered acceptable then it is reasonable to accept the result of the tool as a
proof argument. We can raise the trust even further by proving the computer
algebra tool itself correct increasing the trust a priori: we know that the tool
will work as a proof argument in identified cases. At the intersection lie
dependent type theories. They pass as fair programming languages in which
computer algebra tools can be embedded and they can be used to prove the
correctness of the said tools to any degree. Additionally, as tool written and
certified in a depend type theory can be used as part of proofs inside the type
theory (this is often referred to as reflexive proofs) providing a new automation
tool.

0.1 Effective homology

Homology is a tool in topological algebra. It consists in associating, to well
behaved topological spaces, abelian groups embodying certain properties of
their n-dimensional structure. The group representing dimension n is called
the n-th homology group. The simplest case is for space which do not have
an n-th dimensional structure, then the n-th homology group is trivial. For
instance the third homology group of a sphere. The n-th homology group is
also trivial in other cases, for instance the second homology group of a ball
is trivial, this is because from the point of view of homology, the ball can

6



0 Introduction

be turned into a point. Hence the two dimensional structure of the ball is
irrelevant.

When homology groups are non-trivial they give an account of the shape
of the n-dimensional structure of the space. In particular they count the
number of “holes” in the space. The number of holes depends on the n+ 1-st
dimension as well. For instance a circle which is not the border of a disk
counts as a 1-dimensional hole, and a sphere which is not the border of a ball
is a 2-dimensional hole.

Homology has been introduced as a variant of the more topological homo-
topy groups. Homotopy groups describe the topological structure of spaces
more finely than homology groups. However, it is much more difficult to
deduce useful information about homotopy group than homology groups. Al-
gebraic topologist say that homology groups are easier to “compute”, though
they do not mean that information results of a computation a computer could
do.

The theory of effective homology, on the other hand, is a constructive
theory of homology. It gives a way to actually compute information about ho-
mology groups. Effective homology is built in such a way to reflect upon pro-
gramming constructs. On the programming side, there is the tool Kenzo [49].
Kenzo computes useful descriptions of homology groups, so that the informa-
tion is readily available.

More precisely, the so called structure theorem for finitely generated abelian
groups (a.k.a. fundamental theorem of finitely generated abelian groups) states
that finitely presented abelian groups are (up to isomorphism) of the form:

Zn ⊕ Z�q1Z
⊕ Z�q2Z

⊕ . . . ⊕ Z�qtZ

Where the qi are powers of (not necessarily distinct) prime numbers. The
numbers n (called the rank) and t and the coefficients qi are unique (up
to permutation of the indices). Kenzo computes this particular form for
homology groups. In the case of homology group, the number n is the
number of holes mentioned above.

Typically, Kenzo takes as input the description of a particular kind of space
called a simplicial set

> (setf torus (crts-prdc (sphere 1) (sphere 1)))

[K33 Simplicial-Set]

(here the torus is defined as the cartesian product S1 × S1 of two circles)
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and computes the required homology groups.

> (homology torus 0 4)

Homology in dimension 0 :

Component Z

Homology in dimension 1 :

Component Z

Component Z

Homology in dimension 2 :

Component Z

Homology in dimension 3 :

Which reads as “the torus has homology groups Z in dimensions 0 and
2, Z2 in dimension 1 and the trivial group in dimension 3”. The torus is a
2-dimensional space, it is no surprise that the third homology group is trivial.
The first homology group is Z2 meaning it has two holes, this is because it is
hollow: the void inside the torus’s tube counts as a hole.

Kenzo can also take as input other topological objects, like simplicial
groups – a variant of simplicial sets. Or directly a chain-complex – the princi-
pal object of study of homological algebra – which is devoid of topological
characteristics: it is simply a collection of abelian groups with homomor-
phisms between them. Kenzo can also be used to compute homotopy groups
in some cases.

As far as this manuscript is concerned, homological algebra is only a
problem of abelian groups and chain-complexes. The precise definitions
involved are given in Chapter 2. For everything that does not appear in
this manuscript, the curious reader can refer to Allen Hatcher’s Algebraic
Topology [30] which is a comprehensive introduction to homological algebra –
and more generally to algebraic topology.

The work presented here consists in giving a good mathematical presen-
tation – with adequate computational properties – of the theory concerning
chain-complexes and homology groups suitable for, and implemented in, Coq.
We shall make sure that this presentation in flexible enough to incorporate
homology with coefficient (that is, where every occurrence of “abelian group” is
replaced by “module” over a specified ring). The next step would be to con-
sider finite presentations to be able to complete the same sort of computations
as Kenzo, albeit only from chain-complexes. An even further step will be to
incorporate topology into the picture.
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0 Introduction

0.2 Coq

As most system based on some flavour of dependent type theory, Coq can
be seen either as a mathematical system or as a programming language.
As a mathematical system it is constructive, and has a primitive notion of
computation but none of a set. As a programming language, it is a variant of
ml with dependent types. This distinction does not really matter here, as this
manuscript adopts both views simultaneously.

In a sense, though, both views correspond to different styles. When
forall A:Type, A→A is seen as the type of function from A to A for an arbitrary
A, we tend to write its inhabitants as:

Definition id : forall A:Type, A→A := fun x : A ⇒ x.

or, more concisely, but equivalently:

Definition id (A:Type) (x:A) : A := x.

On the other hand, when seen as the statement that “A implies A, for
any proposition A”, then we would write a proof of forall A : Ω,A → A
interactively as follows (to the right is the feedback reported by Coq).

Lemma id : forall A:Prop, A→A. ⊢ forall A:Prop, A→A
intros A x. A:Prop, x:A ⊢ A
apply x. Proof completed.

Qed.

In fact both methods do precisely the same thing. And it make perfect
sense, when needed, to program using the interactive system (the instructions
are called tactics) or to prove a statement using the programming style.

To make matter worse (or, rather, more fun), there is a way to mix both
styles which is labelled with the keyword Program [50]:

Program Fixpoint fact (n:nat) : { p:nat | p ≥ 0 } :=
match n with

| 0 ⇒ 1

| S n’ ⇒ n∗(fact n’)
end.

2 obligations remaining

Next Obligation. ⊢ forall n : nat, 0 = n → 1 ≥ 0

intros n _. n:nat ⊢ 1 ≥ 0

apply le_n. Proof completed.
Qed. 1 obligation remaining

For computing the value of an expression, Coq uses a so called strong
reduction. That is, a function like fun x⇒1+1 reduces to fun x⇒2 whereas in
usual programming languages, fun x⇒1+1 would be a value, and not compute
its body until it is passed an argument. Strong reduction is not really useful
for programming purposes, however, from a logical side, it corresponds to cut
elimination.

Incidentally, it has an influence on typing. Coq has dependent types, that
is types with bits of programs in them. For instance one can have a type family
A : nat → Type, then A (1+1) is a type, and so is A 2. These two examples are
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a priori distinct types, however there is a typing rule of Coq, called conversion
makes them equal. Specifically, the conversion states that two types which
have the same normal form are considered the same. Hence typing is sensitive
to the details of the reduction, and strong reduction means more typable
expressions than a weaker one.

0.3 Conventions & notations

The mathematics, in this manuscript, are presented in an informal adaptation
of the type theory of Coq. We shall consider it more closely momentarily.
But before that we would like to raise a small issue. The first thing we will
do is to build a set theory atop our type theory. Most keywords, and many
notations, of type theories and set theories conflict. Though we can usually
get away with the overloading of terms, sometimes it can highly obscure the
discussion. The archetypal such sentence would be along the line of: “f is not
a function, it is only a function”. The reader should agree that the meaning
of this sentence is fairly hard to grasp. In such situation we usually keep the

To choose new names we try to
exploit mathematical or English
synonyms of the word we are sub-
stituting.

name of the set theoretical notion, and change the name of the type theoretical
one. In the case at hand the type theoretical notion of function will be called
a map while set theory retains the use of the word function and the above
sentence now reads: “f is not a function, it is only a mapping” (Section 1.1
will shed light on the particular sentence).

Back to our type theory. It features a dependent product
∏

x : AB whose
inhabitants are maps; in the event B does not depend on x (which is written,
generically,

∏

_ : AB), then we may write A ֌ B instead. We also need a
dependent sum

∑

x : AB whose inhabitants are pairs. We also suppose a type
product A× B (equivalent to

∑

_ : AB, though typically not implemented as
such) and a type sum A+ B whose inhabitants are of the form ι1 a or ι2 b.

In addition, we give ourselves a type Type of types. So that the system
stays consistent, we have to assume that Type is predicative. In particular
Type is not its own type. We shall alleviate the burden of thinking about these
matters by ignoring this fact and promising that all the types we write can be
stratified (which is, incidentally, also what Coq does).

Our type theory also has an impredicative type Ω of propositions. The
type of Ω is Type. A proposition is simply the type of its proofs: it is built
out of the above constructions. However, we will follow conventional logic
notations when writing a proposition. Hence, we write ∀x:A.P for

∏

x : AP,
A∧B for A × B and A∨B for A + B. The case of the dependent sum is a bit
trickier: it can be seen as a subtype of a type A, which we write

∑

x : APx and
like an existential quantification in which case we write ∃x:A.Px the former
being of type Type and the latter of type Ω.

We also use types N and Z of natural numbers and integers respectively,
together with the usual arithmetic operations, and a type B of boolean, whose
inhabitants are true and false.

We shall define new types using labelled products (so-called records) which
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0 Introduction

we write:

Name
l1 : A1

l2 : A2

l3 : A3

This reads “Name is defined as a product type with 3 components each of
which is named li and has type Ai”. Also note that A2 can mention l1 (and
A3 can mention both l1 and l2), so Name is equivalent to

∑

l1 : A1

∑

l2 : A2
A3

(or, more briefly:
∑

l1 : A1

l2 : A2

A3).

Finally, we can define maps – e.g. the identity – with the syntax λx. x.
Alternatively, we can define a function f by case:

f : A + B → B+A
f ι1 a = ι2 a

f ι2 b = ι1 b

What exactly is covered by a type theory is very sensitive to small details,
especially in the typing of dependent product and the allowed reductions.
We shall purposely not specify these details to allow more freedom in what
we can express in the manuscript. However, as a rule, the material in this
manuscript has been verified in Coq (and in particular can typed in Coq),
unless we specify otherwise. Hence, apart from these corner case, we are
working in an informal version of Coq’s type theory, whose details can be
found at [4].

0.4 Premises

The work presented in this manuscript was done under some additional
constraint. The main goal being to test dependent type theories in general,
and Coq in particular, we did not want to just try and verify as much as
possible. Instead we wanted to try and write proofs in a satisfactory way. This
is of course subjective, let us make this claim more precise.

First, writing proof in a computer checked environment means that diffi-
culties coming from the programming world spill over to toe proof world. In
particular we want to share proofs as much as possible, avoiding duplication.
This may be considered even more important than in traditional programing,
as proofs may be longer and more tedious than bare programs. Also we
want to rely on abstractions a lot. Abstraction is both part of traditional
mathematics and traditional programming, but arguably is of even greater
importance for the latter. In pen and paper mathematics, painful details can
be simply omitted, the purpose of abstraction is more often to generalise
results to a larger class of objects. In programming, however details must be
dealt with, abstraction is principally a mean to get them contained so that
they do not contaminate all the code. In this manuscript abstraction serves as
both a means to generalise (i.e. share code) and a mean to avoid boilerplate.
This makes abstraction a somewhat more central issue than in traditional
mathematics.
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Also we do not want to refrain to use dependent types. Dependent types
are tricky to use and many legitimately shy away from them. This leads to
a textual separation of programs (using ml style types) and proofs which
we would like to avoid as much as possible. Indeed, dependent type like
constructs are quite natural, they are common in the mathematical discourse.
However, if in pen and paper mathematics we can use them as a figure of
speech, in computer checked mathematics there is no such thing as a figure
of speech. Another, arguably more important, reason is that dependent type
theories advertise a style of programming where mathematical statements
are included inside types by means of dependent types. One of our main
motivation is to test how much it can be done in practice.

We shall generally view these rich mathematically enhanced types as
actual mathematical statements, and programs as proofs thereof. This forces
to consider the computational efficiency of proofs. Efficiency is the last of
the premises which guide us in this work. Under the scrutiny of efficiency,
mathematics take a somewhat different flavour and we shall rediscover many
concepts with a new eye.
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Part One

Mathematics to compute





Chapter One

A theory of sets

I have often been impressed by the cleverness of my

own first solutions; invariably the joy of the subse-

quent discovery how to streamline the argument was

tempered by a feeling of regret that my cleverness

was unnecessary after all. It is a genuine sacrifice to

part from one’s ingenuities, no matter how contorted.

Also, many a programmer derives a major part of his

professional excitement from not quite understanding

what he is doing, from the daring risks he takes and

from the struggle to find the bugs he should not have

introduced in the first place.

Edgster Dijkstra, The threats to computing science
(EWD 898)

T
he traditional body of mathematics is built upon Zermelo-Fraenkel
set theory (zf). This is, however, unsuitable for our ambition to
write programs in a mathematical style. It is not a matter of con-
structiveness. Indeed there are constructive flavours of zf [6]. It

is rather than the meaning of mathematical objects in zf is too alien to what
is required for programming. It sums up in two points. First, functions are
encoded as relations, which precludes any computations, we would rather
have them be some description of computations (maps). Also, as equality
is prescribed a priori, data has to be encoded such as to conform to equality,
whereas programming implies choosing the representation of the data for
efficiency purposes.

A solution to this mismatch is found in Errett Bishop’s seminal book
Foundation of Constructive Analysis [13]. Where sets are defined as

The totality of all mathematical objects constructed in accord
with certain requirements is called a set. The requirements of the
construction, which vary with the set under consideration, deter-
mine the set. Thus the integers are a set, the rationnal numbers
are a set, and the collection of all sequences each of whose terms
is an integer is a set. Each set A will be endowed with a relation =
of equality. This relation is a matter of convention, except that it
must be an equivalence relation.
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Mathematics to compute

This definition, though purposely informal, prefigures the distinction that
Intentional Type Theory makes between types and sets: types are a description
of elements, sets are more complex structures bearing a notion of equality.

1.1 Bishopian toolkit

Set

In term of our type theory, a set A would be defined as:

Set
ElA : Type
=A : ElA ֌ ElA ֌ Ω

_ : Equivalence ( =A )

More often than not we shall use A instead of ElA and omit the index of
the equality when it is clear from context.

Let us dwell on this definition for a moment. Given a relation R on a set
A, it is fairly straightforward how to build the quotient A�R: it amounts to
replacing =A with R. This is an important feature programming-wise:
there is no need to change the representation of the data to change which data
are equal. For instance, if one is interested in considering lists up to reordering
of their elements (a.k.a. multisets), they can be just a lists. Considered up
to reordering of their elements. This is essentially, by the way, what is done
when Haskell’s list monad is used as a non-determinism monad.

In zf, on the other hand, as equality cannot change, it is always the
representation of data which much change to conform to it. In the case of
quotienting, equivalence classes might look like a particularly odd encoding
to a programmer.

On a side note, programmers are often particularly wary of what cannot
be embedded in their programming languages. In particular, they usually
try to avoid relying on equalities which are not decidable. Many even loathe
equalities which are not the structural equality. These are limitations which
will not apply to us. Though having a decidable – or structural – equality of
course has benefits in many situations. This new found liberty might be a
strong argument in favour of any system which can cope with general sets in
this sense.

In the community of dependent type theories, sets in the sense of Bishop
are often known as setoids. They also appear in other guises in some areas of
mathematics. They can be seen as Ω-enriched groupoids, and, equivalently, as
0-groupoids. To categorically minded people, they may also remind the topos
theoretic presentation of set theory.

Function

Functions from set A to set B are supposed to be maps from A to B. But,
much for the same reasons that all functions from A to B cannot necessarily
be lifted to be functions from a quotient of A to B, not all maps are eligible to
be functions. Only those maps which respect equality are:
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FunctionAB
f : A ֌ B
_ : ∀a1=Aa2. f a1 =B f a2

We will usually use functions as their inner map.
Functions are exactly why a structural equality is desirable: if the equality

on A is structural (more generally, if it coincides with Leibniz equality), all
maps can be trivially lifted as functions, otherwise the programmer bears
the burden of proof. Again, this lifting issue is not an unknown problem
to mathematicians, not only in the case of quotients but also in the case
of algebraic structures, where the appropriate morphisms are those which
respects the structure. A customary move when playing with morphisms is
to move to a categorical abstraction in which everything is, by construction,
morphism. We shall do it for abelian groups, however, desirable though it is,
we could not achieve it in a satisfactory way in the case of sets (see Chapter 5

for details).
It is time to define our first set construction, namely the set of functions

from A B (written A −→ B). Its equality is the so-called extensional equality:

A −→ B
El (A −→ B) = FunctionAB
f = g = ∀a. f a = g a

The set A −→ B −→ C (to be read as A −→ (B −→ C)) will be used to
encode functions from A and B to C. Equivalently, we could have chosen the
set (A× B) −→ C – to be defined below – but the former is more customary
in type theory.

Subset

A function f :A −→ B is said to be injective when ∀x y : A. f x = f y→x = y. A
subset of B is defined as being any such injection, like subobjects in a category
are defined to be any monomorphism.

Part

Given a set A, a set of functions of particular interest is the set A −→ Ω of
predicate over A, where Ω is considered up to equivalence:

Ω
ElΩ = Ω
p = q = p ⇐⇒ q

A predicate P can be seen as a subset of A. To emphasise this point of
view, we shall sometimes say part instead of predicate, and write x ε P for Px.
Any part P defines a subset, called a strong subset:

{x : A | x ε P}

El {x : A | x ε P} =
∑

x : A

x ε P

(x, _) = (y, _) = x=A y
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Given a function f :A −→ B, we can define its image Im f :B −→ Ω as
b ε Im f=∃a:A. b = f a.

Cartesian product

Set also have a have a cartesian product:

A× B
El (A× B) = A× B
(a1, b1) = (a2, b2) = a1 = a2 ∧ b1 = b2

Set sum

And a sum, sometimes known as disjoint union whose carrier is the type
theoretic A+ B and the equality is:

( =A+B ) : (A+ B) ֌ (A+ B) ֌ Ω
( =A+B ) ι1 a ι1 a

′ = a = a′

( =A+B ) ι2 b ι2 b
′ = b = b′

( =A+B ) _ _ = ⊥

Numbers & booleans

The sets N of natural numbers, Z of integers and B of booleans are lifted
canonically to sets in the obvious way. For instance the equality on N can be
computed as

( =N ) : N ֌ N ֌ Ω
( =N ) 0 0 = ⊤
( =N ) 0 _ = ⊥
( =N ) _ 0 = ⊥
( =N ) n p = (n − 1)=N(p − 1)

From now on, we shall consider these three as sets.

1.2 Categories

Homological algebra, in particular effective homology, fit very well in a
categorical framework. From a programming perspective, categories will
play the role of abstraction barriers hiding the unnecessary details of, say, the
definition of abelian groups to the algorithms computing homology groups.

Category

Although Bishop does not give such a definition, there is a notion of category
which follows naturally from his definition of sets and deserves to be called
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Bishop categories.

Cat
O : Type
Hom : O ֌ O ֌ Set
1A : HomAA

; :
∏

ABC : O

HomAB −→ HomBC −→ HomAC

_ : f ; (g;h) = (f ; g);h
_ : f ; 1 = 1; f = f

Notice the order of the composition: f ; g (often written simply fg) corre-
sponds to the arguably more usual g ◦ f .

The sets (HomAB) are called homsets, their elements are called either

morphisms or arrows. We usually write A
f

−−−→ B instead of f :HomAB.
An important feature of these Bishop categories is that the type O of

objects is not a set. Consequently, the question whether two objects are equal
or not does not make sense: equality belongs to sets. This contrasts with the
usual definition of category where there objects are zf-sets (often there is even
a set of all objects). zf-sets can be compared. However, in many areas of
category theory, it is bad practice to compare objects or even outright banned.
Hence Bishop categories are arguably a better definition of categories than
those based on zf.

Additionally, as categories are not sets, there is no need to restrict the
category of sets to some small set of a sort. There is a category of all sets
and functions. This is supported by the type theory of Coq, where we define
categories at a higher sort than sets (in a sense, categories are bigger than
sets).

Monomorphism & epimorphism

In a category C, we say that an arrow A
f

−−−→ B is a monomorphism if for any

two X
g

−−−→ A and X
h

−−−→ A with gf = hf , then g = h. We also say that f
is a mono, for short, or that f is monic. We also call subobject of A a mono

S
s

−−−→ A.
In the category of sets, the monomorphisms are the injective functions. In

particular subsets coincide with subobjects.

Dually, an epimorphism is an arrow A
f

−−−→ B such that for any two

B
g

−−−→ X and B
h

−−−→ X with fg = fh, we have g = h. We also say that f is
an epi, or that f is epic.

It is easy to prove that surjective
functions are epic. Conversely,

given an epimorphism A
f

−−−→

B, let us consider two parts of
B: ⊤ and Im f . By definition of
Im f , f ;⊤ = f ; Im f . Since f is
epic, ⊤ = Im f , that is, f is sur-
jective.

In the category of sets, the epimorphisms are the surjective functions.
While less obvious than for monos, it is not hard to prove.

Initial & terminal objects

An initial object 0 of a category C is such that for any object A of C, there is

a unique arrow 0
0

−−−→ A. There an initial object in the category of sets: the
empty set.
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Dually, a terminal object 1 is such that for any object A, of C, there is a

unique arrow A
!

−−→ 1. The one element set is terminal in the category of
sets.

Product

Given two objects A and B in a category C, a product of A and B is an object

A× B together with two arrows A× B
π1−−−→ A and A× B

π2−−−→ B such that

for arrows C
f

−−−→ A and C
g

−−−→ A, there is a unique arrow C
(f,g)

−−−−−→ A× B
Phrases such as “there is only one
such arrow” may benefit from a
small clarification. They are to be
understood relative to a given set,
and mean, as in classical mathe-
matics “for any two such arrows,
they are equal”. What changes
from classical maths, however, is
that two equal element of a set
do not necessarily share the same
representation. Hence, when we
name an element, we choose, im-
plicitely, a particular representa-
tion (presumably that which we
believe will behave the best in
programs).

such that (f, g)π1 = f and (f, g)π2 = g.

C

B×A

BA

h gf

2π1π

This could be also stated as a product of A and B is a diagram composed

of two arrows A×B
π1−−−→ A and A×B

π2−−−→ B which is universal. Universal
definitions are common in the realm of categories. They feature an arrow
such as (f, g) which has to be unique. The relevance of the uniqueness can be
understood from the perspective of type theory as an extensional property. In
the case of the product, the unicity of (f, g) is equivalent to the statement that

for any X
x

−−−→ A× B we have (xπ1, xπ2) = x. This property is often called
surjective pairing.

When a category C has a product A × B for every choice of A and B
we say that C has all products. This terminology can be used with any
suitable concept. We can also say that C has enough products when it does
not necessarily have all products, but enough for the considered statement to
make sense.

In particular the category of sets has all products: the cartesian products is
a product in the categorical sense.

Coproduct

Dual to the product is the coproduct, also called sum. Namely, a coproduct of

two objects A and B is an object A+B together with two arrows A ι1−−−→ A+B

and B
ι2−−−→ A+B such that for any arrows A

f
−−−→ C and A

g
−−−→ C, there is
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1 A theory of sets

a unique arrow A+ B
[f,g]

−−−−−→ C such that ι1; [f, g] = f and ι2; [f ; g] = g.

C

B+A

BA

h
gf

2ι1ι

The category of sets has all coproducts, as the sum of two sets is a coprod-
uct.

Equaliser & coequaliser

Given two arrows A
f

−−−→ B and A
g

−−−→ B, an equaliser of f and g is an

arrow E
e

−−−→ A such that ef = eg. It needs to be a universal such arrow, that

is for any X
x

−−−→ A with xf = xg there is a unique arrow X
x′

−−−→ E such
that x′e = x.

The category of sets has all equalisers: the equaliser of f and g is given
by the strong subset E = {a : A | f a = g a} with e the canonical injection into
A, and for an x as above, x′ is the lifting of x to E. Note that equalisers are Let E e

−−−→ A be the equaliser of

A
f

−−−→ B and A
g

−−−→ B. Let us
consider two arrows Y

y
−−−→ A

and Y
z

−−−→ A with ye = ze. As
yef = yeg there exist a unique
arrow w such that we = ye. As
both y and z qualify as such, they
must be equal.

necessarily monic.

Dually, there is a notion of coequaliser: given two arrows A
f

−−−→ B and

A
g

−−−→ B, a coequaliser of f and g is an arrow B
q

−−−→ Q such that fq = gq.

Moreover, for any B
x

−−−→ X such that fx = gx there is a unique arrow x′

such that qx′ = x.
The category of sets has all coequalisers. It is given as Q = B�R with R

the smallest relation such that for all a:A, f a = g a. The function q is the
canonical projection onto Q and x′ is the lifting of x to be of domain B�R.
Again, coequalisers must be epimorphisms.

1.3 Choice!

Principle of choice

If a function f :A −→ B is surjective (i.e. ∀b. ∃a. f a = b), the constructive
interpretation gives a map g from B to A such that ∀b. f (g b) = b, however this
has no reason to be a function.

Indeed, supposing that all surjection had a preinverse, then let P be an
The terminology preinverse is bor-
rowed from a categorical intu-
ition: g is a preinverse of f if g

followed by f is the identity.
Dually, a postinverse is a function
g such that f followed by g is the
identity.

arbitrary proposition. Consider B the set of booleans, and S the set where the
base type is the booleans and where the equality is defined as

e : B ֌ B ֌ Ω
e true false = P
e false true = P
e _ _ = ⊤

Now the function
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f : B −→ S

f true = true
f false = false

is surjective. However, a preinverse function g would decide the truth of
This is a variant of Diaconescu’s
argument[20], which proves that
the principle of choice is stronger
than the excluded middle in
topoi.

P, as g true = g false implies ¬P and ¬g true = g false implie P (equality on
booleans is decidable). This is contradictory with the fact that provability is
not decidable. The statement that all surjective functions have a preinverse
is the principle of choice. Let us phrase it in a catchy slogan: choice: surjections
have a section. Phrased this way – rather than referring to families of inhabited
sets, the principle of choice can be read as property of a category, provided we
read epimorphisms instead of surjections. The principle of choice, hence, is not valid
in the category of Bishop sets (surjective functions are indeed the epimorphisms
of the category of sets).

Principle of unique choiceIf f is injective, for any two equal
b1 and b2, g b1 = g b2 follows
from f (g b1) = f (g b2). Hence g

is a function.
On the other hand, if f is also injective then g is indeed a function and actually
an inverse of f .

This observation leads to the principle of unique choice. Functions which are
both injective and surjective are called bijections. Hence we can state the the
principle of unique choice as follows: unique choice: bijections have an inverse.

The principle of unique choice is, again, a property of a category (provided
that “bijections” are replaced by “morphism which are both epic and monic”).

The aforementioned principle of unique choice can be a liability rather
than an asset. Indeed, the fact that a bijective function is tractable does not
mean it has a tractable inverse. Typical examples of this often come from
cryptography. For instance, let us consider a group G of order n and g a
generator of G. The function from Z�nZ to G which maps p to gp is bijective.
However, there is no known efficient algorithm for its inverse, called discrete
logarithm. A number of cryptographic protocols actually rely on the hope that
there will never be an efficient algorithm for discrete logarithm – the most
famous being the Diffie-Hellman key exchange protocol.

If the principle of unique choice is valid in our category of sets, an inverse
function can be devised automatically. As mentioned, every known proof
of bijectivity of exponentiation leads to intractable discrete logarithms. As
a matter of fact, all the computational content of the inverse found using
the principle of unique choice is contained in the proof of bijectivity (more
precisely in the underlying proof of surjectivity).

Concretely, we are left with two choices if we want to control the compu-
tational complexity of our functions. Either we need to control the computa-
tional complexity of the proofs we write, in particular, when writing proofs of
bijectivity, we devise specific inverses. Or we make arrangements so that the
principle of unique choice is not valid.

The former option precludes from using mostly any form of automation,
as they produce proofs whose complexity cannot be known in advance. Also,
it is fairly restrictive in what can be proved, or, in other words, proofs of
surjectivity which cannot be used to find an inverse, can still be used for other
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purposes. Yet, we would be avoiding these. Therefore we shall choose the
latter option: leaving aside the principle of unique choice.

As we have seen, the principle of unique choice is a direct consequence
of the fact that given a proof of ∀a:A. ∃b:B.P a b, we can extract a map f :A ֌

B such that ∀a:A.P a (f a). This property can be seen a reflection on the
constructive nature of the proof, or as an internal skolemisation. It is a natural
principle of systems such as the Calculus of Inductive Constructions which
is a foundation of Coq. Fortunately for our application, Coq has a sort Prop

which explicitly does not enjoy this property.
Now, our mathematics is constructive. This means that anyone inspecting

a proof of bijectivity can extract an inverse from it. The important point,
though, is that this cannot be done inside the system.

This leads to a distinction between computational and static parts of
proofs. The computational parts – programs – cannot reflect on the content
of static parts: they are computationally irrelevant. This does not mean that
computational parts do not use static ones at all. In fact, static proofs in
programs can be used for three purposes:

� Cutting branches: when some position in a program cannot be reached,
it is sufficient to prove it, there is no need to provide computational
code.

� Termination: a proof can assert that a particular map never loops on any
input.

� Type coercion: when two types are provably identical, an element of the
former can be used as one of the latter.

In this work we shall make use only of the first one of these usages.
Indeed, in both other cases, as they are currently implemented in Coq, the
computational content of the static proof is relevant. It would, hence, be
unsuited for our goals. Not to mention that it is not really clear what it

In Coq, identity of types is taken
care of by the notion of proposi-
tional equality. Yet the exact sta-
tus of this equality is disputed.
Additionally, from the point of
view of this work, the fact that it
gives a generic equality between
elements of types is disturbing.

means for two types to be identical. All the maps defined here are structurally
recursive, which makes them obviously terminating in the eyes of Coq.

As a convention we will write x[:]A to signify that x is a proof a some
static proposition A whereas the usual x:A will mean that x is a program of
type A. With these notations, the definitions of sets and categories become:

Set
A : Type
= : A ֌ A ֌ Ω

_ [:] Equivalence ( = )

and

Cat
O : Type
Hom : O −→ O −→ Set
1A : HomAA
; : ∀ABC : O.HomAB −→ HomBC −→ HomAC

_ [:] f ; (g;h) = (f ; g);h
_ [:] f ; 1 = 1; f = f

The other constructions from Section 1.1 are unaltered.
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As an aside, this presentation of mathematics without the principle of
unique choice lacks criteria to determine that a given statement cannot be
proved therein. In constructive mathematics, the standard approach is to
reduce the decidability of a notoriously undecidable problem to the provability
of the said statement. Similarly, the unprovable statement of our mathematics
rarely subsume the full principle of unique choice, but we do not have an
equivalent of the undecidable problems. To address this gap, we cannot have

Let
f : B −→ Ω
f true = ⊤

f false = ⊥

Since we are in classical logic, for
any proposition P, P = ⊤∨P =
⊥, hence f is surjective (equality
in the set Ω is logical equivalence).
It is also injective, by case study
on the possible arguments. How-
ever, if it had an inverse, it would
decide the truth of propositions.

at the same time the principle of unique choice, classical logic and require
that all function be recursive. On the other hand, any combination of two is
consistent. Hence, if the conjunction of a statement A and the principle of
excluded middle ( ∀P:Ω.P∨¬P ) implies the decidability of some undecidable
problem, then A is not provable.

While this is not entirely satisfactory, it should work fairly well. It was
sufficient for the examples that showed up during the course of this work.
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Chapter Two

Homological algebra in type theory

“What really is the point of trying to teach anything

to anybody?”

This question seemed to provoke a murmur of sympa-

thetic approval from up and down the table.

Richard continued,“What I mean is that if you really

want to understand something, the best way is to try

and explain it to someone else. That forces you to

sort it out in your mind. And the more slow and dim-

witted your pupil, the more you have to break things

down into more and more simple ideas. And that’s

really the essence of programming. By the time you’ve

sorted out a complicated idea into little steps that

even a stupid machine can deal with, you’ve learned

something about it yourself.”

Douglas Adams, Dirk Gently’s Holistic Detective
Agency

A
ll of our formalisation of homological algebra is done in the
vocabulary of category theory. This way, we abstract away many
implementation details, making the proof hopefully easier. As
importantly, it allows to generalise the proofs – which are, it is

worth reminding, also to be viewed as program implementation – to any
algebraic structure for which homology is definable. Most of the material in
this chapter is presented as though we were working in the category of abelian
groups, but, in fact, it applies to categories of modules and, hopefully, to
fancier objects like the category of sheaves of abelian groups (though sheaves
without the principle of choice remain to be scrutinised).

An early version of the work presented in this chapter previously appeared
as [18].

2.1 Homology Homology can be defined with
any kind of modules over a fixed
ring. But for the sake clarity,
we will stick to abelian group
(abelian groups are exactly the Z-
modules).

Let us consider an object C∗, called a chain complex, consisting in a family
(Cn)n:Z of abelian groups together with a family (dn)n:Z:Cn −→ Cn−1 of group
morphisms with the property that for any n, dn+1; dn = 0.

In other words, that the image of dn+1 is a subgroup of the kernel of dn.
Since the Cn are abelian, we can take the quotient of the kernel of dn by the Otherwise we’d have to require

that the image of dn+1 is normal.
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image of dn+1. This quotient is called the n-th homology group Hn of C∗.
The central problem of homological algebra is to find a good description for

the homology groups Hn, usually a finite presentation. The chain complexes
are typically derived from a well-behaved topological space, and knowledge
of homology groups give information on homotopical properties of the space.
For instance two spaces with the same homotopy type have the same homology
groups.

Connected pairWe use the expression “compos-
able pair of morphisms” casually
as it makes phrasing smoother.
However, in the context of Coq,
morphism come with a type men-
tioning their source and target
groups (or objects, in the case
of categories). This is by no
means necessary, but it is easier
to manipulate in Coq, and prob-
ably better efficiency-wise too.
Hence, in our Coq implementa-
tion a phrase like “for all com-
posable pair of morphisms f and
g”, would rather look like “for
all abelian groups A, B and C,

and morphisms A
f

−−−→ B and

B
g

−−−→ C”. In the Coq phrasing,
composability is obvious from
typing, hence has no particular
status.

A pair f , g of composable (abelian) group morphisms is said to be connected –
the terminology is ours – if their composition f ; g is the trivial morphism 0.

Homology

Let f , g be a connected pair of morphisms. Their homology is the quotient of
the kernel of g by the image of f . An arguably more primitive notion than
that of an image, is that of a cokernel: the cokernel of f is the quotient of the
target group of f by its image. In term of kernel and cokernel: The homology of
f and g is the cokernel of f seen as morphism to the kernel of g.

Exact pair

A pair f , g of connected morphisms is said to be exact if the image of f is
equal to the the kernel of g. In term of homology, avoiding a reference to the
image: the pair f , g is exact if their homology is trivial (i.e. the singleton group).

Exact pairs play a important role in homological algebra. To emphasise
this, the homology of a connected pair is sometimes nicknamed “default of
exactness”.

Chain complex

A chain complex C∗ – sometimes differential graded object – is the data of a
family (Cn)n:Z of abelian group (dubbed “graded abelian group”) together
with a family (dn)n:Z:Cn −→ Cn−1 of group morphisms such that the pairs
dn+1, dn are connected. The dn are called the differential morphisms (also,
often, “boundary operators” due to the relation with a particular construction
of topological space called cell-complex).

When abelian groups are replaces
by modules, Hn is still called the
n-th homology group, not the n-
th homology module, for histori-
cal reasons.

The homology Hn of the pair dn+1, dn is called the n-th homology group
of C∗. Notice that the family (Hn)n:Z is itself a graded abelian group.

2.2 Abelian categories will not fit

Homology comes in a variety of touches and feels: abelian groups and
modules as presented in the previous section, but also, for the interested
reader, cohomology of sheaves, for instance. It is useful to define and work
with homology in a more abstract setting, in order to encompass as many
variations as possible.

On a more pragmatic point of view, having an abstract approach to homol-
ogy plays the equivalent of the programmatic “abstraction barriers”. Even
if we did not mean to reuse the code much – or, should we say, reuse the
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proof – it allows to reason more purely on the homological problem, without
being bothered by implementation details. On a similar tone, let us note that,
contrary to what is usual practice in paper mathematics, we have a strong
incentive not to represent groups and finitely presented groups in the same
fashion. Hence, an abstract approach to homology help solve the unusual
problem of defining homology in groups and homology in finitely presented
groups.

The traditional approach, on this matter, is to introduce abelian categories.

Additive category

A category is called additive (sometimes preadditive) if all its homsets are
endowed with an abelian group structure, and if the composition is bilinear.
In other, fancier, words: an additive category is a category enriched in the

Though desirable, the notion of
enriched category is not quite
convenient in Coq, as it is. Hence
we were not able to define addi-
tive categories this way. See Sec-
tion 6.1 for further discussion.

category of abelian groups.

Zero object

An object which is both initial and terminal is called a zero object. If a category
has such an object, then there is a special kind of arrows named zero arrows,
that is the arrows which “pass through” it:

0 BA

By definition, there is only one such arrow for each pair of object A and B
which we call the zero arrow from A to B and write 0. Also, if the category is

First notice that as there is only
one arrow from 0 to B, it is
the neutral element of the corre-
sponding abelian group. Since
composition is bilinear, in partic-
ular right linear, the precomposi-
tion with the unique arrow from
A to 0 is the neutral element of
the homset from A to B.

additive, the zero arrow from A to B coincides with the neutral element of
the abelian groups on the arrows from A to B

Kernel and Cokernel

In the presence of a zero object, we can also define a kernel (resp. cokernel) of

an arrow A
f

−−−→ B as an equaliser (resp. coequaliser) of f and 0. It is worth
noticing that in an additive category, equalisers arise from kernels (and dualy,
coequalisers from cokernels). Indeed a kernel of f − g is also an equaliser of f
and g. However, kernels and cokernels are usually considered more primitive
objects than equalisers and coequalisers in linear algebra

Biproduct

In an additive category, we define a biproduct of two object A and B an

object A ⊕ B together with injections A
ι1−−−→ A ⊕ B, B ι2−−−→ A ⊕ B and

projections A ⊕ B
π1−−−→ A, A ⊕ B

π2−−−→ B such that ι1π1 = 1A, ι2π2 = 1B
and π1ι1 + π2ι2 = 1A⊕B. A⊕B is both a product and a coproduct – hence the
name “biproduct”. It is noteworthy that a zero object is – in a sense that we
will not make precise – a nullary biproduct (in particular it is neutral, up to
isomorphism, for biproducts). Hence an additive category with all (binary)
biproducts and a zero object has all biproducts (of arbitrary arity).
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Normal monomorphism and epimorphism

A monomorphism (resp. epimorphism) is said to be normal if it is a kernel
(resp. cokernel) of some arrow.

Abelian category

A category is said to be abelian if it is additive, has a zero element, all (binary)
biproducts, has all kernels and cokernels, and all its mono and epi are normal.

The trouble, however, is that there are not enough such categories if we
refuse the principle of unique choice. For instance the category of abelian
groups is not abelian. This should not come at too much of a surprise, since,Suppose A

f
−−−→ B both epic and

monic. As f is epic, it is the a ker-
nel of some arrow g. In particular
f ; g = 0 = f ; 0. Since f is epic,
g = 0. The identity of B is a ker-
nel of 0, hence of g. The universal
property gives an inverse to f

in abelian categories, morphisms which are both epic and monic are invertible,
which sounds a lot like the principle of unique choice. Let us give, however, a
more precise account of what does not work.

� Morphisms between two abelian groups form an abelian group with
respect to pointwise addition.

� Composition of abelian group morphism is bilinear.

� The one-element group is a zero object of the category of abelian groups.

� Every abelian group morphism f :A −→ B has a kernel Kerf defined
as the set {a : A | f a = 0} with the group operations of A, and the
canonical injection kerf into A.

� Every abelian group morphism f :A −→ B has a cokernel Cokerf

defined as the set B quotiented by the equality b1 =Cokerf b2 if and
only if ∃a:A. b1 − b2 = f a together with the group operations of B, and
the canonical projection cokerf .

� For any two abelian groups A and B, there is a biproduct A⊕B defined
as the set A×B together with component-wise group operations from A
and B. The projections π1 and π2 are the projections of the set A×B. The
injections ι1 and ι2 are defined as λa. (a, 0) and λb. (b, 0) respectively.

However, monomorphisms of the category of abelian groups are not
necessarily normal. That is they need to be a kernel of their cokernel. Let us
remind the definition of a kernel: k is a kernel of h if

� k;h = 0,
� For any l such that l;h = 0, there is a unique u such that u; k = l.

Now, of course, f ; cokerf = 0 for any arrow f , so the first condition
holds in our situation. But we will not be able to prove that the universal
property holds. Indeed, let us take a monomorphism f from group A to
group B. To prove the universal property, the argument would go as follows:
let g be a function from C to A such that g; cokerf = 0, this means that
∀c:C. ∃b:B. g c = f b. Which means there is a function v from C to the set
{a : A | a ε Im f} (which happens to be a group morphism when the image
of f is endowed with the canonical structure of group). There is also, for the
same reason, a function u from B to the set {a : A | a ε Im f}, which can also
be viewed as a group morphism. u is a bijection. If we had the principle of
unique choice, we could deduce an inverse u′ to u, which would, again, be a
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group morphism, as all (functional) inverses of group morphisms, and the
universal property would be given by v;u′. However, this is not available and
the proof fails.

Using, as in Section 1.3, that we can extend our mathematics with the ex-
cluded middle, we can show more precisely that being injective and surjective
for an abelian group morphism does not imply that it has an inverse. Our
slogan, here, will be: unique choice is not valid in the category of abelian groups.

The set B can be endowed with
a structure of abelian group, us-
ing false as the neutral element
and the “xor” as the composition.
With the excluded middle avail-
able, the same can be done with
Ω. The function
f : B −→ Ω
f true = ⊤

f false = ⊥

Happens to be a group mor-
phism. It is also both injective
and surjective. As in Section 1.3,
an inverse would decide the truth
of propositions.

All this is not to say that abelian categories are of little use without the
principle of unique choice. They may even have a important role to play in
the setting of homological algebra computations. Our conjecture is that the
category of finitely presented groups is an abelian categories. This result
should also hold for categories of modules over a given ring, probably with
the additional requirement that the ring has decidable equality. This result
would be rather useful, as abelian categories have a variety of property
which are interesting for computation as demonstrated, for instance, by
Homalg [5]. The idea would be to reduce the computation of the homology
of a connected pair of abelian group morphisms to the computation of the
homology of a connected pair of finitely presented group morphisms where
more computations are available. Effective homology features a tool for this
sort of purposes called the basic perturbation lemma [48].

2.3 Preabelian categories

Preabelian category

A preabelian category is like an abelian category except it does not require that
mono- and epimorphism are normal. In other words, a preabelian category is
an additive category with a zero element, all (binary) biproducts, all kernels
and cokernels. It is fairly straightforward to prove that any category of module
is a preabelian category without making use of the principle of unique choice.

It is interesting, for or purposes, to notice that the theory of effective
homology, upon which Kenzo [49] is based, does not seem to escape the
framework of preabelian categories. As an illustration we shall briefly review
the notion of effective short exact sequence of chain complexes.

Short exact sequence

A short exact sequence is an exact sequence of the shape.

0ji0 Let f be a mono. We have
(kerf)f = 0f , hence kerf =
0. Conversely, if f has a null
kernel. Take gf = hf that is
(g − h)f = 0. Universality of ker-
nels gives a unique u such that
g − h = u(kerf) = 0.
Dually, f is epic if and only if if
has a null cokernel.

In other words an exact pair:

ji

with i mono, j epi.

Splitting lemma Let us consider i monic and epic.
As it is monic, i followed by
cokeri is a short exact sequence.
Since i is epic, cokeri is trivial,
hence 0 is a preinverse. The prop-
erty of the splitting lemma gives
us a postinverse to i. Since i is
epic it is actually an inverse to
i which realises the principle of
unique choice.

The splitting lemma is an important tool in classical homological algebra. It
states, in particular, that in an abelian category, for a short exact sequence i, j,
it is equivalent for i to have a postinverse and for j to have a preinverse.
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However this property is stronger that the principle of unique choice in
a preabelian category. We have seen, though, that the principle of unique
choice does not hold in the (preabelian) category of abelian group, hence the
splitting lemma does not hold, in general, in preabelian categories.

Effective short exact sequenceThe category of abelian groups
can be faithfully embedded in the
category of chain-complexes of
abelian groups, therefore there is
no principle of unique choice or
splitting lemma there either.

It is essentially to patch this difficulty, that Sergeart[48, p. 71] introduces the
notion of effective short exact sequences of chain complexes. An effective
short exact sequence is a diagram of the form:

σ

j

ρ

i

with i and j chain-complex morphisms, ρ and σ graded module mor-
phisms such that:

� i; ρ = 1
� ρ; i+ j;σ = 1
� σ; j = 1
� the pair i, j is exact

In particular, in the category of graded modules, i is monic and j epic. As
the category of chain-complex is a sub-category of that of graded modules,
they are also, respectively, monic and epic as chain-complex morphisms.
Hence, effective short exact sequences are indeed short exact sequences.

2.4 Graded objects and chain complexes

Preabelian categories are enough to represent the category of groups or other
interesting categories. We also need a notion of chain complexes which makes
sense inside a preabelian category.

Graded object

In an arbitrary category C (presumably preabelian for our purpose), we call
graded object a Z-indexed family (An)n:Z of objects of C.

Morphism of graded objects

Given two graded object (An)n:Z and (Bn)n:Z we can define a notion of
morphism between them. A first approach is to say that a morphism is a
family (fn)n:Z with fn an arrow from An to Bn.

...
2�B1�B0B1B2B...

...
2�A1�A0A1A2A...

2
f

1
f

0
f 1�

f
2�

f
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These morphisms compose naturally (by pasting the diagrams).

...
2�B1�B0B1B2B...

...
2�A1�A0A1A2A...

...
2�C1�C0C1C2C...

2
g

1
g

0
g 1�

g
2�

g

2
f

1
f

0
f 1�

f
2�

f

However, we will need some slightly richer kind of morphisms. We shall
call a morphism of degree k between graded objects (An)n:Z and (Bn)n:Z
a family (fn)n:Z where each fn is an arrow from An to Bn+k. Here is, for
example, a morphism f of degree −2:

...
2�B1�B0B1B2B...

...
2�A1�A0A1A2A...

3
f 2

f
1

f
0

f 1�
f

We can still compose morphisms by pasting diagrams. The composite of a
morphism of degree k with a morphism of degree l has degree k + l. As an
illustration, here is the composition of f of degree −2 and g of degree 1, the
composite has degree −1.

...
2�B1�B0B1B2B...

...
2�A1�A0A1A2A...

...
2�C1�C0C1C2C...

2
g

1
g

0
g 1�

g
2�

g
3�

g

3
f 2

f
1

f
0

f 1�
f

Similarily, the morphism of degree 0 which is identically the identity is a
unit for the composition (notice that it has to be a degree 0 to be a unit).

This all seems quite categorical – even though we couldn’t push the analogy
to the point of real code-sharing in Coq (see Section 6.3). We shall see that
we can also mimic the structure of preabelian category, provided the base
category is preabelian.

� The set of morphisms between two graded objects at a given degree has
a natural group structure. That is the corresponding product group.

� For two graded objects (An)n:Z and (Bn)n:Z, the graded object (An ⊕ Bn)n:Z
has the properties of a biproduct

� The graded object (0)n:Z behaves like a zero object.

� Similarily, the morphism obtained from (fn)n:Z by taking the kernel at
each n has all the properties of a kernel. Notice that in this case we can
choose the degree of the morphism – since we can always change the
indices of the kernel object without compromising any property. We
pick 0 as it will be convenient for the alignment of homology groups.
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� Dually, the morphism obtained from (fn)n:Z by taking the cokernel at
each n has all the properties of a cokernel. Here again we can pick the
degree we wish, and take 0.

We can then define homology as in a preabelian category: let f and g be a
connected pair of graded object morphisms, its homology is the cokernel of f
as a morphism into the kernel of g. The homology of a pair of graded object
morphisms is a graded object.

Chain complex

In this framework, a chain complex C∗ can be defined as a pair of a graded
object (Cn)n:Z, together with an endomorphism d of degree −1 connected
with itself (the differential morphism).

...
2�C1�C0C1C2C...

0 0 0 0 0

3d 2d 1d 0d 1�d 2�d

The homology of d with itself is called the homology of the chain complex.
It is a graded object – not a chain complex – (Hn)n:Z. Hn is called the n-th
homology group of C∗.

The choice of degree 0 for both kernel and cokernel ensures that Hn is
indeed the n-th homology group of C∗, that is the homology of the pair
dn+1 followed by dn – as illustrated by following diagram where d′ is the
embedding of d in the kernel of of d.

...
2�C1�C0C1C2C...

...
2�K1�K0K1K2K...

...
2�H1�H0H1H2H...

0
drekoc

0
drekoc

0
drekoc

0
drekoc

0
drekoc

3
0

d 2
0

d 1
0

d 0
0

d 1�

0
d 2�

0
d

drek drek drek drek drek

3d 2d 1d 0d 1�d 2�d

Coq voodoo

The definition of the category-like structure of graded objects deserves some
technical comments. It is not straightforward to make Coq accept these
definitions.

Let us see why, first. Given a preabelian category A, we write A for the
These notations are made possi-
ble in Coq by the mechanism of
implicit type coercions. type of its objects and A A B for the homset from A to B. We define the graded

object as the type Z → A (where Z is a binary representation of integers from
the standard library of Coq). From there, there are two approaches to define
the sets of morphisms.

� We can define morphisms (without a degree) between the graded objects
A and B to be the elements of type forall n:Z, A (A n) (B n), then we de-
fine a family of functors indexed by integer numbers, for a graded object
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A, k↑A would be defined as as fun n ⇒ A (n+k) and for a morphism f,
k↑f would be defined as fun n ⇒ f (n+k). Then a morphism of degree k
between A and B is a morphism between A and k↑B.

Unfortunately, it does not work much further than that. Indeed let us
consider two composable morphism f and g of respective degree k and l.
Their composition f·g would be defined as fun n ⇒ (f n)·(k↑g n) whose
target object would be fun n ⇒ C (n+k)+l where we would expect (k+l)↑C
(i.e. fun n ⇒ n+(k+l)). They appear the same to the mathematician, as
addition of integers is commutative. The Coq user, however, tends to
shrieks and cries when presented with this situation. Indeed, Coq’s
way to identify terms is through the conversion rule. If two terms are
convertible then they are the same, otherwise they are not. Associativity
of addition is not understood by the conversion rule, as it is defined
before addition. And, as a matter of fact, there is no way to define
addition such that associativity is simulated by the conversion. To solve
that, either one can give up on the decidability of conversion (like in
extensional type theory [41]), or one allows to throw in new decidable
conversion rules. The latter has two iconic approaches, the Calculus of
Algebraic Constructions [14] – where functions can be defined as rewrite
rules more sophisticated than pattern-matching (and more than neces-
sary for ground terms) – and, more recently, the Calculus of Inductive
Construction Modulo Theory [53] – where one can plug certified deci-
sion procedures in the conversion. Both these approaches are sufficient
for our case.

� The other approach is to define directly morphisms of degree k from A
to B as being functions in forall n, A (A n) (B n+k). At first sight, it does
not seem of much help as the type of morphisms of degree k is the same
as the one proposed in the functor-based encoding. It seems even worse,
as we lose the categorical structure: we had a category (graded objects
with morphisms) and a family of functors, we could use that setting
abstractly, and reuse theorem about categories – if it had worked.

There is actually hope in this direction, for that very reason: we abandon
the idea of an encoding as a category with additional structure, this
allows to “split the problem” differently. By choosing a more clever
implementation of morphisms of degree k we will manage to have them
behave fairly well.

As a matter of fact, it is not very plausible that we can write, in Coq, the
(somewhat generalised) category of graded objects in any pleasant way at
all. We give a partial solution in which the constructions of this category
(in particular the composition of morphisms) are expressible and have the
expected types. We actually encode morphisms of degree k as a record
reporting some of the effort that conversion needed to do as proof obligations:

Record morphism (k:Z) (A B:Z→A) := {
shift : Z → Z ;
maps : forall n:Z, A (A n) (B (shift n)) ;
homogeneity : forall n, shift n ≡ n+k

}.
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Where ≡ denotes the propositional equality of Coq, usually written =,
but we reserved the latter for set equality. Let us remark that propositional
equality of Coq is stronger than convertibility. Indeed, if it coincides with
convertibility on ground terms, it can make use of any available proof principle
on free variables of its operands. In particular, forall x y z:Z, (x+y)+z≡x+(y+z)
is provable.

We will write A −→ B :: k for morphism k A B (not to be confused with
A → B which is the type of maps from A to B).

Now defining composition is straightforward:

Program Definition comp (k l:Z) (A B C:Z→A)
(f:A−→B::k) (g:B−→C::l) : A−→C::k+l := {|

shift := fun n ⇒ shift g (shift f n) ;
maps := fun n ⇒ (f n)·(g (shift f n))

|}.

We need only to prove that forall n, shift g (shift f n) ≡ (k+l)+n which is no
problem.

However the story does not end here. If composition is now easy, equality
(between two morphisms of the same type) which was easy in the first
encodings has become hard. We shall need another trick to be able to define
equality.

First let us introduce the following type:

Inductive eqopt {A B:Type} (F:A→B) (k l:A) :=
| NotEq : eqopt F k l
| Eq : (F k → F l) → eqopt F k l

.

In other words, an eqopt F k l is either NotEq or Eq f where f converts from
F k to F l. Our intention is that NotEq means that k and l are not propositionally
equal (i.e. ¬k≡l) and Eq f means that k and l are propositionally equal (i.e.
k≡l) and, in addition, that f is the identity function (f≡fun x⇒x). Functions
returning an eqopt F k l are, then, a variant of equality decision. We will use
such a function for Z:

Definition Zeq {A:Type} (F:Z→ A) (k l:Z) : eqopt F k l.
Lemma Zeq_same : forall F k, Zeq F k k = Eq (fun x ⇒ x).

Now we can define equality.

Definition eq (k:Z) (A B:Z→A) (f g:A−→B::k) :=
forall n,
match Zeq B (shift f n) (shift g n) with

| NotEq → False
| Eq id → id (f n) = g n
end

.

There are actually two other constructions that need the trick of using Zeq:
addition of morphisms (for the same reason than equality: it acts on a pair
of morphisms of the same degree) and cokernel. This means in practice that
every addition or cokernel features a structural test of equality which always
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succeeds (typing enforces it). This equality test will always be run on fairly
short integers (no one is really interested in the millionth homology group of
anything), nonetheless it is unsatisfying as this test is a useless computation.
We can sum it up with the following slogan: static properties need not be enforced
by dynamic tests.

There is a good reason in practice for Coq to require such tests, though.
Types can be proved identical even if they are not, provided the context makes
inconsistent hypotheses. The context is made of all the local hypotheses
made by the function being defined, and the branches of pattern matching
under scrutiny. Hence it does happen that some expressions are written in an
inconsistent context; in this case we typically just want to prove that the context
is inconsistent, though (remember, from Section 1.3, that this is the principal
role of computationally irrelevant proofs in programs). Connor McBride
coined the phrase lies are locally true to describe this situation. Dynamic tests
required by Coq are meant to avoid making use of such a lie, which would
lead to Coq’s equivalent of segfault. This constraint is a consequence of
strong reduction. In a weak reduction, every evaluation happens in the empty
context, local lies are never evaluated.

In addition, these mechanisms come with rather severe limitations. If
when working with morphisms of a concrete degree, things go fairly well –
if d has type C−→C::-1, then d·d has type C−→C::-2 as expected. However, it
is not possible to express arbitrary statement about morphisms with abstract
degree. For instance, let f:A−→B::k, g:B−→C::l and h:C−→D::p, then (f·g)·h has
type A−→D::(k+l)+p and f·(g·h) has type A−→D::k+(l+p). These types are not
convertible unless associativity of addition is supported by conversion. It is
therefore not directly possible to express the associativity of composition, as
equality has a type which supposes that both sides have the same type. There
are in the literature examples of equality which works on non-convertible (yet
equal) types; however they do not work well without some variant of the K
axiom[52]. Such an approach could be worthwhile in the setting of graded
objects, as K is valid on Z (and, more generally, on types with decidable
propositional equality). We haven’t conducted sufficient investigation to be
able to say whether the it would solve this issue though, it seems to be enough
for equality but the problem arises again with addition. Another solution
could be to summon the Zeq trick again in the statement of the problem
(match Zeq (fun n⇒A−→D::n) ((k+l)+p) (k+(l+p)) with . . . ). This would be ver-
bose, and break any chance of abstraction, but, with some boilerplate, might
work better with the rewriting mechanism of Coq.

2.5 Kernels of matrices

In this section we will present an example of a direct utilisation of the pre-
abelian category framework to produce an effectively executable proof. We
will prove that the kernel of a linear function between two finite dimensional
vector spaces has finite dimension.

This might not be a very legitimate usage of the preabelian category
abstraction, as the proof is not very different from its concrete counterpart.
Additionally it does not seem to generalise to any other useful proof. On the
other hand, a quite principled presentation arises from the approach. It is
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meant to demonstrate the style of proofs preabelian categories suggest.

Field

Before we go on with the proof, let us consider the notion of field from the
point of view of constructive logic. Fields typically come in two flavours: let
K be the base set of a field

� Either it is given a function 1 :{a : K | ¬a = 0} −→ K which verifies, for
any a:K such that ¬a = 0, that a

a
= 1.

� Or the property that ∀a:K. ∃a′:K. aa′ = 1 holds.

From a constructive (with the principle of unique choice) point of view, the
latter is strictly stronger than the former. More precisely, the second property
is equivalent to the first in conjunction with the decidability of the equality on
K.

For the sake of completeness
we should mention that the first
property can also be split: it has
a weaker version of the form
∀a:K.¬a = 0→∃a′:K. aa′ = 0.

When we drop the unique choice it becomes a bit more complicated as
the second property is split in two cases: as it is written it becomes rather
weak since it does not allow to compute anything. But we can reformulate it
to regain its original meaning, giving a function 1 :K −→ {a = 0}+ {a′ : K |
aa′ = 0}. Where the set {a = 0}, is the set of the proofs of a = 0 all considered
equal. It is this last formulation that we will use for our proof.

A field K can also be seen as a K-vector space. It verifies (both as a field
f 1 is either 0 in which case f =
0, or some non-zero k and f x =
x(f 1) = kx. In the latter case, let
g x = x

k
. We have that f (g x) =

g (f x) = x, for any x.

and a vector space) that any arrow K
f

−−−→ K is either 0 or has an inverse. The
inverse of f plays the categorical-equivalent role of the division in the field.
We shall remember that endomorphisms of fields are null or automorphisms.

Finite dimensional object

Let us fix, for the rest of this section, a preabelian category A and an object K
of A such that any endomorphism of K is either 0 or an automorphism.

The usual definition of finite dimensionality for a vector space A states
that A has a finite linearly independent generating family – the basis. An
equivalent statement in the realm of categories would be that there is a bijective
linear function b from some Kn – with n:N – to A. This b is to be understood
as the function interpreting coordinates along the basis as a vector in A. Here
Kn corresponds to finiteness, the fact that b is a monomorphism corresponds
to linear independence, and the fact that it is epic corresponds means it is
generating. Now, without the axiom of unique choice it the question is: is
it the right definition, or do we need an inverse? An inverse to b gives a
decomposition into coordinates. For our application, at least, this cannot
be spared. Hence we shall say that A has finite dimension when there is an
isomorphism between A and Kn for some n:N. We shall adopt the terminology
that the morphism from Kn is called the basis, and the reciprocal is called the
decomposition along the basis.

Outer lemma

The core of the proof will consist in proving that if f is an arrow from Kn to
Kp for some n and p, then Kerf is isomorphic to Kr for some r.
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Let us first consider an arrow f in A
f

−−−→ B⊕ C, it can be split into two

components: A
fπ1

−−−−→ B and A
fπ2

−−−−→ C. Note that f can be rebuilt from
these two components (B⊕C is a product). Our first lemma is that the kernel
of f is isomorphic to the intersection of those of the two components. We
need to phrase this in the language of preabelian categories. Let us consider

the arrow Ker(fπ2)
ker(fπ2)

−−−−−−−−→ A. Its composite ker(fπ2)fπ1 can be read
as the restriction of fπ1 to Ker(fπ2). Hence the lemma can be stated as:
Ker(ker(fπ2)fπ1) is isomorphic to Kerf .

Let us write K for Kerf and
K′ for Ker(ker(fπ2)fπ1). To
map K′ to K, consider the

map K′
η

−−−→ A defined as
ker(ker(fπ2)fπ1)ker(fπ2).
Since ηf = 0, η can also be seen
as an arrow from K′ to K. The
other direction is realised by
kerf which can be seen as an
arrow to Ker(fπ2) (it’s bigger
than the kernel of f ). It follows
that kerfker(fπ2) = kerf

hence kerfker(fπ2)fπ1 =
kerffπ1 = 0, and kerf can be
seen as an arrow from K to K′. It
follows from the definitions that
η together with kerf form an
isomorphism.

What this lemma tells us, is that we can restrict our attention to arrows of
the shape Kn f

−−−→ K. Indeed, if we can give a basis (and decomposition) to

such an arrow, then to solve an arrow of the form Kn g
−−−→ Kp if p is 0, then

full Kn is the kernel of g, which directly gives a basis, otherwise Kp is K⊕Kp′

,
then ker(fπ2)fπ1 is an arrow from Ker(fπ2) to K. Since fπ2 is an arrow
from Kn to Kp′

, by induction we get a basis of Ker(fπ2). Hence ker(fπ2)fπ1

is an arrow of the shape Km −→ K, which we can solve by assumption.

Inner lemma

Let us consider an arrow A⊕ B
f

−−−→ C. It can be split into two components

A
ι1f

−−−−→ C and B
ι2f

−−−−→ C. Here again, f can be entirely rebuilt from
its two components (A ⊕ B is a coproduct). Now, let us suppose that ι1f The categorical proof goes about

like the concrete proof showed
in the text except that the ba-
sis is given as the morphism
ι2 − ι2fgι1, the reader can con-
vince himself that it corresponds
to the basis proposed in the proof
beside. The inverse function is
kerfπ2.

has an inverse C
g

−−−→ A. Then the kernel of f is isomorphic to B. The
following illustrates how g essentially performs a division. Let us pretend for

a moment that K⊕Kn f
−−−→ K, and that K is a field. Then f (x0, x1, . . . , xn) =

λ0x0+λ1x1+ . . . +λnxn with λ0 having an inverse. Then f (x0, x1. . . , xn) = 0
if and only if x0 = λ1

λ0
x1 + . . . + λn

λ0
xn. Hence (1− λ1

λ0
, . . . , 1− λn

λ0
) is a basis of

the kernel of f .
The proof that Kerf is isomor-
phic to A ⊕ Ker(ι2f) is a a bit
tedious, but rather straightfor-
ward. Let us sketch it briefly.

A⊕Ker(ι2f)
η

−−−→ A⊕B where
η = 1 × ker(ι2f) = π11ι1 +
π2ker(ι2f)ι2 can be seen as an
arrow to Kerf . The inverse
arrow is kerfπ1ι1 + kerfπ2ι2
where kerfπ2 is seen as an ar-
row to Ker(ι2f).

If, on the other hand, ι1f = 0, then Kerf is isomorphic to A⊕Ker(ι2f).

The algorithm in motion

Let us paste the pieces together. Let Kn f
−−−→ K. If n = 0, then the kernel is

the zero object. Otherwise, K⊕Kn′ f
−−−→ K which splits in two cases, either

ι1f = 0, then the kernel of f is isomorphic to Kn′

– and we’re done – or ι1f

has an inverse and the kernel of f is isomorphic to K⊕Ker(ι2 f) By induction,
Ker(ι2 f) is finite dimensional. And the problem is solved.

Remember that, as the philosophy of this work prescribes, the proof

actually describes an algorithm which computes, given some A
f

−−−→ B, with
A and B finite dimensional, a basis and a decomposition for Kerf . Using
the decomposition we can compute coordinates for the vectors of the basis of
Kerf .

As often, a f can be specified by a matrix (an element of (Kn)
m) – this

makes use of the bases of A and B. The implementation described here has
been tested to compute bases of kernels of various matrix with coefficient in
K – the field of rational numbers. The computation are fast up to size 30× 30

A skeleton of the Coq proof pre-
sented in this section can be
found in Appendix A together
with example runs of the proof
seen as a program.

and tractable up to size 50 × 50, approximately. This might be considered
a disappointment, but we should stress that we have used a very naive
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representation for matrices: lists of lists. In this example we were only mildly
interested in performance. Otherwise we might have wanted to use a smarter
representation, for instance replacing lists with binary lists [46, p. 119–122].
This would come at a cost, though, as the induction to solve arrows of the

form Kn f
−−−→ K is structural on lists. Coq really likes structural recursion.

We would need to devise a recursion principle to use, say, binary lists as
linked lists. As mentioned in Section 1.3, using non-structural recursion in
Coq has a cost on performance which is hard to quantify a priori. However,
the outer induction (reducing the problem from Kn −→ Kp to Km −→ K)
could be reduced to a logarithmic number of step instead of linear. Maybe
more importantly, access in the matrices would be much faster, effectively
reducing the complexity of the functions they represent. It is safe to say this
would result in an overall improvement in time performance.

We might also want to represent matrices using some flavour or arrays
– as it is more common in traditional programming languages. This may or
may not be a good idea, as our algorithm constructs and destructs matrices –
which is harder to do on arrays than on lists (binary lists being pointedly a
compromise between arrays and lists). Though they are not part of historical
Coq paraphernalia, some flavour of persistent array can be made available,
as explained in Section 3.4. They might fit for this application. This leave us
with one consideration: if we are to use arrays to represent products (or, in
our case, biproducts) in category, we cannot restrict our attention to binary
(plus nullary) products. All n-ary products can be generated using binary
and nullary products. They can be coded in a variety of ways – including
lists and binary lists mentioned earlier. However arrays are encodings of
n-ary products which are atomic in that they cannot be described in terms of
smaller – or bigger – products. This leads to a formulation of the phrase “a
category with all products” in a way that is sometimes called unbiased. Further
thoughts on this are presented in Section 5.3.
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Chapter Three

Efficient computations

Five hundred carpenters and engineers were immedi-

ately set at work to prepare the greatest engine they

had. It was a frame of wood raised three inches from

the ground, about seven feet long, and four wide, mov-

ing upon twenty-two wheels. The shout I heard was

upon the arrival of this engine, which, it seems, set

out in four hours after my landing. It was brought

parallel to me, as I lay. But the principal difficulty was

to raise and place me in this vehicle. Eighty poles,

each of one foot high, were erected for this purpose,

and very strong cords, of the bigness of packthread,

were fastened by hooks to many bandages, which the

workmen had girt round my neck, my hands, my body,

and my legs. Nine hundred of the strongest men were

employed to draw up these cords, by many pulleys

fastened on the poles; and thus, in less than three

hours, I was raised and slung into the engine, and

there tied fast

Jonathan Swift, Gulliver’s travels

C
omputer algebra systems usually consist in rather hard computa-
tion. Kenzo – and homological algebra in general – is no exception.
However, when it comes down to efficiency, dependent type the-
ories rarely compete with traditional programming languages.

As a matter of fact, the question of efficiency has been often dismissed in
favour of program extraction: from a Coq program, one can extract an OCaml
program with the same behaviour, but typically way more efficient. While this
is perfectly reasonable for standalone program, there is a case where it cannot
be accommodated: when computations are part of Coq proofs – process often
known as reflexive tactics. The most famous such example is the proof of the
four colour theorem [24], but there are various other reflexive tactics out there.
Coq’s standard library most notoriously provides a decision procedure for the
theory of commutative ring[28].

A major improvement was achieved with the introduction of a dedicated
virtual machine [27] allowing Coq programs to compare with (bytecode
compiled) OCaml ones. Relatedly, there are preliminary works to leverage
OCaml’s native compilation in order to improve computation speed more.
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Still, it does not solve everything. Indeed, Coq didn’t provide any primitive
data-structure, every type is to be encoded using the constructs allowed by
the system (primarily, inductive definitions). So we went and added some.
More precisely, we shall present in this chapter, how we extended Coq – in
particular Coq’s virtual machine – with integers in order to use the arithmetic
abilities of the processor.

3.1 A brief history of N

In this section we shall present various encoding of the type of natural
numbers present in the standard library of Coq. The variety of these reflects
the history of Coq, and how, as time passed, it has been seen increasingly
important to compromise simplicity for the sake of efficiency.

Peano numbers

The simplest way to define natural numbers inside Coq’s theory is to define
them as Peano numbers:

Inductive nat : Type :=
| O : nat
| S (n:nat) : nat

nat is a so called inductive type, its definition is read: “nat is the smallest
type which has an element O and for any element n, has an element S n”.

Operations on inductive types are defined by recursion on their structure.
For instance, addition on nat is defined as follows.

Fixpoint plus (n m:nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end

Addition on nat is an operational version of Peano’s axiomatic addition.
Let us give as an example, the computation of 3 + 2:

plus (S (S (S O))) (S (S O)) ❀ S (plus (S (S O)) (S (S O)))
❀ S (S (plus (S O) (S (S O))))
❀ S (S (S (plus O (S (S O)))))
❀ S (S (S (S (S O))))

The computation of a sum is linear (in its first argument), which is hardly
acceptable. Our slogan will be: Peano numbers: simple, yet intractable.
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Binary numbers

A binary representation of natural numbers allows logarithmic operations.

Inductive positive : Type :=
| xI (p:positive) : positive
| xO (p:positive) : positive
| xH : positive

Inductive N : Type :=
| N0 : N
| Npos (p:positive) : N

An element of N is either 0 (N0) or a string of 1-s (xI) and 0-s (xO) starting
with a 1 (xH). Defining operations for these numbers is not as simple and
direct than with Peano numbers. We will not show a definition here, we will
content with a run of the addition of 3 + 2 (where Pplus is the addition over
positive):

Nplus (Npos (xI xH)) (Npos (xO xH)) ❀ Npos (Pplus (xI xH) (xO xH))
❀ Npos(xI (Pplus xH xH))
❀ Npos(xI (xO xH))

The improvement both in computation time and space usage is really
worth additional hard work. In programs which do not do a lot of number
crunching, this representation will probably be sufficient. An issue, though, is
that these numbers can only be read from the least significant bit to the most
significant. Some operations on natural numbers work better if the number is
read the other way. An archetypal example is comparison: even if we store
the length of the number beside, we still need access to the most significant
bit, which is linear in the length (i.e. logarithmic in the value) of the operands.

As a side note, remark that this encoding of natural numbers gives rise,
for free, to an encoding of the integers which appears in the library of Coq as
the following type:

Inductive Z :=
| Z0 : Z
| Zpos (p:positive) : Z
| Zneg (p:positive) : Z

Numbers as trees

A natural approach to deal with the order in which the bits can be read is to
represent the numbers as binary trees, reading the digits from the leaves. To
benefit from this construction we will need to keep track of the height of the
tree, for that we need a previously existing kind of natural numbers. A good
choice is Peano integers: the height of the trees is typically very small (filling
a 4 Gb memory with digits requires 235 bits, such a number has height 35 as
a binary tree). And either way the overhead, in memory, of the tree itself is
bigger than that of the Peano number representing its height.
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We are ready to provide an implementation for such numbers:

Fixpoint word h :=
match h with

| O → bool
| S k → (word k ∗ word k)%type
end.

Definition bigN := { h & word h }.

The code for word showed in this
section is a blatant, yet shameless,
simplification of the code which
can be found in the standard li-
brary of Coq.

A bigN is defined as the pair of a Peano number h and a number of height
h.

Note that we have lost the property that every number has a single repre-
sentation, as a number can always be seen as a number of a larger height. This
makes the basic operations more difficult to write down than with the earlier
representations. Also, as the trees are perfectly balanced, there is easily a lot
of trailing 0-s in front of the number ( 2(h+2) is represented as the pair of 1 and
0 seen as numbers of height h+ 1, 1 is, hence, represented with h additional
0-s ). We shall modify our type word to take this remark into account:

Fixpoint word h :=
match h with

| O → bool
| S k → option (word k ∗ word k)
end.

option A is either Some a with a:A or None. Here, None stands for 0 at any
height. The operations will be programmed to favour None over the more
classical representation of 0.

Another perk of this binary tree representation is that it is well-suited for
Karatsuba multiplication [32]: a number n is represented as nh2

h + nl where
h is the height of n. Let p = ph2

h + pl be another number of height h,

np = (nh2
h + nl)(ph2

h + pl) = (nhph)2
2h + (nhpl + nlph)2

h + nlpl

This gives a naive algorithm – in O (n2) as usual – which require four
recursive multiplications. However, if we write a for nhph and b for nlpl, then

(nh + nl)(ph + pl)− a− b = nhpl + nlph

Meaning we can compute np with three recursive multiplications (though
at the cost of some extra additions). This leads to an algorithm in O (nlog 3).

The idea of representing numbers as binary trees had been in the air for a
while. To the best of our knowledge, its first written appearance is in a work
from Edwin Brady & al. [16, Chapter 5] where they nicely nicknamed the
approach: every number has at most two digits.

More digits

We are still very far from the performances of mainstream programming
languages. Especially as far as memory is concerned: every single bit of our
natural numbers are stored on a whole computer word (usually 32 or 64 bits).
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The large overhead puts a lot of pressure on the garbage collector and the
computer cache.

To adress this problem we can take the binary tree representation (or the
list representation, but binary trees are generally better) on a bigger base than
2. We then implement the digits with a more compact representation and
more efficient arithmetic operations. As computer scientists ought to, we shall
only consider bases which are powers of 2.

A first approach has been successfully used to formally verify the primality
of rather large prime numbers[29]. It consists in representing digits of base 28

as an enumerated datatype:

Inductive w8 : Type :=
| W0
| W1
| W2

...
| W255

This representiation is a very significant improvement over the former
ones both in term of speed and memory (even though the packing is still not
very good as long as values of w8 are stored on machine words). Arithmetic
operations on w8 are implemented by case analysis which, for binary oper-
ations, involves a squared number of cases (216 in this particular case). The

These 100 Mb represents defi-
nitions of arithmetic operations
modulo 28 as well as operations
handling carries, plus the proofs
of their correction.

file for w8 – which is, understandably, generated by a program – is 100 Mb

large. Would we try to move to base 216, we would end up with a 1 Gb file.
We cannot drive this approach much further. Also we are really underusing
the processor which typically has very fast arithmetical operations.

3.2 Going native

In order to use the processor arithmetic directly, a first possibility is to extend
the theory underlying the Coq logic with:

� one primitive type int
� the constructors 0, 1, 2, . . . , 2n−1 of type int
� the basic primitive functions over the type int such as +, ∗, . . .
� the corresponding reduction rules for each primitive function.

It is also necessary to give it an equational theory, for instance, Peano
theory together with a lemma stating that (2n − 1) + 1 ≡ 0 where (≡) is the
propositional equality of Coq (or, equivalently, Leibniz equality). However,
this approach has some drawbacks:

� It adds a large amount of new constructions to the theory. This goes
against the so-called de Bruijn’s principle which states that keeping the
theory and its implementation as small as possible highly contributes
to the trust one has in a system. Furthermore, on a more practical side,
it will have a deep impact in the implementation, since the terms will
have to be extended with new syntactic categories (primitive types and
primitive functions).
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� It adds a lot of new reductions, not only for ground arithmetical terms
– like 18+24 – but also for theorems. For example, if we consider the
theorem n_plus_zero that states that forall n:int. n + 0 ≡ n, n_plus_zero 7

should reduce to refl 7 where refl represents the reflexivity of equality. As
a matter of fact, every proof of 7≡7 needs to reduce to refl 7 if we want to
preserve an adequate notion of cut elimination for Coq. An alternative,
probably more realistic, solution would be to drop cut elimination and
pose the theory as axioms.

For these reasons, we have taken an alternative approach. Efficient eval-
uation in Coq, as provided by the virtual machine, uses a compilation step.
Before evaluating a term, it transforms it into another representation that is
more suitable for performing reduction. The idea is to introduce the native
machine integers not as part of the theory of Coq but only in this compilation
phase. So, the type int of machine integers is defined using the standard
commands as a type with a single constructor that contains n digits:

Definition bit := Bool.
Inductive int : Type := In (dn − 1 . . . d1 d0 : bit) : int.

We relate the machine numbers int with the relative numbers Z with the
two functions toZ : int → Z and its inverse toI : Z → int and we prove that they
satisfy the following two properties:

forall i: int, toI (toZ i) = i
forall z : Z, toZ (toI z) = z mod 2n

Now, it is straightforward to define the primitive functions of int as the
image of the corresponding function of Z. For example, addition for int is
defined as follows:

Definition i1 +int i2 := toI (toZ i1 +Z toZ i2)

So that addition verifies directly that

i1 +int i2 ≡ toI (toZ i1 +Z toZ i2)

Actually, any closed definition verifying this property in the empty context
would be suitable for +int. Indeed, propositional equality of closed terms in

Actually, since propositional
equality is decidable on type
int, it suffices that the context
on which the proof depends is
non-contradictory.

the empty context coincides with convertibility. For instance it implies that
3+int2 is convertible to 5. It is hence safe to add the rule 3+int2 ❀ 5 to the
convertibility test.

Our job is to ensure that this new rewrite rule is prefered over a least
efficient choice and that it is implemented so as to leverage the arithmetical
capabilities of the processor. To that end, we shall modify the compiler in such
a way that it treats the type int as real machine integers. The main difficulty
is that Coq requires strong reduction. This is not the case of traditional
functional languages where only weak reduction is needed (no reduction
under binders).
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3.2.1 Coq’s virtual machine

Strong reduction by symbolic weak reduction

Before being compiled into the virtual machine, Coq terms to be normalised
are compiled into an intermediate calculus called the symbolic calculus [27]
The terms of the symbolic calculus are an extension of those of Coq, hence
compilation is the identity (formally type annotations are erased, but it does
not justify to perform an actual compilation pass in practice).

On the rewriting side, the symbolic calculus does not quite behave like
Coq. It has a weak (no reduction under binders) call-by-value reduction. As
such it has a notion of values, we will write them with v-s to distinguish them
from non-value terms. This is where the extensions to the grammar of terms
kick in: the symbolic calculus has a weak reduction, still we want to use it
as part of strong reduction, hence it will need a notion of neutral term as it
will have to deal with free variables. In the symbolic calculus lingo, this is
called an accumulator, written [k]. Here k is typically a neutral term of the
form x v1 . . . vn where x is a (free) variable. It can also be a pattern matching:
matching over a neutral term is neutral.

In addition to the standard rules like β-reduction, the symbolic calculus has
a few rules to work with accumulators. For instance, the case of application is
as follows:

[k] v ❀ [k v]

To employ the symbolic calculus as a mean of computing normal forms of
Coq terms, we use a variant of normalisation by evaluation [12]. An evaluator
of the symbolic calculus gives us a function V which computes the value of
a term. To actually normalise, we need another function R which reifies the
value, such that N (t) = R(V(t)) performs normalisation on t. Writing such
a function R is rather straightforward, here is, for instance, the case of the
abstraction (which happens to be the one of interest):

R(λx.b) = λy.N ((λx.b) [y])

where y is a fresh variable.
To sum up, the normal form of a term can be obtained by recursively

computing its symbolic weak normal form and reading back the resulting
value. The efficiency of the process clearly depends on the efficiency of the
weak evaluation.

Compiling the symbolic calculus

To implement the weak evaluation efficiently, it is compiled into an abstract
machine – a variant of the zam [39]. A state of the abstract machine is given by
a triple (e, c, s) where c is code to be evaluated, s a stack, and e an environment
– both s and e are lists. To give a hint of their behaviour, let us give two rules
as an example:

(e, ACCESS(i); c, s) ❀ (e, c, e[i] :: s)
(e, GRAB; c, v :: s) ❀ (v :: e, c, s)

These reductions correspond to a variable and a λ-abstraction, provided
that binders and variables are encoded using de Bruijn indices. For some
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more flavour, here are the detailed compilation of a variable and λ-abstraction
of the symbolic calculus presented with de Bruijn indices:

JiK = ACCESS(i)
JλtK = CLOSURE(GRAB; JtK;RETURN)

Even if the few rules shown here are a bit simplified, everything works
mutatis mutandis like OCaml’s implementation of the zam except for accumu-
lators. Accumulators are dealt with by cleverness as described in [27].

3.2.2 Adding machine integers

Extending the symbolic calculus

To implement our new reduction rules for integer arithmetic efficiently, we
shall extend the symbolic calculus with a notion of integers. Integers in this
sense – noted m for machine integers – are fixed size binary words (they
support both arithmetic modulo and carries). Symbolic calculus’s integers
will act as counterparts to the In dn − 1 . . . d0, as defined previously. Of course,
as the symbolic calculus deals with open terms it won’t always be possible
to compile an In dn − 1 . . . d0 into an integer. To alleviate the verbosity of this
section, we shall write p instead of In dn − 1 . . . d0, whether open or close.

When close we shall write 〈p〉 the integer corresponding to p. Conversely
we will write 〉m〈 for the p corresponding to m. These two conversions need
to be reflected in the symbolic calculus. Integers are introduced with:

p ❀ 〈p〉

They also need to be morphed back in case a pattern matching is needed:

match m with . . . ❀ match 〉m〈 with . . .

Notice that closed p-s of the form In vn − 1 . . . v0 used to be values in the
symbolic calculus, but in this new-and-extended version, they ought not to
be. Machine integer, on the other hand, are values. As such they need to be
handled by the function R:

R(m) =〉m〈

With this in mind we can handle arithmetic operations (by which we mean
addition). We are given an addition (+) coming from Coq, it has a counterpart
+M which operates on machine integers. It comes equipped with the following
rewrite rule:

m1+m2 ❀ m1 +M m2

Notice that the symbolic calculus comes with a deterministic rewrite
strategy and this rule conflicts with the normal rule on terms of the form
v1+v2 (presumably a β-reduction). We need to just forbid the latter rule when
both v1 and v2 are machine integers.
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Compiling the extensions

To implement these extensions to the symbolic calculus we must modify the
virtual machine accordingly. First, it needs a notion of integer to compile
symbolic calculus’s ones. We’ll write them m as well, so that the compilation
of an integer will be simply:

JmK = PUSH(m)

Where PUSH has the straightforward semantics of pushing m to the stack:

(e, PUSH(m); c, s) ❀ (e, c, m :: s)

The rules to construct and destruct integers are reflected explicitly in the
virtual machine, they are named OFINT and TOINT:

(e,OFINT; c, d0 :: . . . :: dn − 1 :: s) ❀ (e, c, 〈In d0 . . . dn − 1〉 :: s)
(e,TOINT; c,m :: s) ❀ (e, c, 〉m〈:: s)

Of course, it will happen that among they arguments of OFINT there will
be an accumulator, in which case OFINT cannot build an m, it will build the
corresponding p instead. Dually, TOINT might get a p rather than an m, in
which case it will behave as the identity.

On the compilation side, OFINT is used to compile p-s so that machine
integers are used as soon as soon as possible (this reflects the fact that, in the
symbolic calculus, close p-s are no values):

JIn t0 . . . tn − 1K = Jtn − 1K; . . . ; Jt0K;OFINT

The instruction TOINT is used in the compilation of pattern matching. We
shall cast a veil on the precise rule to preserve the sanity of the reader. Suffices
to say that a TOINT is inserted before any pattern matching over type int to
ensure they are well formed.

Finally, addition also has a dedicated instruction ADD, which performs ad-
dition over machine integers, presumably using the processor’s own addition
procedure.

(e, ADD; c, m1 :: m2 :: s) ❀ (e, c, (m1 +M m2) :: s)

Here again, the ADD instruction will not always have machine integers
as operands. When the case arises, ADD falls back to the normal behaviour
or addition as specified by the original Coq term. Compilation of addition
follows:

Jt1 + t2K = Jt2K; Jt1K;ADD

It deserves notice that our new instructions rely on the ability to discern
m-s from p-s. It so happens that there is an easy solution to that problem.
Values of the form p are represented as blocks, that is pointers. When the
size of machine integers are well-chosen, they can be implemented without
pointers. The garbage collector also needs to distinguish between pointer
and non-pointer values. For this reason, values of the virtual machine have a
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special bit marking its status: for a pointer it is set to 0, otherwise it is set to 1.
Our instructions match on this bit to test the form of their operands.

As a consequence, Coq being supposed to work on 32 bit machines and
higher, the size of our machine integers is 31 (that is the maximum size avail-
able after reserving the bit used for garbage collection). In theory we could
use any size but any bigger than 31 would require boxing integers, and they
would require another trick to test which representation they use. Bigger inte-
gers mean some performance gains, boxed integers mean performance losses,
but preliminary tests suggests that the loss would be largely outweighed by
the gains. There is, also, an option in-between, which consists in providing
unboxed 63 bit integers on 64 bit computers and boxing them on 32 bit ones.

We have developed a reasonable library of primitive functions for the
type int. It contains the usual functions (addition, multiplication, square root,
comparison, logical functions, shifts) but also some iterators. Functions like

Definition foldi (A:Type) (F:A→A) (a:A) (n_s n_e:int) :=
if n_s ≤= n_e then

(fix aux (i:int) (ai:A) {
if i = n_s then F i ai else aux (i-1) (F i ai)

}) n_e a
else a.

that computes Fns (Fns+1 (. . . (Fne a) . . . )) cannot be defined on top of
our library. Because of the definition of int, this is not structurally recursive
so Coq cannot establish that it always terminates. If they were not primitive,
there would be no way to perform recursion on integers efficiently.

3.3 Performance

Natural numbers implemented with these machine integers are very efficient
indeed, but there is still some way to go before we can claim comparable
performance with mainstream programming language.

The figures reported in the Fig-
ure 3.1 are reproduced from the
CoqPrime original benchmarks The benchmark in Figure 3.1 is done with the CoqPrime library [54, 29],

whose purpose is to verify, in Coq, the primality of large numbers. In the
case of Figure 3.1, the verification procedure is run on some prime Mersenne
numbers with different implementation of the type of natural numbers. The
date and author of the discovery of each prime Mersenne is provided for the
reader’s entertainment. There are four implementations of natural numbers
considered: N is the implementation presented in Section 3.1, w8 corresponds
the “two digit” implementation rooted in the enumerated type w8, int corre-
sponds to the “two digit” implementation rooted with machine integers, and
Big_int is the implementation of unbounded numbers provided by OCaml
(the tests are then run after extraction).

Each step is a formidable improvement over the previous one, as expected.
It is worth noticing also that N uses significantly more space than w8 rooted
numbers which, in turn, uses much more than int based ones. Even though it
does not usually receives as much attention as time, space is still a resource
which can be scarce. It is even more so in garbage collected language such
as Coq, as more space usage means more pressure on the garbage collector,
which can be felt strongly on the time performance.

50



3 Efficient computations

Mersenne number Test times (s)

Value # digits N w8 int Big_int Discovery

2127 − 1 (39) 0.73 0.04 0.01 0.00 1876 by Lucas
2521 − 1 (157) 53.00 1.85 0.10 0.00 1952 by Robinson
2607 − 1 (183) 84.00 2.78 0.14 0.00 1952 by Robinson
21279 − 1 (386) 827.00 20.21 1.10 0.02 1952 by Robinson
22203 − 1 (664) 4421.00 89.00 4.50 0.08 1952 by Robinson
22281 − 1 (687) 4964.00 97.59 5.00 0.09 1952 by Robinson
23217 − 1 (969) 14680.00 237.65 11.70 0.22 1957 by Riesel
24253 − 1 (1281) 35198.00 494.09 24.90 0.60 1961 by Hurwitz
24423 − 1 (1332) 39766.00 563.00 27.40 0.67 1961 by Hurwitz
29689 − 1 (2917) 5304.00 214.00 5.89 1963 by Gillies
29941 − 1 (2993) 5650.63 229.00 6.32 1963 by Gillies
211213 − 1 (3376) 76707.00 308.00 11.25 1963 by Gillies
219937 − 1 (6002) 34653.12 1405.00 45.75 1971 by Tuckerman
221701 − 1 (6533) 43746.21 1736.00 58.56 1978 by Noll & Nickel
223209 − 1 (6987) 41210.56 2020.00 88.43 1979 by Noll & Nickel
244497 − 1 (13395) 282784.09 11246.00 476.75 1979 by Nelson & Slowinski

Figure 3.1: Compared performance on verifying prime Mersenne numbers

We should comment the difference between our int rooted numbers and
the performance of OCaml’s Big_int – which, the benchmarks suggest, is
about 20 times faster. There are a number of factors which can explain the
difference. The first source of inefficiency is the extra tests done by Coq’s
virtual machine to determine whether its dealing with close terms or open
ones. This is confirmed by tests showing that extracting int to OCaml’s 31

bit performs noticeably better. This inefficiency might be aggravated by the
fact that these tests have been implemented a bit naively, resulting in many
unnecessary tests and jumps. Another difference is that Big_int is programmed
in C, which means in particular that it benefits from native code performance
even in OCaml’s virtual machine. This could be partially addressed if native
compilation was available for Coq which might be in a near future [15]. Finally,
Big_int implements numbers as arrays, it might be that this is simply more
efficient than binary trees.

There is even faster than OCaml’s Big_int: the tool of choice for numerical
computations is the C library called gmp [2]. The secret to gmp’s performance
is to perform computation in place. Adapting Coq to allow in place computa-
tion is no small endeavour. Maybe it would be possible to extend Coq with
something like Clean’s uniqueness types [19] which could be seen, on the
logical side, as a flavour of implication.

On a related note, it has been observed in a number of applications, such
as the kernel computations of Section 2.5, that implementations of rational
numbers using the machine numbers do not offer, in the present state, a very
significant improvement over the historical representation using the numbers
as list of bits (N). This suggests that Coq would benefit from more clever
implementations of rational numbers.
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3.4 Related works

The methodology presented in this chapter is in no way restricted to (fixed
size) integers – if we except the discriminating use of the garbage collector
bit. And as a matter of fact, it has been used to add arrays to Coq [8]. As
mentioned above, Coq cannot really cope with true arrays, so actually these
are persistent arrays as described in [17]. These arrays present a functional
interface but use imperative computation internally. In particular, they use
a real array so that if persistence is never used during a computation they
perform much like real arrays – though their is some overhead due to internal
bookkeeping. On the other hand, they perform rather badly if persistence is
used heavily; though they would cope quite well with mild use of persistence
(typically if it is used only as a backtracking mechanism).

Machine integers and arrays have been used successfully to formally verify
traces of sat solvers [8]. This work, despite its success, has emphasised strong
limitations of our minimalistic approach to Coq’s enrichment. The fact is
that, in our approach, integers are in a compact form only during conversion,
which means that they are in “Coq form” both for storing and type checking.
In applications which use explicitly a lot of numbers it proves to be really
painful. For this reason a work has been initiating by Benjamin Grégoire
taking the hard road to additional primitive types. It has proven to be a long
implementation work with a lot of details to take care of (for instance the fact
that the type of arrays is covariant on its parameter, hence being acceptable
for the positivity condition). Properties of primitive types are axiomatised
and are not given any reduction rules. This means that some program can be
written but not run (though they can hopefully be transformed such as to be
rendered executable).

Still, it might be the future of efficient computation in Coq. It has been
brought to our attention that in order to have floating point computations in
Coq (presumably in the style of mpfr [1]), it was quite unrealistic to hope to
give a Coq type which would perform identically to the underlying C library.
This would tilt the balance more in the direction of the hard path. It may be
an interesting experiment to see if Coq could be given a Foreign Function
Interface to be able to plug such extensions dynamically rather than harcoding
them in the kernel of Coq.
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Chapter Four

A new tactic engine

Oh! it is absurd to have a hard and fast rule about

what one should read and what one shouldn’t. More

than half of modern culture depends on what one

shouldn’t read.

Oscar Wilde, The importance of being earnest

W
hen programming with dependent types, it often becomes neces-
sary to actually use Coq tactics to write programs. The Program

constructs recently added to Coq [50] make it rarer. However,
traditional Coq tactics often prove unadapted to the task. The

same issues actually arise in proofs about dependently typed programs as
well – where tactics are the rule rather than the exception.

To give an idea of what we are complaining about, let us consider a Coq
implementation of categories:

Record Category := {
Obj : Type;
Hom : Obj → Obj → Set;
id : forall A:Obj, Hom A A;
comp : forall A B C:Obj, Hom A B → Hom B C → Hom A C;
...

}

Now let us suppose we have a property P over categories, and we want to
prove the following goal:

⊢ exists c:Category, P c

The traditional way to prove this goal, in Coq, is to use the tactic (exists b)
for a well chosen category D which transforms the goal into

⊢ P b

Now, typically, this is done by exiting the proof, defining a suitable b
(which will be global even if it is only useful for the proof at hand), reenter
the proof, provide b, go on. This can be fairly irritating, when possible at all
(what if b depends on some local context?). There is an alternative – more
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recent – tactic to handle proofs of existential statement. It does not require the
user to provide a witness for c, it replace it by an existential variable. In our
case, using the tactic eexists produces the following goal:

⊢ P ?c

which is very fine for automated deduction, notably less for interactive
proving. It somehow expects that ?c will be filled in later by unification with
some lemma.

Arguably what would be needed for our more or less imaginary case, is a
tactic which would produce two goals rather than a single one:

⊢ Category (?c)
⊢ P ?c

Solving the first goal would provide the witness for the second one. We
could then solve the first goal in successive stages. For example, we could say
that we want to consider a categories with sets (Set) as objects and relations
as morphism (fun A B ⇒ A −→ B −→ Ω) which would produce new goals:

⊢ forall A:Set, A −→ A −→ Ω (?id)
⊢ forall A B C:Set, (A −→ B −→ Ω) →

(B −→ C −→ Ω) →
(A −→ C −→ Ω) (?comp)

...

Identity would then be provided – it is the equality relation on A – then it
would be the turn of composition. In a third stage we are left with the various
properties of categories. And finally we can prove the category we have just
defined verifies P.

Now of course in real life sized programs this sort of things can arise in a
variety of guises, and with larger records than categories, sometimes trying to
work one’s way around some really tricky dependent types. In such cases, a
facility such as argued for here become even more desirable.

Historical type of tactics

There is a good reason for no one yet to have provided such a feature to Coq:
it is not possible. More honestly, the type which represents tactics internally
is not compatible with such a capability. The type of tactics was actually
inherited from one of the earliest proof assistant: lcf [26]. It has the following
shape:

type tactic = goal → (goal list * validation)
and validation = term list → term

A tactic reduces a proof of a goal to a proof of a number of subgoals. It
also returns a validation which given a proof of each subgoals constructs a
proof of the initial goal. This operates under the assumption that all goals are
independent from one another. Which was all very well, until the usage of
existential variables was deemed necessary – for automation purposes among
other things.
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When existential variables appear in goals, goal sharing an existential
variable are no longer independent (acting on one can change the other by
modifying the content of the existential variable). In a sense, existential
variables in proofs behave much like references in programs – or maybe more
accurately, shared memory between parallel processes – and as such they need
to have an address space shared between the goals, this changes the type of
tactics to:

type tactic =

goal * evar_map → (goal list * evar_map * validation)

Where the evar_map component represents this shared space. Tactics may
update existential variables, the new evar_map is then fed to the next tactic to
be run. There is a single evar_map shared among all goals (past, present and
future) of a proof.

Existential variable contexts

Existential variables are given a type (as a matter of fact, a sequent) when
it is created. It can later be instantiated with a term which might, in turn,
contain existential variables – as it was the case in our example above: we
gave a partial instantiation of the existential variable ?c which specified only
its objects and morphisms.

Objects of type evar_map associates to each existential variable appearing
in the corresponding proof its type and, when relevant, the term with which
it is instantiated. It also keeps track of unsolved (higher-order) unification
problems.

Changing the type of tactics

This refinement of the type of tactics does not suffice to allow for our feature.
Indeed, if it allows goal to share existential variables, it cannot instantiate
an existential variable when solving a goal – if only because the validation
is executed when the goal is fully solved, hence the instantiation would
happen too late. Conversely, it would not be possible to solve a goal by the
instantiation of an existential variable.

It was, therefore necessary to go and change everything. Which was quite
of a problem because the type of tactics is hardly abstract at all. Hence
modifying it impacts code throughout the sources of Coq. It can be observed
that most tactics are implemented using combinators, which could minimise
the issue. However, it so happens that tactics use explicitly their first argument
to inspect the goal. As we will see in the rest of this chapter it may not be
desirable that the type of tactics be of the form goal * s → t. For instance it

Multiple goal tactics have been
implemented, independently, in
Matita [9].is useful, in order to design automated proof search strategies, to be able to

define tactics acting simultaneously on multiple goals.
The work presented in this chapter consists, with the above motivations in

mind, to design an abstract type for tactics such as to support changing its
implementation in the future without impacting thousands of lines of code.
This is accompanied by a new implementation for the type of tactics (and of
proof in progress) which will be briefly described. It provides support for the
feature which motivated this work, as well as multiple goal tactics and logic
programming style backtracking. This chapter is an enhanced version of [51].
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4.1 Refinement

A perk of having an unrestricted treatment, in proofs and tactics, of existential
variables, is that a term with existential variables is isomorphic to a partial
proof derivation. This remark seems to originate from Bengt Nordström [10]
and has been studied in more details by César Muñoz [44], though in situations
where is no existential variable in goals. This suggests that we need only

The idea to use a single refine-
ment tactic is, mutatis mutandi,
equivalent to what Lengrand&al.
propose in the setting of Pure
Type Sequent Calculus [38].

one atomic tactic – which we call refinement. Whereas formerly, there was a
need of a fairly large set of core tactics mimicking the derivation rules of the
system. It is noteworthy that refinement is also at the heart of the language
Agda2 [45], as the main tool both for constructing proof and programming.

Coq features a tactic called refine which performs a restricted version
of refinement: it does not deal with existential variables at all. Also it is
not meant as a primitive tactic. Still, Coq’s refine tactic is a fragment of the
refinement we shall use.

To sum up, at the most atomic level, we are given an intuitionistic sequent
(a goal), and to advance in our proof, we provide a term with existential
variables, which we read as a partial proof derivation, and we get back a list
of new sequents (subgoals).

Goal sensitive

More often than not we want our partial proofs to depend on the sequent it is
supposed apply to. For instance in the sequent x:A ⊢ A, the term x is a proof.
Here x is to be interpreted in the context of the sequent. Other reasons to
depend on the goal include reporting useful errors and automated procedure
which would build a partial proof depending on what the goal looks like.

A value which can only be interpreted in the context of a goal will be
called goal sensitive. Goal sensitive values are represented as the type:

type α sensitive

which will stay abstract, meaning that only a few primitives know of its
concrete representation. Its concrete representation can be something like a
function taking as argument a goal and a context for existential variables, and
returning a value of type α. Among the needed primitives, we need access
to the content of the goal. This is provided, mostly, by the following two
primitives:

val concl : types sensitive
val hyps : env sensitive

to access, respectively, the right-hand formula and the context of the goal
under scrutiny. Contexts – represented by type env – are represented as
association lists.

Now, of course, we need a way to build on these primitives to make new
goal sensitive values; for instance the number of hypotheses of the sequent is
expected to be an int sensitive. For that purpose we introduce a monad on the
goal sensitive values:

val return : α → α sensitive
val (>-) : α sensitive → (α → β sensitive) → β sensitive
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(* evar is the type of existential variables *)

type goal = evar

(* We use a reference to an evar_map because we need to be

able to modify it in later primitives *)

type α sensitive = goal → env → evar_map ref → α

let return x _ _ _ = x

let (>-) s k goal env rdefs =

k (s goal env rdefs) goal env rdefs

let concl goal _ rdefs =

Evd.evar_concl (Evd.find goal !rdefs)

let hyps goal _ rdefs =

Evd.evar_hyps (Evd.find goal !rdefs)

Figure 4.1: Implementation of some primitives for goal sensitive values

where (return x) is to be understood as the same as x but pretending to
depend on a goal and (>-) “propagates” the goal under consideration.

Figure 4.1 gives an implementation of these types and primitives. To
illustrate, here is the code that computes the number of hypotheses:

let hcount =

hyps >- fun hs →
return (List.length hs)

Refining goals

With this material, we are ready to disclose and discuss the type of the
refinement tactic:

val refine : refinable → subgoals sensitive

Let us take it apart bit by bit – starting from the right (sensitive) and
finishing with the left (refinable). First it returns a goal sensitive value, as
expected. This value has type subgoals which is simply a list of goals, except
that it is made private, which is an OCaml keyword to say that anyone can
use an element of that type as a list of goals, but only functions local to the
current module can actually construct a value of type subgoals. This restriction
exists to prevent accidentally writing “rogue” tactics, which are not defined in
terms of refine, and may have an incorrect behaviour.

Let us make this a little more precise by stating explicitly that values of
type subgoals sensitive are to be used as tactics. Indeed α sensitive are not only
elements of type α defined in terms of an unknown goal, they also depend on
a sufficiently rich context to express the state of a proof (mainly definitions
and typing information of existential variables around, plus the current partial
proofs of goals which are also dealt with in terms of existential variables),
which they carry around and modify when needed, much in the spirit of the
State monad in Haskell [3].

The last part of this is the type refinable of the argument of refine. Elements
of type refinable are essentially terms. In fact, they are precisely terms carrying
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around which of the existential variable in mention are “new” – as opposed to
those who are shared with other terms. Definition of elements of type refinable
are handled by a module which reads as:

module Refinable : sig
type handle

val make : (handle → term sensitive) → refinable sensitive
val mkEvar : handle → env → types → term sensitive

end

It has actually a few more functions defined (half a dozen in total), but
these two suffice for this discussion. First we notice the (abstract) type handle
which is a sort of registration machine: whenever we create a new existential
variable (through mkEvar) the handle is notified. The job of the handle is to
keep track of all these existential variables. The function make says that if, in
the context of a handle, we can build a term (actually a goal sensitive term),
then we can get a goal sensitive refinable. Note that this refinable needs to be
goal sensitive, because it modifies the existential variable context – the “state”
in the α sensitive monad – as it introduces new existential variables. Finally
mkEvar registers a new existential variable to a handle, given enough type
information, and returns the corresponding term.

To put all this in practice here is the definition of a simple introduction
tactic. That is a tactic which given the name x, takes a goal of the form Γ ⊢
A→B and turns it into Γ,x:A ⊢ B.

let intro x =

concl >- fun c →
let (_,a,b) = destProd c in

hyps >- fun hp →
let new_hyps = (x, a)::hp in

Refinable.make (fun h →
Refinable.mkEvar h new_hyps b >- fun hp →
return (mkNamedLambda (x,a,e))

) >- fun r →
refine r

Where destProd decomposes a formula of the shape A→B, and
mkNamedLambda (x,a,e) builds the term λx:A. e.

To conclude this section, let us linger on the fact that all tactics must be
defined in terms of refine. This allows to delegate all the bookkeeping of
tactics to the refinement procedure. This is at least good for maintenance
purposes. More importantly, this allows to control much more easily the
correctness of tactics. It will not prevent from writing bogus tactics, but refine
can be used to verify that the partial proof given by your favourite tactic
is valid before applying it. Hence enforcing that one is warned as soon as
possible when tactics go wrong. In the former implementation, proof terms
were verified only when they were complete (when the command Qed was
entered). When some tactic produced an incorrect subterm, it was often hard
to track down. Each tactic was responsible for ensuring the correctness of the
proof it generated.
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On the other hand, as proof checking is done at the end of the proof,
there is some incentive not to check the terms in the course of the proof as
proof checking can be costly. This is how tactics like exact_no_check were
created (this particular one gives a complete proof term for the current goal
without checking that it is actually a proof of this goal). Even there, basing
everything on refinement can help: we can have a flag to the refinement
procedure prescribing whether or not to check the proof term. This can
hopefully prevent some code duplication.

The next step would be to incorporate the refinement procedure into the
kernel of Coq, so that it would be trusted. In this case it would have to verify,
in all situation, that no ill-typed term is ever produced – hence no no check
flag. As a consequence, there would be no more need for an extra validation
step at the end of the proof as interactively built proof would be correct by
construction.

4.2 Combining tactics

4.2.1 An abstract approach

So far, we haven’t given a way to combine existing tactics into one; in other
words our tactics can have a single refinement step. While this is not a
limitation in expressiveness, this lacks some amount of flexibility. The most
typical tactic combinators in Coq are the composition – t1;t2 applies t1 and
then applies t2 to all generated subgoals – and the alternative – t1||t2 tries to
apply t1, if it fails, it applies t2 instead. We will introduce, on the OCaml side,
two combinators (<*>) and (<+>), respectively, to represent them.

We could actually make them act on the subgoals sensitive type. However
this leaves little space for improvement. Let us take a small detour to see why
we shall use a dedicated type for tactics that combine.

Formerly, the type of a proof in progress was a tree representing the tactics
that were used in its course. This does not allow for goals that are solved by
side effect, which we want to introduce. As a matter of fact it does not deal
very cleanly with side effects at all, as the order in which the goals are solved
does not appear in the proof. We propose a new implementation, where a
proof is described by an existential variable context, goals being themselves

In Coq, the type for existen-
tial variable contexts is called
evar_map.described as particular existential variables. The state of the current proof,

which we call a view, is one such context, together with some of its open goals,
said to be under focus, lined up in a list – so they can be addressed by their
position.

type proofview

Following our policy, the type is abstract. Executing a tactic on a view
returns another view. Now values of type subgoals sensitive act as tactics,
for instance by applying them to one particular goal or to all the goals
simultaneously. We could imagine other kinds of manipulation of views. For
instance changing the order of its goals, which can be part of a tactic (for
instance the destruct and induction tactics yield goals in a different order).
There is no reason to restrict ourselves to tactics which can be encoded as
subgoals sensitive-s. Therefore we shall consider a new type to represent tactics,
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type α tactic = proofview → (α*proofview)

let tclUNIT a view = (a,view)

let (>=) t k view =

let (a,view’) = t view in

k a view’

let (<*>) t1 t2 view =

t2 (snd (t1 view))

let (<+>) t1 t2 view =

try t1 view

with _ → t2 view

Figure 4.2: A first implementation of tactics

which can be seen as being functions from views to views.

type tactic

which is, again, abstract.
Another feature we might want to add is the ability for tactics to commu-

nicate some information to the tactic that follows. We can imagine a tactic
which never fails, but “returns” a boolean informing whether it progressed,
or an introduction tactic which chooses a name for the new hypothesis and
passes it to the following tactics. To reach that goal, we enrich the type of
tactics with a type parameter:

type α tactic

which represents the “return type” of a tactic. As a matter of fact we can
install a monad on the type of tactics:

val tclUNIT : α → α tactic
val (>=) : α tactic → (α → β tactic) → β tactic

It can be seen as a state monad with a proof view as the state. Now the
composition

val (<*>) : α tactic → β tactic → β tactic

can be viewed as a special case of (>=). Finally the alternative

val (<+>) : α tactic → α tactic → α tactic

has to be implemented using some kind of exception mechanism. We
propose, in Figure 4.2, an implementation of these primitives.

We also need a primitive internalising subgoals sensitive as tactics:

val tclSENSITIVE : subgoals sensitive → unit tactic
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As expected, it produces a tactic which returns unit, as return values are
novelties of the tactic level. As a convention, we decide that tclSENSITIVE t
applies t to every goal under focus. Of course we also have primitives to

As the order matters, because of
side effects, we specify that t is
applied from the last goal to the
first one. Also, goals that are
closed by side effect before being
considered are ignored

manipulate focus, for instance:

val tclFOCUS : int → int → α tactic → α tactic

which focuses on a range of goals, applies the tactic argument, and then
unfocuses back, effectively splicing the produced goals in place of the range it
originally focused on. This effectively gives the ability to choose a particular
goal and to apply a tactic to it, restoring the traditional approach of Coq.

4.2.2 Leveraging the abstraction barrier

With all this abstraction done, it becomes easy to change the underlying type
of tactics to support new features. As a conclusion to this section, we shall
describe briefly how to support backtracking in tactics. More explicitly, by
backtracking, we mean the property that (a<+>b)>=c would be equivalent to
(a>=c)<+>(b>=c). Which is not the case with the implementation we sketched
earlier. Indeed it has the property that if a succeed, then (a<+>b)>=c is
equivalent to a>=c.

There are many ways to implement backtracking. For the prototype, we
have used a two-continuation type, much in the spirit of [35], except that it
does not behave as a monad transformer. We give tactics the following type:

type α nb_tactic = proofview → α*proofview
type ρ fk = exn → ρ

type (α,ρ) sk = α → ρ fk → ρ

type α tactic = { go :

ρ. (α, ρ nb_tactic) sk → ρ fk → ρ nb_tactic
}

This deserves some explanation. Values of type α nb_tactics are non-
backtracking tactics, as presented at the beginning of this section. Functions
of type ρ fk are failure continuations, they are passed an exception, that with
which the previous tactic failed.
(α,ρ) sk are success continuation, they are passed an element of type α

which is the result of the previous tactic – which succeeded – and a failure
continuation to know where to go if it fails. Actual tactics are wrapped inside
a record because we want to universally quantify over the type argument ρ,
something which, in OCaml, is only supported via records.

Now to see how it supports backtracking, we will show the definition of
(>=) and (<+>).

let (>=) t k = { go = fun sk fk view →
t.go (fun a fk’ → (k a).go sk fk’) fk view

}

This reads: “t>=k executes t, if it succeeds and returns a it then executes
(k a) with its success continuation sk otherwise it executes its failure continu-
ation fk”.

let <+> t1 t2 = { go = fun sk fk view →
t1.go sk (fun _ → t2.go sk fk view) view

}
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This reads: “t1<+>t2 executes t1 and continues with its success continua-
tion. If it fails then the error is ignored and we go on with t2 with the current
success and failure continuations.”

The failure continuations act as backtracking stacks which are propagated
by the atomic tactics. In particular if we have a tactic of the form (a<+>b)<+>c
where a is atomic, its success continuation sk is passed the following failure
continuation:

fun _ → b.go sk (fun _ → c.go sk fk)

If it fails it then tries b then sk, if it fails again it then tries c then sk. This is
precisely what we expected. Also note that (<+>) is also associative.

With this implementation we have strayed far from simple functions from
a goal to a list of goals. However we have given an api which is stable under
changes of implementation (and which abstract away the complexity of the
underlying implementation: working with double continuation values is fairly
destructive to ones brain cells). As a matter of fact there might be a better
suited way to support backtracking for our tactics, it won’t be a problem to
experiment in the future thanks to the abstraction layer.

4.3 About the implementation

The api we proposed in this chapter, which is part of the development branch
of Coq, is actually composed of 25 primitives for the α sensitive part (including
the Refinable module) and 17 for the α tactic part, at the time when this article
has was written. This represents less than 800 lines of code. This should
be compared to the roughly 80 primitives (plus a few additional primitives
scattered throughout the code, since the type of tactics was not abstract) and
around 2000 lines of code for the legacy core tactic machinery of Coq (the
proof manipulation part has been shortened even more, through better code
sharing with other parts of the code base).

It would not have been feasible, though, to port all the code base to this
new api at this stage, hence we have built a compatibility layer which includes
tactics with a similar type than earlier as a sub-case of subgoals sensitive. This
layer breaks the abstraction a bit, but is still fairly maintainable. The trouble
is that it didn’t allow us to eliminate much of the old code for now.

4.4 Further work

At the moment of this writing, the code described in this chapter is part of
the development branch of Coq. It is undergoing quite a bit of work to repair
the inevitable bugs and incompatibilities introduced by such a wide change
to the code base. It has revealed a few inefficiencies in some functions of Coq
which were innocuous with the former implementation of tactics. Some of
them were really serious, a few are still being investigated.

The next move will be to permit the tactics available to the user to be
extended with the capabilities of the new machinery. For the moment this is
only possible by providing an entirely new tactic language, but it would be
desirable, at least in a first time, to provide a few tactics to the Ltac [4] and
Ssreflect [25] users. This amounts mostly to implement Ltac tacticals in terms
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of the new tactics. This has no reason to be problematic, but it will certainly
represent quite some hard work. This is an important milestone because it is
only then that the new proof engine will enable new features.

When these are done, we will be left with much more endearing tasks
with real bit of science in them. The first would be the design of a new tactic
language really drawing on the capabilities of the new proof engine. It is
imaginable to follow Moggi [43] and provide a language in the style of ml

which makes no explicit mention of its monadic semantics. As for the details,
it is hard to tell. Some are interested in a set of tactics which is more modular
than Ltac, typically with primitives to control the behaviour of automated
tactics. An example that has been given is an auto tactic whose unification
procedure can be provided by the user. The motto here would be fewer tactics
in smaller chunks – in a spirit somehow similar to Ssreflect.

Another point to be addressed concerns rewriting. Rewriting tactics are
somewhat parametrised with rewriting strategies. These strategies resemble
quite closely proof search strategies (see [34] for a discussion on this remark).
Actually, they share more than these aspects: in Coq both implementations
are almost identical. There are two implementations of backtracking using
evil two-continuation monads; as if one was not enough. This code should be
shared. However it is entirely unclear how. The monad transformer approach
of [35] cannot help here as, at least in the case of the proof engine, the tactic
monad cannot be split into an inner state monad and an outer backtracking
monad transformer because our monad backtracks on the state of the proof
as well as on the value, whereas in the monad transformer view it is not
possible to backtrack on the state. It would be interesting to be able to come
up with a representation of goals which could serve not only as a “proof to
be completed” but also as a “rewrite to be completed”.
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Chapter Five

On the category of sets

The visions dancing in my mind

The early dawn, the shades of time

Twilight crawling through my windowpane

Am I awake or do I dream?

The strangest pictures I have seen

Night is day and twilight’s gone away

With your head held high and your scarlet lies

You came down to me from the open skies

It’s either real or it’s a dream

There’s nothing that is in between. . .

Electric Light Orchestra, Twilight

S
chematically, the verified development of homology described
in Chapter 2 has three layers: most homology theory is developed
in the framework of preabelian categories, above it some work is
done in categories of graded objects, and below these there are

sets. As we alluded to in Section 1.1, it would be somewhat desirable to insert
an intermediate abstraction layer between sets and preabelian categories, if
only to avoid the need of explicitly manipulating functions as records.

The approach with sought was to give a good abstraction of the category
of sets, in which we can define groups and show that they form a preabelian
category. Such a categorical abstraction would give us a general enough set
of combinators to avoid any explicit proof that the functions we define do
respect the equality of their domain: they would do so by construction.

In a sense, this would amount to defining a programming language for sets
and functions. And it does raise classical design issues. Indeed, as we target
intensive computations (computer algebra in general requires a lot of speed)
we should avoid as much as possible to lose efficiency. Also a programming
language tries to include convenience features like labelled sums or record in
order to make programs easier to read and maintain.

We shall, in a first time, study the properties of the category of sets, from
a point of view which makes apparent its programming language aspect, and
in particular the type theoretic aspect. We shall, then, conclude the chapter
with a discussion on the problematic of efficiency and convenience.
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5.1 Topoi

Topoi are a particular kind of category which have been introduced as a mean
to give an alternate description of set theory. They have had some success
in this matter. In fact, if their basic constructions make them suitable as a
definition of sets and functions, there is a wide variety of topoi. Some topoi
enjoy the principle of choice, some do not. Some topoi verify the continuum
hypothesis, others do not. In a sense, they allow to vary what one means by
set. For the interested reader, categories of sheaves are topoi, meaning that
sheaves can be considered as sets of sorts.

Defining topoi will also be the occasion to visit some more advanced
concepts in category theory.

Functor

Categories have their own notion of morphisms, called functors. A functor, or
covariant functor, is a mapping between objects that preserves the structure.
Given two categories B and C:

FunctorB C
Fo : B ֌ C

Fh :
∏

AB : B

HomB AB −→ HomC (Fo A) (Fo B)

_ [:] Fh 1A = 1Fo A

_ [:] Fh (f ; g) = (Fh f); (Fh g)

Notice that the preservation of arrows is computational – it is, as a matter of
fact a function – contrary to the preservation properties we have encountered
so far. For a functor F, we shall usually write F for both Fo and Fh.

The commutation of ( × A)
with identity and composition
are then a matter of applying
the equational theory of prod-
ucts. For instance, (π11, π21) =
(1π1, 1π2) = 1.

Let us consider the mapping ( ×A) (in a category where it makes sense)
which maps each B to its product with A. It can be lifted to a functor, by

mapping each B
f

−−−→ C to the arrow B×A
(π1f,π21)

−−−−−−−−→ C×A. From now on
we will refer freely to ( ×A) as a functor.

Another important functor we shall consider has the map (HomA ):C ֌

S – where S is the category of sets – for some object A:C. For an arrow

B
f

−−−→ C, HomAB
HomA f

−−−−−−−→ HomBC is defined as the postcomposition
with f : (HomA f) g = gf .

Contravariant functor

We shall also need a variant of functors said to be contravariant. Contrary to
covariant ones, contravariant functors reverse the direction of arrows:

CoFunctorB C
Fo : B ֌ C

Fh :
∏

AB : B

HomB AB −→ HomC (Fo B) (Fo A)

_ [:] ∀A:B.Fh 1A = 1Fo A

_ [:] Fh (f ; g) = (Fh g); (Fh f)

The archetypal contravariant functor is (Hom A). In this case (Hom f A)
is given by precomposition: (Hom f A) g = fg.
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Functors, either covariant or contravariant, compose: given a functor F
from B C and a functor G from C to D, there is a functor (G (F )) B to
D obtained by composing both their object and arrow components. The
composition of two covariant functors is covariant, so is the composition of
two contravariant functors. The composition of a covariant functor and a
contravariant one is contravariant.

Adjunction

Given two categories B and C and two (covariant) functors F:FunctorB C and
G:Functor C B, we shall say that F and G are adjoints if they are equipped,
for every B:B and C:C with an isomorphism (ϕB,C, ϕ

−1
B,C) between the sets

(HomC (FB)C) and (HomB B (GC)) which is natural, that is such that for every

B′ h
−−−→ B the following diagram commutes:

)CG(0BBmoH

)CG(BBmoH

C)0BF(CmoH

C)BF(CmoH

)CG(hmoHC)hF(moH

C,0Bϕ

C,Bϕ

and for every C
k

−−−→ C′ the following diagram commutes:

)0CG(BBmoH

)CG(BBmoH

0C)BF(CmoH

C)BF(CmoH

)kG(BmoHk)BF(moH

0C,Bϕ

C,Bϕ

Put in other words, the isomorphism (ϕB,C, ϕ
−1
B,C) is defined the same way

for every B and C. In the realm of type theory, a corresponding property is
that of parametricity: an OCaml function of type α list → α list is parametric
in that it cannot be defined differently for various instantiations of α.

In such an adjunction, F is said to be the left adjoint and G the right
adjoint.

Cartesian closed category

A cartesian closed category is a category C with a terminal object 1 and all
products × such that for every object A of C, the product functor × A
has a right adjoint A called the exponential functor.

The exponential is hence such that Hom (B×A)C is isomorphic to HomB (CA).
In the category of sets – which is cartesian closed – this exponential object is
the set of functions and the isomorphism is given by currying.
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Subobject classifier

In a category with a terminal element 1, a subobject classifier, is an object Ω and

an arrow 1
⊤

−−−→ Ω such that for every monomorphism A
m

−−−→ B there is an

arrow B
χm

−−−−→ Ω such that the following diagram is a pullback:

Ω

1

B

A

>

mχ

m

Pullback

Given two arrows A
f

−−−→ C and B
g

−−−→ C a pullback of f and g is a square –
sometimes called a prepullback:

BC×A

C

BA

2p1p

gf

which is universal, that is such that for any object D and arrows D
q

−−−→ A

and D
r

−−−→ B with qf = rg, there is a unique arrow D
h

−−−→ A×CB such that
q = hp1 and r = hp2:

D

BC×A

C

BA

h
rq

2p1p

gf

In the category of sets, pullbacks are given by fibre products {(a, b) :
A× B | f a = g b}. As this suggests, in a category with enough products and

equalisers, a pullback can be constructed as the equaliser of A× B
π1f

−−−−→ C

and A× B
π2g

−−−−→ C.
From now on, we shall suppose given a category C with all pullbacks.

Topos

A topos is a cartesian closed category with a subobject classifier. It is a fairly
robust notion. Many of the constructions of topoi can be retrieved from others.
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For instance the exponential objects can be reconstructed from a power object
functor – giving a definition much like that which is traditional in zf set
theory.

Unfortunately, topoi suffer from the same problem as abelian categories –
described in Section 2.3: the principle of unique choice is always valid in a
topos. The proof of that is contained in a single commutative diagram:

The diagram is read starting from
the square: since m is monic
there is such a pullback. Then,
writing ! for the unique arrow
from any object to 1, f !⊤ = !⊤ =
fχf , which, since f is epic, lets
the lower triangle commutes. The
upper triangle is a prepullback
diagram (since 1!⊤ = !⊤), hence
there is a unique arrow f−1 such
that f−1f = 1, that is a prein-
verse to f . Since f is monic, it is
actually an inverse.

1

B

Ω

1

B

A

1�f

1

>

>

fχ

f

where f is an arrow which is both epic and monic.
This ruins any chance for our category of sets to be a topos. Fortunately,

as it was the case with the abelian categories, there is another – weaker –
paradigm which has been less studied but is not unheard of at all where our
sets fit.

5.2 Quasitopoi

Just as preabelian categories were our unique-choice free version of abelian
categories, quasitopoi have a topos feel but need not verify the principle of
unique-choice.

Slice category

Let I be an object of C, the slice category C�I is defined as the category where

objects are arrows A
f

−−−→ I. Morphisms between two objects A
f

−−−→ I

and B
g

−−−→ I are given by morphisms A
h

−−−→ B which make the following
diagram commute:

I

BA
h

gf

which we will also write as
A

I

f
h

−−−→
B

I

g

To motivate, and illustrate, these slice categories, we shall pretend that C is
the category of sets. In this case the category C�I can be seen as the category
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of families indexed by I. Indeed, a family (Ai)i:I can be, equivalently, seen as
the set

∑

i : IAi of pairs (i,Ai). When a family is given in the latter form, the

first projection A
π1−−−→ I is sufficient to recover the former. It is given (up to

isomorphism) by ({a : A | π1 a = i})i:I. Hence, we can see the objects of C�I as
families indexed by I given as a set of pairs and its first projection. We shall
say that a family is in functional form if it is given as (Ai)i:I, and that it is in
set form if it is given as a set and a projection.

We can let this family intuition guide us through a process of finding out
more about slice categories. First we need to figure how the morphisms of
C�I fit the picture. A reasonable notion of morphism between families (Ai)i:I

and (Bi)i:I would be a family of functions (Ai)i:I
hi−−−→ Bi. For set forms,

it corresponds indeed to a function h which preserves the first projection.
Indeed, given a functional-form morphism, we can construct such an h as

λ(i, a):A. (i, hi a).Conversly, for
A

I

f
h

−−−→
B

I

g a set-form morphism, hi is given

by the restriction of h to the set {a : A | f a = i} which has codomain
{b : B | g b = i} since g (h a) = f a.

Base change

Given a function u from I to J and a family (Aj)j:J, precomposing with u

makes (Aj)j:J into a family indexed by I: (Au i)i:I. This precomposition has
a counterpart in the set forms. The fibre product {(i, a) : I×

∑

j : J Aj | u i =

π1 a} happens to be isomorphic to the set
∑

i : IAu i, even though it packs
some useless information – which seems to be a curse of the set form. Fibre
products are the same as pullbacks in the category of set. This motivates the

following definition: given an arrow I
u

−−−→ J and an object A
f

−−−→ J in C�J

we define the object u∗ A
u∗ f

−−−−−→ I of C�I as the following pullback:

I

A
∗u

J

A

f∗u

u

f

In functional form, precomposition can be applied to family of morphisms,
making it a functor. Likewise, the map u∗ can be lifted to a functor by

exploiting the universal property of pullbacks. Given an arrow
A

J

f
h

−−−→
B

J

g

in C�J, the arrow
A

I

f∗u
u∗ h

−−−−−→
B

I

g
∗

u of C�I is computed with the following
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diagram:
A∗u

A

B∗u

I J

B

h∗u
h

f∗u
f

g∗u

u

g

In the diagram besides, there are
two copy of the pullback above.
One with f and one with g. As
hg = f , the square with h is a
prepullback diagram. The univer-
sal property of the pullback of g
and u gives u∗ h.

the functor u∗ is called a base change functor.

Locally cartesian closed category

A locally cartesian close (lcc) category is a category with all pullbacks and
such every base change functor u∗ have a right adjoint Πu.

Let us suppose C has a terminal object 1, consider the arrow I
!

−−→ 1. The
functor !∗ from C�1 to C�I essentially allows to see any object A of C as the
family (A)i:I. The right adjoint Π! gives an isomorphism between (Hom (!∗ 1)F)
and (Hom1 (Π! F)). Following the functional form, (Hom (!∗ 1)F) is the set of

functions 1
fi

−−−→ Fi that is the set of all families (fi)i:I with fi:Fi. It follows
from the isomorphism that (Π! F) is the internalisation of this set, hence (Π! F)
is the dependent product

∏

i : IFi.
Though it is not easy to convey an intuition for the general case, in the cat-

egory of sets, for some I
u

−−−→ J, Πu is realised by the family
(

∏

i : u−1 j Fi

)

j:J
.

Which can be seen as some kind of partial dependent product. For in-
stance, consider

(

F(i,j)

)

(i,j):I×J
, then Ππ2

is, up to isomorphism, the family
(

∏

i : I F(i,j)

)

j:J
.

Strong monomorphism

A mono A
m

−−−→ B is strong if for each epi C e
−−−→ D and all arrows C

f
−−−→ A

and D
g

−−−→ B, there is an D
h

−−−→ A – necessarily unique – such that the
diagram commutes:

DC

BA

h
gf

e

m

In the category of set, any arrow X
a

−−−→ Y can be lifted to an epi X a′

−−−→
{y : Y | y ε Im a}. Strong monos, are these arrows m where m′ is invertible –
for general monos, m′ would only be a bijection. Indeed, in the above diagram,
set e to be m′, f to be the identity and g to be the canonical injection from
{x : A | x ε Imm} to A. Then h gives an inverse to m′. In other words, in the
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category of sets, strong monos are precisely what we dubbed strong subset in
Section 1.1.

Supposing m is the equaliser of
x and y. In the above square,
fmx = fmy hence, egx = egy.
Since e is epic, gx = gy. Then the
universal property of equalisers
gives h.

Also any equaliser is strong. In particular, all monomorphism in a topos
are strong. It is not true of sets, however, since strong monos which are also
epic are invertible (by setting e to m and taking f and g to be the identity).
Which means that a category where all monos are strong verifies the principle
of unique choice.

Quasitopos

A quasitopos is a category with all finite limits (i.e. a terminal object, all
products and all equalisers), all finite colimits (i.e. an initial object, all co-
products and all coequalisers) which is lcc and with a classifier of strong

monos. That is an object Ω and an arrow 1
⊤

−−−→ Ω such that for each strong

monomorphism A
m

−−−→ B, there is an arrow B
χm

−−−−→ Ω and the following
square is a pullback:

Ω

1

B

A

>

mχ

m

The fact that the category of sets,
without unique choice, is a qua-
sitopos has been first noticed by
Eduardo Dubuc and Luis Español
in private conversation. We have
certified in Coq that the set Ω is a
classifier of strong mono. A skele-
ton of the Coq proof can be found
in Appendix B.

We have given each of the required constructions for the category of sets,
hence we can state the theorem that the category of sets is a quasitopos. Notice
that we use critically that the type theory supports an impredicative type of
propositions.

It turns out, for the interested reader, that sheaves in a quasitopos are
in turn a quasitopos. Quasitopoi should be able to serve as an additional
abstraction barrier our the development of homological algebra. Indeed,
quoting Jacques Penon [47]: quasitopoi are almost topoi. As a matter of fact, a

In a quasitopos, every morphism
f can be factored as an epimor-
phism f ′ followed by a strong
mono ιf (f = f ′ιf ) This is
proved for topoi in [40, p. 184–
185], a proof for quasitopoi is
obtained by replacing every oc-
currence of mono by strong mono.
When f is monic, f ′ is also monic.
The principle of unique choice
gives an inverse to f ′, then f is
strong because ιf is.

quasitopoi where the principle of unique choice is valid would be, in fact, a
topos. Which strongly suggest that quasitopoi make an effective replacement
of topoi for mathematics without the principle of unique choice.

5.3 Internal language

As we have seen in the previous sections, quasitopoi mirror a kind of de-
pendent type theory (of extensional flavour, as in [41]) This statement can be
made somewhat more precise by writing down the appropriate type theory
and then stating that it is the internal language of quasitopoi.

Being able to program conveniently in the language of quasitopoi is ar-
guably a requirement for the relevance of this abstraction of the theory of sets.
The set of combinators of quasitopoi gives a binder-free version of the type
theory of quasitopoi. While there have been propositions of programming
language without binders, like John Backus’s fp [11]. We argue that such a
language is hardly practical at all. For instance, the definition of Ackerman’s
function in a variant of fp might look like:

rec s (rec (1:1) (2; 2))
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This is very concise, yet we would prefer something in the style of:

ack : N −→ N −→ N

ack 0 n = n+ 1
ack m 0 = ack (m − 1) 1
ack m n = ack (m − 1) (ackm (n − 1))

This, however, poses two hard problems. First, representing object with
binders in type theories such as that of Coq is an unsolved question. Although
there are propositions which involve little, if any, modification of the language
(see for instance [22] and [31]). Second, supposing we have a way to represent
binders, the representation of recursive functions would be far from easy.
Traditional dependent type theories have recursion combinators, which would
make Ackerman’s function very much like its binder-free version. Modern
systems implementing type theories allow for recursive expressions which
are checked for termination. Such a checking procedure is no light task to
implement.

Also, there is an issue which is specific to quasitopoi – more precisely to
lcc categories. In lcc categories, families of sets have a primary role (this
is how the dependent product is characterised). However these families are
manipulated as their graph rather than as functions. It does not pose any
problem in traditional mathematics, if only because functions are encoded as
graph anyway. In type theory, not only is it contrary to standard practice,
but also, as we have already mentioned, the encoding of families in set form
packs some information which is useless – which we would like to avoid in a
computer. Our slogan is that in lcc categories, families are in the wrong direction.
William Lawvere, in [36], defines a possible alternative – with families in the
right direction – which he calls hyperdoctrines. We have yet to study whether it
can be leveraged to give an appropriate variant of quasitopoi.

From now on, we shall suppose that we have two languages: a host language,
Coq for instance, and an internal language defined inside the host language.

Multicategory

We would like to discuss in a bit more depth what constructions can be
thought desirable for an internal language. Or first discussion will be about
what multiple argument functions should be like. We shall look at it mostly
from an efficiency perspective. The two usual answers are:

� single argument functions of a product: A× B −→ C

� single argument functions returning a function: A −→ B −→ C

The first answer is favoured by zf practitioners, as well as many cate-
gory theorists, sml programmers and most imperative programmers. The
second is preferred by λ-calculus folks and OCaml, Haskell, Agda and Coq
programmers. Truth is, they are equally valid, and equally incomplete. Most
of the time it is just a matter of convention, as both encodings are possible.
In programming languages, though, the convention chosen by the designers
usually fix the convention of the users as it leads to optimisation choices as
well, and other convention would not perform as well in the said setting.
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It gets interestingly worse when we implement programming languages
inside a host one as in this section. The most archetypal case comes from
monads in functional languages. In a functional language, a monad is given
by a type family T:Type ֌ Type together with a map:

return:
∏

A : Type

A ֌ TA

and a map:

bind:
∏

AB : Type

TA ֌ (A ֌ TB) ֌ TB

These maps must verify some axioms, for a more formal definition of
monads, refer to Section 6.3. From the perspective of category theory, these
are the main ingredient of the internal language of a category called a Kleisli
category where morphisms are of the form A ֌ TB: return plays the role
of identity and bind of composition. The encoding of choice for multiple
argument functions is something of the form A ֌ B ֌ TC which is by no
mean a single argument morphism of the Kleisli category.

Another example of an encoding of multiple argument functions which
cannot be seen as a single argument function comes from the category of sets:

Function2 ABC
f : A ֌ B ֌ C
_ : ∀a1 = a2. ∀b1 = b2. f a1 b1 = f a2 b2

This can be easily generalised to n arguments. Actually, such a scheme
plays a central role in current implementation of the rewrite tactic of Coq.
These play much better in Coq than functions of the form A −→ B −→ C, and
slightly better than functions of the form A× B −→ C.

We could make the assumption that in the internal language of quasitopoi,
multiple argument functions are encoded as functions of a product, then
using transformation inspired by compilers to make them into a more friendly
form before they get executed. The transformation would probably have
to be defined for each quasitopos, which is not a problem of code reuse as,
presumably, it would be fairly different for each one. However it might still
involve significantly more boiler plate and be conceptually less clear than
simply having one define what is an n-ary function for the said quasitopos.

Fortunately enough, there exist a flavour of categories with multiple
argument arrows called multicategory. The gist is that instead of having a
hom-set for each pair of object, there is a hom-set (HomΓB) for every list
of object Γ and object B. Hence two argument arrows are in hom-sets of
the form (Hom [A,B]C). A nice perk of multicategories is that they feature a
primitive notion of elements of an object A – that is arrows of (Hom []A). This
is much desirable as it prevents from the need of using a function to choose
an element in A (e.g. a group object has a neutral element which is usually
represented as an arrow of (Hom1A)), functions being often a slow construct
in programming languages it is preferable to avoid them when possible.

As an example, an abelian group in the category of sets could be defined
as the data of a set A together with an addition:

+ :Hom [A,A]A
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and a neutral element:

0:Hom []A

such that a few properties are verified.
It is natural to represent arrows in multicategories as triangle shaped boxes

rather than simple arrows for categories:

f

The top wire corresponding to the codomain of f , and the wires at the
bottom to its domains.

More precisely, a multicategory is the data of a type O of objects together
with a set (HomGGA) of arrows for every list of objects GG and object A.
Additionally it has an identity arrow (Hom [A]A) for every A.

1

For every arrows [A1, . . . ,Ak]
f

−−−→ Bi and [B1, . . . ,Bn]
g

−−−→ C, there is a

composite arrow [B1, . . . ,Bi−1,A1, . . . ,Ak,Bi+1, . . . ,Bn]
f ;g

−−−−→ C.

f

g

They follow the same associativity laws as standard categories. In addition
they verify a last law which justifies our diagrammatic representation. This
law states that when composing two arrows g and h with two different input
wires of an arrow f , the order does not matter. Which means, in particular,
that the following diagram makes sense:

g h

f
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Universal constructs of categories can be ported to universal categories
rather straightforwardly. Here are the simplest examples (we write [Γ,A] for
the list extending Γ with A, ignoring the order of elements for simplicity):

� A terminal object 1 is such that for any context Γ, there exists a unique

arrow Γ
!

−−→ 1.

� An initial object 0 is such that for any context Γ and any object A, there

exists a unique arrow [Γ, 0]
0

−−−→ A.

� A product of A and B is the data of an object A × B and two arrows

A × B
π1−−−→ A and A × B

π2−−−→ B such that for any pair of arrows

Γ
f

−−−→ A and Γ
g

−−−→ B there exists a unique arrow Γ
(f,g)

−−−−−→ A × B
with (f, g)π1 = f and (f, g)π2 = g.

� A coproduct of A and B is the data of an object A+ B and two arrows

A
ι1−−−→ A + B and B

ι2−−−→ A + B such that for any pair of arrows

[Γ,A]
f

−−−→ C and [Γ,B]
g

−−−→ C, there exists a unique arrow [Γ,A +

B]
[f,g]

−−−−−→ C with ι1[f, g] = f and ι2[f ; g] = g.

It is possible, in principle, to go on up to the definition of quasitopoi, such
as to allow for a primitive notion of multiple argument function. However, it
is not quite clear how to even start doing this in Coq. Indeed, as early as the
definition of composition, one would start to write down painful expressions.
Most likely, it won’t even be possible to state that composition is associative
because of associativity nightmare – like in Section 2.4. Even supposing that the
associativity issue is dealt with, it is not clear that there is any practical way
of dealing with multicategories in Coq. Hopefully there is. Until it is found,
we will probably be stuck with ordinary categories.

Algebraic datatypes

Another piece missing – this one coming directly from traditional program-
ming languages – is algebraic datatypes. Indeed programming language
usually allow the definition of new datatypes using sums and products in
a fashion which is not customary to mathematics. There are two principal
distinctive features to algebraic datatypes:

� The n-ary products (resp. sums) are typically not defined as iterations
of binary products as this would typically imply useless indirections –
memory calls being somewhat costly.

� Sums are generally labelled (by mean of so called type constructors).
Products are often labelled too, when they are given as records (the
labelled being usually called projections in this case)

Both are really useful tools, yet as soon as we go into generic programming,
type level programming or categories we have no means of using them at all.
The programmer reverts instantly to unlabelled binary sums and products. If
we are to really program in an internal language, it sounds like an issue that
has to be addressed.
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For example, consider a variant of binary lists [46, p. 122–125]. They can
be defined as the following data type in Coq:

Inductive NZBL (A:Type) :=
| One (a:A)
| Two (a a’:A)
| TwicePlusOne (a:A) (NZBL (A∗A))
| TwicePlusTwo (a a’:A) (NZBL (A∗A))

This definition – which may be relevant, for instance, for the kernel com-
putations in Section 2.5 – uses a 4-ary labeled sum and ternary product for
the TwicePlusTwo case. Quasitopoi, as we have presented here so far, do not
support either labels or n-ary sums and products. We shall discuss here how
they can be given support.

Tuples are usually represented in memory as adjacent memory cells, which
plays well with the processor’s cache, allowing to fetch the entire tuple with a
single memory call (this is the raison d’être of structures in the C language).
If we were not able the TwicePlusTwo case would have to be defined as a
product of the form A× (A×NZBL (A×A)), resulting in a sort of memory
pileup: rather than fetching both head elements and the recursive list at the
same time, we could only fetch the first element in a first memory access,
and with a second memory access, we would get the second element and
the recursive list. The cost of memory access is not negligible, and should
preferably be avoided. This is precisely why n-ary products are featured in
most programming languages.

The memory representation tuples is tantamount to that of arrays pre-
sented in Section 3.4 – even though, because of the update operation, fetching
the array actually needs two memory call rather than one. Also, tuples have
fixed length, and each component may have a different type. There are much
like a flat version of a heterogeneous list:

HList : ListType ֌ Type
HList [] = 0
HList [A,GG] = A× (HListGG)

Where 0 is the element of the one element type, and [A,Γ] is the list starting
with head A and tail GG. Chapter 3, arrays are defined as lists and compiled as
actual arrays, this suggest that it would be possible to do something similar
for tuples.

An obvious difficulty arises: it is much harder to state associativity proper-
ties. In the category of sets, A×B is isomorphic to B×A and 1×A is isomorphic
to A. When n-ary products are all defined primitively – Leinster [37] calls this
an unbiased product – there are much more primitive isomorphisms: every
two trees of products with the same leaves are isomorphic (see [37, p. 66]) for
more details). It is left to be seen whether Coq can cope with such a fancy
associativity principle painlessly.

Variants – as programmers call the elements of sum types – are usually
represented in memory as the pair of a tag indicating which component of
the sum their value belongs to and their value. Apart from the fact that it is a
customary encoding in mathematics, the motivation for the representation of
variants is that they are typically used by running a different piece of code
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depending on which component they belong to. The emphasised ability is
to be able to branch as rapidly as possible. The matter is usually made a
bit more complicated as sums and products are merged to select a branch at
the same time as fetching data – as it is also advertised in theoretical works,
like Girard’s ludic [23] – but we shall focus on separate type constructors for
products and sums. In our example, suppose we want to compute the length
of lists:

Fixpoint length (A:Type) (l:NZBL A) :=
match l with

| One _ ⇒ 1

| Two _ _ ⇒ 2

| TwicePlusOne _ l ⇒ 2∗(length (A∗A) l)+1

| TwicePlusTwo _ _ l ⇒ 2∗(length (A∗A) l) +2

If we only had access to binary sums, we would have to do perform a
memory access to check whether we are in the case One, if not then a memory
access to check whether we are in the case Two, etc. An 4-ary sum, means that
we have only one memory access to perform, which is preferable.

Provided we have an efficient representation for tags, dependent sums
allows for the definition of variants as pairs. Specifically, supposing we have
an efficient implementation for a finite type Tag, a sum indexed by Tag
has a type of the form

∑

t : TagAt. In Coq, this gives precisely the expected
representation.

Incidentally, this suggests a solution for labelled sums as well – which
are a convenience feature rather than an efficiency-related one. Provided
the type Tag is viewed as a type of labels. To define all the sort of labelled
sums intended, the type Tag must support case analysis; and, of course, their
must be as many such types as can be conceived. In [7], this is addressed
by having a special syntactic construction for labels, and a particular form of
types which consist in enumerations of labels and support case analysis. To
be able to define categories with unbiased sums, though, this isn’t sufficient:
the enumeration types need to be of a special type Enum themselves, so that
they can be quantified upon. With all these, the statement that a category C
has all unbiased sums would read along these lines: for every L:Enum and
every L-index family of objects of C (Al)l:L, there is an object S and a family
of injection ι:

∏

l : LHomAl S.
The material used for the sums leads to a dual definition of unbiased

product: an object P with a family of projection π:
∏

l : LHomPAl. Interestingly
enough, it requires no support for labelled product in the host languages, as
the object P can be implemented as an unlabelled product with π basically
translating labels into positions – which is what compilers usually do under
the hood anyway. The universal property of products, however, suggests a
purely syntactical approach to records: it states that for any object X and family

of arrows X
fl−−−→ Al, there is an arrow X

recordl:L fl−−−−−−−−→ P with the expected
properties. In the host language it would amount to a map converting from
∏

l : LAl to P.
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Code reuse

Somewhat ironically, at the point where we manage to write code in the
internal language of some category, the biggest question left is one of code
sharing. Indeed, it would happen that the same program unit need to be
written both in the host language and in the internal language. If there is not
a way to write the code in one (preferably the host language) and reuse it in
the other, this would be a serious issue.

We expect, somewhat, to be able to parse the relevant programs from the
host language, and then reinterpret it in the internal language. Fortunately,
implementations of dependently typed language usually provide tools for
parsing existing code. This leads to believe that modest extensions of the
existing capabilities may be sufficient to reuse code from the host language
into the internal language.
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Chapter Six

Sharing more code

This is the butterfly of the storms.

See the wings, slightly more ragged than those of

the common fritillary. In reality, thanks to the fractal

nature of the universe, this means that those ragged

edges are infinite – in the same way that the edge of

any rugged coastline, when measured to the ultimate

microscopic level, is infinitely long – or, if not infinite,

then at least so close to it that Infinity can be seen on

a clear day.

Terry Pratchett, Interesting Times

D
uring the course of this manuscript we have noticed many resem-
blances between various structures. Categories resemble sets but
with more fine-grain structure, additive categories are just like
normal categories replacing sets and function by abelian groups

and group homomorphisms, categories of graded objects are categories with
more homsets.

Code sharing being one of our main focuses, we want to explore in this
chapter how these resemblances can be made explicit by unifying structures.
Constructions on sets can be generalised to categories, additive categories and
categories can be seen as instances of a more general notion, categories of
graded objects can be preabelian.

This led us into fields of mathematics which are rather young, and not
always well studied. Our point of type theoretic point of view brings a
fresh look to these mathematics and emphasises constraints that have been
overlooked by mathematicians.

The notions used in this chapter are rather technical. We shall often refer
to [37] which surveys the state of the art on which the chapter builds. Most
of the definitions appearing of the chapter are discussed there, albeit from a
quite different perspective.

6.1 Categories & additive categories

The definition of category gives a particular role to sets and functions, as
homsets are sets and composition is a (binary) function. In additive categories,
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though, the homsets are endowed with an abelian group structure and com-
position is a group morphism. The approach taken in Chapter 2 is to consider
additive as a standard category with additional group structure. However
this arguably falls short when defining functors between additive categories:
at the very least one wants these functors to respect the group structure of the
homsets. Yet, the arrow component of functors is, by definition, a function
rather than a group morphism.

This implies working with a special kind of functors which have the
additional property of respecting the group structure of homsets. Which
entails proving that usual properties of functors – such as the fact they
compose – pass on to group preserving functors, and proving slight variants
of a number of properties of functors.

Enriched category

There need not be duplications between categories and additive categories.
One might want to simply substitute the words set and function in the defi-
nition of categories with abelian group and group morphism. Or anything well
behaved for that matter, for instance topological space and continuous functions.

There is a notion of enriched categories [33] which play precisely this role.
More formally, given a multi-category V , a V-enriched category is defined as:

EnrichedCategoryV
O : Type
Hom : O ֌ O ֌ OV

1A : HomV [] (HomAA)

; :
∏

ABC : O

HomV [HomAB,HomBC] (HomAC)

_ : f ; (g;h) = (f ; g);h
_ : 1; f = f ; 1 = f

Homsets are objects of V , the identity arrow of A is an element (that is,
a nullary endomorphism) of (HomAA) in V and composition is a binary
morphism in V . Associative properties are just as usual.

Obviously, standard categories are enriched in sets and functions. This
poses a bootstrapping issue, as categories – multicategories actually – are
needed for the definition of enriched categories which in turn allow to define
standard categories. There does not seem to be a scheme around this in
the literature. Thus we are bound, for the time being, to duplicate some
properties between standard categories and enriched one. This may be seen as
acceptable for two reasons: the first is that properties are to appear in at most
two versions, as properties of enriched categories are written once and for all;
the second is that there is a minimal need for properties of standard categories,
only these needed to bootstrap enriched categories, as further properties can
be inherited from the categories enriched in sets and functions.

In our case, where there are only two kinds of categories so far, it does not
seem too helpful to make use of enriched categories. It would perform little,
if any, code sharing while requiring potentially large a code.
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6 Sharing more code

Internal category

An alternate – non-equivalent – approach to enriched categories is that of
internal categories. Roughly speaking, it consists in taking a category V and
defining how to endow an object of V with categorical structure.

Formally, let V be a category with pullbacks. A category C in V is the

data of two objects O and H together with a pair of morphisms H
s

−−−→ O

and H
t

−−→ O. The object O contains objects of C and H all arrows of C, the
morphism s associates to each arrow its source and t its target. Additionally,

C has a morphism O
e

−−−→ H giving an identity arrow to each of its object

and a morphism H×OH
c

−−−→ H performing composition where H×OH is the
pullback in the following diagram:

HO×H

HH

OOO

tsts

These various morphisms verify properties about the sources and targets
of identity and composite arrows, and associativity properties all expressed
as commutative diagrams.

Hence, a category in the category of sets has a set of object and a set of
arrows. Therefore, standard categories are not categories in that of sets, and

In zf, everything is set. In particu-
lar the objects of a category form
a set, as well as the arrows. In this
particular case, (small enough)
categories are categories in the
category of (large enough) sets.

they should not be as that would prevent us from defining the category of
sets or that of abelian groups. Categories in the category of abelian groups
have a group of objects and one of arrows. This is very different from a
category enriched in abelian groups. As a consequence, internal categories
are inappropriate for our applications.

Incidentally, just as it was the case with lcc categories in Section 5.2, we
can say that internal categories have dependencies in the wrong direction, as source
and target are a property of arrows rather than being indexes for homsets.
Also, they seem to require stronger properties of the base category: it need to
have pullbacks rather than simply being a multicategory.

The main point of internal categories is that they are easy to generalise,
and the type and properties of composition remain obvious. For instance, we
can give an internal version of multicategories. In the category of sets and
functions, let L be the list functor. An internal multicategory is the data of an

object set O, an arrow object H, a source function H
s

−−−→ LO, a target function

H
t

−−→ O, an identity function O
e

−−−→ H and a composition LH×OH
c

−−−→ H
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where LH×OH is the pullback in the following diagram:

HO×HL

HHL

OOL)OL(L

tstLsL

The source and target assignment as well as associativity properties are
given by the same diagrams as for categories, with L inserted when required
(admittedly, the source assignment of composition requires some flattening of
lists of lists of objects into lists of objects). Notice, that the composition is a bit
different than that we gave in Section 5.3 as requires to give a n arrows on the
left to compose with an n-ary arrow.

6.2 Sets as categories and beyond

A set S can be viewed as a category, with elements of S as objects, and for
two elements a and b, the set {a=S b} of all proofs of (a=S b) – all considered
equal – as (Hom a b). Composition is given by transitivity, and identities by
reflexivity. The associativity laws of categories are trivial as there is at most
one element in each {a=S b}.

Groupoid

A groupoid is a category equipped with an operation

−1:
∏

AB : O

HomAB −→ HomBA

such that (f, f−1) is an isomorphism, that is, ff−1 = 1 and f−1f = 1.
Symmetry of the equality of a set makes it a groupoid. Here again,

isomorphism law is trivial. Sets can be viewed as these groupoids which are
degenerate in the sense that each homset has at most one element.

Functors between two sets so seen are exactly functions: the object compo-
nent corresponds to the computation, the arrow component corresponds to
the preservation of equality, the equational laws are trivial.

This means that the definition of sets and functions can be inherited from
those of categories and functors. However, at this point, this might not be
worth the effort as categories and sets do not share many properties.

Natural transformation

Of the properties of sets one that was a foremost importance was that there
is a set of functions from A to B. It can be inherited from a statement about
functors: there is a category of functors from B to C. The morphisms of this
category are called natural transformations.
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Given two functors F and G from B to C, a natural function from F to G

is the data, for each object A of B of an arrow FA
ϕA

−−−−→ GA such that the

following diagram commute for any A
f

−−−→ B:

BGBF

AGAF

fGfF

Bϕ

Aϕ

Which can be read as ϕA is defined the same way for each A; or, in type
theoretic jargon, ϕA is parametric in A.

If B and C are sets, then a natural transformation from F to G is the
statement that ∀a.F a = G a. Thus, the category where objects are functors
from B to C and arrows are natural transformation is the corresponding set of
function B −→ C.

Bicategory

However, in general, functors between two categories equipped with natural
transformation do not constitute a set as there are more than one natural
transformation between two functors. For this reason, there is no category of
categories and functors: the homsets need to be categories rather than sets.

There is a notion of bicategory [37, p. 26–32] where homsets are categories.
There is a bicategory of categories. The detailed definition, however, is fairly
long and would not belong here. We shall merely sketch it.

A bicategory is given by a type O of objects and for each pair A and B
of objects, a category (HomAB) of morphisms – the morphisms of (HomAB)
are called 2-morphisms. There are identity morphisms 1A and a composition
( ; ). Composition is required to be a (two argument) functor – just as
it is a function in standard categories. Associativity laws only hold up to
isomorphism (e.g. there is an isomorphism between (f ; g);h and f ; (g;h)). The
associativity isomorphisms are required to verify some extra laws (usually
called coherence laws), amounting to the fact that all diagrams drawn out of

them commute. For two parallel morphisms A
f

−−−→ B and A
g

−−−→ B, we

write f
α

===⇒ g for a 2-morphism between these.
The main peculiarity of bicategories is that there is two distinct ways of

composing 2-morphisms. The first is given by the composition of the category
(HomAB): for any three parallel morphisms

A
f

−−−→ B, A
g

−−−→ B and A
h

−−−→ B

and any two 2-morphisms

f
α

===⇒ g and g
β

==⇒ h

there is a composite

f
α•β

====⇒ h
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The second one is of different nature and is obtained by functoriality of
the composition ( ; ) of morphisms: given two pairs of parallel morphisms

A
f

−−−→ B and A
g

−−−→ B, and B
h

−−−→ C and B
j

−−−→ C

each of them equipped with a 2-morphism

f
α

===⇒ g and h
β

==⇒ j

we shall construct a composite 2-morphism

f ;h
α� β

=====⇒ g; j

Since ( ; ) is a functor, we can construct the two following 2-morphism:

f ;h
α;h

====⇒ g;h and g;h
g;α

====⇒ g; j

Then we can define

α�β = ((α;h) • (g;β))

When the (HomAB) are degenerate – that is, are sets – the bicategory is a
category (and conversely, all categories are degenerate bicategories). Hence
the category of sets is inherited from the bicategory of categories.

ω-category

Categories can be obtained from bicategories; just like sets can be obtained
from groupoids. Bicategories have there own version of functors, which are
actual functors when acting on categories – hence functions when acting
on sets. We can then define a notion of tricategory such that there is a
tricategory of all bicategory. The (HomAB) of tricategories are bicategories,
which verify a very long list of properties. Also, tricategories feature three
different compositions for their 3-morphisms. We shall call all these kind of
categories higher categories, or n-categories (where 1-category means category,
2-category means bicategory, and so on) when focusing on a particular kind.

Somewhat we would like to say that bicategories are enriched in categories
(see Section 6.1) and that tricategories are enriched in bicategories. However,
it does not quite make sense as, precisely, there is no category of categories.
Actually, even in zf, where one can consider a category of (small) categories,
the notion of enrichment needed here is, apparently, really hard (to the point
that there is apparently no reference in the literature on the subject).

The usual approach to defining higher categories is an internal way: certain
objects of certain categories are defined as being bicategories. The internal
approach does not suit or objectives, in particular because it implies that all
higher categories are sets. Also, there are various non-equivalent definitions
of n-categories. On the positive side, some of these definitions focus on all
possible ways to compose k-morphisms in an unbiased way (see Section 5.3).

In a non-internal perspective, it seems more reasonable to start and define
a notion of ω-category, which would have n-morphisms for every natural
number n, and then take an n-category to be degenerate from rank n + 1
on – that is there is at most one (n + 1)-morphism in each (n + 1)-homsets.
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CatLikeOHom1 ( ; )

⇒ :
∏

AB : O

HomAB ֌ HomAB ֌ Type

id :
∏

AB : O
f : HomAB

f ⇒ f

• :
∏

AB : O
f g h : HomAB

(f ⇒ g) ֌ (g ⇒ h) ֌ (f ⇒ h)

next :
∏

AB : O

CatLike (HomAB) ( ⇒ ) id ( • )

λ :
∏

AB : O
f : HomAB

1; f ⇒ f

ρ :
∏

AB : O
f : HomAB

f ; 1 ⇒ f

α :
∏

ABCD : O
f : HomAB
g : HomBC
h : HomCD

f ; (g;h) ⇒ (f ; g);h

� :
∏

ABC : O
f f ′ : HomAB
g g′ : HomAB

(f ⇒ g) ֌ (f ′ ⇒ g′) ֌ (f ; g ⇒ f ′; g′)

Figure 6.1: A first approach to ω-categories

In addition, it is useful and meaningful to consider (-1)-categories and (-2)-
categories. A (-1)-category is a proposition: its objects, or 0-morphism, are its
proofs all considered equal, hence propositions are degenerate from rank 0. A
(-2)-category is the proposition ⊤: its imaginary (-1)-morphisms must be all
equal as the unique 0-morphism between them would be the proof of ⊤.

It is not obvious how to define ω-categories in type theory. As an infinitely
deep structure, it would make use of co-induction. Maybe we want to define
ω-categories directly, or we might want something more general and then
constrain it down to ω-categories.

In the direction of the latter approach, there is a tentative definition due to
Peter Hancock suggested this
definition in private discussions,
there is no published reference.Peter Hancock – in doubt of it deserving a name, we shall just call it CatLike:

We recognize both products 2-morphisms. The second one, ( � ), also
ensures the functoriality of the 1-morphism composition ( ; ). The third prod-
uct of 3-morphism is not explicit here, and presumably cannot be retrieved as
it is equivalent to the functoriality of ( � ), which is not required. Requiring
that ( � ) is a functor would involve the third product of 3-morphisms,
which in turn would not be a functor. Hence there is necessarily structure
missing in this definition – there is no easy way around.

Also, instead of having isomorphisms between f ; (g;h) and (f ; g);h, there
is simply a morphism from the former to the latter. It is hard to judge at this
point whether it captures new interesting mathematical objects – though it
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certainly bears a striking resemblance with rewrite systems.
However, any definition of ω-category would presumably be stronger than

that of CatLike. Hence CatLike makes a good object of study. Let us see how
it works with the simplest ω-categories.

There is an ω-category ⊤s corresponding to ⊤ (with ! the sole proof of ⊤):

⊤s : CatLike⊤ (λ_ _.⊤) ! (λ_ _. !)
⇒ = λ_ _.⊤

id = λ_ _ _. !
• = λ_ _ _ _ _ _ _. !

next = ⊤s

λ = λ_ _ _. !
ρ = λ_ _ _. !
α = λ_ _ _ _ _ _ _. !
� = λ_ _ _ _ _ _ _ _ _. !

Hence Ts is define in term of itself.
Then, given a proposition, P, there is a CatLike Ωs defined in term of

⊤s. Likewise, given a set A we can define a corresponding CatLike Sets
using Ωs. The definitions are straightforward, but the real goal is to be able
to state something like a proposition is an ω-category enriched in T and a set
is an ω-category enriched in propositions. We are lacking a good definition of
enrichment for ω-categories.

To conclude on a side remark, if we manage to render ω-category workable,
the inevitable question will be to be able to work in the internal language of
such an ω-category.

6.3 The category of graded objects is preabelian

In Section 2.4, we have seen a slight generalisation of categories, where instead
of having a homset (HomAB) for each pair of object A and B, homsets are
additionally indexed by an integer called the degree. In Section 5.3, we have
defined multicategories, a variant of categories where homsets are indexed by
a list of domains and a codomain. Multicategory are intended to abstract the
notion of multiple argument functions. We might want to add a degree on
top of that.

It so happens that there is a unified framework, albeit young, to deal with
these multicategories, and degrees and such extension. It is dubbed generalised
multicategory.

Monad

A monad is a functor T from a category C to itself, such that for each object

A of C, there is an arrow A
ηA

−−−−→ TA called the unit of T, and an arrow
T (TA)

µA

−−−−→ TA called the composition of T (both η and µ must be natural
in A). Additionally they verify associativity laws, which amounts to say that
any diagram built only of η and µ are commutative.

The functor L of the category of sets, associating to each set A the set of lists
of elements of A, is a monad: ηA a = [a] and µA [[a11, . . . , a1k1

], . . . , [an1 , . . . , ankn
]] =

[a11, . . . , a1k1
, . . . , an1 , . . . , ankn

].
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The functor × Z is also a monad: ηA a = (a, 0) and µA ((a, n), p) =
(a, (n+ p)). Actually, for any monad T of the category of sets, the composite

Let T be a monad of the cate-
gory of sets. There is a func-
tion fA:Z −→ A −→ A × Z de-
fined as fA na = (a, n). As T is
a functor, we deduce a function
T (fA n):TA −→ T (A× Z), and
then λ(a, n).T (fA n) : (TA) ×
Z −→ T (A×Z). Using this func-
tion, we can turn an element of
(T ((T (A× Z))× Z)) into one of
(T (T ((A×Z)×Z))), from which
we can deduce the composition
of T ( × Z).

functor T ( × Z) is also a monad.

Generalised multicategory

The idea of generalised multicategory stems from these remarks. The gen-
eralisations of categories considered in this section have all something to do
with some monad. A unified way to handle them might be to work with an
arbitrary monad.

The usual definition is given in an internal way. Given a monad T (with
additional properties) of a category C, a T-category in C is the data of an

object O of objects, an object H of arrows, a source morphism H
s

−−−→ TO

and a target morphism H
t

−−→ O, together with an identity arrow assignment

O
e

−−−→ H and a composition TH×OH
c

−−−→ H where TH×OH is the pullback
in the following diagram:

HO×HT

HHT

OOT)OT(T

tstTsT

The source of the identity arrows uses the unit η of T to be defined:

H

HO

η
s

e

Similarly, the source of composite arrow is given by the composition of the
monad. See [37, Chapter 4] for a complete definition.

There are no non-internal definition known to the author. We can outline
some ideas. As we are using monads, we need some category from which
to pick the type of objects from. Let us suppose that we have a set of
objects, and a monad T on the category of sets. Homsets would be of type
TO −→ O −→ Set. As in the internal definition, the identity of A would have
type Hom (ηO A)A. The difficult part would be to handle composition, as one
has to single out one of the source objects to compose on. We would need T to
have some sort of derivative [42] ∂T equipped with a natural transformation

(∂TA) × A
[ ]

−−−−−→ TA with appropriate properties. We could then define
the composition as having type:

; :
∏

Γ : TO

∆ : ∂TO

BC : O

HomΓB −→ Hom(∆ [B])C −→ Hom(µ ((∂T η∆) [Γ]))C
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Which amounts precisely to say that compositions plugs an arrow with
target B into a hanging B.

Such a definition plays better with type theory than an internal definition,
however it is not clear that it leads somewhere. It requires the objects to form
a set. This constraint could be relaxed, for instance we could assume that each
type is naturally endowed with an ω-categorical structure. It is debatable,
however, that types should have any structure canonically attached to them at
all.

On the other hand, suppose we have a suitable definition of generalised
multicategory worked out, and that we can even define a preabelian T-
category. Hopefully, T ( × Z) would also have the required properties to
define (T ( × Z))-categories. We could then state the following theorem: let
A be an abelian T-category, then the (T ( × Z))-category of graded objects of A is
preabelian.

Graded category

As we have no complete definition of generalised multicategory, we shall
restrict ourselves to categories with a single source object. Given a monoid
M, we can define an M-category as a category where for each element d of M,
called the degree, and objects A and B, there is a homset Homd AB. Identity
would be in Home AB (with e the neutral element of M), and composition
would have type:

; :
∏

d1 d2 : M
ABC : O

Homd1
AB −→ Homd2

BC −→ Homd1d2
AC

An abelian M-category is defined straightforwardly. Each homset has an
abelian group structure, composition is bilinear, for each construction where
the degree is left free – like kernels and cokernels, and the injections and
projections of the biproducts – we constrain it to be e.

Graded objects, second take

Given an M-category C, we can define the category of its graded objects to be
an M × Z-category with objects the (An)n:Z, with An:OC and morphisms in
(Hom(d,k) ((An)n:Z) ((Bn)n:Z)) are families of morphisms (fn)n:Z with each fn
taken in (Homd An B(n+k)).

When C is preabelian, the preabelian structure can be extended to the
graded objects like in Section 2.4. Hence the theorem: The M× Z-category of
graded objects of a preabelian M-category is preabelian.

This theorem appears to be a contribution of this work. It seems to be
nowhere to be found in the literature. It is presumably of little relevance to
pen-and-paper mathematics. However, it is fundamental in our presentation
of effective homology.

Graded categories in Coq

Unfortunately, it is not directly possible to transpose the definition of graded
categories into Coq. The main issue is the representation of set-indexed
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families – of which (Homd AB)d:M is. Such a family is given by a map
F:X→Set (where X is the index set), it must be endowed with a function

The function c must verify
properties which make F a
functor from X seen as a
category to the category of
set. That is c (refl x) = id,
c (trans p q) = (c p)·(c q) and
(c p)·(c (sym p)) = id.

c : forall(x y:X), x = y → F x −→ F y As such, the composition id·f – where f is
in Hom d A B – is not in Hom d A B but in Hom (e∗d) A , which is isomorphic,
so we cannot state id·f=f, however, if l is a proof that e∗d=d, then we can have
c l (id·f) = f.

While possible this approach would make mathematical statement clut-
tered with explicit coercions. It could be arranged in such a way that the
statement are almost as easy to read as statement without coercions. How-
ever every statement would need to come with an explicit proof of equality
between degrees. In order to make this approach tractable we would need a
way to automate the creation of the equality proof.

It is, otherwise, possible to tweak the definition of graded categories to
make id·f=f typable. Instead of having a monoid defined in term of a binary
and a nullary operations, we can define an unbiased monoid as a set M
together with a function p : List M −→ M, where List M is the set of lists of
elements of M. Also p needs to verify that forall d, p [d]=d together with an
associativity law.

Then we would have

id:forall A B, Hom (p []) A B

And, more interestingly, we can define composition to be of type

comp : forall d1 d2 A B C,
Hom (p d1) A B −→ Hom (p d2) B C −→ Hom (p (d1++d2)) A B

Where d1++d2 is the concatenation of both lists. What we have done here
is, in essence, is to report some of the work to the syntactic level which is
handled by conversion.

Now, for f:Hom (p [d]) A B id·f has type Hom (p []++[d]) A B which is con-
vertible to Hom (p [d]) A B, making id·f=f typable.

However this is about as far as we can get in this direction as, for instance,
1·1 has type f:Hom (p []) A B, hence we can state 1·1=1 but it is not an instance
of the above as p [d] does not unify with p [].

Graded categories are an indispensable tool to our approach of homological
algebra if we want to be able to share proofs between standard preabelian
categories and graded objects. However it seems very hard, if possible at all,
to deal with them in Coq. It is likely, but time will tell, that this emphasises a
weakness of intentional type theories. Extensional type theories do not have
such issues but they assign a canonical set structure to every type, which
does not fit well with the approach we have taken throughout this manuscript.
Other options include giving up the categorical abstraction altogether, the
work in [21] shows that it can be done in practice. However the author would
argue that if dependent type theories want to be seen as an improvement on
existing programming languages, the presentation of homological algebra
designed in this manuscript should be implementable roughly as it is.
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Appendix A

Coq development for Kernel computations

A.1 Kernels are finite dimensional

Section split_left.

Variable (H:preabelian) (A B C:H).
Variable f : H (A⊕B) C.

Section split_left_when_isomorphism.

Variable g : H C A.
Variable i : isomorphism (ι1·f) g.

Let η0 := ι2 - ι2·f·g·ι1.

Let universalisable : η0·f = 0.

Lemma split_left_when_isomorphism0 :
isomorphism (uker f _ η0 universalisable) ((ker f)·π2).

Definition split_left_when_isomorphism : { η : H B (Ker f)
& { µ | isomorphism η µ } }.

End split_left_when_isomorphism.

Section split_left_when_zero.

Variable (z:ι1·f=0).

(* There is an isomorphism between Ker f and
A⊕Ker ι2·f.
We need a function from Ker f to B which nullifies ι2·f.
And a function from Ker ι2·f to A⊕B which nullifies f.
Then we deduce from the second one a function from A⊕Ker ι2·f to
A⊕B which also nullifies f, and then a function from
A⊕Ker ι2·f into Ker f.
We procede the other way around for the first one. ∗)
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Let η0 := (1:H A A) ⊗ ker (ι2·f).
Let µ0 := ker f · π2.

Let pti_f : π2·ι2·f = f.

Let universalisable_η0 : η0·f = 0.

Let universalisable_µ0 : µ0·(ι2·f) = 0.

Let η1 := uker _ _ η0 universalisable_η0.
Let µ1 := ker f ·π1·ι1 + (uker _ _ µ0 universalisable_µ0)·ι2.

Lemma split_left_when_zero0 : isomorphism η1 µ1.

Definition split_left_when_zero : { η : H A⊕(Ker (ι2·f)) (Ker f) &
{ µ | isomorphism η µ }}.

End split_left_when_zero.

End split_left.

Implicit Arguments split_left_when_isomorphism [ [H] [A] [B] [C] ].
Implicit Arguments split_left_when_zero [ [H] [A] [B] [C] ].

Section split_right.

Variable (H:preabelian) (A B C:H).
Variable f:H A B⊕C.

Let η0 := ker (ker (f·π2) ·f·π1)· ker (f·π2).

Let universalisable_η0 : η0·f = 0.

Let η1 := uker f _ η0 universalisable_η0.

Let µ0 := ker f.

Let universalisable_µ0 : µ0·(f·π2)=0.

Let µ1 := uker (f·π2) _ µ0 universalisable_µ0.

Program Let µ2 := uker (ker (f·π2)·f·π1) _ µ1 _.

Lemma split_right0 : isomorphism η1 µ2.

Definition split_right : { η : H (Ker (ker (f·π2)·f·π1)) (Ker f) &
{ µ | isomorphism η µ }}.

End split_right.
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Implicit Arguments split_right [ [H] [A] [B] [C] ].

Fixpoint pow {H:preabelian} (K:H) (n:nat) :=
match n with

| 0%nat ⇒ Zero
| S p ⇒ K⊕(K ^ p)
end

where " K ^ n " := (pow K n).

Section effective_kernel.

Variable (H:preabelian) (K:H).
Variable (atomic : forall f:H K K, { g | isomorphism f g } + { f=0 }).

Definition decide_kernel_to_atomic : forall {n:nat} (f:H (K^n) K),
{ k : nat &
{ η : H (K^k) (Ker f) &
{ µ | isomorphism η µ }}}.

Definition decide_finite_dimention_kernel : forall (n m:nat) (f:H (K^n) (K^m)),
{ k : nat &
{ η : H (K^k) (Ker f) &
{ µ | isomorphism η µ }}}.

End effective_kernel.

A.2 Testing the program

(* Λ injects fields into the category of their vector spaces. *)
(* arrow_of_matrix takes a matrix represented as an element of

(Kn)
m and returns a linear function from the vector

space Kn to Km*)
Definition arrow_of_matrix {K:DiscreteField} {n m:nat} (µ:((Λ K)^n)^m) :

C K ((Λ K)^n) ((Λ K)^m).

(* Λ_base_of_kernel wraps up decide_finite_dimention_kernel to produce
the basis of the kernel of f in form of a matrix – that is k
elements of Kn forming the basis of the kernel.
C K is the preabelian category of vector space with scalars K. *)

Definition Λ_base_of_kernel {K:DiscreteField} {n m:nat}
(f:C K ((Λ K)^n) ((Λ K)^m)) : { k : nat & ((Λ K)^n)^k}.

(* Q_base_of_kernel is a specialised version of Λ_base_of_kernel to the rational
which shows the rational numbers in reduced form. *)

Definition Q_base_of_kernel {n m:nat}
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(f:C Q ((Λ Q)^n) ((Λ Q)^m)) : { k : nat & ((Λ Q)^n)^k}.

(* 1#3 is Coq’s notation for the rational number 1
3 . *)

Time Eval vm_compute in
Q_base_of_kernel (arrow_of_matrix (

[ [ 1#3 , 0 ],
[ 0 , 1#3 ] ] : ((ΛQ^2)^2))).

(* Finished transaction in 0. secs (0.012001u,0.s)

[0 / ⋆]

Where ⋆ is the unique element of the trivial vector space.
Homothetic linear functions are injective, hence have a
0-dimensional kernel. *)

Time Eval vm_compute in
Q_base_of_kernel (arrow_of_matrix (

[ [ 0 , 2#1 ],
[ 4#1 , 0 ] ] : ((ΛQ^2)^2)%cat)).

(* Finished transaction in 0. secs (0.016001u,0.s)

[0 / ⋆]

Rotations followed by scaling is injective too.*)

Time Eval vm_compute in
Q_base_of_kernel (arrow_of_matrix (

[ [ 1#1 , 1#2 ],
[ 0 , 0 ] ] : ((ΛQ^2)^2)%cat)).

(* Finished transaction in 0. secs (0.028001u,0.s)

[1 / [[ -1#2 , 1 ]]]

Projectors, on the other hand, are not injective.*)

(* µ_n_m n m d s returns a matrix of size n×m. It is filled
with rational numbers d, d+ s, d+ 2s, etc. . .
We shall use it to produce non-trivial examples to test. *)
Definition µ_n_m (n m:nat) (d s:Q) : ((ΛQ^n)^m) .

Time Eval vm_compute in
Q_base_of_kernel (arrow_of_matrix (µ_n_m 5 30 (1#1) (1#1))).

(* Finished transaction in 2. secs (1.76411u,0.032002s)

[3 /
[[ 1 , -2#1 , 1 , 0 , 0],
[ 2#1 , -3#1 , 0 , 1 , 0],
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[ 3#1 , -4#1 , 0 , 0 , 1]]] *)

Time Eval vm_compute in
Q_base_of_kernel (arrow_of_matrix (µ_n_m 10 10 (1#1) (1#1))).

(* Finished transaction in 1. secs (0.752047u,0.s)

[8 /
[[ 1 , -2#1, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 2#1, -3#1, 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 3#1, -4#1, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 4#1, -5#1, 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 5#1, -6#1, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 6#1, -7#1, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 7#1, -8#1, 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 8#1, -9#1, 0, 0, 0, 0, 0, 0, 0, 1 ]]] *)

Time Eval vm_compute in
Q_base_of_kernel (arrow_of_matrix (µ_n_m 20 20 (1#1) (1#1))).

(* Finished transaction in 8. secs (8.648541u,0.056004s)

[18 /
[[ 1 , -2#1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[ 2#1, -3#1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[ 3#1, -4#1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[ 4#1, -5#1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[ 5#1, -6#1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[ 6#1, -7#1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
[ 7#1, -8#1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
[ 8#1, -9#1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0],
[ 9#1,-10#1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0],
[10#1,-11#1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],
[11#1,-12#1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[12#1,-13#1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],
[13#1,-14#1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
[14#1,-15#1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],
[15#1,-16#1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],
[16#1,-17#1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],
[17#1,-18#1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0],
[18#1,-19#1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]] ∗)

Time Eval vm_compute in
Q_base_of_kernel (arrow_of_matrix (µ_n_m 40 40 (1#1) (1#1))).

(* Finished transaction in 141. secs (139.556721u,0.528033s)

[38 / . . . ] ∗)
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Strong subsets are classified

(* subset P and { P } are binder-free notations for {x : X | Px}. *)
Definition subset (X:set) (P:X−→Omega).
Implicit Arguments subset [X].
Notation "{ P }" := (subset P) : bishop_scope.

(* Definition of a strong mono *)
Definition strong_mono (C:category) (X Y : C) (m:C Y X) : Prop :=
mono m ∧
forall (Z W : C) (e:C W Z) (q : epi e) (f:C Z X) (g:C W Y),

e·f = g·m → exists h:C Z Y, h·m = f.
Implicit Arguments strong_mono [C X Y].

Section in_category_of_sets.

Let C := category_of_sets.

(* The canonical injection from { P } is a mono *)
Lemma ci_mono : forall (X:C) (P : C X Omega), mono C (canonical_injection P).

(* Definition of the function which is constantly equal to True *)
Definition top (X:set) : X −→ Omega.
Implicit Arguments top [X].

(* The following function is the function used to explecitely prove that
the canonical injection from { P } is a strong mono.
Namely, it is the witness of the existensial property *)

Definition diagonal (X Y:set) (P : Y −→ Omega) (f : X −→ Y) :
(forall x:X, P (f x)) → (X −→ { P }).

Lemma ci_strong_mono : forall (X:C) (P: C X Omega),
strong_mono ((canonical_injection P):C {P} X).

(* The terminal object of the category of sets. *)
Definition One : C.

(* This is the unique function from X to One *)
Definition one_function (X : C) : C X One.
Implicit Arguments one_function [X].
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Lemma one_terminal : terminal One.

(* Xi m is the image of m. When m is a strong mono, it is used
as its characteristic function. *)

Definition Xi (X Y : set) (m : X −→ Y) : Y −→ Omega.
Implicit Arguments Xi [X Y].

(* Defines the natural arrow between a subset m and the
associated strong subset { Xi m }.*)

Definition expansion_arrow (X Y : C) (m : C X Y) : C X {Xi m }.
Implicit Arguments expansion_arrow [X Y].

(* epi <-> surjective. *)
Lemma epi_surjective : forall (X Y : C) (f : C X Y),

(forall y : Y, exists x : X, y = f x) ↔ epi f.

(* corollary: the expansion arrow is always epic. *)
Lemma expansion_arrow_epi : forall (X Y : C) (m : C X Y),

epi (expansion_arrow m).

(* if m is a strong mono with domain X, then X is isomorphic to { Xi m }.
Basically means that all strong monos are (almost) canonical arrows.
It is also stated that the isomorphic has a commutation property
which will be used for the final result. *)

Lemma expansion_equiv2 : forall (X Y : C) (m : C X Y), strong_mono m →
exists u : C { Xi m } X, exists v : C X { Xi m }, isomorphism u v ∧

u·m = (canonical_injection (Xi m)).

(* Defines the natural (cartesian) product object of two objects *)
Definition product (X Y : C) : C.

(* Intermediary definition to define a pullback object. *)
Definition pullback_part (X Y Z : C) (f : C X Z) (g : C Y Z) : product X Y −→ Omega.

(* The three following definitions define the pullback of two functions. *)
Definition set_pullback_obj (X Y Z : C) (f : C X Z) (g : C Y Z) : C :=

{ pullback_part X Y Z f g }.
Implicit Arguments set_pullback_obj [X Y Z].

Definition set_pullback_p1 (X Y Z : C) (f : C X Z) (g : C Y Z) : C (set_pullback_obj f g) X.
Implicit Arguments set_pullback_p1 [X Y Z].

Definition set_pullback_p2 (X Y Z : C) (f : C X Z) (g : C Y Z) : C (set_pullback_obj f g) Y.
Implicit Arguments set_pullback_p2 [X Y Z].

(* Explicit definition of the existential arrow closing the universal diagram
of the natural pullback. *)

Definition set_pullback_universal (X Y Z:C) (f : C X Z) (g : C Y Z) (Q : C)
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(q1 : C Q X) (q2 : C Q Y) (wp : q1·f = q2·g) :
C Q (set_pullback_obj f g).

Implicit Arguments set_pullback_universal [X Y Z f g Q q1 q2].

(* Proof that the natural pullback is actually a pullback. *)
Theorem sets_have_pullback : forall (X Y Z : C) (f : C X Z) (g : C Y Z),

pullback f g (set_pullback_p1 f g) (set_pullback_p2 f g).

(* Subsets of the form { P } are classified with characteristic function
P. This is proved by giving an isomorphism between { P } and the
natural pullback of one_function and P. ∗)

Lemma subset_pullback : forall (X:C) (P:C X Omega),
pullback (top:C _ _) P one_function (canonical_injection P).

(* Reduces the property of being a classifying pullback
to being isomorphic to { P } with the appropriate commutation properties. ∗)

Lemma isomorphic_subset : forall (X Y:C) (P: C X Omega) (p2 : C Y X)
(u : C { P } Y) (v: C Y { P }),
u·p2 = canonical_injection P →
isomorphism u v →
pullback (top:C _ _) P one_function p2.

(* The following two theorems asserts that the strong monos of the
category of sets are classified. *)

Theorem characteristic_function : forall (X Y : C) (m : C Y X), strong_mono m →
(m·(Xi m) = one_function·top ∧
pullback (top:C One Omega) (Xi m) (one_function:C Y One) m).

Definition el_function (X:set) (a:X) : One −→ X.
Implicit Arguments el_function [X].

Theorem Xi_unique : forall (X Y : C) (m:C Y X) (x : C X Omega), strong_mono m →
pullback (top:C _ _) x one_function m → x = (Xi m).
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Conclusion

In this manuscript we have studied dependent type theories through the
spectrum of homological algebra. Specifically, we have developed some parts
of the theory of effective homology in the style which is supposedly the
most natural in type theory, keeping in mind two specific problematics from
programming: efficiency and code sharing.

We have had the occasion to see that intentional type theories, though very
powerful, are not always up to the task we would like them to perform. On
the one hand, they support naturally efficient functional programs, provided
we have a good way to rid the mathematical framework of the principle of
unique choice (which is straightforward in Coq) and programs can be done
at a fairly conceptual level allowing some code sharing. We needed only
a minimalistic modification of the core theory to allow for truly efficient
numerical computation. We also needed some more heavyweight work to
simplify the handling of dependent types in programs and proofs, but this
was part of the development environment rather than the theory. On the
other hand, the limits of dependent types are reached easily, and many useful
mathematical concepts that could provide more code sharing – like graded
categories – better efficiency – like multicategories – or reduced boilerplate
– like internal languages – have reasonable representations which cannot be
implemented.

Modifying the theory to accommodate for these new structures is no
simple work. Graded categories cannot be defined because the associativity of
a generic monoid cannot be part of the conversion. Similarly, the categories of
graded object need a dynamic check of a static property to work around the
rigidity of the conversion. There are propositions in the literature addressing
precisely this sort of issue, they are far from trivial but might make reasonable
extensions of intentional type theories.

Higher dimensional constructions like multicategories or higher categories
are on another level altogether: not only intentional type theories are most
likely incapable of accommodating them without further modifications, but
it is not clear how such a construction should be encoded and used. Hence,
higher order constructions need to be better understood from a programming
perspective before the question of what they would require as modifications
to type theories can be asked.

Internal languages, lastly, raise the question of binders. Representing
binders in very expressive type theories like Coq does not seem to be easy at
all. There are works in the literature which indicate that it might be possible to
do it without extending the language, though. It might be better nonetheless
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to add specific support for binders in the core theory.
These questions, at least graded categories and multicategories, can be

seen as being in the spirit of so called type-level programming. Where types
become a subject of programming rather than just properties. Dependent
type theories allow for well behaved type-level programming, though, as
we have argued, not powerful enough to express certain idioms we would
like to use. Were the above issues be solved, they would open way for new
styles of programming which seem beyond the reach of traditional functional
languages.
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