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JABBERWOCKY

"Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

‘Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun

The frumious Bandersnatch!’

He took his vorpal sword in hand:

Long time the manxome foe he sought—
So rested he by the Tumtum tree,

And stood awhile in thought.

And as in uffish thought he stood,

The Jabberwock, with eyes of flame,
Came whiffling through the tulgey wood,
And burbled as it came!

One, two! One, two! And through and through
The vorpal blade went snicker-snack!

He left it dead, and with its head

He went galumphing back.

‘And hast thou slain the Jabberwock?
Come to my arms, my beamish boy!
O frabjous day! Callooh! Callay!’

He chortled in his joy.

"Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

Lewis Caroll, Through the Looking-Glass and What
Alice Found There

The best book on programming for the layman is
“Alice in Wonderland”; but that’s because it’s the
best book on anything for the layman.

Alan Perlis
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CHAPTER ZERO

Introduction

- Handbook for the recently diseased. . .
- Deceased.

Tim Burton & al., Beetle Juice

uMANs’ incredible ability to make mistakes is cosubstantial to our
ability to interact with and communicate in a very noisy environ-
ment. It is necessary for us to be able to ignore differences in voice,
and even accents. It contrasts strongly with computers” stubborn
preciseness. Which is at the source of their ability to deal with extremely
complex computations as if it was child play. In that sense, computers are
really superhuman. But human are also supercomputer.

Communication between humans and computers is made hard because
of the friction between the impreciseness and robustness of humans and
the exactness and fragility of computers. However we can supplement one
another in the areas we fail to be efficient at. It has become a banality that
computers can help us in this communication process. In particular, we can
write type systems to prevent evidently bad programs from being written. We
could also mention many programmer-aiding tools like abstract interpretation
or model-checking. They all have one thing in common: they do not do
what we expect them to do. And there is a good reason for this: we expect
them to solve undecidable problems. Computers cannot do that — though
they can try to some extent — but humans somewhat can, by providing what
computers lack: insight. In other words, humans can help the computer help
them communicate with it.

Hence, to go further than fully automated tools, we need to lay out an
interface between the human and the computer to allow humans to participate
in the computing process. Mathematics is a good candidate to that purpose.
Indeed, mathematics is designed to reflect humans’ insight, yet they are
expressible as rules to be applied and checked mechanically — which can
be understood by a computer. Therefore, if mathematics is not, properly
speaking, a language, they are a communication construct which is common
to humans and computers. From that point of view, problems computers are
supposed to help solving are expressed as a mathematical statement, and the
human then provides a proof of it. This proof can be very fine grain, making
direct use of simple rules in the style of formal logic systems. Or it can be




very coarse grain where the computer does most of the work and the human
only gives a few hints. Or anything in between.

As mathematical statement to solve become more elaborate, proofs get
typically more and more tedious. And “tedious” is the job of computers. So
we might consider desirable that the computer would help us help it help us
communicate with it.

Of course we can go on with this forever, there is some fixed point here.
Pursuing this idea leads — among other things — to dependent type theories,
where the activities of writing programs, mathematical statement and proofs
are equated to some degrees.

In this manuscript we describe how to rebuild part of the theory of effective
homology in the proof assistant Coq from this perspective. We have two
main motivation for this. First, effective homology is a constructive theory
which, in addition, has a mostly functional implementation as the computer
algebra tool Kenzo [49] — two things that Coq is made to deal with. Hence an
implementation in Coq ought to be quite feasible. This is a good opportunity
to try and understand and discuss its limitations.

The second motivation is actually twofold. First, most computer algebra

Incidentally, Kenzo happens to tools come packaged with their own programing language. These programing

be a library for Common Lisp. language are usually fairly ad hoc and poorly designed. We could hope

Hence follows the proposed that, instead, computer algebra tools could be embedded as libraries for

scheme. independently designed programming languages. Also, there is the issue
of trust. Not only are computer algebra tools often made of very complex
and subtle algorithms. But also, they do not necessarily guarantee anything,
sometimes producing wrong results with no warning — independently of the
correction of the implementation. To increase trust we can write a simple
program to check the correction of the result. Even better we can prove this
result-checking program correct by many a method. When the level of trust is
considered acceptable then it is reasonable to accept the result of the tool as a
proof argument. We can raise the trust even further by proving the computer
algebra tool itself correct increasing the trust a priori: we know that the tool
will work as a proof argument in identified cases. At the intersection lie
dependent type theories. They pass as fair programming languages in which
computer algebra tools can be embedded and they can be used to prove the
correctness of the said tools to any degree. Additionally, as tool written and
certified in a depend type theory can be used as part of proofs inside the type
theory (this is often referred to as reflexive proofs) providing a new automation
tool.

o.1 Effective homology

Homology is a tool in topological algebra. It consists in associating, to well
behaved topological spaces, abelian groups embodying certain properties of
their n-dimensional structure. The group representing dimension n is called
the n-th homology group. The simplest case is for space which do not have
an n-th dimensional structure, then the n-th homology group is trivial. For
instance the third homology group of a sphere. The n-th homology group is
also trivial in other cases, for instance the second homology group of a ball
is trivial, this is because from the point of view of homology, the ball can

6



o INTRODUCTION

be turned into a point. Hence the two dimensional structure of the ball is
irrelevant.

When homology groups are non-trivial they give an account of the shape
of the n-dimensional structure of the space. In particular they count the
number of “holes” in the space. The number of holes depends on the n + 1-st
dimension as well. For instance a circle which is not the border of a disk
counts as a 1-dimensional hole, and a sphere which is not the border of a ball
is a 2-dimensional hole.

Homology has been introduced as a variant of the more topological homo-
topy groups. Homotopy groups describe the topological structure of spaces
more finely than homology groups. However, it is much more difficult to
deduce useful information about homotopy group than homology groups. Al-
gebraic topologist say that homology groups are easier to “compute”, though
they do not mean that information results of a computation a computer could
do.

The theory of effective homology, on the other hand, is a constructive
theory of homology. It gives a way to actually compute information about ho-
mology groups. Effective homology is built in such a way to reflect upon pro-
gramming constructs. On the programming side, there is the tool Kenzo [49].
Kenzo computes useful descriptions of homology groups, so that the informa-
tion is readily available.

More precisely, the so called structure theorem for finitely generated abelian
groups (a.k.a. fundamental theorem of finitely generated abelian groups) states
that finitely presented abelian groups are (up to isomorphism) of the form:

: 7 7 7
7" @ /@1269 /@2269.” @ /@ﬁz

Where the ¢; are powers of (not necessarily distinct) prime numbers. The
numbers n (called the rank) and ¢ and the coefficients ¢; are unique (up
to permutation of the indices). Kenzo computes this particular form for
homology groups. In the case of homology group, the number n is the
number of holes mentioned above.

Typically, Kenzo takes as input the description of a particular kind of space
called a simplicial set

> (setf torus (crts-prdc (sphere 1) (sphere 1)))
[K33 Simplicial-Set]

(here the torus is defined as the cartesian product S' x S! of two circles)

7



and computes the required homology groups.

> (homology torus 0 4)
Homology in dimension 0

Component Z

Homology in dimension 1
Component Z

Component Z

Homology in dimension 2

Component Z

Homology in dimension 3

Which reads as “the torus has homology groups Z in dimensions 0 and
2, Z* in dimension 1 and the trivial group in dimension 3”. The torus is a
2-dimensional space, it is no surprise that the third homology group is trivial.
The first homology group is Z? meaning it has two holes, this is because it is
hollow: the void inside the torus’s tube counts as a hole.

Kenzo can also take as input other topological objects, like simplicial
groups — a variant of simplicial sets. Or directly a chain-complex — the princi-
pal object of study of homological algebra — which is devoid of topological
characteristics: it is simply a collection of abelian groups with homomor-
phisms between them. Kenzo can also be used to compute homotopy groups
in some cases.

As far as this manuscript is concerned, homological algebra is only a
problem of abelian groups and chain-complexes. The precise definitions
involved are given in Chapter |2| For everything that does not appear in
this manuscript, the curious reader can refer to Allen Hatcher’s Algebraic
Topology [30] which is a comprehensive introduction to homological algebra —
and more generally to algebraic topology.

The work presented here consists in giving a good mathematical presen-
tation — with adequate computational properties — of the theory concerning
chain-complexes and homology groups suitable for, and implemented in, Cogq.
We shall make sure that this presentation in flexible enough to incorporate
homology with coefficient (that is, where every occurrence of “abelian group” is
replaced by “module” over a specified ring). The next step would be to con-
sider finite presentations to be able to complete the same sort of computations
as Kenzo, albeit only from chain-complexes. An even further step will be to
incorporate topology into the picture.

8



o INTRODUCTION

0.2 Coq

As most system based on some flavour of dependent type theory, Coq can
be seen either as a mathematical system or as a programming language.
As a mathematical system it is constructive, and has a primitive notion of
computation but none of a set. As a programming language, it is a variant of
ML with dependent types. This distinction does not really matter here, as this
manuscript adopts both views simultaneously.

In a sense, though, both views correspond to different styles. When
forall A:Type, A—A is seen as the type of function from A to A for an arbitrary
A, we tend to write its inhabitants as:

Definition id : forall A:Type, A—A :=funx: A= x
or, more concisely, but equivalently:
Definition id (A:Type) (x:A) : A := x.

On the other hand, when seen as the statement that “A implies A, for
any proposition A”, then we would write a proof of forallA : Q,A — A
interactively as follows (to the right is the feedback reported by Coq).

Lemma id : forall A:Prop, A—A. t forall A:Prop, A—A

intros A x. A:Prop, xAF A
apply x. Proof completed.
Qed.

In fact both methods do precisely the same thing. And it make perfect
sense, when needed, to program using the interactive system (the instructions
are called tactics) or to prove a statement using the programming style.

To make matter worse (or, rather, more fun), there is a way to mix both
styles which is labelled with the keyword Program [50]:

Program Fixpoint fact (n:nat) : { p:nat | p >0} :=
match n with

lo=1 2 obligations remaining
| S n” = nx(fact n’)
end.
Next Obligation. Fforalln:nat,o=n—1>0
intros n _. nnat-1>o0
apply le_n. Proof completed.
Qed. 1 obligation remaining

For computing the value of an expression, Coq uses a so called strong
reduction. That is, a function like fun x=-1+1 reduces to fun x=2 whereas in
usual programming languages, fun x=-1+1 would be a value, and not compute
its body until it is passed an argument. Strong reduction is not really useful
for programming purposes, however, from a logical side, it corresponds to cut
elimination.

Incidentally, it has an influence on typing. Coq has dependent types, that
is types with bits of programs in them. For instance one can have a type family
A : nat — Type, then A (1+1) is a type, and so is A 2. These two examples are

9



To choose new names we try to
exploit mathematical or English
synonyms of the word we are sub-
stituting.

a priori distinct types, however there is a typing rule of Coq, called conversion
makes them equal. Specifically, the conversion states that two types which
have the same normal form are considered the same. Hence typing is sensitive
to the details of the reduction, and strong reduction means more typable
expressions than a weaker one.

0.3 Conventions & notations

The mathematics, in this manuscript, are presented in an informal adaptation
of the type theory of Coq. We shall consider it more closely momentarily.
But before that we would like to raise a small issue. The first thing we will
do is to build a set theory atop our type theory. Most keywords, and many
notations, of type theories and set theories conflict. Though we can usually
get away with the overloading of terms, sometimes it can highly obscure the
discussion. The archetypal such sentence would be along the line of: “f is not
a function, it is only a function”. The reader should agree that the meaning
of this sentence is fairly hard to grasp. In such situation we usually keep the
name of the set theoretical notion, and change the name of the type theoretical
one. In the case at hand the type theoretical notion of function will be called
a map while set theory retains the use of the word function and the above
sentence now reads: “f is not a function, it is only a mapping” (Section [1.1]
will shed light on the particular sentence).

Back to our type theory. It features a dependent product [], . ,B whose
inhabitants are maps; in the event B does not depend on z (which is written,
generically, [] . AB), then we may write A — B instead. We also need a
dependent sum ) __ . , B whose inhabitants are pairs. We also suppose a type
product A x B (equivalent to >~ . ,B, though typically not implemented as
such) and a type sum A + B whose inhabitants are of the form ¢; a or ¢ b.

In addition, we give ourselves a type Type of types. So that the system
stays consistent, we have to assume that Type is predicative. In particular
Type is not its own type. We shall alleviate the burden of thinking about these
matters by ignoring this fact and promising that all the types we write can be
stratified (which is, incidentally, also what Coq does).

Our type theory also has an impredicative type (2 of propositions. The
type of 2 is Type. A proposition is simply the type of its proofs: it is built
out of the above constructions. However, we will follow conventional logic
notations when writing a proposition. Hence, we write Vz:A. P for [], . ,P,
ANB for A x B and AVB for A + B. The case of the dependent sum is a bit
trickier: it can be seen as a subtype of a type A, which we write . ,Pz and
like an existential quantification in which case we write 3z:A. P = the former
being of type Type and the latter of type (2.

We also use types N and Z of natural numbers and integers respectively,
together with the usual arithmetic operations, and a type B of boolean, whose
inhabitants are true and false.

We shall define new types using labelled products (so-called records) which

10



o INTRODUCTION

we write:

Name
ll : A1
ZQ : AQ
13 : A3

This reads “Name is defined as a product type with 3 components each of
which is named /; and has type A;”. Also note that A, can mention /; (and
A3 can mention both I; and I3), so Name is equivalent to }7; . x >, . A, A3
(or, more briefly: ), . A, A3).

lo: Ao

Finally, we can define maps — e.g. the identity — with the syntax Az.x.

Alternatively, we can define a function f by case:

f:A+B—B+A
f na = wa
f L2b = L1b

What exactly is covered by a type theory is very sensitive to small details,
especially in the typing of dependent product and the allowed reductions.
We shall purposely not specify these details to allow more freedom in what
we can express in the manuscript. However, as a rule, the material in this
manuscript has been verified in Coq (and in particular can typed in Coq),
unless we specify otherwise. Hence, apart from these corner case, we are
working in an informal version of Coq’s type theory, whose details can be
found at [Z4].

0.4 Premises

The work presented in this manuscript was done under some additional
constraint. The main goal being to test dependent type theories in general,
and Coq in particular, we did not want to just try and verify as much as
possible. Instead we wanted to try and write proofs in a satisfactory way. This
is of course subjective, let us make this claim more precise.

First, writing proof in a computer checked environment means that diffi-
culties coming from the programming world spill over to toe proof world. In
particular we want to share proofs as much as possible, avoiding duplication.
This may be considered even more important than in traditional programing,
as proofs may be longer and more tedious than bare programs. Also we
want to rely on abstractions a lot. Abstraction is both part of traditional
mathematics and traditional programming, but arguably is of even greater
importance for the latter. In pen and paper mathematics, painful details can
be simply omitted, the purpose of abstraction is more often to generalise
results to a larger class of objects. In programming, however details must be
dealt with, abstraction is principally a mean to get them contained so that
they do not contaminate all the code. In this manuscript abstraction serves as
both a means to generalise (i.e. share code) and a mean to avoid boilerplate.
This makes abstraction a somewhat more central issue than in traditional
mathematics.

11



Also we do not want to refrain to use dependent types. Dependent types
are tricky to use and many legitimately shy away from them. This leads to
a textual separation of programs (using ML style types) and proofs which
we would like to avoid as much as possible. Indeed, dependent type like
constructs are quite natural, they are common in the mathematical discourse.
However, if in pen and paper mathematics we can use them as a figure of
speech, in computer checked mathematics there is no such thing as a figure
of speech. Another, arguably more important, reason is that dependent type
theories advertise a style of programming where mathematical statements
are included inside types by means of dependent types. One of our main
motivation is to test how much it can be done in practice.

We shall generally view these rich mathematically enhanced types as
actual mathematical statements, and programs as proofs thereof. This forces
to consider the computational efficiency of proofs. Efficiency is the last of
the premises which guide us in this work. Under the scrutiny of efficiency,
mathematics take a somewhat different flavour and we shall rediscover many
concepts with a new eye.

12



Part One

Mathematics to compute






CHAPTER ONE

A theory of sets

| have often been impressed by the cleverness of my
own first solutions; invariably the joy of the subse-
quent discovery how to streamline the argument was
tempered by a feeling of regret that my cleverness
was unnecessary after all. It is a genuine sacrifice to
part from one's ingenuities, no matter how contorted.
Also, many a programmer derives a major part of his
professional excitement from not quite understanding
what he is doing, from the daring risks he takes and
from the struggle to find the bugs he should not have
introduced in the first place.

Edgster Dijkstra, The threats to computing science
(EWD 898)

HE traditional body of mathematics is built upon Zermelo-Fraenkel
set theory (zF). This is, however, unsuitable for our ambition to
write programs in a mathematical style. It is not a matter of con-
structiveness. Indeed there are constructive flavours of zF [6]. It
is rather than the meaning of mathematical objects in zF is too alien to what
is required for programming. It sums up in two points. First, functions are
encoded as relations, which precludes any computations, we would rather
have them be some description of computations (maps). Also, as equality
is prescribed a priori, data has to be encoded such as to conform to equality,
whereas programming implies choosing the representation of the data for
efficiency purposes.

A solution to this mismatch is found in Errett Bishop’s seminal book
Foundation of Constructive Analysis [13]. Where sets are defined as

The totality of all mathematical objects constructed in accord
with certain requirements is called a set. The requirements of the
construction, which vary with the set under consideration, deter-
mine the set. Thus the integers are a set, the rationnal numbers
are a set, and the collection of all sequences each of whose terms
is an integer is a set. Each set A will be endowed with a relation =
of equality. This relation is a matter of convention, except that it
must be an equivalence relation.

15



MATHEMATICS TO COMPUTE

This definition, though purposely informal, prefigures the distinction that
Intentional Type Theory makes between types and sets: types are a description
of elements, sets are more complex structures bearing a notion of equality.

1.1 Bishopian toolkit

Set

In term of our type theory, a set A would be defined as:

Set
ElA : Type
-=A-:ElA — ElA — Q
_ : Equivalence (- =4 -)

More often than not we shall use A instead of E1 A and omit the index of
the equality when it is clear from context.

Let us dwell on this definition for a moment. Given a relation R on a set
A, it is fairly straightforward how to build the quotient A/R: it amounts to
replacing - =5 - with R. This is an important feature programming-wise:
there is no need to change the representation of the data to change which data
are equal. For instance, if one is interested in considering lists up to reordering
of their elements (a.k.a. multisets), they can be just a lists. Considered up
to reordering of their elements. This is essentially, by the way, what is done
when Haskell’s list monad is used as a non-determinism monad.

In zF, on the other hand, as equality cannot change, it is always the
representation of data which much change to conform to it. In the case of
quotienting, equivalence classes might look like a particularly odd encoding
to a programmer.

On a side note, programmers are often particularly wary of what cannot
be embedded in their programming languages. In particular, they usually
try to avoid relying on equalities which are not decidable. Many even loathe
equalities which are not the structural equality. These are limitations which
will not apply to us. Though having a decidable — or structural — equality of
course has benefits in many situations. This new found liberty might be a
strong argument in favour of any system which can cope with general sets in
this sense.

In the community of dependent type theories, sets in the sense of Bishop
are often known as setoids. They also appear in other guises in some areas of
mathematics. They can be seen as Q-enriched groupoids, and, equivalently, as
0-groupoids. To categorically minded people, they may also remind the topos
theoretic presentation of set theory.

Function

Functions from set A to set B are supposed to be maps from A to B. But,
much for the same reasons that all functions from A to B cannot necessarily
be lifted to be functions from a quotient of A to B, not all maps are eligible to
be functions. Only those maps which respect equality are:

16



1 A THEORY OF SETS

Function A B
f:A—B
_:Vai=pas. fa1 =8 fas

We will usually use functions as their inner map.

Functions are exactly why a structural equality is desirable: if the equality
on A is structural (more generally, if it coincides with Leibniz equality), all
maps can be trivially lifted as functions, otherwise the programmer bears
the burden of proof. Again, this lifting issue is not an unknown problem
to mathematicians, not only in the case of quotients but also in the case
of algebraic structures, where the appropriate morphisms are those which
respects the structure. A customary move when playing with morphisms is
to move to a categorical abstraction in which everything is, by construction,
morphism. We shall do it for abelian groups, however, desirable though it is,
we could not achieve it in a satisfactory way in the case of sets (see Chapter [3]
for details).

It is time to define our first set construction, namely the set of functions
from A B (written A — B). Its equality is the so-called extensional equality:

A—B
El(A — B) = Function AB
f—g =VYa.fa=ga

The set A — B — C (to be read as A — (B — C)) will be used to
encode functions from A and B to C. Equivalently, we could have chosen the
set (A x B) — C - to be defined below — but the former is more customary
in type theory.

Subset

A function f:A — B is said to be injective whenVzy : A. fo = fy—z =y. A
subset of B is defined as being any such injection, like subobjects in a category
are defined to be any monomorphism.

Part

Given a set A, a set of functions of particular interest is the set A — 2 of
predicate over A, where (2 is considered up to equivalence:

EIQ =0
P=q=p = ¢

A predicate P can be seen as a subset of A. To emphasise this point of
view, we shall sometimes say part instead of predicate, and write z ¢ P for P z.
Any part P defines a subset, called a strong subset:

{z:A|zeP}
El{x:A|x5P}:Zx e P
z: A
(@,2) = (y,_) = T=AY

17
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Given a function f:A — B, we can define its image Jm f:B — Q as
beJm f=3a:A.b= fa.

Cartesian product

Set also have a have a cartesian product:

AxB
El (A x B) =AxB
(a1,01) = (a2,b2) = a1 = as Aby = by
Set sum

And a sum, sometimes known as disjoint union whose carrier is the type
theoretic A 4 B and the equality is:

(-=a+B-):(A+B)—(A+B)—Q
(-=a4B-) wa nad = a=d
(-=a4B-) t2b b = b=V
(-=a+-) - _ = 1

Numbers & booleans

The sets N of natural numbers, Z of integers and B of booleans are lifted
canonically to sets in the obvious way. For instance the equality on N can be
computed as

(-=n-):N—>N—Q
(-=n-) 0 0 = T
(-=n-) 0 _ = 1
(-=n-) _ 0 = 1L
(-=x-) n p = (n—-1)=n(p-1)

From now on, we shall consider these three as sets.

1.2 Categories

Homological algebra, in particular effective homology, fit very well in a
categorical framework. From a programming perspective, categories will
play the role of abstraction barriers hiding the unnecessary details of, say, the
definition of abelian groups to the algorithms computing homology groups.

Category

Although Bishop does not give such a definition, there is a notion of category
which follows naturally from his definition of sets and deserves to be called

18
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Bishop categories.

Cat

O :Type

Hom : O — O — Set

1o :HomAA

-+ ]J] HomAB-— HomBC — HomAC
ABC: 0O

_ 2 figh)=(f;9);h

_ i fil=Lf=f

Notice the order of the composition: f; g (often written simply fg) corre-
sponds to the arguably more usual g o f.
The sets (Hom A B) are called homsets, their elements are called either

morphisms or arrows. We usually write A L, B instead of f:Hom A B.

An important feature of these Bishop categories is that the type O of
objects is not a set. Consequently, the question whether two objects are equal
or not does not make sense: equality belongs to sets. This contrasts with the
usual definition of category where there objects are zr-sets (often there is even
a set of all objects). zr-sets can be compared. However, in many areas of
category theory, it is bad practice to compare objects or even outright banned.
Hence Bishop categories are arguably a better definition of categories than
those based on zr.

Additionally, as categories are not sets, there is no need to restrict the
category of sets to some small set of a sort. There is a category of all sets
and functions. This is supported by the type theory of Coq, where we define
categories at a higher sort than sets (in a sense, categories are bigger than
sets).

Monomorphism & epimorphism

In a category C, we say that an arrow A L ,Bisa monomorphism if for any

two X —2— A and X — A with gf = hf, then g = h. We also say that f
is a mono, for short, or that f is monic. We also call subobject of A a mono

S —— A.
In the category of sets, the monomorphisms are the injective functions. In
particular subsets coincide with subobjects.

Dually, an epimorphism is an arrow A —L, B such that for any two

B %> X and B - X with fg = fh, we have g = h. We also say that f is
an epi, or that f is epic.

In the category of sets, the epimorphisms are the surjective functions.
While less obvious than for monos, it is not hard to prove.

Initial & terminal objects

An initial object 0 of a category C is such that for any object A of C, there is

a unique arrow 0 —% 5 A. There an initial object in the category of sets: the
empty set.

19

It is easy to prove that surjective
functions are epic. Conversely,

given an epimorphism A SEEN

B, let us consider two parts of
B: T and Jm f. By definition of
Jmf, f; T = f;Imf. Since f is
epic, T = Jm f, that is, f is sur-
jective.



Phrases such as “there is only one
such arrow” may benefit from a
small clarification. They are to be
understood relative to a given set,
and mean, as in classical mathe-
matics “for any two such arrows,
they are equal”. What changes
from classical maths, however, is
that two equal element of a set
do not necessarily share the same
representation. Hence, when we
name an element, we choose, im-
plicitely, a particular representa-
tion (presumably that which we
believe will behave the best in
programs).

MATHEMATICS TO COMPUTE

Dually, a terminal object 1 is such that for any object A, of C, there is a

|
unique arrow A —— 1. The one element set is terminal in the category of
sets.

Product

Given two objects A and B in a category C, a product of A and B is an object
A x B together with two arrows A x B —"— A and A x B —=— B such that

for arrows C —— A and C —— A, there is a unique arrow C U9 A xB

such that (f,g)m = f and (f,g)m2 = g.

L

> >

B
7N
A B

This could be also stated as a product of A and B is a diagram composed

of two arrows A x B —— A and A x B —=— B which is universal. Universal
definitions are common in the realm of categories. They feature an arrow
such as (f, g) which has to be unique. The relevance of the uniqueness can be
understood from the perspective of type theory as an extensional property. In
the case of the product, the unicity of (f, g) is equivalent to the statement that

for any X —“— A x B we have (27, xm) = z. This property is often called
surjective pairing.

When a category C has a product A x B for every choice of A and B
we say that C has all products. This terminology can be used with any
suitable concept. We can also say that C has enough products when it does
not necessarily have all products, but enough for the considered statement to
make sense.

In particular the category of sets has all products: the cartesian products is
a product in the categorical sense.

Coproduct

Dual to the product is the coproduct, also called sum. Namely, a coproduct of
two objects A and B is an object A + B together with two arrows A —*— A+B
and B —2— A + B such that for any arrows A % Cand A -2 C, there is
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[f,9]

a unique arrow A + B ——— C such that ¢1;[f, g] = f and ¢2;[f;9] = ¢.

03\
oy

~
=
@

=
Qrgmemte

The category of sets has all coproducts, as the sum of two sets is a coprod-
uct.

Equaliser & coequaliser

Given two arrows A —— Band A 2 B, an equaliser of f and g is an

arrow E —— A such that ef = eg. It needs to be a universal such arrow, that

is for any X —— A with zf = xg there is a unique arrow X —~— E such
that 2’e = .

The category of sets has all equalisers: the equaliser of f and g is given
by the strong subset E = {a : A | f a = ga} with e the canonical injection into
A, and for an z as above, 2’ is the lifting of x to E. Note that equalisers are
necessarily monic.

Dually, there is a notion of coequaliser: given two arrows A . s Band
A—25B,a coequaliser of f and g is an arrow B —% 5 Q such that fq = gq.
Moreover, for any B —— X such that fx = gz there is a unique arrow z’
such that gz’ = z.

The category of sets has all coequalisers. It is given as Q= B/R with R
the smallest relation such that for all a:A, fa = ga. The function ¢ is the

canonical projection onto Q and z’ is the lifting of x to be of domain B/R.
Again, coequalisers must be epimorphisms.

1.3 Choice!

Principle of choice

If a function f:A — B is surjective (i.e. Vb.da. fa = b), the constructive
interpretation gives a map g from B to A such that Vb. f (¢ b) = b, however this
has no reason to be a function.

Indeed, supposing that all surjection had a preinverse, then let P be an
arbitrary proposition. Consider B the set of booleans, and S the set where the
base type is the booleans and where the equality is defined as

e:B—B—Q

e true false = P
e false true = P
e = T

Now the function
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Let E —— A be the equaliser of

A—f»BandAvg—»B. Let us
consider two arrows Y —— A
and Y —=— A with ye = ze. As
yef = yeg there exist a unique
arrow w such that we = ye. As
both y and z qualify as such, they
must be equal.

The terminology preinverse is bor-
rowed from a categorical intu-
ition: g is a preinverse of f if g
followed by f is the identity.
Dually, a postinverse is a function
g such that f followed by g is the
identity.



This is a variant of Diaconescu’s
argument[26], which proves that
the principle of choice is stronger
than the excluded middle in
topoi.

If f is injective, for any two equal
b1 and b2, gby = gby follows
from f (gb1) = f (gb2). Hence g
is a function.

MATHEMATICS TO COMPUTE

f:B—S
f true = true
f false = false

is surjective. However, a preinverse function g would decide the truth of
P, as gtrue = gfalse implies =P and —gtrue = g false implie P (equality on
booleans is decidable). This is contradictory with the fact that provability is
not decidable. The statement that all surjective functions have a preinverse
is the principle of choice. Let us phrase it in a catchy slogan: choice: surjections
have a section. Phrased this way — rather than referring to families of inhabited
sets, the principle of choice can be read as property of a category, provided we
read epimorphisms instead of surjections. The principle of choice, hence, is not valid
in the category of Bishop sets (surjective functions are indeed the epimorphisms
of the category of sets).

Principle of unique choice

On the other hand, if f is also injective then g is indeed a function and actually
an inverse of f.

This observation leads to the principle of unique choice. Functions which are
both injective and surjective are called bijections. Hence we can state the the
principle of unique choice as follows: unique choice: bijections have an inverse.

The principle of unique choice is, again, a property of a category (provided
that “bijections” are replaced by “morphism which are both epic and monic”).

The aforementioned principle of unique choice can be a liability rather
than an asset. Indeed, the fact that a bijective function is tractable does not
mean it has a tractable inverse. Typical examples of this often come from
cryptography. For instance, let us consider a group G of order n and g a

generator of G. The function from Z/nZ to G which maps p to g” is bijective.
However, there is no known efficient algorithm for its inverse, called discrete
logarithm. A number of cryptographic protocols actually rely on the hope that
there will never be an efficient algorithm for discrete logarithm — the most
famous being the Diffie-Hellman key exchange protocol.

If the principle of unique choice is valid in our category of sets, an inverse
function can be devised automatically. As mentioned, every known proof
of bijectivity of exponentiation leads to intractable discrete logarithms. As
a matter of fact, all the computational content of the inverse found using
the principle of unique choice is contained in the proof of bijectivity (more
precisely in the underlying proof of surjectivity).

Concretely, we are left with two choices if we want to control the compu-
tational complexity of our functions. Either we need to control the computa-
tional complexity of the proofs we write, in particular, when writing proofs of
bijectivity, we devise specific inverses. Or we make arrangements so that the
principle of unique choice is not valid.

The former option precludes from using mostly any form of automation,
as they produce proofs whose complexity cannot be known in advance. Also,
it is fairly restrictive in what can be proved, or, in other words, proofs of
surjectivity which cannot be used to find an inverse, can still be used for other
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purposes. Yet, we would be avoiding these. Therefore we shall choose the
latter option: leaving aside the principle of unique choice.

As we have seen, the principle of unique choice is a direct consequence
of the fact that given a proof of Va:A.3b:B. P a b, we can extract a map f:A —
B such that Va:A.Pa(fa). This property can be seen a reflection on the
constructive nature of the proof, or as an internal skolemisation. It is a natural
principle of systems such as the Calculus of Inductive Constructions which
is a foundation of Coq. Fortunately for our application, Coq has a sort Prop
which explicitly does not enjoy this property.

Now, our mathematics is constructive. This means that anyone inspecting
a proof of bijectivity can extract an inverse from it. The important point,
though, is that this cannot be done inside the system.

This leads to a distinction between computational and static parts of
proofs. The computational parts — programs — cannot reflect on the content
of static parts: they are computationally irrelevant. This does not mean that
computational parts do not use static ones at all. In fact, static proofs in
programs can be used for three purposes:

m Cutting branches: when some position in a program cannot be reached,
it is sufficient to prove it, there is no need to provide computational
code.

m Termination: a proof can assert that a particular map never loops on any
input.

m Type coercion: when two types are provably identical, an element of the
former can be used as one of the latter.

In this work we shall make use only of the first one of these usages.
Indeed, in both other cases, as they are currently implemented in Coq, the
computational content of the static proof is relevant. It would, hence, be
unsuited for our goals. Not to mention that it is not really clear what it
means for two types to be identical. All the maps defined here are structurally
recursive, which makes them obviously terminating in the eyes of Coq.

As a convention we will write z[:]A to signify that x is a proof a some
static proposition A whereas the usual z:A will mean that « is a program of
type A. With these notations, the definitions of sets and categories become:

Set
A : Type
-=-:A—A—-Q
- [:] Equivalence (- = -)
and
Cat
O : Type

Hom : O — O — Set
1o : HomAA
;- :YVABC:O.HomAB — HomBC — HomAC
_ [ filgh)=(f;9):h
[Jfh1=1f=Ff

The other constructions from Section [.1] are unaltered.
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In Cogq, identity of types is taken
care of by the notion of proposi-
tional equality. Yet the exact sta-
tus of this equality is disputed.
Additionally, from the point of
view of this work, the fact that it
gives a generic equality between
elements of types is disturbing.



Let

f:B—Q

f true = T
f false = L

Since we are in classical logic, for
any proposition P, P = TVP =
1, hence f is surjective (equality
in the set € is logical equivalence).
It is also injective, by case study
on the possible arguments. How-
ever, if it had an inverse, it would
decide the truth of propositions.

MATHEMATICS TO COMPUTE

As an aside, this presentation of mathematics without the principle of
unique choice lacks criteria to determine that a given statement cannot be
proved therein. In constructive mathematics, the standard approach is to
reduce the decidability of a notoriously undecidable problem to the provability
of the said statement. Similarly, the unprovable statement of our mathematics
rarely subsume the full principle of unique choice, but we do not have an
equivalent of the undecidable problems. To address this gap, we cannot have
at the same time the principle of unique choice, classical logic and require
that all function be recursive. On the other hand, any combination of two is
consistent. Hence, if the conjunction of a statement A and the principle of
excluded middle (VP:Q2. PV —P) implies the decidability of some undecidable
problem, then A is not provable.

While this is not entirely satisfactory, it should work fairly well. It was
sufficient for the examples that showed up during the course of this work.
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CHAPTER TwoO

Homological algebra in type theory

“What really is the point of trying to teach anything
to anybody?”

This question seemed to provoke a murmur of sympa-
thetic approval from up and down the table.

Richard continued,"What | mean is that if you really
want to understand something, the best way is to try
and explain it to someone else. That forces you to
sort it out in your mind. And the more slow and dim-
witted your pupil, the more you have to break things
down into more and more simple ideas. And that's
really the essence of programming. By the time you've
sorted out a complicated idea into little steps that
even a stupid machine can deal with, you've learned
something about it yourself.”

Douglas Adams, Dirk Gently's Holistic Detective
Agency

LL of our formalisation of homological algebra is done in the
vocabulary of category theory. This way, we abstract away many
implementation details, making the proof hopefully easier. As
importantly, it allows to generalise the proofs — which are, it is
worth reminding, also to be viewed as program implementation — to any
algebraic structure for which homology is definable. Most of the material in
this chapter is presented as though we were working in the category of abelian
groups, but, in fact, it applies to categories of modules and, hopefully, to
fancier objects like the category of sheaves of abelian groups (though sheaves
without the principle of choice remain to be scrutinised).

An early version of the work presented in this chapter previously appeared
as [18].

2.1 Homology

Let us consider an object C,, called a chain complex, consisting in a family
(Cp),,.z, of abelian groups together with a family (d,,),,.,;:C, — C,,_; of group
morphisms with the property that for any n, d,41;d, = 0.

In other words, that the image of d,,1; is a subgroup of the kernel of d,,.
Since the C,, are abelian, we can take the quotient of the kernel of d,, by the
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Homology can be defined with
any kind of modules over a fixed
ring. But for the sake clarity,
we will stick to abelian group
(abelian groups are exactly the Z-
modules).

Otherwise we’d have to require
that the image of d,, 11 is normal.



We use the expression “compos-
able pair of morphisms” casually
as it makes phrasing smoother.
However, in the context of Coq,
morphism come with a type men-
tioning their source and target
groups (or objects, in the case
of categories). This is by no
means necessary, but it is easier
to manipulate in Coq, and prob-
ably better efficiency-wise too.
Hence, in our Coq implementa-
tion a phrase like “for all com-
posable pair of morphisms f and
g”, would rather look like “for
all abelian groups A, B and C,

and morphisms A 7/ . Band

B —Z— C”. In the Coq phrasing,
composability is obvious from
typing, hence has no particular
status.

When abelian groups are replaces
by modules, H,, is still called the
n-th homology group, not the n-
th homology module, for histori-
cal reasons.

MATHEMATICS TO COMPUTE

image of d,,11. This quotient is called the n-th homology group H,, of C..

The central problem of homological algebra is to find a good description for
the homology groups H,,, usually a finite presentation. The chain complexes
are typically derived from a well-behaved topological space, and knowledge
of homology groups give information on homotopical properties of the space.
For instance two spaces with the same homotopy type have the same homology
groups.

Connected pair

A pair f, g of composable (abelian) group morphisms is said to be connected —
the terminology is ours — if their composition f; g is the trivial morphism 0.

Homology

Let f, g be a connected pair of morphisms. Their homology is the quotient of
the kernel of g by the image of f. An arguably more primitive notion than
that of an image, is that of a cokernel: the cokernel of f is the quotient of the
target group of f by its image. In term of kernel and cokernel: The homology of
f and g is the cokernel of f seen as morphism to the kernel of g.

Exact pair

A pair f, g of connected morphisms is said to be exact if the image of f is
equal to the the kernel of g. In term of homology, avoiding a reference to the
image: the pair f, g is exact if their homology is trivial (i.e. the singleton group).

Exact pairs play a important role in homological algebra. To emphasise
this, the homology of a connected pair is sometimes nicknamed “default of
exactness”.

Chain complex

A chain complex C, — sometimes differential graded object — is the data of a
family (C,),,.; of abelian group (dubbed “graded abelian group”) together
with a family (dy),,.,:C, — C,, _1 of group morphisms such that the pairs
dp41, d,, are connected. The d,, are called the differential morphisms (also,
often, “boundary operators” due to the relation with a particular construction
of topological space called cell-complex).

The homology H,, of the pair d,+1, dy, is called the n-th homology group
of C.. Notice that the family (H,),,., is itself a graded abelian group.

2.2 Abelian categories will not fit

Homology comes in a variety of touches and feels: abelian groups and
modules as presented in the previous section, but also, for the interested
reader, cohomology of sheaves, for instance. It is useful to define and work
with homology in a more abstract setting, in order to encompass as many
variations as possible.

On a more pragmatic point of view, having an abstract approach to homol-
ogy plays the equivalent of the programmatic “abstraction barriers”. Even
if we did not mean to reuse the code much - or, should we say, reuse the
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proof — it allows to reason more purely on the homological problem, without
being bothered by implementation details. On a similar tone, let us note that,
contrary to what is usual practice in paper mathematics, we have a strong
incentive not to represent groups and finitely presented groups in the same
fashion. Hence, an abstract approach to homology help solve the unusual
problem of defining homology in groups and homology in finitely presented
groups.
The traditional approach, on this matter, is to introduce abelian categories.

Additive category

A category is called additive (sometimes preadditive) if all its homsets are
endowed with an abelian group structure, and if the composition is bilinear.
In other, fancier, words: an additive category is a category enriched in the
category of abelian groups.

Zero object

An object which is both initial and terminal is called a zero object. If a category
has such an object, then there is a special kind of arrows named zero arrows,
that is the arrows which “pass through” it:

A——0——>B

By definition, there is only one such arrow for each pair of object A and B
which we call the zero arrow from A to B and write 0. Also, if the category is
additive, the zero arrow from A to B coincides with the neutral element of
the abelian groups on the arrows from A to B

Kernel and Cokernel

In the presence of a zero object, we can also define a kernel (resp. cokernel) of

an arrow A —. B as an equaliser (resp. coequaliser) of f and 0. It is worth
noticing that in an additive category, equalisers arise from kernels (and dualy,
coequalisers from cokernels). Indeed a kernel of f — g is also an equaliser of f
and g. However, kernels and cokernels are usually considered more primitive
objects than equalisers and coequalisers in linear algebra

Biproduct

In an additive category, we define a biproduct of two object A and B an
object A @ B together with injections A —— A ® B, B —2~ A © B and
projections A ¢ B —L s A, A®B —2 Bsuch that iym = 14, tom = 1p
and 71 + mata = lage. A @ B is both a product and a coproduct — hence the
name “biproduct”. It is noteworthy that a zero object is — in a sense that we
will not make precise — a nullary biproduct (in particular it is neutral, up to
isomorphism, for biproducts). Hence an additive category with all (binary)
biproducts and a zero object has all biproducts (of arbitrary arity).
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Though desirable, the notion of
enriched category is not quite
convenient in Cogq, as it is. Hence
we were not able to define addi-
tive categories this way. See Sec-
tion [61] for further discussion.

First notice that as there is only
one arrow from 0 to B, it is
the neutral element of the corre-
sponding abelian group. Since
composition is bilinear, in partic-
ular right linear, the precomposi-
tion with the unique arrow from
A to 0 is the neutral element of
the homset from A to B.



Suppose A . Bboth epic and
monic. As f is epic, it is the a ker-
nel of some arrow g. In particular
f;9 =0 = f;0. Since f is epic,
g = 0. The identity of B is a ker-
nel of 0, hence of g. The universal
property gives an inverse to f

MATHEMATICS TO COMPUTE

Normal monomorphism and epimorphism

A monomorphism (resp. epimorphism) is said to be normal if it is a kernel
(resp. cokernel) of some arrow.

Abelian category

A category is said to be abelian if it is additive, has a zero element, all (binary)
biproducts, has all kernels and cokernels, and all its mono and epi are normal.

The trouble, however, is that there are not enough such categories if we
refuse the principle of unique choice. For instance the category of abelian
groups is not abelian. This should not come at too much of a surprise, since,
in abelian categories, morphisms which are both epic and monic are invertible,
which sounds a lot like the principle of unique choice. Let us give, however, a
more precise account of what does not work.

m Morphisms between two abelian groups form an abelian group with
respect to pointwise addition.

m Composition of abelian group morphism is bilinear.
m The one-element group is a zero object of the category of abelian groups.

m Every abelian group morphism f:A — B has a kernel Ker f defined
as the set {a : A | fa = 0} with the group operations of A, and the
canonical injection ker f into A.

m Every abelian group morphism f:A — B has a cokernel Coker f
defined as the set B quotiented by the equality b1 =cokers b2 if and
only if Ja:A. by — by = f a together with the group operations of B, and
the canonical projection cokerf.

m For any two abelian groups A and B, there is a biproduct A © B defined
as the set A x B together with component-wise group operations from A
and B. The projections 7; and 7, are the projections of the set A x B. The
injections ¢; and o are defined as Aa. (a,0) and Ab. (b, 0) respectively.

However, monomorphisms of the category of abelian groups are not
necessarily normal. That is they need to be a kernel of their cokernel. Let us
remind the definition of a kernel: £ is a kernel of h if

mkh=0,
m For any / such that [; h = 0, there is a unique u such that u; k = [.

Now, of course, f;cokerf = 0 for any arrow f, so the first condition
holds in our situation. But we will not be able to prove that the universal
property holds. Indeed, let us take a monomorphism f from group A to
group B. To prove the universal property, the argument would go as follows:
let g be a function from C to A such that g;cokerf = 0, this means that
Ve:C.3b:B.ge = fb. Which means there is a function v from C to the set
{a:A|aeImf} (which happens to be a group morphism when the image
of f is endowed with the canonical structure of group). There is also, for the
same reason, a function u from B to the set {a : A | a € Jm f}, which can also
be viewed as a group morphism. u is a bijection. If we had the principle of
unique choice, we could deduce an inverse v’ to u, which would, again, be a
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group morphism, as all (functional) inverses of group morphisms, and the
universal property would be given by v; v/. However, this is not available and
the proof fails.

Using, as in Section [1.3] that we can extend our mathematics with the ex-
cluded middle, we can show more precisely that being injective and surjective
for an abelian group morphism does not imply that it has an inverse. Our
slogan, here, will be: unique choice is not valid in the category of abelian groups.

All this is not to say that abelian categories are of little use without the
principle of unique choice. They may even have a important role to play in
the setting of homological algebra computations. Our conjecture is that the
category of finitely presented groups is an abelian categories. This result
should also hold for categories of modules over a given ring, probably with
the additional requirement that the ring has decidable equality. This result
would be rather useful, as abelian categories have a variety of property
which are interesting for computation as demonstrated, for instance, by
Homalg [5]. The idea would be to reduce the computation of the homology
of a connected pair of abelian group morphisms to the computation of the
homology of a connected pair of finitely presented group morphisms where
more computations are available. Effective homology features a tool for this
sort of purposes called the basic perturbation lemma [48].

2.3 Preabelian categories

Preabelian category

A preabelian category is like an abelian category except it does not require that
mono- and epimorphism are normal. In other words, a preabelian category is
an additive category with a zero element, all (binary) biproducts, all kernels
and cokernels. It is fairly straightforward to prove that any category of module
is a preabelian category without making use of the principle of unique choice.

It is interesting, for or purposes, to notice that the theory of effective
homology, upon which Kenzo [49] is based, does not seem to escape the
framework of preabelian categories. As an illustration we shall briefly review
the notion of effective short exact sequence of chain complexes.

Short exact sequence
A short exact sequence is an exact sequence of the shape.

0 i J 0

In other words an exact pair:

with ¢ mono, j epi.

Splitting lemma

The splitting lemma is an important tool in classical homological algebra. It
states, in particular, that in an abelian category, for a short exact sequence i, j,
it is equivalent for i to have a postinverse and for j to have a preinverse.
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The set B can be endowed with
a structure of abelian group, us-
ing false as the neutral element
and the “xor” as the composition.
With the excluded middle avail-
able, the same can be done with
Q. The function

f:B—Q
f true = T
f false = L

Happens to be a group mor-
phism. It is also both injective
and surjective. As in Section
an inverse would decide the truth
of propositions.

Let f be a mono. We have
(kerf)f = 0f, hence kerf =
0. Conversely, if f has a null
kernel. Take gf = hf that is
(g — h)f = 0. Universality of ker-
nels gives a unique u such that
g—h =u(kerf) =0.

Dually, f is epic if and only if if
has a null cokernel.

Let us consider ¢ monic and epic.
As it is monic, ¢ followed by
cokersi is a short exact sequence.
Since i is epic, cokers is trivial,
hence 0 is a preinverse. The prop-
erty of the splitting lemma gives
us a postinverse to i. Since ¢ is
epic it is actually an inverse to
¢ which realises the principle of
unique choice.



The category of abelian groups
can be faithfully embedded in the
category of chain-complexes of
abelian groups, therefore there is
no principle of unique choice or
splitting lemma there either.
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However this property is stronger that the principle of unique choice in
a preabelian category. We have seen, though, that the principle of unique
choice does not hold in the (preabelian) category of abelian group, hence the
splitting lemma does not hold, in general, in preabelian categories.

Effective short exact sequence

It is essentially to patch this difficulty, that Sergeart[48, p. 71] introduces the
notion of effective short exact sequences of chain complexes. An effective
short exact sequence is a diagram of the form:

p o
/\/\
i J

with ¢ and j chain-complex morphisms, p and ¢ graded module mor-
phisms such that:

mip=1
mpi+j0=1
mo;j=1

m the pair 4, j is exact

In particular, in the category of graded modules, ¢ is monic and j epic. As
the category of chain-complex is a sub-category of that of graded modules,
they are also, respectively, monic and epic as chain-complex morphisms.
Hence, effective short exact sequences are indeed short exact sequences.

2.4 Graded objects and chain complexes

Preabelian categories are enough to represent the category of groups or other
interesting categories. We also need a notion of chain complexes which makes
sense inside a preabelian category.

Graded object

In an arbitrary category C (presumably preabelian for our purpose), we call
graded object a Z-indexed family (A,,), ., of objects of C.

Morphism of graded objects

Given two graded object (A,), ., and (B,),., we can define a notion of
morphism between them. A first approach is to say that a morphism is a
family (f,),,.; with f,, an arrow from A, to B,,.

B, B: Bo B, B
TfQ Tfl Tf[) Tf—l Tf—Q
Ay A Ao A, A,

30



2 HOMOLOGICAL ALGEBRA IN TYPE THEORY

These morphisms compose naturally (by pasting the diagrams).

Cy C, Co C_, Oy
ng Tgl Tgo Tg_l Tg_z
B B, Bo B., B_,
o T T T
A, Ay Ao Ay A,

However, we will need some slightly richer kind of morphisms. We shall
call a morphism of degree k between graded objects (A,), ., and (B,),.,
a family (f,),,., where each f, is an arrow from A, to B, ;. Here is, for
example, a morphism f of degree —2:

2

e B2 Bl BO B_1 B_
EE A Ay Ao Ay Ao x

We can still compose morphisms by pasting diagrams. The composite of a
morphism of degree k with a morphism of degree [ has degree k +I. As an
illustration, here is the composition of f of degree —2 and g of degree 1, the
composite has degree —1.

—2

Cy C, Co C, C
‘Y w w X1 yz Xs
. B, B, By B_; B_, N
/////
A, Aq Ag A

o A,

Similarily, the morphism of degree 0 which is identically the identity is a
unit for the composition (notice that it has to be a degree 0 to be a unit).

This all seems quite categorical — even though we couldn’t push the analogy
to the point of real code-sharing in Coq (see Section [6.3). We shall see that
we can also mimic the structure of preabelian category, provided the base
category is preabelian.

m The set of morphisms between two graded objects at a given degree has
a natural group structure. That is the corresponding product group.

m For two graded objects (A,,),,., and (B,,),,.,, the graded object (A,, ® B,,),,.,
has the properties of a biproduct

m The graded object (0),,., behaves like a zero object.

m Similarily, the morphism obtained from (f,),,., by taking the kernel at
each n has all the properties of a kernel. Notice that in this case we can
choose the degree of the morphism — since we can always change the
indices of the kernel object without compromising any property. We
pick 0 as it will be convenient for the alignment of homology groups.
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These notations are made possi-
ble in Coq by the mechanism of
implicit type coercions.
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m Dually, the morphism obtained from (f,),,., by taking the cokernel at
each n has all the properties of a cokernel. Here again we can pick the
degree we wish, and take 0.

We can then define homology as in a preabelian category: let f and g be a
connected pair of graded object morphisms, its homology is the cokernel of f
as a morphism into the kernel of g. The homology of a pair of graded object
morphisms is a graded object.

Chain complex

In this framework, a chain complex C, can be defined as a pair of a graded
object (C,,),,.,, together with an endomorphism d of degree —1 connected
with itself (the differential morphism).

d d d d d_ d_
0 0 0 0 0

The homology of d with itself is called the homology of the chain complex.
It is a graded object — not a chain complex — (H,),, ;. H, is called the n-th
homology group of C..

The choice of degree 0 for both kernel and cokernel ensures that H,, is
indeed the n-th homology group of C,, that is the homology of the pair
d,+1 followed by d,, — as illustrated by following diagram where d’ is the
embedding of d in the kernel of of d.

Ho H; Hy H_, H_,
cokerd’ cokerd’ cokerd’ cokerd’ cokerd’
Ko Ky
7, kerd a kerd 7
ds , ds ¢ dy

Coq voodoo

The definition of the category-like structure of graded objects deserves some
technical comments. It is not straightforward to make Coq accept these
definitions.

Let us see why, first. Given a preabelian category A, we write A for the
type of its objects and .A A B for the homset from A to B. We define the graded
object as the type Z — A (where Z is a binary representation of integers from
the standard library of Coq). From there, there are two approaches to define
the sets of morphisms.

m We can define morphisms (without a degree) between the graded objects
A and B to be the elements of type forall n:Z, A (A n) (B n), then we de-
fine a family of functors indexed by integer numbers, for a graded object

32



2 HOMOLOGICAL ALGEBRA IN TYPE THEORY

A, ktA would be defined as as fun n = A (n+k) and for a morphism f,
ktf would be defined as fun n = f (n+k). Then a morphism of degree k
between A and B is a morphism between A and k1B.

Unfortunately, it does not work much further than that. Indeed let us
consider two composable morphism f and g of respective degree k and |.
Their composition f-g would be defined as fun n = (f n)-(kTg n) whose
target object would be fun n = C (n+k)+| where we would expect (k+[)1C
(i.e. fun n = n+(k+l)). They appear the same to the mathematician, as
addition of integers is commutative. The Coq user, however, tends to
shrieks and cries when presented with this situation. Indeed, Coq’s
way to identify terms is through the conversion rule. If two terms are
convertible then they are the same, otherwise they are not. Associativity
of addition is not understood by the conversion rule, as it is defined
before addition. And, as a matter of fact, there is no way to define
addition such that associativity is simulated by the conversion. To solve
that, either one can give up on the decidability of conversion (like in
extensional type theory [41]]), or one allows to throw in new decidable
conversion rules. The latter has two iconic approaches, the Calculus of
Algebraic Constructions [14] — where functions can be defined as rewrite
rules more sophisticated than pattern-matching (and more than neces-
sary for ground terms) — and, more recently, the Calculus of Inductive
Construction Modulo Theory [53] — where one can plug certified deci-
sion procedures in the conversion. Both these approaches are sufficient
for our case.

The other approach is to define directly morphisms of degree k from A
to B as being functions in forall n, A (A n) (B n+k). At first sight, it does
not seem of much help as the type of morphisms of degree k is the same
as the one proposed in the functor-based encoding. It seems even worse,
as we lose the categorical structure: we had a category (graded objects
with morphisms) and a family of functors, we could use that setting
abstractly, and reuse theorem about categories — if it had worked.

There is actually hope in this direction, for that very reason: we abandon
the idea of an encoding as a category with additional structure, this
allows to “split the problem” differently. By choosing a more clever
implementation of morphisms of degree k we will manage to have them
behave fairly well.

As a matter of fact, it is not very plausible that we can write, in Coq, the

(somewhat generalised) category of graded objects in any pleasant way at
all. We give a partial solution in which the constructions of this category
(in particular the composition of morphisms) are expressible and have the
expected types. We actually encode morphisms of degree k as a record
reporting some of the effort that conversion needed to do as proof obligations:

Record morphism (k:Z) (A B:Z—A) := {
shift: Z — Z;
maps : forall n:Z, A (A n) (B (shift n));
homogeneity : forall n, shift n = n+k

1.
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Where = denotes the propositional equality of Coq, usually written =,
but we reserved the latter for set equality. Let us remark that propositional
equality of Coq is stronger than convertibility. Indeed, if it coincides with
convertibility on ground terms, it can make use of any available proof principle
on free variables of its operands. In particular, forall x y z:Z, (x+y)+z=x+(y+2)
is provable.

We will write A — B :: k for morphism k A B (not to be confused with
A — B which is the type of maps from A to B).

Now defining composition is straightforward:

Program Definition comp (k I:Z) (A B C:Z—A)
(f:A—B:k) (g:B—C:l) : A—Cuik+l := {]
shift := fun n = shift g (shift f n) ;
maps := fun n = (f n)-(g (shift f n))
I2

We need only to prove that forall n, shift g (shift f n) = (k+l)+n which is no
problem.

However the story does not end here. If composition is now easy, equality
(between two morphisms of the same type) which was easy in the first
encodings has become hard. We shall need another trick to be able to define
equality.

First let us introduce the following type:

Inductive eqopt {A B:Type} (F:A—B) (k l:A) :=
| NotEq : eqopt F k |
| Eq: (Fk — FIl)— eqopt F kl

In other words, an eqopt F k | is either NotEq or Eq f where f converts from
F k to F I. Our intention is that NotEq means that k and | are not propositionally
equal (i.e. —k=l) and Eq f means that k and | are propositionally equal (i.e.
k=l) and, in addition, that f is the identity function (f=fun x=-x). Functions
returning an eqopt F k | are, then, a variant of equality decision. We will use
such a function for Z:

Definition Zeq {A:Type} (F:Z— A) (k I:Z) : eqopt F k I.
Lemma Zeq same: forall F k, Zeq F k k = Eq (fun x = x).

Now we can define equality.

Definition eq (k:Z) (A B:Z—A) (f gtA—B:k) :=
forall n,
match Zeq B (shift f n) (shift g n) with
| NotEq — False
| Eqid —id (fn)=gn
end

There are actually two other constructions that need the trick of using Zeq:
addition of morphisms (for the same reason than equality: it acts on a pair
of morphisms of the same degree) and cokernel. This means in practice that
every addition or cokernel features a structural test of equality which always
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succeeds (typing enforces it). This equality test will always be run on fairly
short integers (no one is really interested in the millionth homology group of
anything), nonetheless it is unsatisfying as this test is a useless computation.
We can sum it up with the following slogan: static properties need not be enforced
by dynamic tests.

There is a good reason in practice for Coq to require such tests, though.
Types can be proved identical even if they are not, provided the context makes
inconsistent hypotheses. The context is made of all the local hypotheses
made by the function being defined, and the branches of pattern matching
under scrutiny. Hence it does happen that some expressions are written in an
inconsistent context; in this case we typically just want to prove that the context
is inconsistent, though (remember, from Section [1.3} that this is the principal
role of computationally irrelevant proofs in programs). Connor McBride
coined the phrase lies are locally true to describe this situation. Dynamic tests
required by Coq are meant to avoid making use of such a lie, which would
lead to Coq’s equivalent of segfault. This constraint is a consequence of
strong reduction. In a weak reduction, every evaluation happens in the empty
context, local lies are never evaluated.

In addition, these mechanisms come with rather severe limitations. If
when working with morphisms of a concrete degree, things go fairly well —
if d has type C—C::-1, then d-d has type C—C::-2 as expected. However, it
is not possible to express arbitrary statement about morphisms with abstract
degree. For instance, let f:A—B::k, g:B—C::l and h:C—D::p, then (f-g)-h has
type A—D::(k+])+p and f-(g-h) has type A—D::k+(l+p). These types are not
convertible unless associativity of addition is supported by conversion. It is
therefore not directly possible to express the associativity of composition, as
equality has a type which supposes that both sides have the same type. There
are in the literature examples of equality which works on non-convertible (yet
equal) types; however they do not work well without some variant of the K
axiom[52]. Such an approach could be worthwhile in the setting of graded
objects, as K is valid on Z (and, more generally, on types with decidable
propositional equality). We haven’t conducted sufficient investigation to be
able to say whether the it would solve this issue though, it seems to be enough
for equality but the problem arises again with addition. Another solution
could be to summon the Zeq trick again in the statement of the problem
(match Zeq (fun n=A—D::n) ((k+1)+p) (k+(I+p)) with ...). This would be ver-
bose, and break any chance of abstraction, but, with some boilerplate, might
work better with the rewriting mechanism of Coq.

2.5 Kernels of matrices

In this section we will present an example of a direct utilisation of the pre-
abelian category framework to produce an effectively executable proof. We
will prove that the kernel of a linear function between two finite dimensional
vector spaces has finite dimension.

This might not be a very legitimate usage of the preabelian category
abstraction, as the proof is not very different from its concrete counterpart.
Additionally it does not seem to generalise to any other useful proof. On the
other hand, a quite principled presentation arises from the approach. It is
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For the sake of completeness
we should mention that the first
property can also be split: it has
a weaker version of the form
Va:K.—-a = 0—3a’":K.ad’ = 0.

f 1is either 0 in which case f =
0, or some non-zero k and fx =
x(f 1) = kx. In the latter case, let
gz = . We have that f (gz) =
g (fz) =z, for any z.
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meant to demonstrate the style of proofs preabelian categories suggest.

Field

Before we go on with the proof, let us consider the notion of field from the
point of view of constructive logic. Fields typically come in two flavours: let
K be the base set of a field

m Either it is given a function L:{a : K | =a = 0} — K which verifies, for
any a:K such that —a = 0, that 2 = 1.

m Or the property that Va:K. 3a’:K. aa’ = 1 holds.

From a constructive (with the principle of unique choice) point of view, the
latter is strictly stronger than the former. More precisely, the second property
is equivalent to the first in conjunction with the decidability of the equality on

When we drop the unique choice it becomes a bit more complicated as
the second property is split in two cases: as it is written it becomes rather
weak since it does not allow to compute anything. But we can reformulate it
to regain its original meaning, giving a function :K — {a =0} + {a’ : K |
aa’ = 0}. Where the set {a = 0}, is the set of the proofs of a = 0 all considered
equal. It is this last formulation that we will use for our proof.

A field K can also be seen as a K-vector space. It verifies (both as a field

and a vector space) that any arrow K —L_, K is either 0 or has an inverse. The
inverse of f plays the categorical-equivalent role of the division in the field.
We shall remember that endomorphisms of fields are null or automorphisms.

Finite dimensional object

Let us fix, for the rest of this section, a preabelian category .A and an object K
of A such that any endomorphism of K is either 0 or an automorphism.

The usual definition of finite dimensionality for a vector space A states
that A has a finite linearly independent generating family — the basis. An
equivalent statement in the realm of categories would be that there is a bijective
linear function b from some K" — with n:N —to A. This b is to be understood
as the function interpreting coordinates along the basis as a vector in A. Here
K" corresponds to finiteness, the fact that b is a monomorphism corresponds
to linear independence, and the fact that it is epic corresponds means it is
generating. Now, without the axiom of unique choice it the question is: is
it the right definition, or do we need an inverse? An inverse to b gives a
decomposition into coordinates. For our application, at least, this cannot
be spared. Hence we shall say that A has finite dimension when there is an
isomorphism between A and K" for some n:N. We shall adopt the terminology
that the morphism from K" is called the basis, and the reciprocal is called the
decomposition along the basis.

Outer lemma

The core of the proof will consist in proving that if f is an arrow from K" to
K? for some n and p, then Ker f is isomorphic to K" for some 7.
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Let us first consider an arrow f in A L B @ C, it can be split into two

components: A 1™, Band A ™ C. Note that f can be rebuilt from
these two components (B @ C is a product). Our first lemma is that the kernel
of f is isomorphic to the intersection of those of the two components. We
need to phrase this in the language of preabelian categories. Let us consider

the arrow Ker(fms) _Kerlm) LA s composite ker(fms)fm can be read

as the restriction of fm; to Ker(fm;). Hence the lemma can be stated as:
Ker(ker(fmy)fm) is isomorphic to Kerf.

What this lemma tells us, is that we can restrict our attention to arrows of
the shape K" LKk Indeed, if we can give a basis (and decomposition) to

such an arrow, then to solve an arrow of the form K* —2— KP? if pis 0, then
full K™ is the kernel of g, which directly gives a basis, otherwise K? is K® K?,
then ker(fms)fm is an arrow from Ker(fm) to K. Since fmg is an arrow
from K™ to K¥', by induction we get a basis of Ker(fm). Hence ker(fmy) fm
is an arrow of the shape K™ — K, which we can solve by assumption.

Inner lemma

Let us consider an arrow A & B —— C. It can be split into two components

A Cand B 2L C. Here again, f can be entirely rebuilt from

its two components (A @ B is a coproduct). Now, let us suppose that ¢; f

has an inverse C —— A. Then the kernel of f is isomorphic to B. The
following illustrates how g essentially performs a division. Let us pretend for

a moment that K @ K" RN K, and that K is a field. Then f (g, x1,...,Zy)
Xozo +A1z1 + ... + Az, with A\ having an inverse. Then f (zg,z1...,2,) =0

if and only if o = %1714’... + 227, Hence ( —i—;,...,l—i—z)isabasisof
the kernel of f.

Ao
If, on the other hand, ¢; f = 0, then Ker f is isomorphic to A @ Ker(c2f).

The algorithm in motion

Let us paste the pieces together. Let K" LK Ifn= 0, then the kernel is

the zero object. Otherwise, K @ K L> K which splits in two cases, either
t1f = 0, then the kernel of f is isomorphic to K" — and we’re done — or 1; f
has an inverse and the kernel of f is isomorphic to K& Ker(t, f) By induction,
Ker(tz f) is finite dimensional. And the problem is solved.

Remember that, as the philosophy of this work prescribes, the proof

actually describes an algorithm which computes, given some A SEEN B, with
A and B finite dimensional, a basis and a decomposition for Kerf. Using
the decomposition we can compute coordinates for the vectors of the basis of
Kerf.

As often, a f can be specified by a matrix (an element of (K™)™) — this
makes use of the bases of A and B. The implementation described here has
been tested to compute bases of kernels of various matrix with coefficient in
K — the field of rational numbers. The computation are fast up to size 30 x 30
and tractable up to size 50 x 50, approximately. This might be considered
a disappointment, but we should stress that we have used a very naive
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Let us write K for Kerf and
K’ for Ker(ker(fm2)fm). To
map K’ to K, consider the

map K’ —— A defined as
ker(ker(fm2) fm1)ker(fm2).
Since nf = 0,  can also be seen
as an arrow from K’ to K. The
other direction is realised by
kerf which can be seen as an
arrow to Ker(fm2) (it's bigger
than the kernel of f). It follows
that kerfker(fm2) kerf
hence kerfker(fm2)fm
kerffm1 = 0, and kerf can be
seen as an arrow from K to K’. It
follows from the definitions that
n together with kerf form an
isomorphism.

The categorical proof goes about
like the concrete proof showed
in the text except that the ba-
sis is given as the morphism
12 — t2fgt1, the reader can con-
vince himself that it corresponds
to the basis proposed in the proof
beside. The inverse function is
ker fra.

The proof that Kerf is isomor-
phic to A & Ker(t2f) is a a bit
tedious, but rather straightfor-
ward. Let us sketch it briefly.

A@Ker(iaf) —— A®B where
n = 1 x ker(eaf) = mlu +
moker(t2f)i2 can be seen as an
arrow to Kerf. The inverse
arrow is kerfmit1 + kerfmats
where ker fry is seen as an ar-
row to Ker(ca f).

A skeleton of the Coq proof pre-
sented in this section can be
found in Appendix E together
with example runs of the proof
seen as a program.
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representation for matrices: lists of lists. In this example we were only mildly
interested in performance. Otherwise we might have wanted to use a smarter
representation, for instance replacing lists with binary lists [46] p. 119-122].
This would come at a cost, though, as the induction to solve arrows of the

form K* —— K is structural on lists. Coq really likes structural recursion.
We would need to devise a recursion principle to use, say, binary lists as
linked lists. As mentioned in Section using non-structural recursion in
Coq has a cost on performance which is hard to quantify a priori. However,
the outer induction (reducing the problem from K* — KP to K™ — K)
could be reduced to a logarithmic number of step instead of linear. Maybe
more importantly, access in the matrices would be much faster, effectively
reducing the complexity of the functions they represent. It is safe to say this
would result in an overall improvement in time performance.

We might also want to represent matrices using some flavour or arrays
— as it is more common in traditional programming languages. This may or
may not be a good idea, as our algorithm constructs and destructs matrices —
which is harder to do on arrays than on lists (binary lists being pointedly a
compromise between arrays and lists). Though they are not part of historical
Coq paraphernalia, some flavour of persistent array can be made available,
as explained in Section 3.4} They might fit for this application. This leave us
with one consideration: if we are to use arrays to represent products (or, in
our case, biproducts) in category, we cannot restrict our attention to binary
(plus nullary) products. All n-ary products can be generated using binary
and nullary products. They can be coded in a variety of ways — including
lists and binary lists mentioned earlier. However arrays are encodings of
n-ary products which are atomic in that they cannot be described in terms of
smaller — or bigger — products. This leads to a formulation of the phrase “a
category with all products” in a way that is sometimes called unbiased. Further
thoughts on this are presented in Section [5.3}

38



Part Two

Intermezzo: Down to Coq
Implementation






CHAPTER THREE

Efficient computations

Five hundred carpenters and engineers were immedi-
ately set at work to prepare the greatest engine they
had. It was a frame of wood raised three inches from
the ground, about seven feet long, and four wide, mov-
ing upon twenty-two wheels. The shout | heard was
upon the arrival of this engine, which, it seems, set
out in four hours after my landing. It was brought
parallel to me, as | lay. But the principal difficulty was
to raise and place me in this vehicle. Eighty poles,
each of one foot high, were erected for this purpose,
and very strong cords, of the bigness of packthread,
were fastened by hooks to many bandages, which the
workmen had girt round my neck, my hands, my body,
and my legs. Nine hundred of the strongest men were
employed to draw up these cords, by many pulleys
fastened on the poles; and thus, in less than three
hours, | was raised and slung into the engine, and
there tied fast

Jonathan Swift, Gulliver's travels

OMPUTER algebra systems usually consist in rather hard computa-

tion. Kenzo — and homological algebra in general — is no exception.

However, when it comes down to efficiency, dependent type the-

ories rarely compete with traditional programming languages.
As a matter of fact, the question of efficiency has been often dismissed in
favour of program extraction: from a Coq program, one can extract an OCaml
program with the same behaviour, but typically way more efficient. While this
is perfectly reasonable for standalone program, there is a case where it cannot
be accommodated: when computations are part of Coq proofs — process often
known as reflexive tactics. The most famous such example is the proof of the
four colour theorem [24]], but there are various other reflexive tactics out there.
Coq'’s standard library most notoriously provides a decision procedure for the
theory of commutative ring[28]].

A major improvement was achieved with the introduction of a dedicated
virtual machine [27] allowing Coq programs to compare with (bytecode
compiled) OCaml ones. Relatedly, there are preliminary works to leverage
OCaml’s native compilation in order to improve computation speed more.
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Still, it does not solve everything. Indeed, Coq didn’t provide any primitive
data-structure, every type is to be encoded using the constructs allowed by
the system (primarily, inductive definitions). So we went and added some.
More precisely, we shall present in this chapter, how we extended Coq — in
particular Coq’s virtual machine — with integers in order to use the arithmetic
abilities of the processor.

3.1 A brief history of N

In this section we shall present various encoding of the type of natural
numbers present in the standard library of Coq. The variety of these reflects
the history of Coq, and how, as time passed, it has been seen increasingly
important to compromise simplicity for the sake of efficiency.

Peano numbers

The simplest way to define natural numbers inside Coq’s theory is to define
them as Peano numbers:

Inductive nat : Type :=
| O :nat
| S (n:nat) : nat

nat is a so called inductive type, its definition is read: “nat is the smallest
type which has an element O and for any element n, has an element S n”.

Operations on inductive types are defined by recursion on their structure.
For instance, addition on nat is defined as follows.

Fixpoint plus (n m:nat) : nat :=
match n with

|O =m
| Sn” =S (plus n” m)
end

Addition on nat is an operational version of Peano’s axiomatic addition.
Let us give as an example, the computation of 3 + 2:

plus (S (S (5 0)) (S (S 0O)) S (plus (S (S 0)) (S (S O))
S (S (plus (S O) (S (S O)))
S (S (S (plus O (S (S 0))))

S EEEOoN

¢

The computation of a sum is linear (in its first argument), which is hardly
acceptable. Our slogan will be: Peano numbers: simple, yet intractable.
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Binary numbers

A binary representation of natural numbers allows logarithmic operations.

Inductive positive : Type :=
| xI (p:positive) : positive
| xO (p:positive) : positive
| xH : positive

Inductive N : Type :=
| NO: N
| Npos (p:positive) : N

An element of N is either 0 (NO) or a string of 1-s (xI) and 0-s (xO) starting
with a 1 (xH). Defining operations for these numbers is not as simple and
direct than with Peano numbers. We will not show a definition here, we will
content with a run of the addition of 3 + 2 (where Pplus is the addition over
positive):

Nplus (Npos (xI xH)) (Npos (xO xH)) ~» Npos (Pplus (x| xH) (xO xH))
~>  Npos(xl (Pplus xH xH))
~  Npos(xl (xO xH))

The improvement both in computation time and space usage is really
worth additional hard work. In programs which do not do a lot of number
crunching, this representation will probably be sufficient. An issue, though, is
that these numbers can only be read from the least significant bit to the most
significant. Some operations on natural numbers work better if the number is
read the other way. An archetypal example is comparison: even if we store
the length of the number beside, we still need access to the most significant
bit, which is linear in the length (i.e. logarithmic in the value) of the operands.

As a side note, remark that this encoding of natural numbers gives rise,
for free, to an encoding of the integers which appears in the library of Coq as
the following type:

Inductive Z :=
| 20:Z
| Zpos (p:positive) : Z
| Zneg (p:positive) : Z

Numbers as trees

A natural approach to deal with the order in which the bits can be read is to
represent the numbers as binary trees, reading the digits from the leaves. To
benefit from this construction we will need to keep track of the height of the
tree, for that we need a previously existing kind of natural numbers. A good
choice is Peano integers: the height of the trees is typically very small (filling
a 4 GB memory with digits requires 2°° bits, such a number has height 35 as
a binary tree). And either way the overhead, in memory, of the tree itself is
bigger than that of the Peano number representing its height.
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We are ready to provide an implementation for such numbers:

Fixpoint word h :=
match h with
| O — bool
| S k — (word k * word k)%type
end.

Definition bigN := { h & word h }.

A bigN is defined as the pair of a Peano number h and a number of height
h.

Note that we have lost the property that every number has a single repre-
sentation, as a number can always be seen as a number of a larger height. This
makes the basic operations more difficult to write down than with the earlier
representations. Also, as the trees are perfectly balanced, there is easily a lot
of trailing 0-s in front of the number (2("+2) is represented as the pair of 1 and
0 seen as numbers of height h + 1, 1 is, hence, represented with h additional
0-s). We shall modify our type word to take this remark into account:

Fixpoint word h :=
match h with
| O — bool
| S k — option (word k * word k)
end.

option A is either Some a with a:A or None. Here, None stands for 0 at any
height. The operations will be programmed to favour None over the more
classical representation of 0.

Another perk of this binary tree representation is that it is well-suited for
Karatsuba multiplication [32]: a number n is represented as n;,2" + n; where
h is the height of n. Let p = p;2" + p; be another number of height h,

np = (np2" +n) (Pr2" + o) = (napn) 2% + (nppr + rupn)2"™ + np;

This gives a naive algorithm — in O (n?) as usual — which require four
recursive multiplications. However, if we write a for nypp and b for n;p;, then

(nn +n)(pr +p1) —a —b=npp + npp

Meaning we can compute np with three recursive multiplications (though
at the cost of some extra additions). This leads to an algorithm in O (n'°&?).

The idea of representing numbers as binary trees had been in the air for a
while. To the best of our knowledge, its first written appearance is in a work
from Edwin Brady & al. [16, Chapter 5] where they nicely nicknamed the
approach: every number has at most two digits.

More digits

We are still very far from the performances of mainstream programming
languages. Especially as far as memory is concerned: every single bit of our
natural numbers are stored on a whole computer word (usually 32 or 64 bits).
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The large overhead puts a lot of pressure on the garbage collector and the
computer cache.

To adress this problem we can take the binary tree representation (or the
list representation, but binary trees are generally better) on a bigger base than
2. We then implement the digits with a more compact representation and
more efficient arithmetic operations. As computer scientists ought to, we shall
only consider bases which are powers of 2.

A first approach has been successfully used to formally verify the primality
of rather large prime numbers[zg]. It consists in representing digits of base 2%
as an enumerated datatype:

Inductive w8 : Type :=
| WO
| W1
| W2

| W255

This representiation is a very significant improvement over the former
ones both in term of speed and memory (even though the packing is still not
very good as long as values of w8 are stored on machine words). Arithmetic
operations on w8 are implemented by case analysis which, for binary oper-
ations, involves a squared number of cases (2'6 in this particular case). The
file for w8 — which is, understandably, generated by a program — is 100 MB
large. Would we try to move to base 2'¢, we would end up with a 1 G file.
We cannot drive this approach much further. Also we are really underusing
the processor which typically has very fast arithmetical operations.

3.2 Going native

In order to use the processor arithmetic directly, a first possibility is to extend
the theory underlying the Coq logic with:

m one primitive type int

m the constructors o, 1, 2, ..., 2" ! of type int

m the basic primitive functions over the type int such as +, *, ...
m the corresponding reduction rules for each primitive function.

It is also necessary to give it an equational theory, for instance, Peano
theory together with a lemma stating that (2" — 1) + 1 = 0 where (=) is the
propositional equality of Coq (or, equivalently, Leibniz equality). However,
this approach has some drawbacks:

m [t adds a large amount of new constructions to the theory. This goes
against the so-called de Bruijn’s principle which states that keeping the
theory and its implementation as small as possible highly contributes
to the trust one has in a system. Furthermore, on a more practical side,
it will have a deep impact in the implementation, since the terms will
have to be extended with new syntactic categories (primitive types and
primitive functions).
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m It adds a lot of new reductions, not only for ground arithmetical terms
— like 18+24 — but also for theorems. For example, if we consider the
theorem n_plus_zero that states that forall n:iint. n + 0 =n, n_plus_zero 7y
should reduce to refl 7 where refl represents the reflexivity of equality. As
a matter of fact, every proof of 7=7 needs to reduce to refl 7 if we want to
preserve an adequate notion of cut elimination for Coq. An alternative,
probably more realistic, solution would be to drop cut elimination and
pose the theory as axioms.

For these reasons, we have taken an alternative approach. Efficient eval-
uation in Coq, as provided by the virtual machine, uses a compilation step.
Before evaluating a term, it transforms it into another representation that is
more suitable for performing reduction. The idea is to introduce the native
machine integers not as part of the theory of Coq but only in this compilation
phase. So, the type int of machine integers is defined using the standard
commands as a type with a single constructor that contains n digits:

Definition bit := Bool.
Inductive int : Type :=In(d,, —1 ... dj dg : bit) : int.

We relate the machine numbers int with the relative numbers Z with the
two functions toZ : int — Z and its inverse tol : Z — int and we prove that they
satisfy the following two properties:

forall i: int, tol (toZ i) =i
forall z : Z, toZ (tol z) = z mod 2"

Now, it is straightforward to define the primitive functions of int as the
image of the corresponding function of Z. For example, addition for int is
defined as follows:

Definition i, +i,; i, := tol (toZ i; +z toZ i,)
So that addition verifies directly that
i1 +int > = tol (toZ iy +z toZ i,)

Actually, any closed definition verifying this property in the empty context
would be suitable for +i,:. Indeed, propositional equality of closed terms in
the empty context coincides with convertibility. For instance it implies that
3+int2 is convertible to 5. It is hence safe to add the rule 3+;,:2 ~ 5 to the
convertibility test.

Our job is to ensure that this new rewrite rule is prefered over a least
efficient choice and that it is implemented so as to leverage the arithmetical
capabilities of the processor. To that end, we shall modify the compiler in such
a way that it treats the type int as real machine integers. The main difficulty
is that Coq requires strong reduction. This is not the case of traditional
functional languages where only weak reduction is needed (no reduction
under binders).
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3.2.1  Coq’s virtual machine
Strong reduction by symbolic weak reduction

Before being compiled into the virtual machine, Coq terms to be normalised
are compiled into an intermediate calculus called the symbolic calculus [27]
The terms of the symbolic calculus are an extension of those of Coq, hence
compilation is the identity (formally type annotations are erased, but it does
not justify to perform an actual compilation pass in practice).

On the rewriting side, the symbolic calculus does not quite behave like
Cogq. It has a weak (no reduction under binders) call-by-value reduction. As
such it has a notion of values, we will write them with v-s to distinguish them
from non-value terms. This is where the extensions to the grammar of terms
kick in: the symbolic calculus has a weak reduction, still we want to use it
as part of strong reduction, hence it will need a notion of neutral term as it
will have to deal with free variables. In the symbolic calculus lingo, this is
called an accumulator, written [k]. Here k is typically a neutral term of the
form x vy ... v, where z is a (free) variable. It can also be a pattern matching:
matching over a neutral term is neutral.

In addition to the standard rules like 5-reduction, the symbolic calculus has
a few rules to work with accumulators. For instance, the case of application is
as follows:

[k] v~ [k v]

To employ the symbolic calculus as a mean of computing normal forms of
Coq terms, we use a variant of normalisation by evaluation [12]. An evaluator
of the symbolic calculus gives us a function ¥V which computes the value of
a term. To actually normalise, we need another function R which reifies the
value, such that NV(t) = R(V(t)) performs normalisation on ¢. Writing such
a function R is rather straightforward, here is, for instance, the case of the
abstraction (which happens to be the one of interest):

R(Az.b) = Ay N((Az.b) [y])

where y is a fresh variable.

To sum up, the normal form of a term can be obtained by recursively
computing its symbolic weak normal form and reading back the resulting
value. The efficiency of the process clearly depends on the efficiency of the
weak evaluation.

Compiling the symbolic calculus

To implement the weak evaluation efficiently, it is compiled into an abstract
machine - a variant of the zaM [39]. A state of the abstract machine is given by
a triple (e, ¢, s) where c is code to be evaluated, s a stack, and e an environment
—both s and e are lists. To give a hint of their behaviour, let us give two rules
as an example:

(e, ACCESS(i);¢, s) ~ (e, ¢, €[i] ::s)
(e, GRAB;c, v:i:s) ~ (v:e, ¢ s)

These reductions correspond to a variable and a A-abstraction, provided
that binders and variables are encoded using de Bruijn indices. For some
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more flavour, here are the detailed compilation of a variable and A-abstraction
of the symbolic calculus presented with de Bruijn indices:

[i] = ACCESS(i)
[\] = CLOSURE(GRAB; [t]; RETURN)

Even if the few rules shown here are a bit simplified, everything works
mutatis mutandis like OCaml’s implementation of the zam except for accumu-
lators. Accumulators are dealt with by cleverness as described in [27].

3.2.2 Adding machine integers
Extending the symbolic calculus

To implement our new reduction rules for integer arithmetic efficiently, we
shall extend the symbolic calculus with a notion of integers. Integers in this
sense — noted m for machine integers — are fixed size binary words (they
support both arithmetic modulo and carries). Symbolic calculus’s integers
will act as counterparts to the In d,, — 1 ... dy, as defined previously. Of course,
as the symbolic calculus deals with open terms it won’t always be possible
to compile an In d,, _; ... dp into an integer. To alleviate the verbosity of this
section, we shall write p instead of In d,, _ 1 ... do, whether open or close.

When close we shall write (p) the inte