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Introduction

Motivation: separated flows in aerodynamics

Separated flows are commonly encountered in aerodynamics as soon as the flow over an obstacle reaches
a sufficiently high Reynolds number. Flow separation occurs when a boundary layer is subjected to
either a drastic change of the wall curvature or a large enough pressure gradient. In such cases, the
shear stress is reduced to zero where separation occurs; the flow becomes detached and exhibits eddies
or vortices. This phenomenon intervenes in a majority of industrial applications and is well-known to
induce large modifications of the aerodynamic forces acting on vehicles owing to the low-pressure levels
within the recirculation. For instance, in automobile applications, the massive recirculation region at
the rear of a vehicle is responsible for the predominant part of its drag, see figure 1 (top). Another inter-
esting example concerns the flows around space launchers which exhibit a massive separation occurring
at the abrupt change in the geometry of their first stage. In both these cases, flow separation leads to
a dramatic increase of the base drag and may represent up to 70% of the total drag. Alternatively, the
recirculation bubbles observed over airfoils at high angles of attack result in an increase of the pressure
drag and in the worst case in a sudden loss of lift and stall, all of which being undesirable, see figure 1
(bottom). As a result, much effort and research on aerodynamics has gone into the design of surfaces
which keep the boundary layer attached as long as possible and delay its separation.

Another essential feature of separated flows is their ability to shed large vortices. In fact, separated
boundary layers are often prone to hydrodynamic instabilities that amplify perturbations, leading to
unsteadiness and sometimes to turbulence. What particularly interests us in this thesis is the low-
frequency shedding of large-scale vortices. Unsteady flow structures characterized by spatial scales of
the order of those of the studied object are commonly encountered in aerodynamics. For turbulent flows,
such dynamics are associated with the largest flow scales within the Kolmogorov energy cascade and
are associated with a production mechanism of the turbulent kinetic energy. Meanwhile, similar low-
frequency unsteadiness are equally observed in low Reynolds number and laminar flows, which makes
them rather persistent phenomena in aerodynamics, see figure 2. The occurrence of these unsteadiness
appears in a wide variety of industrial applications and are usually detrimental to a satisfactory operation,
which can be illustrated by some famous examples:

The separated flow over a circular cylinder is a simple prototype of bluff body flow which may account
for the flow past a bridge, an undercarriage or a submarine pipe. This flow is typically observed to
self-sustains a Bénard-von Karméan vortex street, see figure 3 (left). The shedding of these large vortices
is often undesirable as it results in a significant increase of the mean drag and in unsteady lateral
loads, see Choi et al. (2008). Worst, if the vortex shedding reaches the resonance frequency of the
structure, it could cause severe structural failures. Interestingly, this phenomenon may also be observed
in very high Reynolds number atmospheric flows such as the flow over an island depicted in figure 3
(right). Axisymmetric afterbody flows also stand for an interesting example. When passing to the
transonic regime, space launchers such as Ariane V are subjected to strong vibrations. Such vibrations
are generated by the low-frequency periodic shedding of large-scale vortices resulting from the self-
interaction of the axisymmetric separated shear-layer. As a result, the massive separated area generates
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Figure 1: Top: separated flow behind a land vehicle on a wind tunnel. Taken from Aider (2008). Bottom:
separated flow over an inclined airfoil. ONERA picture, H. Werlé.

high fluctuating lateral loads which are particularly harmful for the payload, see Deprés et al. (2004).
The flow over a backward-facing step or a cavity displays an elongated recirculation bubble which is
characterized by a single shear layer. This latter may be unstable to one of the most famous shear
instability: the Kelvin-Helmholtz instability. In such cases, the rolling-up of the vorticity sheet into
well-defined periodic vortices is observed, which generates large-scale flow structures in the downstream
of the recirculation zone, see figure 4. This phenomenon is typically encountered in diffuser flows or
also in the curved air intakes of modern military airplanes where the vortical structures are known to
impact the compressor and decrease the performance of the engine. As well, cavity flows are famous for
being the site of violent unsteadiness. The large vortical structures generated from the lip of the cavity
travel along the shear layer and hit the downstream edge of the cavity, generating powerful pressure
waves, see Rowley ef al. (2002). For instance, this phenomenon is well-known to occur on flows over
bomb bays, open sunroofs or multi-element wings. In the worst cases, cavity flow instabilities may cause
severe structural vibrations which increase the cost of vehicles maintenance, or decrease their lifetime,
and propagate extensive noise pollution over long distances.

A last example concerns the transonic flow over an airfoil. At the cruise conditions of an airplane, the
flow acceleration on the suction side of the wing creates a stationary shock which induces the boundary
layer separation. Then, for some Mach numbers and angles of attack, the shock and the recirculation
bubble may oscillate at a low-frequency, see Jacquin et al. (2009). This phenomenon called buffeting is
dangerous for the airplane safety and reduces the flight envelope of commercial airplanes.

For all these reasons, the industrial stakes associated with separated flows are considerably high. No-
tably, it is of utmost importance to understand, predict and control the onset of these low-frequency
unsteadiness in flows. Meanwhile, as soon as complex flows are considered, a parametric analysis to
design optimal control devices or to optimize some parameters quickly becomes not tractable with the
current computational capabilities. It is thus pivotal to be able to model their dynamics with the least
possible number of degrees of freedom so as to faithfully reproduce their essential features. This task,
also referred to as Model Reduction, precisely motivated the present research.

Origin of the present work

This thesis results from a collaboration between the DynFluid laboratory of Arts et Métiers ParisTech
and the Fundamental and Experimental Aerodynamics Department (DAFE) of ONERA. This research
takes place within the framework of a common project of these laboratories aiming at modeling the
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Figure 2: Visualization of planar shear layers in a laminar regime (top) and a turbulent regime (bottom).
After Brown & Roshko (1974).

dynamics of separated flows in view of their optimal control. It has been financed for three years by the
French Délégation Générale pour I’Armement (DGA).

Originally, the DynFluid laboratory and the DAFE have spent several years in studying the dynamics of
fluid flows. Both adopted the hydrodynamics stability theory to investigate, explain and predict some
features of aerodynamic flows such as the onset of unsteadiness as well as the frequencies and length
scales selected by the flows. To do so, a typical approach consists of studying the linear development
of perturbations about a given base flow. The stability analysis then stands for investigating the time
evolution of small perturbations, whose dynamics are linear, to assess whether they are amplified or
damped. Such stability analyses are referred to as local when the base flows of interest have only one
non-homogeneous direction in space. Local stability analyses are usually based on the assumption of a
weak non-parallelism of the base flows. For instance, such analyses proved to successfully predict some
features of the laminar-turbulent transition in boundary layer flows, shear layer flows or jets, see Schmid
& Henningson (2001). Now, as soon as the base flow of interest has two or three non-homogeneous spa-
tial directions, as in the case of separated flows, one may resort to a so-called global stability analysis,
see Zebib (1987); Jackson (1987); Theofilis (2000). In this context, both the DynFluid laboratory and
the DAFE have acquired valuable knowledge on the linear global stability analysis of fluid flows through
several internships and theses. For instance, the global linear dynamics of a laminar incompressible
attached and separated boundary layer was investigated in the theses by Alizard (2007) and Cherubini
(2010). Additionally, a particular emphasis was given to the numerical methods to solve large linear
global stability problems for laminar incompressible and compressible flows in the thesis by Merle (2009).

One of the primary missions of the DAFE in the next years is to understand the origin and control
the low-frequency unsteadiness observed in several well-known flow prototypes. This includes the tran-
sonic buffeting flows over airfoils, cavities or afterbodies, the trailing wake vortices and the flows over
curved air intakes, see figure 5 (left). For instance, the noise of a transonic cavity flow was successfully
controlled by Illy (2005) by introducing a small control cylinder at the upstream edge of the cavity.
Alternatively, a subsonic separated flow was controlled by means of vortex generators in the thesis by
Gardarin (2009) in the S19Ch wind tunnel of ONERA, see figure 5 (right). In all these configurations,
the flows are turbulent. Yet, the theoretical investigations of the DAFE have mainly concerned the
low Reynolds number laminar-turbulent transition of these flows. This choice was motivated by: (i)
the possibility to analyze more easily the low-frequency unsteadiness in these flows to extract physical
information, (ii) the availability of tools which do not require to much heavy computations and (iii) the
possibility to extend the considered methodologies from laminar to fully turbulent flows by augmenting
the Navier-Stokes equations with one or more turbulence model equations. Furthermore, considering
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Figure 3: Left: Periodic vortex shedding pattern behind a circular cylinder in water at Reynolds number
of 168. The visualization was done using hydrogen bubble technique. After Sanjay Kumar and George
Laughlin; Department of Engineering, The University of Texas at Brownsville. Right: Von Kérman
vortices off Rishiri Island, Japan. Satellite picture from NASA.

linearized equations offers the possibility to apply some of the modern control techniques such as the
linear state space optimal control, see Bewley & Liu (1998); Bewley (2001); Kim (2003); Kim & Bewley
(2007). In a general manner, control strategies may be classified into two categories. On the one hand,
one refers open-loop or feedforward control where the actuators react in a predefined way to the flow
system and to the actuation itself. Noticeably, these types of control have been applied at the DAFE
in the theoretical investigations by Marquet (2007); Meliga (2008). On the other hand, closed-loop or
feedback control refers to the configurations where the actuation is updated in real-time from some
flow measurement so as to reach a given objective. Such a strategy was adopted in the theoretical and
numerical thesis by Barbagallo et al. (2011). In both cases, the control was meant to suppress or at least
reduce the perturbations whose dynamics were assumed to be linear.

Within the framework of these projects, the present thesis aims at finding efficient Reduced Order Models
(ROMs) that faithfully capture the dynamics of flows. The idea is to provide a comprehensive study
based on the physics of the flows to derive the ROMs. Indeed, these models are meant to preserve the
original hydrodynamic stability properties of the flows in view of applying some optimal flow control
strategies.

In this context, the distinction introduced by Huerre & Rossi (1998) between oscillator and noise-
amplifier flows deserves a particular attention. Oscillator flows are characterized by a self-sustained
beating at a very specific frequency. This mechanism is said to be intrinsic since no external disturbances
are necessary to keep alive the oscillatory motion of the flow. The onset of an oscillator mechanism is
usually well predicted by a global stability analysis through the onset of an unstable global mode.
Typical example of oscillator mechanisms have been reported in cylinder flows (Noack & Eckelmann
(1994)), backward-facing step flows (Barkley et al. (2002); Marquet et al. (2009)), the flow over a bump
(Gallaire et al. (2007); Ehrenstein & Gallaire (20086)) and cavity flows (Sipp & Lebedev (2007); Bres &
Colonius (2008); Barbagallo et al. (2008)). Alternatively, some flows behave as a noise-amplifier which
selectively amplifies in the downstream direction existing upstream noise. In these flows, the emergence
of coherence structures is extringsic and often characterized by a broad range of scales and frequencies.
Some of the most famous amplifier flows are the boundary layers (Ehrenstein & Gallaire (2005); Alizard
& Robinet (2007); Akervik et al. (2008)), the jets and the backward-facing step flows (Marquet et al.
(2008); Blackburn et al. (2008)).

In fact, the prediction and the control of amplifier flows appears as a very challenging task since their
dynamics reflect both the amplifier behavior of the flow and the broadband nature of the upstream noise.
For this reason, the physical analysis and model reduction of noise amplifier flows have been privileged
in this thesis. More precisely, we considered the separated flow over the backward-facing step depicted
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Figure 4: Left: cavity flow observed at the S8Ch wind tunnel of ONERA by strioscopy. After Illy (2005).
Right: backward-facing step flow visualized by strioscopy.

in figure 6. This configuration was chosen since the backward-facing step flow accounts for a well-known
prototype of amplifier flow where a substantial body of literature exists, such as the experimental works
by Armaly et al. (1983); Tihon et al. (2001); Beaudoin et al. (2004); Lee et al. (2004) or the numerical
investigations by Kim & Moin (1985); Kaiktsis et al. (1996); Le et al. (1997); Kaiktsis & Monkewitz
(2003); Lesieur et al. (2003); Aider et al. (2007). Additionally, the low Reynolds number flow over
this particular step geometry has been investigated in the experimental thesis by Duriez (2009) at the
PMMH laboratory. In this latter work, the step shape was chosen circular to allow the displacement of
the separation point and mimic some realistic configurations such as the flow over a curved airfoil, the
expansion of a diffuser or the rear part of a land vehicle. Notably, the originality of this experimental
work was to study the dynamics and to control the low Reynolds number laminar-turbulent transition
by means of vortex generators. It is hoped that the present research will contribute to the future
experimental investigations on this setup that still exists at the PMMH laboratory.

Objective of this thesis

The objective of this thesis is to design efficient reduced-order models that account for the linear dynamics
of large fluid systems. Our procedures are derived on the two-dimensional incompressible flow over
the backward-facing step considered in the work by Duriez (2009). Meanwhile, the methodologies
investigated here are meant to be applied to any other incompressible open flow such as, for instance,
other separated flows, wake flows, boundary layers or vortex flows. The first goal is to find efficient model
reduction techniques. Next, a second objective is to illustrate how the use of reduced-order models allows
to design an optimal flow control setup.

Brief review on model reduction

Model reduction appears as the essential element of this work and some of its concepts are introduced
here. The modeling of complex physical phenomena by means of numerical simulations often requires to
solve large-scale dynamical systems. Model reduction consists of constructing a simpler model having
a much lower number of degrees of freedom which preserves some properties of the original system.
Model reduction has been used for a long time; one should remember the famous dynamical system
introduced by Lorenz (1963) to describe the ocean-atmosphere interactions by a system having three
degrees of freedom. Since then model reduction has been used in a wide area of applications including
oceanography, psychology, biology, probability, statistics or mechanics.

In this thesis, our purpose is to design reduced-order models for aerodynamic applications. Predicting
the response of fluid systems subject to a large number of conditions or excitations is often not tractable
owing to the complexity of the partial differential equations involved. Hence, model reduction has more
recently appeared as a prolific and promising subject in the fluid mechanics community.

There are plenty of model reduction techniques, each of which using the different properties of the
original dynamical system. Some of the most famous ones deserve to be mentioned here.
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Figure 5: Left: laminar separation from a curved wall in a water tunnel. The flow is visualized by air
bubbles and the Reynolds number based on the leading edge (not shown) is 20000. ONERA picture, H.
Werlé (1974). Right: Separated flow observed at the S19Ch wind tunnel of ONERA (2005). The flow
is visualized by laser tomoscopy.

For linear systems, ROMs may be obtained by projecting the original equations onto the leading eigen-
modes of the dynamical operator (Dowell et al. (1997); Akervik et al. (2007)). Such an approach is also
referred to as Modal Truncation. For stable linear systems, several techniques based on an input-output
formulation of the equations have been introduced. This includes the Balanced Truncation procedure
(Moore (1981)), the Krylov approximation methods which are based on the moment matching of the
impulse response (Antoulas & Sorensen (2001); Antoulas (2005)) and comprise the Lanczos (Lanczos
(1950)) and the Arnoldi procedures (Arnoldi (1951)). One may also refer to the system identification
techniques (Ljung (1999)) where the coefficients of the ROMs are identified from some measurements.
Some applications of system identification may be found on an oscillating 3D delta wing configuration
(Tang et al. (2001)) or on a cavity flow, see Rowley & Williams (2006). The identification of the coef-
ficients may be computed from the AutoRegressive with eXogenous input technique (ARX), see Huang
& Kim (2008), or also the Eigensystem Realization Algorithm (ERA), see Ma et al. (2010).

As far as nonlinear systems are considered, the Proper Orthogonal Decomposition (POD) appears as a
famous candidate. It consists in projecting the original equations onto a reduced set of dominant, in the
energy sense, spatial modes (Aubry et al. (1988); Berkooz et al. (1993)). An extension was proposed to
account for both the spatial modes and their time coefficients in an optimal way. The modes resulting
from this technique are called Principal Interaction Patterns (PIPs) in the general case and Principal Os-
cillation Patterns (POPs) for linear systems, see Hasselmann (1988). Such a model reduction approach
was originally developed to study climatic phenomena, see Storch et al. (1995). In the case of systems
characterized by periodic behaviors, the harmonic balance technique (Hall et al. (2002)) provides a very
interesting approach since it is based on a Fourier decomposition of the equations. Lastly, one may also
refer the A Priori Hyper-Reduction method (Ryckelynck (2002, 2005)) where the original equations are
projected onto a set of modes which are derived from an iterative process.

Obviously, there exist many additional model reduction techniques. Owing to the substantial body of
literature on the subject, all of them will not be thoroughly detailed in this manuscript. We refer inter-
ested readers to the thesis by Placzek (2009) where some of the most recent model reduction procedures
used in aerodynamics are reported in detail.

We now give some additional emphasis to the methods which will be considered in this thesis. These are
the Modal Truncation, the Proper Orthogonal Decomposition and the Balanced Truncation. All three
belong to the category of the so-called projection techniques. In other words, the ROMs are obtained
by projecting the original high-dimensional dynamical systems arising from the discretization of the
equations governing the fluid motion onto a reduced set of vectors. Such a set comprises flow structures
called modes which span the subspace onto which the dynamics are projected. This procedure is called
the Galerkin projection when the projection basis is orthogonal and the Petrov-Galerkin projection
in the more general case of a bi-orthogonal projection. The projection finally results in a low-order
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Figure 6: Rounded backward-facing step flow investigated here. Top: sketch of the flow configuration.
Bottom: separated flow obtained by Duriez (2009) in a water tunnel at ESPCI (Ecole Supérieure de
Physique et de Chimie Industrielles). The flow is visualized by laser induced fluorescence at the Reynolds
number of 2800.

dynamical system whose dimension is equal to the number modes in the projection basis. Projection
methods may be applied to both linear or nonlinear dynamical systems. Yet, as previously mentioned,
the dynamics investigated in this thesis are linear, which means that both the original and the resulting
low-order dynamical systems are linear. Naturally, the projection subspace has a central influence on
the dynamics returned by the low-order model. In fact, the ROMs are conceptually meant to recover the
dynamics of the flow structures used in the projection process. Their choice is thus of pivotal importance
to accurately capture the original flow dynamics. The three different projection bases considered in this
work are exposed in more detail below.

Modal Truncation

The modal truncation consists of projecting the high-dimensional dynamical operator onto a reduced
set of its eigenmodes or global modes. Obviously, the identification of these eigenmodes is only possible
for linear and deterministic dynamical systems. Interestingly, each eigenvector is associated with an
eigenvalue, which is complex in general, whose real part denotes the growth rate of the mode and whose
imaginary part denotes its oscillating frequency. Notably, the modes having a positive real part are
unstable and lead to a divergence of the linear dynamics. The global modes stand for the most natural
solution of the original equations and they may be ranked according to their frequency and growth
rate, which make them a valuable candidate to construct ROMs. The model reduction is obtained by
expressing the perturbations into the modal basis and truncating the undesired modes. In practice, the
most stable modes, which only contribute to the short-time dynamics, are the ones to be truncated.
By this way, Modal Truncation preserves the most unstable part of the original dynamical operator
eigenspectrum, and thus its original stability.

In the case where the dynamical operator is normal, namely where its eigenmodes are orthogonal, Modal
Truncation appears as an optimal methods to model the dynamics, see Farrell & Ioannou (2001a). For
this reason it has been extensively used in structure mechanics owing to the normality of the governing
equations. Now, regarding fluid mechanics, the governing equations are non-normal and the global modes
may provide a very ill-conditioned basis, see Cossu & Chomaz (1997). As a result, their efficiency to
construct ROMs is more questionable; it is at least sub-optimal, see Farrell & loannou (2001a). However,
recent articles have reported how the use of a reduced set of global modes allows to efficiently model
the transient dynamics of a boundary layer (Akervik et al. (2008)), of the flow past a bump (Ehrenstein
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& Gallaire (2008b)). Additionally, the modeling and feedback control of a cavity flow has also been
reported by Akervik et al. (2007).

Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition, also called POD, is known as one of the most popular model
reduction procedure in fluid mechanics. It consists of identifying the set of modes (the POD modes)
which optimally reconstruct a given dataset of flow snapshots. Namely, the energy-norm based error
between the dataset projected onto the POD modes and the original dataset is minimal. Reduced-order
models are then obtained by projecting the high-dimensional dynamical system onto a reduced set of
POD modes. Interestingly, the dataset may be taken from either numerical simulations or experiments
which thus comprises both linear and nonlinear flow dynamics.

The POD modes may be computed as the eigenvectors of the temporal correlation matrix between the
different flow snapshots. They result in an orthogonal basis which most effectively accounts for the
subspace spanned by the dataset of interest. The associated POD eigenvalues are positive and ranked
according to the fraction of energy captured by the associated modes. As shown by Holmes et al. (1997),
only a finite number of non-zero POD eigenvalues exists. Mostly, the POD eigenspectrum often fall off
quite rapidly, indicating that the leading POD modes capture the principal flow components of the set
of snapshots. Owing to this valuable property, the POD has been extensively used in the fluid mechanics
community. Originally, POD has been used to identify the coherent structures in turbulent flows, see
Lumley (1970); Sirovich (1987); Berkooz et al. (1993). Later, the dynamics of coherent structures in the
wall region of a turbulent boundary layer has been investigated by Aubry et al. (1988) through a reduced-
order model of the Navier-Stokes equations obtained by POD. On the other hand, model reduction based
on POD does not necessarily preserve the stability of the original dynamical system (Ma & Karniadakis
(2002)). For this reason, a considerable effort has been devoted to improve the stability of the POD
low-order models. This includes for instance the calibration of the model coefficients (Galletti et al.
(2004)) but also the addition of a shift mode (Noack et al. (2003)), a pressure term (Noack et al. (2005))
or a spectral viscosity (Sirisup & Karniadakis (2004)). Regarding flow control, recent advances have
been made to include the effects of an action on the POD models, we refer interested readers to the
works by Galletti et al. (2007); Weller et al. (2009b); Luchtenburg et al. (2009). In particular, successful
flow controls based on POD models have been reported in the numerical works by Bergmann et al.
(2005); Bergmann & Cordier (2008); Weller et al. (2009a) on cylinder flows. One may also mention the
experimental control of a subsonic cavity flow by Samimy et al. (2007) where a POD model was obtained
from Particle Image Velocimetry (PIV) data.

Balanced Truncation

The last technique considered in this thesis is called Balanced Truncation. It has been originally intro-
duced by Moore (1981) as a model reduction procedure for stable linear input-output systems. Balanced
Truncation is meant to capture the dynamics between some inputs, such as actuators, to some outputs,
such as sensors. Furthermore, this method displays very attractive features. First, it offers error bounds
on the input-output transfer function that are close to the lowest error possible from any reduced-order
model (Dullerud & Paganini (2000)). In addition, it is shown to preserve the stability of the origi-
nal input-output dynamical system. For these reasons, Balanced Truncation clearly appears as a very
powerful technique in the control theory community.

Balanced Truncation is based on the concepts of controllability and observability. By definition, con-
trollability refers to the ability of a state to be influenced by the inputs while observability refers to the
capacity of a state to be measured by the outputs. The key idea of Balanced Truncation is then is retain
the modes which are both highly controllable and observable, called balanced modes, and use them as a
projection bagis. Technically, the controllability and observability of given states may be measured from
two bilinear operators: the so-called controllability and observability Gramians. The balanced modes
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then reduce to the leading eigenvectors of the product of the two Gramians, see Moore (1981); Antoulas
(2005). Each Gramian may be computed by solving a Lyapunov equation, which is unfortunately not
tractable for large systems. This limitation has first restricted the range of Balanced Truncation to
rather simple flow configurations, see Joshi et al. (1997); Cortelezzi & Speyer (1998); Farrell & loannou
(2001a); Hogberg et al. (2003). Yet, a recent breakthrough (Willcox & Peraire (2002); Rowley (2005))
allowed to approximate Balanced Truncation for large systems. It consists of approximating the balanced
modes by using a snapshot technique, similarly to a POD procedure. In fact, it is shown by Rowley
(2005) that Balanced Truncation reduces to a special case of POD which uses a particular dataset (the
impulse responses from the inputs) and a particular inner product (the observability Gramian). Accord-
ingly, the approximate procedure derived by Rowley (2005) has been called Balanced Proper Orthogonal
Decomposition (BPOD). This latter has been successfully applied to model the input-output dynamics
of various fluid flows, see Ilak & Rowley (2008); Barbagallo et al. (2009); Bagheri et al. (20095); Ahuja
& Rowley (2010).

Approach

This thesis is based on theoretical and numerical investigations. Our procedures are derived on the
incompressible flow over the two-dimensional (2D) backward-facing step depicted in figure 6. Instead of
investigating turbulent flows, which would have required much heavier computations, we only considered
laminar flows. This choice is also appealing since laminar flows are less complex and better understood
than turbulent flows. Consequently, the fluid motions are assumed to be governed by the incompressible
Navier-Stokes equations.

As a first step, the linear dynamics of the backward-facing step flow are investigated. In particular, we
investigate the dynamics of three-dimensional (3D) perturbations linearized about a 2D steady solution
called the base flow. A global linear stability analysis is derived to assess both the long and short time
dynamics of the flow. Next, these results are used to provide the non-reduced linear dynamics.

As a second step the model reduction of the 2D linear dynamics of the flow is considered. The three
previously introduced projection methods are considered: Modal Truncation, POD and Balanced Trun-
cation. We first study the ability of the least stable global modes to recover the original transient
dynamics of the flow. Next, an input-output formulation of the dynamics is adopted to derive low-order
models based on POD and Balanced Truncation. Following the BPOD procedure exposed by Willcox &
Peraire (2002); Rowley (2005), a snapshot method is derived in the frequency domain to approximate the
leading balanced modes. A similar snapshot method is also used to compute both the most controllable
and the most observable modes by a POD procedure. The performances of both POD and BPOD models
in capturing the input-output dynamics are evaluated and compared. Within this part of the thesis,
an important guideline is to successively increase the number of inputs and outputs. As a first step,
the ROMs are constructed by considering a single input (actuator) and a single output (sensor). Next,
we consider the modeling of the dynamics from all the possible inputs (initial conditions) to the same
output (sensor). Lastly, we propose an extension which allows to handle the reduction of large systems
where both the inputs and the outputs reduce to the full state space. In this latter case, the POD and
balanced modes are approximated by truncating the singular value decomposition of the resolvent op-
erator. Additionally, the most controllable and observable modes are shown to account for the so-called
Empirical Orthogonal Functions (EOFs) and Stochastic Optimals (SOs) originally introduced in the
analysis of synoptic meteorological data (Lorenz (1956); North (1984)) and also in turbulence modeling
(Lumley (1967, 1970)). A particular attention is given to the physical interpretation of the leading EOFs
and SOs as the predominant coherent and uncorrelated process of the uncertain flow resulting from a
permanent stochastic excitation. The leading EOFs, SOs and balanced modes are also shown to capture
the entire flow response from all possible initial conditions, namely the entire flow dynamics.
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Finally, the third part of the thesis provides a practical application where a ROM based on POD allows
to perform an optimal flow control. To this end, we adopted the LQG (Linear Quadratic Gaussian)
closed-loop control to minimize the perturbations of the backward-facing step flow.

Organization of the manuscript

The body of this dissertation is composed of 5 chapters. In the first part of the thesis, chapter 1 presents
an overview of the backward facing step flow linear dynamics. In particular, the non-reduced tran-
sient dynamics of the flow are exposed. The analysis and discussion on the ability of the global modes
to model the 2D transient dynamics of the flow is reported in appendix B as an extension of this chapter.

The following part of the thesis is dedicated to the model reduction of the 2D input-output linear
dynamics of the backward-facing step flow by means of POD and Balanced Truncation. Its comprises
three chapters. Chapter 2 first introduces the snapshot technique derived in the frequency domain which
allows to compute the modes. The resulting models derived in the case of a single input and a single
output are also investigated. Chapter 3 provides an extension of the previous snapshot technique to
configurations having a very large number of inputs. Lastly, chapter 4 deals with the modeling of the
dynamics from all possible inputs to all possible outputs. It includes a receptivity analysis of the flow
based on the singular value decomposition of the resolvent operator as well as a physical interpretation
of the leading EOFs and SOs. In addition, the performances of the resulting models are also exposed
and assessed.

The question of flow control is ultimately addressed in chapter 5 where the LQG closed-loop control
of the backward-facing step flow by means of a reduced compensator is investigated. Since this work
was done in collaboration with Dr. Alexandre Barbagallo and Pr. Peter J. Schmid, only a presentation
of the flow configuration and a summary of the main results are exposed in the chapter. Yet, the full
article resulting from this collaboration is exposed in the appendix section.

Next, we provide a general conclusion on the research exposed in this manuscript. It includes a summary
of the major contributions, a discussion of the results as well as recommendations for future investiga-
tions. Lastly, it should be mentioned that only few information on the numerical techniques is exposed
in the body of the manuscript. However, a review of all the numerical methods and tools has been
included in appendix A.
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Chapter 1

(Global stability analysis of the
backward-facing step flow

1.1 Introduction

The flow over a backward-facing step stands for an important prototype for studying the effects of flow
separation resulting from an abrupt change of geometry. Notably, numerous studies were performed on its
dynamics since the thirties, see Goldstein et al. (1970); Denham & Patrick (1974); Armaly et al. (1983);
Adams & Johnston (1988). It is indeed both commonly encountered in many engineering applications
which exhibit strong flow separations and used as a reference open flow to perform fundamental studies
for flow control, see Chun & Sung (1996). Even if it may be seen as a very simple flow configuration,
the understanding of its transition to turbulence is far from being understood. One may refer to the
turbulence analysis over separated flows by Le et al. (1997). In particular, it also stands for a typical
setting in which to understand the hydrodynamic instabilities in separated flows. One may refer to
numerous works such as those by Kaiktsis et al. (1991); Kaiktsis (1995); Kaiktsis et al. (1996); Kaiktsis
& Monkewitz (2003); Gresho et al. (1993); Fortin et al. (1997); Barkley et al. (2002); Tylli (2003);
Beaudoin et al. (2004). In this context, we investigate in this chapter the transition to turbulence of a
2D laminar backward facing step flow by numerical means. More precisely, we introduce and analyze
the linear dynamics of the flow which will be considered throughout the rest of the manuscript. We
proceed by investigating the dynamics of small perturbations about a base flow in order to outline some
of its predominant instability mechanisms and possible transition scenarios.

Let us give some insights on the backward-facing step flow dynamics. We have depicted in figure
1.1 a sketch of the flow configuration considered here. It comprises an incoming boundary layer of
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Figure 1.1: Sketch of the backward-facing step flow investigated here.
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thickness § and a step of height h. The flow separates due to the pressure gradient induced by the wall
curvature and reattaches farther downstream. The low Reynolds number dynamics are mainly driven
by several hydrodynamic instabilities. An important origin of unsteadiness reduce to the inflectional
velocity profile in the shear layer responsible for the well known Kelvin Helmholtz instability which
often leads to the transition to turbulence. This local instability have a convective nature and leads
to small-scale structures. For instance, it yields a typical Strouhal number, based on the shear layer
thickness d,, and the upstream velocity Us, of Sts, = 0.2 (Driver et al. (1987)). A second mechanism,
characterized by a three-dimensional and stationary structure (Williams & Baker (1997)), has been
identified as an unstable global mode of the flow, see Beaudoin et al. (2004); Barkley et al. (2002);
Cherubini et al. (20105). This later seems to be related to a centrifugal instability associated with the
reattaching streamlines curvature of the flow. Thirdly, a low-frequency unsteadiness characterized by
much larger flow structures have also been reported. This phenomenon called as "flapping" results in an
harmonic low-frequency displacement of the reattaching point Dogval et al. (1994); Ehrenstein & Gallaire
(2008a); Cherubini (2010). This phenomenon seems to be driven by a more global length scale such as
the recirculation height or length. The typical associated Strouhal numbers reported in the literature
are observed to be one order of magnitude below those associated with the Kelvin-Helmholtz instability.
For instance, the Strouhal number Sts, = 0.05 has been reported by Driver et al. (1987). Finally, when
increasing the Reynolds number, one may observe more complex and non-linear mechanisms mixing
all these different dynamics (Duriez (2009)). Noticeably, one of them is the vortex merging which is
characterized by half the frequency of the Kelvin-Helmholtz instability. As the flow becomes turbulent,
the accurate identification of all the distinct physical mechanisms is still challenging. In our case, we
restrict our analysis to a laminar and low Reynolds number flow and expect to recover some of these
flow instabilities.

The geometry of the step, depicted in figure 1.1, comes from the experimental work by Duriez (2009).
This later studied the dynamics and control of the flow in both wind and water tunnel experiments. In
our case, we considered a 2D step (infinite in the spanwise direction) and without a top wall so as to
avoid numerical difficulties. Yet, due to the confinement effects induced by the lateral and top walls,
our goal is not to get an accurate comparison with the results by Duriez (2009). Instead, we expect
to yield a complete study of the linear flow dynamics by using some of the most recent hydrodynamic
stability tools. Though, the results presented here will be shown to be consistent with commonly known
experimental results. The objective of this chapter is to present a thorough view of the linear mechanisms
of the flow dynamics in view of its modeling and control, which is assessed in the next chapters.

The rest of the chapter is organized as follow: In section 1.2 we describe the flow configuration over
the backward-facing step along with the governing equations and modeling assumptions. Next, the base
flow considered for the stability analysis is presented in section 1.3. In particular, its dependence with
the computational domain size and Reynolds number is examined. Then, we study in section 1.4 the
long time stability analysis of the base flow through a modal decomposition analysis. Section 1.5 stands
for the short time analysis where the ability of the flow to transiently amplify perturbations is assessed.
Finally, section 1.6 provides a comparison between the different instability mechanisms and concluding
remarks.

1.2 Flow configuration

1.2.1 Geometry

The backward-facing step considered here consists of a fraction of a circular cylinder linked with two
flat plates. This geometry has first been investigated in the thesis by Duriez (2009) by experimental
means. Figure 1.2(a) represents a sketch of the circular step. Denoting the step height by h, the radius
of curvature is given by R = gh and the step length is equal to L = 2h. The geometry is defined in a
cartesian coordinate system (z,y, z), where coordinate z, y and z denote respectively the longitudinal,
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Figure 1.2: (a) Backward-facing step geometry (taken from Duriez (2009)). A sketch of the computa-
tional box and its dimensions is provided in (b).

vertical and transverse directions. The streamwise direction is denoted by x and the flow comes from
the left, see figure 1.2(b). The step is considered as infinite in the spanwise direction z and without any
wall at the top, i.e. in the free-stream.

The origin of the coordinate system is chosen such that the beginning of the step is at (x = 0;y = h)
and its ending at (x = L;y = 0). Then, as represented in figure 1.2(b), we introduce the parameters
L;, L, and H to define the size of the fluid domain. Furthermore, as a fluid flows from the upstream,
an incoming boundary layer develops before reaching the step. In the upper flat-plate (at y = 1), a
free-slip condition is considered for (x < —Lj), whereas the no-slip boundary starts for (x > —L;). The
introduction of this parameter enables to enforce the beginning of the boundary; it has been fixed to
Ly = 2h for a computational convenience.

1.2.2 Governing equations

A fluid of kinematic viscosity v is supposed to enters the domain from the left at (z = —L;) with a
uniform longitudinal velocity Us. The reference length and velocity scales are chosen as h = 1 and
Usx = 1 in the following. We suppose that the fluid motion is governed by the incompressible Navier-
Stokes equations 1.1 given by

du+ (u-V)u= —Vp+ Re ' Vu
Vo —0 (1.1)

Where the vector u = (u,v,w) stands for the velocity field in the cartesian coordinate system, p is the
pressure field, and the Reynolds number is defined as Re = Uy h/v.

Regarding the boundary conditions, the uniform velocity (v = 1;v = 0) is prescribed at the inlet
boundary = —L;. The free-slip condition with zero tangential stress (Jyu = 0;v = 0) is prescribed
on the boundary (—L; < o < —Ly;y = 1). The beginning of the no-slip boundary condition at
(r = —Lp;y = 1) generates a developing laminar boundary layer and the no-slip condition (u = 0)
is imposed on all the remaining (z > —Lj) lower boundary of the domain. At the upper boundary
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Figure 1.3: Structure of the mesh considered to discretize the fluid domain.

y = H, we enforce a symmetry condition (dyu = 0;v = 0), which can also be interpreted as a uniform
free-stream condition. Finally, a free outflow condition pn — Re™!(Vu)-n = 0 is prescribed at the outlet
boundary x = L,, where n stands for the outward normal unitary vector of the boundary.

1.2.3 Linear dynamics

This chapter is devoted to the analysis of the linear dynamics of the backward-facing step flow. It
consists in studying the dynamical behavior of small perturbations that develop on a given base flow.
Reminding that we study the low Reynolds number fluid mechanics over a transitional separated flow, it
is natural to consider a base flow given by a steady solution of the Navier-Stokes equations, see Schmid &
Henningson (2001). Next, given the two-dimensionality of the step, we look for a two-dimensional (2D)
base flow (with w = 0). Even if a three-dimensional steady solution may exist for particular Reynolds
numbers (this will be shown next), this choice is motivated since a 2D steady flow yields the solution
having the maximum number of symmetry conditions compatible with the governing equations. Mostly,
a 2D base flow can be computed in a much simpler way on a 2D mesh. The state flow (u,v,w,p) is
decomposed as the sum of the base flow and a small perturbation:

(u7v7w?p) = (U? ‘/v7 07 P) + E(ul, /U/7 w/7p,) (1'2)

The parameter € points out that the perturbation is low compared to the base flow. By introducing this
decomposition into the Navier-Stokes equations 1.1, and neglecting the € terms, we get at first order
the equation governing the base flow:

V.U -0 (1.3)

{ (U-V)U = —VP + Re ' VU
which defines a 2D steady flow solution. Note that the vector U = (U, V') stand for the velocity field
of the base flow. Next, at order €, we recover the equations governing the linear dynamics of the
perturbation developing over the base flow, namely the linearized Navier-Stokes equations:

Vow— 0 (1.4)

{ du+U -Vu+u -VU = -Vp+ Re 'V3u
where we have omitted the primes over the disturbance terms for simplicity. In fact, we now denote
by u = (u,v) and p the velocity and pressure fields of the perturbation in the rest of this chapter.
The question to known what are the dynamics of such perturbations about the base flow stands for
the objective of this chapter. Yet, before proceeding with the stability analysis, the base flow is first
presented and investigated in the next section.
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16 18 20 22

Figure 1.4: Base flow solution at Re = 600. The flow is depicted by both its longitudinal velocity and
streamlines.

1.3 Base flow

1.3.1 Numerical methods and problem discretization

The 2D steady stationary Navier-Stokes equations 1.3 are solved in the computational domain presented
in the previous section. Numerically, this problem is solved by a finite-element formulation using P2-P1
Hood-Taylor elements: six-node quadratic triangular elements with quadratic interpolation for velocities
(P2) and three-node linear triangular elements for pressure (P1), see Ding & Kawahara (1999) for more
details. The meshes and discrete matrices resulting from the variational formulation of equations 1.3 are
generated with the software FreeFem++ (http ://www.freefem.org). The structure of the mesh adopted
hereafter has been represented in figure 1.3. It is composed by five zones defined by a constant triangles
density. The first zone, having the highest density, is chosen at the upstream in order to include the
developing boundary layer and the beginning of the shear layer. This choice is motivated by anticipating
that this region will comprise (i) the highest base flow shear and (ii) the smallest perturbation struc-
tures. The second zone is chosen to include the whole recirculation region. The third zone extends on
the remaining upstream and downstream part of the domain. Finally, the fourth and fifth zone stand
for the free-stream regions.

Practically, to compute the base flow, we proceed as in Barkley et al. (2002) where a time-dependent
simulation of the two-dimensional Navier-Stokes equations is first used to get an approximate solution
of the base flow. Next, a Newton iteration method is performed in order to solve the steady solution
1.3, starting the procedure with the approximate steady solution as a guess. This algorithm requires
the inversion of non-symmetrical sparse matrices, which is carried out with by direct multifrontal sparse
LU solver (MUMPS Amestoy et al. (2001)). Solution at larger Reynolds number may be easily followed
by continuity; the solution at a smaller Reynolds number yields the new guess to apply the Newton
algorithm. Note that this Newton method has been performed with the same finite element approach
in the work of Sipp & Lebedev (2007).

1.3.2 Steady solution at Re = 600

We present here the base flow solution at Re = 600 obtained from the Newton method. Figure 1.4 depicts
the streamlines and longitudinal velocity of the resulting steady flow. As expected, the boundary layer
start to develop from x = —2 until it separates due to the pressure gradient effect induced by the geometry
curvature. Beyond separation, an elongated recirculation region is generated. Farther downstream, the
boundary layer reattaches the wall and develops until the end of the computational domain.

As mentioned in section 1.1, the backward-facing step flow dynamics may be characterized by two dif-
ferent types of length scales. The first ones, such as the step height or the recirculation length are called
"global" whereas the second ones such as the boundary layer or shear layer thickness are said "local".
Both depend on the Reynolds number and the starting position of the upstream boundary layer (fixed
to © = —2 here). These quantities, computed on the base flows, are briefly investigated in the following.
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Mesh di do ds dy ds Ny Nyert T Ys Ty L,
M; 50 25 9 3 1 88181 44883 0.744 0.887 10.778 10.034
My 75 40 15 4 2 229836 116240 0.735 0.889 10.806 10.071

Table 1.1: Characteristic of the two meshes considered for the convergence study at Re = 600.

1.3.2.1 Recirculation length

A particular attention is paid to the recirculation length, which is used to check the convergence with
respect to grid resolution. This choice is motivated since the reattachment length is known to be
particularly sensitive to the numerical resolution. How to compute the recirculation length is illustrated
in figure 1.5. By computing the skin friction coefficient on the wall, which is defined by

Chlr) = —%t-(VUJrVUt) m (1.5)
where t denotes the unit tangent vector oriented downstream to the wall. The set of = positions where
the skin friction is negative defines the recirculation area. Additionally, the first coordinate where the
skin friction becomes negative identifies the separation point at (zs;ys). Similarly, the reattachment
point (z,;y,) is obtained from the position where C'y comes back to positive values. The recirculation
bubble length L, is then simply defined by

L, =z, — x4 (1.6)

For the base flow at Re = 600, figure 1.5(a) depicts the separation and reattachment points from the
computation of the wall skin friction, represented in 1.5(b). The boundary layer separates at x ~ 0.7
and reattaches at x ~ 10.8, so that L, ~ 10.1.

The convergence with respect to grid resolution has been performed on the meshes denoted by M; and
My in table 1.1. Note that the five triangles densities (defined by the number of imposed triangle edges
per unit length) have been reported in the columns dy,ds,ds,ds and ds. It is noteworthy that these
two meshes have been designed in a computational domain such that L; = —20, L, = 100 and H = 20,
which will be shown, farther in this section, to be sufficient to avoid any confinement effect.

These results highlight that a much finer mesh than M; recover the same recirculation length with a 3
digits accuracy. The mesh M; is thus considered as sufficiently refined to yield a converged base flow at
Re = 600.

1.3.2.2 Boundary layer thickness

As a standard way of quantifying the boundary layer thickness, the displacement and momentum thick-
nesses are considered. The displacement thickness §*(x) is defined as the distance that the surface would
have to displace outwards in an inviscid flow so as to yield the same mass flow rate deficit as that existing
in the boundary layer. It is expressed by

Yt U
5@ = [ - Lyay (1.7
. up
where y,, denotes the lower wall position, y; stands from a height so that uwy = u(y;) denotes a free-
stream reference velocity. Usually, y; is chosen at the maximum available y position so that ug = Uy = 1.
However, in our case, the velocity profile may exceed 1 in the boundary layer due to the pressure gradient
effects. Consequently, is it more relevant to choose y; such that u(y;) is maximum. Since this maximum
may not exists for particular x positions, we introduce a more general criterion: for a fixed x position,
4 is chosen such that
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Figure 1.5: (a) Base flow streamlines at Re = 600 together with the separation and reattachment points.
(b) Skin friction computed on the wall.

1
Oyu(ye) = 100 m;ixayu (1.8)

In fact, the idea is to find the y position at which dyu ~ 0. The factor ﬁ is thus arbitrary, indeed,
choosing another relevant factor such as Wloo does not modify the results in our case.

Analogously, we define the momentum thickness #(x) by the distance that the wall would have to displace
outwards, in an inviscid flow, so as to recover the equal momentum deficit of the mass flow rate. It is

computed by a similar formula as

o) = [ : L(1- Ly (1.9)

w

Lastly, it is also interesting to compute the shape factor H(xz) = §*(x)/0(x). The shape factor is com-
monly used to characterize the nature of boundary layers. The higher the value of H, the stronger the
local adverse pressure gradient, and vice versa. Practically, the standard laminar boundary layer without
pressure gradient, also called Blasius boundary layer, is known to display the reference value H = 2.59
while turbulent flows are characterized by much lower values (typically H ~ 1.3).

We have represented in figure 1.6(a) the evolution of the three quantities 6*(z), 6(x), and H(x) for
the upstream boundary layer (—2 < z < 0) and in figure 1.6(b) for the downstream boundary layer
(=20 < 2 < 100). The upstream boundary layer develops from = = —2 until it reaches a value §* = 0.082
at x = 0. The same holds for the downstream boundary layer which is much thicker due to very long
computational size and the high diffusion (due to the low Reynolds number). At the outlet position
x = 100, the boundary layer reaches a displacement thickness of §* = 0.686. It should be reminded
that spatially developing boundary layers may be subjected to convective instabilities when they reach
a sufficient thickness and perturbations are then spatially amplified while being convected downstream.
According to local stability analysis, boundary layer may exhibit this instability by amplifying Tollmien-
Schlichting waves when the the Reynolds number based on the local displacement thickness Reg« is
larger than the critical value = 520. In our case, Reg« = 49.2 at z = 0 and Reg~ = 411.8 at x = 100.
Consequently, our set of parameters rules out the potential convective instabilities in both the upstream
and downstream boundary layer.

Now, we turn our attention to the shape factor H(z). In the upstream region, it displays a transient
evolution near the starting position £ = —2 and then approaches the Blasius reference value 2.59
emphasized by a dashed line. The shape factor slowly decrease from x = —1.5 to x = 0 which is
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Figure 1.6: (a,b) Evolution of the displacement thickness, the momentum thickness and shape factor in
the streamwise direction. (a) stands for the upstream boundary layer while (b) stands for the downstream
one. (c) displays the pressure field of the base flow. (d) illustrates the boundary layer profiles at some
streamwise positions. These results come from the base flow at Re = 600

attributed to pressure gradient effect. This is illustrated in figure 1.6(c) where we have represented the
pressure field of the base flow. It is indeed observed that the upstream boundary layer is subjected to a
positive (or favorable) pressure gradient on (-2 < z < 0). Concerning the downstream boundary layer,
its shape factor is much closer to the Blasius reference value H(x) = 2.59, see figure 1.6(b). This result
is natural and expected since the pressure gradient is observed to be much weaker in this region, see
figure 1.6(c).

Beyond the streamwise position x = 0, the pressure gradient become strongly negative (adverse) due
to the wall curvature induced by the geometry. This naturally leads to the separation of the boundary
layer and, farther, to a long developing shear layer. For illustration, some boundary layer profiles U(y)
have been depicted on figure 1.6(d). This includes the upstream profiles at x = 0, = 0.7, the separated
profiles at x = 4, x = 8 and the reattached profiles at = 10.8 and =z = 15.

1.3.2.3 Vorticity

Since the base flow is two-dimensional, the vorticity field has only one non-null component. Denoting
the z, y and z components of the vorticity field by €2,, Q, and Q. respectively, we have:

0, =Q,=0 and Q. =0,V—0a,U (1.10)
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(a)

(b)

Figure 1.7: (a) Transverse vorticity of the base flow at Re = 600 given by Q, = 9,V — 9,U. (b,c) stand
for its derivative components 0,U and 0,V respectively.

We have represented in figure 1.7(a) the transverse component €2, of the base flow vorticity at Re = 600.
As expected, the vorticity is predominantly localized in the upstream and downstream boundary layers,
but mostly in the separated shear layer. Actually, a two-dimensional vorticity sheet emerges from the
no-slip wall condition and spreads in the downstream direction due to diffusion. Noticeably, the two
derivative components 9,U and 0,V have been shown to play an important role in the amplification of
perturbations Schmid & Henningson (2001). It is indeed the base flow gradient term in the linearized
Navier-Stokes equations which is responsible for the production of perturbations. We have represented
these two derivatives in figure 1.7(b) and (1.7(c) respectively. Interestingly, the term 0,U is widely larger
than 9, V. Consequently, the global flow vorticity and shear are predominantly given by the cross-stream
variation of the streamwise velocity, analogously to a standard one-dimensional shear layer. As we will
see in section 1.5, convective instabilities may indeed arise from the rolling up of the vorticity sheet by
the Kelvin-Helmholtz mechanism.

1.3.3 Dependence with the domain size

In this subsection, we briefly investigate the effect of the computational domain on the base flow recircu-
lation length L,. This is illustrated for the Reynolds number Re = 600 where we choose the refinement
density of the mesh M1 (see table 1.1) which has been shown to be sufficient to yield converged results.
The effect of the three parameters L;, L, and H are examined here. Note that these quantities have
been introduced in figure 1.2 as the space between the inflow, outflow and top boundaries and the origin
position (z = 0;y = 0). More particularly, we demonstrate that the previously considered set L; = —20,
L, =100 and H = 20 is sufficient to avoid any confinement effect. To this end, we proceed by fixing two
of these values and varying the remaining one, while computing the recirculation length of the resulting
base flows. We have represented on figure 1.8(a,b) the evolution of the recirculation length as a function
of L; and L, respectively. We observe that, for the range of parameters L; = [3;20] and L, = [20; 100]
investigated, the recirculation length is almost constant. In these cases, no confinement effects could be
observed by varying the upstream and downstream boundary positions. On the contrary, the recircula-
tion length clearly depends on the height H of the computational domain. As depicted on figure 1.8(c),
the length L, quickly rises when decreasing the height of the computational box. This observation may
be simply interpreted by the flow rate conservation. For low values of H, the free-stream and down-
stream flow velocities are significantly lower than the prescribed inflow velocity Uy, so that less inertial
energy is brought to the detached boundary layer, which reattaches much farther downstream. However,
for H > 10, this dependence remains weak which confirms our previous convergence statement. As a
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Figure 1.8: (a,b,c) Evolution of the recirculation length L, of the base flow at Re = 600 as a function of
L;, L, and H respectively.

Figure 1.9: (a,b) Longitudinal velocity of the base flows at Re = 200 and Re = 1000 respectively.

result of this study, we choose hereafter the set of values L; = —20, L, = 100 and H = 20 for all the
considered computational domains. This choice is indeed sufficient to yield converged results, which also
holds (not shown) for the various Reynolds numbers considered in the rest of this chapter.

1.3.4 Dependence with the Reynolds number

We conclude this section by exposing the influence of the Reynolds number on the base flows. We have
represented in figure 1.9(a,b) the base flows corresponding to the Reynolds numbers 200 and 1000 respec-
tively. Two important observations are: (i) the thinning of the boundary layer and (ii) the large increase
of the recirculation length when increasing the Reynolds number. These two points are quantified in the
following.

We have depicted in figure 1.10(a) the evolution of the displacement thickness at x = 0 as a function of
the Reynolds number. It is naturally observed to fall off when increasing Re. This is easily explained by
the weaker viscosity, and therefore, by the weaker diffusion. As a result, the separated shear layer also
displays the same behavior. To give an idea, we have computed the shear layer thickness ¢, (z) (also
known as the vorticity thickness) which is given by

maxy u(z,y) — min, u(x,y)

du(x) = (1.11)

maxy, Oyu(x,y)

We have represented in figure 1.10(b) its evolution at the position x = 2 as a function of the Reynolds
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Figure 1.10: (a) Evolution of the boundary layer displacement thickness at (x=0). The variation of the
shear layer thickness at (x=2) is displayed in (b).

number. It indeed displays a very similar fall off. Given the results on the stability of shear flows, see
Schmid & Henningson (2001), it is reasonable to expect an increasing potential of the flow to spatially
amplify perturbations for higher Reynolds numbers. This latter statement will be further highlighted in
section 1.5.

Now, we deal with the behavior of the recirculation bubble length L, as a function of Re, its evolution
is represented in figure 1.11(a). We remind that the base flow is steady in time and that the natural
viscosity is the only effect which can favorably balance the adverse pressure gradient in the boundary
layer. When decreasing the viscous effects by increasing Re, separation occurs earlier and the flow
reattaches much farther downstream. This is illustrated in figure 1.11(b) where the coordinates x
and ys of the separation point are displayed as a function of the Reynolds number. As expected we
notice that zs decreases while y, increases for higher Reynolds numbers. Note that the recirculation
length reaches quite high values and exceeds 12 when Re > 1000. In reality, these base flows may
exhibit various instabilities which result in flow unsteadiness. The mean recirculation bubble may then
be shortened. As an illustration, we have reported some experimental results from the literature in
figures 1.12(a) and 1.12(b). Note that the recirculation lengths reported by the different authors have
been extracted from the mean flows on the mid plans (z = constant). To give an idea, we have also
displayed our computational solution on the same figures by a bold black line. Our results should not
be quantitatively compared to the experiments since many factors such as the step shape, the incoming
boundary layer thickness, the aspect ratio or the finite transverse length, may largely differ from ours.
However, we roughly recover similar recirculation lengths in the low Reynolds number regime. For higher
Reynolds numbers, the decrease of the recirculation length observed in figure 1.12(a) comes from the
unsteadiness of the flow which acts as an additional viscosity. The analysis presented in the next sections
will indeed confirm that the base flows may be subjected to hydrodynamic instabilities for sufficiently
high Reynolds numbers. The highest values of L, computed here may thus be or minor physical or
practical relevance.

1.4 Long-time linear stability: a modal analysis

In this section, the linear stability of the base flows is assessed. More precisely, the linear dynamics of
three-dimensional perturbations about the 2D base flows are investigated for long times. To do so, we
clagsically proceed by computing the leading eigenvalues of the linearized Navier-Stokes operator. Then,
the potential occurrence of unstable eigenvalues allows to specify the asymptotic stability of the flows.
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Figure 1.11: (a) Evolution of the recirculation length as a function of the Reynolds number. The
variations of the separation point coordinates xs and y, are shown in (b).

1.4.1 Problem formulation

We consider the previously defined linearized Navier-Stokes equations (1.4), which yield the dynamics of
the 3D perturbations (u, v, w,p) about the base flow (U, V, W, P). We denote the 3D the perturbation
field by q(z,y, 2z,t) = (u,v,iw,p) where the transverse velocity component has been multiplied by the
complex 4. This little trick will be shown to lead to purely real equations in the final system formulation,
see Theofilis (2000). Since the base flow is 2D, the perturbation may be decomposed in the form of
transverse waves.

ikz

+ c.c.] (1.12)

1.
q(xayaz7t) = 5 [q(x,y,t)e

where q(x,y,t) is the 2D component associated with the transverse wave number k, and c.c. denotes
the complex conjugate. To be more precise, q(z,y,t) can be written as q(x,y,t) = (u,0,iw,p) where
all the term with a superscript denote the 2D component associated with the wave number k. Now, it
is possible to express the linearized Navier-Stokes equations in a matrical and more compact form by

Bo:g=Aq (1.13)
where we have introduced the two operators A and B which are defined by
D-C-0,U —0,U 0 -0y 1 0 00
- -0,V D-C-9,V 0 —0y 10100
A= 0 0 D-C &k , B= 0010 (1.14)
Ox Oy k 0 00 00

where D = Re ™! (02 + 85 — k%) accounts for the viscous diffusion and C = Ud, + V9, for the advection
by the base-flow. Regarding the boundary conditions, they are chosen accordingly with those introduced
in 1.2.2. Denoting @ = (,0,w), we enforce: (i) a homogeneous Dirichlet condition @ = 0 on the inlet
and wall boundaries, (ii) a symmetry condition dyi = 0 and ¥ = 0 on the top boundary and on the
upstream lower boundary localized at (z < L), (iii) the outflow condition pm — Re™ 1 (V@) -n = 0 at
the outlet. As expected, the particular form of ¢ with the @ component in quadrature with the three
others allows one to formulate the dynamical system (1.13) with real matrices A and B.

Now we want to decompose the perturbation into global modes. To do so, the common assumption of
an exponential time-dependence enables to express the perturbation as

1 _
~[q(z,y) etk 4 c.c.]

5 (1.15)

q(z,y,z,t) =
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Figure 1.12: Evolution of the mean recirculation length as a function of the Reynolds number for
various experimental studies from: Duriez (2009); Beaudoin et al. (2004); Armaly et al. (1983); Valencia
& Hinojosa (1997); Thangam & Knight (1989). The associated aspect ratios AR = h/H have also
been reported. Our results, computed from the base flows, have been depicted by a bold black line.
Importantly, it should be noted that these experiments have been performed with different conditions
(boundary layer thickness, noise level, spanwise confinement) so that an accurate comparison is not
relevant. With our choice of parameter Ly = —2, our boundary layer thickness at x = 0 matches with
that obtained in the experiment by Duriez (2009) at Re = 600. However, our reciruclation length is
found bigger than his at this Reynolds number, which is attributed to the confinement effects induced by
both the side and top walls. Interestingly, an increase of the recirculation length is observed for higher
aspect ratios in both the experiments by Valencia & Hinojosa (1997) and Thangam & Knight (1989).
This latter observation is in agreement with our results exposed in figure 1.8(c).
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so that

Q(xaya t) = Q(xay> e’ (116)

where o is the complex eigenmode and q its associated complex eigenvector. With this definition, the
real and imaginary parts of ¢ = a + iw are respectively the growth rate and the pulsation of the mode.
In other words, if a < 0, the global mode is stable whereas if a > 0 the mode is unstable. Replacing this
expression in the dynamical system (1.13) then defines the following generalized eigenvalue problem

Ag=0Bg (1.17)

The modal analysis consists in finding the most unstable eigenmodes (those with the highest value of «).
If there is as least one unstable mode, i.e. with a positive growth rate a, then the flow is said globally
unstable. Any disturbance would then lead to an exponential increase of the perturbation energy for
long times. In reality, the energy would obviously not reach infinite values since non-linear saturation
would first intervene and stabilize the system. Now, if there are no unstable modes, the flow is said to
be globally stable; this case is dealt with in the next section. In what follows, we briefly present the
numerical methods used to solve equation (1.17) and we then present the results of the modal stability
analysis.

1.4.2 Numerical methods

Numerically, the discrete matrices A and B resulting from the variational formulation of the linearized
Navier-Stokes equations, given in equation (1.14), are generated with the FreeFem++ software through
the same finite-element method. The size of the eigenvalue problem (1.17), i.e. the size of the matrices
A and B, is typically of order O(10°) as soon as two-dimensional base flows are considered. To give
an idea, for the mesh previously denoted as M, there are =~ 360000 degrees of freedom. As a result,
equation (1.17) cannot be directly solved by classical QR algorithms. Instead, we may only look for the
most unstable eigenmodes by using iterative Arnoldi methods. The use of a shift and invert strategy
enables to obtain eigenvalues in the vicinity of some given complex shift. In particular, use of a purely
imaginary shift enables to track the leading global mode (with the highest values of «). The original
eigenvalues problem is converted into:

1
o—p
where [ is the shift parameter. By using the ARPACK routines, a Krylov subspace is generated by
span{C*V}g<p<m_1 with C = (A — 3B)~'B, V being an initial vector and m denoting the dimension of
the subspace. A LU decomposition of (A—[B) at the beginning of the algorithm allows a fast generation
of the Krylov subspace thanks to a successive resolution of the linear system associated with (A — 3B).
A part of the global eigenspectrum can then be constituted by the applying multiple Arnoldi algorithms
and moving the shift position in the complex plan. Iterations on Krylov subspaces of dimension 300
allowed to recover a set of 150 eigenvalues with sufficient accuracy.

(A—pB) 'Bg=Cq with (= (1.18)

1.4.3 Stability analysis

The stability analysis is performed by examining the eigenspectrums obtained for different values of the
transverse wave number k and Reynolds number Re. A typical eigenspectrum, corresponding to the set
of parameters k£ = 0 and Re = 600, is depicted in figure 1.13. This one displays some branches and the
least stable mode has a null pulsation w. Note that the spectrum is symmetric since the complex con-
jugate of any global mode is also a global mode. A large region of the spectrum localized at o < —0.09
exhibits a high concentration of modes. This part may be attributed to the discrete representation of
the continuous part of the eigenspectrum. Such considerations may be found in the book by Schmid
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Figure 1.13: Part of the global eigenspectrum computed for the parameters k = 0 and Re = 600.

& Henningson (2001) where it is shown that the representation of the global convection in open flows
induces continuous branches in the eigenspectrum. It should be mentioned here that we did not find
any two-dimensional (k = 0) unstable global modes for Reynolds numbers up to 2500.

Now, we pay attention to the most unstable eigenmode. When varying the parameters in the range
k = [0;10] and Re = [100;2000], we observed eigenspectrums which are very similar to that depicted
in figure 1.13. More particularly, the most unstable eigenmode remains not oscillating (with w = 0).
However, when increasing the Reynolds number, it is observed to possibly become unstable for an interval
of wave numbers. We have reported in figure 1.14(a) the evolution of the growth rate of the most unstable
eigenmode qnq; as a function of the wave number £ for different Reynolds numbers. For Re < 400 the
flow is globally stable whereas a band of unstable wave numbers arises for Re > 600. This band has been
emphasized for Re = 600 by dashed lines and is then further broadened for larger Reynolds numbers.
The threshold at which e, = 0 is of primary interest and corresponds to emergence of the global
instability. A 2D representation of e, as a function of k& and Re has been reported in figure 1.14(b)
and the threshold at which a4, = 0 has been emphasized. The critical Reynolds number above which
global instability appears is identified as Re. = 526. At this Reynolds number, the only unstable wave
number is found to be k = 1.125, which corresponds to the transverse wave length [, = Qf = 5.59.
At this stage, we conclude that increasing the Reynolds number leads to global instability through the
rising of a stationary and transversally periodic global mode. This one is further presented below.

1.4.4 Description of the unstable eigenmode

To illustrate the dynamics of the eigenmode, we choose the Reynolds number Re = 600. The most
unstable wave number is then given by & = 1.08. According to our notations, the eigenmode may
be written in the form q(z,y) = (4, 0,1, p), where we have introduced the three components of the
velocity and pressure fields associated with the global mode. Given the decomposition of the perturbation
introduced in (1.15), the dynamics of the global mode can be obtained by

q(z,y,2z,t) = = [q(z,y) e** 4 ce. ]eo‘m‘”t (1.19)

DN |

or, by making explicit the real part of the complex quantity:

q(z.y, 2,t) = [4,(z,y) cos(kz) — g;(w, y) sin(kz) e " (1.20)
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Figure 1.14: (a) Evolution of the most unstable growth rate c,q, as a function of the wave number k.
At Re = 600 the unstable wave lengths are k = [0.675;1.676] and the most unstable one is k = 1.08.
Figure (b) displays the same quantity as a function of k£ and Re in a 2D plot.

where we have defined the real part g, and imaginary part q; of the eigenmode g. Note that this equation
yields the dynamics of the perturbation state when the initial condition is the global mode itself. The
global mode is then observed to amplify exponentially in time at the growth rate q;nq.. We have depicted
in figure 1.15(a,b,c) the three velocity components @, 0 and w of the unstable eigenmode. We observe
that they remain localized in the recirculation bubble and that the streamwise component is significantly
larger than the two others. The spatial structure of the mode displays a long streamwise wave length,
as commonly observed for stationary (or low-frequency) structures. The occurrence of such a stationary
growing three-dimensional structure has been identified in the literature as a common feature of many
low-Reynolds number incompressible separated flows, see Theofilis et al. (2000); Barkley et al. (2002);
Marquet et al. (2009); Cherubini et al. (2010b), but also in the case of the shock-wave /laminar-boundary-
layer interaction, see Robinet (2007a). In particular, the structure of the present 3D eigenmode is very
similar to those encountered in these studies.

A 3D view of the global eigenmode can be recovered by computing @, cos(kz) — @, sin(kz) and its
amplitude is arbitrary since it exponentially increases in time. We have displayed in figure 1.16(a) three
iso-vorticity sheets of the global eigenmode. As observed in the previously cited references, the mode
structure displays rolls extending through the streamlines curvatures within the recirculation bubble.
Figure 1.16(b) displays the same quantity from a top view where we have reported by vertical lines the
position of the step and the reattachment line of the base flow at x = 10.8. This figure further highlights
the vorticity rolls induced by the global mode and its confined spatial location within the recirculation
region. Furthermore, it should be noticed that the transverse wave length of this mode is [, = 5.82
which stands for a rather large value (the step height is equal to h = 1).

Recent works on a backward-facing step flow by Barkley et al. (2002) or on the flow behind a bump
by Gallaire et al. (2007) suggested that this global mode results from an inviscid centrifugal instability
linked with the curvature of the closed streamlines in the recirculation region. This statement was
argued from the high dependence of the global mode growth rate and the broadening of the unstable
transverse wavelengths band as a function of the recirculation length. Mostly, they compared favorably
their computational results to the Rayleigh criterion introduced by Bayly (1988) and more recently by
Sipp & Jacquin (2000). Such a comparison was also performed successfully in the work by Cherubini
et al. (20100) by using both a local and global version of the Rayleigh criterion. Due to these previous
work, we did not further investigated this aspect of the global mode dynamics.

We now turn our attention to an interesting characteristic of the global mode. We observed in figure
1.15 that the longitudinal velocity component of the unstable global mode is higher than the two others.
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Figure 1.15: (a,b,c) Components 4, v and w of the unstable eigenmode at Re = 600 and for k = 1.08.

This observation is reminiscent of the lift-up mechanism which transfer energy from the perturbation
streamwise vorticity to its streamwise velocity, see Landahl (1980). Notably, a recent work by Marquet
et al. (2009) confirmed that the lift-up mechanism plays an important role in the physical mechanism
enhancing the unstable global mode of a S-shaped backward-facing step flow. Interestingly, this result
holds in our flow configuration. To highlight it, we have depicted in figure 1.17(a) the perturbation
longitudinal velocity. It is observed to display alternate high speed and low speed regions inside the
recirculation bubble. These are referred to as "high speed and low speed streaks" in the work by
Marquet et al. (2009) due to its structural analogy with the boundary layer streaks. Furthermore, we
have represented in figure 1.18 the longitudinal vorticity of the perturbation in the cross plan z = 8
superimposed on the sum of the base flow and perturbation streamwise velocities. We observe that
self-sustained streamwise vortices of opposite sign are generated inside the shear layer. These vortices
then induce alternated vertical velocity perturbations (shown by arrows). As a result, there is an
alternated transport of low speed fluid towards regions of higher speed and inversely within the shear
layer of the recirculation bubble. This lift-up mechanism is thus responsible for the alternated high and
low speed longitudinal velocity regions observed in figure 1.17(a). The sum of the base flow and the
perturbation has been represented in figure 1.17(b) by its longitudinal velocity. We choose the amplitude
of the perturbation arbitrary so as to clearly observe its effects on the base flow. Furthermore, the
displayed iso-contour, corresponding to the longitudinal velocity —0.001, clearly emphasizes the resulting
recirculation bubble. This one is observed to be deformed by the global mode which displaces upstream
and downstream the reattachment line. Our results are in agreement with those exposed by Marquet
et al. (2009) and confirm the role of the lift-up mechanism in the global instability of the flow. We
refer interested readers to a recent article by Rodriguez & Theofilis (2010) where the topology of the
separated flows reconstructed by linear superposition of a 2D base flow and its 3D global modes are
investigated.

1.5 Short-time linear stability: a non-modal analysis

We observed in the previous section the occurrence of an unstable non oscillating and 3D global mode
when increasing the Reynolds number. In that case, the dynamics of all other global modes vanish for
large times; the flow is then only driven by the unstable global mode. However, some perturbations may
be transiently amplified in time before reaching such an asymptotic dynamics. This common feature
of open flows has been interpreted by the non-orthogonality of the basis of global modes Schmid &
Henningson (2001); Schmid (2007). In particular, it is shown that, even if all the eigenvectors are stable,
the energy of the perturbation may reach very large transient values. In reality, these transient energy
growths may be sufficiently strong to trigger non-linear effects which often lead to the transition to
turbulence. It is thus of primary interest to assess how the flow may undergo such transient growths and
by what physical mechanismns. This stands for the concern of this section. More precisely, our goal is to
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Figure 1.16: (a) Three-dimensional view of the iso-vorticity field of the unstable eigenmode. A top view
is provided in (b). The first two vertical lines represent the beginning = = 0 and ending z = 2 of the
step while the last one stands for the reattachment line of the base flow x = 10.8.

identify the optimal perturbations, i.e. the perturbations leading to a maximum energy amplification.
The analysis of these perturbations and their associated energy gains then allows to assess the different
transition scenarios in the flow. Resorting to adjoint equations will be shown to be a necessary step to
solve the underlying optimization problem. We begin this section by introducing these adjoint equations.
The idea is to define an inner product and to derive the resulting adjoint Navier-Stokes equations. In the
remaining of the section, adjoint quantities are used as key mathematical tools to identify the optimal
perturbations of the flow.

1.5.1 Adjoint equations

The present formulation follow through the "problem formulation" of section 1.4.1. In particular, we
deal with 3D transversally periodic perturbations developing on the 2D base flow. We start by defining
the inner product () defined for any 2D field ¢, (z,y) and g(x,y) by

(@1, d2) = /Q &} 4y dO (1.21)

where  denotes the entire 2D computational domain and * is the transconjugate. Then, we introduce
the adjoint operator AT defined for any 2D field g(z,y) fulfilling the boundary conditions defined earlier
in section 1.4.1 and f]T(w, y) satisfying boundary conditions to be determined,

(Aq.4") =(q,A"q") (1.22)

where QT = (af, o7, iw, pT) is the adjoint state of g. It should be noticed that the choice of this scalar
product is linked to the perturbation kinetic energy. Indeed, the instantaneous energy density of a 3D
transversally periodic perturbation q(z,y, z) is given by

1 +12/2
E(q) = ] / /Q(u2 + v 4 w?) dzdydz (1.23)

lz —1./2
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Figure 1.17: (a) Three-dimensional view of the longitudinal velocity of the global eigenmode. The sum
of the perturbation (with an arbitrary amplitude) and base flow longitudinal velocity is depicted on (b).
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Figure 1.18: Contour of the streamwise vorticity (dotted lines standing for negative values) with super-
imposed streamwise velocity of the total flow field in the cross plan x = 8. The total flow field is the
same as that depicted in figure 1.17, the amplitude of the global mode is arbitrary and has been chosen
such as to clearly observe its effect on the base flow. The arrows symbolize the vertical momentum
induced by the alternate streamwise vortices.

where [, denotes the spanwise wavelength. By introducing the normal mode decomposition (1.15), the
energy can further be formulated as

Bla) = 5E(@)¢ so that  E(q) = (¢, Bd) (1.24)

where the % term comes from integral of a periodic quantity in the z direction. Therefore, the energy

of any transversally periodic perturbation is proportional to the inner product (g, Bg) which yields the
2D kinetic energy of the mode q.

To derive the adjoint equations, we first express the adjoint operators associated with A and B. We
proceed by integrating by parts the left-hand side of (1.22). The resulting adjoint operator Al is given
by
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D+C-90,U -0,V 0 —0,
—-0,U D+C-9,V 0 -0
T Y Yy Yy
Al = 0 0 D+ C k (1.25)
Oy 8y k 0

It is observed to be very similar to the original dynamical operator given in (1.14). More precisely, the
difference comes from two distinct terms: (i) the convective terms C have an opposite sign and (ii) the off-
diagonal terms 0,V and 0,U are switched. A common feature of the adjoint equations originating from
(i) is the advection of the perturbation in the upstream direction (rather than downstream). Incidentally,
the boundary conditions derived from the integration by parts, chosen so as to cancel all the boundary
terms, are reversed. More precisely, the inflow condition, now at z = L,, is given by the homogeneous
Dirichlet condition (af,dT,w") = 0 whereas the outflow condition at x = —L; is given by

pn+Re N (Va) - n+al(U-n)=0 (1.26)

where a! = (af, o, ") denotes the adjoint velocity vector and - stands for the standard scalar product
between two vectors. Additionally, the upper boundary and the upstream lower boundary at (—L; <
x < —Lp;y = 1) are associated with the symmetry condition given by

Re7'oyal + 4V =0 and o7 =0 (1.27)

Let us first consider the adjoint eigenvalue problem associated with (1.17). Since B is self-adjoint it
reduces to

ATq"=0"Bg (1.28)

where of and f]T stand for the adjoint eigenvalues and adjoint global modes respectively. It can be
shown, see Schmid & Henningson (2001), that all the adjoint eigenvalues are the complex conjugate of
the direct ones: of = ¢* and that the adjoint global modes are bi-orthogonal to the direct global modes:

(@-BGl) =0 when i#j (1.29)

The operator A is said to be non-normal since it does not commute with its adjoint Af. Therefore, its
eigenvectors ¢ differs from those ¢’ of Af, namely

(@;,Bql) #1 forall (1.30)

Additionally, it is now possible to associate adjoint equations to the linearized Navier-Stokes equations
(1.13). They reduce to

Bo,q' = AT q' (1.31)

and yield the temporal dynamics of the 2D adjoint state q(x,y,t). According to our previous notation, q
stands for the modal component associated with the wave number k of the 3D adjoint state q'(z, v, 2, t)
so that

1. )
q'(,y,2,1) = 5 [G"(z,y,t) ™ + c.c.] (1.32)

which yields the adjoint state associated with the original 3D perturbation q(z,y, 2, t).

An interesting point should be mentioned here. We said that the difference between A and AT comes
from (i) the upstream advection of the perturbation and (ii) the switch in the off-diagonal terms. In
fact, (i) is responsible for the so-called "convective non-normality" whereas (ii) induces the "lift-up non-
normality", see Cossu & Chomaz (1997); Marquet et al. (2009). These two different non-normalities will
be shown to play an important role in the adjoint solutions of both (1.28) and (1.31).
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1.5.2 Optimal temporal perturbation analysis
1.5.2.1 Problem formulation and governing equations

The first analysis presented here consists in finding the initial perturbation at time ¢ = 0 which leads
to an optimal energy amplification at time 7. The time T is called the horizon time and is a critical
parameter of the study. According to our previous formulation, the dynamics of 3D perturbations are
investigated. The decomposition (1.12) of the perturbation into transverse waves allows to perform the
study wave number by wave number. The parameter k thus stands for a second critical quantity.

Let us consider a given value of T and k and a transversally periodic perturbation of the form g(x,y, 2,t) =
3[a@(x,y,t) €™ + c.c.]. We look for the initial condition g(0) which optimizes the kinetic energy gain
E(q(T

Ela(1)) (1.33)
E(q(0))

We introduce the time propagator ® which is defined so as to advance the perturbation in time by
q(T) = ® q(0). Then the energy gain can be formulated as

which is also equal to

E@(T)) _ (94(0),B®g(0)) _ (a(0), #'B® g(0) (1.34)

£(q(0)) (4(0),Bq(0)) (4(0),B4(0))

where we have introduced the adjoint time propagator ®f. Now, it may be easily shown that the
optimal initial perturbation and its associated optimal energy gain are given by the largest eigenvector
and eigenvalue of the following generalized eigenvalue problem

Q[

®'Bd G(0) = vBg(0) (1.35)

To solve this problem, we proceed similarly to the work by Blackburn et al. (2008); Marquet et al. (2008).
We start by considering a random initial condition q,(0) which is evolved forward in time through the
Navier-Stokes equations (1.13) to the time T such that q,(T) = ®q,(0). Next, this is immediately
followed by evolving the resulting state q;(7") backward under the adjoint linearized Navier-Stokes
equations (1.31) by 7' time units. The new state denoted by g4(0) is localized upstream due to the
action of the adjoint equations and is such that

®'Bq,(T) = Bg,(0) (1.36)

which may be demonstrated by developing the adjoint Navier Stokes equations. Mostly, this equation
leads to

®'B® ¢, (0) = Bg,(0) (1.37)

Consequently, by applying successively this procedure, the initial conditions q;(0) eventually converges
to the highest eigenvector of (1.35). The optimal energy gain may then be computed during the last
direct time integration. For simplicity we choose a real initial condition g, (0) so that all the states q;(0)
are real. As a result, the 3D associated flow states (u,v,w,p) defined by (1.12) may be recovered from

(1.38)
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Figure 1.19: (a) Optimal energy gain v,y as a function of 7" and k in a 2D plot. (b) depicts the evolution
of Yopt as a function of T for k = 0 and k£ = 0.6. (c) stands for the evolution of maximum value of y,p
over T as a function of k. These results have been computed for Re = 600. The band of unstable wave
numbers has been emphasized by dashed lines.

1.5.2.2 Results

We apply the iterative direct-adjoint procedure to compute the optimal perturbations on the base flow
solution at Re = 600. The mesh M; is chosen to perform this analysis; it is observed to yield widely
converged results in terms of spatial discretization. The resolution of the direct (1.13) and adjoint (1.31)
Navier-Stokes equations are performed by time-stepping simulations based on a second-order accurate
time marching scheme and a time step 0t = 0.002. We used the Uzawa algorithm which proceeds by
computing iteratively the pressure field such that the velocity is divergent free before advancing the
velocity field to the next time step. At each time step, the computation of the new pressure is performed
by a conjugate gradient method which is accelerated by using the Cahouet-Chabart preconditioner.

The optimal energy gain 7., and the optimal perturbations are presented next. We have depicted in
figure 1.19(a) a 2D plot of the optimal gain as a function of 7" and k. This one highlights potentially
high transient growths for the lowest wave numbers k. Especially, the maximum gain is reached for
T = 20 and k£ = 0.6, which stands for the transverse wave length [, = 10.47. Note that the unstable
wave number interval has been denoted by dashed lines. We recall that the optimal energy gain tends to
infinity for large times 7' in this interval due to the exponential increase of the kinetic energy. Concerning
two-dimensional perturbations (k = 0), an optimal energy gain is reached for 7' = 18. For a clearer
representation, we have depicted in figure 1.19(b) the evolution of vy as a function of T for two particular
wave numbers: the first one k£ = 0 stands for 2D perturbations while the second k = 0.6 is the wave
number at which the maximal energy gain over all possible parameters is found. Interestingly, the two
are almost identical for short times (7" < 15). Furthermore, their maximum energy gains are quite close;
the maximum values of 7,,; reduce to 15874 for kK = 0 and 17916 for k = 0.6. For higher wave numbers,
the optimal gains vanish quite quickly. This is illustrated in figure 1.19(c) where we have reported the
value maxy[yopt(k,T)] as a function of k, which is observed to fall off for £ > 1 (i.e. I, < 6.28). We
thus conclude that the most energetic transient growths are related to perturbations having very large
transverse wavelengths and 2D perturbations.

Let us first describe the 2D optimal perturbation (k = 0). We have displayed in figure 1.20(a) the
optimal initial condition by its longitudinal velocity. Figures 1.20(b-d) stand for the evolution of this
perturbation given by the linearized Navier-Stokes equations (1.13). The initial condition is observed
to be localized in the upstream boundary layer, near separation, and is convected downstream while
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Figure 1.20: (a) Optimal initial perturbation computed for T'= 18 and k = 0. (b,c,d) Evolution of this
perturbation at times ¢t = 6,18 and 30 respectively. Flow structures are displayed by their longitudinal
velocity.

being amplified in the recirculation bubble. Besides, the energy growth is maximum at ¢ = 18 and starts
to decrease as soon as the disturbance leaves the recirculation bubble. It should be noticed that the
inclination of the initial condition against the shear is reminiscent of the Orr mechanism, see Orr (1907);
Butler & Farrell (1992), where the perturbation extracts energy from the mean shear by transporting
momentum down the velocity gradient. The shear layer resulting from the flow separation is responsible
for the amplification of the perturbation due to the well-known Kelvin-Helmholtz instability. This
instability selectively amplifies disturbances, more precisely the thinner the shear layer the smaller the
streamwise wavelength of the most amplified disturbance. In our case, the shear layer thickens due
to viscosity and the perturbation is thus observed to display increasing streamwise wavelengths while
being convected downstream. This latter point is obviously partly attributed to the viscous effects on
the perturbation itself. It should be recalled here that the global amplifier behavior of open flows have
been recognized to derive from the convective instabilities of the considered flow, see Cossu & Chomaz
(1997); Chomaz (2005). In a global framework, convective instabilities originates from the recirculation
bubble where the flow may be found convectively unstable from a local stability analysis. Such local
analysis have been reported in the work of Robinet (20075) where the most amplified frequencies at each
x positions may be found following the work by Chomaz et al. (1991).

To highlight the wave packet propagation, we have represented in figure 1.21(a) its kinetic energy en-
velope through the quantity E,(z,t) = fy[u(:p,y,t)Q + v(z,y,t)? + w(z,y,t)?|dy every At = 0.5. The
perturbations at times 10, 16.5 and 30 are furthermore emphasized to point out the spreading of the
streamwise spatial support of the wave packet in time. Figure 1.21(b) stands for a 2D space-time rep-
resentation of the wave packet through the quantity u(z,t) extracted at y = 1.05. The influence of the
non-parallelism of the base flow, associated with the recirculation bubble is noticeable by the curvature
of the borders of the wave packet. This is further emphasized by the change of the z/t ray values which
are emphasized by dashed lines. The wavefronts are characterized by the phase speeds vy = %’f equal to
0.26 and 0.9. Behind reattachment, at x ~ 11, the wave packet evolves along constant x/t rays and the
associated phase speed reduces to 0.55. This latter point is consistent with the downstream relaxation
of the base flow toward a boundary layer.

We now represent the 3D optimal perturbation obtained for T" = 20 and k£ = 0.6. Note that it is
recovered from equations (1.38). We have reported in figure 1.22 the longitudinal velocity of the initial

35



CHAPTER 1. GLOBAL STABILITY ANALYSIS OF THE BACKWARD-FACING STEP FLOW

(a) [ T T 1 '_' LB B I B B R BB AL B ] (b) [ L L L ]
’ 60 | : e
4000 | .
,., v, =0.26 ) ]
40 | ) .
Lu>~. / (" - | . Y |
i ,l i m ;
2000 } 'l " m ;I\H - : v, =0.55
, 'J ", il ‘ W\\ 20 -
t=10 ‘ 1“’) ' " "’ ‘0‘0’0”:’0’:“‘- |
/ ’l"" : “‘“”0‘0’0’0‘0‘0’0’0‘: |,
0 £ '!".!',‘!!f_‘t: 0 L= M T N
0 5 15 20 25 0 30 40

Figure 1.21: Spatial evolution of the wave packet associated with the 2D optimal perturbation. (a) The
quantity E,(z,t) is depicted for every time step At = 0.5 as a function of . (b) depicts the space-time
x — t diagram of the quantity u(z,y = 1.05,¢).

perturbation along with its evolved optimal state at t = 20. Figures 1.22(a,b) stand for a side view
whereas figures 1.22(c,d) for a top view. Basically, we get very similar wave packets except that they
are, by construction, sinusoidal in the transverse direction. Once more, the spatial streamwise separation
between the optimal initial condition and its optimal evolved state is highlighted. The optimal condition
is also inclined again the shear and amplified by both the Orr and the Kelvin-Helmholtz instabilities.
The dynamics of the 3D perturbation seems rather analogous to the optimal 2D one. To investigate the
role of the transverse velocity component, we have depicted in figure 1.23 the evolution of the energy
gain y(t) of the 3D optimal perturbation as a function of time together with the contribution from its
three velocity components. For instance its longitudinal velocity contribution is equal to

fQ (t)dzdy
Jol@*(0) + 8%(0) + @*(0)]dady

and so on for the other two. Interestingly, the w contribution is much smaller than the other two for
short times; it is even one order of magnitude below for ¢t < 2. By the way, it should be noticed that the
v contribution, initially far below the u one, increases very quickly due the the Orr mechanism and the
rolling up of the perturbation. For later times, the w component rises and even becomes predominant at
t ~ 17. Finally, it becomes similar to the u one for larger times (¢ > 35). The exact underlying physical
origin of this 3D amplifier mechanism has not been further investigated. Yet, due to the increase of the
w component in the downstream boundary layer, the optimal final perturbation is reminiscent of the
oblique waves possibly sustained in transitional boundary layers, see Monokrousos et al. (2010). One
may thus attribute the dynamics associated with this 3D perturbation to an analogous mechanism.

Yu(t) = (1.39)

1.5.2.3 Short time optimal dynamics

We deal here with the particular case of very short time horizons. More precisely, we are looking for
the initial perturbation that optimizes the initial energy gain growth rate (or gradient). This analysis is
equally performed for the Re = 600. Denoting the energy gain at time t by ~y(t) = g((g((tg)) the relative

instantaneous energy growth rate ﬁag—g) may be easily derived into

L oyt _ (a(t),(A+ANa()
V() ot (q(t),Bq(1))

which may also be solved by considering the generalized eigenvalue problem associated with (A + AT)
and B. In particular, we look for the optimal value of this ratio which also stands for the largest possible

(1.40)
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Figure 1.22: Optimal initial perturbation computed for 7" = 20 and & = 0.6. (a) Side view of the
perturbation and (b) of its evolved state at time ¢t = 20. (c,d) Same states displayed with a top view.
Flow structures are displayed by their longitudinal velocity.

10"

0 20 40 60 80

t

Figure 1.23: Evolution of the energy gain resulting from the 3D optimal perturbation along with its u,
v and w contributions.
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Figure 1.24: (a) Evolution of pep as a function of k. (b) Energy gain ~(t) of the time integrated
optimally growing perturbation (solid line) and the optimal 2D perturbation obtained for 7' = 18 and
k = 0 (dashed line).

instantaneous energy growth rate over all perturbations. This may be achieved by computing the largest
eigenvalue pop of the eigenvalue problem

(A+ A"g = 1Bg (1.41)

and the optimal associated eigenvector g reduces to the optimally growing perturbation whose energy
may grow linearly such that v(t) = 1 + popet at first order. We have represented in figure 1.24(a) the
evolution of ji,y as a function of k. It highlights that the maximum possible growth rate is achieved
for k = 0, that is for 2D perturbations. Figure 1.24(b) depicts the kinetic energy gain resulting from
this 2D perturbation by a solid line. For comparison, we have reported by a dashed line the gain of the
optimal 2D perturbation computed for T'= 18 and k = 0. Interestingly, the optimally growing solution
is observed to be very quickly amplified in short times. However, the other optimal perturbation quickly
becomes more energetic.

To illustrate the structure of the optimally growing perturbation, we have depicted in figure 1.25(a) its
longitudinal velocity. Additionally figure 1.25(b) represents its evolved structure at time ¢ = 15 where it
is optimal, see figure 1.24(b). It is interestingly noticed that the perturbation displays a similar pattern
to that of the optimal 2D perturbation, except that it has a slightly smaller streamwise wavelength and
a different inclination against the shear. This initial disturbance then is then convected and amplified
downstream as a similar wave packet. We conclude that the optimally growing perturbation extracts
energy from the base flow by the same physical mechanisms, i.e. the Orr and Kelvin Helmholtz insta-
bilities, but with a different contribution from both. More precisely, it preferentially promotes the Orr
instability, indeed known as a short time mechanism.

1.5.2.4 Long time optimal dynamics

We now pay attention to very long time horizons. In the case where the flow is globally stable, the energy
gain of any perturbation vanishes for long times. On the other hand, if the flow is globally unstable,
any disturbance will lead to the growth of the most unstable global mode. We pose the question of
which perturbation leads to maximum energy gain for long times. In other words, this stand for finding
the initial condition which optimally promotes the most unstable global mode. We consider the flow at
Re = 600 which has been shown to display a band of unstable transverse wave numbers. Furthermore,
we choose the transverse wave number £ = 1.08 which has been shown to be the most unstable one. For
this set of parameters, their is only one unstable global mode, which is the one studied in section 1.4.4.
We consider the initial condition g, = g, e** which is further decomposed in the basis of the global
eigenmodes:
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Figure 1.25: (a) Optimally growing perturbation computed for & = 0. (b) Evolution of this perturbation
to the time ¢ = 15.

Q=) rid; (1.42)
J

where q; denotes the jt eigenmode and rj are real coefficients. These coefficients can be obtained from

the inner product of the initial condition and the adjoint eigenmodes ?1;- by (qo, B(};} = r;. Consequently,
the perturbation state g(t) resulting from the initial condition g, may be written as

q(t) = (q.Bq})q; e+ (1.43)

J

For sufficiently long times, only the component of the unstable global mode @,,,,, is non-null so that the
perturbation dynamics are given by q(t) = (Go, BG},e)@mas €2™' %%, Next, the energy gain of this
perturbation reduces to

M eQOémazt (1 44)
(@0, B4qy)

which is maximum when g, = QI,LM. This means that the adjoint eigenmode optimally enhances the
energy of its direct eigenmode for long times.

The adjoint eigenvalue problem (1.28) is solved by the same numerical methods as for the direct one.
The accurate computation of the adjoint modes can be checked by the bi-orthogonal relation (1.29)
and the complex conjugate relation a; = o;. In our case, we are only interested in the most unstable
adjoint global mode, which is associated with the 3D periodic unstable mode previously presented.
Figures 1.26(a,b,c) represent the three velocity components 4!, 47 and &' respectively of the unstable
adjoint eigenmode. They look quite similar to those of the direct eigenmode, see figure 1.15, except that
they are localized upstream near separation. This common feature of adjoint modes have been related
to the convective non-normality of the linearized Navier-Stokes operator, see Marquet et al. (2009).
Additionally, the streamwise component is not as predominant as for the direct global eigenmode. This
is further quantified in table 1.2 where we have reported the percentage of kinetic energy of the direct
and adjoint global modes relative to the three velocity components. Such a clear separation between the
direct and adjoint modes velocity components have also been reported in the literature as an effect of
the lift-up non-normality, see Marquet et al. (2009). The present transfer of energy from the v and w
components into the u one is indeed reminiscent of the lift-up mechanism.

Now, we pay attention to the effect of the adjoint global mode onto the base flow. Figure 1.26(a)
shows that its u component is maximum near separation while figure 1.26(b) also leads to the same
conclusion for the v component, except that is has an opposite sign. As a result, we conclude that the
optimal mechanism promoting the direct global mode partly relies on the streamwise displacement of

v(t) =
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Figure 1.26: (a,b,c) Components 4!, o7 and @' of the unstable adjoint eigenmode at Re = 600 and for
k = 1.08.

% of energy in u v w
Direct global mode 95.08 0.75 4.17
Adjoint global mode 56.34 11.06 32.6

Table 1.2: Percentage of the energy of the direct and adjoint global modes coming from the u, v and w
components of the velocity.

the separation point varying sinusoidally along the span. The adjoint global mode acts on the base flow
so as to displace the separation point upstream and downstream so that the recirculation region deflates
and inflates as we move along the z axis. Noticeably, similar conclusions were found in the work by
Marquet et al. (2009). For illustration, we have displayed a 3D view of the adjoint global mode in figure
1.27(a) by its longitudinal velocity. Furthermore, we have also displayed in figure 1.27(b) the sum of the
base flow and adjoint mode (with arbitrary amplitude) iso longitudinal velocity. Similarly to the direct
global mode, the amplitude of the adjoint mode is chosen such as to observe its effects on the base flow.
The iso value —0.001 allows to clearly emphasizes the distortion of the separation line in the spanwise
direction. Note that the 3D flow field is recovered by g/ cos(kz) — f]j sin(kz) from the real part ¢} and
imaginary part (}I of the mode.

Lastly, we consider the energy gain provided by the adjoint global mode. The linearized Navier-Stokes
equations (1.13) are solved with the adjoint mode as the initial condition. The resulting energy gain
v(t) is depicted in figure 1.28 by a solid line. After a transient growth period for ¢ < 100, the energy
is observed to rise exponentially in time. Indeed, we showed that the energy increases in time with a
factor e?®mast which leads to a linear increase in our log-scale plot with a slope 2aynqe. The energy
gain of the direct global mode has been computed analytically by (t) = e?**maes? and represented by a
dashed line. For large times, the parallelism of the two lines highlights the exponential increase in time
of both the adjoint and direct global mode. By construction, the adjoint global mode is the perturbation
maximizing the difference A~y (represented in figure 1.28) between the two large time energy gains.

1.5.3 Receptivity to harmonic forcing
1.5.3.1 Problem formulation and governing equations

Until now, we investigated the optimal perturbations so as to optimize the energy of the flow at a given
time horizon. We now consider another way of analyzing the flow amplifier behavior in the frequency
domain. It consists in studying and quantifying the flow response resulting from a permanent harmonic
forcing. More precisely, we which to known what is the forcing field, for a frequency excitation w, which
leads to a maximum flow response kinetic energy. Such a study is commonly referred to as a receptivity
analysis. The frequency w stands for a critical parameter of the study, just like 7" in the previous tem-
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Figure 1.27: (a) Three-dimensional view of the unstable adjoint global mode longitudinal velocity. (b)
Sum of the base flow and the adjoint global mode (with arbitrary amplitude) visualized by the iso
longitudinal velocity —0.001.

poral analysis. Furthermore, we similarly decompose the 3D perturbation into transverse waves, as in
equation (1.12) so that the wave number k is also a parameter of the study.

The dynamics of the perturbation q(z,y, z,t) = (u, v, iw, p) is now supposed to be driven an additional
excitation. The three momentum conservation equations are forced by the components f,, f, and f,, of
the 3D forcing term f(z,y, 2,t) = (fu, fv,7fw,0). Note that the forcing of the last equation governing
the mass conservation has not been investigated for simplicity. We similarly resort to a decomposition
into transverse waves to express the forcing as

f(z,y,2,t) = 5 [flz,y,t) e + c.c.] (1.45)

1
2
where, we introduce the 2D component f(z,y,t) = (fu, fo,ifw,0) of the forcing associated with the wave
number k. The dynamics of the perturbation q(x,y,t) are then governed by the linearized Navier-Stokes
equations with an added forcing term:

Bd,g=Aq+Bf(t) (1.46)

Importantly, it should be mentioned at this stage that the forcing term and the perturbation are supposed
to have the same order of magnitude in order to recover this linearized equation. According to the
hypothesis introduced in section 1.2.3, the forcing amplitude is thus supposed to be low compared to
the base flow. Due to the linear nature of the equation, we can further decompose both the forcing and
the perturbation into time harmonic components by §(z,y,t) = g(z,y) et and f(x,y,t) = }(fv, y) et
where w stands for a real frequency while ¢ and f may be complex. As a result, the response ¢ may be
obtained from the forcing f by the following expression

(iwB — A)g =Bf (1.47)

or also, provided that this system is invertible, by ¢ = (iwB — A)_le. To simplify the notation, we
introduce the resolvent operator defined by R(w) = (iwB — A)~'B which directly links the harmonic
forcing to its harmonic response by
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Figure 1.28: Evolution of the energy gain (t) of the perturbation resulting from the adjoint (solid line)
and direct (dashed line) global modes.

g=Rf (1.48)

Now, our optimal perturbation analysis reads: what is the forcing f which optimizes the kinetic energy
of the response g for the considered values of w and k. To solve this problem, the energy gain is expressed
in the form

E(@) _ (Rf.BRf) _(fR'BRF) (1.49)
E(f) (f.Bf) (f.Bf)
where we introduced the adjoint of the resolvent operator Rf. Next, we conclude that the optimal
forcing and optimal energy gain may be found as the largest eigenvector and eigenvalue of the following
generalized eigenvalue problem

R'BR f = \Bf (1.50)

the leading eigenvalue, denoted by Ay, along with its associated optimal forcing are computed by using
the shift and invert Arnoldi method described in section 1.4.2. Finally, note that the 3D time dependent
perturbation may be recovered in the end by

q(z,y,2,t) =[q, cos(kz) — q,; sin(kz)] cos(wt) — [q; cos(kz) + q, sin(kz)] sin(wt) (1.51)

where @, and q; denotes the real and imaginary parts of q. Also, the 3D time dependent forcing f can
be recovered by the equivalent expression.

1.5.3.2 Results

As previously done, we expose our results at Re = 600. The eigenvalue problem (1.50) has been solved
for the parameters k = [0;8] and w = [0;8]. A particular attention should be paid to the wave number
k since the operator A is unstable in the interval k& = [0.675;1.676]. For unstable wave numbers, the
perturbation ¢ may not be physically interpreted as the long time response of the flow to the forcing }’ ,
even though the matrix (iwB — A) is invertible.

We have represented in figure 1.29(a) a 2D plot of the optimal energy gain A,y as a function of k and w.
Furthermore, we emphasized the unstable wave number interval by two dashed lines. This plot once more
highlights the strong potential of the flow to amplify low wave number perturbations. For instance, the
maximum gain reached by a 2D forcing (with k = 0) is reached for w = 0.75 and equals Ay = 2.24 10°.
Higher values of the gain may also be obtained for 3D forcing. The highest value Ay, = 3.0510° is
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Figure 1.29: (a) Optimal energy gain A,y as a function of w and & in a 2D plot. (b) depicts the evolution
of Aopt as a function of w for £ =0 and k& = 0.7. (c) stands for the evolution of the maximum value of
Aopt over w as a function of k. These results have been computed for Re = 600. The band of unstable
wave numbers has been emphasized by dashed lines.

obtained for w = 0.6 and k£ = 0.7. For a more quantitative representation, we show in figure 1.29(b)
the evolution of A\, as a function of w for the fixed values £ = 0 and k = 0.7. Both exhibit a similar
broad band frequency response, noticeably both are equal for the highest frequencies. Yet, the energy
gain for k = 0.7 tends to infinity as w tends to 0, which comes from the instability of A (since k = 0.7
is an unstable wave number). The influence of the wave number on the optimal energy gain is further
illustrated in figure 1.29(c) where we have represented the evolution of the value max, [Agpt(k, w)] as a
function of k. Note that the unstable band of wave numbers has also been emphasized by dashed lines.
Interestingly, it leads to similar conclusions to those of the optimal temporal perturbation analysis: (i)
the optimal energy gain quickly vanishes for small transverse wave lengths, (ii) its maximum is found
for the largest wave lengths and (iii) the optimal gain weakly depends on the wave number for k < 1.

To illustrate the optimal forcing distributions and their associated responses, we start by considering the
solutions obtained for k = 0. Figure 1.30 displays the longitudinal velocity of the optimal forcing and
response computed for three different frequencies. More precisely, figures 1.30(a,b) represent the solutions
for w = 0.25, figures 1.30(c,d) for w = 0.75 and figures 1.30(e,f) for w = 2. In all the cases the optimal
harmonic forcing is localized upstream near separation and displays an inclined structure along the shear
so as to exploit the Orr mechanism. On the other hand, the associated optimal responses extend farther
downstream and display sustained amplified wave packets. Note that the spatial separation between
the optimal forcing distributions and their optimal response is known as common feature of non-normal
fluid systems resulting from the convective non-normality. Both the optimal forcings and responses
outline smaller flow structures for higher frequencies. Similarly, they display much bigger structures for
lower frequencies that spatially extend much farther upstream (for the forcing) and downstream (for the
response). These results are consistent with the Kelvin-Helmholtz instability illustrated in the previous
temporal analysis since high-frequency instabilities are observed where the shear layer is the thinnest
whereas the lower ones are observed in the downstream boundary layer where the shear is the thickest.

We now turn our attention to the 3D optimal forcings and responses. In the range of wave numbers
considered, the real part g, and imaginary part g; of the flow responses are observed to display very
similar wave packets, except that they are out of phase in the streamwise direction. Furthermore, this
also holds for the real part fr and imaginary part fl of the forcings. This spatial shift is such that, by
computing the three-dimensional perturbation by equation (1.51), we get transverse wave packets. ThlS
is illustrated in figure 1.31 where we show the longitudinal velocity of a 3D optimal harmonic forcing
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Figure 1.30: (a,b,c) Two-dimensional optimal forcing distributions f computed for w = 0.25, w = 0.75
and w = 2 respectively. (d,e,f) Optimal associated responses ¢ computed for the same frequencies. Flow
structures are displayed by their longitudinal velocity.

along with its associated optimal response. A side view is provided in figures 1.31(a,b) and a top view
in figures 1.31(c,d). This particular perturbation has been computed for the set of parameters w = 0.6
and k = 0.7. We interesting observe the appearance of transverse waves that form oblique wave packets.
Note that this latter result is much more noticeable for the response than for the forcing. This confirms
our previous statement about the possible amplification of oblique waves in the downstream boundary
layer. Note that a similar analysis has been reported in the work by Monokrousos et al. (2010) on a plat
plate boundary layer. It should be recalled that the flow is globally unstable for the wave number & = 0.7
at Re = 600. However, the 3D flow structures computed for other stable wave numbers, or for lower
Reynolds number such that the flow is stable, are found to display similar oblique wave packets. Varying
the parameters k and w only alters their transverse wave length I, = 27/k and their streamwise wave
length [, = 2mvg/w (where vy has been introduced as the phase velocity in the streamwise direction).
The propagation direction of the oblique wave may then be characterized by the angle ¢ = arctan(l,/l)
as shown in figure 1.31(d).

1.5.3.3 Influence of the Reynolds number

To conclude this section we investigate the effect of the Reynolds number on the amplifier behavior of the
flow. To do so, we perform the previous receptivity analysis for & = 0 while varying the Reynolds number.
We have represented in figure 1.32(a) the evolution of the optimal energy gain A, as a function of the
frequency w for Re = 200, 400, 600, 800 and 1000. These results emphasize two interesting points: (i)
the optimal energy gain increases with the Reynolds number whatever the frequency and (ii) the peak of
the maximum energy gain is shifted to higher frequencies for higher Reynolds numbers. These two points
are further quantified in figures 1.32(b,c). We have represented the peak value max,[Aopt(k = 0,w)] of
the optimal gain as a function of the Reynolds number in figure 1.32(b). It highlights an exponential
increase of the maximum energy gain as a function of Re which is emphasized by the log-scale plot.
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Figure 1.31: Three-dimensional view of a 3D optimal forcing (a,c) along with its associated optimal
response (b,d). Figures (a,b) display a side view and (c,d) a top view. These flow structures have been
computed for the parameters w = 0.6, £ = 0.7 and are displayed by their longitudinal velocity.

Such an exponential increase of the flow amplifier behavior is a common feature of open shear flows,
see Schmid & Henningson (2001). In particular, it reveals the strong receptivity of the flow and its
potential to substantially amplify perturbations, even for moderate Reynolds numbers. Now we look for
the frequency wey: at which the maximum energy gain is reached. This quantity is represented in figure
1.32(c) as a function of the Reynolds number. As previously noticed, the optimal frequency increases
for higher Reynolds numbers which is naturally attributed to the thinning of the base flow shear layer.
This result is thus consistent with the Kelvin-Helmholtz mechanism. For information, the scale of the

associated Strouhal numbers St;, = ;‘r’[pji have been displayed in a second axis of the plot.

1.6 Overall assessment and concluding remarks

We studied in this chapter the global stability of 3D perturbations about the 2D base flow over a
backward-facing step. An asymptotic stability analysis has revealed the occurrence of a transversally
periodic and stationary unstable global mode at the critical Reynolds number Re. = 526. Owing to
the literature this mode is known to comes from a centrifugal instability and has also been linked to a
lift-up mechanism. On the other hand a short time stability analysis showed the ability of the flow to
substantially amplify perturbation by transient growths. The optimal perturbations have been exposed
as amplifying wave packets coming from a coupled Orr and Kelvin-Helmholtz instability. The three-
dimensional optimal growth mechanism has furthermore been attributed to an inclination of the wave
packets in the z direction into oblique waves.

As a summary of these different transition scenarios, we have represented in figure 1.33 the evolution
of the time integrated energy gain 7y(t) for some of the considered optimal perturbations. It includes:
(i) the adjoint unstable global mode, (ii) the optimal growth rate perturbation, (iii) the 2D optimal
perturbation and (iv) the 3D optimal perturbation. The representation of all these initial conditions
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Figure 1.32: (a) Evolution of the optimal energy gain A, as a function of w for k = 0 and Re = 200,
400, 600, 800 and 1000. (b) represents the optimal energy gain peak maxy, [Aopt(k = 0,w)] as a function
of the Reynolds number. (c) depicts the optimal frequency wg,: and associated Strouhal number Stj, as
a function of the Reynolds number.

clearly allows to compare their energy amplification. For instance, the optimally growing perturbation
is observed to be the less energetic one. Regarding the unstable adjoint mode, it yields the maximum
energy growth for the largest times but is suboptimal for short times. On the other hand, the 2D and
3D optimal perturbations lead to a much larger optimal energy gain for short times which exceeds those
of the other initial conditions by several orders of magnitude. The difference between the contributions
of the 2D and 3D optimal perturbations is only noticeable for larger times. This plot emphasizes the
optimal transition scenario of the flow as a quasi 2D amplification of wave packets in the shear layer,
see section 1.5.2.2. The most unstable physical mechanism is thus attributed to the Kelvin-Helmholtz
instability occurring in the recirculation bubble.

Our results should be carefully compared to experiments since they are based on a number of important
assumptions such as: (i) the two-dimensionality of the base flow and mostly (ii) the linear dynamics
of the perturbations. As previously mentioned, the recirculation length is obviously not meant to rise
indefinitely as shown in figure 1.11(a) and figure 1.12. Owing to the substantial ability of the flow to
amplify perturbations, non-linear dynamics are expected to be observed. In fact, the limit at which
unsteadiness first appear is not predictable since it only depends on external factors such as the level
of background noise, residual turbulence, surface roughness, etc. It should also be mentioned that,
according to preliminary results, the three-dimensional confinement induced by lateral walls seems to
have a large impact on the stability of the flow. Indeed, the walls creates a drag force that tends to
decrease the recirculation length, which stabilizes the flow. Performing a global stability analysis of a
3D base flow, with lateral walls, would stand for the natural next step to investigate this aspect of the
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Figure 1.33: Evolution of the time integrated energy gain ~(t) for various initial conditions. The black
dashed line stand for the adjoint unstable global mode. The blue dash-dotted line represents the pertur-
bation leading to the maximum initial growth rate (which is 2D according to our study). Finally, the
green and red solid lines stand for the 2D and 3D optimal perturbations, which have been computed
for (k=0;T7 = 18) and (k = 0.6; T = 20) respectively).

dynamics. Interestingly, a three-dimensional and stationary structure reminiscent of our unstable global
mode has been reported in the experimental work by Beaudoin et al. (2004) on a low Reynolds number
backward-facing step flow. Yet, the three-dimensional instabilities found in our work, which have very
large transverse wave lengths, may hardly be observed for transversally confined setups.

Our analysis recovers the Kelvin-Helmholtz instability and the associated frequencies have consistent
orders of magnitude. For instance, the optimal frequencies from our receptivity analysis are found to
increase with the Reynolds number and reach St;, = 0.185 at Re = 1000. To give an idea, a Kelvin
Helmholtz frequency corresponding to Stj, = 0.22 has been found in the experiments by Duriez (2009) at
Re = 1314. Interestingly, we recover the wave packet phase speed vy = 55 which has also been observed
in the experiments by Duriez (2009) in the range Re = [1000; 5500].

It should be noticed that the optimal frequencies w,y,; computed here may not be directly compared to
those of experiments due to the non-linear effects. In our case, the optimal frequency would only be
observed at the early development of unsteadiness in a laminar flow. The optimal linear responses of
the flow are found in the vicinity of the reattached boundary layer, where the shear layer is relatively
thick. Now, in a more complex (and more non-linear situation) the unsteadiness associated with the
Kelvin-Helmholtz instability would be characterized by higher Strouhal numbers and structures localized
in the very vicinity of the separation point, where the shear layer is much thinner. What could be done
to partially alleviate this limitation is to restrict the optimization procedure in the upstream part of
the computational domain, where the linear assumption is valid. This would possibly yield the optimal
Kelvin-Helmholtz frequency, even if the downstream dynamics are strongly non linear (as in a majority
of experiments).

We did not observe in our analysis any low-frequency unsteadiness or "flapping" of the recirculation
bubble. Yet, this phenomenon has been linked recently (Ehrenstein & Gallaire (2008a); Cherubini
(2010)) to a superposition of unstable global modes which gives rise to a low frequency beating due
to alternate mode cancelations. In our case, we did not find any unsteady unstable global modes
even for much higher Reynolds numbers (up to 2500). We think that unsteady unstable global modes
are more likely to be observed (at lower Reynolds numbers) in backward-facing step flows when the
incoming boundary layer thickness is relatively large compared to the step height (as in Akervik et al.
(2007); Ehrenstein & Gallaire (2008a); Cherubini (2010)). A more accurate assessment on this point
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would stand for an interesting perspective. Finally, our linear analysis clearly cannot predict non linear
mechanisms such as the vortex merging. To alleviate this limitation, a possible way to extend our work
would be to include the additional non linear term w -Vu in the linearized Navier-Stokes equations
(1.4). Indeed, such an extension still allows to perform optimal perturbation analysis, as recently done
by Zuccher et al. (2006); Cherubini et al. (2010a). Another possible way would be to compute Direct
Numerical Simulations (DNS) to recover the fully 3D non-linear flow dynamics, see Cherubini et al.
(20106); Cherubini (2010).
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Interlude

In chapter 1 we analyzed the linear dynamics of a two-dimensional backward-facing step flow. Two major
instability mechanisms have been highlighted: (i) the growth of a stationary and transversally periodic
unstable global mode and (ii) the transient amplification of upstream perturbations, in the form of wave
packets, in the shear layer. The first mechanism was observed to have to a very slow energy growth
rates. However, the second one is found to reach substantially high energy gain values for short times.
The optimal perturbation has been found to exploit both the Orr and Kelvin-Helmholtz instabilities.
It seems that the unstable global mode is quite difficult to observe in experiments, see Beaudoin et al.
(2004). Suppose we have a quasi two-dimensional flow, at a supercritical Reynolds number, it would be
rather long to observe the unstable mode owing to its low energy growth rate. Instead, in a majority of
the experiments, the Kelvin-Helmholtz instability is more easily (and often) observed as the first step
of the transition to turbulence. The results presented in chapter 1 are in qualitative agreement with
experimental results. Yet, including the non-linear effects and studying three-dimensional base flows are
obviously the next steps toward a more quantitative comparison. Since we did not have the necessary
numerical tools to perform such a study, this issue has not been further investigated.

Now that the linear dynamics of the flow have been thoroughly studied, we turn our attention to its
modeling. Owing to our previous results, the most critical dynamics are attributed the transient am-
plification of perturbations along the shear layer. In particular, we showed that the most energetic
perturbations were characterized by very large transverse wave lengths. As a result we choose, for sim-
plicity, to restrict our analysis to the case of two-dimensional perturbations. The purpose behind the
next three chapters is to design efficient Reduced Order Models (ROMs) that capture the predominant
two-dimensional linear dynamics of the flow. In other words, we wish to find low rank operators that
approximate the original linearized Navier-Stokes operator. To do so we choose to use the so-called
"projection methods". It consists in projecting the original dynamical operator onto a reduced set of
flow structures to obtain the ROMs. Naturally, the choice of the projection basis is fundamental when
one attempts to construct efficient ROMs. Mostly, different projection bases may be used depending on
what flow properties need to be captured.

As a first candidate, we considered the set of the least damped global modes. Indeed, at the beginning
of the thesis, this choice seemed to be natural for several reasons. First, global modes are physically
significant since they are solution of the linearized Navier-Stokes equations. In particular, they are
associated with a growth rate and a frequency which are physically significant and concrete quantities.
The part of the eigenspectrum corresponding to the least damped modes can be computed through
the iterative Arnoldi technique. Then, the idea is to select the most unstable modes and truncate
those with the lowest growth rates. It is then reasonable to expect that the most stable modes, whose
amplitude decreases exponentially in time, will only contribute to a minor part of the dynamics. A second
motivation for using global modes relies on some results exposed in the literature. For example, it has
been demonstrated in the work by Ehrenstein & Gallaire (2005) that a finite number of two-dimensional
global modes is able to capture the convective instability behavior of the flat-plate boundary layer. Later,
it has been shown by Akervik et al. (2007) that the sum of some global eigenmodes is able to describe
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the dynamics of a localized disturbance in a high-aspect-ratio smooth cavity flow. By projection on the
least stable global eigenmodes, a low-order model of the flow is obtained and used to design a linear-
quadratic-Gaussian controller. This controller is also shown to efficiently damp out the flow global
oscillations. It is also worth mentioning the review article by Henningson & Akervik (2008) and the
analysis by Ehrenstein & Gallaire (2008b) of the low-frequency unsteadiness called "flapping" by means
of a global modes decomposition.

There is hence some evidence that a moderate number of two-dimensional global modes can potentially
capture the transient dynamics of wall-bounded open flows. This supports the idea that global modes
may provide new possibilities for model reduction with flow-control applications. For these reasons, we
attempted to model the dynamics of our backward-facing step flow by means of global modes. Unfortu-
nately, we found in this case that the global modes were unable to recover the convective instability of
the flow. To understand this failure, we considered other flow configurations such as the smooth cavity
studied by Akervik et al. (2007), a square cavity flow and a lid-driven cavity. We did not have the time
to make a complete study and go into much detail but we have reported our findings in appendix B. This
appendix should be read as an extension of chapter 1 and as a link motivating the next chapters. To
summarize, it is observed that the ability of the global modes to model the dynamics strongly depends
on the flow configuration. The main reason for this failure is attributed to the very high non-normality
of the global modes. As shown by Trefethen & Embree (2005), the most stable modes are extremely ill-
conditioned and thus can barely be computed. One the other hand, depending on the flow configuration,
the most stable modes are often seen to play an important role in the transient dynamics. For instance,
a recent work by Barbagallo et al. (2009), dealing with linear state-space flow control, indicated that
the most important global modes to be used in the design of an efficient low-order controller are not the
most unstable ones. We refer interested readers to the recent review articles by Bagheri et al. (2009¢)
and Sipp et al. (2010).

As a result of this failure, we considered another approach. The idea is to define some inputs and outputs
on the system and look for models that capture the input-output dynamics. A powerful technique, known
as Balanced Truncation has been introduced by Moore (1981) and enables to reach such a goal. It is
conceptually based on the concepts of controllability and observability. More precisely, controllable
flow states may be easily triggered by the inputs whereas observable flow states yield an important
contribution to the outputs. In this context, we start by considering a single input and a single output on
the backward-facing step flow. The ability of the most controllable modes and of the most and equally
controllable/observable modes (also called balanced modes) to capture the input-output dynamics is
investigated in the next chapter. A particular attention is paid to the technique used to compute these
modes. We show how the use harmonic flow responses, derived from harmonic excitations at the input
or at the output, allows to design efficient ROMs. It should also be mentioned at this stage that the
unstable linear dynamics of a square cavity flow are also considered in the next chapter to illustrate the
ability of the procedure to handle unstable fluid systems. The results presented in the next chapter have
been reported in an article that have been submitted to Physics of Fluids.
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Chapter 2

Model reduction of the input-output
dynamics by means of frequential
snapshots

This chapter deals with model reduction of high-order linear systems. An alternative method to approxi-
mate Proper Orthogonal Decomposition and Balanced Truncation is exposed here within the framework
of the incompressible Navier-Stokes equations. The method of snapshots used to obtain low-rank approx-
imations of the system controllability and observability Gramians is carried out in the frequency domain.
Model reduction is thus performed using flow states that are long-time harmonic responses of the flow to
given forcings, we call them frequential snapshots. In contrast with the recent works using time-stepping
approach, restricted to stable systems, this one can always be computed for systems without marginal
modes while it reduces to the same procedure for stable systems. We show that this method is efficient
to perform POD and BPOD reduced-order models in both globally stable and unstable flows through
two numerical examples: the flow over a backward-facing step and the flow over a square cavity. The
first one is a globally stable flow exhibiting strong transient growths as a typical noise amplifier system
while the second is a globally unstable flow representative of an oscillator system. In both cases, it is
shown that the frequency-based snapshot method yields reduced-order models that efficiently capture
the input-output behavior of the system. In particular, regarding the unstable cavity flow, our resulting
unstable reduced-order models possess the same unstable global modes and stable transfer functions as
those of the full system.

2.1 Introduction

During the last decade, linear state space flow control has become a new and promising research subject,
see Kim & Bewley (2007); Sipp et al. (2010). Originally introduced for flows governed by linear instability
mechanisms (Bewley & Liu (1998); Bewley (2001)), it brought control theoretical tools (Burl (1999);
Zhou et al. (2002)) such as optimal control within the reach of the fluid mechanics community. Optimal
flow control obviously displays attractive features. One may refer to previous works such as the control
of a transitional boundary layer (Hogberg & Henningson (2002); Chevalier et al. (2007)), a transitional
channel flow (Hogberg et al. (2003)) or also turbulent channel flows (Moin & Bewley (1994); Joshi et al.
(1997)). Yet, as soon as complex or more realistic flows are considered, the direct application of many
optimal flow control tools is no more computationally tractable. One may then resort to a modeling of
the dynamics by reduced-order models (ROMs) to alleviate this problem. In this context, modeling the
dynamics between some particular inputs, such as the actuators, and some particular outputs, such as
the sensors, may be sufficient to perform effective optimal flow control. For instance, let us mention the
application of LQG closed-loop flow control to more complex flows, see Akervik et al. (2007); Bagheri
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et al. (2009b); Ahuja & Rowley (2010); Barbagallo et al. (2009). The goal of this chapter is to explore
an alternative way of performing such ROMs in the context of transitional separated flows.

The Proper Orthogonal Decomposition (POD) method has been used extensively for reduced-order
modeling of fluid mechanics problems. It was proposed by Lumley (1970) as an unbiased technique for
identifying the most energetic patterns (or structures) in a flow. In particular, POD has been shown to
yield a valuable analysis tool to discriminate coherent structures in turbulent flows, see Sirovich (1987);
Berkooz et al. (1993). Thus, POD modes stand for natural candidates to design ROMs. This may be
achieved by projecting the original equations (either linear or not) onto the POD modes. Such a reduced
modeling of the Navier-Stokes equations was first performed by Aubry et al. (1988). Noticeably, a time-
space deterministic version of the POD has been introduced by Aubry et al. (1991) as a systematic tool for
complex system analysis. This latter consists of a bi-orthogonal decomposition into spatial orthogonal
modes (similar to the POD modes) and temporal orthogonal modes (standing for the deterministic
time coefficients of the modes). Since then, POD model reduction has spawned a substantial body of
literature on low-dimensional models for flows, see Noack et al. (2003); Buffoni et al. (2006); Galletti
et al. (2007). Recently, POD based ROMs have also been incorporated into flow control strategies for
the flow around a cylinder (Delville et al. (1998); Tadmor et al. (2004); Bergmann et al. (2005)) or the
flow over an open cavity, see Samimy et al. (2007). Although this model reduction technique is tractable
for very large data sets and applicable to complex flows, POD modes may not be the best structures for
describing the dynamics, even in a linearized case. Indeed, the truncated low-energy features of a flow
may contribute to a significant part of the global dynamics, as in the typical example of acoustic modes
in cavity oscillations, see Rowley et al. (2004).

Within the context of model reduction, both the controllability, i.e., the ability of the applied forcing
to reach flow states, and observability, i.e., the ability of flow states to register at the sensor locations,
are equally important. An expansion basis that balances these two concepts was introduced more
than two decades ago for stable linear input-output systems by Moore (1981). It is shown that the
balanced basis can be computed as the eigenvectors of the product of the so-called controllability and
observability Gramians (which measure controllability and observability respectively). Model reduction
is then performed by considering a basis where the states that respond most strongly to inputs (most
controllable states) are also states that have the most influence on the outputs (most observable states).
This powerful technique, commonly applied in control theory, is known as balanced truncation and
constitutes a quasi-optimal basis in terms of modeling the input-output dynamics. Further development
of the method extended its range to nonlinear control problems, see Scherpen (1993) and Lall et al.
(2002). An optimal and accurate algorithm for the calculation of this basis has been found by Laub
et al. (1987) and has been used on some fluid problems of small size (Cortelezzi & Speyer (1998)) but
its associated computational effort is rather high for systems of moderate size and quickly becomes
unaffordable for systems of large size and realistic complexity (about 5000 states or more).

However, recent developments by Willcox & Peraire (2002) and Rowley (2005) combining computational
methodology from POD modes with a balancing procedure has overcome this difficulty and has brought
the model reduction of large-scale control problems within reach of current computational technology.
It was shown that the Gramians can be approximated using two series of snapshots resulting from
two different numerical simulations and that the algorithm introduced by Laub et al. (1987) can be
generalized to take into account these approximate Gramians. This new method is referred as Balanced
Proper Orthogonal Decomposition (BPOD) due to the use of flow snapshots and the connection to POD
established by Rowley (2005). This new technique has been applied to several linearized stable flows:
the case of a channel flow (Ilak & Rowley (2006, 2008)), a one-dimensional model equation mimicking
an open flow (Bagheri et al. (2009¢)) and a boundary-layer flow (Bagheri et al. (20095)).

Regarding the reduction of linearized unstable systems, the original method by Moore (1981) is no longer
applicable. To overcome this limitation, an extension was proposed by Zhou et al. (1999) by introducing
frequency-domain definitions of controllability and observability Gramians. In contrast to Gramians
defined in the literature for stable systems, these Gramians can always be computed for systems without
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marginal modes and they reduce to the standard controllability and observability Gramians when the
systems are stable, see Kim (1998); Antoulas (2005). The model reduction procedure by Zhou et al.
(1999) essentially decouples the dynamics of the flow on the stable and unstable subspaces, and then
truncates the relatively uncontrollable and unobservable modes of each of the two subspaces. Following
this idea, the model reduction of the unstable linearized flow over an inclined flat plate was performed
by Ahuja & Rowley (2008, 2010) by partitioning the system behavior into stable and unstable dynamics.
In this case, the stable subspace was modeled by the standard BPOD algorithm by Rowley (2005) while
the unstable dynamics were treated similarly to the work by Akervik et al. (2007) by a projection onto
global eigenmodes. The same partitioning has also been carried out by Barbagallo et al. (2009) in the
case of the unstable dynamics over a square cavity flow. In both studies, the unstable global modes
are first computed via a shift-invert Arnoldi technique, and then used to project the series of snapshots
required by the BPOD process onto the stable subspace.

In this chapter, we are interested in another method for the balancing and reduction of possibly unstable
systems. It consists of using the frequency-domain definitions of the controllability and observability
Gramians proposed by Zhou et al. (1999) and an approximation of these Gramians with frequential
snapshots. This way, the Gramians are no longer approximated by using two series of snapshots arising
from time-stepping simulations, but rather by using flow state responses to harmonic forcings. These
flow states involved in the process are called frequential snapshots throughout this work due to their
natural link with the current time-based snapshot method. The idea to use frequential expressions
of the Gramians and to compute frequential snapshots to perform reduced-order models has already
been introduced by Willcox & Peraire (2002), although it has never been carried out. The goal of this
chapter is to show that the use of these frequential snapshots are able to build efficient reduced-order
models for linearized and possibly unstable fluid systems in a global framework. This issue is studied
through two examples: a globally stable but convectively unstable flow over a rounded backward-facing
step and a globally unstable flow over a square cavity. In both cases, a single actuator (input) and
a single sensor (output) are placed near separation and reattachment respectively. The approximate
balanced truncation procedure is then derived considering this input and this output using the snapshot
method in the frequential framework. At the same time, the POD modes constructed from an impulse
released from the input, i.e. the most controllable modes, are also considered and computed through the
same frequential snapshots. Both BPOD and POD reduced-order models are eventually evaluated by
comparing their impulse and frequency responses to that of their associated full system. In the case of the
unstable flow over the square cavity, particular care is given to the reduction performance of the stable
and unstable subspaces. Additionally, our results are compared to a previous study by Barbagallo et al.
(2009) on the same flow configuration where partitioning of the two subspaces and separate reduction
was performed. The main contributions of this work comprise (i) an illustration of the ability of harmonic
flow states responses (frequential snapshots) to build efficient BPOD/POD reduced-order models, and
(ii) a new algorithm to perform model reduction for unstable linear systems without partitioning the
stable and unstable subspace, and thus, without computing any global eigenmodes.

The chapter proceeds along the following outline: in section 2.2, we first briefly describe the BPOD
and POD model reduction procedure using frequential snapshots within the framework of the linearized
Navier-Stokes equations with actuation and sensing. In particular, a comparison of the computational
costs of the temporal and frequential domain based snapshot method is assessed. In section 2.3, we
present numerical results of ROMs using the example of a globally stable flow over a backward-facing
step. In section 2.4, we investigate the case of a globally unstable flow over a square cavity and compare
the performance of our ROMs with the previous work by Barbagallo et al. (2009). Finally, we conclude
with a brief discussion in section 2.5.
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2.2 Model reduction methodology

2.2.1 DProblem formulation
2.2.1.1 Governing equations

We consider the incompressible Navier-Stokes equations, with a small actuation and a sensing, governing
the dynamics of the velocity w and pressure p fields:

ou+ (u-V)u = —Vp+ Re ! V2u + eBe(t)
Vu=0 (2.1)
m(t) =Cu

where the only parameter reduces to the Reynolds number Re. The actuation is denoted by the term
eBc(t) corresponding to a momentum forcing. The parameter e indicates that the forcing is small
compared to the other terms of the equation and ¢(t) is the temporal law of the actuation also referred
to as the input of the problem. The quantity m(t) measured by the sensor stands for the output of the
system, it is expressed as the result of a measure operator C applied on the velocity field w. Note that we
have assumed an actuation and sensing based on the velocity components only for simplicity. Considering
this problem, we which to design a reduced order model able to capture the linear input-output dynamics
of this system.

Before proceeding with model reduction, we first express the governing equations in a linear state-space
form. To this end, a base flow (U, P) to linearize about has to be determined. This is accomplished by
setting the unsteady terms of equations (2.1) to zero and solving the resulting nonlinear equations:

(U -V)U = ~VP + Re" ' V2U
V-U=0 (2.2)
ms = CU

where m; stands for the measure of the base flow. The flow state can then be decomposed as the sum
of the base flow and a small perturbation by (u,p) = (U, P) + e(v/,p’). Similarly, the measure m(¢)
can be decomposed as the sum of the steady part coming from the base flow and the small contribution
from the perturbation as m(t) = mgs + em/(t) where m’(t) = Cu’. Substitution of these decompositions
into equations (2.1), neglecting the €2 term and omitting primes yields the linearized Navier-Stokes
equations:

ou+U -Vu+u-VU = —Vp + Re 'V2u + Be(t)
Vou=0 (2.3)
m(t) = Cu
which govern the linear dynamics about the considered base flow. It is furthermore assumed that the
amplitude of the perturbation remains weak compared to the base flow so that the validity of equations
(2.3) is guaranteed.
Using a numerical approach, one then proceeds by discretizing the problem on a mesh (ours is based on
a finite element method described in the end of this section). If we write the discretized equations (2.3)

in matrix form, we obtain
(5 o)ale) - (RT)G)(T0)(T)w  ew
mt) = (G o)(ié) (2.4b)

where X; denotes the velocity fields and Xo stands for the corresponding pressure field. (B1,0) and (Cy,0)
denote respectively the vectors of the discretized actuation B and sensing C operators. The linearized
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Navier-Stokes operator has been decomposed so that Aq stands for convection and diffusion while Ay and
A3 are the parts relative to incompressibility and pressure effect respectively, the superscript * denoting
the transconjugate. For the design of reduced-order models we need to reformulate the above equations
into a standard state-space form. This is achieved by restricting the system state to its divergence-free
velocity field. A few calculations exposed in appendix 2.A demonstrate that equations (2.4) can be
formulated as the following standard linear input-output system

%1 = AX; + Be(t) (2.5a)
m(t) = CX (2.5b)

where we have introduced A = P1{A;, B = P1Q:B; and C = C; so that the projection matrix onto
the divergence-free space reduces to P1Q1. The dimension of the full system is called hereafter n; and
denotes the number of degrees of freedom in equation (2.5) or alternatively the size of the discretized
state velocity vector X;. Once defined, our linear input-output state space system has to be associated
with scalar products for the input, the output and the state space. Since the input and output are
scalars, their associated inner product are naturally chosen as the standard hermitian product so that
their associated energy are respectively |¢|? and |m|?. As mentioned in the work by Tlak & Rowley (2008),
the choice of inner product on the state space does not intervene in balanced truncation, although it
does for POD. We choose the inner product Qi that takes into account the numerical discretization by
adding a weight matrix to the standard inner product. Its associated energy is X7Q1 Xy, i.e. the kinetic
energy of the perturbation. This choice is thus intuitively appealing, since POD will capture the true
energy of the perturbations.

As recognized in existing literature (Zhou et al. (2002); Antoulas (2005); Bagheri et al. (2009¢)), the
input-output behavior is the critical quantity that has to be carefully taken into consideration within
the framework of linear input-output system dynamics and more particularly in control theory. Mathe-
matically, the relevant quantities to assess this performance are the impulse response and/or the transfer
function. As a result, these are the criterions considered in the following sections to quantify the per-
formance of the ROMs.

2.2.1.2 Model reduction phenomenology

Before proceeding with a precise and more technical description of the model reduction procedure, we
briefly introduce its concept here. For an easier physical interpretation of the procedure, we first assume
that the fluid system is linearly stable; the case of unstable systems is discussed afterwards.

The actuator (input) excites the flow dynamics while the sensor yields a measure corresponding to the
output. The present model reduction procedure consists in projecting the original equations (2.5) onto a
low number of flow structures. If we denote the projection basis by the matrix Ty and its bi-orthogonal
set by Sy, then the Petrov-Galerkin projection of the original system provided by equations (2.5) leads
to the following reduced system

Xy,
dtl = AXq + Bre(t) (2.6a)
me(t) = CXir (2.6b)

which governs the dynamics of the reduced output signal m,(t) and the reduced state X, is such that
Xy = T1 Xy, and Xq, = S7Q1X1. We have also introduced in the above equations the reduced dynamical
operator, actuation and sensing denoted by A,, B, and C, respectively. They are given by

A, = STQAT, B, = SIQB C, =CT, (2.7)
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The performance of such ROMs is then assessed by comparing their input-output behavior to the orig-
inal one. The choice of the projection basis is obviously of primary importance if one plans to design
efficient ROMs. For stable linear systems, it was shown by Moore (1981) that their controllability and
observability stand for critical quantities. By definition, a flow structure is said controllable if it may be
forced by a small amount of energy from the input. Additionally, a flow structure is said observable if its
dynamics yield a high energy contribution to the output. In this context, the two candidates examined
here to project the dynamics are: (i) the most controllable modes, denoted as POD modes and (ii) the
set of equally (and most) controllable and observable modes, known as balanced modes.

Due to the linear nature of the equations, any harmonic excitation will lead to a harmonic flow response
and, consequently, to a harmonic measurement. It is thus natural to resort to a frequency framework
when dealing with such systems. Incidentally, the particularity of our work is the introduction of
harmonic flow states meant to design efficient ROMs. Let us first describe the procedure to design the
POD modes. We consider harmonic excitations from the input so as to get harmonic flow responses.
By covering a sufficiently wide frequency range, we expect to capture the most energetic responses from
all possible harmonic forcings. Next, based on these harmonic responses, we compute the set of most
controllable modes on that frequency range. The resulting so-called POD modes are thus conceptually
designed to optimally capture the energy triggered by the input on the particular frequency interval of
interest. Now, regarding the balanced modes, we do not only look for structures which are controllable
(by the actuator) but also observable by the sensor. Consequently, the balanced modes not only include
information from the input but also from the output. As we will see in the rest of this section, it is
possible to identify the flow structures to which the sensor is most sensitive through the adjoint Navier-
Stokes equations. This is performed analogously in the frequency domain by computing the harmonic
flow states which yield the maximum energy contribution to the sensor energy. Such harmonic flow
structures, once computed on a frequency interval are included in the balanced truncation procedure in
order to find equally controllable and observable modes on the considered frequency interval.

In the end, the POD modes only include information from the actuator and the flow dynamics; they
depend on the operators A and B. On the other hand, the balanced modes also rely on the sensor
and depend on all three operators: A, B and C. By construction, the balanced modes are expected
to be superior to the POD modes in capturing the input-output behavior since they include additional
information from the original input-output system. Concerning linear unstable systems, the concepts
of controllability and observability are no longer defined, neither are the harmonic responses of the sys-
tem to harmonic forcings. However, the overall procedure introduced above will be shown to remain
tractable, as illustrated later in section 2.4.

How to obtain the POD and balanced modes stands for our next concern. In the following the balanced
modes, which rely on both the concepts of controllability and observability, are first introduced. The
presentation of the POD modes (most controllable modes) is then given in a second step.

2.2.2 Balanced model reduction
2.2.2.1 Controllability and observability Gramians

Balanced truncation originally emerged from the control theory literature (Moore (1981)) as a way
to reduce linear input-output systems such as (2.5) while quasi-optimally preserving its input-output
behavior. Indeed, a useful property of balanced truncation is that it yields a priori error bounds on
the transfer function that are close to the lower bound achievable by any reduced-order model. It
is conceptually expressed in terms of controllability an observability of the modes used in the model
reduction process. A specific state is deemed controllable if there exists a control law ¢(t) which is
able to modify the flow from any state toward this specific state. For controllable states, the notion of
controllability then quantifies how easy (or difficult) the state can be reached from any state. Similarly,
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observability measures how easy (or difficult) a given flow state can be detected by the sensors. At the
sensor location almost unobservable flow states leave hardly any footprint behind and are thus nearly
invisible to the measurement efforts. The key idea of balanced truncation is to compute, rank and select
modes that are equally observable and controllable in order to project the full original system onto them.
For a given flow state, the mathematical quantities that enable measuring these two properties are the
controllability and observability Gramians G, and G,. Considering our input-output system (2.5) with
a stable dynamical operator A, these Gramians are defined by:

G, = f0+o° eABB* At dt (2.8)
Go = [y N tCHCeat '

For unstable systems, this definition does not hold since the integrals are not convergent anymore as
t — o0o. Yet, one may use a frequency domain definition of the Gramians, as proposed by Zhou et al.
(1999), in order to avoid this problem:

(2.9)

27
Go = o [T2(—jwl — A)"1C*C(jwl — A)~Ldw

{ Ge = o= [T2°(jwl — A)IBB*(—jwl — A*)Ldw

It can be shown by using Parseval’s theorem that the two definitions are equivalent for stable systems,
see Zhou et al. (1999); Antoulas (2005). Furthermore, it has been demonstrated by Zhou et al. (1999)
that the frequency domain definition (2.9) still works for unstable systems as far as there are no marginal
modes and that balanced truncation is then equivalent to separating the stable and unstable parts of
the transfer function and doing the balanced realization for both parts separately.

A technique referred to as balancing, consists in finding flow fields with equal emphasis on either control-
lability and observability property. This latter is mathematically equivalent to finding a transformation
basis in which the Gramians G, and G, appear diagonal and equal, see Zhou et al. (2002). Otherwise,
these balanced modes can also be directly computed as the eigenvectors of the product of the two pre-
viously defined Gramians, see Moore (1981). However, this is not computationally tractable for the
complex flows considered here where the number of degrees of freedom is of order O(105~%). For systems
of large dimension such as those encountered here, the Gramians are huge matrices which cannot be
easily computed or stored. Instead, the algorithm introduced by Rowley (2005) and referred to as BPOD
approximates balanced truncation while remaining tractable even for very large systems and relies on
the use of flow state snapshots.

2.2.2.2 Introduction of the frequential snapshots

To compute the balanced modes by a low-cost algorithm, a technique introduced by Rowley (2005)
consists of factoring the controllability and observability Gramians using flow state snapshots. Until
now, the snapshot technique was achieved by considering the temporal expressions (2.8) of the Gramians,
as in the works by Rowley (2005); Ilak & Rowley (2008); Bagheri et al. (20096); Ahuja & Rowley (2010);
Barbagallo et al. (2009). This approach is not adopted in our work. In this chapter, the frequential
expressions of the Gramians (2.9) are considered instead. Thus, introducing the flow states X;(w) and
Y1(w) defined by:

Xi(w) = (jwl—A)"'B (2.10a)
QiY1(w) = (—jwl—AH"IC (2.10D)

the frequential expressions of the Gramians (2.9) reduce to:
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G, = / X1 X (w dww—lex* (w;)6; (2.11a)

€L

Go = @ <217T/ \?ﬁ;@)@) Q ~Q (;ﬁ Z?ﬁ;@g@) Q (2.11b)

1EZL

where {w;,i € Z} is a given set of discrete pulsations and J; denotes appropriate quadrature coefficient.
Note that X1 and Y7 are complex vector fields such that

Xl(wi) = Xl(—wi) (212&)
Yl(wi) = Yl(—wi) (212b)

where ~ denotes the complex conjugate so that we can further expand equations (2.11) to

Ge m = K KE, (wn) + i (w6 (2.132)
€N
1 A~ I
Go ® Qu (Z[eryfr(wi)+Y1iYﬁ(wi)]5i> Qi (2.13b)
T 1€N

where we have introduced their real parts XlT, \?M and their imaginary parts )A(M, \A(M In practice, the
set of frequencies {wl} is finite so that only a finite interval of frequencies is considered. The numbers
of real direct (Xlr, XM) and adjoint (er, Yh) flow states used in the process are denoted respectively by
ng and n, (both are even). As a result, the controllability and observability Gramians may be factored
as

G ~ XiX] (2.14a)
Go QY1Y[Q (2.14Db)

%

by stacking these states as columns of the matrices X; and Y as follows:

Xy = [Xu(wo)ﬁ Xii(wo)v  Xir(w)vVE Xu(w)Var ... ] (2.15a)

Y, = [ Yir(wo)v Yii(wo)vo Yir(wi)vd Yi(w)Vor ... ] (2.15b)

-3~

where the dimension of X is n; X ng and that of Y; is ny X n,. Interestingly, the flow state Xl(w) is
solution (see appendix 2.B.1) of the following direct problem:

[ Q 0 Al A X1 ([ Q0 B
[J“< 0 0 Ay 0 X2 )~ L0 0 0 (2.162)
emphasizing that this state reduces to the harmonic flow response resulting from the forcing of the linear

Navier-Stokes equations with an harmonic momentum actuation (By,0) of pulsation w. Analogously, it
is shown in appendix 2.B.2 that Y;(w) is solution of the following adjoint problem:
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Q0 A; A Y4 Q 0 Q. 'Cs
_ _ N = 2.1
{‘7“’<00 Ay 0 Yo 0 0 0 (2.17)
pointing out that this adjoint state stands for the harmonic response flow state resulting from the
forcing of the adjoint linear Navier-Stokes equations with a harmonic momentum actuation (QI_IC*{, 0)
of pulsation w. Hereafter, these direct and adjoint flow states are referred to as frequential snapshots in

order to draw a parallel with existing time-domain definitions of the Gramians and associated temporal
snapshots.

2.2.2.3 Computation of the balanced basis

The approximate Gramians (2.14) are not actually computed due to the large storage cost, but the
leading modes of the transformation that balances these Gramians are computed using a cost-efficient
algorithm introduced by Laub et al. (1987) and detailed below. It involves computing the singular value
decomposition of the direct X; and adjoint Y snapshots cross product Y{Q;X, which is of size ng X ng:

YiQX; = MEN* (2.18)

where M and N are orthogonal matrices (M*M = I, N*N = |) of dimension n, X n, and ng X ng while ¥ is
diagonal and of size n, x ng. For the fluid systems we are interested in, the typical number of snapshots
is of order O(102~%), thus resulting in a reasonable computational cost. In a final step, denoting the
balanced basis by the matrix T and its bi-orthogonal set by S1, we have

T, = X;Nu~ 12 (2.19a)
S, = YMx/? (2.19h)
It is easily confirmed that the bi-orthogonality condition S7Q; Ty = | is satisfied and that, once trans-

formed into these bases, the Gramians G, and G, appear diagonal and equal to 3:

(Q151)°Ge(Q1S1) = ¥ (2.20a)
TiGT1 = ¥ (2.20b)
and also that they are the eigenvectors of their product:
GG, T1 = Ti¥? (2.21a)
GoGe(Q1S1) = (QiS1)%¥? (2.21Db)

The diagonal entries of the transformed Gramians ¥, called Hankel singular values (HSVs), decrease
monotonically and are directly related to the controllability and observability of the corresponding
states. It can be shown (Rowley (2005)) that the columns of Ty form the first columns of the balancing
transformation and the columns of Q1S; constitute the first columns of the inverse transformation.

2.2.3 POD model reduction

For the sake of completeness, POD modes are also considered in this study and their ability to capture
the input-output dynamics is evaluated and compared to that of BPOD models. For stable systems,
we have previously introduced the POD modes as the most controllable modes relative to the actuator.
This means that they stand for the structures the most easily triggered by the actuation. The POD
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modes, denoted by the matrix Ry, are given by the eigenvectors of the product G.Q; (Rowley (2005);
Barbagallo et al. (2009)) that is

G.QiR; = RiA (2.22)

where the diagonal entries of the matrix A are called the POD eigenvalues. The POD eigenvalues
decrease monotonically and are directly related to the controllability of the corresponding modes. Their
computation is performed by using the classical snapshot method introduced by Sirovich (1987). We
have previously shown that G, = X; X7} where the collected dataset X stands for the direct frequential
snapshots. We proceed by computing the eigenvalue decomposition of the product XjQ1X;, which is
of size ng X ng, by X7Q:X; = LAL* where L is orthogonal (L*L = 1). The POD modes can then be
computed by

Ry = X;LA~1/2 (2.23)

Note that, as expected, the POD modes are orthogonal with respect to the kinetic energy inner product,
that is RjQ1R; = I. It should be emphasized at this stage that this definition of the POD modes is not
general since the considered dataset X; is directly linked to the input (Bj,0) location. Reduced-order
models are obtained by a Galerkin projection of the initial full system onto the modes with the highest
POD eigenvalues. The procedure is similar to that described in section 2.2.1.2 where we substitute T
and S; by Ry in equation (2.7).

2.2.4 Discussion
2.2.4.1 Practical considerations

Frequency information may be the most accessible quantity from many mechanical systems. In fluid
mechanics, a physical interpretation of the flow behavior often relies on the frequency decomposition of
its response to different forcings. For instance, some flows may behave as "oscillators" which impose
their own frequency on the intrinsic dynamics, insensitively to external noise. On the other hand, some
flows known as "noise-amplifiers" selectively amplify upstream noise, which often leads to a broad-band
low-frequency spectrum of the downstream flow response. Due to this natural way to describe unsteady
flows, frequency-based methods play a central role in the design of low-order models. Let us mention
some examples such as the Dynamic Mode Decomposition (DMD), see Rowley et al. (2009); Schmid
(2010), which decomposes dynamical modes in the frequency domain or also the partitioning of modes
into low, dominant and high frequency in view of designing robust ROMs, see Aubry et al. (1988); Noack
et al. (2003, 2005).

Concerning our linear state space formulation, the excitation by the actuator over a frequency interval
is a way of extracting relevant information about the flow dynamics. Similarly, the adjoint frequency
snapshots are introduced as a way to extract sensitivity information of the sensor over the same range
of frequency. From an experimental point of view, the direct snapshots may be naturally obtained from
harmonic excitations from the actuator. Suppose that the actuation law is given by Bcos(wt), then the
associated harmonic response of the flow will be given by Xi,.(w) cos(wt) — X1;(w) sin(wt). Accordingly,
the direct snapshots X1, and Xy may be simply recovered by extracting the flow states at successive
times t and t + 7'/4, where T' = 27 /w is the period of the flow. The procedure to approximate the
balanced modes requires the knowledge of adjoint states which cannot be directly extracted from ex-
periments. However, we refer interested readers to the recent attempts to determine balanced ROMs
without having to resort to adjoint information reported by Or & Speyer (2008) and Ma et al. (2010).

An important point should also be noticed at this stage: sections 2.3 and 2.4 include comparisons between
POD and BPOD models in terms of modeling the input-output dynamics. As already mentioned earlier,
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the balanced modes are superior to the POD modes to reach this goal since they are conceptually
designed to do so. However, even if BPOD models may yield the correct input-output dynamics, there
is no guarantee that the original flow state may be captured. On the contrary, POD modes are meant
to gradually capture the energy of the flow response in order to accurately recover its associated flow
field, or at least its predominant energetic patterns. In fact, the superiority of the BPOD models comes
from their potential to represent non-physical flow states which yield the correct input-output signal.

2.2.4.2 Computation of the snapshots

As previously mentioned, the snapshot method was achieved by considering the temporal expressions
of the Gramians. Technically, the impulse response required to compute these temporal snapshots are
computed by a direct and adjoint direct numerical simulation of the linearized Navier-Stokes equations.
This time-stepping approach has been used so far in previous works on BPOD model reduction to yield
the terms eAB and e*"*C*. On the contrary, in a frequential framework, the snapshots correspond to
harmonic responses to harmonic forcings. In this case, one has to invert a direct and adjoint system
to get the terms (jwl — A)7!B and (—jwl — A*)~1C* for each selected frequency w. The large-scale
matrices associated with these systems, which are of size n; x n; here, are often sparse (depending
on the numerical method used). The availability of efficient methods to inverse these huge systems
is thus of utmost importance if one plans to adopt this strategy. Practically, the numerical methods
to achieve these inversions can be either direct (Marquet & Sipp (2009); Amestoy et al. (2001)) or
iterative (Monokrousos et al. (2010)). A valuable asset for proceeding in the frequential framework is
the possibility to compute separately each snapshot, contrary to the time-stepping approach where the
previous snapshots are required to compute the next one. This latter observation makes the frequential
approach intrinsically fitted to parallel computation of the snapshots.

2.2.4.3 Fall-off of the snapshots norm

The snapshot method yields an approximation of the temporal 2.8 and frequential 2.9 expressions of the
Gramians by discretizing and truncating the unbounded integrals to a maximum time and a maximum
frequency respectively. It is thus of primary interest to know how quickly does the norm of the snapshots
cross-product within these integrals decrease at long times and high frequencies. It can easily be shown
that the temporal snapshots norm decreases exponentially as O(e~%) for long time where a is the
growth rate of the least damped mode, whereas the frequential snapshots have an algebraic fall-off norm
as O(1/w") for high pulsation (n = 2 in the case of the Navier-Stokes equations due to viscous terms).
This point leads to the first conclusion that, for any stable system (a < 0), the temporal snapshots norm
fall-off in time always become faster, for sufficiently long time, than the frequential snapshots norm fall-
off in frequency. In spite of this observation, it is not possible to say in general if one approach would
require less snapshots than the other one. All the same, it should be emphasized that, in a majority of
fluid mechanics problems, the frequential responses norm remains centered and peaked at a well specified
frequency corresponding physically to the promoting of natural hydrodynamic instabilities. This robust
observation can be supported by mentioning the cases of boundary layers, separated flows or wake flows
that are subject respectively to the Tollmien-Schlichting, the Kelvin-Helmholtz and the Benard-von
Karman instabilities. In this framework, the frequential approach may be very appreciative for weakly
stable systems, i.e. for systems where a is close to 0. In these cases, the impulse response relaxation
time is very high so that the temporal approach would require very long time stepping simulations to
compute the snapshots while the frequential responses would remain peaked at a given low frequency.

2.2.5 Numerical methods

Our numerical approach is based on a finite element method. All the equations are first rewritten in a
variational formulation and then spatially discretized using a mesh composed of triangular elements. In
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Figure 2.1: Streamlines of the base flow at Re = 600. The actuator and sensor locations are also
depicted.

particular, the velocity fields are projected onto six-node quadratic triangular elements with quadratic
interpolation (P2-elements) whereas the pressure field is discretized using three-node linear triangular
elements (Pl-elements). All the discrete matrices resulting from the projection of the variational for-
mulations onto the basis of finite elements are sparse, they are built with the FreeFem++ software
(http://www.freefem.org).

The frequential snapshots Xl(wi) and Vl(wi) at discrete pulsations w; are obtained by inverting the linear
systems (2.16) and (2.17). These snapshots are then recombined to compute the matrices X; and Y; by
using an equidistant spacing Aw between the snapshots and quadrature coefficients §; corresponding to
the 4*"-order Simpson method. The matrix inversion required to compute these snapshots are handled
through a direct multifrontal sparse LU solver (MUMPS), see Amestoy et al. (2001). Hence, the cost
of this algorithm is approximately given by the cost of the LU decomposition of a large sparse complex
matrix since the following successive inverses are cheap.

2.3 Globally stable case: the rounded backward-facing step flow

Here we provide an example of BPOD/POD model reduction using the snapshot method in the frequency
domain as described in section 2.2. The case of a globally stable flow is first studied in this section by
considering the input-output dynamics over a backward-facing step flow.

2.3.1 Flow configuration

We consider the two-dimensional rounded backward-facing step depicted on figure 2.1. It consists of a
circular part designed so that its length is twice its height (this geometry stems from the experimental
work by Duriez (2009)). The upstream velocity and the step height are used to make all quantities non-
dimensional. The beginning and ending of the step are located at (x = 0,y = 1) and (z = 2,y = 0). The

upstream, downstream and upper boundaries are respectively located at x = —20, x = 100 and y = 20.
A uniform and unitary velocity field (u = 1,v = 0) is prescribed at the inlet boundary (z = —20) and a
laminar boundary layer starts developing on the lower boundary at (x = —2,y = 1). A free-slip condition

with zero tangential stress (Oyu = 0,v = 0) is prescribed on the boundary (—20 <z < -2,y = 1). No-
slip boundary conditions (u = 0) are imposed on (-2 < z < 0,y = 1), on the step wall and on the
downstream wall (2 < x < 100,y = 0). Symmetry boundary conditions are used at the upper boundary
and a free outflow condition pn — Re™}(Vu) - m = 0 is used at the outlet (n being the outward normal
unitary vector of the boundary).

The resulting base flow is computed by solving a Newton-Raphson method, as in the work by Sipp &
Lebedev (2007). We choose a Reynolds number Re = 600 where the flow is globally stable to two-
dimensional perturbations, its corresponding base flow is represented in figure 2.1. The displacement
thickness at x = 0 is 0* ~ 0.082, leading to a Reynolds number based on the displacement thickness of
Res« = 49.2. This choice of parameters rules out instabilities related to the boundary layer dynamics.
The boundary layer separates at x =~ 0.6 and reattaches at x ~ 11 exhibiting a long shear layer responsible
for strong transient growths. The input-output behavior is investigated by introducing one actuator and
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Figure 2.2: The left plot (a) shows the energy of the direct snapshots X1 as a function of w. Figures
(b),(c),(d) and (e) represent the real parts of the longitudinal velocity of the direct snapshots associated
with the frequencies w; = 0.2, 0.72, 2 and 3 respectively.

one sensor as sketched in figure 2.1. The actuator is located on the step, just before the boundary
layer separation, so as to trigger the most efficient response and the sensor is placed downstream, in
the vicinity of the reattachment point. Once discretized, the equations governing the dynamics of
small perturbations with actuation and sensing are given by the linear input-output system previously
introduced in equations (2.5). The actuator B stands for a volume forcing of Gaussian shape on the
vertical velocity component centered on the step wall at x = 0.6, with a width of 0.6 and a height of 1.
As the measured quantity, we consider the wall-normal shear stress evaluated at and integrated over a
localized region of the wall (the sensor location) so that m(t) = f;;llm Oyudz, which yields the vector
C.

To give an idea, a typical discretization yields ni = 360000 degrees of freedom stemming from about
90000 triangles.

2.3.2 Frequential snapshots

The frequential direct and adjoint snapshots required for the model reduction are computed by solving
equations (2.16) and (2.17). We have computed 399 equispaced complex frequential snapshots X; and
Y, from w = 0 to w = 4 (resulting in ng = ng = 798).

As expressed in section 2.2, the direct snapshots correspond to the long time responses of the system
to harmonic forcings of pulsation w from the input location. We have represented in figure 2.2(a) the
evolution of the kinetic energy of the direct snapshots ||X;]|> = X*Q1X; as a function of w to highlight
the noise amplifier behavior of this flow. The most amplified frequency w & 0.72 is associated with the
Kelvin-Helmholtz instability of the separated shear layer. Figures 2.2(b-e) depict the real part of the
longitudinal velocity of the direct snapshots X for different frequencies. As expected, the corresponding
patterns extend downstream from the actuator through the shear layer. The triggered wavepackets
shown on these figures exhibit a spatial support that strongly depends on w. Excitation to higher
frequencies leads to smaller flow structures and to a faster diffusion. In particular, the highest frequency
responses remain spatially localized in the vicinity of the actuator while the smallest frequency responses
are widely extended downstream.

Figure 2.3 is devoted to the same purpose for the adjoint snapshots. In a similar manner, the adjoint
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Figure 2.3: The left plot (a) shows the energy of the adjoint snapshots as a function of w. Note that,
owing to the definition (2.10) of the snapshots, the relevant quantity to be measured is Q;Y;. Figures

(b),(c),(d) and (e) represent the real parts of the longitudinal velocity of the adjoint snapshots associated
with the frequencies w; = 0.2, 0.64, 2 and 3 respectively.

snapshots correspond to the long time responses of the adjoint system to a harmonic forcing of pulsation
w from the sensor. The energy HQlylHQ displays a peak at a nearby frequency of w = 0.64 and,
analogously, the adjoint flow patterns are convected backward in time from the sensor to the upstream
flow. A physical interpretation of the adjoint snapshots may arise by considering the transfer function
of the system (2.5). The transfer function G(w) links the fourier transform of the input @(w) to that of
the output m(w) by

m(w) = Glw)i(w) (2.24)

and can be computed by G(w) = C(jwl — A)"1B or, introducing the adjoint snapshot Y1 (w), by

G(w) = Y (w)Q:B (2.25)

This means that, given a frequency wy, the component m(wp) of the measure is proportional to \?i‘ (wo)Q1B,
i.e. the inner product between the actuator B and the frequential snapshot Y, (wo). In other words, the
flow structures excited by the output and shown in figure 2.3(b-e) are also the states to which the sen-
sor is the most sensitive at this given frequency excitation. In our case, we observe that these forcing
structures leading to maximum measurements at the sensor are upstream-tilted patterns located along
the shear layer. They are leant against the shear so as to optimally trigger the Orr mechanism and are
then amplified through the shear layer. Analogously to the direct snapshots, the spatial support of the
adjoint states strongly depends on w. For higher frequencies, smaller flow structures are localized in the
vicinity of the sensor due to a higher diffusion while smallest frequency responses are largely extended
upstream.

2.3.3 Reduced-order models

The previously computed frequential snapshots are used within the procedure outlined in section 2.2 to
build BPOD/POD based reduced-order models. We have represented on figure 2.4(a) the first 14 HSVs
oj. As expressed in section 2.2, the HSVs provide a way to assess the controllability and observability
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Figure 2.4: (a) First 14 HSVs o; and (d) first 140 POD eigenvalues \;. (b) and (c) stand for the
streamwise velocity component of the first and third BPOD modes. Analogously, (e) and (f) stand for
the first and third POD modes.

of its associated modes. This quantity is naturally used to decide on a truncation point and thus on the
size of the reduced-order models. A significant drop in the HSVs is observed and justifies the truncation
of the balancing basis. Similarly, we have represented on figure 2.4(d) the first 140 POD eigenvalues
Aj. Note that they rank the associated POD modes according to how easily they can be influenced by
the input, i.e. their controllability. We have represented in figure 2.4(b,c) the first and third BPOD
modes, visualized by their streamwise velocity component. They consist of wavepackets resulting from
the amplification of vortices along the shear layer and spatially localized between the actuator and the
sensor. Figures 2.4(e,f) are devoted to the same purpose for the first and third POD modes. It should
be noted that they reduce to the structures that are the most easily influenced by the input. In other
words, low energy is needed to force these large-scale structures downstream owing to the amplification
provided by the intrinsic flow dynamics. They also appear as wavepackets but are somewhat more
spatially extended downstream where the energy of the response to forcing is the largest. This latter
observation is consistent with other recent works, see Bagheri et al. (2009¢,b).

Interestingly we notice a pairwise occurrence of the eigenvalues. Looking at figure 2.4(a), the first 6 HSVs
come in pairs while it is even more obvious on figure 2.4(d) for the first 30 POD eigenvalues. According to
the works by Aubry et al. (1991, 1992) based on the time-space bi-orthogonal decomposition of complex
signals, the POD modes of a traveling wave consist of degenerated pairs of modes, having the same
eigenvalues and having shifted spatial structures of one another. In our case, it is indeed recovered that
the eigenmodes of a given pair are a quarter period out of phase. This result holds for both BPOD and
POD modes. This confirms that our models are predominantly governed by the dynamics of traveling
waves. Recalling that POD models are meant to recover the exact flow field response, contrary to BPOD
models (see section 2.2.4.1), it is natural to observe a clearer representation of the original traveling wave
packet in the case of POD modes. For higher BPOD or POD modes, the pairwise occurrence of the
eigenvalues gradually vanishes. One may attribute this result to a deviation from traveling waves due to
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Figure 2.5: (a) Impulse response of the full system G(¢) and of the reduced-order models G,(t) for (a)
BPOD models and (b) POD models.

the modulation of the wave packet in the streamwise direction, see Aubry & Lima (1995); Aubry et al.
(2003).

It should be mentioned at this stage that our 399 complex and equally spaced snapshots are sufficient
for accurate computation of the BPOD and POD modes, since for a larger number of snapshots, with
finer spacing or larger frequency interval, there is no considerable change in the eigenvalue spectrum.

2.3.4 Impulse response and transfer function

By definition, the input-output behavior links the effect of the actuator on the flow to the information
extracted by the sensor. It can be described by the impulse response or, equivalently, by the transfer
function. The impulse response of a linear system is important, since the response of the system to any
input can be found from the convolution of the impulse response with the input. The impulse response
G(t) of the full system is obtained numerically from a time-stepper simulation of the linearized Navier-
Stokes equations (2.4) for the control law ¢(t) = d(t), 6(¢) being the dirac function. In other words, the
impulse response is G(t) = CX;(t) where X;(¢) is solution of the initial-value problem

Xy
9% AX 9.26
i ! (2.26a)

Xi(t=0) = B (2.26b)

The corresponding simulation is integrated in time using a second-order accurate scheme. The impulse
responses of the ROMs G, (t) are computed directly by G,(t) = C,eA*B, where A,, B, and C, stand for
the matrices A, B and C projected onto » modes. Figures 2.5(a,b) display the impulse response of the
full system and those of the BPOD and POD reduced-order models respectively. The impulse response
of BPOD models with » = 6, » = 10 and r = 14 are represented on figure 2.5(a) and those of POD
models with r = 40, » = 60 and r = 100 are represented on figure 2.5(b). With » = 14 BPOD modes or
r = 100 POD modes, we observe that reduced models register the same signal as the full model. The
impulse at the actuator B generate a wavepacket that travels along the shear layer until it reaches the
sensor at t &~ 10. The effect of this wavepacket is measured by the sensor until ¢ ~ 35 and is then further
convected downstream to eventually leave the computational domain.

Since all frequencies are equally excited by an initial impulse, a convenient and alternative way of
expressing the input-output behavior of a linear system is to switch to the frequency domain. The
frequency response of the full system and the ROMs are compared next. The transfer function of the
full system is simply given by C(w) = fooo e J@tG(t)dt while those of the ROMs are obtained, using
equivalent notations, by CT(w) = C,(jwl, — A,)"!B, where |, stand for the identity matrix of size r.
Note that the exact transfer function is easily computed by measuring (multiplying by C) each already
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Figure 2.6: Transfer function of the full system G(w) and of the reduced-order models G,(w) for (a)
BPOD models and (b) POD models.

computed direct snapshots Xi(w;) = (jwil — A)"'B. Figures 2.6(a,b) depict the absolute values of the
transfer functions of the full system together with those of BPOD and POD models respectively. We
recover a preferred frequency around w = 0.78 which corresponds to the pseudo-pulsation observed in
figure 2.5. Note that this pulsation is also associated with the amplification of the impulse perturbation
through the shear layer due to the Kelvin-Helmholtz instability. In terms of models efficiency, the same
conclusion arises since 14 BPOD and 100 POD modes are respectively sufficient to capture the most
important trends of the input-output behavior.

For the sake of completeness, we also quantify the performance of the models in capturing the input-
output behavior by computing the H., relative norm of the error. For a model if size r, this error,
denoted by e (r) is given by

maxyecRr ‘G(w) - GT‘ (w)|

oo(T) = (2.27)

max,er |G(w)]

The choice of this norm is motivated by the availability of theoretical bounds on the discrepancy between
the approximate and exact transfer functions for balanced truncation. In figure 2.7(a) and 2.7(b), we
have represented the error e (r) for the BPOD and POD models respectively. As expected, the error
falls off in both cases, assessing the efficiency of these models. In particular, we observe that the number
of required POD modes to reach a given error e, is significantly higher than the number of required
BPOD modes. Indeed, the BPOD error falls quite rapidly and remains bounded between the lower
(valid for any ROM) and the upper (valid for balanced truncation models) theoretical bounds (Antoulas
(2005); Rowley (2005)) given by:

or41 < 1GW) =Gl <2 ) 05

j=r+1

(2.28)

where ny is the dimension of the full system. We conclude that both models succeed in capturing the
full input-output behavior of the system with a superiority of BPOD models over POD ones. This latter
point is consistent with existing literature, see Barbagallo et al. (2009).

2.4 Globally unstable case: the square cavity flow

Here we deal with the case of a two-dimensional square cavity flow. We consider the same configuration,
input and output as those used by Barbagallo et al. (2009) whose base flow exhibit 8 unstable global
modes. Due to the unstable nature of the flow, any initial disturbance is amplified, leading to large-
amplitude perturbations for sufficiently large times. Recalling the linear dynamics assumption introduced
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Figure 2.7: Hy, relative norm of the error e, as a function of the size r of the reduced order models for
(a) the BPOD and (b) the POD modes. Note that the upper and lower bounds on the error, computed
by equation (2.28), have been reported in (a) by solid lines.

in section 2.2, we are concerned here with the early development of the perturbations, i.e. the stage
where the perturbation amplitude remains weak. In the reference work (Barbagallo et al. (2009)), the
authors have designed reduced-order models for flow control purpose. Particularly, they showed that
BPOD and POD modes were successful in capturing the input-output behavior of their low. They used
a snapshot method based on a temporal definition of the Gramians, restricting their approach to the
stable subspace dynamics. Consequently they had to model the unstable dynamics separately, using
the unstable global modes. The second numerical example presented here is used as a reference case
to show that frequential snapshots enable to reduce the system without separating the unstable and
stable subspaces and that the resulting ROMs yield the correct full input-output dynamics (meaning
both the correct stable and unstable input-output behaviors). To this end, we reduce the system using
BPOD and POD modes, as in the previous section and we next compare our results to those obtained
by Barbagallo et al. (2009).

2.4.1 Flow configuration

We briefly describe the flow configuration studied in this section. The square cavity flow of interest
has first been introduced in Sipp & Lebedev (2007) where a more detailed description of the geometry
and boundary conditions is available. It consists of a uniform incoming flow over a square cavity. The
Reynolds number based on the uniform upstream velocity and cavity depth is fixed to Re = 7500. The
corresponding base flow, defined as a solution of the steady Navier-Stokes equations, is displayed on
figure 2.8 by its streamlines together with the actuator and sensor location. Note that the boundary
layer starts developing at = —0.4 (the origin of the coordinate system coincides with the top left corner
of the square cavity).

Following the work by Barbagallo et al. (2009), we choose an actuator consisting of a parabolic normal
velocity blowing near the upstream edge of the cavity, over the streamwise extent (—7/20 < x < 0,y = 0).
Additionally, they adopted a transformation referred to as lifting in order to formulate the problem as
a driven homogeneous state space system. We will not go into further details about this matter as it is
not our point. Yet, it is important to note that their input B used to perform BPOD or POD ROMs is
solution of the steady but inhomogeneous Navier-Stokes equations with boundary conditions given for
(=7/20 <z <0,y =0) by the velocity profile
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Figure 2.8: Streamlines of the base flow at Re = 7500. The actuator and sensor locations are also
depicted.

u(z,y=0,t) = 0 (2.29)

z(1600x 4+ 560

The solution of this steady problem and associated inhomogeneous boundary conditions constitutes the
actuation which is referred to as the input B on the finite input-output system (2.5). The sensor is
located near the downstream edge of the cavity, on the segment (1 <z < 1.1,y = 0). The output is the
wall-normal shear stress evaluated at and integrated over a localized region of the wall:

rz=1.1 au
m(t) = —
) /33:1 y

Similarly, this measurement is expressed by the matrix C on the finite system (2.5) resulting from the
discretization on a given mesh. Note that we choose the same numerical finite element approach based
on the same non-structured triangular mesh as that used by Barbagallo et al. (2009) in order to avoid
any numerical effect. This one results in n; &~ 780000 degrees of freedom stemming from about 200 000
triangles.

(t) dz (2.31)
y=0

As previously mentioned, the base flow is globally unstable at Re = 7500. A global stability analysis of
the flow is presented in Barbagallo et al. (2009), we briefly summarize their results here. The system
of equations (2.5) allows the computation of a temporal global spectrum and associated modes via the
common assumption of an exponential time-dependence expressed as Xj(z,y,t) = )~(1(:U,y)67t where
v € C is the eigenvalue and X; the eigenvector given by

AXy =X (2.32)

Eigenvalues are decomposed into v = a+ jw where « is the amplification rate and w the pulsation so that
unstable modes are characterized by o > 0. The low-frequency part of the eigenspectrum, corresponding
to the most unstable global modes, has been represented on figure 2.9. This stability analysis displays
4 unstable "physical" global modes, i.e. 8 if the complex conjugates are counted. These four unstable
modes are denoted by F_3, E_o, E_; and Fy as in Barbagallo et al. (2009). Furthermore, we have
also highlighted a stable global mode, denoted by FE5, which displays a prominent contribution to the
input-output dynamics, see Barbagallo et al. (2009). The role of this particular mode is illustrated
below.
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Figure 2.9: Part of the global eigenspectrum of the square cavity flow at Re = 7500 (taken from
Barbagallo et al. (2009)).

2.4.2 Frequential snapshots

Similarly to the flow over the backward-facing step, the frequential direct and adjoint snapshots required
for the model reduction are computed by solving equations (2.16) and (2.17). We have computed 499
equispaced complex frequential snapshots X; and Y; from w =0 to w = 35, resulting in ng = n, = 998.
Since the full system is unstable, these complex flow states can no longer be interpreted physically as
long time responses to harmonic forcings. However, the inversion required to solve equations (2.16)
and (2.17) remain tractable as far as there are no marginal modes, which is the case here. We have
represented on figure 2.10 the evolution of the snapshots kinetic energy |[X1]|? and ||Q1Y1]|? as a function
of w. We observe that both quantities display 5 peaks and eventually decrease quite abruptly for higher
frequencies. These peaks are actually resulting from a pseudo-resonance with nearby global modes.
This statement is argued by the representation of the frequencies of the corresponding global modes by
dashed lines. To be more precise, the four highest frequencies depicted on figure 2.10 correspond to the
four isolated unstable global modes labeled E_3, E_5, E_1 and Ey. Within this set, we observe that
the modes having the smallest growth rate lead to the highest energy peak, emphasizing the pseudo-
resonance phenomenon. As for the first low-frequency peak at w & 4.54, it is related to the stable
global mode FEs. This particular mode has been shown (Barbagallo et al. (2009)) to have an important
contribution to the input-output behavior, more precisely, it is both strongly controllable and observable.
Interestingly, we recover a peak of energy for both the direct and adjoint snapshots at its frequency.

2.4.3 Reduced-order models

Following the procedure introduced in section 2.2, the snapshots are used to build BPOD and POD
based ROMs as in the case of the backward-facing step flow. The first 40 HSVs o; and first 200 POD
eigenvalues \; computed for the square cavity flow are represented on figures 2.11(a) and (b) respectively.
Analogously to the results presented in section 2.3, a significant drop in the H5Vs is observed and the
first ones are seen to come in pairs due to the representation of traveling structures by the superposition
of modes that are 90° out of phase. Moreover, the same observations hold for the POD eigenvalues.
Similarly to the previous numerical example, it was found that the 499 computed snapshots are sufficient
for an accurate computation of the BPOD/POD modes and eigenvalues.

The resulting ROMs defined by equation (2.6) are found to be unstable with both BPOD and POD
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Figure 2.10: Energy of the direct X1 and adjoint QY1 snapshots as a function of w. The lines indicate
the frequencies of nearby global modes Es, E_1, E_3, E_5 and Ej (ordered from left to right).
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Figure 2.11: (a) First 40 HSVs o; and (b) first 200 POD eigenvalues \;.

models. In other words, the reduced matrices A, now possess unstable eigenmodes, which is not sur-
prising since the original system is unstable. For unstable systems, the usual transfer functions are
no more defined. Yet, one can still compute the "frequency response” of the full unstable system
G(w) = C(jwl — A)™1B and of the ROMs G, (w) = C.(jwl, — A,) 1B, as long as there are no marginal
modes. This latter quantity may be useful to assess the performance of the ROMs in capturing the full
input-output dynamics, all the more so as Zhou et al. (1999) demonstrated that the upper theoretical
bound on the Hy, transfer function error e (), given in equation (2.28), still holds for the balanced
truncation of possibly unstable systems. We have represented on figure 2.12 the relative error e (r)
defined by equation (2.27) in the case of the cavity flow together with theoretical bounds given by (2.28).
The error is indeed observed to lie between these bounds and decrease while increasing the size r of the
ROMs, linking favorably our results to the theoretical predictions by Zhou et al. (1999). This first result
illustrates the relevancy and ability of BPOD models to capture the over-all input-output dynamics of
our unstable system. However, we next provide a deeper insight into the performance of the BPOD and
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Figure 2.12: Relative error e as a function of the size r of the ROMs for the BPOD models. The upper
and lower bounds on the error, computed by equation (2.28), are also displayed by the upper and lower
solid lines.

POD models in modeling the unstable and stable input-output behavior. This issue has been largely
investigated by Barbagallo et al. (2009) as they showed that the accurate modeling of each subspace is
essential when it comes to effective closed-loop control design. As a result, particular attention is given
to them in the remaining of this section.

2.4.3.1 Comparison of the unstable subspaces

Because of their ability to model the inherent instabilities and because of their low dimensionality,
the unstable global modes come out as the most natural basis of the unstable subspace. Besides,
Ahuja & Rowley (2010) and Barbagallo et al. (2009) directly used them to represent the dynamics of
their unstable subspace, leading to an "exact" model since no modeling assumptions are invoked. The
unstable dynamics of the ROMs is thus compared to the original one through their unstable modes.
The eigenspectrum and global modal decomposition of the ROMs is obtained by directly computing the
eigenvalues/eigenvectors of the reduced matrix A,. We have represented on figure 2.13(a) the number
of unstable eigenmodes as a function of the size r of the BPOD models. it is observed that models of
sufficiently high size eventually exhibit 8 unstable global modes just like the full system. The number of
unstable modes rise quickly to reach 8 for a model of size » = 15 which is highlighted on the figure by a
dashed line. We note that BPOD models of size 24 and 32 possess 9 unstable global modes, which may
be attributed to the sensitivity of the procedure to numerical issues. Figure 2.13(b) represents the same
information for POD models. Similarly, the number of unstable modes rises until the value of 8 but this
increase is much more erratic than for BPOD models. Additionally, the model size required to get the
8 unstable modes is r = 82 (depicted by a dashed line on the figure) which is far more important than
for BPOD models.

The unstable part (a > 0) of the eigenspectrum of the full system and those of several BPOD and POD
models are depicted on figure 2.14(a) and 2.14(b) respectively. Since the eigenspectrum is symmetric
about the axis (w = 0), only the upper complex half-plan (w > 0) is represented. The computation of
the full system eigenspectrum (and eigenvectors) is based on a classical shift and invert iterative Arnoldi
algorithm. The results on BPOD models, depicted on figure 2.14(a), show that the unstable eigenvalues
of the ROMs quickly tend to those obtained by Barbagallo et al. (2009) on the full system as the model
size r is increased. As for POD models, a similar behavior is observed on figure 2.14(b) though much
more modes are required to recover the unstable global modes of the full system.

This convergence of the unstable eigenmodes is further outlined in table 2.1 where we have listed the
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Figure 2.13: Number of unstable modes for (a) the BPOD models and (b) the POD models. Both ROMs
exhibits 8 unstable modes from the dashed lines standing for » = 15 and r = 82 respectively.

E_3 E_, E_ Ey

Size a w « w « w «@ w
15 0.874806 10.77852 0.723728  13.8188  0.464693 7.884405  0.032403  16.73146
BPOD 20 0.889216 10.8997 0.728018 13.8042 0.465734 7.88121 0.0324203 16.7315
30 0.890282  10.9011  0.728619  13.8037  0.465488  7.88134  0.0324236  16.7315
40 0.890204  10.9004  0.728317  13.8039  0.465577  7.88133  0.0324238  16.7315
82 0.540170 10.93990 0.417714 14.20645 0.401845 7.842179  0.020019  16.74988
POD 120 0.915394  10.8931  0.748506  13.7754 0.47076 7.88286  0.0303051  16.7293
160 0.88925 10.9022 0.722727 13.8058 0.466002 7.88255 0.0215329 16.7345
200 0.891552  10.9028  0.727882  13.8094 0.466655  7.88173  0.0275948  16.7415
Full System 778410 0.890451 10.9008 0.728513 13.8037 0.465557 7.88173 0.032426 16.7315

Table 2.1: Growth rates a and pulsation w of the unstable modes labeled E_3, E_o, E_1 and Ej of the
full system and those of several ROMs. The size column stand for the size r of the ROMs and is equal
to ny for the full system.

growth rate o and pulsation w of the unstable modes of the full system and those of several ROMs. Note
that the column titled "Size" stands for the eigenvalue problem size, that is r for the ROMs and n; for
the full system. We considered that the unstable modes labeled E_3, E_o, E_1 and Ey could be clearly
identified for BPOD models with » > 15 and POD models with r > 82 as their unstable global modes
frequency approximates correctly those of the full system with a 2 digits accuracy. The superiority of
BPOD models over POD ones is more quantitatively illustrated by these results. Note that some further
information on the eigenspectrum of POD models is provided in appendix 2.C.

We now turn our attention to the unstable subspaces. In our case, they are low dimensional (8 in
the case of the full system) and their most natural basis is simply given by the unstable eigenvectors.
By computing the unstable eigenvectors of the ROMs, we come to the conclusion that, for models of
sufficient size, they match those of the full system once rebuilt in their original basis. This is illustrated
in figure 2.15(a,b) where we depict the real part of the longitudinal velocity of the most unstable global
mode F_3 associated, respectively, with the full system and a POD model of size 150. Note that the
mode built from the POD ROM is computed by R1X1T where 5(17» is the reduced unstable eigenvector.
The two resulting flow structures are observed to be almost indistinguishable. Furthermore, this latter
observation holds (not shown here) for the 3 other unstable modes and for BPOD ROMs (computed
by T1)~(1T). In this subsection, we have thus demonstrated that both the BPOD and POD procedures
(for models of sufficient size) are successful in modeling the original unstable subspace insofar as the
unstable subspace of the ROMs possesses the same natural basis.

2.4.3.2 Comparison of the stable input-output dynamics

The stable subspace is, as often, high dimensional and the main effort in reducing the system’s dimension
is expended reducing the dynamics in the stable subspace. Furthermore, it contains substantial physical
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Figure 2.14: Unstable eigenspectrum of the full system versus those of BPOD/POD reduced models.
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Figure 2.15: Real part of the longitudinal velocity of the most unstable eigenvector E_3.

information about the input-output behavior we are interested in. Similarly to previous studies (Ahuja
& Rowley (2010); Barbagallo et al. (2009)), we assess the accuracy of the ROMs in modeling the exact
stable input-output dynamics by computing their stable transfer function.

The stable transfer function of the full system can be computed either by G s(w) = C(jwl—A,)~'B, where
A; is the restriction of A on its stable subspace, or by the Fourier transform of the stable impulse response
defined by G,(t) = Ce”s'B. Here, the exact transfer function is taken from the work by Barbagallo et al.
(2009) where they adopted the second solution. As for the ROMs, the stable transfer functions Gy.g(w)
are directly computed by Grs (w) = Cr(jwl, — As) "B, where A, is the restriction of A, on its stable
subspace. Figure 2.16(a,b) depicts the transfer function of the full system superimposed on those of
several BPOD and POD models respectively. It is observed to be very well approximated in both cases
for ROMs of sufficiently high size. We recover a preferred frequency around w = 4.6, which corresponds
to the frequency of the stable mode Fy and to the first peak observed in figure 2.10. For a model of size
7, this performance is quantified by computing the Hy, relative norm of the error e.s(r) defined by:

max,cRr |Gs(w) - Grs(w)|

(2.33)

€oos(T) = -
(1) max,eg |Gs(w)]
This error is plotted on figure 2.17(a) and 2.17(b) for BPOD and POD ROMs respectively. It is meant
to convey the convergence behavior of the transfer functions of the ROMs as a function of the size r of
the models. Similarly to the backward-facing step flow case, the error converges to zero as the number
of modes increases and a faster error decrease is observed for BPOD models compared to POD ones.

Comparing these error convergences to those observed by Barbagallo et al. (2009), we notice that both
our BPOD/POD models require more modes to reach a given error ens. This is not surprising as our
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Figure 2.16: Transfer function of the full system stable part compared to those of (a) BPOD and (b)
POD models.
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Figure 2.17: Relative norm of the error e, as a function of the size r of the ROMs for (a) the BPOD
and (b) the POD models. The limits from which the ROMs exhibit 8 unstable global modes are depicted
by dashed lines standing for » = 15 and r = 82 respectively.

procedures perform the reduction of both the stable and unstable dynamics at the same time while theirs
are focused on the stable dynamics. Given this fact, the performance of our models in capturing the
correct stable input-output behavior is delayed compared to theirs due to the constraint of modeling the
unstable subspace at the same time. This assertion is further argued on figure 2.17(a,b) where we have
drawn by dashed lines the limits » = 15 and r = 82 from which the models possess 8 unstable global
modes. We clearly notice a sudden fall-off on the error starting from these limits, that is, a sudden
improvement of the models in capturing the stable input-output dynamics.

2.4.3.3 Assessment

We conclude from this section that both ROMs not only succeed in capturing the full unstable sub-
space, but also the stable input-output dynamics. Furthermore, BPOD models proved to capture these
dynamics with less modes, which is in agreement with our previous results on the backward-facing step
flow.

It should be mentioned here that the present BPOD procedure based on frequential definitions of the
Gramians reduces the stable and unstable subspaces simultaneously, see Zhou et al. (1999). In other
words, it is equivalent to separating the stable and unstable parts of the transfer function and performing
the model reduction for both parts separately. This may explain the quick ability of BPOD ROMs to
capture simultaneously and gradually the unstable (see figure 2.13(a) and 2.14(a)) as well as the stable
input-output dynamics (see figure 2.17(a)).
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Concerning POD models, the same idea does not hold and, as a result, their ability to model both
dynamics is not as progressive. Indeed, observing figure 2.13(b), we note that the modeling of the
unstable subspace is not gradual and, most importantly, we show on figure 2.17(b) that the POD ROMs
are completely unable to model the correct stable dynamics until the unstable subspace is well captured
from r =~ 82. This latter point may indicate that a bad modeling of the unstable subspace involves the
incapability of POD ROMs to correctly model the stable dynamics.

Finally, it should be emphasized that our frequential approach to perform BPOD and POD model
reduction is not based on a partition of the unstable and stable subspaces contrary to the previous
works by Ahuja & Rowley (2010); Barbagallo et al. (2009). In their case, they had to: (i) compute
the global eigenmodes by a shift and invert Arnoldi algorithm, (ii) perform a direct and adjoint time-
stepping simulation while projecting at each time step (with the global modes) the resulting states onto
the stable subspace. Their unstable dynamics are then modeled by the unstable global modes while
their snapshots arising from the direct and adjoint simulations are used to build BPOD models (Ahuja
& Rowley (2010); Barbagallo et al. (2009)) and POD models (Barbagallo et al. (2009)) of the stable
input-output dynamics. The square cavity flow configuration studied in this section has thus illustrated
the ability of the frequential snapshots to build BPOD and POD ROMs of an unstable flow system
without separating the unstable and stable subspaces. This prove to be a valuable asset insofar as we
neither had to compute any global modes nor to perform any projection onto the stable subspace.

2.5 Conclusion

In this chapter, we have described how the use of frequential responses of a flow to a given actuator
enables to compute the basis of the most controllable modes (POD modes). Analogously, the harmonic
flow states yielding the maximum contribution to the sensor energy have been introduced to compute
the most and equally controllable and observable modes: the balanced modes (BPOD modes). ROMs
have been designed by the projection of the full original system of equations onto BPOD/POD modes
computed from the so-called frequency snapshots.

As a first step, the whole procedure has been carried out on a stable linear system: the flow over a
rounded backward-facing step. The first example stands for a well-known noise amplifier flow in the
sense that small perturbations can be strongly amplified through the shear layer. The computation of
the frequency snapshots highlighted the frequency selection process of the flow. In particular, an energy
peak of the flow response to harmonic actuation has been observed nearby the frequency associated with
the Kelvin-Helmholtz instability. These frequential snapshots have then been used to build the BPOD
and POD models that proved to be effective in modeling the linear input-output behavior of the flow.
Both the impulse response and transfer function are recovered by the ROMs and a better efficiency of
BPOD models to do so was observed as expected from the literature.

As a second step, we moved on to the case of a linear unstable system. To assess and quantify the
ability of our procedure to reduce unstable systems, we applied the same technique on a well-known
oscillator system: the flow over a square cavity. On the one hand, the resulting ROMs were shown
to capture the same unstable global modes as those of the original system and, on the other hand, an
accurate modeling of the stable dynamics has also been recovered by investigating the stable transfer
functions. Similarly, a superiority of BPOD models over POD ones was noticed. Contrary to the work
by Barbagallo et al. (2009) where the authors made a partition to model the stable (using BPOD/POD
ROMs based on temporal snapshots) and unstable (using global modes) subspaces separately, our model
reduction technique has proved to model efficiently at the same time both dynamics.

In summary, we proved the possibility and efficiency of frequential snapshots to yield BPOD and POD
models that are: (i) identical to those computed from temporal snapshots for stable systems, (ii) op-
erational for unstable systems without separating the unstable and stable subspaces. Therefore, this
contribution on model reduction seems to be a promising alternative tool to compute POD modes or
to approximate balanced truncation. We hope that the present contribution will somehow aid in the
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design of frequency-based ROMs in view of building efficient closed-loop flow controllers.
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Chapter appendix

2.A Formulation of the incompressible linearized Navier-Stokes equa-
tions as a standard state-space system

The design of reduced-order models requires to reformulate the linearized Navier-Stokes equations into
a standard state-space form. Yet, this is not trivial since the matrix before the time derivative is not
invertible because of incompressibility. To this end, we proceed as in Barbagallo et al. (2009). We first
multiply the momentum equation by Ang_l, which yields, assuming that AoX, = 0, an expression for
the pressure in terms of the velocity field

Xo = — (A2Q;"A3) T [(AsQy AL Xy + AgBic(t)] (2.34)

This relation can be used to eliminate the explicit divergence constraint and allows us to write the
governing linearized equations in the desired form

dX
ditl = P1AIX; +P1QiBic(t) (2.35a)
where
P1Qi =1 — QT'A (A2Q1AS) ' A (2.36)

is the projection matrix onto the divergence-free space. It is noteworthy that P; is a Hermitian operator,
so that we can take advantage of the relation P] = P;. By defining A = P;A; and B = P1Q;B; and
C = Cy, we recover equation (2.5).

2.B Expressing the frequential snapshots in relation to the linearized
Navier-Stokes equations

2.B.1 Direct snapshots

The direct flow states X; involved in the snapshots method are defined in equations (2.10). Substituting
A and B by their expression calculated in appendix 2.A leads to:

(jwl — P1A)X; = P1Q:B; (2.37)

If we introduce the pressure Xg associated to Xl by

X2 = — (A2Qy'A3) [(A2Q1_1A1) X1+ AQBl} (2.38)

we get

ijl — Ql_lAlf(l — QIIA;XQ = Bl (239)

so that we recover equation (2.16):

(5 0)-(R BN - (B 0)(5) e
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The finite number of flow fields Xl(wi) at discrete pulsations w; can be obtained by inverting this
linear system and are stacked as columns of the matrix X;. The above demonstration shows that the
controllability Gramian G, defined in (2.14) can be thought of as the spatial correlation matrix for the
harmonic responses to harmonic forcings at the actuator location.
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Figure 2.18: (a) Part of the eigenspectrum of POD models of size 120, 140 and 200 superimposed onto
that of the full system. A closer view is depicted for the model of size 200 on (b).

2.B.2 Adjoint snapshots

The adjoint flow states VY1 involved in the snapshot method are defined in equations (2.10). In a similar
manner, a substitution of the expressions of A and C calculated in appendix 2.A leads to:

(—jwl - PIAT)PlQl?l = P1Q1 (QI_ICT) (241)

If we omit the incompressibility constraint P;Q; on Vl, which is already applied through the evolution
operator (—jwl — P1A}), we have:

(—jwl — P1A})Y: = P1Qi (Q71CY) (2.42)
Similarly, if we introduce the adjoint pressure Y, associated to Yi by

—1a%\—1 1Ak O 1 x
Va = — (AQr A7) T [(AQrTAT) Vi + AsQy ] (2.43)
we get,
—jwY1 — QALY — QALY = QUIC (2.44)

so that we recover equation (2.17):

. (Q 0 Ar A Y.\ _ [C
[_] “ < 0 0) \A o0 Y. ) — Lo (2.452)
The finite number of flow fields ?1(%) at discrete pulsations w; can be obtained by inverting this linear

system and are stacked as columns of the matrix Y;. Analogously, The observability Gramian G, can be
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thought of as the spatial correlation matrix for the harmonic responses of the adjoint system to harmonic
forcings at the sensor location.

2.C Eigenspectrum of POD models

This appendix is devoted to showing an interesting observation on the eigenspectrum of POD models.
We have represented in figure 2.18(a) a larger part of the eigenspectrum corresponding to models of size
r =120, r = 140 and r = 200 together with the spectrum of global eigenmodes. As detailed in section
2.4, the unstable eigenvalues of POD models tend to those of the full system. Here we take a closer look
at the stable part of the eigenspectrum («a < 0). The global eigenspectrum, depicted by triangles, is
characterized by eigenmodes organized in branches. We notice that each POD eigenspectrum displays a
branch of modes that tends to the most unstable branch of the global eigenspectrum as the model size
r is increased.

Figure 2.18(b) represents the same global eigenspectrum focused on the region —0.8 < a < 0.2 and that
of a POD model of size 200. It is strikingly noticed that the first unstable POD eigenvalues superimpose
onto the first global eigenmodes. Note that BPOD models do not yield the same observation (not shown
here). This result suggests that the POD procedure somehow rebuilds the original spectrum of the
original full system.

80



Interlude

We showed in chapter 2 how to use a set of frequential snapshots to construct Reduced Order Models
(ROMs) that efficiently capture the input-output dynamics. In the case of the backward-facing step flow,
we successfully modelled the dynamics from an actuator, located in the vicinity of the flow separation,
to a sensor located near reattachment. Since we considered only one actuator (input) and only one
sensor (output), our problem may be referred to as a Single Input Single Output (SISO) configuration.
We have represented in figure 2.19 a sketch of the SISO dynamics investigated so far. The input Be(t)
acts on the flow dynamics which yield the measured quantity m(¢) by means of the sensing C. A critical
point to understand is that the ROMs designed in our SISO configuration are not meant to capture
the dynamics from another input B to another output C. In particular, these ROMS do not model the
flow dynamics, i.e. they neither approximate the dynamical operator A nor the time propagator which
may be formally written as eA?. Instead, as exposed in chapter 2, they are shown to recover the original
impulse response CeA'B. Generally speaking, a ROM which captures the input-output dynamics does
not necessarily accurately model the flow states driven by the input. For instance the Balanced models
presented in the previous chapter are not able to do so. On the other hand, the ROMs based on the
most controllable modes (referred to as POD models) have been observed to recover the original flow
response e*B, namely the entire flow dynamics excited by the input.

Now, in more realistic situations, a ROM may be required to model the dynamics from Multiple Inputs
to Multiple Outputs (which is commonly referred to as MIMO configurations). The snapshot method
presented in the previous chapter can easily be extended to a case with a moderate number of inputs and
outputs, see Rowley (2005). To do so, the controllable or balanced modes are computed from additional
sets of snapshots (one additional set for each new input and output). As a result, this procedure quickly
becomes not tractable for large systems as soon as the number of inputs and/or outputs becomes large.
Nevertheless, it is of pivotal importance for practical applications to design ROMs that capture a large
number of inputs and outputs. For instance, we have seen that the backward-facing step flow is a noise
amplifier whose dynamics are driven by external disturbances. As a result, one can expect the flow to
be driven by much more than one input. Mostly, realistic external disturbances act as an unknown noise
8o that one cannot predict a priori which inputs are to be modelled by the desired ROM. Alternatively,
as soon as considering a 3D set-up, namely a 3D base flow, many applications would require much more
than one sensor. Let us for instance consider the design of a closed-loop flow controller in the case of

Actuator Fluid Dynamics Sensor
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Figure 2.19: Sketch of the Single Input Single Output (SISO) dynamics investigated in chapter 2.
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Figure 2.20: Sketch of the Multiple Inputs Single Output (MISO) dynamics investigated in chapter 3.
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our backward facing step flow. In a 3D set-up with lateral walls, we would rather expect to require one
or several arrays of sensors (namely outputs) in the transverse direction to design an accurate low-order
controller.

In this context, the next chapter deals with a case with a large number of inputs. The backward-facing
step flow, along with the same single sensor, are considered. We suppose that the flow is forced by
an unknown noise and we look for ROMs which capture the exact measurement from the sensor. To
do so, we choose to consider all the degrees of freedom of the state-space as the inputs. Then, two
projection bases are considered and investigated to design the ROMs. The first set consists of the most
observable modes which are the flow structures leading to a maximum energy contribution to the sensor
measurement. In other words, they are the states to which the sensor is the most sensitive. The second
basis consists of balanced modes which are computed by an approximate Balanced Truncation procedure.
This approximate procedure will be shown to be nearly optimal to capture the input-output dynamics.
Owing to an analogous procedure introduced by Rowley (2005) and called "output projection", ours
will be referred to as "input projection". The next chapter gives a particular emphasis to the numerical
techniques which allow to compute these balanced modes. Furthermore, a performance comparison
between the ROMs resulting from the different projection bases is assessed. Analogously to figure 2.19,
we have presented a sketch of the input-output dynamics of interest in figure 2.20. In this case the input
Be(t) is replaced by the unknown noise 7(¢) which has a very large number of degrees of freedom. Such
a set-up may accordingly be referred to as a Multiple Inputs Single Output (MISO) configuration. The
results exposed in this chapter have also been reported in an article submitted to Physics of Fluids.
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Chapter 3

Model reduction of the dynamics between
uncertain forcing and a sensor

This chapter addresses the model reduction of high-order linear systems within the framework of the
incompressible Navier-Stokes equations. We look for reduced-order models that capture the response
of some specific sensor whatever the initial flow condition and in the presence of any time-dependent
external forcing. Namely, this work deals with the accurate modeling of the input-output dynamics
of a fluid system when considering each degree of freedom of the system as an input, and the given
measurement as the output. In the case of complex or realistic flows, the number of inputs is too large
to apply the standard balanced truncation procedure. To alleviate this problem, we introduce a method
called input projection. Input projection is shown to be analogous to the output projection procedure
introduced by Rowley (2005). To illustrate the model reduction, we consider the dynamics of a globally
stable flow over a rounded backward-facing step. Reduced-order models are obtained by projecting the
full original system onto: (i) the basis of the leading balanced modes computed from the input-projected
systems and (ii) the most observable modes. The balanced models are observed to accurately capture
the transient growths along the separated flow whatever the input while outperforming the models based
on the most observable modes.

3.1 Introduction

A variety of open flows, such as boundary layers, mixing layers or separated flows, are subject to
convective instabilities which amplify upstream low-level noise. In fact, even if globally stable, these
flows may sustain large flow unsteadiness characterized by broadband frequencies due to the presence
of permanent upstream noise, see Kaiktsis et al. (1996). These flows are often called selective noise-
amplifiers and may be highly sensitive to small upstream perturbations (residual turbulence, noise,
surface roughness). In particular, the dynamics of such flows strongly depend on the characteristics of
the upstream noise, which are unknown in practice. As a result, modeling the dynamics of amplifier
flows remains a challenging task which, however, is crucial in many industrial applications. Typical
examples are: (i) the closed-loop control of the laminar-turbulent transition in boundary layer flows
(Bagheri et al. (2009b); Bagheri & Henningson (2011); Semeraro et al. (2011)) and (ii) the design of near
optimal state estimators in meteorology (Farrell & Toannou (2001b,a)). In both cases, due to the large
size of the fluid systems, reduced-order models (ROMs) of the flow dynamics which capture the noise
are required.

In order to capture such an unspecified noise, one solution consists of building ROMs which capture all
the possible inputs. As a prototype example, we consider the flow over a rounded backward-facing step
shown in figure 3.1. This flow is assumed to be driven by an uncertain forcing at the upstream. Our
objective is then to design low-order models that capture the linear dynamics on a single specific sensor,
for all possible forcing configurations. Such a ROM may be very useful in the context of closed-loop
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Figure 3.1: Backward-facing step flow investigated here. The steady-state base flow at Re = 600 is
depicted by its streamlines and longitudinal velocity. The upstream, downstream and upper boundaries
are respectively located at x = —20, x = 100 and y = 20. The exact position of the sensor is also
displayed.

control. For example, Bagheri et al. (2009b) assumed that the upstream noise was known in the design
of their ROM. This noise was taken as a single spatial structure continuously forced in time by a white
noise signal. The associated LQG compensator will therefore only work for this specific spatial structure
and location of the noise. Now, in real experiments, the noise is unknown and a model capturing all
possible inputs would overcome this limitation.

A model reduction technique called Balanced Truncation is particularly suited for stable linear input-
output systems, see Moore (1981). It consists of finding a basis of equally controllable and observable
modes ranked according to these properties. ROMs are obtained by the projection of the original
system onto the leading balanced modes. Balanced Truncation is said to be quasi-optimal to capture the
dynamics from the inputs to the outputs since it offers theoretical bounds on the transfer function error
which are close to the lower bound achievable by any reduced-order model, see Dullerud & Paganini
(2000). This useful property makes it a very efficient and popular technique which brought the use
of modern optimal flow control tools (Burl (1999); Bewley (2001); Zhou et al. (2002); Kim & Bewley
(2007); Sipp et al. (2010)) within reach of current computational technology. Previous works on Balanced
Truncation comprise the extension to non linear problems by Scherpen (1993) and Lall et al. (2002),
the introduction of an algorithm by Laub et al. (1987) for the accurate and optimal computation of the
balanced basis and also the extension to unstable linear systems proposed by Zhou et al. (1999).

Technically, the balanced basis can be computed as the eigenvectors of the product of two operators,
namely the so-called controllability and observability Gramians, see Kim (1998); Antoulas (2005). For
systems of moderate size, with up to O(103) degrees of freedom, the balanced modes can be computed
directly by computing explicitly the Gramians (Farrell & Ioannou (2001b,a); Joshi et al. (1997); Hogberg
et al. (2003)). However, an approximate procedure is required for larger systems since this computa-
tion quickly becomes untractable. A recent extension proposed by Willcox & Peraire (2002) and Rowley
(2005) has overcome this difficulty by approximating the balanced modes without computing the Grami-
ans, by using a snapshot method. This technique, called Balanced Proper Orthogonal Decomposition
(BPOD), has been performed on both stable (Ilak & Rowley (2008); Bagheri et al. (2009b); Dergham
et al. (2011)) and unstable flow configurations, see Ahuja & Rowley (2008); Barbagallo et al. (2009);
Ahuja & Rowley (2010).

Balanced Truncation designs efficient low-order models which capture the dynamics from specific inputs
to specific outputs. However, it may be completely ineffective to deal with the inputs and the outputs
that have not been explicitly taken into account. In particular, it is not meant to model the true flow
perturbation triggered from all the possible initial conditions unless both the input and the output
spaces are chosen as the full state space. For large systems, using the method of snapshots requires the
computation of one direct and one adjoint simulation per input and output. Consequently, choosing a
large number of inputs and outputs quickly becomes unaffordable with the standard snapshot method.
Though, Rowley (2005) has introduced the technique called output projection to approximate the bal-
anced modes for systems having a very large number of outputs. Output projection has been applied for
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the model reduction of a channel flow (Tlak & Rowley (2006, 2008)) and to perform closed-loop control
on the flow past an inclined flat plate (Ahuja & Rowley (2008, 2010)) by choosing the total kinetic
energy of perturbations as the control objective to minimize.

Alternatively, another model reduction procedure is worth mentioning. The eigenvectors of the control-
lability and observability Gramians constitute two sets of orthogonal modes that may be considered to
perform model reduction. The leading eigenmodes of the two Gramians account for the most controllable
and observable states respectively, see Bagheri et al. (2009b). These modes have already been used to
build reduced-order models for fluid systems, see Rowley (2005); Ilak & Rowley (2008); Barbagallo et al.
(2009); Bagheri et al. (20095). In these cases, they are referred to as Proper Orthogonal Decomposition
(POD) models since they are computed from the classical method of snapshots introduced by Sirovich
(1987). By construction, controllable modes optimally capture the energy triggered by the input while
observable modes are the flow structures leading to maximum output energy. In spite of these properties,
the resulting ROMs are known to be sub-optimal for capturing the input-output dynamics, and may
even be ineffective, see Rowley et al. (2004).

In this chapter, we are concerned with Balanced Truncation of stable linear input-output systems having
a very large number of inputs. Particular attention is given to the case where the input is the full state,
which stands for finding low-order models that capture the dynamics from any initial condition or
any forcing distribution to some given output. The procedure developed in this chapter consists of
an approximate Balanced Truncation and an extension of the output projection procedure introduced
by Rowley (2005). In particular, the resulting ROMs are meant to quasi-optimally capture the input-
output dynamics. Owing to its technical analogy with the output projection procedure, we call the
present method input projection. The procedure is illustrated on the incompressible flow over a two-
dimensional backward-facing step, which only accounts for a prototype of noise-amplifier flow. The
formalism introduced here do not rely on physical insight into this particular flow configuration and can
be applied to any other stable open flow configuration. The guideline of this chapter is very similar
to that adopted by Ilak & Rowley (2008) where the performance of the output projection procedure
is assessed on a channel flow. Notably, both the ROMs based on the most observable modes and the
leading balanced modes are investigated. Their performance are evaluated and also compared. The goal
of this chapter is twofold: (i) show the ability of input projection to accurately model the "full-input to
single output" transfer function of a large fluid system and (ii) to illustrate its quasi-optimality.

The rest of the chapter proceeds along the following outline: in section 3.2 we start by introducing the
model reduction procedures within the framework of the incompressible Navier-Stokes equations. These
techniques are then applied to the two-dimensional flow over a backward-facing step, which is described
in section 3.3. Results are presented in section 3.4 where the performance of the ROMs is assessed. A
critical assessment of the input projection technique is provided in section 3.5 and concluding remarks
are presented in section 3.6.

3.2 Model reduction methodology

3.2.1 Problem formulation
3.2.1.1 Governing equations

We consider the incompressible Navier-Stokes equations excited by a small noise (the input) together
with a sensing (the output). The equations governing dynamics of the velocity w and pressure p fields
are given by

ou+ (u-V)u= —Vp+ Re ! V2u + en(t)
Vou=0 (3.1)
m(t) = Cu

where Re denotes the Reynolds number and 7(t) stands for a field modeling the noise. The parameter
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e points out that the noise is small compared to the other terms of the equation. Thus, en(t) acts as
a small time dependent forcing on the momentum equation. As in a practical case, we consider that
the spatial and temporal distributions of the noise 7(t) are unknown. Since the velocity field has a
divergence-free constraint, it can easily be shown that only the divergence-free part of 7(t) will have an
effect on the system, so that we can suppose that V-n(t) = 0. This forcing term n(t) is considered as
the input of our problem in the following.

The measure denoted by m(t) represents a quantity extracted from the flow by some sensors. Math-
ematically, it is expressed as the result of a measure operator C applied to the velocity field w. For
simplicity, we will consider in this work a single sensor, so that m(t) is a scalar. This measurement
is also referred to as the output of our system. In this context, we wish to design ROMs capable of
capturing the linear input-output dynamics of this system. In other words, we wish to model accurately
these dynamics whatever the noise distribution.

First, we linearize the dynamics given by the equations (3.1) at the order £ about a base flow. This base
flow is chosen here to be the solution of the associated steady Navier-Stokes equations with € = 0. The
velocity of the base flow is denoted by U in the following and we adopt, for simplicity, the notation (u, p)
for the perturbation field and m(t) for the measure of the perturbation. The resulting set of equations
reads

Ou+U -Vu+u-VU = —Vp+ Re ' V2u +n(t)

Vou =0 (3.2)

m(t) = Cu
which accounts for the linear dynamics of the perturbations about the base flow. Within a numerical
approach, equations (3.2) are discretized on a mesh. It can be shown (see appendix 3.A) that we can
write the resulting discretized equations in the following matrix form

dX

m(t) = CX (3.3b)

where X and C denote the vectors resulting from the discretization of u and C. Additionally, we assumed
that n(¢) and m(¢) maintain the same notation once discretized and the matrix A represents the linearized
Navier-Stokes operator which is supposed to be stable in the following. Equations (3.3) constitute the
stable linear input-output state-space system considered in the following. The size of this system,
denoted by n, is also its number of degrees of freedom. Thus, the matrix A is of size n x n, the states X
and 7(t) are of size n x 1 and C is of size 1 x n.

3.2.1.2 Definition of the norms

Mathematically, there are two relevant and equivalent quantities for assessing the input-output behavior
of system 3.3: the impulse response g(t) = Ce”* and the transfer function G(w) = C(iwl — A)~!. To
quantify performance of the ROMs, we compute the error on the transfer function, which requires the
definition of some norms.

First, let us introduce an inner product, denoted by (), on the state space. This inner product is chosen

as the standard energy inner product. It is defined for two states Z; and Zs, corresponding to the
velocities u; and wue, by

<21,ZQ>:/Q’U,1.’U,2dQ (34)

Where Q is the fluid volume. We also suppose that the input space, which is equal to the state space,
is endowed with the same inner product. It is then possible to define the adjoint operator Al by
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(Z1,AZs) = (AZ,,Z,) (3.5)

for all possible states Z; and Zy. Furthermore, we define the adjoint of the state X and of the operator
C by

(X,Z)=X'Z and CZ=(C,2) (3.6)

for all possible states Z. Note that g(t) and G(w) are vectors of size 1 x n; their adjoint are defined
similarly to that of C. It is straightforward to show that G'(w) = (—iwl — AT)™LCl and gf(t) = eA'*CH,
which are both of size n x 1.

The norm associated with the inner product () will be denoted by || || in the following. It is defined for

a state X by ||X|| = 1/(X,X). From this inner product, it is possible to define two standard norms to
quantify the transfer function. The 2-norm of the transfer function G is defined by either a frequency or

a time integral:
1 +o00 +o00
6l =[5 [ lIGT s =/ [ gt )2ae (37)
T J—c0 0

Furthermore, we also consider the co-norm of the transfer function which is defined by

[1Glloe = max |G (w)]| (3-8)

Note that both norms are satisfactorily defined since we assumed that A is stable. In addition, the two
norms ||||2 and || ||e should not be confused with the norm || || that measures a state.

3.2.2 Balanced Truncation

Balanced Truncation is a well-known model reduction technique used for stable linear input-output
systems of the form (3.3). It relies on the concept of controllability and observability of the flow states.
Controllability quantifies how easy a state can be reached from any other state while observability
quantifies the amount of measure triggered by a given flow state, see Moore (1981). The key idea of
Balanced Truncation is to find a basis of equally controllable and observable modes and project the
original equations onto the set of the most controllable/observable modes. This basis, which is called
the balanced basis, may be computed as the eigenvectors of the product of the controllability and
observability Gramians defined respectively by

+oo At At +o0 At A
G :/ eMeMtat Go :/ AtCTCeAtat (3.9)
0 0

For large systems, a procedure known as Balanced POD (BPOD) yields a snapshot-based approach
to approximate Balanced Truncation, see Rowley (2005). It relies on the computation of the matrices
X(t) = A and Y(t) = eACH for a discrete set of times in order to stack them (with appropriate
quadrature weights) as columns of a matrix X and Y such that the Gramians may be factored as

o~ XXT o YY'! (3.10)

Next, one can compute the balanced basis from the singular value decomposition YTX = MEN*, where
* denotes the transconjugate. The balanced basis T and its inverse S are found by

T =XNy~1/2 S=yYMx~!/2 (3.11)

where the balanced modes are the columns of the matrix T while its biorthogonal basis constitutes the
columns of S. Note that their orthogonality relation reads ST = I. The entries of the diagonal matrix X
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are known as the Hankel singular values (HSVs) and refer to the equal controllability and observability
of the associated balanced modes.

Using the snapshot method introduced by Rowley (2005), the computation of Y(t) = eAltCt requires
one adjoint simulation since there is only one output. However, the computation of X(t) = €A is not
tractable since it would require n direct simulations, one for each degree of freedom of the system. The
computation of the exact balanced basis associated with system 3.3 is thus not possible in our case. Yet,
we alleviate this problem by considering instead: (i) the observable modes, which are already known in
the literature, and (ii) the balanced modes computed by using the technique introduced here and called
"input projection".

3.2.3 Observable modes

Firstly, we consider an orthogonal basis of modes ranked according to their observability. These modes
are obtained as the leading eigenvectors of the observability Gramian G,. The resulting flow structures
are by definition the most observable states and are ranked according to their contribution to the output
energy, see Bagheri et al. (20098).

For large systems, the leading observable modes can be computed by using the snapshot method in-
troduced by Rowley (2005). The first step is to compute the flow states {Y(¢t) = AltCt: ¢ > 0} with
an adjoint simulation to build the matrix Y. Next, we compute the singular value decomposition
YTY = LAL*. The leading observable modes are then obtained as the columns of the matrix R given by

R=YLA /2 (3.12)

Note that the orthogonality of these modes reads RTR = I. It should also be noticed that the observable
modes reduce to the POD modes of the dataset {Y(¢); t>0} computed with the energy inner product.
The diagonal matrix A yields the leading eigenvalues of G, which account for the observability of the
corresponding eigenvectors.

Reduced-order models can then be obtained by projecting the full system (3.3) onto the most observable
modes. The choice of such ROMs is intuitively motivated insofar as it is based on the modes having
the highest contribution to the sensor energy. However, contrary to balanced models, these ROMs are
sub-optimal (and may be ineffective) for capturing the true input-output dynamics.

3.2.4 Input projection

The second approach considered here is the method called input projection. The idea is to project the
input 7(t) on a low-dimensional subspace while optimally preserving, in the 2-norm sense, the original
transfer function. If we introduce an orthogonal projection P4 on a s-dimensional subspace of the input
space, the new input-output system reduces to

% = AX+Pn(t) (3.13a)
m(t) = CX (3.13D)

where m(t) is the output of the input-projected system. We look for the projection P, that minimizes
the 2-norm error between the original impulse response G(w) and that of the input-projected system,
which is given by G(w) = G(w)Ps. This error can expressed by

+o0
1G = GPsll2 = \//0 1T (2) — Psg(t)][2dt (3.14)
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since PI = P,. Furthermore, noting that gf(t) = Y(t), we infer that the projection that minimizes
this error stands for the projection onto the first s POD modes of the dataset {Y(¢); ¢t >0}. In other
words, P, reduces to the orthogonal projection onto the most observable modes which were introduced
in section 3.2.3. Consequently, P can be written as

P, = RRT (3.15)

where R is the matrix of size n X s whose columns are the first s observable modes. Thus P is a matrix
of size n x n and of rank s.

By construction, only the s most important degrees of freedom of the input 7(¢) have an effect on the
output m(t). By considering 7(t) = Rfn(t) as a new input of size s x 1, the system (3.13) can then be
written as

% = AX+Ri(t) (3.16a)
m(t) = CX (3.16b)

This new input-output system possess the same controllability and observability Gramians as those of
system (3.13). It is referred to as the s input-projected system hereafter. Interestingly, the computation
of the balanced modes of this new system becomes affordable since it only requires s direct simulations,
one for each column of R to get X(t) = eA*R. The balanced basis of system (3.16) will be denoted by T
and S in the rest of the chapter. It should also be emphasized that these balanced modes depend on the
parameter s and that they approximate the balanced modes of the original system (3.3).

Note that the idea to project the input state is analogous to the method called output projection
introduced by Rowley (2005) and performed by Ilak & Rowley (2008) and Ahuja & Rowley (2010). In
their case, the output of the system is the entire state space so that they optimally project the output
on a low-dimensional subspace. In fact, the input projection introduced here can be interpreted as the
output projection on an adjoint system. This observation is presented in more detail in appendix 3.C.

3.2.5 Model reduction

Reduced-order models are obtained by projecting the input-projected equations (3.13) onto the basis of
its leading balanced modes. Keeping the first 7 balanced modes (columns of T and S) the dynamics of
the reduced state X, which is of size r x 1, are given by:

dX,
el A X, + Byn(t) (3.17a)
mr(t) = CX, (3.17b)

where m,.(t) is the output of the reduced-order model and the above-introduced matrices are defined by:

X, = StX A, = STAT B, = S'P, C,=CT (3.18)

where A, is of size r x 1, B, is of size r x n and C,. is of size 1 x r. The corresponding transfer function
is then defined by Gr(w) = C,(iwl, — A,) !B, where |, stands for the identity matrix of size r.

ROMSs based on the most observable modes are also considered in the following. These models are
obtained by using the same procedure, by replacing T and S by R.
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3.3 Application to a backward-facing step flow

3.3.1 Flow configuration
3.3.1.1 Geometry

We consider a two-dimensional rounded backward-facing step of circular geometry, see figure 3.1, and
an incoming flow from the left. This geometry was originally studied by Duriez (2009). The upstream
velocity and the step height are used to make all quantities non-dimensional. The beginning and end
of the step are located at (x = 0,y = 1) and (z = 2,y = 0) respectively. The boundary conditions
are the following: (i) a uniform and unitary velocity field (v = 1,v = 0) is prescribed at the inlet

boundary z = —20. (ii) A free-slip condition with zero tangential stress (9,u = 0,v = 0) is prescribed
on the boundary (—20 < x < —2,y = 1). (iii) A laminar boundary layer starts developing on the lower
boundary at = —2 as no-slip boundary conditions (u = 0) are imposed on (-2 <z < 0,y = 1), on

the step wall and on the downstream wall (2 < z < 100,y = 0). (iv) Symmetry boundary conditions
are used at the upper boundary y = 20 and (v) a free outflow condition pn — Re™(Vu)-n = 0 is used
at the outlet © = 100 (n being the outward normal unitary vector of the boundary).

3.3.1.2 Problem discretization

We used a finite element approach to discretize the problem. The variational formulation of the governing
equations is spatially discretized using a mesh composed of triangular elements. The velocity fields
are projected onto six-node quadratic triangular elements with quadratic interpolation (P2-elements)
whereas the pressure field is discretized using three-node linear triangular elements (P1l-elements). The
matrices resulting from the projection of the variational formulations onto the basis of finite elements
are sparse and are built with the FreeFem-++ software (http://www.freefem.org). The mesh considered
in this work yields n = 360 000 degrees of freedom stemming from about 90000 triangles.

3.3.1.3 Base flow

The base flow considered here is computed by using a Newton-Raphson method for a Reynolds number
Re = 600. The solution is depicted on figure 3.1. At this Reynolds number, the flow is observed to be
globally stable; the matrix A does not have any unstable eigenvalues. The displacement thickness at
x =01is 6* = 0.082, leading to a Reynolds number based on the displacement thickness of Res« ~ 49.2.
The boundary layer separates at © ~ 0.6 and reattaches at x ~ 11. Even if this base flow is globally
stable, it may sustain flow unsteadiness due to the transient energy growth of perturbations. The Kelvin-
Helmholtz instability selectively amplifies the upstream low-level noise along the shear layer to drive the
flow dynamics downstream. As shown on figure 3.1 by the question-marks, the noise distribution is
assumed to be unknown. The sensor is placed downstream in the vicinity of the reattachment point.
The measured quantity is chosen as the wall-normal shear stress evaluated at and integrated over a
localized region of the wall, namely m(t) = f;:llll‘ﬁ Oyudx. This choice of measurement also defines the
output operator C.

3.3.2 Computation of the modes

The balanced and observable modes are computed from the singular value decomposition of YTX and
YTY respectively. The computation of the matrices X and Y is based on the frequential expressions of
the Gramians, see Willcox & Peraire (2002), which are derived from Parseval’s theorem:
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—+00
G, = / (jwl — A)IRRT(—jwl — AT) Ldw

(3.19)
1 [t
G, / (—jwl — ANTICIC(jwl — A) " tdw

zg .

By considering these expressions, we compute the matrices X(w) = (jwl — A)"'R and Y(w) = (—jwl —
AT)~ICT for a discrete set of frequencies in order to stack them as the columns of the matrices X and
Y. To this end, we used 399 equidistant frequencies ranging from w = 0 to w = 4 and quadrature
coefficients corresponding to the 4*"-order Simpson method. This choice proved to be sufficient for an
accurate computation since, for a larger number of snapshots with a finer spacing or a larger frequency
interval, there is no considerable change in the singular values and modes considered here. For each
frequency, \?(w) is computed by one matrix inversion since C' is a vector. Likewise, s inversions are
required to get X(w); one for each column of R. These matrix inversions are performed through a direct
multifrontal sparse LU solver (MUMPS), see Amestoy et al. (2001). Further details on the discretized
formulation of the Gramians resulting from our choice of inner product are available in appendix 3.B.
It should be mentioned that the temporal expressions of the Gramians are usually adopted to factor the
Gramians in (3.10), see Ilak & Rowley (2008); Bagheri et al. (20095); Barbagallo et al. (2009); Ahuja &
Rowley (2010). The present frequential approach has been proved to be equivalent to the temporal one
(Zhou et al. (1999); Willcox & Peraire (2002)) and it has been applied to the same backward facing step
flow configuration by Dergham et al. (2011). Whether using the temporal or the frequential approach
leads in the end to the same projection basis and to the same ROMSs; one may simply choose between
the two according to the available computational tools, see Dergham et al. (2011).

3.4 Results

3.4.1 Observable modes

Using the procedure outlined in section 3.2.3, we compute the most observable modes by using equation
(3.12). The singular values \;, ranking the observability of associated states, are represented on figure
3.2(a). The observability of the modes is seen to fall off quite rapidly indicating that only the first modes
will have a significant contribution to the measured energy. We have represented in figure 3.2(b,c,d,e)
the first, second, third and 12" observable modes, visualized by their streamwise velocity component.
The first eigenvalues are in pairs, indicating that the most significant modes are traveling structures that
are 90° out of phase, figures 3.2(b,c) illustrate this statement.

As one could expect, the flow structures which yield a maximum energy on the sensor are located
upstream. The first modes are spatially located in the vicinity of the separation point while higher
modes, as the 12", have a more extended spatial support. These most observable structures are tilted
in the upstream direction, leaning against the shear layer. This result is consistent with other recent
works (Bagheri et al. (2009¢,b)) where it is interpreted as a way to extract energy from the mean shear
by transporting momentum down the velocity gradient by the so-called Orr mechanism, see Butler &
Farrell (1992). For the sake of simplicity, the ROMs obtained by projection onto the most observable
modes are referred to as "observable models" in the following.

3.4.2 Balanced modes

Next, we compute the balanced modes of the input-projected system (3.16). Several values of the rank
s of input-projection, ranging from 1 to 20, have been considered. The balanced basis (T;S) and its
associated HSVs o; depend on this rank. Figure 3.3 depicts the HSVs of input projected systems of rank
4,10, 16 and 20. It is observed that increasing the rank of the input projection leads to a convergence of
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Figure 3.2: (a) First 50 observable eigenvalues \;. Figures (b),(c),(d) and (e) represent the longitudinal
velocity of the first, second, third and 12" observable modes.

the leading HSVs. In addition, the number of converged HSVs for each input projection is approximately
equal to the input-projection rank s, which was also noticed in previous works using the output projection
procedure, see Rowley (2005); Tlak & Rowley (2008); Ahuja & Rowley (2010). It should be emphasized
that this convergence is also noted for the associated leading balanced modes (not shown here). The
first Hankel singular values also come in pairs, indicating that the most significant balanced modes are
traveling structures. The HSVs, assessing the controllability /observability of associated states are also
observed to fall off quite rapidly, indicating that only the first modes will have a significant contribution
to the overall input-output behavior.

We have represented in figures 3.4(a-f) the first, third and 12" balanced modes computed for the case
s = 20. Figures 3.4(a,c,e) depict the balanced modes (columns of T) while figures 3.4(b,d,f) stand
for their associated adjoint (columns of S). We observe that the leading balanced modes appear as
wavepackets that are somewhat more spatially extended than the observable modes. We also note a
spatial separation between the balanced modes and their adjoint. Essentially, this separation highlights
the non-orthogonality of the balanced modes. This point can be interpreted as a consequence of the
convective nature of the instabilities along the shear layer in which disturbances grow in amplitude
as they are convected in the downstream direction, see Ilak & Rowley (2008); Bagheri et al. (2009b).
As a result, the controllable and observable subspaces are separated in the streamwise direction which
implies that the distribution of both the input (the full state) and the output (the sensor) may hardly be
captured by an orthogonal projection onto the leading modes of only one subspace. The ROMs resulting
from the projection onto the leading balanced modes are called the "balanced models" hereafter.

3.4.3 Performance of the ROMs

The leading observable and balanced modes are used to build reduced order models. Their performance
in capturing the original dynamics of the full system (3.3) is assessed by scrutinizing how the input-
output transfer function is captured. To that purpose, we compute the relative errors of the reduced
transfer functions. Both the 2-norm and the co-norm have been considered. Their associated relative
errors are denoted by ey and ey, respectively. They are defined for a model of size r by

_IG—Gill2 _ 116~ Grlloo

ea(r) = T eco(r) = TGl (3.20)

where the full transfer function is computed from the snapshots Y(w) by G(w) = Yf(w), see appendix
3.B.3. The evolution of these two errors with the size of the ROMs is presented on figures 3.5(a) and
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Figure 3.3: First 50 HSVs o; corresponding to the input-projected systems s = 4, 10, 16, 20.
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Figure 3.4: Figures (a) and (b) represent the longitudinal velocity of the first balanced mode and its
adjoint respectively. (c) and (d) depict analogously the third modes while (e) and (f) represent the 12¢".
These modes have been computed from an input-projected system with s = 20.

3.5(b) respectively. Both yield a good illustration of the effect of the input projection on the performance
of the models.

First let us examine the evolution of the 2-norm error of the balanced and observable models on figure
3.5(a). When increasing the size of the models, the relative error is observed to decrease much faster
for the balanced models than for the observable ones. Note that some points of the observable models
are missing which means that their associated relative error considerably exceeds 100%. Notably, owing
to the input projection, a limit of accuracy is reached by the balanced models as the model size r is
increased. Indeed, the 2-norm error between the original impulse response G(w) and that of an input-
projected system C(w) of rank s, which was given in equation 3.14, can also be expressed as a function
of the observable eigenvalues \; by

IG-GlE= > (3.21)

J=s+1

The resulting relative errors have been plotted on figure 3.5(a) by dots as a function of the input pro-
jection rank s. In other words, for an input projection of rank s, the associated dot yields the limit
of accuracy of the corresponding balanced model. This statement is illustrated by dashed lines which
account for the error associated with the input projections of rank s = 4,10,16,20. Note that the
observable eigenvalues can be directly used to compute the limit of accuracy of the balanced models.
Interestingly, provided that the limit is not reached, the performance of the balanced models are the
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Figure 3.5: Relative error norm of observable and balanced models as a function of the models size 7.
(a) represents the 2-norm while (b) accounts for the oo-norm. The 2-norm error limits due to input
projection are depicted on (a) as a function of the projection rank s by dots. The dashed lines illustrate
these error limits for the ranks s = 4,10,16,20. The oo-norm error bounds, computed on a s = 20
input-projected system, are represented on (b) by solid lines.

same whatever the model size r. This observation is consistent with our previous results where we have
shown that the first s HSVs and balanced modes are converged when using an input projection of rank s.
Consequently, our procedure closely approximates the exact balanced truncation on the original system
(without input projection) until the limit of accuracy due to the projection is reached. Increasing the
rank of the input projection then delays this limit.

Examining the evolution of the relative co-norm error on figure 3.5(b), the same conclusions arise. Yet,
it is interesting to consider this norm because of the availability of theoretical bounds on the discrepancy
between the approximate and exact transfer functions in the case of the balanced models. The transfer
function G, of the ROM approximates that of the input projected system G while guaranteeing (Rowley
(2005)) the relation

n
011 <IG=Gplls <2 > 0 (3.22)
Jj=r+1

based on the associated HSVs 0. The lower bound is valid for any ROM whereas the upper bound is valid
for models based on balanced truncation. Assuming the HSVs decrease rapidly, as in the present flow
configuration, the upper bound is close to the lower bound achievable by any reduced-order model and the
procedure is said to be quasi-optimal. Considering the convergence of the HSVs previously mentioned,
it is reasonable to consider these bounds as approximate bounds on ||G — G,||s. The representation of
the associated relative errors are depicted on figure 3.5(b) by solid lines. As these bounds are converged
for small ROM sizes (in terms of input projection rank s), the error of the balanced models is observed
to lie between these bounds until the limit of accuracy is reached. Note that these error bounds are
computed from the HSVs of a s = 20 input-projected system. Interestingly, the performance of the
balanced models is very close to the lower bound achievable by any ROM.

We conclude that both models succeed in capturing the full input-output behavior of the original system.
Observable models are clearly outperformed by balanced models. In addition, the performances of the
balanced models are quasi-optimal and subject to theoretical bounds, while those of observable models
are not.
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Figure 3.6: Singular value Bode plot of the full system compared to those of balanced and observable
models. Figures (a,b,c) account for ROMs of size 10, 20 and 30 respectively. The balanced models are
computed on a s = 20 input-projected system.

3.4.4 Frequency response

In the case of a multiple input multiple output (MIMO) system, a standard way of quantifying the
synthesized frequency response is to compute the maximum singular value of the transfer function. For
the full system, it is simply computed by the norm introduced in 3.2.1.2 by ||GT(w)|| = v/G(w)GT(w).
For a ROM of size r, it is computed similarly by using the corresponding model transfer function G, (w)
(see appendix 3.B.3).

The representation of this quantity, see figure 3.6, is known as the singular value Bode plot. We have
depicted on figures 3.6(a,b,c) the frequency responses of balanced and observable models of size 10, 20
and 30 respectively. Note that the balanced models are based on balanced modes computed for an
input projection rank s = 20. The exact frequency response clearly highlights a preferred frequency
around w = 0.79 which corresponds to the amplification of perturbations through the shear layer due to
the Kelvin-Helmholtz instability. These plots are a clear demonstration of the advantages of balanced
models for capturing the dynamics of the system. We see that even a balanced model of size 10 roughly
approximates the original response while a 20 sized model yields a very good approximation of the
frequential response peak. Meanwhile, observable models are completely unable to recover the most
important trend of the input-output behavior for these model sizes. Observable models eventually
capture the exact transfer function for models of size higher than approximately 30, see figure 3.6(c).

3.4.5 Modeling the dynamics of some localized actuators

In this last part, we illustrate the ability of the ROMs to capture the dynamics from any input to the
sensor. To this end, we arbitrarily choose four actuators in the upstream part of the flow and investigate
their impulse response on the sensor. Their spatial distribution, denoted by Bi, Bs, B3 and By, are
chosen of Gaussian shape on the vertical momentum component, see figure 3.7. These Gaussians have
a width (full width at half maximum) of 0.4, a height of 1 and are centered at (—0.3;1.2), (4;0), (6;0.7)
and (5;1.5) respectively.

Impulse responses of the full system are computed by time-stepper simulations of the linearized Navier-
Stokes equations by taking these inputs as initial conditions, namely X(¢t = 0) = B; for i = [1;4].
Impulse responses of the ROMs are also considered, they are directly computed by C,.eA"*STB;. Both
are represented on figures 3.8(a-d) for the four inputs. The balanced and observable models have a size
r = 20 and the balanced model was designed from an input projection of rank s = 20. As expected, we
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Figure 3.7: Representation of the four chosen inputs by their vertical component. The streamlines of
the base flow and the position of the sensor are also displayed.

. exact
= m m m balanced model (s=20)
observable model

100

Figure 3.8: Figures (a-d) represent the impulse responses of the four different inputs. The exact solutions
come from direct numerical simulations where the number of degrees of freedom is about n ~ 360 000.
The dashed and solid lines account for balanced and observable models of size 20 respectively. Note that
the balanced model has been computed with an input projection of rank s = 20.

observe that all the inputs investigated here are accurately captured by the balanced model. Meanwhile,
the observable model is clearly not as efficient at modeling the main pulses and even sustains undesired
oscillations at larger times.

These results are consistent with our previous observations shown on figures 3.5 and 3.6 since the
balanced model has already a low error for a size » = 20 which is not the case for the observable model.
These examples illustrate the ability of the ROMSs to represent the dynamics of localized inputs that do
not intervene in the model reduction process but also the superiority of the balanced models to reach
this goal.

3.5 Critical assessment

The results obtained in the present study illustrate the efficiency of the ROMs in capturing the original
transfer function. However, the flow configuration considered here is relatively simple; the dynamics are
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two-dimensional and there is only one sensor. Thus we raise questions regarding the applicability of
input projection in realistic flows.

Let us first describe a situation where the present techniques are readily usable to design a low-order
closed-loop controller. A flat plate boundary layer is subject to two-dimensional instabilities (T'S waves).
We need one upstream sensor for the estimation (just upstream of branch I), one actuator (near branch
I), and one sensor for the control objective (near branch II). If the noise triggering the transition is
unknown (which is usually the case), then a ROM describing the dynamics from the whole input space
and the actuator to the two sensors is required. Hence, the input projection technique applied with two
sensors should be effective for this purpose. Note that Bagheri et al. (2009) assume that the upstream
noise is known, which is unphysical in some sense. Also, in the control objective we only require the
measurement at the downstream sensor to be reduced, not the whole perturbation energy. Indeed, this
would have required the output projection technique, which is not tractable here since the number of
inputs is too high.

As soon as considering three-dimensional perturbations or when increasing the Reynolds number, the
flow dynamics may become much more complex. In addition, a larger number of sensors may be required
to accurately estimate the flow, see Semeraro et al. (2011). In these cases, the use of input projection
raises some practical issues.

First, the present techniques still hold for three-dimensional flows but with three-dimensional operators
and discretizations. Since the resulting dynamical systems are much bigger, iterative techniques rather
than direct inversion techniques are required to compute the snapshots. For example, one could use the
temporal expressions of the Gramians and solve the direct and adjoint linearized Navier-Stokes equations
to compute the snapshots and approximate the Gramians, as done by Semeraro et al. (2011).
Secondly, the number of direct and adjoint simulations may be much larger. Indeed, one adjoint sim-
ulation is required for each additional sensor. Furthermore, the flow dynamics may be significantly
more complex so that it may not be represented by as few number of degrees of freedom as in the
numerical example exposed here. As a result, we expect that more observable modes (i.e. additional
direct simulations) would be required for an accurate input projection. In addition, the singular value
decompositions of the matrices YTY and YTX may even become challenging. For these reasons, the
possibly large number of sensors and of required observable modes clearly constitutes the bottleneck of
the input projection procedure.

Lastly, the model reduction of more complex dynamics would result in a slower fall-off of the observable
eigenvalues and HSVs. Consequently, more observable and balanced modes would be required to design
efficient ROMs. In particular, these ROMs may be too large to be used in the design of real-time closed-
loop controllers. However, one has to keep in mind that the input projection technique is quasi-optimal
in capturing the dynamics from unknown forcing and no other technique would perform better.

We voluntarily considered in this work all the degrees of freedom as inputs in view of designing ROMs
which are robust with respect to uncertainties on the noise. Thus, if the input projection procedure
fails to design sufficiently low-order models, then the alternative solution would be to gain insight into
the particular flow physics. For instance, one may resort to experimental investigations or to receptivity
analyses to gain additional information on the noise that one desires to reproduce.

3.6 Conclusion

In this chapter, we have described how to approximate Balanced Truncation for large linear systems when
the number of inputs is large. The procedure has been derived on the two-dimensional Navier-Stokes
equations subject to an unknown noise (the inputs) and with a single sensor (the output). We introduced
a technique called input projection which consists of projecting the input space onto a low-dimensional
subspace while optimally preserving the original transfer function. The optimal projection appears
as the orthogonal projection onto the most observable modes, namely the leading eigenvectors of the
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observability Gramian. Connections with the already existing output projection technique introduced
by Rowley (2005) are also highlighted.

The whole procedure is applied to a stable linear system: the flow over a rounded backward-facing step.
A time-dependent forcing term, viewed as a noise, is assumed to act equally on each degree of freedom of
the flow state while the sensor is placed near the reattachment point. As a first step, the most observable
modes are computed and seen to extend in the upstream part of the flow. Then, the balanced modes
of the input-projected systems are computed and observed to converge when increasing the rank of the
input projection. Reduced-order models are obtained by projecting the input-projected systems onto
the leading balanced and observable modes. These ROMs are evaluated by examining their synthesized
frequency response. For both projection bases, the frequency selection process of the original system
is recovered as we accurately model the frequency response peak associated with the Kelvin-Helmholtz
instability. To quantify this performance, the 2-norm and oo-norm of the error between the reduced and
exact transfer function were computed. We found that the balanced models have an error fall off that
decreases quickly until a limit fixed by the rank of the input projection. Mostly, the performances of
the balanced models are subject to theoretical bounds and observed to be quasi-optimal. On the other
hand, observable models are suboptimal in fulfilling the same objective and do not yield any theoretical
bounds on this error. Nevertheless, it is observed to tend to zero when increasing the size of the models.
A better efficiency of the balanced models to reach a desired accuracy is clearly identified, which is
consistent with the existing literature.

In summary, the balanced truncation of input-projected systems has been shown to yield efficient ROMs
which capture the dynamics from any input to a given output. This technique is (i) quasi-optimal in
achieving this goal and (ii) subject to theoretical bounds. This contribution may be a promising tool
in view of designing reduced models of systems where only a few flow measurements are available while
the position of the forcing is unknown. Therefore, it may be a useful addition to the tools of modern
flow control theory to design real-time closed-loop controller.
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STATE-SPACE SYSTEM

Chapter appendix

3.A Expressing the linearized Navier-Stokes equations as an input-
output state-space system

Considering a numerical approach, we proceed by discretizing equations (3.2). The system may be

written in a finite-sized matrix form as
AL A3 X Q 0 n(t)
(A2 O)(X2)+(O O (e (3.23)

(T 0)a(x)
m(t) = (G 0)(2) (3.23b)

where X; denotes the velocity field and Xy represents the corresponding pressure field. The linearized
Navier-Stokes operator has been decomposed so that A; accounts for the convection and diffusion while
Ag and Aj are the parts relative to the incompressibility and pressure effects respectively. Q is the mass
matrix, it also stands for the inner product associated with the kinetic energy of perturbations, namely
XiQi1 X1 = fQ u? dS) where € is the fluid volume. (Cy,0) denotes the vector of the discretized sensing C
operator.

To reformulate the above equations (3.23) into a standard state-space form, we restrict the system state
to its divergence-free velocity field. We first multiply the momentum equation by Angl, which yields,
assuming that AoXy = 0, an expression for the pressure in terms of the velocity field

Xs = — (A2Q7'A3) " [(A2Q7 " Ar) X1 + Agi(t)] (3.24)

We can then eliminate the explicit divergence constraint to write the system equations in the desired
form

dX
7751 = P1A1X1+P1Q177(t) (3.25&)

m = C1X1 (325]3)
where we have introduced the matrix P; defined by

P1Qi =1 — QT'A3 (A2Q1AY) ' A (3.26)

Notably, P1Q; reduces to the projection matrix onto the divergence-free space and Py is a Hermitian
operator (P7 = Py). Since we assumed that n(¢) is a divergence-free state, we have P1Qin(t) = n(t).
Finally, by defining A = P;A; and C = C;, we recover equation (3.3):

% = AX+Bp(t) (3-27a)
m(t) = CX (3.27b)

3.B Introducing the inner products in the discretized equations

Adjoint operators denoted by the superscript T are different in general from the standard transconjugate
*. We chose the inner product associated with the kinetic energy for both the states and the inputs,
namely (Z;,Zs) = Z;Q1Z5 for all states or inputs Z; and Zy. As a result, the mass matrix Q; intervenes
in the definition of the adjoint operators.
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Considering the definition of At and C introduced in section 3.2.2, it is easily found that AT = Ql_lA*Ql
and Cf = Ql_lC*. The operator Py = RRT has been introduced as the orthogonal projection onto the
first s observable modes acting on any flow state or input. Analogously, considering our choice of inner
product, it can be expressed as Py = RR*Qq, so that RT = R*Q;.

3.B.1 Observability Gramian

Observable modes are the eigenvectors associated with the largest eigenvalues of the observability
Gramian:

+0o0
Go 1/ (—jwl = ANTICIC(jwl — A)tdw (3.28)

:g .

Replacing the adjoint quantities by their explicit expression, the observability Gramian may be written
as

Go = Q" (1 /+Oo(—jwl — AT C(jwl — A)ldw> (3.29)

27 J_ o

and the flow states Y(w) introduced in section 3.3.2 are then defined by QiY(w) = (—jwl — A*)~1C*,
Finally, the procedure outlined in section 3.2 to compute the observable modes can be performed by
replacing YT (w) by Y*(w)Q;. The observability Gramian then reads G, ~ YY*Q;.

3.B.2 Controllability Gramian
Let us consider the controllability Gramian of the input-projected system

1 [t

c

(jwl — A)TIRRT (—jwl — AT) Ldw (3.30)

:% .

Making explicit the adjoint operators, we obtain the new expression:

Ge = <1 /+Oo(jwl — A)'RR* (—jwl — A*)_ldw> Q1 (3.31)

27 J_ o

The input projection procedure previously introduced in section 3.2 can then be derived by using the
states X(w) = (jwl — A)7'R and its adjoint XT(w) = X*(w)Qi. The resulting factored form of the
controllability Gramian can be written as G, =~ XX*Q;.

3.B.3 Generalized transfer functions

We see in this appendix how to compute the transfer functions and their associated norms. First let us
consider the full transfer function of system (3.3). It is defined by

G(w) = C(iwl — A)~t (3.32)

which is a vector of size 1 x n. G(w) can also be expressed as a function of the flow states Y(w) by

G(w) = YH(w) = Y*(w)Q (3.33)

The transfer function can be quantified by its associated standard 2-norm and oco-norm given by

1 [t
||G|2=\/27r/ ||GT (w)||dw HGlloozmngG*(w)ll (3.34)

~

Practically, we can easily compute these norms from the flow states Y(w) since
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161 @Il = /6@ (@) = /6(@)Qr 6" (w) = V(@) Q¥ (w) (3.35)

Now we consider the transfer function of the reduced systems obtained from the input projected system
(3.13). Tt has been defined by

G, (w) = Cpliwl, — A,) !B, (3.36)

where A, B, and C, have been introduced in section 3.2.5. The 2-norm and oo-norm of this transfer
function can be computed similarly to that of the full system by replacing ||Gf(w)|| by [|Gi(w)|| =

G,(w)G}-(w) in equations (3.34). The quantity ||Gf(w)|| accounts for the synthesized frequency response

of the ROMs. It can be computed analogously to that of the full system by replacing \?(w) in equation
(3.35) with its equivalent on the reduced system Y, (w) which is defined by

Y, (w) = Bl (—iwl, — A¥)71C* (3.37)

Note that B, is equal to STRRT for balanced models and reduces to Rf for observable models. Notably,
an equivalent of equation (3.33) can be expressed for the transfer function of the reduced systems by

Gr(w) = Yi(w) = Y (w)Q (3.38)

3.C Link with output projection

In this appendix, we show that the input projection described in this chapter is equivalent to the output
projection introduced by Rowley (2005) when applied to the adjoint system. First, we consider the
adjoint problem associated with equations 3.3. It can be written as

ay
- = ATY + Clo(t) (3.39a)

) =Y (3.39b)

where Y is the adjoint state, v(t) and ((¢) denote the adjoint input and output respectively. Using the
definition of the Gramians previously introduced, one can observe that the controllability Gramian of
the direct problem is equal to the observability Gramian of the adjoint one and vice versa. Note that,
compared to the direct system, input and output sizes have been exchanged. In particular, the output
space of this new system becomes the full state space.

In the output projection method introduced by Rowley (2005), the output dimension is very large and
an output projected system is considered. For the present adjoint system, the projection that minimizes
the 2-norm error between the original transfer function and the output-projected transfer function is
given by the POD of the dataset {Y(¢); ¢ >0}. In other words, it stands for the projection onto the
most controllable modes of the adjoint system, or equally to the projection onto the most observable
modes of the direct system. As a result, the output projected system can be expressed as a function of
the matrix R by

‘% =AY 4 Clo(2) (3.40a)
() = RIY (3.40b)

where we have introduced the low-dimensional projected output ¢ (t). Returning to the direct problem,
the input-output system reduces to
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SENSOR

% = AX+ Ri(t) (3.41a)
m(t) = CX (3.41b)

which governs the dynamics of the input-projected system introduced in section 3.2.4.
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Interlude

In chapter 3, we investigated the ability of the observable and balanced modes to design ROMs that
capture the dynamics from any forcing to a given sensor. A significant part of the chapter was devoted
to comparing the performance of the two resulting ROMs. In particular, balanced models are shown to
be nearly optimal for capturing the input-output behavior.

In fact, the superiority of the balanced models has been noticed in both the SISO configuration of chapter
2 and the MISO configuration of chapter 3. These balanced ROMs are indeed supposed to approximate
the original Balanced Truncation procedure whose very purpose is to model the input-output dynamics.
On the other hand, it is not surprising that the ROMs based on the most controllable and observable
modes are sub-optimal to do so since since they have a different purpose. For example the controllable
modes are meant to gradually capture the most energetic patterns triggered by the inputs and do not
include information from the outputs. Likewise, the most observable modes rank the states according
to their contribution to the future outputs and are defined independently of the inputs.

An important feature of all the ROMs presented until now should be stressed out. The higher the
number of inputs and/or outputs the higher are the sizes required by the ROMs to recover the original
input-output dynamics. This intuitive result is illustrated by comparing the performance of the balanced
models exposed in the two previous chapters. In a more general manner, a common feature of these
ROMs is that the higher their requirement the higher their design complexity and their required size.

In the next chapter, we are concerned with the case where we neither define any actuators nor any
sensors. More precisely, we look for models that capture the entire flow response whatever the initial
condition and/or the external forcing. Within our input-output formalism, this reduces to considering all
the degrees of freedom of the state-space as the inputs and the outputs, namely B =1 and C = |. Indeed,
the input-output behavior is then characterized by the impulse response which may be formally written
as €™, which is also the time propagator associated with the original flow dynamics. Analogously, the
transfer function reads (iwl — A)~! which also reduces to the resolvent operator associated with the flow
dynamics.

The derivation of such models that capture the entire flow dynamics may be of great technological
interest. Let us mention the linear state-space flow control, such as the Linear Quadratic Gaussian
(LQG) control. When designing a closed-loop flow controller, these ROMs would allow to both capture
the effect of any unknown noise, as it would be in real experiments, but also to directly target a mini-
mization of the perturbation kinetic energy rather than some sensor measurement. Another application
concerning the state estimation of large-scale flows is worth mentioning. For instance, it was shown
by Farrell & loannou (20015) how to use reduced-order models to obtain near-optimal low-order state
estimators. They constructed a reduced-order Kalman filter for the purpose of state identification in a
time-dependent quasigeostrophic storm track model. The ROMs used in the process were required to
capture the predominant part of the entire system dynamics.

How to design such ROMs has already been reported in the literature, see Farrell & loannou (2001b,a).
However, the considered flow configurations had sufficiently low degrees of freedom so that the control-
lability and observability Gramians could be computed directly from two Lyapunov equations. As soon
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as the number of degrees of freedom is higher than O(10°), such a computation becomes not tractable.
Furthermore, one cannot either extend the output or input projection procedures since they are tech-
nically based on the small number of inputs or outputs. Instead, we present in the next chapter a new
way of approximating the controllable, observable and balanced modes in a case where the inputs and
outputs stand for the whole state-space. The key idea is to express a decomposition of the Gramians in
the frequency domain as a function of the resolvent operator. For each frequency, the resolvent operator
is then approximated by truncating its singular value decomposition.

An important part of the next chapter is devoted to the interpretation of the projection bases as deter-
ministic flow processes deriving from the stochastically forced flow. Indeed, assuming that the flow is
forced white in space and time, we show that the controllable modes reduce to the states accounting for
a maximum contribution to the flow response sustained variance. These are the so-called POD modes,
see Lumley (1970), which reduce to the largest eigenvectors of the covariance matrix of the system. Note
that the most controllable modes investigated in chapter 2 are called POD modes owing to the technique
used to compute them. Strictly speaking, one may only use the terminology POD for the present modes
which are known to order the coherent process of the uncertain flow response, see Aubry et al. (1988);
Berkooz et al. (1993); Holmes et al. (1997). Alternatively, these modes are also referred to as the Em-
pirical Orthogonal Functions (EOFs) in the literature, see North (1984). On the other hand the most
observable modes are shown to rank the forcing structures according to their effectiveness in producing
the statistically maintained variance of the flow response; they are called the Stochastic Optimals (SOs).
The first part of the next chapter assess the decomposition of the backward facing step flow dynamics in
the frequency domain through the singular value decomposition of the resolvent. Secondly, assuming the
flow is stochastically forced with a white in space and time disturbance, we rank the Empirical Orthogonal
Functions and the Stochastic Optimals as deterministic flow states and illustrate their ability to design
efficient ROMs. Furthermore, balanced models are considered and their performance is also evaluated.
The results outlined in the next chapter have been reported in an article that have been submitted to
the Journal of Fluid Mechanics.
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Chapter 4

Frequency decomposition and model
reduction of the full dynamics

Methods for approximating stable linear fluid dynamics by a system of lower order are examined. The
case of a two-dimensional backward facing-step flow is considered throughout of the study within the
framework of the incompressible Navier-Stokes equations. We design reduced-order models which are
meant to capture its global dynamics on a given frequency interval. To this end, a singular value
decomposition and truncation of the resolvent is performed in order to identify a sub-dynamics spanned
by the leading optimal harmonic forcing and responses. Three bases are then computed on this sub-
dynamics: the Empirical Orthogonal Functions, the Stochastic Optimals and the Balanced modes.
Reduced-order models are obtained by projecting the original equations onto these three bases. The
resulting models are evaluated by their performance in capturing the original time propagator and
resolvent. These models are shown to accurately recover the optimal perturbations (the leading singular
vector of the time propagator) but also the input-output behavior of the flow (the leading singular
vectors of the resolvent). In general, provided that a flow dynamics are predominantly represented on
a particular frequency range, these models can potentially recover the accurate flow responses from any
forcing or initial condition.

4.1 Introduction

A typical feature of a wide variety of open flows is their very unstable nature and high sensitivity to
background perturbations. This behavior is classically observed on boundary layers, mixing layers, jets
or separated flows, even at low Reynolds numbers. Such a behavior is known to come from convective
instabilities where the disturbances amplitude grows while being advected downstream. These flows are
called selective noise-amplifier due to their ability to preferentially amplify some particular frequencies.
Modelling such flows is thus rather challenging since it requires to capture the effect of an upstream and
potentially complex noise, which is unknown in practice. Yet, designing low-order models for such flows
is crucial for many engineering applications which includes flow control, climate modeling or forecasting
in meteorology.

Owing to these flow’s ability to selectively amplify disturbances, it is natural to resort to an input-
output formulation of their dynamics. Thus, the purpose of an efficient model is to capture the effects
(outputs) of the flow when subjected to some perturbations or forcing (inputs). For example, the recent
work of Bagheri et al. (2009b) relies on a Reduced Order Model (ROM) which captures the linear
dynamics between some inputs (actuators) to some outputs (sensors) in view of performing a closed-
loop control of a spatially developing boundary layer. In this case, a successful stabilization of the flow
was observed owing to the design of an efficient Linear Quadratic Gaussian compensator which was
required to minimize the measurement energy at a sensor (output) in the presence of a noise taken as a
single input. Now, it would be of great technological interest to possess a model which could accurately

105



CHAPTER 4. FREQUENCY DECOMPOSITION AND MODEL REDUCTION OF THE FULL DYNAMICS

recover the entire flow response (all the outputs) from all possible forcing (all the inputs). Such an
improvement would allow to both (i) capture the effect of any unspecified noise, as it would be in real
experiments, but also to directly target a minimization of the global perturbation kinetic energy rather
than some measurement signal. Additionally, in a more general manner, it is also of fundamental interest
to determine the minimum number of flow structures which represent the dynamics of a flow. The design
of such low-order models motivated this present work.

We are concerned here with the model reduction of large linear fluid systems and, more particularly, in
the design of accurate ROMs which capture the dynamics from all the possible inputs to all the possible
outputs. As a prototype of amplifier flow, a two-dimensional backward facing step flow is considered,
see figure 4.1. This globally stable flow is assumed to be driven by uncertain external disturbances at
the upstream which are selectively amplified in the shear layer. The ROMs designed here are meant
to accurately recover the resulting flow response or, in other words, its global amplifier behavior. The
model reduction is performed by projecting the full original equations onto a reduced basis of modes.
The choice of relevant fluid structures, yet far from being obvious, is of utmost importance; a significant
part of this chapter is devoted to this important question.

Based on the previous studies of Cossu & Chomaz (1997); Chomaz (2005) on the space-time dynam-
ics of open flows, it is well recognized that a global amplifier behavior could derive from convective
instabilities. More precisely, the possibly large transient energy growths could be attributed to the
nonorthogonality of the set of global eigenmodes associated with the flow linear dynamics. Based on
this observation, Ehrenstein & Gallaire (2005); Alizard & Robinet (2007) investigated the global convec-
tive dynamics of a two-dimensional flat-plate boundary layer by means of an appropriate superposition
of global eigenmodes. They showed that the optimal amplifier scenario based on a reduced basis of
Tollmien-Schlichting type modes gives rise an upstream localized wavepacket that grows while being
advected downstream. This work was latter revisited by Akervik et al. (2008); Henningson & Akervik
(2008) where the initial perturbation leading to a maximum energy growth was found as an upstream
located wavepacket inclined against the shear. This latter observation demonstrated the ability of the
global modes to recover the initial Orr mechanism exposed by Butler & Farrell (1992) in shear flows
where perturbations rise to an upright position while borrowing energy from the mean shear. Since
then, global modes were considered as a good candidate to provide ROMs for flow control applications.
For instance, a successful stabilization of the unsteadiness over an open-cavity flow was performed by
Akervik et al. (2007) by using a ROM based on a global modes expansion of the perturbation. However,
such a success was later shown to strongly dependent on the dynamics of the specific flow situation. For
example, it has been illustrated on the Ginzburg-Landau equation by Bagheri et al. (2009¢) that the
spatial support of the direct and adjoint global modes may be strongly separated from the actuators
and sensors location. Later, the work by Barbagallo et al. (2009) pointed out the poor efficiency of a
ROM based on global modes to capture the stable input-output dynamics of a square cavity flow. This
inability was attributed to the lack of controllability (ability of the applied forcing to reach flow states)
and/or observability (ability of flow states to register at the sensor locations) of the global modes.

Since both controllability and observability are critical quantities in the design of ROMs, an expansion
basis that balances the two concepts has been introduced by Moore (1981) for stable linear input-output
systems. The model reduction associated with the projection onto the set of the most and equally
controllable and observable structures is known as Balanced Truncation. Interestingly, this technique is
shown to quasi-optimally capture the input-output transfer function since it offers theoretical bounds on
its error which are close to the lower bound achievable by any ROM, see Dullerud & Paganini (2000).
Owing to this useful property, Balanced Truncation yields an efficient and popular model reduction
process. For instance, it has been used to perform closed-loop control on simple one-dimensional amplifier
flows, see Joshi et al. (1997); Hogberg et al. (2003).

The computation of the balanced modes is based on the eigenvalue decomposition of the product of two
operators: the controllability and observability Gramians. However, both are solution of a Lyapunov
equation which cannot be solved for large systems. To alleviate this problem, a method was introduced
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by Willcox & Peraire (2002) in order to approximate the Gramians by using flow state snapshots.
Furthermore, the work by Rowley (2005) allowed to approximate directly the balanced modes with a
snapshot method without computing the Gramians; this technique is called Balanced Proper Orthogonal
Decomposition (BPOD). This new tool brought the model reduction of large-scale control problems
within reach of current computational technology. As a result, several recent works were based on
BPOD to perform the closed-loop control of more complex flows such as the stabilization of a square
cavity flow by Barbagallo et al. (2009), of a flat-plate boundary layer by Bagheri et al. (20095), or of the
flow over an inclined airfoil by Ahuja & Rowley (2010). Even if BPOD yields a very effective technique
to capture the dynamics from a moderate number inputs to a few outputs on large systems, it is not
meant to model accurately the exact flow response (all outputs) from all possible inputs. The technique
introduced by Rowley (2005) called output projection partially alleviates this problem by optimally
projecting the output space so as to capture the dynamics from a few specific actuators to all possible
outputs. Such models allow to capture the entire flow state response resulting from the forcing at these
specific inputs. Output projection has been successfully applied in the works by Ilak & Rowley (2008)
and Ahuja & Rowley (2010). However, since these models are based on a moderate number of inputs,
they are unable to recover the dynamics resulting from all possible forcing or from an unspecified noise.

Another way of reducing the dynamics consists of exciting the system with an unbiased random forcing
and projecting the dynamics onto the resulting most energetic structures. These modes are computed as
the leading eigenvectors of the spatio-temporal covariance of the observed fluid fields; they are known as
Proper Orthogonal Decomposition (POD) modes or also Empirical Orthogonal Functions (EOFs). Such
modes are popular in the design of ROMs since they constitute energy-ranked coherent structures of the
flow. Thus, model reduction based on POD has been pursued by a great many researchers. For instance,
one may refer to the works by Hasselmann (1988); North (1984) in the context of climate modeling and
by Lumley (1970); Sirovich (1987); Berkooz et al. (1993); Holmes et al. (1997) in turbulence modeling.
In these studies, the EOFs yield a well-suited basis for the representation of the evolved flow behavior.
However, as underlined by Farrell & loannou (1993a) and Farrell & loannou (19935), this basis is sub-
optimal for capturing the transient dynamics of a flow. These authors further argued that not only the
set of most energetic structures (the EOFs) need to be captured for an accurate representation of the
dynamics but also the set of optimally growing perturbations at initial time, which are called Stochastic
Optimals (SOs). This statement is even illustrated by Farrell & Ioannou (2001a) where the authors
have compared the efficiency of various projection bases to recover the dynamics of a one-dimensional
Couette flow. On the one hand, they found that both the EOFs and SOs lead to accurate ROMs. On the
other hand, they showed that the best performance is obtained from balanced modes; by retaining the
structures representing both the optimals and the evolved optimals in a balanced manner. This latter
technique consists of considering each degree of freedom of the flow state as an input and an output and
applying the Balanced Truncation procedure introduced by Moore (1981). Even if the flow structures
exposed by Farrell & Ioannou (2001a) yield promising projection bases to design accurate ROMs, their
computation remains not tractable for large fluid systems, even if using a snapshot method.

Based on the encouraging results by Farrell & loannou (2001a), this chapter aims at providing a new tool
to approximate the EOFs, the SOs and the balanced modes for large fluid systems. As an illustration,
the procedure is applied to the two-dimensional backward-facing step flow. The present technique is
not based on any particular input (forcing) or output (sensing) on the flow. Instead, it is conceptually
meant to capture the predominant dynamics on a given frequency interval. The key idea of this chapter
relies on the singular value decomposition and truncation of resolvent operator in the frequency domain.
Indeed, the eigenanalysis of the resolvent operator is shown to identify the most energetic part of the
map linking all possible harmonic forcing to their associated responses. This decomposition is used
to approximate the leading EOFs, SOs and balanced modes. Notably, a particular attention is paid
to dynamics decomposition of the backward-facing step flow in the frequency domain by studying its
optimal harmonic forcing and responses. The three projection bases are then analyzed in light of this
frequency decomposition. Lastly, the resulting low-order models are shown to accurately capture the
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Figure 4.1: Backward-facing step flow investigated here. The steady-state solution at Re = 600 is
depicted by its streamlines and longitudinal velocity.

original dynamics.

The chapter is organized along the following outline: the backward facing step flow is presented in
section 4.2 where we introduce the base flow and the non-reduced transient dynamics. Then, section 4.3
is devoted to the decomposition in the frequency domain of the input-output dynamics. In particular, the
optimal harmonic forcing and responses of the flow are investigated. Next, the leading EOFs, SOs and
balanced modes are computed and exposed in section 4.4. The performance of the ROMs in capturing
the original dynamics is assessed in section 4.5 for all three projection bases. Finally, concluding remarks
and future prospects are given in section 4.6.

4.2 Flow configuration and modeling

4.2.1 Base flow

We are concerned with the global dynamics and model reduction of the incompressible flow over a
two-dimensional backward-facing step. The geometry of this step, which is depicted in figure 4.1, was
originally studied by Duriez (2009). It is made up with two flat plates linked by a circular arc extending
from (x =0,y =1) to (x =2, y = 0). The step height h and the incoming flow velocity U, are chosen
as the characteristic length and velocity scales so that the Reynolds number is defined by Re = @
where v is the kinematic viscosity.

The flow dynamics are linearized about a base flow chosen as the steady solution of the Navier-Stokes

equations at Re = 600. To compute the base flow, the domain is chosen large enough so as to obtain a

uniform free-stream. The flow enters the domain with the constant velocity Uy from the left at x = —20.
We imposed a free-slip condition on the upstream part of the lower boundary (—20 < z < -2,y = 1).
The beginning of a laminar boundary layer is then enforced at x = —2 by imposing a no-slip condition

on the remaining lower boundary between (—2 < z < 100). A symmetry condition is implemented on
the top boundary at y = 20 and a standard outflow condition is prescribed at the outlet x = 100. The
base flow is computed by using a Newton method similar to that used by Sipp & Lebedev (2007).

The base flow solution at Re = 600 is depicted in figure 4.1 by its streamlines and longitudinal velocity.
The flow displays an elongated recirculation bubble between separation at z ~ 0.6 and reattachment at
x =~ 11. The boundary layer at x = 0 has a displacement thickness §* = 0.082 leading to a Reynolds
number based on the displacement thickness of Reg« = 49.2.

4.2.2 Linear dynamics

The dynamics of small perturbations (u,p) about the base flow, denoted by U, are governed by the
linearized Navier-Stokes equations

{ du+U -Vu+u -VU = —Vp+ Re"'V2u (41)

Vau=0

This equation is spatially discretized using a finite elements approach with Taylor-Hood elements (P2-
P2-P1) and implemented using the FreeFem++ software, see Hecht et al. (2005). Once discretized, it is
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shown in appendix 4.A that equations 4.1 can be written in the following dynamical system form

x = Ax (4.2a)

where x is the vector of the discretized velocities w and the matrix A stands for the discretized Navier-
Stokes operator. This discretization has been performed on a smaller mesh extending from (—1.5 <z <
30) and with (y < 3,5). This mesh proved to be sufficiently large to accurately capture the perturbation
dynamics along the shear layer. The new computational domain is the one depicted in figure 4.1. Ho-
mogeneous Dirichlet boundary conditions are used at the inflow x = —1.5 and on the wall. A symmetry
condition is adopted at the upper boundary y = 3.5 and a free outflow condition pn — Re~!(Vu)-n = 0
is used at the outlet x = 30, where n is the outward unit normal vector. Note that the base flow has
been interpolated on this new mesh. The number of degrees of freedom of the resulting problem is
n = 170260, which also accounts for the dimension of the vector x or the matrix A in equation (4.2).

In this context, the goal of this chapter is to reduce as much as possible this finite-sized system while pre-
serving the original fluid dynamics. Before proceeding with model reduction, the non-reduced dynamics
need to be introduced together with the means to describe it.

4.2.3 Amplifier behavior

The perturbations amplitude is quantified by its kinetic energy contained in the entire domain. We
introduce the associated inner product (), which is defined for any states x; and x2 by

(x1,%2) = XIXQ = /Qul.U2 dQ) (4.3)

where Q is the fluid volume, u; and us denote the associated velocity fields and the superscript T denotes
the adjoint of a state. For the chosen Reynolds number Re = 600, the flow is observed to be globally
stable since the matrix A does not display any unstable eigenvalues. Consequently, the energy of any
initial condition will decay exponentially to zero for sufficiently large times. However, perturbations
may be transiently amplified owing to the non-normality of A, see Trefethen & Embree (2005); Chomaz
(2005). The potential of the flow to amplify upstream perturbations is illustrated here.

The explicit solution of the dynamical system (4.2) may be expressed as

x(t) = eMxq (4.4)

which means that the state solution x at time ¢ can be directly computed from the initial condition xg
at time ¢ = 0 from the time propagator e*. Then, the perturbation energy gain in time may be written
as

(x(8),x(8)) _ (x0, M erxo)
{x0, %0) {x0,%0)

(4.5)

where we have introduced the adjoint operator AT defined from the inner product (). Hence, the
maximum energy gain over all possible initial conditions is computed by the maximum eigenvalue of
eATteAt and the optimal initial condition by its leading eigenvector. These quantities have been computed
from the same iterative algorithm and numerical methods used by Marquet et al. (2008). We have
represented in figure 4.2(a) the optimal energy gain, denoted by the Ly matrix norm as |[eA!]|2, as
a function of time. We observe that the potential of the flow to amplify perturbation is substantial;
energy gain may exceed 10*. The maximum gain is reached for an optimal time ¢ = 18. Additionally, the
optimal initial perturbation computed for that optimal time and the perturbation into which it evolves
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Figure 4.2: (a) Optimal perturbation gain ||eA!||2 at time ¢. (b) Optimal initial condition computed for
t = 18. Figure (c) accounts for its evolved optimal state at ¢ = 18. Both fields are represented by their
longitudinal velocity.

are displayed in figure 4.2(b,c). The optimal initial perturbation shown in figure 4.2(b) is localized
upstream and is inclined along the shear. On the other hand, the final optimal perturbation shown in
figure 4.2(c) is located just beyond reattachment. These results are consistent with the existing literature,
see Marquet et al. (2008); Blackburn et al. (2008), emphasizing the ability of the perturbations to be
amplified along the recirculation bubble. Notably, the inclination of the initial condition highlights the
well known Orr mechanism as a way to extract energy from the mean shear by transporting momentum
down the velocity gradient (Butler & Farrell (1992)).

The modeling of the original linear flow dynamics reduces to capturing its amplifier behavior. As a result,
the dynamics to be captured by the ROMs consist of the map linking all possible initial conditions xg
to their future state x(t). As a result, the objective of the model reduction is to approximate as closely
as possible the original time propagator e for all positive times.

Analogously, the transient flow dynamics may also be investigated by considering the responses of the
flow to permanent forcing. Owing to the linear nature of the equations, this analysis can be performed by
considering frequency-separated harmonic forcing. Assuming that system (4.2) is forced by the harmonic
term %e"“’t, the equations become

x = Ax 4 fet (4.6a)

which has the harmonic solution x(¢) = %e*, where X(w) = (iwl—A)~'f. The operator R(w) = (iwl—A)~!

is defined as the resolvent and links the harmonic forcing to its associated response. Given that for-
mulation, the flow dynamics can be analogously defined as the map linking all possible forcing to their
associated response. Consequently, the reduced-order models are also required to capture the original
resolvent operator for all frequencies.

This objective is rather challenging and it is practically expected that the ROMs only approximate the
resolvent on a finite frequency interval where the dynamics is predominantly comprised. For that reason,
a decomposition of the input-output dynamics in the frequency domain is performed in the next section
in order to derive the projection bases and the ROMs.

4.3 Dynamics decomposition in the frequency domain

Studying the responses of a flow subjected to harmonic forcing is known as a receptivity analysis. Such
an approach is commonly used to predict in which frequency bands flow instabilities are more likely to
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be observed when exposed to permanent external forcing, see Alizard et al. (2009); Monokrousos et al.
(2010); Sipp et al. (2010). In this section, the sets of the leading optimal forcing and responses are
investigated to identify the predominant part of the input-output dynamics.

4.3.1 Singular Value Decomposition of the resolvent

The resolvent R(w) = (iwl—A)~! has been introduced so as to link an harmonic forcing f to its associated
response X. Consequently, by using the relation x = R(w)f, the kinetic energy gain produced by a forcing
may be expressed as

%.%) _ (R (@)R@)F) (4.7)
(f,f) (f,)
where we have introduced the adjoint operator Rf(w) derived from the inner product (). The matrix
Rf(w)R(w) is a hermitian matrix so that its eigenvectors are orthogonal. It is thus possible to span the
forcing space with the orthogonal basis f; derived from

Rf(W)R(w)fi = AZf; (4.8)

where A? denote the energy gains induced by the forcing f. Furthermore, the highest eigenvalue \?
denotes the maximum energy gain over all possible forcing, which is reached by the optimal forcing
f,. More generally, the leading forcing terms f, constitute the set of orthogonal functions leading to an
optimal and ranked energy amplification. We call them optimal harmonic forcing. Their corresponding
optimal responses X; can be obtained by solving

% = R(w)f; (4.9)

which also form an orthogonal basis spanning the response space. In fact, it is noteworthy that ?L(w) and
%;(w) are the right and left singular vectors of R(w) associated with its singular values ;. The leading
optimal forcing/responses and singular values are investigated next.

Equation (4.8) is a large eigenvalue problem of size n which cannot be solved directly. Instead, we
used an iterative Arnoldi algorithm based on Krylov subspaces in order to compute the leading eigen-
values/eigenvectors, see Lehoucq & Scott (1997). It is based on the successive inversion of the sparse
matrix (iwl—A) which is handled through a direct multifrontal sparse LU solver (MUMPS, see Amestoy
et al. (2001)). Hence, the cost of this algorithm stems on the the cost of the LU decomposition of a large
sparse complex matrix. In our case, an accurate computation of the leading 40 eigenvalues/eigenvectors
has been performed for frequencies ranging from w =0 to w = 6.

The optimal energy gains A\? are represented in figure 4.3 as a function of the frequency. In other words,
there are 40 points represented on the graph for each frequency which account for A2, ... | >‘4210— What
is striking is the existence of branches, which one displays a broad and high peak. The description of
these branches and their physical interpretation is presented next.

4.3.2 First branch: the shear layer dynamics

Let us start with the higher and curved branch denoted on the graph as the branch Al. This one
comprises the first singular value A\; which largely prevails for low frequencies until w ~ 2.6. In this
range, the largest energy gain A? displays a broadband response typical of amplifier flows that reach a
maximum of 2.210° at w ~ 0.75. Yet, for higher frequencies, this branch crosses other branches and is
then no more represented by the first singular value.

To interpret this branch, we investigate the forcing and responses, namely the right and left singular
vectors of R(w), associated with its singular values. We have represented in figure 4.4 these singular
vectors. On the left part, figures 4.4(a,c,e,g) represent the optimal harmonic forcing at the frequencies
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Figure 4.3: First 40 optimal harmonic gains A2, ... | A}, versus frequency w.

w = 0.25,0.75,2 and 3 respectively. Analogously, figures 4.4(b,d,f;h) stand for the associated optimal
harmonic responses at the same frequencies. Note that these flow structures are displayed by their
longitudinal velocity. We observe that the optimal forcing fields are localized upstream, near separation,
and display inclined patterns along the shear so as to exploit the Orr mechanism. Regarding the
associated responses, they display typical wave packet flow structures whose spatial support extends
farther downstream. Excitation at higher frequencies leads to smaller flow structures and the resulting
responses remain spatially localized at the upstream part of the separated shear layer. On the contrary,
for lower frequencies, the resulting flow structures are much bigger and the responses extend much
farther until the downstream part of the boundary layer. These results are consistent since the high-
frequency instabilities are observed where the shear layer is the thinnest whereas the low-frequency ones
are observed where the boundary layer and the local shear are the thickest. High-frequency responses,
such as those depicted in figure 4.4(f) and figure 4.4(h), highlight a Kelvin-Helmholtz amplification
mechanism since perturbations grow in the shear layer as a wave of corotative rolls. These flow structures
are furthermore characterized by a phase speed vy ~ 0.55. Alternatively, the low-frequency responses
such as those depicted in figure 4.4(b) and figure 4.4(d) are reminiscent of the global modes associated
with a convective Tollmien-Schlichting instability. Such modes have been carefully investigated in the
previous works by Ehrenstein & Gallaire (2005); Alizard & Robinet (2007); Akervik et al. (2008) and
their phase speed is rather close to vy ~ 0.4.

All the optimal forcing and responses on branch Al have a common point, they physically account for
the amplification and advection of a wave packet along the recirculation bubble and the downstream
shear. Thus, this branch may be called a "shear layer" branch.

4.3.3 Second branch: the free-stream dynamics

Now, we are concerned with the second most energetic branch which is called Bl in figure 4.3. Beyond
w = 2.6, branch Al is observed to be no more predominant and the energy gains are relatively much
lower. The first singular values A\? then belong to branch B1. To further interpret the dynamics
contribution of this branch, we have represented two forcing and response fields obtained on that branch

112



4.3. DYNAMICS DECOMPOSITION IN THE FREQUENCY DOMAIN

E =
-

(c) (d)

_—

(9) (h)

oo ma0e0e0a00e

Figure 4.4: (a,c,e,g) Optimal forcing computed for w = 0.25,0.75, 2 and 3 respectively. (b,d,f,h) represent
the associated optimal responses at the same frequencies.
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Figure 4.5: (a,c) Optimal forcing computed on branch B1 for w = 2 and 4 respectively. (b,d) represent
the associated optimal responses at the same frequencies.

in figure 4.5. Figures 4.5(a,c) represent the optimal forcing at the frequencies w = 2 and 4 respectively
while figures 4.5(b,d) account for the associated optimal responses. Similarly to the previous branch,
the forcing fields are located upstream whereas the responses extend downstream. However, both the
forcing and the responses reduce here to streamwise oscillating waves spreading over the free-stream part
of the flow. These waves are modulated in the y direction and have two maxima. The only, yet most
important, difference between these modes when changing the frequency is the streamwise wave length
of the flow structures. Increasing the frequency leads to a smaller streamwise wave length for both the
forcing and responses. Interestingly, their phase velocity is observed to be constant with the frequency
and equal to vy ~ 0.95.

As a result, the optimal forcing and responses on this branch are interpreted as a part of the dynamics
governing the free-stream advection of perturbations at the velocity ~ 1. This branch is thus called a
"convective" branch.

4.3.4 Other branches: sub-optimal modes

Concerning the other branches, they can also be classified as either a convective or shear layer one. As
an illustrative example, we have depicted on figure 4.6(a,b) the two harmonic responses taken from the
branches labeled B2 and B3 respectively at the frequency w = 2. These responses are very similar to
those observed on branch B1 except that they display smaller cross-stream wave lengths. More precisely,
the response chosen on B2 displays three maxima in the y direction while that on B3 has four. These
results are reminiscent of the fact that the optimal responses are orthogonal. Generally speaking, the
convective branches are meant to convect all possible upstream forcing. The decomposition in such
branches then highlights the contribution of all possible streamwise and cross-stream modulated forcing
individually.

In an analogous way, we have represented in figure 4.7 the optimal responses taken on the shear layer
branch A2 and computed for w = 0.75 and 1.5 respectively. Both display two streamwise separated
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Figure 4.6: (a) Optimal response at the frequency w = 2 chosen on branch B2. (b) represents the
optimal response at the same frequency chosen on branch B3.

(b)

Figure 4.7: Optimal responses chosen on branch A2 at the frequencies w = 0.75 (a) and w = 1.5 (b).

wave packets localized in the shear layer. In addition, their streamwise wave length are the same as
those of the responses observed on branch Al at the same frequencies. This latter observation is also
reminiscent of the orthogonality of the set of optimal responses. This second shear layer branch is much
less energetic than the primary one and is even less than the first convective branch.

The frequency decomposition exposed in this section has emphasized a clear separation between: (i)
upstream forcing and downstream responses but mostly (ii) a free-stream convective dynamics and an
amplifier dynamics along the shear layer. The most energetic dynamics originate from shear instabilities
and are predominant for the frequencies lower than w &~ 2.6. What is of utmost importance is to note
that the singular value decomposition of the resolvent leads to a decomposition in the frequency domain
which optimally orders the set of forcing (inputs) and associated responses (outputs). Notably, this
decomposition highlights the most energetic part of the map linking all possible inputs to all possible
outputs in the frequency interval of interest. Thus, it provides a milestone in order to design relevant
projection bases for the model reduction.

4.4 Projection bases

The previous ranking of optimal forcing and responses for each frequency does not yield a ready-made
basis of projection. To derive such a basis, we consider here the case where all the degrees of freedom
and frequencies are equally forced to extract (i) the set of the most energetic responses and (ii) the set
of the most amplified structures. Furthermore, (iii) the most and equally growing and energetic flow
structures, also called balanced modes, are also considered. Technically, the idea is to decompose the
dynamics by ranked stochastic processes which are derived from the previous frequency decomposition.
This section is devoted to the introduction of these three bases of projection.

4.4.1 First basis: Empirical Orthogonal Functions

Since many flows exhibit few dominant instability mechanisms, the most energetic processes often give a
good idea of the flow structure. Truncating a flow dynamics to its most energetic patterns is common in
studies of turbulence (see Lumley (1970); Holmes et al. (1997)) and is known as the Proper Orthogonal
Decomposition (POD). The most energetic patterns are usually referred to as POD modes or also
Empirical Orthogonal Functions (EOFs).

The idea consists of artificially forcing system (4.2) by a stochastic and unbiased process in order to
extract dynamical information from the flow response. This response can then be decomposed and
ranked by the leading energetic coherent processes. We consider the dynamics of the stochastically
forced system given by

x = Ax+ FE(t) (4.10)
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where F is a matrix of size n x n governing the structure of the forcing. Furthermore, the vector () of
size n X 1 is a d-correlated white noise process with zero mean. Namely, we have

()] =0 and [&(0)EN(E)] = 0;0(t — 1) (4.11)

where [] denotes the ensemble average and &;; the Kronecker symbol. The " component &;(t) of the
noise is defined so as to force the i'® column of the matrix F. We assume that F is a unitary matrix
(FTF = 1) so that its columns are orthogonal; the forcing is then defined as the sum of an orthonormal
set of uncorrelated processes.

System 4.10 yields the dynamics of x(¢), which is a random flow field, when subjected to a permanent
random excitation. Since the flow is globally stable (A is stable), the solution of this problem tends
to a statistically steady flow state for sufficiently large times. Furthermore, as shown in Farrell &
Ioannou (1993a, 1996), this statistically steady flow state can be characterized by its covariance matrix
P = [x(t)x(t)T] which is independent of F and reduces to

+oo i
P = / Mertat (4.12)
0

This matrix is hermitian so that its eigenvectors form an orthogonal basis. These eigenvectors are the
so-called EOFs. By construction, the leading EOFs span most concisely the flow structures accounting
for the variance of the statistically steady state, see Farrell & Ioannou (1993a). Indeed, assuming that
the i'" EOF ¢; is associated with the eigenvalue 3; and that the random state x(t) is decomposed in the
sum

x(t) = 3 i) (4.13)
=1

then it can be shown (Heepffner (2006)) that the expansion coefficients «;(t) are scalar uncorrelated
random variables:

[ai(t)e(¢)] = 0i50(t — t')B; (4.14)

Notably, the variance of the coefficients a; are equal to the eigenvalues of ;. Therefore, the trace of the
covariance matrix reduces to the total variance maintained in the statistically steady state. Since the
space-time dynamics of the EOFs are uncorrelated from each other, they are commonly interpreted as
coherent processes of the flow field. In other words, the random flow field x(¢) with known covariance
is decomposed in equation (4.13) as a family of coherent processes evolving in parallel. Energy is
furthermore mostly carried by the leading eigenvectors which make them a preferred basis of functions
for the truncation of dynamical systems.

A deterministic interpretation of the covariance matrix P is worth mentioning at this point. As shown in
Luenberger (1969); Farrell & loannou (2001a), the minimum past forcing (in terms of energy) required
to reach a given state xg is equal to xBPflxo. The operator P thus measures the controllability of the
flow states and is also known as the controllability Gramian. The leading EOFs reduce to the flow
structures the most eagily triggered by the flow, or equivalently, that require the least energy to be
forced. Consequently, the leading EOFs may also be referred to as the most controllable modes.

4.4.1.1 Computation

For a problem of small size, the covariance matrix P can be directly computed from a Lyapunov equation,
see Farrell & Ioannou (1993a, 2001a). However, in our case, solving such an equation is not tractable.
An alternative approach has to be employed to compute the leading EOFs without requiring to compute
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or even store the matrix P. The technique introduced here enables to overcome this difficulty and is
based on the frequency domain decomposition of the dynamics presented in section 4.3.
First, P is formulated by a frequency integral by using Parseval’s theorem:

P ! /OO R(w)RT(w)dw (4.15)

:g .

where the resolvent operator has replaced the time propagator. As a second step, the frequency integral
is discretized in order to obtain the sum

p— % > Rewi)RI(wi)5 (4.16)
1EZ
where {w;,i € Z} is a given set of discrete frequencies and d; denotes appropriate quadrature coefficients.
P reduces to the sum of the matrices R(w;)RT(w;), which cannot be computed or stored. To alleviate this
limitation, an approximation is performed. These matrices are replaced by their truncated eigenvalue
decomposition:

R(w;)RT(w;) ~ XAZXT (w;) (4.17)

where X and A? are the matrices of leading eigenvectors and eigenvalues respectively. For an approxi-
mation of rank k, X and A are of size n X k and k x k respectively. The rank k is thus a fundamental
parameter to assess the efficiency of this approximation. Note that the columns of X(w) reduce to the
left singular vectors of R(w) and mostly to the optimal responses previously denoted by x;(w). Further-
more, the diagonal elements \;(w) of matrix A(w) are the leading singular values of R(w). By using the
decomposition (4.17), we can factor the covariance matrix P in

P= % ZXAQXT(M)& = XX (4.18)
1€EZ
where the matrix X is obtained by stacking the flow states XA for each frequency w; with appropriate
quadrature coeflicients. For a set of n,, frequencies, X is of size n x kn,,. It is then possible to recover
the leading eigenvalues/vectors of P by using the classical snapshot technique introduced by Sirovich
(1987). First, we perform the eigenvalue decomposition of XX as

XX = HBH* (4.19)

where the diagonal matrix B contains the leading eigenvalues [; associated with the EOFs, namely the
leading eigenvalues P. The leading EOFs ¢; are computed by

1
902_ \/E

where H; denotes the i*" column of the matrix H. Note that the EOFs are orthogonal by construction.
It should be emphasized that the present procedure is meant to approximate the EOFs from the subset
of the k leading optimal harmonic responses.

XH, (4.20)

4.4.1.2 results

The computation of the EOFs is based on the optimal harmonic responses of the flow, which are computed
using the numerical method introduced in section 4.3. To discretize the frequency-domain integral defined
in equation (4.15), an equidistant spacing between 129 frequencies has been adopted and quadrature
coefficients corresponding to the 4-order Simpson method have been used. Note that the rank k of
truncation has to be carefully taken into consideration to assess the accuracy of the approximation.
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Figure 4.8: (a) first 1500 eigenvalues 3;. (b-f) depict the longitudinal velocity of the first, third, 9",
18" and 40" Empirical Orthogonal Functions.

We have represented in figure 4.8(a) the first 1500 eigenvalues 3; for various values of the approximation
rank k£ = 10,20, 30 and 40. The leading eigenvalues are observed to be converged when increasing the
value of k£ and this also holds for the associated eigenvectors (not shown here). Additionally, figure
4.8(a) provides a zoom on the first 40 eigenvalues, which are converged in terms of the rank k. The
first eigenvalues come in pair which indicates that the most significant EOFs are traveling structures.
Furthermore, the leading eigenvalues fall off quite rapidly, indicating that the flow response to stochastic
forcing is only driven by a low number of coherent processes. We have represented in figures 4.8(b-f)
the longitudinal velocity of the first, third, 9", 18" and 40"" EOFs respectively. They appear as wave
packets that are spatially extended downstream, where the response energy to forcing is the largest.
Contrary to the optimal responses exposed in section 4.3, the EOFs are not associated with a particular
frequency. Rather, they account for the most energetic patterns emerging from a white noise forcing
which excites all the frequencies and spatial wavelengths in an equal balance. Interestingly, the first EOF
is characterized by the same streamwise wavelength as that of the optimal flow response at w = 0.75.
This observation confirms that the forcing of all space-time scales results in a preferred frequency of
w = 0.75 in the flow response, see figure 4.3. As for higher EOFs, their spatial support is observed to
extend farther downstream. Furthermore, they display more complex structures characterized by more
than one particular wavelength. In particular, smaller structures are observed near separation while
larger structures are mainly localized downstream, see figures 4.8(e,f). This result is consistent since we
compute the EOFs from a linear combination of the leading optimal harmonic responses taken over a
frequency range, see equation (4.20).

As previously mentioned, these modes represent uncorrelated energy-ranked flow states so that the j**
EOF contributes to 8/ > i~ ; i x 100% of the total sustained variance. As an indicative illustration, the
first 4 EOFs contain 71% of the total variance while the first 10 ones contain 94% of it (independently
of the rank k).

4.4.2 Second basis: the Stochastic Optimals

The EOFs previously described consist of the set of optimal responses of the flow when subjected to
an external stochastic forcing. However, owing to the non-normality of the base flow, the optimal
responses are structurally distinct from the corresponding optimal excitations. In particular, the set of
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forcing distributions yielding a maximum contribution to the variance of the statistically steady state
differs from the EOFs. We call them the Stochastic Optimals (SOs). As mentioned by Farrell & lIoannou
(2001a), an accurate representation of the original dynamics requires to capture both the set of optimally
growing perturbations and those into which they evolve. Consequently, building ROMs by using the set
of Stochastic Optimals stands for a natural alternative to the use of EOFs.

Considering system (4.10), the maintained variance can be expressed, see Farrell & loannou (1993a), by

[z72] = trace(FTQF) (4.21)

where the matrix Q is defined by

+oo +
Q= / AteAldt (4.22)
0

This matrix is also hermitian so that its eigenvectors are orthogonal. We call these eigenvectors the
Stochastic Optimals (SOs). According to equation (4.21), they rank the forcing structures, i.e. the
columns of F, by their contribution to exciting the maintained variance. Let ¢; be the it" eigenvector
of Q with its eigenvalue 7; and k; be a set of scalars, then a forcing given by Y " | k;¢;&(t) will lead,
for large times, to a statistically steady flow state of variance equal to )" | k;7;. In other words, the
variance sustained by each eigenvector at statistical equilibrium is equal to its associated eigenvalue and
the total variance is given by the trace of Q. Consequently, any random forcing can be decomposed as
a family of uncorrelated and orthogonal coherent processes ranked by their contribution to the evolved
flow state sustained variance. Since energy is mostly triggered by these eigenvectors (the SOs), they also
constitute a preferred basis of functions to design reduced-order models.

Interestingly, a deterministic interpretation of Q also exists. If we consider an initial state xg, the
time-integrated kinetic energy of its evolved state can be computed by

+00 +oo
/ ! (t)x(t)dt = xg (/ eATteAtdt> X0 = x:ngo (4.23)
0 0

The operator Q thus measures the observability of the flow states and is also known as the observability
Gramian. Its leading eigenvectors reduce to the flow structures leading to maximum time-integrated
kinetic energy. For that reason, the leading SOs may also be referred to as the most observable modes.

4.4.2.1 Computation

The computation of the leading eigenvectors of Q involves the same numerical issue as that of P. The
computational technique exposed here is thus mainly similar. The matrix Q is written and discretized
in the frequency domain

1 [ 1
= — RI(W)R(w)dw = — ) R (w;)R(w;)d; 4.24
0= 5- [ RR@H = 5= 3 RiwIR@)S, (1.21)
1€EZ
where {w;,i € Z} is a given set of discrete frequencies and d; denotes appropriate quadrature coefficients.
In this form, Q is formulated as the sum over the frequencies w; of R(w;)R(w;). Similarly to the
computation of the EOFs, these matrices are approximated by their truncated eigenvalue decomposition:

RT(wi)R(wi) ~ YA2YT(w;) (4.25)

where Y and A? are the matrices of leading eigenvectors and eigenvalues respectively. For an approxi-
mation of rank k, the matrices Y and A are of size n x k and k x k respectively. Analogously, we recover
the diagonal elements )\22 (w) which are the optimal energy gains at the frequency w. In addition, the
associated eigenvectors (columns of Y(w)) reduce to the optimal harmonic forcing previously denoted by
fi(w). Introducing this decomposition in equation (4.25) then leads to a factorization of Q in the form
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Figure 4.9: (a) first 1500 eigenvalues ;. (b-f) depict the longitudinal velocity of the first, third, 9",
16" and 30" Stochastic Optimals.

1 2yt t
Q= ZYA YH(wi)d; = YY (4.26)
1€Z
where the matrix Y is built by stacking the states YA for each frequency w; with appropriate quadrature
coefficients. Similarly, for a set of n,, frequencies, Y is of size n x kn,,. To compute the leading eigenvalues
and eigenvectors of Q, we proceed analogously by using the eigenvalue decomposition of YTY as

Y'Y =LIL* (4.27)

where the diagonal matrix I contains the leading eigenvalues of O, which are denoted by 7; in the
following. The leading associated eigenvectors, i.e. the Stochastic Optimals, are denoted by ¢; and are
obtained from

b= Ly, (4.28)

Vi
where L; represents the i*" column of the matrix L. Note that, by construction, these modes are also
orthogonal. By this way, equation (4.28) allows to approximate the Stochastic Optimals from a linear
combination of the leading optimal harmonic forcing over the frequency range of interest.

4.4.2.2 results

The computation of the Stochastic Optimals relies on the optimal harmonic forcing f; (w) introduced in
section 4.3. They are computed similarly to the EOFs, by using the same frequency discretization.

We have depicted in figure 4.9(a) the first 1500 eigenvalues ; for different values of the approximation
rank k. The cases k = 10, 20, 30 and 40 have been investigated. Analogously, the leading eigenvalues are
observed to be converged when increasing the parameter k. Furthermore, the leading eigenvalues also
come in pair and fall off rapidly. Consequently, (i) the first Stochastic Optimals are traveling patterns
that are 90° out of phase and (ii) only a low number of forcing structures have a significant contribution
to the evolved sustained variance. Figures 4.9(b-f) represent the first, third, 9, 16" and 30" Stochastic
Optimals respectively. As one could expect, the leading SOs reduce to upstream located structures. This
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result is consistent and further illustrates the spatial separation between optimal forcing and optimal
responses in open flows, see Cossu & Chomaz (1997). Notably, they display flow structures that are
inclined against the shear so as to make use of the Orr mechanism to optimally extract energy from the
base flow. The first SO is mainly localized near the separation point and looks extensively similar to
the optimal harmonic forcing obtained at w = 0.75, see figure 4.4(c). This observation confirms that the
maximum variance possibly sustained by a white noise stochastic forcing exploits the preferred frequency
w = 0.75 which has been exposed in section 4.3 as the most receptive frequency of the flow. Regarding
the higher Stochastic Optimals, see figures 4.9(e,f), they display a much more extended spatial support.
Reminding that the SOs yield a basis of uncorrelated forcing ranked by their energy contribution, it is
interesting to assess the part of the total energy resulting from the leading ones. For the four values of
k investigated, the first 4 modes lead to 97% of the total evolved variance while the first 10 ones yield
about 99% of it.

4.4.3 Third basis: the Balanced modes

The first two bases introduced in this section have been designed so as to optimally capture the most
energetic flow responses and the optimal excitations respectively. However, an accurate model reduction
of the dynamics requires the faithful representation of both these flow structures, see Farrell & Ioannou
(2001a). As a result, representing the dynamics of both the optimals and the evolved optimals in a
balanced manner is of relevant interest.

The technique called Balanced Truncation has been introduced to this end for stable linear input-output
systems, see Moore (1981); Glover (1984); Zhou & Doyle (1998). It consists of finding a projection basis
of equally and optimally controllable and observable modes. If we denote the Balanced modes by t;, this
statement can be formulated by

1
tp-1t,

—tIQt; = o (4.29)

where the first term assesses the controllability of t; while the second denotes its observability. Further-
more, both terms are equal to the quantity o; which is referred to as the Hankel Singular Value (HSV).
The key idea of Balanced Truncation is then to discard the modes which are both weakly energetic
(controllable) and weakly amplified (observable) in the flow. The remaining Balanced modes, associated
with the highest HSVs, are then used as a projection basis. By construction, the leading Balanced modes
are meant to capture the input-output dynamics rather than the most energetic forcing or responses.
Balanced Truncation is known to be quasi-optimal to capture the input-output transfer function insofar
as it yields theoretical bounds on its error which are close to the lower bound achievable by any ROM,
see Dullerud & Paganini (2000). This useful property makes it a popular technique and motivated the
choice of this third basis.

4.4.3.1 Computation

Technically, these modes are found as the leading eigenvectors of the product PQ of the controllability
and observability Gramians, see Moore (1981). Such a computation has been done in the case of small-
sized systems by Farrell & Ioannou (2001a). In this latter work, the authors computed directly P and
Q by solving two Lyapunov equations.

In the present chapter, we are concerned with a large fluid system and such a direct computation is not
tractable. Thereby, a similar approximation based on the singular value decomposition of the resolvent

is performed to overcome this limitation. We consider the approximations of P and Q which were
introduced as

P~XX' and Q~YY' (4.30)
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Figure 4.10: (a) first 1500 Hankel Singular Values o;. (b-f) display the longitudinal velocity of the first,
third, 9", 14*" and 32! Balanced modes.

where X and Y contain the normalized first k& optimal harmonic forcing and responses of the flow on a
discrete set of frequencies. It is then possible to find the Balanced basis from the algorithm introduced
by Laub et al. (1987). This algorithm relies on the singular value decomposition of the cross product

YX = MEN* (4.31)

where the diagonal matrix ¥ contains the Hankel Singular Values ;. The Balanced modes t; and its
bi-orthogonal set s; are then recovered from

1 1

XN; d s; =
NG ; and s; NG

t;

YM, (4.32)

4.4.3.2 results

The Balanced modes are computed for the approximation ranks k = 10,20,30 and 40 by using the
same set of discrete frequencies w;. Figure 4.10(a) depicts the first 1500 Hankel singular values o;
corresponding to the approximation ranks k investigated. The leading HSVs are observed to converge
when increasing the approximation rank k. Analogously, they come in pair which highlights the pairwise
occurrence of Balanced modes as a representation of traveling structures. Furthermore, owing to the
HSVs fall off, it is reasonable to expect that the predominant part of the input-output dynamics may
be captured by the leading modes.

We have depicted in figures 4.10(b-f) the first, third, 9", 14" and 32" Balanced modes t; by their
longitudinal velocity. They appear as downstream wavepackets similar to EOFs. On the other hand,
their spatial support is localized in a slightly more upstream position, which is particularly noticeable
for the first and third modes. This latter observation is reminiscent of their equal controllability and
observability. Indeed, the Balanced modes are less controllable than the EOFs (and are not localized
as much downstream) whereas they are also less observable than the SOs (and are not localized as
much upstream). Regarding higher Balanced modes, this statement is less obvious, see figures 4.10(e,f).
In addition, similarly to the EOFs and the SOs, higher modes display a much more extended spatial
support.
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4.5 Model reduction

In the previous section, we have introduced a way to approximate the leading EOFs, SOs and Balanced
modes. For an approximation rank k = 40, we observed a convergence of approximately the first 100
modes, see figures 4.8(a), 4.9(a) and 4.10(a). The higher modes which are not converged in terms of the
rank k& may not be interpreted as either EOFs, SOs or Balanced modes. However, they also stand for
good candidates to project the dynamics since they are conceptually designed from the leading optimal
harmonic forcing and responses of the flow. Consequently, all the leading 1500 modes of the three
different bases are considered and used to build the ROMs. Studying the performance of the ROMs in
capturing the original amplifier dynamics is the purpose of this last section.

4.5.1 Projection of the original fluid dynamics

The model reduction is obtained by a Galerkin projection of the original dynamics (4.2). We denote
by T the matrix whose columns are the leading r modes of interest (either ¢;, ¢; or t;) and by S the
matrix which contains its bi-orthogonal basis (namely ¢;, ¢; or s;). The parameter r thus denotes the
dimensionality of the projection basis such that T and S are of size nxr. In addition, the bi-orthogonality
condition reads

SIT=1, (4.33)

where |, denotes the identity of size r x r. The flow state x is then expressed as a linear combination of
the expansion basis by

x=Tz and z=Sx (4.34)

where the coefficients of this combination are contained in the vector z of size » x 1 which is called the
reduced state in the following. The Petrov-Galerkin projection then yields the reduced system

7=Az (4.35)

where the reduced dynamical operator is obtained by A, = STAT and is of size r x r.

4.5.2 Time propagation

First, we examine the ability of the ROMs to recover the original time propagator. This performance
is evaluated by considering the optimal energy gain ||e**||3 over all possible initial conditions at time
t. To compute this quantity on a ROM of size r, the low-rank time propagator Te”*ST is considered
instead of eA*. Note that the optimal energy gain has already been considered as a criterion to assess the
accuracy of ROMs on the previous works by Akervik et al. (2007, 2008); Henningson & Akervik (2008).
Results are exposed in figure 4.11 for models based on (a) EOFs, (b) SOs and (c¢) Balanced modes. In
all cases, we observe a convergence to the original optimal curve displayed by bold dashed lines. To
give an idea, the optimal energy gain obtained at time ¢ = 18 differs from less than 2% from all three
models of size 1500. Interestingly, the Balanced models yield the best performance for the smallest
sizes r. This observation is illustrated by the performance of the ROMs of size 100 in figure 4.11. This
result is consistent since Balanced Truncation is supposed to be quasi-optimal to model the dynamics.
Furthermore, Balanced models have a monotonic increasing performance while those of the two other
models is more erratic.

To further illustrate the dynamical behavior of the ROMs, the time evolution of the optimal perturbation
on a 1500 EOFs model is displayed in figure 4.12. The choice of a model based on EOFs is arbitrary since
the two other models yield very close results. The optimal initial condition computed for the optimal
time t = 18 is displayed in figure 4.12(a) by its streamwise velocity. This perturbation is located in the
vicinity of the separation point and is tilted against the shear. The time evolving optimal perturbation
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Figure 4.11: Optimal perturbation gain ||eAt||2 at time ¢ for ROMs based on (a) EOFs, (b) SOs and (c)
Balanced modes.
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Figure 4.12: (a) Optimal initial perturbation computed for ¢ = 18 on a ROM based on 1500 EOFs. (b-f)
Evolution of this perturbation computed from the associated low-order time propagator for the times
t = 6,18, 24,30 and 36 respectively. Flow structures are displayed by their longitudinal velocity.

computed from the low-order time propagator Te ‘ST is represented in figure 4.12. Figures 4.12(b-
f) represent the perturbation at the times t = 6,18,24,30 and 36 respectively. The perturbation is
observed to evolve along the shear layer and then along the downstream boundary layer as a localized
wave packet. We conclude that the considered ROM based on EOFs faithfully captures the original
optimal perturbation dynamics, see figure 4.2. Notably, both the Orr and Kelvin-Helmholtz mechanisms
are accurately recovered. This latter conclusion also holds for SOs and Balanced models.

4.5.3 Frequency response

As a second step, the performance of the models is evaluated in the frequency domain. We investigate
their ability to capture the original resolvent R(w). To do so, we consider the optimal energy gain over all
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Figure 4.13: Optimal perturbation gain ||R(w)||3 at frequency w for ROMs based on (a) EOFs, (b) SOs
and (c) Balanced modes.

possible harmonic forcing, namely ||R(w)||3. This quantity is computed on the ROMs of size r by using
the low-rank resolvent T(iwl, — A,)~1ST instead of R(w). The results corresponding to models based on
EOFs, SOs and Balanced modes are reported in figures 4.13(a,b,c) respectively. Similarly, a convergence
to the original optimal gain is observed for all three models. The first energy peak (associated with
shear instabilities) is well captured for all ROMs even though the convergence is more erratic for EOFs
and SOs models than for Balanced models. The high-frequency dynamics are also well captured for all
ROMs until a cut-off frequency w = 4.

4.5.3.1 FError quantification

For the sake of completeness, the ability of the ROMs to capture the leading optimal energy gain is
quantified. To this end, we introduce the relative oo-norm of the error defined by

max,, |/\1 (w) - )\17»((41)|

oo(T) = (4.36)

max,, |\ (w)]

where A\; = ||R(w)||2 is the leading singular value of the resolvent and \j, represents the same quantity
computed from the ROMs. Note that this error measures the relative difference of the optimal energy
gain peak values. Figure 4.14 represents this quantity as a function of the size r of the models. We
observe that the error tends to 0 for all three models. This fall off is somehow erratic for the EOFs and
SOs models but more continuous and monotonic for the Balanced models. As reminded in section 4.4,
exact Balanced Truncation is quasi-optimal to capture the input-output transfer function, see Moore
(1981); Farrell & Ioannou (2001a). Since we consider here all the degrees of freedom of the full system as
inputs and outputs, the input-output transfer function reduces to the resolvent operator. Accordingly,
Balanced models of small size are much more accurate than those based on EOFs and SOs. Their error
falls off quite rapidly until » =~ 100 which corresponds to the limit below which the Balanced modes
are converged in terms of the approximation rank k, see figure 4.10(a). For models of higher size, the
superiority of the Balanced models declines until being even inferior to the SOs models. This may be
attributed to the difference between the exact higher Balanced modes and those approximated and used
in the present models. A more precise understanding of the ranking performance between the three
models is out of concern here.

These results show that all three models recover very accurately the optimal harmonic responses of the
original system. For r = 1500, the error reduces to 2%, 0.6% and 0.55% for the EOFs, SOs and Balanced
models respectively. Furthermore, it should be mentioned that the same analysis has been performed
by considering the relative 2-norm error and that the same conclusions were observed.
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Figure 4.14: Relative co-norm error of the low-order models as a function of their size r.

4.5.3.2 Sub-optimal frequency responses

The most energetic part of the input-output dynamics has been highlighted in section 4.3 by ranking the
leading optimal harmonic forcing/responses over a frequency interval. To further assess the dynamics of
the ROMs, the same analysis is performed by investigating how their leading 40 optimal energy gains
compare to the original ones. Note that the optimal energy gains of the ROMs are directly computed
as the singular values of the low-order resolvent operator.

Results are exposed here in the case of EOFs models. The leading optimal energy gains A%, ... , A\, are
depicted in figure 4.15 as a function of frequency. The results from EOFs models of size » = 500, 1000
and 1500 are represented in figures 4.15(a,b,c) respectively. The singular values computed from EOFs
models are observed to converge to the exact ones when increasing the size of the models. Furthermore,
this result also holds of the associated optimal forcing and responses (not shown here). Not only the
"shear layer" branches are captured by the models but also the "convective" ones, see section 4.3. All
the leading singular values are well captured until the cut-off frequency w = 4 which is also the limit
considered to approximate the EOFs. Furthermore, it should be emphasized that we arbitrarily chose
EOFs to expose these results since investigating SOs and Balanced models leads to the same conclusions.
Our results demonstrate the ability of the ROMs to recover the input-output dynamics on the considered
frequency interval. Interestingly, the high-frequency dynamics which are not captured by the ROMs
reduce to the convection of small-scale structures in the free-stream. As a result, the ROMs are expected
to accurately capture the exact flow response from all possible low-frequency forcing.

4.6 Conclusion

The two-dimensional incompressible flow over a rounded backward facing-step has been considered as a
prototype of open flow subject to hydrodynamic instabilities. The main objective of this work was to
design accurate low-order models of its input-output dynamics. To reach that goal, the dynamics has
been decomposed into a set of optimal harmonic forcing and responses. The input-output dynamics,
seen as the mapping between all possible forcing and their associated responses, has been truncated on a
given frequency interval. Next, three sets of modes have been computed to project the original equations
and design the ROMs: the leading EOFs, SOs and Balanced modes.

For the considered backward-facing step flow, the singular value decomposition of the resolvent has
clearly highlighted two distinct dynamics. The first ones represent the amplification and advection of
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Figure 4.15: First 40 optimal energy gains A%, ... | )‘?10 versus frequency w computed on the full
system and EOFs models. (a,b,c) represent the results from models based on 500, 1000 and 1500 modes
respectively.

perturbations as wave packets along the separated shear layer and the downstream boundary layer.
The second ones account for the free-stream convection of perturbations. One should expect that
the balance between these two dynamics depends on the size of the computational domain. Actually,
preliminary results performed on a bigger domain indicate that the free-stream convection dynamics are
more energetic while the shear layer ones remain almost the same. In such a case, a larger number of
optimal forcing/responses would be required to capture the predominant input-output dynamics. We
thus conclude that designing accurate ROMs may be more challenging when considering much bigger
computational domains.

A truncation of the leading 40 optimal forcing and responses on the frequency range w = [0; 4] has been
adopted to compute the projection bases. This choice proved to be sufficient for an accurate computation
of the leading 100 EOFs, SOs and Balanced modes. Nevertheless, the higher modes have been also
considered to build the ROMs. We showed that all three models recover the optimal perturbation of
the system (the leading singular value of the time propagator) and the leading 40 optimal harmonic
forcing /responses (the leading singular values of the resolvent). The original system of size n = 170260
has thus been reduced to models of size 1500 that accurately capture the dynamics.

Practically, such ROMSs are not based on any input or output. Instead, the methodology introduced here
is conceptually meant to capture the dynamics on a given frequency interval. In the case where the most
energetic dynamics are predominantly driven by some known instability at a given frequency, as in the
present study, the ROMs may capture the predominant input-output dynamics. In other words, they
may recover the original flow response from all the possible initial conditions or external excitations.
This work thus yields a new and promising contribution to the design of ROMs for fluid flows. It may be
a valuable asset in the design of Kalman filter estimators for large-scale flows where the initial conditions
are often uncertain or varying. Alternatively, in the context of flow control, such models would allow
to consider systems where the number of inputs/outputs is very large or unknown. In particular, in
the context of closed-loop flow control, one possible prospect would be to consider a large number of
actuators and sensors in order to identify their optimal position.
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Chapter appendix

4.A Formulating the Navier-Stokes equations as a standard dynamical
system

The linear flow dynamics with external forcing have been assumed to be governed by the following
system

%= Ax+f (4.37)

where x is the discretized velocity field. This appendix is devoted to showing how to get this formula-
tion. We start by considering the linearized Navier-Stokes equations (4.1) with a forcing term on the
momentum equations. Once discretized, these equations may be written in the following finite-sized

matrix form:
(S0 a0 -G+ (3 () em

where x; and x2 denote the velocity and pressure fields, and f;(¢) is the forcing term. The operator A; has
been introduced as the part of the dynamics governing the convection and diffusion. Analogously, As and
A% have been introduced as the parts relative to the incompressibility and pressure effects respectively.
The mass matrix Q1 accounts for the inner product associated with the kinetic energy of perturbations,
namely xjQix; = [, u? dQ) where € is the fluid volume.

The equation on the pressure is meant to enforce incompressibility on the velocity field. We thus
eliminate it and restrict the velocity field to its divergence-free part. First, we multiply the momentum
equation by Ang_1 which leads an expression for the pressure as a function of the velocity field

- (AfolA;)_l [(AfolAl) x1 + Agfi(t)] (4.39)
The explicit divergence constraint can then be eliminated by writing
dxq
T = P1A1x1 + P1Qif1(2) (4.40)
where
P1Qi =1 — QT'A3 (A2Q1A%) T A (4.41)

is the projection matrix onto the divergence-free space. It is noteworthy that P; is a Hermitian operator
(P = P1). We can then introduce the linearized Navier-Stokes operator as A = P1A; and the divergence-
free part of the forcing as f = P;Q;f; so that we recover equation (4.37).

4.B Computation of the optimal harmonic forcing and responses

The starting point to approximate the leading EOFs, SOs and Balanced modes is to compute the leading
optimal harmonic forcing and responses of the flow. This appendix shows how the choice of the inner
product intervenes in their computation. We consider the forcing f; (¢), which may not be divergence-free,
so that the system is written as

x=Ax+ PlQlfl(t) (4.42)

where the operator P1Q; projects the forcing onto the divergence-free space. For an harmonic forcing
f1(t) = fe™! | the harmonic long time response of the flow is given by x(¢) = xe™t with (iwl—A)z = P1Q.f
which leads to & = (iwl — A)"'P1Q1f. The resolvent operator is then defined by R = (iwl — A)"1P1Q.
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Now, considering the inner product Qi based on the kinetic energy, the adjoint of the resolvent operator
Rf(w) is defined by
Rf(w) = Q7 'R* (w)Q (4.43)
where t}Ale superscript * denotes the complex conjugate transpose. We showed that the optimal harmonic
forcing f; and responses %; are obtained from RT(w)R(w)f; = A\?f; and R(w)RT(w)%; = A2%;. As a result,
making explicit the expression of the adjoint operator leads to the following equations
R*(W)QiR(W)f; = M2Qif; and R(w)Q;'R*(w)Qixi = A2 (4.44)

Practically, we only solve the first one with a classical Krylov-Arnoldi algorithm to compute the leading
forcing terms f;. The associated responses can then be recovered in a simpler way by X; = R(w)f;.
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Interlude

The previous chapter concludes the part of the thesis devoted to Reduced Order Models (ROMs). In
this one, the resolvent operator has been introduced as a key element in both the analysis of the flow
dynamics and the computation of the projection bases. We showed the ability of the Empirical Or-
thogonal functions (EOFs), the Stochastic Optimals (SOs) and balanced modes to recover the original
flow dynamics. In fact, the common point between the three previous chapters is the shift into the
frequency domain that allows to compute frequential snapshots which are used in the model reduction
process. Over the three previous chapters, the backward-facing step flow has been investigated from an
input-output point of view. We considered the case of a single input and a single output in chapter 2.
The case of all possible inputs and the same output has been investigated in chapter 3. In the end, we
have shown how to consider all the state-space as both the inputs and the outputs in chapter 4. As
an assessment from these chapters, we can say that we have increased the requirement of the models,
namely the number of inputs and outputs. Yet, it is naturally observed that the size of the required
ROMs increases accordingly. Let us give an illustrative example. Suppose we look for a model with
more than 95% of accuracy on the input-output transfer function with the H,, norm. If we consider the
balanced models computed in chapters 2, 3 and 4, the required sizes of the ROMs are 11, 16 and 930
respectively. Now, one should naturally choose a model reduction among those presented in this thesis
in relation to the desired expectations.

We now move on to the final chapter of this thesis. Its purpose is to illustrate some of the possible
applications of the low-order models investigated so far. Here, we considered the design of a low-order
closed-loop flow controller. We considered the two-dimensional backward-facing step flow along with
an additional upstream noise distribution (input) which acts as a random forcing and induces flow
unsteadiness. Next, we have introduced an actuator (input) along with several sensors (outputs). The
idea is then to extract information from the flow via a measurement in order to provide an accurate real-
time feedback actuation and suppress the perturbations induced by the noise. To solve this problem, we
adopted an optimal state-space flow control technique: the Linear Quadratic Gaussian control (LQG).
It consists in computing a control law based on a Linear description of the system in order to minimize
a Quadratic cost functional when the system is driven by Gaussian noise.

In this context, the computation of a Reduced Order Model appears as an indispensable step in the
design of the feedback flow controller. Indeed, the first step of the LQG control is to compute a so-
called compensator which takes the measurement as an input and returns the control law governing the
actuation, see Burl (1999); Zhou et al. (2002). To compute the compensator, one need to solve two Riccati
equations which have the size of the linear input-output system of interest. In our case, the number
of degrees of freedom is about O(10°) which makes the resolution of the Riccati equations impossible.
Now, given the distribution of the inputs and outputs, the control design process amounts to identifying
the input signals when output signals are given. Consequently, the design of the compensator does
not require the complete knowledge of the full dynamics but only the part governing the relationship
between input and output signals. Consequently, the compensator may be designed based on a low-
order model which captures the original input-output dynamics. Mostly, the predominant reason to
resort to ROMs is that a low-order compensator is more likely to yield an actuation law in real-time for
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practical applications. For these reasons, model reduction appears as a key element to design effective
compensators.

The next chapter presents the feedback control of the two-dimensional backward-facing step flow by
means of an LQG compensator based on a reduced-order model. This work has been done in collabo-
ration with Dr. Alexandre Barbagallo and Pr. Peter J. Schmid. Mostly, it should be noticed that my
contribution concerns the dynamics of the non-reduced flow dynamics as well as the model reduction.
On the other hand, the analyses related to the flow control were handled by Alexandre Barbagallo. The
results of this work have been exposed in an article that has been submitted to the Journal of Fluid Me-
chanics. This latter consists of a comprehensive study of various components of the LQG-control design
applied to the backward-facing step flow. The major contribution of this paper is the introduction of
tools intended to design effective closed-loop control strategies for amplifier flows. Since a large part of
this work was performed by Alexandre Barbagallo, we chose to report this article in the appendix sec-
tion. Consequently, the next chapter is very short and only includes a brief description and summary of
the main results. I would highly recommend interested readers to consider both the following summary
and the full article presented in the appendix section.
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Chapter 5

Closed-loop control of unsteadiness over
the backward-facing step

5.1 Introduction: the LQG control

This last chapter of the thesis is devoted to the feedback control of the two-dimensional backward-facing
step flow. We considered a linear state-space flow control approach: the LQG control. LQG control
means Linear Quadratic Gaussian control. It stands for computing a control law based on a (L)inear
description of the system such as to minimize a given (Q)uadratic cost functional, the system being
forced by a (G)aussian noise. In this context, the objective of the control is to suppress or at least to
reduce the perturbations induced by the noise. Since the Navier-Stokes equations are non-linear, the
first step is to identify a linear state-space model representative of the system of interest. This model is
called the plant. As a second step, we introduce an actuator to act on the flow (input) and a sensor to
extract real time information from the flow (output). Next, the design of the LQG control consists of
the computation of a compensator which takes the measurement as an input and yields the actuation
law as an output. For illustration, a sketch of the key element of the compensated system is depicted
in figure 5.1. We define the flow state X(¢) whose dynamics are governed by the plant, with the initial
condition X(tg). We furthermore assume that the plant is subject to an external random noise. The
sensor yields a measurement m(t) of the flow state X(¢) which is given to the compensator. This latter
then compute the control law w(t) (i.e. the temporal behavior of the actuator) such as to minimize a
given cost functional.

The compensator is composed of two distinct components: the estimator and the controller. The
controller provides to the actuator a control law equal to u(t) = KX(t), namely the multiplication of the
state X(¢) by a matrix K called the control gain. It is shown in the standard reference, see Burl (1999),
that the control gain matrix which allows to minimize a given quadratic cost functional may be obtained
by solving a Riccati matrix equation. The controller requires the knowledge of the flow state X(¢) which
is not an available quantity in practical situations. This is where the estimator intervenes. Its purpose
is to compute an estimated state Y(¢) from the time history of the measurement. This estimated state
is then used by the controller instead of X(¢). Similarly, the estimator may be computed by solving a
Riccati matrix equation. We recall that the computations of both the controller and the estimator are
based on a linear description of the system of interest, namely the plant. Additionally , both can be
designed independently owing to the separation principle, see Burl (1999). We refer interested readers
to the book by Zhou et al. (2002) for additional information on optimal state-space flow control.
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Figure 5.1: Sketch of a typical Linear Quadratic Gaussian control setup.

5.2 Flow configuration

We consider the two-dimensional incompressible flow over the backward-facing step investigated in the
previous chapters. The Reynolds number, based on the step height and incoming velocity is fixed to
Re = 600. Since we are attempting to control the flow by a LQG strategy, a linear model of the
flow dynamics is required. We naturally choose to linearize the Navier-Stokes equations about a base
flow (chosen as a steady solution). This stands for studying the early stages of development of the
perturbations to be controlled since the nonlinear effects are negligible for small perturbations. We
furthermore consider only two-dimensional perturbations. The base flow solution at Re = 600 has been
represented in figure 5.2 by its streamlines.

As shown in chapter 1, the flow is globally stable at this Reynolds number, however, it exhibits a
substantial ability to transiently amplify perturbations. As a results, the objective of the control is to
reduce the perturbations possibly induced by an external noise which excites the flow. We assume that
the flow unsteadiness (or perturbations) are triggered by a noise source modeled as a gaussian vertical
body force By, see figure 5.2. The actuator is also chosen as gaussian vertical body force and is located
in the vicinity of the base flow separation, see By in figure 5.2. The sensor C, yields a measure of the
shear-stress integrated in a part of the downstream wall; it is the same sensor as the one considered in
chapter 2 and chapter 3. The measurement from the sensor C, will be a quantity to be minimized by the
controller. Additionally, equivalent shear-stress sensors denoted as Cy, Co, C3 and Cy, see figure 5.2, will
be considered to yield the measurement used by the estimator. The linearized Navier-Stokes equations
are discretized with the finite element method; the resulting linear input-output finite system reads

X
Q% AX + QBlw(t) + QBQU(t)
m(t) = CX with i=1,2,3 or4

(5.1)

where the state vector X(t) is composed of the longitudinal and vertical velocity and the pressure on all
the degrees of freedom of the mesh. The matrices Q, A, B1, By and C; denote respectively a weight matrix
arising from the discretization, the linearized Navier-Stokes operator, the noise matrix, the control matrix
and the measurement matrices. Furthermore, we have introduced the control law u(t), the measurement
m(t) as well as the noise w(t). For simplicity, the noise is assumed to be white in time with zero mean
and a variance equal to the parameter W?2. Furthermore, we suppose that the measurements C; used by
the estimator are corrupted with a noise g(t) of variance G2.
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Figure 5.2: Streamlines of the base flow solution at Re = 600. The location of the inputs and outputs
are also displayed.

5.3 Reduced-order compensator

As previously mentioned, the design of the controller and estimator is not tractable for very large systems
such as the one considered here. The resolution of the two Riccati equations involved in the process is
only tractable for systems of moderate dimensions (=~ 10%). Here, the spatial discretization leads to a
system with ~ 360000 degrees of freedom so that a reduced-order model of the flow becomes mandatory
for the computation of the compensator. The reduced-order model is only required to capture the
input-output dynamics. There are only two inputs: the noise By and the actuator By. On the other
hand, since the perturbation kinetic energy will be considered as a cost functional in the following, we
wish to capture the entire flow response driven by these two inputs. At this stage of the thesis, we had
not investigated all the model reduction techniques presented in the previous chapters. Therefore, we
adopted a simple POD model. To be more precise, it reduces to the same POD model investigated in
chapter 2, except that there are two inputs. In other words, we compute the set of the modes the most
easily influenced by the two inputs; the most controllable modes. The original input-output system is
projected onto the reduced POD basis to obtain the following low-order system.

dX S o .
il AX + Biw(t) + Bau(t) (5.2)
m(t) = CX with i=1,2,30r4

where the superscript ~ represents the reduced order quantities (projected onto the reduced basis of
modes). It has been found that a model of size 150 is sufficient to recover the entire dynamics driven
by the two inputs. Naturally, using more advanced methods, such as the Balanced Truncation along
with the output projection procedure, would have resulted in a much smaller ROM. Yet, building the
smallest model is not the point of this work; we only need an accurate low-order representation of the
input-output dynamics to investigate the feedback control performance.

Let us introduce the reduced-order estimator. Its task is to construct an approximate flow state X from
partial information from the sensor C;. The estimated state Y is supposed to satisfy a set of equations
similar to those governing the original system:

— = AY + Bou(t) — L(m — G;V) (5.3)

where the noise term Bjw(t) has been replaced by the forcing term —L(m — CY). This forcing term
represents the difference between the true measurement signal C;X and the estimated measurement signal
C,Y multiplied by the matrix L. In fact, this forcing term is meant to drive the estimated state Y toward
the true one X. The design of the estimator consists of the computation of the matrix L called the
Kalman gain which is performed from a constrained optimization problem in which the estimation error
Z = X—Y is to be minimized. Practically, L may be computed by solving a Riccati matrix equation, see
Burl (1999). Importantly, the two white noise source g(t) and w(t) are taken into account in this Riccati
equation. Indeed, the ratio of their variance G/W appears as a parameter in the design of the estimator
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that accounts for the noise-to-signal ratio of the sensor, or equivalently to the speed of estimation. It
should be noticed that the Riccati equation may be easily solved for our system of size 150.

Regarding the reduced-order controller, it is designed to compute the control law w(¢) so as to minimize
a predefined cost functional such that u(t) = KX(t). Two cost functional are considered in this work.
The first one represents the energy of the measurement extracted from the sensor C, which may be
written as

o0
Jm = / (X*CrCoX + 1Pu?)dt (5.4)
0
and the second represents the perturbation kinetic energy contained in the entire domain:
m ~ A A
Je = / (X*QX + IPu?)dt (5.5)
0

where * denotes the transconjugate, CpX is the measured signal and X*QX is the perturbation energy
computed in the ROM. Note that the parameter [ has been introduced in either case. It is referred to as
the control cost and quantifies the user-specified weighting of the control energy compared to the energy
to be minimized. The design of the controller reduces to the computation of the reduced control gain
K. Analogously, the matrix K is obtained by solving a Riccati matrix equation, see Burl (1999).

In the end, the reduced-order compensator consists of the successive action of the reduced-order estimator
and the reduced-order controller. Once we have chosen the values of [ and G/W, we compute the
associated matrices K and L. Next, the measure m(t) is used to build the estimated state Y(¢) from
which the controller provides the control law u(t) = KY(t).

5.4 Summary of the results

The main concern of this work is to give a physical insight into the feedback control of the backward-
facing step flow. To some extent, the idea is to address practical questions in view of getting closer to an
experimental implementation. The results of this work have been organized in four quasi-independent
sections that are summarized below. We refer interested readers to the full article exposed in appendix
C where a thorough report of all the results is available.

5.4.1 Part I: Design of an efficient estimator

The first part of this work is devoted to the estimation process and more particularly to the placement
of the sensor. As a result, the controller is turned off; we wish to construct an accurate representation
of the state triggered by the noise Bi. We investigate the estimation performance when choosing the
four different sensors C; and varying the noise-to-signal ratio G/W.

Choosing large values of G/W simulates the case where the signal received by the sensor is highly
corrupted. In such a case, it is naturally observed that the estimator is unable to yield a correct
approximation of the flow state. On the other hand, for low values of G/W, the signal is weakly
affected by the noise and an accurate estimation may be recovered. Recalling that the flow is subject
to convective instabilities, the perturbation triggered by B, is amplified during its advection. For this
reason, it is necessary to locate the estimation sensor in a sufficiently downstream position so as to
measure a weakly corrupted signal. However, we show that the estimation error Z(t) only start to fall
off once the disturbance triggered by B1 reaches the estimation sensor. This is illustrated in figure 5.3
where we represent the estimation error ||Z||2 = Z*QZ as a function of time where we have triggered an
impulse at the input Bi. We have also represented by a bold and grey line the energy of the original
state [|X||2 = X*QX. It is observed that the error start to decrease as soon as the triggered wave packet
reaches the estimators C;. As a results, we conclude that the sensor used for the estimation should be
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Figure 5.3: Energy of the estimation error ||Z||3 versus time for the four different estimation sensors.
The energy of the original state ||X||2 is also represented by a bold grey line.

placed by considering a balance between the speed of estimation (where it should be located upstream)
and the noise-to-signal ratio (where it should be located rather downstream).

5.4.2 Part II: Influence of the cost functional on the control performance

As a second step, the controller is turned on and we investigate the effect of the cost functional on
the control performance. We start by considering the case where we attempt to minimize the energy
measured by the sensor Cp,; namely the cost functional J,,. It is shown that, for low values of the
control cost [ and noise ratio G/W (which is referred to as the large gain limit), we observe an increase
of the total kinetic energy of the perturbation even though the energy measured from the sensor C,, is
decreased. This observation has been interpreted to an extreme sensitivity of the compensators that are
designed in the vicinity of the large gain limit. In such a case, we observed that the control law wu(t)
provided by the compensator yields strong control actions at high frequencies. Next, it is shown that
this behavior may be suppressed by choosing the cost functional J, based on the total kinetic energy of
the flow state. In this latter case, we succeeded in decreasing both the total kinetic energy of the flow
state and the measurement energy from the sensor C,.

5.4.3 Part III: Effect of the plant deviation on the compensated system

In the third part of this work we investigate how the performance of the feedback control is altered by
the model reduction used to design the compensator. In other words, we study how an error between
the original plant and the reduced-order model based on which the compensator is designed affects the
control performance. It is shown that the most critical quantity to be captured by the reduced-order
models is the input-output behavior between the actuator By and the estimation sensor (chosen as Cq
here). As a result, the error between the original and reduced plant is quantified by the relative Hy error
of the impulse response from Bo to C;. This error, denoted by err, is then considered to account for the
plant deviation.

As a first step, we choose a ROM of size 150 as the reference plant. Consequently, we can design a
"perfect" compensator based on this plant which corresponds to the case where err = 0. Next, we
artificially degrade the ROMs used to construct the compensators by decreasing their size. By this way,
various compensators characterized by different plant deviations are investigated. The resulting com-
pensated systems are observed to be unstable in the vicinity of the large gain limit. Furthermore, when
increasing the plant deviation err, the unstable region in the (I, G/W) plan grows so that the range of
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Figure 5.4: Regions of unstable compensated systems in the (I, G/W) plan for different values of the
plant deviation err. The red and green squares represent unstable and stable compensated systems
respectively in the case where the plant consists of the full linearized Navier-Stokes equations.

the usable parameters [ and G /W is reduced. This result is illustrated in figure 5.4 where the regions in
the (I, G/W) plan leading to unstable compensated systems have been reported. The five contour lines
separating the unstable regions from the stable ones correspond to the errors err = 0.5,0.1,0.02,0.005
and 0.002.

As a second step, the feedback control of the full linearized Navier-Stokes equations with a compensator
based a ROM of size 150 has been investigated. The considered values of the parameters [ and G/W have
been reported in figure 5.4 by red and green symbols which denote the unstable and stable simulations
respectively. Interestingly, the plant deviation reduces to err = 0.02 in this case. The unstable behavior
of some of the compensated systems is thus in agreement with our results obtained with the low-order
reference plant.

Finally, we conclude that the more the ROM differs from the plant to be controlled, the more restricted
is the range of usable parameters [ and G/W to design an effective compensator. This result is important
since the model reduction, which is required for the practical design of a compensator, inevitably induces
a loss of information and a deviation of the plant.

5.4.4 Part IV: Feedback control of the non-linear Navier-Stokes equations

The fourth and last part is devoted to the feedback control of the non-linear Navier-Stokes equations by
means of a linear compensator. The variance of the random noise is varied such as to investigate various
degrees of non-linearity. In particular, three cases are examined: a quasi-linear, a weakly non-linear and
a strongly non-linear development of the perturbations.

In the case where the dynamics of the perturbation are quasi-linear, the control is found to be very
effective. However, its efficiency is observed to decease as non-linear effects become stronger. In the
weakly non-linear situation, the dynamics of the perturbation is still linear close to the sensor used for
estimation but becomes non-linear after the sensor. In this case, a good control effort is also observed.
Now, in the strongly non-linear case, the non-linear effects are noticeable upstream of the sensor and a
clear decrease of the control efficiency is observed. The effect of the control in the strongly non-linear
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Figure 5.5: Energy of the perturbation versus time for the strongly non-linear simulations (thick lines)
and for the linear simulations (dashed lines). Note that the same random sequence has been used for
the noise signal in all the cases.

simulation is illustrated in figure 5.5 where the kinetic energy of the perturbation is depicted as a function
of time. The thick lines account for the strongly non-linear simulations whereas the dashed lines account
for the linear simulations. Note that the same random noise has been used in all these simulations.
Noticeably, a significant decrease of the perturbation kinetic energy is observed in both cases. For even
stronger non-linear simulations, the compensated system is found to possibly diverge. In the end, one
may remember that a linear compensator has a positive action on the non-linear flow dynamics for a
significant range of perturbation amplitudes.

5.5 Concluding remarks

The two-dimensional backward-facing step flow has been successfully controlled by a feedback LQG
control strategy. The use of a reduced-order model accounting for the linear dynamics of the flow has
been used as a key element to approximate a low-order plant and to design a low-order compensator.
Important issues related to the practical implementation of such control strategies have been addressed.
Owing to this work and to the results exposed by Barbagallo et al. (2009), we conclude that the design
of a closed-loop control set-up is more challenging in the case of an amplifier flow (such as the backward-
facing step flow) than for an oscillator flow (such as the cavity flow). Indeed, oscillator flows display
instabilities which are narrow-banded in frequency and thus more easily controllable and observable. On
the other hand, noise-amplifier flows are very sensitive to external excitations and exhibit instabilities
characterized by a rather broadband of frequencies. We demonstrated that a sensitivity analysis of
the compensator performance with respect to various noise sources is a key element for a successful
closed-loop control design. We hope that the present work constitutes an additional and valuable tool
to overcome some of the practical implementation challenges that arise in the design of a closed-loop
flow control. Finally, we refer interested readers to the appendix C where the full article is exposed.
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Conclusion

The research presented in this thesis contributes to the study of the model reduction of the linear dynam-
ics of fluid flows. Our main objective was to investigate how to design Reduced Order Models (ROMs)
by projection methods that accurately capture the linear two-dimensional input-output dynamics of a
backward-facing step flow. Our first concern was to investigate the linear dynamics of the flow by means
of a global stability analysis. Next, various sets of modes were considered to construct ROMs which
model the original dynamics. In particular, some of the most famous projection methods used to reduce
the dynamics of fluid flows have been investigated: the projection on the basis of the global eigenmodes,
the Proper Orthogonal Decomposition (POD) and the Balanced Truncation. Finally, the last chapter
was devoted to a practical aerodynamic application where model reduction appeared as a key element:
the LQG closed-loop control of the backward-facing step flow based on a reduced-order compensator.

Summary of the results

The linear and incompressible dynamics of the backward-facing step flow has been introduced in chapter
1. Tt has been found that the flow becomes globally unstable at Re = 526. The unstable global mode
has been identified as a stationary and transversally periodic structure similar to those encountered in
various different separated flows, see Theofilis et al. (2000); Barkley et al. (2002); Marquet et al. (2009);
Cherubini et al. (2010b); Robinet (2007a). In particular, this instability has been attributed to both
lift-up and centrifugal mechanisms owing to the previous work by Marquet et al. (2009) and Cherubini
et al. (2010b). The transient dynamics of the flow has been investigated through an optimal perturbation
analysis together with a receptivity analysis. We identified the disturbances which most effectively lead
the flow to turbulence. The most unstable mechanisms were attributed to coupled Kelvin-Helmholtz
and Orr instabilities which were shown to lead to substantial transient energy growths. Additionally,
the optimal transient mechanism, leading to a maximum kinetic energy growth, has been related to the
development of oblique waves in the shear layer, similarly to the optimal transition scenario observed by
Monokrousos et al. (2010) in a flat-plate boundary-layer. This chapter thus provides a rather thorough
analysis of the linear global stability of a 2D backward-facing step flow where we used some of the most
recent hydrodynamic stability tools.

The use of the global eigenmodes to capture the transient dynamics of the flow has been briefly addressed
in appendix B. We showed that their ability to capture the optimal perturbations strongly depends on
the flow configuration. Mostly, computational limitations were attributed to the very bad conditioning
of the linearized Navier-Stokes operator owing to the strong streamwise non-normality of the equations.
These results are in agreement with those recently exposed by Barbagallo et al. (2009); Sipp et al. (2010).

An input-output formalism of the equations was then privileged: we looked for low-order models which
capture the dynamics from some inputs to some outputs. To begin with, a single input and a single
output where considered in chapter 2. We showed how to compute the most controllable modes (the
structures the most easily influenced by the input) by a POD procedure. Alternatively, the most and
equally controllable and observable modes, referred to as the balanced modes have also been considered.
We showed that both bases lead to ROMs that accurately model the original input-output dynamics
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with a superiority of the balanced models. These results are in agreement with the previous works by
Rowley (2005); Ilak & Rowley (2008); Barbagallo et al. (2009). The major contribution of this chapter
is the introduction of a frequency-based snapshots method used to compute both the most controllable
modes (POD modes) and the balanced modes. This approach offers the possibility to design ROMs from
the flow state responses to harmonic excitations. This alternative technique is shown to display two main
advantages. First, frequential information of given flow responses may be a much more accessible to
experimental measurements and/or to a physical interpretation. Secondly, this procedure is shown, see
Zhou et al. (1999), to be directly applicable to unstable systems without separating the stable and
unstable dynamics. To illustrate this valuable property, the procedure has been derived successfully on
both the backward-facing step flow and the unstable flow over a square cavity.

In the next part of the thesis, our frequency-based snapshot technique was extended to flow configurations
having more than a moderate number of inputs and outputs. We considered in chapter 3 the modeling of
the dynamics from all the possible inputs to a single output. The most observable modes (the structures
which optimally excites the output) have been computed by a POD procedure by using the frequential
snapshot method. Projecting the linearized Navier-Stokes equations on this basis proved to lead to
efficient ROMs. Yet, the major contribution of this chapter was the introduction of the input-projection
technique which allows to approximate balanced modes. Indeed, these balanced modes have been used
to design more efficient ROMs. Noticeably, this new procedure stems from the works by Rowley (2005);
llak & Rowley (2008) where an analogous technique called output-projection has been exposed. We
illustrated the superiority and the quasi-optimality of the balanced models obtained with the input
projection procedure on the backward-facing step flow. The inputs were chosen as all the degrees of
freedom of the state space discretization and the output as a single sensor. By construction, the ROMs
presented in this chapter may be particularly useful for flows which are continuously excited by an
unknown noise (input) and where there are a moderate number of outputs.

In chapter 4, a consistent framework has been developed in order to extend the model reduction to fluid
systems with a very large number of inputs and outputs. Low-order models that capture the dynamics
from all the possible inputs to all the possible outputs have been computed on the backward-facing step
flow configuration. A major emphasis has been given to the formalism and methodology which allows to
derive the projection bases and the resulting ROMs. We followed through the previous work by Farrell
& loannou (2001a) where the authors constructed ROMs by using the most controllable modes (called
Empirical Orthogonal Functions), the most observable modes (called Stochastic Optimals) as well as
balanced modes. In the case of our 2D backward-facing step flow, the computation of these modes was
not tractable due to the large size of the system. Hence, the major contribution of this chapter is to
propose a way of approximating the leading EOFs, SOs and balanced modes for large fluid systems. The
key idea was to approximate the resolvent operator by truncating its singular value decomposition. The
leading singular vectors of the resolvent have been computed on a finite frequency range and used to
approximate the leading EOFs, SOs and balanced modes. Next, the resulting projection bases have been
used to design ROMs which were shown to successfully capture the predominant part of the original
flow dynamics.

Mostly, the procedure used in chapter 4 proved to be useful in view of analyzing the linear dynamics
of amplifier flows. Indeed, the singular value decomposition of the resolvent operator allowed to de-
compose the global linear dynamics of the flow by ranking the leading optimal harmonic forcing and
their associated optimal response. Noticeably, owing to this decomposition, we identified two separate
dynamics: (i) the shear layer dynamics which are characterized by broadband frequency responses and
an amplification peak at the Kelvin-Helmholtz frequency and (ii) the dynamics related to the convection
of the perturbations in the free-stream. In addition, as exposed in Farrell & Ioannou (1993a), both
the EOFs and the SOs have a significant physical meaning. Assuming the flow is excited by a white in
space and time random noise, the EOFs would represent the structures that optimally account for the
variance sustained by the statistically steady flow response. Interestingly, the EOFs also reduce to the
POD modes used to identify the coherent structures in turbulent flows, see Lumley (1970); Aubry et al.
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(1988); Berkooz et al. (1993). Similarly, the SOs stand for the forcing structures yielding a maximum
contribution to the variance of the resulting statistically steady flow response. As a result, we expect that
both may be used to rank the leading energetic coherent processes of a flow for post-processing purposes.

Chapter 5 has put emphasis on the question of the closed-loop control of the backward-facing step
flow. A Linear Quadratic Gaussian control based on a reduced-order compensator has been adopted.
The same model reduction procedure and LQG control have been performed recently by Bagheri et al.
(2009b) on a flat-plate boundary layer flow. Yet, our contribution relies on the analysis and discussion
on some issues that inevitably arise in the practical implementation of the compensator for amplifier
flows. We considered a POD model of size 150 to design the compensator. This latter was observed
to successfully control the flow by reducing the perturbations amplitude. Owing to the noise amplifier
behavior of the flow, sensitivity appeared as a key concept in the design and performance evaluation
of the compensators. For that reason, we investigated the behavior of various compensated systems.
In particular, the effects of the sensor placement, of the cost functional, of the plant deviation and of
the nonlinearities were investigated. Last but not least, we successfully controlled the fully non-linear
Navier-Stokes equations by using a linear low-order compensator and obtained a significant reduction of
the perturbations kinetic energy.

Suggestions for future works

This thesis provides physical and methodological insights into the linear dynamics, model reduction
and closed-loop control over a backward-facing step flow. A special care was taken to remain as close
as possible to practical applications. However, with the current available numerical tools, the direct
implementation of the methods exposed in this dissertation is still premature for highly complex flows.
Meanwhile, these methods are expected to be extended in future works to deal with more complicated
flow configurations such as those encountered in industrial applications.

All the flow configurations investigated in this thesis were two-dimensional since the base flows were sup-
posed to be non-homogeneous in only two directions. Yet, the extension of the concepts introduced here
(stability analysis, model reduction and LQG control) may be naturally extended to three-dimensional
base flows. In fact, the critical limitations are only computational ones; one may encounter either mem-
ory requirements or CPU time issues. In this thesis, we adopted numerical methods based on the direct
inversion of large and sparse matrices. For instance, these inversions intervened in the computation of
the base flow, of the snapshots, of the global eigenmodes or of the optimal forcings and responses. These
were handled by a sparse scalable direct lower-upper (LU) solver, see Amestoy et al. (2001). Prelimi-
nary results on three-dimensional flow configurations have been obtained by using the same numerical
methods and the same finite element solver. In such a case, an illustration of the computational require-
ments on 3D configurations may be found in the article by Sipp et al. (2010). The computations remain
relatively short in time but require a much larger amount of memory. Noticeably, the sparsity of the
matrices are different for 3D settings: there are a significantly larger number of non zero coefficients
per line as compared to a 2D setting with the same number of degrees of freedom. We expect that do-
main decomposition methods may improve the scalability of the large-scale linear problems when using
parallel computation with a high number of processors.

Otherwise, a significant alternative is to resort to matrix-free methods in which the jacobian matrix
(standing for the linearized Navier-Stokes operator) is never explicitly formed. In particular, time-
stepping methods allow to perform linear stability analyses by using collecting flow state snapshots from
linearized simulations. For instance, it has been shown in the literature how to compute the global
modes or to perform an optimal growth analysis of a flow, see Tuckerman (1998); Tuckerman & Barkley
(2000); Barkley et al. (2008). More recently, time-stepping methods have been used by Monokrousos
et al. (2010); Bagheri et al. (2009a) in view of using only a linear or non-linear Navier-Stokes solver to
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perform a global stability analysis. Such methods seem rather promising to handle very large or complex
flow configurations. For instance, we refer interested readers to the global stability analysis of the 3D
base flow over a spheroid by Tezuka & Suzuki (2006) or that of a jet in crossflow by Bagheri et al.
(2009d). Equally, time-stepping methods may be considered to compute the time response from some
inputs to design reduced order models. For example, one may refer to the work by Semeraro et al. (2011)
where the authors designed a feedback control of a transitional flat-plate boundary layer by means of a
reduced-order LQG compensator. In this case, they considered a 3D base flow with a row of actuators
(inputs) and a row of sensors (outputs) and used a time-stepping method to construct the desired ROMs.

The dynamics investigated here have been linearized about a base flow chosen as the steady solution
of the Navier-Stokes equations. However, when increasing the Reynolds number, the computation of
the base flows becomes difficult. The size of the meshes required to capture all the flow structures may
become prohibitively large. Mostly, for very high Reynolds number flows, their is no guarantee in general
that a steady solution of the equations exists. On the one hand, globally stable flows at high Reynolds
number may be so much sensitive that the accurate computation of a steady solution is not possible.
On the other hand, globally unstable flows undergo one of numerous bifurcations when increasing the
Reynolds number such as a steady solution of the equations can no longer be considered as a physically
relevant base flow to linearize about.

When considering high Reynolds number and turbulent flows, an alternative approach deserves a par-
ticular attention. It consists of augmenting the Navier-Stokes equations by a turbulence model. The
dynamics of the flow are then governed by the so-called URANS equations: Unsteady Reynolds Average
Navier-Stokes equations. Such models are based on the assumption that the dynamics of the small
and large scales are decoupled. More precisely, the small scales, characterized by high frequencies, are
supposed to be accounted for by the turbulence model whereas the dynamics of the large scales, as-
sociated with low frequencies, are governed by the time integration of the URANS equations. By this
way, it is possible to extend the concepts introduced in this thesis to turbulent flows by considering the
URANS equations instead of the Navier-Stokes equations. The base flow may be naturally chosen as
a steady solution of the URANS equations. The linear dynamics of perturbations about this base flow
then stand for the early development of large-scale (and low-frequency) structures within the turbulent
flow. We expect that URANS models allow to extend the model reduction techniques and LQG control
investigated here to fully turbulent flows. Noticeably, a global stability analysis including the Spalart
Allmaras turbulence model was performed by Crouch et al. (2007) to investigate the onset of transonic
shock-buffeting on an airfoil. Additionally, the same strategy has been used more recently by Cossu
et al. (2009) to identify the streaks in a turbulent boundary layer. Lastly, this approach has also been
considered by Luchtenburg et al. (2009) to design reduced-order models that recover the dynamics of a
turbulent flow. In this latter work, the authors computed URANS simulations with a k-w turbulence
model to construct a POD-Galerkin ROM that captures the effect of an high-frequency actuation on the
mean flow.

Finally, we would like to suggest the use of different model reduction techniques for future works. Firstly,
using system identification methods seems a rather promising way to extend our results to more realistic
flow configurations. Indeed, the most observable modes or the balanced modes computed in our work
are based on adjoint snapshots. Consequently, their associated ROMs cannot be computed in a real
setting where adjoint information is not accessible. Meanwhile, the Eigensystem Realization Algorithm
(ERA), which stands for a system identification method, has been shown by Ma et al. (2010) to possibly
construct balanced models without resorting to adjoint information. This valuable property allows to
compute the same models as those presented in this thesis while extending their range to experimental
implementation and practical applications.

When using projection methods, the ROMs are meant to represent the dynamics of the data on which
they have been designed. Now, in practical situations, a ROM is often desired to model various flow
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configurations. For instance it may be required to model the different flight conditions of an airplane.
Instead of increasing the size of a ROM to extend its effective range, a possible solution would be to
adjust it in real time to the flow operating condition. Such an improvement is possible when using
system identification methods by updating the coefficients of the ROM as soon as its performances start
to fall off. By using these successive adjustments, it is even conceivable to update a linear ROM such
as to effectively model the non-linear dynamics of a flow.

Lastly, we would like to mention some extensions concerning the model reduction of non-linear systems.
In fact, the Proper Orthogonal Decomposition has been extensively used in the past few decades to
model the non-linear dynamics of fluid flows, see Aubry et al. (1988); Noack et al. (2003); T. R. Smith &
Holmes (2005). Tt simply consists of collecting the snapshots from nonlinear simulations, computing the
POD modes and projecting the original equations onto them to obtain a nonlinear low-order model. Yet,
it is generally acknowledged that such models capture the most energetic patterns of the flow instead
of its dynamics and that they require considerable fine tuning. We expect that extending the Balanced
Truncation procedure to non-linear systems might solve these problems. The Balanced Truncation of
nonlinear systems has first been introduced by Scherpen (1993) and investigated later in extensive works,
see Lall et al. (2002); Fujimoto & Tsubakino (2008). In particular, a recent article by Ilak et al. (2010) is
worth mentioning. This latter assesses the model reduction of the complex non-linear Ginzburg-Landau
equations which mimic the behavior of a convectively or globally unstable fluid flow. In this work, the
authors proceeded by projecting the non-linear equations onto a set of balanced modes obtained from the
linear part of the dynamical operator. Interestingly, they showed that the resulting ROMs outperform
the standard non-linear POD model reduction. In other words, they demonstrated that the superiority
of balanced models over POD ones extends to the case of a nonlinear system. These results are promising
but the modeling of more realistic flow dynamics, governed by the Navier-Stokes equations for instance,
would be of relevant interest.
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Appendix A

Numerical methods and tools

This appendix is devoted to the description of the numerical tools used throughout this thesis. It in-
cludes a presentation of:

(i) The finite element method used to spatially discretize the equations

(ii) The algorithm used to solve the time-integrated Navier-Stokes equations

(iii) the Newton method used to compute the base flows.

(iv) The Arnoldi algorithm used to solve the large generalized eigenvalue problems.

Some parts of this appendix are inspired from the recent theses by Marquet (2007) and Brion (2009)
where the authors have used very similar numerical techniques.

A.1 The finite element method

All the Partial Differential Equations (PDE) encountered in the thesis have been solved by using a finite
element method. It consists of two steps: (i) define the variational (or weak) formulations of the PDE to
be solved and (ii) discretize in space these formulations. The space discretization has been performed by
using the freely available software FreeFem++ developed by Frédéric Hecht, Olivier Pironneau, Antoine
Le Hyaric and Kohji Ohtsuka, see Hecht et al. (2005). For additional information on the finite element
method, we refer interested readers to the book by Girault & Raviart (1986) or the review article by
Glowinski & Pironneau (1992).

A.1.1 Spatial discretization

The first step of the space discretization is to define a mesh. Let us consider a computational domain 2
and its border denoted by I'. We used the finite element mesh generator of FreeFem++ which yield an
automatic triangulation of the domain 2. The triangulation yields triangle elements whose apices are
called vertices. The number of triangles, namely the mesh refinement, is adjusted by fixing the number
of apices on each edge of the domain.

A.1.2 Finite elements

Given the mesh, the flow fields (such as the velocity or the pressure) are discretized on a finite dimensional
approximation of the state-space. The definition of the discretized state-spaces is not straightforward,
see Girault & Raviart (1986). In particular, the variational formulations may be ill-posed if we consider
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Figure A.1: Schematic of the elements P2 and P1 along with their nodes.

the same discretized state-space for the velocity and pressure fields. We thus adopted the inf-sup
condition (or LBB condition), see Girault & Raviart (1986), which have been shown to be well-suited for
generalized Stokes problems. Several state-spaces respect this condition, such as the P1 — P0 elements,
see Fortin (1981) or also the Taylor-Hood elements P(k + 1) — Pk (with k > 1), see Hood & Taylor
(1973). We choose the finite elements P2 — P1, namely the velocity fields are projected onto six-
node quadratic triangular elements with quadratic interpolation (P2-elements) whereas the pressure
field is discretized using three-node linear triangular elements (P1l-elements). To further illustrate these
elements, a schematic of the P2 and P1 elements (and their nodes) is provided in figure A.1. The basis
functions v;(z,y) of the state-space P1 are polynomial functions of order 1 on each triangle. Suppose
the k' triangle is characterized by the nodes ¢;, as shown in figure A.1, then we have

Yi(z,y) = af + bfac + cf“‘y for (z,y) € Ty
wl(ql) =1 and @bi(qj') = O lf 7 7&]

Similarly, The basis functions ¢;(x,y) of the state-space P2 are polynomial functions of order 2 on each
triangle such that

(A1)

¢i(z,y) = af + bfx + by + dba? + efay + fFy?  for  (z,y) € T}
¢i(gi) =1 and  ¢i(g;) =0 if i
As a result, the pressure is represented by 3 degrees of freedom on each triangle while a component of the

velocity has 6 degrees of freedom. The discretization of the Navier-Stokes equations into the function
bases ¢; and 1); is derived in the following.

(A.2)

A.2 Numerical solution of the incompressible Navier-Stokes equations

We present here the numerical methods used to solve the time-integration of the Navier-Stokes equations.
This concerns the 2D linearized Navier-Stokes equations solved in chapter 1 and the 2D non-linear
Navier-Stokes equations considered in chapter 5. As a first step, we first expose the procedure on the
non-linear equations; the case of the linearized equations is discussed afterwards. We start by describing
the time scheme and we introduce the variational formulation of the equations. The resulting problem
is discretized by the finite element method. We then present the Uzawa algorithm used to advance the
solution forward in time.

A.2.1 Time scheme

We consider the non-linear Navier-Stokes equations
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ap a1 Qo B B2
BDF, 1 —1 1
BDF, 3/2 -2 1/2 2 -1

Table A.1: Coeflicients of the BDR, methods where 7 is the order of the scheme, see Kress & Lotstedt
(2004).

gl:—i-/\/(u)—kﬁ(u,p) =0

V-u=0

(A.3)

where V(u) = (u -V)u denotes the non-linear (and convective) terms while £(u) = Vp — Re™! VZu
denotes the linear terms. This equation is discretized in time and we look for the solution (u"*1, p"*t1)
at time ¢"*! as function of the previous solutions (u”, p"), (u™~!,p"~1), etc. The time step is denoted
by At = t"*1 — " and is chosen as a fixed value. The non-linear terms are treated explicitly so that
equations (A.3) qualitatively transform into

1
Ktu”“ + LT ") = £7 s (A.4)
V.un+1 =0

where all the explicit terms are gathered in the term f{ ;- On the other hand the linear terms are

treated semi-implicitly by using the Backward Differentiation Formula scheme (BDF) which leads to

: Q1 n+l o ont+ly _ _ : ' ntl—j
Z_:O AU + L(u"p" ) Z;BJN(U ) (A5)
7= v‘un—‘rl =0 I=

where the coefficient o; and (3; are detailed in table A.1 and r is the order of the scheme. Note that the
explicit term has been obtained by extrapolating the solution from the previous time steps with a (r—1)*"
order polynomial. At order 1, the non-linear term extrapolation simply reduces to (u"-V)u". At second
order it becomes 2(u™ -V)u"-(u" "1 -V)u""!. Regarding the time derivative term, it is approximated at
order 1 by

ou utl —aun
5 ~ A (A.6)
while it is given at order 2 by
ou 3utl — 4y + un ! (A7)

ot 2At

If we gather in equations (A.5) the terms at t"*1 at the left hand side and the terms at ¢" at the right
hand side, we have the following equation

@ n+1 n+l  nt+ly _ . % n+1—j . n+l1—j
A L) == Y N ) s
V-urtl =0

This one is solved at order r = 1 for the first time steps (about the first 10) and then at order r = 2.

149



APPENDIX A. NUMERICAL METHODS AND TOOLS

A.2.2 Variational formulation

The variational formulations associated with equations (A.8) are derived and discretized by the finite
element method. We call X = H{(Q2) and M = L3(Q2) the continuous state-spaces in the physical domain
Q. We suppose that the velocity w and pressure fields p belong to X? and M respectively (since we
consider the two components of the velocity field). Equations (A.8) are multiplied by the test functions
v € X? and g € M which gives after integration and application of the Green’s formula

a0 n+1
20 : dQ
Ar /Qv u

—/ (V-v) p"tldQ +1/VU-VU”+1 dQ)
Q Re Q
1 w [ ,
+/v-pn dr _/’U-Vu”“‘ndf — _J/ v - w1 40
o pmydr g o ) ~ Qg (A.9)
—@/ Zv- (w17 V)17 d0
Q4
/Q(Vu”“)dﬂ =0 Yu € X? and Vg e M
Q

where n is the outward normal unitary vector of the boundary. Owing to our choice of boundary
conditions, the terms defined by an integration on the border I' vanish. This statement is further
discussed later in the paragraph dealing with the boundary conditions. We then write this equation in
a more concise form as
ap

—a(v,u") +

AL d(v,u™) + b(v,p"™) = a(v,f) Vv € X2

b(u™l,q) = 0 Vg e M

1
Re (A.10)

where we have denoted the explicit non-linear terms by f and introduced and the three following operators
a(v,u) = / v - udf) d(v,u) = / Vv - VudQ b(v,p) = —/(V-v)de (A.11)
Q Q Q

A.2.3 Space discretization

The computational domain is divided into finite elements. The discretized state-spaces become A}, and
My, for the velocity and pressure fields respectively. We denote by uy € Xf, pn € My, and f, € &), the
discretized forms of the previous variables. Suppose I = dim(&}) and J = dim(My,), these quantities
are decomposed into the function bases ¢, and v¢; by

I J
up(w,y.t) = Y wit)pi(w,y)  pule,yt) =D pilt)dilz.y)

=1 / =1 (A.12)

fh(xv Y, t) = Zfl(t)d)z(xv y)

=1

By introducing these decompositions into equations (A.10), we have

1
Soa(onup ) + d(vn up ) b ) = alonfi) Vo, € A7

A Re (A.13)
bupt™ qn) = 0 Vg € Mp,
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In the end, we can express these equations as a function of the matrices A, D, B and the vector F
defined by

Aijz/gcm-cbjdﬂ Dijz/gwi-wjda Bijz—/gwi (V-6,)dO o

F; = a(¢;,fy) oralso Af,=F

We introduce the matrix M = (ag/At)A+ Re™ D such as to express the system in a more concise form:

M B uptl F
5 0 s 1= (A.15)

The flow state solution at may then be computed by solving this system. To do so, we used the
iterative algorithm described below.

tn+1

A.2.4 Uzawa algorithm

We used an Uzawa method to solve equations (A.15). This algorithm allows to compute the flow state

(uZH, pzﬂ) iteratively. Suppose we know the flow state solutions up to time ¢", we proceed as follows:

(i) We start by computing the explicit term f; and the vector F'
(ii) We compute the velocity field u} by solving the following problem

ull = M~ (F — B'p}) (A.16)
where the inversion of the matrix M is handled by using the UMFPACK library, see Davis (1993).

(iii) We then define the new pressure pi ™! by

Pt = ol + paBuj, (A.17)

and restart the procedure at step (ii) by replacing p} by the pressure pZ'H computed by equation (A.17).

In fact, system (A.15) is considered as a constrained minimization problem: we look for the pressure and
velocity fields satisfying the Navier-Stokes equations and which minimize the divergence of the velocity
field. The pressure field is identified by using a gradient method with a constant step size. In other
words, we choose a fixed value for the step size p, for each time step. When this algorithm converges, the
pressure field is such that Buj = 0 which enforce a divergence-free velocity field. As a result, the final
solution (uZ’Ll,pZ'H) satisfies equations (A.15). Since this method converges quite slowly, it requires

preconditioning. Here, we used the Cahouet Chabart preconditioner.

A.2.5 Implementation of the boundary conditions

In both the wall and inflow boundary conditions, the two components of the velocity field are fixed,
which may be written as u = up.. These two boundary conditions are referred to as Dirichlet conditions.
They are imposed by a penalty method: in equation (A.15), we affect the value F; = up. x 10%° and
the coefficient M;; = 10%° at the nodes i associated with these boundary conditions. The two other
boundary conditions considered in the thesis are the outflow and symmetry conditions. The outflow
condition is chosen as

pn—Re ' (Vu) -n=0 (A.18)
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which allows to cancel the boundary integrals in equation (A.9). The symmetry condition may be
expressed as

Oyu=0 and v=0 (A.19)

where u and v are the two components of the velocity field. The first condition v = 0 is a Dirichlet
condition which is imposed by the penalty method and the second one dyu = 0 is such that both cancel
the boundary integrals in equation (A.9).

A.2.6 Case of the linearized Navier-Stokes equations

The only difference between the linear and non-linear Navier-Stokes equations is the convection term.
As a result, only the explicit term f; is modified. Denoting the base flow by Uy, the non-linear term
(u-V)u is replaced by (Ugp-V)u+ (u-V)Uy. The first term represents the convection of the perturbation
by the base flow while the second is a production term assessing the deformation of the perturbation
by the base flow strain. Since the base flow is frozen, these two terms can be computed once and for
all before the march in time of the simulation. For this reason, linear simulations are much faster than
non-linear ones.

A.3 Computation of the base flow

A.3.1 The Newton method
The base flow (U, P) is obtained by solving the steady Navier-Stokes equations

(U-V)U = —VP + Re” ' VU

(A.20)
V-U=0

with associated boundary conditions. Owing to the convection term (U-V)U, these equations are non
linear. We used a Newton method to solve iteratively these equations. We start the procedure from an
approximate solution (U, Py) satistying the appropriate boundary conditions. This state is not solution
of equations (A.20), which may be formally written as

NS(Uy, Py) # 0 (A.21)
where the Navier-Stokes operator is defined by

(A.22)
V-Ujy

The idea is then to look for the modification (dU,dP) such that the flow state (Uy + 0U, Py + 0P) is
solution of equation (A.20), namely NS(U¢+ 60U, Py+0P) = 0. To do so, we linearize the Navier-Stokes
equations about the approximate solution, which gives

Uy V)Uy+ VPy— Re ' VU
NS(U07PO)_<( o V)T ’ 0)

LNS(u,,p) (6U,6P) = =NS(Uo, ) (A.23)
where LNS (g, p,) denotes the Navier-Stokes equations linearized about the state (Uo, Fy) such that

(A.24)

(Uo-V)oU + (8U-V)Uq + V(6P) — Re™ ' V2(5U)
LNSt7,.p,) (06U, 6P) = (

V- oU

As a result, (6U,0P) can be computed by solving the linear system resulting from equations (A.23).
Next, we replace the initial state (Ug, Py) by the new one (Ug + 60U, Py + 6 P) and apply the procedure
iteratively until NS(Ug, ) = 0. In the end, the final state (Ug, Py) reduces to the base flow solution.
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The successive resolution of the linear system (A.23) is handled by the UMFPACK library. To give an
idea, about 5 to 20 iterations are typically required for the flow configurations investigated.

A.3.2 Numerical solution: spatial discretization

We now show how to derive and discretize the variational formulation associated with equation (A.23).
This equation may be written in the form

(Uo-V)8U + (8U-V)Uq + V(6P) = Re™ V2(8U) \ _ ( f A25
V. sU N ( 9o ) (4:29)

where the left-hand side term stands for the linearized Navier-Stokes operator and the right-hand side
one is a known source term. Basically, we wish to compute (6U,JP) = (06U, 6V, 0P) from the base flow
Uy and the source term (fg,g0). We proceed similarly to the time-integrated Navier-Stokes equations.
The first equation is multiplied by the test function v € X? and the second one by the test function
q € M. Next, the two resulting equations are integrated in the domain 2, which gives

/v ((Uo-V)6U] d92 +/v- (5U-V)U o] dO
Q Q

+/v-V(5P)dQ Rel/v-v2(5U)dQ = -
Q Q

S~

v - fodf) Yo e x? (A.26)
/q(V‘éU)dQ = —/ngdQ Vg € M
Q Q
We then apply the Green’s formula to the first equation so that
/v (U V)51 92 —|—/v (65U VYU d2
Q Q

—/(V-v)deQ +Re‘1/VU~V(5U) dQ
Q Q
(A.27)
+/'u-(5Pn)dF —Rel/v-[V(aU)-n]dr = —/v-fgdﬂ Vo € A2
T T Q
/q(V-&U)dQ = —/qgon Yq e M
Q Q

The boundary conditions imposed on the fields (6U,0V,0P) are very similar to those used for the
time-integrated Navier-Stokes equations. For instance, we impose dU = 0 for the Dirichlet boundary
conditions such as to fix the two components of the velocity on the associated boundaries. Concerning
the symmetry condition, it reads

0y(0U) =0 and 6V =0 (A.28)

and the free outflow condition is chosen as

§Pn — Re V(U)]-n =0 (A.29)

Consequently, whatever the boundary condition, the boundary integrals obtained in equations (A.27)
vanish. The next step consists of discretizing the resulting equations by using the finite element method.
We consider the previously introduced discretized state-spaces AXj and Myp along with their basis
{bi}i=1..1 and {¢;};=1.. 7. The velocity and pressure fields are discretized in the following form
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I J
i=1 i=1
As well, the base flow and the source terms are discretized, the resulting states being denoted by Uy,
for, and gon. Consequently, we are left with

/Uh . [(UOhV)(SUh] dS) +/ Vp - [(5UhV)U0h] df
Q Q

—/Q(V"Uh) 0Py, d) —|—Re‘1/QVvh . V(5Uh) dQ} = —/Q’Uh -fop, dQ2 Yuy, € X}% (A.31)

/QQh (V- 0Up)dQY = _/Q‘IhQOth Vgp, € My,

To simplify these equations, we introduce the matrices P and C along with the vectors Fy and G defined
by

Py = [ 6 [4; V)Vl a0 Ci = [ 10091810
“ @ (A.32)
Fo, = /qui~f0hd(2 Goi = /Q%gmzd@

so that we can derive a more concise expression. By introducing the matrix N = P+ C + Re™'D, the

system (A.31) reads
N B! oUy, Fo
- (A.33)
B 0 Py, Go

The unknown state (6Up,0P,) may then be computed by solving this linear system. It should be no-
ticed that the matrix associated with this system is very large. The size of the state vector (6Up,,0 Py)
is typically of order n ~ O(10°) in our flow configurations. The size of the linear system is thus of size
n? =~ O(10'%). Yet, the matrix associated with this system is sparse which offers advanced numerical
techniques to inverse it. In our cases, this inversion is handled by using the direct multifrontal sparse
LU solver called MUMPS, see Amestoy et al. (2001).

An important point should be mentioned here. We just showed how to solve equation (A.23) in order
to iteratively compute a steady solution of the Navier-Stokes equations (namely a base flow). Basically,
we have derived the variational formulation associated with the linearized Navier-Stokes equations and
discretized it by the finite element method. We would like to emphasize that the large matrix introduced
in equation (A.33) accounts for the discretized Navier-Stokes operator. The computation of this matrix
is the first step to identify the large generalized eigenvalue problems encountered in this thesis. Such
eigenvalue problems intervene in both the computation of the global modes (as in chapter 1) or the
computation of the optimal harmonic forcing and responses (see chapter 1 and chapter 4). Owing to
the very similar variational formulations involved in both cases, we chose to not further expose their
calculations.

A.4 Solving the large generalized eigenvalue problems

Some flow states introduced in chapter 1 and chapter 4, such as the leading global modes, the optimal
harmonic forcing or the optimal harmonic responses, are computed by solving a large generalized eigen-
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value problem. We briefly describe here how to handle such problems. Let us consider as a prototype
example the eigenvalue problem

Ax = o Bx (A.34)

where A and B are two operators, ¢ is the eigenvalue and x the eigenvector. Note that all these
quantities may be complex in general. With our finite element discretization, both the matrices A and
B are very large and sparse. To give an idea, for a matrix A of size n x n with n ~ 10°, the number
of non-zero entries is about 107. The matrix B is not diagonal so that equation (A.34) is referred
to as a generalized eigenvalue problem. Furthermore, B is hermitian and non-invertible. We wish to
compute the eigenvalues and eigenvectors of this problem. The standard QR methods are not able to
deal with such large systems since we have typically n ~ O(10°) degrees of freedom. Instead, we can
apply iterative techniques to approximate a part of the eigenspectrum. The best algorithm known to
date to compute the eigensolutions of such systems is the Implicitly Restarted Arnoldi Method (IRAM)
which is described in the following.

A.4.1 The shift and invert transformation

Basically, the standard Arnoldi algorithm allows to compute the largest eigenvalues of a matrix. Yet, the
Arnoldi algorithm combined with a shift and invert transformation allows to compute the eigenvalues
which are the closest to any complex value. Suppose we look for the eigenvalues o which are the closest
to the complex (3, which is referred to as the shift. The initial problem is formulated as

(A—p(B)x = (o0 —f3)Bx (A.35)

which leads to the following equivalent eigenvalue problem

Cx=kx (A.36)

where the eigenvalue becomes k = (0 — 3)~! and C = (A — SB)"!B. The resulting system defines
a standard eigenvalue problem. Mostly, the highest eigenvalues x of the problem (A.36) becomes the
eigenvalues o of the initial problem which are the closest to the shift 3. Thus, applying the Arnoldi
method to the problem (A.36) allows to compute the eigenvalues o in a desired part of the complex
plane by varying the shift position.

A.4.2 The Arnoldi method

The basic idea of the Arnoldi method can be understood by considering the power iteration method.
Suppose a state x is decomposed in the basis of the n eigenvectors x; of C as

=3 ax (A.37)
=1

If we denote the associated eigenvalues k; in decreasing order (k1 > Kk > ... > k) and multiply m
times the previous relation by the matrix C, we have

C"x = Z GC"x; = Z Giky X (A.38)
i=1 i=1

Consequently, if we choose a sufficiently large number m of iterations and if the difference between the
two largest eigenvalues k1 and kg is large enough, then we have C™x = ¢ k7" x; from which the eigenvalue
k1 may be calculated by the Rayleigh quotient

155



APPENDIX A. NUMERICAL METHODS AND TOOLS

x]7Cxq
Kl = ——

e (A.39)
where * denotes the transconjugate. This ability of the power method to converge the largest eigenvalue
of the problem Cx = kx is used in the Arnoldi algorithm. More precisely, the Arnoldi algorithm
allows to compute more than one eigenvalue. The idea is to project the original problem (A.36) onto a
Krylov subspace of low dimension and solve the resulting low-order problem. Let us consider the Krylov
subspace of dimension k associated with the initial vector w

K = span{w, Cw, C?w, .. L, CFlwl (A.40)

The purpose of the Arnoldi algorithm is to find the better approximation of the leading eigenvalues and
eigenvectors of C in this subspace. To do so, an orthogonalization of the Krylov subspace is performed
by a Gram-Schmidt process. The resulting orthogonal basis v; is such that K = span{vy,va,...,Vvi}.
The Arnoldi algorithm proceed by computing iteratively the following expression

where Vi, is a matrix of size n x k whose columns are the orthogonal vectors v;, Hy, is an upper Hessenberg
matrix of size k x k and f ke’}C is a residual. Note that fi and e; are vectors of size n and k respectively.
The calculation of the vectors v; is done iteratively at each addition of a new member in the Krylov
subspace, see Lehoucq & Scott (1997) for details. The procedure is meant to cancel the residual f kej}€ S0
that the eigenvalues of the matrix Hy reduce to the leading eigenvalues of C.

The eigenvalues ; and associated eigenvectors s; of Hy may be computed easily by a standard QR
method. As soon as the residual term frel becomes negligible, the Krylov subspace Kj, yields a good
approximation of the leading eigenspace of C and the vectors v; span this eigenspace. In such a case,
the eigenvalues 6; are good approximations to the eigenvalues x; of C. Furthermore, The associated
eigenvectors x; may be recovered from those of Hy by

X; = VkSi (A'42>

The accuracy of the approximation increases with the Krylov subspace size k. However, it is not possible
to know the size k required to reach a given accuracy. Mostly, the convergence speed of the algorithm
strongly depends on the initial vector w used to build the Krylov subspaces. For instance, if some of
the eigenvectors x; we are looking for are nearly orthogonal to the Krylov subspaces, the convergence
speed becomes very low. As a result, a bad choice of the initial vector w may lead to a substantial
increase in the number of required iterations to have an accurate approximation of the eigenvalues. For
this reason, instead of increasing k until convergence, a possible improvement is to restart the Arnoldi
algorithm with the same value of k£ but with a different initial vector. The different restart techniques
may be classified in two categories: the explicit methods ERAM (Explicitly Restarted Arnoldi Method)
and the implicit methods IRAM (Implicitly Restarted Arnoldi Method). For additional information on
the restart techniques, we refer interested readers to the work by Sedrakian (2000).

A.4.3 Practical solution

The resolution of equation (A.34) is handled by the ARPACK library, see Lehoucq & Scott (1997).
It is based on an IRAM procedure developed by Sorensen and allows to solve both real and complex
generalized eigenvalue problems. It requires the successive inversion of linear systems of the form

(A-pB)y =1z (A.43)
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as well as matrix-vector products of the form z = Bx. The linear systems inversion is handled by the
direct multifrontal sparse LU solver called MUMPS, see Amestoy et al. (2001). Most of our eigenvalue
problems are complex so that we used the complex driver zndrv4d of ARPACK. We specify to the driver
the following information:

(i) The type of eigenvalue search. We used the "LM" mode corresponding to eigenvalues with largest
magnitude.

(ii) The desired number of eigenvalues

(iii) The maximum size k of the Krylov subspaces

(iv) The maximum number of iteration of the algorithm
(v) The complex guess (or shift) value

Interestingly, the software provides a measure of the error. For each eigenvalue/eigenvector (oy,x;), we
have access to the residual norm

[(A = 0aiB)xll2 = [[€]l2 = (A.44)

where £, denotes the components of the residual vector £. In all our computations, we checked that
|€]l2 does not exceed 10712 to have converged results.
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Appendix B

Reduced-order models based on global
modes

In this appendix, we deal with the ability of the global modes to design efficient Reduced Order Models
(ROMs). We proceed by projecting the original dynamics onto the set of the least stable global modes
and we analyze the transient dynamics of the resulting models. Such an analysis has already been
performed in some previous works such as those by Ehrenstein & Gallaire (2005); Akervik et al. (2007);
Henningson & Akervik (2008); Ehrenstein & Gallaire (2008b). In all these works, the performance of the
global modes to model the transient flow dynamics is assessed through an optimal perturbation analysis.
The authors proceeded by computing the optimal energy gain possibly triggered by all the possible per-
turbations within the subspace spanned by the set of the least damped global modes. While increasing
the number of global modes (and the size of the models) they observed a convergence of the optimal
energy gains. This indicated that the ROMs could potentially capture the most amplified perturbations
of the original flow. The evolved optimal perturbations computed on their ROMS are also been observed
to display amplified wave packets advected in the downstream direction, which is consistent with our
expectations.

Contrary to these previous works, we performed an additional optimal perturbation analysis on the
full original flow. This allowed to quantify more accurately the difference between the optimal energy
gains computed on the ROMs and on the full system. To do so, we used exactly the same numerical
technique described in chapter 1 and referred to as a "direct-adjoint" procedure. How to perform the
model reduction and the computation of the optimal perturbations in the reduced models are presented
next.

B.1 Model reduction: governing equations

Analogously to the above-mentioned works, we restrict our analysis to the dynamics of two-dimensional
perturbations (k = 0) without transverse velocity component. Based on the formalism of chapter 1, the
perturbation may be written g(x,y,t) = (u,v,p). It is then decomposed in the form of a global mode:

a(e.y,t) = ¢ [a(ey) e + e (B.1)

where @ is the global eigenvector and ¢ = a + iw denotes its associated eigenvalue. Note that both are
complex. As previously seen in chapter 1, the global modes are solution of the large scale generalized
eigenvalue problem

Ag=o0Bg (B.2)
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which is solved by an iterative shift-invert Arnoldi technique. By applying several times the procedure,
with different shift values, we compute the part of the eigenspectrum corresponding to the most unstable
modes. Next, the idea is to decompose the flow state g into a sum of global modes:

q = Xq, (B.3)

where X is a matrix whose columns are the global modes and g, reduces to the coordinates of q in the
global modes basis. If we truncate X to the most unstable global modes, then g, stands for a reduced-
order flow state. Let us give some insight on the size of these quantities. We denote the number of
degrees of freedom of the full system by n so that the flow state q is of size n x 1. When computing
the complex eigenmodes, we pay attention to only compute the eigenvalues located on the upper half
complex plan (w > 0) since those located on the lower plan simply reduce to their complex conjugate.
If we compute n. complex eigenmodes on the half complex plan and if there are n, stationary modes
(w = 0), then we get in the end n, = 2n. — ng linearly independent complex global modes. These n,
modes constitutes the columns of the matrix X which is of size n x n, and the reduced-order state g,
is of size n, x 1. Note that the global modes selected to build the models are always chosen to be the
least stable ones, as in the above-mentioned articles.

Given the definition (B.1), we known analytically how the global modes evolve in time. As a result, the
dynamics of the state g = Xgq, can be written as

q(t) = Xe*q, (B-4)

where g, = ¢,(t = 0) and X is the diagonal matrix whose elements are the complex eigenvalues o;
associated with the eigenvectors constituting the columns of X. The expression (B.4) allows to compute
analytically the time evolution of the low rank flow state g(¢). This valuable property then allows to
compute the optimal perturbations on the ROM in a straightforward manner. According to the formalism
introduced in chapter 1, the optimal perturbation is the state g(0) which optimizes the kinetic energy
gain v such that

q'(T)Bq(T) = 7 4'(0)Bq(0) (B.5)

where the adjoint quantities, denoted by the superscript T, are such that the kinetic energy of the state
q is equal to F(q) = (q,Bq) = q'Bq. Next we replace q(T) in equation (B.5) by its decomposition
(B.4). Notably, the adjoint of g(7T') is given by

q'(T) = [Xe* q,]" = g™ " XI (B.6)

where * denotes the transconjugate. In the end, we are left with a similar but smaller generalized
eigenvalue problem

= TXIBXE g, = 7, [XTBX]q,q (B.7)

whose largest eigenvalue ~, and associated eigenvector yield the optimal energy gain and optimal per-
turbation possibly sustained in the reduced basis of global modes. Note that the term X'BX stands for
the cross product matrix of the global modes with each other. Indeed, the inner product between the
i" and j'" global modes (denoted by X; and X;) is given by (X;, BX;) and is also equal to the (i, j)
component of the matrix (X, BX) = X'BX.

B.2 Results: application to the rounded backward-facing step flow

The previous procedure is first applied on the backward-facing step flow investigated in chapter 1. The
geometry of the computational domain and associated boundary conditions may be found there. We
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o b
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T

Figure B.1: (a) Base flow solution at Re = 600 depicted by its streamlines and longitudinal velocity.
(b) Eigenspectrum of the flow. The eigenvalues are colored by the kinetic energy barycenter x. of their
associated eigenvector. (c) Evolution of the optimal energy gain ., as a function of the horizon time
T. The red curve represents the solution computed on the full system. The set of blue curves represent
the solutions from the ROMs with n. = 100, 200, 400, 800 and 1200.

choose to fix the Reynolds number to Re = 600. The corresponding base flow has been depicted in figure
B.1(a) by its streamlines and longitudinal velocity. Note that a typical discretization yields n ~ 400 000
degrees of freedom stemming from about 90 000 triangles. The eigenspectrum associated with this base
flow has been exposed in figure B.1(b). Furthermore, the eigenvalues have been colored by the kinetic
energy barycenter z. of their associated eigenvector, which is computed by

 Jox[6? + 0%]dady
o [Gla? + 9?]dxdy

This quantity has been introduced to give an indication on the mean longitudinal location of the global
modes. Interestingly, we observe that a majority of the global modes are localized in the very vicinity of
the downstream boundary of the computational domain. Indeed, the downstream boundary is located
at x = 100 and the major part of the computed eigenvalues are characterized by z. > 96.

The evolution of the optimal energy gains 7, as a function of T" are displayed in figure B.1(b). The
red curve represents the solution on the full original system whereas the blue curves depict the solution
computed on the reduced basis of global modes. We observe that increasing the size of the ROMs, from
ne = 100 to 1200, barely increases the associated optimal energy gains. In all the cases, the ROMs
clearly cannot capture the optimal perturbations of the original system. This result is not surprising
since they are localized upstream, near separation, whereas the projection basis consists of structures
localized in the very downstream.

To check the accuracy of the global modes computation, we considered the residual € = Aq — 0 Bg.

It was observed that the 2 norm ||€]ls = /> 7, &7 does not exceed 10712 for all the considered global

modes, which indicates that our computation is consistent. The spatial localization of the modes in the
very downstream boundary seems rather related to the very high non-normality of the global modes,

(B.8)
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Figure B.2: (a) Base flow solution at Re = 350 depicted by its streamlines and longitudinal velocity.
(b) Eigenspectrum of the flow. The eigenvalues are colored by the kinetic energy barycenter x. of their
associated eigenvector. (c) Evolution of the optimal energy gain vy, as a function of the horizon time T
The red dots represent four solutions computed on the full system for 7" = 100, 200, 265 and 300. The
green line depicts the time-integrated optimal perturbation computed for T' = 265 on the full system. The
blue lines stand for the optimal perturbations computed on the ROMs with n. = 100, 200, 400, 800, 1200
and 1600.

and of the Navier-Stokes operator. This feature has been exposed by Cossu & Chomaz (1997) as a result
of the convective non-normality. Our results show that the most stable modes, truncated here, may be
of utmost importance to describe the short-time dynamics of this particular flow. Unfortunately, the
more stable the eigenvalues the more ill-conditioned are the associated eigenvectors, see Trefethen &
Embree (2005). As a result, the computation of a larger part of the eigenspectrum quickly becomes not
tractable. For interested readers, a critical assessment on the use of global modes to design ROMs may
be found in the articles by Barbagallo et al. (2009); Ehrenstein et al. (2010); Alizard & Robinet (2010);
Sipp et al. (2010).

To further investigate the ability of the global modes to capture the optimal perturbations of a flow, we
choose to test the procedure on other flow configurations. These different cases are briefly investigated
and exposed in the remaining of this appendix.

B.3 Case of a high-aspect-ratio smooth cavity flow

The second considered configuration reduces to the high-aspect-ratio smooth cavity flow originally in-
vestigated by Akervik et al. (2007). We adopted exactly the same geometry, boundary conditions and
Reynolds number as in this reference article. The geometry of the cavity and the associated base flow
have been depicted in figure B.2(a). The smooth cavity is symmetric with respect to its center at x, = 89
and its upstream wall boundary is defined by I'(x) = —2.25(tanh(a(z — b)) + 1) for 0 < z < x, with
a = 0.2 and b = 39, such as to match smoothly the flat plate upstream and downstream. All variables are
made non-dimensional with the displacement thickness §* and the free-stream velocity Uy, at the inflow
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Figure B.3: (a,c,e) Optimal perturbations computed on the ROMs with n. = 100,1600 and on the
full system respectively. (b,d,f) represent their corresponding optimal responses, which are reached for
T = 160, 200 and 265 respectively. Flow structures are displayed by their longitudinal velocity.

x = 0, where a Blasius profile is prescribed. The Reynolds number is defined, for this configuration,
by Re = Usod* /v and is fixed to 350. Following the procedure used by Akervik et al. (2007), we first
computed the base flow corresponding to the domain 0 < 2 < 400, I'(z) < y < 80. Then we interpolated
the resulting steady flow into the domain 0 < z < 300, I'(z) < y < 75 where stability calculations were
carried out. To give an idea, the second domain discretization lead to n ~ 390000 degrees of freedom
stemming from about 86 000 triangles.

Figure B.2(b) displays the eigenspectrum of the flow. It is similar to that obtained in the reference
work by Akervik et al. (2007). Notably, it exhibit two unstable and oscillating global modes. Similarly
to the previous case, we have reported the values of the kinetic energy barycenter x. of the associated
eigenvectors. Even if a lot of global modes are localized in the very vicinity of the downstream boundary
(at x = 300), a branch of modes is observed to be localized within the shear layer. These modes are
characterized by a streamwise position such that z. is comprised, roughly, between 50 and 150.

The evolution of the optimal energy gains are represented in figure B.2(c). The red dots stand for the
solutions computed on the full system for four different horizon times. The green line represents the
evolution of the energy gain v(t) triggered by the optimal perturbation which is computed for T' = 265
on the full system. Finally, the optimal gains computed on the ROMs are represented by the set of blue
lines. Interestingly, the curves obtained from the different ROMs display the same trend: a fast initial
transient energy growth is followed by a global cycle with a period of approximately 300 time units.
Even if the optimal energy gains possibly sustained by the ROMs seem to converge while increasing the
number of modes, they stay nearly four orders of magnitude below the solution computed on the full
systermn.

163



APPENDIX B. REDUCED-ORDER MODELS BASED ON GLOBAL MODES

. 10° —— T T -
; (c)
] 107 -
[ ]
2
. (o)
>
il e 600 i
] 100
100 Lot 1 17
] 0 1 2 3 4
1 T

Figure B.4: (a) Base flow solution at Re = 2000 depicted by its streamlines and longitudinal velocity.
(b) Eigenspectrum of the flow. The eigenvalues are colored by the kinetic energy barycenter z. of their
associated eigenvector. (c) Evolution of the optimal energy gain v, as a function of the horizon time
T. The red dots represent five solutions computed on the full system for 7' = 0.5,1.5,2,2.5 and 3.5. The
green line depicts the time-integrated optimal perturbation computed for T" = 2 on the full system. The
blue lines stand for the optimal perturbations computed on the ROMs with n. = 100, 200,400 and 600.

Now, let us show the spatial structure of the optimal perturbations. We have represented in figures
B.3(a,c,e) the optimal perturbations computed on the ROMs with n, = 100, 1600 and on the full system
respectively and for the horizon times 7,,; = 160,200 and 265 respectively. Note that we choose the
horizon times at which the first energy gain maxima are found, see figure B.2(c). Additionally, we have
represented in figures B.3(b,d,f) their associated optimal responses at their respective horizon times,
namely q(T,p¢). Note that we computed these optimal responses on the global modes basis by equation
(B.4). We observe that increasing the number of global modes (and the size of the ROMs) allows to
move the optimal perturbation in the upstream direction. On the other hand the optimal flow response
at the time 75, is captured for very low-order models. These results are more encouraging than those
found on the backward-facing step flow. This improvement is clearly attributed to the better spatial
location of the global modes, see figure B.2(b).

B.4 Case of a square cavity flow

Based on the results on the previous cavity flow, we found interesting to study a case where the com-
putation domain is much smaller. We thought that this would, in some way, enforce a better spatial
location for the least damped global modes. As a result we investigated the present flow configuration.
The geometry consists of a square cavity of length [, = 1 and the computational boundaries are chosen
to be located at x = —1.2, = 2.5 and y = 0.5, see figure B.4(a). A Blasius boundary layer profile, with
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Figure B.5: (a,c) Optimal perturbations computed on the ROM with n. = 600 and on the full system
respectively. (b,d) represent their corresponding optimal responses, which are reached for 7' = 1.8 and
2 respectively. Flow structures are displayed by their longitudinal velocity.

a displacement thickness §* = 0.0172 and a free-stream velocity Uy, = 1, is prescribed at the inflow. The
Reynolds number is then defined by Re = Uyl /v and is fixed to Re = 2000. A wall condition is imposed
on the lower boundaries and a symmetry condition for the upper boundary. Finally, the free outflow
condition pn — Re™!(Vu) - n = 0 is prescribed at the outlet, where m stands for the outward normal
unitary vector of the boundary. The resulting base flow is represented in figure B.4(a) by its streamlines
and longitudinal velocity. Note that the number of degrees of freedoms is n ~ 390000 stemming from
about 86 000 triangles.

The results are now quickly presented. For simplicity, they have been exposed by analogous plots to
those of the previous cavity flow. The flow eigenspectrum is shown in figure B.4(b) and the evolution
of the optimal energy gains in figure B.4(c). This time, the eigenspectrum displays a large number of
modes which are spatially localized within the shear layer. In particular, these modes may be identified
in figure B.4(b) by their streamwise mean position x. ranging from 0.2 to 1. Furthermore, the optimal
energy gain computed on a ROM with n. = 600 is only one order of magnitude below the original one.
As expected, the performance of the ROMs based on global modes are better in this flow configuration.
For the sake of completeness, we have represented in figure B.5 the optimal perturbations and optimal
responses of the flow computed on both the ROM with n. = 600 and the full system.

B.5 Case of a lid-driven cavity flow

The last configuration investigated here is the lid-driven cavity flow. This flow may be called a "closed"
flow as opposed to "open" flows in the sense that it has no inflow and no outflow. Interestingly, the
non-normality of the Navier-Stokes operator is widely higher for open flows than for closed flows. Con-
sequently, we expect that the global modes of the lid driven cavity flow may have a better conditioning.
We conclude this appendix by showing that the global modes are indeed far more efficient to model the
transient dynamics in the case of a closed flow.

The geometry consists of a square of length [, = 1, see figure B.6(a). The cavity is driven by imposing
the velocity u = Uy, = 1 and v = 0 on the upper boundary and the three other boundaries are walls
(u = 0 and v = 0). The Reynolds number is defined by Re = Uyl./v and is fixed to Re = 2000.
The streamlines and velocity magnitude of the resulting base flow is represented in figure B.6(a). The
considered mesh has n ~ 180000 degrees of freedom and is composed of about 41000 triangles.

The results are also quickly exposed by using analogous plots to those of the two previous cavity flows.
Similarly, the eigenspectrum of the flow is represented in figure B.6(b) while the evolution of the optimal
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Figure B.6: (a) Streamlines and velocity magnitude of the base flow solution at Re = 2000. (b)
Eigenspectrum of the flow. The eigenvalues are colored by the kinetic energy barycenter x. of their
associated eigenvector. (c) Evolution of the optimal energy gain v, as a function of the horizon time 7.
The red dots represent six solutions computed on the full system for 7' = 0.5,1,1.6,2, 3 and 4. The green
line depicts the time-integrated optimal perturbation computed for T' = 1.6 on the full system. The blue
lines stand for the optimal perturbations computed on the ROMs with n. = 100, 200, 400, 800, 1200 and
1400.
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Figure B.7: (a,c) Optimal perturbations computed on the ROM with n. = 1400 and on the full system
respectively. (b,d) represent their corresponding optimal responses, which are both reached for 7' = 1.6.
Flow structures are displayed by their longitudinal velocity.

energy gains are shown in figure B.4(c). We eventually found in this flow configuration a convergence
of the optimal energy gains. Indeed, the ROMs with n. = 800, 1200 and 1400 lead to nearly identical
optimal energy gains which are also very close to those computed on the full system. To further confirm
the accuracy of the largest ROMs, we have represented in figure B.7 the optimal perturbations and
associated optimal responses computed on both the ROM with n. = 1400 and the full system. This
time, not only the optimal flow response, but also the optimal perturbation are well captured by the
ROM. We conclude that the basis of the least stable global modes are far more efficient to model the
transient dynamics of perturbations in the case of such a closed flow.
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Appendix C

Article on flow control

Abstract

We consider a two-dimensional incompressible flow over a rounded backward-facing step at Reynolds
number Re = 600. This configuration is characterized by a detachment of the flow close to the step
followed by a recirculation zone; even though the flow is globally stable, perturbations are amplified as
they are convected along the shear-layer. The presence of upstream random white noise renders the flow
unsteady with a broadband spectrum. The article aims at suppressing the unsteadiness by an anti-phase
controller, which converts a shear-stress measurement taken from a wall sensor into a control law that
is fed into an actuator. A comprehensive study of various components of closed-loop control design —
covering sensor placement, choice and influence of the cost functional, accuracy of the reduced-order
model, compensator stability and performance — shows that a successful control of this flow requires
a judicious balance between estimation speed and estimation accuracy and between stability limits and
performance requirements. The inherent amplification behavior of the flow can be reduced by an order
of magnitude, if the above-mentioned constraints are observed. In particular, for good perfomance of
the controller, it has been argued that the actuator (resp. the performance sensor) should be placed
in regions where the optimal forcings (resp. optimal responses) are strong while the estimation sensor
should be placed upstream near the actuator to favour estimation speed. Also, if high performance
compensators are sought, a very accurate reduced-order model is required especially for the dynamics
between the actuator and the estimation sensor: very minute errors even at low-energetic and high
frequencies may render the large-scale compensated linearized simulation unstable. Finally, coupling the
linear compensator to nonlinear simulations shows a gradual deterioration in control performance as the
amplitude of the noise increases.
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We consider a two-dimensional incompressible flow over a rounded backward facing step

at Reynolds number Re = 600. This configuration is characterized by a detachment of
the flow close to the step followed by a recirculation zone; even though the flow is glob-
ally stable, perturbations are amplified as they are convected along the shear-layer. The
presence of upstream random white noise renders the flow unsteady with a broadband
spectrum. The article aims at suppressing the unsteadiness by an anti-phase controller,
which converts a shear-stress measurement taken from a wall sensor into a control law
that is fed into an actuator. A comprehensive study of various components of closed-loop-
control design — covering sensor placement, choice and influence of the cost functional,
accuracy of the reduced-order model, compensator stability and performance — shows
that a successful control of this flow requires a judicious balance between estimation speed
and estimation accuracy and between stability limits and performance requirements. The
inherent amplification behavior of the flow can be reduced by an order of magnitude, if
the above-mentioned constraints are observed. In particular, for good perfomance of the
controller, it has been argued that the actuator (resp. the performance sensor) should be
placed in regions where the optimal forcings (resp. optimal responses) are strong while
the estimation sensor should be placed upstream near the actuator to favour estimation
speed. Also, if high performance compensators are sought, a very accurate reduced order
model is required especially for the dynamics between the actuator and the estimation
sensor: very minute errors even at low-energetic and high frequencies may render the
large-scale compensated linearized simulation unstable. Finally, coupling the linear com-
pensator to nonlinear simulations shows a gradual deterioration in control performance
as the amplitude of the noise increases.

1. Introduction

Many industrial fluid devices are afflicted by undesirable flow behavior — such as
unsteadiness, separation, instabilities, and transition to turbulence — which limits per-
formance, endangers safe operation or is detrimental to structural components. Flow
control is quickly becoming a key technology in engineering design to overcome inherent
limitations, to advance into unexplored parameter regimes, to extend safety margins and
to ensure operation under optimal conditions. A prototypical and much-studied example
is the compressible flow over a cavity which is characterized by instabilities that manifest
themselves in a buffeting motion, in induced drag (Gharib & Roshko 1987) and in in-
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tense noise emission (see Rossiter 1964). In air intakes of aircraft engines separated flow
can act as an amplifier for incoming perturbations causing unsteadiness which in turn
results in loss of performance and material fatigue. Transitional and turbulent boundary
layers have long attracted attention from the flow control community (see, e.g., Joslin
1998; Saric et al. 2003; Kim 2003; Boiko et al. 2008; Archambaud et al. 2008), mainly
due to their ubiquity in vehicle aerodynamics and their central role as the source of skin
friction. For all three examples, flow control techniques that effectively eliminate insta-
bilities, efficiently reduce noise amplification or successfully diminish drag are essential
in maintaining desired flow conditions.

Control strategies greatly vary in complexity, in expended energy, but also in their
ability to achieve prescribed control objective under realistic conditions. Passive control
devices, which aim at modifying the mean flow, are popular in many industrial applica-
tions due to their simplicity and reliability. For example, vortex generators can be effec-
tive in energizing boundary layers and thus preventing or delaying flow separation (see
Lin 2002; Choi 2008). Constant blowing or suction at the wall has similar effects, but
the amount of required energy to modify the mean flow is generally high, which is ac-
knowledged as the principal drawback of passive control devices. An alternative strategy
directly targets the perturbation dynamics without altering the mean flow. This active
approach has received significant interest in industry and academia, and feedback control
methods have been developed and applied to a great many generic flow configurations.

The design procedure of flow control laws critically depends on the nature of the flow to
be controlled. Oscillator-type flows which are defined by a global instability resulting in
self-sustained oscillatory fluid behavior are more easily controlled, since the flow is dom-
inated by a limited number of structures of well-defined frequencies. Sensitivity to noise
is comparatively low, and the estimator and controller can simply reconstruct the flow
state from measurements and act upon it according to the control objective. A second
type of flow behavior, referred to as noise-amplifiers, is substantially more challenging to
control. This type of flow is globally stable but is characterized by a strong propensity to
amplify noise and a broadband spectrum of responsive frequencies. These characteristics
make the flow and the control performance highly sensitive not only to physical noise
sources and uncertainties, but also to methodological approximations, modeling inaccura-
cies and truncation errors that inevitably arise during the estimator and control design.
The propagation of small perturbations, whether of physical or computational origin,
is appropriately tracked and quantified by frequency-based transfer functions which re-
veal preferred frequencies or confirm the successful reduction of the flow’s amplification
potential.

Optimal flow control techniques have been widely applied for active control purposes.
In particular, the linear quadratic Gaussian (LQG) framework has been adopted for the
control of small-amplitude perturbations in oscillator and amplifier flows. Examples of
oscillator flows include, among others, the supercritical flow over a shallow or deep cav-
ity (Akervik et al. 2007; Barbagallo et al. 2009), the flow over a shallow bump (Ehrenstein
et al. 2010) and the flow past a flat plate (Ahuja & Rowley 2010). In all cases, stabi-
lization of the flow by feedback control strategies could be accomplished. Amplifier flows
are dominated by convective and transient processes, and successful control is defined
by a marked reduction of the flow’s inherent amplification potential. Control of amplifier
flows using LQG techniques has first been attempted for very idealized geometries (see,
e.g., Joshi et al. 1997; Bewley & Liu 1998; Chevalier et al. 2007), namely, in simple,
one-dimensional configurations. For more complex and higher-dimensional flows, direct
application of the LQG-framework becomes prohibitively expensive, and reduced-order
models have to be introduced for the practical design of the compensator. LQG-based
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compensators using reduced-order models have been applied by Bagheri et al. (2009) to
control the amplification of perturbations in a spatially developing boundary layer and
by Ilak & Rowley (2008) to control transitional channel flow. In Bagheri & Henningson
(2010), strong emphasis has been put on the model reduction technology; in particular,
it has been demonstrated that the reduced-order model had to accurately capture the
input-output behavior between actuators and sensors to ensure a positive compensator
performance (Kim & Bewley 2007). Despite first successful attempts at applying LQG-
feedback control to amplifier flows, many questions remain open about the design and
practical implementation of compensators for this type of flow. Owing to the flow’s ten-
dency to transiently amplify perturbations, sensitivity becomes the key concept in the
design and performance evaluation of compensators: sensitivity to sensor and actuator
placement, sensitivity to the accuracy of the reduced-order model, sensitivity to nonlin-
ear effects. Some of these issues have been addressed using an idealized (parallel base
flow) model problem in Ilak (2009); a comprehensive analysis of closed-loop control for
amplifier flows, however, is missing.

The goal of the present study is an identification of the various environmental and
procedural factors and the assessment of their influence on the performance of the com-
pensator for a specific amplifier flow: the case of a two-dimensional, laminar flow over a
rounded backward-facing step (see Marquet et al. 2008; Blackburn et al. 2008; Dergham
et al. 2011). This configuration is characterized by a detachment of the flow close to
the step followed by a recirculation zone; even though the flow is globally stable, per-
turbations are amplified as they are convected along the shear-layer. This is due to a
Kelvin-Helmholtz-type instability which creates a convectively unstable region, extend-
ing approximately from the detachment to the reattachment point. If upstream residual
noise is present, for example white-Gaussian-noise, then the flow is unsteady with a
broadband spectrum in the bubble. The control objective consists in suppressing this
unsteadiness thanks to an anti-phase controller, which converts a measurement signal
obtained from a wall-sensor into a control law that is fed into an actuator. We believe
that the results obtained for this specific configuration also hold, at least qualitatively,
for other convectively unstable flows, such as, e.g., a supercritical boundary layer de-
veloping over a flat plate subject to Tollmien-Schlichting instabilities. Discussion about
similarities and differences between the two configurations are postponed to §2.

The present study is structured as follows. After a brief description of the flow con-
figuration, its noise amplification behavior and the basic principles of LQG-control and
model reduction (§2), we start by considering the estimation problem (§3), address sen-
sor placement and estimation speed and establish the noise-to-signal ratio as a critical
parameter. In §4 the controller will be introduced, performance limitations of the com-
pensator will be discussed and the influence of the choice of control objective will be
assessed. §5 will present the application of the LQG-controller to linearized numerical
simulations; specifically the sensitivity to model inaccuracies and its relation to stabil-
ity margins for the compensated system will be treated. In §6 we apply linear control
to a nonlinear simulation and discuss the validity range of the linear compensator. A
summary of results and conclusions are given in §7.

2. Configuration and mathematical model
2.1. Flow configuration and governing equations

We study the laminar and incompressible flow over a two-dimensional rounded backward-
facing step which is sketched in figure 1 together with the geometric measures, the base
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FIGURE 1. Sketch of the geometry for flow over a rounded backward-facing step, showing the
stream-function of the base flow at Re = 600 (dashed-values refer to negative values). The
stream-function is set to zero at the lower boundary of the computational domain. The upstream,
downstream and top boundaries are respectively located at © = —20, x = 100 and y = 20. A
typical mesh yields n ~ 360000 degrees of freedom from about 90000 triangles. The positions
of the input (B1,2) and output (Ci,2,3,4,p) devices are also shown.

flow stream-function and the setup of control inputs and sensor outputs. Only a reduced
part of the computational domain is shown. The step height ~ and the inflow velocity Ux,
are chosen as the characteristic length and velocity scales of the problem. The rounded
part of the step consists of a circular arc extending from (z = 0,y = 1) to (z = 2,y = 0).
The flow enters the computational domain from the left (at 2 = —20) with a constant
streamwise velocity. A free-slip condition is imposed on the upstream part of the lower
boundary (—20 < # < —2,y = 1) beyond which a laminar boundary layer starts to
develop; no-slip conditions are enforced on the remaining lower boundary given by —2 <
2 < 100. On the top part of the computational domain, at y = 20, a symmetry condition
is implemented, and a standard outflow condition is prescribed at the outlet (z = 100).

The Reynolds number based on the step height and inflow velocity is chosen as Re =
600 and held constant throughout our study. For this Reynolds number, the flow separates
at ¢ =~ 0.6 and reattaches at = ~ 11, forming an elongated recirculation bubble. The
displacement thickness of the incoming boundary layer at = 0 is equal to §* ~ 0.082
which yields a Reynolds number based on the displacement thickness of Res~ ~ 49.2.
The base flow, a solution of the nonlinear steady Navier-Stokes equations, is visualized
by streamlines in figure 1.

Flow over a rounded backward-facing step is a prototypical example for an ampli-
fier flow since small upstream perturbations may be selectively amplified in the shear
layer due to a Kelvin-Helmholtz instability (see next section for details). Characteristic
unsteadiness arises from low-level noise via a linear amplification mechanism, which sub-
sequently saturates nonlinearly once sufficiently high amplitudes have been reached. It
is the goal of this article to devise and assess an active feedback control strategy that
decreases the convective amplification of random perturbations. This strategy is designed
for and operates within the linear regime which justifies using the Navier-Stokes equa-
tions linearized about the base flow as a mathematical model. The governing equations
are spatially discretized using finite elements of Taylor-Hood type (P2-P2-P1) and im-
plemented using the FreeFem++ software (see Hecht et al. 2005). In matrix form, these
read

dXx

where X denotes the state vector containing the velocity and pressure fields, A represents
the Navier-Stokes operator linearized around the base-flow (shown in figure 1) and Q
stands for the mass matrix, which simultaneously defines the perturbation kinetic energy
according to F = X*QX.
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FIGURE 2. (a) Optimal energy response of the linear system to a harmonic forcing of frequency
w. (b) Optimal forcing visualized by contours of the streamwise velocity. (¢) Optimal response
visualized by contours of the streamwise velocity.

2.2. Noise amplification behavior

For the chosen Reynolds number of Re = 600 the flow is globally stable and the matrix A
does not show any unstable eigenvalues. Yet, sustained unsteadiness may arise from the
continuous excitation of the flow by upstream noise. This noise amplifier behavior can
be analyzed and quantified in terms of the optimal harmonic forcing and its response in
the frequency domain (see Alizard et al. 2009; Sipp et al. 2010). For a given frequency w,
a periodic forcing of the form F, exp(iwt) yields a corresponding response X,, exp(iwt)
where X,, is given by X, = (iwQ—A)~!QF,,. The optimal forcing is defined as the forcing
F., of unit energy (i.e. FQF, = 1) which maximizes the energy of the response. The
corresponding response X, is referred to as the optimal response; its energy X*QX,, is
the optimal energy gain due to external forcing at a prescribed frequency w. We will use
the subscript ,, to indicate quantities defined in the frequency domain.

In figure 2(a), the optimal energy gain is presented as a function of the forcing fre-
quency. The semi-logarithmic graph shows a parabolic curve with the highest response
to forcing around a frequency of w = 0.8. For frequencies above w ~ 2, the energy gain
decays monotonically. In figures 2(b) and (c), the spatial shapes of the optimal forcing
and response (real part only) taken at the highest energy gain are visualized by contours
of the streamwise component. In accordance with the convective nature of the flow, we
observe that the optimal forcing is concentrated upstream near the step while the as-
sociated response is located further downstream. Hence, a noise source situated near
the rounded step can efficiently trigger perturbations whose maximum amplitudes are
attained near x ~ 12. Based on this result, we model the noise as a Gaussian-shaped
momentum forcing located at (z = —1,y = 1) with a width of 0.6 and a thickness of 1.
After discretization, this forcing appears in form of the matrix By in the following linear
system

Q% = AX + QB w(t) (2.2)

with w(t) describing the temporal behavior of the noise. For the sake of simplicity, the
noise will be taken as white-in-time with zero mean (w) = 0 and variance (w?) denoted
by W2.

In continuing to set up our flow control problem, an appropriate objective or cost
functional has to be specified. To this end, two quantities will be considered. The first
quantity consists of the shear stress measured at the wall and is computed following

my = CpX = f;:1111.6 Oyt dx. The placement of this sensor has been motivated by the

'
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location of maximum response of the flow to harmonic excitation (see figure 2(c)). Note
that for higher frequencies (w > 2), the optimal responses move upstream toward the
detachment point and are not seen anymore by mp; for lower frequencies, the spatial
support of the optimal responses extends both upstream and downstream (the most
energetic region staying near the reattachment point). Hence, sensor m, will detect all
frequencies of the perturbation satisfying w < 2. The second quantity of interest is the
total kinetic perturbation energy contained in the entire domain; it is given by £ = X*QX.
The control to be designed will aim at diminishing either m, or E. It is interesting to
note that, under random forcing, the two quantities of interest, m, and FE, display a
frequency response strikingly similar to the one given in figure 2(a); the spatial structure
of the stochastic response resembles the one given in figure 2(c) (the reader is referred
to figure 8 for verification).

2.3. Linear Quadratic Gaussian (LQG) control

A closed-loop control strategy is considered in order to weaken or suppress the amplifi-
cation of perturbations. In contrast to open-loop control strategies, this method extracts
information from the system via measurements which is then processed to apply real-time
actuation. This technique allows flow manipulation with rather low expended energy and
permits the application and adaptation of control laws to a variety of flow situations,
provided the model is representative of and robust to physical and parametric changes.
The approach taken in our study is based on a compensator designed within the Linear
Quadratic Gaussian (LQG) control framework (see Burl 1999). The actuator through
which control efforts are exerted on the flow consists of a body force acting on the verti-
cal momentum component; the location, shape and type of the actuator is summarized
in the matrix By (see figure 1). The control law u(t) which describes the temporal behav-
ior of the actuator is based on real-time measurements of the flow from sensors located
at various positions along the wall. These sensors extract either shear stress or pressure
information. The governing system of equations, including the actuators and sensors, can
be cast into the familiar state-space form

dX
Q= = AX+QBiw+QBu,  m=CX+g() (2:3)

where g(t) is a zero-mean measurement noise of variance G2, which contaminates the
measure m. The link between the measurement signal m and the actuation law wu is
provided by the compensator. Figure 3 presents a sketch of a typical LQG-control setup,
including the system to be controlled as well as the two components of the compensator:
the estimator and the controller. The module labeled ”plant” represents our fluid system
whose flow characteristics we wish to modify; it is given mathematically by (2.3). The
plant depends on the initial condition X(#p), the noise input w(t) and the control law wu(t)
and provides as an output the state vector X. A measurement signal m can be extracted
at all times from the state vector which is then passed to the compensator. In a first step,
the estimator will reconstruct an estimated state ?(t) from the measurement m which
is, in a second step, used by the controller to compute the control law u (). More details
about the design of the estimator and the controller will be given below.

It is important to stress that the placement of the actuator and sensor is critical for the
success of closed-loop control. In our case, the actuator is positioned near the separation
point (see control input Bs in figure 1) which corresponds to the location where the
optimal forcing structures are most prominent whatever the frequency (see figure 2(b)
which illustrates the case w = 0.8). This placement optimally exploits the sensitivity
of the flow to external forcing and suggests that low-amplitude control at this location
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F1GURE 3. Sketch of a typical LQG-control setup.

may exert sufficient influence on the flow behavior to accomplish our control objective.
In other words, the chosen actuator location should ensure low control gains.

Analogously, the placement of the sensor requires care and thought. Commonly, mea-
surements are taken at locations where the flow feature we wish to suppress is particular
prevalent. Recalling the spatial structure of the most amplified flow response to opti-
mal forcing (see figure 2(c)), this would suggest a sensor placement downstream of the
reattachment point near z =~ 12. Nevertheless, we will demonstrate that this particular
choice does not yield an efficient and effective closed-loop control, and we will methodi-
cally explore the estimator performance based on sensors placed further upstream in the
recirculation bubble (see figure 1). In particular, four discrete sensor locations, denoted
by Ci,2,.3,4, will be assessed; these are distinct from the performance sensor C,.

More generally, to ensure low control gains and a physically relevant control objective
the actuator should be placed at the transition location from the stable to the convec-
tively unstable flow regime (branch I) and the performance sensor C, at the transition
location from convectively unstable to the stable flow regime (branch IT). Indeed, in a con-
vectively unstable flow, the instability is cumulative in the downstream direction: branch
I is the point where an action has largest effect on the perturbation while branch IT is the
point where the perturbation is strongest. The location of branch I and branch IT usually
depend on the frequency of the perturbation; in the present flow over a backward-facing
step, however, branch I and branch II are located for all frequencies near the flow sepa-
ration and reattachment points (not shown here). Hence, a single actuator and a single
performance sensor (plus one estimation sensor) are sufficient to stabilize the flow for all
frequencies. In the case of a convectively unstable boundary layer developing over a flat
plate, the location of branch I and branch II strongly depend on the perturbation fre-
quency. Hence, multiple input-output triplets (each consisting of actuator, performance
sensor, estimation sensor) are necessary, where each triplet is designed to stabilize the
flow in a bounded area in the downstream direction and in a restricted frequency band.

2.4. Reduced-order model based on proper orthogonal decomposition

The design of the estimator and controller involves the numerical solution of two Riccati
equations for the Kalman and control gain, respectively. The numerical effort is pro-
portional to the dimension of the system matrix A, which makes the direct solution of
the Riccati equation excessively expensive or even impossible. It is thus necessary and
common practice to substitute the full system by an equivalent system of considerably
smaller dimensions and to compute the two gains based on this reduced-order model
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of the flow. A standard technique to arrive at a reduced-order model of the flow uses
a Galerkin projection of the governing equations onto proper orthogonal decomposition
(POD) modes (see Sirovich 1987). This method proves to be efficient (see Bagheri et al.
2009; Barbagallo et al. 2009; Bagheri & Henningson 2010) in capturing the main char-
acteristics of the original system required for closed-loop control, namely the dynamics
between the inputs (given by By and Bs) and the outputs (given by sensors Cy 234 and
the control objectives E and C,,). The governing equation for the reduced-order model is
similar to (2.3) and is given by
aX o 4 . -

i AX + Biw + Bou, m = CX (2.4)
where the superscript * indicates reduced quantities. The energy of the state F is simply
given by ||)A(||2 = X*X since the projection basis is orthonormal with respect to the energy
inner product. The use of a reduced-order model decreases the dimension of our system
from O(10%) to ~ 150 degrees of freedom and thus allows the application of standard
direct algorithms for LQG-control design. The choice of POD modes as a projection basis
has essentially been motivated by the requirement of capturing the energy output. A
standard balanced-truncation technique (see Bagheri et al. 2009; Barbagallo et al. 2009;
Ahuja & Rowley 2010) is not able to cope with large-dimensional outputs, unless the
”output projection technique” is used (Rowley 2005); this technique however is beyond
the subject of this study. In appendix A, we show that all transfer functions from w and u
tomq 2,34, and E(t) can be captured with an Hs-error of less than 1%. This error is quite
small which should ensure at first glance that a model study of compensated systems with
the "ROM as a plant” is representative of compensated systems with the ”linearized DNS
as a plant”. This viewpoint is assumed in §3 for the estimation problem and in §4 for the
complete estimation-control problem. The above mentioned error of 1% is nonetheless
appreciable. §5 is then devoted to the question: is this 1% error between the linearized
simulation and the POD model really sufficiently small to insure in all cases that a
model study with a ROM is representative of the large-scale compensated case? One
of the objectives of the present article is precisely to quantitatively assess the influence
of the ROM’s quality on the performance of the compensator. Such questions become
even more pertinent under more realistic conditions (e.g., in experimental realizations)
as errors inevitably corrupt the quality of a ROM. It is essential to understand the
minimum requirements on the quality of the ROM for acceptable or required control
performance; it is equally essential to know how the compensated system will fail, if
these requirements are not met. In addition, should specific inputs and/or outputs be
more accurately captured than others? In what follows we will try to address some of
these points.

3. Estimation and sensor placement

As a first step of the full control design and performance evaluation process, we con-
centrate on the estimator, in particular its performance with respect to the location of
the sensors.

3.1. Presentation of the estimator

In general, the estimator’s task is the approximate reconstruction of the full state vector
using only limited information from the measurement. This approximate state vector
will then be used by the controller to determine a control strategy that accomplishes our
objective. The estimated state Y is assumed to satisfy a set of equations similar to the
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one governing the original system (2.4). We have
— =AY + Byu(t) — L(m — CY) (3.1)

where the original noise term Byw(t) has been replaced by the forcing term —L(m — CY).
The latter term represents the difference between the true measurement signal m(t) = CX
and the estimated measurement signal CY and is applied as a forcing term premultiplied
by L. This term is to drive the estimated state Y toward the true state X. In the forcing
term, the so-called Kalman gain L can be computed from an optimization problem in
which the cost functional is taken as the error between the full and estimated state, i.e.,
Z=X- ?, and is subsequently minimized. The resulting optimality condition yields a
Riccati equation, from which the Kalman gain L follows (see Burl 1999). Commonly, the
energy of the estimation error is formulated in the time domain; it will prove advantageous
in our case, though, to recast the energy in the frequency domain. Using Parseval’s
theorem we obtain for the objective functional

oo
2= [zl (32)
—00

where Zw denotes the Fourier-transform of the error Z. Two sources of noise — both
assumed as white in time — are taken into account in the derivation and solution of
the Riccati equation: a plant noise w(t) of variance W2 driving the dynamics of the
original system (2.4) and a measurement noise g(t) with variance G2 contaminating the
measurement m(t). The ratio of the two standard deviations, i.e., G/W, can be taken as
a parameter that governs the speed of the estimation process, but can also be interpreted
as the noise-to-signal ratio of the sensor. For example, considering a constant standard
deviation W of the plant noise, the parameter G/W represents a quality measure of the
sensor. Large values of G/W indicate that the measurement noise g(t) is too high to
ensure a correct signal; the corresponding Kalman gain L tends to zero. Consequently,
the forcing term in (3.1) has a negligible effect on the system which, in turn, leads
to a poorly performing estimator. This parameter regime is referred to as the small
gain limit (SGL). Contrary to the small gain limit, for G/W < 1 the corruption of
the measurement signal by noise is low compared to the stochasticity arising from the
system itself; as a consequence, the estimation process becomes highly effective due to
the substantial Kalman gains. This parameter regime, referred to as the large gain limit
(LGL), comprises the most performing estimators for a given configuration.

By construction, the performance of the estimator crucially depends on details related
to the measurement signal, and the type of sensor (in terms of its noise-to-signal ratio)
as well as its location have to be chosen judiciously if overall success of the closed-loop
control effort is to be expected. In what follows, we will consider four sensors C; 2 3 4 that
are identical in type but placed at four different positions within the recirculation bub-
ble, and assess their capability of efficiently estimating the flow state. Special emphasis
will also be directed toward the quantitative influence of the noise-to-signal ratio G/W
introduced above.

3.2. Performance of the estimator

In this paragraph, we further elaborate on estimating the flow state X governed by (2.4).
The estimation problem is decoupled from the control problem (see Burl 1999). For this
reason, we can set the control law to zero (u(t) = 0) without loss of generality and
continue our study of the estimation problem without actuation. The system is driven
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F1GURE 4. Performance of the estimator versus frequency using four different sensors and selected
values of the estimation (noise-to-signal) parameter G/W. (a) sensor C,. Normalized performance
of the estimator, integrated over all frequencies, versus the estimation parameter G/W for four
different sensor locations; (b) measuring shear-stress.

by white noise represented by w(t); but, owing to the linearity of (2.4), the perfor-
mance of the estimator can equivalently be studied by considering harmonic forcings
w(t) = exp(iwt) of a given frequency w. It is then convenient to reformulate the coupled
plant/estimator system in the frequency domain and state the governing equations for
the harmonic response as

®:> - <MEC ) il — (Z + ﬂC))l (%1) : (3.3)

where, as before, the subscript ., indicates variables defined in the frequency domain.
The estimation error in frequency space is given as Zw = )A(UJ - ?w.

In figure 4(a) the frequency dependence of the estimation error ||Z,||2 is displayed for
the shear-stress sensor placed at C; (see figure 1) and for selected values of the noise-
to-signal parameter (¢/W. For comparison, the norm of the state vector ||X,||2, which
is similar to figure 2(a), is included as a dashed line. In the small gain limit (red lines),
the estimator, as expected, does not succeed in identifying the state, producing an error
as large as the norm of the original state. As the parameter G/W decreases though, the
estimation process improves due to a less contaminated input from the sensors and the
estimation error is reduced — mainly at frequencies where the system reacts strongly to
external excitations. As the parameter G/W approaches the large gain limit (blue lines),
the error curve eventually converges to the lowest possible value. This curve then defines
the best attainable performance for sensor Ci.

This general behavior is observable for each of the four sensors (not shown here). The
final errors in the large gain limit, however, are not identical for all sensors: the best
performance is achieved by sensor Cy. As the location of the sensor is moved further
downstream in the separation bubble (considering successively the sensors Cl, Cg, Cs
and 64), the frequencies which are naturally amplified by the system are less well pre-
dicted. This suggests that the estimator based on C; will be more efficient in accurately
determining the flow state.

An instructive way of assessing the performance of an estimator over all frequencies is



Closed-loop control of unsteadiness over a rounded backward-facing step 11

to directly compute the cost functional Z (see eq. (3.2)) normalized by the energy of the
state. We thus introduce \/Z/Ey with Ey = [ [Xo]|2 dw and X,, = (iwl — A)~1B,;.
When this quantity is close to 1, the estimation process has failed with a 100% esti-
mation error; the smaller the value, the better-performing the estimator. This quantity
is displayed in figure 4(b) versus the estimation parameter G/W for each of the four
sensors. The red curve represents the estimator performance based on sensor Cl. For
this sensor location and for noise-to-signal ratios above 1, the sensor noise prohibits a
correct estimation resulting in an estimation error of 100%. As the noise-to-signal ra-
tio diminishes further, the performance of the estimator progressively increases until it
reaches the large gain limit for values of G/W less than approximately 10~2. Below this
value of G /W, the estimator performs at its optimum. Similar behavior can be observed
for the remaining sensor locations given by CQ, Cg and Cy : the small-gain-limit regime
is clearly detectable at high values of G/W. However, the exact values for which the
estimator reaches the large gain limit becomes less sharply defined as the sensor location
is moved further downstream in the separation bubble. Comparing the performance of
estimators based on different sensors, we conclude, in agreement with figure 4, that the
performance in the large gain limit is best for the sensor C; and decreases as the sensor
is moved further downstream. It is surprising though that the estimator based on 64,
which performs worst in the large gain limit, shows better performance at high values
of the noise-to-signal ratio G/W. For example, if we consider the value G/W = 10°, the
estimator based on C4 displays a relative error of 20% while the estimator based on Cl
still shows an error of 100%. If a constant noise level of the system-generated signal is
assumed (W = const.), this implies that the estimator based on C4 can cope with higher
levels of measurement noise than the estimator based on C;. In practice, this means that
less-quality sensors can be used as long as they are placed further downstream; this point
will be discussed further in the next section.

To conclude, the estimation errors are rather small (< 1071) for all sensors in the large
gain limit. Yet, the estimator based on Cl is most efficient with a performance measure
of 2-1072, while the estimator based on C, only reaches a value of 107! in the large gain
limit. At first glance, this difference in performance may seem small and insignificant,
but it will be shown below (section § 4) that it nonetheless has a strong influence on the
efficiency of the compensator. But first, the next section will offer a physical explanation
for the observed loss of estimation performance by analyzing the above results in the
time domain rather than the frequency domain.

3.3. Interpretation in the time domain

Even though a formulation of the estimation problem in the frequency domain is the
proper choice for designing closed-loop control strategies for amplifier flows, it never-
theless remains challenging to attach physical meaning to the frequency-based results;
an interpretation of our findings in the time domain seems more intuitive. The main
result — the estimator’s performance deteriorates as the sensor is gradually moved from
the upstream C; to the downstream C4 position — suggests that the travel time of a
perturbation, before it is detected by the sensor, plays a critical role. To validate this
proposition, we start by rewriting the estimation performance parameter in the time do-
main using Parseval’s theorem. We obtain [ 12 ||2dw = 27 I |Z||2dt, with Z = X—Y

and X and Y satisfying the following system of equations in the time domain

()= (e adid) (7): (é) -(5) s
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FIGURE 5. Temporal evolution of the energy of the error vector HZHQ for four different sensor
locations Ci 23,4, and energy of the (uncontrolled) state [|X||? (in gray).

The above system determines an impulse response triggered by the noise term B, : the
initial condition X;—¢ = By is advected downstream while being amplified along the shear-
layer of the recirculation bubble. The energy ||)A(H2 of this perturbation is displayed versus
time by a gray thick line in figure 5. In addition to the time axis, a second axis is displayed
at the top of the figure where the location of the advected wave packet, evaluated by
the energy-weighted z-centroid z. defined as z.(t) = [k/(z,y,t)dz dy/ [ k' (z,y,t)dz dy
with &'(z,y,t) = (u'? + v'?)/2 as the pointwise kinetic-energy at time ¢, is shown. The
initial condition is associated with the non-zero state energy ||X||2 = ||By||2 at t = 0.
The energy then decreases for 0 < ¢ < 1.5 as the perturbation traverses the stable region
of the flow between the noise location and the separation point. Beyond the separation
point of the shear layer, the wave packet enters the convectively unstable region and its
energy grows until the perturbation reaches the attachment point. At time ¢ ~ 19 the
energy reaches a maximum; the corresponding energy-weighted z-centroid zx. is located
at z =~ 9.5. The perturbation continues through a convectively stable region and the
state energy decreases accordingly. During this advective process the estimator tries, in
real-time, to reconstruct the actual state from the information provided by one sensor,
and the estimation performance parameter is given by the integral in time of the actual
estimation error Z. In the following analysis, all estimators (Cl to C4) will operate at
their respective large gain limit, which ensures the best attainable performance for each
estimator.

In figure 5 the thin solid lines display the energy of the estimation error ||Z||? as a
function of time for all four sensors. The red curve traces the estimation error associated
with sensor Cy. For short times (0 < ¢ 5 3), the estimation error energy is comparable
to the state energy, indicating a relative estimation error of 100%. Starting at t ~ 3, the
error drops abruptly by one order of magnitude before a more gradual decrease sets in for
t Z 6. The estimator becomes effective as soon as the error curve clearly detaches from
the state energy curve (gray thick solid line); the state is hence well estimated beyond
t &~ 4 using sensor C;. The estimation error curves (green, blue and black curves) for the



Closed-loop control of unsteadiness over a rounded backward-facing step 13

01 F ! — C
0

shear stress

-01 F

shear stress
o

0 10 t 20 30

FIGURE 6. Measured impulse response at the four sensor locations, 61,4 (top to bottom) The

blue vertical lines correspond to the times when [Z||?/[|X||> = 0.9 (see figure 5). The black
vertical lines indicate the times when the energy-based z-centroid of the wave packet z. reaches
the sensor; the dash lines give the times when z. + o reaches the sensor, with ¢ denoting the
standard deviation of the wave packet.

remaining sensors 627374 display a similar behavior: a relative estimation error of 100%
for early times, followed by a pronounced drop after a critical time and finally a gradual
decay. The abrupt decline in the estimation error energy, however, occurs considerably
later than for sensor Cy, and this delay increases steadily as the sensor location is moved
further downstream. Nevertheless, in all cases the estimation error ultimately decreases,
and the flow state appears to be well-estimated for large times. We thus conclude that
the principal difference between the estimators is the time at which they start to become
effective: sensor Cy, located furthest upstream, yields the earliest accurate estimates of
the state, followed by CQ, C; and finally C4.

More insight is gained by displaying the measurements from the different sensors for the
above impulse-response simulation (see figure 6). For sensor G (top figure) we observe a
quiet phase (0 < ¢ < 4), after which a sinusoidal signal, the footprint of the wave packet
traveling downstream in the shear layer above the sensor, is detected. The measurement
returns to zero for ¢ Z 16. Similar features can be observed for the other three sensors
and in particular for sensor C4 (lower figure); however, the time of first detection is
delayed and the amplitude of the signal is substantially increased (by nearly forty times
between Cl and C4) as we move the sensor location further downstream. The time delay
in detecting the wave packet is closely linked to the overall performance of the four
estimators: early detection yields better results. The detection times in figure 6 (blue
vertical bars) correspond to the critical times in figure 5. After the wave packet has
been captured by the sensor, the estimation proceeds rapidly due to the large Kalman
gains (large gain limit). If noise is generated at B,, the Cy-estimator for example is able
to identify the associated response in the region x > 5 but is incapable of detecting
any response in the region —1 < x < 5. The performance of the estimator is thus less
determined by the quality of the reconstructed state — all energy curves in figure 5 tend
to zero — than by its reaction time which translates into a spatial range where state
responses to noise are detectable. It is this distinction that will have a marked impact on
the performance of closed-loop control of amplifier systems (see § 4) and will reveal the
effectiveness of seemingly performing estimators when incorporated into a compensator.

Larger amplitudes are detected at sensors located further downstream which stems
from the amplification of the wave packet due to a convective instability along the shear
layer of the separation bubble; the four sensors 61,27374 capture the wave packet at various
stages of this instability. This difference in amplitude also explains some features observed
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in figure 4(b). Comparing the curves associated with the different sensors 61,2,3,4, we
notice that the estimation process becomes effective for different values of the noise-to-
signal ratio G/W. For example, sensor C; starts to perform well for G/W < 1.25, while
sensor C4 only requires G /W < 52, which leads us to conclude that higher-quality sensors
are required when one plans to place them further upstream where signals are generally
weaker.

In summary, two competing mechanisms have been isolated in the estimation process
for amplifier flows: (i) for an effective estimator, the sensor has to be located sufficiently
upstream to allow a rapid identification of the perturbation; (i) on the other hand, the
noise-to-signal ratio G/W has to be sufficiently small to enable an accurate estimate, thus
favoring or forcing the placement of noisy sensors further downstream where the signal
amplitudes are higher. In short, a balance between speed and accuracy of the estimation
process has to be struck. Whereas the upstream placement of the sensors runs somewhat
counter to the intuitive placement of the sensor near the reattachment-line, it will be
shown that, for our prototypical configuration, the speed of estimation appears more
critical for a successful compensator performance than the capture of highly accurate
measurements.

4. Closed-loop control based on reduced-order model

After our analysis of the estimator and its performance, we now direct our attention to
the complete compensator. After a brief presentation of the controller and its design steps,
we investigate the performance of the compensator built on the four sensors 617273’4. Two
objective functionals for the controller will be studied: (i) the square of the measurement
based on Cp and integrated over time, and (ii) the time-integral of the entire perturbation
energy. Within this section, the plant is modeled by the reduced-order model introduced
in §2.

4.1. Presentation of the controller

We will aim at suppressing perturbations in our fluid system by employing an optimal
control strategy which will be designed to minimize a predefined cost functional. In
mathematical terms, a control law of the form u(t) = KX will be assumed where the
control gain K arises from the solution of a Riccati equation (see Burl 1999). Traditionally,
the cost functional is related to a quantity measuring the energy of the state, but also
takes into account the control effort in terms of its expended energy.

In our study, two measures of the state will be considered in the minimization process:
the energy contained in the measurement extracted at location Cp (see figure 1) yielding
a cost functional of the form

g = / (X*C;C,,X n l%ﬁ) dt, (4.1)
0

or the perturbation energy contained in the entire domain leading to a cost functional of
the form

J. = /OOO (xx + l%ﬂ) dt. (4.2)

The parameter [ appears in either choice and is referred to as the cost of control, as it
quantifies the user-specified weighting of the control energy compared to the quantity to
be minimized. Similar to the estimator, a small-gain-limit (resp. large-gain-limit) param-
eter regime exists where the controller exerts nearly no action (resp. maximum action)
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on the flow. Invoking the separation principle (see Burl 1999), the controller design can
be carried out independent of the estimator design.

The performance assessment of the compensator will follow the frequency-based frame-
work for amplifier flows outlined in §2 and §3. Considering the state-space system (2.4)
driven by a harmonic excitation w(t) = exp(iwt) the response of the compensated system

reads
N I —1
" jwl — A “BuK 5
I T G Bi). (4.3)
Yo (C iwl— (A £ BoK + Lc) 0

The above equation will form the basis for our performance analysis of the compensated
system, where we will focus on the influence of controllers designed with J,,, or J. as well
as on the impact of the control cost [ and the noise-to-signal ratio G/W.

4.2. Performance of the compensator using a cost functional based on the measurement

We start by considering a compensator whose controller has been designed using the cost
functional .J,,, i.e., the state is measured by the energy output of the sensor C, and the
resulting controller aims at minimizing the energy of the measurement m, = C,X.

4.2.1. Effect on the perturbation measure my,

Figures 7(a) and (b) show the performance of the compensator designed to minimize
the measurement where each subplot displays results using respectively sensor C; and
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C4 for the estimator. Results related to sensors Co and Cg display intermediate results
and are not shown here. The measurement-based performance P, of the compensator is
defined as

P, = . (4.4)

fj;o |(A:p)A(w|2dw 1z
my

where X, is given by (4.3) and m3 is the measurement energy related to the uncontrolled
case. Each plot shows iso-contours of P, in the (G/W,[)-plane. Contours with hot colors
(red) indicate parameter combinations where the control has been ineffective in reducing
the measurement energy; contours with cold colors (blue) point to values of (G/W,1)
where the perturbation measure has been reduced successfully. The convergence of the
performance P,, towards one (ineffective closed-loop control) is common to all sensor
configurations as either the control cost [ or the noise-to-signal ratio G/W exceeds a
critical value. This parameter regime corresponds to small-gain-limit situations where
either the control gain K or the Kalman gain L approach zero. For small noise-to-signal
ratios G/ and small control parameters [ (inexpensive control), the estimator provides
an accurate approximation of the state which is subsequently multiplied by a non-zero
control gain to obtain a positive action on the perturbation. As a result, the performance
measure P, is rather small in this parameter regime since both the estimator and the
controller reach their large gain limit and behave at their best. The compensator based on
sensor C; is, by a considerable margin, the most efficient with a performance parameter
P, equal to 0.026 in the large gain limit; this means that only 2.6% of the uncontrolled
measurement energy remains after control is applied. As the sensor location for the
estimator is moved further downstream though, the performance parameter P, rises
substantially in the large-gain region: 17%, 36% or 71% of the uncontrolled measurement
energy could not be removed by the compensator using sensors 627 63 or 64, respectively.
This exercise clearly demonstrates that an actuator placed near the edge of the step
requires a sensor located in its vicinity, if satisfactory performance of the compensator is
to be expected; alternatively, a sensor further downstream (e.g., C4) requires an actuator
in its upstream neighborhood, but this layout will produce larger control gains and
ultimately less performance compared to the upstream configuration (e.g. Cl) In what
follows, we will concentrate on sensor Cl and further probe its performance behavior and
limitations.

More physical insight into the compensated system can be gained by computing the
transfer function between the noise w and the performance measurement m,. Four cases,
labeled accordingly in figure 7(a), are analyzed in detail: case 1 is representative of an
ineffective compensator in the small gain limit, both cases 2 and 3 characterize a system
with average performance while case 4 corresponds to a compensator operating in the
large gain limit. The governing parameters, i.e., the noise-to-signal ratio and control cost,
for theses cases are summarized in table 1 (second and third column) together with values
of various performance measures.

In figure 8(a) the magnitude of the transfer function from w(t) to m,(t) for each of the
four cases is displayed, and results pertaining to the uncontrolled system are overlaid in
black symbols. As expected, the compensator operating in the small gain limit (case 1,
shown in red) does not act on the flow and the transfer function is identical to the uncon-
trolled one. By progressively reducing the noise-to-signal ratio and the control parameter
(light blue and dark blue curve), the most amplified frequencies are considerably reduced
and the compensator becomes effective over a wider range of frequencies, even though
frequencies above w &~ 1.5 are slightly more amplified compared to the uncontrolled case.
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Case l G/W Pm|cf:m P@|cf:m Pm|cf:e Pe‘cf:e
1 10° 10" 1.000 1.000 1.000 1.000
2 10* 1071 0.566 0.574 0.784 0.707
3 10° 1072 0.135 0.254 0.292 0.157
4 1072  107* 0.026 1.084 0.037 0.005

TABLE 1. Performance measures based on measurement energy (subscript ,,) or global pertur-
bation energy (subscript ). The compensator has been designed using on a cost functional based
on measurement energy (subscript f.,) or on global perturbation energy (subscript cf..). Four
selected cases, ranging from the small gain limit to the large gain limit, are presented.

L] No Control
Casel

Case2
Case3
Cased

el b b )
100

o8 b o L L
1 2 3 4 5 6 0 1 2 3 4 5 6
w w

FIGURE 8. (a) Magnitude of the transfer function |mp,| for four different (G/W,1)-parameter
settings, as well as the uncontrolled case. (b) Transfer function between noise and global energy
for the same four parameter settings.

This tendency continues until the large gain limit (in green) is reached: the low frequen-
cies (w < 2) which would be naturally amplified by the uncontrolled system have been
successfully suppressed, which explains the very good performance of the compensator
with P, = 0.026 (see table 1, fourth column).

The results above confirm the successful manipulation of the inherent amplification
behavior (see figure 2(a)) of the uncontrolled flow: the pronounced response to low fre-
quencies has been strongly reduced by the compensator.

4.2.2. Response in the frequency domain: effect on the perturbation energy

Even though the controller is designed based on the measurement m,, only, the per-
formance of the compensator can also be evaluated by the reduction of the perturbation
energy in the entire domain. This is possible in the present case since our reduced-order
model is based on POD modes, and therefore accurately captures the energy of the origi-
nal system. This point has particular implications for experimental control setups where
reduced-order models are typically obtained by identification techniques based on input
and output data. By construction, such models cannot express or capture state infor-
mation, and the question arises whether targeting the measurement energy in the cost
functional produces commensurate reductions in the entire perturbation energy. While
the control gain is still based on the measurement-based cost functional .J,,,, we therefore
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evaluate the global energy performance measure
3 X Pde

P, =
Eqo

(4.5)
with X,, from (4.3) and Ey as the energy based on the uncontrolled system. The ratio
P, of the perturbation energy for the compensated case to the perturbation energy for
the uncontrolled case is depicted in the (G/W,l)-plane in figure 7(c). This plot shows
similar characteristics than figure 7(a) but also displays important differences. For large
values of G/W and [ (the small gain limit for estimator and controller) the control
action is negligible and no reduction in the perturbation energy is achieved (P, = 1).
For moderate estimation and control-cost parameters, the performance parameter P,
decreases, and it appears that a reduction in measurement energy (measured by P,,)
brings about a proportional reduction in the overall perturbation energy. However, as
the large gain limit is approached (case 4), the value of P, increases again, even above
one, indicating that the perturbation energy of the controlled case exceeds the energy
of the uncontrolled case. The measurement energy, however, is efficiently reduced, as by
design.

As before, the transfer function between the noise and the energy in the domain ||X,,||?
provides more details of the observed behavior (see figure 8(b)). Case 1 (in red) represents
the small gain limit, and the transfer function coincides with the one for the uncontrolled
flow since no control action is exerted on the flow. As G/W and [ are reduced (light blue
curve), the dominant, inherently amplified frequencies around w = 1 are reduced by the
compensator but higher frequencies appear near w = 1.8. Nonetheless, the energy in the
entire domain diminishes (P, = 0.458), see values in table 1 (fifth column). This trend
continues as the governing parameters are further decreased (dark blue curve). Finally, in
the large gain limit (green curve), the dominant frequencies of the uncontrolled system
(w = 1) have been reduced by four decades, while the energy in higher frequencies
(w > 2) has been amplified by four orders of magnitude. This amplification outweighs
the control effort on the lower frequencies, thereby leading to an increase in the overall
energy of the system (P, = 1.085) and a failure of the compensator when measured in
the global energy norm. The reason for this behavior may stem from the location of
the spatial supports of the optimal responses at high frequencies. As mentioned in §2.2,
this support is upstream of sensor m,, for w > 2. Hence, m, is not able to detect the
naturally amplified perturbations (the optimal responses) in this frequency range. This
may explain the failure of the compensator to stabilize the energy in high frequencies,
since the objective functional of the compensator is precisely the measurement energy
based on my,.

4.3. Performance of the compensator using a cost functional based on the energy

We conclude by basing the controller design on the cost functional J. and by directly
targeting the perturbation energy in the entire domain. In figure 7(d), we show in the
(G/W,1) plane, the performance parameter P,. We observe that in the large-gain limit
(small values of G/W and [), the compensator now efficiently reduces the perturbation
energy P, = 0.005. From table 1 (column 6), we also note that the perturbation mea-
surement is significantly reduced, i.e., P, = 0.037.

5. Closed-loop control using linearized Navier-Stokes simulations

In the last section, we have studied the performance of the designed compensator with
the reduced-order-model ROMy5q as the plant. We will now assess the performance of
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this compensator in the case of the large-scale linearized direct numerical simulation
(LDNS), i.e., the full, unreduced model for flow over a rounded backward-facing step,
as the plant. In many flow control studies, this represents the essential performance test
of the compensator. As the reduced order model reproduces all input-output dynamics
from the LDNS with an error less than 1%, we expect that the results of the model
study presented in §3 and §4 remain valid in the case of the compensated LDNS. We will
see that this is indeed true in the case of small and medium gains (§5.1). As a result,
the compensated LDNS exactly reproduces the behavior of the compensated ROM. In
the medium gain case 3, we will in particular assess the cost related to the present
control strategy with an energy-based analysis (§5.2). In the case of larger gains (§5.3),
we will show that the residual 1% error between the transfer functions of the LDNS
and the ROM may render the compensated LDNS unstable. A sensitivity study, based
on minimizing the stability margin of the compensated system, will be conducted to
quantify and understand this phenomenon.

The instability problem discussed above is in fact a generic problem which may be
encountered as soon as model reduction techniques are combined with optimal control
tools. Compensators based on accurate reduced-order models are expected to perform
well when employed directly on the high-dimensional plant. If discrepancies between the
full and reduced-order transfer function prevail, however, a satisfactory performance of
the compensator is no longer guaranteed, nor can any bounds on the decline in perfor-
mance be given. In any model reduction effort, approximation errors are present and can
potentially degrade or ruin the compensator’s efficacy. One of the objectives of this sec-
tion is an assessment of the compensator’s sensitivity to deviations of the reduced-order
input-output behavior from the one of the full system.

5.1. Analysis of case 3 (I = 10° and G/W =1072)

We first consider the medium gain case 3 (I = 10° and G/W = 1072) and use the cost-
functional J. as our objective for the controller. We choose again the best-performing
estimator based on sensor C;. The plant is given by the discretized system of equa-
tions (2.3); a second-order scheme is used for the time integration. A white-Gaussian
noise is fed into w(t), and a statistically steady state is obtained after some time. The
performance measures P, and P, defined in (4.4) and (4.5) may be evaluated in the simu-
lations by time-averaging |C,X|? and X*QX, respectively. The results should be compara-
ble to those of the ROM-study (§4) since the simulation has been given a white-Gaussian
noise in time, which statistically feeds all frequencies by an equal amount.

Figure 9(a) juxtaposes the temporal evolution of energy for the uncontrolled simulation
(in red) and the evolution of energy for the compensated simulation (in black), where the
same excitation sequence w(t) has been used to ensure a fair comparison. Starting from
a zero initial state, a transient phase is observed that quickly evolves into a statistically
stationary state. The time for a particle to be convected from the actuator location By to
the reattachment point (sensor C,) is approximately 20 time units. The total simulation
time 7" = 1800 is almost 100 times larger, thus ensuring adequate convergence of the
statistical properties of the flow. At ¢ = 200 the compensator is switched on (black
curve). The energy rapidly decreases to levels nearly one decade smaller than in the
uncontrolled simulation. For completeness, the measurement signal m,(t) is displayed
in figure 9(b) for the uncontrolled (red) and compensated (black) simulation. Again, a
distinct reduction in variance of the signal can be observed.

The third column of table 2 contains the performance measures P, and P,, corre-
sponding to the above simulation. The values are nearly identical to the ones obtained
for the reduced-order model (the numbers from table 1 have been reproduced in the sec-
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F1cURE 9. Temporal evolution of the energy based on a LDNS continuously forced by random
noise. The compensator has been designed under linear assumptions (case 3). (a) Perturbation
energy for the uncontrolled (red) and controlled (black) case, (b) measurement energy for the
uncontrolled (red) and controlled (black) case.

ROM LDNS DNS DNS DNS
W=1) (W=0.1) (W=1) (W =+10)

P, 0.157  0.17 0.17 0.41 0.63

P 0.292  0.30 0.31 0.64 0.84

K max /U3 (%) 0.42 0.0042 0.31 1.96

K maz|, /US% (%) 0.07 0.0007 0.12 1.34

K maz|, /K maz 0.16 0.16 0.37 0.69

TABLE 2. Performance evaluation of linear and nonlinear simulations. Column 2: based on the
reduced-order model (§4), column 3: based on LDNS with random noise (§5), columns 4, 5, 6:
based on DNS with random noise with W = 0.1, W = 1 and W = /10 (§6).

ond column). It is evident that the overall perturbation energy P, and the perturbation
measurement energy P, have been reduced by a factor of 0.17 and 0.30, respectively.
These results underline the validity of the overall procedure followed within this article.

Finally, figure 10 displays contours of the pointwise perturbation mean-kinetic-energy
(normalized by the variance of the input noise) k’/W? for the uncontrolled (a) and
controlled (b) simulations. The pointwise kinetic energy of the perturbation is taken as
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FicUrE 10. Pointwise mean perturbation kinetic energy P/ W? of simulations with random
forcing. (a) Uncontrolled LDNS; (b) compensated LDNS (case 3).

K'(z,y,t) = (u'? +v'?)/2, and (-) designates the time average. The perturbation energy
increases along the shear-layer due to a convective instability; its maximum is reached
near x = 10. This pointwise mean-kinetic-energy distribution for the uncontrolled case
is closely related to the optimal response given in figure 2(c). The mean-kinetic-energy
contours for the controlled simulation deviate significantly, as the effectiveness of the
compensator is clearly demonstrated by the greatly reduced energy levels in the shear-
layer region. Table 2 (column 3) shows that the maximum (over space) perturbation
mean kinetic energy is lowered by a factor of 1/0.16 ~ 6. Figure 10 is of interest to
experimental studies of flow control as it provides a direct comparison of local turbulence
levels throughout the recirculation bubble for the uncontrolled and controlled case.

5.2. Analysis of control cost

We will next assess the characteristics of the control cost. We first note that the penal-
ization term u?, appearing in the objective functionals .J,, and .J, introduced in §4, is
not representative of the true energy spent by the user for control. We therefore resort to
an analysis of the energy budget: evaluate the user-supplied power to the system associ-
ated with u(¢) and compare it to a physical quantity that describes the realized gain by
controlling the flow. To this end, we recall the linearized Navier-Stokes equations (2.3)
in continuous form

V' +V -V +0 - VV = —Vp' + Re 'V +w(t)by + u(t)bsy, V.-v' =0 (5.1)

where v’ is the perturbation velocity and V' the base flow. Taking the inner product of
this equation with v’, averaging over time (-) and integrating in space over a domain ()
(which includes the spatial support of b2, but excludes the one of b;) yields the following
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equation:

/ (K'V-n+pv' -n—2Re "D v n)ds = // (u(t)bg “v'~R':D—2Re” "D D’) Q.
[219] Q

(5.2)
where : denotes the contraction operator or Frobenius inner product, defined as A : B =
> AijBij = trace(A*B). This equation governs the flux of the mean kinetic perturbation
energy k' across the boundary 9, given by |, 50 K’V -nds. It is written in conservative
form, and various volume source terms appear on the right-hand-side of the equation
which contribute to this flux. The mean external power u(t)bs - v/ represents the mean
power supplied by the user during the control effort. The production term —R’ : D
involves the Reynolds stress tensor R’ and the strain rate tensor Dof the base flow. In
the case of an amplifier flow, this term will supply the main power (drawn from the base
flow V) which in turn will trigger high values of the mean fluctuating kinetic energy
flux. Even though this term may be positive or negative, in the case of an amplifier flow
it should be predominantly amd strongly positive. The dissipation term 2Re D’ : D’
contains the strain rate tensor D’ of the perturbations and accounts for the mean power
lost due to viscous stresses. Lastly, the power supplied to the system does not only enter
the mean fluctuating kinetic energy flux, there are two other terms: the mean velocity-
pressure correlation fa@ p'v’-nds and the viscous diffusion term faﬂ —2Re D" 0" nds.

We have evaluated the various integrals appearing in (5.2) for the case described in
85.1. For © we chose the domain —0.1 < x < 11.3. The left boundary at x = —0.1 is
downstream of by, but upstream of by, such that the domain €2 comprises the actuator bo
and extends downstream beyond the reattachment point. The line integrals along the wall
and in the far-field yield zero contributions, and we are thus only left with contributions
from the line integrals at + = —0.1 and x = 11.3. In table 3, the numerical values
of the non-zero line integrals at x = —0.1 and = = 11.3 as well as the various source
terms in —0.1 < x < 11.3 are listed for the uncontrolled and controlled simulations.
For the uncontrolled case we identify the kinetic energy flux at the boundaries as the
dominant term among the line integrals, with a pronounced increase between the inlet
(z = —0.1) and the outlet (x = 11.3). This feature is linked to the convective Kelvin-
Helmholtz instability which gives rise to strong disturbance growth along the shear layer
of the separation bubble. Closer inspection of the source terms shows that this growth
in kinetic energy flux is mainly due to the production term which is more than twice the
dissipation term in magnitude (while the power term is zero due to the absent control
input). The production term is the ”engine” of the instability, located along the shear
layer of the separation bubble (see figure 11). Clearly, any effective control effort should
target this term in order to reduce the amount of unsteadiness in the flow. For the
controlled simulation, similar features can be observed; yet the increase in kinetic energy
flux between the boundaries of the domain €2 is significantly smaller (by a factor of 10,
as shown in column 5 of table 3). The source terms (columns 8,9,10) show that the
production and dissipation terms have decreased accordingly, while the user-supplied
power term from the control effort remains negligible in the process. For a minute cost
of control (for our case, a value of 0.004) we have attained a substantial reduction of
kinetic energy flux between the uncontrolled and controlled simulation (in our case,
1.50 — 0.16 = 1.34) — indeed a highly efficient effort. Of course, this efficiency is due to
the fact that we control an instability, i.e., the strong convective instability as the source
of unsteadiness is taken advantage of to actively suppress it.
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Control o At x = —0.1 o At x =11.3 Sources in —0.1 <z < 11.3
k'V v’ Visc. kK'V  p'v’  Visc. Power Prod. Dissip.

OFF —0.0058 —0.00082 —0.000025 1.5 0.69 0.0017 0 3.8 —1.7

ON —0.0058 —0.00079 —0.000025 0.16 0.068 0.0023 0.004 0.56 —0.34

TABLE 3. Evaluation of the control cost in the linearized simulations. All values are to be
multiplied by 1072, The compensator has been designed for [ = 10°, G/W = 1072 (case 3).
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FIGURE 11. Iso-contours of the production term (=R’ : D)/W? for the uncontrolled linear
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FI1GURE 12. Instabilities in the compensated linearized numerical simulation. The red squares
(resp. black squares) represent unstable (resp. stable) results. The circles refer to the ”medium
gain” and ”large gain” cases studied in depth in §5.3.1 and 5.3.2.

5.3. Behavior of compensated systems for larger gains

This section is devoted to a performance evaluation of the compensator for the case of
larger gains. Simulations with the randomly forced, linearized Navier-Stokes equations for
a range of control costs [ and noise-to-signal ratios G /W have shown that strong instabil-
ities can arise in the compensated system. Figure 12 reports stable (black symbols) and
unstable (red symbols) parameter combinations. For sufficiently large [ or G/W (black
symbols), the response behavior of the linearized simulation is close to the response of
model ROM;50 (as observed in the medium-gains case in §5.1). The linearized DNS then
reaches the same performance measures as the ones displayed in figure 7(d). Cases 1, 2
and 3, studied in §3 and §4, belong to this category as well, with equivalent performances
of the linearized DNS. On the other hand, we also encountered cases in which the lin-
earized direct numerical simulation exhibited instabilities as a compensator was applied
(indicated by red symbols in figure 12). These cases concentrate at the large gain limit
in the (G/W,1)-plane; case 4, studied in §3 and §4, falls into this category.
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5.3.1. Presentation of sensitivity analysis

A discrepancy between the model of the plant on which a compensator is based and the
model of the plant the compensator is intended to ultimately control can cause a decline
in compensator performance or, in more severe cases, an instability in the compensated
system. The dynamics of the compensated system is given by

7 (é) - (—?c A+ sf + £C) @ " (EZ) w(t) (5:3)

where the superscript * refers to matrices of the ROM;5¢-system while matrices without the
superscript are associated with the ”true” plant model. We will attempt to understand
the rise and origin of instabilities in such systems (shown in figure 12). In this effort, the
matrix

M:<AA - BiK > (5.4)
—LC A+Bs+LC
is of critical importance, since an eigenvalue of M in the unstable half-plane is evidence
of an instability in the compensated system. Considering components of the “true” plant
model, the matrix M only depends on A, By and C, which describe the input-output
dynamics between u(t) and mq(t); it does, however, not depend on B; and Q (note that
the gains K and L implicitly depend on B, and Q through the Riccati equations, but this
dependency has not been accounted for in the present analysis and the gains have been
set to constants). This is to say that the input-output dynamics between w(t) and mq (t),
between w(t) and E(t) and between u(t) and E(t) have no influence on the stability of
the compensated-system matrix M. Hence, we will focus on the dynamic link between
u(t) and my(t) and introduce an error measure that describes the disparity between the
transfer function of the original plant model and of the ROM;59 model. We have

J20 Imae — i Pdw 1

err =
75 I |?dw

(5.5)

with 7i1, = C(iwl — A)~'By and my,, = Cliwl — A)~'B.

We will then determine the minimal distance to instability of M by adjusting the
components A, By and C of the plant model (taken as matrices of size 150 x 150, 150 x 1
and 1 x 150, respectively) while maintaining a given error err between the respective
transfer functions. We proceed in the following manner. We first note that a marginal
eigenvalue s = iw of the matrix M is equivalent to the largest singular value A\, of the
resolvent matrix tending to infinity. The resolvent matrix corresponds to the matrix
R~ with R = iwl — M. Formulating an optimization problem, we will try to maximize,
for a given frequency w, the functional A2 (A, By, C) as a function of A, By and C. The
optimum will be sought under the constraint that the transfer function error err(A, B, C)
maintains a prescribed error €. The gradients with respect to A, Bs and C of the above
objective functional as well as the constraint condition are given in appendix B. The
constrained optimization problem is transformed into an unconstrained problem via a
penalization technique, and a Polak-Ribiere conjugate-gradient method coupled to a line-
search algorithm is used to determine the optimum.

5.3.2. Results

Two cases will be analysed in the following (see circles in figure 12): a stable case | =
100, G/W = 1072 (veferred to as the medium-gain case in the following) and an unstable
case l = 1071, G/W = 1072 (the large-gain case in the following). Figures 13(a,b) present
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FIGURE 13. Results of the sensitivity analysis, visualized by the largest singular value of the
resolvent matrix in the (w, err)-plane. (a): Medium-gain case (I = 10°, G/W = 1072, case 3).
(b): Large-gain case (I = 107, G/W = 10~2). The symbols are colored according to the value
of \o.

symbols colored according to the value of A\, (based on the exponential color map) in a
(w, err)-plane. Hot colors (red) indicate that the optimization algorithm found marginally
unstable compensated systems with an eigenvalue of M in the close vicinity of s = iw
and, equivalently, the largest singular values A, of R™! above 10*. Cold colors (blue)
signify that the resolvent matrix has a largest singular value A, below 102 on the neutral
line, indicating that M has no eigenvalue in the close neighborhood of s = iw. We observe
that the transition from unstable to stable parameter combinations is rather sharp, which
allows the definition of a clear unstable region. In the medium-gain case (figure 13(a))
the unstable area starts at a transfer function error err ~ 0.00375 with a frequency near
w = 3.3. For increasing values of err, the unstable frequency band grows: for err =
0.0075, instabilities in the compensated system occur for frequencies within the range
2.6 < w < 4.1. For the large-gain case (figure 13(b)), similar features are observed,
except that the compensated systems become unstable for considerably smaller errors:
as the error exceeds err ~ 0.001, frequencies within the range 3.2 < w < 3.8 may render
the compensated system unstable. For even larger errors err, the unstable frequency
band extends to even higher frequencies: for err = 0.005, the entire frequency band
2.6 < w < 6.8 displays instabilities.

These results support the observations summarized in figure 12. For larger gains, the er-
ror err between the plant and the reduced-order model has to be sufficiently small before
stability of the compensated system can be ensured. In the present study, the reduced-
order-model ROM;59 apparently exhibits an error that is acceptable for the medium-gain
case (case 3) but too high for the large-gain case. Moreover, the frequency range which
is responsible for these instabilities covers the interval 2.6 < w < 6. For the design of
the reduced-order model, it is thus not sufficient to capture only the energetic, lower
frequencies around w = 0.8; rather, it is essential to also account for higher frequencies,
despite their low energy content.

Figure 14 shows a typical example from our sensitivity analysis where the compensated
system becomes unstable for a particularly small error err of the transfer function. For the
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FIGURE 14. Example from the sensitivity analysis. (a,b): Spectra of plant A and compensated

system M for the medium-gain case. The circles indicate the plant based on (A, B, C) while
the red squares indicate the plant governed by the optimal (A, Bz, C) found by the optimiza-
tion algorithm. (c): Modulus of the transfer functions 71, (w) and mi,(w) for medium-gain
case (I = 10°, G/W = 1072, err = 0.00375, wopr = 3.3) and the large-gain case (I = 107,
G/W =1072, err = 0.00125, wop: = 3.3).

medium-gain case, the optimization process, performed for w,,: = 3.3 and err = 0.00375,
yields a nearly unmodified spectrum for A (figure 14(a)) but strong modifications of the
compensated spectrum for M (figure 14(b)). In both figures, the circles represent the
spectrum of the plant based on (A, ég, C) while the red squares pertain to a plant governed
by the optimal (A, Bz, C) determined by the optimization algorithm. The compensated
system clearly displays a marginal eigenvalue at the optimization frequency wepr = 3.3
(see figure 14(b)) which is in accordance with the high value of A, = 7.5 - 10? found
for the singular value of R™!. Further insight can be gained from a comparison of the
transfer functions mq, (w) and mq,, (w); the modulus of the respective transfer functions is
depicted in figure 14(c). It is evident that the response behavior u — m; for the optimized
plant (red line) exhibitis a small error near the optimization frequency w,p; = 3.3. For
comparison the transfer function modulus for the large-gain case, obtained for woy; = 3.3
and err = 0.00125, is also displayed (in green). The large-gain transfer function is even
closer to the original transfer function (black curve) but, nonetheless, displays a very
high value for the largest singular value of R, namely, A\, = 2-10%. This latter finding
corroborates, for the large-gain case, the high sensitivity of the compensated system to
minute variations in the transfer function v — m; in the frequency band w ~ 2.6 — 6.
The sensitivity is less pronounced for the medium-gain case.
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Fi1Gure 15. Temporal evolution of the mean perturbation energy based on a DNS continuously
forced by finite-amplitude noise W = 1/10. The compensator has been designed under linear
assumptions (case 3). The linear case has been added by dashed lines and scaled to the initial
energy of the nonlinear simulations.

6. Nonlinear effects

The controller has been designed in the case of perturbations governed by linear dy-
namics. With non-linear governing equations, this situation is recovered if the amplitude
of the perturbations is very small in the whole domain. This may be achieved with
Navier-Stokes equations with an upstream very small noise amplitude W <« 1. We have
seen in the last section that small-amplitude noise may be suppressed by the linearly-
designer controller. In the present section, we will gradually increase the amplitude of
the incoming perturbations and the amplitude W; nonlinear effects will progressively be
introduced and their impact on the overall performance of the linear compensator under
off-design conditions can be studied. A similar test has been conducted by Ilak (2009)
for impulsive initial conditions.

We have tested three different amplitudes: W = 0.1 (see movie in the online version of
the paper), W = 1 and W = 1/10. The performance measures P, and P,, corresponding
to the three cases are reported in table 2 (columns 4, 5 and 6). The simulations have been
run up to t = 1800, as in the linear simulation of §5. The random noise sequence from
the linear case has been used, which allows a direct comparison with the linear results
(reported in column 3). In table 2, the maximum pointwise mean-kinetic-energy of the
uncontrolled and controlled (indicated by |.) simulations are listed together with their
ratio. For a small noise amplitude W = 0.1 the evolution of the uncontrolled perturbation
is quasi-linear, and the performance of the compensator is nearly the same as in the linear
case (compare columns 3 and 4 of table 2). The performance measures P, and P, however
gradually deteriorate as the noise amplitude W increases (compare columns 4, 5 and 6
of table 2).

In figure 15, the temporal evolution of the mean-perturbation-energy is displayed for
the large amplitude case W = v/10; the uncontrolled simulation is shown in red, the com-
pensated one in black. The oscillations of the energy curves for the nonlinear case (solid
curve) are less pronounced than in the linear case (dashed line). The same observation
can be made for the compensated simulation. It is seen that the mean energy level of the
perturbation is reduced by the linear compensator, but a noticeable loss in performance
is apparent.

As before, the pointwise perturbation mean-kinetic-energy k’/W? gives further insight
into the temporal evolution of the energy as the disturbances advect along the shear
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FI1GURE 16. Pointwise perturbation mean-kinetic-energy P/ W? of simulations with random
forcing for W = 1/10. (a) Uncontrolled DNS. (b) Compensated DNS (case 3).

layer. In figure 16(a) and (b) the pointwise perturbation mean-kinetic-energy from the
nonlinear simulation with random noise is displayed for the case with W = v/10. The
color map has been adjusted to permit direct comparison with the equivalent linear results
given in figure 10; significant differences to the linear case can be observed. Figure 16(a),
illustrating the uncontrolled case, displays saturation effects caused by nonlinearities;
the overall shape of the maximum energy contours are, however, similar to the linear
case — concentrating on the dynamics in the shear layer and the reattachment area.
For the compensated case (figure 16(b)) the energy is maximal in the shear-layer but is,
again, lower than in the uncontrolled case; in contrast, the energy is higher than in the
linear case for z > 10, indicating the appearance of nonlinear structures which are more
difficult to control. We notice that the energy could be less attenuated by control efforts
than in the linear case: in table 2 (column 6), a maximum perturbation mean-kinetic-
energy of 1.96% is observed in the uncontrolled simulation which reduces to 1.34% as the
compensator is switched on. The perturbation mean-kinetic-energy is thus diminished
by a modest factor of 1/0.69 ~ 1.5 (compared to a factor of 1/0.17 ~ 6 for the small
amplitude simulation with W = 0.1, see column 4). As stronger nonlinearities set in, the
linear-based compensator becomes ever less effective.

7. Summary and conclusions

Two-dimensional incompressible flow over a rounded backward-facing step, a canon-
ical configuration showing noise-amplifying behavior, has been controlled by feedback
control strategies. Specifically, the LQG-framework has been employed in conjunction
with POD-based reduced-order models for the plant. Similar techniques have previously
been studied (see Ilak & Rowley 2008; Bagheri & Henningson 2010), but with the main
emphasis on model reduction aspects. Important issues related to the practical imple-
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mentation of feedback control laws for amplifier flows have been left unaddressed, which
motivated this present investigation.

The analysis of the feedback control setup first concentrated on the estimation pro-
cess. A placement of sensors throughout the convectively unstable region of the flow
revealed a distinct advantage of measurement input from the most upstream sensor. It
further showed that the speed of estimation is more important than the accuracy of the
estimation, while keeping in mind that upstream sensor measurements are more easily
corrupted by noise since the signal has not yet been amplified and filtered by the flow.
Low-quality sensors should be placed further downstream where the amplitude of the
detected signal prevails over the added inherent measurement noise; the resulting delay
in estimation, however, will ultimately cause a loss in compensator performance. The
noise-to-signal ratio of the sensor thus plays an important role and has been linked to
the estimation parameter for the computation of the Kalman gain.

Continuing with the best (most upstream) sensor, the performance of the compensated
system has been studied under the idealistic assumptions that the reduced-order model
accurately mimics the plant. The noise-to-signal ratio (or estimation parameter) G/W
and the cost-of-control parameter [ have been varied to cover a range of control scenarios
from the small gain limit (SGL), where the compensator is ineffective, to the large gain
limit (LGL), where the compensator operates at its maximal performance. An excess in
the total energy can be observed when the measurement energy is the control objective;
this phenomenon may be traced back to the blindness of sensor m,, to high frequency (w >
2) optimal responses. This shortcoming can be overcome by basing the cost functional
for the controller design on the total energy (J¢).

A compensator designed with J. has then been applied to the full, linearized Navier-
Stokes equations driven by continuous stochastic forcing. In the case of medium gains,
the compensated system reacted as predicted by the ROM-based model study, and a
substantial reduction in perturbation energy could be accomplished. A detailed, term-
by-term analysis of contributions to the energy budget showed that the control action was
extremely efficient: a very weak user-supplied actuation power generated a substantial
(order one) gain in the kinetic energy flux near the reattachment location. For com-
pensators designed with larger gains, instabilities in the compensated linearized Navier-
Stokes equations arose: even if the compensator is stable for the model it was designed
for, its stability can no longer be implied or assured when applied to a slightly differ-
ent plant. This loss of stability has been formalized and corroborated by a sensitivity
analysis that quantitatively determined the stability margins and established that the
POD model was particularly sensitive to high frequencies (around w & 3 — 6). Hence,
for a compensator to work efficiently with large gains (in order to achieve maximal per-
formance), the reduced order model (upon which the compensator was designed on) is
required to be very precise also in low energetic, high frequencies.

Nonlinear effects have been reintroduced to the closed-loop control problem by apply-
ing the compensator, designed under linear assumptions, to the nonlinear Navier-Stokes
equations and attempting to suppress continuous noise sources of progressively higher
amplitude W. Minor deviations have been detected for small-amplitude noise; in the
large-amplitude case, however, the compensator performance deteriorated due to the
appearance of nonlinearly triggered structures.

It can be concluded from our study that designing closed-loop control strategies for am-
plifier flows is significantly more involved than the equivalent design for oscillator flows.
While in this latter case instabilities are generally narrow-banded in frequency and thus
more easily detectable/controllable, a noise-amplifier produces more broadband signals
and magnifies physical and non-physical perturbations alike. For this latter reason, a
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G G G G ¢ FE
By 0.99 0.60 0.62 0.66 0.74 0.77
B> 0.61 0.34 0.33 0.32 0.30 0.28

TABLE 4. Relative Ha-errors (in %) for the various input-output combinations. The error on
the energy has been evaluated using [fj’::[(XZ;XW)I/2 — (X5QXw) Y22 dw/ fj—;o X5 QX dw] /2.

comprehensive study of the sensitivity of the compensator performance with respect to
various noise sources is imperative for a successful closed-loop control design. Transfer
functions, i.e., frequency-based input-output relations, are particularly helpful in pin-
pointing strong sensitivities, in placing sensors efficiently, and in avoiding undesirable
parameter regimes. It is hoped that the present study has introduced and demonstrated
effective tools that — despite the inherent challenges — aid in the design of effective
closed-loop control strategies for amplifier flows.

Appendix A. Reduced-order model

In view of our control objectives, the reduced-order model should be able to accurately
capture the dynamic response of the output variables (given by sensors C; 234, and the
perturbation energy FE(t)) to forcings by the two input variables (given by B 3). We
choose a model-reduction technique based on standard proper orthogonal decomposition
(POD), which transforms flow-state snapshots, arising from harmonic forcings introduced
via the terms By and Bs, into a finite-dimensional orthogonal basis onto which the full flow
equations are projected. An analysis of the reduced-order model confirmed a satisfactory
balance between accuracy and size. Details of this type of analysis are given in Dergham
et al. (2011) for the same backward-facing step configuration using a single input Bs.

In our case, a reduced-order model based on a Galerkin projection of the full system
onto the first 150 POD modes has been selected owing to its good performance and
comparatively small size. The transfer functions of the full system have been computed
by Fourier-transforming signals from the impulse responses of the linearized DNS. The
errors between the transfer functions of the reduced-order models and the linearized DNS
have been measured using the Ho-norm.

Table 4 presents these errors for different combinations of input triggering and output
sensing. We note that the impulse responses triggered by Bs are more accurately captured
than those triggered by By. All errors are below 1%.

Appendix B. Sensitivity analysis

We denote by A, the largest singular value of R™! where R = iwl — M and M is the
matrix defined in equation (5.4). We furthermore introduce (F,G)T and (X,Y)T as the
principal right and left singular vectors associated with A, which satisfy

ce@)-e @) () o

The sensitivity analysis is formulated as an optimization problem for determining the
minimal stability margin for a specified discrepancy between two transfer functions. We
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begin by posing the following Lagrangian

o Y T XY (AT (RN e (F) (X

L=\, <>~( R v G G A5R G v/l (B2)
Rendering this Lagrangian stationary with respect to the variables (F,G)T, (X,Y)T and
A2 yields the following expressions for the Lagrange multipliers (denoted by 7).

O~ (-2 ©F-r

Setting the first variation of the Lagrangian with respect to the control variable R to zero
results in an expression for the variation of the squared singular value given by

SA2 = —2)\2Re KE) SR (é)} . (B4)

Using equation (5.4), this expression for §A2 may be expressed in terms of variations in
the matrices A, By and C. We obtain

62 = 222 Re(FX*) : 6A + 202 Re(FY*K*) : 6B — 2\2 Re(XG*L) : 6C* (B5)

where : denotes the contraction operator or Frobenius inner product, defined as A : B =
Zij Al‘jBij = trace(A* B)

The constraint of a user-prescribed error v (measured in the Ho-norm) between the
full and reduced transfer function may be approximated in the following manner:

115(A, B2, C) = =7 + Y | C(iw;l — A)"'B — Cliw;| — A)"'B [ Aw;. (B6)
J
b

In the above expression Aw; are quadrature coefficients. In our case, we chose a simple
first-order approximation of the integral with Aw; = 0.02 and integration limits wy, =
—10, Winae = 10. The first variation of this functional reads

Sy = [ 2D Re[;(—iwjl — A*) T CB* (—iw;l — A*) '] Aw; | 1 6A (B7)

J

+ | 2) Re [¢(—iw;l = A*)TIC*] Aw; | 1 6B+ [ 2> Re[¢](iw;l — A)7'B] Aw; | :6C*.

J J

Lastly, we combine the above expressions and consider the following unconstrained
minimization problem

Jun(A, By, C) = —arctan(In(A2) /) + B2 + arctan(In(v) /) (Bg)

with 3 as the penalty coefficient. In our computations, we used a = 10 and 10% < 8 <
101%. Note that the third term in (B8) penalizes the largest singular value v, of S7!
where S = iwl — A. This is simply to avoid convergence of the optimization algorithm
towards solutions where s = iw is an eigenvalue of A, which is an undesirable solution.
With H and Z as the principal right and left singular vectors of S corresponding to v,
and satisfying S*SH = v2H and Z = SH with H*H = 1, we can express the first variation
of ¥2 in the form 612 = 2v2Re(HZ*) : SA.
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Modeles réduits pour la dynamique linéaire
et le contrble en aérodynamique

RESUME : En aérodynamique, les écoulements décollés sont souvent sujets a de fortes
instabilités qui provoquent I'apparition de grosses structures tourbillonnaires. Ces écoulements
caractérisés par des instationnarités a basses fréquences sont couramment observés dans les
applications aéronautiques et entrainent des effets néfastes tels que d'importantes vibrations
des structures ou la génération de bruit. Cette thése a pour objectif de fournir des modeles
d'ordre réduit de tels écoulements aérodynamiques dans le but de concevoir des dispositifs de
contréle optimaux. Un écoulement transitionnel de marche descendante est considéré comme
prototype d'écoulement décollé instable. Dans un premier temps, la dynamique linéaire de
I'écoulement est étudiée a l'aide d'une analyse de stabilité globale. Nous montrons que
I'écoulement amplifie de maniére sélective le bruit amont par l'instabilité de Kelvin-Helmholtz.
Ensuite, nous utilisons des méthodes de projection pour construire des modeles d'ordre réduit
de la dynamique linéaire bidimensionnelle de I'écoulement. Trois approches sont étudiées : (i)
I'utilisation des modes globaux les moins stables, (ii) la Décomposition Orthogonale Propre
(POD) et (iii) la troncature équilibrée. Cette thése introduit une méthode des clichés dans le
domaine fréquentiel pour calculer les modes contr6lables, observables et équilibrés dominants,
ainsi que des techniques pour traiter les systemes fluides de grande taille. Finalement, nous
traitons la question du contrdle en boucle fermée de I'écoulement. Une réduction conséquente
des perturbations est obtenue en utilisant une commande Linéaire Quadratique Gaussienne
congue a partir d'un modéle POD.

Mots clés : Instabilités globales, Ecoulements décollés, Réduction de modéle, Décomposition
Orthogonale Propre, Troncature équilibrée, Controle des écoulements.

Reduced-order models for linear dynamics
and control in aerodynamics

ABSTRACT : In aerodynamics, separated flows are often subject to strong instabilities which
result in the shedding of large-scale vortices. Such low-frequency unsteadiness are commonly
encountered in aeronautical applications and lead to detrimental effects such as severe
structural vibrations or the generation of extensive noise pollution. This thesis aims at providing
low-order models of such aerodynamic flows in order to design optimal control devices. The
transitional backward-facing step flow is considered as a prototype of unstable separated flow.
Firstly, the linear flow dynamics are examined using a global stability analysis. The flow is found
to selectively amplify the upstream noise through the Kelvin-Helmholtz instability. Next, we use
projection methods to construct low-order models of the linear two-dimensional dynamics of the
flow. Three approaches are investigated: (i) the use of the least damped global modes, (ii) the
Proper Orthogonal Decomposition (POD) and (iii) the balanced truncation. This thesis
introduces a snapshot method in the frequency domain to compute the leading controllable,
observable and balanced modes, as well as techniques to handle large fluid systems. Lastly,
the question of the closed-loop control of the flow is addressed. An effective reduction of the
perturbations is obtained by using a Linear Quadratic Gaussian compensator designed from a
POD model.

Keywords :  Global instability, Separated flows, Model reduction, Proper Orthogonal
Decomposition, Balanced truncation, Flow control.
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