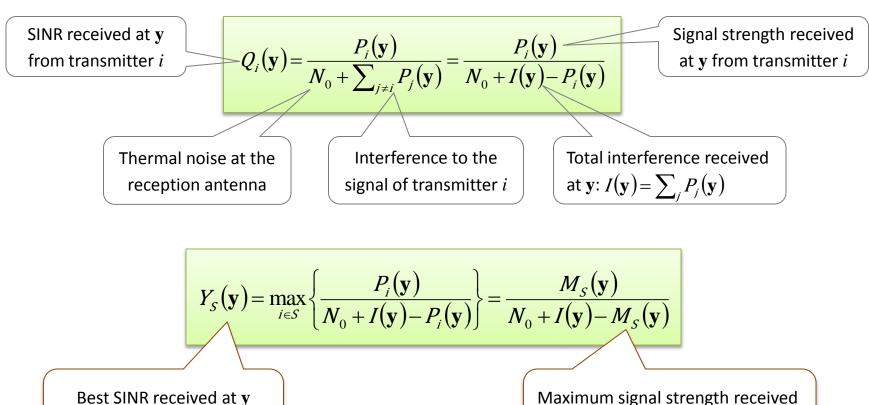

Wireless Link Quality Modelling and Mobility Management Optimisation for Cellular Networks

PhD Thesis Defence

Van Minh Nguyen

Paris, June 20th 2011


Outline of Contributions

- 1. Wireless Link and Best Signal Quality Modelling
 - 1. Stochastic Geometry Modelling of Wireless Links (IEEE WiOPT 2010)
 - 2. Heavy-Tail Asymptotics of Wireless Links (EURASIP JWCN 2010)
- 2. Level Crossing Analysis of Time-varying Wireless Links
 - 1. Asymptotic Excursions above a Small Level (To be published)
 - 2. Crossings of Successive High Levels (To be published)
- 3. Applications to Mobility Management in Cellular Networks
 - 1. Analytical Model of Handover Measurement with Application to LTE (IEEE ICC 2011)
 - 2. Autonomous Cell Scanning for Small Cell Networks (EURASIP JWCN 2010)
 - 3. Self-optimisation of Neighbour Cell Lists in Macrocellular Networks (IEEE PIMRC'10)

- Presentation of Approach
- Network Assumptions
- Stochastic Geometry Modelling
- Heavy-Tail Asymptotics Modelling

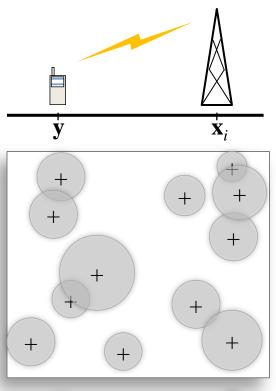
Approach

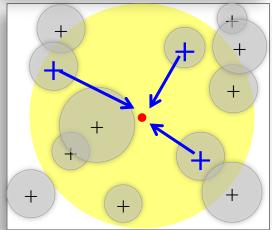
from set of transmitters S

Maximum signal strength received at **y** from set *S*: $M_{S}(\mathbf{y}) = \max_{j \in S} P_{j}(\mathbf{y})$

Joint distribution of the total interference I

and the maximum signal strength M_s


Derive the distribution of the best signal quality Y_S


Assumptions

Basic wireless link

$$P_i(\mathbf{y}) = \frac{P_{tx} \cdot Z_i}{l(|\mathbf{y} - \mathbf{x}_i|)} \triangleq \frac{m_i}{l(|\mathbf{y} - \mathbf{x}_i|)}$$

- $\mathbf{y} \in \mathbf{R}^2$ –location of receiver, $\mathbf{x}_i \in \mathbf{R}^2$ –location of transmitter *i*,
- P_{tx} -node's transmission power, $\{Z_i\}$ -fading,
- $\{m_i\}$ -virtual Tx power assumed i.i.d. of df F_m , $m := m_1$
- $1/l(r) = r^{-\beta}$ for $r \in \mathbf{R}_+$ and $\beta > 2$ –pathloss function
- Interference field as a shot noise
 - $\{\mathbf{x}_i\}$: Poisson point process with intensity λ on \mathbf{R}^2
 - $\widetilde{\Phi} = \{(\mathbf{x}_i, m_i)\}$: independently marked Poisson p.p.
 - $\circ \ \ L({\bf x},{\bf y},m)=m/l(|{\bf y}-{\bf x}|)$: non-negative real resp. function
 - $I(\mathbf{y}) = \sum_{\mathbf{x}_i \in \mathbb{R}^2} P_i(\mathbf{y}) = \sum_{(\mathbf{x}_i, m_i) \in \widetilde{\Phi}} L(\mathbf{y}, \mathbf{x}_i, m_i)$: SN interference
- Set of observed nodes
 - $B \subset \mathbf{R}^2$: disk of radius R_B centred at the receiver, $\mathbf{y} = \mathbf{0}$
 - *S* = set of nodes uniformly selected from B with prob $\rho \in [0, 1]$

Stochastic Geometry Modelling

Primary Result

Joint distribution of I and M_S

For $u \geq 0$ and $z \in \mathbb{C}$ with a non-negative real part, define:

 $\mathcal{L}_{(I,M_S \le u)}(z) \triangleq \mathbf{E} \{ \mathbf{1}(M_S \le u) \exp(-zI) \}.$

Then

$$\mathcal{L}_{(I,M_S \le u)}(z) = \exp\left(-\lambda \int_{\mathbb{R}^2} \left(1 - \mathcal{L}_m(\frac{z}{l(|\mathbf{y} - \mathbf{x}|)})\right) d\mathbf{x} - \rho \lambda \int_B \mathbf{E} \left\{\mathbf{1}\left(\frac{m}{l(|\mathbf{y} - \mathbf{x}|)} > u\right) \exp\left(\frac{-zm}{l(|\mathbf{y} - \mathbf{x}|)}\right) \right\} d\mathbf{x}\right).$$

where $\mathcal{L}_m(z) \triangleq \mathbf{E}\{\exp(-zm)\}\$ which is the Laplace transform of $m = m_1$.

Observations

$$F_{M_S}(u) = \mathcal{L}_{(I,M_S \le u)}(0)$$

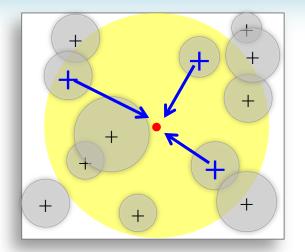
Distribution of the Maximum Signal Strength M_S

$$F_{M_S}(u) = \exp\left(-\pi\rho\lambda R_B^2\left(1 - F_p(uR_B^\beta)\right) - \pi\rho\lambda \mathbf{E}\{\mathbf{1}(p \le uR_B^\beta)p^\alpha\}u^{-\alpha}\right)$$

where $\alpha = 2/\beta$. In particular, if $B = \mathbb{R}^2$ then:

$$F_{M_S}(u) = \exp\left(-\pi\rho\lambda\mathbf{E}\{p^{\alpha}\}u^{-\alpha}\right)$$

which is a Fréchet dist. with shape α and scale $(\pi \rho \lambda \mathbf{E}\{p^{\alpha}\})^{1/\alpha}$.

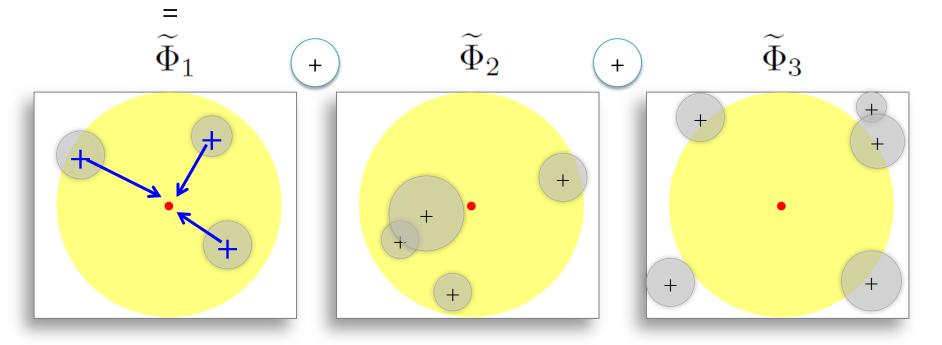

$$\phi_I(w) = \mathcal{L}_{(I,M_S \le +\infty)}(-jw)$$

Characteristic Function of the Total Interference I

Denote
$$\phi_I(w) = \mathbf{E}\{\exp(jwI)\}\$$
 for $w \in \mathbb{R}$. Then

$$\phi_I(w) = \exp\left(-\delta |w|^{\alpha} \left(1 - j\operatorname{sign}(w)\tan(\frac{\pi\alpha}{2})\right)\right)$$

which is the cf of a skewed α -stable random variable.


 $\widetilde{\Phi}$

Skeleton of solution finding

for $\mathcal{L}_{(I,M_S \leq u)}(z) \triangleq \mathbf{E} \{ \mathbf{1}(M_S \leq u) \exp(-zI) \}$

- Step 1: decompose $\widetilde{\Phi}$ into three independent independently marked Poisson p.p.
- Step 2: apply the Laplace transform of each shot noise by Prop 2.2.4 in [Baccelli2009]

F. Baccelli and B. Blaszczyszyn. "Stochastic Geometry and Wireless Networks, Volume I – Theory". *Foundations and Trends in Networking*, vol. 3(3-4), pp.249-449, 2009.

Tail Distribution of the Best Signal Quality

For
$$w \in \mathbb{R}$$
 let $\phi_{(I,M_S \leq u)}(w) = \mathcal{L}_{(I,M_S \leq u)}(-jw)$.
If $0 < \mathbf{E}\{m^{\alpha}\} < \infty$, and if F_m admits a continuous density f_m :
 $\overline{F}_{Y_S}(\gamma) = \frac{1}{2\pi} \int_{u=\gamma}^{+\infty} \int_{-\infty}^{+\infty} \phi_{(I,M_S \leq u)}(w) g(w,u) dw du, \forall \gamma > 0$,

where
$$g(w, u) = \exp(-jwu) - (1 + \gamma^{-1}) \exp(jw(1 - \frac{1+\gamma}{\gamma}u))$$
. And
 $\overline{F}_{Y_S}(0) = 1 - \exp(-\rho\lambda(1 - F_m(0))|B|)$.

20 June 2011

Network Assumptions

- Nodes are spatially distributed according to a Poisson point process
- Virtual transmission powers $\{m_i\}$ are i.i.d. with general distribution F_m
- Unbounded power-law pathloss model, $1/l(r) = r^{-\beta}$ for $r \in \mathbf{R}_+$ and $\beta > 2$

Main Results

- $\circ\,$ Joint distribution of I and M_S
- Necessary conditions for the integrability & existence of the joint density
- Tail distribution of the best signal quality

Important Observations

- Total interference is a skewed alpha-stable distribution
- Global maximum signal strength is a Fréchet distribution
- Unbounded power-law pathloss introduces *very heavy-tailed* behaviours of *I* and *M_S*

independently of the type of fading

Heavy-Tail Asymptotics

Overview

Motivation

• Impacts of the pathloss singularity on the tail behaviour of wireless links

Focus

- Unbounded pathloss: $1/l(r) = (\max\{r, R_{\min}\})^{-\beta}$ for $r \in \mathbf{R}_+$, $\beta > 2$, and $R_{\min} = 0$
- Bounded pathloss: $1/l(r) = (\max\{r, R_{\min}\})^{-\beta}$ for $r \in \mathbf{R}_+$, $\beta > 2$, and $R_{\min} > 0$

• Fading $\{Z_i\}$ are i.i.d. lognormal with parameters $(0, \sigma_Z)$ with $0 < \sigma_Z < \infty$

- Network area *B* is bounded with radius $R_B < \infty$.
- (note: with Poisson p.p. assumption of nodes spatial distribution)

Roadmap

- Study the tail equivalent distribution of the signal strength P_i
- Asymptotic joint dist of the total interference & max signal strength
- Tail distribution of the best signal quality

Tail Behaviour of Signal Strength

Theorem

Denote by \overline{F}_P the tail distribution of the signal strength P_i . (a) Under unbounded pathloss, \overline{F}_P is regularly varying: $\overline{F}_P(x) \sim a^{\alpha} e^{\nu} x^{-\alpha}$, as $x \to \infty$, with $\alpha = 2/\beta$. (b) Under bounded pathloss, \overline{F}_P is rapidly varying: $\overline{F}_P(x) \sim \text{const} \cdot \frac{\overline{K}_2(x)}{\log x - \mu_2}$, as $x \to \infty$,

with $\overline{K}_2(x)$ the tail of a lognormal distribution.

Interpretation

- The choice of pathloss model has decisive influence on the tail of wireless links
- Decaying power-law path loss is the dominant component
- Under bounded pathloss, the tail of P_i is determined by the lognormal fading

Asymptotic Distribution of Max Signal Strength

Theorem

Let $M_n = \max_{i=1,\mathbf{x}_i \in B}^n P_i$ be the maximum signal strength.

(a) Under unbounded pathloss, $\exists c_n > 0, d_n \in \mathbb{R}$ such that

$$c_n^{-1}(M_n - d_n) \xrightarrow{d} \Upsilon_{\alpha}(x), \quad as \ n \to \infty,$$

where Υ_{α} is the std. Fréchet dist. of parameter $\alpha = 2/\beta$. (b) Under **bounded** pathloss, $\exists c_n > 0, d_n \in \mathbb{R}$ such that

$$c_n^{-1}(M_n - d_n) \stackrel{d}{\to} \Lambda, \quad as \ n \to \infty,$$

where Λ is the standard Gumbel distribution.

Interpretation

• Network densification scenario: $n \rightarrow \infty$ within a bounded network area *B*

- Unbounded pathloss: *M_n* is asymptotically Fréchet distribution under both network extension and network densification
- Bounded pathloss: M_n is asymp. Gumbel dist. under network densification

Asymptotic Joint Distribution

Asymptotic Independence

Let $I_n = \sum_{i=1,\mathbf{x}_i \in B}^n P_i$ be the interference received from n nodes in B. Under the bounded pathloss model, there exists constants $a_n > 0$ and $b_n \in \mathbb{R}$, $c_n > 0$ and $d_n \in \mathbb{R}$ such that

$$\left(\frac{I_n - b_n}{a_n}, \frac{M_n - d_n}{c_n}\right) \stackrel{d}{\to} (\Phi, \Lambda), \quad as \ n \to \infty,$$

and where the coordinates Φ , std. Gaussian dist., and Λ are ind.

Joint Density

Under bounded pathloss, for moderate or large n, (M_n, I_n) , and (M_n, I) admit the following approximations

$$\begin{array}{lll} f_{(M_n,I_n)}(u,v) &\approx & f_{M_n}(u) \times f_{I_n}(v), \\ f_{(M_n,I)}(u,v) &\approx & f_{M_n}(u) \times f_I(v), \end{array}$$

where f_{M_n} , f_{I_n} , and f_I are respectively the pdf of M_n , I_n , and I.

Tail Distribution of the Best Signal Quality

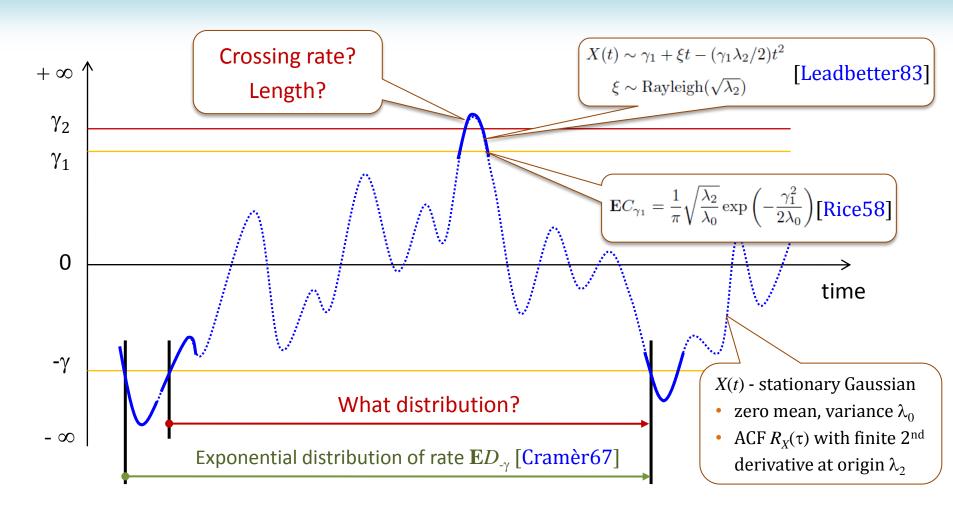
Let $Y_n = \max_{i=1,\mathbf{x}_i \in B}^n Q_i$ be the best signal quality received from n nodes uniformly selected from B. Assume the bounded pathloss model and that $P_{tx}R_{\min}^{-\beta}$ is large. Then the tail dist of Y_n admits the following approx: $\overline{F}_{Y_n}(\gamma) \approx \int_{\gamma}^{\infty} \left\{ f_{M_n}(u) \int_{0}^{\infty} \frac{2}{\pi w} e^{-\delta w^{\alpha}} \sin\left(w \frac{u-\gamma}{2\gamma}\right) \right\}$ $\times \cos\left(wu + w\frac{u-\gamma}{2\gamma} - \delta w^{\alpha} \tan\frac{\pi\alpha}{2}\right) \mathrm{d}w \mathrm{d}u.$ 10^{0} **Evaluation of** $E{\xi_n} / E{\xi_{250}}$ Shannon capacity using tail distribution of the best Numerical signal quality Simulation 100 150 50 200 250 0 n [number cells scanned]

Focus

- Impacts of the singularity of power-law pathloss on wireless links
- Network densification scenario: $n \rightarrow \infty$ within a bounded network area B
- Fading $\{Z_i\}$ are i.i.d. lognormal with parameters $(0, \sigma_Z)$ with $0 < \sigma_Z < \infty$

Unbounded pathloss

- Very heavy-tailed behaviours of interference and maximum signal strength
- Interference and maximum signal strength behave *dependently* due the common dominant component corresponding to the pathloss singularity


Bounded pathloss

- Asymptotic ind. between the interference and the max signal strength
- Approximation of the tail distribution of the best signal quality

- Excursions Above a Low Level
- Crossings of Successive High Levels

LEVEL CROSSING PROPERTIES OF A STATIONARY GAUSSIAN PROCESS

[Rice58] S. O. Rice. "Distribution of the duration of fades in radio transmission: Gaussian noise model". *Bell Syst. Tech. J.*, 37(3):581-635, 1958

[Leadbetter83] M. R. Leadbetter, G. Lindgren, and H. Rootzen. *Extremes and Related Properties of Random Sequences and Processes*. Springer Verlag. 1983

[Cramèr67] H. Cramèr and M. R. Leadbetter. *Stationary and related stochastic processes: Sample function properties and their applications,* volume 7. John Wiley and Sons, Inc, 1967.

Main Result (1/2)

Excursion Above a Very Low Level

Assume that X(t) admits an autocorrelation function $R_X(\tau)$ satisfying:

$$R_X(\tau) = 1 - \frac{\lambda_2}{2!}\tau^2 + \frac{\lambda_4}{4!}\tau^4 + o(\tau^4)$$

[Cramèr67]: for the exponential dist of time between two successive down-crossings

with finite λ_2 and λ_4 , as $\tau \to 0$, and satisfying

$$R_X(\tau) = O(\tau^{-a}) \text{ for some } a > 0 \text{ as } \tau \to \infty$$

Then the length τ_u of an up-excursion of X(t) above a very small level $-\gamma \to -\infty$ is asymptotically an exponential dist of rate $\mu = \mathbf{E}U_{-\gamma}$, i.e.

 $\mathbf{P}(\tau_u \le \tau) = 1 - e^{-\mu\tau}, \quad as \quad -\gamma \to -\infty.$ By the memorylessness of exponential dist

Observation

• $\mathbf{E}U_{-\gamma} \to 0$ as $-\gamma \to -\infty$: $\mathbf{P}(\tau_u \le \tau) \approx 0 \ \forall \tau < \infty$, i.e. X(t) above a low level most of the time

- Thus, for an excursion above a *low* level, we only know the distribution of length
- By contrast, an excursion above a *high* level is short: length & trajectory by [Leadbetter83]

Main Result (2/2)

[Leadbetter83]: for the asymp. parabola trajectory of up-excursion above a high lelvel

Crossings of Successive High Levels

Assume that $R_X(\tau)$ has a finite second derivative at the origin λ_2 , and that

 $R_X(\tau) = O(\tau^{-a})$ for some a > 0 as $\tau \to \infty$.

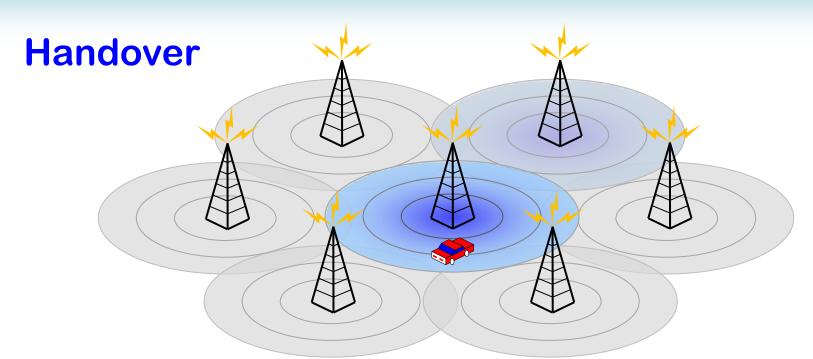
Given that X(t) has an up-excursion above level γ_1 , then

1. The mean number of up-crossings of X(t) of level $\gamma_2 \geq \gamma_1$ is

$$\mathbf{E}U_{\gamma_2|\gamma_1} = \exp(-\gamma_1(\gamma_2 - \gamma_1)),$$

2. The length of an up-excursion of X(t) of level $\gamma_2 \geq \gamma_1$ is

$$\mathbf{P}(T_2 > \tau \mid X(t) \text{ above } \gamma_1) = \exp(-V\tau^2)\exp(-\gamma_1(\gamma_2 - \gamma_1))$$


with $V = \frac{\gamma_1^2 \lambda_2}{8}$ for $\tau \ge 0$, and

$$\mathbf{P}(T_2 = 0 \mid X(t) \text{ above } \gamma_1) = 1 - \exp(-\gamma_1(\gamma_2 - \gamma_1))$$

as $\gamma_1 \to +\infty$

- HO Measurement Procedure
- Skeleton of Analytical Solution
- Application to Long Term Evolution

Our work

Handover Measurement

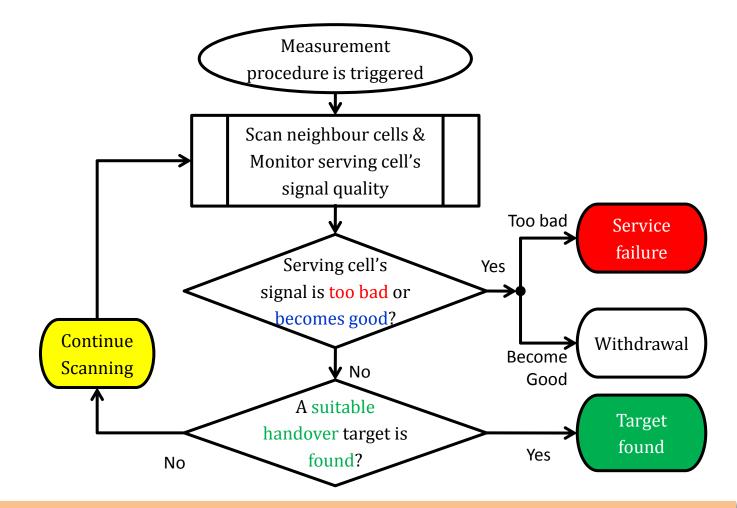
- Mobile measures neighbouring cells and reports to the network
- Purpose: to find a suitable HO target when the serving cell's signal deteriorates
- Literature: simulation and parameterspecific approaches, poor in analytical

Handover Decision-Execution

- Network decides and executes the connection switching
- Purpose: to perform optimal and reliable connection switching
- Literature: very rich including optimal control, signal prediction, protocol design

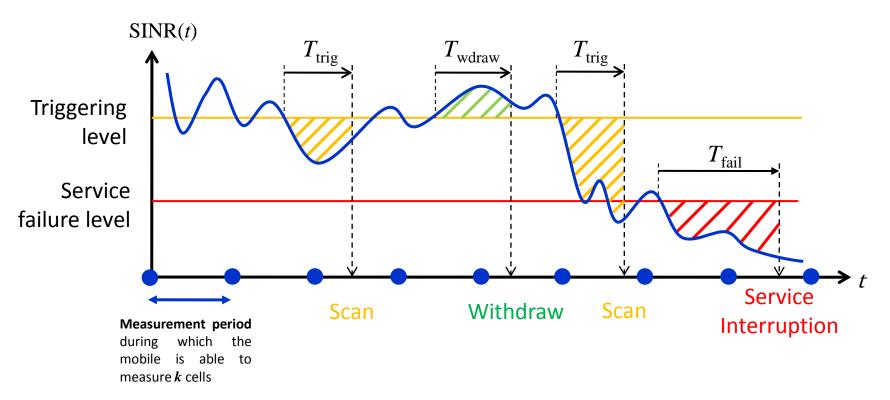
Why is Analytical Model for HO Measurement?

- Strong impacts of HO Measurement on
 - The quality of the handover target
 - The user's experience: service interruptions, throughput degradation
- Complex operation of HO Measurement due to
 - Specific PHY layer procedures: e.g., frame structure, synchronisation,
 - The measurement capability of mobile terminal
 - Combining effect of RRC parameters, e.g. > 10 Triggering Events in WDCMA, 7 in LTE
 - Time-varying and spatial-varying factors, e.g. signal quality, user's mobility
 - The interference nature of a multiple-cell system


generalised analytical model of handover measurement

is helpful to understand

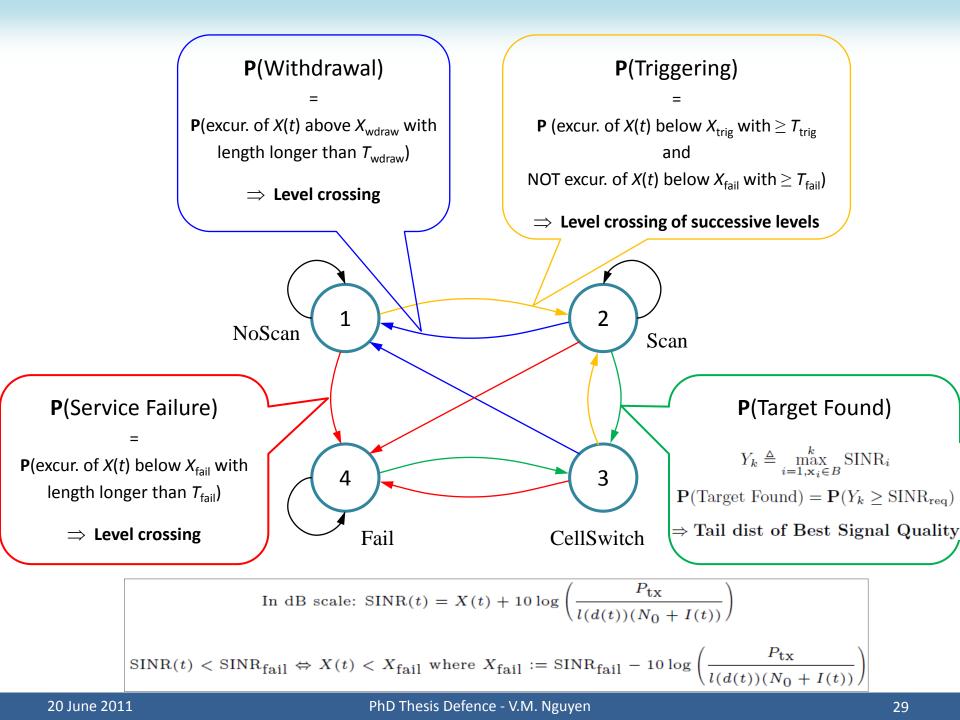
unified impacts of controlling params + user's mobility + system capabilities

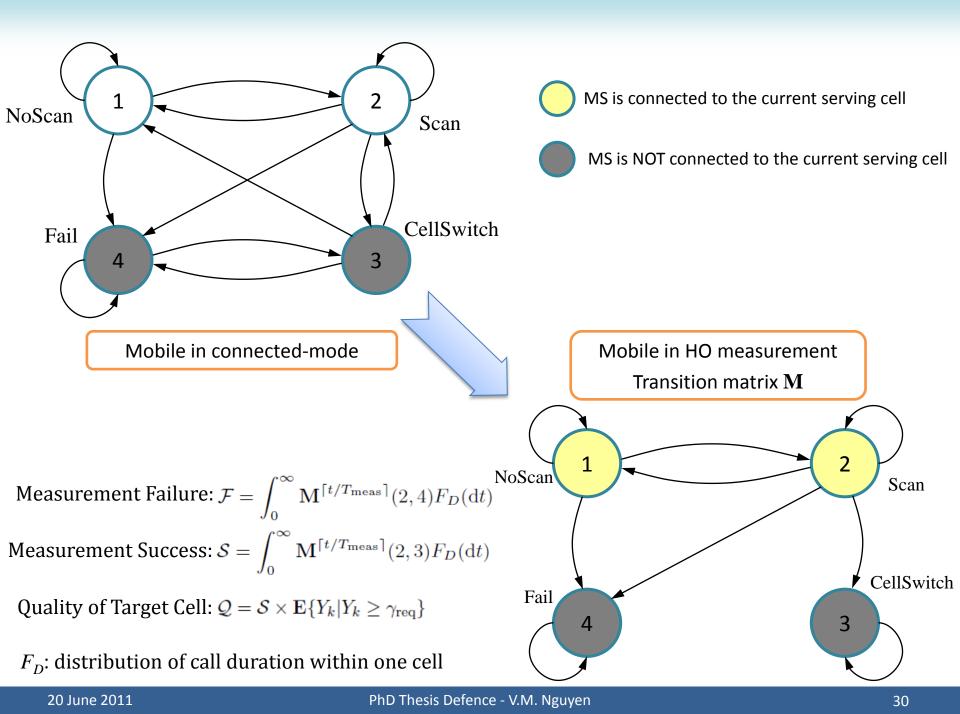

on the system performance

Generic HO Measurement Procedure

A primary objective of the network configuration is to minimise the probability of service failure due to the handover measurement

Basic Probabilistic Events



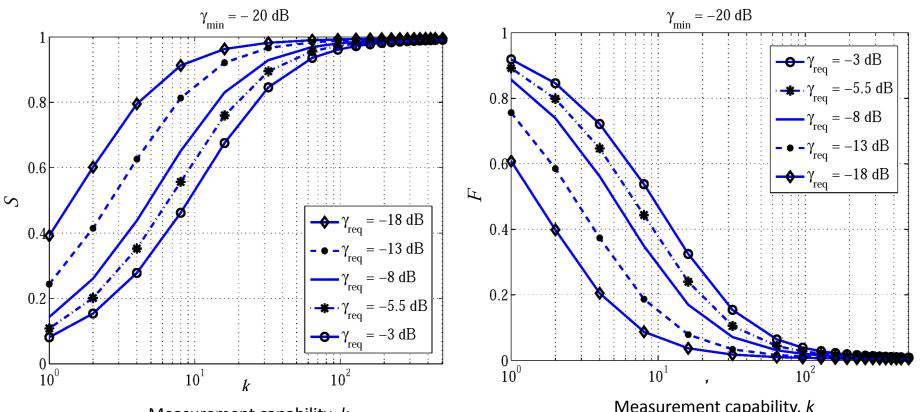

Service Failure \equiv SINR(t) staying below SINR_{fail} during at least T_{fail}

Triggering \equiv SINR(t) staying below SINR_{trig} during at least T_{trig} and Not Failure

Withdrawal \equiv SINR(t) staying below SINR_{wdraw} during at least T_{wdraw}

Target Found \equiv Best SINR received from measured cells \geq SINR_{req}

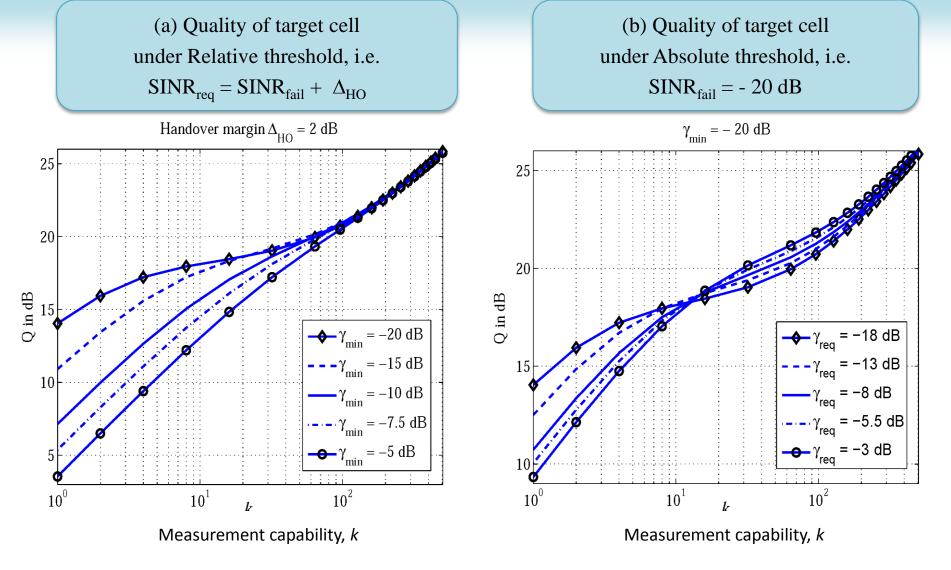
LTE Handover Measurement


Intra-freq Measurement

- Intra-frequency measurement is predominant due to frequency-reuse 1 of LTE
- UE measures intra-frequency cells continuously during RRC_CONNECTED mode
 - $\mathbf{P}(\text{Scanning Triggering}) = 1$
 - $\mathbf{P}(\text{Withdrawal}) = 0$
- UE measures intra-frequency cells autonomously using all 504 physical cell Ids (PCIs)
 - Unlimited candidate set of target cell

Evaluation parameters		
Parameter		Assumption
Scenario	Environment Path loss $(d \text{ in } m)$ User's velocity	Urban macro cell $L(d) = 15.3 + 37.6 \log_{10} d$ $v = 10 \text{ m/s}$
BS	Transmission power Antenna pattern Cell radius	$P_{\rm BS} = 43 \text{ dBm}$ Omnidirectional R = 700 m
Shadowing	Standard deviation Decorr. distance	$\sigma_Z = 10 \text{ dB}$ $d_c = 50 \text{ m}$
Noise	Noise density UE noise figure	= -174 dBm/Hz $N_{\rm F} = 9 \text{ dB}$
Service	Min outage duration Min allowable level	$\tau_{\rm min} = 200 \text{ ms}$ $\gamma_{\rm min} = -20 \text{ to } -5 \text{ dB}$
Measurement	Measurement period Handover margin Required threshold Triggering level Withdrawal level	$T_{\text{meas}} = 200 \text{ ms}$ $\Delta_{\text{HO}} = 2 \text{ dB}$ $\gamma_{\text{req}} = \gamma_{\text{min}} + \Delta_{\text{HO}}$ $\gamma_{\text{t}} = +\infty$ $\gamma_{\text{w}} = +\infty$

(a) HO measurement SUCCESS probability


(b) HO measurement FAILURE probability

Measurement capability, k

Measurement capability, k

- Increasing the measurement capability more than about 10² improves the performance very marginally
- Regarding FAILURE probability plot: current LTE requirement for measurement capability of k = 8 seems insufficient for reliable HO performance

- *Relative* threshold: robust service (i.e. low SINR_{fail} = γ_{min}), enhances target cell's quality
- Absolute threshold: crossing point for k in-between 10 and 16. Set low SINR_{req} for small k, and set high SINR_{req} for big k in order to achieve greater performance

Analytical model

- Characterise HO measurement procedure as a Markov chain by determining key events associated with a discrete-time model
- Formulate and derive key probabilistic events using the developed results on the best signal quality and on level crossings

LTE intra-frequency measurement

- High meas. capability enhances the mobility management performance
- Current requirement of 8 intra-freq cells / 200ms seems insufficient
- Measurement capability higher than 10² cells / 200ms
 - *Marginal* improvement in the HO measurement performance
 - Significant enhancement of the quality of target cell
- Future applications to Inter-freq and Inter-RAT measurements

Other applications

- Autonomous scanning for small cell networks
- Self-optimisation of neighbour cell lists

Conclusion

- Distribution of the Best Signal Quality
 - Method: by means of the joint distribution of interference and max signal strength
 - Stochastic geometry model: exact expression of the tail distribution
 - Heavy-tail asymptotics: an approximation of the tail dsitribution

Level crossing of a stationary Gaussian process

- Length of an excursion above a very low level is exponentially distributed
- Mean number of crossings, length of an excursion of crossings of two successive levels

Mobility management

- Focus on handover measurement function
- Analytical model using developed results on best signal quality and level crossings
- Application to LTE Intra-frequency measurement

BACKUP

Skeleton of solution finding (cont'd)

$$\begin{split} \mathbf{E}\{\mathbf{1}(M_{S} \leq u) \exp(-zI)\} \\ &= \\ \mathbf{E}\{\mathbf{1}(M_{S} \leq u) \exp(-z\sum_{i} P_{i}(\mathbf{y}))\} \\ &= \\ \mathbf{E}\{\mathbf{1}(M_{S} \leq u) \exp(-z\sum_{i} P_{i}(\mathbf{y}))\} \\ &= \\ \mathbf{E}\{\exp\left(\sum_{i \in S} (\log \mathbf{1}(P_{i}(\mathbf{y}) \leq u) - zP_{i}(\mathbf{y})) - z\sum_{i \notin S} P_{i}(\mathbf{y}))\} \\ &= \\ \mathbf{E}\{\exp\left(\sum_{i \in S} (\log \mathbf{1}(P_{i}(\mathbf{y}) \leq u) - zP_{i}(\mathbf{y})) - z\sum_{i \notin S} P_{i}(\mathbf{y}))\} \\ &= \\ \mathbf{E}\{\exp\left(\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{1}} \log \mathbf{1}(P_{i}(\mathbf{y}) \leq u) - zP_{i}(\mathbf{y})\right)\} \\ &= \\ \mathbf{E}\{\exp\left(\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{1}} \log \mathbf{1}(P_{i}(\mathbf{y}) \leq u) - zP_{i}(\mathbf{y})\right)\} \\ &= \\ \mathbf{E}\{\exp\left(\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{1}} \log \mathbf{1}(P_{i}(\mathbf{y}) \leq u) - zP_{i}(\mathbf{y})\right)\} \\ &= \\ \mathbf{E}\{\exp\left(-z\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{2}} P_{i}(\mathbf{y})\right)\} \\ &= \\ \mathbf{E}\{\exp\left(-z\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{2}} P_{i}(\mathbf{y})\right)\} \\ &= \\ \mathbf{E}\{\exp\left(-z\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{2}} P_{i}(\mathbf{y})\right)\} \\ &= \\ \mathbf{E}\{\exp\left(-z\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{3}} P_{i}(\mathbf{y})\right)\} \\ \\ &= \\ \mathbf{E}\{\exp\left(-z\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{3}} P_{i}(\mathbf{y})\right)\} \\ &= \\ \mathbf{E}\{\exp\left(-z\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{3}} P_{i}(\mathbf{y})\right)\} \\ \\ &= \\ \mathbf{E}\{\exp\left(-z\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{3}} P_{i}(\mathbf{y})\right)\} \\ \\ \\ &= \\ \mathbf{E}\{\exp\left(-z\sum_{(\mathbf{x}_{i}, p_{i}) \in \tilde{\Phi}_{3}} P_{i}(\mathbf{y})\right)\} \\ \\ \\ \\ &= \\ \mathbf{$$

Self-optimisation of Neighbour Cell Lists (IEEE PIMRC 2010)

- Challenge: Manual configuration of NCLs is a big every-day operator's concern
- Solution: Propose measurement-based auto-configuration & self-optimisation
- Conclusion: Attain 99% of scanning success without incurring signalling overhead
- Tools: self-organisation paradigm

Autonomous Scanning for Small Cell Networks (EURASIP JWCN 2010)

- Challenge: High-density and randomness of small cell networks require for new logic in the implementation of standardised mobility management mechanism
- Solution: Propose and optimise autonomous scanning for max data throughput
- Conclusion: Autonomously scan 30 cells is effective for a common network setting
- Tools: best signal quality for network densification scenario
- Analytical Model of Handover Measurement (IEEE ICC 2011)
 - Challenge: HO Measurement has strong impact on the whole system performance, its operation is complex while its state-of-the-art is weak
 - Solution: Generalised analytical model, then investigation of LTE HO measurement
 - **Conclusion**: Current LTE UE capability seems insufficient for reliable HO performance
 - Tools: best signal quality for network extension & densification, level crossings

Service Failure

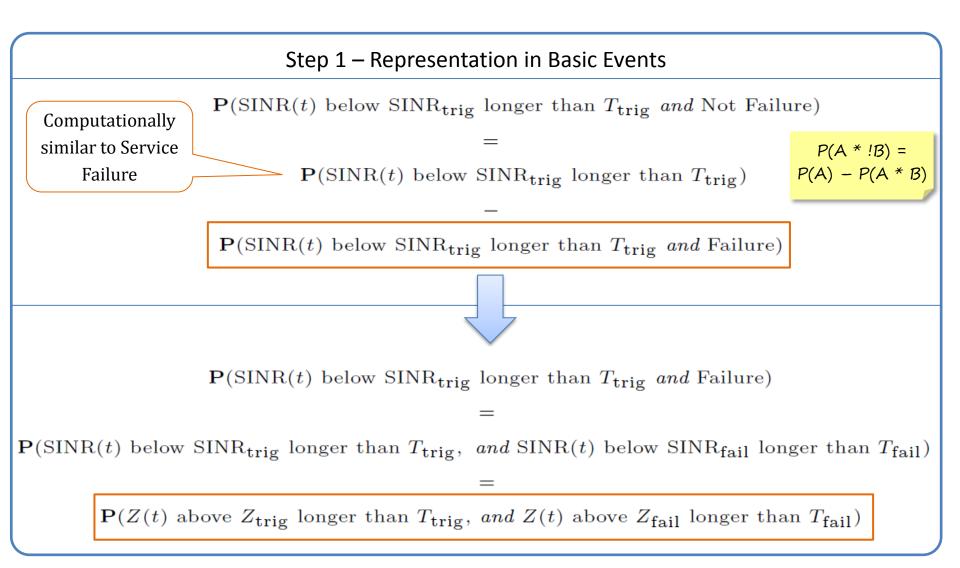
Formulation

$$SINR = Z + 10 \log \left(\frac{P_{tx}}{l(d)(1+I)}\right)$$

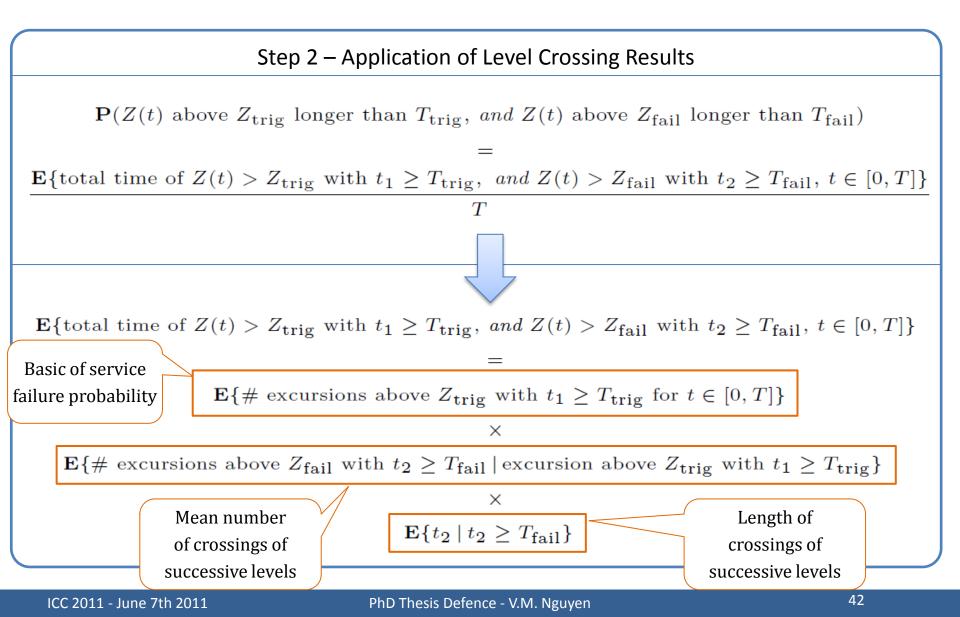
 $\operatorname{SINR}(t) < \operatorname{SINR}_{\operatorname{fail}} \Leftrightarrow Z(t) > Z_{\operatorname{fail}} \text{ where } Z_{\operatorname{fail}} := 10 \log \left(\frac{P_{\operatorname{tx}}}{l(d)(1+I)} \right) - \operatorname{SINR}_{\operatorname{fail}}$

Service Failure \equiv Excursion of Z(t) above Z_{fail} with length longer than T_{fail}

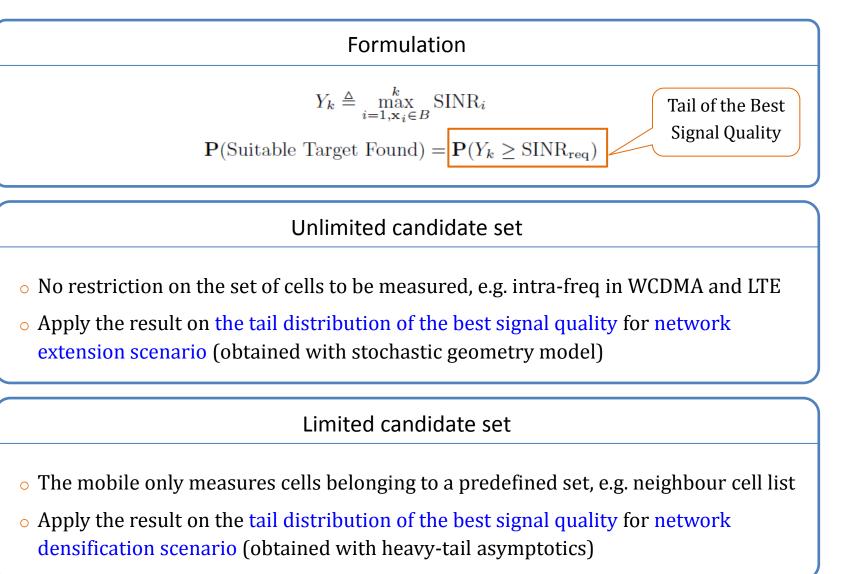
Solution

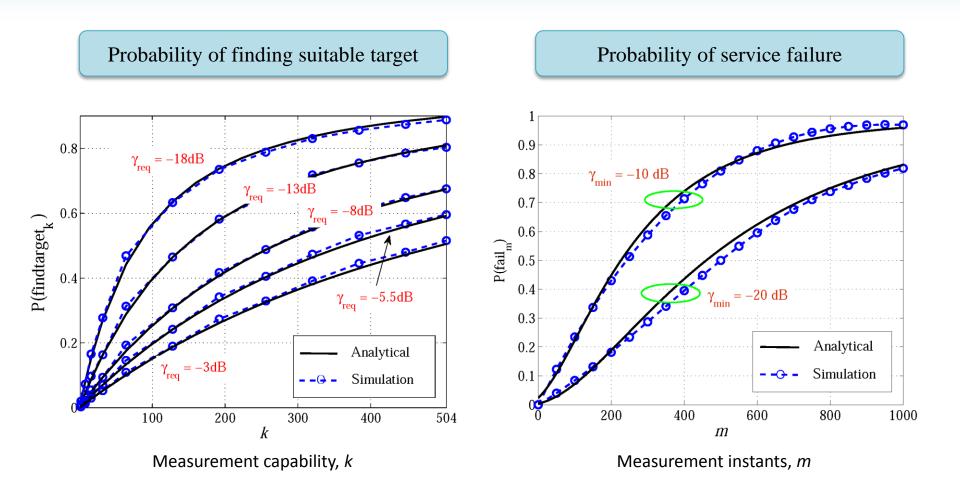

• [Mandayam98]: result for the case of constant Z_{fail} assuming constant interference I

• We generalised the result for the case of random Z_{fail} taking into account random I


This solution is similarly applied for the probability of scanning withdrawal

N. Mandayam, P.-C. Chen, and J. Holtzman. "Minimum Duration Outage for CDMA Cellular Systems: A Level Crossing Analysis", *Wireless Pers. Commun., Springer Netherlands*, **1998**, vol.7, pp. 135-146


Scanning Triggering (1/2)



Scanning Triggering (2/2)

Suitable Target Found

- Analytical results agree with simulation
- High *measurement capability* increases the probability of finding a suitable target
- Robust service, i.e. low SINR_{fail} (= γ_{min}), reduces the service failure probability

Bibliography

Articles

↔ V. M. Nguyen, F. Baccelli, L. Thomas, and C. S. Chen.

Best signal quality in cellular networks: asymptotic properties and applications to mobility management in small cell networks.

EURASIP J. Wireless Commun. Netw. (JWCN), spec. issue on femtocell networks, pp. 1-14, Mar. 2010.

✤ V. M. Nguyen, C. S. Chen, and L. Thomas.

Handover measurement in mobile cellular networks: analysis and applications to LTE'. In *Proceedings of IEEE International Conference on Communications* (ICC) 2011. Japan, June 2011.

✤ V. M. Nguyen and F. Baccelli.

A stochastic geometry model for the best signal quality in a wireless network. Proceeding of IEEE International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOPT) 2010, pp. 465-471. France, June 2010

V. M. Nguyen and H. Claussen.

Efficient self-optimization of neighbour cell lists in macrocellular networks. *Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications* (**PIMRC**) 2010, pp. 1921-1926. Turkey, Sept. 2010.

✤ V. M. Nguyen and L. Thomas.

Efficient dynamic multi-step paging for cellular wireless networks. Bell Labs Tech. J., special issue on Core and Wireless Networks, vol.14(2), pp. 203-221. Aug. 2009.

Articles (cont'd)

✤ V. M. Nguyen.

Extreme value modeling of the best signal quality and applications for small cell networks. Joint workshop of Bell Labs, Fraunhofer HHI, and Deutsche Telekom Labs on The Future of Communications: Science, Technologies, and Services. Berlin, June 2010.

✤ V. M. Nguyen.

Some properties of level crossings of a stationary process and applications. In preparation.

V. M. Nguyen, C. S. Chen, and L. Thomas.

A unified analytical model of handover measurement for mobile cellular networking.

In preparation for IEEE /ACM Trans. Netw.

Standard Constributions

- Alcatel-Lucent/V. M. Nguyen.
 Identifying coverage islands.
 3GPP LTE Standard Contribution. TSG-RAN WG3\#66, R3-092949. Nov. 2009.
- ✤ Alcatel-Lucent/V. M. Nguyen.

UE measurements in coverage islands.

3GPP LTE Standard Contribution. TSG-RAN WG3\#66, R3-092950. Nov. 2009.

✤ Alcatel-Lucent/V. M. Nguyen.

Handling of UE measurements and transfer of UE history for mobility robustness optimization. 3GPP LTE Standard Contribution. TSG-RAN WG3\#66, R3-092951. Nov. 2009.

Patent Applications

V. M. Nguyen and H. Claussen.

Method for automatically configuring a neighbor cell list for a base station in a cellular wireless network. European Patent Appl. No.08291260.1 (31.12. 08). International Patent Appl, No.PCT/EP2009/009204 (21.12.09)

V. M. Nguyen and O. Marcé.

Adaptive time allocation to reduce impacts of scanning.

European Patent Appl, No.08291265.0 (31.12.08). International Patent Appl. No.PCT/EP2009/009205 (21.12.09)

V. M. Nguyen and Y. El Mghazli.

Method and equipment for dynamically updating neighboring cell lists in heterogenous networks.

European Patent Application, No. 09290135.4 (25.02.09).

V. M. Nguyen and Y. El Mghazli.

Method and apparatus for new cell discovery.

US Patent Appl, No.12/383,907(30.03.09). International Patent Appl, No.PCT/US2010/026496 (08.03.10)

V. M. Nguyen, L. Thomas, and O. Marcé.

Method and controller for paging a mobile set in a cellular network. European Patent Application, No. 09305029.2 (12.01.09)

O. Marcé, A. Petit, and V. M. Nguyen.

Method for enhancing the handover of a mobile station and base station for carrying out the method.

European Patent Appl, No.09305189.4 (02.03.09). International Patent Appl, No.PCT/EP2010/052425 (25.02.10)