
HAL Id: pastel-00622429
https://pastel.hal.science/pastel-00622429

Submitted on 12 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On type-based termination and dependent pattern
matching in the calculus of inductive constructions

Jorge Luis Sacchini

To cite this version:
Jorge Luis Sacchini. On type-based termination and dependent pattern matching in the calculus of
inductive constructions. Performance [cs.PF]. École Nationale Supérieure des Mines de Paris, 2011.
English. �NNT : 2011ENMP0022�. �pastel-00622429�

https://pastel.hal.science/pastel-00622429
https://hal.archives-ouvertes.fr

T

H

È

S

E

INSTITUT DES SCIENCES ET TECHNOLOGIES

École doctorale nO84 :
Sciences et technologies de l’information et de la communication

Doctorat européen ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

l’École nationale supérieure des mines de Paris

Spécialité « Informatique temps-réel, robotique et automatique »

présentée et soutenue publiquement par

Jorge Luis SACCHINI
le 29 juin 2011

Terminaison basée sur les types et filtrage dépendant
pour le calcul des constructions inductives

∼ ∼ ∼

On Type-Based Termination and Dependent Pattern Matching
in the Calculus of Inductive Constructions

Directeur de thèse : Gilles BARTHE
Co-encadrement de la thèse : Benjamin GRÉGOIRE

Jury
Benjamin WERNER, Directeur de recherche, LIX, École Polytechnique Président
Herman GEUVERS, Professeur, ICIS, Radboud University Nijmegen Rapporteur
Alexandre MIQUEL, Maitre de conférences, LIP, ENS de Lyon Rapporteur
Andreas ABEL, Professeur assistant, Ludwig-Maximilians-Universität Examinateur
Gilles BARTHE, Directeur de recherche, IMDEA Examinateur
Benjamin GRÉGOIRE, Chargé de recherche, Marelle, INRIA Sophia Antipolis Examinateur

MINES ParisTech
Centre de Mathématiques Appliquées

Rue Claude Daunesse B.P. 207, 06904 Sophia Antipolis Cedex, France

Abstract

Proof assistants based on dependent type theory are progressively used as a tool to develop
certified programs. A successful example is the Coq proof assistant, an implementation of
a dependent type theory called the Calculus of Inductive Constructions (CIC). Coq is a
functional programming language with an expressive type system that allows to specify and
prove properties of programs in a higher-order predicate logic.

Motivated by the success of Coq and the desire of improving its usability, in this thesis
we study some limitations of current implementations of Coq and its underlying theory, CIC.
We propose two extension of CIC that partially overcome these limitations and serve as a
theoretical basis for future implementations of Coq.

First, we study the problem of termination of recursive functions. In Coq, all recur-
sive functions must be terminating, in order to ensure the consistency of the underlying logic.
Current techniques for checking termination are based on syntactical criteria and their limita-
tions appear often in practice. We propose an extension of CIC using a type-based mechanism
for ensuring termination of recursive functions. Our main contribution is a proof of Strong
Normalization and Logical Consistency for this extension.

Second, we study pattern-matching definitions in CIC. With dependent types it is possible
to write more precise and safer definitions by pattern matching than with traditional func-
tional programming languages such as Haskell and ML. Based on the success of dependently-
typed programming languages such as Epigram and Agda, we develop an extension of CIC
with similar features.

i

Résumé

Les assistants de preuve basés sur des théories des types dépendants sont de plus en plus
utilisé comme un outil pour développer programmes certifiés. Un exemple réussi est l’assistant
de preuves Coq, fondé sur le Calcul des Constructions Inductives (CCI). Coq est un langage
de programmation fonctionnel dont un expressif système de type qui permet de préciser et
de démontrer des propriétés des programmes dans une logique d’ordre supérieur.

Motivé par le succès de Coq et le désir d’améliorer sa facilité d’utilisation, dans cette
thèse nous étudions certaines limitations des implémentations actuelles de Coq et sa théorie
sous-jacente, CCI. Nous proposons deux extension de CCI que partiellement resourdre ces
limitations et que on peut utiliser pour des futures implémentations de Coq.

Nous étudions le problème de la terminaison des fonctions récursives. En Coq, la termi-
naison des fonctions récursives assure la cohérence de la logique sous-jacente. Les techniques
actuelles assurant la terminaison de fonctions récursives sont fondées sur des critères syn-
taxiques et leurs limitations apparaissent souvent dans la pratique. Nous proposons une ex-
tension de CCI en utilisant un mécanisme basé sur les type pour assurer la terminaison des
fonctions récursives. Notre principale contribution est une preuve de la normalisation forte et
la cohérence logique de cette extension.

Nous étudions les définitions par filtrage dans le CCI. Avec des types dépendants, il
est possible d’écrire des définitions par filtrage plus précises, par rapport à des langages de
programmation fonctionnels Haskell et ML. Basé sur le succès des langages de programmation
avec types dépendants, comme Epigram et Agda, nous développons une extension du CCI
avec des fonctions similaires.

ii

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Benjamin Grégoire, for
his encouragement and trust during the past four years, and for always being available as a
colleague and as a friend. Also to my co-supervisor, Gilles Barthe, for continually providing
advice and expertise.

I am extremely grateful to the other members of the dissertation committee. To Herman
Geuvers and Alexandre Miquel for accepting to review this work, for their kind comments
and insightful questions. To Benjamin Werner for presiding the jury and to Andreas Abel for
his detailed comments and questions that helped improved this work. It is truly an honor to
have such an excellent committee.

I would like to thank Hugo Herbelin, Pierre Corbineau, Bruno Barras, and Benjamin
Werner, for many fruitful discussions and collaborations. I would like to specially thank
Bruno and Benjamin for hosting me in the Typical team during the summer of 2009.

I would also like to thank the members of the Marelle and Everest teams for providing a
stimulating work environment, and the Latin community at INRIA Sophia-Antipolis for all
the barbecues and memorable moments we shared together. I am specially indebted to César
Kunz, Gustavo Petri, Santiago Zanella, Tamara Rezk, Guido Pusiol, and Daniel Zullo for all
the help they gave me when I was moving to and from France.

I also offer my gratitude to my high-school friends in Argentina and the OTCB members
for always being there in spite of the distance. I specially thank Dante Zanarini from whom I
have learned a lot while we were students at University of Rosario, and Erica Hinrichsen for
teaching me mathematical thinking over 15 years ago. I would also like to thank my friends
at Casa Argentina for an unforgettable summer in Paris.

Many thanks to Iliano Cervesato for his moral and financial support for my defense and
to our new friends in Doha for helping us adapt to a new country.

I wish to thank my family for their support and encouragement when I decided to study
abroad.

Finally, I thank my wife Tomoki for her love, for her patience, and for standing next to
me during the most difficult times of this process.

iii

iv

Contents

Abstract . i

Résumé . ii

Acknowledgments . iii

1 Introduction 1

1.1 The Calculus of (Co-)Inductive Constructions 2

1.2 Termination of Recursive Functions . 10

1.2.1 Guard predicates . 10

1.2.2 Type-based termination . 12

1.3 Pattern matching . 14

1.4 Contribution . 16

1.5 Overview of the Rest of the Thesis . 17

2 CIC−̂ 19

2.1 Introduction . 19

2.2 Syntax of CIĈ− . 22

2.2.1 Basic Terms . 22

2.2.2 Inductive types . 23

2.2.3 Reduction . 25

2.3 Typing rules . 26

2.3.1 Subtyping . 26

2.3.2 Positivity . 27

2.3.3 Inductive Types . 29

2.3.4 Simple types . 33

2.4 Terms and contexts . 34

2.5 Examples . 38

2.6 A Comparison Between CIĈ− and CIĈ . 42

2.7 Related Work . 43

3 Metatheory of CIC−̂ 47

3.1 Basic Metatheory . 47

3.2 Annotated Version of CIĈ− . 58

3.2.1 Syntax and Typing Rules . 58

3.2.2 Metatheory . 62

3.2.3 Strong Normalization and Logical Consistency 64

3.2.4 From CIĈ− to ECIĈ− . 64

v

vi CONTENTS

4 Strong Normalization 71
4.1 Overview of the Proof . 71

4.1.1 The case of CIĈ−. 73
4.2 Preliminary Definitions . 75
4.3 The Interpretation . 80

4.3.1 Impredicativity . 81
4.3.2 Interpretation of Terms and Contexts 82
4.3.3 Interpretation of Inductive Types . 86
4.3.4 Properties of the Interpretation . 89
4.3.5 Interpretation of simple Types . 91
4.3.6 Properties of the Relational Interpretation 95

4.4 Soundness . 97
4.5 Strong Normalization . 103

5 Extensions 109
5.1 Universe Inclusion . 109
5.2 Equality . 110
5.3 Coinductive Types . 114

6 A New Elimination Rule 121
6.1 Introduction . 121
6.2 Syntax . 123
6.3 Typing Rules . 124
6.4 Examples . 129
6.5 Metatheory . 132
6.6 From CIĈPM to CIĈ− extended with heterogeneous equality 136

6.6.1 Translation Function . 137
6.7 Related Work . 142

7 Conclusions 145

List of Figures

2.1 Subtyping relation . 27
2.2 Positivity and negativity of stage variables . 28
2.3 Positivity and negativity of term variables . 28
2.4 Simple types . 34
2.5 Typing rules of terms and contexts of CIĈ− 36
2.6 Typing rules for sequences of terms . 37

3.1 Typing rules of terms and contexts of ECIĈ− 61

6.1 Typing rules for well-formed contexts and local definitions 125
6.2 Unification rules . 127
6.3 Typing rules for the new elimination rule . 128

vii

Chapter 1

Introduction

The reliance on software systems in our daily life has been increasing for many years now.
In critical applications such as medicine, aviation, or finance, software bugs (software errors)
can cause enormous human and economic losses. Therefore, there is an increasing interest in
developing tools and techniques that provide cost-effective assurance of the safety properties
of software products.

Proof assistants based on dependent type theory are gaining attention in recent years, not
only as a tool for developing formal mathematical proofs, but also as a tool for developing
certified programs. By certified programs we mean a program or algorithm whose behavior
is specified in a formal language together with a (formal) proof that the specification is met.

Dependent type theory was introduced by Per Martin-Löf [58], under the name Type
Theory, as a formalism for developing constructive mathematics. It can be seen as a typed
functional programming language, similar to Haskell or ML, where predicate logic can be in-
terpreted through the so-called Curry-Howard isomorphism. Also known as formulas-as-types,
proof-as-programs, the Curry-Howard isomorphism establishes a correspondence between log-
ical systems and functional programming languages. Formulas are represented by types, while
programs of a given type can be seen as proofs of the formula the type represents. Type The-
ory is thus a unified formalism where programs and specifications can be developed. It is the
foundation for several proof assistants such as Lego [34], Alf [57], NuPrl [28], and Coq [23,80].
Also several programming languages based on dependent types have recently been proposed
such as Cayenne [10], Epigram [60], Agda [69], ATS [86], Ωmega [74], and Guru [79], to name
a few.

One important property of proof assistants as functional programming languages is that
the computation (evaluation) of well-typed programs always terminate (this property is called
strong normalization). This is a distinguishing feature with respect to traditional functional
programming languages such as Haskell or ML (or any general-purpose programming language
for that matter), where non-terminating programs can be written. Termination of programs
ensures two important properties for proof assistants: logical consistency and decidability of
type checking. Logical consistency means that the proof assistant, when viewed as a logic, is
consistent, i.e., it is not possible to prove false propositions. An inconsistent logic is useless
to prove program specifications, as any proposition is valid. Decidability of type checking
means that the problem of checking that a formula is proved by a given proof is decidable.
Through the Curry-Howard isomorphism, proof checking reduces to type checking.

We are interested in Coq, arguably one of the most successful proof assistants. Developed

1

2 CHAPTER 1. INTRODUCTION

continually for over 20 years, it is a mature system where a large body of formal proofs and
certified programs have been developed. Notorious examples include the formal verification
of the Four Color Theorem, developed by Gonthier and Werner [43], and the CompCert
project [52] that resulted in a formally verified compiler for a large subset of C.

Coq is based on a dependent type theory called the Calculus of (Co-)Inductive Con-
structions (CIC) [72]. The main feature of CIC is the possibility of defining inductive types.
Inductive types can be seen as a generalization of the datatype constructions commonly found
in Haskell or ML. They are an essential tool in the development of certified programs. Cou-
pled with dependent types, inductive definitions can be used to define data structures as well
as logical predicates, in an intuitive and efficient way.

Programs (and proofs) on inductive types are defined using pattern-matching and recursive
functions, similarly to traditional functional programming languages. It is important that
their definition is clear and precise, and their semantics intuitive. Current implementations
of these mechanisms in Coq have some limitations that often appear in practice, hindering
the usability of the system. In this thesis, we study some of these limitations and propose
extensions of CIC that (partially) overcome them. Our objective is that these extensions
will serve as the theoretical basis for future implementations of Coq that would improve its
usability and efficiency.

Concretely, we propose an extension of CIC with a type-based termination mechanism for
ensuring termination of recursive functions. Type-based termination is a known technique
to ensure termination that improves on current syntactical mechanisms used by Coq. Our
contribution is a proof of strong normalization for the proposed extension. As a consequence,
we obtain logical consistency, a necessary property of the core theory of a proof assistant.

A second contribution of this thesis is a proposal for a new pattern-matching construction
for CIC. The new construction takes advantage of dependent types to allow the user to write
precise and safe definitions by pattern matching by allowing, for example, the automatic
elimination of impossible cases.

In the rest of the chapter we detail the motivations for this work and our contributions.
In the next section, we present a short introduction to CIC. In Sect. 1.2 and Sect. 1.3 we
describe the limitations of CIC and Coq that are the focus of this work. Our contributions
are summarized in Sect. 1.4. Finally, in Sect. 1.5 we give a brief overview of the rest of this
work.

1.1 The Calculus of (Co-)Inductive Constructions

CIC is a functional programming language with a powerful typing system featuring depen-
dent types. It is based on Luo’s Extended Calculus of Constructions [56] (ECC), which is itself
based on Coquand’s Calculus of Constructions [32] (CC). The latter is a basic impredicative
dependent type theory, inspired by Martin-Löf’s Type Theory. With respect to CC, ECC
adds a predicative hierarchy of universes and the so-called Σ-types. With respect to ECC,
CIC adds the possibility of defining new types using inductive and co-inductive definitions.

In this section we present a short introduction to CIC focusing on inductive definitions.
Readers familiar with CIC can skip this section and continue with Sections 1.2 and 1.3 where
we describe the motivation for this work.

1.1. THE CALCULUS OF (CO-)INDUCTIVE CONSTRUCTIONS 3

CIC as a programming language. CIC is a typed functional programming language,
and as such, it allows to write programs and types. Similarly to ML or Haskell, programs
in CIC are constructed by defining and combining functions. New types can be defined by
the user. Typical examples include data structures such as lists, trees, or arrays. Functions
operating on these data structures are defined using recursion and pattern matching.

Each program in CIC can be given a type. A typing judgment is a relation that associates
a program with its type. A typing judgment stating that program M has type T is denoted
by

⊢M : T .

Typing judgments are described by a set of typing rules that define, for each program con-
struction, how to assign a type to a program given the type of its parts.

Programs can be computed (or evaluated). Computation is defined by a set of reduction
rules that repeatedly transform (or reduce) a program until no more reductions can be applied.
Programs that can not be further reduced are said to be in normal form.

CIC as a logic. It is well-known that there is a correspondence between intuitionistic
propositional logic, natural deduction and the simply-typed λ-calculus. Logical formulas can
be represented by types (in particular, logical implication is represented by function-space
arrow), while proofs are represented by programs. For example, a proof of P → Q (P implies
Q) is a function (program) that transforms a proof of P into a proof of Q. This isomorphism
is known as the Curry-Howard isomorphism (or formulas-as-types, proofs-as-programs).

The Curry-Howard isomorphism implies that typed λ-calculi can be used as a formalism
to express formulas and proofs. The typing judgment ⊢M : T can also be read as formula T
is proved by M . Checking that a formula is proved by a given proof reduces then to a type-
checking problem. Formulas that can be represented by types include, for example, logical
connectives (P ∧ Q, P → Q, . . .), or properties of computational object such as a predicate
stating that a list is sorted, or that a number is prime.

Under the Curry-Howard isomorphism, CIC corresponds to higher-order predicate logic.
I.e., proofs and formulas of higher-order predicate logic can be represented (respectively)
as programs and types of CIC. As we show below, this correspondence allows us to write
specifications and prove that programs meet their specifications.

Dependent types. The tool that allows to write formulas of predicate logic in a typed
λ-calculus is dependent types. Basically, a dependent type is a type that can contain a term.
In other words, the type depends on terms, hence the name. This feature allows us to express
properties of terms (i.e., properties of programs). For example, we can represent a formula
stating that n is a prime number, by a type of the form

prime(n)

where n has type int. As types and contain terms (and viceversa), the distinction between
types and terms is blurred in the case of dependent types. This is contrary to Haskell and
ML, as well as non-dependent typed λ-calculi (e.g., simply-typed λ-calculus, or system Fω)
where terms (programs) and types are defined separately.

Going back to the example of prime numbers given above, the predicate prime is actually
a type family, since it defines a type for each term of type int. In particular, the type prime(n)

4 CHAPTER 1. INTRODUCTION

only makes sense if n has type int. This means that we need to check that types are well-
typed, using the typing rules. While terms are classified by types, types are classified by a
special class of types called universes or sorts. The class of sorts in CIC is defined by:

Sorts ::= Prop | Typei for i ≥ 0

The universe Prop is the propositional universe; types representing logical formulas (such as
prime) are usually defined in Prop. The universes in {Typei}i are the computational universes;
types representing data (such as int) are usually defined in Typei, for some i.

For example, to check that the type of prime numbers given above, prime, is well-typed,
we need to check that the following typing judgment are valid:

(x : int) ⊢ prime(x) : Prop

Let us mention that universes have also a type, as term in CIC. The typing rules for
universes are the following:

⊢ Prop : Type0 ⊢ Typei : Typei+1 for i ≥ 0

The main feature of dependent type system is dependent product, a generalization of the
function arrow found in non-dependent type systems. A dependent product is a type of the
form

Π(x : T).U(x)

where T and U are types such that U may contain x. It represents a type of functions f
such that given a term a : T , f(a) has type U(a). For example, Π(n : int).even(n+ n), where
even(n) is a predicate stating that n is even, is a formula stating that for any number n, n+n
is an even number. Usual function space T → U is a special case of dependent product where
U does not depend on x, i.e., x does not appear in U .

As we mentioned, the motivation for introducing dependent types comes from the necessity
of expressing formulas in predicate logic. Dependent types representing logical predicates are
defined in Prop. However, it also makes sense to define dependent types in the computational
universes. A typical use is to represent more precise data structures. For example, we can
define a type array(A, n) representing the type of arrays whose elements have type A and have
exactly n elements. It satisfies a typing judgment of the form:

(A : Type)(n : int) ⊢ array(A, n) : Type

Using this dependent type we can write a safe access function to an array. More precisely, we
can define a function get to access the k-th element of an array with type:

get : Π(A : Type)(k : int).inBound(n, k)→ array(A, n)→ A

where inBound(n, k) is a logical predicate stating that k is in the bounds of the array. To call
function get we need to supply a proof of this predicate, thus ensuring that the access to the
array is safe. No runtime error can occur.

To sum up, in CIC we can define two kind of types: computational types and propositional
types. The former kind consists of types representing entities intended to be used in com-
putation such as lists or arrays. While the latter kind consists of types representing logical
formulas. Program specification are represented by propositional types.

1.1. THE CALCULUS OF (CO-)INDUCTIVE CONSTRUCTIONS 5

Programs of computational types are intended to be used for “real” computations, where
the interest lies in the result of the evaluation. On the other hand, programs of propositional
types (i.e., proofs) do not have any real computational value. Only their existence is impor-
tant, since it implies that the formula they prove is true. Two proofs of the same formula can
be seen as equivalent (this property is called proof-irrelevance).

Conversion. The type of an expression is usually not unique. For example, in Haskell, we
can define type synonyms:

type IntList = [Int]

Then IntList and [Int] represent the same type, namely, the type of lists of integers. Any
term of type IntList can be used in a place where a term of type [Int] is needed. Thus,
when type-checking a term, it is necessary to check if two types are different representations
of a same expression, like IntList and [Int] above. In that case, the checking can be done
by first unfolding all type synonyms.

In the case of dependent types, the situation is more complicated since types can contain
arbitrary terms. For example, consider the types prime(3 + 4) and prime(2 + 5). Both types
represent, intuitively, the same proposition: namely, that 7 is a prime number. Both types
can be transformed, by computation, into the same type prime(7). Then, any proof M of
prime(3 + 4) should also be a proof of even(2 + 5) or prime(7). This intuition is represented
in the conversion rule

M : T T ≈ U

M : U

where T ≈ U means that T and U can be computed into the same type.
In large developments in Coq, the majority of the time required for type-checking can

be devoted to tests of conversion. It is thus important that computation (i.e., reduction) be
implemented efficiently. Some of the design choices of the system we present in this thesis are
influenced by this requirement.

Strong normalization and logical consistency. Two properties of CIC that have im-
portant theoretical and practical consequences are strong normalization (SN) and logical
consistency (LC). SN states that, for well-typed terms, all reductions sequences reach a nor-
mal form. In other words, there is no infinite reduction sequence starting from a well-typed
term. LC states that there are formulas that can not be proved in CIC. If all formulas can
be proved in CIC, the logic becomes inconsistent, since we would be able to prove also false
statements such as 0 = 1.

SN is a notoriously difficult property to establish, but it has important consequences. LC
can be proved from SN (together with a property called Canonicity that characterizes the
shape of expressions in normal form).

On the practical side, a consequence of SN is decidability of type checking. The problem
with deciding of type-checking in dependent type theories is how to decide the conversion
rule. That is, how to decide if two types are convertible. Decidability of conversion follows
from SN and a property called Confluence stating that all reduction sequences starting from
a term lead to the same normal form. A test to decide conversion is the following: compute
the normal form of both types, which is guaranteed to exist, and then check that both results
are equal.

6 CHAPTER 1. INTRODUCTION

The objective of this work is to propose sound extensions of CIC that overcome some of
its limitations. It is important that SN and LC are still valid in any extension. Without LC,
the use of CIC to reason about programs is lost. Without SN, we would not have decidabil-
ity of type-checking, which could introduce some difficulties in practice and complicate the
implementation.

Inductive definitions in CIC. One of the main features of CIC is the possibility of defin-
ing new types using inductive definitions. Inductive definitions can be seen as a generalization
of datatypes construction of Haskell and ML. While this comparison is sufficient to give an in-
tuition, there are some important differences. First, the dependent type system of CIC allows
to define inductive definitions that have no correspondence in ML. Second, both concepts are
semantically different.

Let us illustrate with an example. Consider Peano natural numbers, defined by zero and
the successor operator. We can define it in CIC using the following inductive definition:

Ind(nat : Type := O : nat, S : nat→ nat) .

This statement introduces the type nat and constructors O and S with their respective type.
Besides some syntactic differences, the same definition can be written in ML. In CIC, this
definition has the following properties:

– nat is the smallest set that can be constructed using O and S,
– O is different from S(x) (the “no confusion” property),
– S is injective,
– we can define functions on nat using primitive recursion.

Intuitively, the semantics of type nat is the set of terms {O, SO, S(SO), . . .}. In this intuitive
semantics, the properties given above are sound. In particular, the last property that allows to
define functions on nat using primitive recursion. Using the formula-as-types interpretation,
it amounts to proving properties on nat using the principle of mathematical induction.

Constructors define the introduction rules of an inductive definition. They state how to
build elements of the type. To reason about the elements of the type, we use elimination
rules. There are several ways to define elimination rules.

In functional programming languages such as Haskell or ML, the elimination rules are
pattern matching and recursive functions. In CIC, elimination rules have to be carefully con-
sidered to ensure that logical consistency is preserved. For example, in Haskell, the following
function can have any type:

let f x = f (x + 1) in f 0

Allowing this kind of unrestricted recursion in CIC leads immediately to inconsistencies, since
we can give the above function any type. In particular, a type representing a false statement,
like 0 = 1. Under the proposition-as-types view, the above function is a proof that 0 = 1.
The theory is inconsistent, since anything can be proved.

To avoid this kind of issues, all function in CIC are required to be total and terminating.
This contrast with general-purpose programming languages like Haskell, where termination
and totality are not issues that are dealt with inside the language. If these properties are a
concern for the programmer, she would have to use external mechanisms to ensure them.

Early proposals of dependent type theories (including Martin-Löf Type Theory and CIC)
used primitive recursion as a elimination rule. Basically, a primitive recursor for an inductive

1.1. THE CALCULUS OF (CO-)INDUCTIVE CONSTRUCTIONS 7

definition is an induction principle derived from its structure. In the case of nat above, the
primitive recursor derived is the principle of mathematical induction:

Elimnat : Π(P : nat→ Prop).P O→ (Π(n : nat).P n→ P (Sn))→ Π(n : nat).P n;

basically, a property P is satisfied by any natural number n if it is satisfied by O, and for the
successor of any n satisfying it. There is another variant of the primitive recursor where P
has type nat→ Type which allows to define computational objects.

Functions defined using primitive recursion are immediately total and terminating. There-
fore, establishing logical consistency of primitive recursion is relatively easy compared to the
other approaches we describe below. The main disadvantage of primitive recursors is that
it is cumbersome to write function using them. For example, let us consider a function half

that divides a natural number by 2. In Haskell, function half can be easily written by the
following equations:

half O = O

half (S O) = O

half (S (S n)) = S (half n)

On the other hand, writing half using primitive recursion is more complicated. The reason
is that, using primitive recursion, we have to define half (Sn) from the result of the recursive
call half n. But half (Sn) cannot be determined solely from half n. It also depends on the
parity of n: half (Sn) = S (half n) when n is odd, and half (Sn) = half n when n is even. One
way to proceed would be to define an auxiliary function half ′ such that half ′ n computes both
half n and the parity of n (as a boolean). In Haskell, we could define it as

half’ O = (O, true)

half’ (S n) = let (r,p) = half’ n in

if p then (r, not p) else (S r, not p)

Writing half ′ using the primitive recursion scheme is direct since half ′ (Sn) can be determined
from half ′ n. However, defining the function this way is more complicated and less clear than
the direct approach above.

The above example shows that using primitive recursion is more cumbersome than using
pattern matching and recursion as in Haskell. An alternative approach, similar to that of
Haskell, is to divide the elimination rule in two constructions: case analysis and fixpoints
construction (i.e., recursive function definition).

Case analysis. The case analysis construction of CIC is inspired from the pattern matching
mechanism of functional programming languages. In the case of natural numbers, the case
analysis constructions has the form

caseP x of

| O⇒ t1

| S y ⇒ t2

where P is the return type, which depends on the argument x. Each branch can have a
different type. In the case above, t1 has type P O, while t2 has type P (S y).

8 CHAPTER 1. INTRODUCTION

The computational rule associates is the obvious one: the case analysis construction re-
duces to the corresponding branch if the argument is headed by a constructor. In the case of
natural numbers, we have the two reductions:

(case O of | O⇒ t1 | S y ⇒ t2)→ t1

(case S t of | O⇒ t1 | S y ⇒ t2)→ t2 [y := t]

Case analysis, in the presence of inductive families, can be a powerful tool to write safer
programs. However, it is rather cumbersome to use for this purpose. We describe the problem
in Sect. 1.3. We propose a more expressive case analysis construction that solves some of the
difficulties found in the usual case analysis construction (Sect. 1.4).

Fixpoints. Recursive functions can be defined in CIC using the fixpoint construction. The
intuitive way of defining recursive definitions is using a construction of the form

fix f : T := M

which defines a function of type T , where recursive calls to f can be performed in M . We
say that M is the body of the fixpoint and f is a function defined by fixpoint, or sim-
ply f is a fixpoint. Intuitively, the function satisfies the equation (fix f : T := M) =
M [f := fix f : T := M]. However, adding this equation as a computation rule for fixpoint
would immediately break SN.

To avoid this problem, reduction should be restricted. The actual fixpoint construction
has the form

fixn f : T := M

where n denotes the recursive argument of f . Reduction is allowed only when the fixpoint is
applied to at least n arguments, and the recursive argument is in constructor form:

(fixn f : T := M) ~N C → (M [f := fixn f : T := M]) ~N C

where ~N is a sequence of n−1 arguments and C is in constructor form (i.e., it is a constructor
applied to some arguments).

As we mentioned before, non-terminating recursive definitions might lead to inconsis-
tencies. Hence, in CICand its implementation in Coq 1, several restrictions are imposed to
ensure termination. In the latter, a syntactic criterion called guard predicate is used to check
that fixpoint definitions terminate. This method has several limitations that we describe in
Sect. 1.2.1. We show an alternative approach to ensure termination called type-based termi-
nation that possesses several advantages over guard predicates (Sect. 1.2.2). We propose an
extension of CIC that uses the latter approach to ensure termination (Sect. 1.4).

Coinductive definitions. Infinite data structures arise naturally in some applications. In
system specification, infinite data structures are useful to specify network protocols or systems
that are meant to run indefinitely, like a webserver or an operating system.

Haskell and some implementations of ML (e.g., OCAML) allow the possibility to define
and operate on infinite data structures. A typical example is infinite lists. The following
program in Haskell defines an infinite list of alternating ones and zeros:

1. When we refer to Coq, we refer to any version from 8.0 to 8.3 inclusive.

1.1. THE CALCULUS OF (CO-)INDUCTIVE CONSTRUCTIONS 9

alt = 1 : 0 : alt

Of course, being an infinite sequence, it is not possible to compute alt entirely. Instead,
infinite data structures are computed lazily, on demand. For example, the program

take 10 alt

computes the first 10 elements of alt, while the rest of the list is not computed.
Infinite data structures can be defined in CIC using coinductive definitions. From a

category-theory point of view, coinductive definitions are the dual of inductive definitions.
The latter are initial algebras of some category, while the former are final co-algebras.

Coinductive definitions are expressed in the same way as inductive definitions although
they differ semantically. Let us illustrate with the example. Natural numbers can also be
defined as a coinductive type:

CoInd(conat : Type := coO : conat, coS : conat→ conat)

Semantically, this type defines the greatest set that is closed under constructor application.
This is the dual meaning of inductive types, where an inductive type defines the smallest
set that is closed under constructor application. The above definition includes the term
coS(coS(coS . . . which is not in the inductive definition of natural numbers.

The introduction rules are the constructors, similar to inductive types. Two elimination
rules are defined for coinductive types: case analysis and cofixpoint definitions. Case analysis
on coinductive types is the same as case analysis on inductive types.

For inductive definitions, fixpoints consume data structures. Dually, for coinductive def-
initions, cofixpoint definitions produce data structures. In other words, fixpoints take an
inductive type as argument, while cofixpoints return a coinductive type. Note that it does
not make sense to define a fixpoint on an infinite data structure, since it would never termi-
nate.

The dual of the termination requirement for fixpoint definitions is productivity. A term of
a coinductive type can be seen as a sequence of constructor applications, possibly infinite. I.e.,
it has the form Ci1(Ci2(. . .. A cofixpoint definition is productive if it is possible to compute
any element of the sequence in finite time. For example, the definition of alt given above
is productive, since any element of the list can be computed in finite time. The following
program defining the list of natural numbers is also productive:

nats = 1 : map (+1) nats

Let us see why. The first element of nats can be easily computed. Then, the first element of
map (+1) nats can also be computed, which allows to compute the second element of nats.
In general, computing the n-th element of nats allows to compute the n-th element of map
(+1) nats which allows to compute the n + 1-th element of nats. Hence, the definition is
productive.

A simple example of a non-productive definitions is the following:

nonp = 1 : tail nonp

Note that only the first element of the sequence can be computed.
Non-productivity of corecursive definitions might lead to inconsistencies. In CIC, several

conditions are imposed on cofixpoint definition to ensure productivity. Basically, a definition

10 CHAPTER 1. INTRODUCTION

is accepted if all corecursive calls are performed under a constructor. For example, alt

defined above is accepted, while nats and nonp are not, since the recursive call is not directly
performed under a constructor, but as an argument of a function.

This criterion is rather restrictive in practice. As we explained above, nats is a productive
definition, but it is rejected. In Sect. 5.3, we discuss how to extend the type-based termination
approach into a type-based productivity criterion for corecursive definitions. However, we do
not treat the general case of coinductive type. Instead, we only consider the case of streams,
i.e. infinite sequences, defined by the following coinductive type:

CoInd(stream[A : Type] : Type := scons : A→ streamA→ streamA)

1.2 Termination of Recursive Functions

Functions defined by recursion need to be terminating in CIC. In this section we describe
two approaches to termination: guard predicates and type-based termination. The former is
the mechanism used in Coq. It has some important limitations that we describe in detail.
The latter is an alternative approach that is more expressive than guard predicates (i.e., it
accepts more functions as terminating) and more intuitive. We describe the basic ideas of
this approach.

1.2.1 Guard predicates

Guard predicates are a mechanism to ensure termination of recursive functions. The basic
idea is to ensure that recursive calls are performed on structurally smaller arguments. For
example, consider the following function to compute the sum of the first n natural numbers,
using an accumulator:

F x r
def
= fix F := λx r.case x of

| O⇒ r
| Sx′ ⇒ F x′ (x+ r)

Function F has two parameters and is defined by recursion on the first. This means that
the first argument must be smaller in each recursive call. There is only one recursive call in
this example. The first argument is x′ which is smaller than S x′ which is itself equal to x,
the original argument. We denote this with x′ ≺ S x′ ≡ x. The function terminates, since
recursion will eventually reach the base case O.

Note that this is valid in CIC because of the interpretation of inductive types, where
constructors can only be applied a finite number of times. The same reasoning is not true in
Haskell, where terms using infinite application of constructors is allowed.

The guard predicate for a function f in the body M defined by recursion on an argument
x, denoted Gfx (M), checks that recursive calls to f in the term M are performed on arguments
that are structurally smaller than x. The structurally smaller relation, denoted with ≺, is
a transitive relation defined by the rule x ≺ C(. . . , x, . . .), where C is a constructor of an
inductive type. Recall that elements of inductive types are composed of finite applications
of the constructors. Hence, the structurally-smaller relation is well-founded and recursion is
terminating. The typing rule for fixpoint thus looks like:

Γ(f : T) ⊢M : T

Γ ⊢ fixn f : T := M : T
Gfx (M)

1.2. TERMINATION OF RECURSIVE FUNCTIONS 11

where x is the name of the n-th argument of f .

The guard predicates used in Coq are based on the work of Giménez [38,39,40]. The
original definition was very restrictive; it has been extended in Coq to account for more cases.
We do not give the formal definition here but, instead, we illustrate its features and limitations
through examples.

A classical example is division of natural numbers. We define a recursive function, div,
that computes ⌈ x

y+1⌉. It is defined by repeated subtraction using the function minus that
computes x− y. They can be defined as follows:

minus
def
= fix minus := λx y.casex of

| O⇒ x
| Sx′ ⇒ case y of

| O⇒ Sx′

| S y′ ⇒ minusx′ y′

div
def
= fix div := λx y.casex of

| O⇒ O

| Sx′ ⇒ S(div(minusx′ y) y)

The original guard predicate defined by Giménez accepts minus which can be defined by
recursion on the first argument. The recursive call is performed on x′ which satisfies x′ ≺
Sx′ ≡ x. It can also be defined by recursion on the second argument using the same reasoning.
On the other hand, div is defined by recursion on the first argument, but is not accepted, since
the recursive call is performed with argument minusx′ y, which is not structurally smaller than
x.

The definition of guard predicates has been extended over time in Coq to accept more
recursive functions. Both functions given above are now accepted. In order to accept div,
Coq needs to unfold the definition of minus to check that the recursive call is performed on a
structurally smaller argument, i.e., minusx′ y ≺ Sx′.

However, there is caveat. Consider the following alternative definition of subtraction:

minus′
def
= fix minus′ := λx y. casex of

| O⇒ O

| Sx′ ⇒ case y of

| O⇒ Sx′

| S y′ ⇒ minus′ x′ y′

The only difference is in the highlighted case, where it was O⇒ x before. Note that both def-
initions are operationally equivalent. However, if we write function div using this alternative
definition of subtraction, Coq will not accept it because it cannot check that the recursive
call div (minus′ x′ y) y is structurally smaller than x. This example shows the fragility of guard
predicates.

In practice, the guard predicate is not directly checked on the defined function, but on
the normal form of the body of the recursive function. Thus, the typing rule looks like:

Γ(f : T) ⊢M : T

Γ ⊢ fixn f : T := M : T
Gfx (nf(M))

12 CHAPTER 1. INTRODUCTION

This approach has two drawbacks. First, typing is inefficient since the term has to be reduced,
creating a possibly large term. Second, SN is lost. Consider the following example:

fix F (n : nat) : nat := (λ .O) (F n)

This function is accepted by Coq as terminating. The guard condition is not valid in the
body given above, but it is valid in the normal form of it, which is simply O. However, the
function is not strongly normalizing, since it accepts the following reduction sequence:

F O→ (λ .O) (F O)→ (λ .O)((λ .O) (F O))→ . . .

Designing a guard predicate that is not restrictive in practice, while at the same time being
easy to understand and implement is a difficult task. While the guard predicate implemented
in Coq have been used with success over the years, its limitations appear often in practice
and the implementation is hard to maintain.

A significant amount of research has been devoted to develop techniques to write recursive
(and co-recursive) functions that are accepted by the guard predicate of Coq (e.g., [24,27,77,78]
to name a few).

1.2.2 Type-based termination

Type-based termination is an alternative approach to ensure termination. The basic idea
is the use of sized types, i.e., types annotated with size information. Termination of recursive
function is ensured by checking that recursive calls are performed on smaller arguments as
evidenced by their types. We illustrate the approach with the example of natural numbers.
The inductive definition of Peano numbers given above introduces a family of types of the
form nats where s is a size (or stage). Intuitively, nats represents an approximation of the
type of natural numbers. Concretely, the natural numbers whose size is smaller than s:

nats = {O, SO, . . . S(. . . (S︸ ︷︷ ︸
s−1

O) . . .)} .

Hence nats is an approximation of the full type. Sizes are defined by a simple grammar:

s ::= ı,  | ŝ | ∞,

where ı,  are size variables, .̂ represents a successor function on sizes and ∞ is used to
represent full types.

These intuitions are expressed in the typing rules. For constructors, we have the following
rules:

Γ ⊢ O : natŝ
Γ ⊢M : nats

Γ ⊢ SM : natŝ

Size information is used to type recursive functions, as shown in the following (simplified)
typing rule for fixpoint construction:

Γ(f : T ı) ⊢M : T ı̂

Γ ⊢ (fix f : T := M) : T s
ı fresh

1.2. TERMINATION OF RECURSIVE FUNCTIONS 13

The type T ı can be seen as an approximation of a type T . To type-check the body M , we
assume that f is in the approximation T ı, and check that M is in the next approximation,
T ı̂. This is enough to ensure that fix f : T := M is in any approximation of T .

This is a simplified version of the typing rule, sufficient to introduce the main concepts;
the full version of the rule is given in the next chapter. To illustrate the advantages of this
approach, let us revisit the example on division of natural numbers. Subtraction can be
defined as follows:

fix minus : nat→ nat→ nat := λ mn. case mnat(̂ı) of

| O⇒ O

| S m′ ⇒ case n of

| O⇒ Sm′

| Sn′ ⇒ minus m′
nat(ı) n

The subscript type annotations are given for clarification purposes only, and are not needed
in the actual syntax. For the sake of readability, we sometimes write nat(s) instead of nats.

There is no difference with the definition using guard predicates, except that with sized
types, this function can be given a more precise type, namely natı → nat∞ → natı. This
means that the size of the result is not greater than the size of the first arguments. This
size-preserving type of minus is what allows to us to type-check div:

fix div : nat→ nat→ nat := λ m n. case mnat(̂ı) of

| O⇒ O

| S m′ ⇒ S (div (minus m′
nat(ı) n)nat(ı) n)

Since m′ has type natı, minusm′ n also has type natı and the recursive call is valid. In this
example, the advantage of type-based termination over guard predicates is that it is not
necessary to look into the definition of minus. In particular, both definitions of minus given
above can be used.

The type-based termination approach has several advantages over guard predicates.

– It is more expressive. As we show in Chapter 2, it accepts non-structurally recursive
functions whose termination can not be ensured by guard predicates.

– It is more intuitive. Type-based termination relies on a semantically intuitive notion of
size of inductive types. Therefore, it is easier to understand why functions are accepted
or rejected.

– It is more efficient to implement. There is no need to consider recursive functions in
normal form, and only typing information is needed to ensure termination.

– It is easier to implement. The guard condition implemented in Coq has been extended
from the original formulation to account for more cases. It is one of the most delicate
parts of the kernel of Coq which makes it difficult to extend and maintain. Although
there are no mature implementations of type-based termination (as far as I am aware),
prototype implementations [3,19] show that the type-based termination approach is
much easier to implement than guard predicates.

For these reasons, we propose an extension of CIC with a type-based termination mech-
anism. The type-based termination approach has a long history, and we are not the first to
propose such extensions of CIC; our work is directly based on the work of Barthe et al. [18,19].
We summarize our contribution in Sect. 1.4.

14 CHAPTER 1. INTRODUCTION

1.3 Pattern matching

Pattern matching is an essential feature of functional programming languages. It allows
to define clear and concise functions by a sequence of equations. In the presence of dependent
type families, it can be a powerful tool to write concise and safer functions. However, using
the basic case analysis construction of CIC can be cumbersome. In this section, we identify
the problem and propose a solution.

We use lists as a running example. In CIC, we can define it by

Ind(list(A : Type) : Type := nil : listA, cons : A→ listA→ listA)

Standard functions operating on lists include head (that takes the first element of a non-
empty list) and tail (that removes the first element of a non-empty list and returns the
remaining part). In ML they are defined by

head (x::xs) = x

tail (x::xs) = xs

where the infix operator (::) denotes the cons constructor. Note that these functions are
partial: they are not defined on the empty list. If one applies these to the empty list, a
run-time exception occurs. Then, it is up to the programmer to ensure that this situation
will not arise, or to properly handle the exceptional case.

As we mentioned, in CIC it is not possible to take the same approach. All functions
defined must be total. One possibility for defining the above functions is to return a default
value when the argument is outside the domain of the function. Another possibility is to use
inductive families to get a more precise definition of the functions.

Inductive families are a generalization of inductive types. An inductive family defines
a family of inductive types with the same structure, indexed by some arguments. Let us
illustrate with a typical example: lists indexed by their length, usually called vectors. We
can define it in CIC as follows:

Ind(vec(A : Type) : nat→ Type := vnil : vecAO,
vcons : Π(n : nat).A→ vecAn→ vecA (Sn))

Note that vecA is not a type, but a type family, indexed by nat: vecAO, vecA (SO), . . .,
are types. All the elements of this family are built using vnil and vcons, thus sharing the
same structure. However, different types in the family have different elements. For example,
vecAO has only one (canonical) element, vnil. The elements of vecA (SO) are of the form
vconsOx vnil, i.e., lists of length 1. In general, vecAn contains only lists of length n whose
elements are in A.

Inductive families are useful for defining propositional types. For example, we can define
an inductive family to represent if a natural number is even:

Ind(even : nat→ Prop := even O : evenO,
even SS : Π(n : nat).evenn→ even (S (Sn)))

In the following we concentrate on computational types, although the development equally
applies to propositional types like even.

Going back to the example of vectors, note that both lists and vectors are equivalent, in
the sense that it is possible to define a bijection between objects of both types. However,

1.3. PATTERN MATCHING 15

vectors have more information on their types. For example, the tail function on vectors can
be given a more precise type

vtail : Π(n : nat).vecA (Sn)→ vecAn

thus ensuring that it can only be applied to non-empty vectors. If we define vtail by

vtailn (vconsnxxs) = xs

this definition should be total. Note that the case vnil does not need to be considered, since
its type cannot be vecA (Sn). Furthermore, the function vtail has two arguments, the first
is a natural number n and the second a vector. In the case vcons, the first argument should
match the first argument of vtail, which is why we have a non-left-linear pattern.

Using inductive families to write clear and concise pattern-matching definitions is one
of the main arguments in favor of dependently-typed programming [8]. The problem now
becomes how to check that such definitions are actually programs, i.e., are total and ter-
minating. In a seminal paper, Coquand [30] proposes an algorithm for this. It allows to
eliminate impossible cases (like vnil above) as well as structural recursion. The algorithm was
implemented in the ALF theorem prover [57].

Case analysis in CIC. In CIC, for a case analysis construction to be accepted, all cases
should be considered. Let us consider the definition of vtail. The naive solution is to write
vtailn v as

case v of vnil⇒ ? | vcons k x t⇒ t .

There are two problems with this definition. The first is that we need to complete the vnil

branch with a term explicitly ruling out this case. The second is that the body of the vcons

branch is not well-typed, since we are supposed to return a term of type vecn, while t has
type vec k. Let us see how to solve them.

For the first problem, it should be possible to reason by absurdity: if v is a non-empty
vector (as evidenced by its type), it cannot be vnil. More specifically, we reason on the indices
of the inductive families, and the fact that the indices can determine which constructors were
used to build the term (the inversion principle). In this case, v has type vecA (Sn), while
vnil has type vecAO. Since distinct constructors build distinct objects (the “no confusion”
property), we can prove that O 6= Sn, and, as a consequence, v cannot reduce to vnil. This is
translated to the definition of vtail by generalizing the type of each branch to include a proof
of equality between the indices. The definition of vtail looks something like

case v of | vnil⇒ λ(H : O = Sn). here a proof of contradiction from H

| vcons k x t⇒ λ(H : S k = Sn).t,

where, in the vnil branch, we reason by absurdity from the hypothesis H.

We have solved the first problem, but we still suffer the second. Luckily, the same gen-
eralization argument used for the vnil branch provides a way out. Note that, in the vcons

branch, we now have a new hypothesis H of type S k = Sn. From it, we can prove that k = n,
since the constructor S is injective (again, the no-confusion property). Then, we can use the
obtained equality to build, from t, a term of type vecn. In the end, the body of this branch
is a term built from H and t that changes the type of t from vecAk to vecAn.

16 CHAPTER 1. INTRODUCTION

This solves both problems, but the type of the function obtained is Sn = Sn → vecAn,
which is not the desired one yet. So, all we need to do is just to apply the function to a trivial
proof of equality for Sn = Sn.

It is important to notice that this function, as defined above, still has the desired com-
putational behavior: given a term v = vconsnh t, we have vtailn v →+ t. In particular, in
the body of the vcons branch, the extra equational burden necessary to change the type of t
collapses to the identity. However, the definition is clouded with equational reasoning expres-
sions that do not relate to the computational behavior of the function, but are necessary to
convince the typechecker that the function does not compromise the type correctness of the
system.

We propose an alternative case rule that allows to automatically omit impossible cases
and propagate inversion constraints for possible cases. Our work is directly based on the
dependently-programming languages Epigram [60] and Agda [69], two modern implementa-
tions of Coquand’s proposal. We summarize this contribution in the next section.

Let us illustrate how to write the vtail function using the alternative case rule. One
possibility is to define it

case v in [n0] vec(A, Sn0) of vcons (k := n)x t⇒ t

The intuition behind this definition is that, since v has type vecA (Sn), we can restrict the
analysis to cases in the family of types vecA (Sn0), for n0 : nat. Then, the case vnil can
be omitted, since no term in this family can be constructed using vnil. Furthermore, in the
case vcons, the first argument must be n, which gives t the correct type — there is no need
to change its type.

1.4 Contribution

We propose two extensions of CIC that aim to improve the use of elimination rules and
overcome the limitations mentioned in Sections 1.2.2 and 1.3. The first extension concerns
termination of recursive functions, while the second concerns pattern matching.

Our long-term objective is that these extensions could be implemented in the kernel of
Coq. A main concern is then ensuring the preservation of metatheoretical properties such as
confluence, subject reduction (SR) and, most important, logical consistency. We prove these
properties for both extensions.

Another concern is that these extensions could be implemented efficiently. As we noted
before, one important aspect to consider in the implementation of a type-checker for type
theory is the reduction engine, which is the basis for the conversion test. The possibility of
implementing an efficient reduction engine design choices of the system we present in this
work.

Termination of recursive functions. We propose the use of type-based termination as
a mechanism for checking termination of recursive functions in CIC. We are not the first to
consider extensions of dependent type theories with type-based termination. As we mentioned,
type-based termination has a long history that can be traced back to the work of Mendler [64].
In this section, we only mention related works that are necessary to put our contribution
in context. For further references on termination of recursive functions, and type-based
termination in particular, see Sect. 2.7.

1.5. OVERVIEW OF THE REST OF THE THESIS 17

Our extension of CIC with type-based termination follows a line of research that started
with an extension of the simply-typed λ-calculus with sized types by Barthe et al. [17],
described in detail in Frade’s thesis [35]. The extension, called λ̂ , enjoys several desired
metatheoretical properties including subject reduction and SN.

An extension of system F, called F̂ , is introduced in Barthe et al. [18]. The main feature
of F̂ is a size inference algorithm, meaning that sizes are completely transparent to the user.
SR and SN are also proved (see [20] for details).

Furthermore, based on the same ideas developed in λ̂ and F̂ , Barthe et al. [19] intro-
duce an extension of CIC with a type-based termination mechanism. This extension, called
CIĈ , enjoys SR and size inference as in F̂ . However, Logical Consistency is proved using a
conjecture stating Strong Normalization.

While CIĈ seems a good candidate for replacing the core theory of Coq, the lack of a
proof of Logical Consistency does not give enough assurance for a sound implementation. In
this work we try to remedy this situation.

We present an extension of CIC with a type-based termination, called CIĈ−, based on the
approach of CIĈ (Chapter 2). We prove that the extension, enjoys several metatheoretical
properties including SR (Chapter 3). Our main contribution is the definition of a model of
CIĈ− based on Λ-sets [7,63]. As a consequence of soundness of the model, we can prove SN
and LC (Chapter 4).

This contribution extends on previous work with Benjamin Grégoire [44].

Pattern matching. Building on previous work by Coquand [30] and the dependently-typed
programming languages Epigram [60,62] and Agda [69], we propose an extension of CIC with
a new pattern matching rule.

The new rule, which allows the user to write more direct and more efficient functions,
combines explicit restriction of pattern-matching to inductive subfamilies, and translation
of unification constraints into local definitions of the typing context (Chapter 6). We show
that this extension satisfies metatheoretical properties such as SR. We also prove LC by a
translation towards an extension of CIĈ−.

This contribution is based on previous work with Bruno Barras, Pierre Corbineau, Ben-
jamin Grégoire, and Hugo Herbelin [16].

1.5 Overview of the Rest of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we introduce our calculus
CIĈ−, an extension of CIC with a type-based termination mechanism in the style of CIĈ .
We give a complete formal presentation explaining its syntax and typing rules. The features
of CIĈ− are illustrated through a series of examples.

In Chapter 3 we show some metatheoretical properties of CIĈ− including SR. Due to
some technical difficulties related to impredicativity, we cannot prove SN directly on CIĈ−.
We therefore introduce an annotated version of CIĈ−, called ECIĈ−, where applications and
abstractions are fully annotated with domain and codomain. We prove that both presenta-
tions are equivalent and, in particular, we show that SN of CIĈ− can be derived from SN of
ECIĈ−.

The proof of SN of ECIĈ− is developed in Chapter 4, the main contribution of this work.
We use a Λ-set model based on the work of Altenkirch [7] and Melliès and Werner [63],

18 CHAPTER 1. INTRODUCTION

extended to cope with sized types.
In Chapter 5 we consider some possible extensions of CIĈ−. Namely, universe inclusion,

equality, and coinductive types. For each extension, we sketch how to adapt the metatheory
of Chapters 3 and 4. In particular, we discuss how to adapt the Λ-set model.

In Chapter 6 we develop an extension of CIĈ− with a pattern-matching mechanism in
the style of dependently-typed programming languages such as Epigram and Agda. We prove
that the extension satisfies desired metatheoretical properties such as SR and show LC by a
translation to an extension of CIĈ−.

Finally, we give some concluding remarks in Chapter 7.

Chapter 2

CIC−̂

CIĈ− is an extension of the Calculus of Inductive Constructions (CIC) with a type-based
termination mechanism. In this chapter we present the syntax and typing rules of CIĈ−. We
illustrate its features through a series of examples.

2.1 Introduction

Before presenting the formal definition of the syntax and typing rules of CIĈ−, we give a
short introduction describing the design choices we made. CIĈ− can be seen as a relatively
small restriction of CIĈ [19]. Along this chapter, we make clear the distinction between both
systems.

Our long-term objective is to implement a type-based termination mechanism in Coq.
This affects the design of both CIĈ and CIĈ−, as it is not desirable to make strong changes
with respect to current implementations of Coq. First, sized types, the main component of
the type-based termination approach, should be transparent for the user. Sized types are
used by the type-checking algorithm to check termination. The user should not need to deal
size with information (as far as possible). Second, it should be possible to give an efficient
implementation of sized types. In particular, sizes should not be involved in computation
(i.e., reduction). This way, reduction could be implemented as efficient as in CIC.

We present the main features of CIĈ−in the following.

Sized types. Sizes (or stages) define the annotations attached to inductive types. Following
CIĈ and other approaches (e.g., [1]), size annotations in CIĈ− are taken from a simple
grammar.

Definition 2.1 (Stages). The syntax of stages is given by the following grammar, where VS
denotes a denumerable set of stage variables.

S ::= VS | Ŝ | ∞ .

We use ı, , κ to denote stage variables, and s, r to denote stages. The base of a stage
expression is defined by ⌊ı⌋ = ı and ⌊ŝ⌋ = ⌊s⌋ (the base of a stage containing ∞ is not
defined).

More complex stage algebras can be considered. For example, including more operators
on stages such as addition, maximum, minimum, etc. The advantage of using a more complex

19

20 CHAPTER 2. CIĈ−

stage algebra is the possibility of expressing more information of a function in the type. For
example, the addition of natural numbers could be given type:

nats → natr → nats+r

In turn, it would be possible to accept more functions as terminating, compared to the
simple algebra we use. See Sect. 2.7 for some references. On the other hand, a richer size
algebra would complicate the definition of the typing system. In particular, it would be more
complicated to keep the size information hidden from the user.

One advantage of using this small size algebra is that it is possible to infer size information.
As is shown in [19] for CIĈ , there is a size inference algorithm that can reconstruct size
information from a term without any size annotations. Given the close relationship between
CIĈ− and CIĈ (cf. Sect. 2.6), it is reasonable to believe that this algorithm can be adapted
to our case.

Sizes as bounds. Stages define the size annotations of inductive types. Intuitively, they
represent a bound on the number of constructors that can be applied. Given the interpretation
of sizes as bounds, it is necessary to have a subtyping relation. This relation is derived from
an order relation on stages.

Definition 2.2 (Substage). The relation s is a substage of s′, written s ⊑ s′, is defined by
the rules:

s ⊑ s

s ⊑ r r ⊑ p

s ⊑ p s ⊑ ŝ s ⊑ ∞

The complete definition of subtyping is given in Sect. 2.3.1. To illustrate the intuitive
meaning of the subtyping relation, we can mention some instances that derive from the
definition of the substage relation. Since s ≤ ∞, we have nats ≤ nat∞, for any stage s. In
effect, nat∞ represents the full type of natural numbers. Note that size variables are not
comparable, therefore we have natı 6≤ nat, when ı 6= . Although these examples only involve
nat, similar rules apply to all inductive types.

Note that the interpretation of stages as a bound on the size of elements is not strictly
necessary in the type-based termination approach. A different interpretation, considered by
Blanqui and Riba [26], and also Xi [85], consists in interpreting natα as the set of terms whose
size is exactly α. Our interpretation can be recovered by the use of existential and constraints:
∃α(α ≤ s).natα. We do not follow this approach, since the introduction of constraints would
complicate the typing system.

Implicit stages declaration. The definition of stages and terms is separated. Stages are
used to annotate types, but are not themselves terms. In particular, there are no constructions
to introduce new stage variables or manipulate stages. Instead, stage variables are implicitly
declared globally. For example, consider the following typing judgment:

(f : natı → nat)(x : natı) ⊢ f x : nat

Size variables ı and  are implicitly declared.
Abel [1,3] considers a different approach where sizes are declared as part of the language.

Since we want to keep sizes hidden from the user, as much as possible, we do not consider
this approach. See Sect. 2.7 for a detailed comparison between both alternatives.

2.1. INTRODUCTION 21

However, the naive use of implicit stages does not satisfy Subject Reduction. Consider
the term M = fix f : natı → nat∞ := λx : natı̂.x. Using the simplified typing rule for fixpoint
given in the previous chapter, M can be given the type nats → nat∞, for any s. With the
obvious typing rule for application, the following is a valid typing judgment:

(y : nat) ⊢M (S y) : nat∞

where S y has type nat̂. This term reduces to (λx : natı̂.x) (S y) which is not well-typed in
the context (y : nat).

One solution could be to replace the stage variable in the body of fixpoints when reducing.
Then, we would have the reduction:

M (S y) = (fix f : natı → nat∞ := λx : natı̂.x) (S y)→ (λx : nat
̂̂.x.) (S y)

where we replace ı with ̂, since S y has type nat̂. This means that reduction and typing
would depend on each other, since the size information of the argument of the fixpoint is
obtained through its type. This approach would greatly complicate the metatheory, so we do
not consider it. Another possibility could be to explicitly state the size information of the
argument, as in M (̂) (S y). This would mean that the user would have to manipulate sizes.

But there is another reason to not consider this approach: efficiency. In the above example,
sizes are involved in the reduction, since a size substitution is needed to maintain Subject
Reduction. Sizes are used to ensure termination, but should not be needed to compute with
terms. The solution proposed in CIĈ , which we adapt here, is to combine annotated terms
and erased terms. The latter class include terms where the size information is erased, while
the former class include terms where types are annotated with sizes.

Erased terms are used in places where a type is expected. For example, in the case of
abstractions. In CIĈ−, an abstraction has the form λx : T ◦.M , where T ◦ is an erased term.
The typing rule for abstraction is

Γ(x : T) ⊢M : U

Γ ⊢ λx : |T |.M : Πx : T.U

where |T | is an erased term obtained from T by removing all size annotations. Note that sizes
are used to check the type of M but are removed from the term. For example, a valid typing
judgment for the identity is ⊢ λx : nat.x : nats → nats, for any size s.

Let us go back to the example that motivated this discussion. Using erased terms we
write M = fix f : nat→ nat := λx : nat.x. Then

(y : nat) ⊢M (S y) : nat̂

Note that M (S y)→ (λx : nat.x) (S y). This last term can also be given type nat̂, so Subject
Reduction is preserved. The result is that sizes are not involved in the computation, hence
no size substitution is needed to reduce a fixpoint.

As we show in the next section, the reduction rules of CIĈ− are exactly the same as
in CIC. In particular, sizes are not involved in the sense that reduction does not use size
information. This means that reduction in CIĈ− could be implemented as efficiently as in
CIC.

22 CHAPTER 2. CIĈ−

2.2 Syntax of CIC−̂

We begin by describing the constructions of CIĈ−. The language of CIĈ− is based on
CIC. All the constructions are taken from CIC, with some differences related to the use of
sized types and implicit stages.

2.2.1 Basic Terms

As is the case with CIC and dependent type theory in general, there are no separate
syntactic categories for terms and types. We describe the syntax of terms, in two parts: basic
terms (including applications, abstractions, etc.) and inductive terms (including constructors
and destructors of inductive types, i.e., case analysis and fixpoint functions).

In CIĈ−, inductive types are decorated with size information. As we mentioned in the
previous section, size information is erased from some terms in order to obtain an efficient
reduction and maintain subject reduction. We present the syntax of terms parameterized by
the size expressions that inductive types carry, to account for different classes of terms. Three
classes are of interest for us:

– bare terms (no annotations),
– position terms (either no annotation or a ⋆ used to indicate recursive arguments in

fixpoint definitions), and
– sized terms (annotated with stage expressions).

We begin by describing the syntax of basic terms. This includes the constructions of the
language that do not directly refer to inductive types.

Definition 2.3 (Basic terms). The generic set of basic terms over the set a is defined by the
grammar:

T [a] ::= V (term variable)
| Prop (universe of propositions)
| Typei (i ≥ 0) (universes of computations)
| λx : T ◦.T [a] (abstraction)
| T [a] T [a] (application)
| Πx : T [a].T [a] (product)

where V is a denumerable set of term variables. The set of bare terms, position terms and
sized terms are defined by T ◦ ::= T [ǫ], T ⋆ ::= T [{ǫ, ⋆}], and T ::= T [S], respectively. We
also consider the class of sized terms with no size variables: T ∞ ::= T [∞].

The grammar of basic terms includes the constructions of the Calculus of Constructions
with Universes. Note that there is no difference between classes of terms. The difference will
appear once we extend this grammar with constructions related to inductive types.

The terms Prop and Typei, for i ≥ 0, are called sorts or universes. We use U to denote
the set of sorts—i.e., U = {Prop} ∪ {Typei : i ≥ 0}.

We use M , N , P , T , U , C, a, b, p, q, t, to denote terms and x, y, z to denote variables.
Bare terms are denoted with a superscript ◦ and position terms with a superscript ⋆, as in
M◦ and M⋆. In Πx : M.N and λx : M◦.N , the variable x is bounded in N . We write FV(M)
to denote the set of free term variables in M and M [x := N] to denote the substitution of
the free occurrences of x in M by N ; we omit their definitions, since they are standard. Note
that the substitution needs to erase the size annotations when replacing inside an erased
term (e.g., the type of abstractions). To deal with sized and erased terms we use an erasure

2.2. SYNTAX OF CIĈ− 23

function |.| : T → T ◦; again, we omit the definition. We write M → N as a synonym of
Πx : M.N if x /∈ FV(N). We denote α-convertibility with ≡.

We write ~X to denote a sequence of X and # ~X to denote the length of the sequence ~X.
Alternatively, we write 〈Xi〉i=1..n to denote the sequence X1X2 . . . Xn. We write 〈Xi〉i=m..n

for the subsequence XmXm+1 . . . Xn. Sometimes we write simply 〈Xi〉i when the index is not
important, or known from the context. We denote the empty sequence with ε. We sometimes
write commas between the elements of a sequence to avoid confusion with application, as in
T1, T2, . . . , Tn and T1, ~T .

We define contexts which are, basically, a sequence of declarations of the form (x : T).

Definition 2.4 (Contexts). A context is a (finite) sequence of declarations of the form (x :
T), where x is a variable and T a (sized) term. The empty context is denoted by []. Similarly,
a bare context is a (finite) sequence of declarations of the form (x : T ◦), where T ◦ is an
erased term.

We use Γ, ∆, Θ, . . . to denote contexts. We write #Γ to denote the length of context Γ,
dom (Γ) to denote the set of variables declared in Γ, (x : T) ∈ Γ to mean that Γ contains the
declaration (x : T), and Γ(x) with x ∈ dom (Γ) to mean the unique T (up to α-convertibility)
such that (x : T) ∈ dom (Γ). We write FV(Γ) to denote the union of the sets of free
term variables of all types declared in Γ. We extend the function FV to tuples: we write
FV(X1, . . . , Xn) to mean FV(X1) ∪ . . . ∪ FV(Xn), where Xi is either a term or a context for
i ∈ {1, . . . , n}.

Given a context Γ and a sequence of variables ~x such that #~x = #Γ, we define the
operation (~x : Γ) that renames the declared variables of Γ with ~x. It is defined by (ε : []) = []
and (x1 ~x : (y : T)Γ) = (x1 : T)(~x : Γ [y := x1]).

We extend the syntax of abstractions and dependent products to deal with several variables
using contexts. Given a context Γ ≡ (x1 : T1) . . . (xn : Tn) we write λΓ.M and ΠΓ.M to mean
the terms λx1 : T1. . . . λxn : Tn.M and Πx1 : T1. . . .Πxn : Tn.M respectively.

2.2.2 Inductive types

We now extend the syntax of terms to include inductive types (and inductive families).
Inductive types are defined by a signature, which is a (finite) sequence of inductive type
declarations. Each declaration takes the form 1

Ind(I[Γ] : A := 〈Ci : Ti〉i),

where I is the inductive type being defined, Γ is the context of parameters, A is the type
of I, and 〈Ci : Ti〉i are the constructors of I with their corresponding types. In the types of
constructors, T1, . . . , Tn, a special variable X refers to I applied to the parameters. Let us
illustrate with some examples. Natural numbers, defined by Peano axioms, are introduced
by the declaration

Ind(nat : Type0 := (O : X)(S : X → X)) .

This means that we declare an inductive type nat whose type is itself Type0, with two con-
structors O and S of types nat and nat → nat respectively. A slightly more complicated

1. We will extend this definition with polarities in order to allow more subtyping rules. They are not

necessary now, so we omit them for the moment.

24 CHAPTER 2. CIĈ−

example is given by vectors (lists indexed by their length). They are defined by

Ind(vec[A : Type0] : nat→ Type0 := (vnil : X O)

(vcons : Π(x : nat).A→ X n→ X (S(n)))) .

Given a type A, vec (A,N) is an inductive type, for N of type nat, where vnil(A) has type
vec (A,O) and vcons(A,N M V) has type vec (A, S(N)) if N , M and V have type nat, A and
vec (A,N) respectively. Constructors are always fully applied and we separate the parameters
from the actual arguments.

Note that not all declarations of the form above are accepted. Besides the restriction
to well-typed declarations, a valid declaration satisfies several positivity conditions ensuring
monotonicity of the inductive type. We explain this restrictions in Sect. 2.3.

We extend the syntax of terms to include inductive types and constructors. We also
need a way to analyze and operate with inductive types. Hence we extend the syntax with
destructors. The destructors are embodied in two constructions of the language: case analysis
(pattern matching) and recursive functions (fixpoint).

Definition 2.5 (Terms (continued)). The grammar of terms over the set a is extended with
the following rules:

T ::= . . .

| Ia
(

~T [a], ~T [a]
)

(inductive type)

| C(~T ◦, ~T [a]) (constructor)

| caseT ◦ V := T [a] in I
(
~T ◦, ~V

)
of 〈C ⇒ T [a]〉 (case analysis)

| fixn V : T ⋆ := T [a] (fixpoint)

Names of inductive types are taken from a denumerable set of names I and names of
constructors are taken from a denumerable set of names C. We assume that VS (size variables),
V (term variables), I and C are mutually disjoint.

We define another erasure function to deal with position terms. The function |.|ı : T → T ⋆

replaces all stage annotations s with ⋆ if ⌊s⌋ = ı, or by ǫ otherwise. (We omit the definition
by induction on the structure of terms.) Given a term M , we write M∞ to denote the term
M where all size annotations are replaced with ∞, and SV(M) to denote the set of stage
variables appearing in M . (Note that SV(M∞) = ∅.)

We briefly explain the new constructions. A more detailed explanation is given in Sect. 2.3.
Inductive types are decorated with size information and applied to parameters and arguments.
We write Is for Is[], for inductive types I with no parameters. Constructor terms are fully
applied to the parameters and the proper arguments. Note that the parameters in constructors
are formed by erased terms. In a term of the form

caseT ◦ x := M in I
(
~p◦, ~y

)
of {C ⇒ N},

M is the argument, T ◦ is the return type, I
(
~p◦, ~y

)
is a pattern describing the type of M ,

and {C ⇒ N} are the branches. T ◦ and I
(
~p◦, ~y

)
are related to the typing rule and will

be explained later. M has type I (applied to parameters and arguments), and for each
constructor C of I there is a branch of the form C ⇒ N that represents the value of the
whole expression if M is a term headed by constructor C. This is the usual case analysis

2.2. SYNTAX OF CIĈ− 25

construction found in Haskell or ML, but the typing rule is more complicated due to the
presence of dependent types.

The last construction concerns the definition of recursive functions. A term of the form

fixn f : T ⋆ := M,

defines a recursive function f (bound in M) of type based on T ⋆. The actual type of this
function, let us call it T ′, satisfies |T ′|ı ≡ T ⋆, for some size variable ı. The type T ⋆ should
satisfy several restrictions in order to obtain a terminating function. We define them properly
in Sect. 2.3.

2.2.3 Reduction

The reduction rules define how to compute with terms. Before defining the actual rules,
we introduce some general notation. Let R be a relation on terms. We write →R for the
compatible closure of R,←R for the inverse of→R,→

∗
R for the reflexive-transitive closure, ≈R

for the equivalence closure (reflexive-transitive-symmetric closure), and ↓R for the associated
joinability relation (i.e., M ↓R N iff M →∗R P ←∗R N for some P). We omit the definitions of
the different closure operators, since they are standard.

Definition 2.6 (Reduction relation). We consider three reductions on terms: β-reduction
(for function application), ι-reduction (for case expression), and µ-reduction (for fixpoint
expressions). They are defined by the following rules:

(λx : T ◦.M)N β M [x := N]

caseT ◦ x := Cj(~q◦,~a) in I
(
~p◦, ~y

)
of {Ci ⇒ Ni} ι Nj ~a

F 〈Ni〉i=1..n−1C(~p◦,~a) µ M [f := F] 〈Ni〉i=1..n−1C(~p◦,~a)

where F ≡ fixn f : T ⋆ := M . We write → instead of →βιµ; similarly for →∗, ←, ≈, and ↓.

Note that the n in the fixpoint construction denotes the recursive argument. Only when
applied to n arguments and the n-th argument is in constructor form we perform the re-
duction (by unfolding the recursive function in the body). Unrestricted unfolding of fixpoint
immediately breaks Strong Normalization.

Reduction does not depend on size information; in the reduction rules there is no mention
of stages. In particular, for fixpoint reduction, there is no size substitution involved. This is a
design choice that, as we mentioned in the previous chapter, makes reduction more efficient.
On the other hand, it is necessary to use erased terms to maintain Subject Reduction (cf.
Sect. 2.1).

The reduction relation is confluent, as stated in the next lemma.

Lemma 2.7 (Confluence). If M ≈ N , then M ↓ N .

Proof. Confluence follows easily from the diamond property for →∗: if M →∗ N1 and M →∗

N2, then N1 ↓ N2. The diamond property is proved using the Tait and Martin-Löf’s method
of defining parallel reduction. We briefly sketch how it works. The first step is to define a
reduction called one-step parallel reduction (OSPR); we denote OSPR with ⇒. The main
rule of OSPR is

M1 ⇒M2 N1 ⇒ N2

(λx : T ◦.M1)N1 ⇒M2 [x := N2]

26 CHAPTER 2. CIĈ−

OSPR is reflexive by definition. It is not difficult to see that OSPR satisfies the diamond
property. Then, the diamond property for →∗ follows from → ⊆⇒ ⊆→∗.

We complete the definition of OSPR. The relevant rules are the application rule given
above plus rules to take care of µ-reduction and ι-reduction:

F1 ≡ fixn f : T1
⋆ := M1 F2 ≡ fixn f : T2

⋆ := M2

T1
⋆ ⇒ T2

⋆ M1 ⇒M2 〈N1,i〉i=1..n−1 ⇒ 〈N2,i〉i=1..n−1
~p◦1 ⇒

~p◦2 ~a1 ⇒ ~a2

F1 〈N1,i〉i=1..n−1 (Cj(~p◦1, ~a1))⇒M2 [f := F2] 〈N2,i〉i=1..n−1 (Cj(~p◦2, ~a2))

~a1 ⇒ ~a2 N1,j ⇒ N2,j

caseP ◦ x := Cj(~q◦1,~a1) in I
(
~p◦,~a

)
of 〈Ci ⇒ N1,i〉i ⇒ N2,j ~a2

The definition is completed with compatible closure rules.

2.3 Typing rules

The typing rules define which terms are considered valid. We consider three typing judg-
ments:

– WF(Σ) means that the signature Σ is well formed;
– WFΣ(Γ) means that the context Γ is well formed under the signature Σ;
– Σ; Γ ⊢M : T means that the term M has type T under context Γ and signature Σ.

They are defined inductively by the typing rules. Note that their definition is mutually
recursive: in the last judgment, to check that a term M has type T we need to check that the
signature Σ and context Γ are well-formed. Similarly to check that a context or a signature
is well-formed, we need to check that their components (terms) are well-typed. For the sake
of readability, we usually omit the signature in judgments.

This section is organized as follows. First, we extend the reduction relation defined in
the previous section into a subtyping relation. Then, we define the positivity conditions for
inductive types and the typing rules for them. Finally, we define the typing rules for contexts
and terms.

2.3.1 Subtyping

Recall that the intuitive meaning of an inductive type is a monotone operator. The size
annotations represent approximations of these operator (with ∞ representing the least fixed
point of the operator). On the syntactic level, this intuition is represented by a subtyping
relation, denoted ≤, derived from the substage relation (Def. 2.2).

The subtyping relation includes the usual contravariance rule for products. For induc-
tive types, we assume that each inductive definition includes a declaration of polarities of
parameters. A polarity is either positive, negative, or invariant:

ν ::= + | − | ◦ .

For each inductive type I, we assume a vector of polarities, written I.~ν, denoting the polarities
of the parameters of I. Polarities are used to increase the subtyping relation in the case of
inductive types, by allowing subtyping to occur in the parameters. For example, list∞ (natı) ≤
list∞

(
natı̂

)
.

2.3. TYPING RULES 27

(st-conv)
T1 R T2

T1 �R T2
(st-prod)

T2 �R T1 U1 �R U2

Πx : T1.U1 �R Πx : T2.U2

(st-ind)
s ⊑ s′ ~p1 �

I.~ν
R ~p2 ~a1 R ~a2

Is (~p1, ~a1) �R Is
′

(~p2, ~a2)
(vst-inv)

T1 R U1
~T �~ν

R
~U

T1, ~T �
◦,~ν
R U1, ~U

(vst-pos)
T1 �R U1

~T �~ν
R

~U

T1, ~T �
+,~ν
R U1, ~U

(vst-neg)
U1 �R T1

~T �~ν
R

~U

T1, ~T �
−,~ν
R U1, ~U

(vst-conv)
~T R ~U

~T �∅R
~U

(st-trans)
T1 �R T2 T2 �R T3

T1 �R T3

Figure 2.1: Subtyping relation

Subtyping is then defined in the expected way, using an auxiliary relation that defines
subtyping between vectors of expressions relative to a vector of positivity declarations. Let
R be a relation on terms that is stable under substitution of terms and stages. We define
the subtyping relation parametrized by R, denoted with �R. The rules are given in Fig. 2.1.
The instances of R that we will use are convertibility (≈) and α-equivalence (≡). We write
simply ≤ to mean �≈.

2.3.2 Positivity

We describe two notions of positivity. They are used in the definition of the typing rules
for inductive types to ensure the soundness of the subtyping rules defined above.

We define the predicates ı pos T and ı neg T denoting that a stage variable ı appears
positively in T and negatively in T , respectively. They are defined inductively by the rules
given in Fig. 2.2. The goal of these definitions is to ensure the following property: if ı pos T
(resp. ı neg T) and s ⊑ r, then T [ı := s] ≤ T [ı := r] (resp. T [ı := r] ≤ T [ı := s]). The proof
of these properties follows easily by induction on the positivity predicate.

We briefly explain the rules. If a size variable does not appear on a term, it appears both
positively and negatively. In the case of products, the rule follows that fact that subtyping is
contravariant in the domain and covariant in the codomain. In the case of inductive types we
have to check that the positivity is preserved with respect to the polarity declaration. Note
that ı appears positively in I ı (i.e., ı pos I ı).

We also define a similar notion of positivity of term variable. The predicates x pos T
and x neg T state that x appears positively and negatively in T , respectively. The definition
follows a similar pattern to that of positivity of stage variable.

The rules are given in Fig. 2.3. The main property we are interested is the following: if
x pos T (resp. x neg T) and U1 ≤ U2, then T [x := U1] ≤ T [x := U2] (resp. T [x := U2] ≤
T [x := U1]). The proof follows easily by induction on the positivity predicates.

The definition of positivity is extended in a natural way to sequences of variables and

28 CHAPTER 2. CIĈ−

ı /∈ SV(T)

ı pos T

ı /∈ SV(T)

ı neg T

ı pos T1 ı neg T2

ı neg Πx : T1.T2

ı neg T1 ı pos T2

ı pos Πx : T1.T2

ı posI.~ν ~p ı /∈ SV(~a)

ı pos Is (~p,~a)

⌊s⌋ 6= ı ı negI.~ν ~p ı /∈ SV(~a)

ı neg Is (~p,~a)

x posε ε x neg~ν εε

ı pos T1 ı pos~ν ~T

ı pos+,~ν T1, ~T

ı neg T1 ı pos~ν ~T

ı pos−,~ν T1, ~T

ı /∈ SV(T1) ı pos~ν ~T

ı pos◦,~ν T1, ~T

ı neg T1 ı neg~ν ~T

ı neg+,~ν T1, ~T

ı pos T1 ı neg~ν ~T

ı neg−,~ν T1, ~T

ı /∈ SV(T1) ı neg~ν ~T

ı neg◦,~ν T1, ~T

Figure 2.2: Positivity and negativity of stage variables

x /∈ FV(T) ∨ T ≡ x

x pos T

x /∈ FV(T)

x neg T

x pos T1 x neg T2

x neg Πy : T1.T2

x neg T1 x pos T2

x pos Πy : T1.T2

x posI.~ν ~p x /∈ FV(~a)

x pos Is (~p,~a)

x negI.~ν ~p x /∈ FV(~a)

x neg Is (~p,~a)

x posε ε x negε ε

x pos T1 x pos~ν ~T

x pos+,~ν T1, ~T

x neg T1 x pos~ν ~T

x pos−,~ν T1, ~T

x /∈ FV(T1) x pos~ν ~T

x pos◦,~ν T1, ~T

x neg T1 x neg~ν ~T

x neg+,~ν T1, ~T

x pos T1 x neg~ν ~T

x neg−,~ν T1, ~T

x /∈ FV(T1) x neg~ν ~T

x neg◦,~ν T1, ~T

Figure 2.3: Positivity and negativity of term variables

2.3. TYPING RULES 29

contexts as follows:

x1 pos T1 ~x pos~ν ∆

x1, ~x pos+,~ν (y1 : T1)∆

x1 neg T1 ~x pos~ν ∆

x1, ~x pos−,~ν (y1 : T1)∆

x1 /∈ FV(T1) ~x pos~ν ∆

x1, ~x pos◦,~ν (y1 : T1)∆

Remark: This is not the same definition as in CIĈ . The actual definition in CIĈ is semantic
in nature. Stage positivity is defined as follows: ı posCIĈ T iff ∀s ⊑ r. T [ı := s] ≤CIĈ

U [ı := r]. And similarly for the other notions. Our definition ensures the implication from
left to right, but not in the opposite way.

Given the restrictions we impose on size variables (which are described in the next section),
our definition is sufficient for CIĈ−. We prefer to define it this way to give a more syntactic
definition, compared to CIĈ . Note, however, that both definitions coincide for types in
normal form. That is, if T is in normal form, then ı posCIĈ T iff ı pos T .

2.3.3 Inductive Types

We present the complete definition of inductive types and the conditions that ensure their
correctness. As we mentioned, parameters of inductive types are associated with polarities.
We extend the definition given above to include strict positivity.

Definition 2.8 (Extended polarity). An extended polarity is either strict positivity, positivity,
negativity, or invariant:

ν ::= ⊕ | + | − | ◦ .

Parameters of inductive types are actually associated with extended polarities. The notion
of strict positivity plays an important rôle in the definition of inductive types, as explained
below. The definitions given above (subtyping, positivity of stage variables, and positivity
of term variables) extend immediately to extended polarities by giving ⊕ the same rôle as
+. Extended polarities are introduced to allow an inductive type to be used recursively as
argument of another inductive type (cf. Example 2.12).

An inductive type is introduced by a declaration of the form

Ind(I[∆p]
~ν : A := 〈Ci : Ti〉i) (*)

where I is the name of the inductive type, ∆p is a context defining the parameters of I, ~ν is
a sequence of extended polarities of the parameters, A is the type of I, and 〈Ci : Ti〉i define
the constructors of I. We use the variable X in the types of constructor to indicate recursive
arguments. Given x ∈ dom (∆p), we write ~ν(x) to mean the extended polarity associated
with x.

Inductive definitions are collected in a signature. Formally signatures are defined by the
grammar:

Σ ::= [] | Σ(Ind(I . . .))

where Ind(I . . .) is an inductive type declaration.
The conditions that ensure the correctness of an inductive declaration in CIĈ− are derived

from CIC [72] and CIĈ [19]. From CIC we use the concepts of arity, strict positivity, and
constructor type.

Definition 2.9 (Arity). A term T is an arity of sort u if it satisfies one of the following
conditions:

30 CHAPTER 2. CIĈ−

– T ≡ u;
– T ≡ Πx : U1.U2 and U2 is an arity of sort u

In a declaration of the form (*), A must be an arity of sort Typek for some k.
Recall that an inductive definition defines a monotone operator. One way to ensure

monotonicity is to restrict the variable X in the types of constructor to appear positively.
However, in the case of CIC, this condition is not enough to ensure a correct definition [33]
(see Example 2.13). The stronger condition of strict positivity is required.

Definition 2.10 (Strict Positivity). A variable X occurs strictly positive in a term T , written
X POS T , if one of the following conditions is satisfied:

– X /∈ FV(T);
– T ≡ X t1 . . . tn, and X /∈ FV(t1, . . . , tn);
– T ≡ Πx : U1.U2, X /∈ FV(U1), and X POS U2;
– T ≡ I∞ (〈pi〉i,~a), where I is an inductive definition in Σ, i.e.,

Ind(I[Γ]~ν : A := ∆) ∈ Σ,

(with #~p = #~Γ), and the following conditions hold:
– X /∈ FV(~a),
– X /∈ FV(pk), for all k such that νk 6= ⊕, and
– X POS pk, for all k such that νk = ⊕.
In other words, X appears strictly positive in the strictly positive parameters.

In a correct inductive declaration of the form (*), the variable X appears strictly positive
in the arguments of the constructors. This condition is ensured by the notion of constructor
type.

Definition 2.11 (Constructor type). A term T is a constructor type of X, denoted with
ConstrX(T), if one of the following conditions is satisfied:

– T ≡ X~t;
– T ≡ Πx : U1.U2, where X /∈ FV(U1) and ConstrX(U2);
– T ≡ U1 → U2, where X POS U1 and ConstrX(U2).

Note that if T is a constructor type of X, then T ≡ Π∆.X~t, where X POS ∆.
We are now ready to define the conditions that ensure that an inductive definition is

valid. As mentioned, these conditions depend on the typing judgment for terms. Let Σ be a
signature such that WF(Σ), and let I be the inductive definition

Ind(I[∆p]
~ν : A := 〈Ci : Π∆i.X ~ti〉i=1..n) .

(I1). The inductive definition is well-typed: there exists j such that

∆p ⊢ A : Typej

is a valid typing judgment with signature Σ.

(I2). The constructors are well-typed in the universe Typek, i.e., for each i = 1 . . . n,

∆p(X : A) ⊢ Π∆i.X ~ti : Typek,

where X is a special variable representing the inductive type I applied to the parameters
dom (∆p).

2.3. TYPING RULES 31

(I3). There exists k such that A is an arity of sort Typek. I.e., A ≡ Π∆a.Typek. The sort
Typek is the sort (or the universe) of I. The context ∆a is the context of arguments of
I.

(I4). The types Ti, for i = 1 . . . n, satisfy ConstrX (Ti).

(I5). Each occurrence of inductive types in ∆p,∆a, and in ∆i, ~ti (for i = 1 . . . n), is annotated
with ∞;

(I6). Each variable in ∆p satisfies the polarity condition in the type of each constructor. This
means dom (∆p) pos

~ν ∆p and for i = 1 . . . n, dom (∆p) pos
~ν ∆i.

(I7). Positive and negative variables in ∆p do not appear in ~ti, for i = 1 . . . n.

(I8). Each variable in ∆p satisfies the polarity condition in the arguments of the inductive
type. This means dom (∆p) pos

~ν ∆a.

(I9). Each strictly positive variable in ∆p appears strictly positively in the constructors. This
means if x ∈ dom (∆p) with ~ν(x) = ⊕, then x POS ∆i for i = 1 . . . n.

The first four clauses are standard [72]. We require that all the components be well-typed
—clauses (I1) and (I2)—, that the type A is an arity —clause (I3)— ensuring that I (suitable
applied) is a type itself, and that recursive arguments in constructors are strictly positive
—clause (I4). Note that constructors are well-typed in the same universe as the inductive
type itself. This condition is important to ensure logical consistency.

The next four clauses are taken from CIĈ [19]. Recall, however, that our definition of
positivity for CIĈ− is slightly different than that of CIĈ . Clause (I5) ensures that con-
structors use previously defined inductive types, but not approximations of them. It is
not useful in our current type system to use approximations (e.g., an argument of type
natı) since we cannot instantiate size variables. Consider, for example, an inductive type
Ind(I : Type0 := C : (natı → natı) → X). Then, the term M ≡ C(λx : nat.x) would have
type I∞. Given the global nature of size variables, this type would not be very useful if
we cannot instantiate ı to something else. For example, we would not be able to use ı in
fixpoints, because of the freshness condition we impose. On the other hand, we could allow
instantiating ı to another stage. But this mean that stages would have to appear explicitly
in terms. Since we want to keep stages hidden from the user, we decided not to pursue this
approach.

Clauses (I6) and (I7) reflect the subtyping rules for inductive types, and are used in the
proof of subject reduction.

Clause (I8) is inherited from CIĈ where it is required to guarantee the completeness of
type inference. 2 From subtyping rules, we have that ~p1 ≤

I.~ν ~p2 implies I (~p1,~a) ≤ I (~p2,~a).
We require dom (∆p) pos

I.~ν ∆a to guarantee that if I (~p1,~a) and all the components of p2 are
well typed, then I (~p2,~a) will be well typed.

Lastly, clause (I9) is ensures the soundness of the strict positivity condition for parameters.
The following example show the definitions of some commonly-used inductive types.

Example 2.12. Natural numbers, lists, and trees can be defined as inductive types as follows:

Ind(nat : Type0 := O : X | S : X → X)

Ind(list[A⊕ : Type0] : Type0 := nil : X | cons : A→ X → X)

Ind(tree[A⊕ : Type0] : Type0 := node : A→ list(X)→ X)

2. In this work we do not cover type inference of CIĈ−.

32 CHAPTER 2. CIĈ−

The definitions of natural numbers and lists are standard. A tree is formed by an element of
type A and a list of trees. The definition is allowed because the parameter A in list is strictly
positive. Extended polarities are introduced precisely for this purpose.

Logic connectives can also be defined as inductive types. For example, truth and contra-
diction can be represented as follows:

Ind(True : Type0 := I : X)

Ind(False : Type0 :=)

The following example shows that the restriction to strict positivity in recursive arguments
is essential.

Example 2.13. The condition of strict positivity is essential in clause (I4), as is shown in
this example taken from [33]. Consider the inductive type

Ind(I : Type0 := in : ((X → Prop)→ Prop)→ X)

Then X is positive in the type of in, but not strictly positive. For readability, let us write
X → Prop as P(X). Intuitively, P(X) represents the type of subsets of X, or in set-theoretical
terms, the powerset of X. In the following we assume that we have the usual impredicative
encodings for equality, existential, logical negation and logical conjunction.

Note that in is an injective function of type (P(P(I))→ I.

It is not difficult to write an injective function of type P(I)→ P(P(I)). For example, for
any X, we can take

out ≡ λ(x : X)(y : X).x = y : X → P(X)

Taking X = P(I) we have, where ◦ denotes function composition,

f ≡ in ◦ out : P(I)→ I,

which is an injective function. Following the intuitive meaning of P, we just defined an
injective function from the powerset of I to I. Since there is no such function in set theory,
it is not surprising that we can derive a contradiction. More precisely, taking

P0 ≡ (λx : I.∃(P : I → Prop).x = f P ∧ ¬(P x)) : I → Prop

we can easily conclude P0(f P0) iff ¬P0(f P0).

Note that our definition of positivity does not allow non-invariant parameters to have
function types. For example, the following inductive type is not allowed:

Ind(sigma[(A : Type0)(B : A→ Type0)]
+,+ := dpair : Π(x : A).B a→ X)

However, the same definition with polarities (+, ◦) is valid. The same situation occurs in
CIĈ .

2.3. TYPING RULES 33

Typing rules for signatures. We are now ready to define the typing rules for signatures.
As mentioned, they depend on the typing judgment for terms. There are two rules, one for
the empty signature, and another for adding an inductive type to a signature:

(S-empty)
WF([])

(S-cons)
WF(Σ) I satisfies conditions (I1) to (I9)

WF(Σ, I)

We introduce some abbreviations to handle inductive types. They are used in the typing
rules. Given an inductive definition

Ind(I[∆p]
~ν : Π∆a.u := 〈Ci : Π∆i.X ~ti〉i)

we define

params(I)=∆p

sort(I)=u
typeIndI(~p)=Π∆a [dom (∆p) := ~p] .u

typeConstrsCj
(~p,~a)= I ŝ (~p, tj [dom (∆p) := ~p] [dom (∆j) := ~a])

argsConstrsCj
(~p)=∆j [dom (∆p) := ~p] [X ~u := Is (~p, ~u)]

indicesCj
(~p)= ~tj [dom (∆p) := ~p]

branchsCj
(~p, ~y.x.P)=ΠargsConstrsCj

(~p).P
[
~y := indicesCj

(~p)
]
[x := Cj(|~p|, dom (∆i))]

caseTypesI(~p, ~y, x)= (~y : ∆a [dom (∆p) := ~p])(x : Is (~p, ~y))

in the definition of argsConstr, the replacement [X ~u := Is (~p, ~u)] means to replace each oc-
currence of X ~u by Is (~p, ~u). It only makes sense for well-typed inductive definitions. branch

and caseType are used in the typing rule of the case construction to give the type of a branch
and the return type, respectively (see Sect. 2.4).

2.3.4 Simple types

Up to this point, all the definitions given are also valid for CIĈ (except for positivity as
we already remarked). In the typing rules for terms described below, we depart from CIĈ ,
by making some restrictions on the use of size variables.

Basically, the restriction we make in CIĈ− with respect to CIĈ is in the use of size
variables. Intuitively, we only allow types of the form

Πx1 : T1.Πx2 : T2. . . .Πxn : Tn.Tn+1, (*)

where each Ti is of the form (*), or is of the form Is (~p,~a) with SV(~a) = ∅ (i.e., inductive
types fully applied), or satisfies SV(T) = ∅. We call these types simple. In particular, we do
not allow strong eliminations that involve approximations of inductive types. For example,
we cannot write a function f such that

f n = natı → . . .→ natı,

but we can write a function g such that

g n = nat∞ → . . .→ nat∞ .

34 CHAPTER 2. CIĈ−

(s-empty)
SV(T) = ∅

simple(T)

(s-prod)
simple(T1) simple(T2)

simple(Πx : T1.T2)

(s-ind)
I ∈ Σ simple~ν(~p) SV(~a) = ∅

simple(Is (~p,~a))

(vs-empty)
simpleε(ε)

(vs-inv)
SV(T) = ∅ simple~ν(~T)

simple◦,~ν(T, ~T)

(vs-ninv)
simple(T) simple~ν(~T) ν 6= ◦

simpleν,~ν(T, ~T)

Figure 2.4: Simple types

The computation with full types (i.e., types with no size variables) is not restricted. This way,
CIĈ− is stronger than CIC, but weaker than CIĈ . We discuss in more detail the relation
between CIĈ and CIĈ− in Sect. 2.6. In particular, we see that the restrictions are not so
severe in practice. For example, functions like f above have little practical value in CIĈ .

The main advantage of restricting to simple types is that the model construction is easier
and we are able to adapt the known technique of Λ-sets [7] to the case of CIĈ−. See Chapter 4
for a detailed explanation.

Formally, we define a predicate simple on types that ensures that the form (*) is respected.
We want to allow size variables to appear in parameters of inductive types, e.g. listı(natı), or
listı(natı → natı)/ Arguments, on the other hand, have no size variables.

We extend the predicate to a sequence of terms with polarities. They are defined in
Fig. 2.4. We extend the predicate simple to contexts in the obvious way. Rules (s-empty) and
(s-prod) are defined as expected. In rule (s-ind), we allow size variables in the parameters,
only for non-invariant parameters. This corresponds to our notion of positivity, where non-
invariant parameters of inductive types must be types themselves.

Note that, if simple(Is (~p,~a)) and I is well-formed (it satisfies conditions (I1) to (I9)),
then the arguments and constructors of I are also simple. I.e., simple(argsIndI(~p)) and
simple(argsConstrsC(~p)) for all constructors C of I.

2.4 Terms and contexts

To complete the presentation of the typing system, we present the typing rules for terms
and contexts. From now on, we assume a valid fixed signature Σ and we omit to refer to
it in typing judgments. The typing rules for terms and contexts are given in Fig. 2.5. The
rules for typing sequences of terms are given in Fig. 2.6. For handling the typing of sorts and
products, we use a specification in the style of Pure Type Systems [11]. The set Axiom is a

2.4. TERMS AND CONTEXTS 35

set of pairs that represents the typing relations between sorts. It is defined by

Axiom = {(Prop,Type0)} ∪ {(Typei,Typei+1) : i ∈ N} .

The set Rule is a set of triples of sorts that represents the typing constraints in the formation
of products. It is defined by

Rule = {(Typei,Prop,Prop) : i ∈ N} ∪

{(Typei,Typej ,Typemax(i,j)) : i, j ∈ N} .

Note that {Typek}k is predicative, while Prop is impredicative (cf. Sect. 1.1). These sets are
used in rules (sort) and (prod) in Fig. 2.5.

The side conditions in rules (app), (abs), (ind), (constr), and (case) ensure that we restrict
to simple types. Note that, if we remove these side conditions, the resulting system is that of
CIĈ . 3

We explain in detail the typing rules of CIĈ−. First, let us state some invariants of the
typing judgment that help to understand some design choices we made. Consider a valid
judgment Γ ⊢M : T . Then the following holds:

– simple(Γ) ∧ simple(T);
– T ≈ u⇒ simple(M);
– T 6≈ u⇒ SV(M) = ∅.

Looking at the second and third invariant we see that we always have simple(M). However,
although the simple predicate is defined on terms, we reserve the application for terms that are
actually types (such as in the second invariant). These invariants state that all types involved
in a valid judgment are simple. Furthermore, terms that are not types do not have size
variables. Recall that a term M is full if it does not contain size variables (i.e., SV(M) = ∅).
This corresponds to our intuition that we do not compute with approximations of inductive
types.

Rules (empty) and (cons) deal with well-formedness of contexts and are standard. Rules
(var), (sort), (prod), (abs), (app), and (conv) are also standard. Note from the definition
of the set Rule that Prop is impredicative, while Typej forms a predicative hierarchy. (We
discuss universe inclusion below.) In rule (app), the type of the application is simple. This
follows from the property: simple(T) ∧ SV(M) = ∅ ⇒ simple(T [x := M]). In rule (abs), the
type of the abstraction is erased (the same as in CIĈ). As a further restriction, we require
the body of an abstraction and the argument of an application to be full. This ensures that
we do not compute with approximations of inductive types.

In rule (ind), we require the inductive type to be simple. That implies that arguments
are full, but parameters can have size variables. For example, listı (natı) is well-typed.

Rule (constr) defines the typing of constructors. Recall that constructors are fully applied
to parameters and real arguments. The parameters are erased terms (as in CIĈ), while we
further require the arguments to be full. Note that the size annotation in the return type
is a successor size, while recursive arguments to have a smaller size. This is also true for
non-recursive constructors. For example, ⊢ O : natŝ. Allowing O of type natı would destroy
termination (see rule (fix) and the explanation below).

Rule (case) looks complicated due to the presence of dependent types. The type of the
expression depends on the argument M , whose type is an inductive type. Since different

3. Except for the treatment of the return type in case expressions and the fact that inductive types are

fully applied. However, these differences are not essential.

36 CHAPTER 2. CIĈ−

(empty)
WF([])

(cons)
WF(Γ) Γ ⊢ T : u

WF(Γ(x : T))

(var)
WF(Γ) Γ(x) = T

Γ ⊢ x : T

(sort)
WF(Γ) (u1, u2) ∈ Axiom

Γ ⊢ u1 : u2

(prod)
Γ ⊢ T : u1 Γ(x : T) ⊢ U : u2 (u1, u2, u3) ∈ Rule

Γ ⊢ Πx : T.U : u3

(abs)
Γ(x : T) ⊢M : U

Γ ⊢ λx : |T |.M : Πx : T.U
SV(M) = ∅

(app)
Γ ⊢M : Πx : T.U Γ ⊢ N : T

Γ ⊢M N : U [x := N]
SV(N) = ∅

(conv)
Γ ⊢M : T Γ ⊢ U : u T ≤ U

Γ ⊢M : U

(ind)
I ∈ Σ Γ ⊢ ~p : params(I) Γ ⊢ ~a : argsIndI(~p)

Γ ⊢ Is (~p,~a) : sort(I)
simple(Is (~p,~a))

(constr)

I ∈ Σ Γ ⊢ ~p : params(I)
Γ ⊢ ~a : argsConstrsCi

(~p)

Γ ⊢ Ci(|~p|,~a) : typeConstr
s
Ci
(~p,~a)

simple(typeConstrsCi
(~p,~a))

(case)

Γ ⊢M : I ŝ (~p,~a) I ∈ Σ Γ (caseTypesI(~p, ~y, x)) ⊢ P : u
Γ ⊢ Ni : branch

s
Ci
(~p, ~y.x.P)

Γ ⊢

(
case|P | x := M in I (|~p|, ~y)
of {Ci ⇒ Ni}i

)
: P [~y := ~a] [x := M]

SV(Ni) = ∅

(fix)

T ≡ Π∆(x : I ı (~p, ~u)).U ı pos U #∆ = n− 1
ı /∈ SV(Γ,∆, ~p, ~u,M) Γ ⊢ T : u Γ(f : T) ⊢M : T [ı := ı̂]

Γ ⊢ fixn f : |T |ı := M : T [ı := s]

Figure 2.5: Typing rules of terms and contexts of CIĈ−

2.4. TERMS AND CONTEXTS 37

(c-empty)
WF(Γ)

Γ ⊢ ε : []

(c-cons)
Γ ⊢M : T Γ ⊢ ~N [x := M] : ∆ [x := M]

Γ ⊢M, ~N : (x : T)∆

Figure 2.6: Typing rules for sequences of terms

constructors can have different indices, the return type |P | also depends on the indices. We
use a syntax similar to that of Coq, where we make explicit the bound variables in |P | (x for
the argument of the case and ~y for the indices). Note that by the invariants of the typing
judgment, we have simple(P). Also by the invariants, SV(~a) = SV(M) = ∅. Then the
return type of the expression, satisfies simple(P [~y := ~a] [x := M]). We use the abbreviations
caseType to give the type to the variables x and ~y, and branch to give the type of a branch.
Note that the size of argument is required to be a successor size. Recursive arguments in
the branches can thus be given a smaller size. This is essential to allow recursive calls on
recursive arguments in the definitions of fixpoints.

Finally, rule (fix) allows to type recursive functions. The natural number n indicates the
recursive argument. The type of the function is of the form

T ≡ Π∆(x : I ı (~p, ~u)).U(ı)

where #∆ = n− 1. The size variable ı is fresh (ı /∈ SV(Γ)) and does not appear in ∆, ~p, nor
~u. It does not appear in M either. This last condition is used to ensure Subject Reduction
(cf. Sect. 2.1). It can, however, appear (positively) in U . This is a sufficient condition to
ensure termination. If we allow ı to appear in U without restrictions, then it is possible to
type non-terminating functions, as shown by Abel [1].

Note that the type of M is T [ı := ı̂], which is a type of the form

Π∆(x : I ı̂ (~p, ~u)).U (̂ı)

where the recursive argument (the n-th argument) is of type I with size ı̂. In M is possible
to make recursive calls to f that has a type of the form

Π∆(x : I ı (~p, ~u)).U(ı)

where the recursive argument has type I with size only ı. Effectively, it is possible to make
recursive calls only to smaller arguments. This condition together with ı pos U ensure that
we define a terminating function.

Note that we require ı not to appear in ~p. This means that we cannot define, for example,
fixpoints of type

listı(natı)→ U(ı)

Although this type would not introduce problems, the following example is not valid. Consider
the inductive type I defined by

Ind(I[A⊕ : Type] : Type := C : (nat∞ → A)→ X)

38 CHAPTER 2. CIĈ−

Then, the type

I ı(natı)→ U(ı)

with ı pos U is not valid for fixpoints. Note that the type Is(nats) is equivalent to the type of
functions nat∞ → nats, i.e., there is a bijection between both types. The intuitive semantics
of nat∞ → nats is the set of functions N → {0, 1, . . . , s − 1}. Then, it is not true that
I∞(nat∞) =

⋃
ı I

ı(natı), and the soundness of the typing rule for fixpoint cannot be justified
in this case. Although I is not recursive, we can add recursive constructors and the argument
remains valid.

Finally, let us describe the use of position types in fixpoints. The position type T ⋆ in
the term satisfies |T |ı ≡ T ⋆. The occurrences of ⋆ in T ⋆ correspond with size expressions s
in T whose base variables is ı (i.e., ⌊s⌋ = ı). The ⋆ allows to mark which stages should be
related to ı permitting size-preserving functions. For example, using position types of the
form nat⋆ → nat⋆ and nat⋆ → nat → nat⋆ we can define fixpoints of type natı → natı and
natı → nat∞ → natı, respectively.

With position types it is possible to ensure compact most general types. For example,
consider the following valid judgments:

⊢ (fix1 f : nat⋆ → nat := λx : nat.O) : natı → nat̂

⊢ (fix1 f : nat⋆ → nat⋆ := λx : nat.O) : natı → natı

Note that the types are not comparable (since we cannot compare different size variables).
Without the use of position types, we would need a form of union types to express the most
general type of the above function.

Position types are used in CIĈ to generate compact general types [19]. Then, the ex-
tra burden in annotating position types is justified by the simplicity of the size-inference
algorithm.

Although we do not consider size-inference in this work, the algorithm of [19] should be
easily adapted to the case of CIĈ−. Intuitively the algorithm works as follows: given an bare
context Γ◦ and a bare term M◦, it returns a tuple (Γ′,M ′, T ′, C) where Γ′ is an annotated
context such that |Γ′| ≡ Γ◦, M ′ is an annotated term such that |M ′| ≡M◦, T ′ is an annotated
type, and C is a set of constraints on size variables. Soundness of the algorithm means that
given a substitution ρ from size variables to stages such that Cρ is a valid set of constraints,
then Γ′ρ ⊢M ′ρ : T ′ρ is a valid judgment.

It seems that this algorithm can be readily adapted to CIĈ−. All we need to do is add
constraints that will ensure that types are simple. This means, constraints of the form∞ ⊑ α,
where α is an annotation generated by the algorithm. This will ensure that α can only be
instantiated to ∞.

2.5 Examples

We show several example that illustrate the features of the type-based termination ap-
proach. For the sake of readability, we omit some type annotations and inline the argu-
ments of constructors in the branches of a case construction: we write C ~x ⇒ . . ., instead of
C ⇒ λ~x.

2.5. EXAMPLES 39

Division of natural numbers. We show how to type the function div x y = ⌈ x
y+1⌉, defined

by repeated subtraction. It is a simple example showing that it is possible to type non-
structural recursive functions in CIĈ−. The definitions are the same as in the introduction
to type-based termination (Sect. 1.2.2).

minus : nats → nat∞ → nats

minus
def
= fix1 minus : nat⋆ → nat→ nat⋆ :=

λx y. casexnat of
| O⇒ O

| S x′ ⇒ case nat y of

| O⇒ Sx′

| S y′ ⇒ minus x′
nat(ı) y

Note the use of the position type nat⋆ → nat→ nat⋆ to ensure that minus can have the type
nats → nat∞ → nats for any s. This is the key to allow the following definition:

div : nats → nat∞ → nats

div
def
= fix1 div : nat⋆ → nat→ nat⋆ :=

λx y. case xnat of
| O⇒ O

| S x′ ⇒ S (div (minusx′ y) y)

As explained in Chapter 1, the recursive call with first argument minusx′ y is accepted because
minus is given a size-preserving type. Note that x′ and minusx′ y have the same size.

Quicksort. Another example of non-structural recursive function is quicksort. It is a typ-
ical example in type-based termination approaches. It shows the benefits of allowing size-
preserving functions. Consider the function that concatenates two lists:

append : Π(A : Type0).list
∞(A)→ list∞(A)→ list∞(A)

append
def
= λA. fix1 append : list⋆(A)→ list(A)→ list(A) :=

λ l1 l2. case list(A) l1 of

| nil⇒ l2
| consh t⇒ consh (append t l2)

We can only give to append the type list∞(A)→ list∞(A)→ list∞(A), or lists(A)→ listr(A)→
list∞(A). But it is not possible to express the more precise type lists(A) → listr(A) →
lists+r(A) since our size algebra does not include an addition operator.

Another standard function on lists is filter. It removes the elements of a list that do not
satisfy a given predicate. The usual definition can be typed in CIĈ−, with a more precise
type:

filter : ΠA : Type0.(A→ bool)→ lists(A)→ lists(A)

filter
def
= λA (p : A→ bool).fix1 filter : list⋆(A)→ list⋆(A) :=

λ l. case list(A) l of

| nil⇒ nil

| consh t⇒ case bool p h of

| true⇒ consh (filter t)
| false⇒ filter t

40 CHAPTER 2. CIĈ−

The precise type of filter allows to type-check the following definition of quicksort:

qsort : ΠA : Type0.list
s(A)→ list∞(A)

qsort
def
= λA.fix1 qsort : list⋆(A)→ list(A) :=

λ l. case list(A) l of

| nil⇒ nil

| consh t⇒ append (filterA (<h) t)
(consh (filterA (≥h) t))

where (< h) a is true when a is less than h and false otherwise, and (≥ h) a is true when a is
greater of equal than h and false otherwise. The trick to allow this function to type-check is
the size-preserving type of filter. The use of the position type list⋆(A)→ list⋆(A) is essential.

Note that qsort has type lists(A) → list∞(A). We can not give a size-preserving type to
qsort since we can not give a size-preserving type to append. In [21], Barthe et al. consider an
extension of system F, where append can be given type lists(A)→ listr(A)→ lists+r(A). They
consider a richer size algebra that includes addition and 0. Non-recursive constructors are
given size 0, e.g., nil has type list0(A). Furthermore, the type system includes sized products,
which are used to define the function partition of type:

(A→ bool)→ lists(A)→ lists1(A)×s lists2(A)

The result of partition p l is a pair of lists (l1, l2) where l1 contains the elements of l that satisfy
p and l2 the elements of l that do not satisfy p. The sized product lists1(A)×s lists2(A) means
that the relation s1 + s2 = s is satisfied. As a consequence, qsort can be typed as a size-
preserving function with type lists(A)→ lists(A). However, this is possible at the expense of
a complicated type system that has to keep track of constraints between sizes. Furthermore,
some changes in the syntax are required: the body of fixpoints is restricted to be a case
expression.

Trees and lists. Let us recall the definition of trees in terms of lists:

Ind(tree[A⊕ : Type0] : Type0 := node : A→ list (X)→ X) .

Defining trees this way means that we can reuse functions on lists. For example, we can define
a mapping function on trees as follows:

map tree : Π(A : Type0)(B : Type0).(A→ B)→ trees(A)→ trees(B)

map tree
def
= λAB (f : A→ B).fix1 map tree : tree⋆(A)→ tree⋆(B) :=

λ t. case tree(B) t of

| nodex l⇒ node (f x) (map map tree l)

where map is the usual mapping function on lists, which has the size-preserving type

map : Π(A : Type0)(B : Type0).(A→ B)→ lists(A)→ lists(B)

In the recursive call mapmap tree l, the recursive function map tree has type treeı(A) →
treeı(B) where ı is the fresh size variable introduced in the typing rule (fix), and l has type
list∞(treeı(A)). Then, the expression mapmap tree l has type treeı(B), while the expression
node (f x) (mapmap tree l) has type treeı̂(B) as desired.

2.5. EXAMPLES 41

Ad-Hoc Predicate. We present an example based on the work of Bove [27]. The idea is
to define a recursive function by induction on an ad-hoc predicate that defines the structure
of recursive calls. This example is taken from [23]. We show that sized types simplify the use
of this technique.

Consider the function that calculates the logarithm of base 2 of a natural number. In
Haskell, we could write something like

log2 (S O) = O

log2 (S (S p)) = S (log2 (S (div2 p)))

where div2 divides a number by 2.
There are two things to notice. First, this is a partial function, since it is not defined

for zero. Second, it is not structurally recursive. Furthermore, it cannot be directly written
using sized types, since the argument of the recursive call is headed by a constructor. This
means that its type has a successor size, hence the recursive call cannot be made.

This cannot be written directly in Coq either. The idea presented in [27] is to define an
inductive predicate that represents the structure of recursive calls of a function. While this
is not the only way of defining log2 in Coq, the approach illustrates a technique that is useful
for defining function that have complicated recursion patterns. We will see how the use of
this technique is simplified in CIĈ−.

To define the logarithm function given above, we define the following inductive type that
reflects the recursion pattern:

Ind(log domain : nat→ Type0 := log domain1 : X (SO),
log domain2 : Π(p : nat).X (S (div2 p))→ X (S (S p)))

The function log2 can be defined by recursion on this type. The trick is to show the so-called
inversion lemmas. In this case, there is only one inversion lemma with type

log domain inv : Π(p : nat∞).log domainŝ (S (S p))→ log domains (S (div2 p))

Note that the size decreases in the return type. This allows us to make recursive call on the
result of this function. Thus we can define

log2 : Π(x : nat∞).log domains(x)→ nat

log2
def
= fix1 log2 : Π(x : nat).log domain⋆(x)→ nat :=

(λ(x : nat)(h : log domain(x)).
case log domain(x0)→nat x0 := x of

| O⇒ λ(h′ : log domain(O)). . . .
| Sx′ ⇒ case log domain(Sx1)→nat x1 := x′ of

| O⇒ λ .O
| S p⇒ λ(h′ : log domain(S (S p)).

S (log2 (S (div2 p))) (log domain inv p h′)
) h

Note that we do a case analysis on the term of type nat, following the pattern of the Haskell
definition, but the recursion is done on the predicate. The definition follows a similar pattern
to the Haskell definition, except for the extra bookkeeping related to the predicate log domain.
In the case of O, we can prove False from log domain(x) and x = 0. We omit the proof since
it is not related to sized types.

42 CHAPTER 2. CIĈ−

In Coq, to make this definition type-check, we have to make explicit that we do the
recursion on the predicate log domain. Furthermore, the proof of the inversion lemma has
to be done in a specific way in order to show that the result is structurally smaller than
the argument. That is, log domain inv p h′ must be structurally smaller than h′. To show
termination, Coq unfolds the definition of log domain inv in the definition log2.

In CIĈ−, the situation is simplified. Only the type of log domain inv is necessary to
type-check the definition of log2. The actual definition is not important for log2 to be well
typed. The situation is similar to the div/minus example given above. Only the type of minus

(log domain inv in this case) is necessary to ensure that div (log2 in this case) is well typed
and therefore terminating.

For example, one way of defining log domain inv is the following:

log domain inv
def
=λ (p : nat) (h : log domain(S (S p))).

case n0=S (S p)→log domain(S (div2 p)) h in log domain(n0) of

| log domain1⇒
λHeq : SO = S (S p). case log domain(S (div2 p)) M0Heq of

| log domain2 pH ⇒
λHeq : S (S p0) = S (S p). case log domain(y) M1Heq in eq(nat, p0, y) of

| refl⇒ H

where M0 and M1 have types SO = S (S p) → False and S (S p0) = S (S p) → p0 = p,
respectively.

Remark: In Coq, we would define the predicate log domain in Prop instead of Type0.
Although both approaches work for defining log2, however, using the extraction mechanism
would produce different results. If defined as a propositional type, all traces of log domain

are removed as computationally irrelevant. The extracted function is essentially the same as
the initial Haskell definition. This is not the case if log domain is defined as a computational
type.

Recall that in this work we do not consider inductive propositional types. We leave the
study of this important extension for future work.

2.6 A Comparison Between CIC−̂ and CIĈ
Let us come back to the differences between CIĈ− and CIĈ . Basically, CIĈ is the system

presented in Sections 2.2 and 2.3, removing the side conditions in rules (abs), (app), (ind),
(constr), and (case) in Fig. 2.5, that are related to simple types. CIĈ− is thus a subsystem of
CIĈ ; all valid typing judgments of CIĈ− are also valid for CIĈ . The opposite direction is
not true. It is easy to find examples of typing derivations of CIĈ that are not valid in CIĈ−.
A trivial example, although not interesting, is ⊢ (λx : Type0.x)nat

ı : Type0.

In this section we argue that, in practice, typing derivations of CIĈ can be translated
to CIĈ−. For the purposes of this comparison, we assume that both systems have the same
syntax. We write ⊢̂ to denote the typing relation of CIĈ .

Consider the following property, valid on both systems:

Γ ⊢M : T ⇒ Γ [ı := s] ⊢M [ı := s] : T [ı := s]

2.7. RELATED WORK 43

This property is called Stage Substitution (see Lemma 3.17). This property says that we can
substitute a stage variable with any stage expression in a well-typed judgment. Recall that
stage variables are implicitly declared at the global level.

Assume a valid judgment Γ ⊢̂ M : T . Let us try to translate it into a valid judgment for
CIĈ−. By Stage Substitution, we can replace all size variables in Γ, M , T by ∞ obtaining a
valid judgment Γ∞ ⊢̂ M∞ : T∞. Note that Γ∞ and T∞ are simple (since they contain no
size variables). However, this does not imply that the judgment is valid in CIĈ−, since there
are size variables appear in the derivation Γ∞ ⊢̂ M∞ : T∞, introduced by the fixpoint rule.
If there are no fixpoint in Γ, M , nor T , then Γ∞ ⊢M∞ : T∞ is also valid in CIĈ−.

Let us consider the case where fixpoints appear, for example, in M . Let us assume that
M contains a fixpoint of type T . If T is a valid type for fixpoint, and is in normal form, it
has the form

Π∆(x : I ı(~p,~a)).U(ı)

for some size variable ı with ı /∈ SV(∆, ~p,~a) and ı posCIĈ U . If the fixpoint is not nested
inside another, we can assume that SV(T) = {ı}, since all other size variables can be replaced
by ∞. Since U is in normal form, we have ı pos U . The type T satisfies simple(T); it can be
used as a valid type for fixpoint in CIĈ−.

This does not mean that the derivation of M can be translated to CIĈ−. In the derivation
of the body of the fixpoint, the variable ı can be used in ways that to dot satisfy the simple

predicate. However, if only subterms of T are used in the derivation of the body of the fixpoint,
then the predicate simple would be satisfied. For example, if T ≡ nat∞ → listı (nat∞) →
nat∞ → natı, then the subterms nat∞, natı and listı(nat∞) are all simple.

Typically, definitions by fixpoint follow this pattern. This is the case for the examples in
Sect. 2.5. Also for all the examples in [17,18,19,20] which are valid in CIĈ−.

2.7 Related Work

The idea of using types to ensure termination has a long history that can be traced back to
the work of Mendler [64]. In the context of functional programming languages, an extension
of Haskell with type-based termination is introduced in Hughes et al. [48], developed in detail
in Pareto’s thesis [71].

Type-based termination in dependent type theory. Giménez [40] considers a simple
type-based termination mechanism for an extension of CC with inductive and coinductive
definitions. His systems allows the possibility of expressing size-preserving functions, but
does not include an explicit representation of stages. Size-preserving functions are expressed
through constraints. For example, the minus function has type ∀X ≤ nat.X → nat→ X.

Barras [13,14] uses a similar mechanism in his formalization of the metatheory of CIC.

Another important related work is that of Blanqui [25]. He develops an extension of
CC with rewriting rules, and uses a type-based criterion to ensure termination. The main
difference with our approach is the use of rewriting rules, instead of fixpoint and case analysis.
The advantage of using rewriting rules is the possibility of including non-deterministic rules

44 CHAPTER 2. CIĈ−

such as

plusO y → y

plus (Sx) y → S (plusx y)

plusxO→ x

This is not possible with the fixpoint+case approach. On the other hand, the use of rewriting
requires the use of complex criteria to ensure that rewriting rules are confluent.

Explicit sizes. Abel [1] introduces an extension of Fω, called F̂ω. Unlike the systems in
the CIĈ family, in F̂ω stages are defined as part of the language. Sizes are similar to CIĈ ,
having a successor operator and ∞, but are defined as terms of a kind ord. The typing rules
governing sizes are:

Γ ⊢ ord kind

Γ ⊢ s : ord

Γ ⊢ ŝ : ord Γ ⊢ ∞ : ord

Being a non-dependent theory (types cannot depend on values), there are separate syntactic
categories for terms, types constructors and kinds. Abstractions are in Curry-style, i.e., do
not include the type of the argument, as in λx.M . Fixpoints do not include the type of the
abstraction neither. The typing rule is the following:

A fixn-adm Γ ⊢ a : ord

Γ ⊢ fixn : (∀ı:ord.A ı→ A ı̂)→ Aa

where fixn-adm is a predicate that ensures that A is a valid type for recursion. Introduction
and elimination of ∀ is implicit. We show the typing rule for the particular case of size
quantification, although similar rules apply to quantification on any kind.

Γ(ı : ord) ⊢ t : F ı

Γ ⊢ t : ∀ı:ord.F
ı /∈ FV(F)

Γ ⊢ t : ∀ı:ord.F Γ ⊢ a : ord

Γ ⊢ t : F a

As an example of fixpoint, addition of natural numbers could be defined with type natı →
nat∞ → nat∞ as follows:

fix1(λplus.λx.λy.case x of O⇒ y | S⇒ λx′.S (plusx′ y))

Since abstraction is Curry-style and size abstraction and application is implicit, there are
no sizes appearing in terms. Hence, the problem we have in CIĈ− with Subject Reduction
does not appear in this case.

In the case of dependent types, a Church-style abstraction is necessary, in order to have
decidability of type-checking. Abel [3] proposes a programming language featuring dependent
and sized types in the form of an implementation called MiniAgda. It features dependent
types, Agda-style pattern-matching definitions, and sized inductive and coinductive types.

Sizes are explicit. They are defined by a built-in inductive type with two constructors:
successor and infinity. However, it is not allowed to pattern-match on sizes and there are sev-
eral restrictions that ensure that sizes are not needed in computation. In particular, MiniAgda
features two different variants of products and abstractions: explicit and implicit. The former
kind is just the usual constructions for dependent product. The latter is inspired by [15,67]

2.7. RELATED WORK 45

and ICC [65]. Implicit products and abstraction behave like their explicit counterparts, but
their typing rules are more restricted to ensure that they can be removed in runtime without
affecting computational behavior. As an example, we show how to define natural numbers in
MiniAgda:

Ind(nat : size→ Type := O : Π[s : size].nat ŝ
S : Π[s : size].nat s→ nat ŝ)

where implicit product is denoted by Π[x : T].U . If we remove the implicit product, the
definition is similar to that of CIĈ−. Functions like minus, div can be given type Π[ı : size]→
natı → nat∞ → natı.

Comparing F̂ω and MiniAgda against CIĈ and CIĈ−, the main difference is the use of
explicit sizes in the former systems. We see as an advantage the implicit nature of sizes in
CIĈ , since they can be inferred and, thus, are completely transparent to the user. On the
other hand, the advantage of having to explicitly declare sizes is the possibility to express
precise types for functions that are not possible in CIĈ .

It is of interest to compare thoroughly the approach of implicit products of MiniAgda
against the approach of CIĈ . It seems that, after deleting implicit arguments in MiniAgda,
one obtain similar definitions to those of CIĈ . However, this would require a precise definition
of MiniAgda and its termination checker (which seems to be a more complex than CIĈ). As
far as I am aware, a formal description of MiniAgda has not been developed yet.

F̂ω and MiniAgda allow a more relaxed notion of valid type for fixpoint than CIĈ−. For
example, the function that computes the maximum of two natural numbers can be given the
type natı → natı → natı. This is not possible in our definition of CIĈ−. Semantically, such
types are justified by the principle of semi-continuity [2]. In the case of CIĈ−, although the
type natı → natı → natı is not allowed for recursion, the model we present in Chapter 4
supports it. It seems fair to think that a similar criterion to Abel’s semi-continuity can be
defined for CIĈ−.

Other approaches to termination. Wahlstedt [82] presents a Martin-Löf type theory
with first-order datatypes, where termination of recursive functions is ensured by the size-
change principle [50]. It is a powerful method that handles lexicographic orders and permuting
arguments. However, it cannot handle the quicksort function.

46 CHAPTER 2. CIĈ−

Chapter 3

Metatheory of CIC−̂

In this chapter we show some basic metatheoretical results about CIĈ−. For tech-
nical reasons explained in Chapter 4, we introduce an annotated variant of CIĈ− called
ECIĈ−(Sect. 3.2). We prove the equivalence between both presentations in Sect. 3.2.4). As
a consequence, we can prove transfer metatheoretical properties from ECIĈ− to CIĈ−. In
particular, SN for CIĈ− is a corollary of SN for ECIĈ−. Chapter 4 is devoted to the proof of
SN for ECIĈ−.

The main properties about CIĈ− that we prove in this chapter are the following:
– Weakening (Lemma 3.16). It states that typing is preserved if we add hypotheses to

the context: if Γ ⊢M : T and ∆ ≤ Γ, then ∆ ⊢M : T . (cf Def. 3.15).
– Stage substitution (Lemma 3.17). It states that typing is preserved under replacement

of a size variable: if Γ ⊢M : T then Γ [ı := s] ⊢M [ı := s] : T [ı := s].
– Substitution (Lemma 3.20). It states that typing is preserved under replacement of a
term variable: if Γ(x : T)∆ ⊢ M : U , Γ ⊢ N : T , and SV(N) = ∅, then Γ∆ [x := N] ⊢
M [x := N] : T [x := N].

– Subject reduction (Lemma 3.24). It states that typing is preserved under reduction: if
Γ ⊢M : T and M →M ′ then Γ ⊢M ′ : T .

– Strengthening (Lemma 3.26). It states that typing is preserved if we remove unused
hypotheses from the context: if Γ(x : T)∆ ⊢ M : U and x /∈ FV(∆,M,U), then Γ∆ ⊢
M : U .

– Strong normalization (Corollary 3.66). It states that well-typed terms are strongly
normalizing.

– Logical consistency (Corollary 3.67). It states that it is not possible to prove false
statements in the empty context: there is no term M such that ⊢M : False.

3.1 Basic Metatheory

In this section we prove the basic metatheory of CIĈ−. We begin by proving some metathe-
oretical results on the subtyping relation.

Subtyping

The following auxiliary results on stages are easy to prove by induction.

Lemma 3.1. If r̂ ⊑ ŝ, then r ⊑ s.

47

48 CHAPTER 3. METATHEORY OF CIĈ−

Proof. By induction on the substage relation.

Lemma 3.2. If r1 ⊑ r2, then r1 [ı := s] ⊑ r2 [ı := s].

Proof. By induction on the substage relation.

We prove a Generation Lemma and Substitution Lemma for the subtyping relation.

Lemma 3.3 (Generation lemma for subtyping).

1. If T1 ≤ T2 and T2 ≈ Is (~p2, ~a2), then T1 ≈ Ir (~p1, ~a1), r ⊑ s, ~p1 ≤
I.~ν ~p2 and ~a1 ≈ ~a2.

2. If T1 ≤ T2 and T1 ≈ Ir (~p1, ~a1), then T2 ≈ Is (~p2, ~a2), r ⊑ s, ~p1 ≤
I.~ν ~p2, and ~a1 ≈ ~a2.

3. If T1 ≤ T2 and T2 ≡ Πx : A2.B2, then T1 ≈ Πx : A1.B1, A2 ≤ A1 and B1 ≤ B2.

4. If T1 ≤ T2 and T1 ≡ Πx : A1.B1, then T2 ≈ Πx : A2.B2, A2 ≤ A1 and B1 ≤ B2.

Proof. By induction on the subtyping derivation.

Lemma 3.4 (Stage substitution for subtyping). If T ≤ U , then T [ı := s] ≤ U [ı := s].

Proof. By induction on the subtyping derivation. In rule (st-conv) we use the fact that
reduction is preserved under stage substitution. In rule (st-ind) we use Lemma 3.2.

Lemma 3.5. If T1 ≤ T2, then |T1| ≈ |T2|.

Proof. By induction on the subtyping derivation. In rule (st-conv) we use the fact that
reduction is preserved under erasure.

We give an alternative definition of subtyping that does not have a transitivity rule. It is
used in Sect. 3.2.4, where we prove the equivalence between CIĈ− and ECIĈ−.

Definition 3.6 (Subtyping (alternative)). The alternative subtyping relation, denoted by ≤a,
is defined by the following rules:

(ast-conv)
T ≈ U

T ≤a U

(ast-ind)
T →∗ Is (~p1, ~a1) U →∗ Ir (~p2, ~a2) s ⊑ r ~p1 ≤

I.~ν
a ~p2 ~a1 ≈ ~a2

T ≤a U

(ast-prod)
T →∗ Πx : T1.T2 U →∗ Πx : U1.U2 U1 ≤a T1 T2 ≤a U2

T ≤a U

(vast-pos)
T1 ≤a U1

~T ≤~ν
a
~U

T1, ~T ≤
+~ν
a U1, ~U

(vast-neg)
U1 ≤a T1

~T ≤~ν
a
~U

T1, ~T ≤
−~ν
a U1, ~U

(vast-inv)
T1 ≈ U1

~T ≤~ν
a
~U

T1, ~T ≤
◦~ν
a U1, ~U

(vast-conv)
~T ≈ ~U

~T ≤∅a ~U

3.1. BASIC METATHEORY 49

We prove that both definitions are equivalent. Note that it is easy to prove that T ≤a

U ⇒ T ≤ U (by induction on the subtyping relation). For the other direction, we first show
that ≤a is transitive. We use the following lemma.

Lemma 3.7. If T ≈ T ′ ≤a U ′ ≈ U , then T ≤a U , with a derivation of the same height. If
~T ≈ ~T ′ ≤~ν

a
~U ′ ≈ ~U , then ~T ≤~ν

a
~U , with a derivation of the same height.

Proof. We proceed by simultaneous induction on the subtyping derivation. We proceed by
induction on the subtyping derivation. We consider the case of inductive type. T ′ ≤a U ′ is
derived from T ′ →∗ Is

(
~t1
)
~u1, U

′ →∗ Ir
(
~t2
)
~u2, s ⊑ r, ~t1 ≤

~ν
a
~t2, and ~u1 ≈ ~u2. By confluence,

there exists ~t′1,
~t′2,

~u′1, and
~u′2 such that T, Is

(
~t1
)
~u1 →

∗ Is
(
~t′1

)
~u′1, and U, Ir

(
~t2
)
~u2 →

∗

Ir
(
~t′2

)
~u′2. We have then ~t1 →

∗ ~t′1 and ~t2 →
∗ ~t′2. By IH, ~t′1 ≤

~ν
a
~t′2 with a derivation of the

same height. Similarly, ~u′1 ≈
~u′2. The result follows.

The case of product follows by a similar reasoning. The rest of the cases follows easily by
IH and confluence.

The previous lemma is used in the following proof of transitivity of the alternative sub-
typing relation.

Lemma 3.8 (Transitivity of ≤a). If T1 ≤a T2 and T2 ≤a T3, then T1 ≤a T3.

Proof. We proceed by induction on the sum of the height of the derivations of T1 ≤a T2,
and T2 ≤a T3, and case analysis in the last rule used. If one of the derivations end with
the (ast-conv), the result follows from the previous lemma. We consider the case where
both derivations end with rule (ast-prod). T1 ≤a T2 is derived from T1 →

∗ Πx : U1.W1,
T2 →

∗ Πx : U2.W2, U2 ≤a U1, W1 ≤a W2. T2 ≤a T3 is derived from T2 →
∗ Πx : U ′2.W

′
2,

T3 →
∗ Πx : U3.W3, U3 ≤a U ′2, W

′
2 ≤a W3. By confluence, U2 ≈ U ′2 and W2 ≈ W ′2. Applying

the previous lemma, we have U ′2 ≤a U1 with a derivation of the same height as the derivation
of U2 ≤a U1. Similarly, we have a derivation of W1 ≤a W ′2. We can apply the IH, and obtain
U3 ≤a U1 and W1 ≤a W3. The result follows by applying rule (ast-prod).

The other direction in the proof of equivalence between both subtyping relations given
follows easily using the previous lemma for the difficult case of transitivity.

Lemma 3.9. If T ≤ U , then T ≤a U .

Proof. By induction on the subtyping derivation, using the previous lemma for rule (st-trans).

Substitutions

Substitutions generalize the concept of substitution of free variables of a term. They are
not strictly necessary in this chapter, but will be useful in Chapter 6.

A pre-substitution is a function σ, from variables to terms, such that σ(x) 6= x for a finite
number of variables x. The set of variables for which σ(x) 6= x is the domain of σ and is
denoted dom (σ). Given a term N and a pre-substitution σ, we write Nσ to mean the term
obtained by simultaneously substituting every free variable x of N with σ(x). The set of free
variables of a pre-substitution σ is defined as FV(σ) = ∪x∈dom(σ)FV(xσ).

50 CHAPTER 3. METATHEORY OF CIĈ−

A substitution is an idempotent pre-substitution. I.e., a pre-substitution σ is a substitution
if for every term N , Nσ ≡ Nσσ; or equivalently, if FV(σ) ∩ dom (σ) = ∅. We use σ, ρ, . . . to
denote substitutions.

Substitutions can be composed: if σ and ρ are substitutions, σρ denotes a substitution
such that xσρ = (xσ)ρ. Two substitutions σ and ρ are convertible, written σ ≈ ρ, if for every
variable x, xσ ≈ xρ.

Given a substitution σ and contexts Γ, ∆, we say that σ is well-typed from Γ to ∆, written
σ : Γ→ ∆, if WF(Γ), WF(∆), dom (σ) ⊆ dom (Γ), and for every (x : T) ∈ Γ, ∆ ⊢ xσ : Tσ.

We use Γ ⊢ σ : ∆ → Θ to denote a well-typed substitution from Γ∆ to ΓΘ such that
dom (σ) ⊆ dom (∆). We use Γ ⊢ σ : ∆ to denote Γ ⊢ σ : ∆→ [].

Typing judgment

We prove a series of lemmas on typing judgment leading to Subject Reduction (Lemma 3.24).
These include useful lemmas such as Stage Substitution (Lemma 3.17) and Substitution
(Lemma 3.20). We first prove the Generation Lemma.

Lemma 3.10 (Generation).

1. Γ ⊢ x : U ⇒ (x : T) ∈ Γ ∧ T ≤ U
2. Γ ⊢ u : U ⇒ u′ ≤ U ∧ (u, u′) ∈ Axiom

3. Γ ⊢ Πx : T1.T2 : U ⇒ Γ ⊢ T1 : u1 ∧ Γ(x : T1) ⊢ T2 : u2 ∧ u3 ≤ U ∧
(u1, u2, u3) ∈ Rule

4. Γ ⊢ λx : T ◦.M : U ⇒ Γ(x : T ′) ⊢M : W ∧Πx : T ′.W ≤ U ∧
Γ ⊢ Πx : T ′.W : u ∧ |T ′| = T ◦ ∧ SV(M) = ∅

5. Γ ⊢M N : U ⇒ Γ ⊢M : Πx : T.W ∧ Γ ⊢ N : T ∧
W [x := N] ≤ U ∧ SV(N) = ∅

6. Γ ⊢ Is (~p,~a) : U ⇒ Γ ⊢ ~p : params(I)∧Γ ⊢ ~a : argsIndI(~p)∧sort(I) ≤ U

7. Γ ⊢ C(~p◦,~a) : U ⇒ Γ ⊢ ~p′ : params(I) ∧ Γ ⊢ ~a : argsConstrsC(~p) ∧
|~p′| ≡ ~p◦ ∧ SV(~a) = ∅ ∧ typeConstrsC(

~p′,~a) ≤ U

8. Γ ⊢ caseP ◦ x := M in I
(
~p◦, ~y

)

of〈Ci ⇒ Ni〉i : U
⇒ Γ ⊢M : I ŝ

(
~p′,~a

)
∧

Γ(caseTypesI(
~p′, ~y, x)) ⊢ P ′ : u ∧

Γ ⊢ Ni : branch
s
Ci
(~p, ~y.x.P) ∧ |~p′| ≡ ~p◦ ∧

|P ′| ≡ P ◦ ∧ P [~y := ~a] [x := M] ≤ U
9. Γ ⊢ fixn f : W ⋆ := M : U ⇒ W ⋆ = |T |ı with T = Π∆.Πx : Iι ~u.U ∧ ı pos U ∧

#∆ = n− 1 ∧ ı /∈ SV(Γ,∆, ~u,M) ∧ Γ ⊢ T : u ∧
Γ(f : T) ⊢M : T [ı := ı̂] ∧ T [ı := s] ≤ U ∧
SV(M) = ∅

Proof. By induction on the type derivation, using transitivity of subtyping.

The following two lemmas state that contexts and subcontexts are well-formed in a typing
judgment.

Lemma 3.11 (Well-formedness of context). If Γ ⊢M : T , then WF(Γ).

Proof. By induction on the type derivation.

3.1. BASIC METATHEORY 51

Lemma 3.12. If Γ0(x : T)Γ1 ⊢M : U , then there exists a subderivation Γ0 ⊢ T : u for some
sort u. If WF(Γ0(x : T)Γ1), then there exists a subderivation Γ0 ⊢ T : u for some sort u.

Proof. By induction on the type derivation.

The following lemma states that we can add hypothesis to a context preserving valid
judgments.

Lemma 3.13. Let Γ ⊢M : T and ∆ a well-formed context that contains all hypotheses in Γ.
Then ∆ ⊢M : T .

Proof. By induction on the type derivation. In rules (abs) and (case) we use Lemma 3.12.

Lemma 3.14. If WF(Γ) and (x : T) ∈ Γ, then Γ ⊢ T : u for some sort u.

Proof. Γ is of the form Γ0(x : T)Γ1. The result follows from Lemma 3.12 and Lemma 3.13.

We define an order relation between contexts.

Definition 3.15 (Subcontext). We say that ∆ is a subcontext of Γ, denoted ∆ ≤ Γ, if, for
all (x : T) ∈ Γ, there exists T ′ such that (x : T ′) ∈ ∆ with T ′ ≤ T .

Lemma 3.16 (Context conversion). If Γ ⊢M : T , WF(∆), and ∆ ≤ Γ, then ∆ ⊢M : T .

Proof. By induction on the typing derivation. In rules (abs) and (case) we we use Lemma 3.12.
In rule (var) we use Lemma 3.12 and apply rule (conv).

In the following we prove several lemmas regarding substitutions. We prove a gen-
eral lemma on substitutions (Lemma 3.18), from which the usual version of Substitution
(Lemma 3.20) follows. We begin by proving that typing is preserved under stage substitu-
tion.

Lemma 3.17 (Stage substitution). If Γ ⊢M : T then Γ [ı := s] ⊢M [ı := s] : T [ı := s].

Proof. We prove first the following result:

(*) if Γ ⊢ M : T and  is fresh in Γ, M , and T , then Γ [ı := ] ⊢ M [ı := ] : T [ı := ] with
the same height.

We proceed by induction on the type derivation. All cases are easy by applying the IH.
In rule (fix) we use the IH twice if the size variable introduced in the rule is . In rule (conv)
we use Lemma 3.4. Then we prove the following result:

(**) if Γ ⊢M : T and s does not contain ı, then Γ [ı := s] ⊢M [ı := s] : T [ı := s].

We proceed by induction on the height h of the type derivation. We only consider the
rule (fix). For the rest of the cases the result follows easily by applying the IH. In rule (conv)
we use Lemma 3.4.

We have M ≡ fixn f : |T1|
 := M1, T ≡ T1 [ := r], and the following subderivations of

height h− 1:

Γ(f : T1) ⊢M1 : T1 [ := ̂]

Γ ⊢ T1 : u

52 CHAPTER 3. METATHEORY OF CIĈ−

where T1 ≡ Π∆(x : I (~p, ~u)).U , and  /∈ SV(Γ,∆, ~p, ~u,M1). Without loss of generality, we
can assume that s does not contain . Otherwise, we take a size variable κ that does not
appear in s and use (*) to substitute  with κ in the derivations of M1 and T . Since this
substitution preserves the height of the derivation, we can still apply the IH.

By IH, we have

Γ(f : T1) [ı := s] ⊢M1 [ı := s] : T1 [ := ̂] [ı := s]

Γ [ı := s] ⊢ T1 [ı := s] : u

Since  does not appear in s, T1 [ := ̂] [ı := s] ≡ T1 [ı := s] [ := ̂]. Applying rule (fix) we
have

Γ [ı := s] ⊢ (fixn f : |T1|
 := M1 [ı := s]) : T1 [ı := s] [ := r [ı := s]]

where T1 [ı := s] [ := r [ı := s]] ≡ T [ := r] [ı := s] as expected.
This proves (**). The main result now follows easily. We consider two cases: if s does

not contain ı, the result follows from (**). If s contains ı, we apply (*) and substitute ı by a
fresh size variable κ that does not appear in s. Then we apply (**) substituting κ by s.

Lemma 3.18 (General Substitution). If Γ ⊢ M : T , σ : Γ → ∆, and SV(σ) = ∅, then
∆ ⊢Mσ : Tσ.

Proof. By induction on the typing derivation. In rules (abs) and (case) we use Lemma 3.12.
We consider rules (prod) and (ind).

(prod). Γ ⊢ M : T is Γ ⊢ Πx : U1.U2 : u derived from Γ ⊢ U1 : u1, Γ(x : U1) ⊢ U2 : u2 and
(u1, u2, u) ∈ Rule.

By IH, ∆ ⊢ U1σ : u1. Note that σ : Γ(x : U1) → ∆(x : U1σ), where we assume that
x /∈ dom (∆). Then, by IH, ∆(x : U1σ) ⊢ U2σ : u2. The result follows by applying rule
(prod).

(ind). Γ ⊢M : T is Γ ⊢ Is (~p,~a) : sort(I) derived from Γ ⊢ ~p : params(I), Γ ⊢ ~a : argsIndI(~p),
and simple(Is (~p,~a)). By IH, ∆ ⊢ ~pσ : params(I) (note that FV(params(I))∩FV(σ) = ∅)
and ∆ ⊢ ~aσ : argsIndI(~p)σ. By definition of argsInd, argsIndI(~p)σ ≡ argsIndI(~pσ). Since
SV(σ) = ∅, we have simple(Is (~p,~a)σ). The result follows by applying rule (ind).

The case of rule (constr) is similar to (ind), and (fix) is similar to (prod). The rest of the
rules follow easily by IH.

Lemma 3.19 (Composition of substitutions). If σ : Γ→ ∆ and ρ : ∆→ Θ, then σρ : Γ→ Θ.

Proof. It is clear that WF(Γ) and WF(Θ). Let (x : T) ∈ Γ. Then, ∆ ⊢ xσ : Tσ, by definition
of well-typed substitution. By Lemma 3.18, Θ ⊢ xσρ : Tσρ.

We now prove the usual version of the Substitution Lemma.

Lemma 3.20 (Substitution). If Γ(x : T)∆ ⊢ M : U and Γ ⊢ N : T , then Γ(∆ [x := N]) ⊢
M [x := N] : T [x := N].

Proof. We prove that [x := N] : Γ(x : T)∆ → Γ(∆ [x := N]), from WF(Γ(x : T)∆) and Γ ⊢
N : T . Then the result follows by General Substitution (Lemma 3.18). We proceed by
induction on the length of ∆. For the base case #∆ = 0, then [x := N] : Γ(x : T) →
Γ follows from Γ ⊢ N : T . For the inductive case #∆ = n + 1, let ∆ ≡ ∆0(y : T0).

3.1. BASIC METATHEORY 53

By IH, [x := N] : Γ(x : T)∆0 → Γ(∆0 [x := N]). From WF(Γ(x : T)∆), by Lemma 3.12,
Γ(x : T)∆0 ⊢ T0 : u for some sort u. By Lemma 3.18, Γ(∆0 [x := T]) ⊢ T0 [x := N] : u. Then,
WF(Γ(∆0 [x := T])(y : T0 [x := N])) and the result follows from the definition of well-typed
substitution.

The following lemma states that the type of a well-typed term is itself well typed.

Lemma 3.21 (Type validity). If Γ ⊢M : T , then Γ ⊢ T : u.

Proof. By induction on the type derivation. In rule (abs), we use Lemma 3.14. In rule (fix),
we use Lemma 3.17. In rule (case), we use Generation (Lemma 3.10) and Lemma 3.18. In
rule (constr), we use Lemma 3.18.

Because of the use of erased terms in type positions, uniqueness of types is only valid
modulo erasure of size annotations.

Lemma 3.22 (Uniqueness of types). If Γ ⊢M : T1 and Γ ⊢M : T2, then |T1| ≈ |T2|.

Proof. By induction on the structure of M . We consider the most relevant cases. The cases
not considered follow easily by applying Generation (Lemma 3.10).

Abstraction. M ≡ λx : U◦.M1. By Generation on both derivations, there exists U1, U2,
W1, W2 such that |U1| ≡ |U2| ≡ U◦, Γ(x : U1) ⊢ M1 : W1, Γ(x : U2) ⊢ M1 : W2,
Πx : U1.W1 ≤ T1, Πx : U2.W2 ≤ T2. By IH on the type derivations for M1, |W1| ≈ |W2|.
Therefore, |T1| ≈ |Πx : U1.W1| ≈ |Πx : U2.W2| ≈ |T2|, using Lemma 3.5.

Application. M ≡M1N1. By Generation on both derivations, there exists U1, U2, W1, W2

such that, for i = 1, 2, Γ ⊢ M1 : Πx : Ui.Wi, Γ ⊢ N1 : Ui, and Ui [x := Ni] ≤ Ti. By IH,
|U1| ≡ |U2|, therefore |T1| ≡ |U1 [x := N1] | ≡ |U2 [x := N1] | ≡ |T2|.

Product. The result follows easily by IH, noting that Rule is injective, in the sense that
(u1, u2, u3) ∈ Rule and (u1, u2, u

′
3) ∈ Rule, implies u3 = u′3.

Case. M ≡ caseP ◦ x := M1 in I
(
~p◦, ~y

)
of 〈Ci ⇒ Ni〉i. The result follows by applying Gen-

eration on both derivations and the IH on M1.

In order to prove Subject Reduction, we need a technical lemma that we use in the case
of fixpoint reduction.

Lemma 3.23. Let Γ ⊢M : Π∆0.T0 and Γ ⊢M ~N : U be valid judgments, with # ~N = #∆0.
Then, there exists ∆ and T with |∆| ≡ |∆0| and |T | ≡ |T0| such that Γ ⊢ M : Π∆.T ,

Γ ⊢ ~N : ∆, and T
[
dom (∆) := ~N

]
≤ U .

The statement of this lemma looks a bit strange. A more natural way of stating it would
be:

let Γ ⊢M : Π∆0.T0 and Γ ⊢M ~N : U be valid judgments, with # ~N = #∆0. Then there is a

derivation of Γ ⊢ ~N : ∆0, and T0

[
dom (∆0) := ~N

]
≤ U .

54 CHAPTER 3. METATHEORY OF CIĈ−

But this statement is not true. The problem is that type uniqueness is valid up-to erasure
of size information. In other words, a term can have two non-comparable types (by ≤). For
example, consider M ≡ λx : nat.x and ~N ≡ y; the following judgments are valid:

(y : nat∞) ⊢ (λx : nat.x) : natı → natı

(y : nat∞) ⊢ (λx : nat.x) y : nat∞

However, the judgment (y : nat∞) ⊢ y : natı is not valid.

Proof of Lemma 3.23. We proceed by induction on n = #∆. If n = 0, the result follows
immediately. We consider the case n = k+1. Let ~N ≡ 〈Ni〉i=1..k Nk+1, and ∆0 ≡ ∆1(x : T1).
By Generation on the judgment Γ ⊢M ~N : U , there exists U1, U2 such that

Γ ⊢M 〈Ni〉i=1..k : Πx : U1.U2 (3.1)

Γ ⊢ Nk+1 : U1 (3.2)

U2 [x := Nk+1] ≤ U . (3.3)

From the IH applied to 〈Ni〉i=1..k, there exists ∆′ and T ′ with |∆′| ≡ |∆1| and |T
′| ≡ |Πx :

T1.T0| such that

Γ ⊢M : Π∆′.T ′ (3.4)

Γ ⊢ 〈Ni〉i=1..k : ∆′ (3.5)

T ′
[
dom

(
∆′

)
:= 〈Ni〉i=1..k

]
≤ Πx : U1.U2 . (3.6)

Let T ′ ≡ Πx : T ′1.T
′
0. Take ∆ ≡ ∆′(x : T ′1) and T ≡ T ′0. Let us prove that ∆ and T

satisfy the required conditions. It is clear that |∆| ≡ |∆0|, |T
′
0| ≡ |T0|, and, from (3.4),

Γ ⊢M : Π∆.T . From (3.6), U1 ≤ T ′1 [dom (∆′) := 〈Ni〉i=1..k]. Then, applying (conv) to (3.2),
we have Γ ⊢ Nk+1 : T

′
1 [dom (∆′) := 〈Ni〉i=1..k]. (The last type is well-typed by applying Type

validity and Generation to (3.4)). Combined with (3.5), we have Γ ⊢ 〈Ni〉i=1..k+1 : ∆
′(x : T ′1).

Finally, from (3.6) and (3.3), we have T ′0 [dom (∆′(x : T ′1)) := 〈Ni〉i=1..k+1] ≤ U .

Lemma 3.24 (Subject reduction). If Γ ⊢M : T and M →M ′ then Γ ⊢M ′ : T

Proof. By induction on the type derivation and case analysis on the reduction rule. The
interesting cases are when reduction occurs at the head. For compatible closure rules, the
result follows by applying the IH; in rules (abs), (prod), (case), and (fix) we use Lemma 3.12
and Context conversion (Lemma 3.16).

We consider the cases of rules (app) and (case).

(app). Γ ⊢ M : T is Γ ⊢ M1M2 : T2 [x := M2] derived from Γ ⊢ M1 : Πx : T1.T2 and
Γ ⊢M2 : T1. We do a case analysis on the reduction M →M ′.

I. M1 ≡ λx : U◦.N and M ′ ≡ N [x := M2].

Applying Generation on the derivation of M1 we obtain

Γ(x : U1) ⊢ N : U2 (3.7)

Πx : U1.U2 ≤ Πx : T1.T2 (3.8)

|U1| ≡ U◦ (3.9)

SV(N) = ∅ (3.10)

3.1. BASIC METATHEORY 55

By applying Generation of subtyping in (3.8) we have T1 ≤ U1 and U2 ≤ T2.
Using the (conv) rule we obtain Γ ⊢ M2 : U1, and substituting in (3.7) we get
Γ ⊢ N [x := M2] : U2 [x := M2]. The result follows by applying the (conv) rule,
noting that U2 [x := M2] ≤ T2 [x := M2].

II. M1 ≡ (fixn f : T ⋆
1 := N)~b and M2 ≡ C(~p◦,~a). Also,

M ′ ≡ N [f := fixn f : T ⋆
1 := N] ~b (C(~q◦,~a))

We have a subderivation Γ ⊢ fixn f : T ⋆
1 := N : W . By Generation, we have

Γ(f : T1) ⊢M : T1 [ı := ı̂], (3.11)

Γ ⊢ T1 : u (3.12)

where T ⋆
1 ≡ |T1|

ı, T1 ≡ Π∆.Πx : I ı (~p, ~u).U , ı pos U , ı /∈ SV(Γ,∆, ~p, ~u,M), and
T1 [ı := s] ≤W . By Lemma 3.23, we have

Γ ⊢ ~b (C(~q◦,~a)) : ∆(x : Is (~p, ~u)) (3.13)

U [ı := s]
[
dom (∆) := ~b

] [
x := C(~q◦,~a)

]
≤ T (3.14)

By inversion on (3.13), we have Γ ⊢ C(~q◦,~a) : Is (~p, ~u)
[
dom (∆) := ~b

]
. By Gener-

ation, there exists a stage r such that r̂ ⊑ s, and

Γ ⊢ C(~q◦,~a) : I r̂
(
~q,~t

)
(3.15)

with I r̂
(
~q,~t

)
≤ Is (~p, ~u)

[
dom (∆) := ~b

]
. Then there exists s1 such that ŝ1 ⊑ s,

and I r̂
(
~q,~t

)
≤ I ŝ1 (~p, ~u)

[
dom (∆) := ~b

]
.

Applying rule (fix) to (3.11) and (3.12), we have

Γ ⊢ fixn f : T ⋆
1 := M : T1 [ı := s1], (3.16)

Applying Stage Substitution in (3.11) with [ı := s1], and Substitution with (3.15)
we obtain

Γ ⊢M [f := fixn f : T ⋆
1 := M] : T1 [ı := ŝ1]. (3.17)

Applying repeatedly rule (app), we obtain

Γ ⊢ (M [f := fixn f : T ⋆
1 := M])~b (C(~q◦,~a)) :

U1 [ı := ŝ1]
[
dom (∆) := ~b

] [
x := C(~q◦,~a)

]
. (3.18)

We conclude from ı pos U , (3.14), and applying rule (conv).

(case). Γ ⊢ t : T is Γ ⊢ case|P | x := M in I
(
~p◦, ~y

)
of {Ci ⇒ Ni} : P [~y := ~a] [x := M], de-

rived from Γ ⊢ M : I ŝ (~p,~a), Γ(x : ∆a [dom (∆p) := ~p])(x : I ŝ (~p, ~y)) ⊢ P : u, Γ ⊢ Ni :
branchsCi

(~p, ~y.x.P).

We only consider the case of reduction at the head. So we have M ≡ Ci(~q
◦, ~u) and

t′ = Ni ~u.

56 CHAPTER 3. METATHEORY OF CIĈ−

Applying Generation to the derivation of M , we obtain

Γ ⊢ ~q : ∆p (3.19)

Γ ⊢ ~u : argsConstrrCi
(~q) (3.20)

typeConstrrCi
(~q, ~u) ≤ I ŝ (~p,~a) (3.21)

From (3.21) we have

~q ≤I.ν ~p (3.22)

~ti [dom (∆p) := ~q] [dom (∆i) := ~u] ≈ ~a (3.23)

and r̂ ⊑ ŝ, which implies r ⊑ s. Let us write ~ti
∗
for ~ti [dom (∆p) := ~q] [dom (∆i) := ~u].

Then. Ir
(
~q, ~ti

∗
)
≤ Is (~p,~a). From clauses (I6), (I7), and (I8) of the conditions imposed

to inductive types, we have

branchsCi
(~p, ~y.x.P) ≤ branchrCi

(~q, ~y.x.P) (3.24)

Then, Γ ⊢ Ni : branch
r
Ci
(~q, ~y.x.P). Applying repeatedly rule (app) to ~u we obtain

Γ ⊢ Ni ~u : P
[
~y := ~ti [dom (∆p) := ~q] [dom (∆i) := ~u]

]
[x := C(|q|, ~u)] (3.25)

From (3.23) we obtain, applying rule (conv),

Γ ⊢ Ni ~u : P [~y := ~a]
[
x := C(~q◦, ~u)

]

which is the desired result.

Strengthening Lemma

The Strengthening Lemma can be seen as the opposite of the Weakening Lemma. It states
that unused hypotheses in a typing judgment can be removed. Specifically, if Γ(x : T)∆ ⊢
M : U and x /∈ FV(∆,M,U), then Γ∆ ⊢ M : U . This result is, in some sense, more difficult
to prove than the results we have seen in this chapter, since a straightforward induction on
the typing derivations fails. Consider rule (app),

Γ(x : T)∆ ⊢M : Πy : U1.U2 Γ(x : T)∆ ⊢ N : U1

Γ(x : T)∆ ⊢M N : U2 [y := N]

The hypothesis is x /∈ FV(∆,M N,U2 [y := N]). The IH cannot be directly applied since we
do not know if x /∈ FV(U1). There is a “standard” way to solve this problem [36,56,81], which
we follow here. The trick is to first prove a weaker version of the lemma.

Lemma 3.25. Let Γ(x : T)∆ ⊢ M : U be a valid judgment such that x /∈ FV(∆,M). Then,
there exists U ′ such that Γ∆ ⊢ M : U ′ and U ′ ≤ U . Let WF(Γ(x : T)∆) be a valid judgment
such that x /∈ FV(∆). Then, WF(Γ∆).

Proof. We proceed by induction on the type derivation. We only treat the most relevant
cases; the rest follow by IH.

3.1. BASIC METATHEORY 57

(prod). M is Πy : T1.T2; we have the derivation

Γ(x : T)∆ ⊢ T1 : u1 Γ(x : T)∆(y : T1) ⊢ T2 : u2

Γ(x : T)∆ ⊢ Πy : T1.T2 : u3

where (u1, u2, u3) ∈ Rule. By IH, there exists U1 and U2 such that Γ∆ ⊢ T1 : U1,
U1 ≤ u1, Γ∆(y : T1) ⊢ T2 : U2, and U2 ≤ u2. Then, U1 ≈ u1 and U2 ≈ u2. The result
follows by applying rule (conv) twice and rule (prod).

(app). M is M1M2; we have the derivation

Γ(x : T)∆ ⊢M1 : Πy : U1.U2 Γ(x : T)∆ ⊢M2 : U1

Γ(x : T)∆ ⊢M1M2 : U2 [y := M2]
SV(M2) = ∅

By IH, there exists U ′ such that Γ∆ ⊢M1 : U
′ and U ′ ≤ Πy : U1.U2. Also by IH, there

exists U ′′ such that Γ∆ ⊢ M2 : U ′′ and U ′′ ≤ U1. By Type Validity (Lemma 3.21), U ′

and U ′′ are well typed under context Γ∆. By Generation of subtyping (Lemma 3.3),
there exists W1, W2 such that U ′ →∗ Πy : W1.W2 and U1 ≤ W1 and W2 ≤ U2.
By Subject Reduction, Πy : W1.W2 is well-typed under context Γ∆. Applying rule
(conv), we have Γ∆ ⊢ M1 : Πy : W1.W2 and Γ∆ ⊢ M2 : W1. Applying rule (app),
we have Γ∆ ⊢ M1M2 : W2 [y := M2]. The result follows by applying rule (conv) with
W2 [y := M2] ≤ U2 [y := M2].

(case). M is case|P | z := M1 in I (|~p|, ~y) of 〈Ci ⇒ Ni〉i; we have the derivation

Γ(x : T)∆ ⊢M1 : I
ŝ (~p,~a) I ∈ Σ

Γ(x : T)∆ (caseTypesI(~p, ~y, z)) ⊢ P : u
Γ(x : T)∆ ⊢ Ni : branch

s
Ci
(~p, ~y.z.P)

Γ(x : T)∆ ⊢ case|P | z := M in I (|~p|, ~y) of {Ci ⇒ Ni}i : P [~y := ~a] [z := M1]

The IH gives us: there exists U ′ such that Γ∆ ⊢ M1 : U ′ and U ′ ≤ I ŝ (~p,~a); and for
i = 1, . . . , n, there exists U ′′i such that Γ∆ ⊢ Ni : U

′′
i and U ′′i ≤ branchsCi

(~p, ~y.z.P). Also
by IH and Confluence, Γ∆ (caseTypesI(~p, ~y, z)) ⊢ P : u. Recall that caseTypesI(~p, ~y, z) ≡
(~y : ∆a [dom (∆p) := ~p])(x : Is (~p, ~y)). Then, Γ∆ ⊢ Is (~p, ~y) : u′. Applying rule (conv),

we have Γ∆ ⊢M1 : I
ŝ
(
~p′, ~a′

)
.

We have Γ∆ ⊢ ~p : ∆p; it is not difficult to show that Γ∆ ⊢ branchsCi
(~p, ~y.z.P) : u. The

result then follows by applying rule (case).

Strengthening follows by applying the previous lemma twice.

Lemma 3.26 (Strengthening). Let Γ(x : T)∆ ⊢ M : U be a valid judgment such that x /∈
FV(∆,M,U). Then Γ∆ ⊢M : U .

Proof. Let Γ(x : T)∆ ⊢ M : U be a valid judgment such that x /∈ FV(∆,M,U). By the
previous lemma, there exists U ′ such that Γ∆ ⊢ M : U ′ and U ′ ≤ U . By Type validity,
Γ(x : T)∆ ⊢ U : u, for some sort u. Since x /∈ FV(∆, U), by the previous lemma, there exists
W such that Γ∆ ⊢ U : W and W ≤ u. Since u is well-typed, applying rule (conv) we have
Γ∆ ⊢ U : u. The result follows by an application of rule (conv).

58 CHAPTER 3. METATHEORY OF CIĈ−

3.2 Annotated Version of CIC−̂

In this section we present a variant of CIĈ− with explicit type annotations in some con-
structions. This is necessary to prove strong normalization in the presence of an impredicative
universe [7,63] (cf. Chap. 4). We refer to the system in this section as ECIĈ−.

We present the syntax and typing rules of ECIĈ−. We also show the equivalence between
both systems (Sect. 3.2.4).

3.2.1 Syntax and Typing Rules

We begin by describing the syntax of ECIĈ−. As in the case of CIĈ−, we present the
syntax in two parts: basic terms and the inductive terms.

Definition 3.27 (Basic terms of ECIĈ−). The generic set of basic terms over a set a is
defined by the grammar:

T [a] ::= V (term variable)
| U (universe)

| λT
◦

V:T ◦ .T [a] (abstraction)

| appT
◦

V:T ◦ (T [a], T [a]) (application)
| ΠV : T [a].T [a] (product)

The set of bare terms, position terms and sized terms are defined by T ◦ ::= T [ǫ], T ⋆ ::=
T [{ǫ, ⋆}], and T ::= T [S], respectively.

As in the case of CIĈ−, basic terms do not depend on the set a. Hence, there is no
difference between classes of terms at this point. The difference appears once we introduce
inductive terms.

The constructions are the same as in CIĈ−, except for abstraction and application that
include type annotations for the domain and codomain. In λU◦

x:T ◦ .M the variable x is bound
in M and U◦. In appU

◦

x:T ◦ (M,N), the variable x is bound in U◦. The functions FV(.), SV(.),
|.|, and |.|ı are defined for terms in ECIĈ− in the same way as for CIĈ−.

We introduce some notation to handle multiple applications and abstractions. We write

appU
◦

∆◦

(
M, ~N

)
and λU◦

∆◦ .M for the terms defined as follows:

appU
◦

[] (M, ε) = M

appU
◦

(x:T ◦)∆◦

(
M,N1

~N
)
= app

U◦[x:=N1]
∆◦[x:=N1]

(
appΠ∆◦.U◦

x:T ◦ (M,N1), ~N
)

λU◦

[] .M = M

λU◦

(x:T ◦)∆◦ .M = λΠ∆◦.U◦

x:T ◦ .λU◦

∆◦ .M

We simply write app (M,N) instead of appU
◦

x:T ◦ (M,N) when x, T ◦ and U◦ are not important.

We extend the syntax of basic terms with constructions related with inductive types. To
avoid some of the burden of dealing with the type annotations in the case of fixpoints, we
require them to be fully applied.

3.2. ANNOTATED VERSION OF CIĈ− 59

Definition 3.28 (Inductive terms of ECIĈ−). The generic set of basic terms over a set a is
defined by the grammar:

T [a] ::= . . .

| Ia
(

~T [a]
)

(inductive type)

| C(~T ◦, ~T [a]) (constructor)

| caseT ◦ VI(~T ◦, ~T ◦) := T [a] in I
(
, ~V

)
of 〈C ⇒ T [a]〉 (case)

| fixn V : T ⋆ := (T [a], 〈Ti〉i=1..n) (fixpoint)

Case construction is extended with the type of the argument. In a term of the form
caseP ◦ xI(~p◦, ~a◦) := M in I (, ~y) of 〈Ci ⇒ Ni〉i, the type of M is I

(
~p◦, ~a◦

)
, while the pattern

is of the form I (, ~y) to avoid duplicating the parameters. Fixpoint constructions are fully
applied in ECIĈ−: in a term of the form fixn f : T ⋆ := (M, ~N), M denotes the body of
the fixpoint and ~N of length n denote the arguments. The n-th argument is the recursive
argument and its type must be an inductive type.

Contexts and inductive types are defined in the same way for ECIĈ−, with the obvious
adaptations of the syntax.

Reduction

We define a reduction relation for ECIĈ−. It is called tight reduction, since type annota-
tions in applications should agree. In the case of β-reduction,

app
U◦

2
x:T ◦

2

(
λ
U◦

1
x:T ◦

1
.M,N

)

we require that types are α-convertible for the reduction rule to be applicable. I.e., T ◦1 ≡ T ◦2
and U◦1 ≡ U◦2 . In the case of fixpoint reduction, since fixpoints are fully applied, we take care
of η-expanding the fixpoint when substituting inside the body.

Definition 3.29 (Tight Reduction). Tight reduction, is defined as the compatible closure of
the union of tight β-reduction, ι-reduction, and µ-reduction. They are defined by the following
rules:

appU
◦

x:T ◦

(
λU◦

x:T ◦ .M,N
)

βt M [x := N]

caseP ◦ xI(~p◦, ~u◦) := Cj(~q◦,~a) in I (, ~y) of 〈Ci ⇒ Ni〉i ι appP
∗

∆j
∗ (Nj ,~a)

fixn f : T ⋆ := (M, (~N,C(~p◦,~a))) µ app
|U⋆|
|∆⋆|

(
M [f := F], (~N,C(~p◦,~a))

)

where T ⋆ = Π∆⋆.U⋆, #∆⋆ = n, and # ~N = n− 1, and

F ≡ λ
|U⋆|
|∆⋆|.fixn f : T ⋆ := (M, dom (|∆⋆|))

In ι-reduction, we assume Ind(I[∆p]
~ν : Π∆a.u := 〈Ci : Π∆i.X ~ti〉i) and where we write ∆j

∗

for ∆j

[
dom (∆p) := ~p◦

]
and P ∗ for P ◦

[
~y := |~tj |

[
dom (∆p) := ~p◦

]] [
x := Cj(~p◦, dom (∆j))

]
.

Tight reduction is thus defined as →βt ι µ. We write →t instead of →βt ι µ; similarly we
write ←t, →t

∗, and ↓t.

Tight reduction is not confluent on all terms. The main reason is that the β-rule is not left
linear. The counterexamples of [49] can be easily adapted. Note that confluence is still valid
for well-typed terms; the lack of confluence is not a problem for proving Subject Reduction.

60 CHAPTER 3. METATHEORY OF CIĈ−

Subtyping

Given that the reduction relation is not confluent, we cannot directly adapt the subtyping
relation given in Chap. 2 to ECIĈ−. Doing so would introduce some difficulties due to the
presence of the transitivity rule. Instead we adapt the alternative definition of subtyping of
Sect. 3.1.

Definition 3.30 (Subtyping). Given a relation R on terms, stable under stage and term
substitution, the subtyping relations ≤R and ≤~ν

R are simultaneously defined by the rules:

(stt-conv)
T1 ↓R T2

T1 ≤R T2

(stt-prod)
T R∗ Πx : T1.T2 U1 ≤R T1 T2 ≤R U2 U R∗ Πx : U1.U2

T ≤R U

(stt-ind)
T R∗ Is (~p1, ~a1) s ⊑ r ~p1 ≤

I.~ν
R ~p2 ~a1 ↓R ~a2 U R∗ Ir (~p2, ~a2)

T ≤R U

(sttv-inv)
T1 ↓R U1

~T ≤~ν
R

~U

T1, ~T ≤
◦,~ν
R U1, ~U

(sttv-pos)
T1 ≤R U1

~T ≤~ν
R

~U

T1, ~T ≤
+,~ν
R U1, ~U

(sttv-neg)
U1 ≤R T1

~T ≤~ν
R

~U

T1, ~T ≤
−,~ν
R U1, ~U

(sttv-conv)
~T ↓R ~U

~T ≤∅R
~U

We write ≤t and ≤
~ν
t for ≤→t and ≤

~ν
→t

, respectively.

The subtyping relation satisfies the following lemmas.

Lemma 3.31. If T →t T
′, U →t U

′, and T ′ ≤t U
′, then T ≤t U .

Proof. By induction on the derivation of T ′ ≤t U
′.

Lemma 3.32. If T ≤t U , then |T | ↓t |U |.

Proof. By induction on the derivation of T ≤t U .

Typing Rules

In Fig. 3.1 we show the typing rules of ECIĈ−. They are directly adapted from the typing
rules of CIĈ−. In rules (app), (abs), and (case’), the type annotations define the type of
the term. Note in rule (app) that we check that the type of the function is itself well typed.
Adding this check simplifies some proofs. Note that the expressiveness of the system is not
altered if we remove this condition, since type validity (Lemma 3.37) is satisfied. In rule
(e-fix) we also check that the arguments of the fixpoint are well typed.

3.2. ANNOTATED VERSION OF CIĈ− 61

(empty)
WFt([])

(cons)
WFt(Γ) Γ ⊢t T : u

WFt(Γ(x : T))
simple(T)

(var)
WFt(Γ) (x : T) ∈ Γ

Γ ⊢t x : T

(sort)
WFt(Γ) (u1, u2) ∈ Axiom

Γ ⊢t u1 : u2

(prod)
Γ ⊢t T : u1 Γ(x : T) ⊢t U : u2 (u1, u2, u3) ∈ Rule

Γ ⊢t Πx : T.U : u3

(abs)
Γ(x : T) ⊢t M : U

Γ ⊢t λ
|U |
x:|T |.M : Πx : T.U

SV(M) = ∅

(app)

Γ ⊢t Πx : T.U : u
Γ ⊢t M : Πx : T.U Γ ⊢t N : T

Γ ⊢t app
|U |
x:|T | (M,N) : U [x := N]

SV(N) = ∅

(conv)
Γ ⊢t M : T Γ ⊢t U : u T ≤t U

Γ ⊢t M : U
simple(U)

(ind)
I ∈ Σ Γ ⊢t ~p : params(I) Γ ⊢t ~a : argsIndI(~p)

Γ ⊢t I
s (~p,~a) : sort(I)

simple(Is (~p,~a))

(constr)

I ∈ Σ Γ ⊢t ~p : params(I)
Γ ⊢t ~a : argsConstrsCi

(~p)

Γ ⊢t Ci(|~p|,~a) : typeConstr
s
Ci
(~p,~a)

simple(typeConstrsCi
(~p,~a))

(case)

Γ ⊢t M : I ŝ (~p,~a) I ∈ Σ Γ (caseTypesI(~p, ~y, x)) ⊢t P : u
Γ ⊢t Ni : branch

s
Ci
(~p, ~y.x.P)

Γ ⊢t

(
case|P | xI(|~p|,|~a|) := M in I (, ~y)

of〈Ci ⇒ Ni〉i

)
: P [~y := ~a] [x := M]

SV(Ni) = ∅

(fix)

T ≡ Π∆(x : I ı (~p, ~u)).U ı pos U #∆ = n− 1
ı /∈ SV(Γ,∆, ~u,M) Γ ⊢t T : u Γ(f : T) ⊢t M : T [ı := ı̂]

Γ ⊢t ~N : ∆(x : Is (~p, ~u))

Γ ⊢t fixn f : |T |ı := (M, ~N) : U
[
dom (∆) := ~N

]
[ı := s]

SV(~N) = ∅

Figure 3.1: Typing rules of terms and contexts of ECIĈ−

62 CHAPTER 3. METATHEORY OF CIĈ−

3.2.2 Metatheory

We state some metatheoretical results for ECIĈ− that we need in the next chapter. Most
of the proof are done in the same way as for CIĈ−, sometimes easier by the presence of
annotations. The exception is Subject Reduction, for which we give a more detailed proof.

Lemma 3.33. Let Γ ⊢M : T and ∆ a well-formed context that contains all hypotheses in Γ.
Then ∆ ⊢M : T .

We define the order relation between contexts in the same way as for CIĈ−. We say that
∆ is a subcontext of Γ, denoted ∆ ≤t Γ, if for all (x : T) ∈ Γ, there exists T ′ such that
(x : T ′) ∈ ∆ with T ′ ≤t T .

Lemma 3.34 (Context conversion). If Γ ⊢t M : T , WFt(∆), and ∆ ≤t Γ, then ∆ ⊢t M : T .

Lemma 3.35 (Stage substitution). If Γ ⊢ t : T then Γ [ı := s] ⊢ t [ı := s] : T [ı := s].

Lemma 3.36 (Substitution). If Γ(x : T)∆ ⊢ M : U , and Γ ⊢ N : T , and SV(N) = ∅ then
Γ∆ [x := N] ⊢M [x := N] : U [x := N].

Lemma 3.37 (Type validity). If Γ ⊢t M : T , then Γ ⊢t T : u.

A direct proof by induction of SR fails in the case of βt-reduction, since tight subtyping
is not transitive: if Πx : T1.U1 ≤t . . . ≤t Πxn : Tn.Un, it is not immediately true that
Tn ≤t T1 and U1 ≤t Un. We prove that this result is valid in the particular case when
|Πx : T1.U1| ≡ |Πx : Tn.Un| (cf. Lemma 3.43 and Lemma 3.45). This particular case is
enough to handle βt-reduction in the proof of SR.

We define loose reduction relation which will be useful in the rest of the chapter. In
particular, to prove the equivalence between ECIĈ− and CIĈ−.

Definition 3.38 (Loose reduction). Loose reduction, is defined as the compatible closure of
the union of loose β-reduction, ι-reduction, and µ-reduction. Loose β-reduction is defined by
the rule:

app
U◦

2
x:T ◦

2

(
λ
U◦

1
x:T ◦

1
.M,N

)
βl M [x := N]

Loose reduction is thus defined as →βl ι µ. We write →l instead of →βl ι µ. Similarly, we write
←l, →l

∗, ≈l, and ↓l.

Note the difference between tight reduction and loose reduction. In loose reduction we do
not impose any condition on the type annotations when reducing an application. The rules
become left linear; therefore, loose reduction is confluent.

Lemma 3.39. Loose reduction is confluent: if M ≈l N , then M ↓l N .

Proof. The proof goes along the same lines as for Lemma 2.7. Since the rules are left linear,
the problem with tight reduction is avoided.

We can apply Def. 3.30 to loose reduction. We write ≤l for ≤→l
. We prove some lemmas

about the relation ≤l. Since loose reduction is confluent, we can prove that ≤l is transitive.

Lemma 3.40. If T ≈l T
′ ≤l U

′ ≈l U , then T ≤l U , with a derivation of the same height. If
~T ≈l

~T ′ ≤~ν
l
~U ′ ≈l

~U , then ~T ≤l
~U , with a derivation of the same height.

3.2. ANNOTATED VERSION OF CIĈ− 63

Proof. By induction on the subtype derivation. Similar to Lemma 3.7.

Lemma 3.41. If T1 ≤l T2 and T2 ≤l T3, then T1 ≤l T3.

Proof. By induction on the sum of the heights of the subtype derivations. Similar to Lemma 3.8.

Lemma 3.42. If T ≤t U , then T ≤l U .

Proof. By induction on the type derivation. The proof follows from the fact that→t ⊆ →l.

We prove some inversion lemmas for ≤l.

Lemma 3.43. If Πx : T1.T2 ≤l Πx : U1.U2, then U1 ≤l T1 and T2 ≤l U2.

Proof. By induction on the subtype derivation. There are two possible cases for the last rule
used: (stt-conv) and (stt-prod). In the former case, the result follows from confluence. In the
latter case, we use Lemma 3.40.

Lemma 3.44. If Is (~p1, ~a1) ≤l I
r (~p2, ~a2), then s ⊑ r, ~p1 ≤

I.~ν
l ~p2 and ~a1 ↓l ~a2.

Proof. By induction on the subtype derivation. There are two possible cases for the last
rule used: (stt-conv) and (stt-ind). The result follows the same reasoning as the previous
lemma.

Next we prove the lemma we need in the proof of Subject Reduction to handle tight
β-reduction.

Lemma 3.45. If T ≤l U , simple(T, U), and |T | ≡ |U |, then T ≤t U . If ~T ≤l
~U , simple~ν(~T , ~U)

and |~T | ≡ |~U |, then ~T ≤t
~U .

Proof. By simultaneous induction on the predicate simple(T) and simple(~T).
– T ≡ Πx : T1.T2, U ≡ Πx : U1.U2, and simple(T1, T2, U1, U2). By Lemma 3.43, U1 ≤l T1

and T2 ≤l U2. By IH, U1 ≤t T1 and T2 ≤t U2. The result follows by rule (stt-prod).
– T ≡ Is (~p1, ~a2), U ≡ Ir (~p2, ~a2), simpleI.~ν(~p1), simpleI.~ν(~p2), SV(~a1) = SV(~a2) = ∅. By

Lemma 3.44, s ⊑ r, ~p1 ≤
I.~ν
l ~p2 and ~a1 ↓l ~a2. Since ~a1 and ~a2 contain no size variable,

~a1 ≡ ~a2. The result follows by the IH and rule (stt-ind).
– If T is neither a product nor an inductive type (and neither is U), we have SV(T) =

SV(U) = ∅. Then T ≡ U , and the result follows.
– The cases on vectors follow easily by applying the IH.

Lemma 3.46 (Subject reduction). If Γ ⊢M : T and M →t M
′ then Γ ⊢M ′ : T .

Proof. By induction on the type derivation. The interesting case is when the last rule applied
is the application rule and reduction is at the head. The rest of the cases follows in the same
way as in Lemma 3.24. Fixpoint reduction follows easily since fixpoints are fully applied;
there is no need to prove an analogue of Lemma 3.23.

We consider rule (app). We have M ≡ app
U◦

2
x:U◦

1

(
λ
U◦

2
x:U◦

1
.M1,M2

)
and M ′ ≡ M1 [x := M2].

Then Γ ⊢M : T is derived from

Γ ⊢ λ
U◦

2
x:U◦

1
.M1 : Πx : U ′1.U

′
2 (3.26)

Γ ⊢M2 : U
′
1 (3.27)

64 CHAPTER 3. METATHEORY OF CIĈ−

We also know SV(M2) = ∅, |Πx : U ′1.U
′
2| ≡ Πx : U◦1 .U

◦
2 , and T ≡ U◦2 [x := M2]. By inversion

on (3.26), there exists U ′′1 and U ′′2 such that

Γ(x : U ′′1) ⊢M1 : U
′′
2 , (3.28)

with |U ′′1 | ≡ U◦1 and |U ′′2 | ≡ U◦2 . Also, Πx : U ′′1 .U
′′
2 ≤t . . . ≤t Πx : U ′1.U

′
2. By Lemma 3.42

and Lemma 3.41, Πx : U ′′1 .U
′′
2 ≤l Πx : U ′1.U

′
2. By Lemma 3.43, U ′1 ≤l U

′′
1 and U ′′2 ≤l U

′
2. We

can apply Lemma 3.45 and obtain U ′1 ≤t U
′′
1 and U ′′2 ≤t U

′
2. By rule (conv) on (3.27) and

(3.28), Γ ⊢ M2 : U ′′1 and Γ(x : U ′′1) ⊢ M1 : U ′2. Finally, by Substitution, Γ ⊢ M1 [x := M2] :
U ′2 [x := M2].

The following two lemmas, Type uniqueness and Strengthening, are proved by induction
on the type derivation. The proofs are easier because of the added type annotations. In
particular, in the case of Strengthening, the problem mentioned in Sect. 3.1 is not present in
the case of ECIĈ−.

Lemma 3.47 (Type uniqueness). If Γ ⊢M : T1 and Γ ⊢M : T2, then |T1| ≈ |T2|.

Lemma 3.48 (Strengthening). If Γ(x : T)∆ ⊢M : U and x /∈ FV(∆,M,U), then Γ∆ ⊢M :
U .

3.2.3 Strong Normalization and Logical Consistency

In the rest of the chapter, we make use of the following theorems, stating strong normal-
ization of tight reduction, and logical consistency of ECIĈ−:

Theorem 3.49. If Γ ⊢t M : T , then M ∈ SN→t.

Theorem 3.50. There is no term M such that ⊢t M : False.

The proof of these theorems is developed in Chapter 4.

3.2.4 From CIC−̂ to ECIC−̂

In this section we prove the equivalence between CIĈ− and ECIĈ−. As a consequence,
we can obtain SN of CIĈ− from SN of ECIĈ−.

We need to take into account to main differences between CIĈ− and ECIĈ− in order to
prove their equivalence: codomain annotations in abstractions and applications, and fully
applied fixpoints. We introduce an intermediate system that lies half-way between CIĈ− and
ECIĈ−. The intermediate system, called CIĈη, features fully applied fixpoints, but does not
include codomain annotations.

We present CIĈη, compared to CIĈ−, since both systems are very close. The set of terms
is similar, except for the fixpoint construction, that is fully applied:

T ::= . . . | fixn f : T ⋆ := (M, 〈Ni〉i=1..n)

The reduction rule for fixpoint is similar to that of ECIĈ−:

fixn f : T ⋆ := (M, (〈Ni〉i=1..n−1, C(~p◦,~a))) (µ′)

M [f := λ|∆⋆|.fixn f : T ⋆ := (M, dom (∆⋆))] 〈Ni〉i=1..n−1C(~p◦,~a)

3.2. ANNOTATED VERSION OF CIĈ− 65

where T ⋆ ≡ Π∆⋆.U⋆, where #∆⋆ = n. The reduction relation of CIĈη is defined as the
compatible closure of βιµ′-reduction. We denote it →′. Reduction is confluent; the proof
follows the same pattern as for CIĈ−.

Subtyping is defined in the same way as for CIĈ−, using the alternative definition (Def. 3.6).
We use ⊢η for the typing judgment. Typing is defined by the rules of Fig. 2.5 and Fig. 2.6,
except for rule (fix), which is replaced by the following rule:

(fix-η)

T ≡ Π∆(x : I ı (~p, ~u)).U ı pos U #∆ = n− 1
ı /∈ SV(Γ,∆, ~u,M) Γ ⊢η T : u

Γ(f : T) ⊢η M : T [ı := ı̂] Γ ⊢η ~N : ∆(x : Is (~p, ~u))

Γ ⊢η fixn f : |T |ı := (M, ~N) : U
[
dom (∆) , x := ~N

]
[ı := s]

SV(~N) = ∅

We define the first translation, from CIĈ− to CIĈη. It is defined by a function on terms
that η-expands fixpoints to make them fully applied. The function, denoted ⌈.⌉, is defined as
follows:

⌈x⌉ = x

⌈u⌉ = u

⌈λx : T ◦.M⌉ = λx : ⌈T ◦⌉.⌈M⌉

⌈M N⌉ = ⌈M⌉ ⌈N⌉

⌈Πx : T.U⌉ = Πx : ⌈T ⌉.⌈U⌉

⌈C(~p◦,~a)⌉ = C(⌈~p◦⌉, ⌈~a⌉)

⌈Is (~p,~a)⌉ = Is (⌈~p⌉, ⌈~a⌉)

⌈caseP ◦ x := M in I (~p, ~y) of 〈Ci ⇒ Ni〉i⌉ = case⌈P ◦⌉ x := ⌈M⌉ in I (⌈~p⌉, ~y) of 〈Ci ⇒ ⌈Ni⌉〉i

⌈fixn f : T ⋆ := M⌉ = λ|∆1|.fixn f : ⌈T ⋆⌉ := (⌈M⋆⌉, dom (∆1))

where |T ⋆| ≡ Π∆◦.U , with #∆◦ = n, and ∆1 = ⌈∆
◦⌉.

The function is defined only for well-defined terms. A term is well-defined if all for all
fixpoints of the form fixn f : T ⋆ := M , the type T ⋆ is of the form Π∆⋆.U⋆ with #∆⋆ = n. For
the rest of the chapter, we assume that all terms considered are well-defined. The translation
function preserves reductions.

Lemma 3.51. 1. ⌈M [x := N]⌉ ≡ ⌈M⌉ [x := ⌈N⌉].

2. If M → N , then ⌈M⌉ →′+ ⌈N⌉.

Proof. For part 1 we proceed by induction on the structure of terms.
For part 2 we proceed by induction on the reduction relation. The only interesting case is

µ-reduction at the head. Let M ≡ (fixn f : T ⋆ := M1) ~N1C(~p◦,~a), with T ⋆ ≡ Π∆⋆.U⋆. Then,

⌈(fixn f : T ⋆ := M1) ~N1C(~p◦,~a)⌉ ≡

(λ⌈|∆⋆|⌉.fixn f : ⌈T ⋆⌉ := (⌈M1⌉, dom (∆⋆)))⌈ ~N1, C(~p◦,~a)⌉ β+

fixn f : ⌈T ⋆⌉ := (⌈M1⌉, ⌈ ~N1, C(~p◦,~a)⌉) µ′

⌈M1⌉ [f := λ⌈|∆⋆|⌉.fixn f : ⌈T ⋆⌉ := (⌈M1⌉, dom (∆⋆))] ⌈ ~N1, C(~p◦,~a)⌉ ≡

⌈M1 [f := fixn f : T ⋆ := M1] ~N1C(~p◦,~a)⌉

The last equality follows from part 1.

66 CHAPTER 3. METATHEORY OF CIĈ−

Using the previous lemma we prove that the translation function preserves conversion,
subtyping and typing.

Lemma 3.52. 1. If M ≈ N , then ⌈M⌉ ≈ ⌈N⌉.

2. If M ≤ N , then ⌈M⌉ ≤ ⌈N⌉.

3. If Γ ⊢M : T , then ⌈Γ⌉ ⊢η ⌈M⌉ : ⌈T ⌉.

Proof. Part 1 follows from confluence and the previous lemma. Parts 2 and 3 follow by
induction on the subtyping derivation and the typing derivation, respectively.

We prove the equivalence between CIĈη and ECIĈ−. There is one side of the equivalence
that is easy to establish. We define a stripping map from terms of ECIĈ− to terms of CIĈη

that removes type annotations.

Definition 3.53. We define the map ⌊.⌋ from terms of ECIC−̂ to terms of CICη̂ by the
following rules:

⌊x⌋ = x

⌊u⌋ = u

⌊λU◦

x:T ◦ .M⌋ = λx : ⌊T ◦⌋.⌊M⌋

⌊appU
◦

x:T ◦ (M,N)⌋ = ⌊M⌋ ⌊N⌋

⌊Πx : T.U⌋ = Πx : ⌊T ⌋.⌊U⌋

⌊C(~p◦,~a)⌋ = C(⌊~p◦⌋, ⌊~a⌋)

⌊Is (~p,~a)⌋ = Is (⌊~p⌋, ⌊~a⌋)

⌊caseP ◦ xI(~p◦, ~a◦) := M in I (, ~y) of 〈Ci ⇒ Ni〉i⌋ = case⌊P ◦⌋ x := ⌊M⌋ in I (⌊~p⌋, ~y) of 〈Ci ⇒ ⌊Ni⌋〉i

⌊fixn f : T ⋆ := (M, ~N)⌋ = fixn f : ⌊T ⋆⌋ := (⌊M⌋, ⌊ ~N⌋)

The map ⌊.⌋ is extended to contexts and signatures in the obvious way.

Reduction, subtyping and typing are preserved by the stripping map, as stated in the
following lemma.

Lemma 3.54. 1. M ↓t M
′ ⇒ ⌊M⌋ ≈ ⌊M ′⌋;

2. T ≤t U ⇒ ⌊T ⌋ ≤ ⌊U⌋;

3. if Γ ⊢t M : T , then ⌊Γ⌋ ⊢η ⌊M⌋ : ⌊T ⌋.

Proof. All proofs follow by straightforward induction on the relevant structure.

In the rest of the chapter we prove the opposite direction: if Γ ⊢η M : T , then there
exists Γ+, M+ and T+ such that ⌊Γ+⌋ = Γ, ⌊M+⌋ = M , ⌊T+⌋ = T , and Γ+ ⊢t M

+ : T+

(Lemma 3.65). As a consequence, can prove SN for CIĈη and CIĈ−(Corollary 3.66).
We begin by proving that reduction and subtyping are preserved from CIĈ− to ECIĈ−.

The following lemma states some simple properties of loose reduction.

Lemma 3.55. 1. M ≈l M
′ ⇒ ⌊M⌋ ≈ ⌊M ′⌋;

2. if ⌊M⌋ →′ N , then there exists P such that M →l P and ⌊P ⌋ ≡ N .

3.2. ANNOTATED VERSION OF CIĈ− 67

Proof. Both parts are proved by induction on the reduction rules definition.

Some notation on reductions will be useful in the rest of the chapter. Given a relation R
on terms and a term M , we write M is in R-nf or M ∈ NF(R), to mean that M is in normal
form with respect to R, i.e., that there is no N such that M R N .

Lemma 3.56. Let app
U◦

2
x:T ◦

2

(
λ
U◦

1
x:T ◦

1
.M,N

)
be a well-typed term in some context Γ. Then

Πx : T ◦1 .U
◦
1 ≈l Πx : T ◦2 .U

◦
2 .

Proof. By inversion on the type derivation, the term λ
U◦

1
x:T ◦

1
.M has type W1 with |W1| ≡ Πx :

T ◦1 .U
◦
1 , and it also has type W2 with |W2| ≡ Πx : T ◦2 .U

◦
2 and W1 ≤t . . . ≤t W2. Therefore,

|W1| ≈l |W2|.

Lemma 3.57. Let M and M ′ be two well-typed terms under context Γ. If M ≈l M
′ and M

and M ′ are in →t-nf, then M ≡M ′.

Proof. By mutual induction on the size of M and M ′. We prove first that M and M ′ are in
→l-nf. Assume that there is a loose redex in M .

The redex is of the form

app
U◦

2
x:T ◦

2

(
λ
U◦

1
x:T ◦

1
.N, P

)
.

Then by Lemma 3.56, T ◦1 ≈l T
◦
2 and U◦1 ≈l U

◦
2 . Since T∞1 and T∞2 are well-typed in context

Γ∞ (by Stage Substitution), by IH, T∞1 ≡ T∞2 . Hence, T ◦1 ≡ T ◦2 . Similarly, U◦1 ≡ U◦2 , since
U∞1 and U∞2 are well-typed under context Γ∞(x : T∞1). But then, the above redex is actually
a tight redex, which contradicts the hypothesis that M is in →t-nf.

We have M ≈l M
′ and both terms are in →l-nf. Since →l is confluent, we conclude that

M ≡M ′.

Corollary 3.58. Let M and M ′ be two well-typed terms under context Γ. If M ≈l M
′, then

M and M ′ have a common unique normal form.

Proof. Let N and N ′ be normal forms (for →t) of M and M ′ respectively. Then, N ≈l N
′.

By Subject Reduction, N and N ′ are well-typed in Γ. Applying the previous lemma, we
obtain N ≡ N ′.

Corollary 3.59. Let M be a well-typed term. If M is in →t-nf, then M is in →l-nf.

Proof. Following the same reasoning as in Lemma 3.57, if M has a loose redex, we can show
that is in fact a tight redex.

Corollary 3.60. Let M be a well-typed term in →t-nf. Then ⌊M⌋ is in →-nf.

Proof. From Cor. 3.59 and Lemma 3.55.

We prove that conversion in ECIĈ− can be obtained from conversion on CIĈη. That is, if
⌊M1⌋ ≈ ⌊M2⌋, then M1 ↓t M2. The idea is to reduce M1 and M2 to normal form, and prove
that they are equal (up to α-convertibility).

Lemma 3.61. Assume Γ1 ⊢ M1 : T1 and Γ2 ⊢ M2 : T2, with |Γ1| = |Γ2|. If ⌊M1⌋ ≈ ⌊M2⌋
and M1 and M2 are in →t-nf, then M1 ≡M2.

68 CHAPTER 3. METATHEORY OF CIĈ−

Proof. By Cor. 3.60, ⌊M1⌋ and ⌊M2⌋ are in →-nf. Therefore, ⌊M1⌋ ≡ ⌊M2⌋. We proceed by
induction on the size of M1 and M2, and case analysis on the shape of M1 and M2.

Abstraction. M1 ≡ λ
U◦

1
x1:T ◦

1
.N1 and M2 ≡ λ

U◦

2
x2:T ◦

2
.N2. Since M1 and M2 are in →l-nf, then

T ◦1 ≈l T
◦
2 , U

◦
1 ≈l U

◦
2 and N1 ≈l N2.

From IH on T∞1 and T∞2 (well-typed on context Γ∞1), we obtain that T∞1 ≡ T∞2 (and
T ◦1 ≡ T ◦2). Similarly, applying IH to U∞1 and U∞2 (well-typed on context Γ∞1 (x1 : T

∞
1)),

we obtain U◦1 ≡ U◦2 .

There exists Wi, for i = 1, 2 such that |Wi| = Ti
◦, and Ni is well-typed under context

Γi(xi : Wi). The IH applies, and N1 ≡ N2.

Application. M1 ≡ app
U◦

1
x1:T ◦

1
(N1, P1) and M2 ≡ app

U◦

2
x2:T ◦

2
(N2, P2). By IH, P1 ≡ P2 and

N1 ≡ N2. In context Γ∞1 (≡ Γ∞2), N1 has types Πx : T∞1 .U∞1 and Πx : T∞2 .U∞2 . The
IH applies, and both types are equal.

Corollary 3.62. Let M1 and M2 be well-typed terms under context Γ. If ⌊M1⌋ ≈ ⌊M2⌋, then
M1 ↓t M2.

Proof. By applying the previous lemma to the normal forms of M1 and M2.

Lemma 3.63. Let T1 and T2 be well-typed terms under context Γ. If ⌊T1⌋ ≤ ⌊T2⌋, then
T1 ≤t T2.

Proof. We prove the lemma using the alternative subtyping relation (Def. 3.6). We proceed
by induction on the height of the subtyping relation, and case analysis on the last rule.

(ast-prod) ⌊T1⌋ ≤ ⌊T2⌋ is derived from ⌊T1⌋ →
∗ Πx : U1.W1, ⌊T2⌋ →

∗ Πx : U2.W2, U2 ≤a

U1, and W1 ≤a W2.

Let N1 and N2 be normal forms of T1 and T2, respectively. By Cor. 3.60, ⌊N1⌋ is
in →-nf. Also ⌊N1⌋ ≈ Πx : U1.W1 and, by confluence, Πx : U1.W1 →

∗ ⌊N1⌋ and
⌊N1⌋ ≡ Πx : U ′1.W

′
1 for some U ′1, W

′
1. Then N1 ≡ Πx : U+

1 .W+
1 for some U+

1 , W+
1 .

Similarly, N2 ≡ Πx : U+
2 .W+

2 , for some U+
2 , W+

2 .

We have, ⌊U+
2 ⌋ ≈ U2 ≤a U1 ≈ ⌊U

+
1 ⌋. By Lemma 3.7, ⌊U+

2 ⌋ ≤a ⌊U
+
1 ⌋ with a derivation

of the same height as U2 ≤a U1. We can apply the IH, and obtain U+
2 ≤a U+

1 . Similarly,
W+

1 ≤a W+
2 . The result follows by applying rule (stt-prod).

(ast-ind) Similarly to the previous case.

(ast-conv) By Cor. 3.62.

In the following we prove that typing is preserved from CIĈη to ECIĈ−. First we prove a
result on preservation of reduction. Preservation of reduction is proved for well-typed terms,
since it is necessary to check that domain and codomain annotations agree.

Lemma 3.64. Let M+ be a well-typed term. If ⌊M+⌋ → N , then there exists N+ such that
M+ →t

+ N+ and ⌊N+⌋ ≡ N .

Proof. We proceed by induction on M → N . The interesting cases are when the reduction is
at the head.

3.2. ANNOTATED VERSION OF CIĈ− 69

β-redex M+ is of the form app
U◦

2
x2:T ◦

2

(
λ
U◦

1
x1:T ◦

1
.M1,M2

)
andN ≡ ⌊M1 [x1 := M2]⌋. By Lemma 3.56,

T ◦1 ≈l T
◦
2 and U◦1 ≈l U

◦
2 . By Cor. 3.58, there exists T ◦3 and U◦3 such that T ◦1 , T

◦
2 →t

∗ T ◦3
and U◦1 , U

◦
2 →t

∗ U◦3 . Then, M →t
∗ app

U◦

3
x2:T ◦

3

(
λ
U◦

3
x1:T ◦

3
.M1,M2

)
→t M1 [x1 := M2]. (We

can assume that x1 = x2.) We take N+ ≡M1 [x1 := M2].

µ-redex M+ is of the form fixn f : T ⋆ := (M1, ~P C(~p◦,~a)). We take

N+ ≡ app
|U⋆|
|∆⋆|

(
M1 [f := λ|∆⋆|.fixn f : T ⋆ := (M1, dom (∆⋆))], ~PC(~p◦,~a)

)
,

where T ⋆ ≡ Π∆⋆.U⋆.

ι-redex M+ is of the form caseP ◦ x := Cj(~q◦,~a) in I
(
~p◦, ~y

)
of {Ci ⇒ Ni}. We take N+ ≡

appP
∗

∆j
∗ (Nj ,~a).

The following lemma states the relation between CIĈη and ECIĈ−. It is the final step in
the proof of equivalence between CIĈ− and ECIĈ−.

Lemma 3.65. If Γ ⊢η M : T , then there exists a judgment Γ+ ⊢t M+ : T+ such that
⌊Γ+⌋ = Γ, ⌊M+⌋ = M and ⌊T+⌋ = T .

Proof. We proceed by induction on the derivation of Γ ⊢η M : T . We consider the case of rule
(conv). The rest of the cases follow easily by IH and Lemma 3.34. The judgment Γ ⊢η M : T
is derived from Γ ⊢η M : U , Γ ⊢η T : u, simple(U), and U ≤ T . By IH, there exists Γ+, M+,
U+ such that Γ+ ⊢t M

+ : U+. Also by IH, there exists ∆+, T+ such that ∆+ ⊢t T
+ : u.

Since ⌊Γ+⌋ ≡ ⌊∆+⌋, we have Γ+ ↓t ∆
+, and Γ+ ⊢t T

+ : u, by Lemma 3.34. By Lemma 3.63,
U+ ≤t T

+, and the result follows by an application of rule (conv).
The rest of the cases follows similarly, using Lemma 3.34 and Corollary 3.62.

We can derive SN and LC for CIĈ− from the same results for ECIĈ− and the equivalence
between both presentations.

Corollary 3.66 (Strong normalization of CIĈ−). If Γ ⊢M : T , then M ∈ SN→.

Proof. Let us assume an infinite reduction sequence starting with M : M ≡ M0 → M1 →
M2 →

By Subject Reduction for CIĈ− (Lemma 3.24) and Lemma 3.52, ⌈Γ⌉ ⊢η ⌈Mi⌉ : ⌈T ⌉, for
i = 0, 1, By part 1 of Lemma 3.51, we have an infinite reduction sequence starting with
⌈M0⌉: ⌈M0⌉ →

′+ ⌈M1⌉ →
′+ ⌈M2⌉ →

′+
By Lemma 3.65, there exists Γ+, M+

0 and T+ such ⌊Γ+⌋ = ⌈Γ⌉, ⌊M+
0 ⌋ = ⌈M0⌉, ⌊T

+⌋ =
⌈T ⌉, and Γ+ ⊢t M

+
0 : T+

0 . By Lemma 3.64, there exists an infinite reduction sequence starting
from M+

0 : M+
0 →t

+ M+
1 →t

+ M+
2 . . ., such that ⌊M+

i ⌋ ≡ ⌈Mi⌉.
Since ECIĈ− is strongly normalizing (Theorem 3.49), no such sequence exists, and the

result follows.

Corollary 3.67 (Logical consistency of CIĈ−). There is no term M such that ⊢M : False.

Proof. By Lemma 3.52, Lemma 3.65, and Theorem 3.50.

70 CHAPTER 3. METATHEORY OF CIĈ−

Chapter 4

Strong Normalization

In this chapter we prove the main technical contribution of this thesis: strong normal-
ization and logical consistency of ECIĈ−. The proof is based on Λ-sets as introduced by
Altenkirch in his PhD thesis [7], and later used by Melliès and Werner [63] to prove strong
normalization for Pure Type Systems. Our development follows more closely the latter.

The chapter is organized as follows. First, we show an overview of the proof containing
only informal explanations but with enough details to give some intuition on the steps that
we follow in the rest of the chapter (Sect. 4.1). Second, we introduce formally all the concepts
and definitions needed (Sect. 4.2). Third, we introduce the interpretation of terms and types
and show some basic properties (Sect. 4.3). Finally, we prove that the interpretation is sound
(Sect. 4.4). As a consequence, we obtain Strong Normalization and Logical Consistency
(Sect. 4.5).

4.1 Overview of the Proof

As mentioned, the proof of SN is obtained from a model of the theory based on Λ-sets.
This model can be seen as a realizability interpretation modified for proving normalization.
We give a short overview of the proof referring to the definitions and lemmas on the rest of
the chapter.

Let us begin by introducing informally the main concept used in the proof: Λ-sets. A Λ-set
X is a pair (X◦, |=), where X◦ is a set called the carrier-set, and |= ⊆ SN×X◦ is a relation
called the realizability relation (SN denotes the set of strongly normalizing terms). Types are
interpreted as Λ-sets, whereas terms are interpreted as elements in the interpretation of their
types. The interpretation is in part set-theoretical: product (Π) types are interpreted by
(dependent) function spaces, abstractions (λ) are interpreted as functions, applications are
interpreted as set-theoretical function application, and so on. Let us denote the interpretation
of a term M by [M]γ , where γ is the interpretation of the free variables of M . The soundness
theorem says that if Γ ⊢ M : T and γ is an adequate interpretation of the free variables of
M , then

[M]γ ∈ X◦,

where [T]γ is a Λ-set (X◦, |=). Intuitively, we say that γ is adequate if γ(x) ∈ [U] for each
(x : U) ∈ Γ. One of the advantages of interpreting the constructions of the language in
set-theoretical terms is that it gives a clear intuition of their meaning.

71

72 CHAPTER 4. STRONG NORMALIZATION

As a consequence of soundness it is possible to prove SN for well-typed terms: if Γ ⊢M : T ,
then

M |= [M]γ ,

for some adequate γ where [T]γ = (X◦, |=). SN follows from the fact that realizers in |= are,
by definition, strongly normalizing.

Inductive types

The Λ-set model can be adapted to the case of inductive types. Altenkirch [7] proves that
CC extended with trees at the impredicative level satisfies SN, by extending the Λ-set model.
In our case, we consider inductive types only at the predicative level.

Intuitively, the meaning of an inductive type is the smallest set that is closed under
application of constructors. For example, let us consider the case of nat. We interpret
constructors with tags using natural numbers: {O 7→ 0, S 7→ 1}. The semantic meaning of
nat is given by

[nat] = {(0, ∅), (1, (0, ∅)), (1, (1, (0, ∅))), . . .} .

This set is obtained as the least fixed point of a monotone operator derived from the definition
of nat:

φ(X) = {(0, ∅)} ∪ {(1, x) : x ∈ X} .

We need transfinite recursion to reach a fixpoint in the case of higher-order inductive
types. It is defined as follows. Given a monotone operator φ and an ordinal a we define the
set φa by the following equations:

φ0 = ∅

φa+1 = φ(φa)

φb =
⋃

a<b

φa, where b is a limit ordinal.

For example, in the case of nat, we reach a fixpoint after ω iterations (where ω is the smallest
infinite ordinal). In the case of False (which has no constructors), the monotone operator
derived is φFalse(X) = ∅. Hence, the interpretation of the type is [empty] = ∅.

For proving SN, empty types are not allowed in the interpretation. Otherwise, we will not
be able to ensure SN in inconsistent contexts. For example, in the judgment (x : False) ⊢M :
T there is no valid interpretation of M since we cannot instantiate x.

To interpret inductive types as a Λ-set we take the set-theoretical interpretation given
above and add extra elements to avoid having empty interpretations. The realizability relation
is extended in a natural way. The intuitive interpretation of nat is given by a pair (N , |=nat)
where

N = {(0, ∅), (1, (0, ∅)), (1, (1, (0, ∅))), . . .} ∪ {⊥, (1,⊥), (1, (1,⊥)), . . .}

and ⊥ is an element that is included in the interpretation of all inductive definitions. The
realizability relation states is defined such that, for example,

M |=nat (0, ∅) ⇐⇒ M →∗ O

M |=nat (1, α) ⇐⇒ M →∗ S(N) ∧N |=nat α

We omit the definition of the relation for elements contained ⊥, since it is not important at
this point. In Sect. 4.3.3 we present the formal definition of the interpretation of inductive
types as the least fixed point of a monotone operator.

4.1. OVERVIEW OF THE PROOF 73

4.1.1 The case of CIC−̂.

For proving SN for CIĈ−, we adapt the basic Λ-set model described above. The main
aspects of the type-based termination approach have a direct and intuitive semantics in the
Λ-sets model. Sized types are interpreted as approximations of the monotone operators
described above, where stages are interpreted by ordinals. For example, the interpreation of

a type nats is given by [nats] = φ
[s]
nat, where the interpretation of a stage s is an ordinal. The

semantic interpretation of subtyping is subset inclusion: nats ≤ natr ⇒ [nats] ⊆ [natr]. The
stage ∞ is interpreted by an ordinal big enough to ensure that the least fixed point of φnat

is reached. In the case of nat is sufficient to set [∞] = ω, but for higher-order types bigger
ordinals are necessary.

Although sized types have a semantically intuitive interpretation, there are other aspects
that do not fall directly into this model. We discuss them briefly and then show our proposed
solution.

Contravariance rule. Recall that the Λ-set model can be seen as a set-theoretical model
extended with a realizability relation. A natural way of interpreting the type natı is φ

[ı]
nat,

i.e., iterating the associated monotone operator of nat iterated [ı] times, where [ı] is the
interpretation of the stage ı. Consider for example the subtyping relation nat∞ → T ≤
natı → T , for some term T . In the Λ-set model, the interpretation of these terms would be

[nat∞ → T] = φω
nat → [T] and [natı → T] = φ

[ı]
nat → T , where the arrows on the rhs of the

equalities denote Λ-set function space. Note that the carrier-set of a Λ-set function space is
just the set-theoretical function space.

Then, it is not true that [nat∞ → T] ⊆ [natı → T], since the domains of the functions
are different (functions are interpreted as sets of pairs). In other words, the natural way of
interpreting subtyping in the set-theoretical model as inclusion, is not directly valid.

While it is not true that [nat∞ → T] ⊆ [natı → T], there is, a coercion from one set to
the other. We could interpret subtyping by a coercions functions. However, this means that
the interpretation would depend, not only of the term being interpreted, but also on the type
derivation of the term. Consider a simplified derivation of the form

Γ ⊢M : nat∞ → T nat∞ → T ≤ natı → T

Γ ⊢M : natı → T
(conv)

To know if we interpret M as an element of [nat∞ → T] or as an element of [natı → T],
we need to look at a type derivation of M . Different type derivation would lead to different
interpretations. We do not pursue this approach because it would add many complications
in the definition of the interpretation and the proof of soundness. Our solution, described
below, follows a different path.

Lack of annotations. As we mentioned, the lack of size annotations in types has some
advantages and disadvantages. The principal advantage is an efficient reduction mechanism,
since we do not have to care about substitution of stage variables. However, in the interpre-
tation, we encounter a similar problem as the one described above. Consider a term of the
form λx : nat.M . This term would have a type of the form nats → T . Since s does not appear
on the term itself, we cannot give a correct interpretation.

74 CHAPTER 4. STRONG NORMALIZATION

Our solution. We propose to define two interpretations. The first is used for terms that
do not contain size variables; therefore the issues mentioned above are avoided. In particular,
for erased terms, we assume that the missing annotations are ∞. To ensure the soundness
of this interpretation and, in particular, to ensure that the size information is respected, we
define a second (relational) interpretation on types.

Let us illustrate the concept with an example. Consider the type nats → natr. We define
two interpretations for this term. The first interpretation, denoted with [], does not consider
the size annotation, so we simply define [nats → natr] = [nat∞ → nat∞] = φω

nat → φω
nat. For

the second interpretation, we take the size information (s and r) into account. Recall that

φ
[s]
nat is, intuitively, the set

{0, (1, 0), (1, 1, 0), . . . , (1, 1, 1, . . . (1, 0)︸ ︷︷ ︸
[s]

) . . .)

We define JnatsK as a (partial) relation on the set φω
nat (the full interpretation of nat); concretely

JnatsK = {(α, α) : α ∈ φ
[s]
nat}

That is, two elements are related in JnatsK if they are equal and respect the size s. The
relational interpretation for products takes related elements in the domain to related elements
in the codomain. For example,

Jnats → natrK = {(f1, f2) : φ
ω
nat → φω

nat | (α, α) ∈ JnatsK⇒ (f1(α), f2(α)) ∈ JnatrK}

= {(f1, f2) : φ
ω
nat → φω

nat | α ∈ φ
[s]
nat ⇒ f1(α) = f2(α) ∈ φ

[r]
nat}

If a type T contains variables, the relational interpretations of T takes two interpretations of
free variables: JT Kγ1,γ2 . We extend the interpretation to contexts to ensure that γ1 and γ2
respect sizes.

Then, the soundness result says that if Γ ⊢M : T and (γ1, γ2) ∈ JΓK, then ([M]γ1 , [M]γ2) ∈
JT Kγ1,γ2 . As usual the proof proceeds by induction on the type derivation.

Note that the relational interpretation solves both problems mentioned above. First, the
contravariance rule is sound under this interpretation. Consider a stage s′ ⊑ s; the relational
interpretation of nats

′

→ natr gives

Jnats
′

→ natrK = {(f1, f2) ∈ N→ N : α ∈ φ
[s′]
nat ⇒ f1(α) = f2(α) ∈ φ

[r]
nat}

Since [s′] ≤ [s], we have Jnats → natrK ⊆ Jnats
′

→ natrK.
As for the lack of annotations, consider the following derivation:

Γ(x : nats) ⊢M : natr

Γ ⊢ λx : nat.M : nats → natr

We interpret the term λx : nat.M as a function with domain φω
nat; specifically α ∈ φω

nat 7→
[M]γ,α. Soundness of this interpretations states

(α ∈ φω
nat 7→ [M]γ1,α, α ∈ φω

nat 7→ [M]γ2,α) ∈ Jnats → natrK

The proof of soundness reduces to proving that if α ∈ φ
[s]
nat, then [M]γ1,α = [M]γ2,α ∈ φ

[r]
nat.

This is exactly what the IH for the judgment Γ(x : nats) ⊢M : natr says.
The formal definition of the relational interpretation is given in Sect. 4.3.5.

4.2. PRELIMINARY DEFINITIONS 75

4.2 Preliminary Definitions

In this section we introduce the concepts necessary to define the interpretation of terms.
Namely, saturated sets, Λ-sets, and inaccessible cardinals. Saturated sets a usual tool in
proofs of SN. They are not strictly needed in our case, but we introduce them to relate with
the definition of Λ-sets. We also present some notions of set theory. In particular, the notion
of inaccessible cardinal which is used in the interpretation of universes.

Saturated sets

A saturated set is a set of strongly normalizing terms that satisfy some closure properties
with respect to reduction. We define them in terms of elimination contexts.

Definition 4.1 (Elimination context). An elimination context is a term with a “hole”, de-
noted by [], that belongs to the following grammar:

E[] ::= []

| appT
◦

V:T ◦ (E[], T)

| caseT ◦ V
I(~T ◦, ~T ◦) := E[] in I

(
, ~V

)
of 〈Ci ⇒ Ti〉i

| fixn V : T ⋆ := (T , 〈Ti〉i=1..(n−1)E[])

We write E[M] for the term obtained by replacing the hole of E[] with M .

Note that, in the case of fixpoint, the function is applied to n arguments, the last one being
an elimination context. We define weak-head reduction in terms of elimination contexts.

Definition 4.2 (Weak-head reduction). Weak-head reduction, denoted →wh, is defined by
the rule

E[M]→wh E[N] ⇐⇒ M βlιµ N .

Note on the rhs that we do not take the compatible closure of the relation, but only
reduction at the head. Furthermore, note that we use loose β-reduction.

We say that a term M is in weak-head normal form (whnf), if there is no N such that
M →wh N . Note that a term in whnf is not necessarily in normal form. We define the notion
of atomic term which are terms in whnf, where weak-head reduction is stopped by a variable.

Definition 4.3 (Atomic term). A term is atomic if it is of the form E[x]. In such case, x is
the head variable of E[x]. We use AT to denote the set of atomic terms.

Atomic terms have the following properties: if M is an atomic term, and M → N , then N
is also atomic; if M ≡ E[x] (an atomic term with head variable x) and y 6= x, then M [y := N]
is also an atomic term with head variable x.

We formally define the notion of strongly normalizing term.

Definition 4.4 (Strongly normalizing term). Let R be a relation on terms. A M term is
strongly normalizing with respect to R, if there is no infinite reduction sequence, M ≡ M0 R
M1 R M2 We denote with SN(R) the set of strongly normalizing terms with respect to R.

If R1 and R2 are two relations on terms such that R1 ⊆ R2, then SN(R2) ⊆ SN(R1). Let
M ∈ SN(R2). If there exists an infinite reduction sequence M ≡ M0 R1 M1 R1 M2 R1 . . .,

76 CHAPTER 4. STRONG NORMALIZATION

then we would have M ≡ M0 R2 M1 R2 M2 R2 Since M ∈ SN(R2), this is impossible.
Therefore, there is no infinite reduction sequence on R1 and M ∈ SN(R1).

By the above, SN(→l) ⊆ SN(→t). We are interested in strong normalization with respect
to →l. Hence, when we say strongly normalizing term, we mean strongly normalizing with
respect to →l. To simplify the notation, we write SN instead of SN(→l).

Below is the formal definition of a saturated set.

Definition 4.5 (Saturated set). A set of terms X ⊆ SN is saturated iff it satisfies the
following conditions:

(S1) AT ∩ SN ⊆ X;

(S2) if M ∈ SN and M →wh M ′ and M ′ ∈ X, then M ∈ X.

In other words, a set of strongly-normalizing terms is saturated if it contains all strongly
normalizing atomic terms and is closed by weak-head expansion. We denote with SAT the
set of saturated sets. Note that SAT is a complete lattice ordered by inclusion. The greatest
element is SN, and the least element is AT, that is the closure of AT under weak-head
expansion.

Λ-sets

This is the main tool we use in the proof of SN. Our definition of Λ-sets is slightly different
than the usual [7,63], as explained below.

Definition 4.6 (Λ-set). A Λ-set is a triple X = (X◦, |=X ,⊥X) where X◦ is a non-empty set,
witnessed by ⊥X ∈ X◦, and |=X ⊆ T ×X◦.

X◦ is the carrier-set and the elements of X◦ are called the carriers of X. The terms M
such that M |=X α for some α ∈ X◦ are called the realizers of α. The element ⊥X is called
the atomic element of X. We write α ⊏ X for α ∈ X◦. A Λ-set X is included in a Λ-set Y ,
written X ⊆ Y , if X◦ ⊆ Y◦, |=X ⊆ |=Y , and ⊥X = ⊥Y .

The notion of saturated Λ-set is necessary for proving SN.

Definition 4.7 (Saturated Λ-set). A Λ-set X is said to be saturated if

1. every realizer is strongly normalizable;

2. the atomic element ⊥X is realized by any atomic strongly normalizable term;

3. for every α ∈ X◦, if N |=X α, and M →wh N with M ∈ SN, then M |=X α (i.e., the
set of realizers is closed under weak-head expansion).

The relation between saturated Λ-sets and saturated sets is the following: given a satu-
rated Λ-set X, the set of all realizers of X is a saturated set.

The difference between the definition in [7,63] and ours is that the atomic element of a Λ-
set is explicit in the definition. The use of the atomic element will be evident in the definition
of the interpretation of terms. However, the difference in the definition is not essential in our
proof.

A saturated set that will be useful in the rest of the chapter is

⊥ = ({∅},AT ∩ SN× {∅}, ∅),

4.2. PRELIMINARY DEFINITIONS 77

that is, ⊥ is a saturated Λ-set, whose carrier is the singleton {∅} and the realizers of its only
element are the atomic strongly normalizing terms.

Given a set X, we define X as the Λ-set X = (X ∪ {∅}, SN × X, ∅). We often use this
operation in the case where ∅ ∈ X. In such case, we write X to mean both X proper and X;
which one we refer will be clear from the context.

We define a product operation on Λ-sets that is used to interpret the product construction
on terms.

Definition 4.8 (Product). Let X be a Λ-set and {Yα}α∈X◦
an X◦-indexed family of Λ-sets.

We define the Λ-set Π(X,Y) by:

– Π(X,Y)◦
def
= {f ∈ X◦ →

⋃
α∈X◦

(Yα)◦ : ∀α ∈ X◦.f(α) ∈ (Yα)◦};

– M |=Π(X,Y) f
def
= ∀α ∈ X◦. N |=X α.

∀T ◦, U◦, x. appU
◦

x:T ◦ (M,N) |=Yα f(α);

– ⊥Π(X,Y)
def
= α ∈ X◦ 7→ ⊥Yα.

The following lemma state that saturated Λ-sets are closed under product.

Lemma 4.9. If X and every {Yα}α∈X◦
are saturated Λ-sets, so is Π(X,Y).

We define a notion of morphism between Λ-sets.

Definition 4.10 (Λ-morphism). Let X and Y be Λ-sets. A Λ-morphism f from X to Y is a
function f : X◦ → Y◦, such that M |=X α⇒M |=Y f(α), and f(⊥X) = ⊥Y .

Definition 4.11 (Λ-iso). Let X and Y be Λ-sets. A Λ-iso f from X to Y is a Λ-morphism
such that f is a one-to-one function, and M |=X α ⇐⇒ M |=Y f(α).

The following operation is useful for defining the relational interpretation of types.

Definition 4.12. Let X be a Λ-set. Then X2 is a Λ-set where
– (X2)◦ = {(α, α) : α ⊏ X}
– M |=X2 (α, α) ⇐⇒ M |=X α
– ⊥X2 = (⊥X ,⊥X)

The following lemma states a relation between X and X2.

Lemma 4.13. Let X be a Λ-set. Then X and X2 are isomorphic.

To interpret contexts, it is useful to consider a small generalization of Λ-sets, where the
realizability relation is defined on sequences of terms of a fixed length.

Definition 4.14 (Λn-set). A Λn-set is a triple X = (X◦, |=X ,⊥X) where X◦ is a non-empty
set, witnessed by ⊥X ∈ X◦, and |=X ⊆ T

n × X◦, where T
n denotes the set of sequences of

terms of length n.

Note that, when n = 1, we reduce to a Λ-set. For n = 0, the realizability relation only
considers the empty sequence of terms, ε. We write ∅ to denote the Λ0-set ({∅}, (ε, ∅), ∅).

The notion of saturated Λn-set is defined as the obvious generalization of the notion of
saturated Λ-set.

Definition 4.15 (Saturated Λn-set). A Λn-set X is said to be saturated if

78 CHAPTER 4. STRONG NORMALIZATION

1. every realizer is in SNn;

2. the atomic element ⊥X is realized by all elements of ATn ∩ SNn;

3. for every α ∈ X◦, if ~N |=X α, and ~M →wh
~N with ~M ∈ SNn, then ~M |=X α

We write ~M →wh
~N when # ~M = # ~N to mean that some element in ~M weak-head reduces

to the corresponding element in ~N . In other words, if ~M = M1 . . .Mn and ~N = N1 . . . Nn,
then ~M →wh

~N if Mi →wh Ni for some 1 ≤ i ≤ n and Mj ≡ Nj for j 6= i.

Definition 4.16 (Sum). Let X be a Λn-set and {Yα}α∈X◦
a X◦-indexed family of Λm-sets.

We define the Λn+m-set Σ(X,Y) by:

– Σ(X,Y)◦ =
∑

α⊏X (Yα)◦ = {(α, β) : α ⊏ X ∧ β ⊏ Yα};

– ~M, ~N |=Σ(X,Y) (α, β) ⇐⇒ ~M |=X α ∧ ~N |=Yα β;
– ⊥Σ(X,Y) = (⊥X ,⊥Y(⊥X)

).

Saturated Λ-sets are closed under the sum operation.

Lemma 4.17. If X is a saturated Λn-set and {Yα}α∈X◦
is a X◦-indexed family of saturated

Λm-sets, then Σ(X,Y) is a saturated Λn+m-set.

Given a set X, we write L(X) to denote the set of saturated Λ-sets whose carrier set is
an element of X. Similarly, Ln(X) denotes the set of saturated Λn-sets whose carrier set is
an element of X, and L∗(X) denotes

⋃
n L

n(X). We use this definitions in the case when X
is the interpretation of a universe.

Notions of set theory

We need some notions of set theory for the interpretation of terms. In particular, we use
inaccessible cardinals for the interpretations of universes. For the interpretation of inductive
types we need some concepts from ordinal and cardinal theory. All these notions are standard
and can be found in many texts on set theory (e.g. [54]).

We begin by defining the cumulative hierarchy of sets, and strongly inaccessible cardinals.

Definition 4.18 (Cumulative hierarchy). The cumulative hierarchy for an ordinal α, denoted
Vα, is defined by transfinite induction by the following equations:

V0 = ∅

Vα+1 = P(Vα)

Vλ =
⋃

α<λ

Vα (for limit λ)

Definition 4.19 (Strongly inaccessible cardinal). A cardinal number κ is said to be (strongly)
inaccessible iff it satisfies the following conditions:

(i) κ > ℵ0 (i.e., κ is uncountable);

(ii) for all λ < κ, 2λ < κ (i.e., κ is a strong limit cardinal);

(iii) if S is a set of ordinals less than κ and if card(S) < κ, then the ordinal sup(S) is less
than κ (i.e., κ is regular).

4.2. PRELIMINARY DEFINITIONS 79

There is a connection between the cumulative hierarchy and inaccessible cardinals that
justifies their definition: if κ is an inaccessible cardinal, the set Vκ provides a model of ZF set
theory. Hence, if ZF set theory is consistent, the existence of inaccessible cardinals cannot be
proved inside the theory.

The main property of inaccessible cardinals that we use is that they are closed under
dependent products.

Lemma 4.20. Assume a inaccessible cardinal κ. Let X ∈ Vκ and for each x ∈ X, let Yx ∈ Vκ.
Then

∏
x∈X Yx ∈ Vκ.

We use this property to justify the soundness of the product rule of CIĈ−. Note that
the inaccessibility of κ is not a necessary condition in the previous lemma. For example, for
κ = ω the property is valid. The set Vω is the set of hereditarily finite sets. In CC, where
there are only two universes, Prop and Type, the set Vω can be used as the interpretation of
Type. Using that model, we can prove that it is not possible to define provably infinite types
in CC.

In our case, given that we have a predicative hierarchy of universes, we assume the exis-
tence of inaccessible cardinals. This might seem radical, since their existence is not provable
from the axioms of ZF set theory. However, their use is standard in many models of type
theory with universes [41,51,56,83].

One might wonder if the use of inaccessible cardinals is unavoidable. In [83], Werner
defines a set-theoretical model of CIC using inaccessible cardinals and a formalization of set
theory inside CIC. He shows that there is an equivalence between the predicative universes and
inaccessible cardinals, giving some evidence to the fact that inaccessible cardinals might be
necessary. On the other hand, Melliès and Werner [63] avoid the use of inaccessible cardinals
in their proof of SN of Pure Type Systems, by defining a finer structure on Λ-sets using
relations. However, this greatly complicates the proof and, as the authors point out, it is not
clear that this construction can be carried on in the presence of inductive types.

For our purposes, we assume an increasing infinite sequence of inaccessible cardinals, {λi}i.
We define Ui to be the set of saturated Λ-sets whose carrier set are in Vλi

, i.e., Ui = L(Vλi
).

Similarly, we define Un
i = Ln(Vλi

). As mentioned before, we write Ui to mean both Ui and
also Ui.

Following [51,56,83], we will interpret the sort hierarchy using these large universes. That
is, the sequence of sorts {Typei}i∈N is interpreted with the sequence {Ui}i∈N, as explained
below.

Note that the rule Type0 : Type1 : Type2 . . . (given by the Axiom set) is sound in this
interpretation using inaccessible cardinals, i.e., U0 ∈ U1 ∈ U2 ∈ Furthermore, we also
have

U0 ⊆ U1 ⊆ U2 . . .

meaning that the universe inclusion rule Type0 ≤ Type1 ≤ Type2 . . . is also sound in this
interpretation [56]. However, recall that we do not consider universe inclusion in CIĈ− (cf.
Sect. 5.1).

Monotone operators. Inductive definitions are interpreted by monotone operators in the
universe they are defined. We state some properties that are sufficient to ensure the existence
of a least fixed point of a monotone operator. This section is based on [4].

80 CHAPTER 4. STRONG NORMALIZATION

Let us consider an inductive definition Ind(I[∆p]
~ν : Π∆a.Typek := 〈Ci : Ti〉i). The inter-

pretation of I will be the least fixed point of a monotone operator in the set A → Uk, where
A is the interpretation of the arguments, ∆a. We give sufficient conditions to ensure that
monotone operators defined on a set A → U have a least fixed point. The order relation
on the set A → U is point-wise inclusion: given X,Y ∈ A → U , we say that X ⊆ Y when
X(α) ⊆ Y (α) for all α ∈ A.

We define transfinite iteration for an operator in the set A → U .

Definition 4.21. Given an operator φ : (A → U) → (A → U), we define the sequence φα,
where α is an ordinal, by transfinite recursion, as follows:

φ0 = ⊥

φα+1 = φ(φα)

φλ =
⋃

α<λ

φα

where ⊥ is an element of A → U we choose to start iterating. When U is a universe, we take
⊥ = α ∈ A 7→ ∅.

Note that, if φ is a monotone operator, then the sequence {φα}α is increasing. In the
following, we prove a sufficient condition to ensure that the sequence {φα}α will reach a fixed
point.

Given X ∈ A → U we define card(X) as card(
⋃

α∈AX(α)◦). A monotone operator φ is
α-based if

x ∈ φ(X)⇒ ∃Y ⊆ X.x ∈ φ(Y) ∧ card(Y) < α

Lemma 4.22. Let φ be an α-based monotone operator, where α is regular. Then φα+1 ⊆ φα.

Since {φα}α is increasing, this means that φα is a fixed point of φ. In fact, it is the least
one.

We also use the following property of cardinal numbers: for any cardinal a, there exists a
greater regular cardinal (i.e., there exists b ≥ a such that b is regular). We also assume the
axiom of choice. In particular, this implies that a+ b = a · b = max{a, b}, for cardinals a, b
such that both are non-zero and one of them is infinite.

4.3 The Interpretation

In this section we define the interpretation function and prove some properties such as
soundness of Weakening, Substitution and Subject Reduction. In Sect. 4.4 we show the main
soundness theorem.

This section is organized as follows. We begin by explaining how to treat impredicativity
in the model (Sect. 4.3.1). Then we define the interpretation of terms and context that do not
contain size variables (i.e., the set of free size variables is empty), and prove some properties.
Then we define the relational interpretation of types and prove some properties. In this
case, types are allowed to contain size variables by the simple predicate; we also define the
interpretation of stages.

4.3. THE INTERPRETATION 81

4.3.1 Impredicativity

Impredicativity is a delicate issue in dependent type theory [29]. It is well-known that
system F polymorphism is not set-theoretical [73], in the sense that only a trivial model is
sound. Since CIC contains system F as a subsystem, in a set-theoretical model, the im-
predicative universe is interpreted as a two-element set, representing the truth value of a
proposition. By a set-theoretical model we mean a model where abstractions, applications
and products are interpreted by their set-theoretical counterparts. Let us recall the product
rule for propositions:

Γ ⊢ T : Typek Γ(x : T) ⊢ U : Prop

Γ ⊢ Πx : T.U : Prop

Then Prop can only be interpreted as the set {∅, {•}}, where ∅ represents a false proposition
and • is a set representing a true proposition. In the case of propositional types, the inter-
pretation of Πx : T.U , denoted [Πx : T.U], cannot be directly defined as the set-theoretical
product ∏

α∈[T]

[U]α

since it should be an element of {∅, {•}}.
But there is a natural way of interpreting an impredicative product. Note that, for α ∈ [T],

[U]α is either ∅, or {•}. If [U]α = ∅ for some α, then
∏

α∈[T][U]α = ∅, and we can define
[Πx : T.U] = ∅. Otherwise, if [U]α = • for all α, then

∏
α∈[T][U]α is a singleton {α ∈ [T] 7→ •}.

In the latter case, [Πx : T.U] is collapsed to {•}.
This model is proof-irrelevant since all proofs are interpreted by the same element. Miquel

and Werner [66] show that some care needs to be taken when defining this model. It is
important to separate proofs from computation. Therefore, it is not trivial to extend this
model in the presence of a subtyping rule of the form Prop ≤ Type0. This is the reason we do
not consider this rule in our proof (cf. Sect. 5.1).

A set-theoretical model is useful to prove Logical Consistency, but not to prove Strong
Normalization. For the latter, proofs can not be collapsed into the same element (ffl in our
case). A relatively simple model of CC (and ECC) where the interpretation of impredicativity
is not trivial is provided by the ω-set model [55,56]. A ω-set is a pair (A, |=) where A is a set
and |= ⊆ ω × A. The impredicative universe is then interpreted as a category of PER. The
Λ-set model is just a modification of the ω-set where realizers are not natural numbers, but
strongly normalizing λ-terms. Altenkirch [7] interprets impredicativity in the Λ-set model as
a category of PER. In our case, we follow [63] and interpret the impredicative universe as the
set of degenerated Λ-sets.

Definition 4.23. A Λ-set X is degenerated, if the carrier-set X◦ is a singleton {A}, where
A is a saturated set, M |=X A iff M ∈ A, and ⊥X = A.

We write A for the degenerated Λ-set corresponding to a saturated set A.

Consider again the product rule for propositions:

Γ ⊢ T : Typek Γ(x : T) ⊢ U : Prop

Γ ⊢ Πx : T.U : Prop

In this case [T] is a Λ-set X, and [U]α is a degenerated Λ-set Yα for each α ⊏ [T]. Let Yα =
{yα}. The interpretation of Πx : T.U cannot be Π([T], [U]), since it should be a degenerated

82 CHAPTER 4. STRONG NORMALIZATION

Λ-set. However, note that the carrier-set of Π([T], [U]) is the singleton {α ⊏ X 7→ yα}. Then,
there is a canonical representation of Π(X,Y) given by the degenerated Λ-set corresponding
to the saturated set

↓(X,Y) = {M ∈ SN : N |=X α⇒ appU
◦

x:T ◦ (M,N) |=Yα yα} .

Note that there is a Λ-iso p(X,Y) : Π(X,Y)→ ↓(X,Y).
We use the isomorphism p(X,Y) to convert between the interpretation of a proof term as

an element of Π(X,Y) (if it is needed as a function), or as the canonical proof ↓(X,Y). For
this reason it is necessary to have the domain and codomain annotations in abstractions and
application. For example, let us consider a proof term of the form appU

◦

x:T ◦ (M,N). In this
case M is also a proof, and its interpretation [M] is an element of a degenerated Λ-set. Then,
the interpretation of appU

◦

x:T ◦ (M,N) cannot be defined as the function application [M][N],
since [M] is not a function. We use the above isomorphism to transform [M] into a function,
more precisely, a function in [Πx : T ◦.U◦].

This transformation is only needed in the case of proofs. Predicative products are in-
terpreted by the product operation on Λ-sets. For convenience, we define the functions
ΠΓ⊢T (X,Y), ↓Γ⊢TΠ(X,Y), ↑

Γ⊢T
Π(X,Y) that give the interpretation of products, abstractions, and ap-

plications (respectively), depending if the type T is a proposition or a computational type. In
the case of proposition, these functions convert between Π(X,Y) and the canonical represen-
tation ↓(X,Y). Otherwise, there is no conversion needed. The relation between ΠΓ⊢T (X,Y),
↓Γ⊢TΠ(X,Y), ↑

Γ⊢T
Π(X,Y) is given by the following:

↓Γ⊢TΠ(X,Y) : Π(X,Y)→ ΠΓ⊢T (X,Y)

↑Γ⊢TΠ(X,Y) : ΠΓ⊢T (X,Y)→ Π(X,Y)

where ↓Γ⊢TΠ(X,Y) and ↑Γ⊢TΠ(X,Y) are Λ-isomorphisms between Π(X,Y) and ΠΓ⊢T (X,Y) which is
the interpretation of a product. The definition depends on whether T is a proposition or a
computational type, and is given by:

– if Γ∞ ⊢ T∞ : Prop, then ΠΓ⊢T (X,Y) = ↓(X,Y), ↓Γ⊢TΠ(X,Y) = p(X,Y), and ↑Γ⊢TΠ(X,Y) =

p−1(X,Y);
– if Γ∞ ⊢ T∞ : Typei, then ΠΓ⊢T (X,Y) = Π(X,Y) and ↓Γ⊢TΠ(X,Y) = ↑

Γ⊢T
Π(X,Y) = idΠ(X,Y).

To avoid cluttering, we write ↑Γ⊢Πx:T.U
γ to mean ↑Γ⊢Πx:T.U

Π([Γ⊢T](γ),[Γ(x:T)⊢U](γ,)); similarly for the
inverse operation.

4.3.2 Interpretation of Terms and Contexts

We present the first interpretation of terms. As we mentioned, it only makes sense for full
terms (i.e., terms with no size variables).

Given a bare context Γ, a full term M (with no size variables) and an interpretation
γ of the free variables of M , the interpretation of M under Γ is denoted [Γ ⊢ M]γ . The
interpretation of a bare context Γ is denoted [Γ]. In the rest of the chapter, we assume a
valid signature Σ. The interpretation of terms and contexts, depends on the interpretation of
the inductive types defined in Σ (Sect. 4.3.3). For the moment, we assume a function I such
that I(I) is the interpretation of I, for I ∈ Σ. The definition of I is given in Sect. 4.3.3. The
interpretation of I is a function that takes as arguments an interpretation of the parameters
and arguments and returns a Λ-set. The elements in the carrier-set of this Λ-set are of the
form

4.3. THE INTERPRETATION 83

– (j, ρ), where j is a tag corresponding to the j-th constructor of I and ρ is the interpre-
tation of the arguments of the constructor;

– or ∅ which is the atomic element.

We define the interpretation by induction on the structure of terms and contexts. As
usual in proofs of SN, the interpretation is defined as a partial function. Only in the proof of
soundness it is ensured that for well-typed terms the interpretation is well-defined.

Terms

Definition 4.24 (Interpretation of terms). We define the interpretation function by induction
on the structure of terms.

– [Γ ⊢ Typei]γ = Ui

– [Γ ⊢ Prop]γ = {X : X is a degenerated Λ-set}

– [Γ ⊢ x]γ = γi
– if Γ = (x1 : T1) . . . (xn : Tn), γ = γ1, . . . , γn, and x = xi;

– [Γ ⊢ Πx : T.U]γ = ΠΓ⊢Πx:T.U ([Γ ⊢ T]γ , [Γ(x : T) ⊢ U]γ,)
– if [Γ ⊢ T]γ is defined,
– [Γ(x : T) ⊢ U]γ,α is defined for any α ⊏ [Γ ⊢ T]γ, and
– Γ ⊢ Πx : T.U : u for some sort u;

– [Γ ⊢ λU◦

x:T ◦ .M]γ = ↓Γ⊢Πx:T ◦.U◦

γ ([Γ(x : T∞) ⊢M]γ,)
– if [Γ ⊢ T∞]γ is defined,
– [Γ(x : T∞) ⊢M]γ,α is defined for all α ⊏ [Γ ⊢ T∞]γ, and
– Γ∞ ⊢ Πx : T∞.U∞ : u for some sort u;

– [Γ ⊢ appU
◦

x:T ◦ (M,N)]γ = ↑Γ⊢Πx:T ◦.U◦

γ ([Γ ⊢M]γ)([Γ ⊢ N]γ)
– if [Γ ⊢M]γ and [Γ ⊢ N]γ are defined;

– [Γ ⊢ I∞ (~p,~a)]γ = I(I)([Γ ⊢ ~p]γ)([Γ ⊢ ~a]γ)
– if [Γ ⊢ ~p]γ and [Γ ⊢ ~a]γ are defined;

– [Γ ⊢ Cj(~p◦,~a)]γ = (j, [Γ ⊢ ~a]γ), if [Γ ⊢ ~a]γ is defined, where Cj is the j-th constructor
in an inductive type I ∈ Σ.

– [Γ ⊢ caseP ◦ xI(~p◦, ~a◦) := M in I (, ~y) of 〈Ci ⇒ Ni i〉]γ =

– ↑
Γ⊢branchsCj

(~p,~y.x.P)

γ [Γ ⊢ Nj]γ(ρ), if [Γ ⊢M]γ = (j, ρ) is defined, [Γ ⊢ Nj]γ(ρ) is defined,

and ↑
Γ⊢branchsCj

(~p,~y.x.P)

γ is defined;
– ⊥[Γ (caseTypesI(~p,~y,x))⊢P](γ,α,⊥), if [Γ ⊢ M]γ = ∅ is defined, and [Γ (caseTypesI(~p, ~y, x)) ⊢

P]γ,α,⊥ is defined.

– [Γ ⊢ fixn f : T ⋆ := (M, ~N)]γ = ↑ǫ(F, P)([Γ ⊢ ~N]γ), if [Γ
∞ ⊢ T∞]γ is defined, where

– T ⋆ ≡ Π∆⋆.U⋆, with #∆⋆ = n; let ∆⋆ = ∆′⋆(x : I⋆ (~p)~a);
– F ⊏ [Γ ⊢ T∞]γ;
– P is the conjunction of the following properties:

(F1) ↑F (α, ∅) = ⊥[U∞](γ,α,∅);

(F2) ↑F (α, β) = ↑([Γ(f : |T |) ⊢ M]γ,F)(α, β), for all (α, β) ⊏ [Γ ⊢ ∆∞(I∞ (~p,~a))]γ
and β 6= ∅

– and ↑ = ↑
Γ⊢|T ⋆|
γ .

We write [Γ∆ ⊢M]γ, as a short hand for δ ⊏ [Γ ⊢ ∆]γ 7→ [Γ∆ ⊢M]γ,δ.

84 CHAPTER 4. STRONG NORMALIZATION

The interpretation of basic terms follows [63]. In the case of product, abstraction and
application we check if we are in the propositional universe, or in a computational universe.
For abstraction, we interpret the body as a function on the parameter of the function. Using
function ↓ we convert this function into an element of the interpretation of the product Πx :
T∞.U∞. If this product is in a computational universe, no conversion is needed. Otherwise,
the interpretation of the product is a degenerated set, so we convert the function to the only
element in the carrier-set.

In the application we have the opposite case. The interpretation of the term M is an
element of the interpretation of the product Πx : T∞.U∞. We use function ↑ to convert this
element back into a function and we apply to the interpretation of the argument N . The
interpretation is partial, since at this point we do not know if N is in the domain of the
function.

In the inductive type case, we just apply the interpretation of the type (which we assume
to exists) to the parameters and arguments. The interpretation of inductive types is given in
the next section.

In the interpretation of case expression we see the reason we explicitly add the atomic
element as part of the definition of Λ-set. If the interpretation of M is ∅, we cannot choose
any branch. In this case it is safe to return the atomic element of the type. Otherwise, the
interpretation of M is (j, ρ), hence we apply the interpretation of the corresponding branch to
the arguments of the constructor ρ. As in the application case, we use function ↑ to transform
the interpretation of the branch in an actual function.

Finally, in the fixpoint case we use Hilbert’s choice operator to choose a function on the
interpretation of T∞ that satisfy the property of being invariant under computation. We refer
to the equations that define the properties of the function as the fixpoint equations. Soundness
of subject reduction (SSR) states that the interpretation is invariant under reductions: if
[Γ ⊢ M]γT is defined and M → N , then [Γ ⊢ N]γ is defined and [Γ ⊢ M]γ = [Γ ⊢ N]γ .
The properties we require for the interpretation of a fixpoint ensure directly SSR (proved as
Lemma 4.33).

Note that the invariance under reduction is only required when the recursive argument
is (the interpretation of) a constructor. If the recursive argument is the atomic element, we
return the atomic element of the type (similar to the situation with case expressions mentioned
above). For example, consider the following two terms (for the sake of readability, we omit
the codomain annotations):

M1 ≡ λx : nat.O

M2 ≡ λx : nat.fix1 f : nat⋆ → nat := (λx : nat.O, x)

Both represent the constant function returning zero (with the natural numbers as domain).
However, their interpretation is different:

[M1] = α ⊏ I(nat) 7→ 0

[M2] = α ⊏ I(nat) 7→

{
∅ if α = ∅

0 if α 6= ∅

where [O] = 0, and ∅ is the atomic element of I(nat). The difference in the interpretation
corresponds to the different behavior of M1 and M2 when applied to an atomic element. For
example, app (M1, x)→ O, while app (M2, x) is in normal form.

4.3. THE INTERPRETATION 85

The use of Hilbert’s choice operator is related to the soundness of the fixpoint reduction
rule. In the main soundness theorem, we prove that there is only one function satisfying the
fixpoint equations, showing the correctness of the definition. Without the use of Hilbert’s op-
erator, we would not be able to show separately the SSR and soundness of the interpretation.
This suggests that we can avoid the use of Hilbert’s operator if we use a judgmental equality
instead of a conversion rule. In the judgmental presentation of type theory, we replace the
conversion rule with a judgment as follows:

Γ ⊢M : T Γ ⊢ T ≈ U : u

Γ ⊢M : U

The judgment Γ ⊢ T ≈ U : u ensures that T is convertible of U and that both have type
u. Furthermore, the judgmental equality ensures that the conversion between T and U is
performed on well-typed terms. Then, the proof of soundness of the typing judgment and the
judgmental equality are done at the same time, since the definition is mutual. This way, we
would have enough information to prove that the invariance of fixpoint reduction, since we
would be dealing with well-typed terms.

Conversion rule and judgmental equality are two ways of presenting a dependent type
theory. Examples of systems using the conversion presentation include the systems we men-
tioned so far (CC, ECC, CIC, Coq), as well as Pure Type Systems [11], and the Logical
Framework [45]. In particular, the conversion presentation is easier and more efficient to
implement since, to check conversion between two types, it is not necessary to type-check all
the intermediate terms. On the other hand, in the presentation using judgmental equality,
defining models is relatively easier. Examples of systems using the judgmental equality are
Martin-Löf’s Type Theory [68] and Luo’s UTT [56].

Since both presentations essentially define the same system, a natural question is whether
both presentation are equivalent. One way of proving equivalence is as a consequence of
Strong Normalization. Adams [6] gave a syntactic proof of equivalence for functional Pure
Type Systems. Recently, Siles and Herbelin [75,76] extended Adams’s proof all Pure Type
Systems.

Contexts

We interpret contexts as Λn-sets, where n is the length of the context.

Definition 4.25 (Interpretation of contexts). The interpretation of contexts is defined by the
following rules.

– [Γ ⊢ []]γ = ∅;

– [Γ ⊢ ∆(x : T)]γ = Σ([Γ ⊢ ∆]γ , [Γ∆ ⊢ T]γ,);

We write [Γ] for [⊢ Γ].

We prove some lemmas about the interpretation.

Lemma 4.26. Let T ≡ Π∆.U be a term and Γ a context. Assume that [Γ ⊢ T]γ is defined,
[Γ ⊢ ∆]γ is defined and [Γ∆ ⊢ U]γ,δ is defined for any δ ⊏ [Γ ⊢ ∆]γ. Then [Γ ⊢ T]γ ∼= Π([Γ ⊢
∆]γ , [Γ∆ ⊢ U]γ,).

Proof. By induction on the length of ∆.

86 CHAPTER 4. STRONG NORMALIZATION

Lemma 4.27. Let Γ, ∆1, ∆2 be contexts. Assume that [Γ ⊢ ∆1]γ is defined and [Γ∆1 ⊢ ∆2]γ,δ
is defined for any δ ⊏ [Γ ⊢ ∆1]γ. Then [Γ ⊢ ∆1∆2]γ ∼= Σ([Γ ⊢ ∆1]γ , [Γ∆1 ⊢ ∆2]γ,).

Proof. By induction on the length of ∆1.

We use the above equivalences without explicit mention to the morphisms.

4.3.3 Interpretation of Inductive Types

Inductive types are interpreted as the least fixed point of monotone operators defined in the
universe they live in. To simplify the presentation, we assume that inductive types are defined
in a specific way that we describe in the following. Let Ind(I[∆p]

~ν : Π∆a.u := 〈Ci : Π∆i.X ~ti〉i)
be an inductive definition in some signature Σ. We assume that, in each constructor, non-
recursive argument appear first, followed by the recursive arguments. That is, each ∆i can
be divided in two parts: ∆i ≡ ∆nr

i ∆r
i , where ∆nr

i contains the non-recursive arguments

and ∆r
i contains the recursive arguments. Sometimes we write Ci(~p◦, ~N, ~R) to separate the

non-recursive arguments, ~N , from the recursive arguments, ~R.
Recall that the variable X appears strictly positive in the recursive arguments. We assume

that, in each recursive argument, the recursive variable X appears as argument of an inductive
type. That is, each recursive argument is of the form ΠΘ.J∞[X ~u], where J is an inductive
type defined in Σ and ~u are the arguments of I. For this definition to be valid, J must have
only one parameter which is strictly positive.

These assumptions do not change the expressiveness of the system. For a given inductive
type, arguments of constructors can be reordered so that recursive arguments appear last
(recall that recursive arguments are not dependent), while non-recursive arguments appear
first (reordering can be done preserving dependencies). For example, we can define the natural
numbers as Ind(nat : Type0 := O : X , S : id (X) → X), where id is an inductive type defined
as Ind(id(A⊕ : Type0) : Type0 := in : A→ X). Note that id (A) and A are equivalent.

The interpretation. Let Σ be a valid signature, and Φ a function that assigns an inter-
pretation ΦI for each inductive type I ∈ Σ. For each Ind(I[Γ]~ν : A := Θ) ∈ Σ we assume

– [Γ] is defined;

– [Γ ⊢ A]γ is defined for any γ ⊏ [Γ];

– given γ ⊏ [Γ], ΦI(γ) ⊏ [Γ ⊢ A]γ .
The function ΦI takes an interpretation of the parameters of I and gives the interpretation
in the type of I.

Let I be an inductive definition under signature Σ given by

Ind(I[∆p]
~ν : Π∆a.Typek := 〈Ci : Ti〉i)

where Ti ≡ Π∆i.X ~ti. In the following, we define the interpretation of I as an operator φI .
Following the assumptions mentioned above, we assume that each ∆i can be divided in

two parts, containing the non-recursive and recursive arguments: ∆i ≡ ∆nr
i ∆r

i . Furthermore,
∆r

i ≡ 〈yij : ΠΘij .Jij (X ~uij)〉j , where 〈Jij〉i,j are inductive types defined in Σ.
We assume that all the components of I are defined. Concretely, we assume:

i. [∆p] is defined;

ii. [∆p ⊢ ∆a]δ is defined for δ ⊏ [∆p];

4.3. THE INTERPRETATION 87

iii. [∆p ⊢ ∆nr
i]δ is defined and belongs to Um

k for δ ⊏ [∆p] where m = #∆nr
i ;

iv. [∆p∆
nr
i ⊢ Θij]δ,ν is defined and belongs to Um

k for δ, ν ⊏ [∆p∆
nr
i], where m = #Θij ;

v. [∆p∆
nr
i Θij ⊢ ~uij]δ,ν,ρ is defined and belongs to [∆p ⊢ ∆a]δ, for δ, ν, ρ ⊏ [∆p∆

nr
i Θij];

vi. [∆p∆
nr
i ⊢ ~ti]δ,ν is defined and belongs to [∆p ⊢ ∆a]δ for δ, ν ⊏ [∆p∆

nr
i].

We use the following notation in the rest of the section: if X is a term, a context, or a
sequence of terms, we write [X]γ instead of [Γ ⊢ X]γ , when the context Γ is clear.

The interpretation of I is, as usual, a monotone operator. In our case, in Uk, i.e. in the
(interpretation of the) universe where I is defined. We define the operator, denoted with φI ,
prove that is monotone, and show that, under certain assumptions, it has a least fixed point in
the universe. These conditions are satisfied by well-typed inductive definitions (see Sect. 4.4).
Recall that, in this interpretation, we do not consider size variables. The interpretation of I
is thus directly the least fixed point of φI . In the definition of the relational interpretation
we also consider approximations of this operator.

The definition of φI . Let us take δ ⊏ [∆p]. We write A for [∆a]δ. We define φI as an
operator on Π(A,Uk).

Let X ∈ Π(A,Uk), and α ⊏ A. φI(X)(α) is a Λ-set where

– φI(X)(α)◦ = {∅} ∪
⋃

i=1...n{(i, ν, 〈ρj〉j) : ν ⊏ [∆nr
i]δ ∧

ρj ⊏ Π([Θij]δ,ν ,ΦJ(i,j)(X([~uij]δ,ν,))) ∧

[~ti]δ,ν = α}

– M |=φI(X)(α) β, with M ∈ SN iff
– β = ∅ and M →∗wh N ∈ AT

– β = (i, ν, 〈ρj〉j) and M →∗wh Ci(~p, ~N, 〈Rj〉j), where ~N |=[∆nr
i](δ) ν and

Rj |=Π([Θij](δ,ν),ΦJ(i,j)(X([~uij](δ,ν,)))) ρj .

– ⊥φI(X)(α) = ∅.
We prove that the function φI is monotone, and that it has a least fixed point. We keep

using the assumptions i-vi given above. Monotonicity follows easily from the strict positivity
condition for X .

Lemma 4.28 (Monotonicity of φI). The function φI is monotone on A → Uk.

Proof. Let X,Y ∈ A → Uk such that X ⊆ Y , and (i, ν, 〈ρj〉j) ∈ φI(X)(α). By definition,
ρj ⊏ Π([Θij]δ,ν ,ΦJ(i,j)(X([~uij]δ,ν,))). Since the only parameter of Jij is strictly positive,
then ΦJ(i,j)(X([~uij]δ,ν,α)) ⊆ ΦJ(i,j)(X([~uij]δ,ν,α)) for α ⊏ [Θij]δ,ν . By definition of prod-
uct, Π([Θij]δ,ν ,ΦJ(i,j)(X([~uij]δ,ν,))) ⊆ Π([Θij]δ,ν ,ΦJ(i,j)(Y ([~uij]δ,ν,))). Then, (i, ν, 〈ρj〉j) ∈
φI(Y)(α) as desired.

To prove that φI has a (least) fixed point in Uk, we make use of Lemma 4.22. We need to
find a cardinal a such that φI is a-based. We directly compute a from the interpretation of
the components of I.

Lemma 4.29. There exists a regular cardinal a such that φI is a-based.

Proof. Let x ∈ ΦI(X)(α). We want to find a set Y such that Y ⊆ X, x ∈ φI(Y)(α) and
card(Y) < a. We have two cases. The first case is x = ∅, then any set Y will do. For example,
taking Y = ∅ = α ∈ A 7→ ∅, we have card(Y) = 1.

88 CHAPTER 4. STRONG NORMALIZATION

The second case is x = (i, ν, 〈ρij〉j). For each j,

ρij ⊏ Π([Θij]δ,ν ,ΦJ(i,j)(X([~uij]δ,ν,))) .

Let us first consider ΦJ(i,j) = id for all i, j. Then taking Y (α) = ran(ρij) we have ρij ⊏

Π([Θij]δ,ν ,ΦJ(i,j)(Y ([~uij]δ,ν,))). We generalize to all j and i; we bound the cardinal of⋃
i,j ran(ρij). Note that card(ran(ρij)) ≤ card([Θij]δ,ν). Take a0 = maxij{card([Θij]δ,ν)}.

Then, for a, we can take a regular cardinal greater a0.
It remains the case where ΦJ(i,j) is not necessarily id for all i, j. We show that ΦJ(i,j)

is b-based with respect to its (only) parameter, in the following sense: if x ⊏ ΦJ(i,j)(X),
then there exists Y ⊆ X, with card(Y) < b such that x ⊏ ΦJ(i,j)(Y). We assume that the
all constructors of Jij have one non-recursive argument and one recursive arguments. I.e.,
Ind(Jij [A

⊕ : Type] : Type := 〈Ck : (Π∆ijk.A)→ (ΠΘijk.X)→ X〉k). The general case follows
in a similar way.

We consider two cases. The first case is x = ∅, which follows easily.
The second case is x = (k, ν, ρ). We follow a similar reasoning as in the previous

case. Take Y =
⋃

k ran([∆ijk]) ∪ ran([Θijk]). Then x ⊏ ΦJij (Y). Note that card(Y) ≤
maxk{card([∆ijk]), card([Θijk])} = a0. For a, we can take a cardinal number greater than
a0.

Let us illustrate the previous lemma in some examples. Let us consider the case of ordinal
numbers, defined by

Ind(ord : Type0 := zero : X , succ : id(X)→ X , lim : (nat→ id(X))→ X)

We have two recursive arguments. From the previous lemma, we have a0 is the maximum
between card({∅}) and card([nat]); i.e. a0 = ℵ0. We can take a = ℵ1 (or ω1 as an ordinal).

In the case of lists, Ind(list[A : Type0] : Type0 := nil : X , cons : A → id(X) → X). we
have only one recursive argument; applying the previous lemma we obtain a0 = 1. Then the
monotone operator derived from list, φlist, is ω-based. The least fixed point is reached after ω
iterations, independently of the type A.

On other inductive types, the cardinal required might depend on the parameters. For
example, for the type Ind(I[A : Typek] : Typek := (A → id(X)) → X), the cardinal required
to reach a fixed point depends on the cardinal of [A].

Let I be an inductive type defined in Typek. We write o(I) for the ordinal λk. Iterating
φI up to o(I) is guaranteed to reach the least fixed point.

Let X be the least fixed point of φI , i.e., X = φ
o(I)
I (δ)(α), where δ and α are the inter-

pretation of the parameters and arguments, respectively. The elements of X◦ are either ∅, or
elements of the form (i, ν, ρ) corresponding to the interpretation of the i-th constructor of I.
Since φI is monotone, for each element of β ∈ X◦, there exists a smallest ordinal b such that
β ∈ φb

I(δ)(α)◦. We call this ordinal the order of β, and denote it o(β). For β = ∅, we have
o(β) = 0. For β of the form (i, ν, ρ), we show that the order is always a successor ordinal.

Lemma 4.30. Let (i, ν, ρ) ⊏ φa
I(δ)(α). Then o(i, ν, ρ) is a successor ordinal.

Proof. We prove that o(i, ν, ρ) is not a limit ordinal. Let (i, ν, ρ) ⊏ φb
I(δ)(α) for a limit

ordinal b. But φb
I(δ)(α) is defined as

⋃
b′<b

φb′

I (δ)(α). Therefore, there exists b
′ < b such that

(i, ν, ρ) ⊏ φb′

I (δ)(α). Then b cannot be the order of (i, ν, ρ). Since the order is not zero, it
must be a successor ordinal.

4.3. THE INTERPRETATION 89

4.3.4 Properties of the Interpretation

In this section we prove some simple properties of the interpretation just defined. Namely,
soundness of weakening, substitution and subject reduction.

Lemma 4.31 (Soundness of weakening). 1. If [Γ ⊢ ∆0∆1]γ is defined, and z /∈ FV(∆1),
then [Γ ⊢ ∆0(z : T ◦)∆1]γ is defined, and

[Γ ⊢ ∆0(z : T ◦)∆1]γ ∼= Σ([Γ ⊢ ∆0(z : T ◦)]γ , [Γ∆0 ⊢ ∆1]γ,) .

2. if [Γ∆ ⊢ M]γ,δ is defined, and z /∈ FV(∆,M), then [Γ(z : T ◦)∆ ⊢ M]γ,α,δ is defined,
and

[Γ(z : T ◦)∆ ⊢M]γ,α,δ = [Γ∆ ⊢M]γ,δ .

Proof. By induction on the constructions of [Γ∆] and [Γ∆ ⊢M]γ,δ.

Context extension. We know that [Γ ⊢ ∆0∆1]γ is defined. Then, either ∆1 is empty and
[Γ ⊢ ∆0∆1]γ = [Γ ⊢ ∆0]γ , or ∆1 = ∆′1(y : U◦) and [Γ ⊢ ∆0∆

′
1(y : U◦)]γ is defined as

[Γ ⊢ ∆0∆
′
1(y : U◦)]γ = Σ([Γ ⊢ ∆0∆1]γ , [Γ∆0∆1 ⊢ U]γ,) .

In the former case, the result follows trivially. In the latter, by IH we have

[Γ ⊢ ∆0(z : T ◦)∆′1]γ
∼= Σ([Γ ⊢ ∆0(z : T ◦)]γ , [Γ∆0 ⊢ ∆1]γ,)

[Γ∆0(z : T ◦)∆′1 ⊢ U∞]γ,δ0,ν,δ1 = [Γ∆0∆1 ⊢ U∞]γ,δ0,δ1

By definition,

[Γ ⊢ ∆0(z : T ◦)∆′1(y : U◦)]γ = Σ([Γ ⊢ ∆0(z : T ◦)∆′1]γ , [Γ∆0(z : T ◦)∆′1 ⊢ U∞]γ,) .

The result follows from the IH and Lemma 4.27.

Variable. M = x, then [Γ∆] is defined and (γ, δ) ∈ [Γ∆]. By IH, [Γ(z : T)∆] is also defined,
and, since z is different from x,

[Γ(z : T)∆ ⊢ x]γ,α,δ = [Γ∆ ⊢ x]γ,δ .

Abstraction. M ≡ λW ◦

x:U◦ .N . The result follows from the IH. Note that by Weakening of
the typing judgment (Lemma 3.13), if Γ∆ ⊢ Πx : U∞.W∞ : u then Γ(z : T∞)∆ ⊢

Πx : U∞.W∞ : u. Hence, ↓Γ∆⊢Πx:U◦.U◦

γ,δ = ↓
Γ(z:T ◦)∆⊢Πx:U◦.W ◦

γ,α,δ .

The rest of the cases are similar. In the case of application, case, and fixpoints, we use
Lemma 3.13 to ensure that functions ↑ and ↓ remain the same, in a similar way as in the
abstraction case.

Lemma 4.32 (Soundness of substitution). If Γ(x : T)∆ ⊢M : U and Γ ⊢ N : T are derivable,
SV(N) = ∅, γ ∈ [Γ], ν = [Γ ⊢ N]γ is defined, (γ, ν, δ) ∈ [Γ(x : T)∆], and [Γ(x : T)∆ ⊢M]γ,ν,δ
is defined, then [Γ,∆ [x := N] ⊢M [x := N]]γ,δ is defined, and

[Γ,∆ [x := N] ⊢M [x := N]]γ,δ = [Γ(x : T)∆ ⊢M]γ,ν,δ .

Proof. By induction on the structure of M .

90 CHAPTER 4. STRONG NORMALIZATION

Variable. M ≡ x. We want to prove that [Γ,∆ [x := N] ⊢ N]γ,δ is defined, and that

[Γ,∆ [x := N] ⊢ N]γ,δ = [Γ(x : T)∆ ⊢ x]γ,ν,δ .

The rhs is, by definition, equal to ν = [Γ ⊢ N]γ . The result follows by applying
Lemma 4.31 as many times as the length of ∆.

Fixpoint. M ≡ fixn f : W ⋆ := (M1, ~N1). Since the interpretation of M is defined, there
exists a unique function F in [Γ(x : T)∆ ⊢ W∞]γ,ν,δ satisfying the fixpoint equations.
By IH,

[Γ∆ [x := N] ⊢W∞ [x := N]]γ,δ = [Γ(x : T)∆ ⊢W∞]γ,ν,δ

[Γ∆ [x := N] (f : |W [x := N] | ⊢M1 [x := N]]γ,δ = [Γ(x : T)∆(f : |W |) ⊢M1]γ,ν,δ

[Γ∆ [x := N] ⊢ ~N1 [x := N]]γ,δ = [Γ(x : T)∆ ⊢ ~N1]γ,ν,δ

Also, using Substitution of the typing judgment (Lemma 3.36), the function ↑ remains
the same. Then, the same function satisfies the fixpoint equations for Γ∆ [x := N] ⊢
fixn f : W ⋆ [x := N] := (M1 [x := N], ~N1 [x := N]), and the result follows.

The rest of the cases are similar. We use Lemma 3.36 for the cases of abstraction, application
and case expressions, in a similar way as for fixpoints.

The following lemma states that the interpretation is invariant under reduction. Recall
the use of Hilbert’s choice operator in the interpretation of fixpoints: the conditions imposed
ensure that µ-reduction is sound.

Lemma 4.33 (Soundness of subject reduction). Let Γ ⊢M : T and M → N . If [Γ ⊢M]γ is
defined, then [Γ ⊢ N]γ is defined and

[Γ ⊢M]γ = [Γ ⊢ N]γ

Proof. By induction on M → N . The key cases are when M is a redex.

β-redex M ≡ appU
◦

x:T ◦

(
λU◦

x:T ◦ .M1,M2

)
and N ≡ M1 [x := M2]. We have two cases: if Γ ⊢

Πx : T ◦.U◦ : Prop, or Γ ⊢ Πx : T ◦.U◦ : Typei. Note that, in both cases, ↑Γ⊢Πx:T ◦.U◦

γ ◦

↓Γ⊢Πx:T ◦.U◦

γ = idΠ([Γ⊢T∞](γ),[Γ(x:T ◦)⊢U∞](γ,).

Then, [Γ ⊢ M]γ = [Γ(x : T ◦) ⊢ M1]γ, ([Γ ⊢ M2]γ). By Lemma 4.32, this is equal to
[Γ ⊢M1 [x := M2]]γ which is [Γ ⊢ N]γ .

ι-redex M ≡ caseP ◦ xI(~p◦, ~a◦) := Cj(, ~u) in I(, ~y) of 〈Ci ⇒ Ni〉 and

N ≡ app
branchCj

(~p◦,~y.x.P ◦)
(Nj , ~u)

The result follows directly by definition of the interpretation.

µ-redex M ≡ fixn f : T ⋆ := (M1, (~N1, C(~p◦,~a))) and

N ≡ app
|U⋆|
|∆⋆|

(
M1

[
f := λ

|U⋆|
|∆⋆|.fixn f : T ⋆ := (M1, dom (|∆⋆|))

]
, (~N1, C(~p◦,~a))

)

Let M2 ≡ λ
|U⋆|
|∆⋆|.fixn f : T ⋆ := (M1, dom (|∆⋆|)).

4.3. THE INTERPRETATION 91

Then [Γ ⊢ M]γ = ↑(F)[Γ ⊢ ~N1, C(~p◦, ~a◦)]γ , where F satisfies the fixpoint equations,

and [Γ ⊢ N]γ = ↑([Γ ⊢M1 [f := M2]]γ)[Γ ⊢ ~N1, C(~p◦, ~a◦)]γ .

By Soundness of Substitution, [Γ ⊢M1 [f := M2]]γ = [Γ(f : |T ⋆|) ⊢M1]γ,[Γ⊢M2](γ). The
result follows if we prove that [Γ ⊢M2]γ = F , using the fixpoint equations.

By definition, [Γ ⊢ M2]γ = ↓(δ ⊏ [Γ ⊢ ∆]γ 7→ ↑(F)(δ)). But this is equal to F , since,
for δ ⊏ [Γ ⊢ ∆]γ , ↑([Γ ⊢M2]γ)(δ) = ↑(↓(δ ⊏ [Γ ⊢ ∆]γ 7→ ↑(F)(δ)))(δ) = ↑F (δ).

The rest of the cases concern the compatible closure of →. They follow easily by direct
applications of the IH.

4.3.5 Interpretation of simple Types

Recall that types can have size variables, respecting the simple predicate. The relational
interpretation of types (RI) is used to ensure that terms respect size information given by
their types. The RI of a type T is a Λ-set whose carrier set is composed of pairs. The intuition
is given by the following definition.

Definition 4.34 (Relational type). Let X1 and X2 be Λ-sets. A relational type for X1 and
X2 is a Λ-sets X such that X◦ ⊆ X1◦ × X2◦, and ⊥X = (⊥X1 ,⊥X2). We denote it by
X ∈ R(X1, X2).

The RI of a type T is denoted JΓ ⊢ T Kπγ1∼γ2 where Γ is a context, π is an interpretation
of stage variables and γ1 and γ2 are two interpretation of free term variables. Stages are
interpreted by ordinals, so π is just a function from stage variables to ordinals. The RI is
also extended to contexts. We denote wtih JΓKπ for the RI of a context Γ, where π is an
interpretation of stage variables.

We define some notation for dealing with elements of the carrier-set in relational interpre-
tations. We write α1 ∼ α2 ⊏ JΓ ⊢ T Kπγ1∼γ2 and γ1 ∼ γ2 ⊏ JΓKπ for (α1, α2) ⊏ JΓ ⊢ T Kπγ1∼γ2
and (γ1, γ2) ⊏ JΓKπ, respectively. We sometimes write

To give some intuition on the use of the RI, we state informally the main soundness
theorem: if Γ ⊢ T : u and γ1 ∼ γ2 ⊏ JΓKπ, then

JΓ ⊢ T Kπγ1∼γ2 ∈ R([Γ ⊢ T∞]γ1 , [Γ ⊢ T∞]γ2) .

In the following we define the RI for types are contexts. Recall that a simple type is either
a product, an inductive type, or a term with no size variables. We exploit this structure in
the definition of the RI. First, we define a product operation for relational types. Then, we
define the relational interpretation of inductive types, as a monotone operator in the universe
they live in; we proceed in the a similar way as in the previous section. Finally, we define the
RI for simple types and prove some properties.

Relational product

We define a relational interpretation for products. Let Π(Xi, αi ⊏ Xi 7→ Yi,αi
) for i = 1, 2

be two product spaces of Λ-sets. Let X be a Λ-set such that X ∈ R(X1, X2). For each
(α1, α2) ⊏ X, let Yα1,α2 be a Λ-set such that Y (α1, α2) ∈ R(Y1,α1 , Y2,α2). We define a
relational type Π+(X,Y) for Π(X1, Y1) and Π(X2, Y2):

Π+(X,Y) ∈ R(Π(X1, Y1),Π(X2, Y2)),

by the following rules.

92 CHAPTER 4. STRONG NORMALIZATION

– Π+(X,Y)◦ ={(f1, f2) ⊏ Π(X1, Y1)×Π(X2, Y2) |
(α1, α2) ⊏ X ⇒ (f1α1, f2α2) ⊏ Yα1,α2};

– M |=Π+(X,Y) (f1, f2)⇐⇒ ∀(α1, α2) ⊏ X. N |=X (α1, α2).

∀T ◦, U◦, x. appU
◦

x:T ◦ (M,N) |=Y (α1,α2) (f1α1, f2α2);

– ⊥Π+(X,Y) = (⊥Π(X1,Y1),⊥Π(X2,Y2))
The carrier set of a relational product is formed by pairs of functions that take related elements
in the domain to related elements in the codomain.

In the following we write JΓ(x : T1) ⊢ T2K
π
γ1, ∼γ2, to mean

(α1, α2) ⊏ JΓ ⊢ T1K
π
γ1∼γ2 7→ JΓ(x : |T1|) ⊢ T2K

π
γ1,α1∼γ2,α2

Inductive types

To define RI of inductive types, we proceed in a similar way as for the term interpretation.
We define a monotone operator and prove that, under certain conditions, the operator has a
least fixed point.

Let I be an inductive definition

Ind(I[∆p]
~ν : Π∆a.Typek := 〈Ci : Ti〉i) .

As before, we assume that non-recursive arguments appear first: Ti ≡ Π∆nr
i ∆r

i .X ~ti, where
∆r

i ≡ 〈yij : ΠΘij .Jij (X ~uij)〉j , where 〈Jij〉i,j are inductive types defined in Σ. We follow the
same path as in the interpretation of inductive types. We define a monotone operator ΦI(~p)

in the universe where I is defined (Typek in the above example).
In this case, the interpretation depends on two valuations of free variables (γ1 and γ2)

and a stage valuation π. We write X∗ to mean X [dom (∆p) := ~p], where X is a term or a
context.

We assume the following:

i. [Γ ⊢ (∆∗a)
∞]γi is defined, for i = 1, 2;

ii. JΓ ⊢ ∆∗aK
π
γ1∼γ2 is a relational type for ([Γ ⊢ (∆∗a)

∞]γ1) and ([Γ ⊢ (∆∗a)
∞]γ2);

iii. JΓ ⊢ ∆∗i K
π
γ1∼γ2 is defined

iv. JΓ∆∗i ⊢ Θ∗i K
π
γ1,δ1∼γ2,δ2

is defined for (δ1, δ2) ⊏ JΓ ⊢ ∆∗i K
π
γ1∼γ2

v. [Γ∆∗iΘ
∗
i ⊢ ~ui]γ1,δ1,τ1∼γ2,δ2,τ2 is defined and belongs to JΓ ⊢ ∆∗aK

π
γ1∼γ2 for ((δ1, τ1), (δ2, τ2)) ⊏

JΓ ⊢ ∆∗iΘ
∗
i K

π
γ1∼γ2

For readability, we omit Γ, γ1, and γ2, in the following.

The definition of ΦI(~p). The operator ΦI(~p) is defined on the carrier-set of

Π+(J(∆∗a)
∞Kπ,Uk)

LetX be a function on Π+(J(∆∗a)
∞Kπ,Uk) Let (δ1, δ2) ⊏ (J(∆∗a)

∞Kπ). We defineΦI(~p)(X)(δ1, δ2)
as a Λ-set where

–

X = {(∅, ∅)} ∪ {((j, ν1, 〈ρ1j〉), (j, ν2, 〈ρ2j〉)) : (ν1, ν2) ⊏ J∆∗i K
π∧

(ρ1j , ρ2j) ⊏ Π(JΘ∗ijK
π
ν1∼ν2 , X([~uij

∗]γ1,ρ1 , [~uij
∗]γ2,ρ2))∧

∀i = 1, 2. [~tj]γi,ρi = δi}

4.3. THE INTERPRETATION 93

– M |= (β1, β2), with M ∈ SN, iff
– (β1, β2) = (∅, ∅) and M →∗wh N ∈ AT

– (β1, β2) = ((j, ν1, ρ1), (j, ν2, ρ2)) and M →∗wh Cj(~p◦, ~N, 〈Rj〉j), ~N |=J∆jKπ (ν1, ν2), and
Rj |=Π(JΘ∗

ijK(ν1∼ν2,π),X([~uij
∗](γ1,ρ1),[~uij

∗](γ2,ρ2))) (ρ1, ρ2)

– ⊥ = (∅, ∅)
In a similar way to the previous section, we prove that the operator is monotone and it

has a least fixed point.

Lemma 4.35 (Monotonicity of ΦI(~p)). The function ΦI(~p) is monotone on the Λ-set Π(JΓ ⊢
(∆∗a)

∞Kπγ1∼γ2 ,Uk).

Proof. Similar to Lemma 4.28.

To prove that ΦI(~p) has a (least) fixed point in Uk, we make use of Lemma 4.22. We need
to find a cardinal a such that ΦI(~p) is a-based. We directly compute a from the interpretation
of the components of I.

Lemma 4.36. There exists a such that ΦI(~p) is a-based.

Proof. We can construct a following the same reasoning as in Lemma 4.29.

In the rest of chapter we assume a fixed signature Σ. Recall that o(I) is an ordinal
that ensure that the least fixed point is reached by iterating the interpretation of I. Let
M = max{o(I) : I ∈ Σ}. Then M ensures that the least fixed point is reached for any I ∈ Σ.

Stages. Recall that stages represent approximations of the monotone operators defined for
inductive types. Stages are interpreted by ordinals up to the smallest ordinal we need to
reach the least fixed point for the inductive types in Σ. In our case, this ordinal is M.

Definition 4.37 (Stage interpretation). A stage assignment π is a function from VS to a.
Given a stage assignment π, the interpretation of a stage s under π, written LsMπ, is defined
by:

LıMπ = π(ı)

L∞Mπ = M

LŝMπ =

{
LsMπ + 1 if LsMπ < M

M if LsMπ = M

We use ∞ to denote the stage assignment such that ∞(ı) = M for all ı.

We prove some lemmas about the interpretation of stages.

Lemma 4.38 (Stage substitution). Let s, r be stages, and π a stage assignment. Then
Lr [ı := s]Mπ = LrMπ(ı:=LsMπ).

Proof. By induction on the structure of r.

Lemma 4.39 (Stage monotonicity). For any stages s, r, such that s ⊑ r, and any stage
assignment π, LsMπ ≤ LrMπ.

Proof. By induction on s ⊑ r. Note that, for any s and π, LsMπ ≤M.

94 CHAPTER 4. STRONG NORMALIZATION

Relational interpretation

Now we are ready to define the relational interpretation. We proceed by induction on the
definition of simple types. Let T be a type such that simple(T).

– If T ≡ Πx : T1.T2, we consider two cases
– Γ∞ ⊢ T∞ : Typei. Then we define

JΓ ⊢ T Kπγ1∼γ2 = Π+(JΓ ⊢ T1K
π
γ1∼γ2 , JΓ(x : T1) ⊢ T2K

π
γ1, ∼γ2,)

– Γ∞ ⊢ T∞ : Prop. In this case, [Γ ⊢ T∞]γ1 and [Γ ⊢ T∞]γ2 are degenerated Λ-sets.
We define
– (JΓ ⊢ T Kπγ1∼γ2)◦ = ([Γ ⊢ T∞]γ1)◦ × ([Γ ⊢ T∞]γ2)◦
–

M |=JΓ⊢T K(γ1∼γ2,π) (φ1, φ2) ⇐⇒ N |=JΓ⊢T1K(γ1∼γ2,π) (α1, α2)⇒

appU
◦

x:T ◦ (M,N) |=JΓ(x:T1)⊢T2K(γ1,α1∼γ2,α2,π) (↑1(φ1)α1, ↑2(φ2)α2)

where ↑i = ↑
Γ⊢T
Π([Γ⊢T1](γi),[Γ(x:T1)⊢T2](γi,))

, for i = 1, 2;
– (⊥[Γ⊢T∞](γ1),⊥[Γ⊢T∞](γ2)).

– If T ≡ Is (~p) ~a, then

JΓ ⊢ T Kπγ1∼γ2 = Φa

I(~p)(⊥)([Γ ⊢ ~a]γ1∼γ2)

where a = LsMπ.

– Otherwise, SV(T) = ∅. We define

JΓ ⊢ T Kπγ1∼γ2 = ([Γ ⊢ T]γ1)
2

Note that the RI of a propositional type is not a degenerated Λ-set. A Λ-set is relationally
degenerated if its carrier-set is a singleton whose element is a pair of saturated sets.

Relational interpretation of contexts. As in the interpretation of terms, we extend the
relational interpretation to contexts, by the following rules:

JΓ ⊢ []Kπγ1∼γ2 = ∅2 = ((∅, ∅), AT ∩ SN × {(∅, ∅)}, (∅, ∅))

JΓ ⊢ (x : T)∆Kπγ1∼γ2 = Σ(JΓ ⊢ T Kπγ1∼γ2 , JΓ(x : T) ⊢ ∆Kπγ1, ∼γ2,)

In the definition of the RI, more than one clause might be applicable for one given type
(e.g, a product with no size variables). In the following lemma, we prove that the definition
is the same no matter which clause is used.

Lemma 4.40. Let T be a term such that simple(T) and SV(T) = ∅. If JΓ ⊢ T Kπγ1∼γ2 is defined
and [Γ ⊢ T]γ1 = [Γ ⊢ T]γ2, then JΓ ⊢ T Kπγ1∼γ2 = ([Γ ⊢ T]γ1)

2.

Proof. If Γ∞ ⊢ T∞ : Prop, the result follows by definition. Otherwise, we proceed by induction
on the structure of T .

4.3. THE INTERPRETATION 95

I. T ≡ Πx : T1.T2.

Since JΓ ⊢ T Kπγ1∼γ2 is defined, we have that JΓ ⊢ T1K
π
γ1∼γ2 is defined, and for every

(α1, α2) ∈ JΓ ⊢ T1K
π
γ1∼γ2 , JΓ(x : |T1|) ⊢ T2K

π
(γ1,α1)∼(γ2,α2)

is defined.

We write JT K for JΓ ⊢ T Kπγ1∼γ2 , JT1K for JΓ ⊢ T1K
π
γ1∼γ2 and JT2Kα1,α2 for JΓ(x : |T1|) ⊢

T2K
π
(γ1,α1)∼(γ2,α2)

.

By IH, JT1K = ([Γ ⊢ T1]γ1)
2. Hence, (α1, α2) ⊏ JT1K iff α1 = α2 ⊏ [Γ ⊢ T1]γ1 .

Again by IH, JT2Kα,α = ([Γ(x : |T1|) ⊢ T2]γ1,α)
2 for every α ⊏ [Γ ⊢ T1]γ1 .

Let (φ1, φ2) ⊏ ([Γ ⊢ T]γ1)
2 × [Γ ⊢ T∞]γ2 iff for all α ⊏ JT1K, (φ1(α), φ2(α)) ⊏ JT2Kα,α.

Hence, φ1 = φ2. Checking the other conditions is easy.

To give a better understanding of the relational interpretation, we consider the particular
case where the type to be interpreted is an inductive type applied to parameters and arguments
containing no size variables. It shows that the RI reduces to the identity (relation) on elements
of order less than the size annotation of the inductive type.

Lemma 4.41. Let γ ∈ [Γ], ~p and ~a sequences of terms with no size variables. If JΓ ⊢
Is (~p,~a)Kπγ∼γ is defined for all stage valuations π, then

JΓ ⊢ Is (~p,~a)Kπγ∼γ =
(
Φ

LsMπ
I ([Γ ⊢ ~p]γ)([Γ ⊢ ~a]γ)

)2

where ΦI is the term interpretation of I.

Proof. By induction on LsMπ.

4.3.6 Properties of the Relational Interpretation

In the following we prove the following properties of the relational interpretation: sound-
ness of weakening, substitution, subject reduction, subtyping, and stage monotonicity.

Lemma 4.42 (Soundness of weakening). If JΓ∆ ⊢ UKπ(γ1,δ1)∼(γ2,δ2) is defined, then JΓ(z : T)∆ ⊢

UKπ(γ1,α1,δ1)∼(γ2,α2,δ2)
is defined and both are equal.

Proof. We consider two cases

If Γ∞∆∞ ⊢ U∞ : Prop The result follows by Lemma 4.32.

If Γ∞∆∞ ⊢ U∞ : Typek We proceed by induction on the structure of U . We consider two
cases.

U ≡ Πx : U1.U2. By IH, JΓ(z : T)∆ ⊢ U1K
π
(γ1,α1,δ1)∼(γ2,α2,δ2)

is defined and

JΓ(x : T)∆ ⊢ U1K
π
(γ1,α1,δ1)∼(γ2,α2,δ2)

= JΓ∆ ⊢ U1K
π
(γ1,δ1)∼(γ2,δ2)

.

Also, for every (ν1, ν2) ⊏ JΓ∆ ⊢ U1K
π
(γ1,δ1)∼(γ2,δ2)

,

JΓ(z : T)∆(x : U1) ⊢ U2K
π
(γ1,α1,δ1,ν1)∼(γ2,α2,δ2,ν2)

is defined and

JΓ(z : T)∆(x : U1) ⊢ U2K
π
(γ1,α1,δ1,ν1)∼(γ2,α2,δ2,ν2)

= JΓ∆(x : U1) ⊢ U2K
π
(γ1,δ1,ν1)∼(γ2,δ2,ν2)

.

The result follows easily from the definition of the relational interpretation.

96 CHAPTER 4. STRONG NORMALIZATION

U ≡ Is (~p,~a). Since JΓ∆ ⊢ UKπ(γ1,δ1)∼(γ2,δ2) is defined, we know that the interpretation
of the constructors, parameter and arguments of I are defined. We can apply the
IH; the result then follows since the definition of JΓ(z : T)∆ ⊢ UKπ(γ1,α1,δ1)∼(γ2,α2,δ2)

is the same as JΓ∆ ⊢ UKπ(γ1,δ1)∼(γ2,δ2).

In the rest of the cases, since U is simple, we have SV(U) = ∅. The result follows by
Lemma 4.32.

Lemma 4.43 (Soundness of stage substitution). If JΓ ⊢ T [ı := s]Kπγ1∼γ2 is defined, then

JΓ ⊢ T K
π(ı:=LsMπ)
γ1∼γ2 is defined, and both are equal.

Proof. If Γ∞∆∞ ⊢ T∞ : Prop, we have to consider the case when T is a product, or it has no
size variables. In the former, the result follows from IH, while in the latter, the result follows
trivially.

If Γ∞∆∞ ⊢ T∞ : Typei, we have three subcases. If T is a product, the result follows from
the IH. If T is an inductive type, the result follows from the IH, using Lemma 4.38. The last
subcase is when T has no size variables; the result follows trivially.

Lemma 4.44 (Soundness of substitution). Let Γ(x : U)∆ ⊢ T : W and Γ ⊢ N : U and
SV(N) = ∅. Let γi ∈ [Γ], νi ≡ [Γ ⊢ N]γi, (γi, νi, δi) ∈ [Γ(x : U)∆], for i = 1, 2, and
JΓ(x : U)∆ ⊢ T Kπγ1,ν1,δ1∼γ2,ν2,δ2 are defined. Then

JΓ∆ [x := N] ⊢ T [x := N]Kπ(γ1,δ1)∼(γ2,δ2) = JΓ(x : U)∆ ⊢ T Kπ(γ1,ν1,δ1)∼(γ2,ν2,δ2)

Proof. We follow the same scheme as in the two previous proofs. All cases follow easily, using
Lemma 4.32.

Lemma 4.45 (Soundness of subject reduction). Let Γ ⊢ T : u and T → U , with simple(T).
If JΓ ⊢ T Kπγ1∼γ2 is defined, then JΓ ⊢ UKπγ1∼γ2 is defined and

JΓ ⊢ T Kπγ1∼γ2 = JΓ ⊢ UKπγ1∼γ2

Proof. By induction on the structure of T , using Lemma 4.33.

The following lemma states that the RI is sound with respect to subtyping.

Lemma 4.46 (Soundness of subtyping). Assume Γ ⊢ T, U : u, and simple(T, U) and T ≤ U .
If JΓ ⊢ T Kπγ1∼γ2 and JΓ ⊢ UKπγ1∼γ2 are defined, then JΓ ⊢ T Kπγ1∼γ2 ⊆ JΓ ⊢ UKπγ1∼γ2

Proof. We proceed by induction on the derivation of T ≤t U .

(stt-conv) Follows directly from Lemma 4.45.

(stt-prod) We have the derivation

T →t
∗ Πx : T1.T2 U1 ≤t T1 T2 ≤t U2 U →t

∗ Πx : U1.U2

T ≤t U

By Lemma 4.45, JΓ ⊢ T Kπγ1∼γ2 = JΓ ⊢ Πx : T1.T2K
π
γ1∼γ2 and JΓ ⊢ UKπγ1∼γ2 = JΓ ⊢

Πx : U1.U2K
π
γ1∼γ2 . In particular, since T∞ ↓t U∞ (by Lemma 3.32), we have [Γ ⊢

T]γ1∼γ2 = [Γ ⊢ U]γ1∼γ2 .

The IH gives us JΓ ⊢ U1K
π
γ1∼γ2 ⊆ JΓ ⊢ T1K

π
γ1∼γ2 and JΓ(x : T1) ⊢ T2K

π
γ1,α1∼γ2,α2

⊆
JΓ(x : U1) ⊢ U2K

π
γ1,α1∼γ2,α2

, for any (α1, α2) ⊏ JΓ ⊢ U1K
π
γ1∼γ2 .

We consider two subcases.

4.4. SOUNDNESS 97

1. Γ ⊢ T∞ : Typek. We have JΓ ⊢ T Kπγ1∼γ2 = Π+(JT1K
π
γ1∼γ2 , JT2K

π
γ1, ∼γ2,), and JΓ ⊢

UKπγ1∼γ2 = Π+(JU1K
π
γ1∼γ2 , JΓ(x : U1)K

π
U2∼γ1,

γ2,).

Note that the carrier set of JT Kπγ1∼γ2 is formed by pairs of functions, (φ1, φ2), where
φ1 has domain [T∞1]γ1 and φ2 has domain [T∞1]γ2 . Since [T∞1]γ1 = [U∞1]γ1 , and
similarly for γ2, the functions in the carrier set of JUKπγ1∼γ2 have the same domain.
This is the reason why contravariance is sound.

In particular, let (φ1, φ2) ⊏ JT Kπγ1∼γ2 . Let (α1, α2) ⊏ JU1K
π
γ1∼γ2 . By IH, (α1, α2) ⊏

JT1K
π
γ1∼γ2 . By definition (φ1α1, φ2α2) ⊏ JT2K

π
γ1,α1∼γ2,α2

. Applying again the IH,
(φ1α1, φ2α2) ⊏ JU2K

π
γ1,α1∼γ2,α2

. Then (φ1, φ2) ⊏ JUKπγ1∼γ2 .

Following a similar reasoning, we can prove that M |=JT K(γ1∼γ2,π) (φ1, φ2) implies
M |=JUK(γ1∼γ2,π) (φ1, φ2).

2. Γ ⊢ T∞ : Prop. The carrier set and atomic element are the same. It remains to
prove that M |=JΓ⊢T K(γ1∼γ2,π) (φ1, φ2) implies M |=JΓ⊢UK(γ1∼γ2,π) (φ1, φ2); it follows
by the same reasoning than in the previous case.

(stt-ind) We have the derivation

T →t I
s (~p1, ~a1) s ⊑ r ~p1 ≤

I.~ν
t ~p2 ~a1 ↓t ~a2 U →t I

r (~p2, ~a2)

T ≤t U

Let I = Ind(I[∆p]
~ν : Π∆a.Typek := 〈Ci : Π∆nr

i ∆r
i → X ~ti〉i). From ~a1 ↓t ~a2, we have

[Γ ⊢ ~a1]γ1∼γ2 = [Γ ⊢ ~a2]γ1∼γ2 .

From the conditions imposed to valid inductive types, we have dom (∆p) pos
~ν ∆nr

i , and
dom (∆p) neg~ν ∆r

i . Using this property, we prove that Φa

I(~p1)
⊆ Φa

I(~p2)
. The proof

proceeds by induction on a. The cases when a = 0 or a is a limit cardinal follow easily.
In the case a = b + 1, we need to reinforce the main IH to be able to apply it to
the constructors. Consider a constructor Ci whose arguments are ∆nr

i ∆r
i , where ∆r

i ≡
〈ΠΘij .Jij(X ~uij)〉j . We reinforce the IH to be able to deduce, from dom (∆p) pos

~ν ∆nr
i ,

that JΓ ⊢ ∆r
i [dom (∆p) := ~p1]K

π
γ1∼γ2 ⊆ JΓ ⊢ ∆r

i [dom (∆p) := ~p2]K
π
γ1∼γ2 . Similarly for the

recursive arguments, where we use the fact that the interpretation of Jij is monotone
on its parameter (this follows by IH). From the definition of the RI, the inner result
follows.

Then we have JΓ ⊢ Is
(
~p1, ~t1

)
Kπγ1∼γ2 ⊆ JΓ ⊢ Is

(
~p2, ~t2

)
Kπγ1∼γ2 . From s ⊑ r and Lemma 4.39,

we have JΓ ⊢ Is
(
~p2, ~t2

)
Kπγ1∼γ2 ⊆ JΓ ⊢ Ir

(
~p2, ~t2

)
Kπγ1∼γ2 , and the result follows.

The following lemma is used in the proof of soundness of the fixpoint rule.

Lemma 4.47 (Soundness of stage monotonicity). Let s, r be stages such that s ⊑ r. If

JΓ ⊢ T Kπγ1∼γ2 is defined, and ı pos T , then JΓ ⊢ T K
π(ı:=s)
γ1∼γ2 ⊆ JΓ ⊢ T K

π(ı:=r)
γ1∼γ2

Proof. From ı pos T we know that T [ı := s] ≤ T [ı := r]. The result follows from the previous
lemma.

4.4 Soundness

In this section we prove our main theorem: soundness of the Λ-set model. The proof
proceeds by induction on the type derivation. The most interesting case is the fixpoint rule.

98 CHAPTER 4. STRONG NORMALIZATION

In particular, we need to prove that there exists only one function satisfying the fixpoint
equations of Def. 4.24, therefore showing that the definition given using Hilbert’s choice
operator is sound.

Let us recall the intuitive statement of the soundness theorem: if Γ ⊢M : T and γ1 ∼ γ2 ⊏
JΓKπ, then [Γ ⊢M]γ1 ∼ [Γ ⊢M]γ2 ⊏ JΓ ⊢ T Kπγ1∼γ2 . In the following, we write [Γ ⊢ M]γ1∼γ2
for ([Γ ⊢M]γ1 , [Γ ⊢M]γ2).

Before stating and proving the soundness theorem, we analyze the fixpoint rule. We show
that under certain conditions, later to be ensured in the soundness theorem, the existence of
a unique function satisfying the fixpoint equations is assured.

Fixpoint. For the following lemmas, let us assume a typing derivation of the form

T ≡ Π∆(x : I ı (~p, ~u)).U ı pos U #∆ = n− 1
ı /∈ SV(Γ,∆, ~u,M) Γ ⊢t T : u

Γ(f : T) ⊢t M : T [ı := ı̂] Γ ⊢t ~N : ∆(x : Is (~p, ~u))

Γ ⊢t fixn f : |T |ı := (M, ~N) : U
[
dom (∆) := ~N

]
[ı := s]

SV(~N) = ∅

Furthermore, we assume:

1. [Γ] is defined with γ ∈ [Γ];

2. [Γ ⊢ T∞]γ is defined;

3. [Γ(f : T) ⊢M]γ,φ is defined for any φ such that γ, φ ∈ [Γ(f : T)];

4. JΓK∞ is defined;

5. JΓ ⊢ T K
∞(ı:=a)
γ∼γ is defined for any ordinal a;

6. [Γ(f : T) ⊢M]γ1,φ1∼γ2,φ2 ⊏ JΓ ⊢ T [ı := ı̂]K
∞(ı:=a)
γ∼γ , for any φ1 ∼ φ2 ⊏ JΓ ⊢ T K

∞(ı:=a)
γ∼γ .

Given the above assumptions, we prove that there is a unique function satisfying the
fixpoint equations of Def. 4.24. For readability, we omit the context in the interpretations as
well as γ. We write ↑ for ↑uΠ([∆](γ),[U](γ,)), and ı := a for ∞(ı := a).

Lemma 4.48. Let (φ1, φ2) ⊏ JT Kı:=a. Then, for all δ ⊏ [∆∞] and α such that o(α) < a,
↑(φ1)(δ, α) = ↑(φ2)(δ, α).

Proof. Recall that T ≡ Π∆(I ı (~p,~a)).U . Note that J∆Kı:=a = J∆∞K∞ = ([∆∞])2. Given
δ ⊏ [∆∞], we write Iaδ for Φa

I([~p
∞]δ)([~a

∞]δ).

By Lemma 4.41, JIs (~p,~a)Kπδ∼δ = (I
LsMπ
δ)2. Consider δ ⊏ [Γ ⊢ ∆∞]γ and α ⊏ I

LsMπ
δ . Then

(↑(φ1)(δ, α), ↑(φ2)(δ, α)) ⊏ JUKı:=a

δ,α∼δ,α

Since ı pos U , JUKı:=a

δ,α∼δ,α ⊆ JUK∞δ,α∼δ,α. Hence, ↑(φ1)(δ, α) = ↑(φ2)(δ, α).

We give the definition of a function satisfying the fixpoint equations. Intuitively, the
function is constructed by iterating the body of the fixpoint.

Given a function φ ⊏ Π([∆∞(x : I∞ (~p∞,~a∞))], [U∞]), we define the function φ⊥ as
follows:

φ⊥(δ, α) =

{
⊥[U∞](δ,α) if α = ∅

φ(δ, α) otherwise

We extend this operation to set of functions: given Φ ⊆ ([T∞])◦, we define Φ⊥ = {φ⊥ : φ ∈ Φ}.
Given a set of functions Φ ⊆ ([T∞])◦, we write [M]Φ for the set {[M]φ : φ ∈ Φ}.

We define a sequence of sets {Φa} for ordinals a, as follows.

4.4. SOUNDNESS 99

1. Φ0 = {φ⊥ : φ ⊏ [T∞]};

2. Φa+1 = ([M]Φa)⊥;

3. Φb =
⋂

a<b
Φa, where b is a limit ordinal.

The intuition is that the functions in Φa define the values of the fixpoint for elements of
order less than a. The next lemma formalizes this intuition; we prove that all functions in Φa

coincide in elements of order less than a.

Lemma 4.49. For all a, Φa ∼ Φa
⊏ JT Kı:=a. This means, for all φ1, φ2 ∈ Φa, φ1 ∼ φ2 ⊏

JT Kı:=a.

Proof. Note that, since ı /∈ SV(∆), J∆Kı:=a = ([∆∞])2. Then, δ1 ∼ δ2 ⊏ J∆Kı:=a iff δ1 = δ2
and δ1 ⊏ [∆∞].

To prove the lemma, we proceed by transfinite induction on a.

a = 0. We need to prove that for all φ1, φ2 ⊏ [T∞], (φ1)⊥ ∼ (φ2)⊥ ⊏ JT Kı:=0. This means,
for all δ ⊏ [∆∞], ↑φ1⊥(δ, ∅) ∼ ↑φ2⊥(δ, ∅) ⊏ JUKı:=0 Since, ↑φ1⊥(δ, ∅) = ↑φ2⊥(δ, ∅) =
⊥[U](δ,∅), the result follows.

a = b+ 1. The result follows by assumption 6.

a is a limit ordinal. Let φ1, φ2 ⊏ Φa. Let δ ⊏ [∆∞] and α ⊏ [I ı (~p∞,~a∞)]ı:=a. Then,
there exists b < a such that δ ⊏ [∆∞] and α ⊏ [I ı (~p∞,~a∞)]ı:=b. By IH, ↑φ1⊥(δ, α) ∼
↑φ2⊥(δ, α) ⊏ JUKı:=b. The result follows from ı pos U and Lemma 4.46.

In the next lemma, we prove that the sequence of sets defined above is decreasing. Each
step of the sequence defines another element of the function.

Lemma 4.50. The sequence {Φa}a is decreasing. That is, if b ≤ a, then Φa ⊆ Φb.

Proof. By transfinite induction on b.

After o(I) steps of iterating the function α ⊏ [T∞] 7→ [M]α, the fixpoint should be com-
pletely defined. In other words, there should be just one function in the set Φo(I). Note that
there is at most one function in Φo(I), since J∆∞(x : I ı (~p∞,~a∞))Kı:=o(I) = ([∆∞(x : I ı (~p∞,~a∞))])2.
In this Λ-set, two elements are related iff they are equal.

We give an explicit definition of a function satisfying the fixpoint equations. Let F ′ ∈
Π([∆∞(x : Is (~p∞,~a∞))], [U]) be defined as follows: for each (δ, α) ⊏ [∆∞(x : I ı (~p∞,~a∞))],
we define F ′(δ, α) = ↑φ(δ, α),for some φ ∈ Φo(α).

Note that F ′ is well defined: from Lemmas 4.49 and 4.50, it does not matter which function
φ in Φo(α) we choose, since all such functions have the same value.

Let F = ↓F ′. We prove that F satisfies the fixpoint equations; this follows a simple
consequence of the following two lemmas.

Lemma 4.51. For all a, Φa ∼ F ⊏ JT Kı:=a. This means, for all φ ∈ Φa, φ ∼ F ⊏ JT Kı:=a.

Proof. Let φ ∈ Φa. It suffices to prove that for δ ⊏ [∆∞] and α ⊏ Φa
I([~p

∞]δ)([~a
∞]δ),

↑(φ)(δ, α) ∼ ↑(F)(δ, α) ⊏ JUKı:=a

δ,α∼δ,α

By definition, ↑(F)(δ, α) = ↑(φ′)(δ, α) for some φ′ ∈ Φo(α). Since o(α) ≤ a, by Lemma 4.50,

φ ∈ Φo(α). By Lemma 4.49, φ ∼ φ′ ⊏ JT Kı:=o(α). Then, ↑(φ)(δ, α) ∼ ↑(φ′)(δ, α) ⊏ JUK
ı:=o(α)
δ,α∼δ,α.

The result follows from ı pos U and Soundness of Subtyping (Lemma 4.46).

100 CHAPTER 4. STRONG NORMALIZATION

Lemma 4.52. For all a, F ∼ ([M]F)⊥ ⊏ JT Kı:=a.

Proof. Let δ ⊏ [∆∞] and α ⊏ Φa
I([~p

∞]δ)([~a
∞]δ). If α = ∅, then ↑(F)(δ, α) = ⊥[U](δ,α) and the

result follows immediately. We consider the case when α 6= ∅. By definition, ↑(F)(δ, α) =
↑(φ)(δ, α) for some φ ∈ Φo(I). Since α 6= ∅, o(I) is a successor cardinal, let us say, b+1. Then,
φ = ([M]φ′)⊥ for some φ′ ∈ Φb. From the previous lemma, φ′ ∼ F ⊏ JT Kı:=b, and by the
assumption 6, ([M]φ′)⊥ ∼ ([M]F)⊥ ⊏ JT Kı:=b+1. Then, ↑([M]φ′)⊥(δ, α) ∼ ↑([M]F)⊥(δ, α) ⊏
JUKı:=b+1. Note that the lhs is equal to ↑(F)(δ, α). The result follows from ı pos U and
Lemma 4.46.

As a consequence of the above lemma and Lemma 4.49, F satisfies the fixpoint equations.
It suffices to instantiate the above lemma with a = o(I).

In the main soundness theorem to be defined below, assumptions 1- 6 are satisfied by the
inductive hypothesis. Then the existence of a function satisfying the fixpoint equations is
ensured.

The soundness theorem. The statement of the soundness theorem is more complex than
the intuitive meaning given above.

Lemma 4.53 (Soundness). 1. If WF(Γ), then JΓKπ is defined for any stage valuation π.
Furthermore, if (γ1, γ2) ⊏ JΓKπ, then (γ1, γ1) ⊏ JΓK∞.

2. If Γ ⊢ M : T , with SV(M) = ∅, and (γ1, γ2) ∈ JΓKπ, then [Γ ⊢ M]γ1,γ2, JΓ ⊢ T Kπγ1∼γ2
are defined and

[Γ ⊢M]γ1,γ2 ⊏ JΓ ⊢ T Kπγ1∼γ2 .

3. If Γ ⊢ T : Typei, simple(T), and (γ1, γ2) ∈ JΓKπ, then JΓ ⊢ T Kπγ1∼γ2 is defined, and

JΓ ⊢ T Kπγ1∼γ2 ⊏ Ui .

4. If Γ ⊢ T : Prop, simple(T), and (γ1, γ2) ∈ JΓKπ, then JΓ ⊢ T Kπγ1∼γ2 is a defined relation-
ally degenerated Λ-set.

Proof. We prove all statements simultaneously, by induction on the type derivation, and case
analysis on the last rule. Except for rules (ind) and (prod), clauses 3 and 4 follow easily from
clause 2 and Lemma 4.40. Hence, we only consider clause 2, except for rules (ind) and (prod).

(empty) Trivial.

(cons) We have the derivation
WF(Γ) Γ ⊢ T : u

WF(Γ(x : T))

Let π be a stage valuation. By IH, JΓKπ is defined, and (γ1, γ1) ⊏ JΓK∞ for any (γ1, γ2) ⊏
JΓKπ. Also by IH, JΓ ⊢ T Kπγ1∼γ2 is defined, and JΓ ⊢ T K∞γ1∼γ1 is equal to ([Γ ⊢ T∞]γ1)

2.
The result follows by IH.

(var) Follows directly from (γ1, γ2) ∈ JΓKπ.

(sort) By definition of the interpretation of universes.

(prod) We need to consider two cases: impredicative and predicative product. Both cases
follow directly from the definition of the interpretation. In the predicative case, we use
the closure properties of the interpretation of the predicative universes.

4.4. SOUNDNESS 101

(ind) By definition of the interpretation of inductive types. It is essential that constructors
are defined in the same universe to ensure that the monotone operator is defined in the
same universe.

(conv) Follows easily by IH and soundness of subtyping (Lemma 4.46).

(abs) M is λx : |T |.M1|U |; we have the derivation

Γ(x : T) ⊢M1 : U

Γ ⊢ λx : |T |.M1|U | : Πx : T.U

We consider two cases.

I Assume Γ∞ ⊢ Πx : T∞.U∞ : Typei. By IH, γ1 ∼ γ1 ⊏ JΓK∞. Take α ⊏ [Γ ⊢ T]γ1 .
Then (α, α) ⊏ JΓ ⊢ T K∞γ1∼γ1 , and γ1, α ∼ γ1, α ⊏ JΓK∞. By IH, [Γ(x : T) ⊢ M]γ1,α
is defined. Similarly, [Γ(x : T) ⊢M]γ2,α is defined for any α ⊏ [Γ ⊢ T]γ2 .

II Assume Γ∞ ⊢ Πx : T∞.U∞ : Prop.

(app) M is app
|U |
x:|T | (M1,M2); we have the derivation

Γ ⊢ Πx : T.U : u
Γ ⊢M1 : Πx : T.U Γ ⊢M2 : T

Γ ⊢ app
|U |
x:|T | (M1,M2) : U [x := M2]

SV(M2) = ∅

We consider two cases.

I Assume Γ∞ ⊢ Πx : T∞.U∞ : Typei. By IH, [Γ ⊢ M1]γ1,γ2 ⊏ JΓ ⊢ Πx : T.UKπγ1∼γ2
and [Γ ⊢ M2]γ1,γ2 ⊏ JΓ ⊢ T Kπγ1∼γ2 . By definition of the relational interpretation,
([Γ ⊢M1]γ1 [Γ ⊢M2]γ1 , [Γ ⊢M1]γ2 [Γ ⊢M2]γ2) ⊏ JΓ(x : T1) ⊢ UKπ

γ1,[Γ⊢M2](γ1)∼γ2,[Γ⊢M2](γ2)

By Lemma 4.44, the latter is equal to JΓ ⊢ U [x := M2]K
π
γ1∼γ2 .

(constr) M is C(|~p|, ~N, P); we have the derivation

I ∈ Σ Γ ⊢ ~p : ∆p

Γ ⊢ ~N : ∆i [dom (∆p) := ~p] Γ ⊢ P : ΠΘi [dom (∆p) := ~p] .Is (~p, ~ui)

Γ ⊢ Ci(|~p|, ~N, P) : typeConstrsCi
(~p, ~N)

where typeConstrsCi
(~p, ~N) = I ŝ (~p,~a), and ~a = ~ti [dom (∆p) := ~p]

[
dom (∆i) := ~N

]
. Note

that, since positive and negative parameters do not appear in ~ti, we have SV(~ti) = ∅.

The result follows easily from the IH.

(case) M is case|P | x := M in I (|~p|, ~y) of 〈Ci ⇒ Ni〉i; we have the derivation

Γ ⊢M : I ŝ (~p,~a) I ∈ Σ Γ (caseTypesI(~p, ~y, x)) ⊢ P : u
Γ ⊢ Ni : branch

s
Ci
(~p, ~y.x.P)

Γ ⊢ case|P | x := M1 in I (|~p|, ~y) of 〈Ci ⇒ Ni〉i : P [~y := ~a] [x := M]

Let I = Ind(I[∆p]
~ν : Π∆a.u := 〈Ci : Π∆i.X ~ti〉i). By IH, [Γ ⊢ M]γ1,γ2 ⊏ JΓ ⊢

I ŝ (~p,~a)Kπγ1∼γ2 . If [Γ ⊢M]γ1,γ2 = (∅, ∅), the result follows immediately. We consider the

102 CHAPTER 4. STRONG NORMALIZATION

case [Γ ⊢M]γ1,γ2 = ((j, ρ1), (j, ρ2)). By IH, [Γ ⊢ Nj]γ1,γ2 ⊏ JΓ ⊢ branchsCi
(~p, ~y.x.P)Kπγ1∼γ2 .

By definition of branch and RI of product,

(↑1[Γ ⊢ Nj]γ1(ρ1), ↑2[Γ ⊢ Nj]γ2(ρ2)) ⊏

JΓ ⊢ P
[
~y := indicesCj

(~p)
]
[x := Cj(|~p|, dom (∆i))]K

π
γ1,ρ1∼γ2,ρ2

where ↑i = ↑
Γ⊢branchsCj

(~p,~y.x.P)

γi . Recall that indicesCj
(~p) = ~tj [dom (∆p) := ~p]. By defini-

tion of RI of inductive types, [ΓargsConstrsCj
(~p) ⊢ ~tj [dom (∆p) := ~p]]γi,ρi = [Γ ⊢ ~a]γi , for

i = 1, 2. The result follows from Lemma 4.44.

(fix) M is fixn f : |T |ı := M1
~N ; we have the derivation

T ≡ Π∆(x : I ı (~p, ~u)).U ı pos U #∆ = n− 1
ı /∈ SV(Γ,∆, ~u,M1)

Γ ⊢ T : u Γ(f : T) ⊢M1 : T [ı := ı̂] Γ ⊢ ~N : ∆(x : Is (~p, ~u))

Γ ⊢ fixn f : |T |ı := (M1, ~N) : U
[
dom (∆) := ~N

]
[ı := s]

SV(~N) = ∅

Let γ1 ∼ γ2 ⊏ JΓKπ. We are in conditions of apply Lemmas 4.49-4.52, for γ1 and γ2.
Then [Γ ⊢M]γ1 and [Γ ⊢M]γ2 are defined and satisfy the fixpoint equations of Def. 4.24.

That is, we have φ1 ⊏ [Γ ⊢ T∞]γ1 and φ2 ⊏ [Γ ⊢ T∞]γ2 satisfying the fixpoint equations
of Def. 4.24.

We prove φ1 ∼ φ2 ⊏ JΓ ⊢ T Kπγ1∼γ2 .

We proceed by induction on π(ı).

π(ı) = 0 Consider δ1, α1 ∼ δ2, α2 ⊏ J∆(x : I ı (~p,~a))Kπ. Then α1 = α2 = ∅. By defini-
tion, we have φi(δi, ∅) = ⊥[U](δi,∅). Finally, (⊥[U](δ1,∅),⊥[U](δ2,∅)) ⊏ JUKπ

δ1,∅∼δ2,∅
.

π(ı) = a+ 1 By IH, φ1 ∼ φ2 ⊏ JΓ ⊢ T K
π(ı:=a)
γ1∼γ2 . Then, [Γ(f : T) ⊢ M1]γ1,φ1∼γ2,φ2 ⊏

JΓ ⊢ T [ı := ı̂]K
π(ı:=a)
γ1∼γ2 . By Soundness of Stage Substitution (Lemma 4.43), JΓ ⊢

T [ı := ı̂]K
π(ı:=a)
γ1∼γ2 = JΓ ⊢ T K

π(ı:=a+1)
γ1∼γ2 . The result follows easily, since φ1 and φ2

satisfy the fixpoint equations. Consider δ1, α1 ∼ δ2, α2 ⊏ J∆(x : I ı (~p,~a))Kπ(ı:=a+1).
If α1 = α2 = ∅, the result follows as in the previous case. Otherwise, for i = 1, 2,
↑(φi)(δi, αi) = ↑([M]φi

)(δi, αi), from the fixpoint equations, and the result follows

since [Γ(f : T) ⊢M1]γ1,φ1∼γ2,φ2 ⊏ JΓ ⊢ T [ı := ı̂]K
π(ı:=a)
γ1∼γ2 .

π(ı) is a limit ordinal Let π(ı) = b. Consider

δ1, α1 ∼ δ2, α2 ⊏ J∆(x : I ı (~p,~a))Kπ .

Then there exists a < b such that α1 ∼ α2 ⊏ JI ı(~p, ~u)K
π(ı:=b)
δ1∼δ2

. By IH, ↑(φ1)(δ1, α1) ∼

↑(φ2)(δ2, α2) ⊏ JUK
π(ı:=b)
δ1,α1∼δ2,α2

. Since ı pos U , the result follows from Soundness of
Subtyping (Lemma 4.46).

The conclusion follows easily.

4.5. STRONG NORMALIZATION 103

4.5 Strong Normalization

In this section we prove our main result: strong normalization of ECIĈ−. This result
follows as a consequence of Lemma 4.55 given below, stating that a term, under a suitable
substitution, realizes its interpretation. In other words, given Γ ⊢M : T , (γ1, γ2) ⊏ JΓKπ, and
a substitution θ that “agrees” with (γ1, γ2), then Mθ |= [Γ ⊢M]γ1∼γ2 in the interpretation of
the type T . We define precisely the notion of “agrees”.

Definition 4.54. Let (γ1, γ2) ∈ JΓKπ. We define θ |=Γ
π (γ1, γ2) by the following clauses:

ε |=Γ
π []

θ |=Γ
π (γ1, γ2) M |=JΓ⊢T K(γ1∼γ2,π) (α1, α2)

θ(x 7→M) |=Γ(x:T)
π (γ1, α1), (γ2, α2)

Lemma 4.55. If Γ ⊢M : T and (γ1, γ2) ∈ JΓKπ and θ |=Γ
π (γ1, γ2), then

Mθ |=JΓ⊢T K(γ1∼γ2,π) [Γ ⊢M]γ1,γ2

Proof. We proceed by induction on the derivation of Γ ⊢ M : T . We consider only the most
relevant cases.

(app) M is app
|U |
x:|T | (M1,M2); we have the derivation

Γ ⊢ Πx : T.U : u
Γ ⊢M1 : Πx : T.U Γ ⊢M2 : T

Γ ⊢ app
|U |
x:|T | (M1,M2) : U [x := M2]

SV(M2) = ∅

By IH, M1θ |=JΓ⊢Πx:T.UK(γ1∼γ2,π) [Γ ⊢ M1]γ1,γ2 , M2θ |=JΓ⊢T K(γ1∼γ2,π) [Γ ⊢ M2]γ1,γ2 , and
Πx : T.Uθ |=JΓ⊢uK(γ1∼γ2,π) [Γ ⊢ Πx : T.U]γ1,γ2 . The latter implies that Πx : T.Uθ ∈ SN.
By definition of the RI for products,

app
|U |
x:|T | (M1,M2) θ |=JΓ(x:T)⊢UK(γ1,α1∼γ2,α2,π) [Γ ⊢ app

|U |
x:|T | (M1,M2)]γ1,γ2

where (α1, α2) = [Γ ⊢M2]γ1,γ2 . This is valid when u is Prop and Typek for some k. The
result follows from Lemma 4.44.

(case) M is case|P | x := M in I (|~p|, ~y) of 〈Ci ⇒ Ni〉i; we have the derivation

Γ ⊢M : I ŝ (~p,~a) I ∈ Σ Γ (caseTypesI(~p, ~y, x)) ⊢ P : u
Γ ⊢ Ni : branch

s
Ci
(~p, ~y.x.P)

Γ ⊢ case|P | x := M1 in I (|~p|, ~y) of 〈Ci ⇒ Ni〉i : P [~y := ~a] [x := M]

Let I = Ind(I[∆p]
~ν : Π∆a.u := 〈Ci : Π∆i.X ~ti〉i). We write X∗ for X [dom (∆p) := ~p],

for a term or context X.

Let θ |=Γ
π (γ1, γ2). We want to prove that Mθ |=JΓ⊢P [~y:=~a][x:=M]K(γ1∼γ2,π) [Γ ⊢M]γ1∼γ2 .

The IH gives us

1 M1θ |=JI ŝ(~p,~a)K(γ1∼γ2,π) [Γ ⊢M1]γ1∼γ2 ;

2 Niθ |=JbranchsCi
(~p,~y.x.P)K(γ1∼γ2,π) [Γ ⊢ Ni]γ1∼γ2 .

104 CHAPTER 4. STRONG NORMALIZATION

By definition, JI ŝ (~p,~a)Kπγ1∼γ2 = Φa+1
I(~p)([Γ ⊢ ~a]γ1∼γ2), where a = LsMπ. We write Φa for

Φa+1
I(~p).

We have two subcases.

1. [Γ ⊢ M1]γ1∼γ2 = ((α, ∅), (α, ∅)). In this case, M1θ →
∗
wh R ∈ AT. Then M →∗wh

case|P | x := R in I (|~p|, ~y) of 〈Ci ⇒ Ni〉i ∈ AT. By definition of the interpretation,
[Γ ⊢ M]γ1∼γ2 = ⊥[Γ (caseTypesI(~p,~y,x))⊢P](γ,α,∅). The result follows since atomic terms
realize the atomic element of a Λ-set and realizers are closed under wh-expansion.

2. [Γ ⊢M1]γ1∼γ2 = ((α1, (j, ν1, ρ1)), (α2, (j, ν2, ρ2))). In this case,M1θ →
∗
wh Cj(~p◦, ~QR)

where ~QR |=J∆i
∗K(γ1∼γ2|X 7→Φ

a,π) (ν1, ρ1), (ν2, ρ2).

We have, [Γ ⊢ M]γ1∼γ2 = ([N1]γ1(ν1, ρ1), [N2]γ2(ν2, ρ2)). Also, by Substitution of
the RI,

JΓ ⊢ P [~y := ~a] [x := M]Kπγ1∼γ2 = JΓ (caseTypesI(~p, ~y, x)) ⊢ P Kπγ1,α1,(j,ν1,ρ1)∼γ2,α2,(j,ν2,ρ2)

Then, by IH 2,

app
|P |
∆j

∗

(
Nj , ~QR

)
|=JP K(γ1,α1,(j,ν1,ρ1)∼γ2,α2,(j,ν2,ρ2),π) ([N1]γ1(ν1, ρ1), [N2]γ2(ν2, ρ2))

The result follows, since Mθ →∗wh app
|P |
∆j

∗

(
Nj , ~QR

)
.

(fix) M is fixn f : |T |ı := (M ′, ~N); we have the derivation

T ≡ Π∆(x : I ı (~p, ~u)).U ı pos U #∆ = n− 1
ı /∈ SV(Γ,∆, ~u,M ′)

Γ ⊢ T : u Γ(f : T) ⊢M ′ : T [ı := ı̂] Γ ⊢ ~N : ∆(x : I ı (~p, ~u))

Γ ⊢ fixn f : |T |ı := (M ′, ~N) : U [ı := s]
SV(~N) = ∅

We write ∆+ for ∆(x : I ı (~p, ~u)). Let (γ1, γ2) ⊏ JΓKπ and θ |=Γ
π (γ1, γ2). We want to

prove that

Mθ |=JΓ⊢T [ı:=s]K(γ1∼γ2,π) [Γ ⊢M]γ1∼γ2 . (4.1)

Let us write φi for ǫ(Fi, P), for i = 1, 2, where P denotes the fixpoint equations of
Def. 4.24. Also, we write ↑i for ↑

u
Π([∆+](γi),[U](γi,))

. Recall that the interpretation of M

is defined by [Γ ⊢M]γi = ↑iφi([Γ ⊢ ~N]γi).

We first prove that if θ |=Γ
π (γ1, γ2)

(λ
|U |
|∆+|

.fixn f : |T |ı := (M ′, dom
(
∆+

)
))θ |=JΓ⊢T K(γ1∼γ2,π) (φ1, φ2) .

We write M+ for λ
|U |
|∆+|

.fixn f : |T |ı := (M ′, dom (∆+)).

Recall that ∆+ = ∆(x : I ı (~p, ~u)). Then JΓ ⊢ ∆+Kπγ1∼γ2
∼= Σ(JΓ ⊢ ∆Kπγ1∼γ2 , JΓ∆ ⊢

I ı (~p) ~uKπγ1, ∼γ2,). Then each element of its carrier set is of the form ((δ1, α1), (δ2, α2)),
with (δ1, δ2) ⊏ J∆Kπγ1∼γ2 and α ⊏ JI ı (~p) ~uKπγ1,δ1∼γ2,δ2 .

We proceed by transfinite induction on π(ı).

4.5. STRONG NORMALIZATION 105

π(ı) = 0 Let θ |=Γ
π(ı:=0) (γ1, γ2). Let ~t u |=J∆+K(γ1∼γ2,π) (δ1, α1), (δ2, α2). By definition

of the relational interpretation of I, α1 = α2 = ∅, and u →∗wh R ∈ AT. On the
other hand, by definition of φ1, ↑φ1(δ1, ∅) = ⊥[U](γ1,δ1,∅); similarly for φ2. Then,

app
|Uθ|
|∆+θ|

(
M+θ,~t u

)
→∗ fixn f : T ⋆θ := (M ′θ,~tR)

|=JΓ⊢UK(γ1,δ1,∅∼γ2,δ2,∅,π) (⊥[U](γ1,δ1,∅),⊥[U](γ2,δ2,∅)),

since fixn f : T ⋆θ := (M ′θ,~tR) is an atomic term. The result follows.

π(ı) = a+ 1 Let θ |=Γ
π(ı:=a+1) (γ1, γ2).

The IH says that, if θ |=Γ
π(ı:=a) (γ1, γ2) then

M+θ |=JT K(γ1∼γ2,π(ı:=a)) (φ1, φ2)

The outer IH says that

θ′ |=
Γ(f :T)
π(ı:=a) (γ1, φ1), (γ2, φ2)⇒

M ′θ′ |=JT [ı:=ı̂]K(γ1∼γ2,π(ı:=a)) [Γ(f : T) ⊢M ′]γ1,φ1∼γ2,φ2

Let θ′ = θ(f 7→M+θ). Then, θ′ |=
Γ(f :T)
π(ı:=a) (γ1, φ1), (γ2, φ2). By the outer IH,

M ′θ′ ≡M ′θ
[
f := M+θ

]

|=JT [ı:=ı̂]K(γ1∼γ2,π(ı:=a)) [Γ(f : T) ⊢M ′]γ1,φ1∼γ2,φ2 (4.2)

Let ~t u |=J∆+K(γ1∼γ2,π(ı:=a+1)) (δ1, α1), (δ2, α2). We consider two subcases. The first
subcase, when α1 = α2 = ∅; we proceed as in the case π(ı) = 0. The second
subcase, when α1 = (j, ν1, ρ1) and α2 = (j, ν2, ρ2). By definition of the RI for I,
u→∗wh Cj(~p◦,~a). Then,

app
|U |
|∆+|

(
M+θ,~t u

)
→∗wh fixn f : T ⋆θ := (M ′θ,~t u)→wh

app
|U |θ
|∆+θ|

(
M ′θ

[
f := M+θ

]
, (~t(Cj(~p◦,~a)))

)
≡ F

Recall that [Γ(f : T) ⊢M ′]γ1,φ1∼γ2,φ2 = (φ1, φ2). Then, from 4.2,

F |=JUK(γ1,δ1,α1∼γ2,δ2,α2,π(ı:=a+1)) ↑φ1(δ1, α1), ↑φ2(δ2, α2);

the result follows, since realizers are closed under wh-expansion.

π(ı) = a, for a limit The IH says that, if θ |=Γ
π(ı:=b) (γ1, γ2) then

M+θ |=JT K(γ1∼γ2,π(ı:=b)) (φ1, φ2)

for any b < a.

Let ~t u |=J∆+K(γ1∼γ2,π(ı:=a)) (δ1, α1), (δ2, α2). There exists b < a such that (α1, α2) ⊏

JI ı (~p) ~aK
π(ı:=b)
γ1,δ1∼γ2,δ2

. By IH,

app
|U |θ
|∆+|θ

(
M+θ,~t, u

)
|=JUK(γ1,δ1,α1∼γ2,δ2,α2,π(ı:=b)) ↑φ1(δ1, α1), ↑φ2(δ2, α2)

From ı pos U , JUK
π(ı:=b)
γ1,δ1,α1∼γ2,δ2,α2

⊆ JUK
π(ı:=a)
γ1,δ1,α1∼γ2,δ2,α2

. The result follows.

106 CHAPTER 4. STRONG NORMALIZATION

Now we prove the main result: if θ |=Γ
π (γ1, γ2), then

Mθ |=JΓ⊢U [ı:=s]K(γ1∼γ2,π) [Γ ⊢M]γ1∼γ2

Let a = LsMπ. By IH, ~Nθ |=JΓ⊢∆+K(γ1∼γ2,π(ı:=a)) [Γ ⊢ ~N]γ1∼γ2 . Let [Γ ⊢ ~N]γ1∼γ2 =
((δ1, α1), (δ2, α2)). Following a similar reasoning than in the above, we consider two
subcases. First, α1 = α2 = ∅. The result follows using a similar reasoning. Second,
α1 = (τ1, (j, ν1, ρ1)) and α2 = (τ2, (j, ν2, ρ2)), with o(α1, α2) = b+1. Note that b+1 ≤ a.

Let ~Nθ = ~P R, with #~P = n− 1. Then, R→∗wh Cj(~p◦,~a) and

Mθ →∗wh app
|Uθ|
|∆+θ|

(
M ′θ

[
f := λ

|Uθ|
|∆+θ|

.fixn f : T ⋆θ := (M ′θ, dom
(
∆+

)
)
]
, ~P (Cj(~p◦,~a))

)
≡ F

By the above result,

M ′θ
[
f := λ

|Uθ|
|∆+θ|

.fixn f : T ⋆θ := (M ′θ, dom
(
∆+

)
)
]

|=JΓ⊢T K(γ1∼γ2,π(ı:=b+1)) (φ1, φ2)

Then F |=JUK(γ1,δ1,α1∼γ2,δ2,α2,π(ı:=b+1)) (↑φ1(δ1, α1), ↑φ2(δ2, α2)). The result follows since
ı pos U and b+ 1 ≤ a.

Corollary 4.56. If Γ ⊢M : T then M is strongly normalizing.

Proof. Note that the identity substitution, id, satisfies id |=Γ
∞ ⊥[Γ], since variables are atomic

terms. From the previous theorem, Mε ≡ M |=JΓ⊢T K(γ1∼γ2,∞) [Γ ⊢ M]⊥[Γ]∼⊥[Γ]
. The result

follows, since all realizers are strongly normalizing by definition.

Logical consistency states that it is not possible to prove false propositions in the empty
context. We prove it using SN and the following lemma on canonical forms.

Lemma 4.57 (Canonicity). Let M be a term in normal form such that ⊢ M : T for some
type T .

– If |T | ≈ Πx : T1
◦.T2

◦, then M ≡ λU2
◦

x:U1
◦ .M1, for some U1

◦, U2
◦.

– If |T | ≈ I
(
~p◦, ~a◦

)
, then M ≡ C(~q◦, ~u), for some ~q◦, ~u.

Proof. By induction on the type derivation and case analysis on the last rule used. The
interesting cases are (app), (case), and (fix). We have to show that these cases contradict the
hypothesis that M is in normal form.

If the last rule used is (app), then M is of the form app (M1,M2). The type of M1 is a
product; by IH, M1 is an abstraction. Then M is a βl-redex.

If the last rule used is (case), then M is of the form case x := M1 . . ., where M1 is the
argument. The type of M1 is an inductive type; by IH, M1 is in constructor form. Then M
is a ι-redex.

Finally, if the last rule used is (fix), then M is of the form fixn f : T ⋆ := (M1, ~N). We
proceed as in the previous case. By IH the n-th argument is in constructor form, then M is
a µ-redex.

Finally, LC is an easy consequence of SN and the previous lemma.

4.5. STRONG NORMALIZATION 107

Theorem 4.58 (Logical Consistency). There is no term M such that ⊢M : False.

Proof. Assume there exits an M such that ⊢ M : ΠX : Type0.X. By strong normalization,
we can assume that M is in normal form. By lemma 4.57, M is in constructor form. This is
a contradiction, since False has no constructor.

108 CHAPTER 4. STRONG NORMALIZATION

Chapter 5

Extensions

In this chapter, we discuss some extensions to CIĈ−. We consider universe inclusion,
equality, and coinductive types. We sketch how to extend the Λ-set model of the previous
chapter to cope with each extension.

5.1 Universe Inclusion

CIĈ− has one impredicative universe Prop and a predicative universe hierarchy {Typei}i,
following ECC, CIC and Coq. The impredicative universe is at the lowest level of the hierarchy
of universes, as witnessed by the typing rules

Prop : Type0 : Type1 : . . .

In ECC, CIC, and Coq, this hierarchical view is further enhanced by the universe inclusion
rules, expressed as a subtyping relation between universes:

(*) Prop ≤ Type0, (**) Typei ≤ Typei+1, ∀i = 0, 1,

Then, using rule (**), any type in Type0 can be seen as a type in Type1, Type2, and so on.
In particular, any function of type Type1 → Type1 can be applied to, for example, nat which
has Type0. Using rule (*), any proposition can be injected in the computational universes.

Universe inclusion is present in the conversion rule for products:

T1 ≈ T2 U1 ≤ U2

Πx : T1.T2 ≤ Πx : U1.U2

Note that universe inclusion is allowed in the codomain (in a covariant way), while in the
domain, only conversion is allowed. The reason is that contravariance is not set-theoretical
(cf. Sect. 4.1); including contravariance in the rule would complicate the definition of set-
theoretical models. Miquel [65] is able to allow contravariance for the Implicit Calculus of
Constructions, but using a complex model based on domain theory.

In the case of the Λ-set model of Chap. 4, one crucial property we use is the separation
of proofs and computations: by looking at a term we know if its type is in Prop or {Typek}k.
This property would still hold in the presence of rule (**), and the extension of the conversion
rule for products. For example, Werner [84] uses this property in the definition of a proof-
irrelevant version of ECC.

109

110 CHAPTER 5. EXTENSIONS

In the case of CIĈ−, we could add rule (**) without major technical problems in the model
definition. The complications of adding this rule come from the use of type annotations
in abstractions and applications, and the lack of type uniqueness. For example, the term
λ
Type0
x:Type0

.x can be given type Type0 → Type1, using the extended conversion rule for products.
Type annotations would no longer reflect the type of a term, since types are not unique

(although Minimal Types exists [56]). Then, the term app
Type1
Type0

(
λ
Type0
x:Type0

.x, nat
)
is well typed,

but it cannot be reduced using tight β-reduction, since the type annotations do not match.

One way to adapt the model in order to avoid these problems is to change the syntax of
ECIĈ− to include two variants of abstractions and applications: one for proofs, and another
for computations. The former would contain domain and codomain annotations (as they are
needed to handle impredicativity; cf. Sect. 4.3.1), while the latter would not contain any extra
type annotations. The separation property of proofs and computations would be important
in the proof of equivalence between CIĈ− and ECIĈ−.

We chose not to include rule (**) in CIĈ− since the complications introduced in the
metatheoretical study are mostly technical, and do not add significant value to the proofs.

On the other hand, we cannot easily adapt our Λ-set model to handle rule (*). In the
presence of this rule, the separation property of proofs and computations is no longer valid.

To adapt our development to rule (*) we could follow the approach of Luo [56]. He defines
a set theoretical model of ECC using a ω-set semantics, where proofs and computations are
separated using the property of Minimal Types of ECC. He defines the semantics of a term
by considering a canonical derivation that gives the minimal type of a term. For example, a
term M with a computational type, let us say Γ ⊢M : T : Typei, can be given the semantics
of a proof if the minimal type T ′ of M satisfies Γ ⊢ T ′ : Prop.

In a recent paper, Lee and Werner [51] define a set-theoretical model of CIC with rule
(*). They rely on a coding for functions proposed by Aczel [5] and a judgmental equality to
prove soundness. It is not clear if the approach can be extended to the Λ-set model.

We leave this line of research for future work.

5.2 Equality

In this section we consider an extension of CIĈ− with equality. This extension is useful
for programming with dependent types; it will be used in the metatheoretical study in next
chapter. We explain the reasons behind the inclusion of this extension and describe it in
detail.

For simplicity, in CIĈ− we do not consider inductive types in Prop. Recall that this
universe is used to represent logical properties of programs in the computational universes.
Examples of logical propositions that are usually defined as inductive types in Prop include
logical conjunction, existential, binary relations, and equality.

In some cases, it is possible to encode some logical properties directly in the language,
without the need for inductive definitions. In these cases, inductive types are a convenience,
but we can still do many developments without them.

These encodings of logical properties take advantage of the impredicativity of Prop, and
are therefore called impredicative encodings. The idea is to encode a logical property as its
own induction principle. For example, logical conjunction of two propositions P and Q can
be encoded as

andP Q
def
= Π(R : Prop).(P → Q→ R)→ R

5.2. EQUALITY 111

This is the induction principle given by Coq when logical conjunction is defined using the
following inductive definition:

Ind(and(P Q : Prop) := conj : P → Q→ andP Q)

Logical inductive types in Coq have some restrictions compared with computational inductive
types. To maintain the intuition that Prop is proof-irrelevant, case analysis on logical inductive
types is not allowed to generate a term in a computational universe. Without this restriction,
proof-irrelevance would be lost, since we would be able to define a computational object
depending on how a particular proposition is proved.

However, there is a subclass of logical inductive types for which case analysis towards a
computational universe is allowed. If a logical inductive type has only one canonical inhabi-
tant, then elimination towards a computational universe is allowed. Since there is only one
inhabitant, the proof-irrelevant meaning of Prop remains valid. One particular example where
this is allowed is equality, defined as an inductive type as follows:

Ind(eq(A : Type)(x : A) : A→ Prop := refl : eqAxx)

Note that the only canonical proof of a proposition eqAxy is refl.
The possibility of eliminating towards a computational universe implies that the definition

using an inductive type and the definition using an impredicative encoding are not equivalent.
While it is possible to prove that both encodings define an equivalence relation, the former
comes associated with the following reduction rule:

eq rectAxP p y (eq reflA′ x′)→ p

where eq rect is the induction principle associated with eq. (The typing rules ensure that A
and A′ are convertible, as well as x, y and x′.)

As we see in the next chapter, this computation rule is very important for programming
with dependent types. Hence, it is necessary to consider a similar inductive definition of equal-
ity for CIĈ−. We can proceed by adding equality as an inductive type in the computational
universes:

Ind(eq(A : Type0)(x : A) : A→ Type0 := refl : eqAxx)

Proceeding this way in Coq would mean that the extraction mechanism [53] would not remove
equality, as it could be computationally relevant. Since we do not consider extraction of
programs in this work, we allow ourselves to define equality in the computational universes.
However, as we explain in the following, this notion of equality is not expressive enough to
use for programming with dependent types

Homogeneous and Heterogeneous Equality. The equality defined above is called ho-
mogeneous equality, since it relates elements of the same type. A more general and powerful
version of equality is heterogeneous equality, introduced by McBride [59]. In CIĈ−, it is
defined by

Ind(heq[(A : Type0)(x : A)] : Π(B : Type0). B → Type0 := heq refl : X Ax)

The advantage of heterogeneous equality over homogeneous equality is that the former allows
to easily express equalities between contexts. For example, given (n1 : nat)(v1 : vec(A, n1))
and (n2 : nat)(v2 : vec(A, n2)), we can write the following equalities:

heq(nat, n1, nat, n2), heq((vec(A, n1)), v1, (vec(A, n2)), v2) .

112 CHAPTER 5. EXTENSIONS

If we want to express n1 = n2 and v1 = v2 using homogeneous equality, we would need to
rewrite the type of v1 to match the type of v2.

In general, given a context ∆ ≡ (x1 : T1) . . . (xn : Tn) and two sequences of terms
〈Mi〉i, 〈Ni〉i : ∆, we write heq∆(〈Mi〉i, 〈Ni〉i) to mean the sequence of heterogeneous equalities:

heq(T1,M1, T1, N1), heq((T1 [x1 := M1]),M2, (T1 [x1 := N1]), N2), . . .

heq((Tn [〈xi := Mi〉i=1..n−1]),Mn, (Tn [〈xi := Ni〉i=1..n−1]), Nn)

Although heterogeneous equality is useful to express equalities between terms of inductive
families as shown above, the elimination rule obtained from the inductive definition is not
very useful in practice. Namely, we can define the following elimination:

heq rect : Π(A : Type)(x : A)(P : Π(B : Type).B → Type).

P Ax→ Π(B : Type)(b : B), heqAxB b→ P B b

However, this elimination rule is difficult to use given the universal quantification over types
in the predicate P . McBride [59] recognized the importance of heterogeneous equality when
programming with inductive families, and introduced an elimination scheme for heq that
works on homogeneous instances:

heq rect : Π(A : Type)(P : A→ Type)(x : A). P x→ Π(y : A). heq(A, x,A, y)→ P y

This means that we can perform a rewrite using an heterogeneous equality if the equality is
actually homogeneous. For example, in a sequence of equalities heq∆(~M, ~N), the first equality
is homogeneous. Applying the elimination rule above we can transform the second equality
in a homogeneous equality. And we can repeat the process to transform all equalities into
homogeneous equalities.

McBride also proved that this elimination rule is equivalent to axiom K. That is, each
of them can be derived assuming the other as an axiom. Since axiom K is not derivable in
CIC [47], neither is the elimination rule given above.

We can introduce the elimination rule as an axiom. This is the approach used by some tools
in Coq designed to program with dependent types, such as Program [77] and Equation [78].
However, it would lack a computational behavior similar to eq.

The desired computation rule for heq rect, called κ-reduction, is given by the following
rule:

heq rectAP xp y (heq reflA′ x′)→κ p

The case of CIC−̂. Similar to other developments (e.g. [42]) we consider an extension of
our system with an axiom for heq rect and κ-reduction. We make use of this extension in
the next chapter, without making a detailed metatheoretical study, which we leave for future
work. Given the restrictions we make on size variables, our construction is slightly different,
having some similarities with the case construction.

Concretely, we extend the syntax of CIĈ− with the following constructions

T ::= . . . | heq(T , T , T , T)
| heq refl(T ◦, T)
| heq rectT ◦ T in heqT ◦(T ◦,V) of T

5.2. EQUALITY 113

In a term of the form (heq rect|P | H in heq|T |(|N1|, y) of M), y is bound in P (similar to the case
construction). H has type heq(T,N1, T,N2) for some term N2 (a homogeneous equality), M
has type P [y := N1], while the whole expression has type P [y := N2]. Thus, this construction
allows to rewrite on the type of M , using the equality H. Note the similarities with the case
construction: H is the argument of a case analysis, and M corresponds to the only branch
(since there is only one constructor in heq).

We also extend the reduction rule with the following κ-reduction:

heq rectP ◦ (heq refl(T ′
◦
, N ′

◦
)) in heqT ◦(N1

◦, y) of M →κ M

If the lhs is well typed, then T ′◦ and T ◦ are convertible, as well as N1
◦, N2

◦ and N ′◦. Thus,
κ-reduction satisfies the Subject Reduction property.

The typing rules for heq and heq refl are the expected:

(heq)
Γ ⊢M1 : T1 : Type0 Γ ⊢M2 : T2 : Type0

Γ ⊢ heq(T1,M1, T2,M2) : Type0
simple(T1, T2) ∧ SV(M1,M2) = ∅

(heq refl)
Γ ⊢M : T : Type0

Γ ⊢ heq refl(|T |,M) : heq(T,M, T,M)
simple(T) ∧ SV(M) = ∅

where Γ ⊢ M : T : Type0 is an abbreviation for Γ ⊢ M : T and Γ ⊢ T : Type0. Like a
parameter in a constructor, the first argument of heq refl is a bare term. Note that both type
arguments of heq can have size variables (respecting the simple predicate). Finally, the typing
rule associated with heq rect is the following:

(heq rect)

Γ ⊢ H : heq(T,N1, T,N2) Γ(y : T) ⊢ P : Typei
Γ ⊢M : P [y := N1]

Γ ⊢ heq rect|P | H in heq|T |(|N1|, y) of M : P [y := N2]
SV(M) = ∅

We do not make a detailed study of the metatheory of this extension. We assume that
the properties of Chapter 3 are preserved, as well as Strong Normalization. This is the same
approach taken in [42] and we make these assumptions for the same reasons (cf. Chap. 6).

We briefly sketch how to adapt the Λ-set model to handle heq rect and κ-reduction.
Note that the interpretation of the type heq (following the construction of Sect. 4.3.3) is the
following:

[Γ ⊢ heq(T1,M1, T2,M2)]γ =

{
(1, ∅) if [Γ ⊢ T1]γ = [Γ ⊢ T2]γ and [Γ ⊢M1]γ = [Γ ⊢M2]γ

∅ otherwise

Then, heq rect can be interpreted as follows:

[Γ ⊢ heq rect|P | H in heq|T |(|N1|, y) of M]γ =

{
[Γ ⊢M]γ if [Γ ⊢ H]γ = (1, ∅)

[Γ(x : T∞) ⊢ P]γ,⊥[Γ⊢T∞](γ)
otherwise

Note again the similarities with the interpretation of the case construction. The intepretation
reduces to the interpretation of the branch if the argument of the case is interpreted as a
constructor. Otherwise, the interpretation is just the atomic term of the corresponding type.
Finally, note that κ-reduction is sound in this interpretation.

We leave for future work a formal treatment of this extension.

114 CHAPTER 5. EXTENSIONS

5.3 Coinductive Types

Coinductive types play an important rôle in the context of proof assistants. They are used
to specify infinite systems, such as network protocols or servers. In the context of the Calculus
of Constructions, they were introduced by Coquand [31] and later extended by Giménez [39].

As we mentioned in Chapter 1, we do not consider the general case of coinductive types,
but focus on a particular case: streams. In this section, we define an extension of CIĈ− with
streams, following [39]. In particular, we describe the extensions to the syntax, reduction and
typing rules. We also describe how to interpret streams in the model of Chap. 4. We begin
by describing how streams are implemented in CIC and Coq, showing some of the theoretical
and practical limitations of this approach.

Streams in CIC. Streams are introduced by a coinductive definition:

CoInductive stream (A : Type) : Type = scons : A→ streamA→ streamA

This defines stream as a coinductive type with only one constructor, scons. Note that all
terms of type stream are infinite, since the only constructor is recursive. If we define stream

as an inductive type it would be empty, since it is not possible to build finite streams.
Destructors of coinductive types are case analysis and corecursive functions. Case analysis

for coinductive types is defined in the same way as for inductive types.
A corecursive function defining a stream has the form

cofix f : Π∆.stream(A) := M

Corecursive definitions are similar to recursive definitions in their form. However, while the
latter kind receive an inductive type as argument, the former kind return a coinductive type.

Intuitively, corecursive definitions are evaluated using the reduction rule

cofix f : Π∆.stream(A) := M → M [f := (cofix f : Π∆.stream(A) := M)]

Note that adding such a rule would immediately break Strong Normalization. To avoid this
problem, cofixpoint unfolding is only allowed in the context of a case construction. The actual
reduction rule used, called ν-reduction, is the following:

caseP ◦ x := (cofix f : T ⋆ := M)~a in stream (U) of scons⇒ N →ν

caseP ◦ x := M [f := (cofix f : T ⋆ := M)] ~a in stream (U) of scons⇒ N

Cofixpoint unfolding is only allowed when the cofixpoint is the argument of a case construc-
tion.

As defined above, ν-reduction is strongly normalizing for productive corecursive defini-
tions. The intuition is that, after expanding the cofixpoint, evaluation of the body (M in the
case above) would eventually reduce to a constructor, since the cofixpoint is productive. Then,
the case construction can be reduced. Unfolding cannot occur infinitely, as each unfolding
triggers the consumption of a case construction.

Let us see some examples of corecursive definitions. For readability, we omit the type
argument of the scons constructor. The alternating stream of ones and zeros of Sect. 1.1 can
be written in CIC as follows:

alt
def
= cofix alt : stream(nat) := scons(O, scons(SO, alt))

5.3. COINDUCTIVE TYPES 115

Besides some syntactical differences, this definition is the same as the Haskell definition of
Sect. 1.1.

Some useful functions to work with streams are map and sum. The former is the natural
equivalent for streams of the map function for lists, while the latter returns the component-
wise addition of two streams of natural numbers. They are defined as follows (we omit some
type annotations for readability):

map : Π(A : Type)(B : Type).(A→ B)→ stream(A)→ stream(B)

map
def
= λAB f.cofix map : stream(A)→ stream(B) :=

λ t.case t of scons⇒ λ a t′.scons(f(a),map t′)

sum : stream(nat)→ stream(nat)→ stream(nat)

sum
def
= cofix sum : stream(nat)→ stream(nat)→ stream(nat) :=

λ t1 t2. case t1 of scons⇒ λ a1 t
′
1.

case t2 of scons⇒ λ a2 t
′
2. scons(a1 + a2, sum t′1 t

′
2)

Both definitions are productive, since the corecursive calls are performed under a constructor.
Finally, let us see the typing rule associated with cofixpoints. Intuitively, cofixpoints can

be typed with the following rule:

Γ(f : Π∆.stream(A)) ⊢M : Π∆.stream(A)

Γ ⊢ (cofix f : Π∆.stream(A) := M) : Π∆.stream(A)

However, such a liberal rule would allow non-productive cofixpoints.
Like non-termination, non-productivity could introduce inconsistencies. Therefore, in

CIC and Coq, some restrictions are imposed to ensure productivity of corecursive definitions.
These restrictions take the form of a guard predicate, similar to the guard condition of re-
cursive definitions (cf. Sect. 1.2.1). We do not explain the guard condition in detail but only
give some intuition.

Basically, a corecursive definition satisfies the guard condition if all corecursive calls are
performed under a constructor. This ensures that when evaluating a corecursive definition
lazily, at least one constructor will be exposed before a corecursive call needs to be reduced
(such a call would stop lazy reduction). As we explained above, this ensures that the reduction
is strongly normalizing, and that LC is satisfied. All the examples given above satisfy the
guard condition.

However, the guard condition for corecursive definitions has some limitations. For ex-
ample, the following definition is productive (cf. Sect. 1.1), but does not satisfy the guard
condition:

cofix nats : stream(nat) := scons(O,map (λx. S(x)) nats)

The guard condition is not satisfied as the corecursive call is an argument of a function. The
following definition of the Fibonacci sequence is also productive but not guarded:

cofix fib : stream(nat) := scons(O, sumfib (scons(SO, fib))

It is not difficult to see that this definition produces the Fibonacci sequence: 0,1,1,2,3,5,. . ..
The definition is productive, by a similar reasoning as in the case of nats above. However,
it does not satisfy the guard condition, as corecursive call are performed as argument of a
function (sum in this case).

116 CHAPTER 5. EXTENSIONS

Our extension of CIĈ− with streams that overcomes some of the limitations of the guard
condition. Productivity is checked using size annotations. This mechanism is more powerful
than guard predicates due to the possibility of expressing size-preserving corecursive functions.

Metatheory of CIC with streams. The metatheoretical study of coinductive types in
CIC presents some problems that are not found in the case of inductive types. Gimémez
obverved that, in the presence of dependent types, ν-reduction does not satisfy SR [39]. A
simple example given in op.cit. illustrates the situation. Consider the context

Γ0
def
= (A : Type)(P : stream∞(A)→ Type)

(H : Π(a : A)(t : stream∞(A)).P (scons(A, a, t)))(a : A)

and the terms

R ≡ cofix f : stream⋆(A) := scons(A, a, f)

M ≡ caseP x x := R in stream(A) of scons⇒ H

Then Γ0 ⊢M : P M . Note that M admits the following reduction:

M → caseP x x := scons(A, a,R) in stream(A) of scons⇒ H ≡ N

We have Γ0 ⊢ N : P (scons(A, a,R)), but Γ0 6⊢ N : P M . The problem is that P M does
not reduce to P (scons(A, a,R)), since the cofixpoint does not occur as argument of a case
construction.

Giménez considers an extended system where cofixpoint unfolding is not restricted in the
conversion rule. The extended system satisfies SR. Since cofixpoint unfolding is not restricted,
the reduction used in the conversion rule is not strongly normalizing. Hence, conversion is not
decidable. However, Gimémez proves that the extended system satisfy SN for ν-reduction.

Therefore, one is faced with the decision of using a system where Subject Reduction is
satisfied, or a system where SN is satisfied. The latter is a much more important property,
as it ensures LC. In practice, the lack of SR is not important in practice. The current
implementation of Coq is based on the work of Giménez and, therefore, does not satisfy SR.
However, this is rarely a problem in practice.

A more satisfying definition of coinduction is an important topic of current research in
Type Theory.

Streams in CIC−̂. Coinductive types in CIĈ− are also decorated with stages, in the same
way as inductive types. However, the semantic meaning of these size annotations is different.
In the case of streams, a type of the form

streams (T)

denotes the type of streams where at least s elements can be computed. That is, evaluation
of a term of this type is guaranteed to produce at least s elements of the stream.

Dually to the case of inductive types, size annotations are contravariant in coinductive
types. Thus, the subtyping rule associated with streams is the following:

(st-stream)
s ⊑ r T ≤ U

streamr (T) ≤ streams (U)

5.3. COINDUCTIVE TYPES 117

The intuition is that if we can produce r elements of a stream, then we can produce any
smaller number of elements. Similarly, this duality is shown also in the positivity condition
for size variables in streams:

ı /∈ SV(T)

ı neg streams(T)

Then, for example, ı neg streamı(T).
The syntax of CIĈ− is extended with streams and cofixpoints as expected:

T ::= . . . | streama (T) | scons(T ◦, T , T) | cofix f : T ⋆ := T

Case analysis of streams is done in the same way as for inductive definitions; there is no need
of a separate construction. Reduction of cofixpoints is defined as in the case of CIC.

The typing rules are extended for the new type and introduction rule (constructor scons)
as expected:

(stream)
Γ ⊢ T : Type0

Γ ⊢ streams (T) : Type0
(scons)

Γ ⊢M : T Γ ⊢ N : streams (T)

Γ ⊢ scons(|T |,M,N) : streamŝ (T)

The typing rule for scons reflects the intuitive meaning of the size annotations on streams:
if we can compute s elements of a stream N , then we can compute one more element of the
stream scons(M,N).

The destructors associated with streams are case analysis and corecursive definitions. The
typing rule for case analysis is the same as if streams where defined by an inductive definition:

Γ ⊢M : streamŝ (T) Γ(x : streamŝ (T)) ⊢ P : u
Γ ⊢ N : Π(y1 : T)(y2 : stream

s (T)).P [x := scons(|T |, y1, y2)]

Γ ⊢ case|P | x := M in stream
(
|~T |

)
of scons⇒ N : P [x := M]

Note that, as in the case of inductive definitions, the argument of the case (M above) must
have a successor stage in the annotation of its type. In the case of inductive types, any
term of an inductive type I can be used as argument of a case construction. For example,
a term of type I ı can be given the type I ı̂ by the subtyping rule and, therefore, it can be
used as argument of a case construction. However, with streams this is not possible. A term
of type streamı cannot be used as argument of a case construction, since size annotations
are contravariant for coinductive types. We show some examples below where this situation
appears as a limitation.

Finally, the typing rule for corecursive definitions

(cofix)

T ≡ Π∆.streamı (U)
ı neg ∆ ı /∈ SV(Γ, U,M) Γ ⊢ T : u Γ(f : T) ⊢M : T [ı := ı̂]

Γ ⊢ cofix f : T ⋆ := M : T [ı := s]

The typing rule is similar to that of fixpoints, but in this case a coinductive type is returned.
The typing rule for the body says that M returns a stream where at least ı̂ elements can be
computed, assuming that f return a stream where at least ı elements can be computed. This
condition is enough to ensure that the cofixpoint is productive.

Note that the fresh variable ı can appear negatively in ∆. Examples of valid types for core-
cursive functions are nat∞ → streamı(A), streamı(nat∞)→ streamı(nat∞)→ streamı(nat∞).

118 CHAPTER 5. EXTENSIONS

The examples given above, namely alt, map and sum can be typed using the above rule.
Furthermore, map and sum can be given the following precise types:

map : Π(A : Type)(B : Type).(A→ B)→ streams(A)→ streams(B)

sum : streamı(nat∞)→ streamı(nat∞)→ streamı(nat∞)

These precise types allows us to accept the definitions of nats and fib given above that are
not accepted under guard predicates.

However, this approach also has some limitations. For example, the following definition
of the Fibonacci sequence (in Haskell) is productive:

fib = 0 : 1 : sum fib (tail fib)

In CIĈ− we can define the function tail that removes the first element of a stream, with type
streamŝ(A)→ streams(A).

However, the direct translation of the above definition to CIĈ− is not accepted, since
tail cannot be applied to the recursive call of fib whose size annotation in the type is not a
successor stage. Nevertheless, we believe that the approach using sized types provides a more
flexible and intuitive framework for checking productivity than guard predicates.

MiniAgda [3] includes coinductive definitions. A main difference with our approach is that
MiniAgda includes a feature that allows to perform case analysis on term of type streamı(A).
This allows, for example, to apply the tail function to any stream. In turn, this allows to
accept the second definition of the Fibonacci sequence given in this section, which is not
accepted in CIĈ−.

We leave for future work the development of a similar feature for CIĈ−.

Metatheory. The basic metatheory of this extension can be developed in the same way as
in [39]. However, Subject Reduction is not valid for ν-reduction.

Gimenéz considers a variant of the system with a modified conversion rule where cofixpoint
unfolding is not restricted. This variant includes the original system, since the conversion rule
is more liberal. The variant satisfies both SR and SN, and therefore the original system also
satisfies SN. We do not go into details of the basic metatheory, and just assume that the
development of [39] can be adapted to our case.

We focus instead on the extension of the model of Chap. 4. In particular, we show that
the relational interpretation can be naturally extended to streams.

Streams are interpreted as set-theoretical infinite sequences. Concretely, the interpretation
of the type stream(T) is a Λ-set (X, |=,⊥) given by

– X
def
= {(α1, α2, . . .) : αi ⊏ [Γ ⊢ T]γ}

– M |= 〈αi〉i=0..., for M ∈ SN, iff M →∗wh scons(U◦, N, P), N |=[Γ⊢T](γ) α0, and P |=
〈αi〉i=1...

– ⊥
def
= (⊥[Γ⊢T∞](γ),⊥[Γ⊢T∞](γ), . . .)

This Λ-set is the greatest fixed point of the monotone operator defined in Sect. 4.3.3 applied
to the definition of streams as an inductive type.

As in the case of recursive definitions, a cofixpoint is interpreted using Hilbert’s choice
operator:

[Γ ⊢ cofix f : T ⋆ := M]γ = ǫ(F, P)

5.3. COINDUCTIVE TYPES 119

where T ⋆ = Π∆⋆.stream⋆(T), F ⊏ [Γ ⊢ T∞]γ , P stands for the property

↑(F)(δ) = ↑([Γ ⊢M]γ,F)(δ),

for all δ ⊏ [Γ ⊢ ∆∞]γ , and ↑ stands for ↑
u
Π([∆](γ),[stream(T)](γ,)).

The invariance of this interpretation under ν-reductions is trivial. In the main soundness
theorem, we prove that the typing rules ensure the existence of a unique function satisfying
the cofixpoint equation of property P .

The relational interpretation can be naturally extended to streams. Basically, the type
streams(T) is interpreted as a Λ-set whose carrier set is composed by pair of streams such that
the first s elements are related in the interpretation of T . Concretely, JΓ ⊢ streams(T)Kπγ1∼γ2
is a Λ-set (X, |=,⊥), where

– X
def
= {(〈αi〉i, 〈βi〉i) : ∀i = 0, . . . , LsMπ. αi ∼ βi ⊏ JΓ ⊢ T Kπγ1∼γ2};

– M |= (〈αi〉i=0..., 〈βi〉i=1...), for M ∈ SN, iff M →∗wh scons(U◦, N, P), N |=JΓ⊢T K(γ1∼γ2,π)

(α0, β0), and P |= (〈αi〉i=1..., 〈βi〉i=1...);

– ⊥ = ((⊥1,⊥1, . . .), (⊥2,⊥2, . . .)) where (⊥1,⊥2) = ⊥JΓ⊢T K(γ1∼γ2,π).
Note that the subtyping rule is sound in this interpretation: if r ⊑ s and T ≤ U , then
JΓ ⊢ streams(T)Kπγ1∼γ2 ⊆ JΓ ⊢ streamr(U)Kπγ1∼γ2 .

The construction at the beginning of Sect. 4.4 can be adapted to streams to show the
existence of a unique function satisfying the cofixpoint equation. Consider the term cofix f :
|T |ı := M , such that Γ ⊢ cofix f : |T |ı := M : T is a valid judgment. Assume that γ ∼ γ ⊏

JΓKπ and that if φ1 ∼ φ2 ⊏ JΓ ⊢ T Kπγ∼γ , then [Γ(f : T) ⊢ M]γ,φ1∼γ,φ2 ⊏ JΓ ⊢ T [ı := ı̂]Kπγ∼γ .
Under these assumptions, we can show the existence of a unique stream in [Γ ⊢ T∞]γ satisfying
the cofixpoint equation.

Following the development of Sect. 4.4, we define a sequence of sets Φa, for a ≤ ω, such

that Φa ⊆ [Γ ⊢ T∞]γ . We proceed by transfinite induction. For a = 0, we simply define Φ0 def
=

[Γ ⊢ T∞]γ . For a successor ordinal a + 1, we define Φa+1 def
= {[Γ(f : T) ⊢ M]γ,φ : φ ∈ Φa}.

Finally, Φω def
=

⋂
a<ω Φa.

Intuitively, all the streams in Φa coincide in the first a elements. Then, Φω is a singleton
containing the desired stream.

120 CHAPTER 5. EXTENSIONS

Chapter 6

A New Elimination Rule

In this chapter, we present a modification of the case analysis construction of Chapter 2.
The new rule automatically discards impossible cases and propagates inversion constraints.
We prove that the new rule preserves desired metatheoretical properties such as SR and LC
relative to the extension with equality of Sect. 5.2.

6.1 Introduction

As we mentioned in the first chapters, inductive families can be used to define more precise
data structures. The typical example is vectors, i.e., list indexed by their length. Let us recall
the definition:

Ind(vec[A : Type0]
⊕ : nat→ Type0 := vnil : X O,

vcons : Π(n : nat).A→ X n→ X (Sn))

The usual tail function, that removes the first element of a non-empty vector can be given
the type

Π(A : Type0)(n : nat).vec (A, Sn)→ vec (A, n) ,

thus ensuring that it cannot be applied to an empty vector. To write this function in CIC
it is necessary to explicitly reason on the index in order to remove the impossible case, vnil,
and propagate the inversion constraint in the case vcons:

vtail
def
= λAn (v : vec(A, Sn)).
(case n0=Sn→vec(A,n) v0 := v in vec(A, n0) of

| vnil⇒ λ(H : O = Sn).
case False x := M0H of

| vconsn′ a v′ ⇒ λ(H : Sn′ = Sn).
case vec(A,n1) x := M1H in eq(nat, n′, n) of

| refl⇒ v′) (refl(A, Sn))

where M0 : O = Sn→ False, and M1 : (Sn
′ = Sn)→ n′ = n.

Following the approach of Epigram [60] and Agda [69], we propose a different case analysis
construction that automatically performs the index reasoning of the above example. The
intuition behind the new rule is that it is possible to restrict case analysis on inductive
families to a particular subfamily [62]. Constructors that do not belong to the subfamily

121

122 CHAPTER 6. A NEW ELIMINATION RULE

can be ignored, while constructors that partly belong to the family can be imposed further
constraints (inversion constraints).

Let us illustrate with the example of vtail. The vector argument, v, has type vec (A, Sn).
In the usual case analysis construction, we assume that v can be any vector, of type vec (A, n0).
In particular, we need to consider the case v = vnil, even when it is not possible to for vnil to
have type vec (A, Sn).

Our solution is to allow case analysis in a type subfamily of vectors. In this case we can
take the subfamily

[n0 : nat] vec (A, Sn0)

I.e., the subfamily of types vec (A, Sn0), for n0 : nat. Note that v : vec (A, Sn) belongs to this
subfamily, with the constraint n0 = n. Furthermore, it is clear that vnil : vec (A,O) does not
belong to this subfamily, while vcons(A,m, x, v) : vec (A, Sm) belongs, with the constraint
n0 = m.

Before introducing the full version of the new case analysis construction, we exemplify it
using vtail. Omitting the initial abstractions, we can define vtail as:

case v in [n0 : nat] vec(A, Sn0) where n0 := n of

| vnil⇒ ⊥
| vconsmxv′ ⇒ v′ where n0 := m

We define the subfamily of vec that we analyze: [n0 : nat] vec (A, Sn0). The clause where n0 :=
n is a constraint on the index n0 that shows that v is in the subfamily.

Let us look at the branches. In the vnil case, it is clear that this constructor does not
belong to the subfamily [n0 : nat] vec (A, Sn0), since its type is vec (A,O). Hence, the branch
is simply ⊥. We call this type of branch impossible. To check that a branch is impossible,
we try to unify the indices of the subfamily under consideration (Sn0 in this case) with the
indices of the constructor (O in this case), for the variable n0. That is, we try to find a term
M such that SM ≈ O. No such term exists, since constructors are disjoint. Hence, Sn0 and
O are not unifiable, and therefore, the branch is effectively impossible.

In the vcons case, the term vconsmxv′ belongs to the subfamily [n0 : nat] vec (A, Sn0)
when the constraint n0 = m is satisfied. To check that constraints are valid we proceed as for
impossible branches: we unify the indices of the subfamily with the indices of the constructor.
In this case, we unify Sn0 with Sm. Since constructors are injective, a unification substitution
exists, namely n0 := m, that validates the constraint.

Another way to define vtail is to perform case analysis on a more precise subfamily, namely

[] vec (A, Sn)

That is, since the vector argument has type vec (A, Sn) we can consider just this type as a
subfamily. The definition of vtail is the following:

case v in [] vec(A, Sn) of
| vnil⇒ ⊥
| vconsmxv′ ⇒ v′ where m := n

In this case, the branch vnil is still impossible, while for vcons the constraint m := n is satisfied
if v is of the form vconsmxv′.

The rest of the chapter is organized as follows. In Sect. 6.2, we present the syntax of the
new elimination rule and the reduction associated. We call the system in this chapter CIĈPM.

6.2. SYNTAX 123

The typing rule is presented in Sect. 6.3. In Sect. 6.4, we present some examples of the use
of the new elimination rule. In Sect. 6.5, we prove that CIĈPM satisfies several desirable
metatheoretical properties such as Subject Reduction. Finally, in Sect. 6.6, we sketch a proof
of Strong Normalization by a type-preserving translation to CIĈ−.

6.2 Syntax

In this section we introduce the syntax of CIĈPM. The constructions of CIĈPM are
the same as in CIĈ−, except for the case analysis construction, and the addition of local
definitions. We only present the differences of CIĈPM with respect to CIĈ−.

Definition 6.1 (Terms). The generic set of terms over the set a is defined by the grammar:

T [a] ::= ...

| caseT ◦ V := T [a] in [G[a]] I
(
~T ◦, ~T ◦

)
where ~V := T ◦ of 〈C ⇒ B[a]〉 (case)

| let V := T [a] : T ◦ in T [a] (definition)

B[a] ::= ⊥ | T [a] where D[a]

D[a] ::= ǫ | D(V := T [a])

Local definitions are needed to handle constraints in the branches of the case construction.
Let us explain in detail the new case construction. A case expression has the form

caseP ◦ x := M in [∆] I
(
~p◦, ~t◦

)
where dom (∆) := ~q◦ of 〈Ci ~xi ⇒ bi〉i,

where the body of a branch (bi above) can be either the symbol ⊥ or a term of the form
N where σ, with σ being a sequence of variable definitions, i.e., a substitution. We refer to
this substitution as the constraints of the branch.

The rôle of [∆] I
(
~p◦, ~t◦

)
is to characterize the subfamily of I, with parameters in ∆, over

which the pattern matching is done. Some constructors may not belong to that subfamily, so
the body of the corresponding branches is simply ⊥ (impossible branches). On the other hand,
some constructors may (partially) belong to the subfamily, so the bodies of the corresponding
branches are of the formN where ~d, whereN is the body proper and ~d defines some constraints
on the arguments of the constructor that need to be satisfied in order to belong to the
subfamily.

The case construction of CIĈ− is a special case of the new construction: we just set ∆ to
be the context of indices of the inductive type, i.e. ∆a, and ~t to be dom (∆). As we see from
the typing rules of next section, in this case all branches are possible.

The definition of contexts is extended to include local definitions.

Definition 6.2 (Contexts). The set of contexts over a set a is defined by the grammar:

G[a] ::= [] | G(V : T [a]) | G(V := T [a] : T [a])

We adapt the subcontext relation ≤ on contexts to the case of definitions. Given two
context Γ and ∆, ∆ ≤ Γ if the two following conditions hold:

– for every (x : T) ∈ Γ, either (x : T ′) ∈ ∆ for some T ′ ≤ T , or (x := M : T ′) ∈ ∆ for
some M and T ′ ≤ T ;

– for every (x := M : T) ∈ Γ, (x := M : T ′) ∈ ∆, for some T ′ ≤ T .

124 CHAPTER 6. A NEW ELIMINATION RULE

Reduction

The reduction rules for CIĈPM are similar to the reduction rules for CIĈ− (Def. 2.6). Since
we consider local definitions, the reduction relation is parameterized by a context, having the
form

Γ ⊢M → N .

The reduction rules for applications (β) and fixpoints (µ) remain the same but we include
them in the definition below for completeness.

Definition 6.3 (Reduction). Reduction → is defined as the compatible closure of β-reduction
(for function application), ι-reduction (for case expression), µ-reduction (for fixpoint expres-
sions), and δ-reduction (for local definitions):

Γ ⊢ (λx : T ◦.M)N β M [x := N]

Γ ⊢ (fixn f : T ⋆ := M) ~N C(~p◦,~a) µ M [f := fixn f : T ⋆ := M] ~N C(~p◦,~a)
Γ ⊢ let x := N : T ◦ in M δ M [x := N]

Γ0(x := N : T)Γ1 ⊢M δ M [x := N]

Γ ⊢ (caseP ◦ x := Cj(~q◦, ~u) in . . . of {Ci ~xi ⇒ bi}i) ι tjσj [~xj := ~u]

where bj = (tj where σj).

Observe that if the argument of a case expression is a constructor whose branch is impos-
sible (i.e., ⊥), then the term does not ι-reduce.

In the compatible closure of the reduction, we use the substitution of the branch. We
have the rule

Γ(~zj : ∆jσj) ⊢ tj → t′j

Γ ⊢ case . . . C ~zi ⇒ tj where ~σj → case . . . C ~zi ⇒ t′j where ~σj

Note that the context Γ(~zj : ∆jσj) may not be well typed, since it lacks the reorder that the
unification may introduce.

The reduction relation of CIĈPM is confluent. We omit the proof, that follows the same
pattern as in the case of CIĈ−.

Lemma 6.4. The reduction relation → is confluent.

6.3 Typing Rules

We now proceed to explain formally the typing rule of the new constructions: case analysis
and local definitions. The typing rules for local definitions given in Fig. 6.1. It is necessary
to extend the judgment for well-formed contexts to account for local definitions.

In the rest of the section we present the typing rule of the new case analysis construction.
Before presenting the actual rule, we describe the unification judgment that is used to check
whether a branch is impossible or possible.

6.3. TYPING RULES 125

(empty)
WF([])

(cons)
WF(Γ) Γ ⊢ T : u

WF(Γ(x : T))

(localdef-cons)
WF(Γ) Γ ⊢M : T

WF(Γ(x := M : T))
SV(M) = ∅

(localdef)
Γ(x := M : T) ⊢ N : U

Γ ⊢ (let x := M : |T | in N) : U
SV(M,N) = ∅

Figure 6.1: Typing rules for well-formed contexts and local definitions

Unification. A unification problem has the form

Γ;∆, ζ ⊢ [~u = ~u′ : Θ],

where ~u and ~u′ have type Θ under context Γ∆, and ζ ⊆ dom (∆) is the set of variables that
are open to unification. A solution for this problem is a substitution σ such that ~uσ ≈ ~u′σ,
or ⊥, indicating that no unifier exists. Context Γ is intended to be the “outer context”, i.e.
the context where we want to type a case construction, while context ∆ is defined inside
the case. We only allow to unify variables in ∆, so that the unification is invariant under
substitutions and reductions that happen outside the case. This is important in the proofs of
the Substitution Lemma and Subject Reduction.

The unification algorithm is given by a judgment of the form

Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ S (6.1)

where Γ, ∆, ζ, ~u, ~v, Θ are inputs, and S is the output of the unification. The unification
judgment is defined by the rules of Fig. 6.2. These rules are based on the unification given
in [62,69], with a notation close to that in [69]. A detailed explanation of the rules is given
below. We assume that the rules are applied in the order given in Fig. 6.2. Thus, we can view
these rules as a deterministic algorithm. Trying to solve a unification problem may have one
of three possible outcomes:

positive success A derivation Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ∆′, ζ ′ ⊢ σ is obtained, where σ is the
unifier of ~u and ~v, ζ ′ is the subset of variables of ζ that have not been unified (this
means dom (σ) ⊆ ζ \ ζ ′), and ∆′ is a reordering of ∆ with the substitution σ applied as
definitions.

negative success A derivation Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ⊥ is obtained, meaning that ~u and
~u′ are not unifiable;

failure No rule is applicable, hence no derivation is obtained (the unification problem is too
difficult).

A precondition to the unification algorithm is that the input should be well-typed: Γ∆ ⊢
~u : Θ and Γ∆ ⊢ ~v : Θ should be valid judgments, and also we should have ζ ⊆ dom (∆) so
that only variables in ∆ are unified. In such case, the following invariants hold.

– For positive success, where S is ∆′, ζ ′ ⊢ σ, we have ∆′ ≤ ∆, WF(Γ∆′), Γ∆′ ⊢ ~u ≈ ~v,
and Γ∆ ⊢ ~uσ ≈ ~vσ (cf. Lemma 6.13).

126 CHAPTER 6. A NEW ELIMINATION RULE

– For negative success, where S is ⊥ there is no unifier. That is, there is no substitution
ρ such that Γ∆ ⊢ ~uσ ≈ ~vσ (cf. Lemma 6.14).

We explain the unification rules. Rules (u-varl) and (u-varr) are the basic rules, concerning
the unification of a variable with a term. As a precondition, the variable must be a variable
open to unification (i.e., it must belong to ζ) and the equation must not be circular (i.e., x does
not belong to the set FV(v)), although this last condition is also ensured by the operation
∆Γ|x:=v. A reordering of the context ∆ may be required in order to obtain a well-typed
substitution. This is achieved by the (partial) operation ∆Γ|x:=t defined as

(∆0(x : T)∆1)Γ|x:=t = ∆0∆
t(x := t : T)∆t

where (∆t,∆t) = strengthen(∆1, t)

Γ∆0∆
t ⊢ t : T

Γ∆0∆
t(x : T) ⊢ ∆t

The strengthen operation [62] is defined as

strengthen([], t) = ([], [])

strengthen((x : U)∆, t) =

{
((x : U)∆0,∆1) if x ∈ FV(∆0) ∪ FV(t)

(∆0, (x : U)∆1) if x /∈ FV(∆0) ∪ FV(t)

where (∆0,∆1) = strengthen(∆, t)

Rules (u-discr) and (u-inj) codify the no-confusion property of inductive types: rule
(u-discr) states that constructors are disjoint (negative success), while rule (u-inj) states
that constructors are injective.

If the first four rules are not applicable, then the unification can succeed only if the terms
are convertible. This is shown in rule (u-conv). Rules (u-empty) and (u-tel) concern the
unification of sequence of terms. Finally, rules (u-inj-⊥), (u-tel-⊥1), and (u-tel-⊥2) correspond
to the propagation of negative failure.

We could also add a rule for transforming a unification problem, such as

Γ;∆, ζ ⊢ [~u′ = ~v′ : Θ] 7→ ∆′, ζ ′ ⊢ σ ~u→∗ ~u′ ~v →∗ ~v′

Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ∆′, ζ ′ ⊢ σ

In an implementation, the above rule could be used by reducing ~v and ~u into a head-normal
form that would expose the head constructor or head variable. For simplicity, we do not
consider such rules.

We use U to denote unification problems. If U denotes the unification problem Γ;∆, ζ ⊢
[~u = ~v : Θ], we write U 7→ ⊥ and U 7→ ∆′, ζ ′ ⊢ σ to denote the corresponding unification
judgments.

The typing rule. In Fig. 6.3 we show the typing rule for the new elimination rule, and
introduce a new judgment for typechecking branches. This new judgment has the form

Γ;∆i; ∆; [~u = ~v : Θ] ⊢ b : T

The intuition is that we try to solve the unification problem Γ;∆i∆, ζ ⊢ [~u = ~v : Θ] (where
ζ depends on the kind of branch considered), and use the result of the unification to check

6.3. TYPING RULES 127

(u-varl)
x ∈ ζ x /∈ FV(v)

Γ;∆, ζ ⊢ [x = v : T] 7→ ∆Γ|x:=v, ζ \ {x} ⊢ {x 7→ v}

(u-varr)
x ∈ ζ x /∈ FV(v)

Γ;∆, ζ ⊢ [v = x : T] 7→ ∆Γ|x:=v, ζ \ {x} ⊢ {x 7→ v}

(u-discr)
Ci 6= Cj

Γ;∆, ζ ⊢ [Ci(, ~u) = Cj(, ~v) : T] 7→ ⊥

(u-inj)
Γ∆ ⊢ T ≈ I ŝ (~p,~a) Γ;∆, ζ ⊢ [~u = ~v : argsConstrsC(~p)] 7→ ∆′, ζ ′ ⊢ σ

Γ;∆, ζ ⊢ [C(, ~u) = C(, ~v) : T] 7→ ∆′, ζ ′ ⊢ σ

(u-inj-⊥)
Γ∆ ⊢ T ≈ I ŝ (~p,~a) Γ;∆, ζ ⊢ [~u = ~v : argsConstrsC(~p)] 7→ ⊥

Γ;∆, ζ ⊢ [C(, ~u) = C(, ~v) : T] 7→ ⊥

(u-conv)
Γ∆ ⊢ u ≈ v

Γ;∆, ζ ⊢ [u = v : T] 7→ ∆, ζ ⊢ ε

(u-empty)
Γ;∆, ζ ⊢ [ε = ε : []] 7→ ∆, ζ ⊢ ε

(u-tel)

Γ;∆, ζ ⊢ [u = v : T] 7→ ∆1, ζ1 ⊢ σ1
Γ;∆1, ζ1 ⊢ [~uσ1 = ~vσ1 : Θ [x := u]σ1] 7→ ∆2, ζ2 ⊢ σ2

Γ;∆, ζ ⊢ [u, ~u = v,~v : (x : T)Θ] 7→ ∆2, ζ2 ⊢ σ1σ2

(u-tel-⊥1)
Γ;∆, ζ ⊢ [u = v : T] 7→ ⊥

Γ;∆, ζ ⊢ [u, ~u = v,~v : (x : T)Θ] 7→ ⊥

(u-tel-⊥2)

Γ;∆, ζ ⊢ [u = v : T] 7→ ∆1, ζ1 ⊢ σ1
Γ;∆1, ζ1 ⊢ [~uσ1 = ~vσ1 : Θ [x := u]σ1] 7→ ⊥

Γ;∆, ζ ⊢ [u, ~u = v,~v : (x : T)Θ] 7→ ⊥

Figure 6.2: Unification rules

128 CHAPTER 6. A NEW ELIMINATION RULE

(b-⊥)
Γ;∆iΘ, dom (∆i) ∪ dom (Θ) ⊢ [~u = ~v : ∆a] 7→ ⊥

Γ;∆i; Θ; [~u = ~v : ∆a] ⊢ ⊥ : P

(b-sub)

Γ;∆iΘ, dom
(
~d
)
∪ dom (Θ) ⊢ [~u = ~v : ∆a] 7→ Θ′, ∅ ⊢ σ

ΓΘ′ ⊢ t : P ΓΘ′ ⊢ ~d ≈ σ

Γ;∆i; Θ; [~u = ~v : ∆a] ⊢ t where ~d : P

(case’)

I ∈ Σ ∆a ≡ argsIndI(~p) ∆i ≡ argsConstrsCi
(~p)

Γ ⊢M : I ŝ (~p,~a [dom (Θ) := ~q]) Γ ⊢ ~q : Θ

ΓΘ ⊢ ~a : ∆a ΓΘ(x : I ŝ (~p,~a)) ⊢ P : u
Γ; (~zi : ∆i); Θ; [indicesCi

(~p) = ~a : ∆a] ⊢ bi : P [x := Ci(|~p|, ~zi)]

Γ ⊢

(
case|P | x := M in [|Θ|] I (|~p|, |~a|)
where dom (Θ) := |~q| of 〈Ci ~zi ⇒ bi〉i

)
: P [dom (Θ) := ~q] [x := M]

SV(~q) = ∅

Figure 6.3: Typing rules for the new elimination rule

the type of the branch. This judgment is defined by the rules (b-⊥) and (b-sub) in Fig. 6.3.
In rule (b-⊥), that corresponds to impossible branches, we take ζ to be dom (∆i) ∪ dom (∆),
and we check that the unification succeeds negatively.

In rule (b-sub), that corresponds to possible branches, we take ζ to be dom (∆) together
with the domain of the definitions of the branch (~d in this case). Context ∆ corresponds to
the variables that define the subfamily under analysis. We check that the unification succeeds
positively, leaving no variables open. We also check that the definitions ~d are valid using the
judgment Γ∆′ ⊢ ~d ≤ σ; this means that, for every variable definition (x := N) of ~d, we have
Γ∆′ ⊢ N ≈ xσ. Then, we typecheck the body proper of the branch using the context given
by the unification (Θ′).

Finally, in the rule (t-match) we put everything together. The subfamily under analysis
is defined by [Θ] I (~p,~a), hence, we check that M belongs to it by checking that it has type
I (~p,~a [dom (Θ) := ~q]). We also check that ~q has the correct type; and also that P is a type.
The return type P depends on x and dom (Θ), similarly to the old rule, where P depended on
the argument and the indices of the inductive type. In the branches, as in the old rule, x is
replaced by the corresponding constructor applied to the arguments. Here, in contrast with
the old rule where it was clear how to instantiate the indices, there are no obvious values we
can give to the variables in dom (Θ). Therefore, we try the unification between ~a (that defines
the subfamily under analysis) and indicesCi

(~p). Since, for possible branches, the unification
does not leave open variables, we effectively find a value for each variable in dom (Θ).

Remark: In a branch of the form N where σ, only dom (σ) is needed to compute the
unification. There is no need to explicitly assign values to the variables in dom (σ) since they
can be computed by the unification. If the values are present, they are checked to be valid
with respect to the result of the unification. This is similar to the situation of inaccessible
patterns in [42,69].

6.4. EXAMPLES 129

6.4 Examples

We illustrate the new elimination rule with some examples. To simplify the syntax, we
do not explicitly write impossible branches. Missing constructors are treated as impossible
branches.

Streicher’s K axiom and heterogeneous equality. Axiom K, also known as uniqueness
of reflexivity proofs, states that there is only one proof of x = x, namely refl. It is expressed
by the formula:

Π(A : Type)(x : A)(P : eq(A, x, x)→ Prop).P (refl(A, x))→ Π(p : eq(A, x, x)).P p .

This theorem is provable in Coquand’s original proposal, Agda, Epigram, and, as we show
below, our approach. However, it is not derivable in CIC, as shown by Hofmann and Stre-
icher [47]; that is why it is called axiom. A naive attempt to prove axiom K in CIC would
proceed by case analysis on the proof of equality:

K
def
= λ(A : Type) (x : A) (P : eq(A, x, x)→ Prop) (H : P (refl(A, x)))(p : eq(A, x, x)).

case P p0 p0 := p in eq(A, x, y) of
| refl⇒ . . .

The problem is P p0 is not well-typed, since p0 has type eq(A, x, y), while it is expected to
have eq(A, x, x).

McBride [59] shows that axiom K is equivalent to heterogeneous equality. It is thus no
surprise that we can derive both axiom K and the elimination of homogeneous equality. For
axiom K, the idea of the proof is to restrict the analysis to the subfamily of reflexivity proofs:
[] eq(A, x, x). It can be defined as:

K
def
= λ (A : Type) (x : A) (P : eq(A, x, x)→ Prop) (H : P (refl(A, x))) (p : eq(A, x, x)).

case P p0 p0 := p in [] eq(A, x, x) of
| refl⇒ H

Note the pattern [] eq(A, x, x) in the elimination. We fix the index of eq to be x, therefore p0
has type eq(A, x, x), i.e. a reflexivity proof, and P p0 is well typed.

For the heterogeneous equality defined by an inductive type, the elimination rule for
homogeneous equations can be easily proved using the new rule:

heq rect : Π(A : Type0) (P : A→ Type0) (x : A).P x→ Π(y : A).heq(A, x,A, y)→ P y

heq rect
def
= λ(A : Type0)(P : A→ Type0)(x : A)(p : P x)(y : A)(H : heq(A, x,A, y)).

case P y0 h0 := H in [y0 : A] heq(A, x,A, y0) of
| heq refl⇒ p

Similarly to axiom K, we use the new rule to restrict the subfamily under analysis; in this
case, we restrict to homogeneous equalities, expressed by the pattern [y0 : A] heq(A, x,A, y0).
Note that the first index of heq is fixed to be A.

130 CHAPTER 6. A NEW ELIMINATION RULE

Finite numbers. Consider the inductive type of finite numbers:

Ind(fin : nat→ Type := fO : Π(n : nat).X (Sn),

fS : Π(n : nat).X n→ X (Sn)) .

Note that finn has n elements and, intuitively, they represent the numbers {0, . . . , n− 1}. In
particular, finO has no elements. This is proved by the following term, of type finO→ False:

fin zero False ≡ λ(f : finO). caseFalse f in [] finO of

It is easy to see that the indices of fO and fS, of the form S , do not unify with O. Hence,
both branches are impossible.

Finite numbers are useful to define a total lookup function for vectors:

lookup : Π(A : Type)(n : nat).vectorAn→ finn→ A .

We define it using a fixpoint and case analysis on the vector argument:

lookup ≡ λ(A : Type). fix lookup : Π(n : nat). vectorAn→ finn→ A := λ(n : nat)(v : vectorAn).

casefinn0→A v0 := v in [(n0 : nat)] vectorAn0 where n0 := n of

| vnil⇒ λ(f : finO). elimFalse (fin zero False f)A

| vconsn1 a1 v1 ⇒ λ(f : fin (Sn1)). caseA f0 := f in [] fin (Sn1) of

| fO (n3 := n1)⇒ a1

| fS (n3 := n1) f3 ⇒ lookupn1 v1 f3

Note that no restriction is imposed in the subfamily of vectors to analyze. The branch vnil is
easily eliminated using fin zero False. In the branch vcons we perform a case analysis on the
index argument of type fin (Sn1). By restricting to the subfamily [] fin (Sn1), we can unify the
first argument of the constructors fO and fS with the first argument of vcons. This ensures
that the recursive call is well typed.

Another way of defining lookup is by case analysis on the index argument of type fin

followed by a case analysis on the vector argument, restricted to non-empty vectors. Of the
four combinations of constructors, only 〈fO, vnil〉 and 〈fS, vcons〉 need to be considered. The
other two are impossible.

Less-or-equal relation on natural numbers. We show two examples concerning the
relation less-or-equal for natural numbers defined inductively by

Ind(leq : nat→ nat→ Type0 := leq0 : Π(n : nat).X On,

leqS : Π(mn : nat).X mn→ X (Sm) (Sn)) .

First, we show that the successor of a number is not less-or-equal than the number itself.
That is, we want to find a term of type

Π(n : nat).leq (Sn)n→ False .

6.4. EXAMPLES 131

One possible solution is to take

fix f : Π(n : nat).leq(Sn)n→ False :=

λ(n : nat)(H : leq(Sn)n).

caseFalse H in [(n0 : nat)] leq(Sn0)n0 where n0 := n of

| leqSx yH ⇒ f y H where (x := S y)(n0 := S y)

In the leq0 branch, the unification problem considered is

{x, n0} ⊢ [O, x = Sn0, n0],

where x is a fresh variable that stands for the argument of leq0. Clearly, unification succeeds
negatively because of the first equation. On the leqS branch, the unification problem is

{x, n0} ⊢ [Sx, S y = Sn0, n0],

which succeeds positively with the substitution {x 7→ S y, n0 7→ S y}. Note that the unification
gives us the value for n0 that is necessary for the branch to have the required type, but also
finds a relation between the arguments of the constructor x and y. Therefore, the body of
the branch is typed in a context containing the declarations

(y : nat)(x := S y : nat)(H : leqx y) .

Note the reordering of x and y. In this context, the recursive call to f is well typed.
The second example shows that the relation leq is transitive. That is, we want to find a

term of type Π(x y z : nat).leqx y → leq y z → leqx z. One possible solution is to define it by

fix trans : Π(mnk : nat).leqmn→ leqnk → leqmk :=

λ(mnk : nat)(H1 : leqmn)(H2 : leqnk).

(caseleqn1 k→leqm1 k H1 in [(m1 n1 : nat)] leqm1 n1 of

| leq0x ⇒λ(h2 : leqx k). leq0 k

| leqSx yH ⇒ λ(h2 : leq (S y) k).

caseleq (Sx) k2 h2 in [(k2 : nat)] leq (S y) k2 of

| leqS (x′ := y) y′H ′ ⇒ leqSx y′ (transHH ′))H2

For the sake of readability, we have used implicit arguments (e.g., in the recursive call to
trans), and omitted definitions that can be inferred by unification.

Nevertheless, this definition looks complicated. It consists of a nested case analysis on
〈H1, H2〉. However, to make the definition go through, we need to generalize the type of the
hypothesis H2 in the return type of the case analysis of H1, so that we can match the common
value n in the types of H1 and H2.

The case 〈leq0, 〉 is easy; the case 〈leqS, leq0〉 is impossible; finally, the case 〈leqS, leqS〉
is the most complicated. Note however, that things are simplified by stating that variable
x′ should be unified. The unification then finds a value for x′ and checks that is convertible
with y, thus unifying the arguments of both constructors. The body of the branch is typed
in a context containing the declarations

(x y : nat)(H : leqx y)(x′ := y : nat)(y′ : nat)(H ′ : leqx′ y′) .

132 CHAPTER 6. A NEW ELIMINATION RULE

It is easy to see that, in this context, the recursive call to trans is well typed.

Let us compare this definition with its counterpart in Agda. Transitivity of leq can be
defined in Agda as

trans : (mnk : nat)→ leqmn→ leqnk → leqmk

trans ⌊0⌋ ⌊x⌋ k (leq0x) = leq0 k

trans ⌊Sx⌋ ⌊S y⌋ ⌊S y′⌋ (leqSx yH) (leqS ⌊y⌋ y′H ′) = leqSx y′ (transHH ′)

Besides writing the return types in both cases, and the fact that we generalize the type
of the second argument, our definition looks very much like a direct translation of the Agda
version to a nested case definition (compare the highlighted parts).

Trees and forests. We show some functions defined on trees and forests (i.e., lists of trees).
Instead of the encoding used in Chap. 2, we use the following definition, taken from [72]:

Ind(TL[A : Type0]
⊕ : bool→ Type0 := node : A→ X false→ X true,

nil : X false,
cons : X true→ X false→ X false)

We define then tree(A)
def
= TL (A) true and forest(A)

def
= TL (A) false. We can easily restrict

functions that operate on trees or forests, by restricting case analysis to the subfamilies TL

A true and TL A false. Only the relevant constructors need to be considered.

Consider a function that adds a tree as a child of another. It can be defined as follows:

addTree : Π(A : Type0).tree(A)→ tree(A)→ tree(A)

addTree
def
= λ (A : Type0) (t1 : tree(A)) (t2 : tree(A)).

case tree(A) t2 in [] tree(A) of

| node a l⇒ node a (cons t1 l)

Constructors nil and cons are not considered since they are trivially impossible. Similarly,
we can write functions on forest that only consider the relevant constructors. The following
function builds a tree from a forest using a default element for the nodes.

buildTree : Π(A : Type0).A→ forest(A)→ tree(A)

buildTree
def
= λ (A : Type0) (a : A) (l : forest(A)).

case tree(A) l in [] forest(A) of

| nil⇒ node a nil
| cons t l′ ⇒ node a (cons t (cons (buildTreeAa l′) nil))

6.5 Metatheory

In this section we show that CIĈPM satisfies some simple metatheoretical properties such
as weakening, substitution and subject reduction. Most of the proofs proceed by induction on
the type derivation. Hence adapting the proofs from CIĈ− is simply a matter of checking that
the typing rules for the new constructions (case and let expressions) still satisfy the property.

We restate the definition of well-typed substitution to cope with local definitions.

6.5. METATHEORY 133

Definition 6.5 (Well-typed substitution). Given a substitution σ and contexts Γ, ∆, we say
that σ is well-typed from Γ to ∆, written σ : Γ→ ∆, if WF(Γ), WF(∆), dom (σ) ⊆ dom (Γ),

– for every (x : T) ∈ Γ, ∆ ⊢ xσ : Tσ, and
– for every (x := t : T) ∈ Γ, ∆ ⊢ xσ ≈ tσ : Tσ.

We state a generation lemma for the new constructions. For the constructions that are
shared between CIĈPM and CIĈ−, Lemma 3.10 still holds.

Lemma 6.6 (Generation lemma for case and let).

1. If Γ ⊢ let x := N : T ◦ in M : U , then there exists T ′ and W such that

– Γ ⊢ N : T ′,

– |T ′| ≡ T ◦,

– Γ(x := N : T ′) ⊢M : W , and

– W ≤ U .

2. If Γ ⊢ (caseP ◦ x := M in [Θ◦] I
(
~p◦, ~t◦

)
where dom (Θ◦) := ~q◦ of 〈Ci ~xi ⇒ bi〉i) : U , then

there exists ~p′, ~t′, P ′, Θ′, and s such that

– Γ ⊢M : I ŝ
(
~p′, ~t′

[
dom (Θ◦) := ~q′

])
,

– ΓΘ′ ⊢ ~t′ : ∆a,

– Γ ⊢ ~q′ : Θ′,

– ΓΘ
(
x : I ŝ

(
~p′, ~t′

))
⊢ P ′ : u,

– for all i, Γ; ~zi : ∆i; Θ
′; [indicesCi

(~p) = ~t′ : ∆a
∗] ⊢ bi : P

′
[
x := Ci(~p◦, ~zi)

]

– |~p′| ≡ ~p◦, |~t′| ≡ ~t◦, |P ′| ≡ P ◦, |Θ′| ≡ Θ◦,

– P ′ [dom (∆◦) := ~q] [x := M] ≤ U

where ∆a ≡ argsIndI(~p) and ∆i ≡ argsConstrsCi
(~p).

Weakening and substitution for CIĈPM can be easily proved.

Lemma 6.7 (Weakening). If Γ ⊢M : T , WF(∆), and ∆ ≤ Γ, then ∆ ⊢M : T .

Proof. We prove simultaneously by induction on derivations the following statements:

– Γ ⊢M : T ∧WF(Γ′) ∧ Γ′ ≤ Γ⇒ Γ′ ⊢M : T ,

– Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ∆′, ζ ′ ⊢ σ ∧WF(Γ′) ∧ Γ′ ≤ Γ⇒ Γ′; ∆, ζ ⊢ [~u = ~v : Θ] 7→ ∆′, ζ ′ ⊢
σ,

– Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ⊥ ∧WF(Γ′) ∧ Γ′ ≤ Γ⇒ Γ′; ∆, ζ ⊢ [~u = ~v : Θ] 7→ ⊥,

– if ∆Γ|x:=M is defined, WF(Γ′), Γ′ ≤ Γ, then ∆Γ′|x:=M is defined and ∆Γ|x:=M = ∆Γ′|x:=M .

Rules (let) and (case’) follow easily using the IH.

Lemma 6.8 (Substitution). If Γ ⊢M : T and σ : Γ→ ∆, then ∆ ⊢Mσ : Tσ.

Proof. We prove simultaneously by induction on derivations the following statements:

– Γ ⊢M : T ∧ σ : Γ→ Γ′ ⇒ Γ′ ⊢Mσ : Tσ,

– Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ∆′, ζ ′ ⊢ ρ∧σ : Γ→ Γ′ ⇒ Γ′; ∆σ, ζ ⊢ [~uσ = ~vσ : Θσ] 7→ ∆′σ, ζ ′ ⊢
ρσ,

– Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ⊥ ∧ ∧σ : Γ→ Γ′ ⇒ Γ′; ∆σ, ζ ⊢ [~uσ = ~vσ : Θσ] 7→ ⊥,

134 CHAPTER 6. A NEW ELIMINATION RULE

– if ∆Γ|x:=M is defined and σ : Γ → Γ′, then ∆σΓ′|x:=Mσ is defined and ∆Γ|x:=M =
∆σΓ′σ|x:=Mσ.

Rules (let) and (case’) follow easily using the IH.

In the following we prove that successful unification is sound, in the sense that positive
success returns a unifier, while negative success implies that there is no unifier. First, we need
some simple lemmas about substitutions.

Lemma 6.9. If σ : ∆→ Γ, and Γ ⊢M ≈M ′, then ∆ ⊢Mσ ≈M ′σ.

Proof. We prove that if Γ ⊢ M → M ′, then ∆ ⊢ Mσ ≈ M ′σ. The only interesting case
is Γ0(x := u : U)Γ1 ⊢ M δ M [x := u]. Since σ is a substitution, we know that ∆ ⊢ xσ ≈
uσ, therefore ∆ ⊢ M [x := xσ] ≈ M [x := uσ]. This implies that ∆ ⊢ M [x := xσ]σ ≈
M [x := uσ]σ. But the lhs is equal to Mσ and the rhs is equal to M [x := u]σ, which is the
desired result.

Lemma 6.10. If σ : ∆→ Γ and δ : Θ→ ∆, then σδ : Θ→ Γ.

Proof. We know that for every (x : T) ∈ Γ, ∆ ⊢ xσ : Tσ. Applying the previous lemma, we
obtain Θ ⊢ xσδ : Tσδ, which is the desired result.

In the following, we prove some lemmas about unification. First, we define the precondi-
tions of a unification problem.

Definition 6.11 (Well-typed unification problem). Let U denote the unification problem
Γ;∆, ζ ⊢ [~u = ~v : Θ]. We say that U is well-typed if the following conditions hold:

– ζ ⊆ dom (∆), and

– Γ∆ ⊢ ~u,~v : Θ.

The following two lemmas formalize the unification invariants mentioned in Sect. 6.3. In
the case of positive success, the result is a unifier substitution, and a context that contains
the substitution as definitions.

Lemma 6.12. Let Γ;∆, ζ ⊢ [~u1 = ~u2 : Θ] be a well-typed unification problem. If Γ;∆, ζ ⊢
[~u1 = ~u2 : Θ] 7→ ∆′, ζ ′ ⊢ σ, then the following holds:

i. ∆′ ≤ ∆,

ii. WF(Γ∆′),

iii. dom (∆′) = dom (∆),

iv. Γ ⊢ σ : ∆→ ∆′,

v. Γ∆′ ⊢ ~u1 ≈ ~u2,

vi. Γ∆ ⊢ ~u1σ ≈ ~u2σ

Proof. We proceed by induction on the derivation of the unification judgment. The case for
rules (u-varl), (u-varr), and (u-conv) are easy.

Note that conditions (i.) and (ii.), together with Lemma 6.7, imply that Γ∆′ ⊢ ~u1 : Θ
and Γ∆′ ⊢ ~u2 : Θ.

The following lemma states that the result of the unification is a most general unifier.

6.5. METATHEORY 135

Lemma 6.13. Let Γ;∆, ζ ⊢ [~u1 = ~u2 : Θ] 7→ ∆′, ζ ′ ⊢ σ, and δ : Γ∆→ Γ, such that Γ ⊢ ~u1δ ≈
~u2δ. Then there exists δ′ : Γ∆′ → Γ, such that Γ ⊢ δ ≈ σδ′.

If unification succeeds negatively, then the terms are not convertible.

Lemma 6.14. If Γ;∆, ζ ⊢ [~u1 = ~u2 : Θ] 7→ ⊥, then there exists no Γ ⊢ δ : ∆ such that
Γ ⊢ ~u1δ ≈ ~u2δ.

Using the previous lemmas, we can now prove subject reduction.

Lemma 6.15 (Subject Reduction). If Γ ⊢M : T and Γ ⊢M →M ′, then Γ ⊢M ′ : T .

Proof. We proceed by induction on the typing derivation, and case analysis in the reduction
rule. We consider only the case rule, when reducing at the head. We have

Ind(I[∆p]
~ν : Π∆a.u := 〈Ci : Π∆i.X ~ti〉i) ∈ Σ

Γ ⊢ Ci(~r◦, ~v) : I ~p ~u Γ ⊢ ~u ≈ ~a [dom (Θ) := ~q] ΓΘ(x : I (~p,~a)) ⊢ P : s

Γ ⊢ ~q : Θ Γ; (~zi : ∆i
∗); Θ; [~ti∗ = ~a : ∆a

∗] ⊢ bi : P
[
x := Ci(~p◦, ~zi)

]

Γ ⊢

(
caseP x := Ci(~r◦, ~v) in [|Θ|] I (|~p|, |~a|)
where Θ := ~q of {Ci ~zi ⇒ bi}i

)
: P [dom (Θ) := ~q]

[
x := Ci(~r◦, ~v)

]

and the reduction

Γ ⊢

(
caseP x := Ci(~r◦, ~v) in [|Θ|] I (|~p|, |~a|)
where Θ := ~q of {Ci ~zi ⇒ bi}i

)
→ Ni [~zi := ~v]

where bi ≡ Ni where ~di.
For checking the ith-branch, we have the following judgment:

Γ; (~zi : ∆i
∗)Θ, dom

(
~di

)
∪ dom (Θ) ⊢ [~ti

∗ = ~a : ∆a
∗] 7→ Θ′, ζ ⊢ σi

ΓΘ′ ⊢ Ni : P [x := Ci(~p, ~zi)] ΓΘ′ ⊢ ~di ≤ σi

Γ; (~zi : ∆i
∗); Θ; [~ti

∗ = ~a : ∆a
∗] ⊢ Ni where ~di : P [x := Ci(~p, ~zi)]

By inverting the typing derivation of Ci(~r◦, ~v), we obtain Γ ⊢ ~r◦ ≈ |~p| and Γ ⊢ ~u ≈
~ti
∗ [~zi := ~v]. Hence, Γ ⊢ ~ti

∗ [~zi := ~v] ≈ ~a [dom (Θ) := ~q]. Consider the substitution ρ with
domain dom (∆i

∗) ∪ dom (Θ) defined by:

ρ(x) =

{
vj if x = ∆i

∗(j)

qj if x = Θ(j)

It is not difficult to see that Γ ⊢ ρ : ∆i
∗Θ. We have then, Γ ⊢ ~ti

∗ρ ≈ ~aρ. By Lemma 6.13,
there exists Γ ⊢ ρ′ : Θ′ such that ρ ≈ σiρ

′.
We have the valid judgment

ΓΘ′ ⊢ Ni : P [x := Ci(~p, ~zi)]

and a substitution ρ′ : ΓΘ′ → Γ, therefore

Γ ⊢ Niρ
′ : P [x := Ci(~p, ~zi)] ρ

′

136 CHAPTER 6. A NEW ELIMINATION RULE

But ρ′ contains all the definitions in σi and ρ. So we can prove that P [x := Ci(~p, ~zi)] ρ
′ ≈

P [x := Ci(~p, ~zi)] ρ ≡ P [Θ := ~q]
[
x := Ci(~r◦, ~v)

]
. And that Niρ

′ ≈ Niρ ≡ Ni [~zi := ~v].
Put in another way. There is a context Θ′′, with dom (Θ′′) = dom (∆i

∗) ∪ dom (Θ), such
that all definitions of ρ are in Θ′′. It satisfies ΓΘ′ ⊆ ΓΘ′′, therefore

ΓΘ′′ ⊢ Ni : P [x := Ci(~p, ~zi)]

And then
Γ ⊢ Niρ : P [x := Ci(~p, ~zi)] ρ

which is the desired result.

6.6 From CICP̂M to CIC−̂ extended with heterogeneous equal-
ity

In this section we show a type-preserving translation of CIĈPM to CIĈ−extended with
heterogeneous equality as presented in Sect. 5.2. As a consequence, we can prove LC of
CIĈPM, relative to LC of the extension of CIĈ−. The objective is to define a translation
function

J.K : TCIĈPM
→ TCIĈ−

that takes a well-typed term in CIĈPM and returns a well-typed term in CIĈ−.

Miscellaneous constructions.

For the translation we will make use of the following functions.

Injection. Let M be a term such that Γ ⊢ M : heq(T, (C(~p◦, ~u)), T, (C(~q◦, ~v))), where
C is the j-th constructor of the inductive type Ind(I[∆p]

~ν : A := {Ci : Π∆i.X ~ti}). Then
InjectionC(M) is a sequence of terms, such that Γ ⊢ InjectionC(M) : heq∆j[dom(∆p):= ~p◦](~u,~v).

Furthermore, if M ≡ heq refl(T ◦, N), for some T ◦ and N , then InjectionC(M) →∗ ~P ,
where each term in ~P is of the form heq refl(T ′◦, N ′).

Discriminate. Let H be a term such that Γ ⊢ H : heq(T, (C(~p◦, ~u)), T, (C ′(~q◦, ~v))), where
Ci and Cj are different constructors of an inductive type I. Then DiscriminateC,C′(H) is a
term such that Γ ⊢ DiscriminateC,C′(H) : False.

Rewrite. Let ~M be a sequence of terms such that Γ ⊢ ~M : ∆, and ~H be a sequence of terms
such that Γ ⊢ ~H : heqΘ(~x, ~P). (Note that the lhs of the equalities is composed of variables.)
Then Rewrite ~H

(~M) is a sequence of terms such that Γ ⊢ Rewrite ~H
(~M) : ∆ [~x := ~p].

Let ~N be a sequence of terms such that Γ ⊢ ~N : ∆ [~x := ~p], with Γ ⊢ ∆, and ~H a sequence
of terms such that Γ ⊢ ~H : heqΘ(~x, ~p). Then Rewrite

←
~H
(~N) is a sequence of terms such that

Γ ⊢ Rewrite
←
~H
(~N) : ∆.

Furthermore, if each term in ~H is of the form heq refl(T ◦, P) for some T ◦ and P , then
Rewrite ~H

(~M)→∗ ~M and Rewrite
←
~H
(~N)→∗ ~N .

The definition of these constructions can be found in [59,61]. Although in a different
framework, the definitions can be adapted to CIC.

6.6. FROM CIĈPM TO CIĈ− EXTENDED WITH HETEROGENEOUS EQUALITY 137

6.6.1 Translation Function

The translation is described by a partial function on terms and contexts. It is partial
in the sense that the translation of a unification problem is not defined if the problem is
too difficult. The translation function is denoted by J K, and is defined by induction on the
structure of terms and contexts.

The translation satisfies the following properties:

I. Stability under substitutions: for all M , N , x, JM [x := N]K→∗ JMK [x := JNK] (if both
JMK and JNK are defined).

II. Stability under reductions: if M → N , then JMK →+ JNK (if both JMK and JNK are
defined).

III. Preservation of well-typed terms: if Γ ⊢ M : T , then JΓK, JMK, and JNK are defined,
and there exists T ′ such that JΓK ⊢ JMK : T ′, with JT K→∗ T ′.

The translation of unification problems is not invariant under substitution, but only invariant
modulo reduction. For this reason, the statements above show stability and preservation
modulo reduction.

We define the translation of unification (needed to define the translation of the case
construction). An untyped unification problem consists in a set of variables and a sequence
of equations. It is denoted by ζ, [~u = ~v : Θ]. We use U to denote untyped unification
problems. The translation of an untyped unification problem U is a partial function that
takes a sequence of terms ~H and returns one of two possible answers: either a pair formed
by a sequence of terms and a pre-substitution (corresponding to positive sucess), or a single
term (corresponding to negative success). It is denoted by JUK(~H).

The meaning of the translation is given by the following statement of preservation of
well-typed unification. Given a well-typed unification problem U :: Γ;∆, ζ ⊢ [~u = ~v : Θ] and
a sequence of terms ~H such that JΓ∆K ⊢ ~H : heqJΘK(J~uK, J~vK), the following holds:

– if U 7→ ∆′, ζ ⊢ σ, then Jζ, [~u = ~v : Θ]K(~H) is defined and returns a pair (~H ′, σ′) satisfying
σ′ ≡ σ and

JΓ∆K ⊢ ~H ′ : (heq(x1, T1)) . . . (heq(xn, Tn))

where σ′ = {x1 7→ T1, . . . , xn 7→ Tn}. Furthermore, if all the terms ~M are of the form
heq refl(T ◦, N), for some T ◦ and N , then all the terms in ~H ′ reduce to terms of the
form heq refl(T ′◦, N ′), for some T ′◦ and N ′.

– If U 7→ ⊥, then Jζ, [~u = ~v : Θ]K(~H) is defined and returns a term H ′ satisfying

JΓ∆K ⊢ H ′ : False

Translation of terms and contexts. The definition of the translation function proceeds
by induction on the structure of terms and contexts. For constructions other than case

138 CHAPTER 6. A NEW ELIMINATION RULE

analysis, it is defined by the following rules:

J[]K = []

J(x : T)∆K = (x : JT K)J∆K

JxK = x

JuK = u

Jλx : T ◦.MK = λx : JT ◦K.JMK

JM NK = JMK JNK

JΠx : T.UK = Πx : JT K.JUK

JC(~p◦,~a)K = C(J~p◦K, J~aK)

JIs (~p,~a)K = Is (J~pK, J~aK)

Jfixn f : T ⋆ := MK = fixn f : JT ⋆K := JMK

We concentrate now on the most interesting construction, case analysis. Consider a term
of the form (we assume that is well typed in context Γ)

caseP x := v in [∆] I
(
~p,~t

)
where ∆ := ~q of

. . . Ci ~zi ⇒ bi . . .
end .

This term has type P [dom (∆) := ~q] [x := v]. The translation is the term

caseΠJ∆K.heqJ∆a∗K(~y,J~tK)→Π(x:I(J~pK,J~tK)).heq(x,z)→JP Kz := JvK in I (J~pK, ~y) of

. . . Ci ⇒ JbiK . . .

end J~qK JvK (heq reflJ ~∆a
∗K J~t [dom (∆) := ~q]K) (heq refl JvK)

where Ind(I[∆p] : Π∆a.Typek := 〈Ci : Ti〉i) ∈ Σ, and ∆∗a = ∆a [dom (∆p) := ~p]. (In the
following, we write X∗ to mean X [dom (∆p) := ~p], where X is either a term or a context.)

Let us explain the intuition behind this translation. Recall that for each branch of a
case construction, we consider a unification problem between the indices of the argument
and the indices of the constructor. The unification equations are translated to equalities.
The translation of the unification algorithm transforms those equalities into equalities that
represent the substitution (positive success) or a term showing that the original equalities are
inconsistent (negative success).

The return type in the translation of the case introduces the equalities that correspond
to the equations in unification:

ΠJ∆K.heqJ∆a
∗K(~y, J~tK)→ Π(x : I

(
J~pK, J~tK

)
).heq(x, z)→ JP K

We introduce the equalities between indices (heq(~y, J~tK)): the sequence ~y is replaced by the in-
dices for each constructor. We also generalize the argument of the case and introduce an equal-
ity (heq(x, z)). Note that this equality is heterogeneous: x has type I

(
J~pK, J~tK

)
, while z has

type I (J~pK, ~y). Finally, the case is applied to the relevant arguments. Note that all the intro-
duced equalities become reflexive. The resulting term has type JP K [dom (∆) := J~qK] [x := JvK].
By stability of substitution, it is obtained by reducing JP [dom (∆) := ~q] [x := v]K, as desired.

6.6. FROM CIĈPM TO CIĈ− EXTENDED WITH HETEROGENEOUS EQUALITY 139

The translation of the branches depends on the type of branch. Consider an impossible
branch bi (i.e., bi = ⊥). The unification problem associated with this branch is

Γ;∆(~zi : ∆i
∗), ζi ⊢ [~ui

∗ = ~t : ∆a
∗]

where ζi = dom (~zi) ∪ dom (Θ). Since it is an impossible branch, the unification returns
negative success. Let Ui be the corresponding untyped unification problem ζi ⊢ [~ui

∗ = ~t : ∆a
∗].

The translation of the branch is given by

JbiK ≡ λ(~wi : J∆i
∗K)J∆K(~H : heqJ∆a

∗K(J
~uiI
∗K, J~tK))(x : I

(
J~pK, J~tK

)
)(: heq(x,Ci(|J~pK|, ~wi))).

elimFalse (JUiK(~H)) JP K

We introduce the necessary abstractions (including the arguments of the constructor). The
translation of the unification (if defined) is a term that has type False (since the unification
returns negative success). We use elimination on this term to obtain a term of the desired
type (JP K in this case).

Finally we consider branches of the form ti where σi. This is the most complicated part
of the translation, so we proceed in a goal-directed way using a notation similar to the proof
mode of Coq.

For this kind of branch, the unification problem associated is

Γ;∆(~zi : ∆i
∗), dom (σi) ⊢ [~ui

∗ = ~t : ∆a
∗]

Let Ui be the untyped unification problem ζi ⊢ [~ui
∗ = ~t : ∆a

∗]. The translation of the branch
needs to satisfy the judgment

JΓK ⊢ JbiK : Π(~wi : ∆i
∗)J∆K.heqJ∆a

∗K(J
−−−→
ui[~wi]

∗K, J~tK)→ Π(x : I
(
J~pK, J~tK

)
).heq(x, (Ci(, ~wi)))→ JP K

Written in a different way, we want to find a term ?1 satisfying the following judgment:

JΓK

?1 : Π(~wi : ∆i
∗)J∆K.heqJ∆a

∗K(J
−−−→
ui[~wi]

∗K, J~tK)→ Π(x : I
(
J~pK, J~tK

)
).heq(x, (Ci(|J~pK|, ~wi)))→ JP K

We take ?1 ≡ λ(~wi : ∆i
∗)J∆K(~H : heqJ∆a

∗K(J
−−−→
ui[~wi]

∗K, J~tK)).?2. Then ?2 needs to satisfy

JΓK

(~wi : ∆i
∗)

J∆K

(~H : heqJ∆a
∗K(J
−−−→
ui[~wi]

∗K, J~tK))

?2 : Π(x : I
(
J~pK, J~tK

)
).heq(x, (Ci(|J~pK|, ~wi)))→ JP K

In this case, for the unification problem Ui, the translation is a sequence of terms whose
types are the equalities contained in σi. We can rewrite using the translation of Ui applied to

140 CHAPTER 6. A NEW ELIMINATION RULE

the equalities given in ~H. Take ?2 ≡ Rewrite
←
JUiK(~H)

(?3). Then ?3 needs to satisfy

JΓK

(~wi : ∆i
∗)

J∆K

(~H : heqJ∆a
∗K(J
−−−→
ui[~wi]

∗K, J~tK))

?3 : Π(x : I
(
J~pK, J~tσiK

)
).heq(x, (Ci(|J~pK|, ~wiσi)))→ JP [dom (∆) := dom (∆)σi]K

Now we abstract over the first two hypotheses. Take

?3 ≡ λ(x : I
(
J~pK, J~tσiK

)
)(Hx : heq(x, (Ci(|J~pK|, ~wiσi)))).?4

Then ?4 needs to satisfy

JΓK

(~wi : ∆i
∗)

J∆K

(~H : heqJ∆a
∗K(J
−−−→
ui[~wi]

∗K, J~tK))

(x : I
(
J~pK, J~tσiK

)
)

(Hx : heq(x, (Ci(|J~pK|, ~wiσi))))

?4 : JP [dom (∆) := dom (∆)σi]K

We rewrite using Hx. Take ?4 ≡ Rewrite
←
Hx

(?5). Then ?5 needs to satisfy

JΓK

(~wi : ∆i
∗)

J∆K

(~H : heqJ∆a
∗K(J
−−−→
ui[~wi]

∗K, J~tK))

(x : I
(
J~pK, J~tσiK

)
)

(Hx : heq(x, (Ci(|J~pK|, ~wiσi))))

?5 : JP [dom (∆) := dom (∆)σi] [x := Ci(|J~pK|, ~wiσi)]K

From the typing rule of a possible branch (rule (b-sub)), we have that the body ti has
type P [x := Ci(|~pi|, ~zi)] in a context containing the definitions given in σi. Hence, tiσi
has type Pσi [x := Ci(|~pi|, ~ziσi)]. Since FV(P) ∩ dom (σi) ⊆ dom (∆), this type is equal to
P [dom (∆) := dom (∆)σi] [x := Ci(|~pi|, ~ziσi)]. Therefore, we can take ?5 ≡ Jtiσi [~zi := ~wi]K,
which has the correct type.

Translating unification. To complete the definition of the translation, we define the trans-
lation of an untyped unification problem. It is a partial function that takes an untyped uni-
fication problem and a sequence of terms and returns either a pair formed by a sequence of

6.6. FROM CIĈPM TO CIĈ− EXTENDED WITH HETEROGENEOUS EQUALITY 141

terms and a pre-substitution, or a term. The definition of the translation follows the same
pattern as the rules given in Fig. 6.2.

Let U be the unification problem ζ ⊢ [~u = ~v : Θ], and ~H a sequence of terms such that
~H = #~u = #~v. We define JUK by analysis on the pair 〈~u,~v〉 (rules are tried in order):

1. If 〈~u,~v〉 = 〈x,N〉 with x ∈ ζ, then JUK(H) = 〈H, {x 7→ N}〉.

2. If 〈~u,~v〉 = 〈N, x〉 with x ∈ ζ, then JUK(H) = 〈H, {x 7→ N}〉.

3. If 〈~u,~v〉 = 〈C1(, ~u1), C2(, ~v1)〉 with C1 6= C2, then JUK(H) = DiscriminateC1,C2(H)
(negative success).

4. If 〈~u,~v〉 = 〈C(~p◦, ~u1), C(, ~v1)〉, let U
′ = ζ ⊢ [~u1 = ~v1 : Θ1], where Θ1 is the context

of arguments of C applied to ~p◦, and ~H ′ = InjectionC(H). If JU ′K(~H ′) = H0, then
JUK(H) = H0. If JU ′K(~H ′) = (~H0, ∅), then JUK(H) = (ε, ∅). Otherwise, if JU ′K(~H ′) =
(~H0, σ), with σ 6= ∅, then JUK(H) = (~H0, σ).

5. If 〈~u,~v〉 = 〈u1, u2〉 and u1 ≈ u2, then JUK(H) = 〈ε, id〉 (in this case, the above rules do
not apply).

6. Otherwise 〈~u,~v〉 = 〈(u, ~u), (v,~v)〉. Then ~H = H, ~H ′, and θ = (x : T)Θ′ Let 〈 ~H1, σ1〉 =
JU1K(H), where U1 = ζ ⊢ [u = v : T]. Let ~H ′ = Rewrite ~H1

(RewriteH(~H)), and

〈 ~H2, σ2〉 = JU2K(~H ′), where U2 = ζ1 \ dom (σ1) ⊢ [~uσ1 = ~vσ2 : θ′ [x := u]]. Finally,
JUK(~H) = 〈Rewrite ~H2

(~H1) ~H2, σ1σ2〉.

Note that in the final case, we assume that both recursive translations return a pair. If one
of the recursive calls returns a term, the result of the whole translation is the same term. In
the case 4. (corresponding to rule (u-inj)), we make a distinction between the result of the
recursive call to ensure that the translation is invariant under substitution.

Logical Consistency of CICP̂M. We prove that the translation preserves well-typed terms.
Logical Consistency follows as corollary.

First we prove stability under substitution and stability under reduction of the translation
of unification. Substitution of free variables for an untyped unification problem is defined as
expected. Let U = ζ ⊢ [~u = ~v : Θ], x /∈ ζ a variable, and N a term. Then U [x := N] is
defined as ζ ⊢ [~u [x := N] = ~v [x := N] : Θ [x := N]].

Lemma 6.16. Let U = ζ ⊢ [~u = ~v : Θ] and x /∈ ζ. If JUK, JNK, and JU [x := N]K are defined,
then JU [x := N]K ≡ JUK [x := JNK].

Proof. We proceed by induction on the size of U (defined as the sum of the sizes of the
terms in the equations). We use the fact that the miscellaneous constructions Injection,
Discriminate, and Rewrite are stable under substitution.

The translation of unification is stable under reductions. Reduction of an untyped unifi-
cation problem is defined as reduction in any of the terms of the equations.

Lemma 6.17. Let U and U ′ be untyped unification problems. If JUK and JU ′K are defined,
then JUK→∗ JU ′K.

The translation of the unification judgment satisfies the properties stated in the following.
If a unification succeeds positively, then the result of the translation is a sequence of terms
whose types are the equalities given in the substitution.

142 CHAPTER 6. A NEW ELIMINATION RULE

Lemma 6.18. Let Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ∆′, ζ ′ ⊢ σ be a valid judgment. Assume that
Γ∆ ⊢ ~u,~v : Θ. Let Γ0 be a context and ~H be a sequence of terms (of CIC−̂) such that
Γ0 ⊢− ~H : JheqΘ(~u,~v)K.

Then Jζ ⊢ ~u = ~vK(~H) succeeds positively, returning a sequence of terms ~H ′ and σ. Fur-
thermore, for each (x := M : T) ∈ ∆′ with x ∈ dom (ζ), there exists a term H0 in ~H ′ such
that Γ0 ⊢− H0 : Jheq(T, x, T,M)K.

If a unification succeeds negatively, then no unifier exists, and the translation returns a
proof of False.

Lemma 6.19. Let Γ;∆, ζ ⊢ [~u = ~v : Θ] 7→ ∆′, ζ ′ ⊢ σ be a valid judgment. Assume that
Γ∆ ⊢ ~u,~v : Θ. Let Γ0 be a context and ~H be a sequence of terms (of CIC−̂) such that
Γ0 ⊢− ~H : JheqΘ(~u,~v)K.

Then Jζ ⊢ ~u = ~vK(~H) succeeds negatively, returning a term H ′ such that Γ0 ⊢− H ′ : False.

We prove similar results for the translation of terms. The following lemma states stability
under substitution.

Lemma 6.20. If JMK, JNK, and JM [x := N]K are defined, then JM [x := N]K ≡ JMK [x := JNK].

Proof. By induction on the structure of terms, using Lemma 6.16.

The following lemma state stability under reduction of the translation of terms.

Lemma 6.21. If JMK and JNK are defined, and M → N , then JMK→+ N .

Proof. By induction on the reduction relation, using Lemma 6.17, and the properties of the
miscellaneous constructions Injection, Discriminate, and Rewrite.

Finally, we prove that the translations towards CIĈ− extended with heterogeneous equal-
ity preserves well-typed terms.

Lemma 6.22. If Γ ⊢M : T , then JΓK, JMK, and JT K are defined, and JΓK ⊢ JMK : JT K.

Proof. By induction on the type derivation.

A corollary of the last result is Logical Consistency of CIĈPM relative to the Logical
Consistency of CIĈ− extended with heterogeneous equality.

Corollary 6.23. There is no term M such that ⊢M : False.

6.7 Related Work

Pattern matching and axiom K. Coquand [30] was the first to consider the problem of
pattern matching with dependent types. He already observed that the axiom K is derivable
in his setting. Hofmann and Streicher [47] later proved that pattern matching with dependent
types is not a conservative extension of Type Theory, by showing that K is not derivable in
Type Theory. Finally, Goguen et al. [42] proved that pattern matching can be translated into
a Type Theory with K as an axiom, showing that K is sufficient to support pattern matching
— this result was already discovered by McBride [59]. Given this series of results, it is not
surprising that axiom K is derivable with the rule we propose.

6.7. RELATED WORK 143

Epigram and Agda. Two modern presentations of Coquand’s work, which are important
inspirations for this work, are the programming languages Epigram [60] and Agda [69].

The pattern matching mechanism of Epigram, described by McBride and McKinna in [62],
provides a way to reason by case analysis, not only on constructors, but using elimination
principles. In that sense, it is more general than our approach. They also define a mechanism
to perform case analysis on intermediate expressions (called the with construction). This is
not necessary in our case, where we have a more primitive notion of pattern matching (we
can simply do a case analysis on any expression). Finally, they define a simplification method
based on first-order unification, that we have reformulated here.

Agda’s pattern matching mechanism, described in [69], allows definitions by a sequence
of (possibly overlapping) equations, and uses the with construct to analyze intermediate ex-
pressions, in a similar way to [62]. The first-order unification algorithm used in Agda served
as basis of our own presentation. Internally, pattern matching definitions are translated in
Agda to nested case definitions, which is what we directly write in our approach.

The with construct developed in Epigram and Agda does not increase the expressive power
of those systems — internally, it is translated into more primitive expressions. However, it
does provide a concise and elegant way of writing functions. In comparison, definitions written
using our proposed rule are more verbose and difficult to write by hand (cf. the example on
transitivity of less-or-equal in Sect. 6.4). On the other hand, since our rule handles much
of the work necessary to typecheck an Agda-style definition (e.g., unification of inversion
constraints, elimination of impossible cases), it should not be difficult to translate from an
Agda-style definition to a nested case definition using the new rule.

Coq. The current implementation of Coq [80] provides mechanisms to define functions by
pattern matching. The basic pattern-matching algorithm, initially written by Cristina Cornes
and extended by Hugo Herbelin, supports omission of impossible cases by encoding the proofs
of negative success of the first-order unification process within the return predicate of a case
expression.

Another approach, provided by the Program construction of Matthieu Sozeau [77], allows
to exploit inversion constraints using heterogeneous equality for typing dependent pattern-
matching in a way similar to what is done in Epigram. The distinguishing feature of Program
is that it separates the computational definition of the function, from the proof that the
definition is valid. Let us illustrate this point with the vtail function. Using the Program
construction we can write vtail as:

Program vtail A n (v : vec A (S n)) : vec n :=

match v with

| vcons n’ x v’ => v’

end.

Then, the proof that the case vnil is not needed, and that v′ has the correct type is done
separately. Program helps the user by automatically introducing the index equalities (like
in CIĈ−) and even automatically proving some cases. Then, it combines both parts and
generates a term that looks like the term we presented for CIĈ−. However, because Coq lacks
the reduction rule of axiom K, not all definitions built by this algorithm are computable.

The advantage of the rule we present in this chapter, is that the reasoning steps are done
automatically by the type-checking algorithm. Furthermore, they are not part of the term,

144 CHAPTER 6. A NEW ELIMINATION RULE

which means that reduction is more efficient, since it does not have to handle all the reasoning
terms, which have no computational value, but are necessary to convince the type-checker.

On the other hand, the approach of Program is more general than ours. It is particularly
useful to use with subset types which are not covered in our approach.

More recently, Sozeau [78] introduced another mechanism for defining functions by pattern
matching called Equations. In this approach, the user writes a sequence of pattern-matching
equations in a similar way as it would do in Agda. Then, the definition is translated to a
case tree. As with Program, index equalities are automatically introduced in order to prove
impossible branches and propagate inversion constraints.

However, as in the case of Program, the term generated contains all the reasoning steps
necessary to convince the type-checker of Coq that the function is total and terminating.

Both approaches, the extensions we presented in this work and Equations, pursue similar
objectives, which is to provide tools that help the user in the definitions of functions in Coq.
They are not conflicting, but complimentary. More precisely, the Equations approach could
benefit from a more powerful kernel in Coq, since it would be possible to generate more
efficient terms.

Other approaches. Oury [70] proposed a different approach to remove impossible cases
based on set approximations. His approach allows the removal of cases in situations where
unification is not sufficient. As mentioned in [70], it remains to be seen if the combination of
both techniques can be used to remove more cases.

Chapter 7

Conclusions

In this thesis, we have presented two extensions of CIC aimed at improving the elimination
rules. In the first extension we considered a type-based framework for ensuring termination
of recursive definitions. We have proved several desired metatheoretical properties, including
Strong Normalization and Logical Consistency. The second extension is a new case-analysis
construction that eases the task of writing pattern-matching definitions on inductive families
by automatically eliminating impossible cases and propagating inversion constraints.

Our motivation for this work comes from the Coq proof assistant. The guard condition
currently used in Coq to check termination has several drawbacks that often appear in prac-
tice. Type-based termination mechanisms are a good candidate for replacing guard predicates
in proof assistants. They are more powerful and relatively easier to implement, while more
intuitive and predictable for the user.

Coq includes several tools aimed at easing the task of programming with dependent types,
built on top of the core theory. We believe that improving the core theory will make it easier to
develop more efficient and usable tools on the upper layers of the Coq system. Our proposed
extension of the case-analysis construction build directly on previous research in the area
of pattern-matching with dependent types. In our opinion, it provides a reasonable balance
between the benefits for the user and the added complexity of the implementation.

Our long-term objective is to have a sound theoretical basis for a future implementation
of Coq that overcomes (at least partially) the limitations we address in this work. We do not
claim that the extensions we propose provide a definite answer, but we believe they form a rea-
sonable basis for future developments, in terms of added complexities for the implementation,
as well as for users.

With this objective in mind, several lines of future work can be considered. Size inference
is important to hide termination checking from the user. It should not be difficult to adapt
the size-inference algorithm of CIĈ [19] to our extension, given the similarities between both
systems.

Another important aspect to consider is coinduction. We sketched an extension of CIĈ−
with streams, showing that it is possible to adapt our proof of Strong Normalization to handle
coinductive types. However, a more formal development is needed to ensure that coinductive
types as implemented in Coq can be adapted to our type-based termination approach. On
the other hand, a more satisfiable setting for coinduction in dependent types is currently a
major research topic in Type Theory.

On a more basic line of research, it could be interesting to develop the Λ-set model we

145

146 CHAPTER 7. CONCLUSIONS

propose in a categorical setting. Also, the treatment of fixpoints and valid types for recursion
is rather ad-hoc. It could be useful to study them in a more uniform way as in e.g. [2].

Bibliography

[1] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD
thesis, Ludwig-Maximilians-Universität München, 2006.

[2] Andreas Abel. Semi-continuous sized types and termination. Logical Methods in Com-
puter Science, 4(2), 2008.

[3] Andreas Abel. MiniAgda: Integrating sized and dependent types. In Ana Bove, Ekaterina
Komendantskaya, and Milad Niqui, editors, Workshop on Partiality And Recursion in
Interative Theorem Provers (PAR 2010), Satellite Workshop of ITP’10 at FLoC 2010,
2010.

[4] Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics,
pages 739–782. Elsevier, 1977.

[5] Peter Aczel. On relating type theories and set theories. In Thorsten Altenkirch, Wolfgang
Naraschewski, and Bernhard Reus, editors, Types for Proofs and Programs, International
Workshop TYPES ’98, Kloster Irsee, Germany, March 27-31, 1998, Selected Papers,
volume 1657 of Lecture Notes in Computer Science, pages 1–18. Springer, 1998.

[6] Robin Adams. Pure type systems with judgemental equality. J. Funct. Program.,
16(2):219–246, 2006.

[7] Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh, November 1993.

[8] Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types mat-
ter. Manuscript, available online, April 2005.

[9] Roberto M. Amadio, editor. Foundations of Software Science and Computational Struc-
tures, 11th International Conference, FOSSACS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29 - April 6, 2008. Proceedings, volume 4962 of Lecture Notes in Computer Sci-
ence. Springer, 2008.

[10] Lennart Augustsson. Cayenne - a language with dependent types. In Proceedings of
the Third ACM SIGPLAN International Conference on Functional Programming, ICFP
’98, Baltimore, Maryland, USA, September 27-29, 1998, pages 239–250. PUB-ACM,
September 1998.

[11] Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, pages 117–309. Oxford
Science Publications, 1992.

147

148 BIBLIOGRAPHY

[12] Henk Barendregt and Tobias Nipkow, editors. Types for Proofs and Programs, Inter-
national Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993, Selected
Papers, volume 806 of Lecture Notes in Computer Science. Springer, 1994.

[13] Bruno Barras. Auto-validation d’un système de preuves avec familles inductives. Thèse
de doctorat, Université Paris 7, 1999.

[14] Bruno Barras. Sets in Coq, Coq in sets. 1st Coq Workshop, August 2009.

[15] Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a program-
ming language with dependent types. In Amadio [9], pages 365–379.

[16] Bruno Barras, Pierre Corbineau, Benjamin Grégoire, Hugo Herbelin, and Jorge Luis
Sacchini. A new elimination rule for the Calculus of Inductive Constructions. In Berardi
et al. [22], pages 32–48.

[17] Gilles Barthe, Maria João Frade, E. Giménez, Luis Pinto, and Tarmo Uustalu. Type-
based termination of recursive definitions. Mathematical Structures in Computer Science,
14(1):97–141, 2004.

[18] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. Practical inference for type-
based termination in a polymorphic setting. In Pawel Urzyczyn, editor, Typed Lambda
Calculi and Applications, 7th International Conference, TLCA 2005, Nara, Japan, April
21-23, 2005, Proceedings, volume 3461 of Lecture Notes in Computer Science, pages
71–85. Springer, 2005.

[19] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. CIĈ : Type-based termina-
tion of recursive definitions in the Calculus of Inductive Constructions. In Hermann and
Voronkov [46], pages 257–271.

[20] Gilles Barthe, Benjamin Grégoire, and Colin Riba. A tutorial on type-based termina-
tion. In Ana Bove, Lúıs Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto, editors,
Language Engineering and Rigorous Software Development, International LerNet ALFA
Summer School 2008, Piriapolis, Uruguay, February 24 - March 1, 2008, Revised Tutorial
Lectures, volume 5520 of Lecture Notes in Computer Science, pages 100–152. Springer,
2008.

[21] Gilles Barthe, Benjamin Grégoire, and Colin Riba. Type-based termination with sized
products. In Michael Kaminski and Simone Martini, editors, Computer Science Logic,
22nd International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Berti-
noro, Italy, September 16-19, 2008. Proceedings, volume 5213 of Lecture Notes in Com-
puter Science, pages 493–507. Springer, 2008.

[22] Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro, editors. Types for Proofs and
Programs, International Conference, TYPES 2008, Torino, Italy, March 26-29, 2008,
Revised Selected Papers, volume 5497 of Lecture Notes in Computer Science. Springer,
2009.

[23] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag, 2004.

[24] Yves Bertot and Ekaterina Komendantskaya. Using structural recursion for corecursion.
In Berardi et al. [22], pages 220–236.

[25] Frédéric Blanqui. A type-based termination criterion for dependently-typed higher-order
rewrite systems. In Vincent van Oostrom, editor, Rewriting Techniques and Applications,

BIBLIOGRAPHY 149

15th International Conference, RTA 2004, Aachen, Germany, June 3-5, 2004, Proceed-
ings, volume 3091 of Lecture Notes in Computer Science, pages 24–39. Springer, 2004.

[26] Frédéric Blanqui and Colin Riba. Combining typing and size constraints for checking the
termination of higher-order conditional rewrite systems. In Hermann and Voronkov [46],
pages 105–119.

[27] Ana Bove. General recursion in type theory. In Geuvers and Wiedijk [37], pages 39–58.

[28] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki,
and S. F. Smith. Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[29] Thierry Coquand. Metamathematical investigations of a calculus of constructions. In
Piergiorgio Odifreddi, editor, Logic and computer science, pages 91–122. Academic Press,
London, 1990.

[30] Thierry Coquand. Pattern matching with dependent types. In B. Nordström, K. Pet-
tersson, and G. Plotkin, editors, Informal Proceedings Workshop on Types for Proofs and
Programs (B̊astad, Sweden), 1992.

[31] Thierry Coquand. Infinite objects in type theory. In Barendregt and Nipkow [12], pages
62–78.

[32] Thierry Coquand and Gerard Huet. The calculus of constructions. Inf. Comput., 76:95–
120, February 1988.

[33] Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf
and Grigori Mints, editors, COLOG-88, International Conference on Computer Logic,
Tallinn, USSR, December 1988, Proceedings, volume 417 of Lecture Notes in Computer
Science, pages 50–66. Springer, 1988.

[34] Randy Pollack et.al. The LEGO Proof Assistant, 2001. http://www.dcs.ed.ac.uk/

home/lego/.

[35] Maria João Frade. Type-Based Termination of Recursive Definitions and Constructor
Subtyping in Typed Lambda Calculi. PhD thesis, Universidade do Minho, 2003.

[36] Herman Geuvers and Mark-Jan Nederhof. Modular proof of strong normalization for the
calculus of constructions. J. Funct. Program., 1(2):155–189, 1991.

[37] Herman Geuvers and Freek Wiedijk, editors. Types for Proofs and Programs, Second
International Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002,
Selected Papers, volume 2646 of Lecture Notes in Computer Science. Springer, 2003.

[38] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter Dy-
bjer, Bengt Nordström, and Jan M. Smith, editors, Types for Proofs and Programs,
International Workshop TYPES’94, B̊astad, Sweden, June 6-10, 1994, Selected Papers,
volume 996 of Lecture Notes in Computer Science, pages 39–59. Springer, 1994.

[39] Eduardo Giménez. A Calculus of Infinite Constructions and its application to the ver-
ification of communicating systems. PhD thesis, Ecole Normale Supérieure de Lyon,
1996.

[40] Eduardo Giménez. Structural recursive definitions in type theory. In Kim Guldstrand
Larsen, Sven Skyum, and Glynn Winskel, editors, Automata, Languages and Program-
ming, 25th International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998,

http://www.dcs.ed.ac.uk/home/lego/
http://www.dcs.ed.ac.uk/home/lego/

150 BIBLIOGRAPHY

Proceedings, volume 1443 of Lecture Notes in Computer Science, pages 397–408. Springer,
1998.

[41] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, Labo-
ratory for Foundations of Computer Science, University of Edinburgh, 1994.

[42] Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pattern
matching. In K. Futatsugi, J. P. Jouannaud, and J. Meseguer, editors, Algebra, Meaning,
and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th
Birthday, volume 4060 of LNCS. Springer, 2006.

[43] Georges Gonthier. The four colour theorem: Engineering of a formal proof. In Deepak
Kapur, editor, Computer Mathematics, 8th Asian Symposium, ASCM 2007, Singapore,
December 15-17, 2007. Revised and Invited Papers, volume 5081 of Lecture Notes in
Computer Science, page 333. Springer, 2007.

[44] Benjamin Grégoire and Jorge Luis Sacchini. On strong normalization of the calculus
of constructions with type-based termination. In Christian G. Fermüller and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning - 17th
International Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Pro-
ceedings, volume 6397 of Lecture Notes in Computer Science, pages 333–347. Springer,
2010.

[45] Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics.
J. ACM, 40(1):143–184, 1993.

[46] Miki Hermann and Andrei Voronkov, editors. Logic for Programming, Artificial Intelli-
gence, and Reasoning, 13th International Conference, LPAR 2006, Phnom Penh, Cam-
bodia, November 13-17, 2006, Proceedings, volume 4246 of Lecture Notes in Computer
Science. Springer, 2006.

[47] Martin Hofmann and Thomas Streicher. The groupoid model refutes uniqueness of
identity proofs. In Proceedings, Ninth Annual IEEE Symposium on Logic in Computer
Science, 4-7 July 1994, Paris, France, pages 208–212. IEEE Computer Society, 1994.

[48] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems
using sized types. In POPL, pages 410–423, 1996.

[49] Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, University of Utrecht,
1980.

[50] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for
program termination. In POPL, pages 81–92, 2001.

[51] Gyesik Lee and Benjamin Werner. A proof-irrelevant model of CIC with predicative
induction and judgemental equality. Unpublished, 2010.

[52] Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

[53] Pierre Letouzey. Programmation fonctionnelle certifiée – L’extraction de programmes
dans l’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

[54] Azriel Levy. Basic Set Theory. Springer-Verlag, 1979.

[55] Zhaohui Luo. A higher-order calculus and theory abstraction. Inf. Comput., 90(1):107–
137, 1991.

BIBLIOGRAPHY 151

[56] Zhaohui Luo. Computation and reasoning: a type theory for computer science. Oxford
University Press, Inc., New York, NY, USA, 1994.

[57] Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof engine. In
Barendregt and Nipkow [12], pages 213–237.

[58] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and
J. C. Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic Colloquium,
volume 80 of Studies in Logic and the Foundations of Mathematics, pages 73–118. Else-
vier, 1975.

[59] Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis,
University of Edinburgh, 1999.

[60] Conor McBride. Epigram: Practical programming with dependent types. In V. Vene and
T. Uustalu, editors, AFP 2004, Estonia, 2004, Revised Lectures, volume 3622 of LNCS.
Springer, 2004.

[61] Conor McBride, Healfdene Goguen, and James McKinna. A few constructions on con-
structors. In Jean-Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner,
editors, Types for Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-
Josas, France, December 15-18, 2004, Revised Selected Papers, volume 3839 of Lecture
Notes in Computer Science, pages 186–200. Springer, 2004.

[62] Conor McBride and James McKinna. The view from the left. J. Funct. Program.,
14(1):69–111, 2004.

[63] Paul-André Melliès and Benjamin Werner. A generic normalisation proof for pure type
systems. In Eduardo Giménez and Christine Paulin-Mohring, editors, Types for Proofs
and Programs, International Workshop TYPES’96, Aussois, France, December 15-19,
1996, Selected Papers, volume 1512 of LNCS, pages 254–276. Springer, 1996.

[64] Nax Paul Mendler. Inductive types and type constraints in the second-order lambda
calculus. Ann. Pure Appl. Logic, 51(1-2):159–172, 1991.

[65] Alexandre Miquel. Le calcul des constructions implicite: syntaxe et sémantique. PhD
thesis, Université Paris 7, 2001.

[66] Alexandre Miquel and Benjamin Werner. The not so simple proof-irrelevant model of
CC. In Geuvers and Wiedijk [37], pages 240–258.

[67] Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems.
In Amadio [9], pages 350–364.

[68] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf ’s
Type Theory. An Introduction. Oxford University Press, 1990.

[69] Ulf Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology, 2007.

[70] Nicolas Oury. Pattern matching coverage checking with dependent types using set ap-
proximations. In A. Stump and H. Xi, editors, Proceedings of the ACM Workshop Pro-
gramming Languages meets Program Verification, PLPV 2007, Freiburg, Germany, Oc-
tober 5, 2007, pages 47–56. ACM, 2007.

[71] Lars Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of Technology,
2000.

152 BIBLIOGRAPHY

[72] Christine Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre
Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I, De-
cember 1996.

[73] John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B. Mac-
Queen, and Gordon D. Plotkin, editors, Semantics of Data Types, International Sym-
posium, Sophia-Antipolis, France, June 27-29, 1984, Proceedings, volume 173 of Lecture
Notes in Computer Science, pages 145–156. Springer, 1984.

[74] Tim Sheard and Nathan Linger. Programming in Omega. In Zoltán Horváth, Rinus
Plasmeijer, Anna Soós, and Viktória Zsók, editors, Central European Functional Pro-
gramming School, Second Summer School, CEFP 2007, Cluj-Napoca, Romania, June
23-30, 2007, Revised Selected Lectures, volume 5161 of Lecture Notes in Computer Sci-
ence, pages 158–227. Springer, 2007.

[75] Vincent Siles and Hugo Herbelin. Equality is typable in semi-full Pure Type Systems.
In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 21–30. IEEE Computer
Society, 2010.

[76] Vincent Siles and Hugo Herbelin. Pure Type Systems conversion is always typable.
Submitted, 2010.

[77] Matthieu Sozeau. Subset coercions in Coq. In Thorsten Altenkirch and Conor McBride,
editors, Types for Proofs and Programs, International Workshop, TYPES 2006, Not-
tingham, UK, April 18-21, 2006, Revised Selected Papers, volume 4502 of LNCS, pages
237–252. Springer, 2006.

[78] Matthieu Sozeau. Equations: A dependent pattern-matching compiler. In Matt Kauf-
mann and Lawrence C. Paulson, editors, Interactive Theorem Proving, First Interna-
tional Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume
6172 of Lecture Notes in Computer Science, pages 419–434. Springer, 2010.

[79] Aaron Stump, Morgan Deters, Adam Petcher, Todd Schiller, and Timothy W. Simp-
son. Verified programming in Guru. In Thorsten Altenkirch and Todd D. Millstein,
editors, Proceedings of the 3rd ACM Workshop Programming Languages meets Program
Verification, PLPV 2009, Savannah, GA, USA, January 20, 2009, pages 49–58. ACM,
2009.

[80] The Coq Development Team. The Coq Reference Manual, version 8.1, February 2007.
Distributed electronically at http://coq.inria.fr/doc.

[81] L. S. van Benthem Jutting. Typing in pure type systems. Inf. Comput., 105(1):30–41,
1993.

[82] David Wahlstedt. Dependent Type Theory with Parameterized First-Order Data Types
and Well-Founded Recursion. PhD thesis, Chalmers University of Technology, 2007.
ISBN 978-91-7291-979-2.

[83] Benjamin Werner. Sets in types, types in sets. In Mart́ın Abadi and Takayasu Ito, editors,
Theoretical Aspects of Computer Software, Third International Symposium, TACS ’97,
Sendai, Japan, September 23-26, 1997, Proceedings, volume 1281 of Lecture Notes in
Computer Science, pages 530–346. Springer, 1997.

[84] Benjamin Werner. On the strength of proof-irrelevant type theories. Logical Methods in
Computer Science, 4(3), 2008.

http://coq.inria.fr/doc

BIBLIOGRAPHY 153

[85] Hongwei Xi. Dependent Types for Program Termination Verification. Journal of Higher-
Order and Symbolic Computation, 15:91–131, October 2002.

[86] Hongwei Xi. Applied Type System (extended abstract). In Post-Workshop Proceedings
of TYPES 2003, pages 394–408. Springer-Verlag LNCS 3085, 2004.

154 BIBLIOGRAPHY

INSTITUT DES SCIENCES ET TECHNOLOGIES

Terminaison basée sur les types et filtrage dépendant pour le calcul des
constructions inductives

Résumé :
Les assistants de preuve basés sur des théories des types dépendants sont de plus en plus utilisé

comme un outil pour développer programmes certifiés. Un exemple réussi est l’assistant de preuves
Coq, fondé sur le Calcul des Constructions Inductives (CCI). Coq est un langage de programmation
fonctionnel dont un expressif système de type qui permet de préciser et de démontrer des propriétés
des programmes dans une logique d’ordre supérieur.

Motivé par le succès de Coq et le désir d’améliorer sa facilité d’utilisation, dans cette thèse nous
étudions certaines limitations des implémentations actuelles de Coq et sa théorie sous-jacente, CCI.
Nous proposons deux extension de CCI que partiellement resourdre ces limitations et que on peut
utiliser pour des futures implémentations de Coq.

Nous étudions le problème de la terminaison des fonctions récursives. En Coq, la terminaison
des fonctions récursives assure la cohérence de la logique sous-jacente. Les techniques actuelles
assurant la terminaison de fonctions récursives sont fondées sur des critères syntaxiques et leurs
limitations apparaissent souvent dans la pratique. Nous proposons une extension de CCI en utilisant
un mécanisme basé sur les type pour assurer la terminaison des fonctions récursives. Notre principale
contribution est une preuve de la normalisation forte et la cohérence logique de cette extension.

Nous étudions les définitions par filtrage dans le CCI. Avec des types dépendants, il est possible
d’écrire des définitions par filtrage plus précises, par rapport à des langages de programmation fonc-
tionnels Haskell et ML. Basé sur le succès des langages de programmation avec types dépendants,
comme Epigram et Agda, nous développons une extension du CCI avec des fonctions similaires.

Mots clés : Terminaison basé sur les types, types dependants, filtrage par motifs, Calcul des
Constructions Inductives

On Type-Based Termination and Dependent Pattern Matching in the Calculus
of Inductive Constructions

Abstract:
Proof assistants based on dependent type theory are progressively used as a tool to develop

certified programs. A successful example is the Coq proof assistant, an implementation of a dependent
type theory called the Calculus of Inductive Constructions (CIC). Coq is a functional programming
language with an expressive type system that allows to specify and prove properties of programs in a
higher-order predicate logic.

Motivated by the success of Coq and the desire of improving its usability, in this thesis we study
some limitations of current implementations of Coq and its underlying theory, CIC. We propose two
extension of CIC that partially overcome these limitations and serve as a theoretical basis for future
implementations of Coq.

First, we study the problem of termination of recursive functions. In Coq, all recursive functions
must be terminating, in order to ensure the consistency of the underlying logic. Current techniques
for checking termination are based on syntactical criteria and their limitations appear often in practice.
We propose an extension of CIC using a type-based mechanism for ensuring termination of recursive
functions. Our main contribution is a proof of Strong Normalization and Logical Consistency for this
extension.

Second, we study pattern-matching definitions in CIC. With dependent types it is possible to write
more precise and safer definitions by pattern matching than with traditional functional programming
languages such as Haskell and ML. Based on the success of dependently-typed programming lan-
guages such as Epigram and Agda, we develop an extension of CIC with similar features.

Keywords: Type-based termination, dependent types, pattern matching, Calculus of Inductive Con-
structions

	Abstract
	Résumé
	Acknowledgments
	Introduction
	The Calculus of (Co-)Inductive Constructions
	Termination of Recursive Functions
	Guard predicates
	Type-based termination

	Pattern matching
	Contribution
	Overview of the Rest of the Thesis

	CIC^-
	Introduction
	Syntax of CIC^-
	Basic Terms
	Inductive types
	Reduction

	Typing rules
	Subtyping
	Positivity
	Inductive Types
	Simple types

	Terms and contexts
	Examples
	A Comparison Between CIC^- and CIC^
	Related Work

	Metatheory of CIC^-
	Basic Metatheory
	Annotated Version of CIC^-
	Syntax and Typing Rules
	Metatheory
	Strong Normalization and Logical Consistency
	From CIC^- to ECIC^-

	Strong Normalization
	Overview of the Proof
	The case of CIC^-.

	Preliminary Definitions
	The Interpretation
	Impredicativity
	Interpretation of Terms and Contexts
	Interpretation of Inductive Types
	Properties of the Interpretation
	Interpretation of simple Types
	Properties of the Relational Interpretation

	Soundness
	Strong Normalization

	Extensions
	Universe Inclusion
	Equality
	Coinductive Types

	A New Elimination Rule
	Introduction
	Syntax
	Typing Rules
	Examples
	Metatheory
	From CIC PM to CIC minus extended with heterogeneous equality
	Translation Function

	Related Work

	Conclusions

